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Saira Latif, Torbjörn Lindbäck, Magnus Karlberg and Johanna Wallsten

Bale Collection Path Planning Using an Autonomous Vehicle with Neighborhood Collection
Capabilities
Reprinted from: Agriculture 2022, 12, 1977, doi:10.3390/agriculture12121977 . . . . . . . . . . . . 133

Yajun Li, Qingchun Feng, Jiewen Lin, Zhengfang Hu, Xiangming Lei and Yang Xiang

3D Locating System for Pests’ Laser Control Based on Multi-Constraint Stereo Matching
Reprinted from: Agriculture 2022, 12, 766, doi:10.3390/agriculture12060766 . . . . . . . . . . . . . 153

v



Anwen Liu, Yang Xiang, Yajun Li, Zhengfang Hu, Xiufeng Dai, Xiangming Lei

and Zhenhui Tang

3D Positioning Method for Pineapple Eyes Based on Multiangle Image Stereo-Matching
Reprinted from: Agriculture 2022, 12, 2039, doi:10.3390/agriculture12122039 . . . . . . . . . . . . 171

Cheng Liu, Qingchun Feng, Zuoliang Tang, Xiangyu Wang, Jinping Geng and Lijia Xu

Motion Planning of the Citrus-Picking Manipulator Based on the TO-RRT Algorithm
Reprinted from: Agriculture 2022, 12, 581, doi:10.3390/agriculture12050581 . . . . . . . . . . . . . 189

Jian Liu, Jin Yuan, Jiyuan Cui, Yunru Liu and Xuemei Liu

Contour Resampling-Based Garlic Clove Bud Orientation Recognition for High-Speed Precision
Seeding
Reprinted from: Agriculture 2022, 12, 1334, doi:10.3390/agriculture12091334 . . . . . . . . . . . . 213

Jie Liu, Xuanfeng Liu, Yongxin Jiang, Xin Zhou, Li Zhang and Xuenong Wang

Research on the Adaptability of High-Performance Film for Full Recycling to the Curl-Up Film
Collecting Method
Reprinted from: Agriculture 2022, 12, 1051, doi:10.3390/agriculture12071051 . . . . . . . . . . . . 239

Lin Liu, Jin Yuan, Liang Gong, Xing Wang and Xuemei Liu

Dynamic Fresh Weight Prediction of Substrate-Cultivated Lettuce Grown in a Solar Greenhouse
Based on Phenotypic and Environmental Data
Reprinted from: Agriculture 2022, 12, 1959, doi:10.3390/agriculture12111959 . . . . . . . . . . . . 259

Yu Ren, Wensong Guo, Xufeng Wang, Can Hu, Long Wang, Xiaowei He and Jianfei Xing

Design and Test of Duckbill Welding Robot for Cotton Seeder
Reprinted from: Agriculture 2022, 13, 31, doi:10.3390/agriculture13010031 . . . . . . . . . . . . . 275

Chenbo Shi, Yanhong Cheng, Chun Zhang, Jin Yuan, Yuxin Wang ,Xin Jiang

and Changsheng Zhu

Wavelet Scattering Convolution Network-Based Detection Algorithm on Nondestructive
Microcrack Electrical Signals of Eggs
Reprinted from: Agriculture 2023, 13, 730, doi:10.3390/agriculture13030730 . . . . . . . . . . . . . 291

Chenbo Shi, Yuxin Wang, Chun Zhang, Jin Yuan, Yanhong Cheng, Baodun Jia

and Changsheng Zhu

Nondestructive Detection of Microcracks in Poultry Eggs Based on the Electrical Characteristics
Model
Reprinted from: Agriculture 2022, 12, 1137, doi:10.3390/agriculture12081137 . . . . . . . . . . . . 311

Fuyang Tian, Xinwei Wang, Sufang Yu, Ruixue Wang, Zhanhua Song, Yinfa Yan, et al.

Research on Navigation Path Extraction and Obstacle Avoidance Strategy for Pusher Robot in
Dairy Farm
Reprinted from: Agriculture 2022, 12, 1008, doi:10.3390/agriculture12071008 . . . . . . . . . . . . 335
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Preface to ”Robots and Autonomous Machines for

Agriculture Production”

Global agriculture faces critical pressures, including an aging population, rising production

costs, and labor shortages. An important alternative solution for these challenges, robots and

autonomous machines represent a high-level application of smart agriculture, which is based on

a precise and resource-efficient approach to sustainably achieving higher efficiency and quality in

agricultural production. On the one hand, robotics and autonomous machines continue to spread

into various new agricultural scenarios, and on the other hand, technologies such as deep learning

and machine learning are increasingly being used in agricultural production. By exploring the diverse

methodologies employed in addressing such challenges, this Special Issue aims to advance the field

and improve the efficiency of agricultural production through robotic and autonomous innovations.

In order to investigate the advancements in robots and autonomous systems for agriculture,

by using modeling, detection, and control technologies and emphasizing their potential in precision

farming, crop protection, crop harvesting, etc., we have organized this Special Issue, “Robots and

Autonomous Machines for Agriculture Production”. The issue has a total of 26 papers which cover

a wide range of agricultural operations, including cotton planters, maize planters, apple harvesting,

shrimp peeling, rice phenotyping, pest control, bale collection, pineapple processing, garlic seeding,

agricultural film collecting, lettuce growth modelling, egg microcrack detection, forage pushing,

fungus harvesting, and jujube pruning. In terms of the research field, the issue focuses on robotics and

its related application research, such as the following areas: soft gripper design, autonomous robots,

humanoid field-phenotyping robots, apple detection, manipulator motion planning, dairy robots,

vineyard spraying robots, fungus harvesting robots, and orchard visual navigation. In addition, it

also focuses on intelligent agricultural machines in different scenarios of seeding, crop monitoring,

agricultural products, etc.

In summary, this Special Issue highlights different approaches in the development of agricultural

robots and intelligent agricultural machines in several agricultural application scenarios for scene

and object perception, intelligent decision support methods, and operational mechanisms and their

control. It is expected that the insights gained from this Special Issue will be useful to researchers in

the field of agricultural robots and autonomous machines.

Jin Yuan, Wei Ji, and Qingchun Feng

Editors
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Robots and Autonomous Machines for Sustainable
Agriculture Production

Jin Yuan 1,*, Wei Ji 2,* and Qingchun Feng 3,*

1 School of Mechanical and Electronic Engineering, Shandong Agriculture University, Taian 271018, China
2 School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
3 National Research Center of Intelligent Equipment for Agriculture, Beijing 100097, China
* Correspondence: jyuan@sdau.edu.cn (J.Y.); jiwei@ujs.edu.cn (W.J.); fengqc@nercita.org.cn (Q.F.)

The global agriculture faces critical pressures, including an aging population, rising
production costs, and labor shortages. As an important alternative solution for those
challenges, robots and autonomous machines represent a high-level application of smart
agriculture, which is based on a precise and resource-efficient approach that attempts to
sustainably achieve a higher efficiency in the agricultural production with an increased
quality. On the one hand, robotics and autonomous machines continue to expand in
various new agricultural scenarios, while on the other hand, technologies such as deep
learning and machine learning are increasingly used in agriculture, and their application in
various scenarios of agricultural production has become more in-depth. By exploring the
diverse methodologies employed in addressing such challenges, this Special Issue aims to
advance the field and improve the efficiency of agricultural production through robotic
and autonomous innovations.

In order to investigate the advancements in robots and autonomous systems for agri-
culture, using modeling, detection, and control technologies, emphasizing their potential
in precision farming, crop protection, crop harvesting, etc., we have organized this Special
Issue “Robots and Autonomous Machines for Agriculture Production (RAMAP)”. The
Special Issue of RAMAP has a total of 26 papers [1–26], and papers were submitted from
eight countries: Spain, Italy, Germany, Brazil, China, Sweden, Czech Republic and Croa-
tia. Moreover, the Special Issue covers a wide range of agricultural operations, including
cotton planters [15], maize planters [2], apple harvesting [3,7,11], shrimp peeling [4], rice
phenotyping [6], pests control [9], bales collection [8], pineapple processing [10], garlic
seeding [12], agricultural film collecting [13], lettuce growth modelling [14], egg microcrack
detection [17], forage pushing [18], fungus harvesting [24] and jujube pruning [25]. In
terms of the research field, the Special Issue not only focused on robotic and its related
application research, such as soft gripper design [3], autonomous robot [5], humanoid
field-phenotyping robot [6], apples detection [7], manipulator motion planning [11], dairy
robot [18], vineyard spraying robot [20], fungus harvesting robot [24] and orchard visual
navigation [26], but also refers to intelligent agricultural machines in different scenarios
on seeding [1,2,12,15], shrimp peeling [4], recycling film collecting [13], crop and monitor-
ing [14], and agricultural products [16,17,23].

Agricultural robots are multi-degrees-of-freedom autonomous operation machines
used in agricultural production, with perception, decision-making, control and execution
capabilities, mainly including information perception systems, decision-making systems,
operation actuators, that is sensing, decision making and execution. Overall, most of
the papers in the Special Issue of RAMAP were grouped into four categories: sensing
for the crop or machine system [1,4,7,9,10,12,16,17,22,23,26], methodological studies for
decision-making and control [2,8,11,14,18,20,24], designs related to intelligent machinery
execution [1,3,13,15,25] and systematic solutions [5,6,19,21].

Agriculture 2023, 13, 1340. https://doi.org/10.3390/agriculture13071340 https://www.mdpi.com/journal/agriculture
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Generally, agricultural robots first need to sense the operating environment, the
operating object and the state of the robot itself, and to provide the panoramic data related
to the operating process to the agricultural robots to complete the operating tasks.

The first category has eleven papers under the following sub-heading: Intelligent
sensing for the crop or machine system [1,4,7,9,10,12,16,17,22,23,26]. Currently, a large
number of studies focus on deep learning techniques, which have shown their superb
impact on robotic sensing applications, as reflected in this issue. Some papers utilized
improved YOLO-based [7,23,26], CNN-based [12,16] or RCNN-based [9] methods to devel-
oped a detection model for operating target recognition or performance evaluation from
the RGB images. To achieve more accuracy, faster and compacter models may be popular
due to the cost-effective and feasiblity with low-computing platforms. The paper by Liu
et al. [10] proposed a 3D localization algorithm to fuse the depth information based on
multiangle image matching and YOLOv5 detection information. Some papers utilized
the manual features combined with machine learning, such as the adaptive recognition
boundary model [4], density-based lightning connection clustering [22], random forest [17],
etc., to achieve target detection, due to a small training dataset or more efficient features.

For intelligent agricultural machines, Bai et al. [1] designed a monitoring system for
the sowing quality of cotton precision planters, to realize the real-time monitoring of the
cotton precision seeding operation processes and improve the intelligence level of cotton
precision planters.

Generally, intelligent decision-making and intelligent control systems aim at deep
fusion of perception information, cognitive reasoning, predictive planning, and coordinated
control of agricultural robot perception and execution subsystem operations, which is the
core element of agricultural robots.

The second category has seven papers under the following sub-heading: Methodolog-
ical studies for decision making and control [2,8,11,14,18,20,24]. Three studies focus on the
optimization of motion planning for robots. The paper by Latif et al. [8] optimized path
planning approaches using a new autonomous articulated concept vehicle with neighbor-
hood reach capabilities (AVN). The paper by Liu et al. [11] proposed a time-optimal rapidly
exploring random tree (TO-RRT) algorithm to reduce the obstacle avoidance effect and
increase picking efficiency of the manipulator. The paper by Yang et al. [24] proposes a
multi-objective optimization algorithm of the multi-arm cooperative harvesting trajectory
to improve the harvesting efficiency.

A novel method [14] for predicting the dynamic growth of leafy vegetables based on
the in situ sensing of phenotypic and environmental data of batches is proposed to predict
the dynamic fresh weight of substrate-cultivated lettuce grown in a solar greenhouse
under normal water and fertilizer conditions. A model predictive control (MPC)-based
approach [20] for vineyard spraying was presented to adapt to different vine row structures
and suitable for real-time applications. Additionally, a control system [2] for an electrically
driven precision maize seeder based on the CANopen protocol was designed. An obstacle
avoidance strategy [18] based on the improved artificial potential field method is proposed
for an autonomous navigation pusher robot.

The third category has seven papers under the following sub-heading: Designs related
to intelligent machinery execution [3,13,15,25]. Zhang et al. [25] designed a pruning ma-
nipulator with five degrees of freedom for jujube trees. It is of reference value to solve the
problems of poor working conditions and the labor intensity of manually pruning jujube
trees. Chen et al. [3] developed a fin ray structure-based soft gripper mechanical model
and its real-time servo-driven control strategy to reduce the potential danger of damage
to the apple pericarps during robotic harvesting. Yu et al. [15] designed a cotton seeder
duckbill welding robot to improve the automation, welding efficiency, and welding quality
of duckbill welding of cotton seeds.

The final category has four papers under the following sub-heading: Systematic
solutions [5,6,19,21]. Emmi et al. [5] presented an architecture to integrate the different
components of an autonomous robot that provides access to the cloud, taking advantage of
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the services provided regarding data storage, scalability, accessibility, data sharing, and
data analytics. Huang et al. [6] presents a new in-field interactive cognition phenotyp-
ing paradigm, and a humanoid robot equipped with image-acquiring sensory devices
is designed containing an intuitive remote control for field phenotyping manipulations;
subsequently, an attentional residual network (AtResNet) is proposed for rice tiller number
recognition. The paper by Vasconcelos et al. [19] proposed a demo of agricultural field
image data acquisition with a low-cost autonomous robot.

Precision agriculture, which addresses the spatial and temporal variability of soils and
crops to reduce agricultural inputs and improve agricultural production reporting, varies
greatly in implementation from country to country. Vrchota et al. [21] evaluated precision
agriculture technologies’ practical use in agricultural enterprises in the Czech Republic,
which is a reference for the development and implementation of precision agriculture
technology and equipment in each country.

In summary, this Special Issue highlights different approaches in the development of
agricultural robots and intelligent agricultural machines in several agricultural applica-
tion scenarios for scene and object perception, intelligent decision support methods, and
operational mechanisms and their control. It is expected that the insights derived from
this Special Issue will be useful to researchers related to the field of agricultural robots and
autonomous machines.

Author Contributions: Conceptualization, J.Y.; investigation, W.J. and Q.F.; writing—original draft
preparation, J.Y.; writing—review and editing, W.J. and Q.F.; All authors have read and agreed to the
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Abstract: To realize the real-time monitoring of the cotton precision seeding operation process
and improve the intelligence level of cotton precision planters, based on automatic color matching
detection technology and visualization technology, this study designs a monitoring system for the
sowing quality of cotton precision planters. The monitoring system is based on the double-silo
turntable type cotton vertical disc hole seed metering device as the research carrier, and is composed
of a missed seeding monitoring module and a visualization module. Among them, the missed
seeding monitoring module includes an incremental rotary encoder, color code electric eye color
fiber optic sensor, color code sensor amplifier, etc.; the visualization module includes data acquisition
module, industrial computer, and so on. The missing seeding monitoring module is installed on
the seed spacer of the cotton precision seed metering device. It uses Labview software for graphical
programming and is equipped with a multi-functional industrial computer. It realizes the monitoring
of parameters such as the number of sowings, the number of missed sowings, the speed of the hole
seeder, the forward speed of the machine, and the sowing area. The results of the bench test and
field test of the sowing monitoring system showed that the accuracy rate of the system’s broadcast
monitoring was over 93%, and the accuracy rate of missed broadcast monitoring was over 91%. The
system solved the technical problem that cotton film-laying and sowing were not easy to detect. It
could accurately detect the quality of cotton sowing in real time and meet the actual requirements of
sowing monitoring.

Keywords: cotton precision planter; cotton seeds; broadcast monitoring; missed broadcast monitoring;
sowing quality

1. Introduction

Cotton precision sowing is the key to realize mechanized cotton planting. Sowing
quality directly affects crop growth and yield. Among them, missed sowing is an impor-
tant factor affecting sowing quality [1,2]. Therefore, breaking through the sowing quality
monitoring technology is a research hotspot in the current sowing field. It can provide key
support for technical development, such as for real-time adjustment of sowing amount,
real-time reseeding of missed sowing, and machine operation management systems. This
has important practical significance for improving the informatization of cotton preci-
sion sowing operations and promoting the quality development of mechanized sowing
operations [3,4].
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At present, it is in a closed state during the sowing process. The sowing quality
cannot be directly monitored by human senses alone [5–7]. Therefore, it is particularly
important to develop a seeding quality monitoring system. The research and application of
precision seeder monitoring systems abroad began in the 1940s. Nowadays, the research
on sowing quality monitoring technology is mature. The monitoring devices matching
with seeders are widely used [2]. Precision Planting of the United States developed a
20/20 SeedSense monitoring system using WaveVision particle sensors. It could monitor
the seeding quality in real time, and had the function of automatically correcting the seeding
performance [8]. The Sistema Full Semina precision seeding system developed by MC
electronic in Italy could realize the sowing monitoring of large and medium-sized seeds [9].
The John Deere Precision Planter was equipped with a Seed Star monitor. Statistics and
analysis were carried out in various graphics, so that the operator could grasp the seeding
quality information in real time. It uploaded data to the information center to provide data
support for subsequent operations [10]. For different crop seeds, based on photoelectric
method, image recognition method, piezoelectric method, capacitive method, etc. [11–14],
different forms of monitoring systems have been developed abroad to monitor the seeding
process in real time. Foreign seeding monitoring equipment has been commercialized and
has good performance. However, it is expensive and not suitable for domestic general
seeding tools and working environment conditions.

The domestic research on sowing monitoring system started relatively late. However,
scholars were also actively exploring and developing a planting monitoring system suitable
for the actual situation in our country. Che Yu et al. [2] designed an infrared monitoring
system for seeding quality. It could monitor the sowing count, missed sowing, and outage
of sowing, and the monitoring accuracy rate could reach more than 95%. Sun et al. [15]
adopted the non-blind area anti-dust monitoring technology of non-point source, which
improved the adaptability and monitoring accuracy of the no-tillage planter monitoring
system to the dusty environment. Zhou et al. [16,17] developed a series of seed metering
performance monitoring systems based on the dielectric properties of seeds and using
capacitance detection technology; it realized the seeding detection of corn, rice, and cot-
tonseed. Ding et al. [18–22] realized real-time monitoring of seeding frequency and total
amount of seeding based on the characteristic analysis of the collision signal between
seeds and piezoelectric films. Based on machine vision and BP neural network technology,
Tan et al. [23,24] realized the precise monitoring of the seeding amount in the holes, with
an average accuracy rate of 94.4%. To sum up, the existing monitoring methods of sowing
parameters mainly included photoelectric monitoring, capacitive monitoring, and high-
speed camera monitoring. Among them, the photoelectric monitoring method was the
most widely used, with the advantages of low cost, reliable performance, and easy main-
tenance [25]. The machine vision method could solve the problems of low measurement
accuracy and low degree of automation. However, the system was relatively complex and
the cost was high, which was not suitable for field production applications [26–28]. The
capacitive type was simple and economical, easy to maintain, and capable of non-contact
real-time measurement. However, it had weak anti-interference and unstable performance,
so it was difficult to apply it to field agricultural production activities [29].

At present, the cotton precision seeders generally adopt the method of hole seeding.
Different from the common seed metering device structure and seed metering method,
it belongs to “zero-speed seeding” (the instantaneous speed of the seeds falling into the
seedbed is close to zero relative to the ground) [30,31]. The above monitoring technology is
difficult to use directly. Therefore, to realize real-time monitoring of the sowing quality of
cotton precision planters, a method for monitoring sowing parameters based on a color-
coded electric eye color fiber optic sensor is proposed. Labview is used to build and
develop a seeding quality monitoring system, and bench tests and field performance tests
are conducted. This method is expected to improve the quality of cotton precision sowing
operations and meet the actual production needs of cotton.
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2. Materials and Methods

2.1. Research Carrier

The double-storage rotary disc type cotton vertical disc hole seed metering device is
used as the research carrier of the sowing quality monitoring system. It is mainly composed
of a moving plate, a seed-taking plate, a seed-casting bin assembly, a seed spacer, and a core
plate. The structure is shown in Figure 1. The working area is divided into 5 areas: a seed
filling area, seed clearing area, transfer area, seed transfer area, and seed casting area. The
specific working principle can be found in reference [32]. In the transit area, the installation
position of the color-coded electric eye color fiber optic sensor is determined based on the
structure of the seed spacer. It is necessary for it to face the hole of the seed tray.

Figure 1. Structural diagram of double-bin rotary disc type cotton vertical disc hole seeding and
metering device: (1) moving plate, (2) seed hopper assembly, (3) seed Spacer, (4) seed tray, and
(5) core plate.

When the seed-taking tray enters this area, the seeds in the socket will slide along the
inner wall of the socket into the seeding cavity composed of the seed-taking tray and the
seed spacer. The color-coded electric eye color fiber optic sensor collects the RGB color
of the cotton species, compares the RGB value of the reference color, and identifies the
color. It obtains the seeding amount by calculating the change in the number of pulses; the
seeding distance is obtained by multiplying the time interval between the two adjacent
pulses identified by the forward speed of the implement. Missing seeding is obtained
by comparing the actual seeding grain spacing with the expected grain spacing, and an
alarm is given. After the seeds in the socket hole pass through the color-coded electric
eye color fiber optic sensor, they slide along the inner wall of the socket hole into the seed
rowing cavity composed of the seed taking plate and the seed spacer. After entering the
seeding area again, the seeds in the warehouse slide into the duckbill along the spacer
sleeve. After the mouthpiece is opened, the cotton seeds fall into the seed hole to complete
the seeding operation. This provides the basis for the design of the subsequent seeding
quality monitoring system.

2.2. Monitoring System Design

The seeding quality monitoring system mainly includes two modules: a missed
seeding monitoring module and a visualization module. Among them, the missing-seeding
monitoring module mainly realizes the real-time monitoring of the seeding amount and the
missing-seeding situation, while the visualization module mainly realizes the visualization
of the monitoring results of seeding quality. The system structure diagram is shown in
Figure 2.
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Figure 2. Structural diagram of monitoring system.

2.2.1. Hardware Design

(1) Missing broadcast monitoring module

The missing broadcast monitoring module includes an incremental rotary encoder,
color code electric eye color fiber optic sensor, color code sensor amplifier, shielded cable,
and so on. Cotton precision planters generally use hole seeding. The cotton seed slides
directly into the duckbill from the seeding cavity. After the mouth is opened, it falls into
the seed hole to complete the seeding operation. This greatly limits the detection space.
That is, higher requirements are placed on the sensor installation location and detection
method. Therefore, this study chooses the color-coded electric eye color fiber optic sensor
(BV-501-RGB) and adopts the color automatic matching detection method. By comparing
the two different RGB colors of the seed tray and the cotton seed, the light source is selected
as three primary colors and a 4-element LED body. It solves the problem that cotton seeds
are not easy to detect. The surface of the color-coded electric eye color fiber optic sensor is
in the form of a cylindrical thread with a diameter of 6 mm. It is installed on the seed spacer
and located in the transfer area, which requires facing the hole of the seed tray, as shown in
Figure 3. It solves the problem that the sensor is not easy to install. It is connected to the
color mark sensor amplifier through the shielded cable. The detection distance is 0~50 mm.
It can adjust the detection height to control the spot size, ranging from 3 to 10 mm. It has
the characteristics of a large light-receiving surface and multi-point collection, which can
effectively reduce the misjudgment caused by uneven color.

 
Figure 3. Sensor installation diagram.
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The above sensors monitor whether there are cotton seeds in the hole of the seed-taking
pan, and feed back the information of the sowing quality. Among them, the color-coded
sensor amplifier is set in advance by aligning the color of the cotton with the color-coded
electric eye color fiber optic sensor. The color is memorized: if it is within the set color
threshold range, it is considered as normal seeding. A seeding status signal is sent.

An incremental rotary encoder (AB two-phase, 100 pulses) is installed on the moving
plate. It is connected with the data acquisition module through the shielded wire, which
has strong anti-interference and high cost performance. The rotating grating disc and
the optocoupler generate a counting pulse signal that can identify the direction. It is
transmitted to the industrial computer to calculate the speed of the hole seeder (that is, the
forward speed of the machine).

(2) Visualization module

The visualization module includes a data acquisition module, industrial computer,
etc. Among them, the data acquisition module is mainly used to receive the pulse signal
collected by the incremental rotary encoder and the color mark sensor amplifier. It is up-
loaded to the industrial computer through RS485 communication. The industrial computer
uses the Labview software to build the system, and the data is processed and displayed.
The industrial computer adopts a multi-function integrated machine. The interface of the
sowing quality monitoring system of the cotton precision seeder is shown in Figure 4. It can
visually display parameters such as the number of seeds, the number of missed seeds, the
speed of the hole seeder, the forward speed of the machine, and the sowing area. It realizes
real-time display, alarm, and storage of data such as alarm information and data monitoring
information. The system is equipped with a variety of detection modes suitable for various
targets. It has the advantages of good handling of workpiece motion and vibration, and
can meet the actual requirements of the sowing quality monitoring system.

 

Figure 4. The interface of sowing quality monitoring system of cotton precision planter.

2.2.2. Monitoring System Software Design

This software program uses Labview software graphical programming to monitor
parameters such as the number of sowings, the number of missed sowings, the speed of the

9



Agriculture 2022, 12, 1117

hole seeder, the forward speed of the machine, and the sowing area. They are displayed on
the corresponding controls on the interface in real time. It has the functions of alarming
and storing data such as alarm information and data monitoring information (as shown
in Figure 4). The software provides quick real-time understanding of cotton planting
and missed planting status. It can solve the technical problem that cotton film-laying
and sowing is not easy to detect, and effectively improve the operation quality and work
efficiency of cotton sowing.

The system software flow chart is shown in Figure 5. Before the system starts, it
performs an initial configuration and then sets system parameters. It obtains each parameter
value through the corresponding protocol analysis. When starting the system, the color-
coded electric eye color fiber optic sensor collects the RGB color of the cotton species. At the
same time, the color mark sensor amplifier compares the reference color RGB value and the
identification color to form a pulse signal. Incremental rotary encoders generate direction-
identifiable counting pulse signals through rotating grating discs and optocouplers. They
are transmitted to the industrial computer through the data acquisition module, and the
forward speed of the machine and the seeding amount are calculated. Combined with the
machine advance speed feedback data, it obtains the seeding grain distance (multiplied by
the time interval between the two adjacent pulses identified by the implemented advance
speed). Then, through the comparison between the actual seeding grain distance and the
expected grain distance, the missed seeding can be judged, and the real-time alarm of
missed seeding can be realized. Using Labview software, the industrial computer receives
and processes sensor data in real time, and visualizes and monitors its parameters.

Figure 5. Program flow diagram of software system.
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2.3. Test Equipment and Methods
2.3.1. Bench Test

In this study, the cotton seeds of Xinluzao 78 were used as the experimental material.
Its thousand-grain mass was 84.40 g, and the moisture content was 4.45%. The average
values of the maximum length, maximum width, and maximum thickness of the cotton
seeds were 8.52, 4.50, and 4.48 mm, respectively. The standard deviations were 0.43, 0.32,
and 0.41, respectively. The test equipment included a double-silo turntable test bench
for the cotton vertical disc seed metering device, a stepper motor controller, and a cotton
sowing quality monitoring system. To evaluate the accuracy of sowing quantity and missed
sowing monitoring of the cotton sowing quality monitoring system, a bench test of the
sowing quality monitoring system was designed. The test bench is shown in Figure 6.

 
Figure 6. Test bench of the monitoring system.

The purpose of the experiment was to evaluate the accuracy and stability of the sowing
quality monitoring system of cotton precision planters. In the experiment, a double-silo
turntable type vertical disc hole seeding and metering device was used. It set different
rotational speeds for seed metering monitoring tests. The missed-seeding monitoring
module was installed on the seed spacer. An inoculation bag was used to collect cotton
seeds that had passed the missed-seeding monitoring module. By changing the speed of
the seeding disc, the amount of seeding per unit time could be adjusted. In order to ensure
that the seed meter works within the normal range of seed metering frequency, the rotation
speeds were set to 20, 25, and 30 r/min [32]. It recorded the seed number displayed by
the industrial computer. The actual number of cotton seeds in the inoculation bag was
obtained by a manual method to calculate the actual sowing rate. It was compared with the
monitoring value of the monitoring system to evaluate the accuracy of the system’s sowing
detection. The test was repeated 3 times, and the results were averaged to avoid errors.

2.3.2. Field Test

In order to investigate the stability and monitoring accuracy of the seeding monitoring
system under field working conditions, a field trial of seeding monitoring was carried
out in Tiemenguan City, Xinjiang on 20 March 2022. The test equipment was: a John
Deere 804 tractor, Tiancheng 2MBJ-2/12 cotton precision film laying planter (Xinjiang
Tiancheng Agricultural Machinery Manufacturing Co., Ltd., Tiemenguan City, Xinjiang,
China, working width 4.4 m, laying 12 rows of film holes, weight 1300 kg), vertical disc
hole seeding metering device, cotton sowing quality monitoring system, etc.

Before the sowing monitoring test, the influence of light conditions on the missed
sowing monitoring module was examined [4]. No seeds were placed in this box, leaving
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the planter in a stationary state in the field. It connected the industrial computer with
the sensing device and turned on the monitoring system. It was tested under conditions
of sunlight, artificial lighting, and artificial blocking of natural light. The test results
showed that under normal light conditions in the field, the monitoring system count
was always 0. The normal light conditions in the field had no effect on the work of the
monitoring device. In order to further test the effect of field monitoring of the monitoring
system, an appropriate amount of cotton seeds were put into the seed box. It installed
the 12-channel missing-seeding monitoring modules with different channel addresses and
different channel numbers on the 12-channel cotton precision seed metering device. The
tester held the cotton sowing monitor and showed that the industrial computer was sitting
in the co-pilot position.

During the test, the sowing quality monitoring system of the cotton precision seeder
was powered on. The data were cleared, and then the machine was started to move forward
(Figure 7a). The speed of the seeding plate was controlled by the forward speed of the
implement. This made the John Deere 804 one gear faster with a small throttle speed (about
2 km/h, the diameter of the hole seeder was 420 mm) as the base speed, which translated
into a seeding disc speed of about 25 r/min. The rotation was controlled by adjusting
the motor. The rotation speed was set to 3 levels, which were 20, 25, and 30 r/min. The
forward distance of the machine was 100 m and the number of rotations was 75.8. There
were 15 holes in each circle, with a total of 1137 holes. Monitoring of seeding and missed
seeding was recorded. By looking at the cotton seeds discharged into the soil and counting
them manually (Figure 7b), the actual seeding amount was counted. Compared with the
results obtained by the monitoring system, this was used to evaluate the work stability and
reliability of the monitoring system under field work. The test was repeated 3 times, and
the results were averaged to avoid errors.

  
(a) (b) 

Figure 7. Field sowing monitoring test site: (a) prototype field test and (b) artificial counting.

3. Results and Discussion

3.1. Bench Test

The seed breakage rate ranged from 0.10 to 0.20%, which was negligible. The monitor-
ing results of the sowing amount at different rotational speeds are shown in Table 1 and
Figure 8. In order to further evaluate the accuracy of the system’s monitoring of the missed
seeding amount, the amount of cotton seeds in the seed picking area of the hole seeder was
artificially reduced at each rotation speed, so as to increase the missed seeding amount.
According to the above method, the actual missed seeding amount on the seed bed belt
was obtained. It was compared with the monitoring value of the monitoring system to
evaluate the accuracy of the system’s missed broadcast detection. Table 2 and Figure 9
show the monitoring results of the leakage amount at different rotational speeds.
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Table 1. Sowing rate monitoring results of the seed meter at different speeds.

Seed Plate
Speed/(r/min)

No. Actual Broadcast
Volume/Piece

Monitor
Broadcast

Volume/Piece

Accuracy Rate of
Broadcast

Monitoring/%

20

1 300 296 98.67%
2 294 291 98.98%
3 304 300 98.68%
4 297 302 98.51%
5 299 305 98.03%
6 302 306 98.69%

25

1 306 298 97.39%
2 300 294 98.00%
3 298 304 98.03%
4 302 296 98.01%
5 302 308 98.05%
6 303 295 97.36%

30

1 312 304 97.44%
2 294 286 97.28%
3 294 306 96.08%
4 308 315 97.62%
5 299 293 97.93%
6 305 297 97.38%

 

Figure 8. The sowing rate monitoring curve of the seed meter at different speeds.

Table 2. Missed broadcast monitoring results of the seed meter at different speeds.

Seed Plate
Speed/(r/min)

No. Actual Missed
Broadcast/Piece

Monitor
Broadcast

Volume/Piece

Missed Broadcast
Monitoring
Accuracy/%

20

1 303 295 97.36%
2 292 285 97.60%
3 307 300 97.72%
4 295 302 97.84%
5 297 306 97.06%
6 302 309 97.73%

25

1 305 295 96.72%
2 303 294 97.03%
3 299 310 96.45%
4 301 291 96.68%
5 297 308 96.30%
6 303 295 97.36%

30

1 315 302 95.87%
2 299 287 95.99%
3 293 306 95.75%
4 303 315 96.19%
5 299 285 95.32%
6 308 295 95.78%
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Figure 9. The missed broadcast monitoring curve of the seed meter at different speeds.

During the whole test process, there was no white crash screen and no wireless data
transmission failure. It could be seen from Table 1 that with the increase of the rotation
speed of the seed metering plate, the accuracy rate of sowing monitoring did not decrease
significantly. The monitoring accuracy rate was above 97%. The reason for the slight
decrease in accuracy was that the higher seeding speed would cause some smaller cotton
seeds not to be fully filled into the hole, so that they could not be monitored by the sensor.
However, the overall sowing rate monitoring accuracy of the system met the needs of
cotton precision sowing monitoring. It can be seen from Table 2 that with the increase
of the rotation speed of the seed metering plate, the monitoring accuracy of the missed
seeding quantity decreased. The reason was that the high rotation speed of the seeding
disc caused the seed flow to collide with the seeding tooth disc many times. This produced
a small number of broken seeds, which caused the sensor to falsely detect. However,
the monitoring accuracy of the system could still reach more than 95%. The monitoring
accuracy of missed broadcasts met the requirements of the monitoring system. The above
results show that the monitoring system could more accurately judge the seeding amount
and the degree of missing seeding for the stable working seed meter. This could be used
for evaluation and reference of sowing quality.

3.2. Field Test

The seed breakage rate ranged from 0.10 to 0.20%, which was negligible. The results of
field sowing monitoring are shown in Table 3 and Figure 10. The field test results showed
the following: The accuracy rate of broadcast monitoring was maintained above 93%. The
accuracy rate of missed broadcast monitoring was maintained above 91%. The seeding
monitoring system worked stably and reliably in the field under the rotating speed of the
seeding disc that met the seeding requirements. Compared with the traditional monitoring
method, the system could detect the seeding device of the hole seeder more accurately, and
find the missed seed in time. This effectively saved the amount of cotton seeds, greatly
reduced the cost of sowing, and met the requirements for monitoring the sowing status of
cotton precision hole seeders.

Compared with the results of the bench test, the monitoring accuracy of the overall
system was slightly reduced during the field test. The reason was that the cotton seeds
used in the field test had not been selected manually. Some broken seeds and debris were
included. The machine vibrated during operation. Moreover, a lot of dust in the field
adhered to the color fiber optic sensor probe and affected the optical fiber transmittance.
This subsequently calls for enhancement of the monitoring performance of the sensor and
optimization of its installation position to ensure more stability. A condenser lens or a self-
cleaning dust removal device should also be added to maintain a good light transmittance
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of the sensor and improve the environmental adaptability and operational reliability of the
system. In the future, high-precision Beidou positioning technology and mobile Internet
technology can be combined to provide support for the field sowing map, missed sowing
state map, and variable reseeding prescription operations. The parameters of the seeder
would also be automatically set, making the system function more in line with the actual
production situation and suitable for different operating scenarios.

Table 3. Field sowing monitoring test results.

Seed Plate
Speed/(r/min)

No.
Actual

Broadcast
Volume/Piece

Actual Missed
Broad-

casts/Piece

Monitor
Broadcast

Volume/Piece

Monitor the
Amount of

Missed Broad-
casts/Piece

Accuracy Rate
of Broadcast

Monitoring/%

Accuracy Rate
of Missed
Broadcast

Monitoring/%

20

1 1137 25 1107 26 97.36% 96.15%
2 1137 24 1110 23 97.60% 95.83%
3 1137 28 1111 27 97.72% 96.43%
4 1137 22 1162 21 97.84% 95.45%
5 1137 18 1171 19 97.06% 94.74%
6 1137 30 1163 31 97.73% 96.77%
7 1137 25 1121 24 98.59% 96.00%
8 1137 21 1155 22 98.44% 95.45%
9 1137 24 1111 25 97.71% 96.00%

10 1137 28 1109 27 97.54% 96.43%
11 1137 24 1168 23 97.35% 95.83%
12 1137 29 1110 28 97.63% 96.55%

25

1 1137 33 1089 31 95.78% 94.55%
2 1137 29 1187 27 95.79% 93.75%
3 1137 35 1189 33 95.63% 94.29%
4 1137 27 1187 25 95.79% 93.33%
5 1137 22 1090 23 95.87% 94.74%
6 1137 40 1075 37 94.55% 93.00%
7 1137 27 1195 29 95.15% 93.75%
8 1137 29 1081 27 95.07% 93.10%
9 1137 29 1195 30 95.15% 96.00%

10 1137 35 1088 33 95.69% 94.29%
11 1137 35 1196 33 95.07% 94.29%
12 1137 35 1090 37 95.87% 94.05%

30

1 1137 43 1078 40 94.81% 93.02%
2 1137 35 1080 32 94.99% 93.75%
3 1137 43 1200 40 94.75% 92.09%
4 1137 40 1205 37 94.36% 92.50%
5 1137 35 1074 27 94.46% 92.11%
6 1137 48 1070 32 94.11% 91.67%
7 1137 38 1077 36 94.72% 94.74%
8 1137 35 1199 32 94.83% 93.10%
9 1137 40 1068 43 93.93% 93.02%

10 1137 46 1069 45 94.02% 92.00%
11 1137 44 1199 41 94.83% 93.18%
12 1137 42 1070 44 94.11% 91.49%
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(a) 

(b) 

Figure 10. The field sowing monitoring curve of the seed meter at different speeds: (a) sowing rate
monitoring and (b) missed broadcast monitoring.

4. Conclusions

In this study, a planting quality monitoring system suitable for cotton precision
planters was designed. The bench performance test of sowing quantity monitoring and
missing sowing detection was carried out on the monitoring system. A field test was
carried out on the 2MBJ-12 cotton precision film laying planter to verify the reliability of
the system. The bench test and field test of the sowing quality monitoring system of the
cotton precision planter showed that the sowing quality monitoring system worked stably
and reliably. In the bench test, the accuracy of sowing quantity monitoring was no less than
97%, while the accuracy of missing sowing monitoring was no less than 94%. In the field
test, the accuracy rate of sowing rate monitoring was no less than 93%, while the accuracy
of missed sowing monitoring was no less than 91%. This improved the work quality and
work efficiency of cotton sowing. It met the requirements for monitoring the sowing quality
of cotton precision hole seeders.
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Abstract: To reduce the cost of machinery and manual operation, greatly improve the efficiency of
maize sowing, and solve the problems of slow sowing speed, unstable operation quality, and the
difficult monitoring of the sowing process of traditional seeders, a control system for an electrically
driven precision maize seeder based on the CANopen protocol was designed. In this system, an
STM32 is used as the main controller, and the vehicle terminal is used to set the operating parameters,
such as the spacing of sowing plants and the number of holes in the metering plate. The GPS receiver
is used to collect the forward speed of the tractor. An infrared photoelectric sensor is used to monitor
the working state of the seeder. In this study, tests were conducted on different evaluation indices.
The results showed that the detection accuracy of the photoelectric sensor reached 99.8% and the
fault alarm rate reached 100%. The qualified rate of sowing was more than 91.0%. Based on indoor
test results, the qualified rate was higher when the grain spacing was larger. The field test showed, in
terms of the seeding performance, that the control system had good stability. When the grain spacing
was set to 20 cm and the operating speed was 6~12 km/h, the qualified index was more than 89%
and the reseeding index was less than 1.93%. The variation in sowing performance between different
monomers was small, and the seeding performance was good. The control system helps to improve
the performance of the seeder.

Keywords: precision planter; motor-driven; CANopen protocol; photoelectric sensor; no-tillage

1. Introduction

Maize is the largest food crop in China and occupies an extremely important position
in the whole agricultural planting system. In the new era, with the rapid development of
China’s economy, the actual demand for corn has increased greatly [1,2]. Changes in corn
supply and demand have a great influence on maintaining national food security and stabi-
lizing the grain market and supply [3]. In recent years, with the major management mode
of agricultural production gradually developing to a large-scale and intensive direction,
to effectively ensure the cultivated area and grain production task and the completion of
sowing operations in high-yield periods, higher quality requirements have been proposed
for maize precision sowing technology [4–6]. Facing the higher cost-savings and efficiency
requirements of farmers and the more urgent demand for agricultural time, the deficien-
cies of ground wheel drive are increasingly prominent [7,8]: (1) Low operation efficiency.
At present, the operation of precision planters in China is still at a low-speed level of
6~8 km/h. (2) Unstable sowing quality. Under high-speed operation, it is easy to bump
and slip, resulting in a series of problems, such as missed sowing, reseeding, and poor
uniformity of plant spacing. (3) It is hard to monitor the sowing process [9]. Traditional
machines and tools operate in a closed environment, requiring auxiliary personnel to follow
the machine and observe, which is not only labor-intensive and costly but also easily causes
personal injury, and the observation results make it difficult to eliminate the influence
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of human subjective factors. Sensor-based electronic metering systems can minimize the
lacunae of mechanical metering systems. The application of electronic seed metering and
control systems in planters is required for better seed uniformity in the field [10].

Sound and sustainable agriculture without electronics is inconceivable today, as elec-
tronic systems are used to reduce farm inputs, protect the environment, secure farm income,
and produce high-quality products [11]. In the last few decades, a number of active seeding
control and detection systems have been proposed to solve the above-mentioned problems.
Yuan et al. [6] used prescription operation maps and GPS information, combined with
speed, to drive a servo motor seed space and achieved precision planting that could be
steplessly adjusted from 10 to 20 cm. Yang et al. [12] designed a mechatronic driving
system. Compared to the mechanical driving system, the advantage of the mechatronic
driving system is noticeable, especially when the forward speed is more than 11 km/h.
Anil et al. [13,14] developed an electromechanical drive system (EMDS) for seed metering
units of a classic single-seed planter to attain uniform seed spacing. EMDS realizes the
recommended optimal seeding rate; the possibility for fast and simple setting, synchroniza-
tion, and real-time control; the ability to work at higher speeds; single movement; and the
control of each metering unit. The dynamic relationship model between the speed of the
tractor and the speed of the metering plate is established to ensure the accurate matching of
the tractor time and the seed entry to better realize seed spacing consistency. Ding et al. [15]
proposed a control system of a motor-driven precision maize planter based on GPS speed
measurements. At the same plant spacing and operating speed, the variation coefficient
of the GPS velocity measurement method is smaller than that of the encoder velocity
measurement method. At a high speed of 12 km/h, the average qualified GPS index is
14.32% higher than that of the encoder. This shows that the GPS velocity measurement
method is more suitable for high-speed operation. Li et al. [16] resolved the problem that
GPS receivers cannot meet the requirement of precision seeding at low speed based on a
Kalman filter.

Variable-rate seeding (VRS) technology can adjust the seed input according to regional
soil differences, ensure the most suitable plant density, make full use of nutrients and
moisture in the soil, and exert the maximum yield potential in specific soil regions, thus
significantly increasing yield and reducing cost. He et al. [17,18] developed a low-cost
VRS control system based on a controller area network (CAN) bus and developed a com-
pensation algorithm for seeding lag (CASL) that could decrease the seeding lag distance
immensely. The developed VRS control system was capable of flexibly expanding planter
rows and independently controlling each row’s seeding rate. Ding et al. [19] developed
a variable rate planter row-unit driver for maize. The overall test results of the row-unit
driver confirmed that it could realize the functions of seed metering, seeding quality
detection, and CAN communication with the main controller.

To improve the seeding uniformity of a maize planter, He et al. [20] designed a GPS-
based turn compensation algorithm to offset the seeding rates of planter units. Field
experiments indicated that a four-row planter equipped with the developed turn com-
pensation control system had seeding accuracies (above 97%) and seeding coefficients of
variation (below 1.52%) values better than those of a noncompensation planter under equiv-
alent working conditions. To find the problem of seeding blockage and missing seeding in
time, Meng et al. [21] developed a monitoring system to solve the phenomenon of maize
precision seeding machines in operation and to improve the economy and efficiency of
seeding. Xie et al. [22] conducted a study testing the accuracy of the sensor to monitor
the seeding parameters of a precision metering device under different seeding speeds
and seeding spacings. Improving the accuracy of the sensor’s monitoring of the seed
passing frequency is of great help in improving the seeding monitoring accuracy under
the conditions of high seeding speed and small seeding spacing. Xie et al. [7] developed a
precision seeding parameter monitoring system based on laser sensors Field tests showed
that the average monitoring error of the seeding quantity was less than 1%, and the average
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monitoring error of the seeding qualified rate was less than 1.5%. The monitoring system
could trigger an alarm in time when the seeder had a missing seed fault.

In summary, most field experiments involving the seeder use four-row or six-row
mechanical seeders. For the eighteen-row air suction seeder, in this study, an electrically
driven precision sowing control system based on the CANopen protocol was designed, and
a circuit board integrating the motor drive and sowing quality detection was developed. A
seeding parameter dictionary with the CANopen protocol was constructed. A separable
trapezoidal integral proportional integral derivative (PID) control algorithm was used to
match the tractor speed and motor speed. In this paper, the performance of the control
system was evaluated by laboratory bench and field tests.

2. Materials and Methods

2.1. System Components

The proposed maize precision planter system consisted of a monitoring subsystem
and a mechanical device system. As shown in Figure 1, the required hardware components
included a 12 V DC power supply, an on-board computer with a CAN bus (eMT3070B,
Weintek Technology Co., Ltd., New Taipei, China), an in-house-designed integrated con-
troller based on STM32F103VET6, an infrared monitoring sensor (Shandong Zhucheng
Dilico Automotive Electronics Co., Ltd., Weifang, China), an inertial and satellite naviga-
tion module (WTGPS-200 WitMotion Shenzhen Co., Ltd., Shenzhen, China), brushed DC
motors, and in-house-designed motor speed measurement modules. The mechanical part
included a reducer, a planter plate, and a seed tube. The motor was used as an intermediary
to integrate the control system and mechanical part.

 

Figure 1. Planter monitoring system.

In detail, the on-board computer communicated with the controller via a CAN bus
and was used for setting the seed spacing, current threshold, and width; monitoring the
various working states of the system (such as the motor current and rotational speed);
and controlling the start and stop of a single motor. To reduce field wiring, in this paper,
the controller was integrated with the motor drive and CAN communication, which was
mounted on each planter unit, to expand flexibly based on the planter row number and to
adjust the motor speed to achieve the desired seeding rate. In this study, speed acquisition
was performed through inertial and satellite navigation modules with a velocity accuracy
of 0.05 m/s, and bidirectional credit guaranteed communication with the controller through
RS232. A brush DC motor was utilized to drive the seed meter at a desired speed, and a
hall speed measurement module for the brushless DC motor was developed, nested on
the shaft side of the motor, and a pulse was generated by an interaction with the magnetic
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ring on the motor shaft. Additionally, a photoelectric sensor with a large field of view, high
sensitivity, and strong dust resistance was installed on the seed tube to monitor the state of
falling seeds. A circuit schematic diagram of the system with STM32F103VET6 as the main
controller is shown in Figure 2.

 

Figure 2. Schematic diagram of the system circuit.

2.2. CAN Bus with CANopen Protocol

The exchange of data packets in the system was based on a CAN bus. However,
ISO 11,783 was specifically designed for tractor control system development [23–25]. In
China, fewer products have been developed using subprotocols, especially in sensors
and on-board computers. The on-board computer (eMT3070B) used in this paper had
a CAN interface and conformed to the CANopen protocol. To test the designed system
as soon as possible and to enhance the scalability at the present stage, the CANopen
protocol was used as the basic protocol. CANopen is a high-level communication protocol
based on the controller area network. It includes a communication subprotocol and a
device subprotocol and has often been presented in embedded systems and industrial
controls [26]. The CANopen protocol usually consists of three parts: a user application
layer, an object dictionary, and communication. The core part is the object dictionary, which
describes the relationship between the application object and the CANopen message. The
user application layer in this paper refers to the application interface downloaded to the
eMT3070B using EasyBuilder Pro development software provided by Weintek. Figure 3
shows the partial display interface design of the monitoring software for the eighteen-row
seeding. In the communication layer, considering the field working environment, the well-
established TJA1050 chip was selected as the transceiver of the CAN bus. This chip can
work normally even with electrostatic interference and in voltage-mutating and high-noise
environments and communicates with electricity.

To be stable, reliable, and controllable, the CANopen network needs to be set up with
a network management master (NMT-Master) that controls the start and stop of all nodes.
Communication between the on-board computer as the NMT host and the NMT slave via
the NMT network management message is responsible for the layer management, network
management, and ID distribution services. NMT management involves six states of a
CANopen node following power-up: initializing, application reset, communication reset,
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preoperational, operational, and stopped. The NMT management state transition diagram
is shown in Figure 4.

 

Figure 3. Partial human–computer interaction software interface.

 

Figure 4. NMT management state transition diagram.

The object dictionary is the most important part of a device specification. It is an
ordered set of parameters and variables, including all parameters of device description and
device network state. The CANopen protocol uses an object dictionary with 16-bit indices
and 8-bit subindices, and all parameters of the device can be accessed through the object
dictionary. The parameter object dictionary of the system is defined in the 2000H–5000H (H
represents hexadecimal system) index region according to the CANopen CiA 301 document.
Real-time data use the process data object (PDO) for asynchronous one-way transmission
without a node response. The service data object (SDO) is mainly used for the parameter
configuration of slave nodes in the CANopen master station. Service validation is the
largest feature of an SDO, generating a response for each message to ensure the accuracy
of data transmission. The CAN bus system in this paper consisted of a master node and
eighteen slave nodes with 104 object dictionaries. Partial object dictionary descriptions are
shown in Table 1. The CAN bus data transmission mode is shown in Figure 5.
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Table 1. Partial object dictionary description.

Parameter Number of Bits Transport Types
Dictionary Index

Indices Subindices

Operating speed 32 PDO 2000 00
Operating area 32 PDO 2003 00

Motor status 8 PDO 2004 00
Seeding status 8 PDO 2005 00

Seeding number 32 PDO 2006 00
Miss-seeding

rate 32 PDO 2007 00

Replay rate 32 PDO 2008 00
Seed spacing 16 SDO 2001 00
Motor control 8 SDO 2009 00

Working width 16 SDO 200A 00
. . . . . . . . . . . . . . .

Figure 5. CAN bus data transmission mode.

2.3. Motor Speed Matching Operation Speed

To ensure the uniformity and qualified rate of seed spacing, it is very important to
establish the dynamic matching relationship between the motor speed and the tractor
speed. The rotational speed of the motor is determined by the tractor speed, the number
of holes in the seeding plate, the transmission ratio from the reducer to the seeding plate,
and the seeding distance. Accordingly, the required rotary speed of the planter unit can be
calculated as:

R =
1000VI

36 Xre f N
(1)

where R is the motor speed (r/s), V is the tractor speed (km/h), I is the transmission ratio
from the reducer to the seeding plate, Xre f is the setting seeding distance (cm), and N is the
number of holes in the seeding plate. For a well-processed seeding cell, I and N are fixed
values. Xre f is set based on the agricultural technology. Therefore, the tractor speed is the
most critical factor affecting the sowing quality.

2.4. Speed Acquisition and Motor Control

GPS speed measurement is not affected by the structure of the seeder and surface
conditions and can provide a variety of data, including latitude and longitude, heading

24



Agriculture 2022, 12, 932

angle, and elevation. Compared with other velocity measurement methods, such as
encoders, it has great advantages. WTGPS-200 is a high-performance vehicle-mounted
integrated navigation system for vehicle navigation. When the signal accuracy of the GNSS
system is reduced or if the satellite signal is lost, the WTGPS-200 system uses pure inertial
navigation technology without the aid of odometer information. It can also independently
carry out high-precision positioning, velocity measurement, and attitude measurement for
vehicle carriers over a long time. The accuracy of 0.05 m/s can meet the requirements of the
GBT6973-2005 single-seed (precision) seeder test method. The controller obtains GPRMC
frames conforming to the NMEA0183 protocol by RS232. Figure 6 shows the GPRMC frame
format with fifteen fields. Field 0, as the frame head, represents the beginning of a frame,
field thirteen is the frame data validation, and the frame ends with CR/LF. Field one to field
twelve represent the data fields, in which field seven represents the speed value. Therefore,
the seventh field in a frame can be extracted to obtain the speed.

 

Figure 6. GPRMC frame format.

The real-time motor speed was controlled via the pulse width modulation (PWM)
signal generated by the STM32 chip’s internal timer. The PWM mode could generate a
signal whose frequency was determined by the TIMx_ARR register, and the duty ratio was
determined by the TIMx_CCRx register. The duty ratio could be adjusted to control the
motor speed at a certain PWM frequency. Limited to the computing power of the chip used,
more complex intelligent control algorithms are not adopted, such as adaptive PID [27],
particle swarm optimization algorithm [28], fuzzy PID Control Algorithm [29,30], and
ant colony optimization [31]. On the other hand, the experimental results indicated that
the motor speed showed a linear relationship with the duty ratio. Therefore, closed-loop
control can be carried out by the PID control algorithm [32]. PID control is a closed-loop
control method based on deviation, which can eliminate the deviation between the target
speed and the actual speed of the motor in the adjustment process. In discrete PID control,
the realization of integration is the rectangular addition calculation in the case of infinite
subdivision. In the discrete state, the time interval is large enough, and the accuracy of
rectangular integration appears to be lower in some cases. To minimize the difference, the
rectangular integration was changed into trapezoidal integration to improve the calculation
accuracy. Introducing the trapezoidal integral into the incremental PID algorithm modifies
the formula as follows:

Δv(k) = Kp(e(k)− e(k − 1)) + Ki
e(k) + e(k − 1)

2
+ Kd(e(k)− 2e(k − 1) + e(k − 2)) (2)

where Δv(k) is the adjustment value, Kp is the proportional coefficient, Ki is the integral
coefficient, Kd is the differential coefficient, and e(k − 1), e(k), and e(k − 2) are the last three
deviations. Figure 7 shows an analysis of the bench test data. The optimum motor speed
control could be achieved when Kp was 4.15, Ki was 1.2, and Kd was 0.

The theoretical motor speed calculated by Formula (1) is the target value; the rotor
position sensor measures the speed signal as a feedback value. The theoretical calculation
of the target speed does not consider the influence of external factors. However, due to
the factors of actual operation, such as zero drift of the speed sensor, error of DC motor
speed measurement, and the efficiency of mechanical transmission, the error of the control
parameters (e(k)) is affected. Therefore, setting a threshold variable, t, does not perform
the PID algorithm when the deviation is less than the absolute value of the threshold.
Experimental results showed that the control precision was best when the absolute value
of threshold t was 0.15. On the other hand, if a system always has a uniform direction
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deviation, infinite accumulation and saturation can occur, which greatly affects the system
performance. To solve the problem of integral saturation, the PID algorithm anti-integral
saturation was introduced. The idea is to determine whether the control, C(k − 1), of
the previous moment has exceeded the limit when calculating e(k). If C(k − 1) > Cmax
(Cmax: sets the TIMx capture compared to the register maximum value), only negative
deviations are accumulated; if C(k − 1) < Cmin (Cmin: sets the TIMx capture compared to the
register minimum value), only positive deviations are accumulated. This avoids the control
quantity from staying in the saturated zone for a long time. The PID control algorithm is
shown in Figure 8.

Figure 7. Data analysis curve of different PID parameters: (a) response curves under different Kp

conditions and (b) response curves under different Ki conditions.

 

Figure 8. PID control algorithm.

2.5. Sowing Monitoring

To realize the real-time monitoring of the quality of maize no-tillage precision seeding
operations, a seeding monitoring system based on reflective infrared photoelectric induction
was designed. The monitoring probe used an infrared emitting diode and a photodiode as
the signal transmitting and receiving ends. During the seeding operation, corn seeds were
separated into single seeds from the seed metering device, dropped into the seed guiding
tube, and were finally discharged into the soil through the lower seed guiding mouth.
Among the working components involved in the seeding process, the structure of the
seed guiding tube was the simplest and the closest to the seed dropping point. Therefore,
mounting the seed monitoring probe on the seed guiding tube was preferred.

According to GB/T 6973-2005, the ratio of actual adjacent seed spacing, X (cm), to
theoretical seed spacing, Xre f (cm), is the benchmark for evaluating the quality of seed
metering. In addition to field measurements, the actual seed spacing is generally estimated
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by multiplying the tractor speed, V (km/h), of the seeder by the interval time, T (ms),
between adjacent seeds. The forward speed, V (km/h), of the seeder can be obtained
by the pick-up circuit. Therefore, the comparison between the actual seed spacing and
the theoretical seed spacing can be converted to a numerical comparison between the
actual adjacent seed falling time interval, T (ms), and the theoretical time interval, T0
(ms). According to the standard, if X > 1.5Xre f , it is judged as a miss-seeding, and if
X ≤ 0.5Xre f , the seeding is judged as a reseed. For the convenience of system calculation,
the judgment basis is converted to the relationship between the tractor speed, V (km/h),
and the theoretical distance, Xre f (cm). If VT > 54Xre f , the seeding is judged as a miss-
seeding. If VT ≤ 18Xre f is judged as a reseeding and if 18Xre f < VT < 54Xre f , the seeding
is a quality seeding. When a fault (miss-seeding or reseed) occurs, an alarm is triggered.
Figure 9 shows three different states of falling seeds in the seed tube. Figure 10 shows the
seed condition monitoring process.

 

Figure 9. Judging the state of falling seeds in the seed tube.

2.6. Performance Test of the Seeder Monitoring and Control System

To verify the performance of the seeder monitoring and control system, laboratory
bench tests and field tests were conducted. These tests included photoelectric sensor
detection performance tests, abnormal alarm rate reliability tests, motor dynamic speed
response tests, and statistical analyses of real-time sowing monitoring parameters.

The related tests were carried out on the JPS-12 seed metering device performance
test bench (Bona Technology Co., Ltd., Harbin, China). The test materials were Xinyu No.
9 hybrid maize seeds produced by the Crop Research Institute of Xinjiang Academy of
Agricultural Reclamation Sciences. The moisture content was 9.10%, the purity was 98.75%,
and the thousand-grain weight was (274.22 ± 2.52) g. We randomly measured 300 seeds,
and the shape was horse tooth, and the length, width, and height were 10.04 ± 1.06 mm,
7.45 ± 0.86 mm, and 5.50 ± 1.01 mm, respectively.

The seeding unit motor drive control system and experimental test setup are shown
in Figure 11. The metering device was an air suction seed metering device produced by
Precision Planting Company in the United States. The diameter of the metering plate was
4.5 mm, and the number of seed holes was 27. The DC motor was an NC3SFN-6035-CVC
carbon brush variable-resistance brush DC motor produced by Transmotec, Sweden. The
working voltage was 12 V, the current was 5.6 A, the rated speed was 10,700 r/min, and the
stall torque was 446.8 mN·m. The motor reducer was a three-stage gear reducer developed
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by Devo, Heilongjiang Province, and the deceleration ratio was 82.8125. The power output
gear of the DC motor reducer engaged with the external gear of the seeding plate.

 

Figure 10. Seed condition monitoring process.

Figure 11. Seeding parameter monitoring on the JPS-12. (a) Control cabinet; (b) test bench; (c) seeding;
(d) data statistics.
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Since no interface can obtain the real-time speed on the JPS-12 test bench, to obtain
the real-time operating speed of the seedbed belt as much as possible to simulate the field
environment, ten groups of magnetic steel were installed on the inner side of the seedbed
drive roller. NPN constant open all-pole Hall sensors were used in pulse signal detection.
Figure 12 shows the installation position of the magnetic steel and the Hall sensors. The
dynamic speed of the seedbed could be calculated according to Formula (3) after the signal
of the speed pulse was collected by the Hall sensor.

Vb =
πdn
mTc

(3)

where Vb is the speed of the seedbed belt (m/s), d is the roller diameter (mm), n is the
number of pulses in the Tc cycle, m is the number of magnetic steels, and Tc is the count
cycle (ms).

 

Figure 12. Schematic diagram of seedbed belt speed detection.

The field experiment was conducted in Xiangshui County, Yancheng City, Jiangsu
Province, on 17 February 2022, using a dual row with an eighteen-row seeder developed
by Devo, Heilongjiang Province (Figure 13). To explore the influence of different operating
speeds on seeding performance, the negative pressure of the fan output was adjusted to
4.5 kPa, the grain spacing was set to 20 cm, and the operating speeds were changed to
8 km/h, 10 km/h, and 12 km/h. To explore the effects of different grain spacings on sowing
performance, the operating speed was 8 km/h, and the grain spacings were changed
to 15 cm, 20 cm, and 25 cm. At the same time, we explored the differences in sowing
performance parameters between different planting units. The grain spacing data were
obtained by manual measurement.

Figure 13. Precision electric seeder and monitoring system test. (a) Eighteen-row maize precision
electric seeder and monitoring system; (b) label seed position; (c) seed spacing measurement.

According to GB/T 6973-2005, the qualified index, QI, reseed index, RI, missing index,
MI, and coefficient of variation, CV, were calculated as evaluation indices of sowing quality.

QI =
n1

N′ × 100% (4)
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RI =
n2

N′ × 100% (5)

MI =
n0

N′ × 100% (6)

X =
∑(niXi)

n2
(7)

σ =

√
∑(niXi)

2

n2
− X2 (8)

CV = σ × 100% (9)

where N′ is the total number of normalized intervals, n0, n1, and n2 are the missing
numbers (Xi ∈ (1.5,+∞]), the qualified number (Xi ∈ (0.5, 1.5]), and the replay number
(Xi ∈ [0, 0.5]), respectively, ni and Xi are the grain spacing number and interval median
in the i(th) interval, respectively, and X and σ are the mean and standard deviation of the
sample, respectively. At the same time, these indicators were evaluated according to the
NY/T 1143-2006 standard provided by the Ministry of Agriculture of China. Table 2 shows
the main performance indices of the precision seeder.

Table 2. Main performance indices of the precision seeder.

Index

Indicators

Seed Spacing
≤10 cm

Seed Spacing
>10 cm~20 cm

Seed Spacing
>20 cm~30 cm

Qualified index ≥60.0 ≥75.0 ≥80.0
Reseeding index ≤30.0 ≤20.0 ≤15.0

Missing index ≤15.0 ≤10.0 ≤8.0
Coefficient of variation ≤40.0 ≤35.0 ≤30.0

3. Results and Discussion

3.1. Photoelectric Sensor Monitoring Performance and Real-Time Online Monitoring Test

To test the performance of the photoelectric sensor, the numbers of monitored corn
grains at speeds of 6, 8, 10, and 12 km/h were tested in the laboratory and the field.
When the speed reached the set value, the test seeder monomer was started by the virtual
button on the on-board computer, and the seeder monomer was stopped at a random
time. The number of corn seeds collected in containers fixed below the metering tube was
manually counted. The statistical results indicate that the photoelectric sensor monitoring
performance was quite good, and there were no differences between the laboratory and
field monitoring data. Table 3 shows the statistical results of the monitoring data and actual
data. The average monitoring accuracy was 99.8%.

To test the reliability of the system fault alarm, two kilograms of corn seeds were
added to each sowing monomer. In the initial stage of operation, the metering tube was in
normal planting, and the system did not send alarm information. When the seed box was
empty, the system was checked to determine whether the alarm was prompted and whether
the corresponding sowing monomer was shown in the vehicle terminal. According to the
same method, during the normal seeding period, the seeding tube was artificially blocked
at a given time, and the system blocking alarm rate was checked. The test results of fifty
trials showed that the fault alarm rate was 100%.

The statistical analysis of the performance index data is shown in Figure 14. It can be
seen from the chart that each evaluation index was basically similar at different speeds and
substantially exceeded the standard (NY/T 1143-2006).

Overall, the qualified rate was higher when the grain spacing was larger. It was also
found that when the speed was 12 km/h, the qualified rate decreased compared with the
other speeds and the missed rate increased. The reason is that with the increase in the
speed of the seedbed belt, the sliding degree of the seedbed pulley relative to the seedbed
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belt increased, resulting in inaccurate speed measurement. When the speed was 8 km/h
and 10 km/h, the consistency of the indices is good, and the difference was significant
when the speed was 6 km/h and 12 km/h.

Table 3. Statistical results of monitoring data and actual data.

Site Speed
(km/h)

Monitoring Value Actual Value

Am Bm Cm Aa Ba Ca

Laboratory

6 245 304 258 245 305 258
8 275 236 459 275 236 460
10 236 389 321 236 389 321
12 335 286 462 335 287 462

Field

6 365 428 303 365 428 303
8 274 354 482 275 355 482
10 382 298 407 382 299 408
12 473 387 496 473 385 496

Table 4 shows the correlation analysis between the factors and performance indicators.
There was a strong correlation between two factors (V and Xre f ) and the seed distribution
uniformity index (CV, QI, RI, and MI). In addition, the statistical values describing the
correlation between various factors and performance indicators show that there was a
strong correlation between QI, RI, MI, and V: QI decreased with an increase in V and RI,
and MI increased with an increase in V; there were significant correlations between QI and
CV and between RI and MI. The CV, RI, and MI decreased with increasing QI, and the
correlation between MI and QI was the strongest. The coefficient of determination was
0.983, and the level of visibility was far less than 0.01.

Figure 14. Statistical analysis of the performance index data.
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Table 4. Correlation analysis between factors and performance indicators.

Items V/(km/h) Xref/mm CV/% QI/% RI/% MI/%

V/(km/h)
1.000 a 0.000 0.527 −0.791 * 0.738 * 0.843 **
\ b 1.000 0.145 0.011 0.023 0.004

Xre f /mm 0.000 1.000 −0.369 0.527 −0.264 −0.474
1.000 \ 0.329 0.145 0.493 0.197

CV/%
0.527 −0.369 1.000 −0.733 * 0.717 * 0.633
0.145 0.329 \ 0.025 0.030 0.067

QI/%
−0.791 * 0.527 −0.733 * 1.000 −0.867 ** −0.983 **

0.011 0.145 0.025 \ 0.002 0.000

RI%
0.738 * −0.264 0.717 * −0.867 ** 1.000 0.833 **
0.023 0.493 0.030 0.002 \ 0.005

MI/%
0.843 ** −0.474 0.633 −0.983 ** 0.833 ** 1.000

0.004 0.197 0.067 0.000 0.005 \
Note: Because the prior uncertainty is a positive correlation or negative correlation, the double tail test was
chosen; descriptive statistics of sample data were used to calculate the average and variance; and the visibility of
the output results must be marked. When the visibility level reaches 0.05, the upper right corner uses ‘*’; when
the visibility level reaches 0.01, the upper right corner uses ‘**’. a represents the coefficient of determination;
b represents the p value, namely, the level of dominance.

3.2. Differences in Seeding Performance among Different Planting Units in the Field

The test results of the seeding performance at different operating speeds are shown in
Table 5. When the operating speed was 8 km/h, the seeding performance was excellent.
The qualified index of single seeding was 94.14%, the reseeding index was 1.72%, and the
missing seeding index was 4.14%. With the increase in the operation speed, the reseeding
index always maintained a certain level. However, due to the insufficient wind pressure
of the fan and the irregular bounce of the seed when landing, the missing seeding index
increased significantly, resulting in a decrease in the seeding accuracy. When the operating
speed was 10 km/h, the seeding qualified index was reduced to 91.48%, and the leakage
index was increased to 7.46%. When the operating speed was 12 km/h, the seeding
qualified index was still greater than 90%.

Table 5. Results of the seeding performance at different operating speeds.

Items
V = 6 (km/h) V = 8 (km/h) V = 10 (km/h) V = 12 (km/h)

No. 2 No. 7 No. 2 No. 7 No. 2 No. 7 No. 2 No. 7

Average distance (cm) 19.38 19.24 19.10 19.40 20.30 19.18 21.50 20.31
QI/% 93.17 93.40 94.14 94.53 91.48 91.94 90.35 90.01
RI/% 1.38 1.86 1.72 1.14 1.06 0.80 1.02 1.93
MI/% 5.45 4.74 4.14 4.33 7.46 7.26 8.63 8.06

Standard deviation 5.32 6.73 4.59 5.46 9.65 8.41 10.01 9.35
Note: No. 2 and No. 7 represent the second and seventh sowing planting units, respectively.

The seeding performance test results at different seed spacing settings are shown in
Table 6, and the operating speed remained 8 km/h. With the increase in the seed spacing,
the qualified index decreased and the reseeding index and leakage index increased. For a
grain spacing of 15 cm, the average qualified index of two single seedlings was 93.34%, the
average reseeding index was 2.09%, and the average missing seeding index was 4.57%.

When the operating speed was within the range of 6~12 km/h or the grain spacing
was set to 15~25 cm, there was no significant difference in the seeding performance between
the No. 2 and No. 7 planting units. These differences may be caused by factors such as the
processing technology of the planting unit mechanical mechanism, mechanical vibration,
and measurement error. Therefore, it is considered that the variability of the seeding
performance between the monomers is small. In summary, when the quality of seeds and
soil preparation meets the agronomic requirements of sowing, the electric drive seeding
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control system designed in this study meets the requirements of precision sowing under
high-speed working conditions.

Table 6. Seeding performance for different driving modes.

Items
Xref = 15 cm Xref = 20 cm Xref = 25 cm

No. 2 No. 7 No. 2 No. 7 No. 2 No. 7

Average distance (cm) 14.43 14.15 19.93 19.28 23.10 23.40
QI/% 91.79 92.25 93.19 93.98 94.12 94.71
RI/% 2.65 3.01 2.12 1.89 1.72 1.14
MI/% 5.56 4.74 4.69 4.13 4.16 4.15

Standard deviation 7.61 8.26 6.32 5.78 4.59 5.46
Note: No. 2 and No. 7 represent the second and seventh sowing planting units, respectively.

3.3. Discussion of the Results

Based on the control system of the electric drive precision seeder, laboratory bench
tests and field tests were carried out. Its performance indicators tended to be consistent,
which also fully illustrated the system reliability. The bench test explored the effects of
different operating speeds and grain spacing on the seeding performance indices. At
present, many scholars have carried out electric drive seeding experiments, and their
working performance has been greatly improved compared with the traditional mechanical
seeders. The performance indicators involved in this study are similar to those used in
previous studies. Due to the differences in the environment and mechanical structure, the
qualified rate of sowing in the field was lower than that of the bench test.

Since the test bench is designed for a traditional mechanical seeder, the influence of
the seedbed vibration and slip ratio of the seedbed belt during high-speed operation has
not been fully considered, thus affecting the test results to a certain extent [33]. In the
field experiment, previous researchers mostly used 4-row or 6-row seeding machines for
experiments. In this study, an 18-row air suction precision seeding machine was used. Due
to the increase in seeding monomers, the airflow of the fan was unstable at high speeds,
resulting in insufficient pressure during high-speed operation and a slight decrease in the
seeding qualified index; seeding monomers on both sides of the seeding machine was a
common malfunction. Nevertheless, more than 90% of the qualified rates fully met the
actual work requirements. In the selection of photoelectric sensors, based on previous
studies, a rectangular infrared radiation surface was selected, which greatly improved the
sensing area of the photoelectric sensors and reduced the blind area. The high sensitivity of
the sensor increased the fault alarm rate.

The sensors used in the system and the electronic components used in the design
circuit are commonly used in the market. Compared with the laser detection sensor used
in [7], the photoelectric sensor has a high value for practical application, and the monitoring
performance was better than the laser detection performance; compared with the expensive
LiDAR used in [10], the system used the common satellite acquisition module and achieved
good data acquisition and control effect through certain filtering algorithms. The CAN bus
control method greatly reduces the difficulty of field wiring. The brush DC motor is easier
to control and lower cost than the brushless DC motor used in [17,18]. Usually, brushless
motors perform better than brush motors.

In order to prevent electrostatic interference to the system, the electrostatic shielding
circuit was specially designed in the circuit, which improved the anti-interference properties
and robustness of the system. In practical field applications, a shielded twisted pair is
used in CAN bus transmission, and terminal resistance is connected to the transceiver
end. At the same time, CAN bus through the data link layer and physical layer has
achieved high bus data security and bus stability; the correctness of data transmission is
ensured by establishing a CANopen object dictionary. The above measures enhance the
robustness of the system to subsystem faults and electromagnetic interference. Overall,
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whether in economic cost or system performance, the system was suitable for agricultural
machinery operation.

On the other hand, the acquisition accuracy of the tractor speed directly affects the
sowing quality. Although the accuracy of GPS can meet the current operating requirements,
once the GPS signal, as the only acquisition speed, is affected, it seriously affects the
operating quality. In the future, multisensor information fusion technology will be used to
compensate for the speed signal to ensure that the speed measurement accuracy can still be
maintained under sensor fault and interference conditions to ensure the consistency of the
operation quality in a complex working environment.

4. Conclusions

A control system of an electrically driven precision maize seeder based on the CANopen
protocol was designed and developed. A circuit board with motor drive and sowing perfor-
mance detection was integrated. The matching model of vehicle speed and seeding plate
speed was established through the PID control algorithm. Terminal monitoring software
for real-time monitoring of sowing parameters was designed. According to the GB/T
6973-2005 standard, the evaluated parameters were the following: photoelectric sensor
detection performance, fault alarm rate, qualified rate, reseeding rate, and missed rate. The
following conclusions can be drawn:

(1) In terms of photoelectric sensor detection performance, there was not a large difference
between the indoor bench tests and field tests with dust pollution, and the detection
accuracy reached 99.8%. This also shows that the sensor has a strong penetration
ability and a large radiation detection surface. The fault alarm function of the system
was accurate and timely, and the fault alarm rate reached 100%.

(2) Based on the indoor test results, the qualified rate was higher when the grain spacing
was larger. It was also found that when the speed was 12 km/h, the qualified rate
decreased compared with other speeds, and the missed rate increased. When the
speed was 8 km/h and 10 km/h, the consistency of the indices was good, and the
difference was significant when the speed was 6 km/h and 12 km/h. Overall, the
qualified rate of sowing was more than 91%. At the same time, the correlation of the
seeder index parameters was analyzed: there were strong correlations between QI,
RI, MI, and V; QI decreased with increasing V; RI and MI increased with increasing
V; and CV, RI, and MI decreased with increasing QI. Furthermore, the correlation
between MI and QI was the strongest. The coefficient of determination was 0.983, and
the level of visibility was far less than 0.01.

(3) Based on field test results, the seeding performance results showed that the control
system has good stability. When the grain spacing was set to 20 cm and the operating
speed was 6~12 km/h, the qualified index was more than 90%, and the reseeding
index was less than 1.93%. The variation in sowing performance between different
monomers was small, and the seeding performance was good, which can provide a
reference for the development and design of high-speed precision corn seeders.
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33. Kuş, E. Field-scale evaluation of parameters affecting planter vibration in single seed planting. Measurement 2021, 184, 109959.
[CrossRef]

36



Citation: Chen, K.; Li, T.; Yan, T.; Xie,

F.; Feng, Q.; Zhu, Q.; Zhao, C. A Soft

Gripper Design for Apple Harvesting

with Force Feedback and Fruit Slip

Detection. Agriculture 2022, 12, 1802.

https://doi.org/10.3390/

agriculture12111802

Academic Editors: Jacopo Bacenetti

and Tao Cui

Received: 27 July 2022

Accepted: 27 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

A Soft Gripper Design for Apple Harvesting with Force
Feedback and Fruit Slip Detection

Kaiwen Chen 1,2, Tao Li 2,*, Tongjie Yan 1,2, Feng Xie 1,2, Qingchun Feng 2, Qingzhen Zhu 1

and Chunjiang Zhao 3,*

1 School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, China
2 Intelligent Equipment Research Center, Beijing Academy of Agriculture and Forestry Sciences,

Beijing 100097, China
3 National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
* Correspondence: lit@nercita.org.cn (T.L.); zhaocj@nercita.org.cn (C.Z.)

Abstract: This research presents a soft gripper for apple harvesting to provide constant-pressure
clamping and avoid fruit damage during slippage, to reduce the potential danger of damage to
the apple pericarp during robotic harvesting. First, a three-finger gripper based on the Fin Ray
structure is developed, and the influence of varied structure parameters during gripping is discussed
accordingly. Second, we develop a mechanical model of the suggested servo-driven soft gripper
based on the mappings of gripping force, pulling force, and servo torque. Third, a real-time control
strategy for the servo is proposed, to monitor the relative position relationship between the gripper
and the fruit by an ultrasonic sensor to avoid damage from the slip between the fruit and fingers. The
experimental results show that the proposed soft gripper can non-destructively grasp and separate
apples. In outdoor orchard experiments, the damage rate for the grasping experiments of the gripper
with the force feedback system turned on was 0%; while the force feedback system was turned off, the
damage rate was 20%, averaged for slight and severe damage. The three cases of rigid fingers and soft
fingers with or without slip detection under the gripper structure of this study were tested by picking
25 apple samples for each set of experiments. The picking success rate for the rigid fingers was 100%
but with a damage rate of 16%; the picking success rate for soft fingers with slip detection was 80%,
with no fruit skin damage; in contrast, the picking success rate for soft fingers with slip detection off
increased to 96%, and the damage rate was up to 8%. The experimental results demonstrated the
effectiveness of the proposed control method.

Keywords: apple harvesting; soft gripper; Fin Ray effect; finite element analysis; constant-pressure
feedback; slip detection

1. Introduction

Harvesting is an important element of orchard production since it has a brief window
period, high labor intensity, and high labor volume. The high labor cost in the harvesting
stage limits the fruit industry’s development. With this backdrop, fruit-picking robots have
become a hotspot for study in related fields [1,2]. Researchers have completed several
projects and made significant progress in important technologies such as robot perception
and positioning [3,4], system integration [5], and efficient harvesting end effector design.

As a critical step in robotic harvesting, grasping determines the picking effect directly.
During harvesting, the traditional robotic rigid clamping mechanism has issues: high
requirements for fruit positioning [6] and easy damage to the apple pericarp [7,8]. In
practical applications, it not only required the grippers to be dexterous, light, stable, and
reliable to grasp but also to ensure that the appearance of the fruits is not damaged, to
prevent harming commerciality. As a result, research on non-destructive harvesting end
grippers for safe, reliable, and stable gripping is an important topic for harvesting robots
with a promising application.

Agriculture 2022, 12, 1802. https://doi.org/10.3390/agriculture12111802 https://www.mdpi.com/journal/agriculture
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To lower the fruit damage rate, the soft gripper technology is attracting more and
more researchers’ attention. Some researchers [9–11] used soft materials on the surface of
the fingers to increase the gripper flexibility and, hence, prevent damage to grabbed objects.
However, due to the rigid support of the fingers’ main body, it is also easy to cause different
degrees of damage to the fruit pericarp. Furthermore, the structure is more complex, and
the grasping stability is insufficient.

The soft structure gripper has a high adaptability, wide range of variability, and
excellent working ability for gripping objects that are susceptible to damage [12,13].

Shepherd et al. [14] proposed the PneuNet (pneumatic mesh) structure, a bending
multi-cavity pneumatic soft actuator. The soft gripper [15–17] designed by Whiteside’s
group has the characteristics of minimal pressure bearing, large deformation, and flexible
movement. However, the end contact force is limited, and the stability is insufficient when
grasping objects. A vision-equipped six-finger soft harvesting gripper [18] can identify the
type and maturity of fruits and vegetables, and it can softly grab fruits and vegetables based
on their shape but only for tiny fruits. Muscato et al. [19] created a soft citrus harvesting
gripper out of spirally organized rubber sheets that had a strong wrapping capacity for
gripping things but that lacked rigidity.

German bionics researcher Leif Kniese accidentally discovered the “Fin Ray effect” in
1997 [20], which was later widely employed in the study of robotic soft grippers [21,22]. Fin Ray
soft fingers are highly compliant and can take greater loads than other soft constructions.
Thanks to its superior grabbing stability, the Fin-Ray-effect-inspired grippers have received
extensive attention from researchers.

However, the basic finger structure is not optimal for soft grippers, and studies have re-
cently increased the gripping force by improving the finger structure [23–26]. Crooks et al. [23]
proposed a multi-material structure gripper with a higher grabbing weight, but the fabrication
method for this multi-material structure is quite tricky. Basson et al. [24] varied the slope and
curve of the cross beams in a Fin Ray finger and analyzed the stress and displacement on
the improved finger through simulation. However, the effects of other variables have not
been fully tested. Shin et al. [25] analyzed the changes in stress and displacement when the
finger touched an object by varying the number of cross beams, the front beam slope, and
the slope of the cross beams. Elgeneidy et al. [26] developed a soft finger that could handle
fragile objects by varying the angle and number of cross beams. Nevertheless, whatever
structure maximizes the Fin-Ray finger gripping force while causing no damage to the
object has yet to be determined.

Although it can greatly avoid fruit damage due to grasping by using the soft fingers, it
is not sufficient to rely solely on the soft structure to ensure the gripper’s lossless grasping.
The gripper’s lack of a force feedback system makes it unable to collect the contact state
information between fingers and gripping items, which may cause damage due to excessive
gripping force or slippage owing to insufficient gripping force.

Some researchers added force sensors to the fingers of soft grippers [27–31]. The
sensing system is simple, but the sensor deforms with soft fingers, which has a great
influence on the accuracy. When directly embedding force sensors through the manufac-
turing process but the cost is large and the universality is low due to its sophisticated
driving scheme and manufacturing method [32,33]. Some researchers [34–36] estimated
the contact force by substituting the force perception model from finger deformation by
vision. Belzile et al. [37] used the quasi-static analysis method to calculate the contact force
generated by the gripper, which realizes the internal force perception without the use of
additional force sensors, but the solution process and control algorithm are complex.

In addition to preventing fruit damage due to excessive gripping force, slip detection
is also an important factor due to the rough surface of the fingers [38,39]. Some studies
use multi-axis or more force sensors to monitor the static friction coefficient between the
finger surface and the object [40,41] or to detect vibration caused by sliding between the
two contact surfaces using piezoelectric phenomenon [42], time–frequency conversion tech-
nique [43], or filtering [44] to accomplish slip detection. However, the sensors are dependent
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on the working environment, and utilizing more sensors to gather more tactile information
would not only dramatically raise the cost but will also place a significant load on the
gripper structure and control system. Some recent studies employ tactile data for training,
and neural networks can predict item sliding [45,46], as well as physical parameters such
as temperature, electromagnetism, light intensity, and acceleration to predict slippage [47].
Liu et al. [48] introduced a novel design of the GelSight Fin Ray gripper, which used a
vision-based tactile sensor for tactile reconstruction, orientation estimation, and slip detec-
tion. But it is difficult to grasp heavier objects due to the design of its hollowed-out finger.
Nonetheless, these technologies are rarely used on harvesting grippers.

To solve the above problems, this work proposes a novel soft harvesting gripper with
flexible adaptive envelope, force feedback, slip detection, and other features. To design the
Fin-Ray finger structure in such a way that the gripping force is high enough to ensure it is
sufficient to successfully separate fruits from stems, the influence of various parameters of
the Fin Ray structure on the gripping force and deformation of the finger was investigated
through simulations, as the basis for the design of the soft gripper structure. The following
are the main contributions:

(1) A new three-finger force feedback soft gripper for the apple harvesting robot is
proposed. The relationship between the gripping force, the pulling force, and the servo
torque was established to achieve the constant-pressure flexible clamping of fruits.
Then the sensing system of the soft gripper was implemented by using the servo’s
feedback information instead of adding additional sensors, making the structure of
the gripper simpler and less costly.

(2) A force feedback gripper dynamic control approach with slip detection is presented.
The relative location of the fruit and the gripper is detected in this manner by incorpo-
rating a distance sensor, which makes the gripper structure and calculation simple.
When the fruit slippage occurs, the servo output torque is adjusted in real time to
reduce fruit harm using the feedback information.

In addition, to provide a theoretical basis for the design of the gripper, some mechanical
properties of apples are given in the experiments.

Remark 1. It should be clarified that the force feedback system and slip detection are two main
contributions in this paper. To provide a stable mechanical design of the gripper as a study basis for
these two points, we also analyze the structural parameters of Fin Ray fingers by the finite element
analysis method.

2. Structural Design of a Soft Gripper with Three Fingers

2.1. Finite-Element Analysis of Finger Structure with the Fin Ray Effect

The harvesting gripper’s finger mechanism uses a triangular Fin-Ray soft finger
component, which has a passive compliance quality and can implement an envelope while
clamping spherical items. The general construction of the finger consists of the front and
rear beams, cross beams, and base, as shown in Figure 1a. The front beam comes into
contact with the fruits, and the front and rear beams are linked by cross beams. These
cross-beam support rods are the foundation of Fin Ray fingers. Because of the presence
of these crossbeam support rods, the Fin Ray structure can withstand greater loads than
conventional flexible constructions.
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(a) 

  

(b) (c) 

Figure 1. Characteristics of the Fin Ray finger: (a) basic components; (b) displacement of the fingertip;
(c) structure of the Fin Ray finger.

2.1.1. Pre-Preparation of the Simulation Experiment

The finger gripping force must be sufficient to improve the grasping stability. Further-
more, the pressure per unit area of the pericarp should be small enough to guarantee that
the fruit pericarp remains intact. As a result, the finger gripping force and the bending
degree are two critical criteria. The finger gripping force can ensure clamping stability,
while the finger bending degree can assure clamping stability and safety by increasing the
contact area between the fingers and the fruits. The stress of the Fin Ray finger during de-
formation is complicated by making the mathematical modeling difficult. As a result, using
the simulated tests, this research investigates the effect of the front and rear beam thickness,
the finger width, and the number of cross beams on the finger gripping force and bending
degree, as shown in Figure 1a. In the simulation experiment, the contact stress between
the finger and apple is used to characterize the gripping force, and the displacement of the
fingertip is used to characterize the bending degree, as shown in Figure 1b.

A single finger adopts a symmetrical structure; the total length of the finger is 120 mm,
and the front beam and the rear beam are each at an angle of 80◦ to the base. The cross
beams are parallel to the base; the distance is equal, and the thickness of the cross beams
is 1.40 mm. The little bulges are designed on the cross beams to increase the rigidity and
strengthen the load capacity, as shown in Figure 1c.

The TPU 95A [49] was chosen as the finger material. The TPU soft material is a
hyperelastic nonlinear material with isotropic properties throughout the stress process.
Furthermore, because the bending deformation of the soft finger is a nonlinear large
deformation, the Yeoh model can better represent its material properties [50]. The strain
energy density function W can be written as follows:

W =
N

∑
i=1

Ci0(I1 − 3)i +
N

∑
k=1

1
Dk

(J − 1)2k, (1)
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where N is the order of the model; I1 is the deformation tensor; Ci0 and Dk are the material
constants; J is the volume ratio. When TPU is regarded as the incompressible material, J = 1.

The strain energy density function in the form of the binomial parameters is usually
used [51], and the typical binomial parameter form of the Yeoh model is

W = C10(I1 − 3) + C20(I1 − 3)2. (2)

The fitting curve of the stress and strain of the TPU 95A was obtained through the
uniaxial tensile test, as shown in Figure 2. The material parameters obtained after processing
and analysis are shown in Table 1.

 
Figure 2. Strain–stress curve of the tensile test and fitting using the Yeoh model (TPU95A).

Table 1. Mechanical property parameters of materials.

Materials
Density
(kg/m3)

Young’s Modulus
(MPa)

Poisson’s
Ratio

C10
(MPa)

C20
(MPa)

PA12 1010 1900 0.4 — —
Apple [52] 840 5 0.35 — —
TPU 95A 1200 — — 3.7358 −11.88

Because the contact stress between the three fingers and the fruit is the same, the
contact between a single finger and the fruit can be considered to reduce the quantity of
simulation calculation, to simplify the analysis.

During the simulation, the center of the bottom plate of the gripper is kept aligned
with the center of the fruit at a distance of 65 mm [49].

2.1.2. Influence of Geometric Parameters on Contact Stress and Fingertip Displacement

Each geometric parameter has a varied effect on the contact stress and fingertip
displacement. All other parameters were held constant to compare their changes when the
given parameters were altered, and the influence of the given single parameter on them
was gradually optimized.

First, the influence of the thickness of the front and rear beams was analyzed. The
stress increases dramatically as the thickness increases, while the fingertip displacement
decreases, as shown in Figure 3a.
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(a) (b) (c) 

Figure 3. Changes in stress and displacement according to three factors: (a) thickness of front and
rear beams; (b) width of fingers; (c) number of cross beams.

When the thickness of the front and rear beams is 2 mm, the stiffness of the finger after
contact with the apple cannot be guaranteed, resulting in a small gripping force and easy
fruit slip; when the thickness is 4.5 mm, the stress of the material itself will greatly limit
its bending deformation and reduce the contact area between the fingers and fruit. At the
same time, because excessive stress might cause fruit damage, the thickness of the front
and back beams should not be too tiny or too large. When the thickness is 3.5 mm, the
downward trend of the fingertip displacement becomes stronger as the thickness increases,
while the upward trend of stress tends to be soft. As a result, selecting a thickness of 3.5 mm
for the front and rear beams not only meets the requirement of the increasing gripping
force but also allows fingers to make good contact with the fruits.

The effect of the finger width was then investigated. With the increase of the width, the
fingertip displacement diminishes. However, the stress does not follow a constant pattern,
as shown in Figure 3b. When the width is 10 mm, the stress and fingertip displacement is
the greatest. This is because the finger width is excessively narrow, resulting in a limited
contact area between the finger and the apple and high contact stress acting on the apple
surface, which is easily damaged. Although the degree of the finger bend is greater when
the finger is thin, it also results in insufficient grasping stiffness and fruit slide. When the
width is 25 mm, the contact area between fingers and fruit increases, but its structure affects
its bending, and it is not suitable for collecting fruits in the complex growing environment.
When the width is 16 mm, as the width continues to increase, the fingertip displacement
decreases dramatically and the stress tends to be flat. As a result, the best finger width is
set to 16 mm in this study.

Finally, the number of beams was taken into account. Because the cross beams are the
primary components that influence the stiffness of fingers, the number of cross beams has a
substantial impact on the Young’s modulus of the fingers [25]; hence, the distribution of the
cross beams may have a major impact on the gripper performance. In distribution, there
are several combinations of the cross beams. For the sake of simplicity, just the simplest
equidistant parallel arrangement of the cross beams was considered in this study. Change
the thickness of the front and rear beams to 3.5 mm, the width of the fingers to 16 mm, and
change the number of cross beams. As the number of cross beams grows, so does the stress,
and the fingertip displacement declines first and subsequently increases. When the number
of beams is 9, the fingertip displacement reaches the maximum and then decreases again,
as shown in Figure 3c. As a result, one selects nine as the optimal number of beams.

According to the results of the aforementioned analysis, the thickness of the front
and rear beams has the greatest influence on the contact stress and fingertip displacement
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among the three geometric parameters. It is mostly because the finger surface is in direct
contact with the fruit, and the thickness of the front and rear beams has a direct impact on
the stiffness of the fingers. The structural parameters of the Fin Ray fingers are extremely
complex, and this study just considers the most basic scenario. As a result, the best
structural parameters are as follows: the thickness of the front and rear beams is 3.5 mm,
the width of the fingers is 16 mm, and the number of beams is 9.

2.2. Overall Design of the Soft Gripper

The overall structure of the three-finger soft gripper for apple harvesting built with
optimized Fin Ray fingers is shown in Figure 4a. It can be divided into three parts: the
driving and sensing part, the transmission part, and the grasping part for clamping objects.
The driving part is performed by a servo with torque and position feedback. To measure
the relative distance between the gripper and the fruit, a distance sensor is mounted on
the servo installation side of the gripper bottom plate. The transmission part is primarily
accomplished by a slider, and the rocker mechanism was composed of a rocker, a connecting
rod, a moving plate, and guide rods, as shown in Figure 4b. The servo rotates to drive the
moving plate to move up and down. Because the fingers and their connectors are connected
with the moving plate through the support rods, the fingers will move with the moving
plate moving up and down, as shown in Figure 4c.

    

(a) (b) (c) (d) 

Figure 4. Overall design of the soft gripper: (a) overall structure; (b) details of transmission and the
driving and sensing part; (c) the designed gripping mechanism; (d) details of the grasping part.

In the grasping part, three Fin-Ray finger units are evenly distributed around the
bottom plate of the gripper disc, connected with the transmission mechanism by the finger
connectors to drive the Fin Ray fingers. A silicone pad is attached to the surface of each
finger to increase the contact friction between the finger and the fruit, which ensures the
clamping stability, as shown in Figure 4d.

At the initial position, the finger connectors are inclined outward at a certain angle
relative to the bottom plate. Because the bottom of the fingers is connected in parallel with
the bottom of their connectors, and the finger has a triangular symmetrical structure, the
clamping range of the gripper is expanded.

3. Kinematic Mechanics Analysis of a Soft Gripper

The driving force begins with the servo, travels through the slider and rocker mecha-
nism, multi-link mechanism, and Fin Ray soft structure, and eventually acts on the gripped
fruit. In conclusion, the static analysis of the rigid multi-link mechanism and the soft finger
structure was performed to acquire the gripping force on the fruit surface. Simultaneously,
the relationship between the gripper pulling force and the gripping force was investigated
in connection with the pulling harvesting method. Because the three fingers are symmet-
rically arranged relative to the bottom plate of the gripper, and the structure is the same.
Furthermore, the servo output torque operates on the center of the moving plate, and the
movement process and stress situation are comparable. As a result, the stress analysis of
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the direct contact between fingers and fruit begins with a single finger, making the analysis
procedure simpler.

3.1. Force Analysis of Rigid Multi-Link

The basic structure and motion principle of the soft gripper is shown in Figure 5a,b.
The force acting on the fruits of the Fin Ray structure can be equivalent to a single concen-
trated force in the analysis of the rigid multi-link (the analysis of the soft Fin Ray structure
will be discussed below). The servo drives the rocker to rotate counterclockwise when
grabbing, the moving plate to travel down along the guide rod, and the support rod to
move. Following that, the support rod drives the finger connector to rotate around the joint
FF, resulting in the envelope-gripping movement of the finger.

  
(a) (b) 

Figure 5. Motion schematic of the gripper: (a) physical model; (b) kinematics model.

In the figure: Md is the servo output torque; θFR is the angle between the rocker and
the horizontal direction; θFF is the angle between the finger connector and the horizontal
direction; α is the angle between the front and rear beams of fingers and the base.

Because of the light weight of each moving part of the rigid multi-link, the gravity and
inertia force during the movement of the gripper can be ignored.

The mechanical analysis of the multi-link mechanism is performed under static equi-
librium conditions. The connecting rod is vertical to the moving plate at the time of initial
contact. Their angle does not alter much when the rocker is rotated. To make the calculation
easier, the difference is negligible. Among the multi-link, the connecting rod is a two-force
member, and the moving plate is employed to assess the force, as shown in Figure 6.
Therefore, one has

FCM = FMS, (3)

 

Figure 6. Force analysis of the moving plate.
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For which, FCM and FMS are in the opposite direction. FXY is the force of member X
applying to member Y. To simplify the analysis, the sliding friction between the moving
plate and the guide rod is negligible.

Thus, the support rod is a two-force member. Figure 7a shows the force analysis
of the finger and its connector. The closing force triangle shown in Figure 7b can be
obtained according to the geometric conditions for the equilibrium of the plane-intersecting
force systems.

  
(a) (b) 

Figure 7. Force analysis of the finger and its connector: (a) force diagram; (b) closing force triangle.

To maintain the force balance of the finger and its connector, one obtains

Fc cos γ = FFF cos β, (4)

Fc sin γ + FFF sin β = FSF, (5)

where Fc is the contact reaction between the finger and fruit, that is the finger gripping
force; γ is the angle between Fc and the horizontal direction; β is the angle between FSF and
the horizontal direction.

According to Equations (4) and (5),

Fc =
1

sin γ + cos γ tan β
F SF, (6)

where
γ =

π

2
− α + θFF, (7)

tan β =
h

LFc cos θFF sin2(α − θFF)
− 1

tan(α − θFF)
, (8)

where h is the distance from the center of fruit to the bottom plate of the gripper; LX is the
length of component X, that is LFc is the length of the Finger connector, and LR is the length
of the rocker.

To obtain the relationship between the servo torque Md and the gripping force Fc,
the rocker is taken as the forced object, and the force situation is shown in Figure 8. The
moment balance at joint FR is

FCRLR cos θFR = Md. (9)
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Figure 8. Force analysis of the rocker.

According to the force characteristics of the two-force members,

FCR = FMS = FFS = FSF, (10)

where FFS and FSF are in opposite directions.
From Equations (6), (9), and (10), one can obtain

Fc =
1

sin γ + cos γ tan β
· 1

LR cos θFR
· Md. (11)

3.2. Contact Force Analysis between Soft Finger and Fruit

When the finger comes into contact with the fruit, it creates an adaptable envelope,
and the contact area expands. The flexible deformation of the Fin Ray structure makes the
mechanical analysis difficult. Therefore, to facilitate the calculation, the fruit is simplified as
a regular sphere. Aiming at the picking method for pulling fruits, a simplified single-finger
plane stress model is given in Figure 9.

 

Figure 9. Plane force model of fruit (the forces are shown in red when the load divisions on the x-axis
are in the same direction as the x-axis and black in the opposite direction).

The contact between the finger and the fruit is divided into two areas with angles of δ
and σ, with the y-axis as the limit. The positive touching pressure of the fruit is simplified
as a uniform load; the size is n; the unit is N/m, and the directions all point to the center of
the circle, whose angle with the y-axis is ϕi (i = 1, 2, . . . , m). Fs is the static friction force
generated by the positive pressure of the finger on the fruit. When pulling the fruit, the
positive pressure on the fruit and the component force of the static friction force generated
along the x-axis direction are the main forces to ensure the stability of grasping. Specify
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that the direction of the force is positive along the positive x-axis. To obtain the resultant
force in the x-axis direction F, one has

F =
∫ σ
−δ(Fs cos ϕ + n sin ϕ) · rdϕ

= r · [Fs(sin δ + sin σ) + n(cos δ − cos σ)],
(12)

where
Fs = μ · n. (13)

In the Equation, μ is the maximum static friction coefficient between the finger and
the pericarp of the fruit; r is the radius of the fruit.

Therefore, from Equations (11) and (12), the relationship between the resultant force F
and the positive touching pressure on the fruit can be obtained,

F = rn · [μ(sin σ + sin δ) + (cos δ − cos σ)]. (14)

The relationship between the equivalent single concentrated force Fc and the uniform
load n in the rigid multi-link force analysis above is

Fc =
∫ δ

−σ
n · rdψ = nr · (δ + σ). (15)

According to Equations (11), (14), and (15), the relationship between the servo torque
Md and the resultant force F can be obtained as

F =
μ · (sin σ + sin δ) + (cos δ − cos σ)

LR · (sin γ + cos γ tan β) · cos θFR · (δ + σ)
· Md. (16)

4. Soft Gripper Control Method for Slip Detection and Constant-Pressure Feedback

During the actual grasping, the gripping force is fc, which is the same magnitude as
the force Fc but in the opposite direction, and the pulling force is the resultant force in the
x-axis direction F. From Equations (11) and (16), the relationship between the gripping force
fc of the gripper, the pulling force F, and the servo torque Md can be obtained, as shown
in Figure 10a. Therefore, when the fruit detachment force Fd is determined, the driving
torque required for fruit detachment can be calculated according to the diameter of the
fruit, thereby setting the servo output torque Md. Simultaneously, it is possible to conclude
that the gripping force fc on the fruit surface at this time. To ensure constant pressure acting
on the surface of the fruit, fc should not be greater than the maximum pressure Fm that the
pericarp of the fruit can withstand.

  
(a) (b) 

Figure 10. Model of the soft gripper control method: (a) the relationship among fc, F, and Md;
(b) Relative position detection between fthe ruit and the gripper.
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In addition to the fruit damage caused by the excessive gripping force of the fingers,
which also includes bruises and scratches caused by the relative sliding between the fruit
and the fingers, as shown in Figure 11. Therefore, to avoid the slippage between the fruit
and the finger during harvesting, this paper detects the relative position between the fruit
and the gripper by integrating a distance sensor to assess the fruit slippage and minimizing
the damage caused by fruit slippage during harvesting, as shown in Figure 10b.

  
(a) (b) 

Figure 11. Damage to the fruit: (a) scratches; (b) bruises.

Combined with the constant-pressure feedback state, the specific implementation
steps of the soft gripper control method for slippage detection are as follows:

4.1. Control Method of Constant-Pressure Feedback

The required servo output torque Md can be obtained by identifying the diameter of
the target fruit. To ensure that fc is less than Fm at this time, the output torque must be
adjusted further. When the fc obtained at this time is greater than Fm, it should be ensured
that the maximum torque can be output while the fruit is safely held. From Equation (11),
let fc equal Fm at this point to obtain the critical torque Mm of safe clamping, which is set as
the servo’s output torque. The gripper control method of the constant-pressure feedback is
shown in Figure 12.

 

Figure 12. Gripper control method of constant-pressure feedback.
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During the no-load closing motion of the gripper, the servo output torque is stable at
an initial torque. When the feedback torque of the servo is greater than the initial torque,
the finger and the fruit seem to be in contact. To avoid fruit damage due to the impact of
the dynamic load, close the gripper quickly to reach the contact position before touching
the fruit, and slowly close the gripper after the finger is in contact with the fruit. When the
feedback torque reaches the preset value, it is assumed that the fruit has been grasped, and
the servo stops rotating.

In contrast to the sensor system embedded in the finger, the servo with feedback
information is used as the driver to ensure constant-pressure contact between the finger
and the fruit, simplifying the structure of the soft harvesting gripper and facilitating the
fruit harvesting in complex growth environments.

4.2. Control Method of Slip Detection

Fin Ray soft fingers have great advantages in dealing with the problem of fruit uni-
laterally damaged by extrusion. The cross beams act as rigid support rods to ensure the
stiffness of the fingers while also allowing the fingers to adaptively wrap the entire fruit,
preventing fruit damage due to the stress concentration.

However, it is difficult to ensure that relative slippage between the fingers and the
fruit does not occur during the fruit detachment process. Because of the rough silicone
pads attached to the surface of the fingers, the sliding friction force between the fingers
and the fruit is relatively great when there is relative slippage between them, and it is
easy to cause bruises and scratches on the fruit pericarp. As a result, effectively avoiding
relative slippage is essential to ensure that the fruit is not damaged. The condition of the
relative slippage, which causes the fruit damage, is complicated and will not be discussed
in this paper.

A slip detection method is proposed for the designed soft gripper, which obtains the
fruit position in real-time through the distance sensor. One believes that when the relative
slip distance between the fruit and the fingers ΔL reaches Ls, the fruit tends to slip off, as
shown in Figure 13. At this time, the output torque can be increased on the premise of
ensuring that the maximum gripping force Fm is not exceeded, and the fruit can be clamped
to prevent further sliding; if the relative slip distance ΔL can still reach Ls after increasing
the output torque, clamping and pulling the fruit will increase the risk of damage, such as
bruises and scratches. It means that the fruit is difficult to harvest at this point, and it is
considered a harvesting failure, and the soft gripper is released. Controlling the gripper
to perform the aforementioned operations n times, if harvesting fails all n times, give up
picking this fruit. The slip detection control method is shown in Figure 14.

 
Figure 13. Slipping trend of fruit.
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Figure 14. Gripper control method of slip detection.

Although the risk of harvesting failure is increased by the method proposed above,
it does not cause damage to the fruit, and the fruit after harvesting failure can still be
harvested manually without affecting its economic value or reducing economic losses.

5. Test and Analysis

5.1. Test Analysis of the Mechanical Properties of Apple

The Model E43 of MTS Exceed® Electromechanical Test Systems was used to con-
duct the relevant tests to obtain the relevant mechanical properties of the apples as the
basis for the design of the gripper in this study. The range is 100 N, and it has a force
and displacement sensor. Yantai Fushi apples were chosen as the test samples during
the experiments.

In our study, a silicone pad is attached to the surface of the finger to improve the
grasping performance by increasing the friction of the fruit’s surface. To measure the
maximum static friction coefficient μ between the silicone pad and the fruit, the pressure
Fn was applied to the fruit through Model E43, and a silicone pad was pasted on the upper
indenter and lower support, respectively. The tensile force of horizontally pulling the fruit
was measured with a tension meter, as shown in Figure 15, and the horizontal pulling force
Fp was measured from the beginning of the fruit slippage.

 

Figure 15. Diagram of mechanical properties test device.
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Ignoring the apple’s weight, it can be obtained from the static balance of the apple,

Fp = 2μ × Fn. (17)

The test results and fitting function are shown in Figure 16, R2 = 0.92. Therefore,
μ = 0.8 can be obtained.

Figure 16. Test data and fitting curve.

To obtain the detachment force Fd required for fruit detachment, the apple was fixed
on the support and kept still; then one end of the branch was fixed with the collection of
the Model E43 and pulled axially. When the fruit branch was broken through the force
sensor, the maximum pulling force was recorded. The experimental results are shown in
Figure 17. The experiment used twenty apple samples with diameters ranging from 65 mm
to 95 mm.

 
Figure 17. The influence of apple diameter on detachment force.
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The results show that Fd is distributed between 8.88 N and 39.6 N. Fd generally
increased as the apple diameter increased, but a small portion showed an irregular distri-
bution. This could be because fruits with larger stem diameters have more connection force
between branches and apples, necessitating more detachment force. At the same time, in
the report of Bu [53] et al., the detachment force is much greater when the natural growth
angle of the fruit is obtuse than when it is acute, as shown in Figure 18. In this experiment,
we did not pay too much attention to the relation of detachment force to stem diameter
and fruit growth angle. The test results were consistent with those of Bu [53] et al.

 

Figure 18. The natural growth angle of apple.

To avoid damaging the apple pericarp due to excessive gripping force, the maximum
pressure Fm that the fruit pericarp can withstand must be known. We make a rectangular
apple sample block of 10 mm × 10 mm × 20 mm near the apple’s pericarp, place it on
the middle of the support of the Model E43, and apply a load to the apple sample until it
is destroyed. The force–displacement relationship during the apple-sample compression
experiment was recorded, and the results are shown in Figure 19.

 

Figure 19. Force–displacement curve of the apple samples.

It can be seen that, once the force reaches 15.35 N, it remains almost unchanged with a
one-stage displacement increase. This demonstrates that, when the force reaches 15.35 N,
the apple begins to tend to plastically deform. According to the energy principle of the
apple damage proposed by Schoorl [54], the damage volume of the apple is proportional to
the energy it absorbs. To reduce the amount of energy transmitted to the apples during
harvesting, set the maximum pressure Fm that apples can withstand to 15.35 N. The test
results were consistent with those of Grotte [55] et al.

5.2. Gripping Force Verification Experiment

The rated torque that the servo can provide in this soft gripper is 12 kg·cm (1.2 N·m),
assuming that the maximum torque that a single finger can provide is 0.4 N·m. LFc is
28 mm; LR is 12 mm; h is 65 mm; α is 80◦, and μ is 0.8. According to the structural design of
the gripper, θFF is between −12◦~15◦, and θFR is between −30◦~53◦. Given that the fruit
radius r varies, σ is customarily between 0◦ and 40◦, and δ is traditionally between 0◦ and
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25◦. In the test, the diameter of the apple sample is about 90 mm. At initial contact, the
finger and the fruit can be regarded as point contact. θFF is generally around 10◦, and θFR is
generally around 30◦, as shown in Figure 20a. According to Equation (11), the maximum
initial gripping force fc of a single finger is approximately 15.34 N. The output torque Md is
little as the first contact, so the contact force between the finger and the fruit is far less than
the maximum initial gripping force. When the gripper continues to close, σ and δ become
larger, γ becomes smaller, and β becomes larger, so the finger gripping force fc becomes
larger, as does the pulling force F. At full contact, θFF is typically around −12◦, and θFR is
typically around −30◦, as shown in Figure 20b. Therefore, the maximum gripping force
fc of a single finger is about 16.21 N. On the basis of Equation (16), the maximum pulling
force F of a single finger is about 14.18 N, resulting in the maximum pulling force of the
entire gripper being approximately 42.55 N.

(a) (b) 

Figure 20. Contact model of soft gripper: (a) initial contact; (b) full contact.

According to the above test results, the detachment force when pulling to harvest the
fruit is about 8.88 N–39.6 N, indicating that the designed gripper’s maximum pulling force
meets the detachment requirement.

The gripping force resulting from the adaptive bending deformation of the soft fingers
in contact with the fruit surface, which was measured by a thin-film pressure sensor (RP-L
TDS REV C.) mounted between each finger and the silicone pad, as shown in Figure 21a. The
RP-L type soft thin-film pressure sensor was composed of polyester film, high conductive
material, and pressure-sensitive material. It converts the pressure acting on the thin-film
area of the sensor into a change in resistance.

The test started when the finger made contact with the apple, and the output torque
of the servo increased by 0.2 kg·cm (0.02 N·m) each time until it reached the rated torque of
12 kg·cm (1.2 N·m). To compare the difference in the gripping force of the finger on the
surface of the fruit when the diameter of the fruit changes, apples with diameters of 70 mm,
80 mm, and 90 mm were chosen for the test, as shown in Figure 21b. In each test, the
pressure output by the sensor and the servo torque was recorded, as shown in Figure 22.

As can be seen from the figure, there is an approximate positive relationship between
the gripping force of the soft finger and the servo torque, and the image fits the theoretical
curve well. Furthermore, it can be found that the effect on the gripping force is not very
significant when the diameter of the fruit changes. Therefore, the finger output force during
picking can be controlled by adjusting the servo output torque.

Nevertheless, the single-finger gripping force at a torque up to 1.2 N·m for the fruit
diameter of 90 mm does not reach the theoretically calculated maximum value, which is
probably due to the lack of accuracy from the thin-film pressure sensor.
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(a) (b) 

Figure 21. Experimental structure diagram: (a) finger with a RP-L sensor; (b) experimental platform.

 
Figure 22. Relationship between torque and gripping force.

5.3. Test Analysis on the Harvesting Performance of the Soft Gripper

During the grasping and harvesting tests, the soft gripper was fixed on Franka, a
seven-axis robotic arm with a high-sensitivity force-control performance, as shown in
Figure 23. The tests were carried out in an orchard located in Changping Distrct, Beijing.
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Figure 23. Experimental scene in the orchard.

5.3.1. Feasibility Test Analysis of Constant-Pressure Feedback System

To ensure that the finger gripping force is less than 15.35 N, the servo output torque is
set to control the maximum gripping force fc. Assuming that the detachment force required
for fruit detachment is 40 N, it can be obtained from Equation (16) that the required output
torque is 10.25 kg·cm (1.025 N·m). A single finger’s grasping force fc is 13.89 N, which is
not harmful.

Therefore, a grasping comparison test was performed to verify the improvement of the
soft gripper’s safe grasping performance by the force feedback system. In this experiment,
a total of 20 apple samples with no damage on the fruit skin were selected and divided into
two groups of ten apples each. In the first set of experiments, the force feedback system
was turned on, and the clamping test was performed on each apple. The clamping process
followed the logic of the flowchart in Figure 12, and the clamping posture is shown in
Figure 24a. After the gripper has completely and stably grasped the apple, hold it still for
5 s before releasing the fruit. In the second set of experiments, all experimental conditions
were the same except that the force feedback system was turned off. As there is no output
torque control, the clamping will stop until the servo reaches the locked rotor torque, and
the clamping posture is shown in Figure 24b. The contact area on the fruit was marked
after each release, and the fruit was then stored at the same constant temperature for 7 days.
After taking them out, make a note of the damage on the apple surface’s contact area. The
radius of the damaged area was less than 10 mm for slight damage and greater than 10 mm
for serious damage.

  
(a) (b) 

Figure 24. Gripper attitude with force feedback on and off: (a) force feedback on; (b) force feed-
back off.
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Observing the apple surface, the contact area of the apples clamped by the gripper
with an open force feedback system was not damaged, so the damage rate was 0%; however,
the apples were clamped by the gripper with a closed force feedback system. On the other
hand, the slight damage rate was 10%, and the severe damage rate was 10%; the specific
pericarp damage is shown in Figure 25. The experimental results show that activating the
constant-pressure feedback system improves the soft gripper’s safe grasping performance
and effectively ensures non-destructive fruit grasping.

  
(a) (b) 

Figure 25. Specific damage to apple pericarp: (a) slightly damaged; (b) severely damaged.

5.3.2. Test Analysis of Harvesting Success Rate and Apple Damage Rate

We carried out picking experiments to verify the stability and safety of the soft har-
vesting gripper designed in this paper. The harvesting process followed the logic of the
flowcharts in Figures 12 and 14 with the force feedback system on. The soft finger length is
120 mm, while the effective gripping length is 100 mm. In the tests, Ls was set to 10 mm. To
grab and separate the fruit, the soft picking gripper was controlled by Franka’s arm with a
pulling speed of 2 mm/s.

First, we analyzed various situations that occurred in the fruit harvesting process with
the fruit slip detection turned on. The process began with the gripper approaching the fruit
and ended with the fruit being harvested. The condition of the fruit slip and the change in
the servo output torque for the three situations of no obvious slip, first slip, and second slip
was recorded afterwards, as shown in Figure 26.

The figure shows that, even if the fruit did not slip for the first time, there would be
a slight relative movement to the finger during harvesting, which might be due to the
fingertip not being completely in contact with the fruit. After the fruit slipped slightly, the
fingertip and the fruit made complete contact, providing adequate support for the apple. It
was also conceivable that the measurement distance was floating within the accuracy range
due to a lack of sensor accuracy. When the fruit slipped for the first time, the occurrence
time was approximately 10 s, implying that the gripper pulled the fruit 2 cm. At this point,
the fruit branch was completely straightened, and sufficient force was required to detach it
from the branch; if the fruit slipped for the second time, it proved that it was not enough
to harvest the fruit under the premise of safe harvesting; in addition, further harvesting
might damage the fruit.

It can be ascertained that, during fruit harvesting, the stable servo output torque can
ensure that the fruit does not break free due to the gripper loosening.

To further verify the effectiveness of the gripper harvesting, the tests for the three cases
of rigid fingers and soft fingers with or without slip detection under the gripper structure
of this study were carried out, as shown in Figure 27. For each group of the experiments,
25 apples with completely undamaged pericarps were selected. The picking situation and
fruit harvesting damage were observed and recorded. The experimental results are shown
in Tables 2–4.
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Figure 26. The slip condition of the fruit and the change of the output torque with time.

  
(a) (b) 

Figure 27. Three sets of outdoor picking experiments: (a) rigid fingers; (b) soft fingers with or without
slip detection.
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Table 2. The harvesting situation of rigid fingers.

Average Diameter
(mm)

Average Mass (g)
Number of

Visible Slippage 1
Number of

Picking Success
Number of

Picking Damage
Number of

Slippage Damage

82.7536 236.748 7 25 4 3

Damaged Fruit Characteristics

Fruit Diameter
(mm)

Fruit Mass (g)
Visible Slippage

or Not?
Picking Success

or Not?
Picking Damage

or Not?
Damage Causes 2

83.04 245.7 Yes Yes Yes Slippage
86.37 280 Yes Yes Yes Slippage
88.86 262.5 Yes Yes Yes Slippage
90.23 278 No Yes Yes Grasping

1 When the slip detection is turned off, we define the visible slippage as the fruit that is about to slide to the
fingertips of the gripper or that has already broken from the gripper (the same as below). 2 Because the fruit
damage due to slippage in the gripper and due to grasping are quite different in character, we can distinguish
them more easily (the same as below).

Table 3. The harvesting situation of soft fingers without slip detection.

Average Diameter
(mm)

Average Mass (g)
Number of

Visible Slippage
Number of

Picking Success
Number of

Picking Damage
Number of

Slippage Damage

83.7548 232.724 9 24 2 2

Damaged fruit characteristics

Fruit Diameter
(mm)

Fruit Mass (g)
Visible Slippage

or Not?
Picking Success

or Not?
Picking Damage

or Not?
Damage Causes

82.35 235.5 Yes Yes Yes Slippage
86.66 260.3 Yes Yes Yes Slippage

Table 4. The harvesting situation of soft fingers with slip detection.

Average Diameter
(mm)

Average Mass (g)
Number of First

Slippage
Number of

Second Slippage
Number of

Picking Success
Number of

Picking Damage

84.2252 242.932 13 7 20 0

Second Slippage Fruit Characteristics

Fruit Diameter
(mm)

Fruit Mass (g)

Second Picking
after First Failed

Harvesting 1

Second Picking
Success or Not?

Picking Damage
or Not?

Damage Causes

82.32 226.5 Yes No —
83.31 233.5 No No —
84.45 226 No No —
84.65 256.1 Yes No —
86.19 266.6 No No —
90.19 279.4 No No —
91.11 309.8 No No —

1 With slip detection on, the second slippage of the fruit means that the picking has failed. At this point, each fruit
was picked twice; it implies that the fruit has failed, and the next fruit would be chosen if both pickings failed.

Comparing Tables 2 and 3, the picking success rate for the rigid fingers is 100%, with
a damage rate of 16%, while the success rate for the soft fingers is 96%, and the damage
rate is 8%, both of these have the silicone gasket applied to the surface. This shows that
the optimized Fin-Ray soft fingers in this paper are able to reduce the fruit damage better.
At the same time, we can see that visible slippage of the fruit was common in both cases
and that most of the damage occurred during the fruit slippage in the gripper. In the rigid
fingers experiment, three fruits were damaged by slippage and one by grasping, which
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also shows that the rigid support structure is prone to fruit damage despite the flexible
silicone gasket applied to the surface. In the soft fingers experiment, both damaged fruits
were caused by slippage. Therefore, the effective control of the fruit slip in the gripper is
essential to reducing the risk of fruit damage.

Comparing Tables 3 and 4, although the picking success rate dropped to 80% with
slip detection on, there was no fruit damage. It turns out that the soft gripper with slip
detection can effectively reduce fruit damage. Despite the fact that the harvesting success
rate will decrease, the fruit will not be harmed, and its economic value will not be impacted
after manual harvesting. In addition, we can see from Table 4 that 13 fruits made the
first slippage, and in 7 of them, the second slippage occurred, further demonstrating the
prevalence of fruit sliding during picking. Although five fruits failed in the second picking,
no fruit were damaged, which indicates that the proposed control method for slip detection
is effective in preventing damage to the fruits.

According to the above experimental results, the proposed Fin-Ray soft harvesting
gripper with force feedback and fruit slip detection enables stable and non-destructive fruit
picking. Notably, to improve the harvesting lossless rate, it is necessary to sacrifice some
harvesting success rates by detecting slippage between the fruit and the fingers.

Remark 2. It should be noted that the experimental results of the outdoor harvesting could be
regarded as the effect of combining both force feedback and slip detection on the basis of the optimized
harvesting gripper.

6. Conclusions

This paper presents a three-fingered apple-harvesting soft gripper with constant-
pressure feedback inspired by the Fin-Ray effect. First, the structural parameters of the
single-soft-finger model were optimized using finite element analysis, and the influence of
different Fin Ray finger structural parameters on the contact stress and fingertip displace-
ment was investigated. The optimal structural parameters of the single soft finger were
proposed: the front and rear beam thickness is 3.5 mm; the finger width is 16 mm, and the
number of beams is 9. A three-fingered apple harvesting soft gripper was designed based
on the above-optimized fingers. The determined gripper structure’s mathematical model
was then statically analyzed, and the relationship between the gripping force, the pulling
force, and the servo torque was obtained. Therefore, the finger output force during picking
can be controlled by adjusting the servo output torque.

We also propose a dynamic control method for detecting fruit slip during apple
harvesting by integrating a distance sensor in this study. The maximum static friction
coefficient between the finger and the apple, the detachment force of the apple, and the
damaged condition of the apple were obtained through an experimental analysis of the
apple’s mechanical properties, which provides a theoretical basis for the gripper design. In
indoor experiments, the results show that the servo output torque has an approximately
linear relationship with the contact pressure between the fingers and the apple, and it is
suitable for all sizes of apple. In the outdoor orchard experiments, turning on the constant-
pressure feedback system can improve the safe grasping performance of the soft gripper,
which can effectively ensure non-destructive fruit gripping. Comparing the tests for the
three cases of rigid fingers and soft fingers with or without slip detection, the optimized
Fin-Ray soft fingers in this paper are able to reduce the fruit damage better, and opening
the slip detection can effectively avoid fruit damage. Furthermore, the stable output torque
of the servo can ensure that the fruits do not break free due to the gripper loosening
during harvesting.

