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Preface to "Robots and Autonomous Machines for
Agriculture Production”

Global agriculture faces critical pressures, including an aging population, rising production
costs, and labor shortages. An important alternative solution for these challenges, robots and
autonomous machines represent a high-level application of smart agriculture, which is based on
a precise and resource-efficient approach to sustainably achieving higher efficiency and quality in
agricultural production. On the one hand, robotics and autonomous machines continue to spread
into various new agricultural scenarios, and on the other hand, technologies such as deep learning
and machine learning are increasingly being used in agricultural production. By exploring the diverse
methodologies employed in addressing such challenges, this Special Issue aims to advance the field
and improve the efficiency of agricultural production through robotic and autonomous innovations.

In order to investigate the advancements in robots and autonomous systems for agriculture,
by using modeling, detection, and control technologies and emphasizing their potential in precision
farming, crop protection, crop harvesting, etc., we have organized this Special Issue, “Robots and
Autonomous Machines for Agriculture Production”. The issue has a total of 26 papers which cover
a wide range of agricultural operations, including cotton planters, maize planters, apple harvesting,
shrimp peeling, rice phenotyping, pest control, bale collection, pineapple processing, garlic seeding,
agricultural film collecting, lettuce growth modelling, egg microcrack detection, forage pushing,
fungus harvesting, and jujube pruning. In terms of the research field, the issue focuses on robotics and
its related application research, such as the following areas: soft gripper design, autonomous robots,
humanoid field-phenotyping robots, apple detection, manipulator motion planning, dairy robots,
vineyard spraying robots, fungus harvesting robots, and orchard visual navigation. In addition, it
also focuses on intelligent agricultural machines in different scenarios of seeding, crop monitoring,
agricultural products, etc.

In summary, this Special Issue highlights different approaches in the development of agricultural
robots and intelligent agricultural machines in several agricultural application scenarios for scene
and object perception, intelligent decision support methods, and operational mechanisms and their
control. It is expected that the insights gained from this Special Issue will be useful to researchers in

the field of agricultural robots and autonomous machines.

Jin Yuan, Wei Ji, and Qingchun Feng
Editors

xi
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The global agriculture faces critical pressures, including an aging population, rising
production costs, and labor shortages. As an important alternative solution for those
challenges, robots and autonomous machines represent a high-level application of smart
agriculture, which is based on a precise and resource-efficient approach that attempts to
sustainably achieve a higher efficiency in the agricultural production with an increased
quality. On the one hand, robotics and autonomous machines continue to expand in
various new agricultural scenarios, while on the other hand, technologies such as deep
learning and machine learning are increasingly used in agriculture, and their application in
various scenarios of agricultural production has become more in-depth. By exploring the
diverse methodologies employed in addressing such challenges, this Special Issue aims to
advance the field and improve the efficiency of agricultural production through robotic
and autonomous innovations.

In order to investigate the advancements in robots and autonomous systems for agri-
culture, using modeling, detection, and control technologies, emphasizing their potential
in precision farming, crop protection, crop harvesting, etc., we have organized this Special
Issue “Robots and Autonomous Machines for Agriculture Production (RAMAP)”. The
Special Issue of RAMAP has a total of 26 papers [1-26], and papers were submitted from
eight countries: Spain, Italy, Germany, Brazil, China, Sweden, Czech Republic and Croa-
tia. Moreover, the Special Issue covers a wide range of agricultural operations, including
cotton planters [15], maize planters [2], apple harvesting [3,7,11], shrimp peeling [4], rice
phenotyping [6], pests control [9], bales collection [8], pineapple processing [10], garlic
seeding [12], agricultural film collecting [13], lettuce growth modelling [14], egg microcrack
detection [17], forage pushing [18], fungus harvesting [24] and jujube pruning [25]. In
terms of the research field, the Special Issue not only focused on robotic and its related
application research, such as soft gripper design [3], autonomous robot [5], humanoid
field-phenotyping robot [6], apples detection [7], manipulator motion planning [11], dairy
robot [18], vineyard spraying robot [20], fungus harvesting robot [24] and orchard visual
navigation [26], but also refers to intelligent agricultural machines in different scenarios
on seeding [1,2,12,15], shrimp peeling [4], recycling film collecting [13], crop and monitor-
ing [14], and agricultural products [16,17,23].

Agricultural robots are multi-degrees-of-freedom autonomous operation machines
used in agricultural production, with perception, decision-making, control and execution
capabilities, mainly including information perception systems, decision-making systems,
operation actuators, that is sensing, decision making and execution. Overall, most of
the papers in the Special Issue of RAMAP were grouped into four categories: sensing
for the crop or machine system [1,4,7,9,10,12,16,17,22,23,26], methodological studies for
decision-making and control [2,8,11,14,18,20,24], designs related to intelligent machinery
execution [1,3,13,15,25] and systematic solutions [5,6,19,21].

Agriculture 2023, 13, 1340. https://doi.org/10.3390/agriculture13071340
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Generally, agricultural robots first need to sense the operating environment, the
operating object and the state of the robot itself, and to provide the panoramic data related
to the operating process to the agricultural robots to complete the operating tasks.