In this study, we believe that the soft harvesting gripper is not only suitable for
harvesting apples but also for harvesting some other fruits (e.g., tangerine and kiwi) and
vegetables (e.g., tomato) and can provide an application reference. It has a high degree of
adaptability and can effectively avoid fruit damage by adjusting the servo output torque.
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However, our current research work still has some limitations. On the one hand, the
complex structure of the Fin Ray fingers needs further investigation, and we will conduct
more in-depth and detailed research on it in the future. On the other hand, the theoretical
analysis and design of the gripper are only for the single-pulling fruit harvesting method
in this study, which has significant limitations. This is only the first step in our exploration.
In future work, combined with the optimal method and the posture of the fruit harvesting,
the harvesting method combining gripper rotation and pulling will be studied.
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Abstract: Accurate and automatic real-time recognition of shrimp with and without shells is the key
to improve the efficiency of automatic peeling machines and reduce the labor cost. Existing methods
cannot obtain excellent accuracy in the absence of target samples because there are too many species
of shrimp to obtain a complete dataset. In this paper, we propose a tactile recognition method with
universal applicability. First, we obtained tactile data, e.g., the texture and hardness of the surface of
the shrimp, through a novel layout using the same type of sensors, and constructed fusion features
based on the energy and nonstationary volatility (ENSV). Second, the ENSV features were input to
an adaptive recognition boundary model (ARBM) for training to obtain the recognition boundary
of shrimp with and without shells. Finally, the effectiveness of the proposed model was verified by
comparison with other tactile models. The method was tested with different species of shrimp and
the results were 88.2%, 87.0%, and 89.4%, respectively. The recognition accuracy of the overall, shrimp
with shells and shrimp without shells verified the generalizability of the proposed method. This
method can help to improve the efficiency of automatic peeling machines and reduce the labor cost.

Keywords: shrimp; automatic peeling machines; tactile perception; recognition

1. Introduction

The shrimp industry is a key sector of the fishing industry [1]. Research on equipment
for the automated processing of shrimp is important because manual processing not only
leads to low productivity and high production costs but also reduces the quality of shrimp
products [2,3]. The typical process used by shrimp peeling equipment is to first remove
the head of the shrimp, followed by the shell, by squeezing it through a roller sleeve [4,5].
The automated recognition of shrimp with and without shells must be explored because
existing automatic peeling machines are not perfect and require the secondary manual
recognition of shrimp with shells.

Machine vision is widely used as a nondestructive detection technique for the qual-
ity evaluation and body measurement of shrimp [6–8] Some scholars have implemented
shrimp detection tasks by extracting color, shape, and texture features from images and
combining them with machine learning models [9–11]. Deep learning, which can auto-
matically learn the feature representations of original image pixel data without relying on
specific features, has achieved great success in the field of image recognition [12,13]. Zhang
et al. proposed a YOLOv3 multisource fish detection framework based on multiscale fusion
and identified fish bodies in fish images based on a CenterNet target detection network
with an average accuracy of 90.2% [14]. Conrady et al. constructed a sea bream recogni-
tion model based on a mask region-based convolutional neural network (R-CNN) with
good accuracy [15]. However, the visual method can recognize samples that are similar
to the training samples [16]. As there are more than 2000 shrimp species, it is difficult to
obtain a comprehensive sample dataset. In addition, its processing is mainly in the form of
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video [17], which limits its application in shrimp identification because of its long training
time and high equipment requirements.

Tactile sensing is another form of perception that ignores the influence of shrimp
species. Tactile sensing recognizes and detects the objects to be measured by analyzing
the tactile time-series signals of these objects [18,19]. It is widely used in different fields
owing to its high processing speed and recognition accuracy for objects with large force
differences [20–22] Wang’s team and Zhang’s team applied principal component analysis
(PCA) to reduce the dimensionality of tactile signals and recognize different objects by
machine learning methods [23,24]. Keser’s team and Qin’s team used the discrete wavelet
transform (DWT) method to generate feature vectors of tactile sample signals and then
implemented the classification of tactile signals [25,26]. In the abovementioned studies,
most of the tactile data on the object being tested are homogeneous, and whole or partial
features are directly extracted for recognition by manual experience. However, the tactile
data obtained from the surface of the shrimp is inhomogeneous, and shrimp with shells
have complex and variable shell attachment sites, making it difficult to obtain accurate
experimental results.

In this paper, we propose a method to identify shrimp with and without shells by
tactile sensation. First, we use two sensors of the same type to obtain tactile data on the
texture and hardness of the shrimp surface, and construct fusion features based on energy
and nonstationary volatility (ENSV). Then, based on the feature distribution of the ENSV,
an adaptive recognition boundary model (ARBM) is constructed. Finally, we verify the
feasibility and generalizability of the proposed method. The main contributions of this
study are as follows.

(1) This is an attempt to identify shrimp with and without shells using a tactile method to
address the problem of the non-universality of existing recognition methods because
of the large number of shrimp species.

(2) A physically meaningful ENSV-ARBM tactile signal processing scheme is proposed
to amplify the tactile differences between shrimp with and without shells and reduce
the effect of uncertainty in the recognition of shrimp with and without shell samples.

(3) The proposed method can meet the requirements of automatic peeling machines for
accurate recognition of different species of shrimp in real time, which helps to improve
the efficiency of automatic peeling machines and reduce the labor cost.

2. Materials and Methods

2.1. Experimental Setup

In this study, a tactile sensor was developed. When the tactile sensor slides across the
surface of an object, it senses the surface texture and hardness information of the object
and transmits signals over time through two sensing cells. The tactile sensor consists of
four carbon fiber plates (Zesheng Carbon Fiber Products Factory, Zhongshan, China) and
two piezoelectric film polyvinylidene fluoride (PVDF) sensors (Jiangmen Antai Electronics
Co., Ltd., Jiangmen, China). The fabrication of the tactile sensor proposed in this study is
simple, as shown in Figure 1a.

Four carbon fiber plates were offset and stacked in turn. When the tactile sensor
touches an object, it amplifies the vibration features to show the tactile features of the object.
Two piezoelectric film PVDF sensors with a copper block embedded in each end increases
the visibility and recognizability of the tactile signal.

One piezoelectric film PVDF sensor (Sensor A) is horizontally installed in the middle
of four carbon fiber plates. The copper block extends out of the carbon fiber plate and is in
a suspended state. In this manner, the piezoelectric film PVDF sensor can obtain the surface
texture information when the object is touched by the tactile sensor. The other piezoelectric
film PVDF sensor (Sensor B) is installed in the middle of the longest carbon fiber plate. The
copper block faces downward along the carbon fiber sheet. In this manner, the piezoelectric
film PVDF sensor can obtain the hardness information when the object is touched by the
tactile sensor. The material specifications of the tactile sensor are listed in Table 1.
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Figure 1. Schematic diagram of tactile sensor. (a) The physical diagram of tactile sensor; (b) diagram
of experimental setup of tactile time-series acquisition.

Table 1. Material and structural parameters of the tactile sensors.

Material Type Parameter Structure Type Parameter

Carbon fiber plates
(Length/mm × Width/mm × Thick/mm) 150 × 30 × 1 Extended length of transverse piezoelectric film

PVDF sensor/mm 10

Piezoelectric film PVDF sensor
(Length/mm × Width/mm × Thick/mm) 20 × 10 × 1 Tilt angle of the sensor/◦ 60

Copper blocks
(Bottom area/mm2 × Height/mm) 2.25π × 3 Carbon fiber plates offset distance/mm 3

The conveyor belt speed is fixed, the carbon fiber plate of the tactile sensor scans the
surface of the shrimp. Sensor A captures information about the texture of the shrimp’s
body by vibrating as the carbon fiber plate comes into contact with the shrimp. Sensor B,
which is bent by the force created by the contact, captures information about the hardness
of the shrimp. Shrimp with shells generally have a hard and rough surface, whereas shrimp
without shells have a soft and smooth surface. This differential data of the shrimp’s body
surface is obtained through the use of two sensing units.

The experimental setup for tactile time-series acquisition is shown in Figure 1b. First,
the shrimp were transported by a conveyor belt. When the shrimp pass the laser sensor,
the data from the tactile sensor were acquired. Then, the Arduino (Shanghai Longzhan
Information Technology Co., Ltd., Shanghai, China) collected the output signals of the
tactile sensor. These were transmitted to the Bluetooth module and wirelessly transmitted
to the computer in real time for processing and analysis. The data visualization interface is
based on the LabVIEW software for computing. Finally, the obtained tactile signals were
processed in a MATLAB (mathematical tool) environment.

2.2. Data Processing

Tactile time-series data were obtained from shrimp with and without shells. First,
discrete tactile data were preprocessed by theoretical waveform analysis. Second, the ENSV
features were extracted from the preprocessed tactile data. Finally, the ENSV was input
into the ARBM to obtain the recognition models of shrimp with and without shells.

2.2.1. Tactile Signal Acquisition and Preprocessing

The tactile sensors described in Section 2.1 were used to acquire tactile data from the
shrimp. All samples were placed on a conveyor belt moving at a speed of 0.1 m/s for tactile
data acquisition. Taking into account the distance between the end of the tactile sensor and
the laser sensor, data acquisition starts 2000 ms after the laser sensor is activated to analyze
the data efficiently and reduce storage space. The sampling frequency of the analog signal
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of the tactile sensor was set to 1300 Hz, which is twice of that of the tactile data frequency
to ensure that the tactile data does not overlap in the frequency domain. To obtain the
complete tactile sensing process of the shrimps, the data capacity of one sample was set
to 5000 data points (2500 data points each for the Sensor A and Sensor B). The acquisition
ends after 5000 data were collected for each sample.

The raw signal plot is shown in Figure 2a. The blue waveform represents the data
acquired by Sensor A, i.e., the shrimp surface texture information. The red waveform
represents the data acquired by Sensor B, i.e., the shrimp hardness information. During the
dynamic process of data acquisition, the raw output signal contains a DC component, which
leads to a nonzero starting signal and different starting values for the two sensing cells.

Figure 2. Data preprocessing process diagram. (a) Waveform diagram of the original tactile signal;
(b) Waveform diagram of the tactile data after preprocessing.

When the energy features were extracted, the direct calculation of energy features
would result in large energy values for each segment. When the nonstationary volatility
was extracted, the direct calculation of nonstationary volatility of tactile signals would
result in small nonstationary volatility values for each segment. Both cases affect the
recognition accuracy of the sensor. Therefore, it is necessary to filter the DC components of
the signal. However, when the DC component is filtered, the tactile signal will contain data
less than 0, which leads to errors in the calculation of nonstationary volatility values. The
data after preprocessing are shown in Figure 2b.

To reduce the interference of DC components in feature extraction, two tactile signal
preprocessing methods were used. These are the direct filtering of the DC components
from tactile signals when extracting energy features, and the minimum value filtering of
tactile signals when extracting nonstationary volatility features. The specific raw signal
processing is expressed as Formulas (1) and (2).

SCN = TS′
N − TS′

N (1)

SMN = TS′
N − min

(
TS′

N
)

(2)

where SCN is the filtered DC component signal, N is the number of sampling points per
sensing cell (N = 2500), TS′

N is the original tactile signal, TS′
N is the average value of the

raw tactile signal, SMN is the minimum value of the filtered signal, and min
(
TS′

N
)

is the
minimum value of the raw tactile signal.

Tactile signals are directly used to train the model to recognize different objects by
undergoing a complex learning process that ignores the detailed feature information about
the surface texture and hardness [27]. The segmentation of the preprocessed tactile signal
can tap into the details of the tactile signal, and reducing the signal length to process at each
instant while keeping the signal characteristics [28]. The sliding window method was used
to segment the data with a certain step size to ensure data continuity after segmentation.
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The effects of data segmentation are shown in Figure 3a,b. The number of segments is
calculated by

i =
N − Sl + Ss

Ss
(3)

where i is the number of segments (i is an integer), N is the length of the preprocessed data,
Sl is the window data length, and Ss is the sliding step of the segments. The window data
length and sliding step length were set as 50 and 10, respectively.

Figure 3. Schematic diagram of tactile data segmentation. (a) Schematic diagram of tactile signal
segmentation with DC component filtering; (b) schematic diagram of tactile signals segmentation
with minimum value filtering.

2.2.2. ENSV Features Extraction

Machine learning techniques combined with feature extraction methods can improve
the recognition accuracy as well as speed-up the training process. We selected the ENSV
features as the feature vector for the recognition of shrimp with and without shells. The
energy feature in ENSV characteristics can well reflect the changes of the force on the
sensor, and the nonstationary volatility feature can make the sensor more clear in the force
process. The fusion of the two features can reduce the interference of invalid information
and amplify the tactile differences between shrimp with and without shells.

First, the energy features of each segment were extracted after DC component filtering.
Second, the nonstationary volatility features of each segment were extracted after minimum
filtering. Finally, the energy and nonstationary volatility features were fused to obtain the
identification feature vector. The feature extraction process is shown in Figure 4.

In the process of acquiring tactile signals, there is a difference in the blocking force
between the tactile sensor and shrimp with and without shells. The surface of shrimp
without shells is smooth and soft, producing a small blocking force. In contrast, the surface
of shrimp with shells is rough and hard, producing a large blocking force. To describe
the process of changing force on the tactile sensor as it slides across the shrimp surface,
we extracted the energy of each segment as a feature after DC component filtering. The
calculation formula is expressed as (4). The effect is shown in Figure 4a.

Ei =
∑
(i−1)Ss+Sl
n=(i−1)Ss (Sqi)

2

Sl
(4)

where Ei is the average energy of each segment. Sqi is the tactile data of each segment after
DC component filtering, (n = 1, 2, . . . , 2500). n is the sequence number of the sampling
point. The formula of the segmented energy feature vector is expressed as (5).

E = (E1, E2 . . . Ei) (5)
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Figure 4. Feature extraction process diagram. (a) The result of the energy features of each segment;
(b) the result of the nonstationary degree of fluctuation of each segment; (c) the result of feature
fusion.

When the tactile sensor is not in contact with the shrimp, the tactile sensor data is
stable. When the tactile sensor is in contact with the shrimp, it deforms and vibrates, and
tactile signals produce nonstationary volatilities. This type of volatility differs from that of
a stationary signal. We extracted the nonstationary volatility of each segment as a feature
after minimum value filtering. The effect is shown in Figure 4b.

Ideally, for stationary volatility data, the sum of squares of any two tactile data points
is equal to two times the square of the initial value. Let Swn be the value of any sampling
point in a segment after the minimum value is deleted. Swn+m is the value of exploring m
sampling points backwards from the nth sampling point. These are expressed as

Sw(n) = (Swn)
2 + (Swn+m)

2 (6)

where Sw is a function that varies with the sampling point n, represented as Sw(n). In an
ideal case, the Sw is constant for stationary data. The mathematical expectation of the Sw
in a certain segment is

ESw =
∑
(i−1)Ss+Sl
n=(i−1)Ss Sw(n)

N
(7)

The relative mean square deviation (σWi) of Sw(n) and its mathematical expectation
ESw is

σWi =

√
E
{
[Sw(n)− ESw]2

}
ESw

(8)

σWi increases with the degree of nonstationarity. If the data are stationary under ideal
conditions, then σWi = 0. The degree of nonstationary volatility of the feature vector is
expressed as

σW = (σW1, σW2, . . . , σWi) (9)

This feature amplifies the textural and hardness characteristics of the tactile sensor
during contact with the shrimp, and reduces the data interference in the noncontact state.
The expression of this feature is provided in (10) and illustrated in Figure 4c.

V = E � σW (10)
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2.2.3. ARBM Construction

As mentioned in the introduction, shrimp with shells have complex shell attachment
sites. Therefore, we propose an ARBM to solve this problem. First, the ENSV feature
vectors were pretrained using a back-propagation (BP) neural network fitting model, as
shown in Figure 5. Then, the feature vectors of shrimp samples with and without shells
were assumed to be located in different circular regions, and the center of each class was
calculated, as shown in Figure 6a. Finally, the radius of the recognition boundary was
obtained by training. The recognition boundary of shrimp without shells was retained,
while that of shrimp with shells was discarded. The shrimp with and without shells are
located outside and inside the boundary, respectively, as shown in Figure 6b.

Figure 5. Pretraining flow chart.

Figure 6. Boundary training and recognition schematic. (a) The boundary training schematic; (b) the
recognition schematic.
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Pretraining

We pretrained the model using shrimp with and without shells as prior knowledge.
This enables more respective clustering of the ENSV feature vector distributions of shrimp
with and without shells. Artificial neural networks were used to classify the feature
dataset [29]. In general, BP neural networks do not have strict data distribution require-
ments. These can automatically transform the initial “bottom” feature representation into
the “top” feature representation through multilevel and nonlinear transformations [30].
This part uses ENSV as prior knowledge for the pretraining process. The data from Sensor
A and Sensor B are trained separately. The number of neural nodes in the input layer
corresponds to the number of segments of the samples. The model input is the ENSV
feature vectors extracted from the sample. The number of neurons in the hidden layer is 10.
The number of neural nodes in the output layer corresponds to whether the shrimps have
shells (1 for shrimp with shells and 0 for shrimp without shells), as shown in Figure 5.

Boundary Training

In this section we input the data to the pretrained neural network fitting model. Then
the fitted values of shrimp with and without shells from different sensors are obtained.
Place the values of Sensor A and Sensor B in the same two-dimensional coordinate system.
The flow chart of boundary training and recognition is shown in Figure 6.

Pretraining uses the ENSV features of Sensor A and Sensor B as input quantities and
shrimp with and without shells as output quantities. This process groups shrimp by their
class and separates different classes. To make data computation more efficient and improve
real-time processing, we use a circular boundary defined by only two parameters (radius
and cluster center) to simplify the data analysis. Before training the recognition model,
the centers of the feature vector distributions of shrimp with and without shells must be
determined. Shrimp with shells are one class, while shrimp without shells are another. The
sample dataset of a class is treated as a cluster, and the cluster centers are determined by
calculating the mean feature vector of each cluster.

ck =
1

|Dk| ∑
(Qj ,Yj)∈Dk

Qj (11)

where Dk =
{
(Q1, Y1), . . . ,

(
Qj, Yj

)}
is the set of ENSV and its label. For shrimp with and

without shells, Yj = 1 and Yj = 0, respectively. Dk is the number of sample sets marked as
the same class.ck is the cluster center.

Define Δk as the radius of the recognition boundary relative to the center of the circle
ck. The ENSV should satisfy the following constraints:

∀Qj ∈ Dk, ‖Qj − ck‖2 ≤ Δk (12)

where ‖Qj − ck‖2 represents the Euclidean distance between Qj and ck. The SoftPlus
activation function was used to map the radius and radius parameters.

Δk = log
(

1 + eΔ̂k
)

(13)

where Δk is the cluster radius and Δ̂k is the radius parameter.
On the one hand, it is hoped that the recognition boundary can surround most shrimp

with and without shells. On the other hand, it is also hoped that the boundary of the circle
is not too far from the center of the cluster. Therefore, the following boundary loss function
is adopted.

Lb =
1
M

M

∑
j=1

[
δj

(∥∥∥Qj − cYj

∥∥∥2 − ΔYj

)
+
(
1 − δj

)(
ΔYj −

∥∥∥Qj − cYj

∥∥∥2

)]
(14)
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where M is the total number of shrimp samples with and without shells, and Yj is the label
of the ith sample. δj is defined as

δj =

{
1, ‖Qj − ck‖2 > ΔYj

0, ‖Qj − ck‖2 ≤ ΔYj

(15)

Then, the radius parameter Δ̂k is optimized using a random gradient descent:

Δ̂k = Δ̂k − η
∂Lb

∂Δ̂k
(16)

where η is the learning rate of the boundary parameters. The ∂Lb
∂Δ̂k

is calculated by

∂Lb

∂Δ̂k
=

∑M
j=1 δ′

(
Yj = k

)·(−1)δj

∑M
j=1 δ′

(
Yj = k

) · 1

1 + e−Δ̂k
(17)

If Yj = k, then δ′
(
yj = k

)
= 1; if Yj 
= k, then δ′

(
yj = k

)
= 0. In this way, the learned

radius parameters not only surrounds most shrimp with and without shells, but also avoids
the cluster centers of each type.

After learning the center and recognition boundary radius of shrimp with and without
shells, we discarded the boundary of shrimp with shells and retained that of shrimp without
shells. This is because shrimp with shells have different shell attachment areas, resulting in
a wider spatial distribution of feature vectors for tactile recognition. In contrast, the feature
vectors of shrimp without shells are relatively fixed. The presence of interference samples
affects the recognition accuracy when training is conducted using only shrimp samples
without shell samples. In addition, the maximum number of shrimp with shells must be
recognized to ensure the effectiveness of the industrial production process.

During the test, the distance between the test sample and the class center of shrimp
without shells was calculated. When the distance is less than the radius of the boundary of
the shrimp without shells, it is judged as shrimp without shells; otherwise, it is judged as
shrimp with shells.

3. Results and Discussion

Two experiments were conducted to evaluate the performance of the proposed method
in recognizing shrimp with and without shells. In one experiment, the species Macro-
brachium rosenbergii was selected as the training sample, and the trained ARBM was
compared with the proposed tactile recognition model. In the other experiment, five differ-
ent shrimp species were selected for testing, and the trained ARBM model was compared
with the vision model. The overall recognition accuracy for shrimp with and without shells
is the performance evaluation index expressed as (18)–(20).

AT =
TP + TN

TP + TN + FP + FN
(18)

AS =
TP

TP + FN
(19)

AP =
TN

FP + TN
(20)

where AT is the overall recognition accuracy, TP is the number of correct recognitions of
shrimp with shells, TN is the number of correct recognitions of shrimp without shells, FP
is the number of incorrect recognitions of shrimp with shells, FN is the number of incorrect
recognitions of shrimp without shells, AS is the recognition accuracy of shrimp with shells,
and AP is the recognition accuracy of shrimp without shells.
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3.1. Compare Different Tactile Recognition Models

To verify the validity of the ENSV-ARBM, we selected headless Macrobrachium rosen-
bergii shrimps as our experimental samples. The samples of Macrobrachium rosenbergii
had a length of 8.2–9.8 cm and a weight of 35.2–40.1 g. Five hundred (500) shrimp with
shells and another 500 without shells were examined.

First, the speed of the conveyor was fixed at 0.1 m/s. The shrimps passed the tactile
sensor at specific time intervals, which must be longer than the time required to fully
acquire the tactile sensations of a shrimp. After each shrimp passes the tactile sensor, the
corresponding tag is manually recorded and the tactile data is saved. The experiment is
conducted in MATLAB 2022a 64-bit (MATLAB, 2022a) platforms using a 2.7 GHz notebook
computer with an Intel(R) Core (TM) CPU and 8 GB RAM. The samples of the tactile
recognition of shrimp are shown in Figure 7. The device described in Section 2.1 was
selected for data collection. Tactile data were collected from all experimental samples (i.e.,
500 shrimp with shells and 500 without shells). Finally, 70% of shrimp with and without
shells were randomly selected as the training set, 15% as the validation set, and 15% as the
test set.

Figure 7. Plot of raw data of shrimp with and without shells.

The identification of shrimp with and without shells is based on the difference in
their waveforms. When a tactile sensor scans a shrimp with shells, the grooves on its body
cause the sensor to produce a more pronounced jitter and oscillation signal. As the surface
area of the shrimp shell increases, the duration of the oscillation signal generated by the
sensor decreases. Sensor B, located on the outermost carbon fiber plate, detects a certain
protruding waveform due to the increased hardness of the shrimp’s body. On the other
hand, when a tactile sensor scans a shrimp without shells, the friction gradually increases
as it scans the shrimp’s smooth and soft body. As a result, the waveforms obtained from
Sensors A and B on the surface carbon fiber plate are smoother and contain less energy.
The results of the comparisons with tactile perception methods proposed in the literature
are listed in Table 2.

Table 2. Comparison of the results of the proposed scheme with other tactile methods.

REF Methods AT % AS % AP %

[23] PCA-KNN 74.0 77.3 70.7
[24] PCA-SVM 72.7 66.7 78.7
[25] DWT-KNN 72.7 73.3 72
[26] DWT-ELM 77.4 78.7 76.0

Our proposed model ENSV-ARBM 88.7 85.3 92.0

The statistical results in Table 2 show that ENSV-ARBM method has the highest AT,
AS, and AP of 88.7%, 85.3%, and 92.0%, respectively. The ENSV feature is a fusion of
the energy and nonstationary volatility features, in which the energy feature reflects the
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dynamic changes in the force during the tactile process, and the nonstationary volatility
feature extracts the fluctuating data during the contact between the sensor and shrimp
surface. The fusion of these two features can effectively amplify the differences in the
surface texture and hardness between shrimp with and without shells as well as mask
invalid data to identify the physically significant features of both types of shrimps. The
ARBM is a recognition model based on the spatial distribution of the data, which enables the
secondary classification of shrimp with and without shells. The model uses the distribution
boundary of the sample space of shrimp without shells as a classification boundary in the
presence uncertainty regarding the attachment surface of shrimp samples with shells.

The results in Table 2 demonstrate the effectiveness of the ENSV-ARBM-based tactile
recognition of shrimp with and without shells. The overall recognition rate is better than
that of the other tactile recognition algorithms. Shrimp without shells are smooth and soft
to the touch, whereas shrimp with shells are rough and hard to the touch. By effectively
extracting the texture and hardness tactile features of different shrimp body surfaces, the
recognition accuracy of shrimp with and without shells can be improved. In addition, the
stable tactile data boundaries of shrimp without shells reduces the problem of the complex
shell attachment locations of shrimp with shells.

3.2. Compare Different Vision Recognition Models

To verify the generalizability of the proposed ENSV-ARBM for the tactile recognition of
shrimp with and without shells, we selected five different shrimp species for comparative
experiments using the machine vision approach and the tactile approach described in
Section 3.1. These include Panulirus argus, Macrobrachium rosenbergii, Penaeus chinensis,
Oratosquilla oratoria, and Metapenaeus ensis, as shown in Figure 8. There were 100 shrimp
with shells and 100 shrimp without shells for each species.

Figure 8. Photos of five different shrimp species. (a) Panulirus argus; (b) Macrobrachium rosenbergii;
(c) Penaeus chinensis; (d) Penaeus japonicus; and (e) Metapenaeus ensis.

After decapitation, we measured the size and weight of the shrimp samples using a
ruler and an electronic scale, respectively. The samples of Panulirus argus had a length of
13.1–15.9 cm and a weight of 69.3–72.5 g. The samples of Macrobrachium rosenbergii had a
length of 8.2–9.8 cm and a weight of 35.2–40.1 g. The samples of Penaeus chinensis had a
length of 10.7–12.8 cm and a weight of 33.3–39.8 g. The samples of Oratosquilla oratoria
had a length of 11.3–13.1 cm and a weight of 35.4–42.5 g. The samples of Metapenaeus
ensis had a length of 7.3–8.4 cm and a weight of 28.7–32.0 g.

In the area of tactile recognition, we selected the ENSV-ARBM-based tactile recognition
method for our experiments. The trained model in Section 3.1 was selected to test the
five different shrimp species. In the area of visual recognition, we used an industrial
camera (HIKVISION) with a CMOS sensor as the data source for visual recognition. The
sensor size is 22.3 mm × 14.9 mm, the effective pixels are 18 million, and the acquired
image resolution is 2928 × 3904 (pixels). To test the fairness of the assessment, samples
of 500 shrimp with shells and 500 without shells were photographed along the conveyor
belt. The image information obtained was fed into the YOLOv3 and R-CNN frameworks
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for training purposes. The trained model then was applied to test the recognition of five
different shrimp species with and without shells. The experimental results are listed in
Tables 3 and 4.

Table 3. Comparison of results between the proposed scheme and other tactile methods.

ENSV-ARBM PCA-KNN PCA-SVM DWT-KNN DWT-ELM

Species
Indicators AT

%
AS
%

AP
%

AT
%

AS
%

AP
%

AT
%

AS
%

AP
%

AT
%

AS
%

AP
%

AT
%

AS
%

AP
%

(a) 89.5 89.0 90.0 73.5 77.0 70.0 73.0 69.0 77.0 74.0 74.0 74.0 78.5 79.0 78.0
(b) 89.0 86.0 92.0 76.5 77.0 76.0 74.5 72.0 77.0 73.0 73.0 73.0 77.5 78.0 77.0
(c) 88.0 87.0 89.0 76.5 78.0 75.0 71.0 67.0 75.0 72.0 73.0 71.0 79.0 79.0 79.0
(d) 87.5 85.0 90.0 74.5 75.0 74.0 74.5 71.0 78.0 71.0 71.0 71.0 77.5 78.0 77.0
(e) 87.0 88.0 86.0 75.5 75.0 76.0 72.5 70.0 75.0 71.5 72.0 71.0 77.0 77.0 77.0

Mean 88.2 87.0 89.4 75.3 76.4 74.2 73.1 69.8 76.4 72.3 72.6 72.0 77.9 78.2 77.6

Table 4. Comparison of results between the proposed scheme and other vision methods.

ENSV-ARBM YOLOv3 R-CNN

Species
Indicators

AT % AS % AP % AT % AS % AP % AT % AS % AP %

(a) 89.5 89.0 90.0 91.5 89.0 94.0 90.5 89.0 92.0
(b) 89.0 86.0 92.0 99.0 99.0 99.0 93.0 95.0 91.0
(c) 88.0 87.0 89.0 77.0 89.0 65.0 76.0 80.0 72.0
(d) 87.5 85.0 90.0 83.5 72.0 95.0 80.0 70.0 90.0
(e) 87.0 88.0 86.0 75.5 84.0 67.0 74.5 85.0 64.0

Mean 88.2 87.0 89.4 85.3 86.6 84.0 82.8 83.8 81.8

From Table 3, we can see that our proposed tactile perception method is better com-
pared to other tactile methods. From Table 4, in terms of the average overall recognition
accuracy, the ENSV-ARBM-based tactile recognition method exhibited the best performance
for the AT, AS, and AP with 88.2%, 87.0%, and 89.4%, respectively. This was followed by
the YOLOv3. R-CNN exhibited the worst performance for the AT, AS, and AP with 82.8%,
83.8%, and 81.8%, respectively. With regard to the recognition accuracy for each shrimp
species, the vision recognition methods for the Macrobrachium rosenbergii and Panulirus
argus were better than the tactile recognition approach.

Macrobrachium rosenbergii and Panulirus argus, with and without shells, were visu-
ally distinguished. The Penaeus chinensis and Metapenaeus ensis have transparent shells;
hence, the visual recognition method misidentified shrimp with shells as shrimp without
shells when the shells were attached to the tail. For Penaeus japonicus, both shrimp with
and without shells showed a black color; hence, the visual method misidentified shrimp
without shells as shrimp with shells.

The ENSV-ARBM-based tactile recognition method identifies whether shrimps have
shells mainly through the dynamic changes in the texture and hardness of the shrimp
surface. Although the flesh and shell of different shrimp species have different forms,
textures, and colors, the variations in texture and hardness are similar. The machine vision
training samples must be comprehensive, whereas the tactile method only identifies the
physical features of texture and hardness of shrimp with or without shells; hence, it has
better universality. The experimental results demonstrate the universality of ENSV-ARBM-
based tactile recognition and provides good results for the recognition of different shrimp
species.

4. Conclusions

A tactile recognition method based on ENSV-ARBM is proposed to address the prob-
lem of recognizing shrimp with and without shells. The method uses Macrobrachium
rosenbergii shrimp as our training samples. We obtained tactile information by a self-
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designed tactile sensor and achieved the recognition of shrimp with and without shells by
the proposed ENSV-ARBM method.

The effectiveness of the proposed ENSV-ARBM approach to tactile perception was
verified by comparison with other tactile models. The method we propose amplifies the
tactile differences between shrimp with and without shells. In addition, it overcomes the
problems of uneven distribution of tactile data and the lack of shrimp samples to enable
the recognition of shrimp with and without shells. The method was tested with different
species of shrimp and the results were 88.2%, 87.0%, and 89.4% for AT, AS, AP, respectively,
which verified the generalizability of the proposed method.

In conclusion, it has an advantage over other methods in the universality of different
species of shrimp recognition and can meet the requirements of real-time and high-accuracy
recognition for embedded devices. The method can provide an effective solution for
automatic peeling machine to recognition shrimp with and without shells.
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Abstract: Autonomous robots in the agri-food sector are increasing yearly, promoting the application
of precision agriculture techniques. The same applies to online services and techniques implemented
over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge
computing, and digital twins technologies possible. Developers of autonomous vehicles understand
that autonomous robots for agriculture must take advantage of these techniques on the Internet to
strengthen their usability. This integration can be achieved using different strategies, but existing
tools can facilitate integration by providing benefits for developers and users. This study presents an
architecture to integrate the different components of an autonomous robot that provides access to
the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility,
data sharing, and data analytics. In addition, the study reveals the advantages of integrating new
technologies into autonomous robots that can bring significant benefits to farmers. The architecture is
based on the Robot Operating System (ROS), a collection of software applications for communication
among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components
that accelerates the development of intelligent solutions. To validate and assess the proposed
architecture, this study focuses on a specific example of an innovative weeding application with
laser technology in agriculture. The robot controller is distributed into the robot hardware, which
provides real-time functions, and the cloud, which provides access to online resources. Analyzing the
resulting characteristics, such as transfer speed, latency, response and processing time, and response
status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating
autonomous robots and the Internet.

Keywords: precision agriculture; autonomous robots; artificial intelligence; IoT; cloud computing

1. Introduction

The year 2022 ended with more than 8 billion inhabitants of the world. Most govern-
ments understand that feeding this vast and growing population is one of the significant
challenges they must face in the coming years. Some associations have predicted that
food production will need to increase by 70% to feed the entire population in 2050 [1].
In developed countries, cultivated land is close to its maximum output; therefore, the
solution is oriented toward optimizing the available resources. Many different cultural and
technological methods for increasing crop yield are being used. Some improve crop yields,
but at the extra cost of increasing environmental pollution and the carbon footprint. These
side effects are unacceptable in many industrialized nations, such as those in the European
Union, which is committed to using sustainable methods.

Agriculture 2023, 13, 1005. https://doi.org/10.3390/agriculture13051005 https://www.mdpi.com/journal/agriculture
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Precision agriculture leverages technologies to achieve those objectives and avoids
undesired effects. PA is a concept for farm management founded on observation, mea-
surement, and response to crop variability [2]. It assembles different methods to manage
variations in a farm to enhance crop yield, improve commercial profit, and guarantee eco-
environmental sustainability. PA uses current information and communication technologies
(ICT), automation, and robotics to monitor crop growth, predict the weather accurately,
perform optimal irrigation, apply fertilizers smartly, manage weeds and pests accurately,
test soil quality precisely, etc.

Since the late 1980s, precision agriculture techniques have been introduced step by
step in the agricultural production sector, integrating the following:

• Sensors to acquire geolocated biodata of crops and soil, e.g., nitrogen sensors, vision
cameras, global navigation satellite systems (GNSS), etc.

• Computers for analyzing those data and running simple algorithms to help farmers
make simple decisions (applying or not applying a given process, modifying a process
application map, etc.).

• Actuators in charge of executing the decisions (opening/closing valves, altering a
trajectory, etc.) for modifying crops. As an actuator, we consider the agricultural tool,
also called the agricultural implement, and the vehicle, manually or automatically
driven, to move the tool throughout the working field and apply the farming process.

The integration of subsystems onboard robotic vehicles started in the late 1990s. Some
illustrative examples, based on retrofitting conventional vehicles, are the autonomous
agricultural sprayer [3], which focuses on achieving a pesticide spraying system that
is cheap, safe, and friendly to the environment, and the autonomous orchard vehicles
for mowing, tree pruning, and training, spraying, blossoming, and fruit thinning, fruit
harvesting, and sensing [4], both deployed in the USA. In Europe, we can find the RHEA
fleet (see Figure 1a), consisting of a fleet of three tractors that cooperate and collaborate in
the application of pesticides [5]. Regarding robotic systems based on specific structures
designed for agriculture (see Figure 1b), we can remark on LadyBird in Australia, intended
for the valuation of crops using thermal and infrared detecting systems, hyperspectral
cameras, stereovision cameras, LIDAR, and GPS [6], and Vibro Crop Robotti in Europe, built
for accurate seeding and mechanical row crop cleaning [7]. These robots were integrated
around computing systems based on centralized or elementary distributed architectures to
handle a few sensors and control unsophisticated agricultural tools.

In addition to those developments, related technologies have evolved drastically
in recent years, and now sensors can be spread throughout the field and communicate
with each other. This is possible because of the Internet of Things (IoT). This computing
concept describes how to cluster and interconnect objects and devices through the Internet,
where all are visible and can interact with each other. IoT defines physical objects with
devices (mainly sensors) and includes processing power, software applications, and other
technologies to exchange data with other objects through the Internet.

Moreover, computers can run artificial intelligence (AI) algorithms, considering AI as
the ability of a machine (computer) to emulate intelligent human actions. The application
of AI to agriculture has been focused on three primary AI techniques: expert systems,
artificial neural networks, and fuzzy systems, with significant results in the management
of crops, pests, diseases, and weeds, as well as the monitoring of agricultural production,
store control, and yield prediction, for example [8].

AI techniques are also applied to provide vehicles with autonomy; therefore, au-
tonomous agricultural robots leverage this technology. AI-based vision systems can fulfill
the following roles:

• Detecting static or dynamic objects in their surroundings.
• Detecting row crops for steering purposes.
• Identifying plants and locating their positions for weeding are clear examples of the

current use of AI techniques in agricultural robotics [9].
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Figure 1. (a) Agricultural robots based on retrofitted conventional vehicles (RHEA fleet); (b) agricul-
tural robots designed on purpose (Courtesy of AgreenCulture SaS).

Another technology that has evolved in the last decade is cloud computing, defined
as the on-demand delivery of computing services, mainly data storage and computing
power, including servers, storage, databases, networking, software applications, artificial
intelligence methods, and analytics algorithms over the Internet. The main objective of
cloud computing systems is to provide flexible resources at adapted prices. A cloud
computing system allows the integration of data of different types, loaded from many
sources in batch and real-time. In particular, the integration can be based on georeferenced
data in the precision farming area. Data can range from trajectory data to images and
videos related to fields and missions and any sensors installed on the autonomous robot.
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Cloud computing allows the use of services available in the cloud (computing, storing,
etc.), with increasing advantages provided by big data techniques. Many agricultural
applications of big data technologies have already been introduced in agriculture [10] and
should be present in future robotic systems.

This article presents an architecture to integrate new technologies and Internet trends
in agricultural autonomous robotic systems and has two main objectives. The first objective
is to provide an example of designing control architectures to connect autonomous robots to
the cloud. It is oriented toward robot designers and gives significant technical details. The
second objective is to disclose to farmers the advantages of integrating the new technologies
in autonomous robots that can provide farmers with significant advantages regarding
(i) data storage, which is a secure and efficient way to store, but also access and share,
data, eliminating the need of physical storage and, thus, reducing the risk of data loss;
(ii) scalability, which allow the farmers to expand or reduce their storage needs, efficiently
optimizing their resources, and (iii) analytics services, which allow a farmer to analyze their
own data to make informed decisions taking advantage of the AI tools available on the
cloud. These are general advantages of using the cloud, but autonomous robots have great
potential for collecting data and must facilitate communicating those data to the cloud.

To base the architecture on a specific example, the integration of a laser-based system
for weed management is considered. Thus, Section 2 presents the material, defining the
robot’s components, and the methodology, detailing the system’s architecture. Section 3
then introduces the experiments to be assessed and discussed in Section 4. Finally, Section 5
summarizes the conclusions.

2. Materials and Methods

This section first describes the components and equipment integrated for building
the autonomous robot used to validate and assess the proposed integration methodology.
Second, the methods for the integration of components are detailed.

2.1. System Components
2.1.1. Main Process Loop in PA Autonomous Robots

The autonomous systems used for precision agriculture generally follow the structure
of an automatic control loop that consists of the following (see Figure 2):

• Selecting the references for the magnitudes to be controlled, i.e., defining the desired
plan.

• Measuring the magnitudes of interest.
• Making decisions based on the measured and desired values of the magnitudes

(control strategy).
• Executing the decided actions

In our application, the selecting references are made with the smart navigation man-
ager (mission planner), the measures of the magnitudes of interest are performed with
the perception system and the IoT sensor network, the decisions are made with the smart
navigation manager (smart operation manager), and the actions are executed with the
agricultural tool and the autonomous robot that move the implement throughout the mis-
sion field. In addition, our system also takes care of the interaction with the cloud and
the operator. In our proposed integration method, these components are grouped into
modules, as illustrated in Figures 2 and 3. These modules are as follows.
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Figure 2. Components of a precision agriculture robotic system and main information flow.

Figure 3. Computing architecture.
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2.1.2. Agricultural Robot

A manually driven or autonomous vehicle is essential in agricultural tasks to perform
the necessary actions throughout the working field. In this case, we use a compact mobile
platform based on a commercial vehicle manufactured by AgreenCulture SaS, France. This
is a tracked platform, and, thus, it operates as a skid-steer mechanism. The track distance
can be adapted to the crop row space. Equipped with an engine or batteries, the platform
can follow predefined trajectories at 6 km/h with a position accuracy of ±0.015 m using a
global positioning system (GPS) based on the real-time kinematic (RTK) technique. This
mobile platform is illustrated in Figure 4a.

Figure 4. (a) Mobile platform (AgreenCulture SaS) and (b) autonomous laser weeding system.

2.1.3. Perception System

A perception system is based on computer vision algorithms that obtain, process,
analyze, and understand images and data from the environment. With these inputs, the
system produces numerical and symbolic information for making decisions. The perception
system for this study consists of the following systems:
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• Guiding vision system: This system aims to detect static and dynamic obstacles in
the robot’s path to prevent the robot tracks from stepping on the crops during the
robot’s motion. Furthermore, it is also used to detect crop rows in their early growth
stage to guide the robot in GNSS-denied areas [8]. The selected perception system
consisted of a red–green–blue (RGB) wavelength vision camera and a time-of-flight
(ToF) camera attached to the front of the mobile platform using a pan-tilt device, which
allows control of the camera angle with respect to the longitudinal axis of the mobile
platform, x. Figure 4 illustrates both cameras and their locations onboard the robot.

• Weed–meristem vision system: The system is based on 3D vision cameras to provide
the controller with data on crops and weeds. These data are used to carry out the main
activity of the tool for which it has been designed: weed management, in this case.
For example, the perception system used in this study consists of an AI vision system
capable of photographing the ground and discriminating crops from weeds in a first
step using deep learning algorithms. In the second step, the meristems of the detected
weeds are identified. Figure 3 sketches this procedure.

2.1.4. Agricultural Tools

Agricultural tools focus on direct action on the crop and soil and rely on physical
(mechanical, thermal, etc.) or chemical (pesticides, fertilizers, etc.) foundations. This study
used a thermal weeding tool based on a high-power laser source that provided lethal laser
doses to be deployed on the weed meristems using scanners.

An AI video system provided the positions of the weed meristems. Indeed, this
specific solution physically integrated the AI vision system, the laser scanner, and the
high-power laser source into the laser-based weeding tool component. The video frames
acquired with this system were sent to the central controller at a rate of 4 frames/s. After
the mission, all stored images were sent to the cloud.

2.1.5. The Smart Navigation Manager (SNM)

This manager is a distributed software application responsible for driving the au-
tonomous robot and coordinating all other modules and systems. The SNM is split into
(i) the smart operation manager and (ii) the central manager, which also includes the
human–machine interface (HMI).

Smart Operation Manager (SoM)

The smart operation manager is a human–computer interaction module that can
acquire, process, and deliver information based on computer algorithms and is devoted to
assisting farmers in making accurate, evidence-based decisions. The SoM is specialized for
laser weeding technology, the tool selected for this study.

Data management is performed through the Internet using FIWARE. Data access
control is provided via a virtual private network (VPN) to secure data transfer to/from
the cloud. The visual dashboard will also be available on the HMI for field operations.
Through the dashboard, the operator will also interact with the robot.

The smart operation manager is allocated in the cloud. It contains the global mission
planner and supervisor, the map builder, and the module for managing the IoT and cloud
computing system (see Figures 3 and 5). The hardware of the SoM relies on a cluster of 10
servers.
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Figure 5. Cloud computing modules/containers.

(a) Global Mission Planner

A planner is a software tool responsible for computing the trajectories of the vehicle
and an a priori known treatment map. The planner obtains some types of information from
the Internet, including the following:

• Map information according to the data models on the Internet;
• Other information provided by third parties, such as weather forecasts;
• Data models to create maps for accessing already known treatment maps (sets of

points in the field) which commonly originate from third-party map descriptions
(Google Earth; Geographic Information System (GIS); GeoJSON.io, an open standard
format to represent geographical features with nonspatial qualities).

Regarding robot location, two types of systems are envisaged, as follows:

• Absolute location based on GNSS: GNSS integrates several controllers for line tracking
and is based on Dubins paths [11];

� Relative location based on RGB and ToF cameras, LIDAR, and IoT sensors: These
methods are based on different techniques for navigation in the field and navi-
gation on the farm, such as hybrid topological maps, semantic localization and
mapping, and identification/detection of natural and artificial elements (crops,
trees, people, vehicles, etc.) through machine learning techniques.

(b) Global Mission Supervisor

A supervisor is a computational tool responsible for overseeing and monitoring
the execution of the mission plan while helping the farmer (operator) manage potential
failures. Most supervisor systems are designed around two actions: fault detection and
fault diagnosis. The supervisor executes the following actions:

• Receiving alarms from the system components (vehicle, sensors, weeding tool, etc.).
• Detecting faults in real-time.
• Executing diagnosis protocols.
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• Collecting all available geo-referred data generated by every module onboard the
robot. The data are stored in both the robot and the cloud.

(c) Map Builder

A map builder is an application used to convert maps based on GeoJSON into FIWARE
entities. Its main function is to support farmers in using the robotic system in a simple,
reliable, and robust way by giving the robot enough information a priori (e.g., farm schema
and boundaries, field locations and shapes, crop types, and status). This module takes
advantage of the data models created by the FIWARE community to represent the farm and
other environments digitally, where they have been conditioned to be adapted to robotic
systems and especially oriented to navigation [12]. The design of the Map Builder allows
the user to accomplish the following:

• Select the field in GeoJSON.IO, an open-source geographic mapping tool that allows
maps and geospatial data to be created, visualized, and shared in a simple and
multiformat way.

• Assign essential attributes to comply with FIWARE. These attributes are those based
on the farmer’s knowledge. They can include static (i.e., location, type, category) and
dynamic (i.e., crop type and status, seeding date, etc.) attributes.

• Export in * GeoJSON format. The map obtained will be imported for extracting the
information required to fill in the FIWARE templates, which include the farms and
parcel data models, and other elements in a farm, such as buildings and roads.

This conversion makes it easier to connect the robot to the cloud by standardizing
data. These data, after processing, constitute a source for the design of processes with the
robot, and its storage and subsequent analysis can provide forecasts of future events in the
field or behavior of the robot.

(d) IoT System

This study integrates an IoT sensor network to collect data from the following:

• The autonomous vehicle: The data and images acquired with IoT sensors onboard the
vehicle are used to monitor and evaluate performances and efficiency and to identify
the effects of treatments and traffic on surfaces.

• The environment: Data acquired with IoT sensors deployed on the cropland are used
to (i) monitor crop development and (ii) collect weather and soil information.

Two IoT sets of devices are used in our study, as follows:

• Robot–IoT set: It consists of two WiFi high-definition cameras installed onboard the
autonomous robot (IoT-R1 and IoT-R2 in Figure 3). The cameras are triggered from
the cloud or the central controller to obtain a low frame rate (approximately 1/5 sec).
The pictures are stored in the cloud and are used to monitor the effects of the passage
of the autonomous vehicle; therefore, they should include the robot’s tracks.

• Field–IoT set: It consists of the following (see Figure 3):

� Two multispectral cameras (IoT-F1 and IoT-F2) placed at the boundary of cropped
areas to obtain hourly pictures of crops.

� A weather station (IoT-F3) to measure precipitation, air temperature (Ta), relative
humidity (RH), radiation, and wind.

� Three soil multi-depth probes (IoT-F4) for acquiring moisture (Ts) data and three
respiration probes (IoT-F5) to measure CO2 and H2O.

Every one of these components or nodes exchanges messages with the Message
Queuing Telemetry Transport (MQTT) protocol, carrying JavaScript Object Notation (JSON)
serialized information from node sensors/cameras interpreted as the entity. While metering
nodes (weather, soil probe, and respirometer) communicate by MQTT messages, camera
nodes have to transmit images (maximum of 100 pictures/day for periodic snapshots of
the area or alarms), and the use of FTP made a wide-band networking solution, such as
WiFi, mandatory instead of narrowband solutions.
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(e) Cloud Computing System

This study sets up a cloud-based data platform, which is an ecosystem that incorpo-
rates data acquired in the field. The data platform supports end-to-end data needs, such as
ingestion, processing, and storage, to provide the following:

• A data lake repository for storing mission data to be downloaded in batches for
post-mission analysis.

• A web interface for post-mission data analysis based on graphical dashboards, georef-
erenced visualizations, key performance indicators, and indices.

• A container framework for implementing “Decision Support System” functionalities
that define missions to be sent to the robot. These functionalities (e.g., the mission
planner) can be implemented and launched from the cloud platform.

• A soft real-time web interface for missions. The interface visualizes real-time robot
activities and performances or sends high-level commands to the robot (e.g., start,
stop, change mission).

These functionalities are ordered based on the strictness of real-time constraints.
The cloud-computing platform is based on the Hadoop stack and is powered by

FIWARE. We adopted an open-source solution with well-known components that can be
imported into different cloud service providers if no on-premises hardware is available.
The core component of the platform is the (FIWARE) Orion Context Broker (OCB) from
Telefonica [13], a publish/subscribe context broker that also provides an interface to query
contextual information (e.g., obtain all images from the cameras in a specific farm), update
context information (e.g., update the images), and be notified when the context is updated
(e.g., when a new image is added into the platform). The images and raw data are stored in
the HDFS (Hadoop distributed file system), while the NoSQL (not only structured query
language) MongoDB database is used to collect the contextual data from FIWARE and
further metadata necessary to manage the platform [14]. Additionally, we use Apache
KAFKA, an open-source distributed event bus, to distribute context updates from FIWARE
to all the modules/containers hosted on the cloud platform. The different cloud computing
modules/containers used in this study are illustrated in Figure 5.

Central Manager

This central manager is an application that is divided into the following:

• Obstacle detection system. This module acquires visual information from the front of
the robot (robot vision system) to detect obstacles based on machine vision techniques.

• Local mission planner and supervisor. The planner plans the motion of the robot near
its surroundings. The local mission supervisor oversees the execution of the mission
and reports malfunctions to the operator (see Section 2.1.5).

• Guidance system. This system is responsible for steering the mobile platform to follow
the trajectory calculated by the planner. It is based on the GNSS if its signal is available.
Otherwise, the system uses the information from the robot vision system to extract the
crop row positions and follow them without harming the crop.

• Human–machine interface

A human–machine interface (HMI) is a device or program enabling a user to commu-
nicate with another device, system, or machine. In this study, a HMI using portable devices
(android tablets) is addressed to allow farmers to perform the following:

- Supervise the mission.
- Monitor and control the progress of agricultural tasks.
- Identify and solve operational problems.
- Obtain real-time in-field access in an ergonomic, easy-to-use, and robust way.
- Maintain the real-time safety of the entire system.

To achieve these characteristics, a graphic device was integrated with the portable/remote
controller of the mobile platform. This controller provides manual and remote vehicle
control and integrates an emergency button.
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2.1.6. Sequence of Actions

The relationships among these components and modules and the information flow
are illustrated in Figures 2 and 3. The process is a repeated sequence of actions (A0 to A6),
defined as follows:

A0 The system is installed in the field, The operator/farmer defines or selects a previously
described mission using the HMI and starts the mission.

A1 The sensors of the perception module (M1) installed onboard the autonomous robot
(M2) extract features from the crops, soil, and environment in the area of interest in
front of the robot.

A2 The data acquired in action A1 are sent to the smart operation manager, determining
the consequent instructions for the robots and the agricultural tool.

A3 The required robot motions and agricultural tool actions are sent to the robot controller,
which generates the signal to move the robot to the desired positions.

A4 The robot controller forwards the commands sent by the smart navigation manager
or generates the pertinent signals for the agricultural tool to carry out the treatment.

A5 The treatment is applied, and the procedure is repeated from action A1 to action A5
until field completion (A6).

A6 End of mission.

2.2. Integration Methods

Integrating all of the components defined in the previous section to configure an
autonomous robot depends on the nature of the applications the robot is devoted to and the
connections and communication among the different components that must be precisely
defined. Thus, this section first describes the computing architecture of the controller,
which integrates the different subsystems and modules. Second, the interfaces between
subsystems are precisely defined. Finally, the operation procedure is defined.

2.2.1. Computing Architecture

A distributed architecture based on an open-source Robot Operating System (ROS) is
proposed to integrate the system’s main components onboard the mobile platform in this
study. ROS is the operating system most widely accepted by software developers to create
robotics applications. It consists of a set of software libraries and tools that include drivers
and advanced algorithms to help developers build robot applications [15].

In this study, ROS, installed in the central controller, is used as a meta-operating system
for the testing prototype. The necessary interfaces (bridges) are developed to establish
communication with the autonomous vehicle, the perception system, and the laser-based
weeding tool. Because of ROS versatility and its publisher/subscriber communication
model, it is possible to adapt the messages to protocols commonly used in IoT, such as
Message Queuing Telemetry Transport (MQTT).

ROS supports software developers in creating robotics functionalities to monitor and
control robot components connected to a local network. However, this solution is not
extendible to a wider network, such as the Internet. Fortunately, there exist some ROS
modules that solve the problem. One is ROSLink, a protocol for extensions defining an
asynchronous communication procedure between the users and the robots through the
cloud [16]. ROSLink performance has been shown to be efficient and reliable, and it is
widely accepted by the robotics software community [17]. Although ROSLink has been
widely used to connect robotic systems with the cloud, it is oriented toward transmitting
low-level messages. There is no convention to define standard data models that allow
intelligent robotics systems to be scalable.

One alternative to a more internet-oriented communication framework is FIWARE,
which offers interaction with the cloud using cloud services that provide well-known bene-
fits, such as (a) cost and flexibility, (b) scalability, (c) mobility, and (d) disaster recovery [18].
FIWARE is an open software curated platform fostered by the European Commission
and the European Information and Communication Technology (ICT) industry for the
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development and worldwide deployment of Future Internet applications. It attempts to
provide a completely open, public, and free architecture and a collection of specifications
that allows organizations (designers, service providers, businesses, etc.) to develop open
and innovative applications and services on the Internet that fulfill their needs [19].

In this study, a cloud-based communication architecture has been implemented us-
ing FIWARE as the core, which allows messages between the edge and the cloud to be
transferred and stored. The selection was made because this is an open-source platform
that provides free development modules and has many enablers already developing and
integrating solutions for smart agriculture.

In addition to FIWARE, we use KAFKA, a robust distributed framework for streaming
data (see Section 2.1.5) that allows producers to send data and for consumers to subscribe to
and process such updates. KAFKA enables the processing of streams of events/messages
in a scalable and fault-tolerant manner, and decouples producers and consumers (i.e., a
consumer can process data even after a producer has gone offline). For historic data, HDFS
allows the download of batches of data at any time and replicates each data in three copies
to prevent data loss.

The visual dashboard will also be available on the HMI for the field operations.
Through the dashboard, the operator will also interact with the robot. FIWARE smart data
models do not suffice to represent our application domain or to integrate the agricultural
and robotic domains; therefore, we have extended the existing models and updated some
existing entities. Since smart data models from FIWARE are overlapping and sometimes
inconsistent, we had to envision a unified model to integrate and reconcile the data. To
connect the robotic system with the cloud, specific data models were developed to represent
the different robotic elements, following the guidelines of FIWARE and its intelligent data
models [12].

The IoT devices deployed in the field must be able to establish connections through
WiFi and LoRa technologies. WiFi is a family of wireless network protocols. These protocols
are generally used for Internet access and communication in local area networks, allowing
nearby electronic devices to exchange data using radio waves. LoRa technology is a
wireless protocol designed for long-range connectivity and low-power communications
and is primarily targeted for the Internet of Things (IoT) and M2M networks. LoRa tolerates
noise, multipath signals, and the Doppler effect. The cost of achieving this is a very low
bandwidth compared to other wireless technologies. This study uses a 4G LTE-M modem
to connect to the Internet.

At a lower level of communication, CANbus or ISOBUS is generally used to control
and monitor the autonomous vehicle. This study uses CANbus and its communication
protocol CANopen. Autonomous vehicles and agricultural tools typically contain their
own safety controllers. The first behaves as a master and, in the case of a risky situation, it
commands the tool to stop.

The human–machine interface (HMI) will include a synchronous remote procedure
call-style communication over the services protocol and asynchronous communications to
ensure the robot’s safety. In addition to these ROS-based protocols, the HMI has a safety
control connected to the low-level safety system (by radiofrequency) for emergency stops
and manual control.

Figure 6 illustrates the overall architecture, indicating the following:

• The modules (Mi), presented in the previous sections.
• The interconnection between modules, presented in the next section.
• The communication technologies and protocols to configure agricultural robotic sys-

tems that integrate IoT and cloud computing technologies.

The main characteristics of this architecture are summarized in Table 1.
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Figure 6. Experimental fields.

Table 1. Architecture components.

Architecture Component Solutions/Comments

Operating system ROS (Robot Operating System)

IoT–controller bridge
Hypertext Transfer Protocol (HTTP) to FIWARE

Note: FIWARE is used as a communication protocol in the cloud;
therefore, it is not necessary to use ROSLink.

ROS-based system for FIWARE tools

HTTP protocol to FIWARE
Note: FIROS has several disadvantages when developing new data

models to represent the robot, so a particular enabler will not be
used to establish communication between the robot and the cloud.

Communication with IoT devices
WiFi, serial communication

Note: Since a certain amount of data needs to be transmitted, WiFi
would suffice.

The Internet 4G LTE-M modem

Devices onboard the mobile platform CANopen, serial

Human–machine interface (HMI).

Synchronous remote procedure call-style communication over
services protocol.

Asynchronous communications to ensure the safety of the robot.
Note: The HMI is used to provide access to SoM services through a

web interface.
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2.2.2. Interfaces between System Components

This architecture considers four main interfaces between systems and modules, as
follows:

Smart Navigation Manager (M4)/Perception System (M1) interface

To receive the raw information from the perception system (sensors, cameras, etc.),
the central manager uses direct connections via the transmission control protocol/Internet
protocol (TCP/IP) for sensors and the universal serial bus (USB) for RGB and ToF cameras.
All IoT devices use the available wireless communication technologies (WiFi and LoRa) to
access the Internet and the cloud.

To guide the robot, the obstacle detection system obtains data from the guiding
vision system (RGB and ToF cameras) through the Ethernet that communicates the central
manager with the perception system. This communication is stated using the ROS manager
and the perception–ROS bridge (see Figure 3).

Smart Navigation Manager (M4)/Agricultural Tool (M3) interface

These systems can communicate through ROS messaging protocols, where the pub-
lisher/subscriber pattern is preferred. This interface exchanges simple test messages to
verify the communication interface.

It is worth mentioning that the perception system and the agricultural tool are con-
nected directly in some specific applications. This solution decreases the latency of data
communication but demands moving a portion of the decision algorithms from the smart
navigation manager to the tool controller; therefore, the tool must exhibit computational
features. This scheme is used in the weeding system to test the proposed architecture.

Smart Navigation Manager (M4)/Autonomous Robot (M2) interface

Initially, these systems communicate via CANbus with the CANopen protocol. The
central manager uses this protocol to receive information on the status of the autonomous
vehicle and basic information from the onboard sensors (GNSS, IMU, safety system, etc.).
A CANbus–ROS bridge is used to adapt the communication protocols.

Autonomous Robot (M2)/Agricultural Tool (M3) interface

Usually, it is not necessary for the vehicle to directly communicate with the tool because
the smart navigation manager coordinates them. However, as autonomous vehicles and
agricultural tools usually have safety controllers, there is wired communication between
the two safety controllers. In such a case, the autonomous vehicle safety controller works as
a master and commands the tool safety controller to stop the tool if a dangerous situation
appears.

Perception System (M1)/Agricultural Tool (M3)

This communication is required to inform the agricultural tools about the crop status.
In weeding applications, the information is related to the positions of the weeds. In
this specific application, the perception system (weed meristem detection module) sends
the weed meristem positions to the laser scanner module of the agricultural tool. This
communication is carried out using a conventional Ethernet connection. The metadata
generated via the detection system are made available in the existing ROS network and
sent to the smart navigation manager.

Smart Navigation Manager internal/cloud communications

The smart navigation manager is a distributed system that consists of three main
modules:

• The central manager running on the central controller.
• The smart operation manager running on the cloud.
• The HMI running in a portable device.
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The central manager and the smart operation manager communicate via NGSI v2,
a FIWARE application programming interface, using a FIWARE–ROS bridge to adapt
ROS protocols to NGSI v2 messages. In contrast, the HMI communicates with the central
manager via WiFi and Internet, directly accessing the web services hosted in the cloud.
The HMI exhibits a panic button connected via radiofrequency to the safety systems of the
autonomous robot and the agricultural tool.

IoT system/Cloud

There is a direct link from the IoT system to the cloud using MQTT.

2.2.2.8. Operation Procedure

To use the proposed architecture and method, the user must follow the method below.

• Creating the map: The user creates the field map following the procedure described in
the MapBuilder module (see Section 2.1.5).

• Creating the mission: The user creates the mission by selecting the mission’s initial
point (home garage) and destination field (study site).

• Sending the mission: The user selects the mission to be executed with the HMI (all
defined missions are stored in the system) and sends it to the robot using the cloud
services (see Section Smart Operation Manager (SoM)).

• Executing the mission: The mission is executed autonomously following the sequence
of actions described in Section 2.1.6. The user does not need to act except for when
alarms or collision situations are detected and warned of by the robot.

• Applying the treatment: When the robot reaches the crop field during the mission, it
sends a command to activate the weeding tool, which works autonomously. The tool
is deactivated when the robot performs the turns at the headland of the field and is
started again when it re-enters. The implement was designed to work with its own
sensory and control systems, only requiring the mobile platform for mobility and
information when it must be activated/deactivated.

• Supervising the mission: When the robotic system reaches the crop field, it also sends
a command to the IoT sensors, warning that the treatment is in progress. Throughout
the operation, the mission supervisor module analyzes all the information collected by
the cloud computing system, generated by both the robotic system and the IoT sensors.
It evaluates if there is a possible deviation from the trajectory or risk of failure.

• Ending the mission: The mission ends when the robot reaches the last point in the
field map computed by the MapBuilder. Optionally, the robot can stay in the field or
return to the home garage. During the mission execution, the user can stop, resume,
and abort the mission through the HMI.

3. Experimental Assessment

This section states the characteristics of the described autonomous robot with IoT
and cloud computing connectivity. To achieve this purpose, the experimental field for this
study is first described. Then, a test mission is defined to acquire data from the different
subsystems. Finally, the system characteristics are analyzed and assessed.

The characteristics obtained are not compared with similar robotic systems due to
the lack of such information in the literature. There are no published results in weeding
applications; therefore, it is difficult to compare, and the indicators have been geared
towards general cloud computing and mobile robotics characteristics. Therefore, cross-
validation has been carried out, comparing the features of the autonomous robot with the
general performance of the robot and cloud communication. Productivity, cost, and other
indicators of the presented architecture are those of the general use of cloud computing.

3.1. Study Site

The system developed for this study was tested in an experimental field located in
Madrid, Spain (40◦18′45.166′′, −3◦28′51.096′′). The climate of the study site is classified as
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a hot summer Mediterranean climate with an average annual temperature of 14.3 ◦C and
precipitation of 473 mm.

The experimental field consisted of two areas of 60 × 20 m2 that grew wheat (Triticum
aestivum L.), with crop rows at a distance of 0.10 m, and maize (Zea mays L.), with crop
rows at a distance of 0.50 m, respectively. Each area was divided into three sections of
20 × 20 m2. The sections in one area were seeded in consecutive weeks, allowing us to
conduct experiments in three-week windows. Figure 6 shows the experimental field and
the distribution of the areas and sections.

3.2. Description of the Test Mission

Tests were conducted to assess the performance and quality of integrating new tech-
nologies in autonomous robots for agriculture. First, the testing prototype was integrated
with the components introduced in Section 2; then, several IoT devices were disseminated
throughout the field (RGB and multispectral cameras, weather stations, soil probes, etc.);
finally, a mission was defined to acquire data in the study site to perform quantitative
analyses. The mission consisted of covering sections of 20 × 20 m2 with wheat and maize
crops while the following occurred:

• Acquiring data from the IoT sensor network.
• Taking pictures of the crop.
• Acquiring data from the guidance system.
• Sending all the acquired information to the cloud.

The mission proposed by the planner is illustrated in Figure 7. The robot tracked the
path autonomously, and the following procedures were carried out.

 

Home garage 

Study site 

Figure 7. Robot’s path from the home garage to the study site. The planner provides the mission for
covering the study site.

Perception system procedure

• Guiding vision system: This experiment was conducted in the treatment stage, where
the crop was detected to adjust the errors derived from planning and the lack of
precision of the maps. YOLOv4 [20], a real-time object detector based on a one-stage
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object detection network, was the base model for detecting early-stage growth in
maize [8], a wide-row crop. The model was trained using a dataset acquired in an
agricultural season before these tests using the same camera system [21]. Moreover, in
the case of wheat, which is a narrow-row crop, a different methodology was applied
through the use of segmentation models, such as MobileNet, a convolutional neural
network for mobile vision applications [22], trained using a dataset acquired in an
agricultural season before these tests [23], with the same camera system. The detection
of both crops was evaluated with regard to the GNSS positions collected manually for
the different crop lines.

The maize and wheat datasets were built with 450 and 125 labeled images, respectively.
Data augmentation techniques (rotating, blurring, image cropping, and brightness changes)
were used to increase the size of the datasets. For both crops, 80% of the data was destined
for training, 10% for validation, and 10% for testing.

• The AI vision system: This system uses data from the installed RGB cameras to enable
robust automated plant detection and discrimination. For this purpose, the state-
of-the-art object detection algorithm Yolov7 is used in combination with the Nvidia
framework DeepStream. Tracking the detected plants is performed in parallel by a
pretrained DeepSort algorithm [24]. The reliability of the object detection algorithm
is evaluated using test datasets with the commonly used metrics “intersection over
union” (IoU) and “mean average precision” (mAP). This system works cooperatively
with laser scanners as a stand-alone system. The information is not stored in the cloud.

The dataset used for training weed/crop discrimination was generated in fields in
several European countries. It contains 4000 images, 1000 of which are fully labeled.
Distinctions are made according to the processing steps to be applied: weeds, grasses,
and crops. In addition, the dataset was expanded to three times its original size through
augmentation measures. As well as generating new training data, this enables robustness
against changing environmental influences, such as changing color representation, motion
blur, and camera distortion. The YoloV7 network achieved a mean average precision (mAP)
of 0.891 after 300 epochs of training. The dataset was divided into 80%, 10%, and 10% for
training, validation, and testing subsets, respectively.

Autonomous robot procedure

The navigation controller: Given a set of trajectories based on RTK-GNSS, the perfor-
mance of the guidance controller was evaluated by measuring lateral and angular error
through the incorporation of colored tapes on the ground and using the onboard RGB
camera and ToF to extract the tape positions to compute the errors concerning the robot’s
pace.

Smart Navigation Manager procedure:

• Smart operation manager: The processing time, latency, success rate, response time,
and response status based on requests of the mission planner, IoT sensors, and cloud
computing services were evaluated using ROS functionalities that provide statistics
related to the following:

� The period of messages by all publishers.
� The age of messages.
� The number of dropped messages.
� Traffic volume to be measured in real-time.

• Central manager: The evaluation is similar to that used for the navigation controller.
• Obstacle detection system: YOLOv4 and a model already developed based on the

COCO database were introduced to detect common obstacles in agricultural environ-
ments and were also used for evaluation. YOLOv4 is a one-stage object detection
model, and COCO (common objects in context) is a large-scale object detection, seg-
mentation, and captioning dataset.

93



Agriculture 2023, 13, 1005

4. System Assessment and Discussion

The mission described in the previous section produced crop images, sensor data, and
traffic information with the following characteristics:

• Crop images: During the robot’s motion, images are acquired at a rate of 4 frames/s
to guide the robot. The RGB images are 2048 × 1536 pixels with a weight of 2.2 MB
(see Figures 8 and 9), and the ToF images feature 352 × 264 points (range of 300–5000
mm) (see Figure 10). The images are sent to the guiding and obstacle detection system
through the Ethernet using ROS (perception–ROS bridge in the perception system
and ROS manager in the central manager). A subset of these images is stored in the
cloud for further analysis. Using a FIWARE–ROS bridge with the NGSI application
programming interface, the system sends up to 4 frames/s.

• Sensor data: IoT devices send the acquired data using 2.4 GHz WiFi with the MQTT
protocol and JSON format.

• Traffic information: The ROS functionalities mentioned above revealed that during
a field experiment (10 min duration), the total number of delivered messages was
2,395,692, with a rate of only 0.63% dropped messages (messages that were dropped
due to not having been processed before their respective timeout), with average traffic
of 10 MB/s and maximum traffic of 160 MB at any instant of time. No critical messages
(command messages) were lost, demonstrating robustness within the smart navigation
manager. Regarding cloud traffic, during a period of time of approximately 3 h, the
messages sent to the cloud were monitored, where the number of messages received by
the cloud was measured; the delay time of the transmission of the messages between
the robot (edge) and the OCB, and between the robot and the KAFKA bus (see Figure 3),
were also measured. During this interval of time, around 4 missions were executed,
and a total of 14,368 messages were sent to the cloud, mainly the robot status and the
perception system data. An average delay of about 250 ms was calculated between
the moment the message is sent from the robot and the moment it is received in the
OCB (see Figure 11a). Moreover, the KAFKA overhead, i.e., the time it takes for a
message received by the OCB to be forwarded to the KAFKA bus and eventually
processed by a KAFKA consumer, was approximately 1.24 ms, demonstrating that the
internal communications within the server and hosted cloud services are robust (see
Figure 11b).

 

Figure 8. Example of a wheat image acquired with the guiding vision system and uploaded to the
cloud.
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Figure 9. Example of a maize image acquired with the guiding vision system and uploaded to the
cloud.

The system has been tested in a field with two different crops. Data related to cloud
communication and robot guidance algorithms have been collected. The communication
performance is similar to that obtained using conventional mechanisms, so we benefit from
using ROS and FIWARE without compromising performance.

 

Figure 10. Example of a ToF intensity image acquired with the guidance system and uploaded to the
cloud.
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Figure 11. Example of a ToF intensity image acquired with the guidance system and uploaded to the
cloud. (a) Message delay and (b) Kafka overhead.

5. Conclusions

An architecture is presented to configure autonomous robots for agriculture with
access to cloud technologies. This structure takes advantage of new concepts and technolo-
gies, such as IoT and cloud computing, allowing big data, edge computing, and digital
twins to be incorporated into modern agricultural robots.

The architecture is based on ROS, the most universally accepted collection of software
libraries and tools for building robotic applications, and FIWARE, an open architecture
that enables the creation of new applications and services on the Internet. ROS and FI-
WARE provide attractive advantages for developers and farmers. ROS and FIWARE offer
powerful tools for developers to build control architectures for complex robots with cloud
computing/IoT features, making development easier and leveraging open-source frame-
works. ROS and FIWARE, as in the proposed integration, provide reusability, scalability,
and maintenance using the appropriate hardware resources. In addition, integrating the
robot controller into the Internet allows the exploitation of autonomous robot services for
agriculture through the Internet.

On the other hand, the use of this type of architecture reveals to farmers the advantages
of communicating autonomous robots with the cloud, providing them with leading benefits
to storing data safely and efficiently, eliminating physical storage, and, thus, reducing the
risk of data loss. Data stored in the cloud makes it easy to access data from anywhere and
share it with other farmers or platforms. In addition, the services offered in the cloud are
very flexible to contract the actual storage needed at all times, optimizing the farmer’s
resources. Finally, farmers can use the analysis tools available in the cloud to make their
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own decisions. In any case, working in the cloud requires an initial investment, which is
usually recovered quickly.

The different components of the robot, particularized for a laser-based weeding robot,
are described, and the general architecture is presented, indicating the specific interfaces.
Based on these components, the article presents the action sequence of the robot and the
operating procedure to illustrate how farmers can use the system and what benefits they
can obtain.

Several experiments with two crops were conducted to evaluate the proposed in-
tegration based on the data communication characteristics, demonstrating the system’s
capabilities. The crop row detection system works correctly for both crops, tracking the
rows with an accuracy of ±0.02 m. The evaluation concluded that the system could send
image frames to the cloud at 4 frames/s; messages between subsystems and modules can
be passed with a 0.63% rejection rate. Regarding the traffic of the information exchanged,
an average delay of 250 ms was detected in the messages between the robot and the OCB.
In contrast, the OCB and the KAFKA bus measured an average message of 1.24 ms. This
indicates the robustness of internal communications within the server and hosted cloud
services. This performance is in the range obtained when a system communicates with the
cloud using conventional methods, so ROS and FIWARE facilitate communication with the
cloud without compromising performance.

Future work will focus on extending cloud computing architecture to integrate digital
twins, orchestrate big data ensembles, and facilitate the work of robots with edge computing
performance.
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Abstract: Field phenotyping is a crucial process in crop breeding, and traditional manual phenotyping
is labor-intensive and time-consuming. Therefore, many automatic high-throughput phenotyping
platforms (HTPPs) have been studied. However, existing automatic phenotyping methods encounter
occlusion problems in fields. This paper presents a new in-field interactive cognition phenotyping
paradigm. An active interactive cognition method is proposed to remove occlusion and overlap
for better detectable quasi-structured environment construction with a field phenotyping robot.
First, a humanoid robot equipped with image acquiring sensory devices is designed to contain an
intuitive remote control for field phenotyping manipulations. Second, a bio-inspired solution is
introduced to allow the phenotyping robot to mimic the manual phenotyping operations. In this way,
automatic high-throughput phenotyping of the full growth period is realized and a large volume
of tiller counting data is availed. Third, an attentional residual network (AtResNet) is proposed for
rice tiller number recognition. The in-field experiment shows that the proposed method achieves
approximately 95% recognition accuracy with the interactive cognition phenotyping platform. This
paper opens new possibilities to solve the common technical problems of occlusion and observation
pose in field phenotyping.

Keywords: phenotyping; agricultural robot; tiller counting; deep learning; residual network

1. Introduction

The growing population places high demands on crop yields [1]. Crop breeding is
a crucial technique to increase yields, disease resistance and other desirable properties
by improving the genetic characteristics of crops [2]. Phenotyping is a process central to
breeding, which refers to measuring the key parameters related to crop properties, such
as plant height, leaf area, leaf angle, number of grains and number of tillers [3,4]. The
phenotyping process is currently mainly performed by crop breeding experts, who measure
these parameters with manual tools and their sufficient experience.

In order to acquire crop growth status at different growth stages, breeding experts need
to perform in-field manual phenotyping for each crop at regular intervals. Undoubtedly,
this work is labor-intensive and time-consuming. The traditional manual phenotyping
method is highly experience-dependent and its efficiency and reliability are limited. As a
result, the rate of plant genome research is restricted by the rate of phenotyping, which is
defined as the “Phenotyping Bottleneck” [5].

To speed up the breeding process and relieve the bottleneck, studies on high-throughput
phenotyping platforms (HTPPs) have been widely conducted [6]. Many advanced technolo-
gies have been applied for automatic phenotyping [7]. The Scanalyzer 3D High Throughput
platform [8] developed by German research institute LemnaTec has high impact [9]. Plants
are transported by conveyers through a sequence of imaging cabinets equipped with

Agriculture 2022, 12, 1966. https://doi.org/10.3390/agriculture12111966 https://www.mdpi.com/journal/agriculture
99



Agriculture 2022, 12, 1966

various sensors to acquire various phenotype data. This system is widely used in vari-
ous phenotyping platforms, such as the Plant Accelerator of Australian Centre for Plant
Functional Genomics (ACPFG) [10]. The Plant Accelerator, consisting of four greenhouses
and two Scanalyzer 3D platforms, can accomplish high-throughput phenotyping, as well
as watering and weighing the plants. Hartmann et al. [11] developed an open-source
image analysis pipeline called HTPheno. It can acquire crop images using pipelines in
greenhouses and measure various phenotypic parameters from the images. Liu et al. [12]
presented a Digital Plant Phenotyping Platform for multiple trait measurement, such as
leaf and tiller orientation. These HTPPs significantly increased the phenotyping efficiency
compared with the traditional manual process. However, plants grown in greenhouses are
not affected by soil condition, weather variation or many other natural factors, so pheno-
types may differ from those grown naturally in fields. Moreover, to avoid the influence of
leaf occlusion and overlap on measurement, plants are planted separately, which cannot
simulate the plant interplay when planted closely in fields.

For the purpose of field high-throughput phenotyping, many field high-throughput
phenotyping platforms have been developed to date. LemnaTec also developed a field
HTPP named the Scanalyzer Field recently [13]. It is a fully automated gantry system with
an extensive measurement platform equipped with cameras and sensors. It can measure up
to 0.6 hectares of crops to acquire detailed phenotypic data. Researchers at the University
of Arizona and the United States Department of Agriculture (USDA) [14] developed a
field HTPP that included a sonar proximity sensor, sonar and GPS antenna and infrared
radiometer (IRT) sensors. The system can measure canopy height, reflectance, and some
other phenotypic parameters, but it can only acquire data overhead. The Robotanist devel-
oped by Mueller-Sim et al. [15] is a ground-based platform. It can autonomously navigate
fields to measure stalk strength with a manipulator and collect phenotypic parameters
with non-contact sensors. The platform developed by researchers at Iowa State University
employs a stereo camera rig that consists of six stereo camera heads to accomplish high
quality 3D reconstruction of sorghum plant architecture [16]. The system is carried by a
self-navigate tractor equipped with RTK-GPS signals. Zhou et al. [17] introduced a rice
panicle counting platform using images captured by an unmanned aerial vehicle based on
deep learning algorithms.

Field HTPPs automatically conduct phenotyping in natural fields with high efficiency
using automatic navigating and measurement systems. However, leaf occlusion and
overlap in field environments severely restrict the measurement accuracy of some param-
eters. This has become a key challenge for automatic in-field phenotyping and restricts
practical applications.

Tillers refer to the aboveground branches of gramineous plants, and the number
of tillers is one of the most important parameters in ecology and breeding studies. The
rice yield is usually dominated by primary tillers and some early secondary tillers [18].
As a result, tiller number is a key phenotypic trait for rice and the measurement and
analysis of the tiller number are indispensable in phenotyping [19]. Rice tillers are currently
manually counted using the separated shoots from a single plant by experts. The counting
process is inefficient and labor-intensive. Automatic tiller counting methods have been
studied in the past few years. For instance, Yang et al. [20] used an X-ray computed
tomography (CT) system to measure rice tillers on a conveyer. In their work, a mean
absolute error (MAE) of approximately 0.3 was reached. Huang et al. [21] proposed to
measure rice tillers through magnetic resonance imaging (MRI). However, it is not suitable
to perform in-field high-throughput measurements using these cumbersome and expensive
systems. Scotford et al. [22] used spectral reflectance and ultrasonic sensing techniques to
estimate tiller density and an accuracy of ±125 tillers per m2 was achieved. Deng et al. [23]
presented a rice tiller counting platform based on in-field images captured by smartphones
and they were measured after the rice plants were cut and the branches were removed.
Yamagishi et al. [24] proposed to count rice tillers using proximal sensing data taken by
an unmanned aerial vehicle. These methods provided some attempts for in-field tiller
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counting, but the key problem of occlusion and overlap was not addressed, restricting the
recognition accuracy in practical applications.

To tackle the occlusion and overlap problem in in-field phenotyping in this paper,
a novel phenotyping paradigm of interactive cognition is proposed. A detectable quasi-
structured environment is actively constructed for in-field phenotyping; therefore, the
cognition process can be accomplished smoothly. This method overcomes the problem of
occlusion and overlap in traditional passive automatic phenotyping methods. Meanwhile,
a field phenotyping robot is developed and a bio-inspired solution is adopted so that it
mimics the manual operations of breeding experts in fields. In this way, the phenotyping
operational schedules are regularized. Moreover, based on the interactive cognition phe-
notyping method, a rice tiller counting method based on attentional residual networks
(AtResNet) is proposed using the structured light images captured by the robot. The main
contributions of this paper are as follows:

(1) An interactive cognition methodology is proposed for full growth period in-field
high-throughput phenotyping.

(2) To accomplish the interactive cognition-based field phenotyping, a humanoid robot is
designed with human-in-the-loop interactive methodology.

(3) A high-accuracy rice tiller counting method based on the phenotyping platform
is proposed.

The rest of this paper is organized as follows. Section 2 introduces the interactive
cognition phenotyping method based on the humanoid robot. Section 3 presents the
bio-inspired operational forms. Section 4 describes the rice tiller counting algorithm and
Section 5 shows the experimental results. Section 6 concludes the paper.

2. Interactive Cognition Phenotyping Method

In many industrial applications, the machine vision techniques for object detection and
measurement are mature. Industrial robots generally use non-interactive passive detection
methods to achieve cognition of the surrounding environment. However, occlusion and
overlap rarely exist in industrial scenes; in other words, the scenes are structured. Hence,
non-interactive cognition methods can basically meet the cognition requirements. However,
in fields, simple machine vision inspection methods are not compatible with complex
unstructured agricultural scenes [25]. It is difficult to perform phenotyping for crops in
occlusion scenes. To solve this problem, we propose a new phenotyping paradigm of
interactive cognition. A phenotyping robot is introduced to interact with the surrounding
plants. The robot mimics breeding experts’ manual operations of removing occlusion and
overlap, while performing phenotyping in fields. A detectable quasi-structured environ-
ment is constructed; therefore, full cognition of the crops can be achieved through machine
vision-based detecting methods.

2.1. Interactively Cognitive Humanoid Field Phenotyping Robot

In order to interactive with crops and construct various detectable scenes for pheno-
typing, the robot needs to have high operational dexterity. To perform the phenotyping
operations of experts, we used a bio-inspired design methodology to design the humanoid
robot ontology. The robot ontology, as shown in Figure 1, is based on an open-source
project named InMoov [26], and it has been redesigned to improve its adaptability to the
agricultural working environment. Its shoulder and arm have five degrees of freedom,
ensuring the completion of complex actions, such as those carried out by humans, and
sufficient space for movement. The manipulator is a humanoid mechanical hand, inspired
by an open-source project [27]. The mechanical hand has one degree of freedom. Five
fingers can grip and stretch at the same time so that phenotyping actions, such as separating
ears and handling stalks, can be performed.
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Figure 1. Interactively cognitive humanoid phenotyping robot.

The robot is placed on a field truss platform that can move along the tracks in field.
The robot can move to a suitable position to interact with the plants under analysis. It can
move along two mutually perpendicular horizontal tracks with a moving speed of 0.1 m/s
to 0.3 m/s. It can descend 25 cm towards the ground and lift 75 cm above the ground.

The liftable line-structured light system equipped on the chest of the robot body is
used for environmental detection and cognition. The system consists of a Basler acA2500-
14gc color camera and line laser module that can scan up and down, driven by a stepper
motor. The camera has a horizontal and vertical resolution of 2590 × 1942 px, a frame rate
of 14 FPS, and a sensor area of 1/2.5 inch. The scanning speed is approximately 20 mm/s
and the scanning stroke is 500 mm. The 3D reconstruction of plants and measurement of
many phenotypic parameters can be realized using the structured light system.

An interactive system that consists of a raspberry Pi, a microphone and a PiCamera is
mounted on the robot’s head. The PiCamera can screen live video of the field and transmit
video streams to the server built by the raspberry Pi. The video stream delay is about 0.5 s,
and the resolution is 1280 × 960 with a 30-fps frame rate.

2.2. Interactive Cognition Phenotyping Process

When the robot moves to the front of the plant under analysis, it can actively interact
with the plant to build a more detectable environment if there is evidence of occlusion and
overlap. As shown in Figure 2, when the plant is sheltered by other plants, the robot arm
can push aside the plants to remove the occlusion. Then, the plant can be detected by the
vision system and full phenotypic data can be acquired. Similarly, when the back part of a
plant is occluded by the front part, the same active interaction process can be used to build
a phenotype detectable environment.

Figure 2. The robot removing occlusion.

The robot operates on a field truss platform and it can move along two mutually
perpendicular horizontal tracks. A fixed position in the field can be taken as the origin of
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the absolute coordinate system, and the two moving directions are the X-axis and the Y-axis,
respectively. We use the motor-driven signals of the servo motors as odometers. When the
robot moves to a position to measure a specific plant, the moving distance along the two
directions can be calculated by the pulse number of the motor-driven signals. Therefore, the
geographic coordinates of the robot can be determined. The relative distance of the plant to
the robot can be measured by the pre-calibrated structural light system and the geographic
coordinate of the plant can be determined. In our experimental field spot, where the longest
moving distance is 50 m, the measurement error of the robot geographic coordinates is
approximately 2 cm. In the robot operating space, the structural light system measurement
error is approximately 0.1 cm. In this manner, an electronic map of every plant in the field
can be established. Phenotypic data of every plant measured by the robot platform can be
recorded on the map. With the electronic map, the robot platform can measure the same
plant at different growth stages, thus establishing a complete full growth cycle phenotype
database to provide complete phenotypic data for crop breeding.

Despite the introduction of the robot technique and active interactive cognition
method, the efficiency and accuracy of automatic phenotyping can still be considerably
improved, which is required to release the “Phenotyping Bottleneck”. In addition, with the
use of electronic maps, automatic phenotyping of full growth cycles can be realized.

3. Bio-Inspired Operational Forms

In natural agricultural environments, it is extremely difficult for robots to perform
fully autonomous measurements and cognition. To date, operation in these non-structured
scenes cannot reach relatively high accuracy. As a result, phenotyping schedules and
operation need to be formulated first. Due to the humanoid structure of the robot, a bio-
inspired solution is proposed. By mimicking phenotyping operations of breeding experts,
the phenotyping operational schedules are regularized.

The human–robot interactive technique (HRI) is used to regularize the phenotyping
schedule. Breeding experts remotely control the robot platform to perform interactive
phenotyping operations with the HRI system. The HRI framework is shown in Figure 3.

Figure 3. Human–robot interactive (HRI) framework for interactive phenotyping.

3.1. Head-Mounted Interactive System

A head-mounted interactive system is used to acquire the live scenes and voice, so
that the operator can easily manipulate the robot to interact with the in-field environment.
An approximately immersive operation experience can be obtained when breeding experts
use this system.
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The structure of the head-mounted interactive system is described in Section 2.1. The
operator wears a Royole VR standalone headset to acquire the live video. In this way, the
operator can remotely observe the scene of the robot in the current field of view in real time.
The microphone mounted at the robot head can record the sound around the robot. The
operator end and the robot end can communicate through the VR standalone headset and
the robot computer. The raspberry Pi works as a server. In this way, the operator can hear
the real-time voice that is “heard” by the robot to monitor the in-field situations better.

3.2. Motion Interactive System Based on Perception Neuron (PN) Sensor

In order to expediently control the complex movement of the multi-degree of freedom
robot and improve control precision, a wearable sensor system is adopted to map the
operator’s movement to the robot’s movement. Then, the robot can mimic the operator’s
phenotyping operations.

A perception neuron (PN) sensor system produced by Noitom Company® [28] is used.
This sensor system includes thirty-two inertial measurement units, each of which has a
three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer.

A PN sensor can export a BioVision Hierarchy (BVH) file after acquiring human
motion data. A BVH file is a universal human motion feature description format, which is
often used in skeletal animation models [29]. The BVH file describes the human skeleton
model in the joint diagram shown in Figure 4a. Each joint describes the motion information
through three rotation parameters and a complete description of the human motion is
achieved. After the BVH data collected by the PN sensor are transmitted to the robot
controller through the TCP/IP protocol, the Euler angles in the BVH need to be converted
into joint angles and sent to the lower computer.

Figure 4. Motion interaction. (a) BVH joint diagram. (b) URDF visualization. (c) Motion
interactive experiments.
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However, the actual movement of the human body is physiologically constrained. Not
every joint has three degrees of freedom, and some degrees of freedom are not independent
of each other, so there is a large difference between the BVH model and human body.
Therefore, the mapping of Euler angles to the joint angle of the robot requires a reasonable
algorithm. For example, the human shoulder joint has three degrees of freedom, which is
similar to the shoulder of the robot body, so the Euler angle of the shoulder joint motion
can be directly mapped to the robot body through rotation matrix. Since the elbow joint
of the robot body has only one bending degree of freedom and lacks a rotational one, the
elbow bending angle can be obtained by calculating the angle between the direction vector
of the large arm and forearm. The angle of rotation of the wrist joint is mapped by the angle
of rotation of the human elbow. We denote vector

→
r1 and

→
r2 as the large arm and forearm,

respectively, and
→
r1 is the position direction of the X-axis. Therefore, the elbow bending

angle can be calculated as

θ = π −
〈→

r1,
→
r2

〉
= π − arccos

(→
r1·→r2

)
. (1)

We assume that the two rotation degrees of freedom are along the Y- and Z-axes, respectively.
The PN sensor can acquire the Euler angles of ZYX axes of the human arm, i.e., αz, βy, γx.
Since the rotation degree of freedom of the X-axis does not exist in the human arm, γx ≈ 0.
The rotation matrix of the elbow is formulated as

R =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝ cosβy 0 sinβy
0 1 0

−sinβy 0 cosβy

⎞⎠⎛⎝ cosαz sinαz 0
−sinαz cosαz 0

0 0 1

⎞⎠. (2)

The direction vector of
→
r1 is r̂1 = (1, 0, 0)T . Therefore, the direction vector of

→
r1 is

r̂2 = Rr̂1 =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝ cosβy 0 sinβy
0 1 0

−sinβy 0 cosβy

⎞⎠⎛⎝ cosαz sinαz 0
−sinαz cosαz 0

0 0 1

⎞⎠⎛⎝1
0
0

⎞⎠
=

⎛⎝ cosβycosαz
−sinαz

−sinβycosαz

⎞⎠.

(3)

Finally, the elbow bending angle can be obtained by

θ = π − arccos
(→

r1·→r2

)
= π − arccos(r̂1, r̂2) = π − arccos

(
cosβycosαz

)
. (4)

The robot hand has only one degree of freedom. In order to map the human hand motion
to the maximum extent, the hand degree of freedom selects the fold angle of the human
middle finger. Because of the high degree of freedom of the human neck, the left and right
rotational degrees of freedom of the robot are directly mapped by the left and right rotation
angle of the human neck.

A Unified Robot Description Format (URDF) file is constructed in the robot operating
system (ROS) that runs on the robot’s industrial computer. It contains the joint relations of
each mechanical parts of the robot and real-time simulation of the robot can be realized
based on the URDF file, as shown in Figure 4b. ROS transmits the mapped joint angle
data in real time through the serial port to the lower machine with a 10 Hz sampling
frequency. Then, the lower machine drives the joint servos moving to the corresponding
angle. Therefore, the operator’s motion is mapped to the robot ontology. Some motion
interactive experiments are shown as Figure 4c.

3.3. Bio-Inspired Operation

Through the head-mounted interactive system and the motion interaction system
based on PN sensors, the operator can remotely control the robot in an immersive interac-
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tive way. The breeding expert must wear a full headset linked to the interactive system
in the control room, so that it is possible to observe the real-time environment around the
robot by the head-mounted interactive system through the movement of their head. The
operator observes the plants that need to be measured and moves the robot to the appro-
priate position. The operator only needs to repeat the procedure and operations during
the traditional manual phenotyping process, then the robot can be controlled to mimic
his/her action to interact with the plant. The phenotype is then measured by the machine
vision system. The naturally instructive paradigm is user-friendly and especially highly
efficient with the first person view (FPV), which can accomplish efficient phenotyping
operations [30]. The robot completely mimics the interactive operations of the breeding
experts, so this interactive form has high efficiency and strong adaptability. With the help of
the automated visual system, high-efficiency and high-precision phenotyping is achieved
through the interactive cognition method.

Regularized phenotyping forms are formed through the bio-inspired operations based
on the HRI technique. In the process of HRI, the typical operation schedules and actions
of the breeding experts are recorded. In the long term, a large amount of data is recorded
to form a manual teaching dataset. With a sufficiently large data set, the automation of
interactive cognition can be continuously improved through continuous training using
machine learning algorithms. We have conducted various studies on the human-in-the-
loop imitation control method to improve robot adaptability to uncertain environments,
although it is still challenging to realize entire task autonomy in a short period of time [31].
Eventually, fully automated bio-inspired phenotyping systems can be implemented to
replace the traditional manual phenotyping pattern.

4. In-Field Rice Tiller Counting Method

4.1. Image Acquisition

When the occlusion is removed through the interactive method illustrated above,
images of the rice plant can be captured by the camera for tiller counting. However, since
the tillers have similar colors with the background, it is difficult to recognize each tiller
from an RGB image without depth information. To provide depth information for the
images captured by an RGB camera, we use a horizontal line laser to scan the tillers. While
the structured light system scans up and down, multiple images that scan different heights
of the plant can be recorded for further tiller number recognition.

To reduce the influence of natural light on the light spots of the laser, we capture
images with a small aperture to reduce the amount of light. Under this circumstance,
the laser light spots can still be clearly identified and the rest of the regions are relatively
dark. The images are then transformed to grayscale images to reduce computation. These
grayscale images are resized to 256 × 256 pixels through bilinear interpolation to further
improve computation efficiency.

4.2. Rice Tiller Number Recognition Algorithm

After the images with laser light are obtained and preprocessed, a rice tiller counting
algorithm is then used to obtain tiller numbers from the images. In practical applications,
accurately counting the tiller number is difficult and unnecessary. In practice, the aim
of gene-editing breeding is to promote effective tillering (tillers with panicles) to obtain
high yields, while eliminating ineffective tillering (tillers without panicles) for reduced
nutrition consumption [32]. Since the panicle numbers can be statistically estimated by
drone detection, we aim to statistically estimate the total number of under-canopy tillers
and then the number of effective tillers can be estimated. Therefore, we divide the tiller
numbers into several grades and the task in this paper is to obtain the approximate ranges
of tiller numbers.

In this paper, a deep learning method based on an attentional residual network
(AtResNet) is proposed. Figure 5 illustrates the network structure. Resized grayscale images
are directly input into the network, and they are processed through stacked layers. The
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backbone network is a deep convolutional neural network (CNN) with residual connections
to ResNet [33] to prevent the overfitting problem. There are three convolutional blocks with
similar structures, each of which firstly processes the input through a two-dimensional
convolution operation as follows.

xl
i = f l

conv

(
xl−1

i ; θc,l
)
= xl−1

i ∗ wc,l + bc, l , (5)

where xl−1
i denotes the input of the convolutional layer and θc,l =

{
wc,l , bc,l

}
are the

parameters of this layer. Then, a batch normalization (BN) [31] layer is introduced to speed
up the network convergence, which is formulated for each mini-batch as follows.

x̂l
i =

xl
i − E

[
xl

i

]
√

Var
[
xl

i
] , (6)

yl
i = γl x̂l

i + βl , (7)

where γl and βl are learnable parameters. E[·] and Var[·] denote the mean and variance
value, respectively. Then, a rectified linear unit (ReLU) layer is used with a rectified linear
function, which is formulated as

ReLU(x) = max(0, x). (8)

Then, a max-pooling layer is adopted, which calculates the maximum values within the
receptive field.

Figure 5. AtResNet model for rice tiller number recognition.

Residual connections are introduced to the second and last convolutional blocks to
accelerate network training and prevent overfitting. A convolutional layer with a 1 × 1
kernel is used to perform identity mapping, which keeps the input and output size of
the convolutional block the same. Then, the output of the l-th convolutional block can be
calculated as follows.

xl
i = σ

[
fCB

(
xl−1

i ; θCB
)
+ BN

(
f1×1

(
xl−1

i , θ1×1
))]

, (9)

where fCB is the mapping function of the convolutional block, and f1×1 is the mapping
function of the 1 × 1 convolutional layer in residual connections. σ denotes the ReLU
function. The output of the last convolutional block is processed by an adaptive average
pooling (AAP) layer and two fully connected (FC) layers and the final output is a vector
whose length is the same as the tiller number grades.

Since these images are dark in most regions and the laser light spots only appear in
some small areas, attention mechanisms [34] are introduced to help the model focus on the
informative regions. Firstly, a channel attention block [35] is adopted to allocate different
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weights to different feature channels. The channel attention block firstly aggregates spatial
information through adaptive average pooling and adaptive max pooling operations. Then,
a shared convolutional network is used to generate attention maps for each aggregated
feature vector. In addition, two maps are summed to obtain the final channel attention map.
In short, these channel attention operations are summarized as follows.

Ac(x) = σs[ f c
conv(AvgPool(x)) + f c

conv(MaxPool(x))], (10)

where x ∈ RW×H×C represents the input features, and f c
conv denotes the mapping function

of the shared convolutional network, which consists of a 1 × 1 convolutional layer with
C/r channels, a ReLU layer, and a 1 × 1 convolutional layer with C channels. σs denotes
the sigmoid function. Finally, the calculated channel attention map Ac(x) is applied to the
input feature by element-wise multiplication, as follows:

x′ = Ac(x)⊗ x. (11)

Similarly, a spatial attention block [36] is adopted afterwards to obtain spatial attention
maps to help the network to focus on informative spatial regions. Channel information
is aggregated by average and maximum values. Two features are concatenated and then
processed by a convolutional layer to produce the spatial attention map. The spatial
attention operations can be summarized as follows.

As(x) = σs[ f s
conv([Avg(x); Max(x)])], (12)

where f s
conv denotes the mapping function of the convolutional layer. Finally, the calculated

spatial attention map A_s (x) is applied to the input feature by element-wise multiplication,
as follows:

x′′ = As
(
x′
)⊗ x′. (13)

The whole network outputs a vector ŷi, which represents the predicted probability of
the i-th sample that belongs to each tiller number grade. ŷi is obtained through a softmax
function of the output y f c of the last FC layer, as follows:

ˆyi,j =
ey f c,j

∑K
j=1 ey f c,j

, (14)

where y f c,j and ˆyi,j denote the j-th element of y f c and ŷi, respectively, and K is the number
of all tiller number grades. The network is trained by minimizing the cross-entropy loss,
which is defined as follows.

L = − 1
N ∑N

i=1∑K
k=1 I(yi = k) log( ˆyi, k), (15)

where I(·) is the indicator function, yi is the true tiller number grade label of the i-th sample
and N is the sample number.

5. Experiment and Results

5.1. Data Description

Following the image acquisition procedure illustrated in Section 4.1, a set of images are
obtained in fields using the structured light system. Then, these images are categorized into
four classes according to the rice plant tiller number. In large-scale variant breeding, we
found that the total tiller numbers of most variants are mainly between 21 and 25 [37]. We
hoped to achieve relatively accurate tiller counting in this range. Therefore, we subdivide
this range and the numbers fewer than 21 and more than 25 are divided roughly. Some
image examples are shown as Figure 6. The details of these images are shown in Table 1.
These images are transformed to grayscale images and resized to 256 × 256. Then, they are
randomly split into a training set and a testing set with the ratio of 3:1.
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Figure 6. Some image examples of four tiller number grades (improved brightness).

Table 1. Dataset details.

Grade Tiller Number Image Number

I <21 120
II 21~22 278
III 23~25 280
IV >25 100

5.2. Experiment Setup

We use all the images in the training set to train the AtResNet and test the model using
the testing set samples. The detailed parameter settings used in the experiment are listed in
Table 2.

Table 2. Parameter details of AtResNet.

Layer Parameter Output Size

Conv1

Kernel size: 5 × 5
Stride: 2 × 2
Padding: 2

Kernel number: 16

128 × 128 × 16

Pool1 Kernel size: 2 × 2 64 × 64 × 16

Conv2

Kernel size: 3×3
Stride: 1 × 1
Padding: 1

Kernel number: 32

64 × 64 × 32

Pool2 Kernel size: 2 × 2 32 × 32 × 2

Conv3

Kernel size: 3 × 3
Stride: 1 × 1
Padding: 1

Kernel number: 64

32 × 32 × 64

Pool3 Kernel size: 2 × 2 16 × 16 × 64
Channel Attention r: 16 -

Spatial Attention

Kernel size: 7 × 7
Stride: 1 × 1
Padding: 3

Kernel number: 1

-

AAP Output size: 4 × 4 4 × 4 × 64
FC1 Unit number: 128 128 × 1
FC2 Unit number: 4 4 × 1

The network is implemented by PyTorch on an NVIDIA GTX 1660 GPU. It is trained
by the Adam optimizer with a learning rate of 0.001 for 50 epochs. In each mini-batch,
64 samples are inputted into the system. A convolutional neural network (CNN) without
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residual connections and attention operations, and a ResNet without attention operations
are also implemented for performance comparison. They share the same backbone structure
and parameters with the AtResNet and all the experiments are repeated for 10 trials to
reduce randomness.

5.3. Results

The experiment results of all the three methods are shown in Table 3. From the
recognition results, we can observe that these deep learning-based methods achieved more
than 93% tiller number recognition accuracy. This is satisfactory for practical applications.
In addition, the proposed AtResNet outperforms the other two methods. We also illustrate
the training and testing accuracy and loss values during the training process in Figure 7.
We can observe that the AtResNet has lower accuracy and fewer loss fluctuations during
model testing. It may be because the introduction of residual connections and attention
operations helps the model to converge faster.

Table 3. Tiller number recognition accuracy (%) of three methods.

Method Mean Standard Deviation

CNN 93.49 1.64
ResNet 94.21 2.06

AtResNet 94.72 1.70

(a) (b)

(c) (d)

Figure 7. Training and testing accuracy and loss value curve. (a) CNN accuracy. (b) CNN loss.
(c) AtResNet accuracy. (d) AtResNet loss. Blue line denotes training process and orange line denotes
testing process.

To further explore the recognition results, we also analyze the confusion matrix of
the results, as shown in Figure 8. It is observed that all the three methods can accurately
recognize images with grade IV tiller numbers. For grade II and III, the AtResNet displays
higher recognition accuracy compared with the other two methods. Figure 9 shows some
examples of spatial attention maps. The different colors represent different relative attention
values. We can observe that the laser spot regions have different attention values with other
dark areas. So, the network can selectively focus on the informative regions.
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(a) CNN (b) ResNet (c) AtResNet

Figure 8. Confusion matrix of tiller number recognition results.

Figure 9. Examples of spatial attention maps in AtResNet.

6. Conclusions

This paper presents a new in-field phenotyping paradigm. An interactive cognition
method is proposed to overcome the problem of occlusion and overlap in traditional pas-
sive automatic phenotyping methods. A bio-inspired solution is introduced so that the
phenotyping robot can mimic the manual phenotyping operations. In this way, automatic
high-throughput phenotyping of full growth cycles is realized. A tiller number recogni-
tion method (AtResNet) is proposed based on interactive cognition. In-field images are
collected for the experiments. The experiment results show that the proposed method
can achieve approximately 95% tiller number recognition accuracy and outperforms other
deep learning-based methods. This paper provides a new solution to the occlusion and
observation pose problems in field phenotyping. Although drone detection can estimate
the panicle number in a more efficient way, the proposed method overcomes the difficulty
of under-canopy tiller counting, which assists in effective and ineffective tillering counting.
Compared with traditional manual breeding processes, the proposed in-field phenotyping
paradigm offers a more efficient solution to repeating phenotyping across the full growth
period. In future work, we will develop multiple phenotyping robots and explore the con-
trol scheme of switching between them to further improve in-field phenotyping efficiency.
Moreover, the panicle counting method based on drone detection over the canopy will be
studied to estimate effective tillering.
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Abstract: In order to enable the picking robot to detect and locate apples quickly and accurately in the
orchard natural environment, we propose an apple object detection method based on Shufflenetv2-
YOLOX. This method takes YOLOX-Tiny as the baseline and uses the lightweight network Shuf-
flenetv2 added with the convolutional block attention module (CBAM) as the backbone. An adaptive
spatial feature fusion (ASFF) module is added to the PANet network to improve the detection accu-
racy, and only two extraction layers are used to simplify the network structure. The average precision
(AP), precision, recall, and F1 of the trained network under the verification set are 96.76%, 95.62%,
93.75%, and 0.95, respectively, and the detection speed reaches 65 frames per second (FPS). The
test results show that the AP value of Shufflenetv2-YOLOX is increased by 6.24% compared with
YOLOX-Tiny, and the detection speed is increased by 18%. At the same time, it has a better detection
effect and speed than the advanced lightweight networks YOLOv5-s, Efficientdet-d0, YOLOv4-Tiny,
and Mobilenet-YOLOv4-Lite. Meanwhile, the half-precision floating-point (FP16) accuracy model on
the embedded device Jetson Nano with TensorRT acceleration can reach 26.3 FPS. This method can
provide an effective solution for the vision system of the apple picking robot.

Keywords: machine vision; picking robot; apple detection; YOLOX; ShufflenetV2

1. Introduction

China’s apple planting area and output account for more than 50% of the world [1],
but its picking is still dominated by manual picking, with high cost. Therefore, the apple
picking robot is the development direction in the future. How to locate and detect apples
quickly and accurately in the natural environment is the focus and difficulty of vision
research of picking robots [2].

At present, the research on fruit detection at home and abroad is mainly divided
into target detection based on the traditional algorithm and target detection based on
the deep learning algorithm, and both have made some progress. Traditional algorithms
require artificially designed features [3], and their accuracy and detection speed are not
as good as those of deep learning algorithms. Currently, they are mostly used for image
preprocessing. Xia [4] proposed a method for fruit segmentation based on the K-means
clustering algorithm. The Canny edge detection operator was used to extract the fruit
contour, the Y-node search algorithm was used for contour separation, and finally, the
least squares method was used for contour reconstruction. Liu [5] used a simple linear
iterative clustering algorithm to segment the apple image collected in the orchard into
super-pixel blocks, and used the color features extracted by blocks to determine the target
candidate region. Lv [6] calculated the distance of each fruit in the connected area by using
the Euclidean distance method, extracted the effective peak from the smoothed curve by
using the improved local extreme value method, and determined the shape of overlapping
apples according to the number of peaks. Bochkovskiy [7] chose incandescent lighting to
obtain images at night. In the image segmentation stage, the power transformation was
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used to improve the R-G color difference threshold segmentation method, and the genetic
algorithm was introduced to optimize the solution of the maximum interclass variance.
The accuracy was 94% and the detection speed was 2.21 FPS.

The detection algorithm based on deep learning has wider applicability than the
traditional algorithm. When using a specific dataset, it can learn deeper features and
obtain higher accuracy. It is easier to detect the target. In recent years, deep learning
has been used in a wide range of industries. Some scholars have conducted in-depth
research on apple target detection based on deep learning. Sa [8] basically achieved rapid
detection and achieved an F1 score of 0.838 by using the improved Fast R-CNN training
RGB color and near-infrared images to detect fruits. Zhao [9] used the improved YOLOv3
algorithm with 13 layers to prove that it is feasible to use the deep learning algorithm in the
natural environment under the verification of different illumination directions, different
growth stages of apples, and different picking times. Mazzia [10] achieved a detection
speed of 30 FPS using a modified YOLOv3-Tiny network on a matched embedded device,
the Jetson AGX Xaver. However, the Jetson AGX Xaver is very expensive and its AP is
only 83.64%, which does not satisfy the need for detection accuracy. Yan [11] using the
improved YOLOv5 can effectively identify grasping apples that are not obscured by leaves
or only obscured by leaves, and nongrasping apples that are obscured by branches or other
fruits. Wu [12] achieved 98.15% AP and 0.965F1 using an improved EfficientNet-YOLOV4
dataset augmented by foliage occlusion data. However, its model capacity is 158 M, and
the real-time detection speed is only 2.95 FPS. Chu [13] designed a novel Mask-RCNN
for apple detection. By adding a suppression branch to the standard Mask-RCNN to
suppress nonapple features, its F1 index is 0.905, but the detection speed is only 4 FPS. The
suppression branch of this method is designed according to color, which is only effective
when the color difference between fruit and leaf is large. When the color difference is not
large, due to light, disease, or debris, the detection effect may not be good.

Although the above studies have all achieved some results for apple recognition in
different scenarios, they all have similar problems. That is, high detection speed and high
detection accuracy cannot be satisfied simultaneously. At the same time, according to the
current research literature, several directions have been little studied. First, most of the
current research on apple recognition has focused on apples that are dense, overlapping,
or obscured by foliage, with very little research on apples in the context of bagging. Sec-
ondly, there are few studies related to apple detection models running on edge devices to
determine how the detection models will perform in practice. To solve the above problems,
an apple detection algorithm based on YOLOX-Tiny is proposed in this paper. It can meet
the needs of a picking robot working with high precision and in real time. Compared to
similar studies, our main contributions are the following two.

(1) A novel lightweight apple detector was designed. The ShufflenetV2-YOLOX model
was designed from a practical perspective based on the orchard environment and
obtained excellent detection speed and detection accuracy.

(2) It was validated and deployed on the Jetson Nano, an edge device. It was validated
that the model can meet the requirements for real-time and high-precision detection
on an edge device, and can provide an effective solution for picking robots.

2. Materials and Methods

2.1. Apple Image Acquisition and Data Augmentation

This paper takes the Fuji apple, the largest main apple variety in China, as the research
object, and collects apple images from the apple demonstration base in Feng County,
Xuzhou City, Jiangsu Province, China. Considering the possible natural environment in the
actual orchard picking, the images of unbagged apples, bagged apples, and apples under
weak light at night are collected.

In the process of image acquisition, in order to ensure the clarity of the image and meet
the working environment of the picking robot, we keep the distance between the camera
and the fruit at 0.3 m–2 m. In the night apple image acquisition, a single LED lamp is
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used for illumination, and the brightness of the fruit area is changed by changing different
illumination angles. A total of 1793 pictures are taken during the shooting, including
apple images under different natural conditions such as forward light, backlight, side light,
overlap, and occlusion, 577 apple images without bagging during the day, 567 apple images
bagged during the day, and 649 apple images including bagging at night, as shown in
Figure 1. Among them, the appearance of apples in the daytime will vary greatly due to
the different angles and intensity of light. Bagging can not only prevent the fruit from
being harmed by dust, pests, and pesticide residues, but also make the fruit surface smooth
and beautiful, and increase the effective yield and income. However, due to a layer of
plastic bags on the surface, the apple will be in an irregular state, and its surface and
shape characteristics will be disturbed. This makes traditional image detection methods,
such as texture, color difference, and Hough Circles transformation, unable to effectively
detect apples [8]. At the same time, there are often water droplets in the plastic bag, which
will bring greater difficulties to image detection. Because the image of apples at night is
presented under the irradiation of a strong light source, there may be significant contrast
on the same picture. For example, the surface of apples directly illuminated by the light
source will be strong and bright, resulting in the lack of surface feature information, while
those not directly directed will be relatively dark and difficult to detect. Therefore, apple
images in the above cases will interfere with image detection to a certain extent [13].

Figure 1. Apple image in natural state.

The apple dataset images collected in this experiment are small in number and contain
complexities such as bagging, nighttime, occlusion, and overlap. Deep learning has certain
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requirements on the size of the dataset. If the original dataset is relatively small, it cannot
meet the training of the network model well, thus affecting the performance of the model.
Image enhancement is the process of expanding the dataset by processing the original
image, which can improve the performance of the model to a certain extent. Therefore, we
use the imgaug algorithm for data enhancement, using mirror flip, changing brightness,
flipping up and down, adding Gaussian noise, dropout, scaling, and other operations
to mix and enhance the images with a 10-fold enhancement factor, while ensuring the
morphological features are intact. Finally, 17,930 images are obtained, as shown in Figure 2.
Although the augmented dataset is slightly different from the actual situation, the blurring
is quite beneficial in improving the robustness of the model. The models trained with the
data-enhanced dataset have higher accuracy compared to the unfuzzed dataset [14].

Figure 2. Image after data augmentation.

The annotation software used in this paper is LabelImg, and the annotation file format
is “xml”. To better compare different types of networks and training sets, the images are
converted to Pascal VOC format. At the same time, the training set and verification set
are generated according to the ratio of 9:1, and 30 apple images in the complex natural
environment are selected as the test set to verify the detection effect of the model. All
networks used in this paper are based on the pre-training of the ImageNet dataset, use
migration learning to train 150 epochs on this dataset, and select the best one as the
detection weight parameter to load into the network.

2.2. Design of Apple Object Detection Network
2.2.1. Baseline Selection

There are a number of deep learning methods available, and one of the most effective
networks for target detection is the convolutional neural network. These are divided into
one-stage networks and two-stage networks [15–19]. The one-stage network is superior
in detection speed, and the accuracy rate is also high. The neural network used for target
detection is divided into the one-stage network and two-stage network according to the
detection stage. The one-stage network is better in detection speed and high in accuracy.
The YOLO series is a representative one-stage network, and among them, YOLOX is the
latest version [20], which is improved with YOLOv3 + Darknet53 as the baseline. YOLOX
adopts understanding coupling, Mosaic and Mixup image enhancement technology, anchor-
free, SimOTA, and other tricks, which is greatly improved compared with the previous
YOLOv4 and YOLOv5.

118



Agriculture 2022, 12, 856

YOLOX is divided into x, l, m, s, tiny, and nano models from large to small according
to the proportion of network depth and network width. Different models of networks can
be selected according to different use scenarios. Among them, YOLOX-Tiny is a lightweight
network in the YOLOX series, and its detection accuracy and speed are better than YOLOv4-
Tiny, which is suitable for deployment in apple picking robots. However, the detection
accuracy and detection speed of YOLOX-Tiny still have room for improvement compared
with advanced apple detection algorithms at home and abroad.

2.2.2. ShufflenetV2-YOLOX Network Design

To meet the needs of the apple picking robot, it is necessary to improve the accu-
racy and detection speed of the network based on YOLOX-Tiny. This paper proposes a
ShufflenetV2-YOLOX network. Figure 3 shows its network structure. First, this method
takes YOLOX-Tiny as the baseline and uses the lightweight network Shufflenetv2 added
with CBAM as the backbone. At the same time, ASFF is added after the PANnet network to
improve the accuracy of network detection. Deleting a feature extraction layer reduces the
amount of parameter calculation of the whole network, improves the detection speed of the
network, and makes it meet the needs of real-time and high precision on embedded devices.
The head network adopts YOLOX’s decoupled head. It is divided into two parts: object
prediction and position regression, which are predicted separately and then integrated
for prediction. The loss function of the detection frame position can choose to use the
traditional Intersection over Union (IOU) loss and Generalized Intersection over Union
(GIOU) loss [21,22], and both OBJ loss and CLS loss use the Binary Cross Entropy loss
method. To deal with the complex situation in orchard apple target detection, we select the
better GIOU loss as the IOU loss of the detection frame.

IOU =
Soverlap

Snuion
(1)

GIOU = IOU − |A C − Snuion|
AC

(2)

where Soverlap is the area of intersection of the predicted bounding box and the true bound-
ing box. Sunion is the area of the union of the two bounding boxes [14]. Ac is the minimum
enclosing rectangle that predicts the border and the true frame.

Figure 3. The network structure of ShufflenetV2-YOLOX. 1: Backbone Network Design; 2: Increase
Attention Mechanism; 3: Add the ASFF Module; 4: Prune the Feature Layer.
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Following the selection of the baseline model, the modeling phase is divided into four
main stages. The first step is to replace the backbone network with ShufflenetV2. In the
second step, the attention mechanism CBAM is added. The third step is to add the adaptive
feature fusion mechanism ASFF. Finally, the feature extraction layer is reduced.

Backbone Network Design

YOLOX-Tiny is the lightweight network of YOLOX, which is achieved only by reduc-
ing the network width and depth. Compared with those specialized lightweight networks,
it is not enough, so the first thing we need to do is to choose a lightweight network to replace
YOLOX-Tiny backbone. ShuffleNetV2 is improved from ShuffleNet and has achieved excel-
lent results in lightweight networks [23,24]. It inherits grouped convolution, depthwise
separable convolution, and channel shuffle operations of ShuffleNet, and also improves the
original unreasonable parts according to four efficient network pairs.

ShufflenetV2 is an image classification network in which the global average pooling
and fully connected layers modules are added to achieve higher results in the ImageNet
network competition and are useless for object detection networks. In order to replace
the backbone of YOLOX-Tiny, we choose to keep only the network structure before stage4
in the ShufflenetV2 network, and then extract the output from each stage and connect it
to PANet instead of CSPDarkNet. This can not only improve the running speed but also
meet the design of the target detection network. The structure of ShufflenetV2 in YOLOX is
shown in Figure 4.

Figure 4. Shufflenetv2 network structure.

Increase Attention Mechanism

As the convolutional neural network (CNN) becomes deeper, the effective features
become sparse. At this time, we need to introduce the “attention” mechanism. The attention
mechanism can automatically learn and calculate the contribution of input data to output
data so that it can ignore irrelevant noise information and focus on key information. CBAM
is an attention mechanism module that combines space and channel [25]. Compared with
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the SE attention mechanism that only focuses on channels, it can achieve better results.
CBAM consists of a Channel Attention Module and Spatial Attention Module, which carry
out Attention on the channel and space, respectively, as shown in Figure 5. In this paper,
the CBAM module is added to the stage of the ShufflenetV2 backbone network, which can
strengthen the apple features learned by the network.

Figure 5. CBAM.

Add the ASFF Module

Feature pyramid can fuse features of different layers and detect images of different
sizes, but the inconsistency between features of different scales is its main limitation. The
ASFF module can make each feature layer focus on identifying objects that fit its grid size,
spatially filter features on other layers, and retain only useful information for composition.
This can solve the problem of indistinguishable fruits of different sizes clustered together
in apple images [5]. Other layers in ASFF are adjusted to the same size as the current layer
through convolution operations and fused to obtain adaptive weights. The adaptive weight
is then combined with each layer to finally obtain a fusion module of the same size as the
current layer. Its structure is shown in Figure 6. This paper adds an ASFF module after
the PANet network to learn the relationship between different feature maps. This allows
apples of different sizes to be predicted by the corresponding feature layers, improving the
detection accuracy of the network.

Prune the Feature Layer

Adding modules can improve the detection accuracy of the network but also reduce
the detection speed of the network. To improve the detection speed of the network to
meet the real-time requirements, this paper chooses to delete one feature extraction layer
in PANet and adjust the structure, and only uses two feature layers (TFL) to reduce the
amount of calculation. Figure 7 shows the PANnet part of the YOLOX-tiny network. The
black box shows the reduced network structure and the number of anchors. We only keep
the 13 × 13 and 26 × 26 outputs, i.e., out2 and out3, respectively.
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Figure 6. ASFF.

Figure 7. PANet with two feature layers.

Using only two feature layers can not only reduce the number of convolution kernels
and computational complexity of PANet but also reduce the computing power required for
prediction. In the case of 416 × 416 input size and num_class = 1, deleting a layer of feature
layer Head will reduce the original 3549 anchors to 845 anchors. Although this will reduce
the detection ability of small targets, it will not select long-distance small targets as objects
during the operation of the apple picking robot, and the actual effect verification will not
reduce the detection effect of the model too much.

3. Results and Discussion

The training equipment used in this paper is a PC device with the Windows 10
operating system. The system is equipped with an Intel e5-2683 processor, 64 GB of
memory, four NVIDIA GTX1080ti graphics cards, and 11 GB of video memory. The
algorithm programs used in this paper are written in the Python language on PyCharm,
and CUDA and cuDNN are used for network training acceleration. The training epoch is
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set to 150, the batch size is set to 64, and the input image size is set to 416 × 416. Input
size and detection speed are mutually exclusive quantities and a smaller image input
size speeds up detection. Therefore, the input image size is set to 416 × 416 to improve
the real-time performance of the model detection. For all network models to compare
performance fairly, the same input size needs to be set in the comparison experiments. This
has a significant impact on the performance of the network models. The test equipment
uses the Windows 10 operating system, AMD Ryzen7 4800 h processor, 16 GB of memory,
an NVIDIA GTX1650 graphics card, and 4 GB of graphics memory (Table 1).

Table 1. Test System Hardware.

Computer Configuration Specific Parameters

Operating system Windows 10
CPU AMD Ryzen 7 4800H

Random Access Memory 16 GB
GPU NVIDIA GTX1650

To verify the detection effect of the model on apples in the natural environment, this
paper uses 30 complex orchard pictures as the test set, including 5 daytime unbagged apple
pictures, 12 daytime bagged apple pictures, 10 nighttime unbagged apple pictures, and
3 nighttime bagged apple pictures. As nighttime and bagging are the focus and difficulty of
the current research on picking robot vision, this paper chooses the nighttime and bagging
test images to account for a higher proportion, which can better reflect the model’s detection
effect on apples in the natural environment.

In this paper, AP, Precision, Recall, Param, FPS, and F1 are selected as the comparison
standards for detection effects to determine the pros and cons of the model. Param repre-
sents the number of parameters the network contains, and FPS represents the number of
pictures the model can detect in one second. Taking the IOU threshold of 0.5 as the standard,
the AP value is the area under the Precision—Recall (PR) curve formed by Precision and
Recall. F1 score can be regarded as a weighted average of model accuracy and recall, which
takes into account both the accuracy and recall of the model.

3.1. ShufflenetV2-YOLOX Model Performance Verification

To validate the effectiveness of the network improvement method, we chose to conduct
ablation experiments to evaluate each step. AP, Param, and FPS were chosen as the
evaluation metrics. The results of the ablation experiment are shown in Table 2.

Table 2. Ablation experiment.

YOLOX-Tiny ShufflenetV2 CBAM ASFF TFL AP Param(M) FPS

� 90.52% 5.03 55
� � 91.69% 3.19 53
� � � 94.16% 3.61 52
� � � � 97.29% 6.68 48
� � � � � 96.76% 5.40 65

It can be seen from the data in Table 2 that each step of improvement is an effective
improvement, which effectively improves the detection speed or detection accuracy of
the model. The AP value of the ShufflenetV2-YOLOX method is 96.76%, which is 6.24%
higher than that of the original YOLOX-Tiny method. Although the Param is increased
by 0.4 m, the detection speed is increased by 18% to 65 FPS. Both the CBAM module and
ASFF module effectively improve the detection effect of the network, and the method of
deleting the feature layer also improves the detection speed within the range of tolerable
reductions in accuracy. Due to the use of depthwise separable convolution and channel
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shuffle operations in ShufflenetV2, when CSPDarknet is replaced, although the amount of
network parameters is reduced, the detection speed is not improved.

Different deployment devices are suitable for different network structures. For ex-
ample, a PC can use a CPU or GPU for inference. Depthwise separable convolutions are
more suitable for running on CPUs, and normal convolutions are more suitable for running
on GPUs. Due to the depthwise convolution and channel shuffle operations used in Shuf-
flenetV2, inference on a GPU is not the best choice. Using ShufflenetV2 as the backbone
network can achieve 15.6 FPS on the Ryzen7 4800 h(CPU), while YOLOX-Tiny can only
achieve 11.5 FPS. In practice, we can choose different network structures based on different
deployment devices.

3.2. Apple Detection Effect in Natural State

Apple recognition in complex environments has always been a research challenge.
In this experiment, to verify the recognition effect of the trained model for different fruit
states, apples without bags, apples with bags, and apples at night from the test set are
detected. Figure 8 shows the apple detection results in a natural environment using the
ShufflenetV2-YOLOX model. According to the detection results, the model proposed in
this paper achieves good recognition results in various situations and meets the accuracy
requirements of the apple picking robot.

Figure 8. Apple detection effect in natural environment based on ShufflenetV2-YOLOX
network model.

For images of unbagged apples during the day, the model can detect most of the
apples, with only a few overlapping and too distant apples having detection errors. Images
of bagged apples are not only sticky, overlapping, and obscured, but also irregular in shape
due to the film on the surface of the bagged fruit. There are gaps between the fruit and
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the film, which compromise the texture and color characteristics of the apple surface. As
a result, bagged apples can be identified less accurately than nonbagged apples. Because
of the low ambient light at night, apples close to a light source will have more distinctive
features. As a result, apples close to the light source are easily detected, while apples away
from the light source are difficult to detect. This is the biggest obstacle to nighttime image
detection. In the future, the overall effect would be improved if more effort could be put
into planning the lighting system to achieve more uniform illumination. Some obscured or
small targets may not be detected, due to the limitation of the input image size of 416 × 416.
All models have the same problem. Increasing the input size of the image can improve the
detection of the model to some extent, but at the expense of detection speed. For example,
ShufflenetV2-YOLOX has a detection speed of 65 FPS at an input size of 416 × 416 and
60 FPS at an input size of 640 × 640. Although this is a reduction of 5 frames, the detection
is much better and many small targets can be detected. However, the small targets are
apple targets that are further away from the picking robot. For the apple picking robot, the
small targets are not its working targets and do not affect the actual results. In subsequent
work, a threshold pattern can be used, ignoring apples with a detection area smaller than a
certain percentage. A target that focuses on a larger proportion of the area is an apple with
a shorter distance. This facilitates the work of the picking robot.

Table 3 shows the precision and recall of the model detection in the three cases, the
number of apples in the pictures, and the number of apples detected. There were 31 images
containing 372 apple targets, of which 345 were detected. Our model can effectively address
the low recall of apple detection networks under bagged and nighttime conditions.

Table 3. Detection results in different scenarios.

Number of
Images

AP Recall
Number of

Apples
Number of

Apples Detected

Total 31 96.76% 93.75% 372 345
Unbagged apples 11 97.29% 94.45% 134 125

Bagged apples 9 95.53% 93.15% 110 102
Apple at night 11 95.86% 93.45% 128 118

3.3. Apple Detection Effects Contrast Experiment of Different Models

To verify the superiority of the ShufflenetV2-YOLOX model proposed in this paper,
it is compared with YOLOv5-s, YOLOv4-Tiny, Efficientdet-d0, Mobilenetv2-YOLOv4-lite,
and YOLOX-Tiny [7,26,27]. Figure 9 shows the apple detection results of ShufflenetV2-
YOLOX and other models in the natural environment. ShufflenetV2-YOLOX, YOLOv4-
Tiny, YOLOX-Tiny, Mobilenetv2-YOLOv4-lite, and YOLOv5-s have an image input size of
416 × 416, and Efficientdet-d0 has better results because its network settings have a fixed
input size of 512 × 512. To make each model have a clearer contrast effect, this paper selects
the apples detected by all models as the total set and marks the detection effect diagram
of each model. The white circle indicates the missed area, and the blue circle indicates
the missed area. The more white and blue circles, the worse the effect of the model. As
can be seen from Figure 9, apple targets during the day are bright in color and distinct in
shape. Most models perform best on unbagged apples during the day. On the other hand,
the plastic bags on the surface of the apples can blur their color and shape characteristics,
resulting in the target and background being too close together. Bagged apples are therefore
very susceptible to missed detection. At night, apples under strong light and low light
are difficult to detect due to illumination problems. However, the ShufflenetV2-YOLOX
model proposed in this paper has the least white and blue circles in the detection images,
indicating that it has the highest recall rate. In particular, apple images in bagging and at
night, although not all targets in the image are detected, have a significant advantage over
other lightweight networks. This shows that the model can effectively solve the problem of
low recall rate of the apple detection network under bagging and night conditions.
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Figure 9. Cont.

126



Agriculture 2022, 12, 856

Figure 9. Comparison of ShufflenetV2-YOLOX with other advanced networks for apple
detection effects.

Figure 10 shows a comparison of the PR curves of the different models for apple
detection. Table 4 shows a comparison of AP, precision, recall, F1, parameters, and FPS
for the different models. In terms of detection accuracy, YOLOv4-Tiny is a simplified
lightweight network from YOLOv4 with an AP of 89.14%, which is close to the performance
of YOLOX-Tiny. YOLOv5-s is currently one of the best detection results among lightweight
networks, with a relatively high recall and detection accuracy. The AP and F1 reach
95.44% and 0.94, respectively. Mobilenet-YOLOv4-lite achieves an AP of 92.99%. It has the
highest accuracy of the tested models with 95.96%, but it does not have a high recall of
83.59%, which does not meet the apple target detection requirements. The performance
of Efficientdet-d0 is similar to that of Mobilenet-YOLOv4-lite. The ShufflenetV2-YOLOX
model proposed in this paper has a high recognition accuracy with an AP of 96.76% and
a detection accuracy of 95.62%. In particular, the recall rate is the highest score among
all lightweight networks, reaching 93.75%. Compared to other models, our model can
effectively detect bagged and nighttime apple targets from low-resolution images, which is
responsible for its high recall rate.

Figure 10. PR curve comparison of ShufflenetV2-YOLOX with other advanced networks.
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Table 4. Comparison of ShufflenetV2-YOLOX with other lightweight networks.

Models AP Precision Recall F1 Param (M) FPS

YOLOX-Tiny 90.52% 94.06% 74.22% 0.83 5.03 55
YOLOv4-Tiny 89.14% 89.64% 87.89% 0.89 5.77 54

Mobilenet-YOLOv4-lite 92.99% 95.96% 83.59% 0.89 10.30 22
YOLOv5-s 95.44% 94.82% 92.97% 0.94 7.20 18

Efficientdet-d0 92.89% 95.91% 86.42% 0.91 3.69 21
Ours 96.76% 95.62% 93.75% 0.95 5.40 65

In terms of detection speed, Yolov4-tiny and YOLOX-Tiny have an advantage in detec-
tion speed due to their lightweight network structure design, which can reach around 55
FPS. YOLOv5-s is a little slower at 18 FPS, and Efficientdet-d0 has fewer network param-
eters but is slow because it uses a lot of deeply divisible volume integrals. Although its
floating-point operations per second (FLOPS) are small, it spends more time on memory
access costs, so the speed is not ideal at 21 FPS. MobilenetV2-YOLOv4-lite uses MobilenetV2
to replace the YOLOv4 backbone, but the PANet is still large, and it uses deep detachable
convolution instead of partial convolution, so the detection speed is not ideal, only 22 FPS.
Our ShufflenetV2-YOLOX benefits from a lightweight backbone network with a low num-
ber of parameters. The anchor-free and two feature extraction layers can in turn reduce
parameters and computations while satisfying the actual apple orchard detection. This
results in a fast recognition speed of up to 65 FPS.

With higher detection accuracy and speed, ShufflenetV2-YOLOX enables real-time,
accurate, and fast recognition of apples in natural environments, making it more suitable
for deployment in apple picking robots.

3.4. Apple Detection Effect in Embedded Devices

Traditional deep learning algorithms use an Industrial Personal Computer (IPC) as
the deployment device, which is not suitable for real-time apple detection in the field, due
to its weight and power limitations. The edge device has powerful arithmetic power, small
size, light weight and low power consumption. It can locally perform arithmetic processing
on the collected data and is a good choice to replace IPCs, and NVIDIA Jetson Nano is the
most cost-effective edge device available [10].

The apple picking experimental platform with Jetson Nano as the controller is shown
in Figure 11. It mainly consists of a moving part, a gripper, a visual recognition system, and
a robot arm. When the apple picking robot starts the picking task, it will first detect and
select an apple through the visual recognition system. Then, it sends the apple’s position
information to the control system, and the robot arm is driven to approach the apple. The
gripper will be driven to the designated position to grab the apple and use the cutter to cut
off the stalk.

Figure 11. The apple picking experimental platform.
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In this paper, we use Jetson Nano as an embedded deployment platform with software
environment JetPack-4.5.1, TensorRT-7.1.3, and the image input size set to 416 × 416. The
Pytorch model is first transformed into an ONNX model, and then TensorRT is used to
quantify the accuracy of the parameters of the model and to merge the workflow so that
it keeps the model running on the GPU as much as possible, thus allowing the model to
run faster. We test the inference speed of the Pytorch Single-precision floating-point (FP32)
model, ONNX INT64 model, TensorRT FP32 model, and TensorRT FP16 model on Jetson
Nano. In Figure 12, the arrows refer to the increase or decrease in accuracy as a result of
this operation compared to the previous phase.

Figure 12. ShufflenetV2-YOLOX models for inference speed and AP accuracy on Jetson Nano.

On the Jetson Nano, the ShufflenetV2-YOLOX model with Pytorch FP32 can run at a
speed of 11.5 FPS. The ONNX model, on the contrary, runs slower because of its parameter
precision of double precision (INT64). As shown in Figure 11, we can see that TensorRT
is very effective in accelerating the model. The TensorRT FP32 detects 47.8% faster with
essentially no change in AP accuracy, reaching 17.1 FPS, while the TensorRT FP16 model
detects 26.3 FPS with only a 0.88% loss in AP, a 53.8% improvement compared to the
TensorRT FP32, and a 128.3% improvement compared to the original Pytorch FP32 model.
ShufflenetV2-YOLOX is fully capable of meeting the real-time requirements of picking
robots on embedded devices.

3.5. Comparison of ShufflenetV2-YOLOX with Existing Apple Target Recognition Methods

Table 5 gives the ShufflenetV2-YOLOX proposed in this paper as well as existing apple
detection approaches. In the FPS column, PC and Edge indicate the speed at which the
method runs in the computer and edge devices, respectively.

As can be seen from Table 5, the ShufflenetV2-YOLOX model proposed in this paper
does not achieve the highest detection accuracy though, being 1.4 percentage points lower
in AP compared to other methods mentioned in the literature. The possible reasons for
this are considered: On the one hand, the dataset used in this thesis is complex, with three
scenarios present. Each image contains an average of 12 apple targets, which raises the
difficulty of apple detection. On the other hand, the network designed in this thesis is a
light network, which focuses more on the operation speed of the network. Therefore, it is
slightly lacking in detection accuracy. Compared with the methods in [12,13], the improved
network in this thesis is more lightweight and improves the detection speed by 62 FPS and
61 FPS, respectively. The study in [10] can achieve a detection speed of 30 FPS on edge
devices. However, the Jetson AGX Xaver it uses is eight times more expensive than the
Jetson Nano used in this paper and is not cost-effective. Its AP is only 83.64%, well below
our 96.76%.

Compared to the parameters in the literature, the ShufflenetV2-YOLOX model pro-
posed in this paper has more outstanding advantages. Real-time detection can be achieved
while ensuring detection accuracy.

129



Agriculture 2022, 12, 856

Table 5. Comparison between ShufflenetV2-YOLOX and existing detection methods.

Methods Data Sets
Detection
Network

Input Size AP FPS F1

Literature [10] Dense apple Improved
YOLOv3-Tiny 1920 × 1080 83.64% 30 (Edge) \

Literature [12] Apple shaded
by leaves

EfficientNet-
YOLOV4 416 × 416 98.15% 2.95 (PC) 0.96

Literature [13] Apple Mask-RCNN 280 × 720 \ 4 (PC) 0.905

Our
Unbagged apples,

Bagged apples and
Apple at night

ShufflenetV2-
YOLOX 416 × 416 96.76% 65 (PC)/

26.3 (Edge) 0.95

4. Conclusions

To solve the problems associated with apple object detection in natural environments,
this paper presented ShufflenetV2-YOLOX, an improved apple object detection method
based on YOLOX-Tiny. The method was trained using a dataset of apples under daytime,
bagged, and nighttime conditions. By replacing the backbone network, adding an attention
mechanism, adding adaptive feature fusion, and reducing the number of feature extraction
layers, the detection speed and detection accuracy of the model were improved.

The AP, accuracy, recall, F1, and FPS of the trained model were 96.76%, 95.62%, 93.75%,
0.95, and 65 FPS, respectively. A 6.24% improvement in AP and 10 FPS improvement
in detection speed were achieved compared to the original YOLOX-Tiny network work.
In addition, compared to the advanced lightweight networks YOLOv5-s, Efficientdet-d0,
YOLOv4-Tiny, and Mobilenet-YOLOv4-Lite, the AP increased by 1.32%, 3.87%, 7.62%,
and 3.77%, respectively, and the detection speed increased by 47 FPS, 44 FPS, 11 FPS,
and 43 FPS, respectively. This shows that the feature fusion mechanism and the attention
mechanism can improve the accuracy of apple detection in natural environments at an
additional cost. The application of anchorless detectors overcame the drawbacks of past
Anchor-based detectors, which were computationally intensive and reduced the setting of
hyperparameters and post-processing. At the same time, the application of a lightweight
backbone network and the use of only two feature extraction layers reduced the size
of the model and increased the detection speed. For some embedded devices with low
computational power, such as the NVIDIA Jetson Nano, the detection speed could reach
11.5 FPS, while with TensorRT acceleration, the inference speed of the TensorRT FP16 model
reached 26.3 FPS at the expense of only 0.88% AP.

In summary, it offers significant advantages over other current lightweight networks
in terms of detection speed and detection accuracy, and significantly improves recall rates
for night and bagged apples. It can meet the requirements of real-time and high-precision
detection for embedded devices. The method can provide an effective solution for vision
systems for apple-picking robots.
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Abbreviations

ASFF Adaptive Spatial Feature Fusion AP Average Precision
CBAM Convolutional Block Attention Module CNN Convolutional Neural Network
FP32 Single-precision Floating-point FP16 Half-precision Floating-point
FPS Frames Per Second FLOPS Floating-point Operations Per Second
GIOU Generalized Intersection over Union IOU Intersection over Union
INT64 Double Precision IPC Industrial Personal Computer
PR Precision-Recall TFL Two Feature Layers

References

1. Wang, N.; Joost, W.; Zhang, F.S. Towards sustainable intensification of apple production in China-Yield gaps and nutrient use
efficiency in apple farming systems. J. Integr. Agric. 2016, 15, 716–725. [CrossRef]

2. Ji, W.; Ding, Y.; Xu, B.; Chen, G.Y.; Zhao, D.A. Adaptive variable parameter impedance control for apple harvesting robot
compliant picking. Complexity 2020, 2020, 4812657.

3. Sumit, S.; Harsh Stuart, K.; Utkal, M. Automated CNN Based Coral Reef Classification Using Image Augmentation and Deep
Learning. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 2021, 29, 253–261.

4. Xia, X.; Zhou, G.M.; Qiu, Y.; Li, Z.; Wang, J. Detection of double overlapped fruits in natural scene for apple operation robot.
J. Agric. Sci. Technol. 2018, 20, 63–73.

5. Liu, S.; Huang, D.; Wang, Y. Learning Spatial Fusion for Single-Shot Object Detection. arXiv 2019, arXiv:1911.09516.
6. Lv, J.D.; Wang, F.; Xu, L.M.; Ma, Z.H.; Yang, B. A segmentation method of bagged green apple image. Sci. Hortic. 2019, 246,

411–417. [CrossRef]
7. Bochkovskiy, A.; Wang, C.Y.; Liao, H.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
8. Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A fruit detection system using deep neural networks.

Sensors 2016, 16, 1222. [CrossRef] [PubMed]
9. Zhao, D.A.; Wu, R.D.; Liu, X.Y.; Zhao, Y.Y. Apple positioning based on YOLO deep convolutional neural network for picking

robot in complex background. Trans. Chin. Soc. Agric. Eng. 2019, 35, 164–173.
10. Mazzia, V.; Khaliq, A.; Salvetti, F.; Chiaberge, M. Real-Time apple detection system using embedded systems with hardware

accelerators: An edge AI application. IEEE Access 2020, 8, 9102–9114. [CrossRef]
11. Yan, B.; Fan, P.; Lei, X.; Liu, Z.; Yang, F. A real-time apple targets detection method for picking robot based on improved YOLOv5.

Remote Sens. 2021, 13, 1619. [CrossRef]
12. Wu, L.; Ma, J.; Zhao, Y.; Liu, H. Apple detection in complex scene using the improved YOLOv4 model. Agronomy 2021, 11, 476.

[CrossRef]
13. Chu, P.Y.; Li, Z.J.; Lammers, K.; Lu, R.F.; Liu, X.M. Deep learning-based apple detection using a suppression mask R-CNN. Pattern

Recognit. Lett. 2021, 147, 206–211. [CrossRef]
14. Tian, Y.N.; Guo, D.Y.; Wang, Z.; Wang, H.; Li, E.; Liang, Z.Z. Apple detection during different growth stages in orchards using the

improved YOLO-V3 model. Comput. Electron. Agric. 2019, 157, 417–426. [CrossRef]
15. Mosavi, A.; Ardabili, S.; Varkonyi-Koczy, A.R. List of Deep Learning Models. In International Conference on Global Research and

Education; Springer: Cham, Switzerland, 2019; pp. 202–214.
16. Ji, W.; Gao, X.X.; Xu, B.; Pan, Y.; Zhang, Z.; Zhao, D.A. Apple target recognition method in complex environment based on

improved YOLOv4. J. Food Process Eng. 2021, 44, e13866. [CrossRef]
17. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In European

Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 21–37.
18. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef] [PubMed]
20. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. YOLOX: Exceeding YOLO Series in 2021. arXiv 2021, arXiv:abs/2107.08430.
21. Yu, J.H.; Jiang, Y.N.; Wang, Z.Y.; Cao, Z.M.; Huang, T. UnitBox: An Advanced Object Detection Network. In Proceedings of the

24th ACM international conference on Multimedia, Amsterdam, The Netherlands, 15–19 October 2016; pp. 516–520.
22. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss

for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; pp. 658–666.

23. Ma, N.N.; Zhang, X.Y.; Zheng, H.T.; Sun, J. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design. In
Proceedings of the 15th European Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 122–138.

131



Agriculture 2022, 12, 856

24. Zhang, X.Y.; Zhou, X.Y.; Lin, M.X.; Sun, J. Shufflenet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856.

25. Woo, S.H.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the 15th European
Conference on Computer Vision, Munich, Germany, 8–14 September 2018; pp. 3–19.

26. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and Efficient Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 10781–10790.

27. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Mobilenetv2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520.

132



Citation: Latif, S.; Lindbäck, T.;

Karlberg, M.; Wallsten, J. Bale

Collection Path Planning Using an

Autonomous Vehicle with

Neighborhood Collection

Capabilities. Agriculture 2022, 12,

1977. https://doi.org/10.3390/

agriculture12121977

Academic Editors: Jin Yuan, Wei Ji

and Qingchun Feng

Received: 4 October 2022

Accepted: 14 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agriculture

Article

Bale Collection Path Planning Using an Autonomous Vehicle
with Neighborhood Collection Capabilities

Saira Latif 1,*, Torbjörn Lindbäck 1, Magnus Karlberg 1 and Johanna Wallsten 2

1 Department of Engineering Sciences and Mathematics, Luleå University of Technology (LTU),
SE-971 87 Luleå, Sweden

2 Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural
Sciences (SLU), SE-901 83 Umeå, Sweden

* Correspondence: saira.latif@ltu.se

Abstract: This research was mainly focused on the evaluation of path planning approaches as a
prerequisite for the automation of bale collection operations. A comparison between a traditional
bale collection path planning approach using traditional vehicles such as tractors, and loaders with
an optimized path planning approach using a new autonomous articulated concept vehicle with
neighborhood reach capabilities (AVN) was carried out. Furthermore, the effects of carrying capacity
on reduction in the working distance of the bale collection operation was also studied. It was
concluded that the optimized path planning approach using AVN with increased carrying capacity
significantly reduced the working distance for the bale collection operation and can thus improve
agricultural sustainability, particularly within forage handling.

Keywords: agriculture; path planning; neighborhood collection; autonomous vehicle; genetic algo-
rithm; global optimization; bale collection problem; forage handling

1. Introduction

Up until present, the application of scientific and technological developments through
increased mechanization and precision farming have provided several opportunities in agri-
cultural production and within forage handling operations. Some promising engineering
developments in the 20th century with regard to forage handling include forage harvesters,
balers, and the automated wrapping equipment of balers using stretch films 25 μm thick
to reduce the risks of dust, molds, spores, and mycotoxin respiratory allergenic disorders
in livestock and humans. Baler machines have made it possible to trade silage (harvest
and storage of moist grass using fermentation) in portable packages between farms, which
typically weigh 600–800 kg freshly cut per bales and are more popular on smaller farms
with limited labor and financial resources to construct silos [1,2].

Bales made up of hay or silage formed by hay are usually too heavy to be picked up
by humans alone. Thus, they are picked up from fields using conventional utility vehicles
such as tractors or loaders operated by a human. These kinds of operations are labor
intensive and associated with health and accident risks [3]. There is also a potential to
further improve the efficiency and environmental impact since most decisions are made by
humans and thus limited to human capacities in terms of sensing, multitasking, planning,
consequence analysis, etc.

Therefore, in this study, the possibility of using a new autonomous agricultural vehicle
with the neighborhood pick-up capabilities concept (AVN) was investigated. The research
focused on off-board path planning, which is a critical task within the complete automation
process of the bale pick-up operation.

Research in the route or path planning of agricultural field tasks can be broadly
categorized into two groups based on the similarity of operations: coverage path planning
(CCP) and point-to-point path planning (P2P). It has been observed by [4] that agricultural
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operations that required coverage path planning have been slightly more investigated. Most
solutions for the path planning of agricultural field operations are based on optimization
methods utilizing heuristic approaches or metaheuristic approaches depending upon the
size and context of the problem [5]. In situations where vehicle routes must be planned
over large areas with high economical risk, methods such as metaheuristics perform an
extensive search for a solution and should thus be preferred [6].

Route planning for agricultural field operations (AFOs) involving the use of vehicles
is referred to as vehicle route planning (VRP), which is a well-studied problem in the field
of operational planning. Recently, VRP solutions have been applied to the planning and
execution of various agricultural field tasks by researchers for the scheduling of the trans-
portation of livestock [7,8] mission planning for coverage operation such as grass mowing
and seedling [9], biomass operation scheduling [10], farm-to-farm path determination for
scheduling crop harvesting [11], and route planning for fertilizer application [12]. Recently,
a decision tool to support farmers in the operational planning of field operations was
proposed by [13] to assist in field partitioning, route generation, and evaluation.

Significant improvements have been shown for AFOs in research by the automation
of the AFOs. A study [14] on field coverage operations for an autonomous tractor using a
mission planner showed a 50% reduction in non-working distance. Coverage operations
were then further studied for irregular shaped fields with obstacles [15,16]. In another
implementation by [17], the optimal covering route and feasible positions for grain transfer
between the combine harvesters and tractors were generated using VRP and the minimum
cost network flow.

The application and comparability of metaheuristics for AFOs have been widely stud-
ied and is still ongoing. Recently, a hybrid genetic algorithm (GA) was tested by [18] for a
capacitive vehicle route problem (CVRP) by utilizing Gillett and Miller, Downhill, and near-
est neighbor heuristics to generate the initial population and refine solutions of GA. Experi-
mental results showed that the hybrid approach generated good solutions for CVRP with
low computational cost. In another research by [19] with regard to capacitated coverage
path planning problem for arable field, two popular metaheuristics—simulated annealing
optimization (SAO) and ant colony optimization (ACO) techniques—were evaluated and
it was found that SAO performed better than ACO. Aside from AFOs, a multi-objective
optimal solution to priority-based waste collection and transportation was proposed by [20]
using particle swarm optimization, local search, and simulated annealing (SAO). The op-
timized solution resulted in a 42.3% reduction in the negative effects of greenhouse gas
emissions compared to traditional waste management.

So far, few studies have investigated the bale management in fields. There exists
few published studies on the sequence optimization of the bale collection operation using
wagons or loaders. The intended bale field operation was described as a bale collection
problem (BCP) and was solved as a traveling salesman problem using GA by [21]. While in
another study on BCP in [22], a heuristic-based approach based on K-mean clustering and
nearest neighbor techniques to optimize the bale collection route were tested in simulation.
Comparative results from both studies showed significant improvement in the final gener-
ated route. However, no other research studies were found on the route optimization of
bale collection and no single study was found on the bale collection on fields, especially
with the prerequisite of neighborhood pick-up possibilities.

1.1. Objective

The objective of the research presented in this paper was to optimize the bale
collection operation by means of travelled distance using notion of an autonomous
articulated vehicle with neighborhood collection capability (AVN) and compare that
with traditional collection methods.
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1.2. Scope

The research focused on the development of a global route plan for bale collection
operations in simulation for notion of using AVN. For a global route plan, a static and
known environment was considered since bale positions and fields are static entities. Bale
positions were assumed to been known from a previous baling operation.

The following additional general assumptions were made:

- Only bale collection operation was studied;
- A notion of new type of agricultural vehicle (AVN) was considered for the application;
- The AVN was considered to be a nonholonomic point like robot for the path generation;
- Kinetic constraints of the vehicle were excluded;
- Feasibility is measured only by total travelled distance.

2. Research Methodology

To investigate the effects of different bale collection strategies, a simulation approach
was chosen. Path planning is typically performed in computer environments, which further
makes feasibility evaluation easy compared to real life experimental strategies (i.e., to
measure the feasibility on path suggestions on an actual field).

Two different approaches were studied and verified through the testing of situations
with outcome pre-knowledge. The first approach imitates the bale collection strategy of
farmers by always choosing the closest bales from the current position. The other approach
instead uses a GA to optimize the collection order and position within a radius from
which the AVN can reach. To investigate the differences in travelled distance (i.e., chosen
feasibility) between a traditional and proposed collection approach, two different fields
of the same size and with the same number of bales with a pre-determined distribution
was studied. One was a simple rectangular field (field 1) and the other was a L-shaped
field with more geometrical constraints (field 2). This enables investigations of possible
dependencies on field complexity. With the fields selected, some simulation parameters
could be set (e.g., grid size, inflation length, number of possible pick-up positions etc.) by
conducting verifying tests to find a trade-off between the computational time and accuracy.
Then, the experiments were designed by choosing which parameters to vary and thus
which simulations to run. To enable comparison, the results from these simulations were
then compiled into tables and some paths were also visualized, enabling the analysis of
collection order as well as verification on the feasibility.

The traditional approach was generated by considering how humans would operate
in a typical agricultural environment for bale collection operation. Generally, a human
operator would pick-up the next visible bales closest to the present location. Such a heuristic
approach could be programmed by using the nearest neighbor algorithm. Through this
approach, two different cases were studied: one with a traditional pick-up vehicle which
always has to go to the nearest bales and another with the AVN.

In addition, an optimization approach based on commonly used GA was further
developed, thus enabling a comparison to the traditional approach. Here, two different
strategies for initial population generation were used to show the effects on convergence.

Verification of the simulations were conducted by running a test simulation on config-
urations where the results were pre-known. In addition, the results from all simulations
were analyzed manually to make sure that the paths were consistent.

2.1. Model Description

In this study, a notion of an AVN (see Figure 1) with a regular forwarder crane of 10 m
long was used for the modeling. For comparison, traditional agricultural vehicles (e.g.,
tractors or loaders) were also modeled. These traditional vehicles are typically equipped
with front loaders requiring additional traveling for the loading of each bale (i.e., they
cannot load bales onto themselves). This effect is excluded in the traditional vehicle models
in this study, leading to underestimation of the travelled distance.
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Figure 1. Autonomous off-road vehicle platform—Autonomous articulated vehicle with neighbor-
hood reach capability (AVN).

The problem formulation for the bale collection operation with a crane makes it
somewhat unique. The AVN can collect bales at a radius R, which makes the situation a close
enough traveling salesman problem (CETSP) [23]. The CETSP is a NP hard, combinatorial
problem, and some recent solutions for CETSP have been proposed based on the discrete
gravitation search algorithm and self-organizing maps [24,25]. However, the vehicle can
have different carrying capacities, thus leading to a close enough traveling salesman
problem with a capacity constraint. In this study, the collection sequence and collection
positions minimizing the total travelled distance was searched for and thus the CETSP is
defined as

minL(Σ, BP, CP) (1)

where Σ is the bale pick up sequence; CP is the desired collection position at radius R
(specified by AVN reach radius) around the bale positions (BP); minL is a function that
calculates the minimum length tour at collection positions around each bale.

Agricultural Field Models

The agricultural fields were modeled in two steps. To represent “go” and “no go”
areas (obstacles), binary occupancy maps (BOM) [26] were used and to find non-collision
paths within the “go” areas, probability roadmaps (PRM) [27] were used.

In this research, to investigate the possible effects of field complexity, two different
fields were studied. Field 1 (see Figure 2) is a rectangular field without any obstacle areas
imitating a quite typical environment for bale collection operations. Field 2 (see Figure 3)
on the other hand, is a representation of an irregular more complex agricultural field with
obstacle or intrusion areas. For both fields, bales were positioned by calculating the distance,
going in straight lines from one end to the other until the whole field was covered, and the
harvesting vehicle had collected enough material to form a bale based on the average yield,
etc. given in Table 1.

Figure 2a shows the BOM of field 1 where black dots indicates bales occupancy
and Figure 2b shows the inflated BOM of field 1. To reduce the calculation intensity for
simulations, only 10 discrete points on each bale collection radius were used, which are
represented as black dots surrounding the inflated bales in Figure 2b.
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(a) 

 
(b) 

Figure 2. (a) Binary occupancy map of the bale position in field 1. (b) Inflated binary occupancy map
of the bale position in field 1.

 
(a) 

 
(b) 

Figure 3. (a) Binary occupancy map (BOM) of the bale position in field 2. (b) Inflated binary
occupancy map (BOM) of the bales and bale collection positions in field 2.

Table 1. Bale distribution parameters.

Bale Distribution Parameters

Average grass yield ~7000 kg/ha

Average weight of bales ~700 kg

Harvester width ~3.0 m

Distance req to make one bale by harvester ~330 m
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Figure 3a shows the BOM of field 2 where black dots indicates bales occupancy and
Figure 3b shows the inflated BOM of field 2 including the discretized collection points at
AVN’s reach radius.

The distance traveled to release a bale can then be calculated through

d × HW × Y̌grass = W̃HB (2)

where d is the distance required to make one bale by harvester; HW is the harvester width;
W̃HB is the average weight of one bale; and Y̌grass is the average grass yield in a typical
season. ‘×’ represents multiplication operator. Based on the parameters in Table 1 and
Equation (2), bales were released after a travelled distance of around 330 m (some minor
adjustments were made if the release position coincided with the boundary of the field).

Binary Occupancy Maps for Field 1 and Field 2

A typical agricultural environment for the bale collection operation was modeled in
2D using binary occupancy maps. Bales are represented as occupied circle areas and once
a bale is picked up, it is removed from the BOM. To take the collection vehicle size into
consideration, the occupied areas were further inflated in the BOM. In Table 2, all BOM
settings for both fields (simple and complex) are summarized.

Table 2. Binary occupancy map (BOM) setting for both fields.

Binary Occupancy Map Based Settings for Both Fields

Total field area 3 hectares

Grid cell size 1 m

Grid resolution
(cells/meter2) 1 m

Inflation 1.3 m

Probabilistic Roadmaps

To further reduce the calculation intensity for the GA-simulations, static PRM was
used (stationary nodes and connection lines) to generate the collision free paths. The same
number of nodes and connection distance was used for both fields and the chosen PRM
parameters are given in Table 3.

Table 3. Selected PRM settings for the simulation.

PRM Graph Parameters

Number of nodes
1000

(Fixed position nodes +
random nodes)

Fixed position nodes

Storage position, start position, end
position and potential pickup points

for each bale and/or each
bales position

Random nodes
Nodes besides fixed nodes are
randomly generated once and

remained fixed afterward for all cases

Connection distance 50

The quality of the PRM depends on the number of nodes and connection distance and
also impacts the calculation intensity. For this study, 1000 nodes and 50 m in connection
distance was evaluated as a suitable trade-off.

The “bale storage position, pick-up positions (also bale positions for traditional pick-
up vehicle), start- and end position of the vehicle” were pre-defined nodes and then another
1000 randomly generated nodes were added. PRMs for both fields were kept fixed, despite
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the changes in map (e.g., when bales are picked up) to speed up the computation. However,
PRM connection lines did not cross the bale areas even after being removed.

Figure 4 shows the PRM for field 1 (a) and field 2 (b).

 
(a) 

 
(b) 

Figure 4. (a) Static PRM for field 1. (b) Static PRM for field 2.

2.2. Bales Collection Path Approaches

Two approaches to generate the bale collection paths were studied. The idea was to
imitate the bale collection approach of a farmer and compare it to a bale collection approach
based on optimization.

2.2.1. Nearest Neighbor Approach

One way of imitating how farmers collect bales, which was used for this study, is
through the nearest neighbor approach. It was here assumed that a farmer will choose
the nearest bales from its current position and then continue collecting one by one based
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on proximity. In the case of a traditional collection vehicle, the bale center is used as the
collection position. On the other hand, for the AVN, the nearest bale is first derived and
then the collection point around the bale that is closest to the Euclidian vector from the
previous collection position to the current nearest bale center is derived. A straight-line
path is used if no obstacles are intersected, otherwise a collision free path based on PRM
is derived. This approach uses the MATLAB© built-in nearest neighbor search algorithm
based on Euclidean distance between the set of points in free space. In case when there are
obstacles in the space, it may result in false positive in comparison to the farmers’ visual
judgment in a real situation.

2.2.2. Optimization Approach

Optimization of the total distance travelled (fitness function) was carried out by use of
a GA, which has good performance on finding the global optimum, has possibilities for
parallelization, and can be applied to various types of problems. However, GA can become
very calculation intensive and therefore, a lot of emphasis has been spent on simplifications,
making each iteration as fast as possible.

Since the notion of an agricultural vehicle (see Figure 1) with neighborhood collection
capability is used for this study, bales were collected not only in a certain order, but also from
a point on a circle with a certain radius (corresponding to the crane length) surrounding
the bales. Thus, a traveling solution is defined by a collection order and a set of points
on the collection circumference (i.e., collection angles). Since the collection order is a
permutation while collection angles are a set of constrained real numbers between 0 and 2π
(not a permutation), it was decided to use two GAs. Hence, the first GA (GA1) was used to
optimize the collection order represented as chromosome in the population of permutations
of the bales’ identities. For each collection order proposed by the first GA, a second GA
(GA2) was then used to optimize the collection positions for each bale. To speed up the
calculations, a discrete number of collection positions were defined from which GA2 had
to choose. In this way, the number of possible combinations were significantly decreased,
and integer representation was used for the chromosomes, which also contributes to
computational efficiency. For both GAs, the built in “ga”-solver in MATLAB© was used.
However, since GA1 is based on permutation chromosomes, custom functions for the
initial population, crossovers, and mutations were developed (for GA2, default settings
for these properties were used). To enable a comparison of the initial conditions, two
different cases of population initialization were tested (i.e., randomized initialization and
nearest neighbor initialization). Crossovers were conducted by flipping a random sized
part of the chromosomes while the mutations were carried out by swapping two elements
in the chromosome. After evaluating the performance by means of computational time and
accuracy, the following settings were used for both GAs:

• Population size = 50
• Crossover fraction = 50%
• Function tolerance = 1 × 10−5

• Elite count = 10
• Maximum nr. of stalling generations = 50
• Maximum nr. of generations = 100

For GA1, vectorization (i.e., working with the complete population for each iteration in-
stead of sequentially working which each chromosome in sequence) and no parallelization
was used, while the opposite was used for GA2, thus enabling GA2 to evaluate different
sets of collection angles in parallel, which is possible since there exist no dependencies
between those solutions.

At the lowest computational level (i.e., for a suggested collection order and set of
collection angles), the total travelled distance can be calculated. Here, between two subse-
quent collection points, a straight line path was derived if no collision in the occupancy
map occurred. Otherwise, the PRM was used to find the shortest collision free path (within
the pre-generated PRM network). To further improve the computational efficiency, all
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simulated collection orders were stored together with the, for that order, optimized set of
collection positions. For each new generation, this enabled an initial check of whether the
suggested collection orders have already been optimized by means of collection angles
or not. If not, a new optimization simulation is initiated, otherwise the already stored
feasibility value is used.

A 20-core computer was used for the parallel computations, leading to a total simula-
tion time for all set of parameters (field type, carrying capacities) of about 5 days.

3. Results

Simulations with the same set of parameters were carried out for both field 1 and field
2. The simulations included both the nearest neighbor and the optimization approaches.
For the nearest neighbor, to enable a fair comparison, two different cases were studied.
In the first case, notion of traditional vehicle without distance collection possibilities was
modeled and referred to as the “benchmark”. In the other case, the AVN notion was used
and referred to as the “nearest neighbor with radius R” (referred as NNR). Additionally, the
optimization approach was divided into two cases using the AVN notion. In the first case,
random permutations of the pickup sequence were used for the initial population, which here
is referred to as “random permutation initialization” (RPI). For the second case, the nearest
neighbor collection sequence was included in the initial population, which is referred to as
the “nearest neighbor permutation initialization” (NNPI). For each of these four cases, the
three different carrying capacities 1, 10, and all bales were evaluated, leading to 12 different
simulations for each field. The resulting paths for carrying capacity CC = 10 are shown in the
main text while the paths for the remaining simulations can be found in Appendix A.

3.1. Nearest Neighbor Approach

Figure 5 shows the resulting paths for field 1 with CC = 10 of the benchmark-(U)
and NNR case (L). Circle ‘o’ represents bales heuristically optimized pickup positions and
dots ‘•’ and ‘.’ represents bales positions and discretized pickup position at reach radius
respectively. By adding a reach radius, the traveled distance was reduced from 1750 m to
1590 m while the collection sequence remained.

Figure 6 shows the resulting paths for field 2 with CC = 10 of the benchmark-(L) and
NNR case (R). By adding a reach radius, the traveled distance was reduced from 1470 m to
1300 m while the collection sequence remained.

3.2. Optimization Approach

Figure 7a shows the resulting paths for field 1 with CC = 10 of the RPI case where ‘x’
represents bales optimized pickup positions. Figure 7b shows the corresponding fitness
convergence where black dots ‘·’represent the best fitness in each generation and marker
‘+’ represents the average population fitness value in each generation. Figure 7c shows
the resulting path of the NNPI case with the corresponding fitness convergence (d). By
incorporating a nearest neighbor optimization as guess in the initial collection sequence
population, the travelled distance was reduced from 1470 m to 1360 m.
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Figure 5. Resulting paths for field 1 with CC = 10 of benchmark-(U) and NNR (L).

Figure 6. Resulting paths for field 2 with CC = 10 of benchmark-(L) and NNR (R).
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(a) (b) 

  
(c) (d) 

Figure 7. Resulting paths for field 1 with CC = 10 of (a) RPI case (b) RPI convergence, (c) NNPI case
and (d) NNPI convergence.

Figure 8a shows the resulting paths for field 2 with CC = 10 of the RPI case and the
corresponding fitness convergence (b). Figure 8c shows the resulting path of the NNPI case with
the corresponding fitness convergence (d). By incorporating a nearest neighbor in the initial
collection sequence population, the travelled distance was reduced from 1490 m to 1230 m.

3.3. Results Compilation

Results of the travelled distance for all simulations are compiled in Tables 4 and 5
where the two path planning approaches and their respective subcases are arranged in
columns from left to right for the three different carrying capacities given in rows. For
the optimization approach, solutions for CC = 1 had weak dependency on the collection
order. Some deviations compared to NNR might occur due to the fact that the discrete
collection positions do not necessary coincide with a straight line from the storage location
to the bales. Hence the NNR with CC = 1 is an approximation for the optimized approach.
Table 4 shows the compiled results of the travelled distance for field 1.
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(a) (b) 

  
(c) (d) 

Figure 8. Resulting paths for field 2 with CC = 10 of (a) RPI case, (b) RPI convergence, (c) NNPI case,
and (d) NNPI convergence.

Table 4. Compiled results for field 1.

Path Distance (m)

Path Planning
Approaches

Nearest Neighbor Approach Optimization Approach

(Traditional vehicles) (AVN notion) (AVN notion)

Subcases Benchmark NNR RPI NNPI

Vehicles Carrying
Capacity (CC)

CC = 1 9630 ~9040 ~9040 ~9040
CC = 10 1750 1550 1470 1360
CC = all 1160 990 860 820

It can be observed in Table 4 that an increasing carrying capacity for all three cases
resulted in a significant distance reduction. Percentage reduction in the travelled distance
in field 2 for the three carrying capacities are shown in Figure 9.
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Table 5. Result compilation for field 2.

Path Distance (m)

Path Planning
Approaches

Nearest Neighbor Approach Optimization Approach

(Traditional vehicles) (AVN notion) (AVN notion)

Subcases Benchmark NNR RPI NNPI

Vehicles Carrying
Capacity (CC)

CC = 1 8900 8380 ~8380 ~8380
CC = 10 1470 1300 1490 1230
CC = all 990 830 880 740

 

Figure 9. Travelled distance reduction for the three carrying capacities within each case for field 1.

Figure 10 shows a comparison of the path planning cases for two carrying capacities
(CC = 1 will give approximately the same result for the different cases) by means of per-
centage reduction in the travelled distance. Black bars represent NNR over the benchmark,
white bar with solid line borders NNPI over the benchmark and white bar with the dashed
dotted border NNPI over NNR.

Table 5 shows the compiled results of travelled distance for field 2.
Percentage reduction in the travelled distance in field 2 for three carrying capacities

are shown in Figure 11.
Figure 12 shows comparison path planning cases for two carrying capacities (CC = 1

will give approximately the same result for all cases) by means of a percentage reduction
in the travelled distance. The black bar represents the NNR over benchmark, the white
bar with solid line borders NNPI over benchmark, and the white bar with dashed dotted
border is the NNPI over NNR.
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Figure 10. Comparison of the travelled distance reduction for two carrying capacities among each
case for field 1.

 

Figure 11. Travelled distance reduction for three carrying capacities within each case for Field 2.
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Figure 12. Comparison of the travelled distance reduction for two carrying capacities among each
case for field 2.

4. Discussion

In order to simplify the computational intensity in optimizing the path planning task
for the bale collection operations, there have been a number of approximations made in
the modeling, as described in the scope and modeling part of the paper. This includes
neglecting vehicle kinetics, considering bale collection only, keeping the PRM network static,
discretization of the collection positions, etc. The GA is also significantly dependent on
settings for the optimization algorithm, which effects both the accuracy and calculation time.
Convergence to an optimal solution is, for instance, highly dependent on the size of the initial
population and number of generations. Apart from CC = 1, the benchmark approach will
always underestimate the travel distance since the loading stage is excluded from the distance
calculation (i.e., relative improvements by the AVN will also be underestimated). Although
these approximations will affect the output in an absolute manner, it is plausible that the
relative behavior will remain, which was therefore focused on in making conclusions.

Taking the modeling limitations into consideration, some key insights were gained by
analyzing the simulation results. It was found that adding carrying capacity significantly
reduced the traveling distance for the bale collection operations. There was an exponential
decaying trend in the distance reduction with respect to the carrying capacity. Hence, the
bale collection procedure can be significantly improved, even with a small carrying capacity
added. Comparing the benchmark with NNR showed that NNR reduced the travelled
distance by about 10–20% (depending on field type and carrying capacity). Comparing the
nearest neighbor strategy with optimization, the collection order may change for optimiza-
tion (whether this is generally true or not cannot be concluded by the data presented in
this paper). As would be expected, the simulations showed that the optimization approach
reduced the travelled distance compared to the nearest neighbor approach. Compared to
the benchmark, this reduction was about 20–30% for field 1 and 15–25% for field 2 and
compared to NNR, this reduction was around 10–20% for field 1 and around 5–10% for field
2. Thus, the relative travelled distance reduction for the optimized solutions was slightly
higher for the regular simple field (Field 1) compared to the complex field (Field 2). These
travelled distance improvements can be compared to the similar studies by [21,22], which
showed a 6.0 and 6.8% reduction for similar cases, respectively. It should be noted that
the convergence to optimal solution strongly depended on the choice of initial population.
The results indicate that the nearest neighbor initialization is a better choice than randomly
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permutated initialization independent of carrying capacities and field complexity (similar
results for both fields).

5. Conclusions

It can be concluded that a vehicle with neighborhood collection capabilities and added
carrying capacity can significantly reduce the travelled distance for bale collection opera-
tions (the benchmark model even gives an underestimation in this study). To generate short
paths, the optimization approach is superior compared to the nearest neighbor approach
and including the benchmark collection order in the initial population for the genetic
algorithm improves the convergence compared to random initialization. Hence, imple-
menting the optimization path planning approach, neighborhood collection capabilities,
and adding a carrying capacity will have a significant effect on the farmers’ economic and
environmental sustainability. By reducing the working distance through optimized path
planning implies less fuel consumption and more cost effectiveness. Although the primary
focus in this study was on bale collection operation, it is plausible that the same approach is
applicable in similar activities both within agriculture and beyond, for example, in forestry.

Author Contributions: Conceptualization, S.L., T.L. and M.K.; Methodology, S.L., T.L. and M.K.;
Software, S.L.; Validation, S.L.; Formal analysis, S.L.; Investigation, S.L.; Resources, S.L., J.W.; Data
curation, S.L.; Writing—original draft, S.L.; Writing—review & editing, S.L. and M.K.; Visualization,
S.L.; Supervision, T.L., M.K. and J.W.; Project administration, M.K.; Funding acquisition, M.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by The Royal Swedish Agricultural Academy (SLO-foundation)
and the Swedish Governmental Agency for Innovation Systems (VINNOVA) as part of the project
Automation for Autonomous Terrain Mobility (AUTO2).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1 shows the resulting paths for field 1 with CC = 1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 9630 m to
9040 m while the collection sequence remained.

Figure A2 shows the resulting paths for field 1 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 1160 m to
990 m while the collection sequence remained.

Figure A3a shows the resulting paths for Field 1 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A3c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
from 860 m to 820 m.
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(a) 

 
(b) 

Figure A1. Resulting paths for field 1 with CC = 1 of (a) the benchmark and (b) NNR.

 
(a) 

 
(b) 

Figure A2. Resulting paths for field 1 with CC = all of (a) the benchmark and (b) NNR.
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(c) (d) 

Figure A3. Resulting paths for field 1 with CC = all of (a) the RPI case, (b) RPI convergence, (c) NNPI
case, and (d) NNPI convergence.

Figure A4 shows the resulting paths for field 2 with CC = 1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 8900 m to
8380 m while the collection sequence remained.

 
 

 
(a) (b) 

Figure A4. Resulting paths for field 2 with CC = 1 of (a) the benchmark and (b) NNR.
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Figure A5 shows the resulting paths for field 2 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 960 m to
830 m while the collection sequence remained.

 
(a) (b) 

Figure A5. Resulting paths for field 2 with CC = all of (a) the benchmark and (b) NNR.

Figure A6a shows the resulting paths for field 2 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A6c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
from 880 m to 740 m.

  
(a) (b) 

 
 

 
 

(c) (d) 

Figure A6. Resulting paths for field 1 with CC = all of (a) the RPI case, (b) RPI convergence, (c) NNPI
case, and (d) NNPI convergence.
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Abstract: To achieve pest elimination on leaves with laser power, it is essential to locate the laser
strike point on the pest accurately. In this paper, Pieris rapae (L.) (Lepidoptera: Pieridae), similar
in color to the host plant, was taken as the object and the method for identifying and locating the
target point was researched. A binocular camera unit with an optical filter of 850 nm wavelength was
designed to capture the pest image. The segmentation of the pests’ pixel area was performed based
on Mask R-CNN. The laser strike points were located by extracting the skeleton through an improved
ZS thinning algorithm. To obtain the 3D coordinates of the target point precisely, a multi-constrained
matching method was adopted on the stereo rectification images and the subpixel target points in the
images on the left and right were optimally matched through fitting the optimal parallax value. As
the results of the field test showed, the average precision of the ResNet50-based Mask R-CNN was
94.24%. The maximum errors in the X-axis, the Y-axis, and the Z-axis were 0.98, 0.68, and 1.16 mm,
respectively, when the working depth ranged between 400 and 600 mm. The research was supposed
to provide technical support for robotic pest control in vegetables.

Keywords: robotic pest control; Mask R-CNN; skeleton extraction; binocular vision; stereo matching

1. Introduction

Physical pest control with laser power is widely considered as effective in reducing
the pollution to the environment and even the damage to human health from the chemical
pesticide [1,2]. Since 1980, many researchers have explored the outcome of pest elimination
with lasers [3–5]. It has been demonstrated in these studies that laser power can cause
damage to the exoskeleton and underlying tissues of pests, disrupt the anabolism of tissue
cells, and ultimately kill pests [6,7]. Li et al. [5] found that the 24 h mortality rate of the
fourth larval instar of Pieris rapae (L.) (Lepidoptera: Pieridae) reached 100% under the
optimal working parameter combination of laser power of 7.5 W, an irradiation area of
6.189 mm2, the laser opening time of 1.177 s, and the irradiation position in the middle of
the abdomen. Therefore, to make laser pest control technology applicable in engineering
settings, a pest control device is required to accurately focus the laser on the middle of the
pest’s abdomen to ensure that the laser kills the pests precisely under intense energy.

In this respect, machine vision technology can be applied to identify the pests present
in the field [8,9]. However, most pests have a protective color for defense. In particular,
the image background is complex and pest image features are less than prominent due
to the intensive planting of crops [10]. Moreover, prior research on pest identification has
mainly focused on the classification and counting of the pest species, with little attention
paid to the 3D location of pests. Therefore, deep learning technology and binocular vision
are integrated in this study to accurately identify and locate the laser strike point on the
pest, thus providing technical support for robotic pest control in vegetables.
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The mask regional convolutional neural network (Mask R-CNN) model first proposed
by He et al. [11] can be used for instance segmentation and detection of pest images
and achieves multiple research results in pest detection tasks [12,13]. Wang et al. [14]
constructed a Drosophila instance segmentation model for automatically detecting and
segmenting Drosophila wing, chest, and abdomen images, with an average precision of
94%. The instance segmentation can obtain target contour information without image
morphological processing and is more suitable for accurate pest identification in laser pest
control tasks. However, the above methods are used to segment RGB images of pests in
specific environments, such as laboratory environments [15] and yellow sticky traps [16].
Existing algorithms still accurately segment pest targets with protective color characteristics
in field environments.

As an extension of computer vision technology, near-infrared (NIR) imaging technol-
ogy is used in insect species identification [17] and plant disease monitoring [18] widely.
Sankaran et al. [19], based on visible-near infrared and thermal imaging technology, quickly
identified citrus greening with an average precision of 87%. Luo et al. [20] used NIR
imaging technology to track and monitor the structure and physiological phenology of
Mediterranean tree-grass ecosystems under seasonal drought. Our team [21] proposed a
monocular camera unit with an 850 nm optical bandpass filter to capture the image for
identifying the pests, and the NIR image was confirmed to highlight the gray difference
between the larvae of P. rapae and the vegetable leaves (Figure 1).

 

Figure 1. Comparison of near-infrared imaging effects of Pieris rapae on cabbage leaves. (a) The
original image. (b) Near-infrared image. In the process of image acquisition, P. rapae and cabbage
leaves were placed in a black box and an 850 nm infrared filter was installed on the camera to collect
near-infrared images with an 850 nm ring light source. The original image is not equipped with a
filter but is equipped with a white ring light with the same power as the 850 nm.

After identifying and segmenting pests in the field, the laser strike point is located
in three dimensions based on binocular stereo vision. Stereo matching is an important
factor affecting the location accuracy of binocular vision. Based on the constraint range and
search strategy, the matching algorithm can be divided into local [22,23], global [24,25], and
semi-global [26,27] stereo matching. However, the smaller larvae of P. rapae remain. With
the 4th and 5th instar larvae of P. rapae as an example, their average widths reach 1.564 mm
and 2.738 mm, respectively [28]. The above stereo matching of the global parallax map
for the small target pests will result in low matching efficiency and poor location accuracy.
Therefore, on the basis of the determined operation range, the candidate matching region
was narrowed by the multi-constrained method to improve the efficiency and location
accuracy of the stereo matching.

In this study, we designed a 3D locating system for pests’ laser control to eliminate the
above problems of inconspicuous pest image features, unclear location of strike points, and
inefficient matching algorithms. A binocular camera unit with an optical filter of 850 nm
wavelength was designed to capture the pest image. The ResNet50-based Mask R-CNN
extracted the bounding box and the segmentation mask of the P. rapae pixel area, and the
laser strike point was located in the middle of the pest abdomen, which was extracted
through an improved ZS thinning algorithm with smoothing iterations. Furthermore, a
multi-constrained matching method was adopted on the stereo rectification images. The
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subpixel target points in the images on the left and right were optimally matched by fitting
the optimal parallax value with the most similar feature between the template area among
the two images. The 3D coordinates of each laser strike point were located according to its
pixel coordinates in the two images. Finally, the recognition and localization performance
of the system for targets at different locations was evaluated by implementing it on a field
test platform. The research results can provide theoretical reference for the automatic laser
strike of the pest control robot.

2. Materials and Methods

2.1. Binocular NIR Vision Unit

The 3D locating system was composed of a binocular vision system, a light source
module, and host computer software, as shown in Figure 2a. In this system, the binocular
vision system was composed of two gigabit industrial cameras produced by Hangzhou
Haikang Robot Technology Co., Ltd. (Zhejiang, China). The camera model was MV-CA060-
10GC, which is equipped with the lens model MVL-HF0628M-6MPE and a near-infrared
filter of 850 nm. The resolution of each camera is 3072 (H) × 2048 (V), the focal length is
6 mm, and the frame rate is 15 fps. The two cameras were installed on the camera frame
in parallel, and the baseline length was 50 mm. In addition, the system was illuminated
by an 850 nm diffuse light bar, which can emit light evenly without shadows. The image
processing platform adopted a Lenovo notebook ThinkPad P1, 24 GB RAM, Inter-Core
i7-8750H@2.20 GHz, Windows 10, 64-bit system. The software system was mainly based
on the OpenCV visual library and the TensorFlow deep learning framework.

 

Figure 2. The binocular NIR vision unit and the example of collected images. (a) The visual system
composition. (b–e) Regular cabbage as background and P. rapae larvae in different positions and
postures taken from the collected NIR images.

Before image acquisition, a chessboard calibration board with a square size of 30 mm
× 30 mm was used to perform stereo correction on the binocular camera [29]. In the process
of image acquisition, the acquisition device was placed immediately above the cabbage
leaves under natural illumination to collect images of P. rapae in the field. The collected
images are shown in Figure 2b–e.

2.2. System Architecture

The flow of the field pest 3D locating system proposed in the study is shown in Figure 3,
which mainly includes three parts: (1) pest identification and instance segmentation of
the Mask R-CNN, (2) locating the laser strike point by extracting the skeleton of the pest,
and (3) the 3D localization of laser strike point involved matching template preprocessing,
multi-constraint narrowing of the matching region, subpixel stereo matching, and 3D
coordinate extraction.
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Figure 3. Structure diagram of the 3D locating system for field pests.

2.2.1. Instance Segmentation of Pieris rapae Image Area Based on Mask R-CNN

(1) Mask R-CNN Model

The accuracy of pest contour segmentation directly affects the accuracy of the laser
strike point and stereo matching parallax. Based on the self-built NIR field P. rapae image
dataset, this paper selected ResNet50-based Mask R-CNN [11] to identify and segment the
pests’ image area. The model structure is shown in Figure 4, which mainly includes the
following steps:

1. The feature extraction network ResNet50 [30] extracted multi-scale information from
the input image and generated a series of feature maps.

2. According to the mapping relationship between the feature map and the input image,
the region proposal network (RPN) used the sliding window of the convolution layer
to scan the anchor box in the feature map and generated a series of regions of interest
(RoI) through classification and regression.

3. The RoI Align determined the eigenvalue of each point in the RoI and then performed
pooling and other operations to match and align the target candidate region obtained
by the RPN network with the feature map.

4. The feature maps output by RoI Align were input to the fully connected (FC) layers
and the fully convolutional network (FCN). The former identified P. rapae and located
the respective bounding boxes, and the latter segmented the pixel area of the larvae.

(2) Dataset augmentation and labeling

In total, 1000 images of P. rapae larvae in different poses were collected in the Brassica
oleracea field. The sample numbers were expanded to 2000 by rotation, magnification,
and horizontal and vertical mirroring, which improves the robustness of the recognition
model [31]. Among them, each image contains at least one P. rapae larvae. We then marked
the outline of P. rapae with the help of the open-source tool LabelMe. This tool can pick
P. rapae masks from images and output a dataset in COCO format. Finally, the dataset
was divided into a training set and a validation set according to the ratio of 8:2 for model
training.
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Figure 4. Overall Mask R-CNN with the ResNet50 model structure.

(3) Transfer training

The model training was completed using a PC with the following hardware environ-
ment: 32 GB RAM, Inter-Xeon E5-2623 v3*2@3.00 GHz, and NVIDIA GeForce RTX2080.
The software system uses the TensorFlow deep learning framework under Windows 10
and 64-bit operating systems for coding and training and was configured with Python3.6,
Anaconda 5.3.1, and CUDA10.0 compilation environments.

The training method adopted the transfer training method. The Mask R-CNN was
initialized with the feature extraction network weights of the pre-trained model, while
the object classification, bounding box regression, and FCN parameters were randomly
initialized. During training, the initial learning rate was 0.001, the momentum parameter
was 0.9, and the batch size was set to 1. In the RPN structure, the anchor point sizes were
32, 64, 128, 256, and 512. The anchor point frame ratio was 0.5:1:2.

The model object detection and region segmentation results are shown in Figure 5.
The high-quality segmentation mask distinguishes pests from the background, which can
be used to calculate the location of the laser strike point directly.

 

Figure 5. Visualization results of the ResNet50-based Mask R-CNN. (a–d) P. rapae larvae in different
positions and postures taken from the collected NIR images. (a) Multiple pests, (b) curled pests, (c)
occlusion state, and (d) dorsal position of the leaf.

2.2.2. Pest Skeleton Extraction and Strike Point Location

(1) Laser strike point

Laser pest control requires focusing the laser on the middle of the pest abdomen to
ensure that the laser kills the pests with intense energy. The body of P. rapae larvae is
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tubular and segmented, as shown in Figure 6. The middle part of the abdomen irradiation
position was between the 8th and 9th segments, near the midpoint of the skeleton [5,32].
Therefore, this paper set the laser strike point as the midpoint of the skeleton of the pest
image area. The improved ZS thinning algorithm was used to extract pest skeletons. Then,
pest skeleton chain code was established to extract the skeleton midpoint coordinates to
determine the final strike point.

Figure 6. Characteristics of the Pieris rapae larvae and locating the laser strike point. The body of P.
rapae larvae can be divided into the head (I), the thorax (II), and the abdomen (III). The numbers 1–14
denote the different segments of the larvae, separated by blue lines.

(2) Pest skeleton extraction based on improved ZS thinning algorithm

The skeleton consists of a single pixel, which provides an orientation for extracting
the laser strike point coordinates. However, due to the different positions and postures
of pests in the field and the sensitivity of the traditional skeleton extraction algorithm to
the boundary, the extracted pest skeletons display the phenomenon of a non-single-pixel
width and end branches, as shown in Figure 7.

 

Figure 7. Visualization of the ZS thinning algorithm. (a,d) The segmentation mask of the Mask
R-CNN. (b,e) The pest skeleton images. (c,f) The local details of the pest skeleton.

To solve these problems in the above-mentioned thinning process, this paper intro-
duced an improved ZS thinning algorithm [33] with smoothing iterations to extract pest
skeletons. The whole skeleton process was divided into three iterative processes: smooth
iteration, global iteration, and two-stage scanning.

In the smooth iteration, the candidate deletion points were extracted based on the
refinement constraints of the traditional ZS algorithm. Then, the smooth pixel points in the
candidate deletion points were preserved in the smooth iteration process, which suppress
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the branching at the end of the pest skeleton, as shown in Figure 8. Among them, the
definition of smooth pixel points satisfies Equation (1):

5 ≤ Nb(P0) ≤ 6 (1)

where Nb(P0) denotes the number of pixels with value 1 in the neighborhood of the
scanning point P0.

 

Figure 8. Example of the smooth pixel point determination. The numbers 1–6 denote the candidate
deletion points extracted by the ZS thinning algorithm, where 2, 4, and 6 denote the smooth pixel
points.

In smoothing iteration and global iteration, the reserved template under 24 neigh-
borhood subdomains was added. The candidate deletion points that meet the retention
template were reserved, which avoided the problem of topological structure deletion. Fig-
ure 9a–i shows the pixel set of the retention templates. The 24 neighborhood pixels were
divided into 4 × 4 subdomains in 4 different directions for generating specific structures in
different directions. Figure 9a–h was used to maintain diagonal lines of two-pixel widths,
and Figure 9i was used to maintain the 2 × 2 square structure.

 

Figure 9. The retention templates and the deletion templates. (a–i) The retention templates in different
directions. (j–m) The deletion templates in different directions. The pixels of scanning points are
marked as P0, and pixel sets Px of 8 neighborhoods and 24 neighborhoods are constructed, where
x = 1, 2, . . . 24. The pixel Px in the gray square can be either 1 or 0.

In the two-stage scanning, the deletion templates under 8 neighborhoods were used
to eliminate the pixels with non-single-pixel widths that form an included angle of 90. The
definition of the deletion templates satisfied Figure 9j–m.

Based on the improved ZS thinning algorithm, the pest skeletons in Figure 7a,d were
extracted again. The visualization is shown in Figure 10.

159



Agriculture 2022, 12, 766

 
Figure 10. Visualization of the improved ZS thinning algorithm. (a,b) The pest skeleton images
extracted from Figure 7a,d.

(3) Strike point location

After extracting the skeleton of pests with a single-pixel width, the system used
Freeman chain code notation [34] to extract the linked list. Then, the skeleton pixel length
was calculated by combining the chain code and the midpoint position coordinate was
located according to the pointer. The visualization results of different processing stages are
shown in Figure 11.

 

Figure 11. Visualization of the pest skeleton extraction and laser strike point location for differ-
ent stages: (a) The identification and segmentation result of an NIR P. rapae image, (b) extracted
segmentation mask image, (c) thinning treatment, and (d) coordinates of laser strike points.

2.2.3. The Multi-Constrained Stereo Matching Method

In this study, we only need to calculate the 3D spatial coordinates of the laser strike
point and, thus, a multi-constraint stereo matching algorithm was proposed. As shown in
Figure 12, the algorithm constructs two constraints in the matching process.

(1) The first construct: Row Constraint

After the binocular camera (Figure 12a) completed the camera calibration and stereo
correction, the same pest satisfied the constraint of peer-to-peer sequential consistency in
the stereo rectification images [35]. Therefore, using the pest segmentation mask in the
image on the left as the template, template matching was performed on the same row in
the image on the right according to the row constraint.
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Assuming that the coordinate of the laser strike point in the image on the left was
p1(x1, y1), the range of the coordinate p2(x2, y2) of the center point of the matching box in
the image on the right can be limited to y2 = y1, as shown in Figure 12b.

 
(a) 

 
(b) 

Figure 12. Search range of the multi-constraint stereo matching method. (a) The binocular vision
locating system. The red frame is the binocular public area, the blue frame is the operation area for
locating pests, and the depth range is Hmin ∼ Hmax. L is the leaf spreading degree; h is the plant
height; and l is the bottom leaf height of the cabbage. fx is the camera fixed parameter. (b) The
spatial geometric diagram. OC1 and OC2 are the optical centers of the cameras on the left and right,
CL and CR are the imaging planes of the binocular cameras, and the image coordinate systems are
X1O1Y1 and X2O2Y2, respectively. p1(x1, y1) is the laser strike point in the image on the left; p2(x2, y2)

is the center point of the best matching box in the image on the right; P(X, Y, Z) are the target pests.

(2) The second construct: Column Constraint

For the laser pest control robot to effectively identify field pests and facilitate the
trajectory planning of its striking equipment, the working area was regarded as a cuboid
(Figure 12a). According to the principle of triangulation [35], the coordinate of the target
point in the world coordinate system can be calculated by Equation (2):

Z =
f B

(x1 − x2)μx
=

fxB
x1 − x2

(2)
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where B is the baseline distance of the binocular cameras, f is the focal length of the cameras,
μx is the physical size of each pixel in the X-axis direction of the imaging plane, and fx is
the fixed parameter of the camera, which is determined during camera calibration.

In Equation (2), if the depth range of the operation area, the coordinate p1(x1, y1) of
the target in the image on the left, and the camera fixed parameter fx were known, the
range of the X-axis of the target in the image on the right can be limited. The specific
equation of x2 was as follows.

x1 − fxB
Hmin

≤ x2 ≤ x1 − fxB
Hmax

(3)

where Hmin and Hmax are the value ranges of the Z-axis of the system operation area in the
world coordinate system (Figure 12).

Based on the multiple constraints above, the matching range of the template on the
polar line of the target image on the right can be further restricted.

In the matching process, the normalized cross-correlation coefficient with linear illu-
mination invariance was selected to measure the match similarity [36]:

R(x, y, d) =
∑n

i=1 ∑m
j=1
[
T(x + i, y + j)− T(x, y)

][
I(x + i − d, y + j)− I(x − d, y)

]√
∑n

i=1 ∑m
j=1
[
T(x + i, y + j)− T(x, y)

]2√
∑n

i=1 ∑m
j=1
[
I(x + i − d, y + j)− I(x − d, y)

]2 , d ∈
[

fxB
Hmax

,
fxB

Hmin

]
(4)

where R(x, y, d) is the normalized correlation quantity when the midpoint (x, y) is located
in parallax d in the matching area of the camera image on the right. Here, n is the width of
the template window; m is the height of the template window; T(x + i, y + j) is the pixel
value of the template window point (x + i, y + j); and T(x, y) is the average pixel value
of the template window. I(x + i − d, y + j) is the pixel value of the matching area point
(x + i − d, y + j); and I(x − d, y) is the average pixel value of a template window with a
side length of m × n defined by the point (x − d, y) as the center.

After obtaining the parallax d0 with the maximum similarity (Equation (4)), the algo-
rithm extracted the matching similarity R(x, y, d) of the adjacent parallaxes (d0 − 2, d0 −
1, d0 + 1, d0 + 2) with phase-pixel-level accuracy and constructed a parallax-similarity (d-R)
pointset, as shown in Figure 13. Then, the quadratic, cubic, and quartic polynomial fitting
curves were performed on the pointset to obtain the polynomial curve with the highest
fitting degree (R2). The abscissa of the crest (Figure 13, Point S) at the best fitting curve
was the parallax under subpixel accuracy. Finally, the 3D coordinates of each pest in the
world coordinate system were calculated by the subpixel parallax.

S

Figure 13. Polynomial fitting curves of disparity and similarity.
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3. Test and Results

3.1. Experiments

To evaluate the recognition and localization accuracy of the laser strike point, combined
with the characteristics of the actual operating conditions of the cabbage greenhouse, we
further collected the P. rapae images at different positions in the vegetable field to construct
a test set (Experiment 1: n = 70, Experiment 2: n = 30). The system automatically outputs
and saves the identification and segmentation results of the P. rapae pixel area and records
the 3D coordinates of the laser strike point.

The experiment was conducted in the cabbage field (28.18 N, 113.07 E) of Hunan
Agricultural University in Changsha, Hunan Province, as shown in Figure 14. According to
the leaf spreading degree (350 ± 46.6 mm), plant height (300 ± 25.6 mm), and bottom leaf
height (32 ± 6.7 mm) of the field cabbage, the distance between the origin of the binocular
camera and the effective operation area of the laser was set to 400–600 mm. The length of
the working area along the XC-axis was 400 mm and the YC-axis was 260 mm.

 

Figure 14. Accuracy test platform site. Key: 1. visual processing platform; 2. binocular camera
with an 850 nm filter; 3. linear displacement sensor; 4. fixed support frame; 5. digital display for
displacement sensor; 6. cabbage.

3.1.1. Experiment 1: Accuracy Evaluation of Pest Identification and Instance Segmentation
Network

Combined with the test sample images (n = 70) of different scenarios, the number
of P. rapae that were manually labeled and automatically identified by the model were
recorded. Three indicators, precision value (Equation (5)), recall value (Equation (6)), and
F1-measure (Equation (7)), were used to evaluate the recognition performance of the Mask
R-CNN model on the target.

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

F1 =
2 × PR
P + R

(7)

where TP is a correctly predicted positive sample, FP is an incorrectly predicted negative
sample, and FN is an incorrectly predicted positive sample.

3.1.2. Experiment 2: Performance Evaluation of the 3D Locating System

The image coordinate deviation and the actual depth deviation between the auto-
location results of the laser strike point and the manual annotation results were used to
evaluate the performance of the 3D locating system.

Given that the absolute deviation of coordinates represents different physical dis-
tances in images of different scales, it is impossible to characterize the true locating error
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quantitatively. In experiment 2, we collected 30 pairs of binocular images of the same
P. rapae at different locations in the vegetable field. Therefore, it is assumed that the physical
diameter of the P. rapae body width in the area of the laser strike point was constant and d
represented the pixel width of P. rapae body in images of different scales (Figure 6). The
X-axis, Y-axis location error of the world coordinate system was represented by the ratio of
the pixel deviations (ex,ey) and d of the system output and the manually marked point on
the x coordinate, y coordinate of the image.

In experiment 2, a linear displacement sensor (provided by Shenzhen Howell Technol-
ogy Co., Ltd. (Shenzhen, China), KPM18-255) was used to measure the vertical distance
from the pest surface to the camera plane. The sensor position accuracy was 0.05 mm. The
displacement sensor is installed in a base with a magnet. The base can be adsorbed on the
top plate in such a way that the displacement sensor is always perpendicular to the imaging
plane and can move horizontally in the plane of the top plate, as shown in Figure 15.

Figure 15. Accuracy testing experiment equipment. Key: 1. digital display for displacement sensor;
2. 850 nm diffuse light bar; 3. binocular camera with an 850 nm filter; 4. base with a magnet; 5. linear
displacement sensor; 6. Pieris rapae.

3.2. Validity Results of Mask R-CNN

The model training (Section 2.2.1) results showed that the average precision (AP),
AP0.50, and AP0.75 of the ResNet50-based Mask R-CNN model constructed on the self-built
NIR field P. rapae image dataset reached 94.24%, 98.74%, and 96.79%, respectively.

Manual detection was performed on 70 images in the test set. The target distribution
of the test set was actually 158 P. rapae larvae, and each image contains at least one.

Then, the test set images were input into the above models. The object detection results
of the larvae in the image samples of the test set by the model are shown in Table 1. The
values of precision, recall, and F1 were 96.65%, 97.47%, and 96.55%, respectively, showing
the effectiveness of the proposed model.

Table 1. Identification results for the P. rapae larvae in the test set.

Number 1

Precision (%) Recall (%) F1 (%)
N TP FP FN

158 154 3 4 95.65 97.47 96.55
1 N is the total number of larvae in the test set. TP, FP, and FN are the quantities of correctly predicted positive
samples, incorrectly predicted negative samples, and incorrectly predicted positive samples, respectively.

3.3. 3D Localization Results of Field Pests

The binocular stereo vision system completed the camera calibration and stereo cor-
rection, and the results are shown in Table 2. The reprojection error was 0.36 pixels, and the
calibration results meet the test requirements [37].
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Table 2. The internal and external parameters of the binocular stereo vision system.

Parameters Left Camera Right Camera

Focus/mm 6
Cell size/μm 2.4 (Sx) × 2.4 (Sy)

Center column (Cx)/pixel 1589.60 1609.84
Center row (Cy)/pixel 1034.15 1051.87

2nd order radial distortion (K1)/1/pixel2 −0.087540 −0.086044
4th order radial distortion (K2)/1/pixel4 0.162294 0.155954
6th order radial distortion (K3)/1/pixel6 0.000185 0.000337

2nd order tangential distortion (P1)/1/pixel2 0.000210 −0.000308
2nd order tangential distortion (P2)/1/pixel2 −0.065631 −0.056233

Image size/pixel 3072(H) × 2048(V)
Baseline distance/mm 49.50

Reprojection error/pixel 0.36

3.3.1. X-Axis and Y-Axis Location Error

In this paper, the ratio of the image positioning deviation of the laser strike point of
different scales to the pixel width of the P. rapae body was used as the X-axis and Y-axis
location error, and the results are shown in Figure 16. In the sample images of the whole
test set (N = 30), all larvae were correctly recognized and segmented and the average image
location errors in the x coordinate and the y coordinate of the laser strike point were 0.09
and 0.07, respectively. The maximum errors in different scenarios were 0.23 and 0.16.

Z

X
Y e x
/d

 
e y

/d

Figure 16. The location error of the laser strike point on the X-axis, the Y-axis, and the Z-axis. d
denotes the pixel width of the P. rapae body in images of different scales. The location error is
represented by the ratio of the x coordinate, y coordinate deviation (ex,ey) and d.

In the experiment, the same P. rapae larvae were used in different locations of the
vegetable field and the larval body width was 4.16 mm (Manual measurement). Therefore,
the average absolute error of the X-axis of the laser strike point was 0.40 mm and the
maximum error was 0.98 mm. The average absolute error of the Y-axis was 0.30 mm, and
the maximum error was 0.68 mm.

Considering the distance between the real and the located point, the average absolute
error of the total location error in the X–Y plane was 0.53 mm, and the maximum error was
1.03 mm. All the located point were within the effective strike range in the middle of the
pest abdomen (Figure 6).

3.3.2. Z-Axis Location Error

Analysis of Figure 16 shows the visual location error in the depth direction of the
system when the working depth was between 400 and 600 mm. The average absolute error
was 0.51 mm, and the maximum error value was 1.15 mm. The root mean square error and
the mean absolute percentage error of the system were 0.58 mm and 0.10%, respectively,
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which shows that there is a strong explicit correlation between the estimated depth and the
actual depth of the system.

4. Discussion

An automatic laser strike point localization system was established in this study based
on the multi-constraint stereo matching method, which provided a basis for pests’ laser
control. Three aspects of the proposed model will be discussed in this section, i.e., the
effects of the segmentation model, the effect of the location method, and the effect of the
stereo matching method. Further improvements for the 3D locating system will also be
pointed out in this section.

4.1. Analyses of Instance Segmentation Result

Experiment 1 showed that the segmentation results (AP, AP0.50, and AP0.75) of the
ResNet50-based Mask R-CNN model were higher than 94% on the self-built NIR image
dataset of P. rapae. The good segmentation performance of the network proves that the
application of near-infrared imaging technology is feasible for pest identification, with
protective color characteristics in multi-interference scenes.

In the sample images of the whole test set, the number of correctly predicted, incor-
rectly predicted, and unrecognized P. rapae were 154, 3, and 4, respectively. Among them,
the number of incorrectly predicted and unrecognized P. rapae in a single P. rapae image
was 0. The main causes of errors are: (1) When two or more P. rapae larvae overlap each
other, the larvae bodies are blocked. This situation increases the difficulty of identification,
resulting in multiple pests being identified as a whole or a single pest being only partially
segmented (Figure 17a). (2) In the near-infrared image, the soil color is close to that of
the cabbage bugs. When a leaf has a hole to expose the soil and the shape is a long strip,
the model will misjudge it as a P. rapae larva (Figure 17b). Furthermore, the complicated
network structure also makes the training time of Mask R-CNN longer. The detection time
for a single image in the segmentation network was 460 ms.

 

Figure 17. False identification results. (a) Two P. rapae larvae overlap each other and (b) leaf holes
mistakenly identified as P. rapae.

4.2. Analyses of Location Result

According to the segmentation mask in the bounding box, the laser strike point was
located as the midpoint of the skeleton of pest image area, which was extracted through
an improved ZS thinning algorithm. This method solves the problem of pest contour
extraction based on deep learning, which greatly improves the robustness and efficiency of
the algorithm.

However, this method cannot accurately locate the laser strike point in some special
cases. The main causes of errors are: (1) When the P. rapae is partially occluded by leaves
or the inclination angle is large, the method of locating the laser strike point through the
midpoint of the skeleton is inaccurate because only a part of the pest skeleton is extracted
(Figure 18a). (2) If the P. rapae larvae curl up in a ring, the pest segmentation mask is a circle.
The laser strike points finally obtained by the above location method is near the center of
the circle and is not within the effective strike range (Figure 18b).
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Figure 18. Incorrect location results in special cases. (a) The body of the P. rapae shaded by leaves.
(b) The larvae curl up in a ring.

Fortunately, the above situation is not common. Fieldwork indicates that the P. rapae
larvae are mostly found on the leaf surface in the morning, sunset, and night and are
mainly located on the petioles, leaf veins, and undeveloped new leaves of the outer leaves.
Especially at sunrise and at night, the P. rapae larvae can be clearly seen from the top of the
plant when illuminated with light. The larvae curl up only when hit by external stimuli
and usually become strip shaped. In general, the location method is suitable in most cases.
However, the method still needs to be further improved to adapt to complex working
conditions.

4.3. Analyses of the Multi-Constraint Stereo Matching Result

Experiment 2 showed that the average location errors on the X-axis, the Y-axis, and the
Z-axis of the laser strike point were 0.40, 0.30, and 0.51 mm, respectively, and the maximum
errors were 0.98, 0.68, and 1.16 mm. The system has high location accuracy on the X-axis
and the Y-axis. Considering the distance between the real and the located point, the average
absolute error of the total location error in the world coordinate system was 0.77 mm. The
maximum error was 1.45 mm.

With the fourth and fifth instar larvae of P. rapae as an example, their average widths
reach 1.564 mm and 2.738 mm, respectively [28]. Considering that the laser strikes vertically
downward and the irradiation area is 6.189 mm2 (diameter 2.8 mm) [5], the effective stroke
of the laser end effector is increased by a maximum of 1.45 mm for accommodating the
location error of the laser strike point. The extra travel poses less technical risk to the
design and motion control of the laser strike device. The results satisfy the localization
requirements of lasers to strike P. rapae larvae accurately.

The reasons for the errors are as follows: As the depth increases, the proportion of the
pest area in the whole image is smaller, which results in pest segmentation and location
errors. There are errors in internal and external parameters, which lead to an increase in
the system error. Moreover, manual measurement error of the displacement sensor can also
result in errors.

Overall, the average time of the entire pest localization process, including field pest
identification, contour segmentation, and 3D coordinate position, was 0.607 s. Because the
matching area was reduced, the stereo matching algorithm proposed in the study takes only
24.2% of the total time, approximately 0.147 s, which shows that the matching algorithm
can quickly and accurately locate the three-dimensional coordinates of pests in the field
after obtaining the pest segmentation results.

4.4. Discussion about Further Improvement Aspects

The data for this experiment were mainly collected at a depth of 400–600 mm above
the ground. In the follow-up research, the relationship between the spatial resolution
of the image and the laser strike point location accuracy of the proposed system can be
further analyzed to obtain the best spatial solution. In this experiment, all images were
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collected from directly above. However, this will result in a lack of image information for
pests that may be occluded by leaves or have a larger body inclination. This is somewhat
detrimental to understanding the overall situation of pest infestation. In future research,
the data of pests located on leaves should be collected from multiple angles to generate
well-established and accurate 3D location information of pests.

5. Conclusions

A novel 3D locating system based on binocular vision was proposed for laser pest
control, combining a Mask R-CNN, pest skeleton extraction, and multi-constraint stereo
matching. The ResNet50-based Mask R-CNN model was trained and validated with a
self-built NIR field P. rapae image dataset collected in a real-world agriculture scene. The
AP, recall, and F1 values were 94.24%, 97.47%, and 96.55% of the Mask R-CNN, respectively,
showing the adaptability of the proposed model.

Furthermore, when the working depth varied between 400 and 600 mm, the average
location errors were 0.40 mm, 0.30 mm, and 0.51 mm and the maximum errors were
0.98, 0.68, and 1.16 mm for the 3D system in the X-axis, Y-axis, and Z-axis direction. The
conclusions of this study provide a design basis for the follow-up research and development
of the laser pest control execution system.

Since the laser strike point extraction in this paper was limited to the processing
of two-dimensional image features, there is still room for improvement in object point
localization methods and accuracy evaluation experiments. In the future, the depth camera
can be further used to obtain the overall 3D pose information of the pests to improve the
target localization accuracy.
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Abstract: Currently, pineapple processing is a primarily manual task, with high labor costs and low
operational efficiency. The ability to precisely detect and locate pineapple eyes is critical to achieving
automated pineapple eye removal. In this paper, machine vision and automatic control technology
are used to build a pineapple eye recognition and positioning test platform, using the YOLOv5l target
detection algorithm to quickly identify pineapple eye images. A 3D localization algorithm based on
multiangle image matching is used to obtain the 3D position information of pineapple eyes, and the
CNC precision motion system is used to pierce the probe into each pineapple eye to verify the effect
of the recognition and positioning algorithm. The recognition experimental results demonstrate that
the mAP reached 98%, and the average time required to detect one pineapple eye image was 0.015 s.
According to the probe test results, the average deviation between the actual center of the pineapple
eye and the penetration position of the probe was 1.01 mm, the maximum was 2.17 mm, and the
root mean square value was 1.09 mm, which meets the positioning accuracy requirements in actual
pineapple eye-removal operations.

Keywords: pineapple eye; three-dimensional; YOLOv5; stereo-matching

1. Introduction

Pineapple is a fruit with a high added economic value. In 2018, China’s yearly
pineapple production was approximately 1.64 million tons [1]. Approximately 30% of
pineapples are utilized for production and processing [2]. The processing of pineapple is
complicated, especially because even after the pineapple has been skinned, there are still
many eyes on its surface that need to be removed. Currently, the main way to remove
pineapple eyes is to do so manually with special tools, which is labor intensive and has high
labor costs and low production efficiency. The key to automatically removing pineapple
eyes is to rapidly and accurately identify and locate pineapple eyes.

Machine vision technology is frequently utilized in fruit recognition and quality
inspection because of its noncontact nature, high speed, and high precision [3]. In traditional
machine vision technology, targets are primarily recognized based on characteristics such
as color, shape, and texture. Li et al. [4] proposed a field recognition system for pineapple
based on monocular vision through threshold segmentation, morphological processing, and
other operations to recognize pineapples and obtain pineapple center point information.
Lin et al. [5] presented a segmentation method using texture and color features, and Leung-
Malik textures and HSV color features were fused to realize the detection and recognition
of citrus fruit. Lv et al. [6] proposed a method to deepen the fruit region and improve
the edge definition in images by using a histogram equalization algorithm. Then, the R-B
color difference image based on histogram equalization was obtained, and green apple
recognition was realized. Kurtulmus et al. [7] used circular Gabor texture analysis for green
citrus object recognition. When the fruit surface is uneven in color, shadowed, or obscured
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due to environmental factors such as light, the recognition quality of traditional machine
vision technology is significantly reduced [8].

By applying machine learning technology to fruit image analysis, a better applica-tion
effect and higher efficiency can be obtained [9]. Li Han et al. [10] used a naive Bayes classifier
to classify fruit and nonfruit regions, and the interference caused by the color similarity of
green tomatoes and green foliage backgrounds was eliminated to improve the fruit recognition
accuracy. Wang et al. [11] proposed a litchi recognition algorithm based on K-means clustering,
which can better resist the influence of illumination changes and can maintain high accuracy
for recognition under occlusion and different lighting conditions. Zhao et al. [12] extracted the
Haar-like features of grayscale images and used the AdaBoost classifier for classification and
recognition. In the actual environment, the detection accuracy rate of ripe tomatoes reached
96%, and the classifier structure was simple.

In recent years, object detection based on deep learning has shown great advantages
in the field of fruit image recognition [13,14]. The convolutional neural network, with its
fast detection speed and excellent ability to extract target features, not only reduces the
workload but also improves the recognition speed and accuracy [15]. Zhang Xing et al. [16]
proposed a study on pineapple picking and recognition under a complex field environment
based on the improved YOLOv3. The multiscale fusion training network was used to
detect single-category pineapple, and a detection and recognition rate of approximately
95% was achieved using this method. Tian et al. [17] proposed an improved YOLOv3
model to identify apples at different growth stages in orchards. The model was used with
the DenseNet method to process low-resolution feature layers; this method effectively
enhances feature propagation, promotes feature reuse, improves network performance,
and has good recognition performance under apple overlap and occlusion conditions.
Yu et al. [18] proposed a mask R-CNN algorithm to identify 100 wild strawberry images.
The results demonstrated that the average recognition accuracy was 95.78% and the recall
rate was 95.41%. Zhang et al. [19] proposed a real-time detection method for grape clusters
based on the YOLOv5s deep learning algorithm. By training and adjusting the parameters
of the YOLOv5s model on the data set, the fast and accurate detection of grape clusters was
finally realized. The test results showed that the precision, recall, and mAP of the grape
cluster detection network were 99.40%, 99.40%, and 99.40%, respectively.

Studies related to fruit positioning, which are widely used, have mainly focused
on the three-dimensional positioning of fruit for robot picking, and methods include
binocular stereo vision, structured light stereo vision, and monocular stereo vision. In
binocular stereo vision, not only can the image information of different angles of the target
be obtained, but the three-dimensional position information of the target through stereo
matching can also be obtained [20]. Therefore, this is a widely used approach in fruit and
vegetable recognition [21], positioning [22], and acquisition of phenotypic parameters [23].
Luo et al. [24] proposed a method for solving and positioning enclosure based on binocular
stereo vision. When the depth distance was within 1000 mm, the positioning error was
less than 5 mm. However, the calibration process of the binocular camera is complex, and
the calculational burden of the algorithm was relatively large [25]. Stereovision, which is
based on structured light, is a combination of structured light technology and binocular
stereo vision technology. Through structured light matching, the corresponding pixels
of the left and right cameras are subjected to stereo matching, parallax calculation, and
recovery of the three-dimensional data of the scene. Zhang et al. [26] used a machine vision
system based on a near-infrared array structure and three-dimensional reconstruction
technology to realize the recognition and positioning of apple stems and calyxes. However,
structured light stereo vision is easily affected by illumination [27]. Monocular stereo
vision positioning can be divided into monocular camera positioning of one, two, or more
images. The positioning of a single image mainly relies on the mapping relationship
between the known spatial information of the characteristic light points, lines, or other
image features to obtain the position coordinate information [28]. Generally, images from
different perspectives are obtained using the positioning method by changing the position
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of the camera, and the matching relationship of image feature points is used to obtain
the relative positional relationship between the cameras during multiple shots to realize
the positioning of the target. Zhao et al. [29] used a monocular color camera to build a
vision system to locate the picking point of litchi clusters and realize the three-dimensional
positioning of litchi clusters.

To date, there have been no research reports on pineapple eye machine-vision recog-
nition or positioning. Based on the analysis of the existing research in the field of fruit
recognition and positioning, deep learning technology based on convolutional neural
networks is proposed in this paper to carry out research on pineapple eye recognition.
On this basis, combined with the entire circumference-image-acquisition-of-pineapple
method, the three-dimensional localization of pineapple eyes is realized by applying the
stereo-matching method of monocular and multiangle images.

2. Materials and Methods

2.1. Structure and Working Principle of the Test Platform

The structure of the pineapple eye recognition and positioning test platform is shown
in Figure 1. The notebook is an HP-Shadow Elf equipped with an Intel i7-10750H CPU@2.60
GHz processor, 16 GB RAM, and an NVIDIA GeForce GTX1650Ti graphics card. The 64-bit
Windows 10 operating system is installed, and the software development environment is
Visual Studio2017 + OpenCV4.0.0. The color camera is an Imaging Source DFK41BU02
with a resolution of 1280(H) × 960(V), a frame rate of 15 fps, and an 8.5 mm Computar lens.
A CR-9600-R ring light source is installed directly under the camera lens. The Mitsubishi
FX3U-32MT PLC controller is used as the control core, and the PLC is connected to the
notebook through the serial communication port. The motion platform is composed of
a clamping cylinder, servo motor, linear slide, probe cylinder, and probe. The peeled
pineapple is clamped using the clamping cylinder and rotated at a precise angle by the
servo motor to acquire the entire circumference of the pineapple image. In this paper, a
probe is used to evaluate the accuracy of the identification and positioning algorithm. The
probe is installed on the probe cylinder and can be inserted into the pineapple through the
telescopic movement of the probe cylinder. The probe cylinder, which can accurately move,
is installed and positioned in the direction parallel to the pineapple axis.

Figure 1. Structure of the test platform. (a) color camera, (b) ring light source, (c) notebook, (d) light
source controller, (e) PLC controller, (f) linear slide, (g) probe cylinder, (h) probe, (i) pineapple eye,
(j) servo motor, (k) clamping cylinder, and (l) pineapple.
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2.2. Image Acquisition of Pineapple Eyes

Goodfarmer Philippine pineapples, which were manually peeled and placed on the
test platform for image acquisition, were used for the experiments. Before image acquisition,
the dot calibration plate was used to reduce the lens distortion and perspective distortion
caused by the tilt of the camera [30]. To obtain the images of all pineapple eyes and provide
a sufficient number of images for multiangle image stereo matching, images of pineapples
were collected in 60◦ intervals, and 6 images were collected for each pineapple. Figure 2
shows images of the same pineapple collected from different angles. From this figure, there
are obvious differences in the shape and size of pineapple eyes.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Images of the same pineapple at different angles. (a) 0 degrees; (b) 60 degrees; (c) 120 degrees;
(d) 180 degrees; (e) 240 degrees; (f) 300 degrees.

2.3. Pineapple Eye Recognition Algorithm Based on YOLOv5

In this paper, YOLOv5 is selected as the target detection network for pineapple eye
recognition. Among the commonly used object detection networks, strong detection perfor-
mance is achieved with the YOLOv5 network [31], which uses mosaic data enhancement,
adaptive anchor frame calculation, and adaptive image scaling at the input end. In the
backbone network, the features of the target adopted through Focus and CSPNet (cross-
stage partial network) can be quickly extracted. In the neck network, FPN (feature pyramid
network) and PANet are used for multiscale fusion of the extracted features. GIoU (gen-
eralized intersection over union) loss is used as the loss function of the target detection
frame in the output end. NMS (nonmaximum suppression) is introduced to filter out the
overlapping candidate frames and obtain the best prediction output. These improvements
ensure the detection accuracy and speed of small targets and have the advantages of a
shallow structure, small weight file, and relatively low requirements for the configuration
of the mounted equipment.

There are 4 versions of YOLOv5 [32]: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x.
The width and depth of the YOLOv5s model are the initial values. This model is small
and fast and is suitable for the detection of small and simple datasets. The YOLOv5m
and YOLOv5x models have the deepest depths and are suitable for detection on large
and complex datasets. As the depth of the network increases, the detection accuracy
is improved, while the detection speed is reduced. In YOLOv5, the learning ability of

174



Agriculture 2022, 12, 2039

the neural network improves, the amount of calculation is reduced, and high detection
accuracy is maintained. To maximize the detection speed while maintaining sufficient
detection accuracy, YOLOv5l is used in this paper as the pineapple eye detection model.
The structure of YOLOv5l is shown in Figure 3.

Figure 3. YOLOv5l model structure.

To construct the experimental dataset, 240 pineapple images were obtained from
40 pineapples. Then, the image was processed with data enhancements, such as rotation
and horizontal and vertical mirror images, to improve the robustness of the recognition
mode, and 600 pineapple images were finally obtained, with a total of approximately
18,000 pineapple eyes. The pineapple eye images were manually labeled one by one by
labeling software. Pineapple eyes in the image were marked with a rectangular box and
then named P. The labeling information was stored in the PASCALVOC (Pattern Analysis,
Statical Modeling and Computational Learning, Visual Object Classes) format [33], in which
the coordinates, labels, and serial numbers of each box are contained. The pineapple eye
image, labeled data, and other files were saved according to the PASCALVOC dataset
directory structure to build the pineapple eye dataset.

The 600 pineapple eye images enhanced by the dataset were divided into a training set,
validation set, and test set at an 8:1:1 ratio. Because the size of the pineapple eye target is small,
to improve the detection accuracy, the input size is 640 × 640 pixels, 32 images were taken as
a batch, and the weight parameters were updated once for each batch of images trained.

YOLOv5 incorporates the current mainstream detection approach FPN (feature pyra-
mid network) [34] and inherits the grid generation idea of the YOLO algorithm.
The 640 × 640 feature plot is divided into grid areas of equal size S × S cells (usually
80 × 80, 40 × 40, or 20 × 20). After maximum suppression, the output end of the network
outputs the prediction information of all grid information. The prediction information of
each grid includes the classification probability and confidence of the target as well as the
center coordinates and length and width of the box surrounding the detection target. The
classification probability represents the classification information of the predicted target in
the grid region, and the confidence represents the probability of the detection target in the
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grid region. The central coordinates and length-and-width information of the box represent
the specific size and position of the target predicted by the grid.

2.4. Three-Dimensional Positioning Algorithm for Pineapple Eyes

In this paper, images of pineapples are collected using 30◦ intervals; obviously, the
same pineapple eye appears on multiple consecutive images. By analyzing these images
and matching the same pineapple eyes in different images, the parallax information of the
pineapple eye can be obtained. The depth information of the pineapple eye can be obtained
through triangulation. In this paper, two images with an angle difference of 90◦ are used as
a group for stereo matching analysis to obtain the three-dimensional position information
of all pineapple eyes. Considering the high similarity of pineapple images from different
angles, the traditional stereo-vision-matching algorithm is not expected to perform well.
In addition, a large amount of calculation is required in this algorithm, which also has
low efficiency. Therefore, this algorithm is not suitable for the needs of actual production.
Figure 4a,b show the comparison of the γ degree and γ + 90-degree pineapple eye images.
Here, one pineapple eye appears in both images.

Figure 4. Epipolar constrained stereo matching. (a) γ degree; (b) γ + 90 degree; (c) calculate d of
distance schematic diagram.

The central coordinates (uc, vc) and (uc1, vc1) are used to describe the position of the
pineapple eye in the two images. Therefore, the position of the pineapple eye in the two
images must satisfy the following two constraints: (1) the center of the pineapple eye is
located on the same vertical line in the two images, that is, vc1 = vc. (2) The row coordinates
of the center of the pineapple eye on the two images can be predicted by the displacement
of the center of the pineapple eye after the pineapple is rotated by 90◦, namely, uc1 = uc + d.

In order to obtain the value d in Figure 4c, Figure 5 is used to describe the solution
process in detail, f is the focal length, and S is the distance between point O and point p, the
optical center of the camera; R is the radius on the contour of the pineapple cross-section
through C of the pineapple eye. We can obtain Formula (1).⎧⎪⎪⎪⎨⎪⎪⎪⎩

η = arc tan
(

l0dx
f

)
R = S sin η

l1dx
R sin r = f

S−R cos r
d = d1 + d2 = R sin r + R cos r

(1)

where dx represents the physical size of a pixel on the u-axis, which is 0.00465 mm in this
paper, η is the angle between the Op and the Ap, and r is the OG and the OC1.
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Figure 5. Schematic diagram of the 90◦ rotation distance of the pineapple eye center point.

Since the contour of the pineapple cross section through C of the pineapple eye is
not an ideal circle, and due to system errors such as installation and imaging, uc1 and vc1
cannot fully meet the above constraints; therefore, a certain tolerance Δ is added when
finding a matching pineapple eye in the γ + 90 degree image. In other words, we search for
the target pineapple eye within the rectangular box (uc1 − Δ,vc1 − Δ,uc1 + Δ,vc1 + Δ). To
ensure that there is only one pineapple eye in the rectangular box, Δ is set to a third of the
minimum distance between the two pineapple eyes in the image. Obviously, according to
the above constraints, the pineapple eye below the rotation axis in Figure 4a is not found in
Figure 4b, so there is no need to perform a matching operation.

In this paper, a 3D localization algorithm for pineapple eyes based on monocular
multiangle image matching is proposed. After obtaining the image coordinates of the same
pineapple eye in two images with a difference of 90◦, the depth of the pineapple eye is
calculated by triangulation. The information is then used to calculate the three-dimensional
position information of the pineapple eye. The camera coordinate system Oc_XcYcZc is
established with the camera optical center as the origin, as shown in Figure 6. The center
point C of any pineapple eye is selected as the measurement object. (uc, vc) represents
the pixel value of pineapple eye center C under the imaging plane, O1 is the intersection of
the imaging plane of the pineapple eye center point C and the camera optical axis, and the
pixel value is (u0, v0) .

The circle in Figure 7 is the cross-sectional profile of the pineapple through point C.
ψ is the angle between the line segment OC and the optical axis of the camera, which
satisfies the formula ψ = arctan

(
h1
h2

)
. The pineapple is rotated clockwise in the direction

indicated by the arrow in the figure. p refers to the optical center of the camera. The distance
between point C and point p of the camera optical center is W, the distance between point
O and point p of the camera optical center is S, and l1 is the number of pixels in the axial
direction of the pineapple eye imaging plane. When the pineapple rotates clockwise by
90◦, which is equivalent to a 90◦ counterclockwise rotation of the camera, as shown in the
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dotted line in Figure 8, l2 is the number of pixels in the axial direction of the pineapple eye
imaging plane after rotation. The following formula can be obtained from Figure 7:⎧⎨⎩ α = arctan

(
l1×dx

f

)
β = arctan

(
l2×dx

f

) (2)

 

Figure 6. Camera coordinate system for the pineapple eye.

Figure 7. Schematic diagram of the pineapple eye depth information calculation.
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Figure 8. Three-dimensional positioning schematic diagram.

In this formula, dx represents the physical size of a pixel on the u-axis, which is
0.00465 mm in this paper. α and β can be solved by using Formula (2), and h1 and h2 in
Figure 7 can be simultaneously solved according to the following equations.⎧⎪⎨⎪⎩

h1 = S(1−tan(β))tan(α)
1−tan(α)tan(β)

h2 = S(1−tan(α))tan(β)
1−tan(α)tan(β)

(3)

In Formula (3), h1 is the distance between point C and point O1, mm. h2 is the distance
between point C and point K, mm. Figure 7 shows that the center point C of the pineapple
eye is imaged at time t, and the object distance of the imaging plane is W = S − h2. Then,
the number of pixels of pineapple eye point C on the imaging plane and in the camera
coordinate system are determined using the following equation:⎧⎨⎩

dx(uc−u0)
f = Xc

W
dx(vc−v0)

f = Yc
W

(4)

In other words, at time t, the center point C of the pineapple eye fulfills the matrix in
the camera coordinate system, with the camera optical center serving as the origin:⎡⎣Xc

Yc
Zc

⎤⎦ = W

⎡⎣uc −u0 0
vc −v0 0
0 0 1

⎤⎦
⎡⎢⎣

dx
f

dx
f
1

⎤⎥⎦ (5)

To facilitate subsequent experiments and the operation of removing pineapple eyes in
practical engineering applications, the pineapple three-dimensional space coordinate with
O as the center is established O_XYZ. The geometric vector approach is used to translate
the camera coordinates into the 3D space coordinates of the pineapple eye, as shown in
Figure 8. ⎧⎨⎩

X = −Xc
Y = Yc × cos(−α) + (S − Zc)× sin(−α)
Z = S − ((S − Zc)× cos(α) + Yc × sin(α))

(6)

Furthermore, the three-dimensional coordinates of the pineapple eye (X, Y, Z) are
converted to the probe, which can be used for eye removal after changing to the eye-removal
tool. Position L and pineapple rotation angle θ are represented by the space coordinates
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(L, θ), and O2 is the starting point of the probe. As shown in Figure 9, the corresponding
conversion formula is as follows:{

L = X1 − X
θ = Y

S−Z × 180/PI
(7)

Figure 9. Flow diagram of the 3D positioning method for pineapple eyes.

In Equation (7), X1 is the distance from the optical center of the horizontal axis camera
to the starting point of the probe. Because the pineapple is rotating during the image
acquisition process, all the calculated coordinates of the pineapple eyes are the result of
the calculation of the current pineapple angle conditions. To obtain the coordinates of all
pineapple eyes for the whole pineapple in the same coordinate space, we should reverse
rotate the coordinates of all pineapple eyes to the 0◦ position. Therefore, Formula (7) should
be modified to the following: {

L = X1 − X
θ = Y

S−Z × 180
PI − γ

(8)

The position information of all pineapple eyes can be obtained after image stereo
matching and pineapple eye position computation. To ensure that the position information
of each pineapple eye is calculated, the image acquisition angle interval is set to 30 degrees,
which leads to the same pineapple eye being calculated in multiple sets of images. This
results in more calculated pineapple eyes than the actual number of pineapple eyes. To
avoid the same pineapple eye being repeatedly calculated, a successful match of a pineapple
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eye in the image is marked. When using the image and the next picture, the marked
pineapple eye does not participate in the matching calculation.

2.5. Flow Diagram of 3D Positioning Algorithm

The flow diagram of the 3D positioning algorithm for pineapple eyes based on mul-
tiangle image stereo matching in the study is shown in Figure 9. It mainly includes all
pineapple eye image acquisition to identify and match the pineapple eye on the γ and
γ + 90-degree image. When matching images on the γ degree and γ + 90 degree, all the
pineapple eye coordinates (L, θ) are stored in a list. When matching the next set of images
(γ + 30 degree and γ + 120 degree), some pineapple eyes which are duplicated with the
previous set of images will inevitably be obtained. Because the pineapple eye coordinate
(L, θ) is a global coordinate, the coordinates (L, θ) are approximate. By comparing the
newly obtained pineapple eye coordinates with the pineapple eye coordinates stored in the
list, it is easy to find and eliminate duplicate pineapple eyes. In this paper, the Euclidean
distance judgment is used as the judgment basis; when the distance between the two
pineapple eyes is less than 1 mm, the two pineapple eyes are considered to be duplicate
pineapple eyes.

2.6. Probe Positioning Test

In this paper, a probe test method is proposed for evaluating the positioning accuracy
of the positioning system. The probe mounted on the linear slide, as illustrated in Figure 10,
may be accurately moved and positioned in the direction of the pineapple axis. At the same
time, the servo drive motor rotates the pineapple at a precise angle. Therefore, according
to the coordinates (L, θ) of any pineapple eye, the probe can be moved to the position of
the pineapple eye and inserted into the pineapple eye through the extension action of the
probe cylinder. The deviation er (error) between the actual center of the pineapple eye and
the probe penetration position can be calculated to evaluate the positioning accuracy of the
pineapple eye:

er =
√
(W2/2 − W1 − 0.99)2 + (H2/2 − H1 − 0.99)2 (9)

 
Figure 10. Measurement principle of the probe position error. 1. pineapple eye, 2. probe, and
3. pineapple eye center point.

In Equation (9), er is the error, and W1 is the distance between the left edge of the
pineapple eye and the right edge of the probe, in mm. W2 is the maximum length of the
pineapple eye in the horizontal direction, in mm. H1 is the distance between the upper
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edge of the pineapple eye and the lower edge of the probe, in mm. H2 is the maximum
length of the pineapple eye in the vertical direction, in mm. The probe radius is 0.99 mm.

Using five Goodfarmer Philippine pineapples, the diameter of the pineapple eye was
9–12 mm (manual measurement) after manual peeling. The positioning test is carried out
on the built-in test platform. When the probe reaches each pineapple eye position, a Vernier
caliper is used to successively measure the distances W1, W2 , H1, and H2, as shown in
Figure 11.

in 
Fiure 
11. 

(a) (b) 

(c) (d) 

Figure 11. Measuring the pineapple eye error with a Vernier caliper. (a) W1 measurement; (b) H1

measurement; (c) W2 measurement; (d) H2 measurement.

3. Results and Discussion

3.1. YOLOv5 Model Performance Evaluation

To evaluate the detection effect of the pineapple eye recognition model, the model
recognition accuracy and detection efficiency are mainly measured from four parameters:
recall (R), precision (P), average accuracy (AP), and detection time of a single pineapple eye.⎧⎪⎪⎪⎨⎪⎪⎪⎩

P = TP
TP+FP

R = TP
TP+FN

AP =
∫ 1

0 PdR

(10)

The AP value in Formula (10) is the area between the P–R curve and the coordinate
axis, TP represents the number of positive samples (pineapple eyes) correctly predicted
as positive samples, TN denotes the number of negative samples correctly predicted as
negative samples, FP indicates the number of negative samples predicted as positive
samples, and FN suggests the number of positive samples predicted as negative samples.

The curve of network model training is shown in Figure 12. Figure 12a shows the
loss function curve of training, with a minimum value of 0.01689. Figure 12b shows the
accuracy P (precision) curve, and the maximum accuracy is 97.8%. Figure 12c shows the
recall rate R (recall) curve, and the maximum recall rate is 97.5%. Figure 12d shows the
mean average precision curve when the IOU threshold is set to 0.5.
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(a) (b) 

  
(c) (d) 

Figure 12. Model training results. (a) Value of loss varies with the number of iterations; (b) P vary
with the number of iterations; (c) R vary with the number of iterations; (d) mAP@0.5 vary with the
number of iterations.

The P–R curve is a graph that depicts the relationship between precision and recall. The
abscissa represents R, while the ordinate represents P. The region contained in the P–R curve
and the coordinate axis is AP. The larger the area between the curve and the coordinate axis
is, the better the model recognition effect. Figure 13 shows the P–R curve with a threshold of
0.5 generated in the training process. Since there is only one recognition target in this paper,
the AP is equal to the mAP (mean Average Precision). The mAP is 99.2%.

Figure 13. P–R curve.

To further verify the YOLOv5l model performance for pineapple eyes, the YOLOv5l
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set; the target distribution of the test set was actually 1806 pineapple eyes. Then, the test
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set images were input into the above models, respectively. The target recognition results of
the pineapple eyes in the image samples of the test set by the model are shown in Table 1.
The YOLOv5 (l, s, m, and x) values of mAP at a confidence of 0.5 were 98%, 97.6%, 97.8%,
and 98%, respectively, showing the effectiveness of the proposed model. Additionally, the
average times required to detect one pineapple eye image were 0.015 s, 0.012 s, 0.019 s,
and 0.024 s, respectively. Figure 14 shows the YOLOv5l detection effect diagram with a
confidence level greater than 0.5.

Table 1. Identification results for the pineapple eyes in test set.

Models Precision (%) Recall (%) mAP (%) Average Time(s)

YOLOv5l 98.0 96.6 98.0 0.015
YOLOv5s 98.3 96.2 97.6 0.012
YOLOv5m 97.9 96.3 97.8 0.019
YOLOv5x 98.1 96.5 98.0 0.024

Figure 14. YOLOv5l detection effect diagram.

Average time is the time to detect one pineapple eye image.
In order to further analyze the accuracy of the YOLOv5l model in pineapple eye image

detection, the training results of YOLOv5l and the target detection model Mask R-CNN
were compared with a threshold of 0.5, as shown in Table 2. As can be seen from Table 2,
the mAP and detection speed of YOLOv5l are significantly higher than Mask R-CNN.

Table 2. Comparison models of YOLOv5l and Mask R-CNN.

Models mAP (%) Average Time (s)

YOLOv5l 99.2 0.015
Mask R-CNN 97.5 0.021

3.2. Result of Probe Positioning Test

The probe positioning test result, as shown in Figure 15, reveals that of the five Good-
farmer Philippine pineapples after manual peeling (460 pineapple eyes in total, 444 pineap-
ple eyes were successfully recognized), the deviation between the actual center of the
pineapple eye and the probe puncture position was 1.01 mm, and the maximum was
2.17 mm, with a root mean square value of 1.09 mm.
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Figure 15. Probe positioning test.

3.3. Discussion

The YOLOv5 model has high detection accuracy on the self-built pineapple eye dataset.
In the sample images of the whole test set, the accuracy, recall, and AP of the model are higher
than 96%, indicating that the YOLOv5 recognition algorithm is feasible. The reason why a few
pineapple eyes could not be successfully identified is that the pineapple eyes on both sides of
the image are prone to distortion. This situation increases the recognition difficulty, resulting
in some pineapple eye recognition errors. Therefore, further research on the optimization
methods of models and parameters is needed to improve detection accuracy.

The localization experiment demonstrates that collecting images of the entire pineap-
ple circumference at even intervals and employing multiangle image matching with high
positioning precision may effectively accomplish three-dimensional localization of the
pineapple eye. Simultaneously, pineapple eye coordinates have been converted into a form
that can be directly applied by the actuator, which provides a good foundation for the
further development of pineapple eye-removal equipment for practical operations.

4. Conclusions

A pineapple eye recognition algorithm was presented based on deep learning. YOLOv5
was used as the target detection network for pineapple eye recognition. The 600 pineapple
eye images enhanced by the dataset are divided into a training set, validation set, and test
set with an 8:1:1 ratio. The values in the final model validation of precision, recall, and
mAP (mean average precision) were 97.8%, 97.5%, and 99.2%, respectively. The YOLOv5l
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set. The YOLOv5 (l, s, m, and x) values of mAP were 98%, 97.6%, 97.8%, and 98%, showing
the effectiveness of the proposed model. Additionally, the average times required to detect
one pineapple eye image were 0.015 s, 0.012 s, 0.019 s, and 0.024 s. The detection results of
YOLOv5l and Mask R-CNN were further compared, and the results showed that YOLOv5l
was significantly higher than that of Mask R-CNN in both the mAP and detection speed.

A pineapple eye location algorithm based on monocular multiangle image stereo match-
ing was proposed. Two images with different angles of 90◦ were selected as a group for
stereo-matching analysis to obtain the three-dimensional position information of all pineapple
eyes, establish a camera three-dimensional coordinate system with the camera optical center as
the origin, and obtain the three-dimensional space coordinates (X, Y, Z) of the all pineapple
eye through the geometric vector method. To facilitate subsequent experiments and the
operation of removing pineapple eyes in practical engineering applications, in this paper, the
three-dimensional space coordinate (X, Y, Z) of the pineapple eye was transformed into the
space coordinate (L, θ) with the probe (or eye-removal tool) position L and the rotation angle
θ of the pineapple as the reference. The probe test results showed that the average deviation
between the actual center of the pineapple eye and the puncture position of the probe was
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1.01 mm, the maximum was 2.17 mm, the root mean square value was 1.09 mm, and the
positioning accuracy met the needs of the automated eye-removal operations.

The pineapple eye recognition and positioning algorithm proposed in this paper
provides an important theoretical basis for the development of automatic pineapple-eye-
removal equipment. The practical application performance of the algorithm needs to
be verified and improved in the actual eye-removal operation. At the same time, only
one variety of pineapple was tested, and the peeling operation was performed manually.
The applicability of the algorithm to different varieties of pineapples and machine-peeled
pineapples also needs to be further verified.
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Abstract: The working environment of a picking robot is complex, and the motion-planning algorithm
of the picking manipulator will directly affect the obstacle avoidance effect and picking efficiency of
the manipulator. In this study, a time-optimal rapidly-exploring random tree (TO-RRT) algorithm is
proposed. First, this algorithm controls the target offset probability of the random tree through the
potential field and introduces a node-first search strategy to make the random tree quickly escape
from the repulsive potential field. Second, an attractive step size and a “step-size dichotomy” are
proposed to improve the directional search ability of the random tree outside the repulsive potential
field and solve the problem of an excessively large step size in extreme cases. Finally, a regression
superposition algorithm is used to enhance the ability of the random tree to explore unknown space
in the repulsive potential field. In this paper, independent experiments were carried out in MATLAB,
MoveIt!, and real environments. The path-planning speed was increased by 99.73%, the path length
was decreased by 17.88%, and the number of collision detections was reduced by 99.08%. The TO-RRT
algorithm can be used to provide key technical support for the subsequent design of picking robots.

Keywords: picking manipulator; motion planning; TO-RRT; step-size dichotomy; regression
superposition

1. Introduction

Citrus is one of the most economically important crops in the world, and it is also
the most cultivated fruit in southwestern China. Currently, citrus fruits are mainly picked
manually, which is time-consuming, laborious, and expensive. According to a survey, the
labor used in citrus picking operations accounts for 33 ∼ 50% of the whole production
process. With the sharp decline in the number of rural employees in China, the development
of the citrus industry has been severely restricted. To improve the efficiency of picking and
enhance the competitiveness of China’s citrus industry, both the research and development
of citrus-picking robots have become research hotspots at home and abroad, and the path
planning of the picking manipulator is one of the most difficult technologies.

In recent years, a series of path-planning methods have been proposed. The artificial
potential field (APF) can be used to prevent the manipulator from colliding with obstacles
when approaching the target. However, the APF easily falls into a local minimum, and
it easily falls into oscillation in a complex environment [1]. Compared to the APF, the
rapidly-exploring random tree (RRT) is more adaptable, faster, and more variable, but
it is difficult to find the best path when using this approach [2]. Bidirectional RRT and
RRT-connect algorithms are used to generate two random trees at the initial node and
the target node, respectively, which improves the search speed compared with the RRT
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algorithm, but the path is still not optimal [3,4]. The RRT-star (RRT*) algorithm is used to
make the path gradually converge with the optimum in the search process by reselecting the
parent node and rerouting, but its running time is longer than that of the RRT algorithm [5].
Mohammed et al. [6] defined a straight line connecting the initial node and the target node
so that the generation probability of the random tree node was normally distributed with
the distance from the straight line, preventing excessive searching and avoiding falling into
local extreme values. However, the searching ability in a complex environment still needs
to be improved. Akgun et al. [7] combined the bidirectional RRT and RRT* algorithms to
optimize the search time. Jeong et al. [8] proposed an RRT*-Quick method, which caused
the nodes to tend to share the same parent node in a circular (or spherical) neighborhood.
While the path generated using this method was smoother than the path generated by the
RRT* algorithm, the search time increased slightly. Jeong et al. [9] introduced an informed-
RRT algorithm into the RRT*-quick method to limit the sampling space of the random tree
and solve the problem of increased search time caused by expanding the search domain
in the process of improving the quality of the solution. When the tree nodes reached the
maximum, the RRT* Fixed Nodes (RRT*FN) algorithm was used to remove a weak node
and add a high-performance node so that the generated tree node was much smaller than
the one in the RRT* algorithm. However, this method had little performance gap with the
RRT* algorithm before the tree nodes reached the maximum number of nodes [10].

The RRT* algorithm has a strong ability to optimize the path cost, but its search
efficiency is low. Cao et al. [11] introduced the target gravity to the RRT algorithm, and
the attraction generated by the random node and the attraction generated by the target
node were used to jointly guide the generation of new nodes in the random tree. This
method improved the search speed of the random tree, but it could not escape the obstacle
area quickly when blocked by obstacles. Wang et al. [12] changed the sampling area
and assigned node state values so that the random tree could only be expanded through
boundary nodes to reduce the generation of invalid nodes, but many redundant nodes
were generated near obstacles. Zhang et al. [13] screened new nodes based on a biased-RRT
algorithm. If the distance between the new node and the parent node was greater than the
distance between the new node and any other nearby node, the new node was discarded.
This method can be used to prevent excessive searching of the space and reduce the total
number of nodes. Gong et al. [14] made the search direction of the random tree always
point to the target node and performed local path planning near the obstacles. Although
this method could reduce excessive searching of the space, its escape speed was slow
when the random tree was blocked by many large obstacles. Li et al. [15] put forward an
adaptive RRT-connect (ARRT-connect), which allowed the random tree to still have good
performance in a narrow environment, and path planning could still be completed in a
short time. Gao et al. [16] proposed a planning method based on an independent potential
field that made the manipulator explore the gradient direction when it was far away from
the target and avoided obstacles through the random search. Wang et al. [17] selected tree
nodes according to the geometric structure and position of obstacles so that a path with a
lower cost could be quickly obtained, but the effect of avoiding obstacles with irregular
shapes was poor.

In this paper, based on a citrus tree environment, taking the shortest time as the
optimization goal, and taking the Franka manipulator as the experimental platform, the
RRT algorithm is improved in multiple dimensions. Its main contributions are as follows:

1. On the basis of the biased-RRT, the potential field function and the adaptive probability
threshold are introduced, so that the random tree has corresponding growth strategies
in different potential fields. The above strategies improve the directional search ability
of random trees in the repulsive potential field and enhance the escape ability of
random trees in the repulsive potential field;

2. To solve the problem of “falling into a trap” in the repulsive potential field of random
trees, a node-first search strategy is proposed, which makes the selection of extended
nodes of random trees more purposeful;
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3. Proper step size is crucial to improve search ability. Using an attractive step size is
helpful to reduce the number of collision detections and computational complexities
outside the repulsive potential field. “Step-size dichotomy” solves the problem of
random trees colliding with obstacles many times due to too large of step size in the
repulsive potential field;

4. By introducing a regression superposition algorithm, the random tree can avoid
over-searching space in the repulsive potential field and enhance the escape ability.

The rest of this article is organized as follows: The basic principles of the RRT algorithm,
as well as some improvement methods and the design process of the TO-RRT algorithm,
including the adaptive probability threshold, the node-first search strategy, an attractive
step size, “step-size dichotomy”, and a regression superposition algorithm are introduced
in Section 2. In Section 3, the performance of various algorithms in MATLAB, MoveIt!, and
the real environment are compared. The main contributions of the article and future work
are discussed in Section 4. The full text is summarized in Section 5.

2. Materials and Methods

2.1. RRT Algorithm

The RRT algorithm, which is a spatial search algorithm based on random sam-
pling, aims to generate a collision-free random tree connecting the first and the last
positions [18,19].

Each time the Tree grows, a random node qrand is generated in the space. Then, the
tree node qnear closest to qrand is found in the tree, and a new tree node qnew is found in
the direction of qnear → qrand with a fixed step λ and is connected to qnear as qnearqnew. If
neither qnew nor qnearqnew collide with obstacles, qnew and qnearqnew are added to the random
tree. After several expansions, if the distance between qnew and qgoal is less than the given
threshold, the Tree finds a path connecting qinit to qgoal , as shown in Algorithm 1.

Algorithm 1. RRT Algorithm.

1: Tree ← qinit
2: for i = 1 to n do
3: qrand ← RandomSample(Cf ree);
4: qnear ← NearestPoint(Tree, qrand);
5: qnew ← Extend(qnear, qrand, λ);
6: if CollisionFree(qnear, qnew) then
7 : AddNewPoint(Tree, qnew);
8: end if
9 : if Distance(qnew, qgoal) < ρmin then
10: return Tree
11: end if
12: end for

2.2. Some Improvement Methods

The RRT algorithm can be used to effectively explore high-dimensional space, but the
path cost is high, and the algorithm takes a long time to reach completion. The biased-RRT
algorithm can be used to effectively solve the shortcomings of the RRT algorithm [20–23],
as shown in Algorithm 2.
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Algorithm 2. Biased-RRT Algorithm.

1: Tree ← qinit
2: for i = 1 to n do
3: if RandomNumber <= m then
4: qrand ← RandomSample(Cf ree);
5: else
6: qrand ← qgoal ;
7: end condition
8: qnear ← NearestPoint(Tree, qrand);
9: qnew ← Extend(qnear, qrand, λ);
10: if CollisionFree(qnear, qnew) then
11: AddNewPoint(Tree, qnew);
12: end if
13: if Distance(qnew, qgoal) < ρmin then
14: return Tree
15: end if
16: end for

In Algorithm 2, qrand is determined by the size between the random number, RandomNumber,
and the probability threshold m. If RandomNumber <= m, qrand takes any point in the
space; otherwise, the target node is taken as the sampling point.

The biased-RRT algorithm is used to guide the growth of the random tree, increase the
effectiveness of sampling points, and shorten the time of path planning. However, when
obstacles obstruct the growth of random trees, the biased-RRT algorithm cannot escape the
obstacles quickly. Therefore, some scholars have put forward corresponding solutions, as
shown in Table 1.

Table 1. Comparison of RRT improvement methods.

RRT Type Algorithm Name Solutions

Biased-RRT NC-RRT [12]
The random tree search is guided by gradually changing the sampling area, and it is
expanded through the boundary nodes as much as possible through the node control

mechanism.

Biased-RRT RRT-BCR [13] A regression mechanism is introduced to prevent excessive searching, and an adaptive
expansion mechanism is introduced to avoid the repeated search of expansion nodes.

RRT* MOD-RRT* [24] An initial path planner and a path replanner are proposed. When encountering
obstacles, the path replanner selects alternative paths to avoid collision.

P-RRT PBG-RRT [25] By giving weights to the goal and random points, the random tree deviates from
obstacles.

RRT* HSRRT* [26]
The random tree is guided to deviate from an obstacle through the APF, and the

heuristic sampling scheme of Gaussian function is used to generate sampling points
near the obstacle to improve the search efficiency.

Note: NC-RRT, Node Control-RRT; RRT-BCR, Biased-RRT algorithm with boundary expansion mechanism and
regression mechanism; MOD-RRT*, multi-objective RRT*; PBG-RRT, rapidly exploring random tree based on
heuristic probability bias-goal; HSRRT*, heuristically sampling-based rapidly exploring random tree.

2.3. TO-RRT Algorithm
2.3.1. Adaptive Probability Threshold

At present, some improved RRT algorithms have been used to add potential field
functions to the target node qgoal , random nodes qrand, and obstacles. The random tree
changes its growth direction under the action of a combined potential field, which makes
it expand to the target when avoiding obstacles [27–33]. This kind of algorithm improves
the search efficiency of the random tree, but each expansion of the random tree requires
several vector operations of the potential field force, which occupies a large amount of the
system memory. In addition, if the repulsive potential field of the obstacles is considered,
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the algorithm may fall into a local minimum problem, as is common in APF, resulting in
qnear being unable to generate a new node qnew, as shown in Figure 1.

Figure 1. The algorithm falls into a local minimum.

Considering the complexity and uncertainty of the above algorithm in different envi-
ronments, an attractive potential field and a repulsive potential field for the target node
and obstacle, respectively, based on the biased-RRT algorithm were established. Therefore,
the probability threshold changed according to the different types of potential fields.

Similar to the APF algorithm, the range of the attractive potential field was the whole
operating space, while the range of the repulsive potential field was limited to a certain
distance around the obstacle. In the range of the repulsive potential field, if the random
tree tended to search for the target node qgoal , the random tree had a strong ability to grow
biased. At this time, if the obstacle blocked qgoal , multiple failed growth near obstacles
could occur for the random tree, so it tended to search randomly within the repulsive
potential field. When the random tree left the range of the repulsive potential field, it
continued to tend to search for qgoal , as shown in Algorithm 3.

Algorithm 3. Probability Threshold under the Control of Potential Field.

1: if RandomNumber <= threshold(qnew, obstacle) then
2: qrand ← RandomSample(Cf ree);
3: else
4: qrand ← qgoal ;
5: end if
6: return qrand

The growths of the random tree under both the control of the constant probability
threshold and the adaptive probability threshold are shown in Figure 2a,b, respectively.
Figure 2a shows that, if the random tree maintained a constant probability threshold
during the search process, the obstacle did not affect the goal of random tree expansion.
If the adaptive probability threshold was adopted, the random tree chose a better growth
direction according to the location tendency of the new node. It was learned through many
experiments that the probability threshold outside the scope of the repulsive potential field
was 0.3, and the probability threshold inside the range of the repulsive field was 0.7.

2.3.2. Node-First Search Strategy

According to the biased-RRT algorithm, when RandomNumber > m, qrand takes the
coordinate value of qgoal and then selects the qnear closest to qrand in the random tree as the
parent node of qnew. If the random tree only expands to the target in each search round
without considering the random search, then the new node in this search round will become
the parent node of the new node in the next search round, and the random tree is a straight
line segment connecting qinit and qgoal .
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Figure 2. Threshold comparison. (a) Constant probability threshold; (b) Adaptive probability
threshold.

As in Section 2.3.1, when the end node of the random tree expands to the range of the
repulsive potential field, the random tree tends to select any node in the space as qrand in
the next search selection, so the probability of random expansion of the end node is small.
If the next round of search satisfies RandomNumber > threshold, since the end node of the
random tree is closest to qgoal , qgoal will be expanded, causing the newly generated path to
collide with the obstacle. To summarize, when RandomNumber > threshold, the end node
collides with the obstacle; when RandomNumber <= threshold, any node in the tree will
be selected for expansion, which is no different from the traditional RRT algorithm. This
phenomenon is called “falling into a trap”, as shown in Figure 3.

Figure 3. The random tree falls into a trap in the repulsive potential field. (a) The random tree
entering obstacle potential field; (b) The random tree begins to expand randomly; (c) The random
trees collide with obstacles; (d) The random tree is expanded several times.

For this reason, a node-first search strategy was proposed in this paper, as shown
in Algorithm 4. When the qnew of the random tree grew into the range of the repulsive
potential field of obstacles, a virtual spherical surface with a radius r and center qnew was
generated. If RandomNumber <= threshold was satisfied in the next round of search, point
qrand on the virtual spherical surface was preferentially selected, and qnew was used as the
parent node of the next round of search to generate a new node qnew2. If qnew2 and the line
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segment qnewqnew2 did not collide with obstacles, the path and qnew2 were kept. A new
search round continued until the end node of the random tree was separated from the
obstacles, as shown in Figure 4.

Algorithm 4. Node-First Search Algorithm.

1: if RandomNumber <= threshold(qnew, obstacle) then
2: if Distance(qnew, obstacle) < Rrp f then
3: qrand ← sphere(qnew, rvirtual);
4: else
5: qrand ← RandomSample(Cf ree);
6: end if
7: else
8: qrand ← qgoal ;
9: end if
10: return qrand

Figure 4. Schematic diagram of the node-first search strategy.

2.3.3. Attractive Step Size and Step-Size Dichotomy

From the above description, the node-first search strategy was used to prevent the
random tree “falling into a trap” within the range of the repulsive potential field. Since the
random tree has a certain probability of random search outside the range of the repulsive
potential field of obstacles, more iterations will be generated. An appropriate step size can
effectively reduce the iterations of the random tree. In the case that the length of the path is
determined, a small step size will cause more collision detections and distance calculations,
and a large step size will often make the random tree collide with obstacles. Therefore, the
step size should be expanded as much as possible on the premise of reducing the number
of collisions [34,35].

According to the APF algorithm, the attractive force of qgoal acts on the whole operating
space and is proportional to the distance between the end joints of the manipulator, which
is beneficial to control the growth step of the RRT. If obstacles are not considered, the
random tree should increase the step size when it is far away from qgoal to quickly expand
to qgoal . When the random tree is closer to qgoal , if it continues to maintain a large step
size, a large number of redundant nodes will be generated at qgoal , as shown in Figure 5a.
Therefore, the random tree should gradually approach qgoal with small step sizes, as shown
in Figure 5b.

For this reason, an attractive step size was proposed, which was defined as:

attStepsize = k × Distance(qnear, qgoal) (1)

where attStepsize represents the attractive step size, and k is the attractive parameter.
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Figure 5. Fixed step size and attractive step size. (a) Fixed step size; (b) Attractive step size.

If obstacles are considered, the step size of the random tree in the random search
is fixed, and an attractive step size is taken when growing toward qgoal . This method
ensures that the random tree grows toward qgoal as soon as possible outside the range of
the repulsive potential field and avoids collisions with obstacles due to excessive steps
within the range of the repulsive potential field.

The parameters of the potential field function of the manipulator are different in
different operating spaces. For example, when the attractive parameter k is too large,
attStepsize will increase accordingly. If Distance(qnear, obstacle) < attStepsize, qnew will
collide with obstacles. In addition, the end nodes tend to grow toward qgoal outside the
range of the repulsive potential field. Therefore, the random tree still has a high probability
of colliding with obstacles in the next round of search.

For this reason, a “step-size dichotomy” was introduced to solve the problem of
excessive step size. When qnear grew toward qgoal and there were obstacles between them,
the distance dnob between qnear and the obstacles was calculated. If dnob <= attStepsize,
the attStepsize was shortened to the original value of 2−1, and the sizes of attStepsize and
dnob were compared again until dnob > attStepsize; see Algorithm 5.

Algorithm 5. Step-size Dichotomy.

1: if Collision(qnear, qgoal) then
2: while adpStepsize > Distance(qnear, obstacle) do
3: adpStepsize = adpStepsize/2;
4: end while
5: else
6: attStepsize = k × Distance(qnear, qgoal);
7: end if
8: return attStepsize

2.3.4. Regression Superposition Algorithm

From Section 2.3.3, if the random tree grows within the range of the obstacle repulsive
potential field, a large number of redundant nodes will be generated on the surface of the
obstacle due to the high probability of the random search, as shown in Figure 6a. As a
result, a regression superposition algorithm is proposed in this section to adaptively select
extended nodes and change the step size of the random search, as shown in Figure 6b.
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Figure 6. Differences before and after improvement. (a) The random trees generated a large number
of nodes on the surface of obstacles; (b) The random tree had fewer nodes on the obstacle surface.

The regression superposition algorithm consists of a regression algorithm [36] and a
step-size superposition algorithm. In the regression algorithm, if the distance between qnew
and qnear was larger than the distance between qnew and any node qi in the random tree
except qnear, it was considered to meet the regression conditions:{

Distance(qnear, qnew) > Distance(qnear, qi)
qi ∈ Tree

(2)

If Formula (2) was satisfied, qnew was regarded as a regression node. The regression
node would not become the tree node of the random tree, but it was removed until a new
node that did not meet the regression condition was found, as shown in Figure 7a.

Figure 7. Regression superposition algorithm. (a) Regression algorithm; (b) Regression superposition
algorithm; (c) Step-size superposition algorithm. Note: λ, the initial step size; ε, the step size of
superposition; ρ, the distance between qnew and any node.

To further reduce the number of tree nodes, the step-size superposition algorithm
was incorporated based on a regression algorithm. When the random tree was searched
randomly, the initial step size was set to λ, and the step size was increased by ε after each
round of the random search until the extended branches of the random tree collided with
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obstacles. Then, the search step size of the next round was returned to the initial step size
λ, and the step size was superimposed again until the random tree searched toward qgoal ,
as shown in Figure 7c.

The random tree used an attractive step size when searching toward qgoal to reduce
the generation of redundant nodes. During the random search of the random tree, the
regression superposition algorithm was used to enhance the ability of the random tree to
search the unknown space, as shown in Figure 7b.

The TO-RRT algorithm was used to dynamically adjust the growth direction of the
random tree by the probability threshold controlled by the potential field and to define
two different growth methods according to the different growth directions. Therefore, the
random tree could quickly grow to the target outside the range of the repulsive potential
field and quickly determine the escape path within the range of the repulsive potential
field. The algorithm flow chart is shown in Figure 8.

Figure 8. Flowchart of the TO-RRT algorithm. Note: A, yes; N, no.

3. Results

3.1. Comparative Experiment of Path Planning in a Complex Environment

To verify the speed, stability, and low path cost of the TO-RRT algorithm, the RRT
algorithm, the biased-RRT algorithm with a target offset probability of 50%, the TO-RRT
algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm are compared in this
section using complex environments (i.e., a multi-sphere environment, a multi-rectangle
environment, a single-channel environment, and a multi-channel environment).

In the simulation experiment, the initial step size was 2, the maximum number of
failed growth times was 100,000, the map size was 50 × 50 × 50, the starting point was
(1, 1, 1), and the target point was (49, 49, 49). The blank area in the map represented the
obstacle-free area, other colors represented the obstacle area, the blue path represented the
random tree, the black path represented the collision-free path from the starting point to
the target point, and the red path represented the path optimized by the greedy algorithm.

Figure 9a,e,i,m,q show that, although the RRT algorithm can be used to find a collision-
free path from the initial point to the target point, the whole space was searched, so that
the highest amount path nodes were generated. Compared with the RRT algorithm, the
biased-RRT algorithm did not search too much invalid space, so there were fewer path
nodes. When using the RRT-BCR algorithm and the NC-RRT algorithm, the sizes of the
random trees were reduced through a regression mechanism and an adaptive sampling
area, respectively. The TO-RRT algorithm was used to greatly reduce the number of nodes
in the space, and its complexity was the lowest. Figure 9b,f,j,n,r show that the RRT algo-
rithm still searched the whole space. Although the biased-RRT algorithm generated fewer
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nodes than the RRT algorithm, the search tree generated a large number of nodes on the
surface of obstacles, which increased the number of iterations. The NC-RRT algorithm
made the random tree tend to expand through boundary nodes through the node control
mechanism, so it had fewer redundant nodes. It can be seen from Figure 9c,d,g,h,k,l,o,p,s,t
that the RRT algorithm and the biased-RRT algorithm could not quickly find the “escape
channel”. Although the RRT-BCR algorithm limited the expansion of nodes that were
prone to collision, it increased the expansion times of other nodes. Due to the regression
superposition algorithm and node-first search strategy introduced into the TO-RRT algo-
rithm, the random tree could quickly search the nearby area to find the “escape channel” in
the repulsive potential field.

There are certain errors and contingencies in a single experiment. To better reflect
a real situation, 10 simulation experiments were carried out in the same environment as
described above, shown in Figure 10.

Figure 10 shows that the TO-RRT algorithm maintained strong stability in 10 experi-
ments and did not traverse the whole space due to being blocked by obstacles, while the
RRT algorithm and the biased-RRT algorithm both generated a large number of nodes in the
space. In addition, the RRT-BCR algorithm had fewer path nodes than the biased-RRT algo-
rithm, and in the NC-RRT algorithm, there was little difference in the path in each search.
The comparison of the running times of the three algorithms in different environments
is shown in Figure 11. Figure 11 shows that the RRT algorithm had the longest running
time and poor running-time stability, especially in a single-channel environment, with the
longest running time at 45.6057 s and the shortest running time at 1.2880 s. Compared
with the RRT algorithm, the biased-RRT algorithm had a much shorter running time and
strong running-time stability, but the search time in a complex environment was longer.
The longest running times of the TO-RRT algorithm in the four environments were 0.0225 s,
0.0420 s, 0.0618 s, and 0.0443 s, and the shortest running times were 0.0056 s, 0.0134 s, 0.0101
s, and 0.0115 s. The difference between the longest search time and the shortest search time
in a single environment did not exceed 0.06 s, which not only indicated a short search time
but also a strong and stable running time. The NC-RRT algorithm performed poorly in a
multi-rectangle environment, with a difference of 4.44 times between the longest running
time and the shortest running time, while the RRT-BCR algorithm was only 3.82 times.

Table 2 shows the average values of each index of the 3 algorithms over 10 experiments
(biased-RRT represents the biased-RRT algorithm with a target offset probability of 50%). In
the multi-sphere environment, the TO-RRT algorithm had a running time that was 99.74%
less than the RRT algorithm, which was mainly because the number of collision detections
and the number of failed node growths of the former were reduced by 99.39% and 97.17%,
respectively, compared with the latter. In addition, compared with the RRT algorithm, the
number of path nodes in the TO-RRT algorithm was reduced by 82.92%, which shortened
the length of its search path by 18.99%. When the random tree encountered a large area
of obstacles, the TO-RRT algorithm was used to reflect the advantages in the search time
more than the RRT algorithm. For example, the number of tree nodes and the number of
failed growths of nodes of the RRT algorithm in the multi-rectangle environment reached
17,358.3 and 3144.8, respectively, resulting in a running time of 7.8822 s, while the running
time of the TO-RRT algorithm was only 0.0213 s. In addition, the RRT-BCR algorithm
performed better than the NC-RRT algorithm in a multi-rectangle environment, and its
running time was shortened by 29.14% compared with the NC-RRT algorithm because the
RRT-BCR algorithm removed nodes that collided many times when facing obstacles with
large occlusion areas. The biased-RRT algorithm produced too much failure growth when
encountering obstacles with large areas. For example, in a multi-channel environment,
the node failure growth rate of the biased-RRT algorithm was 62.54%, while the RRT
algorithm and TO-RRT algorithm had node failure growth rates of only 36.40% and 15.82%,
respectively. Therefore, the biased-RRT algorithm was not ideal in a complex environment.
Since the NC-RRT algorithm always took the area between the configuration point and the
target as the sampling radius and tended to use boundary nodes for expansion, it could not
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produce valid nodes when the obstacle was between the configuration point and the target.
For example, in multi-channel and multi-rectangle environments, the collision detection
times of the NC-RRT algorithm were 21,487 times and 55,077 times. In summary, compared
with the other algorithms, the TO-RRT algorithm had significant advantages in searching
speed and the number of nodes in the random tree.

Figure 9. The performances in different environments of: the RRT algorithm (a–d); the biased-RRT
algorithm with a target offset probability of 50% (e–h); the TO-RRT algorithm (i–l); the RRT-BCR
algorithm (m–p); and the NC-RRT algorithm (q–t).
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Figure 10. Ten experiments each of: the RRT algorithm (a–d); the biased-RRT algorithm with a target
offset probability of 50% (e–h); the TO-RRT algorithm (i–l); the RRT-BCR algorithm (m–p); and the
NC-RRT algorithm (q–t).

201



Agriculture 2022, 12, 581

Figure 11. The running times of the RRT algorithm, the biased-RRT algorithm with a target offset
probability of 50%, the TO-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm.
(a) Multi-sphere environment; (b) Multi-rectangle environment; (c) Single-channel environment;
(d) Multi-channel environment.

Table 2. Experimental results of each algorithm in different environments.

Algorithm
Type

Running
Time (s)

Path Length
(cm)

Tree Nodes
(Number)

Path Nodes
(Number)

Collision
Detection
(Number)

Failed Node
Growth

(Number)

Node
Failure
Growth
Rate (%)

Multi-sphere

RRT 5.6342 124.6008 10,454.3 60.9 10,693.7 229.4 2.15
Biased-RRT 0.0617 100.1367 140.1 54 228 87.9 38.55

TO-RRT 0.0147 100.9338 22.9 10.4 65.5 6.5 9.92
RRT-BCR 0.0545 101.9241 113.4 54.3 123.2 9.8 7.95
NC-RRT 0.0324 94.3765 50.6 50.2 183.7 133.1 78.46

Multi-
rectangle

RRT 7.8822 140.9832 14,213.5 68.7 17,358.3 3144.8 18.12
Biased-RRT 0.1860 125.8082 414.3 62.9 1033.9 619.6 59.93

TO-RRT 0.0213 110.1866 32.7 13.2 135.5 17.3 12.77
RRT-BCR 0.1121 121.8465 243.8 60.4 294.4 50.6 17.19
NC-RRT 0.1709 107.2454 55.8 53.6 55,077 54,519 99.99

Single-
channel

RRT 12.4436 131.1145 8333.9 64.2 13,560.3 5226.4 38.54
Biased-RRT 0.1074 108.6431 242.2 55.5 607.3 365.1 60.12

TO-RRT 0.0254 107.4978 32.8 12.7 130.7 20 15.30
RRT-BCR 0.0707 109.4179 159.3 55.8 203.8 44.5 21.83
NC-RRT 0.0406 96.7172 49.8 49.8 659 609.2 92.44
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Table 2. Cont.

Algorithm
Type

Running
Time (s)

Path Length
(cm)

Tree Nodes
(Number)

Path Nodes
(Number)

Collision
Detection
(Number)

Failed Node
Growth

(Number)

Node
Failure
Growth
Rate (%)

Multi-
channel

RRT 8.0047 134.4688 11,702.5 64.7 18,399.5 6697 36.40
Biased-RRT 0.1461 114.4721 322.9 56.9 861.9 539 62.54

TO-RRT 0.0301 117.5516 51.8 16.1 222.5 35.2 15.82
RRT-BCR 0.1276 120.4389 278.8 61.8 369.3 90.5 24.51
NC-RRT 0.0821 102.7622 55.3 52.8 21,487 20,934 97.43

Average
index

RRT 8.4912 132.7918 11,176.05 64.625 15,002.95 3824.4 23.8025
Biased-RRT 0.1253 112.2650 279.875 57.325 682.775 402.9 55.285

TO-RRT 0.0229 109.0425 35.05 13.1 138.55 19.75 13.4525
RRT-BCR 0.0912 113.4070 198.825 58.075 247.675 48.85 17.87
NC-RRT 0.0815 100.2753 52.875 51.6 19,351.675 19,061.48 92.08

Note: RRT, rapidly-exploring random tree; Biased-RRT, rapidly-exploring random tree with target Bias; TO-RRT,
time-optimal rapidly-exploring random tree; RRT-BCR, Biased-RRT with boundary expansion mechanism and
regression mechanism; NC-RRT, Node Control-RRT.

3.2. Obstacle Avoidance Test Based on the Robotics Toolbox

To verify the feasibility of the TO-RRT algorithm on the manipulator, Robotics Toolbox
10.2 in MATLAB was used to model the Franka manipulator. Franka is a 7-DOF robot with
high precision and fast response. Its payload is 3 kg, and the maximum contact area is
855 mm. The Franka manipulator can realize two-way communication between itself and
the workstation through the Franka Control Interface (FCI) and an Ethernet connection.
Therefore, complete real-time control can be achieved with a sampling frequency of 1 kHz.
In terms of picking performance, Franka’s pose repeatability is within 0.1 mm. Even at the
highest speed of 2 m/s, the path deviation can be ignored, which provides good working
conditions for fruit picking. The physical object of the Franka manipulator and its D-H
parameters are shown in Figure 12a and Table 3, respectively.

Figure 12. Materials and results of simulation experiments based on using Robotics Toolbox. (a) The
physical object of the Franka manipulator; (b) Trunk model; (c) The Franka manipulator avoids
obstacles.
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Table 3. D-H parameters.

Link i Link Offset ai(m) Link Length di(m) Link Twist αi(rad) Link Twist θi(rad)

1 0 0.333 π
2 θ1

2 0 0 0 θ2
3 0 0.316 0 θ3
4 0.0825 0 π

2 θ4
5 −0.0825 0.384 −π

2 θ5
6 0 0 0 θ6
7 0.088 0 π

2 θ7

To simplify the trunk and improve the operation speed of the TO-RRT algorithm, the
trunk was regarded as a combination of spheres [29], as shown in Figure 12b and Table 4.
To judge whether the manipulator collided with obstacles, the shortest distance dcollision
from the center of the sphere to the origin of the coordinate system of adjacent links of the
manipulator was used. The three-dimensional coordinates of each joint of the manipulator
were obtained through a forward kinematics solution, and if the manipulator did not collide
with the tree trunk, the following conditions must be met:

dcollision > R + r (3)

Table 4. Obstacle parameters.

Number Obstacle Coordinates (cm) Obstacle Radius (cm)

1 (25,55,48) 5
2 (25,53,47) 5
3 (25,51,46) 5
4 (25,49,45) 5

In the formula, R = 5 cm is the radius of the obstacle ball, and r = 3 cm is the radius
of the cylinder.

Figure 12c shows the Franka manipulator using the TO-RRT algorithm to plan its
path, and the minimum-snap trajectory optimization algorithm was used to smooth the
trajectory of the manipulator [37,38]. Figure 13 shows the shortest distance.

3.3. Comparative Experiments in a Virtual Picking Environment

The motion-planning experiment of the Franka manipulator was initially realized
through Robotics toolbox, which proved that the TO-RRT algorithm was feasible in the
motion of the manipulator. MoveIt! was used in this section to build a virtual picking
environment and to conduct comparative experiments on different algorithms in this
environment. The experimental parameters are shown in Table 5.

During the experiment, the maximum search time was 10 min, the maximum number
of failed searches was 10,000, and the search domain was {x, y, z| − 1 < x < 1,−1 < y <
1,−1 < z < 1}(m). Due to the large number of sampling points generated, the global
search time of the RRT algorithm was 243.322451 s. Compared with the RRT algorithm,
the search time of the biased-RRT algorithm was only 3.720342 s. However, affected by
the nature of obstacles and the probability threshold, the collision-free path generated
by the biased-RRT algorithm was less smooth. In contrast, since the NC-RRT algorithm
controlled the sampling interval, its trajectory was the smoothest among all the algorithms.
Compared with the previous algorithms, the TO-RRT search time and path length were
only 0.074915 s and 0.63548128 m, respectively, due to the generation of smaller random
trees. The simulation results are shown in Table 6 and Figure 14.
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Figure 13. The shortest distance from the center of the sphere to the origin of the coordinate system
of adjacent links of the manipulator. (a) Obstacle with coordinates (25,55,48); (b) Obstacle with
coordinates (25,53,47); (c) Obstacle with coordinates (25,51,46); (d) Obstacle with coordinates (25,49,45).
CiCi+1 represents the distance between the line segment between coordinate system i and coordinate
system i + 1 and the center of the sphere.

Table 5. Experimental parameters.

Initial Pose Pose of Citrus 1 Pose of Citrus 2

Position (0.3595, 0, 0.643499) (0.106155, 0.227978,
0.744871)

(−0.234434, 0.360095,
0.737649)

Orientation (−0.65328, −0.270598,
0.653283, 0.270599)

(−0.636052, 0.309414,
0.231336, 0.66797)

(−0.771505, 0.309187,
0.226895, 0.507644)

Table 6. Experimental data using MoveIt!.

RRT Biased-RRT TO-RRT RRT-BCR NC-RRT

Global planning time(s) 243.322451 3.720342 0.074915 1.222014 0.181070
Global waypoints(number) 41 29 7 20 15

Path length at obstacle
avoidance(m) 1.89919096 1.46801193 0.63548128 0.592291 0.53239712

205



Agriculture 2022, 12, 581

Figure 14. The use of MoveIt! with: the RRT algorithm (a–c); the biased-RRT algorithm with a target
offset probability of 50% (d–f); the TO-RRT algorithm (g–i); the RRT-BCR algorithm (j–l); and the
NC-RRT algorithm (m–o).

3.4. Contrastive Experiments in Real Environments

To test the performance of TO-RRT in actual picking, the Franka manipulator was
taken as the moving object, the citrus as the operation object, and the tree trunk as the
obstacle avoidance object to construct a multi-objective citrus-picking environment. The
environmental parameters are shown in Tables 7 and 8. First, the manipulator adjusted
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its pose to the initial state, and its joint angle was (0,−π
4 , 0,−π

2 , 0, π
3 , 0). Second, the three-

dimensional coordinates of the citrus, the parameter information of obstacles, and the
picking pose of the manipulator were transmitted to the planning thread, and the continu-
ous and collision-free trajectory was obtained through inverse kinematics. Finally, MoveIt!
published the trajectory through moveit_commander to move_group and transmitted the
control signal to the robot controllers to complete the picking action. The control block
diagram is shown in Figure 15. The experimental results showed that the TO-RRT algorithm
could be used to effectively reduce the nodes, shorten the planning time, and reduce the
movement time of the manipulator, as shown in Figure 16 and Table 9.

Table 7. Obstacle information.

Number Obstacle Coordinates (m) Obstacle Radius (cm)

1 (0.369822, −0.153781, 1.04791) 1
2 (0.426765, −0.149826, 1.00189) 1
3 (0.45418, −0.186812, 0.947317) 1
4 (0.330284, −0.344084, 1.01095) 1.5
5 (0.384351, −0.371103, 0.94411) 1.5
6 (0.48388, −0.335959, 0.897789) 1.5

Table 8. Target information.

Coordinates (m)

Base coordinates (0,0,0)
Citrus 1 coordinates (0.208763, −0.432806, 0.764728)
Citrus 2 coordinates (0.423718, 0.0602042, 0.994)

Figure 15. Control block diagram.
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Figure 16. The manipulator reached Citrus 1 and Citrus 2 and avoided the branches. (a) Initial state of
manipulator; (b) The manipulator reaches the first citrus; (c) Obstacle avoidance of the manipulator;
(d) The manipulator reaches the second citrus.

Table 9. Comparison of the planning time and movement time.

Algorithm Type Planning Time(s) Movement Time(s)

RRT 53.873985 84.3975
Biased-RRT 0.0883 18.0498

TO-RRT 0.0508 17.3703
RRT-BCR 0.0771 17.9238
NC-RRT 0.0649 17.7131

4. Discussion

4.1. Analysis

From Figure 10a–d, since the RRT algorithm did not consider the effect of target offset
probability, the entire workspace was searched in all environments. The above problems led
to the huge scale of the random tree and caused more collision detection times. Therefore,
the path length and movement time of the manipulator were the longest among all the
algorithms, as shown in Tables 6 and 9. From Table 2, the biased-RRT algorithm avoided
redundant searching through heuristic guidance, effectively reducing the number of tree
nodes and collision detection times. From the average index in Table 2, since the RRT-BCR
algorithm removed nodes that collided multiple times, its node failure growth rate was very
low. However, this approach took a considerable amount of computation time, only 0.0112 s
less than the biased-RRT algorithm, as shown in Table 9. From the average index in Table 2,
the path length of the NC-RRT algorithm was the shortest, and the running time was second
only to the TO-RRT algorithm. As can be seen from the multi-rectangle environment in
Table 2, the NC-RRT algorithm had to continuously expand its sampling space when facing
obstacles with large occlusion areas, resulting in 55,077 collision detections (which was
the highest among all the algorithms). From Table 2, the TO-RRT algorithm reduced the
numbers of path nodes and collision detections through an attractive step size, reduced
the number of node failure growth through the node-first search strategy, and, finally,
enhanced the escape ability through the regression superposition algorithm. However, the
TO-RRT algorithm produced larger steps near obstacles, which led to a slightly longer path
length than the other improved algorithms, as shown in Table 6.

4.2. Future Work

Industry 5.0 is a new generation of the industrial revolution representing “personal-
ization”, in which personalized products and services are created for humans by using the
creativity of human experts to interact with efficient, intelligent, and precise machines. The
key technologies of Industry 5.0, such as human–computer interaction, collaborative robots,
and edge computing (EC), can provide ideas and technical support for Agriculture 5.0 [39].

As the number of China’s aging population increases by the year, the number of
rural employees has dropped sharply, and original agricultural production methods can
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no longer meet the development needs of the current citrus industry. Through the high
integration of artificial intelligence and mechanical equipment, the transformation and
upgrade of the production mode of China’s agricultural industry can be realized. The
improved method proposed in this paper can be used in the fields for picking robots and
pruning robots and for the path planning of orchard patrol robots [40–42]. By analyzing
the characteristics of a citrus tree environment, the work presented in this paper aimed
to optimize the time required and improve it on the basis of a traditional algorithm to
greatly shorten the planning time of the manipulator and reduce the movement time of
the manipulator to a certain extent. However, the detection of obstacles is an objective
challenge faced by this method.

In recent years, path planning through deep reinforcement learning (DRL) has become
a research hotspot. A robot senses environmental information through sensors and trains
the samples in the process of continuous interaction with the environment to complete an
efficient, accurate, and low-environment-dependence path-planning method. The fusion
of deep reinforcement learning and traditional path-planning algorithms has gradually
become a research trend. For example, LM-RRT determines the selection probability of
extension and connection trees based on reinforcement learning and guides the trees to
pass through narrow channels quickly [43]. Based on this, the research on improving the
TO-RRT algorithm by reinforcement learning will be discussed in the next stage.

5. Conclusions

A time-optimal RRT algorithm based on the characteristics of the complex environment
of citrus trees was proposed in this paper. The constructed algorithm had an attractive
potential field and a repulsive potential field for the target node and obstacle, respectively.
In addition, dynamic adjustment of the probability threshold under the action of the
superimposed potential field was achieved, and a node-first search strategy was used to
solve the “falling into a trap” problem. In addition, an attractive step size and a “step-
size dichotomy” were introduced in this algorithm so that the random tree could expand
the step size as much as possible on the premise of reducing the number of collisions.
Finally, a regression superposition algorithm was used to improve the search efficiency
of the random tree in the range of the obstacle repulsive potential field. The TO-RRT
algorithm was simulated in complex environments, and the motion-planning of the Franka
manipulator was carried out using Robotics Toolbox and MoveIt! It can be seen from the
simulation results that the TO-RRT algorithm had fewer tree nodes, collision detection
times, and failed growth times, so this algorithm had a shorter planning time than the RRT
algorithm, the biased-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm,
especially when the random tree faced a large obstacle area. To obtain the performance
of the algorithm in real work, we built a real picking environment indoors. Through the
performance evaluation of various indicators of the different algorithms, it was proved that
the TO-RRT algorithm still had a good performance in movement time.
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Abstract: Achieving fast and accurate recognition of garlic clove bud orientation is necessary for
high-speed garlic seed righting operation and precision sowing. However, disturbances from actual
field sowing conditions, such as garlic skin, vibration, and rapid movement of garlic seeds, can
affect the accuracy of recognition. Meanwhile, garlic precision planters need to realize a recognition
algorithm with low-delay calculation under the condition of limited computing power, which is a
challenge for embedded computing platforms. Existing solutions suffer from low recognition rate
and high algorithm complexity. Therefore, a high-speed method for recognizing garlic clove bud
direction based on deep learning is proposed, which uses an auxiliary device to obtain the garlic clove
contours as the basis for bud orientation classification. First, hybrid garlic breeds with the largest
variation in shape were selected randomly and used as research materials, and a binary image dataset
of garlic seed contours was created through image sampling and various data enhancement methods
to ensure the generalization of the model that had been trained on the data. Second, three lightweight
deep-learning classifiers, transfer learning based on MobileNetV3, a naive convolutional neural
network model, and a contour resampling-based fully connected network, were utilized to realize
accurate and high-speed orientation recognition of garlic clove buds. Third, after the optimization
of the model’s structure and hyper-parameters, recognition models suitable for different levels of
embedded hardware performance were trained and tested on the low-cost embedded platform. The
experimental results showed that the MobileNetV3 model based on transfer learning, the naive
convolutional neural network model, and the fully connected model achieved accuracy of 98.71,
98.21, and 98.16%, respectively. The recognition speed of the three including auxiliary programs
was 19.35, 97.39, and 151.40 FPS, respectively. Theoretically, the processing speed of 151 seeds per
second achieves a 1.3 hm2/h planting speed with single-row operation, which outperforms state-of-
the-art methods in garlic-clove-bud-orientation recognition and could meet the needs of high-speed
precise seeding.

Keywords: garlic seeding; orientation recognition; garlic clove righting; deep learning; fully
connected neural network

1. Introduction

Garlic is a globally cultivated crop due to its rich nutritional and medicinal value.
According to 2022 statistical data from the FAO, the garlic planting area in China in 2020
was about 830,000 hectares, and garlic production reached 20 million tons, the largest in
the world. However, the current mechanized planting of garlic is not efficient, and the
sowing period of garlic is very short, so high-speed, high-efficiency, and accurate planters
are urgently needed.

Many studies have shown that the orientation of garlic cloves buds during garlic
sowing into the soil significantly affects the time and consistency of seedling emergence,
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garlic yield, and garlic bulb quality [1,2]. One study showed that when the garlic clove
buds were facing upward and the inclination angle was within ±45◦, all the indexes of
garlic plants performed well. When the garlic clove buds were placed horizontally, the
performance of each index was slightly inferior to that of the garlic clove buds facing
upward. When the garlic clove buds were facing downward and the inclination angle was
within ±45◦, the performance of each index was the worst, making them prone to garlic
seed necrosis, uneven seedling emergence time, disordered and weak growth, and other
problems [3]. Therefore, the precise sowing of garlic first needs to meet the agronomic
requirements of garlic planting with clove buds being placed upright.

Cangshan and Jinxiang garlic are the most widely cultivated garlic breeds in China. At
present, existing garlic planters mostly adopt a righting mechanism to adjust the garlic
clove bud direction. The garlic cloves of Cangshan are neat and uniform, and their weight,
geometric shape, and the center of gravity are consistent, which could be utilized by a
mechanical mechanism to achieve garlic bud upright sowing into soil [4,5]. Jinxiang garlic,
the most commonly planted variety, is a hybrid breed with variable sizes of cloves, irregular
geometric shape, and unstable center of gravity, and the mechanical righting method often
has a poor effect [6]. The righting of hybrid garlic seeds remains an open problem, and
beyond that, high-speed precision sowing requires shorter cycling time for righting seeds.

The correct recognition of garlic clove bud orientation is the foundation of garlic clove
righting operation, and computer vision is the only feasible way to judge the clove bud
orientation of hybrid breed garlic. In the early stage, some studies tried to use artificial
feature engineering to solve the orientation recognition of garlic seeds, such as the density
of edges [7], the position of centroid [8], the curvature of contour [9], etc. These methods
are effective for garlic cloves with a standard shape, but poor for garlic cloves with residual
garlic husks and abnormal spikes, while commercial garlic seeds often have residual husks
and irregular geometric shapes, so the robustness of the artificial features engineering
algorithm is not ideal, and the actual use is very poor.

At present, as automatic feature-learning methods, deep-learning methods perform
well and have been widely used in the agricultural field [10], including in the orientation
recognition of garlic clove buds [11]. However, some methods can only identify the
position of qualified garlic clove buds, lack a description of unqualified positions, and
cannot provide position information to support the righting operation of the garlic planter.

The above-mentioned studies are limited to the scope of algorithms and theory, while
some other studies are focused on practical application, including the integration of al-
gorithms in embedded hardware that can be equipped with garlic planters [12]. Li et al.
designed an automatic righting device for garlic clove buds based on the Jetson Nano proces-
sor. The success rate of garlic clove bud righting of the device reached 96.25%, and when the
number of parallel sowing rows was 12, its sowing efficiency was 0.099–0.132 hm2/h [13].
The righting method of Li et al. requires a Jetson Nano processor in each righting channel
to achieve the planting efficiency of 0.099–0.132 hm2/h. However, the hardware cost of
Jetson Nano is relatively high (US $99), so this design may not be conducive to commer-
cial application.

So far, no research has tried to realize fast and accurate recognition of garlic seed
orientation that can meet the needs of high-speed and accurate sowing of garlic with a
low-cost embedded processor, and no research has attempted to solve the problem that
the abnormal shape of garlic seeds, such as garlic skin residue, etc., affects orientation
recognition. The above two research gaps hinder the practical application and large-
scale promotion of machine-vision-based garlic seed orientation identification methods.
Therefore, this paper proposes a robust, lightweight, and high-performance garlic bud
orientation recognition method based on deep learning to achieve high-speed and accurate
orientation recognition based on a single low-cost embedded processor.

Disturbances from actual field sowing conditions, such as garlic skin, vibration, and
rapid movement of garlic seeds, can affect the accuracy of recognition. Meanwhile, garlic
precision planters are in need of a recognition algorithm with a low delay calculation under
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the condition of limited computing power, which is a challenge for embedded computing
platforms. In order to solve these problems, this study carried out the following work:

• Building of a special data set for model training, including shape anomalies such as
garlic residue and motion blur, to ensure the generalization ability of the model to
real scenes.

• Use of multiple deep-learning and feature-compression methods to realize garlic bud
direction recognition and optimization of the model by tune operations.

• Performance tests of the models on low-cost embedded boards, selection of the optimal
model, comparison with other methods to verify the superiority of this method.

The main contributions of this paper are as follows: an efficient method for obtaining
a contour map is proposed, and a data enhancement method is proposed on this basis;
quick-recognition models of lightweight CNN MobileNetV3 and naive CNN based on the
contour map are proposed for high-speed recognition of garlic seed orientation; a high-
speed contour orientation recognition method based on highly compressed contour features
is proposed that realizes ultra-high-speed recognition on low-cost embedded platform.

Finally, a recognition speed of 151.40 FPS was achieved on the OrangePi 3 LTS, which
can support sowing operations at a speed of 1.3 hm2/h, which is superior to the state-of-
the-art method of garlic orientation recognition.

2. Materials and Methods

2.1. Garlic Clove Data Collection

In the field of deep learning, especially in image recognition, the collection of complete
datasets that cover all application conditions is critical. The operator can judge the direction
of a garlic clove bud mainly based on an outline of visual information. Based on this, the
binary contour image of garlic seeds is used as the basis for judging the orientation of garlic
cloves. Along with the support of a specific device, it is very easy to obtain an outline of
garlic cloves. This paper used a strong light source as the background, obtained the shadow
image and binary image of the garlic seed, and then applied the findcontours function of
the graphics library OpenCV. This design has the following advantages: first, the binary
contour image eliminates the imaging differences between different image sensors. Second,
using a single-channel image as the input of the CNN model helps to reduce the amount of
computation. Third, many traditional methods [7,9] also use contour images as input data,
and using binary contours as model input is conducive to algorithm integration between
different devices.

2.1.1. Garlic Clove Image Sample Collection

Deep learning requires that the training data and test data meet the conditions of
being independent and identically distributed to ensure the generalization ability of the
model. In the practical application stage of the model, the input data of the model must
be independent and identically distributed with the training set in order to make the
model work effectively. Therefore, considering the practical application of a deep learning
model in a garlic planter, the training samples should cover wider morphological diversity
distribution to enhance the robustness of model. When selecting training samples, one
should not only ensure the garlic clove sizes, weights, and appearance, but also consider the
influence of garlic seed production technology and other factors on garlic seed morphology,
such as skin residue.

In this paper, the binary contour image was used as the model input, and the morpho-
logical features such as color and texture were discarded in the process of extracting the
contours, while some edge features were preserved. Commercial garlic seeds are prone to
having residual garlic skins and abnormal spikes. These garlic skin residues have a great
impact on the extraction of contour images, and sometimes the extracted contour images
may seriously deviate from the standard shape of garlic seeds. Therefore, the selection of
training samples should also consider the situation of carried garlic skins while seeding.
Because the individual shape of garlic cloves of hybrid garlic breed is the most diverse, we
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randomly selected Jinxiang garlic and divided it into cloves, retained all the garlic cloves
without screening, and obtained a total of 735 garlic cloves for image samples. When
dividing garlic cloves, about 1

2 of the skin residue of the garlic cloves was retained to ensure
consistency with real sowing of garlic seeds, as shown in Figure 1a.

  
(a) (b) 

Figure 1. (a) Garlic clove samples and (b) image acquisition device.

Sample Acquisition Device and Image Preprocessing

In order to directly obtain the contour images of the garlic cloves, a garlic seed shooting
device was designed that uses a transparent clamping belt to clamp and transmit the garlic
cloves and adopts the method of back illumination of area light source. The area light
source is placed below the transparent clamping belt, and the image sensor is placed
above the transparent clamping belt. The clamping transmission module is wrapped by
an opaque shell to avoid the influence of external light on image acquisition. The light
emitted by the area light source passes through a transparent clamping tape to form a clear
garlic clove shadow image on the vision sensor, as shown in Figure 1b. The image collected
under the ideal state is shown in Figure 2a. However, because the reflection in the shell
cannot be completely eliminated, some reflected light will still be cast on the upper surface
of the garlic clove, and the continuous transmission of the garlic clove will bring the dust
that adhered to the garlic clove into the shell, reducing the contrast between the shadow
area of the garlic clove and the background, as shown in Figure 2b.

The above situation increases the difficulty of binarization of shadow image. Because
the shadow of the garlic seed image is too dark, the binarization performance to achieve
contour is poor. Manually adjusting the binarization threshold can alleviate the problem of
misclassifying the area around the shadow image, but the shadow of the garlic clove will
be lost and cannot be applied automatically, as shown in Figure 2c,d. An extremely low-
computation pixel compensation method is proposed to solve this problem. The control
system records an image of the empty conveyor belt without cloves, and then calculates
the pixel difference matrix between this image and a pure white image and saves it as
a pixel compensation matrix. When intercepting the garlic clove shadow image frame,
the intercepted image frame is added to the pixel difference matrix, and then the Otsu
binarization method [14] is used to obtain a high-quality binarized image, as shown in
Figure 3. The calculation rules are shown in Equations (1) and (2), where O represents the
image with no load when the device is initialized; C stands for the pixel compensation
matrix; X represents the image frame collected in real time; X’ represents the image frame
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after compensation; and m and n represent the number of rows and columns of the pixel
matrix, respectively.

C = 255 − O =
[
255 − oij

]
m·n (1)

X′ = X + C =
[
max

(
xij + cij, 255

)]
m·n (2)

  
(a) (b) 

  
(c) (d) 

Figure 2. The lighting environment in the device affects shadow imaging. (a) Idealized shadow image,
(b) Actual shadow image, (c) Otsu-based binary image, (d) Fixed-threshold-based binary image.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. Contour extraction after pixel compensation. (a) Background of conveyor, no clove, (b) Pixel
compensation matrix, (c) Compensated garlic clove shadow, (d) Binary shadow image, (e) Outline of
garlic seed, (f) Contour sampling points.
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Dataset Acquisition Method

During the sample image acquisition, the mechanical device introduced in the previous
section was used to transmit garlic seeds, the vision sensor on it was used to record a video,
and then the image frames were extracted from the acquired video. A total of 1470 original
image samples were obtained. Among them, 1172 images were randomly selected as
the training set, and the remaining 298 images were used as the validation set. Since the
length–width ratio of most image sensors is 4:3, when applied to the seeder, the long side of
the picture was parallel to the travel direction of garlic seeds to obtain a larger observation
field of garlic seeds. In order to meet this demand, the image samples used for model
training were processed with the same length–width ratio and were finally saved with an
image size of 640 × 480 by cutting or expanding the image boundary (Figure 4). Image
rotation does not change the shape of garlic cloves. In this study, the original image samples
were all adjusted to the upward state of garlic clove buds through image rotation operation.
In the data enhancement stage, image samples with other orientations were generated
through image rotation.

 

Figure 4. Part of the original sample.

2.1.2. Data Enhancement for Datasets

Because the original images were adjusted to the garlic clove bud upward state, the
key task in data enhancement was to generate image samples with left, bottom, and right
orientation. In addition, some image transformations need to be performed on the image
samples to make the images of the dataset more diverse to ensure the generalization
ability of the model. In order to make the training data and the validation data conform
to the conditions of independent and identical distribution, the same data augmentation
operation was performed on the training samples and the validation samples, and the
samples in the training set and validation set were always isolated during this process. The
image enhancement methods include horizontal flipping, stretching, shearing, translation,
rotation, and motion blur. All these methods except motion blur can be realized by two-
dimensional geometric transformation, which can be completed by multiplying the pixel
matrix of the image by a homogeneous transformation matrix. The mathematical expression
of this process is shown in Equation (3). In order to enhance the generalization of the sample
to the image acquisition environment in the garlic seeder, these methods need to follow a
certain logical order.

X′ = Mf ·Ms·Md·Mt·Mr·X (3)
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Mf =

⎡⎣−1 0 w
0 1 0
0 0 1

⎤⎦; Ms =

⎡⎣sx 0 0
0 sy 0
0 0 1

⎤⎦; Md =

⎡⎣ 1 dx 0
dy 1 0
0 0 1

⎤⎦; Mt =

⎡⎣1 0 tx
0 1 ty
0 0 1

⎤⎦; Mr =

⎡⎣cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎦
where X represents the original image, and X’ represents the image after transformation; Mf,
Ms, Md, Mt, and Mr represent the transformation matrix of horizontal inversion, stretching,
shearing, translation, and rotation, respectively; w represents the width of the image; sx
and sy represent the stretching ratio in two directions; dx and dy represent the shearing
amplitude in two directions; tx and ty represent the translation distance in two directions; θ
represents the rotation angle of the image.

Morphological Diversity

First, a flip operation on the image was performed. Due to the irregular shape of garlic
cloves, they usually show different external contours when the two sides of their abdomen
are facing vertically downward. Therefore, the diversity of the dataset can be increased
through the horizontal flipping operation (Figure 5). After this operation, the sample size
doubled to 2940.

 

Figure 5. Horizontal reversal amplification sample.

Then, stretch, shear, and translation were performed. These three operations can
effectively increase the morphological diversity of the image and are still effective after
image rotation. The stretching operation range was a random value in the range of 0–20%.
The strength of the shear operation was a random value in the range of 0–10. The range
of translation operation amplitude was a random value in the range of 0–10%. Through
the overlapping operation of the above three transformations, the image samples were
amplified to 29,400. The amplified samples are shown in Figure 6.

Image Rotation and Class Generation

When the plane is divided into four equal regions, upper, left, lower and right, the
range of each region is 90◦. In order to ensure the generalization ability of the model
for irregular orientation, before generating image categories, a random small-amplitude
rotation operation was performed on the image samples. The rotation amplitude in the
ideal state should be ± 45◦, but the original image was manually rotated and righted, and
there might be subtle deflection that is not easy to detect. Furthermore, because the data
enhancement operation includes shear transformation of random amplitude, a rotation
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transformation in the range of ±30◦ was performed on each image, acting directly on the
original image, without generating new image samples. The transformed samples are
shown in Figure 7.

 

Figure 6. Stretching, shearing, and translation.

 

Figure 7. Image samples after rotation in the range of ± 30◦.

After completing the above operations, each original image was rotated by 90, 180,
and 270◦ counterclockwise to obtain the standard left, lower, and right images. At this time,
the sample size expanded to 117,600. The samples of each orientation class are shown in
Figure 8.

Motion Blur and Contour Extraction

Seeding speed is an important performance index of garlic seeders. In order to achieve
high-speed seeding, garlic seed images should be collected in motion, which may lead to
motion blur in the collected images. Because of the influence of uncertain motion blur on
contour extraction, the data enhancement operation should also include motion blur with a
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certain probability and range. In this study, image samples were randomly selected with a
probability of 50%, and motion blur with random amplitude was applied in the direction
parallel to the long edge of the image (Figure 9).

 

Figure 8. Samples of each orientation class.

 

Figure 9. Motion blur in different direction classes.

After all the data enhancement operations were completed, the contour of the image
samples were extracted one by one, finally forming the garlic seed contour dataset for
model training (Figure 10).

 

Figure 10. Final generated outer contour image samples.
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Logical Sequence of Data Enhancement Operations

If the rotation operation used to generate the orientation classification is performed
before the zoom, stretch, shear, and translation operations, image samples with greater
morphological differences can be generated, theoretically promote the generalization ability
of the deep-learning model during training. However, it was found in experiments that
datasets with the same orientation classification morphology have better performance. A
possible reason is that when the four classifications contain samples with the same morphol-
ogy, the deep learning model can suppress the influence of morphology on classification
and pay more attention to the high-level semantic feature of “orientation”.

Because motion blur is directional, motion blur transformation should be carried out
after rotation transformation, and motion blur may affect the edge contour, so contour
extraction should be carried out after motion blur operation.

Storage of Dataset

The lightweight CNN model discussed has low computation complexity. A large batch
size can be used in training on PC, and the training/inferring time of each batch is very
short. In the initial practice, it was found that the transmission speed of training samples
was often lower than the processing speed of the model; therefore, the way the dataset
is stored has been improved. In the experimental environment of this paper, when using
TFRecord format defined in TensorFlow [15] to store datasets, the input speed of samples
could reach more than 10 times that of batch reading image files, which is faster than the
inference speed of all deep learning models introduced in this paper. Therefore, this format
is used as one of the storage schemes for datasets and testing of several CNN models.

The fully connected model proposed in Section 2.2.3 takes the pixel coordinates of
garlic clove contours as the input. When the dataset composed of image samples is
converted into the form of pixel coordinate array, the volume of the dataset is further
reduced, and the whole dataset can be loaded into memory during training. The format
DataFrame of Pandas [16] is used to store an array of contour point coordinates for all
samples, which is changed to H5 format for loading on each training task. For the above
two dataset formats, the shuffle operation was implemented for each training epoch to
obtain better training results.

2.2. Lightweight Recognition Model of Garlic Clove Bud Orientation

For the garlic seed orientation recognition method studied in this paper, its accuracy is
the first important criterion. Secondly, it is of practical significance to improve the running
speed of the recognition model under the premise of ensuring accuracy. At the same time,
the hardware cost of the algorithm application is also one of the factors considered in this
paper, which is a necessary condition to ensure the generalizability of the application. Low
hardware cost means low computing performance, so the complexity of the recognition
model needs to be greatly reduced, which should be key for input features and lightweight
models. Therefore, the main contribution of this paper is to propose a deep-learning model,
that is, to improve the recognition rate and running speed of the model, give priority to
ensuring the accuracy of the algorithm, and try to lighten the model on this basis to adapt
to low-cost embedded platforms. The application of a convolutional network and a fully
connected neural network in garlic-clove orientation recognition was attempted in this
study. The convolutional network included MobileNetV3 [17] with relatively complex
structure and the naive CNN model, composed of convolutional-pooling stacking only.
These directly used garlic contour image samples as input, and automatically completed
feature extraction through image convolutional operations. The fully connected model
used the contour point coordinate set sampled from the image samples as the input, and
the contour point sampling operation can be regarded as a feature extraction method.
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2.2.1. Transfer Learning Based on MobileNetV3

MobileNetV3 is an excellent lightweight deep-learning model with two versions, large
and small, which can be used as solutions for different levels of hardware performance. The
TensorFlow framework comes with MobileNetV3 implementation code based on Keras API
and provides six groups of pre-training parameters for training from an ImageNet dataset,
which correspond to three forms of large and small models: standard width, 0.75 width,
and standard width minimal mode. Based on this, transfer learning was tested.

The input size of the model is directly related to the amount of calculation required.
In terms of ensuring the recognition performance of the model, the smaller the input size,
the better. It was found in the experiment that when the image sample size was scaled
to 120 × 160, the recognition performance of the model did not decrease significantly, so
the input size of the MobileNetV3 model was modified to (120, 160, 1). The orientation of
garlic clove buds was divided into four categories; the output size of the corresponding
model is a 4-dimensional vector. Because the input and output of the model are redefined,
only the weight values of the intermediate layers that are consistent with the original
model parameter structure were loaded when loading the pre-training weights, and the
intermediate layers with different structures were equivalent to training from zero.

Twelve model structures, including six with pre-training weights, were trained. The
training results (Table 1) show that the transfer learning is effective. Using the pre-trained
weights on the ImageNet dataset to perform transfer learning on the garlic seed outline, the
image dataset could obtain a higher accuracy than starting training from zero. Overall, the
large model performed better than the small model. The performance of the minimalistic
mode was lower than that of the non-minimalistic mode, but this gap was not noticeable
when pre-trained weights were not used. By comparing the number of parameters and
calculation of different models, it can be seen that reducing the width factor mainly reduces
the amount of calculation required for the model, which can improve the running speed
of the model, while the minimalistic mode mainly reduces the number of parameters of
the model, which can reduce the memory consumption of the model. The accuracy rate of
all the model forms can reach above 0.96, and they all have certain application value. The
structure of MobileNetV3-Large is shown in Figure 11.

Table 1. Overview of the performance of the transfer learning model.

Model Form
Parameter
Quantity

Calculated
Quantity
(FLOPs)

Accuracy of
Training from

Zero

Accuracy of
Transfer
Learning

Large 1.0 4.04 M 0.178 G 0.97468 0.98352
Large 0.75 2.61 M 0.126 G 0.97423 0.98037
Large 0.5 1.36 M 0.0592 G 0.97111 -

Large 1.0 minimalistic 2.55 M 0.168 G 0.97224 0.97808
Large 0.75 minimalistic 1.71 M 0.119 G 0.96860 -
Large 0.5 minimalistic 0.97 M 0.0544 G 0.96541 -

Small 1.0 1.46 M 0.0453 G 0.96981 0.97434
Small 0.75 0.98 M 0.0339 G 0.96723 0.97528
Small 0.5 0.55 M 0.0177 G 0.96381 -

Small 1.0 minimalistic 0.99 M 0.0401 G 0.96733 0.96848
Small 0.75 minimalistic 0.69 M 0.0298 G 0.96194 -
Small 0.5 minimalistic 0.41 M 0.0149 G 0.96035 -

Note: - indicates that the test could not be performed due to a lack of pre-trained weights.
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Figure 11. Structure of MobileNetV3.

2.2.2. Naive CNN Model

Compared with classic CNN models such as AlexNet [18] and VGG NETS [19], Mo-
bileNetV3 has a relatively complex model structure, and includes some advanced designs,
such as depthwise separable convolution [20], inverse residual block structure [21], squeeze-
and-excitation block [22] and h-swish [17] activation function. Along with their support,
MobileNetV3 shows excellent classification performance for some large-scale natural image
datasets. The garlic contour image is very different from natural images. As a binary
image, its content density and information density are very low. In order to explore which
designs of MobileNetV3 are most helpful to the classification task of garlic contour images,
some experiments were done. By training a modified model that separately applies the
squeeze-and-excitation module, h-swish activation function, and 5 × 5 convolution kernel,
this study found that the 5 × 5 convolution kernel had the greatest impact on model
performance among the three, while the squeeze-and-excitation and the h-swish activation
function had little effect on model performance. After determining the importance of
convolutional kernel size, a series of naive CNN models with a structure similar to VGG
NETS were constructed, which were compared with MobileNetV3 to analyze the impact of
inverse residual block structure on the performance of the model and further verify the
importance of convolutional kernel size.

In order to make the training results of the models more comparable, the same training
conditions as MobileNetV3 transfer learning were used to train these models. The perfor-
mance achieved after full convergence is shown in Table 2. Because these models have a
simple structure, compared with the MobileNetV3 model, the parameters and calculation
of the naive CNN model with similar performance are greatly reduced. This seems to
indicate that the model with a simple structure is more suitable for solving the direction
judgment problem of garlic clove contour images, but the naive CNN model does not
match the performance achieved by MobileNetV3-Large transfer learning using the same
training strategy.
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Table 2. List of Naive CNN models.

Out Stride 1 2 3 4 5 6 7

1 Input and rescaling

2
Conv3 × 4
Conv3 × 4
Max Pool

Conv3 × 8
Conv3 × 8
Max Pool

Conv5 × 8
Conv5 × 8
Max Pool

Conv3 × 8
Conv3 × 8
Conv3 × 8
Max Pool

Conv3 × 8
Conv3 × 8
Conv3 × 8
(Stride = 2)

Conv5 × 8
Max Pool

Conv5 × 16
Max Pool

4
Conv3 × 8
Conv3 × 8
Max Pool

Conv3 × 16
Conv3 × 16

Max Pool

Conv5 × 16
Conv5 × 16

Max Pool

Conv3 × 16
Conv3 × 16
Conv3 × 16

Max Pool

Conv3 × 16
Conv3 × 16
Conv3 × 16
(Stride = 2)

Conv5 × 16
Max Pool

Conv5 × 32
Max Pool

8
Conv3 × 16
Conv3 × 16

Max Pool

Conv3 × 32
Conv3 × 32

Max Pool

Conv5 × 32
Conv5 × 32

Max Pool

Conv3 × 32
Conv3 × 32
Conv3 × 32

Max Pool

Conv3 × 32
Conv3 × 32
Conv3 × 32
(Stride = 2)

Conv5 × 32
Conv5 × 32

Max Pool

Conv5 × 64
Conv5 × 64

Max Pool

16
Conv3 × 32
Conv3 × 32

Max Pool

Conv3 × 64
Conv3 × 64

Max Pool

Conv5 × 64
Conv5 × 64

Max Pool

Conv3 × 64
Conv3 × 64
Conv3 × 64

Max Pool

Conv3 × 64
Conv3 × 64
Conv3 × 64
(Stride = 2)

Conv5 × 64
Conv5 × 64

Max Pool

Conv5 × 128
Conv5 × 128

Max Pool

32
Conv3 × 64
Conv3 × 64

Max Pool

Conv3 × 128
Conv3 × 128

Max Pool

Conv5 × 128
Conv5 × 128

Max Pool

Conv3 × 128
Conv3 × 128
Conv3 × 128

Max Pool

Conv3 × 128
Conv3 × 128
Conv3 × 128
(Stride = 2)

Conv5 × 128
Conv5 × 128
Conv5 × 128

Max Pool

Conv5 × 256
Conv5 × 256
Conv5 × 256

Max Pool

*
Conv3 × 128
Conv3 × 128

GAP

Conv3 × 256
Conv3 × 256

GAP

Conv5 × 256
Conv5 × 256

GAP

Conv3 × 256
Conv3 × 256
Conv3 × 256

GAP

Conv3 × 256
Conv3 × 256
Conv3 × 256

GAP

Conv5 × 256
Conv5 × 256
Conv5 × 256

GAP

Conv5 × 512
Conv5 × 512
Conv5 × 512

GAP

* Efficient last stage (from MobileNetV3)

Accuracy 0.95448 0.96892 0.97079 0.97249 0.96569 0.97617 0.97844

Params 39.18 K 143.8 K 155.9 K 238.2 K 238.2 K 248.3 K 921.8 K

FLOPs 9.94 M 29.4 M 42.0 M 49.9 M 36.3 M 29.9 M 97.2 M

Note: * Indicates that after Global Average Pooling, the size of the feature map will already be 1. The calculation
of Out Stride no longer makes sense.

The performance of the naive CNN model provides some guidance for the optimiza-
tion of the model. Comparing model 1 and model 2 in Table 2, there is a large gap in the
performance of the model when the number of channels of each convolutional layer is dou-
bled. It can be seen that ensuring the width of the model is one of the key factors to improve
the performance of the model, but the cost of doubling the width is high, and the number
of parameters and calculations is doubled. Comparing model 2 and model 3, it is further
verified that the convolutional kernel of 5 × 5 is more efficient than the convolutional kernel
of 3 × 3, and because of the depthwise separable convolution, the increase in the number of
parameters and calculation is not large. Comparing model 4 and model 5, the max-pooling
operation is more reliable than the down-sampling method using a convolutional layer
with a step size of two as a characteristic graph. Comparing model 3 and model 6, the
position of the lower sampling layer in the model will also affect the performance of the
model. In general, the low layer of the model (close to the input layer) does not need to
stack too many convolutional layers, while the high layer of the model (close to the output
layer) needs to stack more convolutional layers.

2.2.3. Contour-Resampling-Based Fully Connected Network

Because the information density of the binarized contour image samples is extremely
low, using CNN to solve the classification problem of such images seems to be a waste of
performance, so another solution was tried.
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The contour image samples in the dataset can be represented as a coordinate set
of contour pixel points that only contains elements twice the number of contour pixel
points (horizontal and vertical coordinate values). The number of contour pixels in some
480 × 640 size contour maps is counted, and the number of contour pixels is within 800,
while the total number of pixels in the overall contour map is up to 307,200. Therefore,
the set of contour point coordinates of each image sample is used as the model input,
and building a fully connected neural network can also solve the orientation recognition
problem of garlic clove contour images. Although this method needs to increase the steps
of extracting contour points from the collected image, the increased amount of calculation
is very small. Along with the help of OpenCV, the extraction process of contour points is
also very easy to implement.

Uniform Input Size

It is very difficult to realize the variable length input of a neural network. Because
the number of contour pixels contained in each contour image sample is different, it is
necessary to unify the number of contour pixels of the sample first. Hence, the equidistant
sampling method is used to sample a fixed number of point coordinates from the contour
of each image, and then draw a polygon with these sampled points and observe its ability
to reconstruct the original sample through artificial vision (Figure 12). It was found that
when 50 contour points were sampled, the polygon formed was very close to the shape
of the original sample. Through the above sampling method, 50, 100, and 200 contour
point sets of all contour image samples were collected and combined with the orientation
classification of the samples as the training dataset of the fully connected model. A fully
connected model with three Hidden layers and 512, 256, and 128 neurons was used for
testing. It was found that there was no significant difference in the recognition rate of
the model when 200, 100, or 50 sampling points were used, but using fewer sampling
points could effectively reduce the number of parameters and calculations of the model, so
50 points is preferable.

 

Figure 12. The ability of contour points with different sampling rates to restore the original contour.

The matrix shape of the contour point set obtained by the findcontours function of
OpenCV is [n, 2], where n is the number of contour points, and the matrix shape of the
contour point set after sampling is [m, 2], where m is the number of sampling points, and
the dimension with length of 2 contains the horizontal and vertical coordinates of each
contour point. For the fully connected model discussed in this section, the input of each
layer of the model should be a one-dimensional vector, so it is necessary to flatten the
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contour point set. There are two ways to flatten: the first from the point dimension, the
other from the coordinate dimension. The first flattening method was chosen (the value of
the data_format parameter corresponding to the Keras Flatten layer is “channels_last”).

Structure of Fully Connected Model

Through the testing of several fully connected models defined by Keras API, it was
found that when the number of Hidden layers of the model was less than three, increasing
the number of fully connected layers was effective. When the number of layers exceeded
three, increasing the number of fully connected layers could not significantly improve the
recognition rate of the model. Using more neurons can improve the performance of the
model, but increasing the number of neurons will greatly increase the number parameters
of the model, resulting in the model becoming bloated. The preliminary test results of
typical models are shown in Table 3. The accuracy of the model with 4096, 2048, and
1024 neurons in the Hidden layer reached 0.97893. The accuracy of the model with 1024,
512, and 256 neurons in the Hidden layer was 0.97465. The accuracy of the model with 512,
256, and 128 neurons in the Hidden layer was 0.97241.

Table 3. Overview of fully connected models.

No. 1 2 3 4 5 6 7 8

Input and Flatten

Number of
Neurons in
Each Layer

4096
2048
1024

2048
1024
512

1024
512
256

1024
512
256
128
64
32

512
256
128

512
256
128
64
32

1024
. . .
. . .
×10

512
. . .
. . .
×10

Accuracy 0.97893 0.97619 0.97465 0.97341 0.97241 0.97249 0.97469 0.97253

Params 12.16 M 3.460 M 1.075 K 1.118 M 220.4 K 230.7 K 9.902 M 2.581 M

FLOPs 24.3 M 6.92 M 2.15 M 2.23 M 0.444 M 0.465 M 19.8 M 5.18 M

The structure of the fully connected model is shown in Figure 13. Each fully connected
layer includes a batch normalization [23] layer. It is particularly noteworthy that adding
batch normalization layers after the flat layer can greatly improve the convergence speed
of the model.

Figure 13. Fully connected model. Note: both the Flatten and Hidden layers are connected to the
Batch Normalization layer, but only the Batch Normalization layer of the Hidden layer applies the
activation function. N1, N2 and N3 are the number of undetermined Hidden layer neurons.
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2.2.4. Model Optimization

In order to obtain faster computing speed and higher accuracy, the three deep learn-
ing models have been greatly optimized, and the optimization directions include model
lightweighting and model training tuning.

Implementation of Lightweight Convolutional Model

It was found that when the size of the input image of MobileNetV3 was reduced to
60 × 80, the recognition rate of the model decreased significantly, while in the relevant
test of the naive CNN model, the input of 60 × 80 did not greatly reduce performance of
the model.

The stride of the first standard convolution layer of the MobileNetV3 model is 2.
When it was modified to 1, the performance of small-sized input of 60 × 80 was improved.
Removing the 1 × 1 standard convolutional layer before the Global Average Pooling [24]
layer did not reduce the recognition rate of the model, but it could reduce the number of
parameters and computation of the model and improve the convergence speed of the model.

For the naive CNN model, the actual receptive field of the 3 × 3 convolutional kernel
when using the input size of 60 × 80 was larger than the actual receptive field of the
5 × 5 convolution kernel when using the input size of 120 × 160. Since the edge of
the garlic contour image is a background does not contain anything, the convolutional
layers in the first two groups of the convolutional-pooling modules could be modified to
valid padding. Due to the above adjustments and halved input size, two convolutional-
pooling modules can be removed to achieve the same feature map size, which can greatly
reduce the number of parameters and computations in the model. Since the input of
the model is only a single-channel image, the use of standard convolution at the input
of the model only increases the number of calculations and parameters by very little
compared with the depthwise separable convolution. This change has been tested to
slightly improve the performance of the model. The naive CNN model structure obtained
after the abovementioned optimization procedure is shown in Figure 14.

Figure 14. Naive CNN model after lightweighting.

Model Training and Tuning

Three optimizers: Adam [25], Nadam [26], and SGD were tested in model training.
The final convergence results of Adam’s optimizer in multiple training tests of the same
model were unstable. Nadam and SGD were more stable than Adam, but Nadam had
the greatest computational complexity of the three and the slowest performance. SGD is
theoretically less efficient than Adam and Nadam, but the fully connected model proposed
in Section 2.2.3 could converge stably when the learning rate of SGD was set to 1.0 or even
higher. In this way, both the convergence speed of the model and convergence stability
could be guaranteed. In addition, the computational complexity of SGD was the lowest of
the three, and the computational speed was the fastest.
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Five activation functions comprising Tanh, Relu6 [27], Gelu [28], Swish [29], and h-
swish [17] were tested, and the convergence curve for the fully connected model is shown
in Figure 15. When using the SGD optimizer, the effect of swish and h-swish was better
(1000-epochs validation set accuracy is 0.97611 and 0.97586, respectively), and because the
computational complexity of Hard-Swish was lower than that of Swish, and the model
using h-swish was more reliable in weight value quantization, the fully connected model
uses the h-swish activation function.

 

Figure 15. Convergence curves of different activation functions. Note: the above convergence curves
were all measured on the fully connected model proposed in Section 2.2.3, and the range shown in
the figure is 100 to 1000 epochs.

For the garlic seed contour dataset, the training loss values of the three types of models
tested are close to 0 in the later stage of the training process, the training set accuracy
can be close to 100%, and the validation set accuracy is different. This is an overfitting
phenomenon, and the loss flooding method [30] has a significant effect on it. The idea of
this method is to keep the training loss value always above a certain threshold delta, so
that the model can continue to learn and possibly converge to a better performing state.
In the optimization process of the model, there may be a large number of local optimum
points. The random walk strategy of the loss flooding method requires the optimizer to
have a large enough optimization stride to ensure that the model escapes the local optimum
point. When the model is optimized to a good state range, the weight value needs to
be saved in time to prevent missing the state. In the later stages of the finite number of
training iterations, the probability of the random walk method obtaining a better state
becomes very low, but continuing to train the model with a smaller learning rate can often
make the model’s performance improve again in the short term, so the learning rate decay
method combined with the loss flooding method is very effective. In order to ensure that
the model is in an ideal state when the learning rate decay is triggered, a program is written
to dynamically load the weights saved during the last state boost each time the learning
rate decays.

The LSR [31] method was also used. When the LSR method was applied alone, the
model was trained with a label_smoothing parameter of 0.2, and the obtained validation
set accuracy was comparable to the loss flooding method with a delta of 0.1. When the
loss flooding method was combined with the LSR method, the delta and label_smoothing
parameters were set to 0.7 and 0.2, and the accuracy of the validation set obtained was
slightly improved, but the accidental components were not excluded.

Based on the above methods, L1/L2 regularization and Dropout [32] regularization
were further tried. L1/L2 regularization is effective for convolutional models, but not for
fully connected models. Dropout regularization looks simple and crude, but it significantly
improves the performance of the fully connected model.
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2.3. Application Method in Embedded System

The application of deep learning models in seeders requires some additional support
programs and control programs. First, the deep-learning model will give a direction
judgment for any input image, including the image when no garlic seeds pass by. Therefore,
in order to avoid meaningless direction judgment and device linkage, for each frame of a
collected image, a judgment should be made on whether it contains garlic seeds. Secondly,
since the deep learning models constructed in this paper are all based on the contour image
of garlic seeds or their sampling point sets as the basis for classification, an additional
program is required to extract binarized contour image or resampling the contour points.
A flow chart of the complete orientation judgment process is shown in Figure 16.

Figure 16. Flow chart of orientation judgment procedure.

Under backlight illumination, it can be judged whether a garlic seed is passing by
monitoring the change of the average pixel value of the central area of the camera’s field of
view. Figure 17 shows the relationship between the average pixel value and the movement
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of a garlic seed in the camera’s field of view. When a garlic seed passes through the camera’s
field of view, it is captured with multiple frames of images, then compared to the image
frames of single garlic seed, and an image with the lowest average pixel value in the central
area is obtained, which is the optimal image frame. This process is shown in Figure 18.

 

Figure 17. Relationship between the pixel mean value of the central area of the field of view and the
position of garlic seeds.

Figure 18. Frame retrieval flow chart.

After obtaining the optimal image frame, brightness compensation is performed,
binarization of the image is completed, and the contours from the binarized image are
extracted. The output of the contour extraction algorithm is a set of contour points. For

231



Agriculture 2022, 12, 1334

the CNN model that takes the contour image as input, the set of contour points needs to
be drawn as a contour image. For the fully connected model that takes the set of contour
points as input, it is necessary to reduce the number of contour point coordinates to a
number suitable for the input of the model through sampling.

3. Results and Discussion

3.1. Model Test and Result

After a series of optimization operations, some typical models were retrained, and
their performances are shown in Table 4. Of these models, the transfer learning model
based on MobileNetV3-Large has the highest recognition rate of 98.71% on the validation
set. However, compared to other models in Table 4, MobileNetV3-Large is too bloated.
The recognition rate of the standard-width MobileNetV3-Small model is second only to
the MobileNetV3-Large model, but its parameters and computation are still too large. The
naive CNN model in Figure 14 performs better than the MobileNetV3-Small with reduced
width factor, and its performance is close to that of the standard-width MobileNetV3-Small,
but it has the lowest number of parameters among all the models in the table. The fully
connected model with 512, 256, and 128 neurons in the Hidden layer achieves almost
the same accuracy as the naive CNN model with extremely low computational cost and
parameter cost. It has the fastest speed and the most cost-effective application.

Table 4. Performance of the optimized model.

Model
Parameter
Quantity

Calculated
Quantity
(FLOPs)

Accuracy of
Training from

Zero (%)

Accuracy of
Transfer

Learning (%)

F1 Score
(Macro)

MobileNetV3-Large 1.0 4.04 M 0.178 G * 98.71 0.98717
Small 1.0 894.1 K 41.8 M * 98.42 0.98412

Small 0.5 minimalistic 122.5 K 13.7 M 97.67 * *
Small 0.25 minimalistic 46.9 K 7.48 M 97.58 * *
Small 0.1 minimalistic 23.2 K 5.44 M 97.34 * *

Naive CNN model 61.9 K 17.9 M 98.21 * 0.98216
Fully Connected Model 220.4 K 0.444 M 98.16 * 0.98157

The * in Table 4 means that there is no test.

The last column of Table 4 shows the macro F1 score of the models. The F1 score of the
four models are almost equal to the accuracy rate, which indicates that the recognition rate
of the models for the four orientation categories are very balanced. The ROC curve and
AUC value of the models also support this point. The ROC curves of the four orientations
are almost identical with only a small gap, and they cover each other in the graph and are
difficult to distinguish, as shown in Figure 19. Meanwhile, the macro average AUC and the
AUC of each classification are close to 1, which indicates that the recognition effect of the
models for each orientation classification are very good.

Based on the program flow introduced in Section 2.3, representative experimental
models were selected and converted to TFlite format for speed testing on OrangePi 3 LTS.
The test results are shown in Table 5. For the three CNN models in the table, due to their
own calculation being more complicated, adding the complete process has little impact on
its speed. The fully connected model itself has simple calculation and fast inference speed,
but the ability of the support program to provide input data for the model is limited, and it
finally reached a speed of about 151.40, which is still more than 50% faster than the fastest
CNN model.
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Figure 19. ROC and AUC for models with recognition rates over 98%.

Table 5. Inference speed of the model on OrangePi 3 LTS.

Model
MobileNetV3

Large
MobileNetV3

Small
Naive CNN

Model

Fully
Connected
Network

Model inference speed (FPS) 23.86 76.20 136.30 929.75
Complete process speed (FPS) 19.35 59.80 97.39 151.40

3.2. Discussion
3.2.1. Reliability Verification Experiment

In order to verify the validity of the data and model, a program was written to rotate
the image samples 90◦ counterclockwise before extracting the contours and then extract
the contour to identify its orientation, as shown in Figure 20. Since the original orientation
categories up, left, bottom, and right correspond to labels 0, 1, 2, and 3 respectively, the
category labels output by the model after the rotation should be 1, 2, 3, and 0. In the test,
all the tested models can achieve almost the same recognition rate as before the sample
rotation, as shown in Table 6.
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Figure 20. Sample rotation test of the model.

Table 6. Orientation recognition rate of the model to the rotated sample.

Model
MobileNetV3

Large
MobileNetV3

Small
Naive CNN

Model
Fully Connected

Network

Accuracy (%) 98.64 98.42 98.04 98.02

3.2.2. Comparison with Statistical Learning

The difficulty in applying statistical learning methods to image recognition is how to
extract image features. The method of sampling fixed coordinate points at equal intervals
of contour lines introduced in Section Uniform Input Size greatly reduces the feature
dimension of the image, which can be regarded as a kind of feature extraction method.
Based on this, several statistical learning algorithms such as KNN, SVM, and lightGBM [33]
were fitted and tested using a dataset of 50 contour sampling points, but none of them
matched the classification performance of the neural network algorithm.

In the test of the KNN algorithm, the NCA [34] algorithm is used to reduce the
dimension of the data samples of 50 sampling points to generate a vector of a specific
dimension and use it as the input of the KNN algorithm. In the parameter adjustment test,
when the dimension of the model input vector, that is, the NCA output vector, was reduced
to 25, and the number of adjacent elements of the KNN model is 16, the recognition rate of
the validation set of the KNN model reaches a peak at 93.70%.

In the test of the SVM algorithm, the performance of the RBF kernel function was
significantly higher than that of linear and poly kernel functions. The randomized search
CV method was used to select C and gamma parameters. When C is 98.21 and gamma is
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0.0044, the accuracy of the validation set of the SVM model reaches 94.06% of the optimal
figure in the experiment.

In the test of the lightGBM algorithm, PCA algorithm was used to reduce the dimen-
sion of data samples at 50 sampling points. When the dimension of data samples was
reduced to 25, num_leaves and max_depth parameter of the lightGBM algorithm were 127
and 8, respectively, and the recognition rate of the validation set of the lightGBM model
could reach an optimal 96.56% in the experiment.

If PCA is not used, the lightGBM model can only achieve a recognition rate of less
than 92% of the validation set, which indicates that the processing of the PCA algorithm not
only reduces the dimension of the sample vector but also improves the ability of the data to
represent the original sample. After follow-up tests, the improvement of model accuracy by
PCA preprocessing is limited to gbdt-based algorithms such as XGBoost [35] and lightGBM
and cannot greatly improve the recognition rate of validation sets of KNN, SVM, and fully
connected neural networks. Using PCA to convert the coordinate data of 50 sampling
points into a 25-dimensional vector can reduce the complexity of the model. For the fully
connected model in Table 4, after modifying the model input to a 25-dimensional vector, the
number of parameters was reduced to 183.6 K. The amount of computation was reduced to
0.36 M, but the recognition rate on the validation set dropped to 97.97%.

As a comparison, the accuracy and running speeds of KNN, SVM, lightGBM, and the
fully connected model on the embedded platform are shown in Table 7. Obviously, the
speed of the fully connected model is better than that of the statistical learning model.

Table 7. Performance comparison of statistical learning models and fully connected model.

Model KNN SVM lightGBM Fully Connected Model

Accuracy (%) 93.70 94.06 96.56 98.16
Model inference speed (FPS) 37.34 82.63 118.30 929.75

3.2.3. Comparison with Methods in Other Literature

Table 8 lists the garlic orientation recognition methods and their recognition rates
described in the literature in recent years. It can be seen that the recognition rate of the
method proposed in this paper is higher than other methods. Since all these studies use
private datasets, this horizontal comparison is only for reference. However, because the
samples contained in the dataset constructed in this paper uniquely retain the common
morphological abnormalities and motion blur phenomena in the real scene, the reliability
of the recognition rate achieved by the model in this study is at least not lower than that of
other studies.

Table 8. Comparison of recognition rate of methods in related literatures.

Article Ref. [7] Ref. [11] Ref. [12] Ref. [13] This Article

Accuracy (%) 92.67 97.50 >90.56 * 97.25 >98
Note: * Ref. [12] only published that the success rate of garlic seeds righting is 90.56. It can be inferred that the
recognition rate must be greater than this value.

The generally high recognition rates of the models proposed in this paper indicate that
the dataset enhancement method and the contour-image-based garlic-clove-bud orientation
recognition models adopted in this paper are effective. The form of binarized contour
image unifies the pixel value distribution of contour points, so that the information of image
samples can be completely expressed by the coordinate set of contour points. The feature
extraction method of contour point equidistant sampling further reduces the dimension of
the input data, so that the extremely lightweight fully connected neural network can also
complete the orientation classification task of garlic seeds with high accuracy and speed.
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3.2.4. Application Prospect

The operating speed of the garlic planter can be calculated by Equation (4), where η

represents the sowing efficiency (hm2/h), w represents the plant spacing (m), h represents
the row spacing (m) and v represents the sowing speed (pieces/second).

η = 0.36·v·w·h (4)

The garlic sowing efficiency of the existing garlic seed adjustment method is in the
range of 0.05–0.2 hm2/h [36,37]. According to the planting standards of 0.2 m row spacing
and 0.12 m plant spacing, the four orientation recognition models in Table 5 can reach
sowing speeds of 0.16, 0.51, 0.84, and 1.30 hm2/h, respectively. The above speed is the
ideal single-row seeding speed. It can also be used in multi-row seeders in the form of
controlling multiple rows through a single board. It only needs a single embedded board
with the same performance as the OrangePi 3 LTS. If there are performance bottlenecks in
the other devices that make up the garlic planter, the hardware configuration can be further
reduced, thereby reducing the manufacturing cost of the planter.

4. Conclusions

To meet the need of high-speed garlic seed righting operations and low-cost onboard
embedded computing platforms, the contour-based multiple lightweight deep-learning
models including transfer learning based on MobileNetV3, naive CNN model, and a con-
tour resampling-based fully connected neural network are proposed for garlic-clove-bud
orientation recognition and tested by the image garlic seed samples with the same con-
ditions as a field planter, and the best model was selected for parameter optimization.
All of the models’ recognition rate of garlic clove bud orientation exceeded 98%. The
MobileNetV3 model based on transfer learning, the naive CNN model, and the fully con-
nected model achieved accuracy of 98.71, 98.21, and 98.16%, respectively, all far exceeding
statistical learning methods. The parameters of the three are 4.04 M, 61.9 K, and 220.4 K,
respectively. The calculation amount of the three is 0.178 G, 17.9 M, and 0.44 M FLOPs,
respectively. The recognition speed of the three including auxiliary programs is 19.35, 97.39,
and 151.40 FPS, respectively.

Experimental results showed that the contour-image-based garlic-clove-bud orienta-
tion recognition method is effective. The form of binarized contour image unifies the pixel
value distribution of contour points, so that the information of garlic clove samples can be
completely expressed by the coordinate set of contour points. Resampling of contour points
further compresses sample features and simplifies the structure of deep-learning models.
Ideally, a fully connected neural network based on contour resampling could support a
seeding rate of 1.3 hm2/h. Therefore, the garlic-clove-bud orientation recognition based
on deep learning proposed by this paper can meet the needs of high-speed and accurate
sowing of garlic.

The main goals of this research for the future are to complete the integration of garlic
species orientation recognition algorithm and orientation device, verify the effect of system
integration, and continuously improve the device; collect more garlic seed contour image
samples to join the dataset and train the model to continuously enhance its generalization
ability; and try to generalize the orientation recognition algorithm proposed in this paper
to other problems in the agricultural field.
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Abstract: Given the problem of the low tensile performance of the plastic film used in China, which
brings about difficulties in curl-up film collecting, in this study, a contrast test was carried out on
the tensile property of high-performance film for full recycling and the ordinary polyethylene film
(PE film) that is used extensively in China. Test results showed that, within the service period, the
elongation at break and tensile yield stress of the high-performance film were higher than those of
ordinary polyethylene film, and, within the film-laying period of 0~30 days, the reduction scale of
the elongation at break and tensile yield stress was higher than that within the film-laying period of
30~180 days. In this study, in order to obtain the lowest tensile performance of the film by curl-up film
collecting, the operation principles of the curl-up film collectors were analyzed. The test on the force
of curling up the film in the process of overcoming the force between the film and soil was analyzed.
Test and analysis results showed that, for different sampling positions, film pick-up angles, and
film types, the tensile stress on the film while pulling it up was within a range of 15.97~21.86 MPa.
In order to verify the curling up effect of differently structured film collectors on different types
of film with different thicknesses, a field test on film curl-up collecting was designed. A contrast
test was carried out on two types of curl-up film collectors, 1JRM-2000 and 11SM-1.2, and the test
results showed that the film recycling rate and working performance on the film laid in the same
year by the film collector with a fixed film pick-up angle were higher than those for varying film
pick-up angles. The curl-up film collector fixed with an automatic film-guiding mechanism is not
affected by the velocity difference between the linear velocity of the film curl-up mechanism and the
advancing velocity of the machine. The film recycling rate and working performance on the film
laid in the same year by the 11SM-1.2 curl-up film collector can meet the operational requirements
for collecting high-performance film with thicknesses of 0.008 mm and 0.01 mm. This research can
provide a reference for simplifying the structure of residual plastic film collectors, increasing the film
recycling rate, and reducing the cost.

Keywords: high-performance film for full recycling; film recycling; field experiment; film recycling rate

1. Introduction

Film mulching technology has the advantages of increasing temperature and moisture;
preventing plant diseases, insects and weeds; and promoting crop growth [1]. In 2019,
the amount of plastic film used in China reached 1.379 × 106 t, and the area covered by
plastic film reached 1.76281 × 107 hm2 [2], which ranked first in the world. However,
the farmland residual film recycling technology in China started relatively late, and the
long-term, large-scale use of ultra-thin and low-strength plastic film has caused a series of
problems, such as soil compaction, a decreased seedling rate, and crop yield reduction [3].

At present, manual recycling is mainly adopted in the treatment of non-point source
pollution of farmland residual film, mechanical recycling, and the use of degradable plastic
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film. Manual recycling of residual film is time-consuming, laborious, and costly, and it
is difficult to motivate farmers [4]. Residual film recycling is not required after laying
degradable residual film, since the film can decompose through natural degradation [5],
however, degradable plastic film is not yet mature in cost control and production tech-
nology; the high cost of use and the unpredictable degradation effect during use make it
difficult to implement large-scale promotion and use [6,7]. Mechanical recycling of residual
film is currently the most widely used method for its high operating efficiency and low
operating cost. The mulch film widely used in China has two levels of thickness, 0.008 mm
and 0.01 mm, and its tensile property is lower than the mulch film with a thickness of
0.025 mm or more, which is commonly used abroad. Residual plastic film collectors used
abroad are mostly curl-up residual film recycling machines with a simple mechanical
structure demanding a good tensile performance of plastic film [8], while development of
the residual plastic film collectors used in China is restricted by the poor tensile properties
of plastic film. According to the planting mode of crops, a variety of film collectors with
different mechanical structures has been developed, mainly including drum type, spring
tooth type, and tooth chain type [9], which are not only complex in structure but also have a
lower film recycling rate than those developed in foreign countries. Marí et al. [10] studied
the application of biodegradable plastic mulch films (BDMs) in strawberry planting, and
the research results showed that BDMs are a viable alternative to PE mulch. However,
Anunciado [6] pointed out in the study of BDMs that the extent of change to the physic-
ochemical properties of BDMs, due to agricultural weathering, is greatly affected by the
polymeric composition and is greater in warmer climates. Steinmetz [11] studied BDMs
and mentioned that the high use cost restricted the popularization of BDM. Therefore,
due to the high cost of agricultural weathering, the technology of BDMs cannot effectively
solve the problem of non-point source pollution of residue film in fields. Zhang et al. [12]
performed parameter optimization on the Arc-Shaped Nail-Tooth Roller-Type Recovery
Machine for Sowing Layer Residual Film, and the field test results showed that this machine
type could achieve a normal residual film collection rate of 66.8% on common polyethylene
mulching film. Zhou et al. [13] developed a kind of film collector with a film-removing
plate, and this device can achieve a film collection rate of 86.93% on common polyethylene
mulching film in ideal conditions. However, in the process of collecting the polyethylene
mulching film, there are still residue films uncollected in the field, thus, the film-collecting
effect was not satisfactory. Qu et al. [14] replaced the traditional rheological processing of
drag and shear on high polymer materials with plasticizing transport based on volume
elongational rheology, which reduced the macromolecular chain breakage of high polymer
materials and greatly improved the mechanical properties of film molded by processing
extreme rheological plastics, such as polyethylene. Based on the complex blow-molding
technology, through dynamic distribution, the film can be overlaid for 3–5 layers, and
the macromolecules are oriented in different directions between the layers to achieve an
interweaving effect; thus, the tensile performance of the film is greatly enhanced, and the
“high-performance film for full recycling to the curl-up film recycling method” (which can
be called “high-performance film”) was developed [15,16]. Since the tensile performance
of the high-performance film is better than that of common polyethylene film, laying the
high-performance film for full recycling can greatly improve the film collecting rate, and
the production cost of the high-performance film is very low compared with BDMs; there-
fore, this technology has become an effective means to solve non-point source pollution of
residue films in agricultural fields.

A contrast test on the tensile property of high-performance film and ordinary polyethy-
lene film under different test factors was carried out, and the variation rules of the tensile
properties of both films during the film-laying period of 0–180 days, as well as the minimum
tensile level for the 180-day film-laying period, were obtained. Moreover, the operation
principles of the curl-up residual plastic film collector were analyzed, and the curl-up col-
lecting of the film for the 180-day film-laying period was carried out. Through an analysis
on overcoming the force between the soil and the film during curl-up collecting of the film,
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the tensile stresses on the film while the curl-up film collector pulled it up under different
test factors were obtained. The field test on the curl-up collecting of film was carried out.
By comparing the film recycling rate on the film laid in the same year and the working
performance of the two residual plastic film collectors of different structures, the proper
structure adaptable to the curl-up collecting of high-performance film was obtained. This
research can provide theoretical support for simplifying the structure of residual plastic
film collectors, enhancing the film recycling rate, and reducing the cost of film recycling.

2. Contrast Test on the Tensile Properties of High-Performance Film and Ordinary
Polyethylene Film

In order to obtain the variation law of the tensile properties of the high-performance
film and the ordinary polyethylene film laid in a cotton field in Xinjiang within their service
period and the minimum tensile level at the end of the service period, the film-laying
period, the film thickness, sampling direction, and sampling position were used as test
factors; the elongation at break and tensile yield stress were used as test indexes to carry
out the contrast test on the two types of films.

2.1. Basic Information of the Test Field

Maigaiti County is located in the southwestern part of Xinjiang Uygur Autonomous
Region, which includes the western part of the Tarim Basin, the eastern part of the Kashgar
region, the southwestern edge of the Taklimakan Desert, the northern foot of the Karakoram
Mountains, the lower reaches of the Yarkant River, and the lower reaches of the Tiznafu
River (77◦28′–79◦05′ east longitude, 38◦25′–39◦22′ north latitude). This county has a
temperate continental dry climate with sufficient sunshine, a large temperature difference
between day and night, very little precipitation, hot summers and cold winters, and a
windy and sandy spring. The average annual sunshine is 2836.5 h, the annual average
temperature is 11.8 ◦C, and the annual average precipitation is 56.5 mm.

2.2. Test Materials and Field Management

Considering local production conditions, the high-performance film and ordinary
polyethylene film with thicknesses of 0.008 mm and 0.01 mm were laid on the cotton test
field in Maigaiti county on 30 April 2021. The film-laying site is shown in Figure 1. The
planting mode of one film, which covered three pipes and six rows with 660 mm + 100 mm
of machine-harvested cotton was adopted in the test field. The plant spacing was 12.5 cm,
and routine management of the field was adopted for water–fertilizer management. The
high-performance film was manufactured by Guangdong Siico Technology Co., Ltd.,
(Guangdong, China); the ordinary polyethylene film is manufactured by Xingnong In-
dustry and Trade Co., Ltd. in Bayingolin Mongol Autonomous Prefecture, in Xinjiang
province, China. The film-laying situation in the test field is shown in Figure 1.

Figure 1. Diagram of plastic film laying in test field.
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2.3. Test Design
2.3.1. Test Factors and Levels

Both high-performance film and ordinary polyethylene film are made from high-
molecular compounds [17]. Therefore, at the same sampling spot, their tensile performance
is affected mainly by natural erosion, material aging, material thickness, and material
anisotropy [18]. Thus, the film-laying period, sampling position, film thickness, and
sampling direction were chosen as the test factors in the test on the film tensile property.

Material anisotropy determines that different tensile properties are obtained by testing
the film from different directions. Hence, the direction along the film-laying direction was
defined as the horizontal direction, while the perpendicular direction of the film-laying
direction was defined as the vertical direction. The degree of sunniness and the natural
erosion effect on the different positions of the film (near and far away from the plants) may
vary due to degree of shading of the cotton plants on the film, thus, the sample-taking
positions on the film were divided into near-end positions and far-end positions.

2.3.2. Test Indexes

According to the requirements of GB/T 1040.3-2006 Plastics—Determination of Tensile
Properties, the elongation at break of the film and the tensile yield stress were taken as the
test indexes, and the calculation method is as follows:

εt =
L − L0

L0
× 100% (1)

where L is the distance between the marked lines when the sample is torn off, mm; L0 is the
distance between the original graticule lines, mm.

σt =
Fb
bd

(2)

where Fb is the breaking load of the sample, N; b is the sample width, mm; and d is the
sample thickness, mm.

2.3.3. Determination of Test Parameters

The strain data sample frequency is obtained based on test speed, the ratio of the
distance between the original graticule lines of the standard sample and the original clamp
distance, and the minimum resolution of the obtained strain signal of the accurate data,
and its calculation method is as follows:

fmin =
vL0

60Lcr
(3)

where f min is the sampling frequency of minimum strain data, Hz; v is the test speed,
mm/min; Lc is original clamp distance, mm; and r is the minimum resolution of the
obtained strain signal of the accurate data, mm.

According to the recommended test speed and the original clamp distance of the
standard samples in GB/T 1040.1-2018, v = 10 mm/min, Lc = 115 mm, the CMT-6103
electronic universal testing machine, which is controlled by a microcomputer, obtained the
minimum resolution of the obtained strain signal of the accurate data, which was 0.008 mm.
After calculation, the sampling frequency of the minimum strain data was obtained, and
f min = 9.06 Hz.

The load data sampling frequency is based on the test speed, strain range, minimum
resolution of the obtained strain signal of accurate data, and the initial clamp distance, in
which the elastic modulus, test speed, and clamp distance determine the load growth rate.
The ratio between the load growth rate and the minimum resolution of the obtained strain

242



Agriculture 2022, 12, 1051

signal of accurate data determines the load data sampling frequency of the test machine.
The calculation method is as follows:

f f orce =

•
F
r
=

v
Δε × 60 × Lc × 5 × 10−3 (4)

where
•
F is the load growth rate, %, and Δε is the strain range of the samples. Δε = 3 × 10−2

was selected according to standard requirements, and the sampling frequency of the load
data was calculated to be 9.66 Hz.

In this test, an extensometer is used as the strain indicating device, and it should be
a Level 1 extensometer as required by GB/T 12160-2019, that is, the relative error of the
gauge length is ±1%, the percent of reading is 0.5%, the absolute value is 1 μm, the relative
error is ±1%, and the absolute error is ±3 μm.

In order to avoid the toe at the initial stage in the stress–strain curve, in measuring
the related stress, the prestress on the sample before the test should satisfy Equation (5)
as follows:

0 < σ0 ≤ σ∗/100 (5)

where σ0 is the prestress at the beginning of the test, MPa; σ∗ is the tensile yield stress of
the material, MPa. In order to make the prestress at the beginning of the test adapt to the
two types of film, σ∗ should be less than the lower value of the tensile yield stress of the
two types of film; thus, σ0 = 0.09 Mpa was selected [19].

2.3.4. Sample Collection

The service period of the film laid on the cotton field of south Xinjiang in China is
about 180 d. In order to reflect the tensile property variation process of the two types of
film during their service periods, film samples were collected every 30 d from the film-
laying date to carry out the tensile property test; the samples were collected seven times.
Each time, the sampling objects included two sets of high-performance film and ordinary
polyethylene film of 0.008 mm and 0.01 mm in thickness, with a width of slightly more
than 300 mm and a length of slightly more than 660 mm. After sample collection, the film
samples were rinsed to remove the impurities for airing. On each selected sample film,
eight standard tensile pieces were cut down by a cutter and used as test material, as shown
in Figure 2. The size of the standard tensile film pieces is shown in Figure 3. During each
instance of sample collection, the intact film sample pieces were obtained on dry, hard, flat
land, and the sampling positions were marked on the film.

Figure 2. Schematic diagram of sampling location: 1—cotton plant, 2—vertical film sampling,
3—horizontal film sampling, 4—film sample piece, I—near-end position, II—far-end position.
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Figure 3. Standard tensile sample of film.

2.3.5. Test Scheme

Before the test, a low-power magnifying glass was used to check the test samples; the
sample pieces with unsmooth and frayed edges or damages were eliminated to avoid test
errors caused by stress concentration on the damaged parts of the sample pieces in the test.
The CMT-6103 electronic universal testing machine controlled by a microcomputer was
used to carry out a test on the film tensile property. According to Equations (1) and (2),
the elongation at break and tensile yield stress of the film were calculated. The test was
repeated four times, and test results were averaged. The test process is shown in Figure 4.
Figure 4a shows the state of the sample after prestressing, and Figure 4b–d show the tensile
process of the sample after loading.

(a) (b) (c) (d)

Figure 4. Process of the tensile test of film. (a) shows the state of the sample after prestressing,
(b–d) show the tensile process of the sample after loading.

3. Test on Curl-Up Force in Film Collecting

The curl-up residual plastic film collector is generally composed of the film pick-
up mechanism, film-guiding mechanism, film-curling mechanism, impurity separation
mechanism, and film-unloading mechanism [20]. During operation, the film pick-up
mechanism loosens the soil on the film surface on both sides of the film and separates the
film from the soil [21]. Then, the film-guiding mechanism transmits the film to the impurity
separation mechanism to the film-curling mechanism. The impurity separation mechanism
separates the soil, roots, and stems from the film through vibration or sweeping. The
film-curling mechanism curls up the film to a suitable size, and, finally, the film-unloading
device unloads the residue film package after curling up.
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In the test on the curl-up force during film collecting, by simulating the process of
overcoming the force from the soil to the film during curl-up collecting of the residue
film, the tensile stresses on the film while the curl-up film collector pulls up the film under
different test factors were obtained. In collecting film, the film pick-up mechanism separates
the film from the soil and forms a film pick-up angle α; the curl-up force F is formed in
curl-up collecting film. The force between the film and soil under the effect of the curl-up
force is shown in Figure 5. Since the soil on the film’s surface at the slope has the tendency
to move downwards, there is a friction f 2 from the film against the soil on the film at the
slope. At the same time, the film is uncovered by the film pick-up mechanism along the
film pick-up angle α. The cohesion force between the film and soil prevents the film from
moving and forms a downward force Fa along the film pick-up angle α.

F

G

N f

G

N

Fa

Figure 5. Diagram of force between plastic film and soil under the action of curl-up force: 1—soil
under the film, 2—soil on the film, 3—film, 4—film-curling mechanism.

In Figure 5, N1 is the support force from the soil and film on the flat ground to the soil
on the film; G1 is the gravity of the soil on the film; N2 is the support force from the film at
the slope to the soil on the film; and G2 is the gravity of soil on the film at the slope. Then,
the mechanics equilibrium equation during operation of the curl-up residual plastic film
collector is established as follows:⎧⎨⎩

F = Fa + G2 sin α − f2
N2 − G2 cos α = 0
N1 − G1 = 0

(6)

In order to prevent the film from being torn down due to the speed difference between
the linear velocity of the film-curling mechanism and the advancing speed of the machine,
the linear velocity of the curling speed should be equal to the advancing speed of the
machine, and the speed should be uniform, so as to avoid tearing down the film with the
rigid impact from an abrupt change in the film collecting speed. The test on the curl-up
force in film collecting was carried out. By measuring the curl-up force F, the tensile stresses
on film during the curl-up collecting process under different factor levels were obtained.

3.1. Test Conditions

The field test was carried out at the field research and development base of the
Northwest Oasis Agricultural Environment Key Laboratory of the Ministry of Agriculture,
Tuobuliqi Town, Korla City, Bayingolin Mongolian Autonomous Prefecture, Xinjiang Uygur
Autonomous Region in early November 2021. The planting mode (660 mm (wide row)
+ 100 mm (narrow row)) with protective rows on both sides was adopted, and the film
thicknesses were 0.008 mm and 0.01 mm for both the high-performance film and ordinary
polyethylene film. The ground was relatively flat, and the drip irrigation belt had been
recycled. Using the TZS-1 soil moisture tester, the moisture content of the surface soil was
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16.2%. Before the test, the height of the stubbles in the test field was controlled within
120 mm. The test field is shown in Figure 6.

Figure 6. Test field on curl-up force in film collecting: 1—HP-50 type Digital Display Pull and Push
Strength Calculator, 2—film.

3.2. Test Method and Design
3.2.1. Test Factors and Levels

It can be known based on Equation (6) that the value of the curl-up force F is related
to cohesion between the soil under the film and the film Fa, the film pick-up angle, the
gravity of the soil on the film at the slope in the film pick-up G2, and the friction f 2 between
the film and the soil on the film. Since the moisture content of the soil under the film of
different types is different, the higher the moisture content under the film, the higher the
cohesion Fa of the soil under the film to the film. The mass of soil on the film is related
to the film-laying position. Since cotton plants can shield sandstorms, with the passage
of time, the mass of soil near the middle part of the field is lower, and the friction of the
film to the soil on the film at the slope is related to the friction coefficient between the soil
friction and soil, as well as the mass of soil on the film. Therefore, the sampling position,
film pick-up angle, and the types and positions of the laid film were used as test factors.
For each planting line of 100 m, the front point of each line was defined as position 1, and
25 m from position 1 along the film-laying direction was defined as position 2; 50 m from
position 1 along the film-laying direction was defined as sampling position 3. According to
the film pick-up angle of the 1JRM-2000 curl-up film collector, the standard range of the
film pick-up angle was determined to be 30–75◦. The table of test factor levels in the test on
the curl-up force during film collecting is shown in Table 1.

Table 1. Test factor levels.

Levels Sampling Position Film Pick-Up Angle Type of Film

1 Position 1 30◦ High-performance film
2 Position 2 45◦ Ordinary polyethylene film
3 Position 3 60◦
4 75◦

246



Agriculture 2022, 12, 1051

3.2.2. Test Method

The tensile stress on the film was selected as the test index, which is calculated by
Equation (7):

σ =
F
bd

(7)

where σ is the tensile stress on the film, MPa.
In the test, the process of generating the curl-up force on the film with the curl-up

film collector was simulated. Figure 7 shows the diagram of the operation process of the
1JRM-2000 curl-up film collector.

Figure 7. Operation process of the 1JRM-2000 curl-up film collector: 1—film, 2—film-curling mecha-
nism, 3—film pick-up mechanism, 4—operation platform, 5—body frame, 6—traction mechanism,
7—deep limiter, 8—soil.

During operation, the variation range of the film pick-up angle is α1-α2. According to
Figure 8, during the operation process of the curl-up film collector, the collected residue
film would continually wrap around the film-curling device, increasing the film pick-up
angle with the increase in the diameter of the residue film wrapping around the film-
curling device. The HP-50 digital display pull- and push-strength calculator was adopted
to measure the curl-up force. During the force measurement, one end of the film was
connected with the pull and push strength calculator, and the other end was at different
angles with the ground to simulate the changing process of film pick-up angle during the
curl-up collecting of film. The value of the film pick-up angle is controlled by the digital
display angle ruler. When the film is initially pulled up, the soil on the film accumulates,
and the film is subject to greater soil gravity. When the film is pulled up higher, the
accumulation speed of the soil is similar to that of soil falling down from the film. At this
time, the soil gravity is in dynamic equilibrium, and the curl-up force becomes stable. The
digital display pull- and push-strength calculator was used to record the maximum value
of the curl-up force in pulling up the film, and the obtained curl-up force was substituted
into Equation (7) to calculate the tensile stress of the film.
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(a) (b)

Figure 8. Test field of curl-up collecting of film. (a) 11SM-1.2 curl-up film collector; (b) 1JRM-2000
curl-up film collector.

3.3. Results and Analysis
3.3.1. Results and Analysis of Contrast Test on the Tensile Properties of High-Performance
Film and Ordinary Polyethylene Film

Table 2 shows the contrast test results of the tensile properties of the high-performance
film and the ordinary polyethylene film laid in the Xinjiang cotton fields with a service
period of 0–180 days.

Table 2 shows that the elongation at break and tensile yield stress of the high-performance
film before and during use were higher than those of the ordinary polyethylene film; the
elongation at break and tensile yield stress of the film with a thickness of 0.01 mm were
higher than those of the film with a thickness of 0.008 mm. The tensile property of the
film at a near-end position was higher than that of the film at a far-end position. When the
sampling direction was horizontal, the elongation at break and tensile yield stress of the
ordinary polyethylene film were higher than those when the film was collected vertically.
For the high-performance film, and the elongation at break collected horizontally was
higher than that collected vertically; its tensile yield stress was lower than that collected
vertically. This is due to the different anisotropy of the high-performance film from the
ordinary polyethylene film caused by the orientation of the macromolecules between the
layers of the high-performance film. With the increase in the film-laying period, both the
elongation at break and tensile yield stress of the high-performance film and ordinary
polyethylene film decreased. The variation in the scales of the decrease in the elongation at
break and tensile yield stress of the film is shown in Table 3. During the film-laying period
of 0~30 days, the scales of the decrease in the elongation at break and tensile yield stress
were higher than those during the film-laying period of 30~180 days. When the film-laying
period was 120 days and 180 days, the scale of decrease in the elongation at break of the
ordinary polyethylene film with a thickness of 0.01 mm collected horizontally at a far-end
position and the high-performance film with a thickness of 0.008 mm collected horizontally
at a near-end position were negative. This is caused by difference in the thickness of the film
and different sampling positions, since the thickness error of film is +0.003~−0.002 mm.
Each instance of sampling is located at that of the previous instance; thus, it may have little
effect on the scale of decrease in the elongation at break of the film, which shows that there
was little variation in the tensile property of the film when the film-laying periods were
90~120 days and 150~180 days.
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3.3.2. Results and Analysis of Test on Curl-Up Force in Film Collecting

The software Allpairs was used to generate a hybrid orthogonal table for the test [22],
and the test results are shown in Table 4.

Table 4. Test plans and results.

Test No. Sampling Position Film Pick-Up Angle/◦ Type of Film
The Tensile Stress on

the Film/MPa

1 Position 1 30 High-performance film 21.86
2 Position 2 30 Ordinary polyethylene film 19.125
3 Position 1 45 Ordinary polyethylene film 19.364
4 Position 2 45 High-performance film 19.83
5 Position 3 60 High-performance film 16.427
6 Position 1 60 Ordinary polyethylene film 18.217
7 Position 3 75 Ordinary polyethylene film 15.97
8 Position 1 75 High-performance film 17.039
9 Position 3 30 High-performance film 17.513

10 Position 3 45 Ordinary polyethylene film 16.824
11 Position 2 60 High-performance film 17.726
12 Position 2 75 Ordinary polyethylene film 16.013

(k1)1 19.12 19.499 18.399
(k1)2 18.174 18.673 17.586
(k1)3 16.684 17.457
(k1)4 16.341
R1 2.436 3.158 0.813

According to the analysis of the results in Table 4, it can be obtained that under
different test factors, the required film tensile stress for the operation of the curl-up
film collector was 15.97–21.86 MPa. By comparing the value with the results of the
film tensile property test, the minimum tensile yield stress of the high-performance film
with a thickness of 0.01 mm was higher than the required minimum film tensile stress
during normal operation of the curl-up film collector. The results of the range anal-
ysis showed that the influence order of the test factors on the film tensile stress was
Film Pick-up Angle > Sampling Position > Type of Film; the film tensile stress achieved the
maximum value when position 1 was chosen as the sampling position, the film pick-up
angle was 30◦, and the film type was high-performance film.

In order to find out the significance level of the test factors on the test indexes, a
variance analysis was made on the above test results, and the analysis results are shown
in Table 5.

Table 5. Variance analysis.

Indexes Sources of Variance Sum of Squares Degree of Freedom Mean Square F Value Significance

The tensile
stress Y on the

film/MPa

Sampling Position 12.07 2 6.035 6.771 **
Film Pick-up Angle 16.07 3 5.357 6.01 **

Type of Film 0.81 1 0.81 0.909
Residual error 4.457 5 0.891

Sum 33.407 11
Note: ** means the effect is very significant.

According to the analysis results in Table 4, the required film tensile stress for the
operation of the curl-up film collector under different test factors was 15.97~21.86 MPa. By
comparing this range with the results of the film tensile property test, only the minimum
tensile yield stress of the high-performance film with a thickness of 0.01 mm was higher
than the minimum film tensile stress required in normal operation of the curl-up film
collector. The range analysis results showed that the influence order of the test factors
on the film tensile stress was Film Pick-up Angle > Sampling Position > Type of Film; the
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film tensile stress achieved the maximum value when position 1 was used as the sampling
position, the film pick-up angle was 30◦, and the film type was high-performance film.

In order to verify the significance level of each test factor on the test indexes, a variance
analysis was made on the above test results, and the analysis results are shown in Table 5.

It can be observed from Table 5 that the sampling position and film pick-up angle had
significant influence on the film tensile stress, while the type of film had an insignificant
influence on the film tensile stress. During the service period of the film, due to various
reasons, such as the wind-blown sand, the soil on the film accumulates. Since the cotton
plants can stop the sand, the soil accumulated around the center of each row along the
film-laying direction decreases; the longer the service period of the film, the more obvious
this tendency becomes. Therefore, when the sampling position was the front point of each
row, the soil quantity on the film was highest; thus, the curl-up force required to pull up
the film is very high. With the shift of the sampling position to the center of each row and,
therefore, with less soil on the film, the curl-up force required to pull up the film reduces.
According to Equation (7), the film tensile stress is directly proportional to the curl-up force;
thus, the sampling position had a significant influence on the film tensile stress. The angle
between the direction of the curl-up force and the ground is equal to the film pick-up angle.
The larger the film pick-up angle, the larger the valid component force to pull up the film
would become, and the smaller the curl-up force is required. Thus, the film pick-up angle
had a significant influence on the film tensile stress. Although the type of film has influence
on the soil’s moisture content under the film, it has small influence on the cohesion of the
soil under the film and the gravity of the soil on the film; thus, the type of film has an
insignificant influence on the film tensile stress.

4. Field Test on Curl-Up Collecting of Film

By considering the test results of the contrast test on the tensile property under different
test factors and the field test on film curl-up collecting between high-performance film and
ordinary polyethylene film, the high-performance film with a thickness of 0.01 mm satisfied
the requirements for the tensile stress of film in curl-up collecting. Since the value of the
film pick-up angle is inversely proportional to the required curl-up force during curl-up
collecting of the film, the film pick-up angle of the machine was set to 45◦–75◦ for film
collecting. In order to verify the effect of the curl-up collecting of the film for film collectors
with different structures on different types of film with different thicknesses, a test on field
film curl-up collecting was designed, and the test site is shown in Figure 8.

4.1. Test Method and Design

The 1JRM-2000 curl-up film collector and the 11SM-1.2 curl-up film collector were
used for a contrast test in the field research and development base of the Key Laboratory of
Northwest Oasis Agricultural Environment of Ministry of Agriculture, in Tuobuliqi Town,
Korla City, Bayingolin Mongolian Autonomous Prefecture of Xinjiang Uygur Autonomous
Region, China, during March of 2022. According to the standard GB/T25412-2021, the film
recycling rate of the device on the film laid in the same year and the working performance
of the device were used as test indexes. The structures of the two types of collectors are
shown in Figure 9.

According to Figure 9, when the 11SM-1.2 curl-up film collector was working, the
eight groups of film pick-up mechanisms at the front and the two groups of side-film
shovels separated the film and soil; the film-guiding and impurity separation mechanisms
separated impurities from the film and sent the film to the film-curling mechanism. The
film-curling mechanism rotated and winded the film on it. While unloading the film, the
hydrocylinder was manually controlled, and the film unloading mechanism unloaded the
film package. During the working process, the film pick-up angle remained unchanged
and was determined by the angle of the film pick-up mechanism. If the film pick-up angle
is too large, the soil penetration angle of the film pick-up mechanism is too large, and
the soil produces high resistance against the film pick-up mechanism. If the film pick-up
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angle is too small, it produces high film tensile stress and tears off the film. Thus, the film
pick-up angle was determined to be 45◦. During operation of the 1JRM-2000 curl-up film
collector, the soil-loosening shovel on the deep limiter in the front of the film collector first
loosens the soil around the side film. The film-cutting mechanism cuts the soil from the
center along the film-laying direction, and then the film pick-up mechanism in the middle
of the machine separates the cut film from the soil. With the forward movement of the
machine, by manually controlling the hydrocylinder, the film-unloading mechanism opens,
and, during the working process of the machine, the film pick-up angle increases with the
increase in the diameter of the film package.

(a) (b)

Figure 9. Schematic diagram of structure of two types of curl-up film collectors. (a) 11SM-1.2 curl-
up film collector: 1—film-unloading mechanism, 2—film-curling mechanism, 3—film-guiding and
impurity separation mechanism, 4—body frame, 5—drive system, 6—film-pulling mechanism, 7—
depth wheel components, 8—traction mechanism, 9—film pick-up mechanism, 10—side-film shovel;
(b) 1JRM-2000 curl-up film collector: 1—operation platform, 2—depth limiter, 3—film-unloading
mechanism, 3—film-curling mechanism, 4—film-cutting mechanism, 5—traction mechanism, 6—film
pick-up mechanism, 8—body frame.

According to the requirements of “five-point random sampling” [23], a measurement
area of 200 m × 3.8 m was selected, and test points were chosen within this area. From
the four corners of the measurement area along the diagonal lines, four measurement
points were randomly determined within the range of one-quarter to one-eighth of the
diagonal length, in addition to the intersection of the diagonal lines as the five pre-operation
measuring points. Then, five points were selected as post-operation measuring points in
the same area near to, but not overlapping, the five pre-operation measuring points. The
measuring points cover a length of 5 m and the width of the film, which is 1.25 m. After
controlling the stubble height of the cotton plants within 120 mm, the two film collectors
started working simultaneously from the start of each row on the same type of film for
an operation length of 200 m. The test was repeated three times, and the test results were
averaged. Before the machine reached the operation position, a length of 50 was set as the
accelerating region to let the machine adjust to a suitable speed. Timing started when the
machine entered the operation position, and timing stopped after the machine completed
an operation length of 200 m. After operation, residue film pieces were taken from the five
pre-operation and post-operation measurement points in the two measurement areas. The
residual film taken from each measuring point was washed, dried, and weighed, and the
average value was calculated. The film recycling rate on the film laid in the same year can
be calculated according to Equation (8):

J = (1 − W
W0

)× 100% (8)
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where J is the film recycling rate of the film laid in the same year by the machine, %; W is
the mass of residue film laid in the same year in the field after machine operation, g; and
W0 is the mass of residue film laid in the same year before machine operation, g.

4.2. Test Results and Analysis

Test results are listed in Table 6. The results of the test come from “five-point sampling”,
which is suitable for the survey objects with relatively uniform population distribution
and good representativeness. In order to exclude errors caused by accidental factors, three
replicate groups were arranged for each sampling, and the final results were averaged.

Table 6. Results of field test on curl-up collecting of film.

Test No.
Type of

Collector
Type of Film

Thickness of
Film/mm

Film Recycling Rate of
the Film Laid in the

Same Year/%

Working
Performance/km·h

1 1JRM-2000 High-performance film 0.01 81.16 6.15
2 1JRM-2000 High-performance film 0.008 73.26 4.79
3 1JRM-2000 Ordinary polyethylene film 0.01 57.31 3.76
4 1JRM-2000 Ordinary polyethylene film 0.008 55.43 3.13
5 11SM-1.2 High-performance film 0.01 96.11 9.37
6 11SM-1.2 High-performance film 0.008 85.45 8.24
7 11SM-1.2 Ordinary polyethylene film 0.01 78.52 7.88
8 11SM-1.2 Ordinary polyethylene film 0.008 72.49 7.64

Table 6 shows that, during the curl-up film collecting of the 1JRM-2000 curl-up film
collector on film with different thicknesses, the film recycling rate of the film laid in the
same year and the working performance were lower than that of the 11SM-1.2 curl-up
film collector. During the working process of the 1JRM-2000 curl-up film collector, with
the increase in the film pick-up angle, the curl-up force changes, and the film is easily
broken down during film pick-up. In order to collect the film more easily, the 1JRM-2000
film collector used soil-loosening shovels to loosen the soil around the side film to reduce
the force on film. After the soil was loosened, some side film still adhered to the soil and
could not be collected, making the film recycling rate of this device lower than that of the
11SM-1.2 curl-up film collector. When the type of film to be collected was high-performance
film, since the mechanical properties of the high-performance film were higher than those
of the ordinary polyethylene film, the film-cutting mechanism could not effectively cut off
the high-performance film, thereby preventing the machine from improving the working
performance. When the type of film to be collected was high-performance film, since the
mechanical properties of the high-performance film were higher than those of the ordinary
polyethylene film, the film-cutting mechanism could not effectively cut it off, which shows
the low working performance of the machine. When the type of film to be collected was
ordinary polyethylene film, whose minimum tensile yield stress should be lower than the
required film tensile stress for the normal operation of the curl-up film collector, the force
direction on the film kept changing during operation, and the film was easily broken. In
this case, it was necessary to pull the broken film manually to the film-curling mechanism,
and thus the working performance of the machine was greatly affected. Since the film
pick-up angle of the 11SM-1.2 curl-up film collector is a fixed value, during collecting of
the film, the curl-up force is only determined by factors such as the soil quantity on the
film. When there is little change in the curl-up force, the film is not broken, and, moreover,
with the assistance of the film-guiding mechanism, in the case of film breakage during
curl-up collecting, the film-guiding mechanism can transmit the newly separated film from
the soil to the film-curling mechanism without manual operation. It can be obtained from
the results of the field test on the curl-up collecting of the film that the 11SM-1.2 curl-up
film collector achieved film recycling rates of 85.45% and 96.11% on the high-performance
film with thicknesses of 0.008~0.01 mm laid in the same year; the 1JRM-2000 curl-up
film collector achieved the film recycling rate of 81.16% on the high-performance film
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with a thickness of 0.01 mm laid in the same year, which could satisfy the requirements
of GB/T25412-2021 and achieved working performances of 8.24 km/h, 9.37 km/h, and
6.15 km/h and satisfied the requirements for agricultural production.

Due to the long-term use of ultra-thin and low-strength plastic films in China, the
residual film collectors developed in China are mainly aimed at collecting low-tensile
strength plastic films. The current related researches includes: The Agricultural Mechaniza-
tion Research Institute of Xinjiang Academy of Agricultural Sciences [24] has developed a
4JSM-2.1A arc-reciprocating residual film collector; Jiangsu University [25] has developed
a combined residual film reclaimer with upper conveyor chain; and China Agricultural
University [26] has developed a collecting and separating device for strip plastic film
baler. The residual film collected by this device is fragmented, and the film collection
mechanism also collects some impurities into the film collecting box during the recycling
process, so the collected film can only be reused through granulation, and it is difficult to
completely remove impurities, such as the straw, soil and other impurities mixed in the
residual film fragments. The cost of using residual film for granulation remains high, and
many downstream enterprises of residual film recycling should only rely on government
subsidies to support them. It can be concluded in this study that the tensile strength and
weather resistance of the high-performance film for full recycling are better than those of
the ordinary polyethylene film, and the residual film can be recycled by means of pick-
up recycling. The collection of low-tensile strength plastic film and the collected plastic
film with high integrity have relatively few impurities, which greatly reduces the cost of
collecting residual film for downstream enterprises.

5. Conclusions

(1) A contrast test was carried out on the tensile properties of high-performance film
and ordinary polyethylene film, and the test results showed that the elongation at break
and the yield stress of the high-performance film before and during the operation were
higher than those of the ordinary polyethylene film. The tensile property at a near-end
position of the cotton plants was higher than that for a far-end position. When the sampling
direction was horizontal, the elongation at break and the tensile yield stress of the ordinary
polyethylene film were higher than those when the sampling direction was vertical, and the
elongation at break of the high-performance film was higher than that when the sampling
direction was vertical, its tensile yield stress was lower than that when the sampling
direction was vertical. With the increase in the film laying period, the elongation at break
and tensile yield stress had downward tendencies, and, within 0–30 days, the scales of
decrease in the elongation at break and tensile yield stress were higher than those during
30–180 days.

(2) Test results showed that the range in tensile stress on the film was 15.97~21.86 MPa
when the film is pulled up from different sampling positions, at different film pick-up
angles, and with different types of film. The minimum tensile yield stress of the high-
performance film with a thickness of 0.01 mm was higher than the maximum film tensile
stress required for pulling up the film by the curl-up film collector. The influence order of
the test factors on the film tensile stress was film pick-up angle > sampling position > type
of film. After a variance analysis on the test data, the results showed that the sampling
position and film pick-up angle had significant influences on the tensile stress of the film,
while the type of film had an insignificant influence.

(3) Test results showed that during operation of the film collectors, the 11SM-1.2
curl-up film collector with a fixed film pick-up angle achieved a higher film recycling rate
on the film laid in the same year and a higher working performance in collecting film of
different types and with different thicknesses than the 1JRM-2000 curl-up film collector.
The 11SM-1.2 curl-up film collector achieved a film recycling rate of 85.45% and 96.11%
on the high-performance film with thicknesses of 0.008 mm and 0.01 mm. The 1JRM-2000
curl-up film collector achieved a film recycling rate of 81.16% on the high-performance
film with a thickness of 0.01 mm laid in the same year, which satisfied the requirements of

255



Agriculture 2022, 12, 1051

GB/T25412-2021. Its working performances were 8.24 km/h, 9.37 km/h, and 6.15 km/h,
respectively, which could satisfy the demand in production.

(4) In real production, the linear velocity of the film-curling mechanism and the
advancing speed of the machine cannot be equally consistent; therefore, the monitoring-
feedback–control system is generally adopted to realize a dynamic equilibrium between
the linear velocity of the film-curling mechanism and the advancing speed of the machine,
thus enhancing the complexity of the machine. If the difference between the linear velocity
of the film-curling mechanism and the advancing speed of the machine is too large, the film
is easily torn off. Since the automatic film-guiding mechanism can automatically supply
film, the working performance of the 11SM-1.2 curl-up film collector is not affected by the
difference between the linear velocity of the film-curling mechanism and the advancing
speed of the machine.

(5) In the future, we can optimize the curl-up collecting method of film collectors from
the perspective of a simulation analysis, and subsequent tests should consider test indexes,
such as the number of instances of film breakage and the impurity rate of the film, to find
out the optimal mechanical structure and working parameters, and to make preparations
for secondary or multiple utilizations of the collected film.
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Abstract: The fresh weight of vegetables is an important index for the accurate evaluation of growth
processes, which are affected by factors such as temperature and radiation fluctuation, especially in a
passive solar greenhouse. Predicting dynamic growth indexed by fresh weight in a solar greenhouse
remains a challenge. A novel method for predicting the dynamic growth of leafy vegetables based on
the in situ sensing of phenotypic and environmental data of batches is proposed herein, enabling
prediction of the dynamic fresh weight of substrate-cultivated lettuce grown in a solar greenhouse
under normal water and fertilizer conditions. Firstly, multibatch lettuce cultivation experiments
were carried out and batch datasets constructed by collecting growth environmental data and lettuce
canopy images in real time. Secondly, the cumulative environmental factors and instantaneous fresh
weights of the lettuce batches were calculated. The optimum response time in days was then explored
through the most significant correlations between cumulative environmental factors and fresh weight
growth. Finally, a dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and the fresh
weight increments of batches. The results showed that the computing time setpoint of cumulative
environmental factors and instantaneous fresh weight of lettuce was 8:00 AM and the optimum
response time was 12 days, and the average R2 values among samples from three batches reached
95.95%. The mean relative error (MRE) of fresh weight prediction 4 days into the future based on
data from the current batch was not more than 9.57%. Upon introducing another batch of data, the
prediction 7 days into the future dropped below 8.53% MRE; upon introducing another two batches,
the prediction 9 days into the future dropped below 9.68% MRE. The accuracy was improved by the
introduction of additional data batches, proving the model’s feasibility. The proposed dynamic fresh
weight growth prediction model can support the automatic management of substrate-cultivated leafy
vegetables in a solar greenhouse.

Keywords: fresh weight prediction; growth model; naive Bayesian network; solar greenhouse;
substrate-cultivated lettuce

1. Introduction

In line with an annual increase in greenhouse planting area in recent years [1,2], the so-
lar greenhouse, a relatively low-cost, environmentally controllable, and highly productive
option for farmers, has become the predominant facility type used to provide year-round
vegetable production in northern China [3,4]. A solar greenhouse has a large roof area along
the south side which is passively heated by sunlight during the daytime [5]. Meanwhile,
a thermal blanket is rolled over the greenhouse at night to hold heat inside the structure,
and a northern brick wall preserves heat inside the structure [6]. Compared with Venlo
greenhouses [7], passive solar greenhouses generally provide only basic environmental
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control with low-cost equipment [8]. In addition, the use of advanced automated fertigators
to ensure sufficient water and fertilizer absorption of vegetables in solar greenhouses has
become popular owing to significant labor savings [9]. In production in a Venlo green-
house, environmental control technology [10,11] is used to regulate indoor environmental
parameters such as light, temperature, humidity, and carbon dioxide, making the vegetable
growth environment close to optimal. Solar greenhouses have the disadvantages of large
temperature fluctuation ranges and frequently weak solar radiation [12], which is not
conducive to crop growth, making the crop growth models established in Venlo greenhouse
systems unsuitable for application in solar greenhouses.

In a suitable environment, vegetable growth adheres to certain inherent laws through-
out the plant’s life cycle [13]. Scholars have studied many crop growth models [14–17] with
the aim of guiding future crop production in greenhouse systems through regulation of
the environment, water, and fertilizer. In one greenhouse crop growth system, a machine
learning method based on the expectation maximum algorithm was applied to link envi-
ronmental parameters with crop growth [18]. Based on only a small number of samples,
future crop growth could be predicted several days in advance. Thus, the feasibility of
using environmental parameters to predict vegetable growth in greenhouse systems has
been verified. However, in the above-mentioned model, leaf area index, evapotranspiration,
and dry weight were taken as crop growth indicators, and the leaf area index and dry
weight were obtained by destructive methods at intervals of one week. For one thing,
indicators obtained using destructive methods cannot provide growth indicators over
the whole life cycle sequence of a specific plant, and indicators for shorter time intervals
were not obtained. For another, many vegetables needed to be planted in order to assess
indicators using destructive sampling during the vegetable growth period, and the process
was inefficient and cumbersome. Moreover, the indicators used to measure vegetable
growth could not directly reflect the current vegetable yield (i.e., fresh weight).

The fresh weight of vegetables is an important index for accurate evaluation of the
growth process, so it is of great significance to apply the fresh weight index to the predic-
tion of crop growth. Compared with hydroponic vegetables, the online, nondestructive
monitoring of the fresh weight of substrate-cultured vegetables during the growth process
is a challenge. In view of the importance of fresh weight, Yanes et al. [19] proposed a deep
learning image segmentation method to obtain information from canopy images for the
estimation of fresh weight of hydroponic lettuce, and a regression model relating lettuce
size and fresh weight was established. Jung et al. [20] established a model of the relation-
ship between the projected area of lettuce canopy and fresh weight in an environmentally
controllable, water-based lettuce cultivation system based on the morphological analysis
machine vision method. Jiang et al. [21] developed a fresh weight estimation system for
hydroponic lettuce based on online image processing, which realized high-precision esti-
mation of the fresh weight of lettuce and allowed environmental control for high-quality
production. In hydroponic vegetable production systems, the plants can be removed from
the nutrient solution temporarily and directly weighed without hindering their continuous
growth. This is convenient for nondestructive calibration of fresh weight and makes it easy
to realize nondestructive, high-precision fresh weight estimation. In substrate culture sys-
tems, the plants can be taken out of the substrate and directly weighed to accurately obtain
the fresh weight. However, plants weighed in this way will not continue to grow [22,23],
and the subsequent fresh weight growth cannot be obtained. It is difficult to achieve
nondestructive estimation of the fresh weight of substrate-cultivated vegetables. In order
to solve this problem, Liu et al. [24] proposed a fresh weight estimation method based on
the fusion of phenotypic characteristics and environmental parameters, which was used
to realize nondestructive estimation of the individual and population fresh weights of
substrate-cultured lettuce in a solar greenhouse.

However, accurate prediction of dynamic fresh weight growth based on in situ sensing
in solar greenhouse systems is still a challenge. Fresh weight growth of vegetables is affected
by many complex environmental factors [25]. Large indoor temperature fluctuations and
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frequently weak solar radiation in solar greenhouse systems lead to differences in the
fresh weight growth of different batches. There is a complex and uncertain relationship
between vegetable fresh weight growth and environmental factors. Therefore, in contrast
to the static modeling of fresh weight under hydroponic conditions [19], a novel prediction
method for the dynamic growth of leafy vegetables based on phenotypic and environmental
data of batches is proposed herein, which is able to predict the dynamic fresh weight
of substrate-cultivated lettuce in a solar greenhouse system under normal water and
fertilizer conditions.

The main contributions of this paper are as follows:
(1) Multibatch substrate-cultivated lettuce cultivation experiments were carried out,

with the growth environment and lettuce canopy images monitored in real time. A dataset
was built using phenotypic and environmental data of batches.

(2) Computation of the cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response time was explored
via the most significant correlations between cumulative environmental factors and fresh
weight growth.

(3) A dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and fresh
weight increments of batches, which can be used to predict the dynamic fresh weight of
substrate-cultured lettuce in a solar greenhouse system.

2. Materials and Methods

2.1. Experimental Design

The experimental site was Solar Greenhouse No. 6 in Shandong Agricultural Univer-
sity Science and Technology Innovation Park, located in Tai’an City, Shandong Province,
China (36.16◦ N, 117.16◦ E). The greenhouse has a span of about 8 m, a height of about
4 m, and a length of about 50 m from east to west. The experimental material was Italian
lettuce, which was produced by Hebei Maohua Seed Industry Limited Company. The main
characteristics of this lettuce are a semi-erect form, plant height of about 26 cm, develop-
ment of about 28 cm, and nearly round leaves. The color is emerald green, and the loose
leaves do not form a ball. In order to improve the accuracy of the dynamic fresh weight
prediction model, multiple batches of planting experiments were carried out. The same
variety of lettuce was used for the multiple batches of planting experiments. When the
lettuce seedlings in a batch had grown to five leaves and a heart, the batch was transplanted
into a planting tank filled with substrate.

The aboveground growth environment of the lettuce was the closed microclimate
environment of the passive solar greenhouse. Due to the structural characteristics of a
passive solar greenhouse, only simple environmental regulation could be achieved during
the lettuce growth process, barring the introduction of heating, fans, supplementary lights,
etc. For example, in the morning, the thermal blanket was opened to allow storage of
heat from the sunlight. At noon, the vent was opened to allow natural ventilation for
dehumidification, cooling, and air exchange. In the evening, the thermal blanket was closed
for insulation, so as to ensure a normal indoor lettuce growth environment and prevent
frostbite of the lettuce plants. The underground growth environment of the lettuce plants
was the substrate. The substrate had the characteristics of good ventilation and a good
drainage effect, but the water retention effect was relatively poor. Therefore, Yamazaki
formula nutrient solution at a 100% concentration was used for irrigation via the water
and fertilizer application system in the greenhouse (Figure 1), ensuring normal water and
fertilizer conditions throughout the lettuce cultivation experiment.
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Figure 1. Lettuce cultivation experiment.

2.2. Acquisition of Environmental Data and Lettuce Images in the Solar Greenhouse

An environmental monitoring and image acquisition platform (Figure 1) was used
to record the temperature, humidity, photosynthetically active radiation, carbon dioxide
concentration, and lettuce canopy images in the solar greenhouse during the lettuce culti-
vation experiment. The platform was mainly composed of a support mechanism, guide
rail slide, hanger, cross bar, sensor, and controller. The support mechanism was used to
support the guide rail slide so that the guide rail slide could move horizontally in the
north–south direction at a certain height from the ground. The guide rail slide was fixed at
the upper end of the support mechanism and the cross bar equipped with the sensor was
connected through the hanger, so that the sensor could move in the north–south direction
synchronously with the cross bar. The height of the cross bar could be adjusted according
to the current situation, and the cross bar and the guide rail slide were kept vertical in the
horizontal direction. The guide rail slide was controlled by the controller and the cross bar
equipped with sensors was moved to complete the environmental monitoring and image
acquisition tasks in the upper part of the planting area.

2.3. Calculation of Environmental Factors and Instantaneous Fresh Weight
2.3.1. Calculation of Cumulative Radiant Heat Product

The effects of temperature and radiation on the fresh weight of lettuce can be measured
by the cumulative radiant heat product. The specific calculation formula is as follows [26]:

RTE =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 (T < Tb)
T−Tb

Tob−Tb
(Tb ≤ T < Tob)

1 (Tob ≤ T ≤ Tou)
Tm−T

Tm−Tou
(Tou < T ≤ Tm)

0 (T > Tm)

(1)

TEP = ∑ RTEP (2)

RTEP =
24

∑
i=1

(
RTEi × PARi × 3600/106

)
(3)

where Tb is the lower limit of growth temperature (◦C), Tm is the upper limit of growth
temperature (◦C), Tob is the lower limit of optimum growth temperature (◦C), Tou is the
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upper limit of optimum growth temperature (◦C), T is the ambient temperature (◦C), RTE is
the relative thermal effect, RTEP is the daily cumulative radiant heat product (MJ·m−2·d−1),
RTEi is the relative thermal effect in the i-th hour, PAri is the average photosynthetically
active radiation in the i-th hour (MJ·m−2·d−1), and TEP is the cumulative radiation heat
product (MJ·m−2).

2.3.2. Calculation of Crop Evapotranspiration

If reference evapotranspiration is used to replace crop evapotranspiration, there will
be a large error. Therefore, in order to improve the accuracy of calculation of crop evapo-
transpiration, the crop coefficient was used to correct the reference evapotranspiration. The
specific calculation formula is as follows [27]:

ETc = ET0 · Kc (4)

ET0i =
0.408Δ(Rn − G) + γ 1713

T+273 (es − ea)

Δ + 1.64γ
(5)

Δ =
2505 · exp

(
17.27T

T+237.3

)
(T + 237.3)2 (6)

es =
es(Tmax) + es(Tmin)

2
(7)

es(Tmax/min) = 0.6108 · exp
(

17.27Tmax/min

Tmax/min + 237.3

)
(8)

ea =
es(Tmin)

RHmax
100 + es(Tmax)

RHmin
100

2
(9)

R = K · PAR (10)

Rn = a·R + b (11)

where ET0 is the reference evapotranspiration under full irrigation (cm·d−1), Δ is the slope
of the saturated vapor pressure curve (kPa·◦C−1), Rn is the net radiation of the crop canopy
(MJ·m−2·d−1), G is the soil heat flux density (MJ·m−2·d−1), γ is the dry and wet table
constant (kPa·◦C−1), T is the daily average temperature at the height of 1.5 to 2.5 m above
the surface (◦C), Tmax/min is the daily maximum or minimum air temperature at the height
of 1.5 to 2.5 m above the surface (◦C), es is the average saturated vapor pressure at the
height of 1.5 to 2.5 m above the surface (kPa), ea is the average actual vapor pressure at
the height of 1.5 to 2.5 m above the surface (kPa), RHmax/min is the daily maximum or
minimum relative humidity at the height of 1.5 to 2.5 m above the surface (%), ETci is the
evapotranspiration of crops on the i-th day under full irrigation (cm/d), Kc is the crop
coefficient, R is the total solar radiation (MJ·m−2·d−1), PAR is the photosynthetically active
radiation (MJ·m−2·d−1), K is the conversion coefficient between photosynthetically active
radiation and total solar radiation, and a and b are the conversion coefficients between net
radiation and total radiation.

If G = 0, γ = 0.067, Kc = 0.7, 1.00 or 0.95 [28], K = 80/39 [29], a = 0.8277, and
b = 0.2909 [30], then ETc can be calculated using Formulas (4)–(11) and the indoor tempera-
ture, humidity, and photosynthetically active radiation.

2.3.3. Calculation of Instantaneous Fresh Weight and Fresh Weight Increment

Based on the previous research results of this research group [24], the online, nonde-
structive calculation of the fresh weight of substrate-cultivated lettuce grown in a solar
greenhouse was realized by combining the data of phenotypic characteristics and environ-
mental characteristics. Firstly, the collected lettuce canopy images were used to extract
phenotypic characteristics such as shape, color, and texture. Then, using the online moni-
toring values of temperature and photosynthetically active radiation, cumulative radiant
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heat product was calculated as an environmental factor. Finally, the above factors were
introduced into the model for fresh weight estimation of substrate-cultivated lettuce grown
in a solar greenhouse, and the instantaneous fresh weight of the lettuce was obtained
(Figure 2). The fresh weight increment was obtained by subtracting the instantaneous fresh
weight at one time point from another.

Figure 2. Schematic diagram of calculation of instantaneous fresh weight.

2.4. Exploration of Optimum Response Time in Days

In order to study the optimum response time of the most significant correlations
between cumulative environmental factors and fresh weight growth, a naive Bayesian
network [31–33] was used to establish the relationship model. There were n − k elements
in the dataset, including cumulative environmental factors, instantaneous fresh weight,
and fresh weight increments of the previous k days, and the dataset was divided into a
training set and a test set. The training set was introduced into the naive Bayesian network
for model training, and the test set was used for model testing.

The determination coefficient of the model was calculated by referring to Formula
(12) using predicted values and measured values, and was used to examine the degree of
correlation between predicted values and measured values of the samples in the dataset.
The normal value range is from 0 to 1, and the closer it is to 1, the better the model fits the
data. The calculation formula is as follows:

R2 = 1 − ∑n
i=1(y_testi − y_prei)

2

∑n
i=1(y_testi − y_mean)2 (12)

where y_testi is the measured value of the i-th sample in the dataset (g), y_prei is the
predicted value of the i-th sample in the dataset (g), and y_mean is the average of the
measured values of all samples in the dataset (g).

The coefficient of determination was used as the evaluation index of the model. The
larger the coefficient of determination, the more significant the relationship between cumu-
lative environmental factors and fresh weight growth.
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The solution process with the most significant response between cumulative envi-
ronmental factors and fresh weight growth in the previous k days is shown in Figure 3.
The figures on the y axis represent the environmental parameters (temperature, humidity,
photosynthetically active radiation, and carbon dioxide concentration) or the instantaneous
fresh weight of lettuce at a certain time. Firstly, instantaneous fresh weight on day 1, cumu-
lative environmental factors (cumulative radiant heat product, crop evapotranspiration,
and average carbon dioxide concentration), and fresh weight increment from day 1 to day
k + 1 were taken as the first element group in constructing the dataset. The instantaneous
fresh weight on day 2, cumulative environmental factors, and fresh weight increment from
day 2 to day k + 2 were used as the second element group in constructing the dataset.
Correspondingly, instantaneous fresh weight on day n – k, cumulative environmental
factors, and fresh weight increment from day n − k to day n were taken as the last element
group in constructing the dataset, which had a total of n – k element groups. The dataset
was then divided into a training set and a test set, and the training set was substituted into
the naive Bayesian network for model training. Finally, the test set was substituted into
the above model and the determination coefficient was calculated, which was used as the
evaluation index for the significance of the response between cumulative environmental
factors and fresh weight growth in the previous k days.

 

Figure 3. Schematic diagram of the solution process for the most significant response between
cumulative environmental factors and fresh weight growth in the previous k days.

2.5. Establishment of Dynamic Fresh Weight Growth Prediction Model

Using the above methods, it was easy to obtain the optimum response time of the most
significant correlations between cumulative environmental factors and the fresh weight
growth of substrate-cultivated lettuce grown in a solar greenhouse. Thus, a dynamic fresh
weight prediction model was constructed, using the collected data to predict the dynamic
fresh weight growth of lettuce.
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2.5.1. Predicting the Fresh Weight on the Next Day

Firstly, a dataset labeled 1 is constructed using instantaneous fresh weight, cumulative
environmental factors, and fresh weight increment in the previous k days from day 1
to day n0, with a total of n0 − k elements. The dataset labeled 1 is imported into the
naive Bayesian network for training and testing of the model. Then, instantaneous fresh
weight on day n0 − k + 1 and cumulative environmental factors from day n0 − k + 1 to
day n0 + 1 are taken as the inputs of the above model, and the fresh weight increment
from day n0 − k + 1 to day n0 + 1 is derived by substituting the above model. Finally, the
instantaneous fresh weight on day n0 + 1 is calculated and the relative error is calculated.
The specific calculation formula is as follows:

m′
n0 = mk + Δm′

n0−k (13)

RE =

∣∣m′
n0− mn0

∣∣
mn0

(14)

MRE =
1
n ∑n

i=1 REi (15)

σ =

√
1

n − 1 ∑n
i=1(REi − MRE)2 (16)

where Δm′
n0−k is the predicted value of fresh weight increment from day n0 to day k (g), mk

is the measured value of instantaneous fresh weight on day k (g), m′
n0 is the predicted value

of instantaneous fresh weight on day n0 (g), mn0 is the measured value of instantaneous
fresh weight on day n0 (g), RE is the relative error between the predicted value and
measured value of instantaneous fresh weight (%), MRE is the mean relative error (%), and
σ is the standard deviation of relative error (%).

2.5.2. Predicting the Fresh Weight in the Next 2 Days
1© Using the method of predicting the fresh weight on the next day, the fresh weight

increment from day n0 − k − 1 to day n0 + 1 can be obtained.
2© The instantaneous fresh weight on day n0 − k + 1, cumulative environmental

factors, and predicted fresh weight increment from day n0 − k + 1 to day n0 + 1 are taken
as the last element group to construct a new dataset labeled 2, with a total of n0 − k + 1
elements. The dataset labeled 2 is imported into the naive Bayesian network for training
and testing of the model.

3© The cumulative environmental factors from day n0 − k + 2 to day n0 + 2 and the
instantaneous fresh weight on day n0 − k + 2 are taken as the inputs of the above model,
and the fresh weight increment from day n0 − k + 2 to day n0 + 2 is derived by substituting
them into the above model.

4© With reference to Equations (13) and (14), the instantaneous fresh weight on day
n0 + 2 and the relative error are calculated.

2.5.3. Predicting the Fresh Weight in the Next m0 Days

Schematic diagram of the solution process for predicting fresh weight in the next m0
days based on the phenotypic and environmental data from the previous k days is shown
as Figure 4.
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Figure 4. Schematic diagram of the solution process for predicting fresh weight in the next m0 days
based on the phenotypic and environmental data from the previous k days.

1© According to the method of predicting the fresh weight in the next 2 days, the fresh
weight increment from day n0 − k − 2 to day n0 + 2 can be obtained.

2© By analogy, the instantaneous fresh weight on day n0 − k + m0 − 1, cumulative
environmental factors, and predicted fresh weight increment from day n0 − k + m0 − 1 to
day n0 + m0 − 1 are taken as the last element to construct a new dataset labeled m0, which
has a total of n0 − k + m0 − 1 elements. The dataset labeled m0 is imported into the naive
Bayesian network for training and testing of the model.

3© The cumulative environmental factors from day n0 − k + m0 to day n0 + m0 and the
instantaneous fresh weight on day n0 + m0 are taken as the inputs of the above model, and
the fresh weight increment from day n0 − k + m0 to day n0 + m0 is derived by substituting
them into the above model.

4© With reference to Equations (13) and (14), the instantaneous fresh weight on day
n0 + m0 and the relative error are calculated.

Therefore, through the above methods, the future fresh weight can be predicted using
phenotypic and environmental data. For example, if instantaneous fresh weight on the
next day is predicted, the cumulative environmental factors from day n0 − k + 1 to day
n0 + 1 will be used, which from day n0 − k + 1 to day n0 are real and known. However,
the cumulative environmental factors from day n0 to day n0 + 1 have not occurred and are
unknown. Even if there is an error in estimating the environmental factors from day n0
to day n0 + 1, the impact on the accuracy of the cumulative environmental factors from
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day n0 − k + 1 to n0 + 1 is only 1/k. The overall error generated in fresh weight dynamic
prediction is not too large.

3. Results and Discussion

3.1. Fresh Weight Growth Curve of Lettuce

It can be seen from Figure 5 that on both sunny and cloudy days, the changes in fresh
weight at nighttime are not obvious, while the changes in fresh weight during the daytime
are relatively obvious. The fresh weight tends to decrease in the morning when the sun
suddenly becomes stronger. The fresh weight then rises slowly and gradually recovers.
When the sun is shining brightly at noon, the fresh weight tends to decrease again. The fresh
weight recovers slowly in the afternoon, and it tends to remain stable. The main reason is
that the transpiration during the daytime is obviously higher than that at nighttime [34],
and the lettuce water content changes faster under the high temperatures, strong light,
and low humidity of the daytime. Transpiration is an important indicator for measuring
plant water content [35], and its strength is closely related to the degree of water loss in
plants [36]. Moreover, water absorption through roots is the main way that water content is
maintained in plants [37]. When the water lost by transpiration is higher than that absorbed
by roots, the fresh weight of lettuce shows a downward trend. With the decrease of water
content in a lettuce plant, a larger pull force is created, forcing the root to absorb more water
to maintain normal metabolism and to supplement the water lost through transpiration.
When the rate of water absorption by the roots increases slowly, approaching and exceeding
the rate of water loss by transpiration, the fresh weight decreases slowly, stops gradually,
and begins to increase. Finally, the fresh weight approaches the previous fresh weight
range. During the processes of losing water through transpiration and absorption of water
through the roots, and with the increase of photosynthesis of the lettuce leaves, the content
of organic matter produced by photosynthesis gradually increases in the plant, making
the lettuce larger in volume and allowing more water to be stored in the plant. The fresh
weight of lettuce will then increase.

  
(a) (b) 

Figure 5. Fresh weight growth curves in different weather conditions. (a) On a cloudy day, (b) on a
sunny day.

By comparing the change of fresh weight on a sunny day with that on a cloudy day, it
was found that the variation in fresh weight growth on the sunny day was higher than that
on the cloudy day. This was mainly due to the higher temperatures, stronger illumination,
and lower humidity on the sunny day than on the cloudy day, meaning that the volumes of
water lost through transpiration and absorbed by the roots were greater and the variations
of fresh weight were stronger. There is no sunlight at nighttime and there is little change in
temperature and humidity. The water lost by transpiration and the water absorbed by roots
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is relatively stable. At the same time, compared with a cloudy day, lettuce has a higher level
of photosynthesis and accumulates more organic matter on a sunny day, which enables
lettuce to absorb more water, increasing its fresh weight.

In order to accurately construct the relationship between the environmental factors
and fresh weight growth, the calculation time of cumulative environmental factors and
instantaneous fresh weight of lettuce was set at 8:00 AM.

3.2. Optimum Response Time

It can be seen from Figure 6 that the response relationship between cumulative envi-
ronmental factors and fresh weight growth over different cumulative days was different
during the growth process among different samples in the same batch. With the increase in
the number of cumulative days, the predicted determination coefficient showed a trend of
increase at first. There was an individual decline in this process, but it did not affect the
trend of increase. When the cumulative time reached 12 days, the determination coefficients
for samples 1, 2, and 3 reached maximum values of 97.02%, 95.64%, and 97.06%, followed
by a trend of decrease. In this process, there was an individual increase, but it did not
affect the decreasing trend. The optimum response time of the most significant correlation
between cumulative environmental factors and fresh weight growth among the different
samples in the same batch was 12 days.

 
  

(a) (b) (c) 

Figure 6. The response relationship between cumulative environmental factors and fresh weight
growth among the different samples in the same batch. (a) Sample 1, (b) sample 2, (c) sample 3.

It can be seen from Figure 7 that the response relationship between cumulative environ-
mental factors and fresh weight growth in different cumulative days was different during
the growth process among the different samples in different batches. With the increase of
cumulative days, the determination coefficient showed a trend of gradual increase at first.
In this process, there was a decline in some cases, but it did not affect the trend of increase.
When the determination coefficient reached the maximum value, it began to decrease. In
this process, there was an increase in some cases, but it did not affect the decreasing trend.
In the samples from the first batch, the coefficient of determination reached a maximum
value of 97.57% for 13 cumulative days. The determination coefficient for 12 cumulative
days was 97.29%, which was very close to the maximum value of the determination co-
efficient, and only 0.28% lower. In the samples of the second batch, the determination
coefficient reached a maximum value of 94.14% for 13 cumulative days. The determination
coefficient for 12 cumulative days was 93.47%, which was very close to the maximum value
of the determination coefficient, and only 0.67% lower. In the samples of the third batch,
the determination coefficient reached a maximum value of 97.72% for 10 cumulative days.
The determination coefficient for 11 cumulative days was 97.39%, which was very close to
the maximum value, and only 0.33% lower. The determination coefficient for 12 cumulative
days was 97.09%, which was very close to the maximum value, and only 0.63% lower.
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(a) (b) (c) 

Figure 7. The response relationship between cumulative environmental factors and fresh weight
growth among the samples in different batches. (a) Samples from the first batch, (b) samples from
the second batch, (c) samples from the third batch.

It can be seen in Table 1 that with the increasing number of cumulative days, the aver-
age value of the determination coefficient in the three batches of samples showed a trend
of first increasing and then decreasing. When the cumulative time reached 12 days, the
average of the determination coefficient reached its maximum value of 95.95%, indicating
that the optimum response time of the most significant correlation between cumulative
environmental factors and fresh weight growth among different samples in the different
batches was 12 days.

Table 1. Numerical distribution table of adjacent regions with maximum values of the coefficient of
determination in different batches.

Cumulative
Days

First Batch
Samples

Second Batch
Samples

Third Batch
Samples

Average

10 0.9117 0.7976 0.9772 0.8955
11 0.9122 0.8339 0.9739 0.9067
12 0.9729 0.9347 0.9709 0.9595
13 0.9757 0.9414 0.8866 0.9346

3.3. Using Batch Data to Predict the Dynamic Fresh Weight of Lettuce

It is obvious from Figure 8 that the fresh weight on the next day can be predicted by
using only the data from the current batch (MRE1 = 6.25%, σ1 = 7.05%). The relative error
(Figure 9) of predicting fresh weight using only the data from the current batch fluctuated
greatly at first, and there was one point with a relative error of 40.9%. Subsequently, the
relative error fluctuation began to stabilize. This is mainly because the number of elements
constructed from the data of the current batch was relatively small at the initial stage, and
the accuracy of the model trained by the naive Bayesian network was relatively low. With
the increase of the number of elements in the dataset, the accuracy of the model trained by
the naive Bayesian network gradually improved, and the relative error started to decrease.

It can be seen from Table 2 that only the data from the current batch were used to
predict fresh weight, and the relative error gradually increased with the increasing number
of future days (MRE: 6.25% < 6.50% < 7.88%, σ: 7.05% < 6.76% < 11.17%). The data from
the current batch with the introduction of another batch were used to predict fresh weight,
and the relative error had a tendency to increase with the increasing number of future
days (MRE: 4.86% < 5.57% < 6.50%, σ: 5.77% < 6.04%, 5.77% < 5.78%). The data from
the current batch with the introduction of another two batches were used to predict fresh
weight, and the relative error gradually increased with the increasing number of future days
(MRE: 4.35% < 5.40% < 5.29%, σ: 4.87% < 5.38% < 6.11%).
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n

MRE σ= =

MRE σ= =

MRE σ= =

Figure 8. Prediction of fresh weight on the next day. Note: Predicted value 1 is the value of fresh
weight on the next day predicted using the data of the current batch. Predicted value 2 is the value of
fresh weight on the next day predicted by introducing another batch. Predicted value 3 is the value
of fresh weight on the next day predicted by introducing the data from another 2 batches.

 

n

Figure 9. The relative error of predicting fresh weight using only the data from the current batch.

Table 2. Prediction of fresh weight error over the next 3 days.

Batches

Error Day 1 in the Future Day 2 in the Future Day 3 in the Future

MRE σ MRE σ MRE σ

Current batch 6.25% 7.05% 6.50% 6.76% 7.88% 11.17%
Introducing another batch 4.86% 5.77% 5.57% 6.04% 6.50% 5.78%

Introducing another 2 batches 4.35% 4.87% 5.40% 5.38% 5.29% 6.11%

As shown in Figure 10, the data from the current batch were used to predict the fresh
weight in the future. With the increasing number of future days, the MRE of fresh weight
prediction gradually increased. In other words, the accuracy of predicting fresh weight in
the future gradually decreased, and the MRE of fresh weight prediction over 4 days based
on data from the current batch was not more than 9.57%.
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m0

m0

Figure 10. Comparison chart of the mean relative error of predicted future fresh weight.

Upon introducing another batch of data, the MRE of fresh weight prediction gradually
increased with the increasing number of future days. However, it was lower than that of
the fresh weight predicted using only the data from the current batch, and the MRE of fresh
weight prediction in the next 7 days based on the introduction of another batch of data was
not more than 8.53%, indicating that the accuracy of predicting fresh weight was improved
by introducing another batch.

After introducing the data from another two batches, the MRE of fresh weight pre-
diction tended to increase with increasing number of future days. However, it was lower
than that for the fresh weight predicted using the data with only one additional batch, and
the MRE of fresh weight prediction over 9 days based on the introduction of data from
another two batches was not more than 9.68%, indicating that the accuracy of the fresh
weight prediction could be further improved by introducing more batches.

4. Conclusions and Future Work

A dynamic fresh weight growth prediction model based on phenotypic and environ-
mental batch data was proposed, and was used to predict the dynamic fresh weight growth
of substrate-cultivated lettuce in a solar greenhouse under normal water and fertilizer
conditions. The computation of cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response days were explored
through the most significant correlations between cumulative environmental factors and
fresh weight growth. A dynamic fresh weight prediction model was established using a
naive Bayesian network based on cumulative environmental factors, instantaneous fresh
weight, and fresh weight increments of batches. Experimental results showed that the
calculation time setpoint of cumulative environmental factors and instantaneous fresh
weight of lettuce was 8:00 AM and the optimum response time was 12 days. The MRE of
fresh weight prediction over 4 days based on data from the current batch was not more
than 9.57%; upon introducing another batch of data, the prediction over 7 days dropped
to not more than 8.53% MRE; upon introducing another two batches, the prediction over
9 days dropped to not more than 9.68% MRE, proving the model’s feasibility.

In future work, the proposed dynamic growth prediction model of fresh weight
will be integrated with an automatic management system and sensing data to support
an autonomous fertigation strategy for substrate-cultivated leafy vegetables in a solar
greenhouse system, playing an important role in promoting the automatic cultivation and
management of vegetables in agricultural applications.
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Abstract: To improve the automation, welding efficiency, and welding quality of duckbill welding of
the cotton seeder, this study designed a cotton seeder duckbill welding robot. According to the char-
acteristics of the duckbill weldment and welding requirements, the overall structure of the welding
robot was determined, including the girdle feeding mechanism, static duckbill feeding mechanism,
hinge feeding mechanism, welding fixture, welding actuator, and control system. To realize the
continuous automatic feeding, positioning, fixing, welding, and unloading of the workpiece in the
duckbill welding, the feeding mechanism adopts the method of cooperative cooperation of inductive
proximity switch, electromagnet, and cylinder. The main body of the welding fixture adopts the
pneumatic clamping method; the welding actuator adopts the synchronous belt module electric drive
so that the welding torch can move in a straight line along the X axis and the Z axis. The welding
process of the duckbill was simulated by Simufact Welding software, and the deformation and stress
changes of the weldment were compared and analyzed when the single-sided single welding, the
bilateral symmetrical double welding torch, two welding forms, and two welding process parameters
were used to determine the welding process parameters of the welding robot. The prototype was
made and the welding test was carried out. The test results show that the duckbill welding robot of
the cotton seeder has stable feeding, solid clamping, accurate positioning, and high welding efficiency.
According to the national standard, the appearance of the duckbill weld is inspected. The surface of
the duckbill weld and the heat-affected zone has no cracks, incomplete fusion, slag inclusion, crater,
and porosity. The forming quality of the welded parts is good. The design of the duckbill welding
robot for cotton seeder is helpful in solving the problems of cumbersome positioning and clamping
and low efficiency in manual and semi-automatic duckbill welding robots, which provides a strong
guarantee for the large-scale and standardized welding production of the dibbler duckbill.

Keywords: cotton seeder; duckbill; Simufact Welding; welding robot; automated welding

1. Introduction

The plastic mulching technique is one of the most widely used and effective technical
measures to improve soil water storage capacity and plant water use efficiency [1,2]. At
present, cotton sowing in Xinjiang is based on the method of sowing on film, which is
carried out on the soil covered with the film [3,4]. The duckbilled dibbler is used for sowing
on film in Xinjiang. The duckbill of the dibbler will cut the film at the sowing position
and form holes in the soil. The welding quality of the duckbill of the dibbler is the key to
affecting the quality of the hole and the speed of operation [5].

The number of welded duckbills in Xinjiang is about millions every year. Before 2017,
the welding method of cotton planter duckbill was manual welding. Welding workers
manually position, fix, and weld the three parts of the duckbill, static duckbill, hinge,
and girdle. Manual welding has the following problems: unstable welding quality, low
efficiency, high labor intensity, and low degree of automation. In 2017, we developed a semi-
automatic duckbill welding robot. This semi-automatic welding robot needs to be loaded,
positioned, fixed, and unloaded manually, and the welding operation is completed by the
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robot. The welding robot improves the welding efficiency of the duckbill. The purpose
of this study is to further improve duckbill welding automation, welding efficiency, and
welding quality, as well as reduce the labor intensity of welding duckbills.

There are many ways to improve welding efficiency and welding quality. For example,
on the one hand, some research can be conducted on harmonic drive transmission [6–8].
This method can improve the welding quality by improving the positioning accuracy of
the welding robot manipulator. On the other hand, according to the characteristics of the
welding object and the welding requirements, a special welding robot can be designed
to replace manual welding [9–13]. For example, Süleyman ERSÖZ et al. [14] proposed
a robot system that can automatically complete measurement and welding operations
for products that are difficult to manually complete standard measurement or welding
operations. Namkug Ku et al. [15] designed a self-driving mobile welding robot for double-
hull structures in shipbuilding. Stephen Mulligan et al. [16] developed and demonstrated an
autonomous, mobile welding robot capable of fabricating large-scale customized structures.
Jiang Yi et al. [17] designed a series-parallel-series hybrid structure mobile welding robot
for welding corrugated plates of liquefied natural gas (LNG) membrane tanks. At present,
there is little research on the application of special welding robots in the field of duckbill
welding of the cotton planters.

Different from the traditional plane welding operation, the weld of the duckbill part
is a fillet weld. Its processing technology is complex, the welding workload is large, and
the weld is prone to defects [18]. The traditional welding process relies on experience
to determine the amount of deformation, the reasonable welding method, and welding
process parameters, which rely on experience and cannot fully and quantitatively grasp
the law of welding deformation. With the development of finite element technology, the
welding simulation is fully applied to the actual production and used to guide the process
design and gradually became an effective means to provide technical support for the control
of process measures in the welding robot manufacturing process [19–22].

To design a duckbill welding robot to improve the welding quality, stability, and
welding efficiency of the duckbill parts of the cotton seeder, this study first analyzes the
characteristics of the duckbill parts and then uses Simufact Welding software to simulate
and analyze the duckbill welding process, which effectively provides technical support
for the welding deformation control process measures of the duckbill welding robot in
the manufacturing process. Finally, a cotton seeder duckbill welding robot is designed,
and the reliability of the welding robot is verified by the welding test. The research results
provide ideas for further improving the quick automatic feeding, clamping, positioning,
and welding of the duckbill of the dibbler, as well as provide basic and technical support
for the automatic welding of the duckbill of the dibbler.

2. Welding Object Characteristics

2.1. Assembly Structure of Duckbill Welding Parts

The assembly relationship diagram of duckbill welding parts is shown in Figure 1.
The dibbler is one of the key components of the cotton mulching seeder, which is used to
complete the seeding process. Sowing quality has a significant impact on crop growth and
yield [23,24]. The duckbill part cuts the film at the seeding position during the seeding
operation and forms holes in the soil. The duckbill is welded by three parts: the static
duckbill, hinge, and girdle. The welding quality has a very important influence on the
hole-forming effect of the dibbler and the seed falling position.
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Figure 1. The assembly relationship diagram of duckbill welding parts.

2.2. Material Properties of Duckbill Welding Parts

As shown in Figure 2, the duckbill of a cotton seeder is composed of a girdle, static
duckbill, and hinge, and its structural parameters are shown in Table 1. The material
of duckbill parts is Q235, which is an ordinary carbon structural steel. The chemical
composition and mechanical properties are shown in Table 2. Q235 has low carbon and
alloy element content and excellent welding performance. Generally, special process
measures, such as preheating and post-weld heat treatment, are not required during
welding. However, when the incorrect welding form is adopted, the appearance of the
weld will also appear poor, forming cracks.

 
Figure 2. Physical drawing of the duckbill welding parts of the cotton seeder.

Table 1. Structural parameters of duckbill welding parts.

Parts Length (mm) Width (mm) Thickness (mm) Height (mm) Mass (g)

Girdle 78.12 68.30 2.11 5.90 73.046
Static duck bill 34.09 27.52 2.57 74.97 77.747

Hinge 69.02 36.11 2.08 7.97 39.281

Table 2. Material properties of Q235.

C (Mass Fraction)/% Mn Si S P

0.14~0.19 0.30~0.65 0.30 ≤0.050 ≤0.045
Tensile strength (MPa) Yield point (MPa) Elongation (%)

375~500 235 26
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2.3. Weld and Welding Requirements Analysis

As shown in Figure 3, the weld of the duckbill welding part is two fillet welds, which
are: weld 1 formed by the static duckbill and the hinge and girdle, and weld 2 formed on
another back symmetrical surface.

Figure 3. The weld diagram of duckbill welding parts.

An inappropriate welding process will increase the deformation of duckbill welding,
resulting in the following problems: (1) the girdle and seeding wheel being difficult to
assemble; (2) the following performance being affected; and (3) the quality of the hole being
unstable. Duckbill parts in the process of sowing operation need to film soil punching and
work under great pressure. The duckbill parts of the welding quality requirements are very
high, including the ability to weld duckbill weld surface without cracks, crater shrinkage,
and welding tumor defects.

3. Simulation and Analysis of the Welding Process

Welding deformation is the most important factor affecting welding quality. Welding
deformation will lead to a manufacturing delay, economic cost, and reduced productivity.
Excessive deformation may seriously damage manufacturing in extreme cases, leading to
failure [25]. At the same time, high welding residual stresses in the weld can adversely
affect the safety and performance of welded components [26,27]. In this study, Simufact
Welding software is used to simulate the welding process of duckbill welding parts, and the
influence of deformation and the stress of weldments under a single-sided single welding
torch and bilateral symmetrical double welding torch, two welding forms, and two welding
process parameters, is analyzed.

3.1. Heat Source Model

In welding simulation, a reasonable heat source model is very important for the
accurate calculation of post-weld deformation and welding stress [28]. To realize the
simulation calculation, the commonly used heat source models are the classical Gaussian
distribution heat source model and the double ellipsoid heat source model [29,30]. The
Gaussian model can obtain better calculation accuracy for planar high-energy beam welds
in simulation calculations. The double ellipsoid heat source model is more close to the
actual welding situation of a fillet weld, so this study chooses the double ellipsoid heat
source model for calculation.

The heat flux density expression of the front part of the double ellipsoid heat source is:

q f (x, y, z) =
6
√

3 ftq0

abc f π
√

π
exp(−3x2

c2
f
− 3y2

a2 − 3z2

b2 ). (1)
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The heat flux distribution expression of the second half of the double ellipsoid heat
source is:

qb(x, y, z) =
6
√

3 ftq0

abcbπ
√

π
exp(−3x2

c2
b

− 3y2

a2 − 3z2

b2 ). (2)

In the formula: a, b, cf, and cb are oval shape parameters of the heat source; q0 is the
heat input power, and q0 = ηUI; and ff, fb are the heat flux distribution coefficients of the
ellipsoid before and after the heat source, ff + fb = 2.

3.2. Establishment of Welding Model

The solid model of duckbill welded parts was established by SolidWorks, and then
the model was imported into Hypermesh for hexahedral meshing. The number of finite
element mesh nodes was 37,394, and the number of finite elements was 27,997. The divided
model was imported into Simufact Welding for assembly and configuration, as shown in
Figure 4. In this study, the weldment material is Q235, and the energy input per unit length
of the weld (line energy) is calculated according to Equation (3).

Q = η
IU
v

(3)

Figure 4. Meshing model of duckbill welding parts.

In the formula: Q is the line energy; I is the welding current; U is the welding voltage;
v is the welding speed; and η is the welding thermal efficiency. As the weld of duckbill
weldment is fillet weld, the welding heat is relatively concentrated. In this study, the
welding thermal efficiency is taken as 0.8 in the simulation process [31].

3.3. Welding Simulation Results and Analysis
3.3.1. Effect of the Unilateral Single Welding Torch and Bilateral Symmetrical Double
Welding Torch on Welding Deformation and Stress

Figure 5 shows the deformation of the duckbill welding parts under the single welding
torch and the bilateral symmetrical double welding torch. By comparing and analyzing
their total displacement cloud diagrams, the following conclusions were obtained: The area
of deformation was larger under the condition of the single welding torch. This is because
the two sides of the workpiece are uniformly heated and uniformly contracted at the same
time by using the bilateral symmetrical double welding torch to reduce the distribution of
welding deformation. The maximum displacement difference under the two conditions is
0.09 mm.
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(a) (b) 

Figure 5. Total displacement diagram of the single welding torch and bilateral symmetrical double
welding torch. (a) Single welding torch; (b) bilateral symmetrical double welding torch.

Figure 6 shows the equivalent stress diagram under the condition of the single welding
torch and the bilateral symmetrical double welding torch. It can be seen from the figure
that under the two conditions, the equivalent stress decreases rapidly from the center of
the weld generation area, and then tends to be gentle until it is close to zero. A large stress
is generated in the weld zone, which is one of the main reasons for the deformation of the
static duckbill. After welding, the weldment is cooling, and the volume shrinkage around
the weld is caused by the decrease in temperature. However, the weldment is constrained
to prevent its shrinkage, so large tensile stress is generated in the weld area. Under both
conditions, the maximum stress difference produced by the duckbill component is 7.28 MPa,
but welding a duckbill component with a single torch takes more time than with a bilateral
symmetrical double torch. Therefore, this study finally chose the welding method of the
bilateral symmetrical double welding torch.

 
(a) (b) 

Figure 6. Equivalent stress diagram under the condition of the single welding torch and bilateral
symmetrical double welding torch. (a) Single welding torch; (b) bilateral symmetrical double
welding torch.

3.3.2. Effect of Welding Form on Welding Deformation and Stress

Figure 7, respectively, shows the use of continuous welding and spot welding under
the two forms of total displacement cloud. From Figure 7, it can be seen that the displace-
ment areas of the two were mainly distributed at the top of the static duckbill, and the
deformation of the rest was relatively small. This is because the deformation of the fixed
part is smaller than that of the free part. The position and deformation of the fixed part
will be greatly limited under the action of the clamping device, so the thermal deformation
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is reduced during the welding cycle. The maximum displacement of continuous welding
is 0.98 mm, and that of spot welding is 0.26 mm. This is because in the weld, continuous
welding, compared to spot welding, outputs greater thermal energy.

 
(a) (b) 

Figure 7. Total displacement diagram under continuous welding and spot welding conditions.
(a) Continuous welding; (b) spot welding.

Figure 8 is the equivalent stress diagram of continuous welding and spot welding. It
can be seen from Figure 8 that the stress distribution of spot welding is smaller than that
of continuous welding, and the difference in their maximum stress value is 121.89 MPa.
Their stress distribution is similar, the stress distribution appears to diffuse from the weld
to the distance and then weaken, but it is obvious that the stress distribution of continuous
welding is wider and wider. This study finally chose the welding form of spot welding.

 
(a) (b) 

Figure 8. Equivalent stress diagram under continuous welding and spot welding. (a) Continuous
welding; (b) spot welding.

3.3.3. Effect of Welding Process Parameters on Welding Deformation and Stress

Figure 9 is the total displacement diagram of the duckbill welded parts when the
welding speed is 4 mm/s and 10 mm/s. It can be seen from the figure that the total
displacement difference between the two welding speeds is 0.13 mm, but at the welding
speed of 4 mm/s, the deformation area is relatively larger. This is because the deposition
amount of the wire metal on the unit-length weld is inversely proportional to the welding
speed, and the melting width is inversely proportional to the square of the welding speed.
Therefore, when the welding speed increases, the energy decreases, the penetration depth
and width decrease, and the deformation area is relatively reduced.
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(a) (b) 

Figure 9. Total displacement diagram at the welding speed of 4 mm/s and 10 mm/s; (a) 4 mm/s;
(b) 10 mm/s.

Figure 10 is the equivalent stress diagram under the two welding speeds of 4mm/s
and 10 mm/s. As can be seen from the figure: 4 mm/s welding speed under the maximum
equivalent stress is larger and the equivalent stress of a wider range of areas. Welding
speed is directly related to the size of the welding productivity, and to obtain the maximum
welding speed, should be on the premise of quality assurance as far as possible, according
to the specific circumstances of the appropriate adjustment of welding speed, to ensure
that the weld height and width are the same. In this study, the welding speed is finally
selected as 10 mm/s.

 
(a) (b) 

Figure 10. Equivalent stress diagram at the welding speed of 4 mm/s and 10 mm/s; (a) 4 mm/s;
(b) 10 mm/s.

4. Design of Duckbill Welding Robot for Cotton Seeder

4.1. Structure Composition and Working Principle

The duckbill welding robot of the cotton planter is mainly composed of a girdle
feeding mechanism, static duckbill feeding mechanism, hinge feeding mechanism, support
table, welding fixture, welding actuator, and control system, as shown in Figure 11.

Working process: Firstly, the girdle feeding mechanism completes the girdle feeding,
and then the hinge and the static duckbill feeding structure completes the feeding work
in turn. After the three welding parts of the girdle, the hinge, and the static duckbill are
all loaded, the workpiece enters the position to be welded, the clamping cylinder works
to clamp the workpiece, and the welding actuator moves and performs welding. After
the welding is completed, the welding platform is opened, and the weldment falls to
the ground.
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Figure 11. Structure diagram of duckbill welding robot for cotton seeder. 1. Girdle feeding mech-
anism; 2. static duckbill feeding mechanism; 3. hinge feeding mechanism; 4. support platform;
5. welding fixture; 6. welding actuator.

4.2. Design of Girdle Feeding Mechanism

According to the analysis of the assembly requirements of the duckbill parts, the
feeding mechanism needs to meet the following requirements: (1) the hinge and the girdle
should be vertical; (2) the static duckbill and the hinge are symmetrically distributed in
the transverse center when they are matched with the girdle; (3) the static duckbill should
avoid shielding girdle under the mouth. According to the above assembly requirements
and the structural parameters of duckbill welding parts, the feeding structure is designed.
The feeding mechanism realizes the sequential feeding action of welded parts through the
cooperation of an inductive proximity switch, electromagnet, and cylinder.

The structure size of the girdle feeding mechanism is 800 mm × 68 mm × 22 mm. It
adopts a modular design and is installed on the support platform through the aluminum
profile pillar. The working process is as follows: When the inductive proximity switch
detects that there is a girdle in the storage chute, the electromagnet is energized and absorbs
the second girdle, and the cylinder shrinks. The first girdle falls freely to the girdle waiting
area due to gravity, and finally, the mini cylinder pushes the girdle into the welding area.
The girdle feeding mechanism is shown in Figure 12.

 
Figure 12. Structure diagram of the girdle feeding mechanism. 1. Welding area; 2. girdle blanking
waiting for area; 3. cylinder; 4. inductive proximity switch; 5. electromagnet; 6. storage chute;
7. girdle; 8. mini cylinder.
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4.3. Design of Static Duckbill and Hinge Feeding Mechanism

To save space, the static duckbill feeding mechanism and the hinge feeding mechanism
adopt an integrated design, and the assembly relationship of the parts is shown in Figure 13.
The static duckbill and the hinge feeding mechanism are equipped with fixed plates to fix
inductive proximity switches, electromagnets, and cylinders.

 
Figure 13. Structure diagram of static duckbill and hinge feeding mechanism. 1. Block cover;
2. cylinder; 3. inductive proximity switch; 4. electromagnet; 5. static duckbill; 6. arc feeding plate;
7. girdle; 8. connecting plate; 9. storage chute; 10. fixed plate 2.

The width of the storage chute of the hinge feeding mechanism is bent according to
the dimensions of the hinge, and the bending angle is 90◦. To ensure that the hinge is
perpendicular to the girdle during blanking, the lower end of the storage chute adopts a
circular arc design, and its arc inner diameter is 100 mm. To prevent the hinge from sliding
out of the arc guide rail when feeding, the guide bars are symmetrically distributed on both
sides to guide and limit displacement. The verticality of the hinge is ensured by limiting
the outer side of the guide bar and the arc guide rail. The guide bar is shown in the partially
enlarged section view in Figure 13.

The main component of the static duckbill feeding mechanism is an arc feeding plate,
and the arc feeding plate is connected with the hinge storage chute through a connecting
plate. When the static duckbill is feeding, the contact with the feeding plate is strip contact,
and the contact area is small, which greatly reduces the friction when sliding. When
sliding, the static duckbill slides along the outer edge of the arc feeding plate. To prevent
it from sliding out directly at the outer arc position, a block cover is placed at the lug of
the hinge storage chute. The feeding accuracy of the static duckbill will directly affect the
welding quality. Therefore, there are multiple through holes on the arc feeding plate and
the connection plate, respectively, and the porous coordination ensures structural stability.
The static duckbill and hinge feeding mechanism structure diagram is shown in Figure 13.

4.4. Design of Welding Fixture

As shown in Figure 14, the welding fixture is mainly composed of three parts: girdle
clamping mechanism, hinge clamping mechanism, and static duckbill clamping mechanism.
The girdle clamping device is positioned by a limit block and clamped by a girdle pusher.
The girdle first slides down from the girdle storage chute to the girdle waiting area, and
the girdle push plate sticks out. According to the four-point positioning principle, the
transverse and longitudinal positioning and clamping of the girdle are completed.
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Figure 14. Structure diagram of welding fixture. 1. Limit block; 2. limit block; 3. limit block;
4. welding workbench; 5. static duckbill clamping device; 6. girdle push plate; 7. static duckbill;
8. hinge; 9. hinge clamping device; 10. girdle; 11. limit block.

The hinge clamping mechanism is composed of a guide bar and a hinge push plate.
The guide bar is close to the side wall of the storage chute, symmetrically distributed on
both sides, and plays a guiding and limiting role to the hinge. The guide bar is shown
in the partially enlarged section of Figure 13. After the hinge is loaded onto the welding
platform, the hinge is pushed out to complete the positioning of the hinge.

The static duckbill clamping mechanism is mainly composed of a cylinder and clamp
push plate. The arc feeding plate supports and guides the static duckbill. After the static
duckbill slides down to the welding workbench, the clamp push plate is pushed out to
complete the horizontal and vertical positioning of the static duckbill.

The bottom of the welding workbench is composed of two welding bottom plates and
two cylinders. The welding workbench can open and close under the action of the cylinder.

4.5. Welding Actuator

The schematic diagram of the welding actuator is shown in Figure 15. The welding
actuator can move back and forth in a straight line along the X axis and Z axis. The stroke
in the X axis direction is 100~150 mm, and the stroke in the Z axis direction is 150~200 mm.
The double welding torch is symmetrically distributed on the welding torch bracket of the
X axis linear slider. The movement of the X axis and Z axis is completed by the stepper
motor electric drive synchronous belt module, and the movement speed is controlled by
Siemens S7-1200PLC and the stepper motor driver. The Z axis selection has a brake stepper
motor, which is locked when power fails, to prevent sliding.

Figure 15. Welding actuator structure diagram. 1. Welding torch; 2. welding torch bracket; 3. X axis
linear slider; 4. Z axis linear slider.

4.6. Control System Design

The cotton seeder duckbill welding robot controller is the Siemens S7-1200PLC. The
communication between PLC and human–machine interaction (HMI) is Ethernet. PLC
realizes manual and automatic control of the girdle, static duckbill, and hinge feeding
operation. It also controls welding parameters, fixtures, welding actuators, and welding
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platforms. HMI enables manual and automatic program switching of welding robots and
monitors the working conditions of welding robots to ensure the safe and smooth operation
of welding operations. The control system flow chart is shown in Figure 16.

 
Figure 16. Control system flow chart.

5. Results and Discussion

5.1. Cotton Seeder Duckbill Welding Robot Test Results and Analysis

The welding wire used in the welding test is a 1.2 mm diameter solid wire (JQ·MG50-6;
Tianjin Golden Bridge Welding Materials Group Co., Ltd., Tianjin, China), the protective
gas is a mixture of CO2 and argon gas, and the cotton planter duckbill welding robot was
tested. The welding process parameters used in the test are shown in Table 3. The cotton
seeder duckbill welding robot is shown in Figure 17.

Table 3. Welding process parameters.

Welding Current
(A)

Welding Voltage
(V)

Welding Speed
(mm s)

38 26 10

 
Figure 17. Cotton seeder duckbill welding robot.
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The cotton seeder duckbill welding robot factory test photo is shown in Figure 18. The
Human Machine Interface (HMI) of the cotton seeder duckbill welding robot is shown
in Figure 19. According to the national standard DL/T 868-2004 welding procedure
qualification procedure [32], the appearance of the weld after duck beak welding is analyzed.
It can be seen from Figure 20 that there are no defects such as unmelted, porosity, and
undercutting on the weld surface, and the welding quality is good. After testing, the
welding efficiency of the cotton seeder duckbill welding robot is 6–7 times faster than that
of the manual, and 600–800 duckbills can be welded per hour. The weld is well-formed.
The welding pass rate is 85%, which can meet the needs of practical engineering. The
development of the cotton seeder duckbill welding robot will greatly improve the welding
efficiency of the duckbill parts and promote the large-scale and standardized production of
the duckbill of the cotton seeder. The forming of welding parts is shown in Figure 20. The
cotton seeder duckbill welding robot performance comparison is shown in Table 4.

  
(a) (b) 

Figure 18. Factory test of cotton seeder duckbill welding robot. (a) Welding test site; (b) welding test
in progress.

 

Figure 19. HMI.

 

Figure 20. Welding forming of duckbill parts.
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Table 4. The cotton seeder duckbill welding robot performance comparison.

Assessment Indicators

Welding Method Welding Duckbill Efficiency
(Piece/h)

Welding Qualification Rate

Manual welding 100–130 99%
Semi-automatic duckbill welding equipment 200–300 100%

Cotton seeder duckbill welding robot 600–800 85%

5.2. Discussion

In this paper, a duckbill welding robot for cotton seeder is designed, including the
mechanical structure and control system of the welding robot. The efficiency of a cotton
seeder duckbill welding robot was greatly improved compared with manual work and semi-
automatic welding robots, but there is still unqualified welding in the duckbill welding test.
The main reason for this phenomenon is that there are some errors in the manufacturing
and assembly of the parts of the duckbill welding robot for the cotton seeder. Mechanical
vibration will occur during the operation, which will affect the accuracy of welding parts
and the accuracy of welding gun welding. In the follow-up study, improving the welding
robot parts manufacturing and assembly accuracy, and further optimizing the structure,
will improve the welding robot welding qualification rate.

6. Conclusions

In this study, the characteristics of the duckbill parts were analyzed first, and then the
welding process of the duckbill parts was simulated by Simufact Welding software. The
whole process of welding was observed intuitively. At the same time, the deformation and
stress changes of the weldment were compared and analyzed when the unilateral single
welding torch and the bilateral symmetrical double welding torch, two welding forms, and
two welding process parameters, were used. On this basis, a kind of cotton seeder duckbill
welding robot was designed, and the welding test was carried out. The results show that
the cotton seeder duckbill welding robot has high welding efficiency and good forming
quality of welded parts. The design of the cotton seeder duckbill welding robot greatly
improves the welding efficiency of the duckbill, which helps to solve the problems of low
welding efficiency and unstable welding quality in manual welding and semi-automatic
welding robots, and provides a strong guarantee for large-scale and standardized welding
production of the duckbill.
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Abstract: The detection of poultry egg microcracks based on electrical characteristic models is a new
and effective method. However, due to the disorder, mutation, nonlinear, time discontinuity, and
other factors of the current data, detection algorithms such as support-vector machines (SVM) and
random forest (RF) under traditional statistical characteristics cannot identify subtle defects. The
detection system voltage is set to 1500 V in the existing method, and higher voltages may cause
damage to the hatched eggs; therefore, how to reduce the voltage is also a focus of research. In
this paper, to address the problem of the low signal-to-noise ratio of microcracks in current signals,
a wavelet scattering transform capable of extracting translation-invariant and small deformation-
stable features is proposed to extract multi-scale high-frequency feature vectors. In view of the
time series and low feature scale of current signals, various convolutional networks, such as a
one-dimensional convolutional neural network (1DCNN), long short-term memory (LSTM), bi-
directional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU) are adopted. The
detection algorithm of the wavelet scattering convolutional network is implemented for electrical
sensing signals. The experimental results show that compared with previous works, the accuracy,
precision, recall, F1-score, and Matthews correlation coefficient of the proposed wavelet scattering
convolutional network on microcrack datasets smaller than 3 μm at a voltage of 1000 V are 99.4393%,
99.2523%, 99.6226%, 99.4357%, and 98.8819%, respectively, with an average increase of 2.0561%. In
addition, the promotability and validity of the proposed detection algorithm were verified on a
class-imbalanced dataset and a duck egg dataset. Based on the good results of the above experiments,
further experiments were conducted with different voltages. The new feature extraction and detection
method reduces the sensing voltage from 1500 V to 500 V, which allows for achieving higher detection
accuracy with a lower signal-to-noise ratio, significantly reducing the risk of high voltage damage to
hatching eggs and meeting the requirements for crack detection.

Keywords: nondestructive detection; poultry eggs; wavelet scattering convolutional network;
microcurrent signal analysis; egg’s electrical characteristic model

1. Introduction

Eggs are one of the best sources of nutrition for human beings and are known as the
best protein food. To ensure the quality of eggs, cracked eggs produced in packaging,
processing, transportation, and other links should be eliminated. Cracks in eggs will not
only lead to a reduction of freshness but also breed bacteria and do harm to health [1,2].
The quality and safety of eggs is a matter of concern to the public, so the detection of egg
cracks is a necessary operation before the eggs enter the market for consumption. Manual
detection is high-cost, low-efficiency, and depends on detection experience. After a long
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period of operation, the probability of missing cracks and false detection increases due to
visual fatigue. This can also cause some damage to the operators’ vision [3]. With the con-
tinuous development of industrialization and informatization, people are trying to find an
automatic detection method to reduce the labor intensity of this task while simultaneously
improving efficiency and accuracy.

Numerous techniques for egg crack detection have been put forth by researchers and
academics, of which acoustic [4–7] and visual [8–11] methods are the most well-known and
established. Crack detection based on acoustic characteristics is realized by collecting knock
response signals with sound sensors after mechanical excitation on several parts of the egg
surface, analyzing and processing the signal differences between the intact area and the
cracked area of the egg surface, and finally extracting characteristic parameters. However,
its accuracy easily suffers from interference by eggshell thickness, external noise, and the
knock location. The detection of cracks in poultry eggs based on visual characteristics
involves taking pictures of the surface of poultry eggs with an industrial camera and
transmitting the images to supporting software. By analyzing the images, the software
can identify the characteristics of cracked and intact eggs and then construct a model
for discrimination. Nevertheless, many simple factors must be considered in practice,
such as the camera’s resolution, the recognition algorithm, and the shape of the egg crack.
Additionally, the online detection speed and accuracy for microcracks cannot meet today’s
requirements. Hence, significant limitations remain on industrial sites.

The detection method based on high-voltage discharge has a good ability to detect
leakage. Hu [12] proposed a “conductivity method” for ampoule bottle detection, applying
a 3000 V∼5000 V direct current(DC) on the tested drug bottle and judging the leakage of
the test sample by setting the threshold value of the measured current. Yan et al. [13] used
20 kHz of high voltage to carry out their experiment and finally verified the feasibility
of high-voltage discharge for the detection of small leaks of large infusion plastic bottles.
The micro-current high-voltage discharge method is similar to the traditional high-voltage
discharge method. It requires that the package itself is not conductive and the contents are
conductive, creating a difference between the electrical parameters of a defect-free package
and a defective package. The micro-current high-voltage discharge method can also be
used to detect tiny cracks or damages to sealed packaging in the food industry. With the
further deepening of the basic theoretical research on the dielectric properties of eggs, egg
crack detection based on electrical properties will become our research direction.

Recent research shows that detecting cracked eggs using the response model of egg
electrical characteristics can effectively compensate for the shortcomings of the above
methods [14]. Figure 1 illustrates how the electrical characteristic model can be used to
detect egg cracks. The capacitors include the two electrodes and the egg in the center, and
the eggshell is the insulator. Due to its low resistance value, the egg liquid is approximately
the conductor. The current value detected is either a capacitance jump, a breakdown, or a
combination of both. When the egg is intact, the whole system is in equilibrium, and the
current value will remain stable . When the egg has a crack, the electrical characteristic
model will change when the electrode passes through the crack, resulting in a transient
current. Therefore, if the voltage of the two electrodes is kept constant and only the
breakdown of the air medium is allowed, it is possible to identify cracked eggs based on
the change in the current signal. Traditional machine learning methods have been used
to classify the current signals, and the accuracy of detecting eggs with microcracks less
than 3 μm compared to intact eggs was found to be 99%. Relevant experiments also prove
that the proposed method has a certain universality and versatility. However, it has three
shortcomings. In terms of the experimental device, the electrode position is fixed, which
can easily cause the egg size to not fit with the upper electrode, thus causing errors in
detection. In signal analysis, the extracted features are inadequate to allow capturing the
details and changes of cracked eggs in the current signal, so further study of the feature
extraction method of the current signal is necessary. A further area of research is how to
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reduce the 1500 V voltage used in the experiments because it is too high and might harm
the unhatched eggs.

Therefore, this research aimed to propose an accurate and effective nondestructive
method based on the electrical characteristics of eggs to detect cracks in poultry eggs in the
industrial field on the basis of existing experiments [14]. The main objectives of the study
are as follows:

• To modify the experimental device so that the electrode fits the egg to avoid missed or
wrong detection due to data acquisition;

• To adjust the analysis algorithm, to analyze the characteristics of the microcurrent
signal, and to design a feature extraction and classification algorithm that is effective
for the current signal;

• To investigate how to reduce the voltage while maintaining detection accuracy and
reducing the damage caused by high voltage to unhatched eggs.

Figure 1. Schematic diagram of capacitor system composed of electrode and egg body in poultry
egg crack detection method based on egg electrical characteristic model [14]. d1 and d2 represent the
thickness of the upper and lower layers of the eggshell; ε l represents the dielectric constant of egg
liquid; and εr represents the relative dielectric constant, which represents the dielectric or polarization
physical parameter of the dielectric material.

Employing wavelet scattering transform, Jinghui Li et al. [15] stratified and dispersed
the information of a heart sound signal to each layer so that the information would not
be lost and maintained the stability of signal features, which effectively expressed the
corresponding characteristic information of the signal. Then they obtained the charac-
teristic matrix of the signal , which was input into a double support-vector machine for
classification, yielding excellent results. Ahmad A. Al-Taee et al. [16] used deep wavelet
scattering transform as a feature extraction method for electromyographic signals and
compared it with other wavelet methods, significantly improving the performance of elec-
tromyographic pattern recognition. Liu Hui et al. [17] adopted a wavelet scattering network
to extract the features of the fault zero sequence current signal. Academics have found
that wavelet scattering transform can extract both simple and complex characteristics from
low-frequency and high-frequency signals, respectively, and thus can reduce intra-class
differences to the greatest extent while preserving inter-class differentiation. The fault
feature vector is input into bi-directional LSTM, which has the advantages of high identifi-
cation accuracy and short training time compared with the fault identification methods in
other literature. In addition, wavelet scattering convolutional neural networks have been
widely used in sound, image , and time series fields due to their superior performance and
perfect mathematical properties, and some achievements have been made [18–21]. To our

293



Agriculture 2023, 13, 730

knowledge, no researchers have applied appropriate research methods and ideas to detect
microcurrent signals in eggs.

In recent years, deep learning has been rapidly developed. Because of its advantages
of automatic feature extraction, ability to process unstructured data, and high accuracy, it
has been widely used and studied in industrial defect detection. Yu et al. [22] combined
convolutional neural networks(CNN), migration learning, and decision-level images to
propose a vision-based automatic recognition method for the identification of the surface
condition of concrete structures and designed an improved Dempster–Shafer (D-S) algo-
rithm, which greatly improved the recognition accuracy of concrete structures. Yu et al. [23]
used the improved bird swarm algorithm to optimize a 2DCNN, which performed better
than other machine learning models in the evaluation of the torsional capacity of rein-
forced concrete (RC) beams. Deep learning has also shown strong performance in the
processing of one-dimensional(1D) data. Hu et al. [24] designed a fault diagnosis method
based on a one-dimensional convolutional neural network (1DCNN) and L2-support-vector
machine(L2-SVM) for unbalanced data, which, compared with other intelligent methods,
significantly improved the recognition accuracy and diagnostic performance of the model
compared with other intelligent methods in processing unbalanced data. Le et al. [25]
developed a 1DCNN for automated fault diagnosis, which can autonomously learn damage-
sensitive features without pre-processing and can accurately diagnose potential faults that
damage the smart chain. Relevant research [26–28] also shows that deep learning exhibits
good performance in processing time series classifications.

Therefore, this study focuses on applying wavelet scattering on poultry eggs based on
real-time electrical characteristics. The main innovations and contributions of this research
can be summarized as follows:

• In order to solve the problem of missing detection caused by the lack of fit between the
egg and the electrode due to the fixed position of the upper electrode, we improved
the micro-crack detection system based on discharge analysis . We added a size
identification device so that the upper electrode position can be automatically moved
and fitted according to the size of the egg.

• Given the problem that the extracted features are inadequate to capture the details
and changes in a cracked egg in the current signal, we applied the wavelet scattering
transform to obtain the features of the micro-current signal. Using deep learning
methods, we classified the features extracted and attained satisfactory results with
local translation invariance and elastic deformation stability.

• The proposed and existing methods’ effects were compared and analyzed. The class-
imbalanced dataset and duck egg dataset were used to verify the versatility and
effectiveness of the proposed method. Finally, the experiments with different voltage
effects were conducted to verify that the proposed method can obtain higher accuracy
on data with a low signal-to-noise ratio while reducing the sensing voltage and further
reducing the risk of damage to unhatched eggs caused by high voltages.

The remaining chapters are organized as follows. Section 2 introduces the deployment
of experimental equipment and the method of microcurrent signal analysis. In Section 3,
we compare and analyze the experimental results to verify the effectiveness of the proposed
method. Finally, the whole paper is summarized and the future research on egg crack
detection is prospected in Section 4.

2. Materials and Methods

2.1. Egg Electrical Characteristic Crack Detection System

In this study, a crack detection system for poultry eggs based on real-time electrical
characteristics was developed. As shown in Figure 2a, the system is mainly composed of
four parts: a data acquisition platform, a high-voltage power supply, a controller, and a
computer processing system. The data acquisition platform includes a visual detection part
and a discharge detection part. The visual detection part is used to detect the size of eggs
and control the automatic electrode adjustment mechanism. The discharge detection part
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comprises a rotating mechanism, a discharge electrode, an automatic electrode regulating
mechanism, etc. The rotating mechanism ensures that eggs of different sizes can rotate
flexibly and uniformly. The automatic electrode regulating mechanism adjusts up and
down according to the data from the visual detection part to provide stable and reliable
surface contact, as shown in Figure 2b. Through preliminary experiments and debugging,
conductive silica gel was used as the electrode material for crack detection under a voltage
of 1000 V, average humidity of 40% , and an average temperature of 18.5 °C. In this
experiment, the current value is strictly controlled, and the automatic protection mechanism
is triggered when the current exceeds 1 mA so that no damage will be caused to the eggs. In
this study, the microcurrent signal obtained from an egg under the electrical characteristic
crack detection system was used to evaluate and detect egg cracks. The detection and
collection frequency of the detection system was set at 100 Hz, the collection time was 4.5 s,
and the data length was 450 points. The data of egg rotation were collected 2.5 times in a
single time, and one datum was collected for each egg.

(a) (b)

Figure 2. Discharge principle and experimental setup. (a) Schematic diagram of poultry egg crack
detection system based on real-time electrical characteristics. (b) The nondestructive detecting device
based on electrical characteristics of eggs used in this paper.

After the eggs are subjected to the application of a DC voltage, the data acquisition card
acquires the micro-current signal from 450 sample points on the eggs. Three representative
egg samples are selected for analysis, as shown in Figure 3a–c, which are examples of
cracked egg samples, minimally cracked egg samples, and intact egg samples, respectively.
Figure 3d shows a micro-current detection signal of the cracked egg sample in Figure 3a.
When the electrode is swept to the crack location, a strong current response is generated,
and the sample shows a sudden rise in a steady microcurrent signal. Figure 3f shows the
microcurrent detection signal of the intact egg sample, which does not produce a strong
current reaction under DC voltage. There is no special change in the whole rotation process,
and the sample is very stable. The existing classification algorithm based on the electrical
characteristic signals of eggs can have a good classification effect on the above samples.
However, for some extremely tiny cracks, such as thsoe in Figure 3c, a microcurrent signal
is used, as shown in Figure 3e. The strong current response is small, and the performance
is similar to that of intact egg samples. Currently, the existing classification algorithms
based on the electrical signal characteristics of eggs struggle to distinguish those extremely
small cracks.
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(a) (b) (c)

(d) (e) (f)
Figure 3. Comparison of current signal changes between cracked and intact eggs, where the abscissa
is the sampling point, and the ordinate is the microcurrent. (a) A cracked egg sample. (b) An
indistinguishable cracked egg sample. (c) An intact egg sample. (d) Micro-current signal of sample (a).
(e) Micro-current signal of sample (b). (f) Micro-current signal of sample (c).

In order to verify the accuracy of the results, each experiment was executed multiple
times. In each experiment, the training set and test set used by different methods remained
the same. We randomly selected 70% of the sample data as the training set and the
remaining 30% as the testing set for scattering feature extraction and then input these data
to the deep learning network for classification for different experiments.

2.2. Detection Framework

The framework of the current crack detection algorithm based on the egg electrical
characteristics model is shown in part A of Figure 4. The time, frequency , and wavelet
domain features were manually extracted, and the traditional machine learning algorithm
was used for classification [14]. The features extracted by such methods are fixed, making
it challenging to capture multi-scale features and, therefore, easy to overlook feature
variations in detail. At the same time, traditional machine learning algorithms have
low compatibility with feature dimensions and high dependence on features, leading to
limitations in classification. Considering this situation, this paper investigates the feature
extraction and classification of current signals separately, using wavelet scattering transform
in conjunction with deep learning methods for experiments.Part Proposed of Figure 4
illustrates the algorithm framework based on the wavelet scattering convolution network
used in this paper. In the feature extraction part, we used the wavelet scattering transform
to extract the features of the current signal, which has the properties and advantages of
translation invariance and local deformation stability and does not require a manual design
to extract features from the signal. It is immune to translational and slight deformation
information and discards the parts of the signal sensitive to translation and deformation
while obtaining high-frequency information. The classification part was analyzed using
deep learning methods, which have the advantages of high learning ability, portability,
and compatibility with feature dimensions compared to traditional methods. In this paper,
we tried different deep-learning methods to study the algorithms that can be used for the
classification of microcurrent signals.
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Figure 4. Research ideas for a non-destructive detection algorithm based on electrical characteristics
of microcracks.

2.2.1. Wavelet Scattering Transform-Based Feature Extraction

Wavelet scattering transform (WST) [29–31] is an improved time-frequency analysis
method based on wavelet transform, which solves the shortcomings of wavelet transform
changing with time and has the advantages of translation invariance and local deformation
stability of signal analysis and feature extraction. The wavelet scattering network is a
framework for automatically extracting input signal features, requiring convolutional,
nonlinear, and average cascade operations. After constructing the wavelet scattering
network, the scattering coefficient matrix of training data can be obtained. The framework
is shown in Figure 5a. In the wavelet scattering transform network, the convolution task
is performed by the wavelet, the modular operator is used for nonlinearization, and the
filtering function of the wavelet low-pass filter completes the pooling task.

(a) (b)

Figure 5. Principle of wavelet scattering transform. (a) Framework of wavelet scattering network.
(b) Structure of wavelet scattering transform.

Wavelet scattering takes the modulus of the wavelet transform, mainly because the
mean value of the wavelet coefficient is 0. In contrast, the mean value of linear transforma-
tion will not change, so the non-0 wavelet coefficient can be obtained through nonlinear
transformation to carry specific information. After removing the complex phase of all
wavelet scattering coefficients, operator |W| can be obtained. By convolving with input
signal X, the operator of the wavelet modulus transformation can be obtained:

|W|X = {S(X), U(X)} (1)
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S(X) = X × φJ (2)

U(X) = |X × ψλ| (3)

Equation (1) contains two parts: S(X) (see Equation (2), where φJ is the low-pass
filter) is the invariant part, namely the scattering coefficient, which is the low-pass filtering
and averaging of the input signal. It represents the translation invariance of the wavelet
scattering transform, with the purpose of extracting the low-frequency information of
the input signal and removing the high-frequency information. U(X) (see Equation (3),
where ψλ is high frequency wavelet) is the covariant part, representing the high frequency
information on scale λ and acting as the exchange modulus of the nonlinear wavelet change.
It is also the input to the next transformation and represents the stability of the operator,
with the purpose of recovering the high-frequency information lost by the operation of the
invariant part.

Therefore, the 0th-order wavelet scattering transform information is:

|W0|X = {S0(X), U0(X)} (4)

S0(X) = X × φJ (5)

U0(X) = |X × ψλ0| (6)

By taking the 0th-order high-frequency U0(X) as the input X1 of the first-order scatter-
ing transform and calculating with the new wavelet modulus operator, the information of
the 1st-order wavelet scattering transform is obtained.

|W1|X1 = {S1(X1), U1(X1)} (7)

S1(X1) = X1 × φJ = |X × ψλ0| ∗ φJ (8)

U1(X1) = |X1 × ψλ1| = ||X × ψλ0| × ψλ1| (9)

Similarly, by iterating the above process, the g − 1-order high-frequency Ug−1
(
Xg−1

)
can be used as the input Xg of the first-order scattering transform to operate with the new
wavelet modulus operator for the higher g-order scattering transform:∣∣Wg

∣∣Xg =
{

Sg
(
Xg
)
, Ug
(
Xg
)}

(10)

The structure of the scattering transformation is shown in Figure 5b. Input current
signals are iterated successively in layers, forming a series of scattering coefficients from
order 0 to order g:

SG(X) =
{

S0(X), S1(X1), · · · , Sg
(
Xg
)}

(11)

The scattering coefficient is the extracted micro-current wavelet scattering feature.
After collecting the microcurrent signal of the egg, the wavelet scattering network is
constructed to extract the wavelet scattering characteristics of the microcurrent signal, and a
wavelet time scattering network with two cascaded filter banks is constructed. The first
filter bank has eight wavelets per octave, the second filter bank has one wavelet per octave,
the wavelet filter in the two filter banks is shown in Figure 6a,b, and the Littlewood–Paley
sums of the filter banks are shown in Figure 6c. Figure 6d shows the Gabor small wave used
for its low-pass filter to prove the invariance scale, obtain the inverse Fourier transform of
the scale function, and center it in 0 s.
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(a) (b)

(c) (d)
Figure 6. The principle of wavelet scattering characteristic parameters used in this paper. (a) The first
filter bank with 8 wavelets per octave. (b) The second filter bank with 1 wavelet per octave. (c) The
Littlewood −Paley sums of the filter banks. (d) The real and imaginary parts of the coarsest-scale
wavelet from the first filter bank.

2.2.2. Classification Modeling Methods

Compared with traditional machine learning methods, deeper networks can accom-
modate richer semantic information and are more effective in processing temporal order,
feature dimensionality, and scale. LSTM can effectively capture the association between
long sequences, which is very effective in processing temporal information and can also alle-
viate the phenomena of gradient disappearance or explosion . Bi-LSTM is a combination of
forward LSTM and backward LSTM, which can effectively use the input forward and back-
ward feature information. GRU can effectively capture the association of long sequences,
and the number of parameters used is small, which can also reduce the risk of overfitting.
1DCNN features scale shifts and invariance, region awareness, comprehensive feature
learning, and fault tolerance, which can compensate for the shortcomings of other shallow
classification algorithms with inadequate feature learning and poor generalization ability.

The data used in this paper are characterized by disorder, mutation, nonlinearity, and
time discontinuity. Therefore, in this study, LSTM, Bi-LSTM, GRU, and 1DCNN were used
to classify the features extracted from wavelet scattering. The details of these methods are
as follows.

Long short-term memory (LSTM) [32] is a particular recurrent neural network (RNN),
which is an improved neural network used to solve the problems of gradient disappearance
and gradient explosion inherent to traditional RNNs in long sequence samples. The neural
unit of LSTM contains three different gate structures: forgetting gates, input gates, and
output gates to control information. Its appearance successfully solves the problem that
the original RNN cannot store information for a long time and can effectively reduce the
feature input dimension of the signal and enhance the temporal modeling capability.

Bi-directional long short-term memory (Bi-LSTM) [33] is a variant of LSTM, which
refers to the combination of forward LSTM and reverse LSTM. The forward and reverse
layers are simultaneously connected to the input and output layers through different
weights. There is input each time, while the hidden layer has two node vectors, which can
be transmitted from forward to backward or backward to forward. The state transmission
is bidirectional. It can learn not only the rule of forward data but also the rule of backward
data. Applying LSTM twice can improve the long-term dependence on learning and thus
improve the model’s accuracy.
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A gated recurrent unit (GRU) [34] is a simple variant of LSTM, and its working
principle is similar to LSTM. It has two gates: update doors and reset doors. GRU aims to
reduce parameters to optimize the cell structure and improve operational efficiency, making
converging during training more manageable. Its flexible and straightforward structure
guarantees accuracy while significantly reducing the time required for classification.

A convolutional neural network (CNN) [35] is a typical representative of deep learning,
consisting of an input layer, convolutional layer, pooling layer, fully connected layer, and
output layer. Similar in structure to CNN, a one-dimensional convolutional neural network
(1DCNN) [36] refers to a CNN whose input is a one-dimensional vector; similarly, its
convolution kernel is one-dimensional, and it carries out a one-dimensional convolution
operation. It is a deep learning algorithm suitable for processing one-dimensional data.
Compared with 2DCNN, the convolution kernel of 1DCNN only needs to be scanned in one
direction. The convolutional layer performs convolution operations on the one-dimensional
input signal and the one-dimensional convolution kernel and then extracts the features
through the activation function. The pooling layer scales and maps the input data through
the pooling kernel and extracts features while reducing the dimension of the data. This
paper uses max pooling, which selects the maximum value of each small region as the
output. Pooling operations can reduce the size of spatial information, improve operational
efficiency, and reduce the risk of overfitting.

As we all know, the selection of hyperparameters affects the performance of deep
learning to a large extent. The improper setting of hyperparameters may lead to under-
fitting and over-fitting of the network model during training, so that the samples outside
the training samples cannot be accurately classified. In this paper, the method of grid
search [37] is used for hyperparameter selection first, and the optimal hyperparameter
method is determined by traversing the given parameter combination to determine the
optimal value performance. Finally, we used the methods of LSTM, Bi-LSTM, GRU, and
1DCNN to classify the extracted feature data. The maximum number of rounds of training
was 150. The Adam optimizer was applied. The learning rate was 0.01. The learning rate
decline factor was set to 0.2. The number of iterations when the learning rate decreases was
5. The fully connected layer had two layers, and the number of corresponding classifica-
tions in the second layer was finally classified using the probability of the Softmax layer.
The prediction label of the test sample was the output.

2.3. Performance Indicators

We divided all samples in the classification model into positive and negative sam-
ples. In this paper, cracked eggs were labeled as positive samples, and intact eggs were
marked as negative samples. The prediction category determined by the model was ob-
tained by predicting the sample data output in the model. In order to better evaluate the
classification performance of the proposed detection model, five evaluation indicators, ac-
curacy (ACC), precision (P), recall (R), F1-score (F1), and Matthews correlation coefficient
(MCC), were used to comprehensively evaluate the algorithm models regarding their
classification ability.

We define the false-positive (FP) rate as the number of negative samples that the
model incorrectly predicts as positive samples. We define the true-positive (TP) rate as the
number of positive samples correctly predicted by the model as positive samples. We define
the false-negative (FN) rate as the number of positive samples that the model incorrectly
predicts as negative samples and the true-negative (TN) rate as the number of negative
samples correctly predicted by the model as negative samples.

Accuracy (ACC), precision (P), recall (R), and F1-Score (F1) are common performance
indicators used to evaluate the predictive ability of classification models, and their calcula-
tion formulas are as follows:

ACC =
TP + TN

TP + FP + TN + FN
× 100% (12)
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P =
TP

TP + FP
(13)

R =
TP

TP + FN
(14)

F1 = 2 × P × R
P + R

(15)

The Matthews correlation coefficient (MCC) [38] comprehensively considers TP, TN,
FP, and FN. It is considered to be a better measure of the classifier’s performance. The value
range of the MCC is [−1, 1]. A value of 1 means that the prediction is entirely consistent
with reality, a value of 0 means that the predicted result is not as good as the result of
random prediction, and a value of −1 means that the predicted result is inconsistent with
the actual result. MCC is defined as follows:

MCC =
TP × TN − FP × FN√

(FP + TP)(TP + FN)(FN + TN)(TN + FP)
(16)

We used ACC, P, R, F1, and MCC as the evaluation indicators of the proposed method.
In addition, the training time and preference time of the model were considered as a metric
for performance evaluation, as they are of great significance to the real-time detection of
cracked eggs.

2.4. Experimental Environment

All experimental calculations in this study were performed using MATLAB R2022a
software, and the experimental computer processor was an 11th Gen Intel (R) Core (TM)
i5-11400H @ 2.70GHz 2.69 GHz, Windows 10 (64-bit) Professional version.

3. Results and Discussion

3.1. Experimental Data

The experimental data came from fresh eggs purchased at the farmers’ market near the
laboratory . The eggs were cleaned and transported to the laboratory. The mass of each egg
was between 43.2 g∼62.3 g. The intact samples were observed under 10× magnification,
and a total of 400 eggs were observed. To quickly obtain a sufficient number of egg
microcrack samples, we selected 220 cracks of different types and positions by exerting
external forces on different positions of eggs through the egg crack collision machine .
The width of the artificial microcracks was generally less than 3 microns, which is usually
not easy to observe with the human eye. The samples that could not be subjected to a
discharge test due to excessive force or improper operation during the production process
were rejected . Finally, a total of 356 egg samples that met the requirements were selected
for experimentation, as shown in Table 1.

Table 1. The number of egg samples used by the electrical characteristic crack detection system to
obtain a microcurrent signal.

Label Count Percent

Cracked 187 52.5281
Intact 169 47.4719

3.2. Wavelet Scattering Transform Features

Based on the settings described above, a wavelet scattering network was constructed
to extract the wavelet scattering characteristics of the microcurrent signal. After the signal
input network, the wavelet scattering transformation was carried out layer by layer, and the
0th scattering output was the convolution coefficient of the original signal and scale function.
Figure 7 shows the partial scattering results obtained from the cracked egg sample in
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Figure 3e and the intact egg sample in Figure 3f and the scattering coefficient of 8 time
windows, respectively.

(a) (b)

(c) (d)

Figure 7. Comparison of wavelet scattering characteristics of cracked eggs and intact eggs. (a) The
0th scattering output of Figure 3e of cracked egg sample. (b) The 0th scattering output of Figure 3f of
intact egg sample. (c) Scattering coefficients for 8 time windows of Figure 3e of cracked egg sample.
(d) Scattering coefficients for 8 time windows of Figure 3f of intact egg sample.

The scattering feature of the cracked egg signal maintains the undulation information
at the crack, and the scattering feature of the intact egg signal clarifies the small deformation
in the original signal process and maintains the elastic deformation stability of the signal.
The feature matrix extracted by the wavelet scattering network maintains the stability of
the signal feature while ensuring that the information is not lost so that the cracked egg and
intact egg signal features extracted by wavelet scattering transformation have an apparent
distinction. The first and second order output a matrix of wavelet scattering coefficients,
the dimensions of which represent the scattering path and wavelet scale, respectively.
A current signal with a data size of 450 × 1 is input to the wavelet scattering network
to extract the wavelet scattering feature with a data size of 64 × 8, where each row and
column correspond to one scattering path and one time window, respectively.

3.3. Comparison of Experimental Results and Analysis
3.3.1. Experimental Results

Based on the optimal hyperparameters, we constructed and trained the wavelet
scattering convolutional network to classify the microcurrent signals. In addition, we also
used the previously studied methods to classify the microcurrent signals. The resulting
comparison of the final classification is shown in Table 2. By comparing the five models, it
can be found that WST+1DCNN gets higher results on index ACC (99.4393%), F1 (99.4357%)
and MCC (98.8819%). WST+GRU and WST+1DCNN get higher results on R (99.6226%)
index, WST+Bi-LSTM obtains higher results on index P (99.6154%). In general, the detection
effects of WST+LSTM, WST+Bi-LSTM, WST+GRU, and WST+1DCNN based on the wavelet
scattering convolutional network are superior to existing methods [14]. The algorithm based
on WST+1DCNN has the best recognition effect and can effectively and accurately detect
cracked eggs. The accuracy is 2.0561% higher than the accuracy of the existing method [14].
In terms of the real-time implementation of the method, the training time of the previous
method is faster, being almost half of that of the method studied in this paper. Considering
that all models can be pre-trained, the research in this paper is acceptable in terms of
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training time. We found that all five methods were able to keep the reasoning time within
0.01 s, with the previous research method processing the fastest at 0.0009 s. In contrast,
previous studies used machine learning to extract manual features, while this study uses
deep learning to implement, which requires the integration of multiple convolutional blocks,
so the network architecture is deep and the time is relatively long. However, the results
obtained in this study have met the requirements of industrial real-time detection of egg
cracks, and the processing speed is faster than other microcrack detection techniques; see
Table 3 for details. In conclusion, the method proposed in this paper can detect cracked
eggs effectively and accurately and is acceptable in practical application.

Table 2. Experimental results of electrical signal classification algorithm based on wavelet scattering
transformation feature.

Methods ACC P R F1 MCC Training
Time (s)

Inference
Time (s)

Existing Method [14] 97.3832% 97.3577% 98.0984% 97.7210% 95.5056% 6.7906 0.0009
WST+LSTM 97.9439% 98.4761% 97.3585% 97.9119% 95.8971% 11.4690 0.0028

WST+Bi-LSTM 98.5047% 99.6154% 97.3585% 98.4725% 97.0355% 13.3880 0.0029
WST+GRU 99.2523% 98.8819% 99.6226% 99.2488% 98.5115% 12.0574 0.0036

WST+1DCNN 99.4393% 99.2523% 99.6226% 99.4357% 98.8819% 13.2714 0.0033

Table 3. Comparison of inference time between the proposed method and other crack detection tech-
niques.

Author Detection Mode Inference Time (s)

Sun et al. [39] Vision-based 1.65 ± 0.50
Wang et al. [40] Acoustic-based 0.2

Purahong et al. [41] Vision-based 0.08
Sun et al. [42] Vision-based 0.98 ± 0.06
Sun et al. [43] Acoustic-based 0.281

Proposed Method Electrical-based 0.0033

To further verify the validity of the method proposed in this paper, we re-experimented
on the dataset used in the existing method [14] and conducted a comparative study. A
total of 770 egg signals were collected, including 367 intact egg signals and 403 cracked egg
signals. The final results are shown in Table 4. Compared with the existing egg microcrack
classification algorithm based on the electrical characteristics model, our proposed method
has improved the accuracy rate by 0.3478% in the dataset . Considering the results above,
the results obtained in this study on the detection of microcracks based on the electrical
characteristics of eggs are better than those obtained by the preliminary experimental
methods. It mainly considers feature extraction and classification algorithm. In the aspect
of feature extraction, the existing method extracted the time domain feature, frequency
domain feature and wavelet feature of the micro-current signal. A specific function calcu-
lates the features extracted by the manual design-based feature extraction method, so the
extracted features will ignore the changes in detail, resulting in some of the distinguishing
representative features being ignored, such as the cracked egg feature shown in Figure 8a,
where the crack changes are subtle. The features extracted by traditional manual design
methods focus on the general information of the signal and therefore struggle to capture the
variations in detail. The wavelet scattering transform used in this paper extracts invariant
and small deformation-stable features to extract multi-scale high-frequency feature vectors.
The features extracted from the sample in Figure 8a using the wavelet scattering transform
are shown in Figure 8b, which is significantly different from the regular intact egg signal
features shown in Figure 8c. It can maintain the undulation information at the crack so
that the features at the crack can have a clear representation in the whole feature matrix
for classification and differentiation. In the aspect of classification algorithm, the machine
learning method was used for classification in the previous experiment. Compared with the
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machine learning algorithm, the deep learning algorithm used in this study can effectively
capture the correlation between long sequences and has a good effect in the processing of
time sequences, feature dimensions, and scales and can carry out the comprehensive learn-
ing of features. Therefore, the method proposed in this paper can improve the performance
of the model according to the electrical characteristics of eggs and can be used online in the
detection of microcracked eggs in industrial applications.

Table 4. Comparison of the results of the dataset used in the existing method [14].

Existing Method [14] Proposed Method

ACC 99.0435% 99.3913%
P 99.2331% 99.6911%
R 99.0769% 99.2308%
F1 99.1529% 99.4601%

MCC 98.0598% 98.7649%

(a) (b) (c)
Figure 8. Comparison of sample features extracted using wavelet scattering transform. (a) Variation
in detail of hard-to-capture microcrack sample signals. (b) Extraction of 8 time windows of feature
information for such cracked eggs using WST, where eight different colors lines in the figure represent
the information of the eight time windows. (c) Extraction of 8 time windows of feature information
for intact eggs using WST, where eight different colors lines in the figure represent the information of
the eight time windows.

3.3.2. Ablation Study

To evaluate the superior performance of the microcrack nondestructive detection
algorithm for egg electrical characteristics based on wavelet scattering convolution network
proposed in this paper, the extracted current original signal and the characteristics processed
by wavelet scattering transformation were inputted to four classification methods for
comparison, including LSTM, Bi-LSTM, GRU, and 1DCNN. The results are shown in
Figure 9a. For the four classification methods, the accuracy of the wavelet scattering feature
extraction was 2.243%, 1.8692%, 3.3644%, and 2.9907% higher than the accuracy of directly
feeding microcurrent signals into the deep learning network. The average statistical error
of accuracy of LSTM, Bi-LSTM, GRU, and 1DCNN is 0.9622%, 0.6339%, 0.9157%, and
0.5449% respectively. The results indicate that under the same conditions, the features
extracted by wavelet scattering transformation were more recognizable and more capable
of distinguishing cracked eggs from intact eggs.

The wavelet scattering network finally constructed in this paper has two cascaded
filter banks. The first filter bank has eight wavelets per octave, and the second has one
wavelet per octave. As for the selection of filter banks, the experiment proves that the
scattering coefficient energy converges rapidly with the deepening of the network, and the
energy after the two-layer network structure is about 1% [30], so two cascades of filter
banks are constructed in this paper. For the number of wavelets per octave in the filter bank,
different experiments as shown in Figure 9b have been made, proving that the combination
of (8, 1) has the best result.
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(a) (b)

Figure 9. Comparison of ablation study results. (a) Results comparison using wavelet scattering
transform versus without wavelet scattering transform methods. (b) Comparison of the results of the
combination of the number of wavelets per octave of the filter bank.

3.3.3. More Results on Imbalanced and Duck Egg Datasets

It is worth noting that the data in a real industrial scenario are unpredictable.To verify
the performance and versatility of the proposed method, the class-imbalanced dataset of
eggs collected in this experiment and the duck egg dataset experiment were set up. The
distribution of cracks in the duck egg dataset is shown in Figure 10. The experimental results
for the class-imbalanced and duck egg datasets are shown in Table 5. The class-imbalanced
dataset removed some collected data to simulate an imbalanced state. The dataset has
200 entries, including 169 intact and 31 cracked egg signal data. The MCC (98.0788%)
was obtained under the condition of fewer cracked eggs, which is slightly lower than the
previous experiments. It is still in the high-accuracy range, fully demonstrating its stability
under data imbalance. A total of 267 fresh duck eggs were purchased from the advanced
breeding duck incubation base. Signal data of 130 intact and 137 cracked eggs were obtained
in this experiment, and an accuracy of 99.6169% was finally obtained. This experiment
shows that the method proposed in this paper has good universality and extensibility.

Figure 10. Crack size distribution of cracked duck eggs.

3.4. Discussion

This paper used the micro-current high-voltage discharge method to detect microc-
racks in eggs, but there is a small amount of literature and patents that investigate this
technique. The most studied application for this technique is the case of plastic container
leaks. Regarding the range of voltages, some studies [12] suggest that the voltage applied
is typically 3000 V∼5000 V DC, but no relevant theoretical description is given. The elec-
trode may cause certain damage to the detected object when it is in direct contact with
the detected object. In the previous experiment, 1500 V was used, which may cause dam-

305



Agriculture 2023, 13, 730

age to eggs that are being incubated. The voltage in this study was set to 1000 V. The
results obtained from the above four experiments proved the effectiveness of the proposed
method.Especially for the detection of eggs to be hatched, the lower the voltage used,
the safer the eggs will be, and the less they will be damaged. In this study, twenty eggs
(ten intact and ten microcracked) were selected to conduct classification experiments on
the signals extracted from poultry eggs with different voltages. The extracted signals were
tested by the existing method [14] and the method proposed in this paper. The results are
shown in Figures 11 and 12.

Figure 11. Crack detection results of eggs with different voltages by existing method [14]. Where, 0 in
the figure represents cracked eggs, and 1 in the figure represents intact eggs; The green line indicates
that the tested sample is classified as intact eggs, and the orange line indicates that the tested sample
is classified as cracked eggs.

Figure 12. Crack detection results of eggs with different voltages by the method proposed in this paper.
Where, 0 in the figure represents cracked eggs, and 1 in the figure represents intact eggs; The green line
indicates that the tested sample is classified as intact eggs, and the orange line indicates that the tested
sample is classified as cracked eggs.

Table 5. Method performance and versatility experiments.

Imbalanced Dataset Duck Egg Dataset

ACC 99.4444% 99.6169%
P 97.9798% 99.4949%
R 98.8889% 99.7416%
F1 98.3570% 99.6139%

MCC 98.0788% 99.2423%

The selected eggs were tested using 250 V, 500 V, 750 V, 1000 V, 1200 V, 1400 V, 1500 V,
and 1800 V. From Figures 11 and 12, it can be concluded that the existing method and the
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method based on the wavelet scattering convolutional network proposed in this paper can
be used to distinguish the microcurrent signals obtained from cracked eggs and intact eggs
in the voltage between 1000 V and 1500 V. Both methods have detection errors when the
voltage is higher than 1500 V. This is because when the voltage is increased, the current
signal generated by the system fluctuates strongly, resulting in the voltage breakdown of
the intact egg, which will reflect on the current and lead to false detection. The effect of
the existing method on the classification of current signals below 1000 V is not obvious
because of the weakening of the current response at the crack for voltages below 1000 V.
The method proposed in this paper has the characteristics of translation invariance and
elastic deformation stability and still maintains a good effect on the classification of current
signals between 500 V and 1000 V. When the voltage is less than 500 V, the system cannot
generate enough feedback signals, so it is difficult to detect extremely small cracks. The egg
crack detection method based on electrical characteristics may cause damage to incubating
eggs under high-voltage conditions, while the wavelet scattering convolutional network
method proposed in this paper can adapt the sensing voltage from 1500 V to 500 V and can
obtain higher detection accuracy on the data with a low signal-to-noise ratio, thus greatly
reducing the risk of high-voltage damage to incubating eggs.

4. Conclusions

This paper constructs a crack detection system for the electrical characteristics of eggs .
With the help of a size recognition device, which automatically adapts the upper electrode
position to the size of the egg, the system gives a more detailed and consistent view of
the egg’s surface, resulting in a more representative collected signal. Given the limitations
of disorder, mutation, nonlinearity, and time discontinuity of microcurrent signals, the
reliability of signal features dominates the performance of the ultimate classification model.
This paper suggests an electrical-based nondestructive detection model for microcracks
in poultry eggs, which employs wavelet scattering transform to extract features. Wavelet
scattering transform can effectively avoid the loss of valid information and produce a signal
representation insensitive to small changes in the input signal. This paper discusses the
feature extraction mechanism of wavelet scattering by visualizing the output results of
the scattering feature process. Finally, the study feeds the acquired feature vector into
the deep learning network for classification. The following are the conclusions that can
be drawn from our experiments. The microcurrent signal has unpredictable and sudden
transient characteristics. The wavelet scattering transform utilized to extract signal features
and develop the corresponding matrix shows a distinguished capacity to collect signals
with apparent differentiation and ensure satisfactory results. In this paper, we imple-
ment this feature extraction approach combined with appropriate classifiers to discuss
the classification of egg microcurrent signals. The results show that WST+1DCNN has
the best performance, and the average ACC, P, R, F1, and MCC obtained are 99.4393%,
99.2523%, 99.6226%, 99.4357%, and 98.8819%, respectively. In addition, we set the eggs’
class-imbalanced dataset and the duck egg dataset to verify the performance and univer-
sality. Finally, we conduct experiments on egg detection at different voltages. The novel
feature extraction and detection method proposed in this paper can reduce the sensing
voltage from 1500 V to 500 V and obtain higher detection accuracy on lower signal-to-noise
data, dramatically reducing the risk of damage to hatching eggs from high-voltage elec-
tricity. In the future, the main direction of our research is how to achieve higher precision
in egg crack detection under lower-voltage conditions, which specifically includes the
following several aspects. The first is how to improve the shape of the brush so that it
can cover a larger area of the eggshell during rotation and reduce the amount of missed
area. An increase in the contact region means that we can realize the distinction at lower
voltage, as it can also obtain enough current accumulation values in the crack regions.
Secondly, at the algorithm level, we hope to extract more abundant and high-dimensional
current features in the crack region and improve the existing algorithm to make it more
representative. Finally, multi-sensor fusion is also one of our directions. We speculate that
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an algorithm based on current features combined with image features or acoustic features
can have higher accuracy than an algorithm based on single-current features.
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Abstract: The eggshell is the major source of protection for the inside of poultry eggs from microbial
contamination. Timely detection of cracked eggs is the key to improving the edible rate of fresh eggs,
hatching rate of breeding eggs and the quality of egg products. Different from traditional detection
based on acoustics and vision, this paper proposes a nondestructive method of detection for eggshell
cracks based on the egg electrical characteristics model, which combines static and dynamic electrical
characteristics and designs a multi-layer flexible electrode that can closely fit the eggshell surface
and a rotating mechanism that takes into account different sizes of eggs. The current signals of intact
eggs and cracked eggs were collected under 1500 V of DC voltage, and their time domain features
(TFs), frequency domain features (FFs) and wavelet features (WFs) were extracted. Machine learning
algorithms such as support vector machine (SVM), linear discriminant analysis (LDA), decision tree
(DT) and random forest (RF) were used for classification. The relationship between various features
and classification algorithms was studied, and the effectiveness of the proposed method was verified.
Finally, the method is proven to be universal and generalizable through an experiment on duck
eggshell microcrack detection. The experimental results show that the proposed method can realize
the detection of eggshell microcracks of less than 3 μm well, and the random forest model combining
the three features mentioned above is proven to be the best, with a detection accuracy of cracked eggs
and intact eggs over 99%. This nondestructive method can be employed online for egg microcrack
inspection in industrial applications.

Keywords: electrical characteristics; poultry eggs; nondestructive detection; cracked eggs; machine
learning

1. Introduction

As one of the main sources of protein nutrition in human daily life, the importance of
poultry eggs and related products is self-evident. From 2010 to 2030, global egg production
will be increased by 35%, with Asia contributing 64.8% to the total global growth [1].
In the preliminary processing of eggs, such as cleaning, testing, transportation, and other
procedures, eggshell damage may occur, and bacteria and other microorganisms may
enter the eggs from the cracks and cause spoilage before infecting the surrounding good
eggs. This may not only lead to a shortened shelf life and lowered value but also make
the food unsafe to eat, causing economic losses to enterprises in the end. Traditional
eggshell crack detection mainly depends on artificial light or the sound produced upon
impact to the eggs to identify cracked ones, which not only sets high requirements for
the experience and physical condition of workers, but the efficiency and reliability cannot
meet the growing market demand. Therefore, it is of great significance for consumers,
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enterprises, and agricultural modernization to study a highly reliable, non-destructive, and
automatic cracked egg removal system [2].

In recent years, researchers both nationally and internationally have been trying to find
an automatic online approach to detecting eggshell cracks so as to lower labor intensity and
improve the efficiency and accuracy of detection. The related research mainly focuses on
acoustic analysis and machine vision. Acoustic analysis has been proven to be an effective
method for detecting cracked eggs [3]. Li Sun et al. built an equivalent mechanical model
based on an automatic excitation device and analyzed the transient impact. They used
cross-correlation analysis and Bayesian classification to detect eggshell cracks, which could
reach a detection level of 97% [4]. P. Coucke et al. proposed exciting the eggs with a
small impact hammer and extracting the spectral features of acoustic signals as the input
vector of the classification algorithm, whose detection accuracy could reach 90% [5]. A non-
destructive detection technique proposed by Cho et al. based on acoustic impulse response
employed eight frequency domain indexes, such as the average area of the power spectrum,
as input vectors, where multivariate discriminant analysis and multivariate regression
analysis were used to establish a classification model. Its detection accuracy could reach
95% [6]. Deng et al. proposed a crack detection method based on a continuous wavelet
transform and support vector machine (SVM). They integrated four wavelet features such
as the first resonance scale and achieved a detection accuracy of 98.9% [7]. Sun et al., based
on acoustic resonance, analyzed the difference in the frequency response signals between
intact eggs and cracked eggs, extracted five excitation resonance frequency characteristics,
such as the spectral peak, as input vectors, and achieved a detection accuracy of 96.11% [8].
Lai et al. measured the acoustic signals of intact duck eggs and cracked duck eggs, and
they selected the five most significant frequency features as the input vectors in logistic
regression analysis. The overall detection accuracy could reach 87.6% [9]. Wang et al. de-
veloped an excitation device driven by solenoids, producing sound signals by striking
the eggs. The time domain and frequency domain features of 12 kinds of sound signals
were extracted while using a neural network with feature dimension reduction as the
classifier. The detection accuracy was as high as 99.2% in the training set, but it was slightly
lower—about 95%—in the test set [10]. The detection approach for cracked eggs based on
acoustic signals is very effective, and its accuracy can basically meet the requirements for
application. However, this approach is susceptible to such factors as an uneven eggshell
thickness, surrounding noise, the egg shape, crack position, striking angle, and so on. More-
over, a lack of stability or knocking with too much strength may cause secondary damage to
the eggs [11,12]. In addition, the detection of egg cracks based on machine vision has also
made great progress [13,14]. Elster et al. first applied machine vision technology to eggshell
crack detection and could find the cracked eggs among the samples with an accuracy of
95.6%. However, it took 25.3 s to identify a cracked egg, which was relatively slow [15].
The cracked egg detection system designed by Gooddrum et al. was able to adjust the speed
of the rotating device according to the size of the egg. Three images were taken for each
egg at an interval of 120° near the equator, with a recognition accuracy of up to 90% [16].
Li et al. proposed a vacuum pressure chamber-based detection system which imposed a
vacuum pressure of 18 kPa to enlarge the microcrack and reached a detection accuracy of
100% under a situation without stains [17]. However, at present, this method is only in
the laboratory stage, so it cannot be used in actual industrial production lines. Wang et al.
proposed a method for detecting cracks in eggs using multi-information fusion of a natural
light image and polarization image with an accuracy of 94% [18]. Bao et al. aimed at
the phenomenon of dark spots on the surface of eggshells under backlight conditions,
adopted a negative LOG operator for image enhancement, set a threshold to eliminate black
spots, and finally detected cracks through the LFI index, with the detection accuracy being
up to 92.5% [19]. Muammer proposed a machine vision detection system based on deep
learning, in which six images of egg surfaces were captured in the process of the continuous
rotation of an egg, and the depth features were extracted by a pretrained residual network
in parallel and then input into the BiLSTM network to carry out the detection of cracked
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eggs. The accuracy rate was up to 99.17% under experimental conditions [20]. Most of the
above research methods were implemented in a laboratory environment, and in industrial
production, the identification accuracy will be greatly affected due to the difference in
the size, shape, depth, and other features of eggshell cracks, as well as such factors as
the shooting angle and bright spots and stains on the shell. Therefore, it is still an urgent
problem to study a new method that can meet the requirements of automatic detection of
eggshell cracks in industrial production.

High-voltage leak detection(HVLD) is a type of common and mature non-destructive
defect detection technology which is mainly used in the pharmaceutical industry and the
food industry, with the advantages of high speed and high precision. In this method,
electrodes are usually linked at both ends of a container with a non-flammable conducting
liquid, and a high voltage is applied. Equivalent capacitance is generated between the
liquid and the electrode due to the bottle wall. When the container is intact, there is a tiny
current in the circuit, but if the container has cracks and leaks, the capacitance disappears
and causes a discharge between the electrodes. Therefore, the discharge analysis technology
can be used to detect the tiny cracks and damages of the container with high precision.
Yoon S. Song et al. studied the important role the key variables play in the detection of
tiny pinhole leakages in flexible bags and semi-rigid cups using high-voltage technology.
They applied 0.25–10 kV to the packaging, and the results showed that the HVLD tech-
nology could detect defects of less than 10 μm [21]. Moll et al. studied and verified the
use of high voltage to detect the defects of blow-fill-seal containers with an accuracy of
100% [22]. Sun Jun et al. studied a non-destructive method to identify egg varieties based
on their dielectric properties. They used parallel plates to measure the dielectric properties
of eggs at 10∼200 kHz and established a fast identification and classification model of egg
varieties by using the SVM algorithm, which met the requirements of classification well [23].
However, as far as we know, no researchers have applied the relevant research methods
and ideas to the detection of cracks in poultry eggs.

Therefore, this research is aimed at proposing a novel and convenient nondestructive
method to detect cracks in poultry eggs in the industrial field. The main objectives of the
study are as follows:

• Focused on the analysis of the physical properties of the eggshell, study the elec-
tric field characteristics inside and outside the eggs under the action of electrodes
and establish the dynamic capacitance model and electrical breakdown model of an
egg innovatively;

• Design a microcrack detection system based on discharge analysis, with which microc-
racks on an eggshell can be detected by analyzing the weak current changes in the circuit;

• Analyze and compare the crack detection algorithms and feature selection of eggs;
• Verify the universality and generalization of the proposed method.

2. Electrical Characteristics of Poultry Eggs

2.1. Physical Characteristics of Poultry Eggs

A complete poultry egg is composed of an eggshell, egg membrane, egg white, yolk,
air chamber, etc. as shown in Figure 1a. The main component of the eggshell is calcium
carbonate, which accounts for about 11% of the volume of the whole egg. They are hard
and play an important role in protecting the egg white and yolk, exchanging gases with
the outside world, and providing minerals for embryonic development. Its structure is
shown in Figure 1b [24]. The common eggshell includes three layers with slightly different
microstructures, and its radial cross section is shown in Figure 1c [25]. The outermost
part of the shell is dense, meticulous, and has a certain strength, and thus it is called the
cuticle. The middle layer is spongy and densely covered with many small holes, while the
innermost layer, called the papillary layer, is pyramidal, and the spaces between the layers
can hold air. On the surface of the eggshell lie pores of about 30 microns in diameter. These
are called stomata, through which gas exchange and water evaporation occur.
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(a) (b) (c)

Figure 1. Schematic diagram of egg and eggshell structure. (a) Structure of the egg. (b) Microstructure
of the eggshell. (c) Radial cross section of the eggshell.

2.2. Model of Electrical Characteristics of Poultry Eggs

A dielectric in the electric field produces an equivalent bound charge on the atomic
scale under the electric field force, and this phenomenon is called dielectric polarization.
For an eggshell, when the electric field intensity exceeds a certain value, the bound charge
is forced to flow, causing dielectric breakdown and losing its insulation. Therefore, it is
very important for the detection of the eggshell cracks to calculate the electrostatic fields of
eggs and analyze the current change in the circuit. For this reason, we designed a dynamic
detection method for cracks. The microcurrent will be generated at the crack of an eggshell
when the egg rotates dynamically in the detection device, which is jointly generated by
two models that will be discussed below: one is the electrical breakdown, and the other is
capacitance jump. The total current is as follows:

I = I1 + I2 (1)

where I1 is the microcurrent generated by electrical breakdown and I2 is the microcurrent
generated by the capacitance jump.

2.2.1. Model of Capacitance of a Poultry Egg

An electrostatic field with the medium is produced jointly by the bound charge and
free charge. In order to represent the electric field, which is under the joint action of both
charges, another field vector–electric flux density

−→
D , also known as electric displacement,

is introduced, which is defined in Table 1, where
−→
E is the electric field intensity,

−→
P is the

electric polarization intensity, and ε0 is the vacuum dielectric constant.

Table 1. Formula table.

Formula Name Formula

The field vector–electric flux density −→
D = ε0

−→
E +

−→
P

The total spatial electrostatic field −→
E =

−→
E0 +

−→
E′

The electric polarization intensity −→
P = ε0Xe

−→
E

The Gauss theorem in the medium
∮

S
−→
D · −→S = ∑ q

As shown in Figure 2, when there are poultry eggs in the electric field, the properties
of the spatial electrostatic field are related to the free charge (q0) and the distribution of
the dielectric. The macroscopic electrical properties of the dielectric can be replaced by a

polarized charge (q′), and then the total spatial electrostatic field consists of
−→
E0 and

−→
E′ , as

shown in Table 1. Here,
−→
E0 represents the applied electric field formed by a free charge,

and
−→
E′ represents the electrolyte polarization electric field formed by a polarized charge.
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In a linear isotropic dielectric, the electric polarization intensity
−→
P is defined as ε0Xe

−→
E ,

which can be seen in Table 1, where Xe is the electric polarizability rate. Therefore, we have

−→
D = ε0(1 +Xe)

−→
E = ε0εr

−→
E (2)

In the above formula, εr = (1+Xe) stands for relative permittivity, which is a physical
parameter characterizing the dielectricity or polarization of dielectric materials, also known
as relative permittivity. After the electric displacement vector

−→
D is obtained, the Gauss

theorem in the medium can be formulated, which is defined in Table 1, where
−→
S denotes

any closed surface in the medium and q denotes a free charge.

Figure 2. Schematic diagram of surface polarization of eggs in electric field.

We can think of the two electrodes and the egg in the middle as one capacitor, as shown
in Figure 3a, where the eggshell is an insulator and the egg liquid is approximately a
conductor due to a low resistance value. In an equilibrium state, there is no current in
the circuit. The egg liquid has a certain conductivity, so the dielectric constant εL of the
egg liquid is large. If the egg liquid is approximated as a good conductor, according to
the position of the upper and lower electrodes and the poor conductivity of the eggshell,
the electrical characteristic model under this connection mode can be approximated as
the series of two plate capacitors, as is shown in Figure 3b, and then the electric field
distribution under the intact eggshell is U = E1d1 + E2d2. Therefore, according to the plate
capacitance formula, the equivalent capacitance C1 is (d � L, d � W, where L is the length
of the electrode and W is the the width of the electrode):

C1 =
4πε lεrLW

d1 + d2
(3)

where d1 and d2 are the thickness of the upper and lower layers of eggshell, respectively.
text

(a) (b) (c)

Figure 3. Capacitance system diagram. (a) Schematic diagram of the capacitor system, composed of
the electrode and egg body. (b) Schematic diagram of equivalent capacitance of system when the
electrode is not at the crack. (c) Schematic diagram of equivalent capacitance of the system when
electrode is at the crack.
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When a crack exists in an eggshell, the electrical characteristics model of the egg
change as shown in Figure 3c, and then

U = U1 + U2 =
Q
C1

+
Q
C2

(4)

U1 =
Q
C1

=
UC1C2

C1 + C2
=

UC2

C1 + C2
=

U 4πε lεrS
d2

4πε lS
d1

+ 4πε l εrS
d2

=
d1εr

d2 + εrd1
U (5)

The electric field at a crack can be defined as

E′
1 =

U1

d1
=

εr

d2 + εrd1
U (6)

When the air breakdown electric field is E′
1p = 30 KV/cm, and d1 = d2 ≈ d = 350 μm,

then the breakdown voltage Up is

Up =
d2 + εrd1

εr
E′

1p ≈ dE′
1p = 3.5 × 10−4 × 3 × 104 × 102 = 1050 V (7)

At this time, the plate capacitance C2 is

C2 =
4πε lεrLW
εrd1 + d2

(8)

The experimental results show that if there is no crack in the eggshell of the egg
rotating in the middle of two electrodes, the equivalent capacitance value would stay
basically stable at C1 in the whole process. However, if there is a crack in the eggshell,
the equivalent capacitance will jump between C1 and C2 when the electrode passes the
cracks of the rotating egg, resulting in a transient current. Setting the egg rotation as an
angular velocity of α, the time to rotate the width of W is W

αR , where R is the radius of the
egg. Therefore, when the egg rotates from a no crack zone to a crack zone, the current
generated is

I =
ΔQ
Δt

=
UΔC

W
αR

=
UαR

W
· 4πε lεrLW(

1
d1 + d2

− 1
εrd1 + d2

)

= UαR · 4πε lεrL · (εr − 1)d1

(d1 + d2)(εrd1 + d2)

(9)

If d1 ≈ d2 = d, then

I ≈ UαR · 4πε lε
2
r L

2(ε l + 1)d
(10)

The following data were obtained in the experiment: the angular velocity was 2 cy-
cles/SEC, α = 4π, the radius of the shell R = 3 × 10−2 m, ε l = 8.85 × 10−12, the CaCO3
dielectric constant of the eggshell εr ≈ 8.8, the length of the electrode L = 4 × 10−2 m, and
the shell thickness was 350 μm. Then, we have

I ≈ 4π × 3 × 10−2 × 4π × 8.85 × 10−12 × 8.82 × 4 × 10−2 × U
2 × (8.8 + 1)× 3.5 × 10−4 = 1.894 × 10−8 × U (11)

where when U = 1500 V, I ≈ 28.4 μA.
Figure 4 shows the current curves collected when detecting intact eggs and cracked

eggs under the above electrode shapes and experimental parameters. The blue line repre-
sents intact eggs, and the red line represents cracked eggs. It is clear that there was a peak
in the data for cracked eggs. In the online detection system, the detected current value may
be the microcurrent generated by a capacitance jump or microcurrent superposed with that
produced in the electric breakdown.
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Figure 4. Comparison diagram of current measurement curves without cracks or cracked eggs under
discharge electric field.

2.2.2. Electric Breakdown Model of Poultry Eggs

According to the basic principle of electric breakdown, if the voltage applied to an
insulator is increased, the number of charge carriers in the material will increase sharply
under a certain electric field, and its resistivity will decrease, resulting in producing a
strong current. For poultry eggs, an intact one is not conductive under normal conditions,
but when there is a crack in the eggshell, an air interlayer with low insulation may occur in
the eggshell. Because the breakdown voltage of the air dielectric is much less than that of a
solid dielectric, when high voltage is applied on both sides of the egg body, an egg with
cracks is more likely to cause electrical breakdown, and there will be a significant difference
in the current.

Since the width of the crack is much smaller than the size of the eggshell or the
electrode, it can be approximated that the electric field in the crack area is uniform. The gap
breakdown voltage is subject to Paschen’s law when the air pressure is below 1 standard
atmosphere (about 0.1 mpa):

V = f (pd) (12)

where p is the air pressure and d is the distance between the electrodes.
The breakdown voltage Ub can be calculated according to the empirical formula:

Ub =
Bpd

ln(
Apd

ln 1
γ

)
(13)

where γ is the ionization coefficient and A and B are constants related to the composition
of the air. At standard atmosphere pressure, A = 43.66 and B = 12.8.

For a static, intact egg, a sudden change in current occurs when solid dielectric
breakdown occurs. The breakdown voltage of a solid dielectric is much higher than that
of an air dielectric, so if we keep the voltage at both electrodes stable and only allow air
dielectric breakdown, we can identify cracked eggs according to the change in current
signals. Therefore, the key to the problem is to apply a stable electric field at the crack
that can break down the air but not the eggshell. This problem is solved by analyzing
the electrode shape and simulation experiments under different voltages. As is shown
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in Figure 5, there was a tiny crack in the Z direction on top of the egg. U-shaped linear
electrodes were applied to the upper and lower sides of the egg to wrap the eggshell to the
maximum extent and make the electric field uniform. By adjusting the electrode shape and
voltage, the current detection system was optimized in the simulation environment and
verified by experiments in the real scene.

Figure 5. Simulation analysis of egg electric field distribution with cracks.

At the same time, the conditions of the air in the crack gap, such as the temperature, hu-
midity, and other factors, will affect the ionization tendency of the air and correspondingly
affect the breakdown voltage or discharge voltage in the crack gap. When the temperature
decreases, the density of the air increases, the mean free path of free electrons in the air
is shortened, and it is not easy to cause collision ionization, thus causing the breakdown
voltage of the air to increase. As an electronegative gas, water vapor easily captures free
electrons and transforms them into negative ions when the humidity of the air increases,
which weakens the ionization and decreases the breakdown voltage of the air. Given the
potential influence of the high temperature and humidity in the egg production line, special
attention should be paid to these factors in the process of the analysis and experiment.

In short, the final current value is usually the superposition value of the current
generated by the above two cases. When the electrodes are passing the cracked area of the
rotating egg, if the detection voltage is less than the breakdown voltage threshold, the total
current in Equation (1) is mainly I2; otherwise, the total current is mainly I1.

3. System Design and Analysis Methods

3.1. Design of the Detection System

The experimental platform for poultry egg crack detection mainly consisted of five
parts: a detection platform, high-voltage power supply, controller, data acquisition circuit,
and industrial personal computer, as is shown in Figure 6. The detection platform was
composed of a rotating mechanism, discharge electrodes, electrode adjustment mechanism,
and other parts, as is shown in Figure 7a. To ensure perfect contact between the electrode
and the surface of the poultry eggshell, the upper electrode was made flexible and egg-like
and 10 cm wide, and it had four layers of conductive silica gel with different lengths stacked
on top of each other. The lower electrode was initially designed to imitate an egg as well,
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but that led to uneven contact due to the different sizes of the eggs. The lower electrode
was later made into a long bar shape, but this shape still did not work because the exposed
part of the electrode outside the fixed seat was too short (2 mm) and required the lower
electrode to reach for it flexibly, which gave the egg an upward support force and made
it difficult to rotate. After a large number of experiments, we found that when the lower
electrode took an arc convex shape with little contact, it provided a stable and reliable
contact bottom without affecting the rotation. The rotating mechanism included three parts:
a servo drive, saddle-shaped support rollers, and an upper spring roller. The servo drive
provides a stable driving force to drive rollers on the left and right of the eggs and ensure
that eggs of different sizes can rotate evenly without shifting, while the upper spring roller
presses the egg to ensure that the eggs can still rotate evenly in place when they come
into contact with the electrode and generate friction. The electrode adjustment mechanism
can adjust the electrode position according to the egg so as to adapt to different egg sizes,
ensure that the electrode fits the egg surface better, and thus provide stable and reliable
surface contact. The data acquisition circuit used an STM32F103 microcomputer and 16-bit
A/D converter as the core, and the maximum sampling frequency was 12 MHz, which
could meet the requirements of the sampling speed and accuracy. The industrial personal
computer was used to record and process the current sampling data. Through the analysis
and processing of the current signals, it could identify whether there was a crack in the
eggshell and then drive the automatic device to remove the cracked egg. The experimental
device is shown in Figure 7b.

Figure 6. Data acquisition system block diagram.

(a) (b)

Figure 7. Egg crack detection device. (a) Model diagram. (b) Physical map.
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3.2. Electrode Shape Design

The eggshell is composed of a large amount of calcium carbonate containing tiny
pores, and it does not conduct electricity under normal conditions. The inner membrane
of the eggshell is a network of organic fibers made of keratin, which together with the
egg liquid is a conductor and can conduct electricity under normal conditions. The pores
are small in diameter and evenly dispersed. They usually have long and curved air paths
extending through the shell toward the inside of the egg, while cracks are characterized by
short air paths that extend horizontally on the shell and are concentrated along the crack.
Therefore, it is notable to distinguish the pores and cracks in the design of the discharge
electrode and ensure that the electric field in the egg body area is uniform. The effective
area of detection is another aspect to note. The detection area covered by the electrodes in
this paper did not include the tip and blunt end, and only the equatorial part of the egg
and the central area between the two ends were covered for crack detection. Moreover,
missing out on detection due to gaps between the electrode pieces may have occurred. All
these factors mentioned above added difficulty to the design, and they should be carefully
dealt with in the design of the electrode.

According to the analysis in Section 2, the charge density is proportional to the
curvature of the electrode tip, which means the tip electrode is most likely to produce high-
voltage and discharge phenomena. We selected six eggs randomly, made holes at the blunt
ends of the eggs, and poured out the inside liquid before we tested the discharge voltages
under smooth electrodes, single-tip electrodes, and multi-tip electrodes, as shown in
Figure 8. The experimental data shown in Table 2 show that the smooth electrode discharge
voltage matched with the polar plate discharge, and the single-tip electrode discharge
voltage was slightly higher than that of the smooth electrode. As for the single-tip electrode,
it may be difficult to align one end with the other end, which causes the breakdown voltage
to increase. On the other hand, this may be because the energy is excessively concentrated in
the tip and cannot form a large air column breakdown. The discharge voltage of the multi-
tip electrode was close to that of the smooth electrode, which indicates that the multiple
tips could reduce the breakdown voltage. Problems were still found in the experiment,
such as an increased electrode distance and fewer actual effective tips. The tip electrode
had the smallest coverage area on the eggshell surface. When it was in a crack-free area, it
could only cover a few pores. When it was in a cracked area, the area ratio of the covered
air area changed significantly, so it could effectively distinguish cracks and pores and had a
high detection ability. However, the point-shaped tip electrode could only detect eggshells
in a very small area near the electrode at one time, and the detection efficiency was low.
The spatial electric field generated by the tip electrode was also unevenly distributed, which
led to an unstable detection accuracy. Therefore, it is not an ideal electrode shape.

(a) (b) (c)

Figure 8. Tip electrode experimental set-up. (a) Smooth electrode. (b) Tip electrode. (c) Multi-strand
tip electrode.
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Table 2. Experimental data of tip electrode.

Serial Number
Smooth Electrode

Discharge
Voltage (V)

Tip Electrode
Discharge

Voltage (V)

Multi-Strand Tip
Electrode Discharge

Voltage (V)

No.1 1800 2300 1800
No.2 1700 2500 1900
No.3 1800 2400 1600
No.4 1400 2000 1500
No.5 1400 2200 2100
No.6 1700 2400 1700

Conversely to the point electrodes, planar electrodes offer significant advantages in
terms of detection efficiency and spatial distribution of the electric field. However, the shape
and size of the egg body vary greatly, and it is difficult to make a flexible electrode that
perfectly fits the surface of the egg. The accumulated value of the current generated by too
many pores in the non-cracked eggs under the electrode was also close to the current value
generated by the cracked egg, resulting in a significant decrease in the detection accuracy,
so the planar electrode is also not an ideal shape for electrodes.

The linear electrode combines the advantages of the above two electrodes. It is better
in spatial electric field uniformity, more efficient in detection, and more accurate in iden-
tification. In addition, the line contact of the conductive material, which can contain the
outline of the egg and fit the surface of the eggshell, is an ideal form of contact.

3.3. Electrode Material Analysis

We selected conductive silica gel, conductive rubber, and a conductive brush as the
electrode materials for the experiments and found that the egg cracks could be identified
with all three materials. The resistivity of the conductive rubber was large, and the current
change was not obvious enough when it was used as an electrode. When a conductive
brush was used as the electrode, the conductive brushes would fuse after discharge and
cause a great loss of electrode material. In contrast, the resistivity of the conductive silica
gel was small and could produce an obvious current change when passing the cracked area.
Therefore, conductive silica gel was selected as the electrode material in this paper.

To sum up, the current is not only related to the resistivity of electrode materials
but also closely related to the contact area of the conductive materials. However, it is not a
case of “the larger the better” for the contact area, as too large a contact area will lead to a
large current for non-cracked eggs. The more ideal form of contact is line contact, which
is made according to the outline of the egg so as to fit the eggshell perfectly. The actual
structure of the electrode is shown in Figure 9.

Figure 9. Real figure of electrode.
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3.4. The Importance of Multi-Layer Flexible Electrodes

Since eggs vary somewhat in size and shape, the design of a flexible electrode can
better fit the eggshell and achieve full coverage of an effective detection area by dynamically
adjusting the angle according to the eggs. Although a single-layer flexible electrode can
effectively detect cracks, their coverage area is limited. When detecting larger eggs, gaps
between the electrode strips may cause omissions during the egg rotation if the cracks are
just perpendicular to the gaps. The use of multi-layer flexible electrodes can reduce the
chances of missed detection of egg cracks, which plays a significant role in improving the
overall detection accuracy and can also further reduce the detection voltage.

3.5. Lab Environment

We selected 10 eggs randomly and put 5 eggs in a group to test the electrical char-
acteristics under different humidity environments. The mean current curve is shown in
Figure 10. The experiment found that the measured current value in the environment with
a humidity of 72% and voltage of 1500 V was equivalent to that in the environment with a
humidity of 54% and voltage of 1800 V, which further proved the conclusion of Section 2
that the detection of egg cracks based on current signals was greatly affected by environ-
mental humidity. Therefore, during the data collection, the humidity and temperature of
the experimental environment should be stabilized within a certain range to reduce the
influence of the environment on the experimental data.

Figure 10. Standard deviation of the current signal of eggs at different voltages.

The voltage value used in HVLD is generally high, even reaching up to tens of thou-
sands of volts at certain times. If it is directly used for the detection of egg cracks, the protein
may be denatured. In order to avoid this, we had to choose an appropriate voltage range.
All things considered, we finally determined that the experimental environment was perfect
at an average temperature of 18.5 ◦C, a relative humidity of 40%, and a voltage of 1500 V.
We strictly controlled the current size, and the system current protection mechanism would
be triggered to cut off the power when the current was greater than 1 mA so it would not
cause damage to the eggs.

In order to quickly obtain a sufficient number of egg samples with microcracks and
avoid the instability of manual striking, we designed an egg crack striking machine to
control the size of the artificial cracks and prevent the egg contents from leaking. The ma-
chine is shown in Figure 11a. Eggs are fixed at the bottom of the track, and the rollers
are released from different heights and strike the egg at the equatorial part to generate
controllable microcracks. The width of the artificial microcracks is generally less than
3 microns, which is usually not easy to observe with the human eye. Microcracks are
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mainly located in the central area between two ends of the egg and only present in the
effective detection area. Egg samples with cracks at the tip or blunt end will be discarded.
In actual production, there are not only large cracks caused by strong striking but also a
large number of microcracks of several microns, which are difficult to detect by traditional
methods. The structure of a microcracked egg under an industrial microscope is shown in
Figure 11b,c.

(a) (b) (c)

Figure 11. Egg crack and its generating device. (a) Egg crack striking machine. (b,c) Pictures of cracks
of different sizes under the industrial microscope.

3.6. Classification Modeling Methods
3.6.1. Linear Discriminant Analysis

Linear discriminant analysis (LDA) [26] is widely used in the field of high-dimensional
data classification as a supervised dimensionality reduction technology. It takes the sepa-
rability of pattern data as the goal and finds a set of optimal discriminant vectors, which
maximizes the between-class scatter measures while minimizing the within-class scat-
ter measures. In this study, the eggshells could be divided into intact eggs and cracked
eggs. This was a classification problem. Letting C be the number of categories, where C = 2,
x is the n-dimensional features of the training sample, and N is the number of samples,
the sample’s within-class scatter matrix SW and between-class scatter matrix SB are shown
below in Equations (14) and (15), respectively:

SW =
1
N

C

∑
i=1

∑
x∈ci

(x − μi)(x − μi)
T (14)

SB =
C

∑
i=1

pi(μi − μ)(μi − μ)T (15)

where pi = Ni/N is the prior probability of each class, Ni is the number of training
samples of class Ci(i = 1, 2, . . . , C), μi is the mean value of sample Ci, and μ is the mean of
all samples.

The goal of LDA is to find the best projection matrix W so that the Fisher criterion is
the largest, and its formula is

J(Wopt) = arg max
W

∣∣WTSbW
∣∣

|WTSWW| (16)

3.6.2. K-Means Classification Algorithm

K-means [27] is a common unsupervised learning algorithm that is often used to
discover the inherent regularities between datasets. The principle is that K samples are
first randomly selected as cluster centers of K categories, and then, the Euclidean distance
between the sample data and the k-th centroid is calculated to judge the correlation with
this category. Then, it belongs to the category with the highest correlation. Such centroids
will also be recalculated with the addition of new samples until the iteration is completed
or the preset number of iterations is reached. The Euclidean distance between samples is
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D(xi, xj) =

√√√√ N

∑
n=1

(xi,n − xj,n)2 (17)

where Dxi ,xj is the Euclidean distance between samples xi and xj and N is the dimension
of the sample data. xi represents the i-th sample data, and xj represents the j-th sample
data. If the sample has C categories, Ck is used to represent the k-th cluster center, where
k = 1, 2, . . . , K. First, K points in the sample are selected as centroids, followed by calculat-
ing the similarity between other points and the cluster center points and dividing them into
K sets, denoted by Ck. Finally, the new cluster center is recalculated. The formula for Ck is

Ck =
1

mk
∑

x∈Ck

xk (18)

where mk is the number of k-th category elements. During this process, the K-means
clustering algorithm continuously reclassifies and updates the cluster centers, and this ends
when the iteration reaches the maximum limit or the objective function is smaller than the
threshold. Its objective function is

J =
K

∑
i=1

∑
xi∈Ci

Dxi ,xj(xi, Ck) (19)

3.6.3. SVM

A support vector machine (SVM) is based on statistical learning and can solve linear
and nonlinear problems at the same time. It shows good performance [28,29], especially in
small-sample data when applied in a series of challenging practical problems. The basic
idea of SVM is to find the optimal hyperplane that distinguishes the two classes by training
the sample set and maximizing the distance between the segmentation plane or hyperplane
and the data points in the given dataset.

The current signal obtained in this paper was not linearly separable, so it was necessary
to first select an appropriate kernel function to map it to a high-dimensional space and then
optimize it. Up to now, there has been no generally accepted selection criterion for the
selection of the kernel function. The commonly used kernel functions mainly include
Gaussian kernel function, polynomial kernel function, linear kernel function, and sigmoid
kernel function. Owing to its advantages of few parameters and fast convergence speed,
Gaussian kernel function was used for kernel transformation in this paper. Its mathematical
definition is shown in Equation (20) [30]:

K(x, y) = e−
‖x−y‖2

2σ2 (20)

where x and y are the eigenvectors of the current signal.

3.6.4. CART Decision Tree

A decision tree [31] is a supervised machine learning algorithm that can be used to
classify or predict unknown objects. The construction of the decision tree is a process of
top-down and recursive branching. First, we selected the most effective division method for
the samples according to the features, formed a new decision branch, and then pruned the
branch to optimize the decision tree. Commonly used decision tree generation algorithms
mainly include ID3, C4.5, and CART. We employed the CART model in this study and
used the GINI index to select the optimal division points of the optimal features. The basic
principle is to form a decision tree structure in the form of a binary tree by cyclic analysis
of the training dataset and select the attribute that minimizes the GINI index value of the
child nodes as the classification scheme.
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3.6.5. Random Forest

A random forest [32] uses a decision tree as the base classifier. It improves the overfit-
ting problem of a decision tree by combining the bagging ensemble learning theory and
random subspace method. Based on the idea of multiple decision trees, the random forest
generates the training data of each tree by random extraction from the original dataset
and then randomly extracts n features from N feature variables before finally selecting
the optimal feature variables from these n features as split features to construct multiple
decision trees. Finally, each of the decision trees gives a class prediction, and the class with
the most votes becomes the model’s prediction.

4. Experiments and Results

4.1. Data Acquisition

We purchased 770 eggs at a farmer’s market near the laboratory and collected cur-
rent signals for model training and algorithm verification, including 367 intact eggs and
403 cracked eggs. To avoid the noise introduced by stains on the eggshells, which may
have affected the experiment, the cleaning and drying process in the actual egg factory
was simulated before data acquisition. As for the impact of cleaning on the test results,
we came to the conclusion after small-scale experiments that cleaning could remove the
stains on the surface of the eggshell and reduce the interference with the current signal
acquisition. Meanwhile, the water molecules during cleaning could wet a part of the crack
gaps that were generated and had been blocked for a long time, which contributed to the
conductivity of the cracks.

At the initial stage of data acquisition, each egg was used only once for the current
signal, which resulted in a lot of waste. In order to improve the utilization rate of the sample
eggs and efficiency of data acquisition, the eggs that were detected to be intact would be
used again as cracked eggs after being slightly cracked by our crack striking machine. The
physical and experimental parameters of the tested eggs are shown in Table 3.

Table 3. Physical and experimental parameters of tested eggs.

Long Axis
Average

Short Axis
Average

Weight
Average

Voltage Frequency
Number of

Sampling Points
Average

Humidity
Average

Temperature

Eggs 57.4 mm 44.5 mm 62.7 g 1500 V 100 Hz 450 40% RH 18.5 °C

4.2. Extraction of Data Features

As shown in Figure 12, the current signals of eggs with different sizes, which included
three small ones and three large ones, were found to fluctuate significantly. The current
signals collected in the experiment were mixed with noise and were easily affected by the
environment, reducing the classification accuracy. Therefore, we introduced six common
time domain features, three frequency domain features, and wavelet packet coefficients
to extract stable and comprehensive feature information from the current signals for the
classification models. The six time domain features were the weighted mean, average,
standard deviation, range, skewness, kurtosis, and their expressions are listed in Table 4.
In the six expressions given in Table 4, xi (i = 1, 2, . . . , N) is the current data, N is the
length of the data, and w is the coefficient. The three frequency domain features were the
frequency of the center of gravity, root mean square frequency, and standard deviation of
the frequency, and their expressions are described in Table 5. In the three expressions given
in Table 5, f is the frequency value and P( f ) is the power spectrum.
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Figure 12. The effect of egg size on current signal.

Table 4. Time domain features.

Time Domain Features Formula

Weighted mean x̄ = ∑n
i=1 xiwi

∑n
i=1 wi

Average μ = 1
N ∑N

i=1 xi

Standard deviation σ =

√
∑N

i=1(xi−μ)2

N
Range r = max(x)− min(x)

Skewness s = 1
n ∑n

i=1 [(
xi−μ

σ )3]

Kurtosis k = 1
n ∑n

i=1 [(
xi−μ

σ )4]

Table 5. Frequency domain features.

Frequency Domain Features Formula

Frequency of center of gravity FC =
∫ +∞

0 f P( f )d f∫ +∞
0 P( f )d f

Root mean square frequency RMSF =

√∫ +∞
0 f 2P( f )d f∫ +∞

0 P( f )d f

Standard deviation of frequency RVF =

√∫ +∞
0 ( f−FC)2P( f )d f∫ +∞

0 P( f )d f

4.3. Analysis of the Results

In the process of acquiring an egg’s current signal, there are various discharge phe-
nomena, such as corona discharge, small air gap breakdown, and creeping discharge, which
make the current signal mix with a lot of noise. The interference of noise plus the relatively
weak current signal at the microcrack cause the current signal to be submerged in the
noise. To solve this, the method of wavelet threshold denoising was adopted to remove
the high-frequency noise in the signal while retaining the useful high signals. The wavelet
threshold denoising was such that, due to the continuity of the real signal f (t), after the
discrete wavelet transform, the wavelet coefficients generated at different scales were large,
while the wavelet coefficients produced by a corresponding noise signal e(t) were small.
Therefore, noise can be effectively suppressed by first selecting appropriate thresholds on
different scales to process high-frequency wavelet coefficients, and then performing an
inverse wavelet transform on the signal can effectively suppress noise. It is noteworthy
that the selection of a wavelet base is of great significance to the effect of wavelet threshold
denoising. By analyzing the shape of the current signal at the crack position, the Sym2
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wavelet base was finally selected, and it had better symmetry, which could, to a certain
extent, reduce the phase distortion when analyzing and reconstructing the signal.

The current signals of two intact eggs and two cracked eggs were randomly selected
from the dataset, as shown in Figure 13, where blue represents the signal before denoising
and red represents the signal after denoising. The following can be observed from Figure 13:
(1) The current signal of the cracked eggs had an evident peak within one cycle, while that of
the intact eggs did not. As mentioned in Section 2, when the experimental voltage is smaller
than the breakdown voltage, the change in the current curve is mainly dominated by the
capacitance jump during the rotation. The experimental voltage in this paper was higher
than the breakdown voltage, so the change in the current curve was mainly dominated by
the electrical breakdown at the crack. When the crack was small, the experimental voltage
may not have reached the breakdown voltage, and the change in the current curve may
have also been dominated by a capacitance jump. In addition, we also designed the circuit
protection function, where the system would automatically cut off the circuit to protect the
safety of the equipment and eggs when the current exceeded the set threshold. (2) The jitter
of the current curve was relatively smooth due to the small changes in capacitance of the
intact eggs. However, the two wave shapes of the intact eggs were not exactly identical
and even had big differences, which may have been related to the different roughnesses of
the eggshells.

(a) (b)

(c) (d)

Figure 13. Egg current waveform. (a,b) Waveforms of intact eggs. (c,d) Waveforms of cracked eggs.

After the wavelet threshold denoising, the time domain, frequency domain, and
wavelet packet coefficients of the current signal were extracted. It can be seen from
Figures 14 and 15 that most of the features of the intact eggs and cracked eggs had obvious
differences, but some of the differences were not obvious.

We put the time domain, frequency domain, and wavelet packet coefficient features
into the SVM model. The experimental results showed that the recognition rate of each
feature was different and that the eggs incorrectly recognized by different features were also
not the same. This indicates that features in different domains had different classification
effects. Therefore, this paper used the multi-domain features to fully reflect the inherent
characteristics of the original current signal so as to improve the detection accuracy.
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(a) (b)

Figure 14. Feature distribution diagram. (a) Time domain features. (b) Wavelet domain features.

Figure 15. Three-dimensional distribution diagram of frequency domain features.

Finally, we adopted a variety of machine learning methods such as K-means clustering,
linear discrimination analysis, and a support vector machine, as mentioned in Section 3.6,
for pattern classification, and performance measures such as accuracy, precision, and the
recall rate were calculated from the testing data. The experimental results are shown in
Table 6.

328



Agriculture 2022, 12, 1137

Table 6. Combination feature classification effect in time domain, frequency domain, and wavelet domain.

Accuracy Precision Recall F1 AUC

SVM 98.79% 98.27% 99.48% 98.87% 98.75%
LDA 99.31% 99.47% 99.21% 99.34% 99.31%
DT 99.35% 99.29% 99.47% 99.38% 99.36%
KM 99.05% 97.45% 98.73% 99.08% 99.09%
RF 99.44% 99.68% 99.51% 99.59% 99.43%

The following conclusions can be drawn from the experimental results:

1. By selecting a suitable wavelet base for wavelet denoising, the noise in the raw
current signal could be effectively suppressed, and thereby, the classification accuracy
was improved;

2. By combining the features in various transform domains, more informative and
discriminative features could be obtained.

5. Discussion

This paper studied the electric field characteristics of eggs under the action of elec-
trodes on the basis of analyzing the physical properties of the eggshell and established
two discharge models. The high-precision detection of eggshell cracks was realized by
designing an egg crack detection platform, comparing machine learning classification
algorithms, and analysis of the current signal. The most important element of this study
is proposing a novel method for crack detection in eggshells based on discharge analysis.
The vision-based method has higher requirements for the light source and image processing
technology, and the acoustic method has higher requirements for the percussion equipment
and environmental noise. However, the method in this paper has high precision, stable
results, and less dependence on the environment. It only needs to control the humidity,
voltage, and a few other experimental conditions. This section will further discuss the
electrical characteristics of poultry eggs and explore the universality and generalization of
the method proposed in this paper.

It is worth noting that the classification accuracy did not change significantly under
different machine learning methods, which proves that the features extracted based on the
current signals were stable. Therefore, the current-based crack detection method is feasible
and can be used in actual production, with accuracy rates as high as 99%. In addition,
for misclassified eggs, by analyzing the position, condition, and corresponding current
signal of the cracks, we found the following problems. Although the cracks were distributed
in the effective detection area between the tip and the blunt end, they were blocked by
spilled egg liquid and dust due to a long storage time. Therefore, it should be possible to
further improve the classification accuracy by improving the design of the brushes.

In addition, we conducted further studies on the electrical properties of the eggs. We
randomly selected 10 eggs as samples and recorded the current signals at applied voltages
of 800 V, 1000 V, 1200 V, and 1400 V. According to whether there was an obvious discharge
that could be directly observed and heard, the eggs could be divided into discharged
eggs and undischarged eggs. The current signals of the two kinds of eggs are shown in
Figures 16 and 17. Figure 18 compares the current signals of both the discharged and
undischarged eggs in the same coordinate system. After analysis, it can be seen that the
higher the discharge voltage, the larger the dynamic current of the egg would be. However,
the voltage increases would also amplify the current fluctuation, which also indirectly
proves that the high voltage will cause breakdown in the eggs. In addition, not all eggs in
the discharged samples had cracks, which means it is not reliable for directly identifying
whether the eggs had cracks when only using the current signal, and it is very necessary to
conduct data analysis on the current signal.
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Figure 16. Current signal when the egg had no discharge phenomenon under different voltages.

Figure 17. Current signal when the egg produced the discharge phenomenon at different voltages.

Figure 18. Current signal of the eggs in the voltage range of 800–1400 V. The current signals of 3 eggs
with obvious cracks are set to blue, the current signals of 2 eggs with no cracks but obvious discharge
are set to green, and the current of the eggs without discharge signal is set to orange.
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Crack detection technology based on electrical characteristics is a new research di-
rection for the quality inspection of agricultural products in the future which has great
research value and market potential. The method proposed in this paper can not only
detect cracks in eggs but also achieve high-precision detection of cracks in duck eggs,
among others. It is a universal and generalizable method. We purchased 267 fresh duck
eggs from the Dabao Breeding Duck Incubation Base in Xintai Tianbao Town for current
signal acquisition, including 130 intact duck eggs and 137 cracked duck eggs. The phys-
ical and experimental parameters of the tested duck eggs are shown in Table 7. Based
on the analysis in Section 4.3, after the wavelet denoising, the time domain, frequency
domain, and wavelet packet coefficient features of the current signal of the duck eggs
were extracted and combined, and we selected the RF classifier for training. The results
are shown in Table 8. For the duck eggs, the accuracy of the model was slightly reduced
but still within a higher accuracy range. We speculate that there are two main reasons
for the slight fluctuation of the evaluation index: (1) The number of duck eggs used in
verification was quite different from that of the number of eggs.Therefore, according to the
equations for the precision rate and recall rate, it can be known that, when the overall base
is low, misclassification usually leads to a greater reduction in relevant indicators. (2) Eggs
are usually laid in industrialized chicken houses, where the environment is relatively dry
and hygienic. While ducks are typical waterfowl, they usually live outdoors and in water,
which also leads to a relatively humid and dark environment for duck eggs, and the cracks
are easily blocked by impurities such as dust. Although we simulated the cleaning process
of the egg factory before testing, the impurities that had been blocked for a long time had
solidified, and it was difficult for water molecules to enter the small cracks to wet the
blocked substance during flushing, so the conductivity at the cracks would decrease and
cause them to be missed during the inspection.

Table 7. Physical and experimental parameters of tested duck eggs.

Long Axis
Average

Short Axis
Average

Weight
Average

Voltage Frequency
Number of

Sampling Points
Average

Humidity
Average

Temperature

Duck
eggs 67.4 mm 50.3 mm 68.5 g 1500 V 100 Hz 450 55% RH 15 °C

Table 8. Detection results of cracked duck eggs.

Accuracy Precision Recall F1 AUC

RF 98.16% 98.41% 97.74% 98.04% 98.28%

6. Conclusions

In this study, we established the egg electrical characteristics model and designed a
microcrack detection system that has higher accuracy and is more convenient than the
traditional methods. Different types of features extracted from the time, frequency, and
wavelet domains of the current signals were proven to contain a mass of crack characteristics
after reducing the interference of noise in the signal with the sym2 wavelet. Based on the
above features, five typical machine learning algorithms were used to divide the eggs
into cracked eggs and intact eggs, which verified the proposed model. The experimental
results show that the RF had better robustness, and the fusion of multi-domain features can
effectively improve the accuracy of classification. It is worth noting that the classification
accuracy by different machine learning methods had little variation, with all being around
99%, proving that the model of detecting microcracks by using current signal features
has certain stability and reliability. The relevant experiments of duck eggs also confirmed
that the method proposed in this paper has a certain universality and generalization. Our
research will help relevant enterprises to quickly and accurately detect cracked eggs in the
production line, greatly reduce the number of cracked eggs in the end products, improve
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the quality of related products, and have good practical application prospects. In general,
this paper explored a new method for nondestructive testing for egg cracks which lays
a foundation for the development of nondestructive testing of egg cracks based on an
electrical characteristics model.
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Abstract: Existing push robots mainly use magnetic induction technology. These devices are suscep-
tible to external electromagnetic interference and have a low degree of intelligence. To make up for
the insufficiency of the existing material pushing robots, and at the same time solve the problems
of labor-intensive, labor-intensive, and inability to push material in time at night, etc., in this study,
an autonomous navigation pusher robot based on 3D lidar is designed, and an obstacle avoidance
strategy based on the improved artificial potential field method is proposed. Firstly, the 3D point
cloud data of the barn is collected by the self-designed pushing robot, the point cloud data of the
area of interest is extracted using a direct-pass filtering algorithm, and the 3D point cloud of the barn
is segmented using a height threshold. Secondly, the Least-Squares Method (LSM) and Random
Sample Consensus (RANSAC) were used to extract fence lines, and then the boundary contour
features were extracted by projection onto the ground. Finally, a target influence factor is added to the
repulsive potential field function to determine the principle of optimal selection of the parameters of
the improved artificial potential field method and the repulsive direction, and to clarify the optimal
obstacle avoidance strategy for the pusher robot. It can verify the obstacle avoidance effect of the
improved algorithm. The experimental results showed that under three different environments: no
noise, Gaussian noise, and artificial noise, the fence lines were extracted using RANSAC. Taking the
change in the slope as an indicator, the obtained results were about −0.058, 0.058, and −0.061, respec-
tively. The slope obtained by the RANSAC method has less variation compared to the no-noise group.
Compared with LSM, the extraction results did not change significantly, indicating that RANSAC has
a certain resistance to various noises, but RANSAC performs better in extraction effect and real-time
performance. The simulation and actual test results show that the improved artificial potential field
method can select reasonable parameters and repulsive force directions. The optimized path increases
the shortest distance of the obstacle point cloud from the navigation path from 0.18 to 0.41 m, where
the average time is 0.059 s, and the standard deviation is 0.007 s. This shows that the optimization
method can optimize the path in real time to avoid obstacles, basically meet the requirements of
security and real-time performance, and effectively avoid the local minimum problem. This research
will provide corresponding technical references for pusher robots to overcome the problems existing
in the process of autonomous navigation and pushing operation in complex open scenarios.

Keywords: dairy farm; pusher robot; path extraction; obstacle avoidance
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1. Introduction

Dairy farming is an indispensable part of modern agriculture, which occupies a
high proportion in the agricultural industry [1,2]. In China, the traditional technology
of dairy farming is relatively backward, and most of them adopt the management mode
of small-scale scattered farming, which is not conducive to the development of modern
agriculture; as a result, the mode is changing toward the direction of large-scale, factory,
and standardization. [3,4]. In the past few years, China’s dairy industry has developed
rapidly, and its output value and scale are at the forefront of the world [5]. According to the
data released by the Ministry of Agriculture and Rural Affairs, China’s milk production in
2020 was 35.3 million tons, an increase of 7% over 2015, on the other hand, the proportion
of farming with more than 100 heads reached 67.2%, an increase of 18.9% compared with
2015. In this situation, it is undeniable that the dairy industry not only meets the residents’
consumption demand for milk, but also increases the income of dairy farmers. In addition,
it plays a key role in optimizing the rural industrial structure [6].

The continuous prosperity of the social economy makes the public put forward higher
requirements for the quality of dairy products, which indirectly promotes the development
of the dairy industry [7,8]. However, the rapid development has also exposed new prob-
lems, operators gradually found that the existing high-tech aquatic products could not
meet the production needs. For example, in the process of cow feeding, part of the feed
will be removed from the feeding area due to the cow’s activity, resulting in accumulation,
which will lead to the deterioration of uneaten feed in the long run. The current solution
is to use manual or manual pushing equipment to push the accumulated feedback into
the feeding area. In this situation, enterprises need to arrange more labor or equipment to
promote feed [9]. Relying on manual labor will make it impossible for the farm to complete
the feeding work in a timely and stable manner; as a result, the milk yield of the cow will
be reduced. In this case, the robot used to push feed is very practical.

The accuracy and execution efficiency of multimedia target recognition technology
have been greatly improved with the development of deep learning (DL) and machine learn-
ing, under the circumstances [10–12]; the application of the technology has been extended
to the fields of medical imaging [13], video surveillance [14], and robot navigation [15]. In
the wave of technological change, traditional agricultural machinery has ushered in a new
opportunity for development. Agricultural robots such as feeding robots, transport robots,
and picking robots have begun to apply DL and machine learning techniques [16–18].
Among them, the self-propelled robot has been favored by many scholars as a new research
hotspot. Some researchers have studied the technical difficulties of navigating the path
extraction of agricultural robots based on visual geometry inference and DL [19]. The
classical methods to infer visual geometry include simultaneous localization, mapping, and
motion structure. This kind of technology obtains parameter values through sensors such
as optical detection and ranging (LiDAR), sound navigation and ranging, optical flow, and
stereo and monocular cameras, and uses corresponding algorithms for obstacle avoidance
and path planning [20]. Among similar sensors, Lidar has the advantages of high-ranging
accuracy, good resolution, and a strong anti-jamming ability. It has been widely used in
the perception and extraction of agricultural indoor environmental information, and has
become a research hotspot for agricultural production robots [21]. In the research field of
push robots, new technologies continue to emerge. DeLaval has developed an automatic
mixing and pushing robot using magnetic induction technology, which can independently
plan the walking route and speed, and is suitable for automatic mixing and the pushing
of different types and quantities of feed. Pavkin et al. [22] concentrated on the simulation
modeling of a feed pusher robot using Simulink tools in the Matlab environment to facili-
tate robot modernization or optimize the final cost for artificial testing of typical system
elements and reduce production costs. However, the application of Lidar in the bullpen
has not been reported, but the research on bullpen path extraction and obstacle avoidance
based on Lidar and machine vision has a certain application value.
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At present, the existing research at home and abroad has solved the problem of
navigation path extraction in some agricultural scenarios, but the working environment of
dairy farms was rarely mentioned. In this study, a new type of machine vision system was
developed to fill this gap. The system will be used for extraction and tracking control of
the working path of the pusher robot. Taking the cowshed environment as the research
object, the self-designed pusher robot and 3D lidar were used to collect the point cloud
data of the cowshed. The ground point cloud was removed by point cloud preprocessing,
and the pass-through filtering algorithm extracted the point cloud data of the region of
interest. Then, the least-squares method (LSM) and random sample consensus (RANSAC)
were used to extract fence lines, project them and obtain boundary contour features, and
extract fence lines and initial paths. At the same time, a robot navigation path optimization
and obstacle avoidance method based on the improved artificial potential field method
is proposed, which will provide corresponding technical references for pusher robots to
overcome the problems existing in autonomous navigation and pushing operations in
complex open scenarios. The system designed in this study could autonomously generate
accurate navigation paths for robots in a dynamic farm environment, which will provide
technical reference for autonomous navigation of farming robots and the development of
precision animal husbandry.

This paper is organized as follows: Section 2 details the materials and methods em-
ployed to achieve the research objective. In Section 3, experimental results and discussion
of the proposed technique are presented. Finally, in Section 4, the conclusion and future
work is provided.

2. Materials and Methods

2.1. The Composition of the Pusher Robot System in the Farm

The pusher robot needs to replace the labor for the feeding process, thereby reducing
the feed cost and labor intensity of feeding dairy cows. The pusher robot can meet the
functions of autonomous walking and pushing. Therefore, the pusher robot was mainly
composed of a vehicle navigation hardware system, pusher operation system, and naviga-
tion and operation control system. Among them, the vehicle navigation hardware system
and the pushing operation system were the specific execution systems of the instructions,
which were responsible for receiving and executing the task instructions issued by the
control system to complete the autonomous navigation and pushing operation. The navi-
gation and operation control system were responsible for setting the working mode of the
vehicle system, issuing target point instructions, displaying the robot position in real time,
and controlling the pushing operation system. Through the fusion and analysis of various
sensor information, the pusher robot could realize autonomous positioning and navigation
in the natural environment.

The hardware device and the control system communicated in real time via a wireless
network to complete the autonomous navigation and operation tasks of the pusher robot
on the farm together, as shown in Figure 1. The vehicle navigation hardware system
mainly included a robot chassis, drive module, control module, environmental information
perception module, communication module, and power supply module.

337



Agriculture 2022, 12, 1008

 

Figure 1. The vehicle navigation hardware system.

According to the task of the farm operation and the needs of the environment, the driv-
ing module of the robot adopted a two-wheel differential drive structure, and the steering
control of the robot could be realized by setting different speeds for the two driving wheels.
This drive system was not only simple in structure and small in turning radius, but also
more flexible in movement, which greatly improved the control accuracy of the whole ma-
chine. The power system was provided by 60 V lithium battery modules. In order to ensure
that the robot had powerful computing functions, the main control unit used Jetson Nano
development board (NVIDIA, Shanghai, China), equipped with Tegra X1 heterogeneous
SOC (NVIDIA, Shanghai, China), the size of this unit was 100 mm × 80 mm × 29 mm.
The basic framework of ROS navigation was built under the Ubuntu 18.04 system, and
information was exchanged with the chassis using RS-485 communication. The generated
signal was transmitted to the main control unit via USB3.0. The car was equipped with
the STM32F103 embedded motherboard (Haoyao, Shenzhen, China) as the underlying
controller. According to the speed information provided by the encoder, the odometer data
(moving speed, driving distance, and turning angle) of the vehicle system were obtained
through kinematics calculation. Finally, the control of the vehicle-mounted system and the
pushing operation system was completed through the control algorithm.

The environmental information perception module uses a 16-beam miniature LiDAR
(RS-LiDAR-16, Sagitar Juchuang, Shenzhen Sagitar Juchuang Technology Co., Ltd., Shen-
zhen China). The compact housing of the RS-LiDAR-16, mounted with 16 laser/detector
pairs, rapidly spins and sends out high-frequency laser pulses to continuously scan the
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surrounding environment, collecting real-time 3D point clouds. The 3D space point cloud
data and object reflectivity are provided by the distance measurement algorithm, so that
the pusher robot can digitally model the cowshed, providing a strong guarantee for its
positioning, navigation, and obstacle avoidance. The lidar is installed in the center of the
front end of the robot chassis, at a height of 0.6 m from the ground, and its performance
parameters are shown in Table 1.

Table 1. Parameters of LiDAR.

Parameters Values

Wavelength/nm 905
Detecting range/m 1–150

Accuracy/cm ±2
Vertical view/(◦) ±15

Horizontal view/(◦) 360
Vertical resolution/(◦) 2.0

Horizontal resolution/(◦) 0.1
Data rate/(pts·s−1) 6,000,000

Frame rate/Hz 10
Rotation speed/rpm 600

The 3D schematic diagram and physical map of the installation of each module of the
pushing robot are shown in Figure 2. The overall length of the pusher robot is 1.78 m, the
width is 1.15 m, the height is 1.40 m, and the rated load is 1 m3.

 
Figure 2. The Pusher Robot.
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2.2. Collection and Preprocessing of Point Cloud Data
2.2.1. Collection of Point Cloud Data

The 3D point cloud data of cowsheds were collected in Jinlan Dairy Farm (Figure 3) in
Tai’an City, Shandong Province, China from 16 to 30 October 2021. The cowshed is arranged
in a double row with a distance (D) of 6.25 m between the two pens. The point clouds of
the cowshed are unevenly distributed, with dense clouds at the near end and gradually
sparse ones at the far end (Figure 3b). As shown in Figure 3b, taking the geometric center
of the lidar as the origin point O, the forward direction of the robot is the positive direction
of the Y-axis, the vertical Y-axis to the left is the positive direction of the X-axis, and the
Z-axis is determined by the right-hand rule to establish a 3D lidar local coordinate system.
This study extracts the 3D point cloud data in the range of X-axis (0–10 m), Y-axis (−20 to
10 m), and Z-axis (0–2 m) from the coordinate system as the region of interest (Region of
Interest, ROI). Feeding of dairy cows will lead to the cluttered distribution of some of the
far-end feeds, and the collected point cloud data will be messier. Therefore, it is necessary
to filter out the ground point cloud to reduce the interference of the ground point cloud
data on the initial path extraction.

  
(a) (b) 

Figure 3. Cattle farm 3D point cloud acquisition: (a) Experimental cattle farm, (b) 3D point cloud of
the original cattle farm.

2.2.2. Preprocessing of Point Cloud Data

There are about 16,000 points in each frame of the collected 3D point cloud data of the
cowshed, which is a huge amount of data. In order to reduce the amount of calculation,
it is first necessary to preprocess the 3D point cloud data of the cowshed to remove noise
and outliers [23,24]. Then, use the pass-through filtering algorithm to extract the ROI point
cloud; the centroid of the cube is used to represent all points in the cube, and the voxel
filtering algorithm downsamples the point cloud to greatly reduce the number of 3D point
clouds while preserving the structural features of the 3D point cloud data. Therefore, this
study uses a cube with a side length of 0.1 m to downsample the ROI point cloud. There are
still many noise points and outliers in the filtered 3D point cloud, so statistical filtering is
used to remove the noise and outliers [25]. In order to reduce the interference of the ground
point cloud on the cowshed outline extraction, the ground plane fitting (GPF) algorithm
proposed in the literature [26] is used to segment the ground and non-ground point clouds.

2.3. Fence and Initial Path Extraction

To make the segmented fence show a better effect, the preprocessed bullpen 3D point
cloud was segmented by a high threshold method. The height threshold was determined
according to the actual height of the cowshed and empirical methods, and the height
threshold here was set to 0.1 m. The fence point cloud has apparent line features. The fence

340



Agriculture 2022, 12, 1008

point cloud is projected onto the XY plane, and the fence lines are extracted by LSM and
RANSAC, respectively, and the extraction effects of the two are compared. Project the fence
point cloud on the XY plane, extract the boundary contour features of the fence point cloud,
and calculate the navigation path of the pusher robot according to the fence’s boundary
outline to improve the mobile robot’s accuracy in pushing grass during the operation.

2.3.1. The Least-Squares Method

LSM is a mathematical tool that has been widely used in many disciplines of data
processing such as error estimation, system identification and prediction, and forecasting.
It finds the best function parameters for point cloud data by minimizing the sum of squared
errors. The basic principle is as follows: data {(xi, yi), i = 1, 2, . . . , m}, obtain the data
fitting function ϕ(x). Then, the fitting function ϕ(x) should reflect the changing trend of all
data as much as possible, but it is not required to pass all data points; that is to say, there is
a certain error between the fitting function ϕ(x) and the actual measured data at xi. Here, it
is represented by εi:

εi = ϕ(xi)− f (xi)(i = 1, . . . , n)

In order to meet the requirement that the fitting function curve can reflect the change
trend of all data as much as possible, its 2-norm is required to be a minimum.

‖ E ‖2=

{
n

∑
i=1

[ϕ(xi)− f (xi)]
2

} 1
2

where ‖ E ‖2 is the 2 norm of error.
In order to facilitate calculation, analysis, and application, the square of 2 norm is

usually calculated, namely:

‖ E ‖2
2=

n

∑
i=1

[ϕ(xi)− f (xi)]
2

This fitting method, which requires the minimum sum of squares of errors, is called
the least-squares method.

The Fence Fitting Line was extracted by LSM fitting the point clouds on both sides of
the mobile robot’s driving direction. When the point cloud coordinates satisfy the minimum
value of F(W), W is the parameter matrix of the fitted Fence Fitting Line equation, as shown
in Equation (1):

F(W) = min
(
X′W − Y

)T(X′W − Y
)

(1)

where W = [k d]T is the parameter matrix of the fence line; k is the slope of the fence
line; d is the fence line intercept, and m : X′

n×2 = [X I] is the matrix composed of the
point cloud X-axis coordinate value matrix Xn×1=[x1 x 2 . . . xn]

T and the unit matrix I;
Yn×1 = [y1y2 . . . yn]

T is the matrix composed of the Y coordinate values of the point
cloud. Taking the derivative of Equation (1), when X′TX′′ is a positive definite matrix, the
parameter matrix W of the fence line equation is shown in Equation (2):

W =
(

X′TX′
)−1

X′TY (2)

2.3.2. Random Sampling Consistency

The RANSAC method can iteratively estimate the parameters of a mathematical model
from a set of observational data sets containing “outliers” [27,28]. The random sampling
consensus algorithm can well estimate the model parameters from the data containing a
large number of outliers, and can eliminate the interference of outliers on the estimated
overall data model, and obtain the global optimal solution. It is an indeterminate algorithm.
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It has a certain probability of producing a good result, and to increase the likelihood, the
number of iterations must be increased.

The purpose of RANSAC is to find the optimal parameter matrix so that the number
of data points that satisfy the matrix is the largest. Usually, h33 = 1 is used to normalize
the matrix. Since the homography matrix has 8 unknown parameters, at least 8 linear
equations are needed to solve, corresponding to the point position information, a set of
point pairs can list two equations, and at least 4 sets of matching point pairs are included.
The resulting matrix equation is shown in Equation (3):

s

⎡⎣x′
y′
1

⎤⎦ =

⎡⎣h11h12h13
h21h22h23
h31h32h33

⎤⎦⎡⎣x
y
1

⎤⎦ (3)

where S represents the sample data and hij represents a single element in the normalized matrix.
The RANSAC algorithm randomly selects 4 samples from the matching data set

and ensures that the 4 samples are not collinear, calculates the homography matrix, then
uses this model to test all data, and calculates the number and projection of data points
that satisfy this model. Error (i.e., cost function), if this model is the optimal model,
the corresponding cost function is the smallest. The resulting loss function is shown in
Equation (4):

L =
n

∑
i=1

(
x′i ,

h11xi + h12yi + h13

h31xi + h32yi + h33

)2
+

(
y′i,

h21xi + h22yi + h23

h31xi + h32yi + h33

)2
(4)

where xi
′, yi

′ are the elements in the parameter matrix; xi, yi are the elements in the
surrogate matrix.

A matrix is obtained by random sampling, and using Equation (3), it is verified
whether other points conform to the model, and then the conforming points become
“internal points”, and the nonconforming points become “external points”. Next time,
extract points from the “new interior point set” to construct a new matrix, and recalculate
the error. The final error is the smallest, and the maximum number of points is the final
model. The steps of the RANSAC algorithm:

(1) Randomly extract S sample data from the data set, fit multiple models (the 4 samples
cannot be collinear), calculate the transformation matrix H, and record it as model M;

(2) Calculate the projection error of all data in the dataset and the model M, if the error is
less than the threshold, add the inner point set I;

(3) If the number of elements in the current interior point set I is greater than the optimal
interior point set I_best, then update I_ best = I, and update the number of iterations k
as shown in Equation (5):

k =
log(1 − p)

log(1 − wm)
(5)

where p is the confidence level, which is generally taken as 0.995; w is the proportion of
“inner points”; m is the minimum number of samples required to calculate the model;

(4) If the number of iterations is greater than k, exit; otherwise, add 1 to the number of
iterations, and repeat the above steps.

RANSAC is used to extract the fence lines on both sides, and a subset is selected from
the point clouds of the fences on both sides by random sampling to establish a straight-line
model. Then, the number of interior points of the straight-line model is calculated to check
the correctness of the straight-line model, and iterate continuously to obtain the optimal
straight-line model, which is the extracted fence line (Figure 4).
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Figure 4. Flow chart of ridgeline extraction based on RANSAC.

The iteration threshold KRANSAC is a key parameter for random sampling fitting. If
the value of KRANSAC is set too large, it will take too long, and if the value of KRANSAC is
set too small, the fitting effect will be poor. The selection basis of the K value is shown in
Equation (6):

KRANSAC = lg(1 − α)/lg(1 − ωN) (6)

where α is the probability that all points selected in the iterative process are interior
points, %; ω is the probability that an interior point is selected from the data, %; N is the
total number of data points.

2.4. Work Path Extraction
2.4.1. Noise Processing

The real-time performance is evaluated by the processing time of extracting grid
lines [29], and the anti-noise ability is the resistance ability of the fence line extraction
method to two kinds of noise [30]. This study evaluates the effect of LSM and RANSAC in
extracting fence lines from the aspects of real-time performance and anti-noise ability, so
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that the extraction method can have strong real-time performance and anti-noise ability.
Add Gaussian noise and man-made noise to the fence point cloud; among them, Gaussian
noise cancels the statistical filtering process, and processes the Gaussian noise with the
mean value of 0 and the variance of 0.1 on the point cloud of the fence. The artificial noise
is achieved by adding interfering points between two fence point clouds.

2.4.2. Path Extraction

The boundary contour data are extracted from the fence point cloud using the point
cloud vector method. First, the fence point cloud and its adjacent points projected on
the XY plane are fitted with straight lines. Then, a point P in the fence point cloud is
selected, and its adjacent point cloud is set Pk = {P0, P1 . . . Pk−1}, a straight line is set
u·x + v·y = c

(
u2 + v2 = 1

)
, and the LSM is used to fit the straight line. At this time, the

vector q(u, v) is the normal vector of the point P. Then, referring to the content of the
literature, the method where the maximum angle between adjacent points is greater than
the set threshold is used to extract the fence outline point cloud, and the fence outline point
cloud is recorded as the point set U = {d0, d1 . . . dn−1}. Finally, the positional relationship
between the fence line and the fence outline data points is judged by Equation (7). After
removing the data outside the fence line, the point cloud data inside the fence line are
divided into the left point set (UL) and the right point set (UR).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dli =
|kl ·xi+bl−yi |√

kl
2+bl

2

dri =
|kr ·xi+br−yi |√

kr2+br2

UL =

{
(kl · xi + bl − yi) · (kr · xi + br − yi) <

0 ∩ dli − dri < 0|di(xi, yi) ∈ U

}
UR =

{
(kl · xi + bl − yi) · (kr · xi + br − yi) <

0 ∩ dli − dri > 0|di(xi, yi) ∈ U

} (7)

In the formula, dli and dri are the distance between the fence outline point di(xi, yi) and
the left and right fence lines, m; i is the index number of the point set, i = 0, 1, 2, . . . , n−1; n
is the number of point clouds of fence outline.

When the cows have been feeding for a period of time, the cows will push the forage
to the outside at will, causing part of the forage to enter the area where they cannot eat, and
the shape of the forage pile becomes irregular and the thickness of the pile becomes uneven.
Therefore, the pusher robot is operated along the outermost part of the no-eating area, and
the forage in the no-eating area is pushed to the eating area. As shown in Figure 5, during
the operation of the pushing robot, the sideline of the auger always coincides with the
inner boundary of the inaccessible area. The initial path is approximated by the translation
transformation of the fence line fitted by the two methods. In this study, the intercept (b1)
of the initial path was used as the index, the width of the edible area was 70 cm, and the
length of the auger of the pushing robot was 110 cm.

b1 = b0 + m1 +
1
2

m2 (8)

where b0 is the intercept of the fence line, m1 is the width of the edible area, and m2 is the
length of the auger of the pushing robot.
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Figure 5. Working diagram of grass pushing robot.

2.5. Improvement of Obstacle Avoidance Strategy

The pusher robot will inevitably encounter obstacles during the operation of the cattle
farm. The obstacle avoidance module is an essential part of the pusher robot to ensure that
it can pass through obstacles during mobile operations. This paper chooses the artificial
potential field method as the basis of the obstacle avoidance algorithm, and improves and
analyzes the situation that it falls into the local optimum point.

2.5.1. Artificial Potential Field Method

Artificial Potential Field (APF) is an obstacle avoidance strategy represented by ar-
tificially defined virtual forces [31,32]. The mobile robot is assumed to be a point, which
moves in a virtual force field, which is composed of the gravitational field of the target
point to the robot and the repulsion field of the obstacle to the robot. The gravitational field
is generated by the target point, and the repulsive force field is composed of the force field
generated by all obstacles [33].

As shown in Figure 6, the repulsive force of the obstacle acting on the mobile machine
is denoted as Frep, and the direction is from the obstacle to the mobile robot; the gravitational
force of the target point acting on the mobile robot is recorded as Fatt, and the direction is
from the mobile robot to the target point, then the force that the mobile robot receives at
this position is the combined force of the repulsion force Frep and the gravitational force
Fatt is F.
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Figure 6. Stress diagram of artificial potential field method.

In the process of path planning, the environment of the unmanned vehicle is treated
in a two-dimensional space, but the entire potential field distribution is three-dimensional.
As shown in Figure 7, the gravitational potential energy leads to the generation of the third
dimension, which is the main force in the process of path planning of the unmanned vehicle.
The obstacles in the driving environment form peaks in the potential field distribution map.
Under the action of the potential field, the unmanned vehicle can only move from the high
potential energy point to the low potential energy point, so that the unmanned vehicle will
not hit the obstacles, and it can safely plan the obstacle avoidance route.

Figure 7. Three-dimensional diagram of artificial potential field obstacle avoidance.

Let the positions of the mobile robot, the target point, and the obstacle, be denoted
as q = (x, y)T and qg =

(
xg, yg

)
, respectively, and qobs = (xobs, yobs) is the gravitational

potential field generated by the target point to the mobile robot, and Uatt(q) is the repulsive
potential field generated by the obstacle to the mobile robot.

When the mobile robot is far away from the target point, the target point should
generate a larger gravitational force for the mobile robot to move the mobile robot towards
the target point. At the same time, when the mobile robot is at the target point, the robot
should be at the zero-force point, so the gravitational potential field function is expressed as:

Uatt(q) =
1
2

ξρ2(q, qg
)

(9)
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where ξ is the gain coefficient of the gravitational field, and ρ(q, qg) represents the dis-
tance between the target point and the current position of the mobile robot (expressed in
Euclidean distance).

2.5.2. Improvement of Artificial Potential Field Method

The artificial potential field method converts the complex environmental information
around the mobile robot into a simple force field model, which can achieve a relatively
good obstacle avoidance effect in general [34,35]. However, due to the limitations of the
definition of the gravitational potential field function and the repulsive potential field
function itself, there may be situations in which the set target cannot be reached as expected
and local minima appear before reaching the set target point. The reason for the above
situation is mainly due to the defects brought by the definition of the gravitational potential
field function and the repulsive potential field function itself. If the gravitational and
repulsive forces are zero when the mobile robot reaches the target point, then the target
point is the global optimal point. Considering the above problems, the distance between
the target point and the robot is introduced into the repulsion function, and the repulsion
field function expression is redefined:

Urep(q) =

{
1
2 η
[

1
ρ(q,qobs)

− 1
ρ0

]2(
X − Xgoal

)n
, ρ(q, qobs) ≤ ρ0

0 , ρ(q, qobs) > ρ0

(10)

where (X − Xgoal) is the distance between the robot and the target, and n is a constant and
greater than 0. Similarly, the repulsive force on the mobile robot is the negative gradient of
the repulsive force field, and the repulsive force Frep (q) is expressed as:

Frep(q) =
{

Frep1 + Frep2, ρ(q, qobs) ≤ ρ0
0 , ρ(q, qobs) > ρ0

(11)

Frep1 = η

[
1

ρ(q, qobs)
− 1

ρ0

]
1

ρ2ρ(q, qobs)

(
X − Xgoal

)n
(12)

Frep2 =
n
2

η

[
1

ρ(q, qobs)
− 1

ρ0

]2(
X − Xgoal

)n−1
(13)

In the formula, the direction of Frep1 is from the obstacle to the mobile robot, and the
direction of Frep2 is from the target robot to the target point.

3. Results Analysis

3.1. Cowshed Point Cloud Preprocessing Results

In order to clarify the influence of the preprocessing method of point cloud data on the
pusher robot in different motion states, the pusher robot collected 3D point cloud data in
static and moving (forward speed is 0.5 m/s) states. From the collected 3D point cloud data,
200 frames of point clouds were selected for preprocessing. The number of preprocessed
point clouds and the processing time of the filtering algorithm are shown in Table 2. It can be
seen from the table that the pre-processed average point cloud numbers of the data collected
by the robot at rest and in motion were 3257 and 3249, and the total average processing
time was 0.338 and 0.319 s. There was no significant change in the number of point clouds
and the total average processing time, which indicated that the preprocessing method
selected in this study was suitable for machines in different motion states. Comparing the
processing time of through filtering, downsampling filtering, and statistical filtering, it was
found that statistical filtering took the longest time (0.122 s), accounting for 37.5% of the
total preprocessing time, which was not conducive to real-time processing.
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Table 2. Cowshed point cloud preprocessing results.

Motion States Preprocessing Methods Number of Point Clouds Processing Times/s

Static

Through the filter 9872 0.0763
Statistical filter 8253 0.125

Down-sampled filter 4777 0.0684
Ground plane filter 3257 0.0641

Motion

Through the filter 9865 0.0653
Statistical filter 8255 0.119

Down-sampled filter 4765 0.0676
Ground plane filter 3249 0.0642

The visualization results of the preprocessed 3D point cloud data are shown in Figure 8.
The ROI point cloud was extracted by pass-through filtering (Figure 8a), and the number of
processed point clouds was 9872, which was reduced by 40%, and significantly reduced the
number of point clouds; the number of point clouds after voxel downsampling filtering was
4777, which was reduced by 70%, and still retained the structural features of the original
point cloud data (Figure 8b); the number of point clouds after statistical filtering was 8253,
and 7% of outliers were removed (Figure 8c); after fitting the ground plane, the number of
point clouds was 3257, which reduced the ground point cloud data by 79%, and retained
the fence information (Figure 8d).

  
(a) (b) 

 
(c) (d) 

Figure 8. Visualization diagram of point cloud preprocessing: (a) Through filtered point cloud,
(b) Statistical filtered point cloud, (c) Down sampling filtered point cloud, (d) Point cloud after
ground removal.
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3.2. Extraction Results of Fence Lines and Paths

In the experiment, Gaussian noise and artificial noise were added to the cowshed
point cloud data, and the LSM and RANSAC were used to extract the fence lines and the
initial paths. The visualization results were shown in Figure 8 and Table 3. It could be
found from Figure 9 that both methods could process the fence point cloud data, and the
processing effect was better. From Table 3, the value of the slope of the right fence line
extracted by the LSM was −0.095 after adding artificial noise. Compared with no noise
added (the value of the slope was about −0.061), there was a larger error and the extraction
effect was reduced. The LSM considers the shortest distance from the overall point cloud to
the extraction line and the phenomenon that the extracted fence line deviates when many
data are deviating from the fence point cloud. The results of the RANSAC extracting fence
lines without adding noise, adding Gaussian noise, and adding artificial noise (take the
value of the slope of the right fence line as an example) were about −0.058, 0.058, and
−0.061, respectively, and there was no significant change, indicating that RANSAC has
certain resistance to both Gaussian noise and man-made noise. It could be seen from Table 2
that after adding artificial noise, the intercept value of the initial path extracted by the
LSM was about −0.610, and the group without noise (the intercept was about −0.603) was
quite different; The intercepts value extracted by the RANSAC in the three groups were
−0.602, −0.603, and −0.601, and the intercept changes were not obvious, indicating that
the RANSAC was better for initial path extraction.

Table 3. Extraction of bullpen line and initial path analysis by LSM and RANSAC.

Point Cloud Noise Methods
Intercept of

Bullpen b0/m
Line Slope of

Bullpen k0

Intercept of Initial
Path b1/m

Processing
Time/10−3 s

Without noise
LSM −1.853 ± 0.001 0.062 ± 0.002 −0.603 ± 0.001 2.352 ± 0.125

RANSAC −1.852 ± 0.001 0.056 ± 0.001 −0.602 ± 0.001 1.157 ± 0.012

Gaussian noise
LSM −1.853 ± 0.005 0.079 ± 0.012 −0.603 ± 0.005 2.638 ± 0.119

RANSAC −1.847 ± 0.005 0.058 ± 0.037 −0.597 ± 0.005 1.162 ± 0.015

Artificial noise
LSM −1.860 ± 0.007 0.095 ± 0.007 −0.610 ± 0.007 2.931 ± 0.124

RANSAC −1.851 ± 0.006 0.062 ± 0.005 −0.601 ± 0.006 1.165 ± 0.013

From the analysis of the processing time of the two methods, it could be found that
there was no significant difference in the processing time of RANSAC in the non-noise
group, the Gaussian noise group, and the artificial noise group. The processing time
(2.352 × 10−3 s) of the LSM without noise group was significantly different from the other
two groups, indicating that the processing time of RANSAC was less affected by noise than
the LSM method. The running time of RANSAC is significantly lower than that of LSM
transform, and RANSAC can obtain better real-time performance by selecting a reasonable
number of iterations.
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(1) No noise added 

  
(2) Add Gaussian noise 

 
(3) Add man-made noise 

Figure 9. Results of extracted ridgeline and initial path by three methods under different
noise. (a) Least squares method; (b) Random sampling consistency.

3.3. Simulation Analysis of Obstacle Avoidance Algorithm

In response to the problem that the traditional artificial potential field method is prone
to the defect of falling into minimal values, a new repulsion field function is proposed, and
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the selection range of the repulsion field gain coefficient is analyzed. In order to verify
the effectiveness of the improved artificial potential field method when there are multiple
obstacles, and the influence of parameter selection on the obstacle avoidance effect. This
paper conducts simulation experiments in MATLAB BR2020a. Since there are cows and
feed belts on both sides of the fence, it is only necessary to place obstacles at the proximal
and distal ends of the feed belts. The simulation space adopts a 10 × 10 grid map. It sets
the coordinates of the starting position of the robot to be (0, 0) marked with a square, and
the coordinates of the end point of the target point to be (10, 10), marked with a triangle,
and the obstacle coordinate points marked with circles are set between the two to simulate
the actual situation.

As shown in Figure 10, five obstacle coordinate points were set, with the coordinates
being (1.1, 1.2), (3, 2.4), (5.5, 5.5), (6, 2), and (8, 8.5). Then, the simulation parameters
were set: the improved repulsion potential field parameter gain coefficient value = 5, the
gravitational potential field gain coefficient value ξ = 15, the value of the maximum distance
that obstacles affect the mobile robot was 1.5 m, and the iterative step size of the mobile
robot was 0.1 m. The simulation results showed that the mobile robot could successfully
move from the starting point to the target point and achieve the effect of avoiding obstacles.

Figure 10. Simulation results of improved artificial potential field method.

To illustrate the influence of the improved artificial potential field algorithm parameter
selection on the obstacle avoidance effect, the obstacle avoidance effect of the mobile robot
in the moving process is analyzed from the perspective of reducing the repulsion force and
the gain coefficient of the gravitational potential field. Figure 11a showed the simulation
results when the repulsive potential field gain coefficient was too small. It could be clearly
seen that although there would be some collisions with obstacles during the movement,
the robot could still move to the target point in the end. Figure 11b shows the simulation
results when the gravitational potential field gain coefficient was too small. It can be clearly
seen that the mobile robot would oscillate back and forth at certain positions. In addition,
the robot cannot reach the set target point.

Figure 12 shows the situation where the obstacle is located on the extension line
between the robot and the target point, and the target point is within the repulsive potential
field of the obstacle. At this time, the coordinates of the target point are set to (8, 8), the
coordinates of the obstacle are set to (9, 9), and the maximum action radius of the repulsive
potential field of the obstacle is 1.5 m. The mobile robot reaches the target point smoothly
according to the planned path.
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(a) (b) 

Figure 11. Simulation results when the gain coefficient is not selected: (a) The repulsion gain
coefficient is too small; (b) Gravitational gain coefficient is too small.

Figure 12. Simulation results when the target point is in the middle.

Figure 13 shows the simulation results when the obstacle is set between the starting
point and the target point, and the resultant force is on the connection line between the
two, in which the position coordinates of the obstacle in Figure 13a are (5, 5); the position
coordinates of the obstacles in Figure 13b are (5, 5), (4.5, 5.5), (4, 6), (3.5, 6.5), and (3, 7). It
can be seen that the robot can successfully get rid of the minimum point and avoid obstacles
when it falls into a local minimum value during the movement process, and finally can
move to the target point.

Take single obstacle and multiple obstacles as examples, the simulation results of the
traditional artificial potential field method are shown in Figure 14 below. It can be seen
that compared with the improved artificial potential field method, the traditional artificial
potential field method will fall into oscillation when the robot is close to the obstacles, and
requires more steps when it is away from the obstacles, which is not conducive to the rapid
obstacle avoidance of the robot.
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(a) (b) 

Figure 13. Simulation results when obstacles are in the middle: (a) Single obstacle; (b) Multiple
obstacles.

 
(a) (b) 

Figure 14. Simulation results under traditional artificial potential field: (a) Single obstacle;
(b) Multiple obstacles.

The above results show that the improved artificial potential field method has better
performance under reasonable parameter selection. The forward path is predicted and
judged before the robot moves, and simplifies the restricted obstacles; that is, the robot
only affects the repulsive force of the obstacles on the target side within the affected
range; then, a reasonable virtual target point is set near the simplified obstacle, and the
improved repulsion function guides the robot to quickly generate a smooth, stable, and
collision-free path in a complex environment. Moreover, the rationality of the selection
of the gravitational potential field gain coefficient and the repulsive potential field gain
coefficient directly affects the obstacle avoidance effect. The algorithm can realize the
obstacle avoidance function of a mobile robot.

3.4. Experimental Research on Obstacle Avoidance

A simple obstacle avoidance test is carried out on the designed pusher robot in this
section. The static obstacle is set up in the experiment. In the three scenarios, the maximum
speed of the inspection robot is set to 0.5 m/s. Due to the low vehicle speed, the influence
radius of obstacles is set to 1.5 m; objects detected within 1.5 m in front of the robot
are regarded as obstacles. In the obstacle avoidance experiment, after placing the static
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obstacle objects in the test area, the robot is initialized to collect and model the surrounding
environment information. The robot is instructed to move along the extracted path to verify
the robot’s response to static obstacles. After the robot completes the map construction and
bypasses the obstacles, it quickly moves in the direction of the robot.

The pusher robot performs linear work toward the target until the robot moves to
the position shown in Figure 15a. At this time, the robot enters the influence range of the
obstacle. Under the combined action of attraction and repulsion, it deflects an angle to
the right to drive. Figure 15b shows the position where the robot is closest to the obstacle.
Under the action of the resultant force, the robot gradually crosses the obstacle until it
successfully reaches the end point (Figure 15c). During the entire driving and obstacle
avoidance process, the closest distance to the obstacle is 0.41 m. The optimized path
increases the shortest distance value of the obstacle point cloud from the navigation path
from 0.18 to 0.41 m, where the average time is 0.059 s and the standard deviation is 0.007 s,
which shows that the optimization method can optimize the path in real time to avoid
obstacles, basically meeting the requirements of security and real-time performance, and
effectively avoiding the local minimum problem The entire obstacle avoidance path is
relatively smooth, which can successfully avoid obstacles and reach the destination point.
The test proves that the pusher robot can efficiently extract the working path, make timely
decisions when detecting static obstacles, avoid collisions with obstacles, and has good
stability and reliability.

 
(a) 

Figure 15. Cont.
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(b) 

 
(c) 

Figure 15. Obstacle avoidance scene and process: (a) Find the obstacle; (b) Get around obstacle;
(c) Keep working.

4. Conclusions

Based on the research on the existing cowshed fence line extraction method, a robot
navigation path optimization method based on the improved artificial potential field
method is proposed. This method improves the safety of the unmanned driving of the
feeding machine, and provides theoretical support and development basis for the intelligent
agricultural equipment in the dairy farm.

(1) The functional requirements of the pushing robot were analyzed and the hardware
system was designed. According to the functional requirements of each module, the
model was selected and designed, and the research and experimental platform of the
pusher robot was built.

(2) The performance of LSM and RANSAC for extracting ridge lines and initial paths was
evaluated from the aspects of real-time performance and anti-noise capability. Under
three different environments: no noise, Gaussian noise, and artificial noise, the fence
lines were extracted using RANSAC, and the obtained results were about −0.058,
0.058, and −0.061, respectively. Compared with LSM, RANSAC was less affected by
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noise in processing time (between 1.157 × 10−3 and 1.165 × 10−3 s). It was shown
that the running time, anti-noise ability, and extraction effect of RANSAC were better.

(3) The obstacle avoidance method of the pusher robot was optimized. The target point
influence factor was introduced into the repulsive potential field function, and the
parameter selection strategy of the improved artificial potential field method was
analyzed. Finally, the correctness and feasibility of the obstacle avoidance method
were verified by simulation experiments.
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Abstract: More sustainable technologies in agriculture are important not only for increasing crop
yields, but also for reducing the use of agrochemicals and improving energy efficiency. Recent
advances rely on computer vision systems that differentiate between crops, weeds, and soil. How-
ever, manual dataset capture and annotation is labor-intensive, expensive, and time-consuming.
Agricultural robots provide many benefits in effectively performing repetitive tasks faster and more
accurately than humans, and despite the many advantages of using robots in agriculture, the solutions
are still often expensive. In this work, we designed and built a low-cost autonomous robot (DARob)
in order to facilitate image acquisition in agricultural fields. The total cost to build the robot was
estimated to be around $850. A low-cost robot to capture datasets in agriculture offers advantages
such as affordability, efficiency, accuracy, security, and access to remote areas. Furthermore, we
created a new dataset for the segmentation of plants and weeds in bean crops. In total, 228 RGB
images with a resolution of 704 × 480 pixels were annotated containing 75.10% soil area, 17.30% crop
area and 7.58% weed area. The benchmark results were provided by training the dataset using four
different deep learning segmentation models.

Keywords: autonomous robots; agriculture; data acquisition; computer vision

1. Introduction

In recent years, agriculture has been increasingly modernized to address existing
problems in agricultural fields, where robots are being used to automate repetitive and
tedious tasks for humans, in addition to enabling a more effective application of precision
agriculture that uses resources much more efficiently. Advanced robotic systems are used
from the process of soil preparation, planting, harvesting, and weed control, to the post-
processing of the obtained resources. Although agricultural robots are increasingly common
on properties around the world, their use is mainly to directly improve crop productivity,
while solutions for scientific applications are still scarce and cost prohibitive for the vast
majority of research groups, especially in developing countries [1–4].

The complexity inherent in numerous agricultural tasks; for example, harvesting, weed
control, and crop quality analysis, among others; is greatly benefited by the advancement of
computer vision and artificial intelligence, due to the greater generalization that this type of
technology provides. This offers more robust control solutions for different conditions, such
as climate, soil, and vegetation [5–13]. The combination of computer vision with machine
learning algorithms in the context of precision agriculture can bring numerous benefits,
in addition to the drastic reduction of herbicides; for example, the detailed analysis of the
phenotype characteristics of plants by quantitative and individual measurements. For this,
a spatial analysis of the images captured by the sensors is necessary. Therefore, the use
of semantic segmentation algorithms is of paramount importance for detailing the region
of interest.

Semantic segmentation is the task of assigning a class label to every pixel in the image.
Figure 1 illustrates an example of a semantic segmentation mask in an agricultural image
of the Bean dataset, described in detail in Section 5. All soil class pixels in the image are
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set to purple, all plant pixels are set to blue, while weeds are set to green. The colors are
random and only serve to visually differentiate the classes.

(a) (b)

Figure 1. Example of semantic segmentation in an agricultural image. (a) RGB image. (b) Segmenta-
tion mask.

Currently, the state of the art in semantic segmentation problems is based on deep neu-
ral networks, which require a large amount of annotated data in their training process. Sev-
eral works present adequate solutions to the weed and crop segmentation problem [5–14].
However, due to the large number of parameters found in this type of model, converging
to a robust solution requires the use of a lot of data in its training stage. Therefore, the need
for large amounts of annotated images of different plant species and at different growth
stages is currently one of the biggest challenges in this area.

However, due to the complex task of image acquisition in the field, such as difficulty in
location accuracy, high human effort, difficulty in standardizing capture time, angle, height,
and lighting, among others, image datasets for training neural networks are still scarce in
the literature, especially for crops of regional interest that are not commonly cultivated on
a large scale in Europe and North America. While the popularization of drones is reducing
this problem for aerial images, for terrestrial images, which are especially important for
active weed control, cost and labor are still major factors in the data scarcity.

Since the vast majority of agricultural robots in the literature are designed to perform
more work than just image gathering in the field, when we assess the prices of prototype
construction or commercial purchase, we often see prohibitive values, especially in the
reality of many universities and research centers in developing nations.

A low-cost robot for capturing datasets in agriculture provides several advantages.
First, its low fee makes it more affordable for more farms and research groups to purchase,
resulting in broader and more affordable data collection. Furthermore, robots are able to
collect data more quickly and accurately than humans, increasing the efficiency of data
collection. They also avoid human errors such as fatigue or distraction, ensuring more
accurate data collection. In addition, robots can be designed to perform dangerous tasks,
reducing the risk to human workers. Finally, robots can be sent to remote areas to collect
data where it would be difficult or impossible for humans to reach.

This work aims to present the design, construction and use of a low-cost agricultural
robot for image acquisition in agricultural fields. The robot prototype was built with simple,
economical, ready-to-use components and was developed for the purpose of acquiring
images. In order to provide the community with a new dataset to work with domain
adaptation, the designed robot was used to collect a new dataset, called the Bean dataset,
which used a crop relevant to Brazilian agriculture; in this case, the bean crop.

2. Terrestrial Agriculture Datasets

This section presents the main datasets used in the area of semantic segmentation
of plants and weeds that were acquired terrestrially, that is, close to the ground through
robots, or acquired manually. Table 1 illustrates the classes, number of images, resolution
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and sensor type of five different datasets present in the literature. It can be observed that
only two terrestrial segmentation datasets have more than 60 images, which limits the
advancement of deep learning in this field.

Table 1. Comparison of five different terrestrial agriculture segmentation datasets present in the literature.

Name Classes # Images Resolution Sensor

Sugar Beets [15] Sugar Beets and 9 weed species 300 1296 × 966 RGB, NIR, Depth and GPS
Sunflower [16] Sunflower and weeds 500 1296 × 964 RGB
RGBWD [17] Carrot and weeds 39 3264 × 2248 RGB
CWFID [18] Carrot and weeds 60 1269 × 966 RGB
CWDD [19] Carrot, Onion and weeds 40 2419 × 1986 RGB and NIR

The two main terrestrial image datasets available in the literature and used for evalua-
tion of this work are the Sugar Beets and Sunflower datasets. The other datasets contain
few images for use in deep learning models.

Sugar Beets is an agricultural dataset composed of 300 RGB images acquired from a
terrestrial robot called BoniRob, illustrated in Figure 2, on a sugar beet farm near Bonn,
Germany, over a three-month period in the spring of 2016. The images were recorded three
times a week, starting with the emergence of plants and stopping when the robot could
no longer access the field without damaging the crops. The robot carried a four-channel
multispectral camera and a red, green, blue and depth (RGB-D) sensor to capture detailed
information about the crop. Additionally, GPS, LIDAR and wheel encoders are available,
resulting in around 5TB of data. Only RGB images and their respective semantic segmen-
tation masks from 2–3 weeks of growth stage after emergence were used in this work.
An example image found in the Sugar Beets dataset and its respective segmentation mask
can be seen in Figure 3.

Figure 2. Acquisition process of the Sugar Beets dataset using the BoniRob terrestrial robot developed
by Bosch DeepField Robotics [15]. BoniRob is equipped with four wheels that can be steered
independently of each other, allowing flexible movement and navigation on rough terrain.
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(a) (b)

Figure 3. Example of an image found in the Sugar Beets dataset and its respective segmentation mask.
(a) Image. (b) Segmentation mask.

Sunflower is a dataset for weed and crop segmentation that was collected using a
custom-built agricultural robot, illustrated in Figure 4, on a sunflower farm in Jesi, Italy.
The dataset is composed of 500 images and was recorded in the spring season, over a period
of one month, starting from the emergence stage of the crop plants and stopping until the
end of the useful period. The images were acquired using a four-channel (RGB + NIR)
JAI AD-13 camera, mounted on the robot and facing downwards. The dataset provides
RGB and NIR images with pixel-wise annotation of three classes: crop, weed and soil.
An example image found in the Sunflower dataset and its respective segmentation mask
can be seen in Figure 5.

Figure 4. Acquisition process of the Sunflower dataset using a custom-built manual pushcart.
Courtesy of Dr. Alberto Pretto—University of Padova.
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(a) (b)

Figure 5. Example of an image found in the Sunflower dataset and its respective segmentation mask.
(a) Image. (b) Segmentation mask.

3. Agricultural Robots in the Literature

One of the most important features of agricultural robotics is the replacement of
humans with field robots or mechanical systems that can perform dangerous and repetitive
tasks more precisely and evenly, at lower cost and with more efficiency. The most common
applications for agricultural field robots are weed control and accurate spraying. In this
context, spot spraying with robots for weed control application has produced satisfactory
results, reducing the use of herbicides to less than 10% of total spraying [20]. Several
promising weed robot technologies have been introduced and deployed in recent years as
a consequence of multidisciplinary collaboration initiatives involving different academic
groups and companies, although they have not yet been fully commercialized.

In this section, we present several previous works that have developed robots to
operate in agriculture. However, some of them are not only for image acquisition, but
also for chemical or mechanical action for weed manipulation. Despite not being the main
focus of the robot presented in this work, it would be possible to modify it to accommodate
mechanical actuators. Some of the main agricultural robots in the literature that carry
cameras for crop analysis are briefly discussed in this section. Table 2 illustrates the price
and country of origin of the robots described in this work. N/A means that no value
is available.

Table 2. Prices and places of origin of some common agricultural robots described in the literature.

Robot Price Country

BoniRob [15] €175,000 Germany
Terra-Mepp [21] $20,000 EUA
EcoRobotix [22] $250,000 Switzerland

Agbot II [23] €26,000 Australia
Asterix robot [24] €120,000 Norway
Thorvald II [25] N/A Norway
Ladybird [26] $1 million Australia
AgriBOT [27] N/A Brazil

DARob (Ours) $850 Brazil

BoniRob was developed by students at the University of Osnabrück along with Bosch
companies and the German agricultural company Amazone [28]. BoniRob is an agricultural
robot that detects weeds using camera technology and image recognition, and then drives a
screw into the soil to remove the plant. BoniRob was developed for applications in precision
agriculture, that is, for mechanical weed control, selective herbicide spraying, as well as for
plant and soil monitoring. It provides assemblies to install different tools for these specific
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tasks. BoniRob is equipped with four wheels that can be steered independently of each
other, which allows flexible movement and navigation over rough terrain. They provide
visual, depth, 3D laser, GPS and odometry data.

The Terra-Mepp robotic platform is designed to semi-autonomously navigate in a
single row and view the crop from above, side and below the canopy to provide a com-
prehensive set of phenotypic data for each plant [21]. An adjustable mast allows flexible
placement of sensors to adapt to changes in canopy height throughout the growing season.
This system employs an image-based proximal detection approach to measure plant height
using stereo cameras and depth sensors. A stereo camera with a 170° wide-angle lens
captured the plant height measurements. The camera was mounted vertically at a specific
location on the mast, so that the top of the canopy was centered in the camera’s field of
view. To measure the width of the plant, the low resolution infrared camera was mounted
horizontally on the robot’s base. Figure 6a illustrates the Terra-Mepp robot.

(a) (b)

Figure 6. Terra-Mepp (a) and EcoRobotix (b) robots in the field [22,29].

EcoRobotix, illustrated in Figure 6b, is a four-wheeled robot powered by two electric
motors, with wheels designed to ride on off-road surfaces, so it could traverse any farmland
with relative ease. It has solar panels on top to generate a continuous source of power for
the internal battery, allowing it to run as long as there is daylight, thus removing the need
to snap and recharge at the end of the day. It weighs approximately 130 kg. An onboard
camera, RTK GPS and a series of sensors allow you to identify crops and keep it on a travel
course, as well as detect the presence of weeds between crops.

Agbot II is a two-wheel drive (2WD) system agricultural robot developed at Queens-
land University of Technology for weed and crop management, as well as horticultural
applications [23]. The robot is equipped with a downward facing 1.3 MP global shutter
camera with an illuminated field of view using a pulsed lighting system synchronized with
data capture. The AgBot II can autonomously navigate and traverse a field performing
weeding operations, return to the central station to recharge its batteries, and refill its
chemical tank before returning to the field to continue operation.

The Asterix robot was designed with the specific task of applying spot spraying
herbicides [24]. The robot has a three-wheel design to maintain maneuverability and
stability with the benefits of reduced weight, complexity and cost. The vision unit employs
a Nvidia Jetson TK1, with a built-in camera unit using Omnivision 4682 4 MP sensor. Raw
images are debayered to RGB (Red–Green–Blue) and HSV (Hue-Saturation-Value) color
spaces. The forward facing camera and navigation unit allow the tracking of lines across
the field. A combination of vision and GPS location detects the end of a row and aids
navigation on the headlands.

Thorvald II is a lightweight, battery-powered autonomous agricultural robot de-
veloped from the robotics group at the College of Science and Technology, Norwegian
University of Life Sciences (NMBU) [25]. The robot is equipped with two drive modules,
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two passive wheel modules and no steering modules. As the spacing between the plots is
small, approximately 15 cm, the standard wheels of the drive modules are replaced by thin-
ner wheels. The robot is equipped with a RTK-GNSS receiver and an IMU, and navigates
through predefined waypoints. It stops and captures images on each plot. The robot is
equipped with two pairs of cameras, which consist of an RGB camera and a monochromatic
infrared camera. One pair is facing straight down and the other pair is mounted sideways
at a 55 degree angle.

The Agricultural Robot (AgriBOT) basically consists of a full-scale four-wheel au-
tonomous robotic tractor equipped with a 4WSD independent steering configuration [27].
The AgriBOT project is a cooperation project between EMBRAPA (Empresa Brasileira
de Pesquisa Agropecuária), EESC–USP (Universidade de São Paulo) and Jacto Company.
The AgriBOT has two laser sensors attached to its front, pointing downwards at −30°,
a model inertial measurement unit (IMU), a global positioning system (GPS), real-time
kinematic (RTK) and two red, green, and blue (RGB) cameras with charge-coupled device
(CCD) sensors of 1600 × 1200 pixels of resolution.

Researchers at the Australian Centre for Field Robotics (ACFR) of the University
of Sydney have developed the Ladybird robot, which is a lightweight, omnidirectional
electric vehicle for advancing agricultural robotics technology. The robot is equipped
with a forward and backward facing GPS, Light Detection and Ranging (LIDAR) along
with the Point Gray Ladybug 3 spherical camera to capture surroundings data to avoid
obstacles and detect crop rows. In addition, the robot has a set of three sensors under the
structure. The first is a camera to capture RGB images of the crops, whereas the second is a
hyperspectral imaging camera to capture infrared and ultraviolet data. It also has a laser
sensor to determine the height of crops above the ground.

Because the vast majority of the aforementioned robots are designed to perform more
tasks than just image acquisition in the field, when we analyze the costs of construction
of the prototype or for commercial purchase, we observe values that are often prohibitive,
especially for the reality of many universities and research centers in underdeveloped
countries. As an example, the BoniRob robot used to capture the Bonn dataset costs at
around $250,000.00, while cheaper versions, such as ecoRobotix and AgBot II, cost around
$90,000 and $26,000.00 at outdated prices. At the other end of the spectrum, robots such as
Ladybird have an estimated prototype build value of approximately $1 million. In addition,
we needed an alternative to the pushcart method used in the Sunflower dataset for image
capture that did not require as much manual labor. In this context, the contribution of the
development and construction of a low-cost terrestrial robot becomes important for the
advancement of computer vision science in agriculture.

4. DARob—Data Acquisition Robot

This section presents the design and construction of the DARob robot that aims to
capture images in agricultural fields.

The robot was designed to have an unobstructed region at its center, so that there
is a gap for plants to pass through as the robot moves along the crop. The design was
intended for strip cropping, in which several crops are planted in alternating rows. Typical
combinations include corn, sugar beets, soybeans, and grasses such as hay and wheat.
This configuration allows the span to be extended as needed for the plantation rows.
The distance between the wheels and their height can be modified, thus facilitating the
adaptation of the robot to different configurations of the rows, such as paired or twin rows,
as well as the adaptation of the height according to the existence of larger plants or in
different growth stages.

The robot is 1530 mm long and 635 mm high in its most compact form. The minimum
span width and height are 145 mm and 535 mm, respectively, and the maximum span width
is 835 mm. The project was also developed so that the robot is fully modular, facilitating its
transport and assembly at the site of use. Figure 7 illustrates the DARob. The batteries and

365



Agriculture 2023, 13, 413

electronic control mechanisms are placed in compartments for easy coupling on the upper
part of the robot, which is insulated against dust and moisture.

Figure 7. View of the DARob with its main systems.

The robot’s maneuvering method is the skid steering type, which is characterized by
not having a steering system, but rather changing the direction of the vehicle by controlling
the relative speeds of its left and right sides. Although the skid steering mechanism has a
simpler construction system, in practice there is a low efficiency for making sharp turns,
due to the wheel having to slide sideways to turn. To circumvent this problem, the robot
was built to run in either direction (front or back). This means that when the robot reaches
the end of the mapped terrain, it can continue driving backwards and does not need to turn
180° to continue, so only minor corrections in the direction are required for it to change
planting rows. The robot is controlled by remote control with electric propulsion through
the use of two 300 W direct current motors, each controlling the two wheels on its side.

The motors are bolted to the robot’s metal frame, and its axes are directly con-
nected with 1:15 transmission reducers, which increases the torque capacity of the motor.
A 16-tooth pinion is installed on the output shaft of the gearbox, which is coupled to a
chain that connects the 46-tooth chainrings, connected to both wheels (front and rear). This
connection also generates a gain in torque of 16/46, totaling approximately a 43-times gain
in the motor’s rated torque. The wheels are 52 cm in diameter, and the electric motor has
0.8 Nm of nominal torque and 1.7 Nm in stall.

The mechanical structure was built with the goal of modularity. Therefore, the robot,
when disassembled, is separated into four parts of equal size (one for each wheel). However,
for transport in smaller places, such as car interiors, simply separating the two sides of the
robot is sufficient. All electronic components are also easily removable and separable, as
they are placed on a plate above the frame. The entire process of assembling the robot and
installing the electronics takes about 10 min and requires only one person.

The camera is placed on a vari-angle bar placed in front of the robot above the
space where plants can move. The camera chosen for this project was the Intelbras s4020
IP Camera, a low-cost RGB and infrared camera used mainly for security tasks, which,
by construction, is designed to work outdoors in extreme temperatures, weather, and
unhealthy environmental conditions.
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The camera is designed to handle temperatures ranging from −30 to 50 °C, with a
3.6 mm focal length lens and 1/3” Progressive Scan CMOS sensor. The camera has an
IP66 protection rating, making it ideal for working in dusty areas. The transmission of
images is carried out via Ethernet cable, its power supply is 12 volts direct current and its
consumption is only 4.8 W, with a total weight of 360 g.

The robot’s guidance software is controlled by an open hardware platform called
Pixhawk, which has magnetometer, accelerometer, barometer, and GPS (Global Positioning
System) modules built into the system. These sensors are used as inputs to simultane-
ous localization and mapping (SLAM), which is calculated from the Ardupilot firmware.
Ardupilot is an advanced and reliable open source autopilot software that has been in
development since 2010, which from the input of sensors and user commands, controls the
current that is delivered to the motors. User control can be performed via remote control
or a pre-configured mission via the graphical interface of the QGroundControl ground
control station.

QGroundControl is a control station that works with the protocol Micro Air Vehicle
Link (MAVLink) compatible with open-source autopilots including the ArduPilot. In this
project, QGroundControl was chosen as the ground control station because it provides easy
and straightforward use for beginners, as well as offering support to advanced features
in mission control and vehicle configurations with autopilot. In addition, QGroundCon-
trol is one of the most stable ground control stations, has a simple and efficient interface
and is available in different operating systems, such as Windows, Mac OS X, Linux, An-
droid and iOS. Figure 8 illustrates the QGroundControl interface with the waypoints of a
planned mission.

Figure 8. Graphical interface of QGroundControl with an example of the mission’s waypoints map.
Source: www.qgroundcontrol.com, accessed on 27 March 2022.

In addition to the Pixhawk and the GPS module, the robot’s control system also has
an H-bridge (model Bts7960) and multiplexers (model CD74HC4067) used to convert the
output of the Pixhawk to command the H-bridge. Moreover, the remote control receiver
module and the on–off switch button for activating control via Pixhawk are placed in the
control system case. Figure 9a illustrates the control system case.
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(a) (b)

Figure 9. Details of the components present in the control and network systems. (a) Control System.
(b) Network System.

In addition to the control system cabinet, the robot has a network system cabinet
that includes an embedded microcomputer (Raspberry Pi 3 Model B+) responsible for
processing and capturing camera images, and a network router. The images were stored
on a 128 GB SD card attached to the Raspberry Pi and, after the missions, the data were
transferred to a personal computer. The network router has two different purposes, the
first is to allow the raspberry computer to access the IP camera images using a real-time
streaming protocol (RTSP), and the second is to allow a ground control computer to access
the Raspberry system via Secure Shell (SSH). To carry out this process, the microcomputer
runs on Linux (Raspbian OS). The router enables real-time monitoring of collected photos
as well as adjusting data collecting settings without having to access or stop the robot.
Figure 9b illustrates the network system case. The total cost to build the robot was estimated
at around $850. The main components of the robot and their respective costs are shown in
Table 3.

Table 3. Main components of the robot and their respective costs.

Item Price

Raspbeery Pi 3 $127
Pixhawk Kit $179

Network Router $19
2xMotor 300W DC 24V $187

2xBts7960 (Driver) $13
2xCd74hc4067 (Multiplexer) $4

Robot Frame $55
Camera Intelbras s4020 $69

2xBattery 12V $39
Reduction Drive $99

Extras $52
Total $843

5. Bean Dataset Acquisition and Annotation Process

From the analysis of Table 1, it can be observed that only two datasets, Sugar Beets
and Sunflower, provide a reasonable amount of images for the application of deep neural
network models. The amount of data required to train a deep neural network from
scratch varies depending on several factors, such as model complexity, data variety, and
degree of overfitting. A deep neural network is typically trained with at least hundreds of
pictures [30].

In addition, there are few plant variations available in the datasets, and none of them is
a plant of great importance for Brazilian agriculture. In this sense, we chose to create a new
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dataset to expand the possibilities of evaluating computer vision methods in agriculture
and also to create a database more aligned with the interests of Brazilian agriculture, such
as plants of the Leguminosae family. Due to the great morphological similarity between
the species and the greater availability at the time of planting, we mainly focused on the
use of the common bean.

At the end of April 2021, the sowing process of the bean crop began within an ex-
perimental area at the School of Agricultural Engineering (FEAGRI) of the University of
Campinas (UNICA MP). The area was prepared before sowing by mechanically removing
the weeds present in the region. This was the only weed control action in the field, because
after the emergence of the plants, no type of control was carried out.

The common bean, the crop used in the proposed dataset, is a perennial herbaceous
plant with the scientific name Phaseolus vulgaris L. It is a member of the Leguminosae
family. It has two different types of leaves: the simple or primary leaves, which are opposite,
and the compound leaves, which are composed of three leaflets and arranged alternately
(trifoliolate). Beans can be grown for up to four harvests in a year, as they have a short
growing cycle (about 90 days). The best sowing time is determined by the common bean’s
climatic requirements, which are specific to this variety [31].

One difficulty encountered during the capture of the dataset was the modification of
the lighting in the field, due to the robot not having protection from direct sunlight. In some
cases, images appear with camera shadows, so priority was given to capturing the dataset
in the late afternoon when sunlight was not shining directly on the capture area.

We collected data during one month, a specific period during which we covered
various plant growth stages. On average, data was acquired once a week, leading to 4 days
of capture in total. When recording on a typical day, the robot drove between two rows of
cultivation, each measuring approximately 100 m in length. The robot was radio controlled
during the data collection process, maintaining an average speed of 10 cm/s and a capture
rate of 0.5 frames per second. Figure 10 illustrates DARob in the acquisition process in the
FEAGRI field.

Figure 10. DARob in the acquisition process in the FEAGRI field.

In total, more than 5000 images were captured in RGB and IR format. Even though
only a subset was annotated with the segmentation maps, all images will be made publicly
available. Although the images are captured from emergence to the adult stage of the plant,
all of the images annotated in the Bean dataset are of plants in a growth stage no more than
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one week apart, 2–3 weeks into the growth stage. Figure 11 illustrates RGB and IR images
acquired with DARob. The data collection process covered different growth stages of the
bean crop. Our intention was to capture variations over time relevant to weed control.
The robot visited various regions of the field in different weather conditions, ranging from
sunny to cloudy. Although RGB and IR images were acquired, the applied capture process
did not allow a simple capture of the two aligned images.

(a) (b)

Figure 11. Examples of bean plant images acquired with DARob. (a) RGB image. (b) Infrared image.

Image annotation was performed using the supervise.ly platform [32] (version 6.4.31),
which is a Web platform for computer vision data annotation. Many annotation tools are
available in the supervise.ly interface for effective semantic segmentation, including cuboids,
polylines, bitmap brushes, bounding boxes, polygons, and keypoints. Figure 12 illustrates
the graphical user interface of the platform and the result of a semantic segmentation case
of the annotated images. The process was carried out in stages, where the first 10 images
were manually annotated, and later the Deeplab-v3 model [33] with pre-trained ResNet
101 backbone in the COCO dataset [34] was adjusted with the annotated images using
224 × 224 pixel patches. The inferred images were uploaded back to the platform for
correction. After 10 corrected images, the process was repeated to increase the inference
quality. After three cycles, no further improvement was noticed, so the rest of the images
were manually corrected.

Figure 12. Supervise.ly graphical user interface in the process of segmenting an image acquired
with DARob.
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A total of 228 RGB images with a resolution of 704 × 480 pixels were annotated.
The crop growth stage chosen for the annotation was similar to the steps present in the
Sugar Beets and Sunflower datasets to enable validation of the domain transfer models.
The available dataset was separated into five k-fold sets, each one with 183 training images
and 45 testing images. The dataset contains 75.10% soil area, 17.30% crop area, and 7.58%
weed area. The annotation process lasted approximately 3 months, between November 2021
and January 2022. Each image took approximately 2–3 h to be fully manually annotated.
With the iterative process, the average time decreased to 30 min. The dataset is available for
download at https://github.com/gustavu92/bean_dataset (accessed on 30 January 2023).

Four different segmentation networks were trained on the dataset to provide bench-
mark results. For this, we used the BiSeNet [35], DuNet [36], Deeplab-v3 [33], Deeplab-
v3+ [37] and PSPNet [38] networks. In all cases, except for BiSeNet, the ResNet50 network
was used as the backbone, due to the use of this model in benchmark results in the literature.
The BiSeNet network was also evaluated using the ResNet18 backbone. The mIoU results
for soil, crop and weed classes are shown in Table 4.

Table 4. Benchmark segmentation results for the acquired Bean dataset.

Model
Bean

Soil Crop Weed Mean

BiSeNet (ResNet 18) [35] 0.942 0.920 0.625 0.829
DuNet (ResNet 50) [36] 0.950 0.927 0.662 0.846
Deeplab-v3 (ResNet 50) [33] 0.953 0.935 0.680 0.856
Deeplab-v3+ (ResNet 50) [37] 0.957 0.958 0.682 0.866
PSPNet (ResNet 50) [38] 0.959 0.940 0.708 0.869

The computer used for training is equipped with a GeForce RTX 2070 with 8GB of
memory, a tenth-generation Intel i7 CPU and 24GB of RAM. The PyTorch framework was
used to implement our methods due to its easy debugging feature and open source license.
We also used several libraries for Python programming language, such as NumPy for
linear algebra operations, SciPy for scientific computing, OpenCV, PIL and Scikit-Image for
computer vision and image processing operations.

Table 4 shows that the tested networks have greater difficulty in segmenting the weed
class, which is expected, due to its smaller quantity and smaller size compared to the crop
and soil classes. The tests also show good consistency in the results, with little variation
due to the complexity of the networks used.

The Sunflower and Sugar Beets datasets were also evaluated with the BiSeNet network,
using ResNet18 as the backbone. The results are shown in Table 5. It can be seen that
the results for the proposed Bean dataset achieved a higher mIoU in the crop and weed
classes. This difference can be explained due to the higher proportion of the weed class in
the images. However, it is also observed that the results in the soil class were worse than
the results obtained in the other data sets. This can also be explained due to the higher
proportion of plants, causing the network to make more errors in the soil class. However,
the mIoU in the proposed dataset is slightly higher than the compared datasets.

Table 5. Comparison between the Bean dataset, Sunflower dataset, and Sugar Beet dataset using the
BiSeNet network with ResNet 18 as the backbone.

Dataset Soil Crop Weed Mean

Bean Dataset (Ours) 0.942 0.920 0.625 0.829
Sugar Beets 0.993 0.868 0.430 0.764
Sunflower 0.984 0.840 0.565 0.796

Although Tables 4 and 5 give quantitative values about the results, it is difficult to
analyze what would be a good value for the mIoU metric in practice for plant and weed
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segmentation. This analysis depends on the application in which the result will be used
and the specifics of the dataset used. For example, for applications where the result is used
for weed control, an average mIoU value of approximately 80 would already be sufficient
to detect the main weeds in the analyzed area, but the higher this value, the smaller the
size of the detected and segmented weeds.

6. Conclusions

In this work, we designed and constructed a low-cost autonomous robot (DARob) to
facilitate the capture of images in agricultural fields. There are some important features to
highlight about DARob:

• Low-cost machine: it employed economical and ready-to-use components, which can
facilitate the access of other research groups to this type of data acquisition system,
increasing the amount of datasets available;

• Automatic operation: the user can program the robot to execute automatically, follow-
ing the defined mission, which improves the repeatability of the data generated;

• Remote control: it is possible to follow how the data is being acquired during the
robot’s movement, allowing the operator to correct the acquisition configuration in
real time;

• Portability: the robot was designed to be easy to assemble, transport, and also flexible
for different types and sizes of crop.

During the operation of the robot, some limiting points were observed:

• Autonomy: the batteries have limited autonomy, reducing the robot’s efficiency;
• Bicycle wheels: by using these, the robot has difficulty moving over mud, which

reduces the autonomy and disturbs navigability during automatic operation;
• Shadow on images: since it does not have any type of enclosure for the camera, light

changing and shadow cause disturbances on the acquired images.

Furthermore, we created a new dataset for segmentation of plants and weeds in bean
crops. In total, 228 RGB images with a resolution of 704 × 480 pixels were annotated contain-
ing 75.10% soil area, 17.30% crop area and 7.58% weed area. The benchmark results were
provided by training the dataset using four different deep learning segmentation models.
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Abstract: In this paper, a Model Predictive Control (MPC)-based approach for vineyard spraying is
presented, able to adapt to different vine row structures and suitable for real-time applications. In the
presented approach, the mobile base moves along a row of vines while the robotic arm controls the
position and orientation of the spray nozzle. A reference lawnmower pattern trajectory is generated
from the vine canopy description, with the aim of minimizing waste while ensuring vine coverage.
MPC is used to compute the trajectory of the vehicle along the row and the manipulator tool trajectory,
which follow the spray reference, while minimizing vehicle acceleration and tool displacement. The
manipulator tool velocity commands provided by the MPC algorithm are tracked using task space
control. The presented approach is evaluated in two experiments: a vineyard spraying scenario and
an external evaluation scenario in an indoor environment equipped with the Optitrack camera system.

Keywords: mobile manipulation; optimization and optimal control; agricultural robotics; viticulture

1. Introduction

Agricultural robotics is an exciting, emerging research field that offers a potential
solution to the problem of increasing global demand for food production due to exponential
population growth and labor shortages [1]. Existing automated agricultural technologies
use large and expensive machines that are strictly tied to a specific production process
and usually have a significant environmental impact, especially ones used for pesticide,
insecticide and herbicide application [2].

The research presented in this paper is a part of the HEKTOR project [3,4], which
aims to replace such machines with heterogeneous autonomous robotic systems, capable of
jointly performing different tasks in viticulture and mariculture. As a part of the project, a
custom flipper-tracked mobile base was developed and equipped with a torque-controlled
7-DoF Kinova Gen3 robotic arm (Figure 1). For the task of vineyard spraying, a spray nozzle
is attached to the manipulator end-effector, and its position and orientation are controlled
by the robotic arm (Figure 1). This allows for precise control of the spray area, and is
suitable for treating the entire vine canopy or specific areas of the plant. The HEKTOR
project addresses viticulture activities that need to be carried out on steep terrain, typical of
the Mediterranean islands. However, the method presented in this paper is general and
was not developed specifically for steep terrains. The design of the mobile robot and the
high torques of the track drives allow the storage and transport of a sufficient quantity of
protective agent for spraying in conditions that are otherwise difficult for human workers.

This paper attempts to present a solution to the following problem: given a descrip-
tion of a row of grapevines, one must select coordinated mobile vehicle and robot arm
commands that result in satisfactory canopy coverage, while aiming to minimize spraying
agent waste, and perform the task as quickly as possible. This kind of problem setup calls
for a control method that is able to adapt to different row structures, accelerate in areas of
the row without grapevines and slow down in areas with the largest foliage heights.
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Figure 1. Mobile manipulator developed for the HEKTOR project, with an emphasis on manipulation
ability and maneuverability in steep terrain.

1.1. Related Work

Research efforts have already been directed towards the development of robots
for vineyard-related tasks [5–22]. The same applies to robots in agricultural spraying
tasks [2,6–9,11,13,23]. In [21], Bouloumpasi et al. discuss the possibilities and limitations of au-
tonomous robot technology for performing different tasks in viticulture. Vrochnidou et al. [22]
present the system architecture of an autonomous robot for grape harvesting, and discuss
the vision system used for the task of grape harvesting.

Monta et al. [5] designed a multipurpose robot for viticulture applications as early
as 1995. Approaches for robotic harvesting, berry thinning, spraying and bagging are
presented in the paper. At a conceptual level, the authors’ approach to vineyard spraying is
similar to the one presented in this paper, in which a spray nozzle is mounted on a robotic
manipulator that follows a lawnmower pattern path. Monta et al. conclude that this kind
of approach results in uniform spraying of the fixed-height foliage, but they do not discuss
in detail the control algorithm used to achieve this. In this paper, an expansion of the
following idea is given, able to handle different foliage shapes, with controls that allow for
spraying where the mobile manipulator is able to adapt to a specific vine row description.
Oberti et al. [7,8] mounted a precision spraying end-effector on a robotic manipulator and
used it to spray specific disease-affected areas of the vine. In [13], Cantelli et al. present
a mobile vehicle developed for autonomous spraying in agriculture, with emphasis on
vehicle navigation and mission planning. Berenstein et al. [6] report on grape cluster and
foliage detection algorithms for autonomous selective vineyard spraying. The authors
present a mobile vehicle with multiple spray nozzles mounted at different heights and use
visual feedback to select which nozzles should be active.

Similar work has been done with mobile manipulators for paint spraying [24–26]. Here,
a lawnmower path is often used as a reference for the position of the tool, an approach that
was adopted in the currently presented work.

Model Predictive Control (MPC) has been a subject of a number of research appli-
cations in robotics, such as manipulation, autonomous vehicle control and legged robot
control [27–31]. Wieber [27] presents the application of linear MPC to the bipedal walk-
ing robot, and discusses the advantages of this kind of controller for this particular task.
In [29], Elsisi presents an optimally designed nonlinear model predictive controller, and its
application to the robot manipulator. The parameters for the MPC algorithm presented by
Elsisi are selected by a modified multitracker optimization algorithm, rather than by trial
and error. In later work, Elsisi et al. focus on autonomous vehicle control [30,31]. In [30],
an MPC algorithm with a small number of parameters is presented, which is optimally
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designed using the social ski diver algorithm. In [31], an adaptive MPC algorithm is
used for autonomous vehicle control, utilizing a modified grey wolf optimizer, based on
opposition-based learning and quasi opposition-based learning. In this paper, MPC param-
eters are selected experimentally, while the more sophisticated MPC tuning algorithms will
be considered as part of future work.

The use of different trajectory optimization algorithms in mobile manipulation is also a
well-researched topic [28,32–35]. These trajectory planning algorithms are often designed to
be as general as possible, capable of performing multiple tasks while considering obstacles,
mobile manipulator dynamics and stability. In [28], Pankert et al. present a nonlinear MPC
scheme for continuous mobile manipulation, and show its ability to perform several tasks.
The strength of the authors’ approach lies in the variety of tasks it can perform, involving
position or force control, while avoiding obstacles. One of the experiments presented in
the paper is spraying a pattern on a flat surface, which is similar to the presented vision
of vineyard spraying with a mobile manipulator. However, the method presented in
this paper simplifies the planning problem by using certain insights into this particular
task. The complexity of the general mobile manipulation problem includes vehicle path
planning while considering obstacles, and controlling the forces or positions of the robot
arm end-effector. Grapevines are typically planted in structured rows, the area between
the rows being obstacle free. During vineyard spraying, the mobile base is limited to
movement between the rows. For this particular application, this paper proposes a task
space MPC algorithm that considers only the motion of the mobile base along the row
and the two-dimensional motion of the manipulator tool. The result is a low-dimensional
linear MPC algorithm that can be solved in real time even with large prediction horizons.
Additionally, in the spraying experiment presented in [28], the orientation of the spray
nozzle is kept constant throughout the task execution. This greatly reduces the maximum
and minimum heights that the spray area can reach, which also depends on the reach of
the particular robot arm. Knowing the typical foliage heights and the reach of the Kinova
Gen3 robotic arm, it was concluded that constant tool orientation was not appropriate for
the vineyard spraying task.

1.2. Contribution

This paper presents a novel method for vineyard spraying with a mobile manipulator
that combines the following methodological elements:

• Row-specific reference trajectory generation based on grapevine canopy description;
• Forward mobile base and two-dimensional task space manipulator command genera-

tion using linear reference tracking MPC;
• Manipulator joint space velocity command selection using task space control.

Compared to other state-of-the-art autonomous vineyard spraying methods, the pre-
sented method includes multiple novelties. The lawnmower spraying reference trajectory
is generated based on a specific grapevine row description, aiming to minimize spraying
waste and reduce the risk of excessive pollution. The control design based on task space
model predictive control allows the spraying agent to follow this reference while optimizing
coordinated mobile base and robot arm movements. This results in the desired behavior,
where the mobile base keeps constantly moving, accelerating in areas of the row without
grapevines and slowing down in areas with foliage of the largest heights. The predictive
nature of MPC allows for such behavior, which would be difficult to achieve using standard,
instantaneous control methods. Predictive control allows the controller to anticipate any
changes in the reference trajectory and optimally select how the mobile base and the robot
arm should react to it.

Compared to the state of the art in mobile manipulation, a control algorithm for the
specific purpose of vineyard spraying is developed instead of using a general trajectory
optimization algorithm. Unlike the general trajectory optimization algorithms, which
usually include end-effector pose planning, the presented algorithm combines MPC and
task space control in such a way that the MPC plans only the positions of the end-effector
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while disregarding its orientations, which are handled by an instantaneous task space
control algorithm.

This kind of approach results in two quadratic programming problems, for MPC and
task space control, which can be solved in real time even for large prediction horizons.

To summarize, our contributions are as follows:

• A novel method for vineyard spraying with mobile manipulators able to adapt to a
specific grapevine row description;

• Reference trajectory generation based on grapevine row description;
• Control design based on computationally efficient task space trajectory tracking MPC

that exploits the insight into the motion constraints imposed by the specific task of
vineyard spraying.

2. Task Space Model Predictive Control Approach

Since the vines are usually planted in structured rows, it is assumed that the vehicle
moves in a straight line at a constant distance from the vines, and, because of this, the spray
reference for the MPC is generated in a two-dimensional space. As shown in Figure 2, three
coordinate frames are defined: a ground-level global frame LG, a mobile base frame LB
and the spray frame LS. The spray frame LS is defined at a fixed distance from the spray
nozzle, and its position is computed using a single static transformation from the last link
of the robot manipulator. The goal is to control the global position of the LS frame, which
depends on the position of the LB frame with respect to LG, and the pose of the robot arm.
The y-coordinate of the LS frame is assumed to be constant at the MPC stage, which is
enforced by task space control. The z-coordinate of the LS frame, pS,z, is controlled by the
robot arm alone, while the x-coordinate pS,x is a sum of two components

pS,x = pB,x + pA,x (1)

where pA,x is the x coordinate of the position of the LS frame with respect to LB, controlled
by the robot arm, and pB,x is the x coordinate of the position of LB with respect to LG,
controlled by the mobile base.

Figure 2. Three coordinate frames are defined: a global frame at the ground level LG, mobile base
frame LB and the spray frame LS. The x, y and z axes of the coordinate frames are represented with
red, green and blue arrows, respectively.
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The overall control diagram of the system is shown in Figure 3. The reference trajectory
for the spray frame is computed based on the canopy description, explained in Section 2.1.
This reference is used as an input to the MPC solver, which selects optimal mobile base and
manipulator task space trajectories. Only the first set of optimized control inputs is sent to
the robot, after which the trajectories are recalculated based on the system state feedback
and the updated reference trajectory. The task space commands for the manipulator are
converted into joint velocities by the task space controller.

Figure 3. Overall system control diagram. The trajectory of the reference spray frame is generated
based on the canopy description and used as input to the MPC solver. The MPC solver provides the
velocity of the mobile base along the row and the velocities of the robot arm in the task space. The task
space control solver converts the desired velocities in the task space into joint velocity commands q̇.

2.1. Reference Spray Frame Trajectory

A reference lawnmower trajectory is generated within the upper and lower boundaries
of the foliage, with the aim of providing spray coverage while reducing waste (Figure 4).
The foliage canopy description is used to compute the vertices of the lawnmower pattern,
along with the Spray Width and Height Offset parameters (Figure 4). These parameters
are tuned with respect to the spray pattern of the nozzle mounted at the end-effector
of the robot arm. A constant velocity piecewise linear function is used as the reference
trajectory between the lawnmower pattern vertices. The reference velocity of the spray
frame, together with the flow of the spraying agent through the nozzle, affects the coverage
of a fixed area of the canopy. For a fixed amount of spray flow, lower reference velocity will
result in more coverage.

Figure 4. A reference lawnmower trajectory is shown with an orange line. The canopy descrip-
tion is represented by a blue and a red line, representing the upper and lower boundaries of the
foliage, respectively.
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The canopy description can be created either manually, by an operator, or using foliage
detection. In the experiments presented in this paper, the manual approach was used to
select the boundaries. In the future work, the plan is to use a foliage detection algorithm
for this purpose.

2.2. MPC Algorithm

The MPC algorithm selects trajectories for the mobile base and the robot arm task
space that follow a two-dimensional reference, while minimizing an objective function
described in this section. The optimization is performed over a prediction horizon N, with
fixed discretization time steps T. Although the velocities of the mobile base and the robot
arm are used for low-level control (as seen in Figure 3), MPC operates in the acceleration
space to achieve the desired behavior. The system state and control inputs in the k-th step,
x(k) and u(k), respectively, are

x(k) =

⎡⎢⎢⎢⎢⎢⎢⎣

pB,x(k)
pA,x(k)
pS,z(k)
ṗB,x(k)
ṗA,x(k)
ṗS,z(k)

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
6 u(k) =

⎡⎣ p̈B,x(k)
p̈A,x(k)
p̈S,z(k)

⎤⎦ ∈ R
3 (2)

System state consists of positions pB,x(k), pA,x(k) and pS,z(k), seen in Figure 2, as well
as the corresponding velocities. System inputs are the accelerations of the spray frame p̈B,x,
p̈A,x and p̈S,z. The output of the system is a two-dimensional position of the spray frame
LS, relative to the global frame LG. The output of the system in the k-th step y(k) is

y(k) =
[

pB,x(k) + pA,x(k)
pS,z(k)

]
∈ R

2 (3)

As already mentioned, the z component of the spray frame position pS,z is controlled
solely by the robot arm, and the x component is controlled by both the robot arm and the
mobile base (Equation (1)).

The system is therefore linear and its discretization results in the following system dynamics:

x(k + 1) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
A

x(k) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T2

2 0 0
0 T2

2 0
0 0 T2

2
T 0 0
0 T 0
0 0 T

⎤⎥⎥⎥⎥⎥⎥⎥⎦
B

u(k) (4)

y(k) =
[

1 1 0 0 0 0
0 0 1 0 0 0

]
C

x(k) (5)

MPC optimizes over a system input vector U containing N control inputs,

U =

⎡⎢⎢⎢⎣
u(0)
u(1)

...
u(N − 1)

⎤⎥⎥⎥⎦ ∈ R
3N (6)
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The system state and output vectors X and Y are, respectively,

X =

⎡⎢⎢⎢⎣
x(0)
x(1)

...
x(N − 1)

⎤⎥⎥⎥⎦ ∈ R
6N , Y =

⎡⎢⎢⎢⎣
y(0)
y(1)

...
y(N − 1)

⎤⎥⎥⎥⎦ ∈ R
2N (7)

The MPC optimization problem is defined as the following QP problem:

min
U

Wy‖Y − Yd‖2 + ‖WuU‖2 + ‖W xX‖2

s.t. x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

x(0) = x0

x ≤ x(k) ≤ x

u ≤ u(k) ≤ u

(8)

where Yd is the desired system output and Wy is the reference tracking weight. Wu and
W x are control input and system state weight matrices, respectively.

The reference tracking part of the criterion function (Wy‖Y − Yd‖2) is used to ensure
that the system output follows the reference trajectory for the spray frame. The second part
(‖WuU‖2) minimizes the system inputs: the acceleration of the vehicle along the row and
the task space acceleration of the manipulator. The control input weight matrix is

Wu =

⎡⎢⎢⎢⎣
wu
wu

...
wu

⎤⎥⎥⎥⎦
T

, wu =

⎡⎣wp̈B,x 0 0
0 wp̈A,x 0
0 0 wp̈S,z

⎤⎦ (9)

where the scalars wp̈B,x , wp̈A,x and wp̈A,z represent weights with respect to the acceleration
of the mobile base along the row, and the acceleration of the robot arm in the x and z
directions, respectively.

The third and final part of the criterion function (‖W xX‖2) minimizes a function of
the system state vector. In particular, it minimizes the displacement of the robot arm in the
x direction, with a weight matrix of the following form:

W x =

⎡⎢⎢⎢⎣
wx
wx

...
wx

⎤⎥⎥⎥⎦
T

, wx =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 wpA,x 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (10)

2.2.1. MPC Parameter Tuning

The main challenge in tuning the parameters of the criterion function (8) is the balance
between robot arm and mobile base motion. The x component of the reference trajectory
can be tracked by either robot arm or mobile base. The idea behind minimizing arm
displacement and mobile base acceleration is to achieve the effect where the mobile base is
responsible for slower, global changes in the reference trajectory and the arm is responsible
for faster, local changes. Parameters are tuned by trial and error to achieve this effect.
Extreme examples of mobile base and robot arm trajectories are shown in Figure 5, with
the corresponding optimization weights presented in Table 1.
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Figure 5. Solutions to the MPC optimization problem in the x direction using different criterion
function parameters. Parameters are given in Table 1. Spray frame trajectory pS,x is a sum of pA,x

and pB,x.

Table 1. MPC criterion function parameters resulting in trajectories shown in Figure 5.

Figure 5. (a) (b) (c)

Wy 800.0 800.0 800.0
wp̈B,x 800.0 80.0 8.0

wp̈A,x , wp̈S,z 4.0 8.0 16.0
wpA,x 0.5 1.0 2.0

The behavior of the trajectories selected by the MPC algorithm depends on the ratios
between the different optimization weights rather than their exact value. Figure 5 shows
solutions to the MPC problem with different ratios between the optimization weights, where
the system assumes an initial state with zero velocity. Increasing the weight corresponding
to the vehicle acceleration wp̈B,x too much leads to small accelerations of the mobile base
and thus to a large arm displacement (Figure 5a). Lowering the value of wpA,x and wp̈A,x

has a similar effect. Lowering wp̈B,x or increasing wpA,x and wp̈A,x too much (Figure 5c)
leads to the effect where the mobile base follows the reference with large accelerations,
while the robot arm displacement remains close to zero. To achieve the desired behavior
(Figure 5b), parameters are tuned following a general tuning rule: a larger weight is used for
minimization of the vehicle acceleration than for that of the robot arm. This, in combination
with the minimization of the arm displacement, leads to the already discussed effect.

For a set of reference trajectories generated as shown in Section 2.1, it was concluded
that different values can be used as weights for the MPC criterion function and still result
in satisfactory overall system behavior. The values for the sampling period, horizon and
weights of the criterion function used in the experiments can be found in Section 3.

2.2.2. MPC Constraints

The constraints on the system state and the control inputs have the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

−pmax
B,x

−pmax
A,x

−pmax
S,z

− ṗmax
B,x

− ṗmax
A,x

− ṗmax
S,z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≤ x(k) ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎣

pmax
B,x

pmax
A,x

pmax
S,z

ṗmax
B,x

ṗmax
A,x

ṗmax
S,z

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)
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⎡⎣− p̈max
B,x

− p̈max
A,x

− p̈max
S,z

⎤⎦ ≤ u(k) ≤
⎡⎣ p̈max

B,x
p̈max

A,x
p̈max

S,z

⎤⎦ (12)

The motion of the mobile base is left unconstrained (pmax
B,x = ∞). The maximum

velocity and acceleration of the mobile base, ṗmax
B,x and p̈max

B,x , respectively, are known and
directly enforced by these constraints. The maximum values of the robot arm velocities and
accelerations in the task space (ṗmax

A,x , ṗmax
S,z , p̈max

A,x and p̈max
S,z ) must be determined experimen-

tally, as they depend on the current arm configuration and the velocity and acceleration
limits of each joint, which are not considered by the MPC algorithm. Instead, the joint
space constraints are enforced at the level of the task space control algorithm.

2.3. Manipulator Task Space Control

Joint velocities q̇ are selected through task space control and are used to control the
robot arm (q represents joint positions). As mentioned earlier, the MPC algorithm only
considers the x and z coordinates of the spray frame position. In the planning phase
(phase of the MPC algorithm), the position of the spray frame in the y direction (pS,y) is
assumed to be constant, and its roll, pitch and yaw angles are not considered (φT , θT and
ψT , respectively, as shown in Figure 6).

Figure 6. The orientation of the spray frame depends on the joint configuration of the robot arm. Roll,
pitch and yaw angles are referred to as φT , θT and ψT , respectively.

To achieve the assumption of constant pS,y, the desired task space velocity in the y
direction, ṗS,y, is computed with a proportional controller

ṗS,y = KP,y(pd
S,y − pS,y) (13)

where pd
S,y is a desired value of pS,y and KP,y is the controller gain.

The desired linear spray frame velocity can be achieved with different angular veloc-
ities. To achieve the largest possible linear spray frame velocities, only the roll angle is
controlled directly, while the pitch and yaw angles are not considered. The desired roll
angle velocity is calculated with a proportional controller

φ̇T = −KP,φφT (14)

where KP,φ is the controller gain and the desired roll angle is zero.
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The desired task space velocity is four-dimensional and considers x, y, z position
coordinates and the roll angle of the LS frame,

v4D
d =

⎡⎢⎢⎣
ṗM

A,x
ṗS,y
ṗM

S,z
φ̇T

⎤⎥⎥⎦ (15)

ṗM
A,x and ṗM

S,z are provided by MPC, and ṗS,y and φ̇T are provided by proportional
controllers (13) and (14), respectively. The four-dimensional task space velocity depends
on the joint velocities as follows:

v4D = J4Dq̇ (16)

where J4D is the task space Jacobian.
In general, there are multiple solutions for q̇ that achieve the desired task space

velocities. For this reason, an additional criterion by which the joint commands are selected
is introduced. The desired joint velocities q̇d that drive the robot arm to a desired pose qd
are computed by another proportional controller,

q̇d = KP,q(qd − q) (17)

where KP,q is the controller gain.
Finally, the joint velocity commands are selected by solving the following QP problem:

min
q̇

∥∥∥J4Dq̇ − v4D
d

∥∥∥2
+ wp‖q̇d − q̇‖2

s.t. q̇ ≤ q̇ ≤ q̇
(18)

where q̇ and q̇ are the lower and upper bounds of the joint velocities, respectively, and wp
is the arm pose weight.

3. Results

Two experiments were conducted to evaluate the presented approach: a spraying
demonstration in a vineyard and an external validation in an indoor environment equipped
with Optitrack cameras. Both experiments were performed with the following optimization
weights: Wy = 800, wp̈B,x = 80, wp̈A,x = 8, wp̈A,z = 8, wpA,x = 1. Parameter values were
determined experimentally, as described in Section 2.2.1. Values of proportional controller
gains used in the experiments were KP,y = 0.9, KP,φ = 0.1 and KP,q = 1.5. These values were
also determined experimentally. The velocity of the reference lawnmower trajectory used
in all experiments was 0.3 m/s. A prediction horizon of 40 steps was used, with a sampling
period of T = 0.1 s. The optimization problems for the MPC and task space control were
both solved using the BPMPD interior point solver for convex QP problems [36]. The
average computation times of the MPC and task space control optimization problems were
3.998 ms and 0.201 ms, respectively, for 600 trials. This allows the presented approach to be
used in a real-time scenario, even with larger prediction horizons. All experiments were
performed on an Intel Core i7-10710U CPU @ 1.60 GHz.

3.1. Equipment

The control equipment used in the experiments is shown in Figure 7. All the software
was run on an Intel NUC 10 PC with a Ubuntu 20.04 operating system. The Robot Operating
System (ROS) was used as the middleware for controlling the robot arm, the mobile vehicle
and the spraying agent pump.
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Figure 7. Communication diagram of the equipment used in the vineyard spraying experiments.

The Kinova Gen3 7 DoF robot arm uses an ethernet connection to communicate with
ROS drivers running on the PC. As can be seen in Figure 3, low-level control of the robot
arm is achieved via joint velocity commands q̇. Encoder measurements from the robot
arm are used as process feedback. As feedback for the MPC algorithm, the robot arm
components of the spray frame position pA,x and pA,z are calculated at every step of the
control loop, using forward kinematics and joint position measurements q. For the task
space control algorithm, joint position data from the encoder are also used as feedback, to
calculate the task space Jacobian J4D.

Mobile vehicle flipper tracks are actuated by Maxon EC 45 brushless motors, which
are controlled using EPOS 70/10 brushless motor drives. EPOS drives communicate with
the PC via a CAN bus. ROS drivers for the EPOS drives are used to control the velocities
and gather encoder data of each motor. The mobile base component of the spray frame
position pB,x is calculated using encoder data odometry and is used as feedback for the
MPC algorithm.

Finally, the spraying agent pump is controlled with an Arduino Nano microcontroller
board and is either turned on or off based on the current position of the spray frame with
respect to the row description.

3.2. Vineyard Spraying Demonstration

The first experiment is a demonstration of the presented approach in a vineyard
(Figure 8). The canopy description used in the experiment (Figure 9) was selected manually
by an operator through a simple graphical user interface (GUI).

A graph showing the reference lawnmower trajectory tracking during the experiment
is given in Figure 10. Here, the position of the spray frame pS is calculated based on
the encoder feedback from the robot arm, and the odometry of the mobile base. Since
only the odometry feedback is used for mobile base control, its reference tracking is also
evaluated with an external sensor, as part of the second experiment in Section 3.3. The
MPC criterion function is tuned to follow the reference trajectory imperfectly, to minimize
the accelerations of the mobile base and the robot arm end-effector. Figure 11 shows the
reference tracking with respect to the actual reference trajectory of the spray frame p∗

S,
which is formed by accumulating the first control inputs of the optimal control sequences
calculated by the MPC algorithm at each control step. There is still some error in the
reference tracking caused by the non-ideal following of the joint velocity commands and
the error in task space control. The task space Jacobian depends on the joint positions and
is computed at the beginning of each control time step. During this time step, the joint
positions, and the Jacobian, change. Larger joint velocities and larger time steps result in
larger task space control errors. The position tracking errors are shown in Table 2. Spray
frame position tracking was evaluated, with a measured root mean square (RMS) error of
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4.32 mm, and the maximum error of 22.16 mm. The magnitude of the errors is a result of
the fact that the spraying frame is defined at a certain distance to the last link of the robot
arm, which makes its position sensitive to small errors in the robot arm joint positions.
Based on the imperfections of the spray nozzle and its spraying area, the presented errors
are adequate to ensure the effectiveness of the vineyard spraying task. There is a trade-off
between reference tracking errors and the velocity of the reference spray frame trajectory.
Reducing this velocity would result in slower task execution, but would also reduce the
reference tracking errors.

Figure 8. Mobile manipulator performing a spraying experiment in a vineyard.

Figure 9. The canopy description used for the experiment selected by the operator.
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Figure 10. Overall spray frame reference tracking. pRef
S represents a reference lawnmower trajectory

generated based on the row description, where zR and zR represent the upper and lower foliage
boundaries, respectively. The spray frame position pS during the experiment is represented by a
red line.

Figure 11. Spray frame tracking with respect to the optimal reference trajectory generated by the
MPC algorithm. p*

S represents the optimal trajectory of the spray frame. This differs from the
ideal lawnmower trajectory due to MPC tuning that sacrifices reference tracking to minimize the
accelerations of the mobile base and the manipulator end-effector. zR and zR represent the upper
and lower foliage boundaries, respectively. The spray frame position pS during the experiment is
represented by a red line.

Table 2. Spray frame position errors during the vineyard spraying experiment.

pS pS,x pS,y pS,z

RMS error [mm] 4.32 0.90 3.60 2.20
max error [mm] 22.16 3.92 22.16 18.93

A non-uniform vine row structure allows the demonstration of the adaptability of
the presented approach. The velocity of the vehicle adapts to the row description by
automatically accelerating in areas without vines and decelerating to the lowest velocities
in areas with the highest vines (Figure 12). The footage of the vineyard spraying experiment
can be seen in the accompanying video https://youtu.be/BDO7qQldmyQ, accessed on
8 March 2022.
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Figure 12. The upper diagram shows the x component of the reference trajectory pS,x, along with the
robot arm and mobile base components, pA,x and pB,x, respectively. The bottom graph shows the
forward velocity of the vehicle during the experiment.

3.3. Optitrack Validation

The second experiment was conducted in an indoor environment equipped with
the Optitrack camera system, which was used to evaluate the reference tracking with an
external sensor. The reference tracking error in this experiment includes the error of the
odometry-based mobile base control, the vibrations of the mobile base, the errors present in
the robot arm encoder measurements and the Optitrack measurement noise. For practical
reasons, the Optitrack markers were placed at the last joint of the robot arm (Figure 13),
and the position of the spray frame was calculated using a single static transformation.

Graphs showing the x and z components of the spray frame position during the
experiment, along with the tracking errors, are shown in Figures 14 and 15, respectively,
and the corresponding error data are given in Table 3. In this experiment, the measured
root mean square (RMS) error and the maximum error are equal to 9.76 mm and 52.81 mm,
respectively. Errors are larger than the ones in the previous experiment, which is expected
due to the already mentioned additional errors that the external sensors are able to capture,
and a significant amount of measurement noise. External sensor data confirm that the
odometry-based control does not result in a significant drift of the mobile base, as seen
in Figure 14.

In Figure 16, the overall spray frame position calculated from the Optitrack data is
compared to the position calculated using the joint encoder and vehicle odometry feedback.
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Figure 13. For the second experiment, reference tracking is externally validated using Optitrack
cameras to measure the position of the spray frame in the real world. Optitrack markers are attached
to the end-effector of the robot arm.

Figure 14. Comparison between the x component of the spray frame position determined by the
encoder measurements, and that determined externally via the Optitrack camera system, denoted
pS,x and pO

S,x, respectively. The bottom plot shows the corresponding error perr
S,x.

Table 3. Spray frame position errors measured with the Optitrack camera system, during the indoor
experiment.

pS pS,x pS,z

RMS error [mm] 9.76 7.86 5.79
max error [mm] 52.81 36.59 52.779
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Figure 15. Comparison between the z component of the spray frame position determined by the
encoder measurements, and that determined externally via the Optitrack camera system, denoted
pS,z and pO

S,z, respectively. The bottom plot shows the corresponding error perr
S,z.

Figure 16. Comparison between the position of the spray frame obtained by the encoder measure-
ments and the position obtained externally via the Optitrack camera system, denoted as pS and pO

S ,

respectively. pRe f
S represents the reference lawnmower trajectory, and zR and zR represent the upper

and lower foliage boundaries, respectively.

As mentioned earlier, the task space controller selects joint velocities that follow the
desired linear and roll spray frame velocities, while attempting to maintain the desired
robot arm joint configuration. This results in the yaw and pitch angles of the spray frame
shown in Figure 17. This type of control results in a pitch orientation (θT) graph similar to
the z position, as shown in Figure 15. Similarly, the yaw orientation graph (ψT) follows the
motion of the robot arm in the x direction.
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Figure 17. Spray frame orientation during the indoor experiment. The pitch and yaw angles of the
spray frame are denoted as θT and ψT , respectively. These angles are not directly controlled, but are a
result of the task space control criterion function.

4. Conclusions and Future Work

In this paper, a vineyard spraying algorithm for mobile manipulators is presented,
based on task space model predictive control. The reference is generated based on grapevine
canopy description, with the aim of minimizing unnecessary spraying waste and pollution.

There are certain limitations to the presented method. The time required to spray a row
of grapevines is limited by the maximum velocity of the vehicle, as well as the maximum
joint velocities of the robot arm. Task space control is used to calculate the joint velocity
commands for the robot arm, which are not considered in the planning phase (MPC phase)
of the algorithm. This could potentially lead to large spray frame velocities that cannot
be tracked by the task space controller. Therefore, some experimentation is required to
determine the maximum feasible velocity of the lawnmower pattern reference trajectory.
Moreover, the task space control algorithm has no direct way of considering joint position
constraints of the robot arm. This problem is dealt with indirectly, by allowing different
angular velocities of the spraying frame, and constraining the optimization problem in such
a way that the solutions moving the joints towards the desired configuration are preferred.
No problems were encountered in the experiments regarding joint position constraints. The
mobile base is controlled based on odometry feedback, which may lead to certain reference
tracking problems since there is no external sensing. The second experiment shows that the
open loop control performs well, mainly due to the fact that the vehicle moves in a straight
line, which allows precise odometry. In future work, the plan is to close this control loop
using a localization algorithm. Moreover, the tilt of the vehicle and other effects of uneven
terrain are not taken into account in the current state of the algorithm, which could also be
incorporated into future work. In the presented experiments, operator-selected grapevine
row description was used. Manual selection of canopy areas proved to be error-prone,
tedious and time-consuming. In the future work, a foliage detection algorithm is going
to be incorporated for the purpose of generating a grapevine row description. Since the
detection algorithm must be robust to changing lighting conditions, it is planned to be
based on a combination of deep learning and depth information captured by an RGBD
camera. The depth information acquired by the RGBD camera using infrared projection
is sensitive to sunlight, so a camera based on pure stereo vision would be suitable for
this task.

The presented method was evaluated in a vineyard spraying experiment, demonstrat-
ing its ability to adapt to a specific grapevine row structure. Mobile base velocity adapts to
the row structure, which can be seen in the accompanying video and the graphs presented
in Section 3.2. An additional experiment was performed evaluating the reference tracking
with Optitrack cameras as external sensors. Error data show the 4.32 mm and 9.76 mm
RMS errors in spray frame position, during the first and second experiment, respectively.
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Since the spray frame is located at a certain distance to the last link of the robot arm, its
position is sensitive to small joint position errors. The presented error values are sufficiently
small for the task of vineyard spraying, while a trade-off exists between reference tracking
precision and the time required to execute the task.

The focus of this work was on the control algorithm that sprays a single row of vines.
In the future, mission planning and navigation would allow the mobile manipulator to
autonomously treat the entire vineyard by entering each row and executing the presented
algorithm. Experiments evaluating the spray quality using a water-sensitive paper are
planned in the future. Extensive experiments to determine the impact of the presented
method on plant health and fruit production and compare it to manual spraying are to
be conducted. The presented method will be tested for the task of fruit spraying rather
than spraying the entire foliage, which is the focus of this article. Another challenge is
the presence of dust in the vineyard, from the influence of which the equipment must be
adequately protected. Moreover, while excessive robot arm heating was not noticed during
the presented experiments, it could present a potential problem in the case of prolonged
robot operation. In this case, some form of active cooling could be used to mitigate the
problem. Currently, the spray tank has a volume of 30 L, which will be increased in
the future.
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Abstract: Modern technologies are penetrating all fields of human activity, including agriculture,
where they significantly affect the quantity and quality of agricultural production. Precision agricul-
ture can be characterised as an effort to improve the results of practical farming, achieving higher
profits by exploiting the existing spatial unevenness of soil properties. We aim to evaluate precision
agriculture technologies’ practical use in agricultural enterprises in the Czech Republic. The research
was based on a questionnaire survey in which 131 farms participated. We validated the hypothesis
through a Chi-squared test on the frequency of occurrence of end-use technology. The results showed
that precision farming technologies are used more in crop than livestock production. In particular,
58.02% of enterprises use intelligent weather stations, 89.31% use uncrewed vehicles, and 61.83%
use navigation and optimisation systems for optimising journeys. These technologies are the most
used and closely related to autonomous driving and robotics in agriculture. The results indicate how
willing are agricultural enterprises to adopt new technologies. For policy makers, these findings
show which precision farming technologies are already implemented. This can make it easier to
direct funding towards grants and projects.

Keywords: precision agriculture; Industry 4.0; technology; adoption; unmanned vehicles; smart
production; drones; robots

1. Introduction

Today’s turbulent times bring new challenges for everyone every day. Society is
constantly evolving, and so are the various technologies. The industrial revolution has
proceeded gradually since the emergence of mechanisation. The Fourth Industrial Revo-
lution has come sequentially, bringing radical changes across all industries. One of these
industries is agriculture. Until a few decades ago, there were more workers in agriculture
than in industry. From ancient ages until the early twentieth century, agriculture has
always been very demanding, requiring a great deal of physical effort. Still, the profits from
these tasks have not been significant. It used to take an average of two acres of cultivated
land to feed one man. With the twentieth century came new industrial agriculture, and
productivity rose radically [1,2].

Precision agriculture is the term used to describe the association of changes brought
about by the Fourth Industrial Revolution in agriculture. Modern technologies enable
the precision of work, efficiency, efficient processing of all data and other aspects that
will move agriculture to a new level. Precision agriculture means accuracy and implies
correctness or precision in any production [3]. The main objective of precision agriculture
is to adapt operations to the actual location conditions with the principle of carrying out
interventions in the right place, with the right intensity and at the right time. Precision
agriculture is currently the most popular in the USA because of its rustic structure and
technological maturity. India and North America have the highest [4] technical capacity
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to pursue an opportunity for smart agriculture. However, McBratney et al. [4] suggest
that crop production has the highest potential for precision agriculture according to the
spatial index (Ha of cropland per worker) in Canada, Australia, and the USA. Livestock
production is highest according to the environmental index (fertiliser use: kg per ha of
cropland) in Ireland, the Netherlands, and Egypt.

In the Czech Republic, the agrarian structure is favourable for precision agriculture,
as it is dominated by large farms, large plots of land and a diversity of natural conditions
combined with soil variability and rugged terrain [5]. These large farms in the Czech
Republic combine modern technology, automation and robotisation with a small number of
workers focused primarily on maximising production and sales. In contrast, small, family-
run farms that focus mainly on quality, regional products, healthy food, horse breeding, or
agro-tourism are also thriving. The overall level of involvement in precision agriculture
is at a medium level [6]. The adoption of precision agriculture technologies is relatively
high [7]. New technologies, the loss of land ownership, the concentration of land in large
blocks and the reluctance of people to work seven days a week from morning to night have
led to a significant polarisation. The main issues of Czech agriculture are labour shortages,
the unfavourable economic situation of most enterprises, and expensive technology.

The main issues in farming communities without precision agriculture are related to
uniform and homogenous land management [8]. In this case, the intensity of cultivation
interventions is usually chosen based on the average value of the smallest unit area. The
most significant advantage of precision agriculture is the ability to identify and determine
variability. The primary input information is passed on from generation to generation as the
primary know-how. However, agricultural sustainability depends primarily on progress in
the efficient use of nitrogen [9] and other agrochemicals. Data from water, nitrogen and
pesticide application during the growing season need to be recorded immediately after
sensing. It creates significant advantages over traditional farming along with a reduction
in human labour and resource efficiency, as outlined in the results of this paper. Thus, the
conventional approach is associated with increased costs, production’s economic intensity
and environmental pollution risk [10]. The main ecological problem is the excessive
application of agrochemicals and poorer traceability of records of soil operations. The
economic impacts are mainly in the increased cost of material inputs (fertilisers, pesticides
and fuel). It is impossible to achieve lower fuel consumption without navigation and
satellite technology due to unfamiliarity with the terrain and the use of the optimal route.
Another significant problem with these systems is the more challenging identification of
harmful organisms due to incorrect demarcation of application zones. Current problems in
agriculture are climate change, soil degradation, food unsafety and diversity loss [11].

For the problems mentioned above in farming communities, precision agriculture
technologies may be just the solution to enable targeted local interventions. Our research
focused on agricultural enterprises to capture the current trends in Czech agriculture.
Previous studies of precision agriculture in the Czech Republic are limited to their narrow
focus on specific technologies and timeliness. The most recent comprehensive studies
date from about five years ago [12,13]. This research gap needed to be filled with current
research into determining what technologies are currently the most used in agriculture.
Moreover, it would fortify the perspective of enterprises. The article aims to evaluate the
practical use of precision agriculture technologies in agricultural enterprises in the Czech
Republic. However, there could be differences between crop and livestock production.
Thus, we investigated both of these farming areas and compared the results. We stated
some recommendations for policymakers and users of precision agriculture technologies.

We divided the article into the following structure: 1. Introduction with basic in-
formation on the topic; 2. Theoretical background focused on precision agriculture and
technologies; 3. Materials and methods with the definition of research aim and methods;
4. Results including technologies in crop and livestock production; 5. Discussion of main
findings; and 6. Conclusion.
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2. Theoretical Background

The theoretical background briefly describes the current state of the research field with
the definition of precision agriculture and mainly used technologies.

2.1. Definition of Precision Agriculture

Many authors [14–17] speak of revolutions in the era of industrial agriculture. The
introduction of tractors brought about the first revolution, combining harvesters and
mechanisation. The second revolution was triggered by the development of biotechnology,
including the much-discussed genetic manipulation. Later, computer technology began to
be used in agriculture to optimise and introduce new production methods.

In recent years, the term Agriculture 4.0 or Precision Agriculture has emerged. The
term Industry 4.0 is derived from Agriculture 4.0 or Precision Agriculture. It refers to
modern techniques and technology in agriculture to increase the precision of work, reduce
costs, increase efficiency, intelligent processing, data evaluation and other aspects leading
to the modernisation of agriculture. Precision agriculture is the application of technologies
and principles to manage spatial and temporal variability associated with all aspects
of agricultural production to improve crop performance and environmental quality [3].
Precision agriculture is already available to all farms using automatic machine control,
operating a large tracked tractor or a compact tractor with a small centrifugal spreader.
Furthermore, thanks to Agriculture 4.0, it is possible to save a large amount of natural and
monetary resources due to the introduction of automatic section control systems and the
use of locally variable nutrient applications [18].

With the global increase in land area and the size of farms, this knowledge could
not be efficiently obtained. A location was treated more like a homogeneous area whose
potential was not fully exploited. This situation has only been changed by the availability of
technology and the necessary technical equipment. It provides the spectrum of data needed
from many sources and their comprehensive analysis. The outputs help in decision-making
on agronomic activities, adapting variable application of fertilisers and pesticides in the
right amount at the right place or predicting the condition and characteristics of the soil or
crop [19–22].

Precision technologies in livestock production have also evolved quite rapidly. Preci-
sion farming in animal nutrition and breeding is referred to abroad as Precision Livestock
Farming (PLF). The aim is to improve the precision of farm operations and help the farmer
make decisions immediately. New directions in modern farming focus on selecting for-
age crop varieties, their cultivation, harvesting, nutritional value, silage or storage, while
attention is paid to feeding animals and the quality of production.

2.2. Previous Studies and Research Framework

Previous studies on precision agriculture adoption were considered to determine
the research framework and questionnaire survey. This short review is focused on the
classification of precision agriculture technologies and a summary of commonly used
technologies.

Recent results of the Precision Agriculture Dealership Survey [23] show the importance
of on-farm data for hybrid/variety selection and nutrient management. Dealers highlighted
several uncrewed aerial vehicles for variable pesticide applications and crop input. Virals
are GPS-guided controllers on sprayers and guidance-related technologies, which continue
to grow. McKinsey Company [24] summarises precision agriculture technologies and di-
vides technologies into five groups: smart-crop monitoring, drone farming, smart-livestock
monitoring, autonomous-farming machinery, smart-building, and equipment management.

Several authors have addressed the issue of the adoption of precision agriculture
technologies in the Czech Republic. Research in the Czech Republic focuses on mapping
soil and crop variability, creating application maps for crop fertilisation, and determining
and optimising differentiated doses of fertilisers and herbicides. Stočes et al. [25] developed
the User-Technological Index of Precision Agriculture (UTIPA), which is calculated for
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each technology from obtained relevant data. It is an exciting application result that could
help to compare familiarity or usage of the particular technology. Kasparov [26] studied
the links between the nature of agricultural subjects on the perception of the attributes of
precision agriculture with its adoption. In this research, respondents were asked about the
technologies they use. According to application maps, the most widely used technologies
were automatic section control, assisted machine travel control, correction signal payment,
and variable rate applications. Farmers may not consider the prospects of this area and
therefore prefer to invest less in new technologies. The Czech government has supported
the adoption of precision technologies through financial incentives for new machines [27].
Research [12] confirmed that investment in agricultural robots is only around 26%.

In the USA, at the University of Nebraska-Lincoln, a study on precision agriculture
technology adoption and opinions was conducted [28]. The main results show that agri-
cultural enterprises mostly adopted technology for soil sampling, computer access to
high-speed internet, yield maps, yield monitor and GPS guidance systems. According
to the Agricultural Resource Management Survey (ARMS), 72% of cornfields and 70% of
wheat fields used precision agriculture technologies [29]. Schimmelpfennig [30] found that
large corn farms mostly adopted mapping and guidance systems. According to Maloku,
adoption of precision agriculture technologies in the USA varied from one state to another.
For example, Alabama and Florida predominantly adopted Lightbar Guidance, variable
rate technologies, and GIS mapping software [31]. In Kansas, it was lightbar guidance,
section control and variable rate fertility [32]. Scientists in Latin America and the Caribbean
focused on recent trends in agriculture, new technologies and their applications [33].
Precision agriculture technologies were classified into: soil analysis and environmental
assessment, drones and satellite images, remote sensors and georeferenced monitoring,
mobile technology, internet of things, big data, artificial intelligence, blockchain, and robots.

The adoption of precision farming in Germany was part of the project related to
personal interviews of farmers. Results show that GPS-based soil sampling, yield mapping,
area measurement, auto-tracking, and site-specific basic fertilizing were the most adopted
technologies [34]. In another study in Germany and Poland, essential technologies were
evaluated to determine how and when they could be used for sustainable agriculture [35].
This research divides technology by type of prevailing production. The first group consists
of crop production technologies such as nanotechnology, yield management, soil mapping,
drones, sensors, and autonomous vehicles. The second group includes technologies for
livestock production such as smart devices (position and health sensors), data and on-time
software, nanotechnology, and sensors. The highest ratings were considered for collecting
(sensors and drones) technologies or using (soil and yield management) data.

Precision agriculture was, according to [36], used in Denmark and the United King-
dom for about 90% of wheat, barley, oilseed rape, grass seed and peas. The most used
technologies in Denmark were GPS yield mapping and grid soil sampling. In addition to
these technologies, variable rate fertilisation was used extensively in the United Kingdom.
In France and Sweden, yield monitors were widely used [37]. According to Cavallo [38],
guidance machinery was used to a large extent in Italy. The dependence of adopting
precision farming technology on economic and personal factors was studied in Hungary.
According to the rankings, precision fertilisation and precision plant protection were pre-
cision farming technology’s most commonly used elements. An interesting finding was
that tractor guidance was a widely used element, but it was not considered a precision
farming technology among farmers [16]. Trends in adopting precision farming technologies
in Switzerland show that technologies with driver assistance systems are more frequently
used in practice. In particular, these technologies reduce the physical labor involved in
working [39].

Our research framework determines the most used precision agriculture technologies
in the Czech Republic. Based on the studied literature [24], we divided the technologies
according to the primary type of agricultural production. The two groups consist of
technologies for crop and livestock production. These groups were further subdivided
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according to the kind of technology. The first group consisted of technologies focused on
sensing and data acquisition (primarily sensors). The second group consisted of modern
machines or robots. The research does not include some progressive technologies that fall
outside both groups (e.g., genetic modification). In particular, we selected technologies
for the research that were investigated in a related study. These technologies are the most
cited by authors, experts and researchers. The focus on agriculture and the situation in the
Czech Republic also influenced the selection of the Appendix A.

2.3. Precision Agriculture Technologies

Computers, sensors and computing technologies were developed in the 1980s, as
well as improved vehicle systems (ultrasonic, optical, mechanical etc.). After the 1990s,
GPS systems were viral and were used in agricultural applications. Then in quite a short
time, these technologies were prohibited in agriculture due to their cost. Due to that,
an alternative of machine vision technologies were used. These technologies were used
to analyse which crop row structures could be observed efficiently. In 1987 a dynamic
thresholding technique helped to extract information from field images. After a short time,
a vision guidance system to steer a tractor relative to crop rows was used so that the tractor
could automatically acquire its track in the next row [40]. The leading technologies used in
precision agriculture are described below.

Precision agriculture uses the new technologies of the digital age to make farming as
efficient as possible on the basis of data collection. Drones, satellite images or sensors placed
on farm machinery or animal bodies constantly monitor fields, orchards, greenhouses and
livestock. This technology saves fertiliser and costs, and higher yields are achieved with its
application. It also prevents the overuse of fertilisers and leads to a more environmentally
friendly land use [41–43]. Sensor data is processed using information and communication
technologies, improving herd management strategies and the farm’s economic, social and
environmental performance [44–46].

The sensors are mainly included in satellites, ground-based platforms, etc. Ground-
based platforms can be divided into three categories: handheld, free-standing in the field,
and mounted on tractors or farm machinery. The sensors are used for spatial, spectral,
radiometric applications, etc. [47,48]. Remote sensing is used for yield projection, land
use classification, biomass estimation, pH measurements, etc. It can be used as a tool for
making decisions (e.g., subplot scale). The level of digital agriculture is rapidly growing,
and supra-national monitoring is performed using on-farm management tools [49–51].

Sensor data is processed using information and communication technologies, result-
ing in improved herd management strategies and economic, social and environmental
performance of farms. Due to improving technologies, larger volumes of data need to be
processed, analysed, and stored. Big Data are also described as data volumes, which are
very difficult to process and manage using analytical tools. Databases and storage systems
have been created to save the data in real-time and use them for further analyses. These
storages are also very helpful for utilising Big Data for agricultural decision support tools.
A PDI system is used to process Big Data and helps to innovate, standardise, automate and
integrate the data [28,52–55].

Precision farming has become connected to service-oriented architecture services,
which help process raw data and extract useful information. New disciplines such as
IoT-based companies, automated industries or businesses have been used. Ontology is
applied to make the extraction of valuable data easier. Ontology uses many supporting
systems, domains, and knowledge. Other authors have developed support systems such as
Plants ontology, SAAONT, AgriOnt, etc. [14].

Augmented reality (AR) is a unique application that provides its users with a direct or
indirect view of a natural environment (the real world), parts of which are supplemented—
augmented or enriched—with additional digital visual elements. AR has many benefits in
agriculture because it is possible to create a relationship with other smart city-based tech-
nologies (GPS integration etc.) It is possible to couple AR with IoT data, which is one of the
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benefits of AR [46]. Especially CCD cameras are beneficial in precision agriculture because
they capture two-dimensional colour images from which animal information is captured.
All of these images can be used for further analysis. One of the ways to use the images
captured by CCD cameras is a specification of pig parameters (weight, circumference,
height and other body information). Pig identification could be as follows [40,56,57]: facial
recognition, live weight detection, growth patterns and mass calculation, and individual
pig identification and tracking.

Robotic systems can be involved based on the used applications. Uncrewed Ground
Vehicles (UGV) and Unmanned Aerial Vehicles (UAVs) are used in precision agriculture [58].
The biggest challenges in the case of UAVs are costs. Sensors, flight duration, data analytics
or requirements are the most significant part of the paid costs for UAVs. Another challenge
is data analytics, which needs to be done periodically. The vast data storage of numerous
terabytes must be available to store all the data that needs to be analysed. Weather is also a
challenge that makes the results of UAV analysis worse due to weather conditions (rain,
snowfall, clouds, etc.) [59].

The technology for monitoring crops and soil from the air uses an uncrewed aerial
vehicle—a drone. This device can provide the user with multispectral images of soil blocks
and can cover up to hundreds of hectares in one flight. The advantage of these devices
is that the resolution of the images is higher than that offered by satellite imagery. The
photos are then processed using software installed on the user’s computer or in a cloud
environment [59–61]. Drone outputs are crucial to increasing revenue, reducing costs, and
improving business efficiency. The map can also inform which areas need more detailed
scouting for effective planning—meaning less time spent examining soil blocks and more
time tending the crops that need it.

Another essential step towards more efficient farming is satellite-guided tractor tech-
nology. Autonomous steering and turning or control via a touch panel linked to a central
system that controls everything and obtains real-time harvest and position data is also
standard in the domestic market. The system also allows variable dosing of fertilisers and
products. Yields can also be charted thanks to the information recorded by the machine.
The system provides information on area threshed, fuel consumption, or working hours.
Entrepreneurs can then use this to analyse the profitability of the land. The data obtained
can also be easily used for administration and subsidy applications. International satellite
navigation systems are used in precision agriculture and conventional farming, and is
helpful especially during lower visibility or in case of fatigue in workers [62].

Self-driving tractors have been around for some time and operate on autopilot. The
tractor does most of the work, and the farmer only steps in when needed. The technology
works with the help of GPS, and the machine spreads fertiliser or ploughs. There is also a
device that works on the principle of solar power and can identify the weeds it kills with a
dose of herbicide or lasers. Apps available for smartphones can also be used for precision
farming. By configuring a precision farming system integrated into a smartphone, it is
possible to monitor all the necessary data via the mobile phone. The applications are easily
portable, affordable, and have high computing power [63,64].

Another vital area is crops’ highly regulated genetic modification (GM) (soybeans,
cotton, canola, etc.). Now there is genome editing (GE), which avoids potential risks to
human health. These risks are avoided in the GM crops with their productivity, envi-
ronmental tolerance, and pest resistance. GM crops are currently superseded by GE. In
the case of GM crops, by inserting or removing one of the genes or part, the organism
changes its specific traits. The development of GM crops is very regulated, and it also
needs licenses and approved isolation procedures for field trials. Due to that, the GE
techniques (NGTS/OGTR) are well used primarily in Australia to increase the production
and tolerance of abiotic and biotic stresses. These techniques rapidly increase costs and
exclude GM/GE research and development by small research organisations [65]. One of the
introductory chapters of Precision Agriculture is hydroponic farms, which take the form
of now commonly available home-grown boxes where seeds are planted; a mobile app
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runs a program for different types of plants to help oversee successful growth. Hydroponic
farms can take the form and size of shipping containers that offer a harvest equivalent to
the production of a two-acre farm.

3. Materials and Methods

Industry 4.0 and new technology are primarily applied in the automotive and manu-
facturing industries, and has a lot of potential in agriculture. The article’s main aim is to
evaluate the practical use of precision agriculture technologies in agricultural enterprises
in the Czech Republic. We wanted to determine whether particular technologies are used
more or less frequently in enterprises.

3.1. Data Sample and Research Design

Our research included a questionnaire survey. We created a questionnaire using an
online web platform and then sent it to enterprises’ email addresses via a web link. The
respondents were managers of enterprises involved in crop and livestock production. In
some cases, mixed enterprises used both types of production. Data were collected from
January to March 2022. The questionnaire was sent to approximately 1500 enterprises, and
the total number of responses received was 131, corresponding to a return rate of roughly
8.7% [6]. According to [66], about 89,320 subjects with recognised activities operate in the
agriculture, forestry and fishing industry in the Czech Republic. The sample size margin of
error at a 95% confidence level was about 8.56%.

We surveyed the size of enterprises by the number of employees. The most signifi-
cant percentage (49.62%) is small businesses employing 11–50 employees. Next, 28.24%
of medium-sized enterprises operating with 51–250 employees were represented in the
sample. A total of 21.37% of the enterprises fell into the group of micro-enterprises and
employed no more than ten people. Only one enterprise (0.76%) employed more than
250 employees. By legal form of business, they include limited liability enterprises (32.06%),
joint-stock enterprises (30.53%), cooperatives (24.43%), self-employed farmers (7.63%), and
finally, independent entrepreneurs (4.58%). Finally, we surveyed the predominant type of
production, where 25.19% of enterprises are primarily focused on crop production, 6.87%
on livestock production and 67.94% on both types of production.

The survey questions concern information obtained through the literature or publicly
available studies. The questionnaire consisted of four areas according to the technolo-
gies: sensors in crop production, machines in crop production, sensors and IoT devices
in livestock production, robots and mobile technology in livestock production. The ques-
tions dealt with individual technologies. Respondents were asked about the frequency of
occurrence of end-use technology.

3.2. Research Methods and Hypotheses

The results of the technology-related questions were statistically evaluated. We used
the Chi-squared test to prove the agreement of frequency distributions for quantitative
attributes of each technology. It assesses the difference between the observed frequencies
(fo) and the relative expected frequencies (fe) that fit the predicted probability distribution.
We chose for the theoretically expected frequencies an equal distribution of “yes” and
“no” responses (i.e., a probability ratio p = 0.5). It decides whether the difference between
the empirical and theoretical frequencies is random and comes from a normal population
distribution. We formulated a working hypothesis as follows:

H1: Precision Agriculture technology is used by more than half of the enterprises.

We used a statistical test to check whether the probability p of technology frequency
was equal to (H0: p = 0.5; when observed frequencies fo are similar to expected frequencies
fe) or higher than 0.5 (HA: p > 0.5; when observed frequencies fo are higher than anticipated
frequencies fe). We tested the hypothesis separately for each technology listed in the
questionnaire.
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We evaluated the hypothesis via p-values for a one-sided statistical test. If the null hy-
pothesis H0 could be rejected at the 0.05 significance level, the observed relative frequencies
differed from the theoretical ones. It implies that the technology was used in over half of
the observed enterprises. The test statistic follows the Chi-square distribution, designated
by χ2 [67,68]:

χ2 = ∑
[
( fo − fe)

2

fe

]
(1)

with k − 1 degree of freedom, where:
k is the number of categories.
fo is and observed frequency in a particular variety.
fe is an expected frequency in a specific variety.

4. Results

This section outlines the study’s results divided into four parts: sensors and machines
in crop production, and sensors and robots in livestock production.

4.1. Sensors in Crop Production

The use of sensors is the first step toward precision agriculture. We examined the
reasons for the application of sensors and types of sensors. The questionnaire survey
results are summarised in Figure 1. A total of 58.02% of enterprises reported that the
sensors detect weather conditions and have a weather station function. This function is
essential in determining the local weather forecast for a specific location. It provides farmers
with information on rainfall, wind speed, wind direction, humidity and temperature and
atmospheric pressure. A complete overview of the conditions in the field from the nearest
weather station is available. Equally important was the use of sensors for plant protection
and nutrition in 53.44%, which leads to the application of substances in only the necessary
places. Modern sensors may have built-in rules and algorithms that create dynamic
prediction capabilities for the degree of disease risk. It is followed by the option of using
sensors for machine positioning, which covered 50.38%. The fundamental advantage of
field automation is the stable position and precise dimensions of each cultivated area, which
facilitates the basic orientation of the machines. In addition, the direct visibility of the sky
also allows satellite navigation to detect and control the position of automated devices. The
less frequent option was the sensor function detecting the immediate technical condition.
A total of 40.46% of respondents selected this answer. Farmers do not address monitoring
machinery’s technical situation. Thus, the use of machinery for agricultural work may be
still associated with a higher risk of necessary repairs and maintenance. Sensors are used
the least to detect crop anomalies, in 21.37%. The main idea is to apply spray only when
unavoidable and choose the right time and product.

 

Figure 1. Use of sensors in crop production.
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We performed a statistical evaluation of the responses to the survey questions related
to sensors in crop production using the Chi-square test. Through working hypothesis H1,
we tried to show statistically significant differences from the mean (see Table 1).

Table 1. Results of statistic evaluation for sensors in crop production.

Technology χ2 p-Value (H1)

Machine condition sensors 4.7710 0.9856
Machine position sensors 0.0076 0.4652
Plant protection and nutrition 0.6183 0.2159
Smart weather stations 3.3664 0.0333 *
Crop anomalies sensors 42.9389 1.0000

* the statistically significant differences at the significance level of 5% are marked.

We can prove working hypothesis H1 that more than half of the enterprises use
precision farming technology only for weather stations (p-value = 0.0333). It means that the
use of this technology is really above average among enterprises. Modern sensors bring
new functionalities to mobile applications. Agronomists no longer have to walk miles
around the farm every day, checking the current status of the field or stored crop. Sensors
provide accurate, updated data online, so they can work much more efficiently and only go
where they need to at the time.

4.2. Machines in Crop Production

Drones and self-driving machines are the essential technological contributions of
precision agriculture. It can be seen in Figure 2 that 89.31% of enterprises use uncrewed
vehicles such as tractors and working machines in crop production. Automatic steering
systems are offered by tractor manufacturers already fully integrated into the machine and
built-in during its manufacture. The system’s control is integrated into the tractor’s control
terminal. The driver simply enters the machine parameters, records the first pass on the
plot, and the autopilot then controls the machine without driver intervention. The human
driver only controls the speed of travel and the work of the attachment and monitors
obstacles but does not intervene in the steering. The less-used technology of drones for
detecting the immediate state of the soil or directly for planting seeds is used by 33.59%
of enterprises. Precise mapping of agricultural land would be very time-consuming and
technically challenging if it were not for aerial vehicles equipped with specialised sensing
technology. Images taken from the air are evaluated and processed into application maps
and orthophotos quickly, precisely and efficiently. They can be used to dose fertilisers
and sprays accurately, thus exploiting the field’s full potential. Instead of uniform tillage,
they allow monitoring of soil conditions and dividing areas into several zones that can
be approached differently. This technology is probably yet to achieve a “boom” in usage.
Drones and drones are not yet used to any significant extent. In both cases, the navigation
systems and optimisation software of journeys is a suitable complement to these machines,
especially for tractors. This option was indicated by 61.83% of enterprises.

 

Figure 2. Use of machines in crop production.
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The results of the evaluation of working hypothesis H1 for Machines in Crop produc-
tion using the Chi-square test are presented in Table 2.

Table 2. The result of statistic evaluation for machines in crop production.

Technology χ2 p-Value (H1)

Unmanned vehicles 80.9847 <0.0001 *
Navigation and optimisation
systems 7.3359 0.0034 *

Drones for soil condition 14.1145 0.9999
* The statistically significant differences at the significance level of 5% are marked.

We succeed in proving the working hypothesis H1 that more than half of the enterprises
use precision farming technologies for uncrewed vehicles and tractors (p-value < 0.0001)
and navigation and optimisation systems for journeys (p-value = 0.0034). According to
the above-average results, self-driving tractors and machines can be considered the main
benefit of precision agriculture. The self-driving tractor is most often equipped with GPS
and terrain mapping technology, thus achieving better efficiency and lower labour costs
when cultivating the field. Equally important is route optimisation software, which allows
the planning of fieldwork.

4.3. Sensors and IoT Devices in Livestock Production

The next part was dedicated to finding the purpose of using sensors and IoT in
livestock production. Smart collars are typical IoT devices using various sensors and
performing multiple functions. Figure 3 shows the reasons for using sensors in livestock
production. According to the answers, these are most often used as intelligent collars for
animals, whose function is to control movement. This answer was selected by 46.56% of
enterprises. These smart collars protect grazing animals from theft and help farmers find
them quickly if they accidentally escape from the pasture. The second most frequently
identified answer is using sensors applied to smart collars with information about animal
health. A sensor on the collar senses some of the animal’s vital signs. If the animal starts
behaving abnormally and the data from the collar deviates from average, it usually means
that some health complications are coming. Thanks to the monitoring system, the farmer
can react ahead of time and treat the animal earlier or administer vitamins before the
disease fully erupts. In this case, 42.75% of enterprises selected this option, followed by
intelligent collars with sensors controlling animal nutrition, 2.06%. This technology can
help estimate the live weight or health status of animals. The feeding curve can then be
modelled accordingly, thus avoiding overfeeding or deterioration of animal health. The
last was the possibility of using sensors that can handle the microclimate in the stables
in 32.06% of enterprises. Farmers have a system installed in the barn to control the barn
microclimate and help maintain it at the necessary values. Sensors check the temperature
and humidity of the air or the content of certain gases and adjust the covering of the side
walls, the opening of vents, and the running of fans or showers to cool the animals as
needed. However, nowadays, it is more typical to use classical recommendations or best
practices to create optimal conditions for livestock.

Furthermore, we evaluated working hypotheses H1 for sensors and IoT devices in
livestock production. The results of the Chi-square tests are summarised in Table 3.

We cannot prove hypothesis H1 that more than half of the enterprises use precision
farming technologies for one of the sensors and IoT devices in livestock production. Intelli-
gent collars and microclimate sensors are not yet widely used, and the occurrence of smart
collars for health and nutrition monitoring is less frequent in enterprises.
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Figure 3. Use of sensors and IoT devices in livestock production.

Table 3. The results of statistical evaluation for sensors and IoT in livestock production.

Technology χ2 p-Value (H1)

Microclimate sensors 16.8626 1.0000
Smart collars (health monitoring) 2.7557 0.9516
Smart collars (movement monitoring) 0.6183 0.7842
Smart collars (nutrition monitoring) 16.8626 1.0000

The statistically significant differences at the significance level of 5% are marked.

4.4. Robots in Livestock Production

The last part is devoted to finding the use of robots in agriculture enterprises. In
the future, the automation and robotisation of agriculture are considered one of the most
dynamic developments, not only in processing crops, which is already quite common
today but also in the cultivation of the fields themselves. Indeed, an “army” of new, more
accurate and robust monitoring sensors are set to come into play in a major way, which, in
conjunction with more powerful control units, will enable existing types of agricultural
machinery to be controlled automatically or semi-automatically. About 19.85% of livestock
farmers use robots to feed their animals, and 12.98% of enterprises use milking robots in
their business. The animals have freedom of movement, and no one chases them to milk.
When they need to be milked, they walk to the robot. When they need to be fed, they walk
to the gutter, and when they need to rest, they lie down. These results show that robot
technology is not yet widespread in agriculture. The use of robots is, therefore, still very
much in the future (see Figure 4).

 
Figure 4. Use of Robots in Livestock Production.

In Table 4, we present the results of the evaluation of working hypothesis H1 for using
robots in livestock production.
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Table 4. The results of statistical evaluation for robots in livestock production.

Technology χ2 p-Value (H1)

Milking robots 71.8244 1.0000
Feeding robots 47.6412 1.0000

The statistically significant differences at the significance level of 5% are marked.

In the statistical evaluation of hypothesis H1, we could not confirm that more than half
of the enterprises use the technology of precision agriculture robots in livestock production.
The deployment of robots in agriculture is not yet at a high level. The results showed
shallow usage values for both milking robots and feeding robots. It means that enterprises
still do not favour the advantages of automatic processes.

5. Discussion

This section discusses the results from the perspective of previous studies and the
working hypotheses. Future research directions and limitations of our study are highlighted.

5.1. Technology of Precision Agriculture

Furthermore, we focus on technology used by enterprises. Discussion is divided into
two parts according to technology usage by enterprises.

5.1.1. The Most Used Technology

First, we focus on technologies more widely used by enterprises. In our case, this con-
firms working hypothesis H1, where we hypothesised that more than half of the enterprises
would use precision agriculture technology. Our research showed that precision agriculture
technologies are predominantly used in crop production. After all, most definitions of the
term [3] refer to activities and operations on cultivated land. Moreover, the results showed
that most farms do not use sensors, IoT devices and robots. Thus, working hypothesis H1
was confirmed only for some of the technologies used in crop production. The most widely
used precision agriculture technologies are intelligent weather stations, uncrewed vehicles,
and navigation and optimisation systems for journeys. Similarly, according to technology
expert evaluations [18], the most promising precision agriculture technologies are robots,
autonomous machines, sensors, and global navigation satellite systems.

In our research, 89.31% of enterprises used driverless vehicles, such as tractors and
machines. These vehicles not only move on the ground but also receive weather data via an
internet connection and can also make decisions based on it. According to Kasparov [26],
the most widely used technologies in agriculture are those that facilitate machine control
and navigation, i.e., automatic section control by 30% of enterprises, and assisted machine
travel control by 21% of enterprises. We can conclude that companies have learned to work
with these technologies, and the share is gradually increasing. In 2015, USA auto-steer
technology was used in about 70% of farms [28] to improve operator performance and
reduce excess input usage.

GPS navigation and mapping are the technologies that farmers usually start with and
are the most widely used [34]. Our research found that 61.83% of enterprises use navigation
systems. Similar results were reported in research [12], where the investment of agricultural
enterprises in the Czech Republic in navigation systems is about 70%. In Hungary, 12%
of farmers used GPS only for field navigation, not site-specific measures [16]. In Latin
America and the Caribbean, sensors for geolocation are used by 36% of farmers [33]. The
use of navigation is related to optimising the route and land travel. It is done by special
software that records the boundaries of the plot and then can optimise routes for the farmer
according to the shape of the property to minimise the number of journeys. Other research
that reports on navigation systems use is the Precision Agriculture Dealership Survey [23].
These results show that GPS guidance systems with automatic control are utilised for
fertiliser/chemical application in 81%, satellite/aerial imagery in 67%, and GPS to manage
vehicle logistics and track locations of vehicles and guide them in 47%. It is becoming
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apparent from the results of these studies that navigation systems are the most widely used
precision agriculture technology overall.

We found that 58.02% of enterprises used weather stations for monitoring and detect-
ing weather conditions. We do not have a direct comparison in this area. However, for
example, in Latin America and the Caribbean, 41% mainly used remote sensors [33]. The
advantage of these sensors is access to up-to-date data on weather and conditions without
the need to walk around the plot and record readings manually. These technologies are
prevalent and have utility in precision irrigation, field monitoring and spraying [69].

5.1.2. The Less Used Technologies

Finally, we investigated which precision agriculture technologies are less used by en-
terprises. We divided the results into two parts: crop production and livestock production.

We found that crop production has an intermediate usage of machine position sensors
with 50.38% and plant protection and nutrition sensors with 53.44%. The least used
technologies in crop production are machine condition sensors, crop anomaly sensors, and
drones. However, some research shows that these technologies could have higher potential.
For example, Germany and Poland’s highest readiness levels include technology drones,
sensors, and soil management systems [35]. Smart-crop monitoring included corresponding
sensor data and imagery analysis to optimise resource usage based on location. McKinsey
Company estimated the highest range of new global GDP value potential in smart-crop
monitoring [24].

In livestock production, 46.56% of enterprises indicated intermediate level usage of
smart collars for animal movement monitoring. For livestock production, the least used
technologies are microclimate sensors, smart collars for health and nutrition monitoring,
and milking and feeding robots. Similarly, research [12] showed that 52% of sensors are
used in livestock production to detect newborn calves, peak estrus, health problems, etc.
The intelligent tracking collar uses mostly modern GPS technology through which the
farmer receives accurate information about the current location of the animals. Monitoring
is done through communication between the tracking collar worn by the animal and the
base station. Some more sophisticated models communicate with a mobile phone.

It was evident that fewer farmers used leading technologies in livestock production.
We, therefore, tried to find an explanation for this situation. One of the reasons why the
area of livestock production is not very well developed is that animal breeding in the Czech
Republic has been declining recently [70]. Farmers may not consider the prospects of this
area and therefore prefer to invest less in new technologies. Research [12] confirmed that
investment in robots is only around 26%. Market conditions are conducive to this, and
it is questionable whether the current situation is sustainable. Unlike crop production,
livestock production is year-round. It, therefore, requires deploying technological and
human resources throughout the year, which is a disadvantage for personnel requirements.
Livestock production takes place in less variable environmental conditions, unlike crop
production. It means that there is higher variability in crop production. Therefore, there is a
greater need for modern technologies to cope with this variability. In livestock production,
animal nutrition is easily adjustable. Feeding and aftercare needs can be easily predicted.
For example, controlled and automated feeding for cows is necessary for above 8000 litres
of milk production. For plants, it is more complicated, as nutrient levels depend on
soil conditions and fertiliser. In addition, some fertilisers (nitrogen) are easily leachable,
affecting fertilisation’s overall efficiency. In crop production, the progress and development
of plant growth take place in a short time compared to livestock production.

5.2. Future Research

We have identified research gaps that could be further developed from the results
of our research and that of other authors. The first challenge is to compare the precision
industry’s overall level in each country. From the available sources, it has become apparent
that this assessment has been done to a limited extent. It is unsuitable for comparison due
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to differing methodologies across countries. The second challenge is identifying factors
that help or hinder the adoption of precision agriculture. Various analyses have already
been undertaken in this area, mainly concerning agricultural policy and subsidies. A third
research area could be the development of specific case studies of technologies and their
use in agriculture. These case studies highlight the advantages of this approach for farmers
who have not yet decided to deploy new technologies. Some other streams of research
include, for example, a study by McBratney et al. [4] focusing on employers training to
acquire knowledge about new technologies, environmental damage costs or economic
assessment of precision agriculture.

5.3. Limitations

The limitation of this research may be the sample composition and size, created
based on a non-probability sampling method. We used purposive sampling based on our
knowledge about the population and the study research aims. Another problem could
be the relatively high sample size margin of error of 8.56%. It indicated less likelihood
of relying on the results of a survey. Therefore, the confidence in the results will be
lower to represent a population. However, the results of other studies show that usage
of technologies is very similar to their effects. Therefore, we believe that the results are
consistent with the conclusions of the other authors.

Some technologies were not part of the research, such as nanotechnology in livestock
production [71], genetic modification [72], automatic planting of seeds in the field, mapping
technologies, camera-based imaging, data analysis, and evaluation technologies [73]. The
questionnaire was based on what was generally known about agriculture in the Czech
Republic. For the selected technologies, we confirmed their use on farms. However, some
technologies have been applied in practice only marginally. An overview and description
of other precision agriculture technologies include a Smart Farming Platform database
(smart-akis.com, accessed on 5 April 2022).

6. Conclusions

Precision agriculture, supported by modern technology, is looking for ways to optimise
management. Farmers can better determine what is efficient, cost-effective and time-saving
from the knowledge gained. New technology and modern machinery should therefore
be thoroughly fostered. However, emphasis should be placed on promoting farming
characterised by a broader understanding of local conditions. Digital advances and their
implementation are occurring in both livestock and crop production. Automation and
electronic data transmission help eliminate the human factor deficit. In our article, we aimed
to determine the usage of precision agriculture technologies in agricultural enterprises.

We summarised the results of the technology usage in crop production. In that case,
we can conclude that the most used technologies are intelligent weather stations, unnamed
vehicles, and navigation and optimisation systems for optimising journeys. We showed
that more than half of the enterprises surveyed use these technologies. These technologies
can be introduced gradually and create synergies. Thus, we can say that they are more
widespread, and the enterprises are solving their daily issues with them. The advantage
of autonomous machines in agriculture is to increase productivity and quality and reduce
land management costs. Their application is therefore justified for farmers and is already
changing the face of agriculture today. Agriculture can consequently be very promising
using the latest technological solutions.

Summarising the results of the use of technology in livestock production, we can
conclude that precision agriculture principles are not yet widespread in livestock produc-
tion. Instead, existing animal management practices are used, and only a small number
of farms are trying to introduce new technologies. Of these, smart collars for movement
are currently the most widely used, often to protect animals from theft, loss or straying.
Gradually, with the development of 5G networks and the use of robotics in manufacturing,
this situation will change in the future.

408



Agriculture 2022, 12, 1080

Given the anticipated focus of European Union agricultural policy on reducing en-
vironmental impact, we consider the use of modern information technology inevitable.
Knowing which technologies make sense to support and have future applicability is essen-
tial. On the other hand, it is clear that in livestock production, the benefits of technologies
still need to be further monitored and communicated to potential farmers. Modern tech-
nology should be available to large businesses and small entrepreneurs. Farmers want
subsidies and less bureaucracy. Technology can help and benefit everyone. For this reason,
it is necessary to educate about information technology so that even older farmers can start
to use the new systems.
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Appendix A

The questionnaire survey is listed below:
The name of the company (optional):
The legal form of business (select one option)

• Limited liability enterprise
• Joint-stock enterprise
• Cooperatives
• Self-employed farmer
• Independent entrepreneur
• Other

Number of employees (select one option)

• Less than ten employees
• 11–50 employees
• 51–250 employees
• More than 250 employees

The predominant type of production (select one option)

• Crop production
• Livestock production
• Both types (mixed) production

Do you use sensors in crop production? (select one or more options)

• For detecting the instantaneous technical condition of machinery.
• To detect the instantaneous position of the machine.
• For plant protection and nutrition: application only at necessary points on the plot.
• For detecting weather conditions (smart weather stations).
• For the ability to detect anomalies in crops.
• Others
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Do you use machines in crop production? (select one or more options)

• Unmanned vehicles in crop production (tractors, work machines)
• Navigation and optimisation systems for optimising journeys around the field
• Drones for the detection of the instantaneous state of the soil condition.
• Others

Do you use of sensors in livestock production? (select one or more options)

• Sensors to control the microclimate in the stables
• Smart collars for animals, controlling their health
• Smart collars for animals, controlling their nutrition
• Smart collars for animals, controlling their movement
• Others

Do you use robots or mobile technology in livestock production? (select one or more
options)

• We use robots to feed animals
• We use robots for milking
• Others
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Abstract: To solve the problem of orchard environmental perception, a 2D LiDAR sensor was used to
scan fruit trees on both sides of a test platform to obtain their position. Firstly, the two-dimensional
iterative closest point (2D-ICP) algorithm was used to obtain the complete point cloud data of fruit
trees on both sides. Then, combining the lightning connection algorithm (LAPO) and the density-
based clustering algorithm (DBSCAN), a fruit tree detection method based on density-based lightning
connection clustering (LAPO-DBSCAN) was proposed. After obtaining the point cloud data of fruit
trees on both sides of the test platform using the 2D-ICP algorithm, the LAPO-DBSCAN algorithm
was used to obtain the position of fruit trees. The experimental results show that the positive detection
rate was 96.69%, the false detection rate was 3.31%, and the average processing time was 1.14 s,
verifying the reliability of the algorithm. Therefore, this algorithm can be used to accurately find the
position of fruit trees, meaning that it can be applied to orchard navigation in a later stage.

Keywords: point cloud registration of fruit trees; lightning attachment procedure optimization;
density-based spatial clustering of applications with noise; information perception of fruit trees

1. Introduction

To accelerate the development of smart agriculture, agricultural vehicle navigation
technology has been developed rapidly. Agricultural machinery autonomous navigation
systems based on machine vision, GPS, and LiDAR sensors have emerged [1]. Machine
vision is greatly affected by the operating environment and lighting conditions. The appli-
cation of GPS is affected by satellite signals. A LiDAR sensor can provide a large amount of
accurate distance information at a higher frequency, reliably provide the position and depth
information of surrounding objects [2], and provide more comprehensive information.

There are many ways to identify fruit trees in orchards. Judging from the existing
research results, LiDAR sensors, cameras, or multisensor fusion can be used to detect fruit
trees. Since the overall characteristics of trees are obvious, the trunks of fruit trees can
be regarded as circles which can be detected by LiDAR sensors [3]. Due to the different
installation methods and types of LiDAR sensors used, the data obtained are also different.
(1) A LiDAR sensor can be installed vertically to extract the contour information of fruit
trees [4,5]. Although this method can obtain the information of the trunks of fruit trees, as
the LiDAR sensor is installed vertically, it can only extract the information of one tree at a
time. This perception method is usually used to find the specific growth information of
a fruit tree, such as fruit trees contour reconstruction. (2) A ground LiDAR sensor can be
used to scan the environment to obtain fruit tree information [6,7]. (3) A mobile ground
LiDAR sensor has been used to identify Fuji apples [8]. (4) An airborne LiDAR sensor has
been used to obtain the scan data of fruit tree trunks [9,10].

Some scholars have also obtained tree information by analyzing LiDAR sensor data
found from scanning. Using the same distance between the positions of fruit trees in an
orchard, the data points in the arithmetic sequence of the concave points in the LiDAR
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sensor scan data can be extracted as the trunk points to obtain data [11]. LiDAR sensors can
be used to scan woodland environments to obtain woodland data [12,13]. Since the data
type of LiDAR sensors can be approximated by a point set, a clustering algorithm can be
used to obtain fruit tree trunk information. Two-dimensional LiDAR sensors can be used
to scan orchard environments and perform data clustering to extract the arc information of
trunks [14,15]. Besides obtaining fruit tree information from clustering, 2D LiDAR sensors
can be used to extract the central feature point data of tree trunks using the Euclidean
clustering algorithm and the important geometric theorem of three-point collinearity [16].
Three-dimensional LiDAR sensor data are more abundant than 2D LiDAR sensor data, so
many people use 3D LiDAR sensors for tree detection [17,18]. Although machine vision
is greatly affected by the operating environment and lighting conditions, there have been
many studies on the use of cameras for fruit tree inspection in orchards [19]. Due to the
complex environment of orchards, a variety of sensor fusion methods can be used for
research [20–23].

In previous studies, various sensors have been used to obtain orchard environmental
information for orchard intelligent equipment. Usually, the information of fruit trees is
used to pave the way for the application of intelligent equipment in orchard navigation.

The main purpose of this article is to obtain the position information of fruit trees
using a 2D LiDAR sensor. After obtaining the position information of fruit trees with
the algorithm proposed in this paper, it can be used for positioning, fitting navigation
lines, and the navigation of orchard intelligent equipment in later stages. For the complex
environment of orchards, this environment perception method is studied. Firstly, a fruit
tree information acquisition method based on 2D-ICP is proposed. After the iterative
registration of the point cloud data of both sides of fruit trees obtained by the 2D LiDAR
sensor, the point cloud data of each fruit tree in the orchard are obtained. Then, by
improving the LAPO and DBSCAN algorithms, a new method based on LAPO-DBSCAN is
used to obtain the position of each fruit tree and realize their detection. Finally, the accuracy
of the algorithm is verified by a field test.

2. Materials and Methods

2.1. Experimental Equipment

In this research, a differential test platform with a maximum speed of 1 m/s was built,
as shown in Figure 1. The LiDAR sensor scans the surrounding data in real time, and the
obtained LiDAR sensor data are transmitted to the industrial computer. The industrial
computer runs a self-made software system to analyze the LiDAR sensor data. The LiDAR
sensor is Rashen N30103B and it adopts the horizontal installation method, which is located
in the front and middle of the orchard transportation robot. The installation height is 0.65 m
and the parameters are shown in Table 1.

 

Figure 1. Test platform.
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Table 1. Two-dimensional LiDAR sensor parameters.

2D LiDAR Sensor Specifications Parameter Index

Detection range (m) 30
Ranging accuracy (mm) ±30

Scanning angle (◦) 360
Angle resolution (◦) 0.18

Scanning frequency (Hz) 10

2.2. Fruit Tree Information Perception Method

In this section, we introduce the complete method of fruit tree information perception;
the specific process is shown in Figure 2. When the test platform runs in the orchard, the
surrounding fruit tree information can be obtained by 2D LiDAR sensor scanning, and
the point cloud data of the fruit tree will be preprocessed. Preprocessing is used so as to
only retain fruit trees on both sides of the test platform for point cloud registration and
clustering. The most important is point cloud registration and clustering. Firstly, complete
fruit tree data on both sides can be obtained by point cloud registration. Then, the position
of each fruit tree can be obtained by a clustering algorithm.

Figure 2. The process of fruit tree perception.

2.3. Fruit Tree Point Cloud Data Collection Method Based on 2D-ICP

With the increase in distance, the amount of LiDAR sensor data collected will become
less and less. At the same time, in the process of acquisition, the fruit tree rows on both
sides of the non-test platform will be blocked and the information will be incomplete,
resulting in a poor iterative effect. Therefore, for the preprocessing of the collected LiDAR
point cloud data, only the fruit tree row data on both sides of the test platform will be
retained. After obtaining the LiDAR sensor data of fruit trees on both sides of the test
platform, the 2D-ICP algorithm can be used for registration. The specific algorithm steps
are as follows. The preprocessed target point cloud and source point cloud are Pk =

{
Pk

i

}
and Pk+1 =

{
Pk+1

i

}
, i = 1, 2, 3 . . . n. According to the 2D-ICP algorithm, Equation (1) gives

the objective function.

Dist(R, T)min =
1
n

n

∑
i=1

∣∣∣Pk
i −
(

RPk+1
i + T

)∣∣∣2 (1)

There are two variables in Equation (1) that can be regularized by considering only
the rotation matrix R—that is, the centers of two frame point clouds are CPk = 1

n ∑n
i=1 Pk

i
and CPk+1 = 1

n ∑n
i=1 Pk+1

i , where Pk
i = Pk

i − CPk and Pk+1
i = Pk+1

i − CPk+1 .
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Then, Equation (1) becomes Equation (2).

Dist(R, T)min =
1
n

n

∑
i=1

∣∣∣Pk
i − RPk+1

i

∣∣∣2 (2)

Decomposing Equation (2) into Equation (3) gives us:

Dist(R, T)min =
1
n

(
n

∑
i=1

∣∣∣Pk
i

∣∣∣2 + n

∑
i=1

∣∣∣RPk+1
i

∣∣∣2 − 2
n

∑
i=1

∣∣∣Pk
i RPk+1

i

∣∣∣2) (3)

If the objective function is minimized, Equation (4) is maximized:

F(R)max =
1
n

n

∑
i=1

∣∣∣Pk
i RPk+1

i

∣∣∣2 (4)

Since the fruit tree data are two-dimensional, the rotation matrix R is valued as[
cosθ −sinθ
sinθ cosθ

]
, where θ is the rotation angle between the two frame point clouds, which is

substituted into Equation (4) to obtain Equation (5).

F(R)max =
1
n

n

∑
i=1

∣∣∣∣∣[Pxk
i Pyk

i
][cosθ −sinθ

sinθ cosθ

][
Pxk+1

i
Pyk+1

i

]∣∣∣∣∣
2

(5)

The derivation and extreme value of θ are used to deduce Equation (6).

sinθ

cosθ
= sinθ

1
n

n

∑
i=1

(
Pyk

i × Pxk+1
i − Pxk

i × Pyk+1
i

Pxk
i × Pxk+1

i + Pyk
i × Pyk+1

i

)
(6)

After θ is calculated, R can be obtained. T can be obtained by Equation (7), and then
iterated until the threshold is satisfied.

T =

[
Δx
Δy

]
=

[
Cx

Pk

Cy
Pk

]
− R

[
Cx

Pk+1

Cy
Pk+1

]
(7)

2.4. Fruit Tree Position Detection Algorithm
2.4.1. Introduction to LAPO and DBSCAN Algorithms

The LAPO algorithm [24] has four important stages, including the cloud surface
penetrating the air phase, the lightning channel moving downward, the upward pilot
starting to spread from the ground (or grounded object), and the last fight back stage.
The LAPO algorithm has a strong optimization ability in many engineering problems,
and no additional parameters need to be set, which can help to avoid subjective factors
influencing the results of the algorithm. Due to the influence of randomness and other
factors, the standard LAPO algorithm may also fall into a local optimum, which makes it
impossible to obtain a better solution every time. There is room for further improvement
in its stability. Therefore, this algorithm has also been applied and improved in various
clustering algorithms [25,26].

The DBSCAN algorithm [27] is based on a certain distance measurement criterion,
which clusters closely related data points based on their criteria into one category. The
following two parameters are set before clustering. The first one is Eps (the radius of the
given object is the neighborhood). The second one is MinPts (the minimum number of
components that make up a class). The traditional DBSCAN clustering algorithm is affected
by Eps and MinPts. These two parameters are global and fixed so that only the data in the
data set that meet the threshold condition can be effectively clustered, meaning that data of
other densities may be treated as noise. In addition, the traditional DBSCAN algorithm
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needs to traverse each data point. When the data scale is large, the algorithm execution
efficiency will be low, and the processing time will be long, which is not conducive to
the realization of the algorithm. In view of the shortcomings of the traditional DBSCAN
algorithm, our predecessors in this area have carried out a considerable amount of research
and improved the DBSCAN algorithm [28–30].

2.4.2. Fruit Tree Detection Algorithm Based on LAPO-DBSCAN

Due to the shortcomings of the two algorithms, this paper proposes a fruit tree position
detection algorithm based on LAPO-DBSCAN. This algorithm is mainly used to obtain the
position of fruit trees. This process includes preparation and detailed steps, and its flow
chart is shown in Figure 3.

Figure 3. Fruit tree detection based on LAPO-DBSCAN.

A. Preparation.

Parameter settings. 1. Setting the parameters of the LAPO algorithm. (1) n groups
of initial clustering centers are used as an initial clustering center group for each group
of k clustering centers (k is set randomly). (2) t is the number of iterations. (3) tmax is the
maximum number of iterations. 2. Setting the DBSCAN algorithm parameters. (1) The
traditional DBSCAN algorithm: Eps and MinPts are set according to the actual situation.
(2) The dynamic DBSCAN algorithm: the radius range of the dynamic fruit tree is set
according to the radius of the fruit tree, which is Dyn_rad ∈ [radmin, radmax]. According to
the LiDAR sensor parameters and distance, different neighborhood density thresholds are
obtained as Dyn_pts ∈ [Pts_nummin, Pts_nummax].
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Setting various functions. 1. Equation (8) is the objective function.

Fmin =
n

∑
i=1

k

∑
j=1

vi,j ‖ xi − cj ‖ 2 (8)

where vi,j =

{
1 i f arg minjdis

(
xi, cj

)
0 else

is the confidence function, which means that each

datum in the data set can only belong to one class.
2. Equation (9) is the Euclidean distance between two points, where i 
= j.

dis
(
Xi, Xj

)
=

√√√√ n

∑
i=1

k

∑
j=1

(
Xi − Xj

)2 (9)

B. Detailed steps.

1. Initializing the LiDAR data and setting the corresponding parameters.
2. Randomly selecting an initial cluster center group (n groups of cluster centers for

each group of k) to form a matrix C of n rows and k columns:

C =

⎡⎢⎢⎢⎢⎢⎣

{
c1,1, c1,2, · · · c1,k−1, c1,k

}{
c2,1, c2,2, · · · c2,k−1, c2,k

}
...{

cn−1,1, cn−1,2, · · · cn−1,k−1, cn−1,k
}{

cn,1, cn,2, · · · cn,k−1, cn,k
}

⎤⎥⎥⎥⎥⎥⎦.

The cluster center of the row is expressed by Equation (10).

Ci = Datamin + rand × (Datamax − Datamin) (10)

where rand is a random number in the range [0, 1]. Datamax and Datamin are the maximum
and minimum values of the radar data, respectively.

3. According to Equation (8), the fitness of cluster center group (C) is calculated. The
optimal value, worst value, and average value of the cluster center group are Cbest, Clow,
and Cave, respectively. According to the objective function, if Flow > Fave, we can assign the
value of Cave to Clow.

4. If the cluster center (Ci) of a certain row is updated, a group of cluster centers (Cj) is
randomly selected from the population, where i 
= j. If Fave > Fj, Equation (11) can be used
to iterate.

Ci = Ci + rand × (Cave − rand × (Ci)) (11)

If Fj > Fave, Equation (12) can be used to iterate.

Ci = Ci − rand × (Cave − rand × (Ci)) (12)

After the above process is complete, the updated cluster center group (Cnew) can
be obtained.

5. Return to step (3). Updating the cluster center group (Cnew) and obtaining the
optimal value, the worst value and mean value of the cluster center group will be Cnew_best,
Cnew_low, and Cnew_ave, respectively.

6. Cnew can be iterated through Equation (13) to obtain a new cluster center group Cnew.

Cnew = Cnew + rand × S × (Cnew_ave + rand × (Cnew_low − Cnew_best)) (13)

where S = 1 −
(

t
tmax

)
× exp

(
− t

tmax

)
.
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7. Return to step (3). The cluster center group (Cnew) needs to be updated and the
optimal value (Cnew_best), worst value (Cnew_low), and mean value (Cnew_ave) of the cluster
center group can be obtained.

8. With step (2) to step (7), the optimal cluster center group (Cbest) can be obtained and
the fitness can be calculated according to the objective function to obtain a set of optimal
cluster centers (cbest), namely, {c1_best, c2_best, · · · ck−1_best, ck_best}.

9. According to the obtained cluster centers, Equation (9) can be used to find the
distance between each cluster center. When the distance between two points is less than the
diameter of the fruit tree (the diameter of the fruit tree at the height of the radar installation),
the distance between the two points is used. The two cluster centers can be replaced with
the midpoint (when encountering bifurcated fruit trees, the midpoint is also used to replace
the two points). Otherwise, the cluster center remains unchanged. Finally, the updated
cluster center (cbest) can be obtained.

10. Equation (9) can be used to calculate the distance from each point (xi) to the cluster
center (cbest) in the data set and dividing each data point into each cluster center according

to the confidence function, which is Dist(xi, cn_best) =
√
(xi − cn_best)

2.
11. According to the actual situation, when the Eps and MinPts conditions are met, the

cluster center is retained; otherwise, the cluster center is discarded.
12. After discarding some of the cluster centers that do not meet the criteria, according

to the DBSCAN algorithm (still must meet the Eps and MinPts conditions), clustering is
performed to obtain the corresponding cluster, and the mean value of the corresponding
cluster is used to represent the cluster center (ci).

13. When the distance between two cluster centers is less than the diameter of the
fruit tree (the diameter of the fruit tree at the radar installation position), return to step (9).
Otherwise, the final cluster center (cfinal) should be obtained to form a cluster.

14. According to the final cluster center (cfinal), the following two conditions need to
be met to determine whether something is a fruit tree. Firstly, if the fruit tree dynamic
radius (Dyn_rad), which is radmin ≤ Dist(Xi, Cn_best) ≤ radmax, is satisfied, an object is
a fruit tree. At the same time, if it meets the dynamic neighborhood density threshold
(Dyn_pts ∈ [Pts_nummin, Pts_nummax]), the object is a fruit tree.

15. Finally, the position of each fruit tree can be detected.

2.4.3. Algorithm Improvement

The algorithm solves the problem of local optimal solutions in the LAPO algorithm
and parameter globality in the DBSCAN algorithm. In the LAPO algorithm, n initialized
cluster centers are randomly selected, as shown in step (2). As the selected n cluster centers
are random, there will be local optimal solutions in the calculation process for LAPO (from
step (3) to step (8)). In the actual test, the local optimal solution may appear in the following
situations. The results of the algorithm identify a set of clustering centers, but there is
obvious deviation (the obvious deviation here refers to the situation where the clustering
center is not on the data point and cannot correspond to the relevant data point) and two
clustering centers are together. At the same time, the LAPO algorithm also has the problem
of missing perception. To solve the above problems, the LAPO algorithm is improved.
When the two clustering centers are together, the two clustering centers can be combined
into one by taking the midpoint in step (9). In the cases of obvious deviation and missing
detection, the final cluster center can be obtained by the DBSCAN algorithm (from step (10)
to step (12)), but fruit trees may still not be detected. As the DBSCAN algorithm is affected
by Eps and MinPts, in the step (14) Eps and MinPts are used to distinguish fruit trees by the
dynamic threshold method. Through three-layer detection, the positive detection rate of
fruit tree detection can be greatly improved.

2.4.4. Simulation Data Verification

Both the LAPO and DBSCAN algorithms have shortcomings, so they need to be
improved to adapt them to more scenes. Using the 2D LiDAR sensor to scan the contours
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of fruit trees at different heights, the point cloud data will include two kinds of point cloud
data, which are the point cloud data of the main tree trunk and the point cloud data of the
canopy. Usually, the more data there are, the better the algorithm will be. To verify that
the LAPO-DBSCAN algorithm used in this paper is better than the LAPO and DBSCAN
algorithms, simulation data similar to the trunk of fruit trees are used for verification
according to the point cloud data of the trunks of fruit trees scanned by 2D LiDAR sensors,
as shown in Figure 4.

Figure 4. Simulation data.

To prove that the method based on the LAPO-DBSCAN algorithm is able to detect
more characteristic information than the method based on the LAPO algorithm, this paper
uses simulated fruit tree data to test the above two methods for one hundred frames. The
results obtained from the method based on the LAPO-DBSCAN algorithm and the method
based on the LAPO algorithm are shown in Table 2. The simulation data used in this paper
are similar to the trunk of fruit trees. Scholars [30] have used the improved DBSCAN
algorithm to detect the trunk of fruit trees, and the accuracy can reach 95.5%. Compared
with previous algorithms, this algorithm increases the accuracy by 3.92%. Therefore, the
algorithm used in this paper will no longer be compared with the DBSCAN algorithm for
detecting the trunk of fruit trees.

Table 2. Actual scene test results.

Algorithm Type Times Results (%) Average Handling Time (s)

LAPO 100
Positive detection rate 97.00%

0.41False detection rate 3.00%

LAPO-DBSCAN 100
Positive detection rate 99.42%

0.07False detection rate 0.58%

In Table 2, the positive detection rate of the LAPO-DBSCAN algorithm is better than
that of the LAPO algorithm, and the detection result is 2.42% higher. In terms of the false
detection rate, the LAPO-DBSCAN algorithm is better than the LAPO algorithm, and
the difference between the detection results is 2.42%. In terms of the average processing
time, the LAPO-DBSCAN algorithm consumes 82.92% less time than the LAPO algorithm.
Therefore, the simulation results show that the LAPO-DBSCAN algorithm is superior to
the LAPO algorithm and has a better detection effect.
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3. Results

3.1. Experimental Scene

Due to the different planting mode and row spacing of each fruit tree, the data obtained
by 2D LiDAR sensor scans of different fruit trees are also different, which will affect the
accuracy and stability of the algorithm. The test site used in this paper was selected from
the orchard of Nijiawan water field in Xiangcheng District of Suzhou, as shown in Figure 1.
The distance from the ground to the main trunk of the fruit tree selected in this paper was
about 0.5 m, and the area above 0.5 m was the canopy. According to the installation height
of the 2D LiDAR sensor, the collected point cloud data were all the point cloud data of fruit
tree crowns. As shown in Table 3, data on two rows of fruit trees used in the experiment
were obtained.

Table 3. Fruit tree data.

Fruit Tree Information

The outline length of the fruit tree on the left (m) 3.83 5.03 4.08 2.82 2.67 2.98 3.92
The outline length of the fruit tree on the right (m) 2.83 4.40 4.24 2.98 3.61 3.30 4.46

Distance between left and right fruit trees (m) 4
Distance between adjacent fruit trees on the same side (m) 3

3.2. Algorithm Verification

In the previous chapter, we introduced the method of fruit tree information perception.
Next, the point cloud registration based on the 2D-ICP algorithm and the fruit tree position
detection based on the LAPO-DBSCAN algorithm are tested.

3.2.1. Experiment on Fruit Tree Information Acquisition

Firstly, the test platform is controlled to drive slowly from the beginning of the fruit
tree to the end of the fruit tree to collect the point cloud data of the fruit trees. Then, all
the initial point cloud data of the fruit trees are preprocessed, and the final result only
retains the nearest point cloud data of the fruit tree on both sides of the test platform. The
original point cloud data, as shown in Figure 5, show that the data in the untreated orchard
have many interference points, such as the data collected from non-bilateral fruit trees
and the “zero-points” generated by the 2D LiDAR sensor at a certain angle. During the
preprocessing, we keep the data in the red box in Figure 5. The preprocessed data are
shown in Figure 6.

 

Figure 5. A frame of original data.
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Figure 6. A frame of preprocessed data.

After preprocessing, registration is performed based on the 2D-ICP algorithm to obtain
the completed fruit tree row point cloud data. This paper takes the registration of two frame
point cloud data as an example to illustrate the registration process of fruit tree point cloud
data. The registration process is shown in Figure 7. In Figure 7a–e, the iterative registration
processes of two point clouds are shown. The R and T from Figure 7a–e are calculated using

Equations (6) and (7). The R and T are
[

0.999948 −0.010145
0.010145 0.999948

]
and

[
0.027403 0.139726

]
in

Figure 7a. The R and T are
[

0.999992 −0.003975
0.003975 0.999992

]
and

[
0.010213 0.062397

]
in Figure 7b.

The R and T are
[

0.999997 −0.002030
0.002030 0.999997

]
and

[
0.007544 0.030963

]
in Figure 7c. The R

and T are
[

0.999999 −0.000753
0.000753 0.9999996

]
and

[
0.001915 0.018437

]
in Figure 7d. The R and T

are
[

0.999999 −0.000435
0.000435 0.999999

]
and

[
0.002288 0.000870

]
in Figure 7e. Figure 7f is the result

of using a two-frame point cloud registration as the next target point cloud. All the
preprocessed point cloud data of fruit trees on both sides of the test platform can be
iteratively registered by the 2D-ICP algorithm to obtain complete the point cloud data of
fruit trees, including the point cloud information of each fruit tree position, as shown in
Figure 8. The fruit trees on both sides of the test platform in Figure 8a show the point cloud
data in Figure 8b.

When using the 2D-ICP algorithm to construct point cloud data of fruit trees on both
sides of the test platform, we need to consider two problems. The first question is how
to obtain as much complete point cloud data as possible. The second problem is how to
prevent the oscillation of the collected point cloud data due to the uneven ground of the
orchard during movement. Therefore, on the one hand, we move the test platform as
slowly as possible, so the vibration amplitude of the vehicle is not large in the process of
moving. On the other hand, we choose a 2D LiDAR sensor with a high frequency, as shown
in Table 1, to obtain more fruit point cloud data within a short period of time. Through
these two measures, the adverse effects caused by the vibration of the test platform can be
compensated for to a certain extent, and the obtained fruit tree point cloud information can
be enriched, which is conducive to obtaining better point cloud registration results.
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The 2D-ICP algorithm registration process. (a) First point cloud registration; (b) second
point cloud registration; (c) third point cloud registration; (d) fourth point cloud registration; (e) last
point cloud registration; (f) results after two-frame point cloud alignment.
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(a) (b) 

Figure 8. Complete fruit tree row point cloud data. (a) Fruit trees on both sides of the test platform in
the actual scene; (b) point cloud data corresponding to fruit trees on both sides of the test platform.

3.2.2. Experiment on Fruit Tree Position Acquisition

After obtaining the point cloud data of the fruit trees on both sides of the test platform,
we need to obtain the position of the fruit trees. The first task is to set relevant parameters.
The number of initial cluster centers are set to four groups with six cluster centers in each
group, and the maximum number of iterations is 10. Although the above parameters are
set randomly, they should also be designed according to the actual situation. The value of
the parameters should not be too large or too small. In the traditional DBSCAN algorithm,
Eps is set to 0.58 m and MinPts is set to 3. Eps depends on the average radius of fruit trees
on both sides. In the dynamic DBSCAN algorithm, Dyn_rad depends on the minimum
radius and maximum radius of fruit trees on both sides—namely, Dyn_rad ∈ [0.42, 0.80].
Dyn_pts depends on the quotient of the number of point clouds per frame of the 2D LiDAR
sensor and the number of cluster centers in each group, namely, Dyn_pts ∈ [3, 333]. The
radius of fruit trees depends on their contours, as shown in Table 3. We regard the outline
of the fruit tree as a circle and use the formula of the circumference of a circle to calculate
the radius of the fruit tree.

The implementation process based on the LAPO-DBSCAN algorithm is as follows.
According to the LAPO-DBSCAN algorithm, a set of clustering centers are obtained from
step (3) to step (8). In three situations of the missing detection of some fruit trees, two
clustering centers appear on one fruit tree and the clustering center obviously deviates from
the fruit tree data. Here, we take two clustering centers together as examples, as shown in
Figure 9a. Then, we obtain the complete cluster center through step (9) to step (13). Finally,
the test results of fruit trees are obtained through step (14), as shown in Figure 9b, where
the blue point is the data point and the red “×” is the clustering center. The corresponding
cluster center coordinates are shown in Table 4. According to Figure 8b and Table 4, this
algorithm can accurately detect the position of fruit trees.

Table 4. Two-dimensional LiDAR sensor parameters.

The Coordinates of the Left Fruit Tree (m) The Coordinates of the Right Fruit Tree (m)

(−2.34, 0.95) (1.86, 1.61)
(−2.27, 4.08) (1.94, 4.51)
(−2.23, 7.59) (1.37, 7.18)
(−2.63, 10.57) (1.28, 11.16)
(−2.71, 14.23) (1.88, 15.32)
(−2.11, 17.84) (1.76, 18.05)
(−2.55, 20.29) (2.21, 20.68)
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(a) (b) 

Figure 9. Algorithm detection results: (a) two cluster centers on a fruit tree; (b) results processed
using this algorithm.

In Figure 8, the point cloud information of fruit trees on both sides was stored by
the 2D-ICP algorithm. Therefore, the point cloud data were directly tested 100 times
by the LAPO-DBSCAN algorithm, as shown in Table 5. One hundred iterations of the
LAPO-DBSCAN algorithm are shown in Figure 10.

Table 5. Actual scene test results.

Algorithm Type Times Results (%) Average Handling Time (s)

LAPO-DBSCAN 100
Positive detection rate 96.69%

1.14False detection rate 3.31%

Figure 10. Actual scene, 100 iterations.

In Table 5, the positive detection rate of the algorithm is 96.69%, the false detection
rate is 3.31%, the accuracy is maintained at more than 95%, and the average processing
time is 1.14 s, which meets the accuracy requirements for the actual scene. Therefore, this
algorithm can be used for the detection of fruit trees in orchards. This has certain practical
significance for future navigation in orchards.

4. Discussion

In this research, the contour information of surrounding fruit trees was collected by a
2D LiDAR sensor mounted on an experimental platform, and the point cloud registration of
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fruit trees on both sides of the transportation robot was completed by the 2D-ICP algorithm.
Then, the point cloud data were analyzed using the LAPO-DBSCAN clustering method
to obtain the coordinate position points of each fruit tree. The most important thing is to
propose a fruit tree position detection algorithm based on LAPO-DBSCAN. This algorithm
has obvious advantages over those proposed in previous studies. Compared with K-means
clustering, this algorithm does not need to set the number of clustering centers to be
detected in advance, which makes it more convenient. Compared with the DBSCAN, this
algorithm is more adaptable and can classify fruit trees more accurately. Compared with
LAPO, this algorithm takes less time and is more accurate. Comparing the results of the
simulation data (Table 2) with the results of the actual scene (Table 5), it can be seen that
with the increase in environmental characteristics (from the detection of fruit tree trunks
to the detection of fruit tree crowns), although the accuracy of the algorithm is reduced
and the processing time is prolonged, the accuracy remains above 95% and the average
processing time is 1.14 s, which generally meets the accuracy requirements of actual scenes.
Therefore, this method can be used for the detection of fruit trees in orchards.

5. Conclusions

In this paper, a fruit tree position information perception method based on a 2D LiDAR
sensor was proposed and verified on an experimental platform. According to the actual
detection effect, the positive detection rate of the algorithm could reach 96.69%, the false
detection rate was as low as 3.31%, and the average processing time was 1.14 s, indicating
that the algorithm can be used in fruit tree detection to obtain the position of fruit trees.
Although the algorithm has a good perception effect, there are also shortcomings. In the
process of the experiment, because of the limitations of the 2D LiDAR sensor itself, the fruit
tree information obtained was limited. When the algorithm is used for verification, there
will be false detection and missed detection. From the detection of fruit tree trunks to the
detection of fruit tree crowns, the amount of point cloud data for fruit trees will increase,
resulting in a decrease in the positive detection rate of the algorithm. However, overall, the
algorithm can still meet the requirements for the detection of fruit trees. In the future, the
positions of fruit trees obtained by this algorithm could play a role in orchard navigation.
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Abstract: Apple grading is an essential part of the apple marketing process to achieve high profits.
In this paper, an improved YOLOv5 apple grading method is proposed to address the problems of
low grading accuracy and slow grading speed in the apple grading process and is experimentally
verified by the designed automatic apple grading machine. Firstly, the Mish activation function is
used instead of the original YOLOv5 activation function, which allows the apple feature information
to flow in the deep network and improves the generalization ability of the model. Secondly, the
distance intersection overUnion loss function (DIoU_Loss) is used to speed up the border regression
rate and improve the model convergence speed. In order to refine the model to focus on apple
feature information, a channel attention module (Squeeze Excitation) was added to the YOLOv5
backbone network to enhance information propagation between features and improve the model’s
ability to extract fruit features. The experimental results show that the improved YOLOv5 algorithm
achieves an average accuracy of 90.6% for apple grading under the test set, which is 14.8%, 11.1%,
and 3.7% better than the SSD, YOLOv4, and YOLOv5s models, respectively, with a real-time grading
frame rate of 59.63 FPS. Finally, the improved YOLOv5 apple grading algorithm is experimentally
validated on the developed apple auto-grader. The improved YOLOv5 apple grading algorithm was
experimentally validated on the developed apple auto grader. The experimental results showed that
the grading accuracy of the automatic apple grader reached 93%, and the grading speed was four
apples/sec, indicating that this method has a high grading speed and accuracy for apples, which is of
practical significance for advancing the development of automatic apple grading.

Keywords: apple grader; YOLOv5; attention mechanism SE; DIoU_Loss; mish

1. Introduction

Today, labour on farms and orchards relies heavily on manual labour by skilled farm-
ers, which can lead to increased time and production costs. Smart farming has become
a popular concept with the development of precision farming and information technol-
ogy [1]. China is a major apple-producing country globally, and apple sorting has a high
economic application value [2]. With increased economic development, people have higher
requirements for fruit quality [3,4]. As a critical element in improving apple quality and
liberating orchard labour, apple grading technology is of great significance in increasing
the added value of products, improving market competitiveness, and alleviating labour
shortages in orchards. Therefore, a high precision and speed grading method is needed for
the effective and objective grading of apples.

In the research of fruit grading based on traditional machine learning, Abdullah et al. [5]
detected the quality features of poppy peaches by machine learning, the features considered
mainly included fruit surface color and fruit shape, and developed automatic machine vi-
sion detection software to detect the ripeness grade of poppy peaches by linear discriminant
analysis and multilayer neural network. Marchant et al. [6] studied the method of auto-
matic potato detection and grading based on a computer vision system. Moallem et al. [7]
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proposed a computer vision-based grading algorithm for golden crown apples where
texture and geometric features were extracted from the defective areas. Finally, a support
vector machine (SVM), a multilayer perception (Muti-Layer Perception), and a K-Nearest
Neighbor classifier were used to classify the apples into first-class, second-class, and out-of-
class fruits. Gui et al. [8] proposed a wavelet rectangle-based apple classification method
based on apple shape, which classified apples into normal fruit shape, mild deformity, and
severe deformity with a classification accuracy of 86.2%, 85.8%, and 90.8%, respectively.
In the above machine learning classification methods, preprocessing of images is often
required, and the classification relies on single features, which has the problems of poor
real-time performance and low robustness.

In the research of fruit grading based on deep learning, Fan et al. [9] used a con-
volutional neural network (CNN) architecture for apple quality recognition, trained a
convolutional neural network, and achieved an accuracy of 96.5% in the test set, designed
classification software for CNN-based convolutional neural networks, and used a computer
vision module to sort at a rate of 5/s on a four-threaded fruit sorter. The classification
accuracy reached 92%. However, the model was large, and the computational efficiency
was relatively low. Raikar et al. [10] studied the quality grade of okra and used three deep
learning models, AlexNet, GoogLeNet, and ResNet50, to classify okra into four types based
on length: small, medium, large and extra large, where the accuracy of the ResNet deep
learning model reached over 99%. Luna et al. [11] proposed a deep learning-based method
for single tomato defect area detection, implemented through the OpenCV library and
Python programming. He collected 1200 tomato images of different qualities using an
image capture box and used the images for training VGG16, InceptionV3, and ResNet50
deep learning models, respectively, compared the experimental results and found that
VGG16 was the best deep learning model for defect recognition. However, there are still
problems of insufficient model optimization and poor real-time performance in the above
deep learning model grading methods.

In terms of research on automatic fruit grading equipment, Cubero et al. [12] designed
a computer vision-based automated citrus sorting device. The sorting device was deployed
on a mobile platform, and the low-power industrial camera image acquisition and powerful
lighting system enabled the device to work better in the field. Experiments showed that the
sorting device could achieve a sorting speed of up to eight per second. Baigvand et al. [13]
developed a machine learning-based fig sorting system, which first uses a feeder and a belt.
The figs were first transported under a CCD camera by a feeder and belt conveyor. The figs
were classified into five categories by extracting fig characteristics from the pictures taken
by the CCD camera, including size, colour, segmentation size and fig centre position, etc.
The experiments verified that the grading system was 95% accurate in recognizing the five
categories of figs. However, the designed automatic fruit grader tends to be large and more
suitable for large assembly line working modes and is not suitable for the needs of small
and medium-sized farmers for detection and grading.

Although the above methods have achieved specific results in terms of fruit feature
detection and equipment implementation, there are still problems, such as insufficient
model optimization and equipment implementation. Based on this, this paper takes red
Fuji apples as the research object. It provides an in-depth discussion on the grading
detection of apple features and the implementation of automatic apple sorting equipment.
An apple grading algorithm based on the improved YOLOv5 is proposed, using the Mish
activation function instead of the original Relu activation function to improve the model
generalization ability. A loss function (DIou_Loss) is introduced to speed up the rate of
edge regression and improve localization accuracy. The attention mechanism squeeze
excitation (SE) module is embedded into the backbone feature network to improve the
feature extraction ability of the model. Experimental results show that the improved method
can improve the model detection without increasing the model training cost. Finally, the
automatic apple grader designed based on this paper was experimentally validated, and
some conclusions were obtained.
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2. Materials and Methods

2.1. Automatic Apple Grader Design

The structure of the automatic apple grader designed in this paper is shown in Figure 1.
It consists of Feeding and material handling lifting mechanism, turnover detection conveyor,
visual inspection and automatic grading control system, and graded actuators. The design
is based on a two-level layout to reduce the space required.

Figure 1. Structure of the automatic apple grader.

(1) Feeding and material handling lifting mechanism. The Feeding and material handling
lifting mechanism is a scraper elevator, as shown in Figure 2. The scraper elevator
consists of a funnel-shaped storage tank and a vertical conveyor belt, where the
funnel-shaped storage tank includes the back plate of the hopper and the support
plate, the three-dimensional conveyor belt includes the guide plate and the curved
scraper, and the whole mechanism is placed at an inclination of 45◦. The scraper
elevator moves the conveyor belt by means of an AC motor driven by a frequency
converter, which organizes the disordered apples into an orderly quadruple queue,
transporting them from the bottom upwards and conveying them into the Turnover
detection conveyor.

Figure 2. Scraper elevator. (1—hopper, 2—support plate, 3—guide plate, 4—curved scraper).
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(2) Turnover detection conveyor. The Turnover detection conveyor is shown in Figure 3
and consists of sprockets, chains, sponge rollers, and motors. The apples are lifted
by the scraper elevator into the turnover detection conveyor. The turnover detection
conveyor uses pairs of double-tapered rollers to turn the apples axially, and a CCD
industrial camera mounted on top of the lampshade collects images of the tumbling
apples several times to obtain complete surface information about the apples in a
moving position.

Figure 3. Turnover detection conveyor. (1—sprockets, 2—chains, 3—sponge rollers, 4—motor).

(3) Visual inspection and automatic grading control system. The visual inspection and au-
tomatic grading control system are shown in Figure 4 and consist of a CCD industrial
camera and automatic grading control system. The visual inspection and automatic
grading control system determines the grading of apples according to the information
collected by the CCD industrial camera on the whole surface of the apples and finally
sends the grading results to the graded actuators.

Figure 4. Visual inspection and automatic grading control system structure diagram.

(4) Graded actuators. The graded actuator is shown in Figure 5 and consists of a Trigger
grading mechanism, sprocket chain drive, grading fruit cup, grading channel, and
a motor. The grading fruit cup is shown in Figure 5b and consists of a cup body, a
drop door, and rollers. The grading actuator receives the grading results from the
image detection and automatic grading system and allows the apples to reach the
corresponding grade position and then open the cups and fall into the corresponding
grade storage bin.
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(a) (b)

Figure 5. Graded actuators. (a) Grading actuator; (b) Detail of grading fruit cup. (1-Trigger grading
mechanism; 2-Sprocket chain drive; 3-Grading fruit cup; 4-Grading channel; 5-Motor).

2.2. Apple Image Acquisition and Data Augmentation
2.2.1. Image Acquisition

The apples used in this dataset are “Fengxian apples” from Xuzhou City, Jiangsu
Province, and “Yantai apples” from Yantai City, Shandong Province, which are among
the representative brands of red Fuji. The sources of apples include purchases from
apple markets and picking from orchards. The image acquisition equipment used in the
experiments is a CCD industrial camera, MER2-G. The camera was mounted on a bracket
above a lampshade with a 90◦ angle of view directly above the flip mechanism and a
fixed height of 70 cm. The lampshade was illuminated with a LED strip as a fill light
source to capture images of apples under diffuse lighting. A final dataset of 2000 apple
images was obtained, including grade-1, grade-2, and grade-3 apples. The grade-1 and
grade-2 apples were mainly purchased from the market (differentiated by price), while
grade-3 apples were marketed in smaller quantities, mainly from orchard picking. The
CCD industrial camera uses a GigE interface for data transmission and acquisition with an
industrial computer. The image resolution is 1280 × 1024, the pixel size is 4.5 × 4.5 μm,
and the operating temperature range is 0◦ to 45◦. The camera is installed according to the
position of the flipping mechanism, the shooting angle is 90◦ directly above the flipping
mechanism, the shooting height is a fixed value of 70 cm, and the image acquisition of
the apple is carried out on the flipping mechanism, the image acquisition method and the
image acquisition effect are shown in Figure 6.

  
(a) (b) 

Figure 6. Data set production. (a) Image acquisition devices; (b) Image acquisition.

2.2.2. Apple Grading Criteria

In this paper, based on the Red Fuji GB/T 10651-2008 national standard [14], as shown
in Table 1, ripeness, fruit shape, defects, and fruit diameter were selected as grading features
to classify Red Fuji apples into 3 grades for this dataset.
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Table 1. Red Fuji GB/T 10651-2008 national standard.

Projects

Index Quality Grade

Grade-1 Grade-2 Grade-3

Ripeness Bright red or
dark red Greenish red Greenish yellow

Fruit shape No deformities No deformities deformities

defects NO NO Area not exceeding
4 cm2

diameter(Maximum
cross-sectional
diameter)/mm

≥70 ≥70 ≥65

2.2.3. Dataset Annotation and Expansion

LabelImg was used to annotate the apple images, saving the image categories and
target rectangle boxes according to the PASCAL VOC dataset format, generating an an-
notation file in XML format. As the height of the industrial camera is a fixed value, the
longest side of the rectangular box calibrated in the dataset is used as the criterion for fruit
diameter; the ratio of the long side to the short side of the rectangular box is used as the
criterion for fruit shape; apples with poor ripeness and defects are not carefully classified
and are judged to be grade-3 apples. The collected apple images were expanded using
MATLAB (2019) to make the training model more robust. The expansion methods included
horizontal mirroring, vertical mirroring, multi-angle rotation (90.180.270), and image tiling.
The expanded dataset is shown in Figure 7. The extended dataset has 6000 images with
a uniform image size of 1280 × 1024, with a high number of grade-1 and grade-2 apples,
each accounting for 40%, and a low number of grade-3 apples, accounting for 20%. The
extended dataset was allocated to the training, test, and validation sets in a ratio of 7:2:1.

Figure 7. The expanded dataset.

2.3. Design of Apple Grading Method Based on Improved YOLOv5

YOLOv5 is an algorithm proposed by Glenn-Jocher with high real-time performance
in terms of algorithmic efficiency [15,16]. The YOLOv5 network has four main components,
which are the input side, the backbone network (backbone), the Neck network part, and the
Output part. The YOLO family of algorithms has promising results on open-source datasets,
but there is no comprehensive and mature method for grading different state fruits [17].
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Therefore, this paper proposes an improved YOLOv5 model structure for apple grading
based on the lightweight network YOLOv5s shown in Figure 8. Using the Mish activation
function instead of Leaky-ReLU, the distance intersection overUnion (DIoU_Loss) loss
function is used at the output of the model. Finally, a simple and efficient channel attention
module (Squeeze Excitation) is introduced, which allows the model to focus on apple
refinement features without increasing the computational effort of the model.

Figure 8. Diagram of the improved network structure of YOLOv5.

2.3.1. Improvement of the Activation Function

The role of the activation function in a convolutional neural network structure is to
combine features thoroughly. The activation functions commonly used in YOLOv5 neural
networks are Leaky ReLU, Sigmoid, etc. Leaky ReLU (see Equation (1)) can handle the
gradient disappearance problem, but it suffers from neuron necrosis due to data sparsity,
while Sigmoid (see Equation (2)) can map real numbers to a specified interval, and his
curve is smooth and easy to find derivatives for, but it suffers from the problem of gradient
disappearance. The Mish (see Equation (3)) activation function has outperformed the Leaky
ReLU and other standard activation functions in many deep-learning models [18,19]. The
depth of the model in this paper is deeper, and the apple features are more abstract, so this
study uses the Mish activation function in the backbone of the YOLOv5 model to achieve
better feature extraction results. The CBM module in the backbone network consists of a
convolutional layer, a normalization layer, and the Mish activation function. The rest of the
model still uses the Leaky ReLU activation function.

f1(x) =
{

x x > 0
αx others

(1)

f2(x) = 1
1+e−x (2)

f3(x) =
x

1 + e−x (3)

As can be seen from Figure 9, the Mish activation function can output arbitrarily
large positive values while allowing slight negative gradient values, which avoids gradient
saturation due to the gradient being close to zero. The Mish function is non-monotonic
and continuously differentiable, which allows the deep neural network to achieve better
accuracy and generalization, and facilitates the optimization of gradient updates [20,21].
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Figure 9. Comparison of Mish, Leaky ReLu, and Sigmoid function images.

2.3.2. Improvement of the Loss Function

Deep learning networks adjust the weights between the layers of the network during
the training process through optimization algorithms, and they can reduce the loss so that
the predicted frames and the actual frames overlap as much as possible. The loss function
is the key to adjusting the weights [22,23]. GIoU has scale invariance. When the target is
enlarged or reduced, the loss value can remain the same magnitude, and it considers both
the overlapping and non-overlapping parts between the detection frame and the target
frame. When IoU = 0, the distance of the bounding box does not affect the loss value, GIoU
overcomes this shortcoming and can make the corresponding loss expression according to
the distance of the two bounding boxes. GIoU expressions are as follows:⎧⎨⎩ GIOU = IOU − C−(A ∪ B)

C

GIOU = −1 + A ∪ B
C (IOU = 0)

(4)

As shown in Equation (4), when there is an intersection between predicted frame A
and actual frame B, convergence is slower in the horizontal and vertical directions. When
there is an inclusion relation C between the predicted and actual frames (when C is the
smallest closed frame containing A and B), the GIoU degrades to an IoU and does not work.
In this paper, the apples in the flip turnover detection conveyor are relatively dense, and
the apples rotate in all directions with the sponge rollers, which makes it impossible to
accurately distinguish the actual region from the background region in the grading work of
the prediction frame. Therefore, in this paper, DIoU_Loss is chosen as the boundary loss
function in the output layer instead of GIoU_Loss to speed up the target grading accuracy
and detection speed.

DIoU inherits the advantages of GIoU and adds the centroid distance geometric
information [24,25]. As shown in Figure 10, which takes into account both the overlapping
area and the distance between the two centroids, DIoU can provide the accurate gradient
direction for the model when the prediction frame and the actual frame have crossed or
overlapped. The introduction of the distance penalty makes DIoU converge faster than
GIoU. The equation is shown in Equation (5).

DIoU = 1 − IoU +
p2(b,bgt)

c2
(5)
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Figure 10. DIoU schematic.

In the above equation, b, bgt represents the target and prediction box centroids, p(*) rep-
resents the Euclidean distance, and c is the diagonal length of the minimum enclosing box
covering the target and prediction boxes.

2.3.3. Integration of Attentional Mechanisms

Attention is one of the most critical mechanisms in human perception. The human eye
is adept at recognizing key image features from complex images and ignoring irrelevant
information, which is where the attention mechanism excels. With the booming develop-
ment of deep learning, the attention mechanism can be used for machine vision. Apples
have characteristics such as many features and small sizes, which can easily lead to wrong
and missed detection, thus making the grading accuracy of apple features low [26]. By
introducing the attention mechanism in the convolutional layer, the learning representation
can be enhanced autonomously, and the method is highly operational and effective [27,28].
The Backbone module in YOLOv5 adds the Focus structure, which improves the computa-
tional speed by slicing the feature map, but may have an impact on the features. In order to
improve the target feature extraction effect of the Backbone module, this paper introduces
the channel focus mechanism squeeze excitation (SE) module [29], which is embedded into
the last layer of the Backbone module to improve the accuracy of apple grading without
increasing the model size.

The SE module can effectively capture the channel and position information of the
image, which in turn can improve the grading accuracy of the model. Figure 11 shows
the working principle of the SE module, which consists of two main parts, Squeeze and
Excitation. The SE module first obtains a global description of the input through Squeeze,
which enables a wider perceptual field of view, and then obtains the weights of each channel
in the Feature Map through Excitation’s two-layer fully connected bottleneck structure as
input to the lower layer network.

Figure 11. Squeeze and excitation.

In Figure 11, the squeeze operation first encodes the entire spatial feature on the
channel as a local feature by global averaging pooling. Then the operation of the connected
channel is performed through two fully connected layers and a non-linear activation
function (see Equation (6)), followed by a Sigmoid activation function to obtain the weight
of each channel, and finally, a multiplicative weighted multiplication to each channel to
complete the recalibration of the attention mechanism. The calculation results are shown
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in Equations (7) and (8). A correlation between channels was established through global
average pooling, two fully connected layers, and a non-linear activation function.

Zc =
1

H × W ∑H
i=1 ∑W

j=1 uc(i, j) (6)

where Zc represents the Cth element in the statistic, H, W the space dimension, and the
subscripts i, j the number of channels. After the Squeeze operation has obtained the channel
information, it uses two fully connected layers to form the gate mechanism and activates it
with Sigmod. The calculation is as follows:

s = Fex(z, W) = σ(g(z, W) = σ(W2δ(W1z) (7)

where δ is the ReLu activation function, σ is the Sigmoid function, W1 and W2 are two fully
connected layers equal to C/r×C and C×C/r, respectively, r is the scaling parameter that
limits the complexity of the model and increases its capability, and s represents the set of
weights of the feature maps obtained through the fully connected and non-linear layers.
Finally, the output weights are assigned to the original features. The calculation formula is
as follows.

X̃c = sc × uc (8)

where X̃c is the feature map of the featured channel X, Sc is the weight, and Uc is a two-
dimensional matrix.

3. Result and Discussion

3.1. Experimental Validation and Analysis of Results
3.1.1. Experimental Environment

The experimental models in this paper were constructed, trained, and the results were
tested based on the Windows 10-x64-bit operating system. The experimental programming
environment is Python 3.7, using Cudnn for GPU acceleration, and Apple hierarchical
model training is implemented under the PyTorch 1.7 deep learning framework. The
experimental environment configuration is shown in Table 2. The number of iterations of
the training process was set to 150, the weight decay coefficient was 0.001, the learning rate
was 0.917, and the maximum training batch was eight. An IOU threshold of 0.5 was taken
as the standard.

Table 2. Experimental environment.

Computer Configuration Specific Parameters

CPU Intel i7-9750k
GPU NVIDIA GTX1660Ti(16G)

Operating system Windows 10-x64
Random Access Memory DDR4 32G (8G*4)

CUDA CUDA 10.3

In order to better calculate the classification accuracy and reliability of this model,
this paper selects loss function curve (Loss), Precision, Average Precision (AP), Recall,
Mean Average Precision(mAP), and frames per second (Fps) as the algorithm perfor-
mance evaluation indexes [30]. The relevant evaluation indexes are calculated as shown
in Equations (9)–(12).

Precision =
TP(TruePositive)

TP + FP(FalsePositive)
(9)

Reacll =
TP(TruePositive)

TP + FN(FalseNegative)
(10)
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Average Precesion =
∫ 1

0
(P(R)dR) (11)

Mean AveragePrecesion =
∑ Average Precesion

n(Class)
(12)

In the above equation, TP represents the number of apple samples correctly identified
by the model, FP represents the number of apples incorrectly identified by the model,
FN represents the number of apple samples not identified by the model, and n represents
the number of categories.

3.1.2. Analysis of Experimental Results

(1) Experiments related to the improved algorithm

The loss function can visually reflect whether the model can converge stably or not [31].
In the process of network training, the following three models were selected for comparison,
taking into account the comparative effects of different algorithmic models: the YOLOv5
algorithm using the Mish activation function to optimize the backbone network, denoted
by YOLOv5-M; the YOLOv5 algorithm using the DIoU optimization loss function, denoted
by YOLOv5-D; and the simultaneous use of the Mish activation function and DIoU opti-
mization method, denoted by Im-YOLOv5. The resulting loss function curve after training
is shown in Figure 12.

Figure 12. Loss value curve changes with epochs.

As shown in Figure 12, the overall trend of the loss values of the four models in training
is the same. They decrease rapidly in training and eventually stabilize. The YOLOv5-M
and YOLOv5-D loss values and convergence rates are significantly faster than the original
YOLOv5 algorithm, and the degree of fluctuation is less, which proves that the localization
accuracy and convergence rate of the models can be increased when using complete loss
and activation functions [31]. From Im-YOLOv5, the loss value and convergence speed are
slightly lower than YOLOv5-D for the first 50 iterations of the model, but after 50 iterations,
the loss value and convergence speed are due to the rest of the models. This indicates that
the Im-YOLOv5 algorithm can improve the convergence speed and localization accuracy
of the model, which helps to obtain a more accurate resultant model, which proves the
effectiveness of the improved model.

In order to verify the effectiveness of the improved method in this paper for apple
grading, this study trained the YOLOv5 and the Im-YOLOv5 models under the same
dataset and training set. The PR curve represents the relationship between accuracy and
recall, which can measure the model’s generalization ability. The PR curves of the two
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models after the training was completed are shown in Figure 13. The area between the PR
curve and the coordinate axes of the Im-YOLOv5 is larger than that of the original YOLOv5
model, which indicates that the improved model has better overall performance.

(a) (b)

Figure 13. Comparison of YOLOv5 and Im-YOLOv5 PR curve. (a) YOLOv5; (b) Im-YOLOv5.

As can be seen from Figure 13, the Im-YOLOv5 model has improved the grading
accuracy for different apple quality levels, with higher mAP of over 95% for Grade-1 and
Grade-3 apples. The mAP for Grade-2 apples reached 0.755, an improvement of 9.1% over
the original model. The average accuracy for all apple grades was 0.906, an increase of 3.1%
compared to the original model.

The Im-YOLOv5 model and YOLOv5s model trained in this paper were used to grade
apples of different qualities in an automatic apple grader.

Figure 14a shows the grading results before the improvement of the YOLOv5 model,
and Figure 14b shows the results of the Im-YOLOv5 model grading. The accuracy of the
apple grading in Figure 14a is low, where the apples in the first and second images appear
to have duplicate detection frames, and the second image shows incorrect grading of the
grade-1 and grade-2 apples, marking the grade-1 apples as grade-2 apples. The third panel
shows no duplicate detection frames but incorrectly marks three grade-1 apples with low
accuracy. In contrast, there is an improvement in grading accuracy for all grades of apples
in Figure 14b, with no duplicate boxes. The improved model was able to pay more attention
to apple feature information, which improved the robustness of the model while increasing
the grading accuracy. Therefore, the Im-YOLOv5 model can satisfy apple grading in actual
production environments.

In order to explore the effectiveness of visual attention mechanisms in convolutional
networks and to enhance the interpretability of the apple grading model in this paper, a
part of the improved YOLOv5 feature extraction layer in this paper was visualized [32].
The results of feature extraction from the convolutional layer of the backbone network are
shown in Figure 15. As shown in Figure 15a, the initial feature size of the convolutional layer
of the backbone network is large, the feature extraction is more fine-grained, and the apple
features are extracted while containing complex background information; as the network
deepens, the extracted features are gradually blurred and sparse and more semantic. As
can be seen in Figure 15b, after the attention SE module, there are some highlighted areas in
the figure, and the location of the apples is highlighted in the spatial pyramid pooling (SPP)
output feature map, which indicates that after adding the SE module, the deep network
layer of the Im-YOLOv5 model in this paper filtered the extracted features, which helped
to highlight the target apples as well as filter the background information in the grading
stage and improved the network model accuracy.
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(a)                                                   (b) 

Figure 14. Grading results. (a) YOLOv5s model; (b) Im-YOLOv5 model.

(2) Comparison experiments between different models

In order to further verify the superiority of the proposed algorithm, the improved
YOLOv5 algorithm was compared with several classical algorithms commonly used in
the current deep learning field, including a single shot multibox detector (SSD) [33], a fast
and superior generalization among One-Stage detectors, and YOLOv4 and YOLOv5s [34],
which have better comprehensive performance. The comparison experiments selected
accuracy, recall, mAP, and Fps as the evaluation metrics of each algorithm, and the models
were trained and tested under the same initial conditions. The apple grading results are
shown in Table 3 below.
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(a) (b)

Figure 15. Feature map visualization of the Im-YOLOv5 model. (a) CSP network output 56 × 56
feature map; (b) SPP network output 14 × 14 feature map.

Table 3. Comparison of different models.

Models

Index Precision Recall
mAP
@0.5

FPS(f/s)

Grade-1 Grade-2 Grade-3 Grade-1 Grade-2 Grade-3
SSD 0.812 0.612 0.884 0.926 0.645 0.895 0.789 34.78

YOLOv4 0.821 0.656 0.892 0.862 0.609 0.923 0.815 50.42
YOLOv5s 0.938 0.692 0.991 0.950 0.655 0.993 0.879 56.64

Im-YOLOv5 0.951 0.806 0.992 0.952 0.751 0.995 0.906 59.63

As can be seen from the results in Table 3, the SSD model has lower accuracy and recall,
with an average accuracy mAP of 0.789 and a real-time frame rate FPS of 34.78 for the Apple
classification. As the model improves, its accuracy, recall, mAP, and FPS gradually increase,
with the Im-YOLOv5 model having the highest mAP of 0.906, compared to the YOLOv5,
YOLOv4, and SSD models by 14.8%, 11.1%, and 3.7%, respectively. The accuracy and recall
of the grade-2 apple reached 0.806 and 0.751, respectively, which were 16.4% and 14.6%
higher than the original YOLOv5 method. On the other hand, the real-time image frame
rate of the Im-YOLOv5 method in this paper was improved, and the FPS of the improved
model reached a maximum of 59.63, which has better real-time performance compared with
the lightweight model YOLOv5s. The results show that the grading effect and real-time
performance of the Im-YOLOv5 model proposed in this paper are better than those of the
traditional deep learning model, proving the effectiveness of the proposed method.

3.2. System Solution Validation
3.2.1. Automatic Apple Grader Control System Set Up

The automatic apple grader designed and developed in this paper is shown in
Figure 16, and its workflow is shown in Figure 17. When the automatic apple grader is
started, the apples are lifted by a feeding and material handling lifting mechanism to the
turnover detection conveyor. The turnover conveyor uses pairs of double conical sponge
rollers to turn the apples. At this point, the automatic grading control system uses
the improved YOLOv5 algorithm to grade the apples based on the surface information
collected by the image acquisition device and sends the grading decision to the grading
execution device [35,36]. The grading actuator automatically places the apples in the
appropriate storage bin when they reach the appropriate grade based on the grading
results assessed by the grading control system. The bins are equipped with cushioning
material to reduce the impact of falling apples.
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Figure 16. Physical view of the automatic apple grader.

Figure 17. Workflow diagram for automatic apple grading.

The hardware of the automatic apple grading control system includes a CCD industrial
camera, IPC-610L industrial computer, PLC-1212 controller, AC contactor, inverter, and
AC motor. The CCD industrial camera uses a GigE interface for data transmission and
acquisition with an IPC-610L industrial computer. The industrial computer and PLC-1212
controller use the snap7 library to transmit information via a network cable. PLC controls
the AC motor to drive a grading actuator through the AC contactor. The processor CPU of
the IPC-610L is the same as that of the training computer, an Intel i7-9750k, an Intel i7-9750k
with two graphics cards GTX1660Ti (6G), the operating system is Windows 10-x64, and the
software environment is Python3.7, CUDA10.3, TIA Portal V15.1.

In order to facilitate debugging and observe the improvement effect of the model
algorithm, the PyQt-based apple automatic grading control system software developed
in this study is shown in Figure 18, which implements local video detection and real-time
grading functions to achieve fast and accurate apple grading. The software designed in this
paper sends the processed apple grade and location information to the TIA Portal V15.1
software through the snap7 library. After the grading actuator receives the apples in order,
the grading operation is finally completed by the PLC controller in the corresponding
grading lane [36,37].

3.2.2. Results of the Grading Experiment

In order to verify the feasibility of the algorithm and the grading scheme of the apple
automatic grading platform system in this paper, the designed and developed automatic
apple grader was experimentally verified. One hundred apples of each quality grade were
manually selected as samples, and the apple grades were determined based on the red Fuji
GB/T 10651-2008 grading standard mentioned in Section 3.2. The experimental results are
shown in Table 4.
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Figure 18. Apple auto-grading software.

Table 4. Grading experimental data.

Grade
Manual

Grading Results
Equipment

Grading Results
Consistency

Rates
Completions

Time(/s)

RP-grade-1 100 92 92% 27
RP-grade-2 100 88 88% 27
RP-grade-3 100 100 100% 27
Accuracy 93% 81

As can be seen from Table 4 of the experimental results, there was some grading error
for Grade-1 and Grade-2 apples. Grade-1 apple sorting was 92% accurate, grade-2 apple
sorting was 88% accurate, and grade-3 apple sorting was 100% accurate, with an average
accuracy of 93%. The average classification accuracy for the three apple grades was 93% for
the three apple grades, with an average classification speed of four apples/second. Both
the real-time and accuracy rates are high enough to meet the grading requirements of small
and medium-sized fruit farmers and to verify the effectiveness of the algorithm.

4. Conclusions

This paper proposes an improved apple grading model of YOLOv5, which better
balances the grading accuracy and speed of apples, and also carries out experimental
verification on the automatic apple grader designed and developed in this paper. The main
conclusions of this study are as follows.

(1) In order to achieve more accurate apple grading and better real-time performance, the
DIoU loss function and Mish loss function were chosen to replace the GIoU function
and Relu activation function of the original algorithm model in terms of algorithm
optimization, which improved the feature extraction capability and convergence
speed of the model. The attention SE module is embedded in the Backbone structure
to discard unnecessary features, which improves the training accuracy of the model
without burdening the model. The experimental results show that the improved
YOLOv5 has improved the average accuracy rate mAP by 3.1% compared to YOLOv5,
11% compared to YOLOv4, and 15% compared to SSD, and the real-time grading
speed has reached 59.63 FPS, which is a large improvement in both the apple-grade
grading accuracy rate and real-time performance. A portion of the improved YOLOv5
feature extraction layer was visualized to show the features extracted by different
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convolutional layers, enhancing the interpretability of the apple grading model in
this paper.

(2) An automatic apple grader was developed and designed, and the grading method
in this paper was experimentally verified on an automatic apple grading machine
platform. The experimental results showed that the grading accuracy of the grading
method on the automatic apple grader reached 93%, with an average grading speed
of four apples/sec. It has high accuracy and real-time performance, which can meet
the grading needs of farmers and small and medium-sized enterprises in the field and
has practical application in the apple grading industry.
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Abstract: In view of the difficulties of fruit cluster identification, the specific harvesting sequence
constraints of aggregated fruits, and the balanced harvesting task assignment for the multiple
arms with a series-increasing symmetric shared (SISS) region, this paper proposes a multi-objective
optimization algorithm, which combines genetic algorithm (GA) and ant colony optimization (ACO)
stepwise, to optimize the multiarm cooperative harvesting trajectory of straw-rotting fungus to
effectively improve the harvesting efficiency and the success rate of non-destructive harvesting.
In this approach, firstly, the multiarm trajectory optimization problem is abstracted as a multiple
travelling salesman problem (MTSP). Secondly, an improved local density clustering algorithm is
designed to identify the cluster fruits to prepare data for harvesting aggregated fruits in a specific
order later. Thirdly, the MTSP has been decomposed into M independent TSP (traveling salesman
problem) problems by using GA, in which a new DNA (deoxyribonucleic acid) assignment rule is
designed to resolve the problem of the average distribution of multiarm harvesting tasks with the
SISS region. Then, the improved ant colony algorithm, combined with the auction mechanism, is
adopted to achieve the shortest trajectory of each arm, which settles the difficulty that the clustered
mature fruits should be harvested in a specified order. The experiments show that it can search for a
relatively stable optimal solution in a relatively short time. The average harvesting efficiency is up to
1183 pcs/h and the average harvesting success rate is about 97%. Therefore, the proposed algorithm
can better plan the harvesting trajectory for multiarm intelligent harvesting, especially for areas with
many aggregated fruits.

Keywords: straw-rotting fungus; multiarm harvesting trajectory optimization; multiobjective
optimization; cluster fruit; genetic ant colony stepwise algorithm

1. Introduction

Straw rotting fungi are fungi that absorb the decayed humus of grass straws (such
as straw and wheat straw) as the main source of nutrition [1], mainly including Agaricus
bisporus, Agaricus blazei, straw mushrooms, capsule mushrooms, etc. Its factory pro-
duction usually adopts the bed planting method. The growth of its fruit is similar to a
round or spherical shape, easy to cluster, the combination of fruit and culture medium
(soil) is relatively rigid and compact, the ripening time of each fruit is different, and the
fruit is tender and vulnerable. This kind of fruit usually needs to be harvested by selective
harvesting, and the aggregated mature fruits need to be harvested in the specified order;
otherwise, the fruit is easy to be damaged. Therefore, it is difficult to achieve effective
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automatic nondestructive harvesting [2]. Under the trend of serious labor shortages, al-
though the cultivation of such crops can achieve factory-like and intensive production,
the labor-intensive harvesting process [3] still relies on manual labor, which has become
the main bottleneck affecting further production and efficiency improvement. Therefore,
there is an urgent need for harvesting robots that can adapt to the factory and intensive
cultivation environment for intelligent and efficient harvesting.

In the 1990s, Reed, J. N. and Tillett, R.D. [4] proposed the first selective harvesting
robot for Agaricus bisporus, which made selective autonomous harvesting of straw-rotting
fungus feasible. Since then, scholars have carried out many researches to on the edible
fungus harvesting robot technology but mainly focused on visual recognition and end-
effectors to improve the harvesting success rate [5–13], and few studies on trajectory
planning. Yang [14] aimed at the issue of mushroom harvesting path planning. GA was
used to optimize the harvesting path to improve the harvesting efficiency after obtaining
the location coordinates of all the mushrooms that can be harvested. In order to improve
the harvesting efficiency of the mushroom harvesting robot, Hu et al. [15] proposed an
improved simulated annealing algorithm to find the optimal path, which can increase the
harvesting efficiency by 14–18%. However, both of the above studies are all optimized for
the path of the single-arm harvesting robot, which can improve the harvesting efficiency to
a certain extent, but far from manual efficiency. In addition, these methods do not consider
the specific harvesting order of the aggregated fruits and are merely suitable for harvesting
the fruits, which are relatively sparse. When the fruits grow densely, take Agaricus bisporus
as an example, as shown in Figure 1, for the clustered fruits in the red circled area, the
height of fruit body A is higher than B and C. If B or C is harvested before A, B and C will be
damaged or even be harvested unsuccessfully because their cap is covered by A. Moreover,
a may be pushed down, which will cause its cup center to deviate greatly, resulting in
failure when picking A. So, the aggregated fruits should be harvested in order of height.
Otherwise, the success rate of non-destructive harvesting and the harvesting quality will
be reduced. So, it is significant to greatly improve harvesting efficiency; meanwhile, to
take into account the harvesting order of aggregated fruits to improve the success rate of
non-destructive harvesting further.

 
Figure 1. Schematic diagram of aggregated fruits.

Because the fruit is delicate and vulnerable and the harvesting environment is complex,
the harvesting operation is usually limited to slow and time-consuming [16]. So, the
harvesting efficiency is normally much lower than manual efficiency, which leads to the
situation that the harvesting robot cannot be widely used in actual production. To solve
this issue, using multiple harvesting arms is a typical approach.

A cotton harvesting robot with multiple robotic arms has been developed to achieve
multiple plucking of crops, which increases the yield by 20–25% [17].

Zion [18] developed a melon harvesting robot with multiple Cartesian arms to acceler-
ate the speed. The robot travels along a two-dimensional field at a constant velocity. The
multiarm assignment is modeled as a k-colorable sub-graph problem and uses a greedy
algorithm to achieve an optimal solution. Because the greedy algorithm focuses on local
optimization, the effect of global optimization may not be very good.
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A strawberry harvesting robot with dual cartesian arms was developed to reduce the cost
and optimize the harvesting efficiency. The fruits were partitioned into several subsections
equally for each arm to harvest. The harvesting speed can be reduced to 4.6 s [19].

An oyster mushroom harvesting robot with four harvesting arms connected in parallel
on a common mobile platform is provided to improve efficiency [20]. Each arm is allocated
to harvest in the divided area independently, which is divided from left to right with an
approximately equal number of target fruits, and the mature fruit closest to the end actuator
is picked first in each area.

A multiple robot arm system for kiwifruit harvest has been designed to reduce the
harvesting cycle time, thereby increasing the efficiency to meet the requirements of com-
mercial applications [21]. The multiarm harvesting robot sorts and partitions target fruits
according to their x coordinates and assigns them to the harvesting arms so that the amount
of the harvested fruit is approximately equal for each arm. However, for fruits growing in
clusters, the clustered fruits are completely allocated to the same arm to be harvested from
low to high to avoid touching or moving other fruits’ positions. Although this method can
improve the picking success rate of fruit clusters, it will affect the distribution uniformity
of each arm, thereby reducing the picking efficiency.

Most of the above multiarm harvesting trajectory planning uses the traditional method,
which partitions target fruits approximately evenly according to the arrangement direction
of the harvesting arms and allocates them to the robot arms, and each arm harvests fruits
from left to right or from right to left. Normally, this method can achieve a good result.
However, the trajectory planning effect of this method will be greatly reduced when the
fruits are distributed seriously ununiformly and even with many fruit clusters. Moreover,
this method assumes that each fruit can be picked by each arm; that is, the accessibility of
the task to be executed to the individual is consistent. While the fact is that not every fruit
can be picked by each arm due to the size of the arm, which indicates that the accessibility
of the task to be executed in the instance is inconsistent. This shortcoming will also increase
the difficulty of equal allocation among each arm. Therefore, a more global and flexible
optimization approach is required to resolve the above issues. In order to effectively
improve harvesting efficiency and adapt to the environment of straw-rotting fungus factory
bed planting, the harvesting robot can be designed as a highly cost-effective Cartesian
coordinate harvesting robot as shown in Figure 2, equipped with multiple harvesting
arms [22]. Here, because the mature fruits of straw-rotting fungus are little difference in
height, it can be assumed that the time spent in the height direction (Z-axis) of each fruit
during harvesting is the same, so that the dimension of the harvesting trajectory planning
of such fruits can be reduced as a two-dimensional trajectory planning problem in the XY
plane. In addition, since the shape of the straw-rotting fungus is basically spherical, the
projection of the shape of the fruit on the XY plane is further approximated as a circle.
Just as the harvesting sequence planning problem of a single-arm harvesting robot can be
regarded as a TSP problem [23]. Given the above assumptions, the multiarm cooperative
harvesting trajectory planning problem studied in this paper can be simplified as a typical
MTSP as well.

Similar to most fruit and vegetable picking robots mentioned above, the harvesting
time for a straw-rotting fungus fruit is also time-consuming (about 5 s) due to the operation
of grasping the fruit and detaching it from the culture medium or soil cannot be too fast to
avoid damaging the fruit. Compared with the harvesting time (time required for harvesting
at the target fruit position), the moving time (time used to move from the picked fruit to
the next target fruit) is much shorter. Therefore, it is much more significant to allocate the
harvesting tasks to each arm as uniformly as possible before optimizing the shortest path for
each arm [24–26]. In the meantime, it is also necessary to take into account the harvesting
sequence of aggregated fruits to improve the success rate of non-destructive harvesting.
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(a) (b) 

Figure 2. Detailed mechanical design of MFA. (a) Detailed mechanical structure of MFA; (b) detailed
mechanical structure of end-effector.

For the sake of the uniform assignment of tasks for each harvesting arm, in addition to
the region segmentation method described in the previous literature analysis, the stepwise
algorithm used for MTSP is more appropriate to solve the issue, which is also superior to
the general heuristic algorithm [27–30]. A stepwise algorithm is proposed to resolve the
MTSP of multi-UAV cooperative airport bird repelling, which adopts a genetic algorithm
to divide the MTSP into M independent TSP. This paper shows that GA is suitable to
solve the task balance assignment of MTSP [31]. Lu et al. [32] combined the K-means
clustering algorithm with GA to solve multiobjective MTSP, although a better-balanced
task assignment is obtained, but it still has poor trajectory searchability.

The ant colony algorithm is widely used in combinatorial optimization problems due to
its strong search ability and fast convergence speed [33]. Necula et al. [34] used ACO as the
bi-standard surface for solving the multitraveling salesman problem. Changdar et al. [35]
adopted ACO to resolve the multi-stop multitraveling salesman problem with non-random
parameters. Although both of them achieve a good result, it is easier to fall into the local
optimal solution prematurely in MTSP with high complexity problems.

In addition to solving the problem of equal allocation of multiarm tasks under SSIS re-
strictions to improve efficiency, it is also necessary to take into account the harvesting order
of aggregated fruits to improve the success rate of non-destructive harvesting mentioned
above. To achieve this aim, the above algorithm for solving similar MTSP should be further
improved by combining a multiobjective optimization method. More than this, another
challenge is how to improve the algorithm so that the fruit clusters that need to be picked
in a specific order can be split and allocated to multiple different arms, to overcome the
shortcoming of the whole fruits in the same cluster being merely allocated to the same arm,
so as to further increase the efficiency even though the mature fruits are seriously unevenly
distributed on a culture medium (soil) and with many fruit clusters.

Through the above analysis, this paper proposes an improved genetic ant colony
multiobjective optimization algorithm, which makes comprehensive use of the advantages
of both the genetic algorithm and the ant colony algorithm to resolve the difficulties of
multiarm cooperative harvesting of straw-rotting fungus and achieve both high harvesting
efficiency and a high success rate. The main contributions of this approach are as follows:

(1) The trajectory planning problem of multiarm cooperative harvesting of straw-rotting
fungus is transformed into an MTSP problem;

(2) To resolve the difficulty of accurately recognizing the fruit clusters of straw-rotting
fungus due to their different shapes and uncertain density, a density-based clustering
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algorithm is improved by designing a new method for calculating local density, which
can better meet the clustering analysis of straw-rotting fungus;

(3) A multiobjective optimization model is built for the trajectory optimization of an
intelligent multiarm straw rotting fungus harvesting robot;

(4) The improved ant colony algorithm combined with the auction mechanism is used
to achieve the shortest trajectory of each TSP problem. Meanwhile, the fruit clusters
that are required to be picked in a specific order can be allocated to different arms
instead of being allocated to a single arm by combining the auction mechanism with
an ant colony.

2. Description of Multiarm Cooperative Harvesting Trajectory Planning Problem

2.1. Intelligent Multiarm Straw-Rotting Fungus Harvesting Robot

As shown in Figure 2, an intelligent multiarm straw rotting fungus harvesting robot
consists of the following four main parts: (i) a mobile platform (MP) with a conveyor belt;
(ii) a visual position system (VPS), and (iii) multiple flexible arms (MFA); (iv) control system
(CS). The MP is placed on the rails of the multistory shelves to move along the rail with
the help of the MP, the VPS can recognize and locate all mature fruits. The CS can plan the
harvesting trajectory and control MFA to harvest the mature fruits and send them to the
convey for blanking.

MFA consists of at least two Cartesian arms with three DOF. As shown in Figure 2a,
the X-axis adopts the gear rack motor traverse multi-axis mechanism, and each is mounted
on a guide rail. The X-axis motor drives the gears in the gear rack through a synchronous
belt drive structure to move the end-effector along the X-direction. The Y-axis uses the
synchronous belt drive module to move the end-effector in the Y direction. The end-effector
is designed into a two-stage driving structure, as shown in Figure 2b, to adapt to the narrow
layer height of the edible fungus culture rack (available design height is only about 250 mm
while travel should be 160 mm). The first stage is driven by a rodless cylinder, and the
second stage is driven by a pen cylinder. The suction cup is connected to the pen cylinder,
which is connected to the rodless cylinder. During harvesting, the rodless cylinder drives
the pen cylinder lower. Firstly, the rodless cylinder inflates to drive the pen cylinder down.
Then, the pen cylinder deflates to cause the suction cup to drop under the action of gravity
until it touches the surface of the target fruit. Finally, vacuum to grasp the target fruit, rotate
or wobble, and pull up to detach the fruit from the soil. The structure can better adapt to
the large height difference in fruits and realize picking action by wobble or rotation motion.

The working flow of the proposed robot is shown in Figure 3, as follows: First, the
camera traverses all fruit images within the current visual area; Secondly, the image is
transferred to the host computer, and the positions of the mature fruits are identified by
image processing; Thirdly, all of the coordinates of fruits to be picked are scheduled and
allocated to multiple harvesting arms; Fourth, the controller drives the arms to harvest fruits
after receiving the assigned task; Finally, the robot moves forward as a whole by MP to start
the next harvesting cycle until the harvest of one layer is finished. In addition to the use of
three arms, in order to improve efficiency, the following are also performed: (i) Multiple
economical depth cameras are used to shorten the photographing and identification time;
(ii) Visual processing and harvesting operation work in parallel rather than in series. In the
current cycle, the multiarm harvester harvests the fruits identified in the previous cycle.

As shown in Figure 4, the control system takes the motion controller (TRIO MC4N)
as the core. The motion controller communicates with the PC through the Ethercat bus
to obtain the picking task for each arm, then drives the motor of each axis and controls
the cylinder, sucker, and other actuators of the end-effector to work monitor the working
status of each actuator in real-time and returns it to the upper computer. The economical
and compact stepping servo motor is used for each axis motor, and the communication
between the motor and the controller is also via the Ethercat bus.
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Figure 3. Workflow of the multiarm harvesting robot.

 
Figure 4. Hardware composition diagram of control system.

2.2. Accessibility Analysis of Multiple Harvesting Arms

Generally, the MTSP problem assumes that all cities can be visited by each traveler,
but this is not the case with the multiple harvesting arm structure in this paper. As shown
in Figure 2a, multiple arms are arranged in a series along the X-direction. Due to the
unignorable width of the end-effector, each arm has a certain inaccessible area, and the
reachable range of each arm is different.

The accessibility of the picking arm in this paper is characterized by exclusive area,
partially shared area, and fully shared area, and they are symmetrically distributed as
shown in Figure 5, which is called the serial increasing symmetric shared (SISS) area. The
definition of the SSIS is described in detail in [36]. Such an SSIS area makes it more difficult
to assign the harvesting tasks equally among each arm.
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Figure 5. Distribution of accessible area.

The range of each harvesting region can be described as follows:

Sk = (Xk−1, Xk), k ∈ {1, 2, . . . , 2M − 1} (1)

Xk =

{
W × k, k ∈ {1, 2, . . . , M}
L − (2M − 1 − k)× W , k ∈ {M + 1, M + 2, . . . , 2M − 1} (2)

where L is the length of the harvesting region, W is the width of arm and end-effector, M is
the amount of harvesting arm, Sk is the k-th harvesting region, and Xk is the coordinate of
the end point in the X-direction of the k-th harvesting area.

Equation (3) shows the accessible harvesting arms per area as follows:

Sk( j1, j2) =
{

Sk(1, k) , k ∈ {1, 2 , . . . , M}
Sk(k − M + 1, M) , k ∈ {M + 1, M + 2, . . . , 2M − 1} (3)

where (j1,j2) indicate harvesting arms j1 to j2 can reach the k-th area, 1 ≤ j1 ≤ j2 ≤ M.

2.3. Description of Trajectory Planning for Multiarm Cooperative Harvesting

As described in Section 1, the multiarm trajectory planning problem of this paper can
be abstracted to an MTSP problem with an SSIS Area. In which case, the aggregated fruits
should be harvested in the order from high to low in the Z direction. The goal of trajectory
optimization is to achieve both high harvesting efficiency and a high success rate with the
following constraints:

(1) Each harvesting arm’s accessible region is limited by the SISS region shown in the
above section;

(2) To avoid collision between the adjacent harvesting arms, a safety distance Dist
is required;

(3) After completing the harvesting tasks, each harvesting arm should go back to its start
point independently, which is (0,0), (W,0), . . . ,((M − 1) × W,0).

3. Mathematical Model of Multiarm Cooperative Harvesting Trajectory
Planning Problem

It can be known from Section 2.3 that the trajectory optimization problem of an in-
telligent multiarm straw-rotting fungus harvesting robot is regarded as a multiobjective
optimization problem. Researchers mainly use multiobjective optimization methods such
as the weighted coefficient method, multiobjective genetic algorithm, multiobjective par-
ticle swarm optimization algorithm, etc. [37,38]. Among them, because the optimization
problem in this paper is a two-dimensional, that is, a low-dimensional objective optimiza-
tion problem, and to reduce the complexity of the problem, the simple and easy-to-use
weighted coefficient method is adopted, which decomposes multiobjective into a single
objective and then optimizes this single objective.

Suppose the robot has M arms and N fruits to be harvested. The average harvesting
efficiency of the robot is C pcs/h and the average manual working efficiency is M pcs/h;
R is the ratio of the average working efficiency of the robot and man. In order to obtain
the optimal solution to double the objectives of harvesting efficiency and success rate, take
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R and success rate P to solve the objective function E by the objective weighting method
as follows:

Max E = R × K1 + P × K2 (4)

R =
C
M

=
N

T × M
(5)

P =
N − Nlose

N
× 100% (6)

T = [max(t_ARMi) + Tc]/3600 (7)

t_ARMi =
N

∑
j=1

N

∑
k=1

tjkxijk+
N

∑
j=1

tdijxidij +
N

∑
j=1

tjdi
xijdi

, ∀i ∈ M (8)

xijk =

{
1, when Arm i from fruit j to k
0 , other

(9)

where,
K1 and K2 are weighting coefficients, K1 and K2 > 0 and K1 + K2 = 1;
Nlose is the number of fruits in the clusters that failed to be harvested in the order from

high to low in the Z direction when the fruits were gathered;
T is the total harvesting time required for harvesting all mature fruits;
TC is the avoidance time;
xid

ij
indicates that Arm i from the starting point di to fruit j;

xijdi
indicates that Arm i from fruit j to the starting point di

tjk is the time taken by the harvesting arm to perform the task from fruit j to k;
The objective function must satisfy the following constraints:
Given the mature fruits set is V = {1,2, . . . ,N}; U is the set of harvesting arms

(1 ≤ M ≤ N), U = {1,2, . . . ,M); Since the working range of each harvesting arm is lim-
ited, di is the starting point of Arm i.

yij =

{
1, j ∈ Ii, when Arm i harvests fruit j
0 , other

(10)

where Ii means the mature fruits subset must be harvested by Arm i, Ii∈V
The sum of fruits picked by each arm should be equal to N as follows:

n

∑
j=1

yij = Qi, ∀i ∈ M, (11)

m

∑
i=1

Qi = n (12)

where Qi indicates the number of fruits allocated to Arm i, i∈U;
Each fruit can only be harvested by one arm as follows:

m

∑
i=1

yij = 1, ∀j ∈ V (13)

Each arm should start from and come back to its own start point after harvesting all
assigned fruits as follows:

n

∑
j=1

xidij =
n

∑
j=1

xijdi
= 1, ∀i ∈ M (14)
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4. Multiobjective Optimization Algorithm for Multiarm Cooperative
Harvesting Trajectory

As discussed in Section 1, there are the following two main difficulties required to
overcome: (1) The SSIS region restricts the working area of the harvesting arm as mentioned
in Section 2.2; (2) The allocation of cluster fruits to ensure the non-destructive success rate.

For the first problem, the stepwise algorithm, which can divide the MTSP into m-
independent TSPs to reduce the complexity of the problem, is an appropriate approach.

For the second sequence planning problem, the normal approach is to regard the
clustered fruits as a whole and assign them to a certain arm. However, when the number
of fruits in the same cluster is large and the distribution density of mature fruits in the
harvesting area is uneven (for example, most of the mature fruits are located on the left
and a few on the right), and if the fruits of a cluster can only be assigned to one arm, there
will be more harvesting tasks for one arm and fewer for the other arms, which will greatly
affect the harvesting efficiency. Therefore, for clustered fruits, it is necessary not only to
ensure that they can be harvested in order but also to be assigned to different arms to help
achieve the balanced allocation of the total harvesting task to each arm.

Therefore, an improved genetic algorithm and ant colony stepwise multiobjective
optimization algorithm (IGAACMO) is proposed. The algorithm flow is shown in Figure 6.

Figure 6. The flow chart of the multitarget optimization algorithm proposed in this paper.

In the first step, an improved local density bi-directional clustering algorithm is
designed to identify the clustered fruits to provide preparation for harvesting the clustered
fruits in the specified order; Then, in the second step, the MTSP problem is decomposed
into m independent TSP problems by a genetic algorithm with strong global optimization
ability, so as to settle uneven task assignment of the MTSP problem with SSIS region;
The third step is to use the fast convergence speed of the ant colony algorithm to plan
the trajectory of the above M-independent TSP respectively, and combined it with the
auction mechanism to resolve the allocation issue under the restriction of clustering fruit
sequence planning.

4.1. Clustering Algorithm Optimization for Fruits of Straw-Rotting Fungus

The clustering algorithms in the current research can be roughly divided into the
following five categories: partitional-based, hierarchical-based, grid-based model-based,
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and density-based [39]. The partitional-based algorithm is suitable for identifying datasets
with small sample sizes and spherical cluster shapes. However, it depends on the user
to specify the number of clusters in advance, and the processing for large-scale datasets
and clusters with complex shapes still needs to be improved further [40]. The hierarchical-
based clustering algorithm is sensitive to the noise and abnormal data points in the data
and cannot be rolled back after the upward or downward iteration [41]. The grid-based
algorithm runs at a high speed because its processing time is only related to the number of
cells and has nothing to do with the number of objects. However, the grid-based division
method may also reduce the clustering accuracy [42,43]. The advantage of a model-based
clustering algorithm is that it can find noise and isolated data points and can automatically
identify the number of classes. The disadvantage is that it is not suitable for clustering with
a large amount of data [44]. The density-based clustering algorithm can identify clusters
with different shapes. It can effectively eliminate abnormal data points or isolated data
points in the dataset, and has good noise resistance, but are sensitive to the density of
adjacent data points [45,46].

The fruit clustering state of straw-rotting fungus is relatively complex. Taking Agaricus
bisporus as an example, as shown in Figure 7a, it has the characteristics of complex
and different cluster shapes, and the number of clusters is unpredictable in advance,
which makes the partitional clustering algorithms and hierarchical clustering algorithms
unsuitable to discriminate against it. In addition, as shown in Figure 7b, it also has the
characteristics of many small clusters and many discrete values globally, which makes grid
clustering algorithms and model clustering algorithms less suitable.

  
(a) (b) 

Figure 7. Cluster shape of Agaricus bisporus (a) clusters with different shapes and densities; (b)
clusters with many small clusters and many discrete values.

The density-based clustering algorithm can identify clusters with different shapes.
However, due to the different diameters of each fruit of the straw-rotting fungus, the density
of the fruit clusters of the straw-rotting fungus is uncertain, while the general density-based
algorithm is not effective in solving such clusters with variable density. Therefore, an
improved local density bi-directional clustering algorithm is designed in this paper. The
designed local density calculation method can better adapt to the problems of complex and
different cluster shapes, especially for uncertain density, so that the algorithm can better
meet the requirements of fruit cluster analysis of straw-rotting fungus.

4.1.1. Fruit Clustering Definition

In order to determine which cluster set should a fruit belong to; the following defini-
tions are given:

(1) If Dij, the center distance between fruit i and j, is less than or equal to the sum of their
radius, as Equation (15), fruits i and j belong to the same cluster;

Dij ≤ ri + rj (15)

where,
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ri, rj represent the radius of fruit i and j, respectively.

(2) If fruits i and j are in the same cluster, while fruits j and k are in the same cluster, then
fruits i and k are also in the same cluster;

(3) If the center distance between fruit i and any other fruit fails to satisfy Equation (15),
then the fruit i does not belong to any cluster, which is called discrete fruit.

4.1.2. Local Density Calculation

Let N be the set of all mature fruits and n be the set of the number of fruits. The local
density ρi represents the number of fruits that belong to the same cluster (that is, meet
the definition (1) in Section 4.1). The larger the local density, the more likely the fruit is
the center of the cluster center; when the local density is 0, the fruit is a discrete fruit. The
calculation process of local density is as follows:

ρi = ∑n
j=1 Cluij, i 
= j, i, j ∈ N, (16)

Cluij =

{
1, Dij ≤ ri + rj
0, Dij > ri + rj

, i 
= j, i, j ∈ N, (17)

where Cluij is used to determine if fruit i and j belong to the same cluster.

4.1.3. Improved Density-Based Clustering Algorithm

The improved clustering algorithm is divided into an ascending process and a de-
scending process, as shown in Figure 8.

Figure 8. The flow chart of the improved local density-based clustering algorithm.

In the ascending process, calculate the local density of different fruit points, find the
high local density point closest to the fruit point, form a data chain from the data points of
low local density to high local density, and find the cluster center of the ascending process
for all fruits point. The codes in details are shown in Table 1.
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Table 1. The codes of ascending process of the improved clustering algorithm.

Algorithm 1.

Input: N // set of all mature fruits
Output: Unit[] //set of cluster centers corresponding to each fruit
1 Initialization();
2 UpProcess(a,b); // a is the data coordinate and b is the data serial number.
3 c = b; // If no other point within the cutoff distance has a higher cluster

density than it, its cluster center is itself
4 while i < n do;
5 if i! = b and density[i]> = density[b]; // The local density of i is greater

than the input fruit
6 Distance = math.sqrt((N[i][0]-a [0])ˆ2+(N[i][1]-a [1])ˆ2);
7 rc = Clu[i][2]+a [2] // Cluster radius
8 if x1<=x2: // Two fruits are clustered
9 c=i;
10 break;
11 return c;
12 while i < n do; #Ascending process, computing the cluster center for each fruit
13 Unit[i]=UpProcess(N[i],i)
14 return Solution;

In the descending process, the data point with the highest local density is used as the
cluster center, and then the data chain is merged. After all data points are traversed, and
finally, clustering is performed to complete the unified operation of all fruit clustering cen-
ters in the same cluster, the codes in detail are shown in Table 2. In addition, consolidation
operations were added to the descent. Because the growth characteristics of straw-rotting
fungus easily lead to the highest local density points within the same cluster, which may
not be unique, they need to be integrated into the same cluster. For example, the local
density values of A and B in Figure 9 are both equal to 3, which are both the highest local
density points in the cluster. In this case, fruit A and B may be the cluster centers of each
other, so it is necessary to integrate Fruit A and B into the same cluster. Its processing
method is shown in lines 9–10 in Table 2.

Table 2. The codes of descending process of the improved clustering algorithm.

Algorithm 2.

Input: Unit[] // The set of cluster centers obtained during the ascent
Output: Unit[ ] // The final set of cluster centers corresponding to each fruit
1 Initialization();
2 DownProcess(a,b);
3 if a == b; // If the cluster center of the data point is itself
4 return b;
5 else;
6 a = DownProcess(Unit[a],a);
7 return a;
8 for i in range(n); // Descending process, if the cluster center of a data is another

point, it will be merged into its subclass.
9 if i == Unit[Unit[i]]; // If it is the cluster center with another point, select one

of the points as the cluster center and merge the two.
10 Unit[i] = i;
11 if Unit[Unit[i]]! = Unit[i]; // If the final cluster center corresponding to the

point is found
Unit[i] = DownProcess(Unit[i],i);
12 return Solution;
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Figure 9. The highest local density point within the cluster is not unique.

4.2. Genetic Algorithm

A genetic algorithm is used to divide the MTSP into 2M-1 independent TSPs for
SSIS region constraint by designing an appropriate encoding so that the MTSP can be
decomposed into 2M-1 TSPs appropriately.

(1) Encoding

The gene sequence of GA is divided into 2M-1 corresponding segments to the 2M-1
different accessible regions in the SSIS region, as shown in Figure 10 so that the MTSP can
be decomposed the MTSP into 2M-1 TSPs. The gene indicates which arm the fruit should
be allocated to. The DNA fragment corresponds to the picking region Sk in Figure 5 one
by one.

Figure 10. Diagram of DNA sequence proposed in this paper.

Each ripe fruit in the reachable region corresponds to each element in the correspond-
ing DNA segment. DNAk(j) indicates the picking arm allocated to the j-th fruit in the k-th
area. Therefore, in order to be consistent with the harvesting arm allowed to enter each
accessible region of Equation (3), the assignment rule of DNAk(j) in the initialization of the
corresponding population is as follows:

DNAk(j) =
{

random(1, k) , k ∈ {1, 2, . . . , M − 1}
random(k − M + 1, M), k ∈ {M, M + 1, . . . , 2M − 1} (18)

where random (1,k) represents any integer in the randomly assigned closed interval 1 to k.

(2) Selection operator

Roulette is adopted as the selection operator to improve the optimization ability of the
algorithm. In this method, two individuals are selected at a time, and then the individual
with the better fitness of the two individuals is selected by the probability of survival.

(3) Crossover operator

To increase the global search ability, a multipoint crossover is used to randomly select
multiple segments in the gene sequence for crossover.

(4) Mutation operator

Different mutation rules are required for each DNA segment, and it can merely mutate
into the code for the harvesting arm accessible to the corresponding reachable area of
the segment.

All of the mature mushrooms in the current cycle were divided into M groups based
on the DNA sequences of the best individuals in the population.
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4.3. Improved Ant Colony Algorithm

In order to solve the problems of sequence harvesting of cluster fruits and collision
avoidance when M harvesting arms work together, the respective trajectory planning of
each harvesting arm should be carried out in parallel, so that it can be judged in real-time
whether there the clustered fruits are harvested in the specified order and whether will be
collisions between the arms.

The ant colony algorithm has good parallelism and late convergence of the algorithm,
so this paper adopts the ant colony algorithm to solve the trajectory planning problem
of each of the M harvesting arms and combines the auction mechanism to deal with the
sequence harvesting of cluster fruits when the M harvesting arms work together.

In actual harvesting, in addition to harvesting efficiency, the harvesting success rate
is also a very important indicator. According to actual harvesting requirements and
experiments, the trajectory planning algorithm designed in this paper needs to ensure that
the harvesting success rate is more than 95%. Therefore, the following approach is designed
so that in the early stage of the evolution of the algorithm, the success rate is the main
guide, while after the success rate meets the requirements, the pheromone concentration of
the current fruit to be harvested should be temporarily increased to increase the probability
of its selection.

The specific calculation process for the success rate is shown in Figure 11.

Figure 11. Flow chart for judging whether fruit in the cluster be harvested in specific order.

The following are the detailed steps:
Step 1 Initialize.
Initialize the pheromone matrix, the path taboo table, the set containing the nominal

harvesting order of clustered fruits (for calculating the success rate), the set of coordinates
of the fruit to be harvested for each arm, and the matrix containing the information
corresponding to the time axis and displacement of the X-axis.

Step 2 Build trajectory.
Ants construct m-picking arms in parallel. First, the path taboo table is used to remove

the picked fruits and generate a preliminary candidate fruit set. Additionally, then, the
auction mechanism is used to determine the current candidate fruit set for each ant and
choose the fruit to be picked next from the set according to the pheromone concentration
until all ants have completed the trajectory construction.
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Step 3 Evaluation.
The objective function E, which can be calculated by Equation (4), is used for evalua-

tion. To make the success rate of harvesting meet the requirement of more than 95%, the K1
and K2 coefficients in Equation (4) are dynamically adjusted. When the success rate is less
than 95%, set K1 = 0.4, K2 = 0.6; after the success rate is greater than or equal to 95%, set
K1 = 0.6, K2 = 0.4.

Step 4 Update the pheromone matrix.
The trajectory with maximum E in Equation (3) is selected to update the pheromone matrix.
Step 5 Determine the number of iterations.
If the maximum number of iterations is reached, turn to End, otherwise go to step 1.
Step 6 End.
Output the final optimal trajectory.

5. Experiments and Analysis

5.1. Experiments of Clustering Algorithm

To verify the effect of the improved local density clustering algorithm (ILDCA) in this
paper, the agaricus bisporus was taken as an example to test, and the test data were all
from the site of the planting factory. The data is shown in Figure 12a. The pictures were
taken on the spot by the harvesting robot, and the mature fruits recognized by visual are
marked with red circles. The mature fruit data obtained from the image identification are
processed by the clustering algorithm proposed in this paper, and the obtained clustering
result is shown in Figure 12b, in which the fruits belonging to the same cluster are marked
with the same color. Comparing a and b of Figure 12, it can be seen that the success rate of
clustering is close to 97%, which fully meets the requirement of clustering identification in
robotic harvesting.

 
(a) (b) 

Figure 12. The processing result of clustering algorithm processing. (a) visual identity map of ripe
fruits; (b) The processing result of the improved clustering algorithm.

In order to further verify the effectiveness of the algorithm, this paper selects much
more samples with different fruit numbers, cluster numbers, and discrete point numbers
to conduct multiple sets of experiments and compares them with the commonly used
clustering algorithm K-means algorithm and Gaussian mixture algorithm. The results are
shown in Table 3. It shows that the K-means algorithm has the worst effect in processing
the clustering of the fruits in this paper, whose average success rate is only 68%. Compared
with the K-means algorithm, the Gaussian mixture algorithm is more flexible in the shape
of the clustering, but it is more difficult to adapt to the characteristics of this paper with
many small clusters and many discrete values, and the average success rate is merely 78%.
However, the effect of the improved algorithm is much better than the other algorithm,
with its average success rate is up to 97%. Additionally, as the number and complexity
of clusters increase, the superiority of the improved clustering algorithm remains stable.
So, the improved clustering algorithm is suitable to solve the clustering problem of straw-
rotting fungus.
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Table 3. Clustering algorithm comparison of many groups of samples.

Group
Num of
Fruits

Num of
Cluster

Num of
Discrete Points

The Recognition Success Rate of Clustered Fruits

K-Means
Gaussian
Mixture

Improved Clustering
Algorithm

1 40 18 12 82% 88% 99%
2 40 25 20 78% 85% 99%
3 55 27 16 72% 80% 98%
4 55 38 27 68% 78% 96%
5 70 36 28 63% 73% 96%
6 70 45 36 57% 66% 95%

AVG 55 189 139 68% 78% 97%

5.2. Experiments of Multiobjective Optimization Algorithm for Multiarm Cooperative
Harvesting Trajectory

Take the three-arm Agaricus bisporus harvesting robot as an example to verify the
effect of the proposed approach, as shown in Figure 13.

 

 
Figure 13. The multiarm intelligent harvesting robot working in the multistory shelf trays in the
factory environment.

Three sets of data containing 40, 55, and 70 fruits, respectively, are selected as the first
experimental data, which are shown in Figure 14. The detailed harvesting information for
the fruits to be harvested in Figure 14 is shown in Appendix A, where (X, Y, Z, C) is used to
express the harvesting information for fruits. X, Y, and Z represent the coordinates of the
center point of the fruit to be harvested. C indicates the cluster number the fruit should
belong to, which can be obtained by the clustering algorithm proposed in this paper.

The proposed IGAACMO algorithm is used to optimize the harvesting trajectory
of the real fruit data (Figure 14). Furthermore, the two-chromosome genetic algorithm
(DCGA) and the genetic stepwise algorithm (GAGA) are also used to plan the trajectory of
the three-arm robot with the experimental data to compare with the processing results of
the algorithm proposed in this paper.
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Figure 14. Pictures of fruit harvesting area from planting factory. (a) contain 40 fruits; (b) contain
55 fruits; (c) contain 70 fruits.

The parameter settings are as follows: (1) the crossover probability is set to 0.15, the
population is set to 30, the mutation probability is set to 0.015, and the maximum iteration
number is set to 500. (2) In the ant colony algorithm, let 1 be the set of the important factors
of pheromone, let 30 be the set of the number of ants, let 5 be the set of the intensity of
pheromone, and let 10 be the set of the important factors of heuristic pheromone, let 0.1
be the set of the volatile factors and let 500 be the set of the maximum iteration number;
(3) the moving speed of the harvesting arm (V) is given as 100 mm/s and the harvesting
execution time (t1) is given as 5 s.

The convergence performance of the algorithm is shown in Figure 15. It indicates that
when the picking scale is 40 (i.e., 40 fruits need to be picked), the iteration number of the
proposed algorithm is about 50% less than that of DCGA, 67% less than that of GAGA,
and the optimal harvesting time of GAAC is 14% better than DCGA and 11% better than
GAGA; When the picking scale is 55, the iteration number of GAAC is about 67% less than
that of DCGA, and 75% less than that of GAGA, and the optimal harvesting time of GAAC
is 22% better than DCGA, and 15% better than GAGA; When the picking scale is 70, the
iteration number of the proposed algorithms is about 28% less than that of GAGA, about
22% less than that of GAGA, and the optimal harvesting time of the proposed algorithm is
26% better than DCGA, and 19% better than GAGA. Therefore, compared with the other
two methods, the convergence speed and optimization ability of the algorithm proposed in
this paper are better.

  
(a) (b) (c) 

Figure 15. Comparison of convergence performance of three algorithms. (a) contain 40 fruits;
(b) contain 55 fruits; (c) contain 70 fruits.
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The other results obtained by the three algorithms and the important parameters are
shown in Table 4. By comparing these parameters, the following can be seen: (1) The
algorithm proposed in this paper has the best multiarm task distribution uniformity and
the highest utilization of multiarm cooperation. The greater the number of fruits to be
harvested, the more obvious the advantages compared with the other two algorithms;
(2) The harvesting success rate after using the improved algorithm in this paper can always
be guaranteed to be above 95%.

Table 4. Comparison of experimental results of the three algorithms.

Num of
Fruits

Algorithm Avoid Times
Harvesting

Time(s)
Harvesting

Efficiency(pcs/h)
Harvesting

Success Rate

40
DCGA 2 130.21 1106 96%
GAGA 1 126.54 1138 98%

IGAACMO 0 113.81 1265 100%

55
DCGA 5 196.16 1009 90%
GAGA 3 185.42 1068 94%

IGAACMO 1 161.31 1227 98%

70
DCGA 9 283.29 890 82%
GAGA 6 267.95 940 87%

IGAACMO 2 224.64 1122 96%

The harvesting trajectory optimized by the IGAACMO algorithm is presented in
Figure 16. The harvesting assignment task of each harvesting arm is relative balance, and
there is basically no redundancy in the trajectories.

   
(a) (b) (c) 

Figure 16. Trajectory diagram optimized by IGAACMO algorithm. (a) contain 40 fruits; (b) contain
55 fruits; (c) contain 70 fruits.

Because the larger the ratio of the number of clusters to the total number of fruits is,
the more it will affect the performance of the algorithm. Another 10 more experiments are
added to verify the stability of the proposed algorithm further. The number of ripe fruits
ranges from 40 to 70, with the proportion of clusters ranging from 20% to 60% as well.

The results of the ten group experiments are shown in Table 5. The average harvesting
efficiency optimized by the proposed algorithm is 1183 pcs/h, which is about 21% higher
than that of the DCGA algorithm and about 15% higher than that of the GAGA algorithm.
In the meantime, the average harvesting success rate is 97%, much better than the other
two algorithms as well. All of the group results are basically consistent with Table 4. This
indicates that the algorithm designed in this paper can achieve a better harvesting trajectory
for the multiarm intelligent harvesting robot for fruits with different distributions.
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Table 5. Comparison of the three algorithms with 10 groups data.

Group Num of
Fruits

Ratio of
Cluster

Harvesting Efficiency (pcs/h) Harvesting Success Rate
GAGA DCGA IGAACMO GAGA DCGA IGAACMO

1 40 20% 1162 1182 1308 98% 99% 100%
2 42 38% 1112 1141 1258 97% 98% 100%
3 45 58% 1046 1093 1114 92% 95% 98%
4 49 21% 1068 1114 1238 95% 98% 100%
5 52 30% 1027 1074 1232 92% 95% 98%
6 57 45% 992 1034 1205 90% 94% 98%
7 60 60% 931 983 1161 85% 90% 95%
8 62 23% 945 1008 1186 86% 91% 97%
9 67 46% 892 947 1132 81% 87% 96%

10 70 57% 849 896 1106 78% 85% 95%
AVG 54.4 41% 977 1025 1183 88% 92% 97%

6. Discussion

The harvesting trajectory planning of a multiarm straw-rotting fungus harvesting
robot is a typical NP-hard problem. It can be better optimized by the IGAACMO algorithm,
which is proposed in this paper.

In terms of running speed, the IGAACMO is obviously superior to the other two
methods (DCGA and GAGA). Moreover, the larger the processing scale (the more fruits to
be picked), the greater the convergence advantage.

In terms of the optimization results, the amount and distribution of ripe fruits have
an impact on the results. The algorithm is sensitive to the distribution density of the fruit
to be picked. With the increase in fruit density, the picking efficiency will decrease. This
shows that the closer the fruit distribution is, the more difficult it is to avoid a collision,
which makes some picking arms have to wait and reduces the picking efficiency. However,
compared with the other two algorithms, the optimization effect of the proposed algorithm
is better under the same conditions, especially in the case of the fruit distribution with
high density.

In particular, there is another important issue with the fruit cluster that needs to be
harvested in a specific order. There are two ways to deal with this issue. One is to regard
the fruits in the same cluster as a whole and assign them to the same arm to harvest them
in a specific order, which is mostly adopted at present. The other is to allocate them to
multiple different arms on the premise of ensuring the required harvesting order, which is
an improved method proposed in this paper. The latter method is superior to the former
one, especially when the distribution of fruits in each accessible area is seriously uneven,
with large fruit clusters stretching across two different accessible areas as well, as shown in
Figure 17. The red circle represents the fruit to be picked, and the black circle represents
the immature fruit. The picking robot has three arms, and the working area is divided into
five accessible areas, where S1 (1,1) represents the exclusive area for Arm1, and the fruits in
this area can only be harvested by arm1, S2 (1,2) is the partial shared area that can only be
harvested by Arm 1 and Arm 2, S3(1,3) is the fully shared area that can be harvested by all
three arms, S4 (2,3) is the partial shared area that can be harvested by Arm 2 and Arm 3,
and S5(3,3) is the exclusive area that can only be harvested by arm 3. Most of the fruits to
be picked are distributed in the exclusive area S1 (1,1) and the partial shared area S2 (1,2),
and there is a large fruit cluster C1 over the two areas, meanwhile. The comparison of the
results of the above two methods is shown in Table 6. All of the fruits in the fruit cluster C1
are allocated to Arm2 and the number of fruits allocated to Arm1 is very few by using the
GAAC algorithm, which greatly increases the cycle time. However, by comparison, C1 is
split and assigned to Arm1 and Arm2 respectively, resulting in a more uniform harvesting
task among each arm, thereby improving the harvesting efficiency further.
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C1

 
Figure 17. Diagram with serious uneven distribution of fruits.

Table 6. Comparison results of different allocation methods for fruit clusters.

Algorithm Avoid Times
Harvesting

Time(s)
Harvesting

Success Rate
N1:N2:N3

GAAC
(assigned to the same arm) 1 126.29 100% 03:17:14

IGAACMO
(assigned to different arms) 1 105.25 100% 13:12:09

It can be shown that when the distribution of mature fruits is seriously ununiformly,
with some fruit clusters across multiple accessible areas as well, it is easy to cause the
uneven task assigned to each arm by assigning the total fruits in a cluster merely to the
same arm, which results in some arms waiting for no picking tasks meanwhile other arms
have too many picking tasks. This will greatly increase the cycle time of harvesting, thereby
seriously reducing the picking efficiency. The algorithm proposed in this paper, combined
with the auction mechanism, can allocate the fruits in a cluster to different arms on the
premise of ensuring the required harvesting order instead of allocating them to a single
arm, which can resolve this issue appropriately. Therefore, it can be concluded from all the
above discussions that the algorithm proposed in this paper has strong optimization ability
and good stability. For fruits with different densities, the picking tasks for each arm can
be evenly distributed even though the fruits are not uniformly distributed on the culture
medium or soil, with some fruit clusters across multiple accessible areas as well; thereby,
it can not only achieve higher harvesting efficiency but also a higher success rate. The
algorithm can better adapt to the issues of dense and uneven distribution of fruits caused
by the natural growth of straw-rotting fungus.

7. Conclusions

This paper takes a straw-rotting fungus multiarm harvesting robot as the research
object. Aiming at the problem of uniform task allocation and sequential harvesting for
clustered mature fruits in multiarm cooperative harvesting trajectory optimization, an
improved multiobjective optimization algorithm, IGAACMO, is proposed. The multiarm
cooperative harvesting trajectory planning is abstracted to an MTSP problem. We use an
improved local density bi-directional clustering algorithm to identify the clustered fruits
to provide preparation for harvesting the clustered mature fruits in the specified order;
Then, GA is adopted to decompose the MTSP into m independent TSP problems, where
a new DNA coding method is designed to make the harvesting task of each harvesting
arm evenly distributed under the constraining of the SSIS area. Subsequently, we use the
ant colony algorithm to plan the trajectory of the above M-independent TSP, respectively;
Here, by combining with the auction mechanism, the clustered fruits can be planned to be
harvested in their specified order.

From all the above experiments and discussion, it can be shown that the optimization
ability of the proposed algorithm, IGAACMO, is significantly stronger than the other two
methods. The average harvesting efficiency optimized by the proposed algorithm is up to
1183 pcs/h, and the average harvesting success rate is 97%.

In addition, since the hourly harvesting efficiency of the multiarm robot has reached
the manual efficiency, the daily harvesting efficiency of the robot will be significantly higher
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than the manual, even if it can be up to at least twice that of the manual. Because the robot
can work for at least 16 h per day (considering battery replacement, layer change, and
other auxiliary work), while people generally work for 8 h per day. This efficiency greatly
increases the feasibility of the robot applied to the actual harvesting of straw-rotting fungus
instead of manual.

However, the operation time of the algorithm is not faster enough. In future research,
the algorithm needs to be improved to increase its efficiency of the algorithm to improve its
real-time control further.
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Appendix A

Table A1. The detail data with the information of the fruits to be harvested in Figure 14.

Group Number of Fruits Detail Information of Fruits

a 40

(168.43, 136.53, 163.29, 0.0), (72.03, 129.46, 170.47, 0.0),(130.93,121.4,165.45,0.0),
(183.02,162.07,149.93,0),(75.41,10.54,170.04,0),(33.48,35.3,190.66,0),(11.47,98.3,212.67,0),
(84.48,168.46,173.35,0),(62.15,75.78,183.99,0),(13.53,133.29,188.81,0),(124.38,8.55,159.71,0),
(406.7,39.63,143.94,0),(431.28,77.04,134.9,0),(288.84,157.6,169.56,0),(296.91,43.28,170.86,0),
(399.99,87.99,158.08,0),(332.95,7.87,162.36,0),(262.74,170.84,160.23,0),(325.74,175.71,168.02,0),
(514.44,43.76,156.76,0),(702.29,35.59,172.61,0),(646.05,34.69,171.18,0), (763.04,101.5,154.61,0),
(874.45,137.36,156.47,0),(892.59,65.13,159.9,0),(825.83,162.81,161.57,0),(741.06,76.6,167.01,0),
(1087.35,28.05,152.2,0),(1049.77,102.33,159.7,0),(1128.99,53.9,166.76,0),(1165.21,13.61,173.77,0),
(1013.76,10.89,175.49,0),(1167.15,171.3,161.97,1),(1054.98,64.92,169.91,1),(1385.3,155.13,173.38,2),
(1312.73, 160.07, 175.86, 2.0), (1239.82, 172.1, 176.6, 3.0), (1274.88, 117.37, 179.35, 3.0),
(1236.71, 9.1, 168.9, 4.0), (1347.87, 167.54, 160.21, 4.0)

b 55

(56.71,93.06,163.55,0.0),(167.53,97.5,155.25,0.0),(132.8,114.33,156.23,0.0),(134.06,77.44,135.51,0.0),
(229.94,9.72,159.53,0),(111.97,80.42,142.6,0),(172.3,6.49,160.79,0),(186.14,36.68,153.34,0),
(309.16,127.35,170.77,0),(257.31,124.79,170.59,0),(258.59,34.41,172.91,0),(294.92,20.13,170.75,0),
(293.61,58.17,178.57,0),(387.83,78.1,139.3,0),(326.2,142.62,171.57,0),(332.02,172.98,173.62,0),
(331.68,4.6,174.6,0),(449.56,176.44,179.32,0),(260.4,6.76,165.98,0),(256.9,106.31,250.58,0),
(330.21,51.61,159.84,0),(558.02,96.99,154.04,0),(675.93,90.7,158.23,0),(538.99,162.97,171.9,0),
(590.67,158.46,147.43,2),(587.62,143.37,160.68,2),(846.49,100.02,145.07,0),(813.59,151.48,152.09,0),
(823.82,67.78,155.26,0),(807.23,124.87,148.15,0),(877.89,104.9,155.6,4),(878.81,86.16,155.87,4),
(832.51,29.5,159.6,0),(908.39,50.74,169.97,0),(879.47,8.38,160.7,0),(741.88,81.64,184.95,0),
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Table A1. Cont.

Group Number of Fruits Detail Information of Fruits

(1186.72,90.04,162.32,3),(1140.91,100.87,159.13,3),(1172.68,40.46,169.81,3),(1150.34,71.37,160.56,3),
(1347,148.08,151.3,0),(1315.87,126.89,158.6,0),(1282.68,61.11,149.35,0),(1278.79,148.58,163.01,0),
(1312.53,159.13,147.72,0),(1316.57,45.91,154.21,0),(1231.16,60.71,167.48,0),(1350.77,36.87,165.88,0),
(1308.44,78.13,163.01,0),(1245.3,141.76,174.2,0),(1373.8,166.04,151.64,0),(1384.82, 18.79, 172.77, 4.0),
(1378.14,137.58,162.09,4.0),(1329.02, 93.26, 136.63, 5.0), (1309.99, 9.79, 173.65, 5.0)

c 70

(36.54,51.33,173.4,0.0),(34.66,18.28,172.73,0)(38.94,163.27,161.22,0.0),(39.91,156.28,169.74,0.0),
(43.31,81.47,159.44,0.0),(43.32,12.06,168.63,0.0),(52.59,40.87,167.5,0),(61.23,155.52,153.22,0),
(62.45,9.62,183.5,0),(181.64,103.87,144.54,0),(230.97,80.64,171.97,0),(268.83,153.14,161.5,0),
(270.25,23.83,174.2,0),(273.84,146.9,172.97,0),(284.45,49.35,157.29,0),(291.88,60.67,169.3,0),
(299.04,74.55,181.48,0),(351.08,113.39,162.1,0),(372.31,9.62,153.22,0),(386.24,135.54,167.47,0),
(402.12,68.05,207.25,0),(574.22,101.72,166.15,0),(586.16,114.01,158.9,0),(590.18,165.77,157.53,0),
(611.49,163.4,160.1,0),(626.03,69.38,172.7,0),(628.9,19.62,175.28,0),(631.23,105.9,183.47,0),
(633.71,59.05,175.13,0),(635.86,18.45,164.45,0),(640.67,139.46,150.91,0),(641.93,113.39,152.45,0),
(652.2,105.64,172.64,0),(661.64,155.52,169.74,0),(669.45,9.62,178.28,0),(699.63,109.9,172.31,0),
(705.25,69.05,267.25,0),(765.4,8.45,166.08,0),(878.4,45.15,168.06,0),(1018.96,145.14,172.04,0),
(1114.33,12.86,174.04,0),(1115.94,179,177.31,0),(1116.67,32.84,154.18,0),(1117.28,105.43,159.69,0),
(1118.38,66.59,162.1,0),(1122.56,18.75,153.22,0),(1122.93,163.7,183.5,0),(1130.49,162.3,239.41,0),
(1274.22,60.15,153.1,0),(1280.38,60.58,168.15,0),(1283.99,159.01,147.51,0),(1320.04,45.58,155.63,0),
(1331.13,126.89,158.6,0),(1334.07,148.09,151.35,0),(1341.03,78.13,163.01,0),(1363.14,166.09,151.68,0),
(1378.89,36.51,167.16,0),(1380.81,94.34,174.28,0),(1397.66,137.94,163.47,0),(277.82,174.17,165.13,1),
(318.43,169.18,164.42,1),(1127.94,37.02,146.94,2),(1115.54,18.48,164.17,2),(1311.72,148.48,163.4,3),
(1317.97, 141.62, 173.72, 3.0), (1325.74, 8.28, 177.16, 3.0), (336.15, 131.55, 249.33, 4.0), (305.25, 88.58,
157.51, 4.0), (611.4, 128.39, 144.99, 5.0), (612.86, 94.02, 152.85, 5.0)
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Abstract: To solve the problems of poor working conditions and high labor intensity for artificially
pruning jujube trees, a pruning scheme using a manipulator is put forward in the present paper. A
pruning manipulator with five degrees of freedom for jujube trees is designed. The key components of
the manipulator are designed and the dimension parameters of each joint component are determined.
The homogeneous transformation of the DH parameter method is used to solve the kinematic
equation of the jujube pruning manipulator, and the kinematic theoretical model of the manipulator
is established. Finally, the relative position and attitude relationship among the coordinate systems is
obtained. A three-dimensional mathematical simulation model of the jujube pruning manipulator is
established, based on MATLAB Robotics Toolbox. The Monte Carlo method is used to carry out the
manipulator workspace simulation, and the results of the simulation analysis show that the working
space of the manipulator is −600~800 mm, −800~800 mm, and −200~1800 mm in the X, Y, and Z
direction, respectively. It can be concluded that the geometric size of the jujube pruning manipulator
meets the needs of jujube pruning in a dwarf and densely planted jujube garden. Then, based on the
high-speed camera technology, the performance test of the manipulator is carried out. The results
show that the positioning error of the manipulator at different pruning points of jujube trees is less
than 10 mm, and the pruning success rate of a single jujube tree is higher than 85.16%. This study
provides a theoretical basis and technical support for the intelligent pruning of jujube trees in an
orchard.

Keywords: jujube pruning; manipulator; kinematic analysis; high-speed photography technology;
performance test

1. Introduction

As one of the endemic tree species in China, jujube ranks first in the world in terms
of the planting area and yield [1]. With its unique geographical and climatic conditions,
Xinjiang has become the main production area in China [2]. By 2020, the planting area for
jujube in Xinjiang is about 445,225 ha, and the output is up to 3,727,729 t [3]. The pruning
of jujube trees is an important part of jujube orchard management, because it improves
nutrient digestion and absorption, adjusts the tree’s structure, extends the tree’s life, and
improves the yield and quality of the jujube tree [4,5]. At present, the pruning of jujube trees
is mainly carried out manually, which causes significant problems, such as poor operating
conditions, high labor intensity, low work efficiency, and high labor costs [6]. Therefore, it
is an inevitable trend to develop a high degree of automation for pruning manipulators to
replace manual pruning.

Recently, the manipulators were widely used in the field of agricultural picking, plant
protection, and other orchard management links [7–10]. Li et al. designed a multi-terminal
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manipulator for apple picking, which cut off the fruit’s stem via blade rotation and a toothed
fruit collector, and the position error of the manipulator end was less than 9 mm [11]. Zhao
et al. developed an apple harvesting robot that adopted a 5-DOF manipulator with a
PRRRP structure and an end-effector with a spoon-shaped pneumatic gripper, for which
the harvesting success rate was 77% [12,13]. Henten et al. designed a 7-DOF manipulator for
cucumber picking, and the cutting device of the end-effector used medical thermal cutting
technology to pick the cucumbers, with a picking success rate of 74% [14,15]. Bac et al.
developed a 9-DOF manipulator system for picking sweet peppers, and the picking success
rate reached 84% [16–19]. In the field of pruning, shaping and pruning machinery is mostly
studied [20,21]. Domestic and foreign researches on intelligent pruning robots are basically
in the laboratory research stage [22,23]. The typical foreign research cases are as follows:
Kawasaki et al. developed a new robot for climbing pruning that could perform climbing
pruning quickly [24]. Soni et al. designed a 9-DOF pruning robot for climbing areca,
and the 5-DOF PUMA manipulator was able to complete the pruning of areca branches
with different diameters [25]. Botterill et al. developed a pruning robot for grape trees
that took approximately 2 min to prune a single grape tree, and the target estimation
error was within 1% [26]. Zahid et al. designed a pruning robot for apple trees planted
within a hedge. The 3-DOF end-effector was integrated into the Cartesian mechanical
arm, which could cut 25 mm fruit-tree branches [27,28]. Zahid et al. studied the obstacle
avoidance trajectory planning of the developed 6-DOF apple pruning manipulator, which
provided the research foundation and technical support for the pruning robot to realize
intelligent pruning [29]. Van Marrewijk et al. developed a new pruning robot, which
could prune spherical, cylindrical, and rectangular shapes of horticultural plants [30]. The
typical domestic studies mainly include the following: Chai et al. designed a pruning
robot for green fences with a 14-DOF body structure based on the exoskeleton [31]. Luo
et al. conducted a study on obstacle avoidance by the arm of a pruning robot for green
fences [32]. Li and Chen et al. studied the motion characteristics of a pruning robot
for green fences [33,34]. Huang et al. designed a cylindrical coordinate pruning robot
for loquat, for which the average pruning and crushing times of a single branch was
approximately 55 s [35,36]. Wu et al. designed a high-branch pruning manipulator with a
pruning height of 5–20 m, a maximum pruning radius of 5 m, and a maximum pruning
diameter of 12 cm [37]. To sum up, the manipulators are mainly used for agricultural fruit
and vegetable harvesting, and in the field of agricultural pruning, the pruning robots are
mainly studied for the single pruning way of forest trees and green fences. However,
due to the great diversity of fruit-tree growth information, different regional pruning
requirements, and the unstructured orchard working environment, there are few studies
on the technology of orchard pruning robots. More specifically, the research on pruning
robots for jujube is rarely reported.

Consequently, a jujube pruning manipulator is designed in this paper; the theoretical
model of kinematics for the manipulator is established; the three-dimensional simulation
model of the jujube pruning manipulator is generated based on the MATLAB Robotics
Toolbox; the Monte Carlo method is used to verify the workspace simulation of the ma-
nipulator; and, finally, the performance test of the manipulator prototype is carried out.
The results provide a foundation for the research and technical support for the intelligent
pruning of the trees in jujube orchards.

2. The Design of the Jujube Pruning Manipulator

2.1. Structure Composition and Working Principle
2.1.1. Structure Composition

The body structure of the pruning manipulator for jujube is mainly composed of a
machine arm with 5 degrees of freedom (5-DOF), an end-effector, and a control system.
Among them, the 5-DOF manipulator is mainly composed of the foundation support, the
rotary joint of the foundation support, the machine body, the mobile joint of the machine
body, the shoulder joint, the big arm, the elbow joint, the rotary joint of the forearm, and
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the forearm. The shear end-effector is mainly composed of a moving cutter and a stationary
cutter. The control system is mainly composed of a lower control system and an upper
man–machine interface. The diagram for the structure of the overall machine is shown in
Figure 1.

Figure 1. Schematic diagram of the structure composition for the manipulator. 1. PC machine;
2. Control box; 3. Foundation support; 4. Rotary joint of the foundation support; 5. Machine body;
6. Mobile joint of the machine body; 7. Shoulder joint; 8. Big arm; 9. Elbow joint; 10. Rotary joint of
the forearm; 11. Forearm; 12. Moving cutter; and 13. Stationary cutter.

2.1.2. Working Principle

When the manipulator is working, the upper computer of the control system in the
teaching mode obtains the coordinate information of the pruning points for the jujube,
according to the experience and knowledge obtained from the jujube farmers, and sends
them to the lower computer of the manipulator control system. After the lower controller
of the control system receives the location information instruction for the coordinates of
the jujube branches that need to be pruned, the motor of each joint of the manipulator arm
is controlled to rotate correspondingly, according to the forward and inverse kinematics
analysis data, so that the manipulator reaches the target pruning point for pruning. Ac-
cording to the pruning point information recorded in the man–machine teaching mode of
the upper computer, the manipulator is controlled to arrive at each target pruning point in
turn for pruning. After the pruning of all the pruning branches has been completed, the
manipulator is reset.

2.2. The Design of the Mechanical Arm
2.2.1. Structure Design

The structural forms of the manipulator mainly include the type of cylindrical co-
ordinate, polar coordinate, rectangular coordinate, and joint coordinate [38]. The joint
coordinate manipulator is similar to the human arm, and it has the advantages of a compact
structure, flexible movement, large working space, and small occupation area. To simulate
the manual pruning process, the joint coordinates were selected to design the pruning
manipulator for dwarf and densely planted jujube trees in Xinjiang.

When manually pruning jujube trees, farmers hold pruning scissors through the
coordination and cooperation of each joint for pruning. Therefore, when designing the
manipulator, three rotating joints were used to determine the position of the target pruned
branches. To meet the standards for pruning jujube trees at different heights and branches at
different positions, manual pruning needs to be supplemented by a long ladder. Therefore,
a movement joint was used to realize the function of moving up and down. In addition,
a rotary joint should be added at the end of the manipulator to adjust the attitude of the
end-effector to facilitate the pruning. Finally, the 5-DOF mechanical arm can meet the
pruning requirements of jujube trees. The designed manipulator consists of four rotary
joints and one mobile joint. The four rotary joints are the rotary joint of the foundation
support, shoulder, elbow, and forearm, and one mobile joint is the mobile joint of the
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machine body. The structure and motion direction of each joint for the manipulator are
shown in Figure 2. The rotary joint of the foundation support can rotate left and right about
the Z axis, and it drives all other joint movements along with it when it turns. The Z axis
is perpendicular to the horizontal plane (XOY plane) and moves upwards vertically. The
mobile joint of the machine body moves up and down the Z axis, and it drives the rotary
joints of the shoulder, elbow, and forearm movement along with it when it moves. The
shoulder joint can rotate up and down around the l1 axis, parallel to the horizontal plane
(XOY plane). When it rotates, it will drives the elbow and forearm movements together.
The elbow joint can rotate up and down about the l2 axis, which is parallel to the l1 axis, and
when it moves, it drives the rotation joint of the forearm movement together. The rotation
joint of the forearm rotates around the m axis, and the m and l2 axes are perpendicular to
each other on different planes. When it moves, it drives the attitude of the end-effector to
change.

Figure 2. The structure and motion direction of each joint for the manipulator.

The rotating joint of the base drives the overall machine to realize the azimuth adjust-
ment and expand the target working area in the horizontal direction (XOY plane). The
mobile joint of the body adjusts the manipulator at different heights by moving up and
down to expand the target working area in the vertical direction (Z axis), and adapt to the
pruning of jujube trees at different heights. The shoulder and elbow joints coordinate with
the base joint, and the body joint is used to locate the branches at different positions and
adjust the end-effector pruning posture in real time through the forearm rotation joint to
adapt to jujube branches with different growth postures.

2.2.2. The Parameters Design of the Links Dimension

The link size parameters of each joint for the manipulator were determined by the
size information of the jujube tree before and after pruning. Therefore, a field investigation
was carried out on jujube trees from 2 to 8 years old in dwarf and densely planted jujube
gardens in Xinjiang, and the size information of the jujube trees before and after pruning
was obtained by actual measurements. The specific size parameters of the jujube tree
growth information are as follows: the row space of jujube trees is generally 3000 mm; the
plant space is 800~1000 mm; the height of the jujube trees is generally 1500~2500 mm; the
diameter of the canopy is 1000~1800 mm; the height of the canopy is 1200~2000 mm; and the
height range of the main branch is 300~500 mm. According to the agronomic requirements
of jujube pruning, the height of the canopy after pruning is between 800~1600 mm and
the diameter of the canopy is between 600~1400 mm. The area formed by the maximum
diameter and height of the jujube canopy is rotated around the direction of its trunk to
form a cylinder, which envelopes all of the branches of the jujube tree. In combination
with the growth information of the jujube trees, the target pruning space of the jujube
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trees is analyzed. The manipulator is placed on a mobile chassis with a height of 400 mm,
and the horizontal distance between the main stem of the jujube tree and the base of the
manipulator is 1000 mm. The analysis for the target pruning space of the manipulator is
shown in Figure 3.

Figure 3. Schematic diagram of the pruning space analysis for the manipulator. (a) Main view;
(b) top view. Note: d0 is the distance between the base of the manipulator and the ground, mm; d1 is
the height of the base, mm; d2max is the maximum travel of the machine body, mm; a2 is the offset of
the shoulder joint, mm; a3 is the length of the big arm, mm; a4 is the offset for the rotatory joint of the
forearm, mm; d5, d6 is the length of the forearm, mm; θ1 is the rotation angle of the base, degree; b is
the radius of the jujube canopy after pruning by shortening the branches, mm; and b1 is the operating
width of the manipulator for pruning by thinning the branches, mm.

The pruning of jujube trees in winter mainly involves shortening and thinning the
branches. Additionally, the range of shortening and thinning branches on one side is shown
in Figure 3b. When the end of the manipulator reaches the junction of the shortening and
thinning branches area, the shortening of the branches can be completed. At the same time,
to meet the space requirements of the operation of thinning the branches, the rotation angle
of the base should correspond to Equation (1).{

θ1 ≥ 2arcsin(bmax/s)
bmax = dmax/2

(1)

where bmax is the maximum radius of the jujube canopy after pruning, mm, dmax is the
maximum diameter of the jujube canopy after pruning, mm.

The maximum diameter of the canopy for 2–8-year-old jujube trees after pruning is
1400 mm, which can be substituted into Equation (1) to obtain θ1 ≥ 88.9 degrees. At the same
time, when the geometric dimensions of each joint meet Equation (2), the manipulator can
complete the unilateral pruning requirements of jujube trees in any horizontal region (xoy).
When the rotation angle θ1 of the base is 180 degrees, its travel range is −90~+90 degrees,
and the problem of satisfying the three-dimensional space pruning can be simplified as the
problem of satisfying the rectangle b1 × h in the longitudinal plane (xoz). When b1 × h is
satisfied in the longitudinal plane, the base joint of the manipulator is used to rotate the
corresponding angle θ1 around the z axis to achieve the required pruning space.{

a2 + a3 + d5 + d6 ≥
√

s2 + b2
min

a2 + a3 ≤ s − bmin
(2)
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where bmin is the minimum radius of the jujube canopy after pruning, mm.
According to the structural layout requirements of the manipulator, when the offset of

the shoulder joint a2 is 100 mm and the offset of the forearm rotary joint a4 is 100 mm, the
interference between the shoulder joint and forearm rotary joint in the actual assembly and
movement can be avoided. To reduce the load arm of the manipulator, the rotary motor of
the forearm is arranged at the tail of the forearm, and d5 is 0 mm, which can be obtained by
substituting it into Equation (2). {

a3 ≤ 600
d6 ≥ 344

(3)

The mechanical arm is a key component of the manipulator. The longer the moment
arm of the manipulator, the lower its performance. In the process of movement, if the struc-
ture size of the big arm and forearm is larger, the performance of the pruning manipulator
is reduced. Therefore, on the premise for meeting the requirements of the pruning space,
the design of the big arm and forearm should achieve a compact structure and harmonious
proportion. According to Equation (3), the big arm a3 of the mechanical arm designed in
this paper is 550 mm, and the forearm d6 is 350 mm. According to the height of the canopy
before and after pruning, base d1 is 200 mm, the maximum travel of the machine body
d2max of the machine body is 700 mm. By analyzing the pruning space of the manipulator,
the dimension parameters of each link of the manipulator are shown in Table 1.

Table 1. The dimension parameters of the manipulator links.

a2 a3 a4 d1 d2max d5 d6

100 mm 350 mm 100 mm 200 mm 700 mm 0 mm 350 mm

2.3. The Design of the End-Effector
2.3.1. Structure Design

The common pruning methods for fruit trees are shear and saw cutting. As the method
of supported pruning, the operation process of shear pruning is stable. In combination
with the structural characteristics of the articulated manipulator, the shear structure was
selected as the end-effector of the jujube pruning manipulator. It is mainly composed of an
executive motor, planetary reducer, gear transmission mechanism, moving cutter, stationary
cutter, diagonal photoelectric sensor, mounting plate, and a fixed support. During the
operation, the mechanical arm drives the end-effector installed on the forearm to reach the
target branch position, and the moving cutter is closed under the action of the executive
motor when the diagonal photoelectric sensor detects that the branch has entered the
scissor mouth. When the moving and stationary cutters are completely closed, the motor
of the end-effector is reversed to make the moving cutter and the stationary cutter open
automatically. To enable the pruned branches to effectively enter the cutting mouth of
end-effector, the diameter of the pruned jujube branches was 5–20 mm, the opening angle of
the moving and fixed cutters was 40 degrees, the maximum vertical distance of the scissor’s
mouth was 35 mm, and the distance between the cutting position of the jujube branch and
the rotating axis of the moving cutter was 50 mm. The specific structure diagram of the
end-effector is shown in Figure 4.

2.3.2. The Design of the Moving Cutter

As a key part of the end-effector, the moving cutter completes the cutting of the
branches. To achieve the purpose of saving labor and improving the incision quality, it is
necessary to ensure that the cutting angle α of each cutting edge point is equal to the friction
angle ϕ between the moving cutter and the branch during the cutting process. Therefore,
the design of the cutting edge curve can achieve the stable and sliding pruning of the jujube
branches.
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Figure 4. The structural diagram of the end-effector. 1. Fixed base; 2. Moving cutter; 3. Stationary
cutter; 4. Incomplete gear mechanism; 5. Bevel gear mechanism; 6. Force motor; 7. Planetary reducer;
8. Forearm; 9. Mounting plate; 10. Diagonal photoelectric sensor; and 11. Branch of the jujube tree.

The moving cutter rotated around the hinge point O to shear the jujube branch during
the operation. Suppose the blade curve is ˆABC, the cutting angle α of any point on the
curve is equal to the friction angle ϕ, and the hinge point O is taken as the origin of the
coordinates; a coordinate system is established to analyze the blade curve of the moving
cutter, as shown in Figure 5.

Figure 5. The analysis of the cutting edge curve of the moving cutter. Note: T–T is the tangent line
to point B; EB is the normal line at point B; OB is the rotation radius of point B, mm; v is the sliding
cutting speed at point B, m/s; vt is the tangential velocity at point B, m/s; and vn is the normal
velocity at point B, m/s.

According to the geometric relation of ΔOBD, β = δ + ϕ. There are:

tan β =
tan δ + tan ϕ

1 − tan δ· tan ϕ
(4)

where tan β = dy
dx , tan δ = y

x = u. Substitute them into Equation (4) to obtain:

1 − u tan ϕ

tan ϕ + u2 tanϕ
du =

1
x

dx (5)

Integrate both sides of Equation (5) to obtain:

1
2

ln
(

x2 + y2
)
=

1
tan ϕ

arctan
y
x
+ C (6)
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By substituting x = ρ· cos δ, y = ρ· sin δ, and substitute them into Equation (6); the
polar coordinate equation for the blade curve of the moving cutter is:

ρ = Ce
δ

tan ϕ (7)

where ρ is the polar diameter, mm; δ is the polar angle; and C is the integration constant.
According to Equation (7), when the blade curve of the moving cutter is a logarithmic

spiral, stable and sliding pruning can be realized. When the polar angle changes from δ1 to
δ2, the required cutting edge arc length l is the following:

l =
∫ δ1

δ2

dl =
∫ δ1

δ2

√
ρ2

1 + ρ2
2 dδ =

ρ2 − ρ1

cos ϕ
(8)

According to Equation (8), ρ2 − ρ1 ≥ d must be satisfied when cutting the jujube
branch with diameter d. Additionally, the actual diameter range of pruning the jujube
branches is 5–20 mm, so the length of the designed moving cutter is 80 mm. According
to the relevant design research of the cutting tools, the slide angle was designed to be
35 degrees and the edge inclination angle was 20 degrees. Figure 6a shows the blade curve
of the moving cutter established by MATLAB, and Figure 6b shows the structure of the
moving cutter designed by using the blade curve.

Figure 6. The model of the moving cutter. (a) The blade curve of the moving cutter, and (b) the
structure of the moving cutter.

2.4. The Design of the Control System

The design and construction of the control system for the jujube pruning manipulator
are very important for its pruning function. The main function of the control system of the
jujube pruning manipulator designed in this paper is to realize the delivery, processing,
and execution of the control instructions, so as to realize the data communication between
the upper and lower computers. The diagram for the overall control scheme of the jujube
pruning manipulator is shown in Figure 7.

The control system of the manipulator adopts a two-layer structure control, including
the upper and lower computers. The lower computer control system adopts a six-axis
off-line motion controller (YJ-CTRL-A601; Shenzhen Yijia Technology Co., Ltd.; Shenzhen;
China). The driving motor of each joint is an integrated closed-loop stepper motor (ESS60-P;
Shenzhen YAKO Automation Technology Co., Ltd.; Shenzhen; China). The controller is
connected to each joint motor of the manipulator through the signal output port, pulse
output port, direction port, servo enable port, servo alarm, and alarm clearing port of
the encoder, and the driver of each joint motor is controlled by the sending direction
and pulse signal. In addition, the motion controller is connected to the solid-state relay
by the switching output. The relay signal is used as the input signal of the end-effector
controller to control the moving cutter. Finally, the switch signal output by the sensor of
the end-effector controls the power-on or power-off of the relay coil to play the role of
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system protection or automatic control. The diagram for the electrical schematic of the
jujube pruning manipulator is shown in Figure 8.

Figure 7. The diagram for the overall control scheme of the jujube pruning manipulator.

Figure 8. The diagram for the electrical schematic of the jujube pruning manipulator.

The upper computer adopts a PC machine (Lenovo Y9000P; Lenovo Group; Beijing;
China), of which the basic frequency is 2.30 GHz, the development environment is Visual
Studio, and the development language is C#. The lower computer communicates with the
upper computer through a serial port, for which the serial port communication protocol is
RS232, the serial port parameter’s baud rate is 115,200, the data bit is 8, and the stop bit is 1.

2.5. The Kinematics Analysis of the Manipulator

Based on the kinematics analysis of the manipulator designed in this paper, the
relationship between the pose of the end-effector and the joint variables of the manipulator
was established, and the workspace simulation was carried out based on the kinematics
model to verify whether the workspace of the manipulator met the requirements of the
pruning space. The coordinate system of the link of the jujube pruning manipulator is
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shown in Figure 9. The parameters of the link of the jujube pruning manipulator are shown
in Table 2.

Figure 9. The coordinate system for the link of the jujube pruning manipulator. (a) The schematic
diagram of the manipulator structure and (b) the coordinate system for the manipulator link. Note:
θ1 is the rotation angle of the base, degree; θ3 is the rotation angle of the shoulder joint, degree; θ4 is
the rotation angle of the elbow joint, degree; θ5 is the rotation angle of the forearm, degree; X0Y0Z0

is the base coordinate system; X1Y1Z1 is the coordinate system at the top of the base; X2Y2Z2 is the
coordinate system for the mobile joint of the machine body; X3Y3Z3 is the coordinate system of the
shoulder joint; X4Y4Z4 is the coordinate system of the elbow joint; X5Y5Z5 is the coordinate system
for the rotary joint of the forearm; and noa is the coordinate system of the end-effector.

Table 2. The parameters for the link of the jujube pruning manipulator.

Link i θi/Degree αi−1/Degree ai−1/mm di/mm Range of Variables

1 θ1 0 0 d1 (200) −90~+90 degree
2 0 0 0 d2 0~700 mm
3 θ3 90 a2 (100) 0 −30~+180 degree
4 θ4 0 a3 (350) 0 −90~+90 degree
5 θ5 90 a4 (100) d5 (0) −160~+160 degree
6 0 0 0 d6 (350) -

2.5.1. Forward Kinematics Analysis

The DH parameter method [11,39] was used for the kinematic analysis, and a kinematic
model of the manipulator was established to describe the relative position and attitude
among the coordinate systems. According to the kinematics theory of the robot, the general
formula i−1

i T of the transformation matrix under the DH parameters of the adjacent link of
the manipulator is:

i−1
i T =

⎡⎢⎢⎣
cos θi − sin θi 0 ai−1

sin θi cos αi−1 cos θi cos αi−1 − sin αi−1 −di sin αi−1
sin θi sin αi−1 cos θi sin αi−1 cos αi−1 di cos αi−1

0 0 0 1

⎤⎥⎥⎦ (9)

where θi is the joint angle, degree; di is the horizontal distance, mm; ai−1 is the distance of
the common normal, i.e., the length of the rod, mm; and ai−1 is the torsion angle, degree.
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According to Equation (9) and the parameters of the link presented in Table 2, the
transformation matrix 0

6T for the end pose of the jujube pruning manipulator can be
obtained:

0
6T = 0

1T1
2T2

3T3
4T4

5T5
6T =

⎡⎢⎢⎣
nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤⎥⎥⎦ (10)

where
nx = c1c5(c3c4 − s3s4) + s1s5
ny = s1c5(c3c4 − s3s4)− c1s5

nz = c5(c3s4 + s3c4)
ox = s1c5 − c1s5(c3s4 − s3s4)

oy = −s1s5(c3c4 − s3s4)− c1c5
oz = −s5(c3c4 + s3c4)
ax = c1(c3s4 + s3c4)
ay = s1(c3s4 + s3c4)

az = s3s4 − c3c4
px = c1[a2 + a3c3 + a4(c3c4 − s3s4) + (d5 + d6)(c3s4 + s3c4)
py = s1[a2 + a3c3 + a4(c3c4 − s3s4) + (d5 + d6)(c3s4 + s3c4)
pz = a3s3 + a4(c3s4 + s3c4) + d1 + d2 + (d5 + d6)s3s4 − c3c4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

In Equation (11), ci = cosθi, si = sinθi, where i is 1, 3, 4, and 5, respectively. The same is
expressed below.

The transformation matrix 0
6T represented by Equation (10), describes the pose of the

base coordinate system {0} relative to the end-effector coordinate system {6} of the pruning
manipulator. To test the correctness of the model 0

6T , the initial positions (θ1 = 0 degree,
θ3 = 90 degree, θ4 = 0 degree, θ5 = 0 degree) of the manipulator were obtained for
checking and calculation; substituting them into Equation (11), the result of calculating the
arm transformation matrix 0

6T is:

0
6T Initial position =

⎡⎢⎢⎣
0 0 1 450
0 −1 0 0
1 0 0 650
0 0 0 1

⎤⎥⎥⎦ (12)

The test results of Equation (12) are consistent with the initial position parameters
of the designed manipulator, indicating that the established mathematical model of the
manipulator kinematics is correct.

2.5.2. Inverse Kinematic Analysis

Before the manipulator is driven to the desired position, all the joint variables related to
the position must be obtained. Therefore, it is necessary to carry out the inverse kinematics
analysis of the manipulator.

The desired pose coordinate of the end-effector of the manipulator is assumed as [n,
o, a, p]. Firstly, multiply 0

1T−1 at both sides of Equation (10) by the inverse transformation
method. After simplification, it can be determined that 0

1T−10
6T = 1

2T2
3T3

4T4
5T5

6T . According
to the equal elements of the matrices at both sides, it can be determined that c1 × py =
s1 × c1 × px. Finally, the rotation angle of the base joint is shown in Equation (13):

θ1 = arctan
py

px
(13)
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Similarly, multiply 1
2T−1, 2

3T−1, 3
4T−1, 4

5T−1, 5
6T−1 at both sides of Equation (12), and,

according to the elements at both sides, which are equal, the general expressions of the
revolute joint variables θ3, θ4, θ5 are obtained, as shown in Equation (14)~(16):

θ3 = arctan
t2 − (d5 + d6)az − a4

(
c1ax + s1ay

)
t1 − (d5 + d6)

(
c1ax + s1ay

)
+ a4az

(14)

θ4 = arctan
a4(c3t2 − s3t1) + (d5 + d6)(s3t2 + c3t1 − a2)

a4(s3t2 − c3t1 − a3)− (d5 + d6)(c3t2 + s3t1)
(15)

θ5 = arctan
nx· sin θ1 − ny· cos θ1

ox· sin θ1 − oy· cos θ1
(16)

where t1 = c1px + s1py − a2, t2 = pz − d1 − d2.
In conclusion, the DH parameter method was used to establish the theoretical model

of the manipulator kinematics, and the relative position and pose relationship between the
coordinate systems of each joint were obtained. Meanwhile, the inverse kinematic analysis
of the manipulator was carried out to obtain the general expressions for the joint angles
of the manipulator, which provides the theoretical basis for the simulation analysis of the
manipulator workspace.

3. The Performance Test Method of the Manipulator

To further verify whether the designed manipulator meets the performance require-
ments of jujube pruning, the performance test of the jujube pruning manipulator prototype
was carried out, based on high-speed camera technology [40–42].

3.1. The Analysis of the Agronomic Pruning Point for Jujube Trees

Jujube pruning agronomy mainly consists of cutting back and thinning the branches.
Cutting back mainly consists of cutting off part of the lateral branches of the current year’s
growth along the height of the jujube trees, which can inhibit the excessive growth of the
lateral branches and promote the main branches to produce flowers and fruit. The thinning
of the branches mainly entails the cutting off of the dense or dead branches along the depth
of the jujube trees, which can improve ventilation and light, and promote the rejuvenation
of dead branches. By analyzing the process of using the manipulator to prune the jujube
trees, it can be concluded that the manipulator needs to reach the different heights of
the jujube tree canopy for pruning when cutting back the branches, and the manipulator
needs to complete the pruning of jujube branches at different depths when thinning the
branches. The schematic diagram of the agronomic pruning analysis for a jujube tree is
shown in Figure 10. In the actual operation, the manipulator is installed on the mobile
chassis. In order to be convenient for analysis, the jujube tree height corresponding to
the installation height of the manipulator base is taken as zero. A field investigation was
carried out on the growth information of the jujube trees before and after pruning; it was
found that the cutting back points were mainly distributed in the range of 200~1000 mm in
the height direction of the jujube trees, and the points of the thinning branches were mainly
distributed in the range of 100~700 mm, in the depth direction of the jujube trees.
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Figure 10. The schematic diagram for the agronomic analysis of jujube tree pruning.

3.2. The Workspace Simulation of the Manipulator

Based on the MATLAB Robotics Toolbox, a 3D mathematical simulation model of
the jujube pruning manipulator was established. The Monte Carlo method [43] was used
to simulate the workspace of the manipulator to verify whether the theoretical design
of the manipulator met the requirements of the jujube pruning space. According to the
kinematic theoretical analysis of the manipulator, in combination with the parameters and
variable ranges of each joint size of the manipulator presented in Tables 1 and 2, the Rand
function in MATLAB was used to program the manipulator workspace for the calculation
and simulation. The random values of each joint variable generated by the Rand function
are shown in Equation (17):

θi = θmin
i +

(
θmax

i − θmin
i

)
× Rand(N, 1) (17)

where θmin
i is the minimum value of the angle range of joint i, degree; θmax

i is the maximum
angle range of joint i, degree; and N is the number of cycles, N = 10,000.

3.3. The Platform Construction and Test of the Prototype

The self-made prototype for the jujube pruning manipulator was used to build its
performance test platform, as shown in Figure 11. The test results were recorded by a 3D
high-speed camera system. The test equipment mainly includes a pruning manipulator
prototype, a 3D high-speed camera (FASTECIMAGING-TS4; Fastec Imaging Corporation;
San Diego, CA, USA), a graduated scale (accuracy: 1 mm), and a calibration plate.

Figure 11. The platform for the manipulator performance test. (a) Prototype and (b) test platform.
1. PC machine; 2. Control box; 3. Manipulator; 4. 3D high-speed camera; and 5. Calibration plate.
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3.3.1. The Scheme for the Positioning Accuracy Test

The end-effector was driven by the manipulator to move to the target pruning point of
the branch when pruning the jujube trees, and the branches triggered sensors to complete
the pruning operation. The positioning accuracy of the end-effector to the pruning point
is one of the key factors for completing the pruning operation. Therefore, the positioning
error of the end for the manipulator was taken as the evaluation index to verify the
positioning accuracy of the manipulator moving to the pruning points of the jujube trees.
The calculation of the positioning error is shown in Equation (18):

D =

√
(X − X0)

2 + (Y − Y0)
2 + (Z − Z0)

2 (18)

where P0(X0,Y0,Z0) are the theoretical coordinates of the pruning points, mm, and P(X,Y,Z)
are the measured coordinates of the pruning points, mm.

By taking the base of the manipulator as the origin, the positions for the end-effector
of the manipulator to the 9 pruning points with the horizontal distance of 600 mm and the
height of 200~1000 mm were recorded, and the positioning accuracy was tested. Similarly,
the positions of the end of the manipulator to the 5 pruning points with equal spacing rang-
ing from 100~700 mm in the depth direction were recorded, and the positioning accuracy
of the end-effector to the pruning points with different depths was tested. The video data
analysis software ProAnalyst was used to analyze the test results for the positioning accu-
racy of the manipulator end-effector. Firstly, the manipulator in the video was calibrated.
The ruler placed in advance on the manipulator was marked, and the actual size of the
ruler was input in the software; then, the manipulator in the video was restored to the
actual size after calibration. Secondly, the center position of the base of the manipulator in
the video data analysis software was set as the base coordinate system of the manipulator.
Thirdly, the position of the end-effector in the video data analysis software was marked as
the tracking point. The motion track of the manipulator along different height directions
and different depth directions was automatically tracked. Finally, the coordinates for the
tracked trajectory of the manipulator end-effector in the video data analysis software were
output and recorded.

3.3.2. The Scheme for the Pruning Test

The test subjects were five two-year-old jujube trees from the Science and Technology
Park of Shihezi University. The average height of the jujube trees was 1.8 m, and the
average width of the canopy was 1.4 m. The jujube tree was fixed on the performance test
platform of the manipulator to conduct the pruning test, as shown in Figure 12.

Figure 12. The pruning test.

The specific operational procedures of the jujube pruning test are as follows: firstly,
according to the artificial pruning of the jujube agronomic knowledge and the experience
of the jujube farmers, the branches that needed to be cut and the location of the pruning

484



Agriculture 2022, 12, 552

points were identified manually, and each pruning point was marked with green tape.
Secondly, the manipulator was set to teaching mode (when the manipulator was in teaching
mode, the sensor of the end-effector was in the closed state, and the pruning function of
the end-effector could not be triggered when the manipulator reached the pruning point),
and the manipulator was controlled manually to reach the pruning point of the jujube tree.
Additionally, the coordinate information of the current pruning point was obtained and
recorded by the upper computer. The above operations were repeated to obtain and record
the coordinate information of each pruning point. Finally, the manipulator was reset to
the initial state and set to working mode (when the manipulator was in working mode,
the sensor of the end-effector was in an open state. When the manipulator reached the
pruning point of the jujube tree, the branch entered the detection area of the sensor, which
could trigger the pruning function of the end-effector). The coordinates of the pruning
point were manually input into the upper computer, the manipulator was controlled to
automatically reach the pruning point of the jujube tree, and the pruning test was carried
out. The 3D high-speed camera was used to record the real-time video data of the motion
position and pose for the manipulator in the pruning process. The video data analysis
software ProAnalyst was used to extract the pruning time and judge the effect of pruning.

The main purpose of the pruning manipulator is to complete the pruning task in a
short period of time. Therefore, the success rate of pruning R and the pruning time T
are taken as the evaluation indexes of the pruning performance for the manipulator. The
success rate of pruning (R) and the pruning time (T) were calculated as follows:

R =
∑n

i=1 Li

∑ L
× 100% (19)

T =
n

∑
i=1

Ti (20)

where ∑L is the total pruning time of a single jujube tree; n is the number of successful
pruning attempts of a single jujube tree; and Ti is the time taken to complete the i-th
pruning, min.

4. Results and Discussion

4.1. The Simulation Results and Analysis of the Manipulator Workspace

The simulation results of the manipulator workspace are presented in Figure 13. The
workspace of the manipulator is −600~800 mm in the X direction, −800~800 mm in the Y
direction, and −200~1800 mm in the Z direction. Additionally, the pruning points are more
dense in the range of 0~600 mm in the X direction, −600~600 mm in the Y direction, and
0~1700 mm in the Z direction. The simulation results show that the geometric size of the
jujube pruning manipulator can meet the requirements of the pruning space of the jujube
trees in the dwarf and densely planted jujube garden.

Figure 13. The simulation results of the manipulator workspace. (a) The three-dimensional math-
ematical simulation model of the manipulator; (b) the three-dimensional manipulator workspace;
(c) the projection of the workspace onto the XOZ plane; and (d) The projection of the workspace onto
the XOY plane.
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4.2. The Results and Discussion of the Positioning Accuracy

The test results for the positioning error of the manipulator at different pruning points
are presented in Table 3. The schematic diagram of the positioning error trend for the
manipulator end-effector is shown in Figure 14.

Table 3. The test results for the positioning error of the manipulator at different pruning points.

Number

Theoretical Coordinates of the
Pruning Points/mm

Measured Coordinates of the
Pruning Points/mm

Absolute Value of the Positioning
Error/mm

X0 Y0 Z0 X Y Z Dx Dy Dz D

1 600 0 200 601.59 - 208.78 1.59 - 8.78 8.92
2 600 0 300 605.32 - 301.12 5.32 - 1.12 5.44
3 600 0 400 601.10 - 395.93 1.10 - 4.07 4.21
4 600 0 500 599.12 - 507.36 0.88 - 7.36 7.41
5 600 0 600 597.03 - 598.68 2.97 - 1.32 3.25
6 600 0 700 597.47 - 697.91 2.53 - 2.19 3.34
7 600 0 800 598.87 - 800.69 1.13 - 0.69 1.32
8 600 0 900 598.21 - 897.62 1.79 - 2.38 2.97
9 600 0 1000 602.35 - 998.46 2.35 - 1.54 2.81

10 150 0 600 148.27 - 603.08 1.73 - 3.08 3.53
11 250 0 600 249.56 - 603.91 0.44 - 3.91 3.93
12 350 0 600 351.28 - 600.79 1.28 - 0.79 1.50
13 450 0 600 453.37 - 602.48 3.37 - 2.48 4.18
14 550 0 600 554.95 - 598.93 4.95 - 1.07 5.06
15 650 0 600 658.25 - 596.09 8.25 - 3.91 9.13

Figure 14. The schematic diagram of the positioning error trend for the manipulator end-effector.
(a) Positioning error at different heights, and (b) positioning error at different depths.

Table 3 and Figure 14 show that, in the height directions, the positioning error of the
end-effector tends to decrease as the height increases when the manipulator moves from the
initial position (450, 0, 650) to different height positions (600, 0, 200~1000), and the average
error value is 4.4 mm. The maximum error occurs at the lowest position (Z = 200 mm),
which is 8.92 mm. The main reason for this phenomenon is that, when the manipulator
end-effector moves from the initial position to different heights below 650 mm, the moment
arm of the machine arm gradually increases with the decrease in the height of the pruning
position, and the direction of the manipulator movement is consistent with the gravity
direction of the center-of-mass gravity of the manipulator body, resulting in the positioning
error of the end-effector increasing with the decrease in the height of the pruning position.
When the manipulator is at the lowest position (Z = 200 mm), the motion inertia force
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reaches its maximum, resulting in the maximum positioning error occurring in this position.
When the end-effector moves from the initial position to different heights above 650 mm,
the moment arm of the machine arm gradually increases with the increase in the height of
the pruning position. However, the direction of the manipulator movement is opposite to
the gravity direction of the center-of-mass gravity of the manipulator body, resulting in
the positioning error of the end-effector decreasing with the increase in the height of the
pruning position. Therefore, the positioning error of the end-effector tends to decrease as
the height of the pruning position increases.

In the depth directions, when the manipulator moves from the initial position (450, 0,
650) to different depth positions (150~650, 0, 600), the positioning error of the end-effector
tends to increase as the depth of the pruning position increases, and the average error value
is 4.5 mm. The maximum positioning error occurs at the farthest position of pruning point
(X = 650 mm), which is 9.13 mm. The main reason for this phenomenon is that the moment
arm of the machine arm increases as the moving distance of the manipulator end-effector
increases in the direction of the depth. Therefore, the positioning error of the end-effector
increases with the increase in the depth of the pruning position.

In conclusion, the positioning errors of the end-effector of the pruning manipulator
at different heights and depths are all less than 10 mm. There are two main reasons for
the positioning error of the manipulator in the process of the test. On the one hand, there
are errors in the manufacturing and assembly of all the parts of the manipulator, and a
mechanical vibration occurs in the process of operation. On the other hand, the center of
gravity for the machine arm changes in real time during the operation of the manipulator.
In the follow-up study, the positioning error is improved by improving the manufacturing
and assembly accuracy of the manipulator parts and further optimizing the control system.

4.3. The Results and Discussion of the Pruning Test

The results of the pruning test are shown in Table 4. Due to the unstructured natural
growth of jujube tree canopy, the number of branches, which were identified to be pruned,
and the location of the pruning point vary from tree to tree. Therefore, the number and
position of the pruning points were different for each jujube tree in the test. Among them,
when the first jujube tree was pruned, a total of 36 pruning points were determined, and
33 points were successfully pruned. The success rate of pruning was 91.67%, which was
the highest among the 5 jujube trees. Additionally, the pruning time was about 29.3 min.
When the 5th jujube tree was pruned, 23 of the 27 pruning points were successfully pruned,
and the success rate of a single jujube tree was 85.16%, which was the lowest among the
5 jujube trees. The pruning time was about 25.6 min.

Table 4. The results of the pruning test.

Number
Total Number

of Pruning
Points

Number of
Successfully

Pruned Points
Success Rate/%

Pruning
Time/min

1 36 33 91.67 29.3
2 30 26 86.67 27.6
3 33 30 90.91 28.8
4 30 27 90.00 27.2
5 27 23 85.16 25.6

Total 156 139 89.10 27.7

A total of 156 pruning points were determined in the 5 tests, and the results show
that 139 points were successfully pruned. The average success rate of pruning a single
jujube tree was about 89.10%, and the average time was about 27.7 min. Additionally, the
manipulator ran smoothly in each pruning process. The test verified the reasonableness
and feasibility of the designed pruning manipulator.
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Figure 15 shows the whole process of the failed pruning of the manipulator. The main
reason for the failure was that the branches deviated from the sensor detection area in the
pruning process of the moving cutter. Figure 16 shows the whole process of the successful
pruning performed by the manipulator. The main reason for the success was the branches
in the pruning process of the moving cutter; the branches are always in the sensor detection
area. To summarize, the remote and small branches on the side of the jujube tree were easy
to fail pruning in the test. The main reason is that the mechanical arm is in a state when the
manipulator runs lateral to the jujube trees in a remote location. According to the results
of the positioning accuracy of the positioning error of the manipulator, the end-effector is
large at this time. In addition, small branches are easy to bend when touching the moving
cutter, leading to branches deviating from the sensor detection area. The next study is to
optimize and improve the sensitivity and detection range of the end-effector, so that the
improved sensor can effectively avoid the jujube branches from breaking away from the
detection area after bending.

Figure 15. The whole process of failed pruning of the manipulator. (a) The start of the pruning
process; (b) during the pruning process; and (c) the branch has not been pruned.

Figure 16. The whole process of the successful pruning of the manipulator. (a) The start of the
pruning process; (b) during the pruning process; and (c) the branch has been pruned.

At present, there are many researches on the robot technology in agricultural fields,
such as orchard picking, plant protection, and fruit-tree pruning. For different agricultural
production links and different operation objects, each form of research has put forward
different strategies. In many cases, it is difficult to compare and evaluate the performance
of different machines, because the operating objects and operating conditions greatly
vary. At present, typical researches in the field of orchard pruning, such as the grape-
pruning robot designed by Botterill et al. [26], the apple-tree pruning robot designed by
Zahid et al. [27–29], the loquat-pruning robot designed by Huang et al. [35,36], and the
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high-branch pruning manipulator designed by Wu et al. [37], are still in the initial stage
of research. Because the growth information and agronomic pruning requirements of
jujube trees are different from other fruit trees, it is necessary to design special pruning
equipment for jujube trees, according to the growth characteristics and agronomic pruning
requirements of dwarf and densely planted jujube trees in Xinjiang. Fu et al. developed
a shaping and pruning machine for dwarf and densely planted jujube trees [20]. This
machine can realize the rapid shortening pruning function of large-scale jujube trees, with a
high pruning efficiency. However, it cannot realize the thinning branch pruning function of
jujube trees, and the internal ventilation and light transmission of jujube trees after pruning
are poor. Therefore, on the basis of this research, we propose the manipulator pruning
jujube tree program. According to the characteristics of the artificial pruning of jujube
trees, a 5-DOF jujube pruning manipulator was designed by choosing a joint manipulator
structure to realize the function of the selective pruning of jujube trees.

5. Conclusions and Future Work

A 5-DOF pruning manipulator was designed, and the relative position and attitude of
each coordinate system were obtained by establishing the theoretical model of manipulator
kinematics. The workspace of the manipulator was obtained through the simulation analy-
sis of the workspace of the manipulator (−600~800 mm in the X direction, −800~800 mm
in the Y direction, and −200~1800 mm in the Z direction). It was verified that the geometric
size of the manipulator met the requirements of the pruning space of jujube trees in the
dwarf and densely planted jujube garden. Finally, a prototype manipulator was developed,
and the positioning accuracy test of the end-effector and pruning performance test of the
manipulator were carried out, based on high-speed camera technology. The results show
that the positioning errors of the manipulator at different pruning points were all less than
10 mm, the average pruning success rate of the manipulator was about 89.10%, and the
average pruning time of a single jujube tree was 27.7 min. It was verified that the structure
and control system of the pruning manipulator was reasonable and feasible. This study
can provide a theoretical basis and technical support for the intelligent pruning of a jujube
garden.

This paper mainly studied the mechanical structure and control system of the manip-
ulator, but there are still pruning failures in the pruning tests of jujube trees. The aim of
the subsequent study is to optimize the structure of the manipulator body and improve
the control system to further improve the success rate of manipulator pruning. At the
same time, the machine vision system will be equipped on the manipulator to realize
the intelligent recognition and positioning of pruning points. Additionally, the mobile
chassis and manipulator were integrated to carry out the experiment research of jujube-tree
pruning in a natural environment, so as to realize the intelligent pruning of a jujube garden.
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Abstract: Orchard machinery autonomous navigation is helpful for improving the efficiency of fruit
production and reducing labor costs. Path planning is one of the core technologies of autonomous
navigation for orchard machinery. As normally planted in straight and parallel rows, fruit trees
are natural landmarks that can provide suitable cues for orchard intelligent machinery. This paper
presents a novel method to realize path planning based on computer vision technologies. We combine
deep learning and the least-square (DL-LS) algorithm to carry out a new navigation line extraction
algorithm for orchard scenarios. First, a large number of actual orchard images are collected and
processed for training the YOLO V3 model. After the training, the mean average precision (MAP) of
the model for trunk and tree detection can reach 92.11%. Secondly, the reference point coordinates of
the fruit trees are calculated with the coordinates of the bounding box of trunks. Thirdly, the reference
lines of fruit trees growing on both sides are fitted by the least-square method and the navigation line
for the orchard machinery is determined by the two reference lines. Experimental results show that
the trained YOLO V3 network can identify the tree trunk and the fruit tree accurately and that the
new navigation line of fruit tree rows can be extracted effectively. The accuracy of orchard centerline
extraction is 90.00%.

Keywords: autonomous navigation; navigation line extraction; orchard machinery; deep learning;
least-square

1. Introduction

In recent years, the new orchard intelligent machinery has shown great advantages
in improving agricultural production efficiency and solving the labor shortage problem.
First, such machinery has the ability to avoid direct contact between people and their
working environments [1]. For example, there are some toxic or high-temperature sce-
narios which are not conducive to the human body in some operations. Moreover, the
repetitive and monotonous nature of some phases of the orchard fruit production process,
such as fruit picking, can be tiring and lead to missed operations or accidents. How to
achieve autonomous navigation is one of the hot research topics in the field of intelligent
machinery for orchards. With its advantages of wide range of detection information and
comprehensive information acquisition, visual navigation has become the most widely
used robotic navigation method throughout the world. The key aspect of visual navigation
is its accurate and reliable extraction of the navigation baseline through image processing
technology [2–4].

For the autonomous navigation problem, research ideas are focused on two aspects:
road- or sky-based navigation line generation and crop detection–based fitting of navigation
lines. Road- or sky-based navigation methods are highly robust to plant species, shape,
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and height and therefore constitute a hot research topic for scholars throughout the world.
Crop detection–based navigation methods require accurate identification of crop trunks
and are highly robust to complex road environments, thus requiring high adaptability.

Using the features shown in orchard images, He et al. proposed a horizontal projection
method to recognize the main trunk area dynamically [5]. The color-difference R-B and two-
dimensional Otsu algorithm were employed to segment the trunk from the background.
A morphological method was adopted to eliminate noises from tiny branches and fading
fallen leaves. Similarly, an optimal path extraction method proposed by Li also adopted
color-model and segmentation methods [6]. The least-square and Hough transform meth-
ods are the most generally used line fitting methods. Based on the least-square method,
both studies fit the reference lines of the fruit trees on both sides. The experimental results
showed that the path generation method can provide a theoretical basis and technical
support for the walking of a kiwi fruit–picking robot [6].

To achieve a better result, Ali et al. proposed a classification-based tree detection
algorithm [7]. Color and texture cues were combined to yield better performance than
individual cues could accomplish. Lyu et al. applied the Naive Bayesian classification
(Artificial Neural Networks (ANN) and K-nearest neighbor (KNN) in [7]) to detect the
boundary between trunk and ground and proposed a method to determine the centerline
of orchard rows [8]. The advantage of the Bayesian classification is that it requires a small
number of samples and a simple training process. In addition, it can effectively reduce
impact from branches, soil, weeds, or tree shadows on the ground. In orchard navigation
tests, the steering angle deviations generated by the proposed algorithm were much smaller
than those generated from manual decisions. This showed that the orchard navigation
method is more stable than a method that determines the centerline extraction manually.

Thus far, most researchers have developed algorithms that take advantage of the
ground structures of orchards. These studies use the segmented sky from the tree canopy
background and the centroid features of the segmented object as the process variables to
guide the unmanned ground vehicle moving in the tree rows [1]. Experiments have shown
that these approaches have the potential to guide utility vehicles.

Light detection and ranging (LiDAR) technology is also widely used in orchard
navigation. Zhou et al. proposed a method for calculating the center point of the trunk with
LiDAR sensory data [9]. LiDARs were used to scan the trunks on both sides of the fruit
tree row. Point clusters with approximately circular arc shapes were formed. The central
coordinate position and the radius of the trunk could be determined through geometric
derivation. As the robot moved, its position and posture were corrected in real time by
comparing the detected coordinates of the center point of the trunk with those obtained
previously. Blok et al. paid more attention to the robot’s self-positioning [3]. This research
validated the applicability of two probabilistic localization algorithms that used a single 2D
LiDAR scanner for in-row robot navigation in orchards. The first localization algorithm
was a particle filter (PF) with a laser beam model, and the second was a Kalman filter (KF)
with a line detection algorithm. Experiments were designed to test the navigation accuracy
and robustness of the two methods, and the results showed that PF with a laser beam
model was preferred over a line-based KF for in-row navigation.

Shalal et al. combined LiDAR and cameras in their research [10,11]. The LiDAR was
used to detect edge points to determine the width of trunks and of non-trunk objects. The
color and parallel edges of the trunks and non-trunk objects were verified by camera images.

Traditional image processing methods are easily affected by sunlight, canopy occlusion,
and weeds. With the development of artificial intelligence, Zhang et al. tried to apply deep
learning image processing in orchard management [12]. A multi-class object detection
algorithm was proposed on the basis of a region convolutional neural network (R-CNN)
model to detect branches, trunks, and apples in the orchard environment. VGG16 and
VGG19 (the highest MAP of 82.4%) both achieved higher detection accuracy than Alexnet
for the skeleton fitting of branches and trunks [13–15]; this study provided a foundation
and possibility for developing a fully automated shake-and-catch apple harvesting system.
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According to the above analysis of orchard autonomous navigation research results,
the limitations of current orchard navigation are reflected in the following three points:
1© In orchards with large tree canopies, it is more difficult to extract the vanishing point,

and the application of generating navigation lines based on roads or skies will be limited.
2© The use of traditional image processing methods based on tree trunk detection to fit

the navigation path is susceptible to light intensity, shadows, and other factors. 3© Using
radar data to improve the midpoint of fruit tree trunks provides a method for fruit tree row
extraction, and image sensors have the advantage of low cost.

To address the limitations of the existing methods, we provide a DL_LS method that
uses a deep learning model to extract the trunks of fruit trees near the ground and calculate
the fruit tree reference points, fit the fruit tree row lines through the reference points, and
calculate the centerlines through the row lines on both sides. In our method, we employ
the YOLO V3 network to detect trunks of fruit trees in contact with the ground area, which
can be basically independent of light intensity, shade, and disturbances. Furthermore, we
use the detected trunk bounding box to determine the key points or reference points of the
tree row, which are the middle points of the bottom lines of the bounding boxes, and then
extract the tree row lines by the least-square method in order to improve the accuracy of
the tree row line extraction.

Our method consists of four steps: detection of the fruit tree trunks using the deep
learning method, determination of the fruit tree reference points, fitting of the fruit tree
reference row lines, and generation of the orchard centerlines. The deep convolution neural
network, which replaces the traditional feature extraction methods, can automatically
detect the target after training with enough sampled learning data. The algorithm of the
fruit tree row line fitting is put forward using a least-square algorithm, which can effectively
extract the orchard machinery walking route.

2. Materials and Methods

The DL-LS algorithm proposed in this study can carry out path planning tasks for
autonomous orchard machinery by combining deep learning methods with fruit tree line
fitting algorithms. We selected the YOLO V3 network to accurately identify tree trunks
with a bounding box, determine key or reference points with the middle points of the
bottom lines of the bounding boxes, and fit the tree row reference lines with the least-square
algorithm, which can carry out tree row line detection with higher accuracy under different
disturbances in orchard scenarios. We collected a large quantity of actual orchard image
data. These images were employed to train the YOLO V3 network after the sorting and
labeling. Then the coordinates of the bounding box were generated after the tree trucks
were detected. The reference point coordinates of the fruit tree can be calculated with these
coordinates. The reference lines of the fruit tree rows were fitted by the least-square method.
Finally, the centerline of the fruit tree rows was fitted with two reference lines. The principle
is shown in Figure 1. This centerline is regarded as the tracking or moving path for the
orchard machinery. Figure 2 is a flowchart of the deep learning-based tree/trunk extraction
method. In the training stage, images of fruit tree rows in orchards are collected to form a
dataset. The dataset is divided into a training set and a test set, and the manual labeling
includes two types of tree trunks and fruit trees. The YOLO V3 network is trained using
the training set to generate weight files. While testing, the trunk and fruit tree rectangular
boxes are generated by the trained network; then fruit tree row reference point coordinates
can be obtained by using trunk rectangular box coordinates calculation, and the fruit tree
row lines are generated by means of least-squares fitting. Finally, the centerline of the fruit
tree rows is obtained using the algorithm.
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Figure 1. Schematic diagram of orchard navigation line extraction.

 

Figure 2. Flowchart of the deep-learning extraction method of orchard visual navigation line.

2.1. Detection of Fruit Tree and Trunk

Traditional target recognition methods are strongly dependent on specific images and
are susceptible to light intensity, shade, etc. In this thesis, the YOLO V3 network is used to
identify fruit trees and the trunk of fruit trees in contact with the ground area.

2.1.1. Network Structure of YOLO V3

YOLO V3 uses the residual module to improve the phenomenon of gradient disap-
pearance or gradient explosion, and YOLO V3 borrows the idea of the feature pyramid
networks (FPN) algorithm, which has excellent performance for small-target detection.
The YOLO v3 network is based on a regression approach to feature extraction, enabling
end-to-end object detection. Thus, it is more suitable for field application environments as
it can quickly predict and classify targets while ensuring high accuracy.

The backbone network of YOLO V3 is Darknet-53. There are 53 layers of convolutional
neural networks. The last layer is the fully-connected layer, and the other 52 layers appear
as the layers for feature extraction [16]. The structure is as shown in Figure 3. Moreover,
the residual module is widely used in the Darknet-53 network [13]. The gradient will
disappear or explode if there are too many layers in the network. The residual module can
improve this situation. YOLO V3 adopts the mechanism of multiscale fusion and multiscale
prediction. YOLO V3’s excellent performance for small-target detection is highly suitable
for the task of trunk detection. It uses both the rich detail and location information of the
low-level feature map and the rich semantic information of the high-level feature map to
improve the detection precision and detect small targets better [17–21].
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Figure 3. The structure of YOLO V3.

2.1.2. Image Datasets

The training of deep neural networks requires a great amount of data. The image
dataset in this study was acquired from a pear orchard in the Daxing District, Beijing, which
contains fruit trees of different ages, including young and adult trees. A large number of
images of fruit trees were taken under different angles and illumination. The data collection
scenarios are shown in Figure 4. In order to improve the training and prediction speed, the
resolution of the input side of the image is uniformly converted to 512 × 512 pixels during
image pre-processing. To improve the robustness of the model and suppress overfitting,
random perturbations are added to expand the amount of data during training, such as
random adjustment of contrast, saturation, brightness, etc. Finally, 971 images are obtained.
In each sample image, the position and category of trunks and fruit trees are marked by a
rectangle box, and the marked data are saved in a particular format. We chose LabelMe
V3.16 installed on Anaconda for image labeling.

 
Figure 4. Some examples of the image datasets.

2.1.3. Model Training

The experiments in this study were conducted on a computer with Intel i7, 64-bit
and a GTX 1080Ti GPU. The dataset was split into 70% for training and 30% for testing.
In the training and testing processes, the unit of the images was pixel. In the process of
model training, there are many hyperparameters that need to be set manually, and the
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difference in parameters seriously affects the quality of the model, such as the learning
rate and batch size. In our model we set the initial learning rate to 0.001 and the batch
size to 8. The learning rate is an important hyperparameter in the deep-learning optimizer
which determines the speed of the weight updating. If the learning rate is too high, the
training result will exceed the optimal value; if the learning rate is too low, the model will
converge too slowly. The batch size depends on the size of the computer memory, and the
larger the batch, the better the model training effect. After many parameter adjustments,
we trained a model with relatively high accuracy which can accurately identify the trunk
and fruit trees in the image. After the training, the loss value curve was drawn, as shown
in Figure 5. The line reflects the relationship between the loss value and the number of
epochs in the training process. The detection error of YOLO V3 dropped rapidly after the
first 10 iterations. And the loss value hardly changed after 50 epochs.

 
Figure 5. Loss curves of the YOLO V3 model.

2.2. Path Extraction of Orchard Machinery Navigation

The previous section extracts the information on tree trunk position coordinates from
orchard images taken in the row. In this section, the centerline of the fruit tree rows is
extracted on the basis of the trunk box coordinates.

2.2.1. Reference Point Generation

The coordinate value of the bounding-box border can be read clearly by generating
the position information of the trunk, which contains the coordinate value of the points
in the upper-left and lower-right corner. The coordinates of the points in the upper-left
and lower-right corner are Pl (xl, yl) and Pr (xr, yr), respectively. The reference point of this
trunk is ( xr−xl

2 + xl, yr). The algorithm’s pseudocodes are shown in Algorithm 1.
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Algorithm 1 Obtain available coordinate points

Input: Acquired raw image
[r c] = size(img)

Imghalfwidth = c/3/2
A = importdata (txt)
[m,n] = size (A.data)

1: for I = 1:m
2: if textdata including “trunk”
3: if Second data < imghalfwidth
4: y = The fifth data value in A
5: x = 0.5 (fourth data value - second data value) + second data value
6: else

7: y = The fifth data value in A
8: x = 0.5 (fourth data value - second data value) + second data value
9: end

10: end

11: end

2.2.2. Line Fitting of the Tree Rows

The reference points of the fruit trees are fitted into the reference lines of the fruit
trees on both sides of the row by the least-square method. If there are fewer than three
available tree trunks extracted in case of missing fruit trees, we simply connect the nearest
two reference points. The process is shown in Algorithm 2.

Algorithm 2 Obtain the reference lines

Input: Sorting the coordinates of the reference points of the left- and right-side fruit trees,
respectively
1: if the number of points on the left is equal to or greater than 3
2: least-square method
3: else if less than 3 points on the left
4: Connect two points
5: end

6: The right-fitting line is the same as above
7: if the number of points on the right is equal to or greater than 3
8: Fit a straight line using the least-square method
9: else if less than 3 points on the left
10: Connect two points line 11

k = (ycord (1) - ycord (2))/(xcord (1) - xcord (2))
b = ycord (1)

11: end

2.2.3. Obtaining the Centerline

The centerline of the previously obtained two reference lines of the fruit tree rows
on both sides is the reference line of the orchard machinery, and its detailed principle is
shown in Figure 6. We denote point Pl1 as the farthest reference point on the left reference
line in the image. Its corresponding point on the right reference line is Pr1. We connect
the segment Pl1 Pr1 and calculate the midpoint Pm1. Similarly, we denote point Pl2 as
the nearest reference point and connect the segment Pl2 Pr2 to determine the point Pm2.
Currently, the straight line passing through Pm1 and Pm2 is the reference line for the orchard
machinery. The algorithm flow is shown in Algorithm 3.
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Algorithm 3 Obtain the centerline

Input: the left and right reference lines
1: sort coordinate for the left rectangle label
2: search the nearest point Pl2corresponding Point
Pr2(xr2, yr2)
3: middle point coordinate (xm2, ym2)
4: search the furthest point Pl1 corresponding Point
Pr1 (xr1, yr1)
5: calculate the coordinates of point Pm1 (xm1, ym1) by points Pl1 and Pr1
6: calculate the coordinates of point Pm2 (xm2, ym2) by points Pl2 and Pr2
7: line connecting points Pm1 and Pm2
8: end

Figure 6. Centerline acquisition for orchard machinery.

3. Results and Discussion

3.1. Tree and Trunk Detection Results

The trained network can identify the tree trunk and fruit tree accurately. The detection
accuracy is shown in Table 1. The average precision (AP) of the trees is 92.7%, and the
AP of the trunks is 91.51%. The MAP of detection can reach 92.11%, which is not easily
affected by sunlight. The trunk of the same fruit tree can be accurately detected under
normal sunlight and strong sunlight, as shown in Figure 7. This method has a stronger
anti-interference ability compared with traditional methods, especially in the morning and
afternoon when the lighting condition changes. Furthermore, weeds easily affect the results
of the interference; this is because the color and shape of weeds and leaves are very similar
and because weeds occasionally become entangled with the tree trunks. Figure 8 shows the
detection result under strong sunlight. The recognition result of the trunks and fruit trees
obtained by this network in weed-rich environments shows it to be helpful in alleviating
the interference caused by weeds. As shown in Figure 9, the effect of trunk extraction on
both sides of the fruit tree rows is excellent under normal sunlight, which is an important
basis of this study. Figure 10 shows the result of weak sunlight.

Table 1. Detection accuracy.

Type AP/%

Tree 92.70
Trunk 91.51
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Figure 7. Detection results under different sunlight conditions.

 

Figure 8. Detection results of tree and trunk under strong sunlight.

 
Figure 9. Detection results of trunk under normal sunlight.

 
Figure 10. Detection results of trunk under weak sunlight.
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3.2. Results of Reference Point Generation

The accuracy of the algorithm is tested by comparing the coordinate points manually
marked with those extracted by our algorithm. The error is calculated by the distance
between two pixels. Referring to Figure 10, the error of Figure 10b is larger than errors of
the other Figure 10a,c because the height of the tree trunks buried in the soil is irregular,
and the error of manually marked points is lower than those obtained in our method. As
shown in Table 2, there are five points in three sub-figures. The average error is 1.93 pixels.

Table 2. Error analysis of the trunk reference point.

Sub-
Figure

Original
Coordinates

Reference Point
Coordinates

Manual Marking
Coordinates

Error (Pixel)

(a) (232,425) (308,512) (270,512) (268,512) 2.00
(b) (180,439) (345,632) (262.5,632) (260,631) 2.69

(171,532) (302,685) (236.5,685) (235,685) 1.50
(c) (29,328) (53,373) (41,373) (40,372) 1.41

(534,352) (581,411) (557.5,411) (558,413) 2.06

3.3. Results of Tree-Row Line Fitting

Determining the position of each fruit tree in the image is the basis of orchard me-
chanical operation, which can obtain the straight line of fruit trees on both row sides. The
fitting results of reference lines on both sides of the fruit tree row under different sunlight
are shown in Figure 11, including weed environment, strong sunlight, weak sunlight, and
normal sunlight. The analysis of the line fitting of fruit tree rows is shown in Table 3.

   

(a) corridor with weed (b) strong sunlight (c) weak sunlight 

  

(d) normal sunlight on a corridor with leaves (e) normal sunlight 

Figure 11. Reference line of a fruit tree row under different sunlight.

Table 3. Accuracy of line fitting of the fruit tree rows.

Weed Environment Weak Sunlight Strong Sunlight Normal Sunlight

Left row line
to the

left
to the
right correct to the

left
to the
right correct to the

left
to the
right correct to the

left
to the
right correct

1 0 6 1 0 6 0 0 7 1 0 8
Right row line 0 0 7 0 0 7 0 1 6 1 0 8

Total 1 0 13 1 0 13 0 1 13 2 0 16
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Thirty images were selected to test the accuracy of the fruit tree line fit, all of which
included both left and right fruit tree rows. The four environments were weeded, low light,
high light, and normal light. There were 7 images of the weedy environment, 7 images of
the low light environment, 7 images of the high light environment, and 9 images of the
normal light environment. When performing this study, the fitted lines should describe the
fruit tree rows evenly and accurately, with errors categorized as right-leaning or left-leaning
on the left side and right-leaning or left-leaning on the left side. Sixty lines were included
in the 30 images, divided into 30 lines on the left and 30 lines on the right side; the specific
fruit tree lines fitted are shown in Table 3. In the weed environment, one line on the left
side of the tree was fitted to the left, while the other 13 lines were fitted correctly. In the
weak-light environment, one line on the left side was fitted to the left, while the other
13 lines were fitted correctly. The right fruit tree row line was fitted to the right in the
strong-light environment, while the other 13 were fitted correctly. Under normal light
conditions, one line on the left side of the tree was fitted to the left and one line on the right
side of the tree was fitted to the right, while the remaining 16 lines were fitted correctly.
A total of 55 lines were fitted correctly and 5 lines were fitted inaccurately. The average
accuracy of the fruit tree line fits was calculated to be 91.67%.

3.4. Results of Centerline Extraction

As shown in Figure 12, the green lines are the centerlines of the orchard machinery.
The combination of deep learning and least-square yields a great improvement in efficiency
and accuracy compared with traditional methods.

 

Figure 12. Centerlines of fruit rows calculation in the orchard.

In order to evaluate the accuracy of the centerline generation, the benchmark line is
selected manually; the difference between the algorithm-generated centerline and the best
navigation line is then analyzed. Table 4 shows the fitting results of the centerline in the
fruit rows. The accuracy of orchard centerline extraction is 90.00% according to 27 extracted
proper centerlines out of 30 images.

Table 4. The fitting of the centerline in fruit rows.

Weed Environment Weak Sunlight Strong Sunlight Normal Sunlight

type Little de-
viation correct Little de-

viation correct Little de-
viation correct Little de-

viation correct

amount 1 6 1 6 0 7 1 8

Han, et al. proposed a U-Net network-based approach for visual navigation path
recognition in orchards [22]. Table 5 gives a comparative analysis of the maximum and
mean value pixel error of the centerline of the fruit tree rows calculated by both U-Net
and DL_LS. Under weak light, the maximum pixel error of the centerline is 19 pixels for
U-Net and 8 pixels for DL_LS, and the mean value pixel error of the centerline is 11.8 pixels
for U-Net and 5.2 pixels for DL_LS; under normal light, the maximum pixel error of the
centerline extracted by U-Net is 10 pixels and 5 pixels for DL_LS, and the mean value pixel
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error of the centerline extracted by U-Net is 6.5 pixels and 3.4 pixels for DL_LS; under
strong light, the maximum pixel error of the centerline extracted by U-Net is 7 pixels and
4 pixels for DL_LS, and the mean value pixel error of the centerline extracted by U-Net is
2.9 pixels and 2.1 pixels for DL_LS. From Table 5, we can infer that our DL_LS can give
higher centerline extraction results than those of U-Net.

Table 5. Comparison of centerline maximal pixel errors of different methods.

Method Weak Sunlight Normal Sunlight Strong Sunlight

Maximum Mean Value Maximum Mean Value Maximum Mean Value

U-Net [22] 19 11.8 10 6.5 7 2.9
DL_LS 8 5.2 5 3.4 4 2.1

3.5. Discussion

Although our method can extract the centerline of two adjacent orchard tree rows
with high accuracy, there are still some drawbacks or limitations in our method. First,
some of the trunks detected by the deep learning algorithm are side views or parts of the
whole trunks, which introduces pixel error while determining the reference points. As
a result, the centerline extraction accuracy could be improved if a smart reference point
selection strategy is designed. Second, fruit tree trunks of other rows may be captured into
the images, so that the extracted feature points are distributed in a zigzag shape, which
affects the accurate generation of fruit tree row centerlines. Therefore, a reference or feature
point selection or filtering strategy should be proposed to improve our algorithm.

The trained network can identify the tree trunk and fruit tree accurately. The single-
target average accuracies for trees and trunks are 92.7% and 91.51% respectively. Trunks
and fruit trees are well identified in different sunlight and weed-rich environments. The
model has strong robustness, and it takes about 50 milliseconds to process an image, which
meets the reliability of the algorithm in real-time mode.

4. Conclusions

A centerline extraction algorithm of orchard rows was proposed based on the YOLO
V3 network, which can detect fruit trees and trunks in contact with the ground area
independent of light intensity, shade, and disturbances. The average detection accuracy
of the tree trunks and fruit trees was 92.11% by outputting the coordinate text file of the
bounding box at the same time.

With the trunk bounding box, the reference points of the fruit tree trunks were ex-
tracted and the least-squares method was applied to fit the fruit tree rows on both sides of
the walking routine of the agricultural machinery. According to the experimental results,
the centerline of the orchard line was finally fitted. The average accuracy of the fruit tree
line extraction was calculated to be 90%.

In the future, our research will consider the fusion of multiple sensors which can
acquire richer environmental information and enable automated navigation in complex
and changing orchard environments.
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