The first category has eleven papers under the following sub-heading: Intelligent
sensing for the crop or machine system [1,4,7,9,10,12,16,17,22,23,26]. Currently, a large
number of studies focus on deep learning techniques, which have shown their superb
impact on robotic sensing applications, as reflected in this issue. Some papers utilized
improved YOLO-based [7,23,26], CNN-based [12,16] or RCNN-based [9] methods to devel-
oped a detection model for operating target recognition or performance evaluation from
the RGB images. To achieve more accuracy, faster and compacter models may be popular
due to the cost-effective and feasiblity with low-computing platforms. The paper by Liu
et al. [10] proposed a 3D localization algorithm to fuse the depth information based on
multiangle image matching and YOLOvV5 detection information. Some papers utilized
the manual features combined with machine learning, such as the adaptive recognition
boundary model [4], density-based lightning connection clustering [22], random forest [17],
etc., to achieve target detection, due to a small training dataset or more efficient features.

For intelligent agricultural machines, Bai et al. [1] designed a monitoring system for
the sowing quality of cotton precision planters, to realize the real-time monitoring of the
cotton precision seeding operation processes and improve the intelligence level of cotton
precision planters.

Generally, intelligent decision-making and intelligent control systems aim at deep
fusion of perception information, cognitive reasoning, predictive planning, and coordinated
control of agricultural robot perception and execution subsystem operations, which is the
core element of agricultural robots.

The second category has seven papers under the following sub-heading: Methodolog-
ical studies for decision making and control [2,8,11,14,18,20,24]. Three studies focus on the
optimization of motion planning for robots. The paper by Latif et al. [8] optimized path
planning approaches using a new autonomous articulated concept vehicle with neighbor-
hood reach capabilities (AVN). The paper by Liu et al. [11] proposed a time-optimal rapidly
exploring random tree (TO-RRT) algorithm to reduce the obstacle avoidance effect and
increase picking efficiency of the manipulator. The paper by Yang et al. [24] proposes a
multi-objective optimization algorithm of the multi-arm cooperative harvesting trajectory
to improve the harvesting efficiency.

A novel method [14] for predicting the dynamic growth of leafy vegetables based on
the in situ sensing of phenotypic and environmental data of batches is proposed to predict
the dynamic fresh weight of substrate-cultivated lettuce grown in a solar greenhouse
under normal water and fertilizer conditions. A model predictive control (MPC)-based
approach [20] for vineyard spraying was presented to adapt to different vine row structures
and suitable for real-time applications. Additionally, a control system [2] for an electrically
driven precision maize seeder based on the CANopen protocol was designed. An obstacle
avoidance strategy [18] based on the improved artificial potential field method is proposed
for an autonomous navigation pusher robot.

The third category has seven papers under the following sub-heading: Designs related
to intelligent machinery execution [3,13,15,25]. Zhang et al. [25] designed a pruning ma-
nipulator with five degrees of freedom for jujube trees. It is of reference value to solve the
problems of poor working conditions and the labor intensity of manually pruning jujube
trees. Chen et al. [3] developed a fin ray structure-based soft gripper mechanical model
and its real-time servo-driven control strategy to reduce the potential danger of damage
to the apple pericarps during robotic harvesting. Yu et al. [15] designed a cotton seeder
duckbill welding robot to improve the automation, welding efficiency, and welding quality
of duckbill welding of cotton seeds.

The final category has four papers under the following sub-heading: Systematic
solutions [5,6,19,21]. Emmi et al. [5] presented an architecture to integrate the different
components of an autonomous robot that provides access to the cloud, taking advantage of
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the services provided regarding data storage, scalability, accessibility, data sharing, and
data analytics. Huang et al. [6] presents a new in-field interactive cognition phenotyp-
ing paradigm, and a humanoid robot equipped with image-acquiring sensory devices
is designed containing an intuitive remote control for field phenotyping manipulations;
subsequently, an attentional residual network (AtResNet) is proposed for rice tiller number
recognition. The paper by Vasconcelos et al. [19] proposed a demo of agricultural field
image data acquisition with a low-cost autonomous robot.

Precision agriculture, which addresses the spatial and temporal variability of soils and
crops to reduce agricultural inputs and improve agricultural production reporting, varies
greatly in implementation from country to country. Vrchota et al. [21] evaluated precision
agriculture technologies’ practical use in agricultural enterprises in the Czech Republic,
which is a reference for the development and implementation of precision agriculture
technology and equipment in each country.

In summary, this Special Issue highlights different approaches in the development of
agricultural robots and intelligent agricultural machines in several agricultural applica-
tion scenarios for scene and object perception, intelligent decision support methods, and
operational mechanisms and their control. It is expected that the insights derived from
this Special Issue will be useful to researchers related to the field of agricultural robots and
autonomous machines.
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Abstract: To realize the real-time monitoring of the cotton precision seeding operation process
and improve the intelligence level of cotton precision planters, based on automatic color matching
detection technology and visualization technology, this study designs a monitoring system for the
sowing quality of cotton precision planters. The monitoring system is based on the double-silo
turntable type cotton vertical disc hole seed metering device as the research carrier, and is composed
of a missed seeding monitoring module and a visualization module. Among them, the missed
seeding monitoring module includes an incremental rotary encoder, color code electric eye color
fiber optic sensor, color code sensor amplifier, etc.; the visualization module includes data acquisition
module, industrial computer, and so on. The missing seeding monitoring module is installed on
the seed spacer of the cotton precision seed metering device. It uses Labview software for graphical
programming and is equipped with a multi-functional industrial computer. It realizes the monitoring
of parameters such as the number of sowings, the number of missed sowings, the speed of the hole
seeder, the forward speed of the machine, and the sowing area. The results of the bench test and
field test of the sowing monitoring system showed that the accuracy rate of the system’s broadcast
monitoring was over 93%, and the accuracy rate of missed broadcast monitoring was over 91%. The
system solved the technical problem that cotton film-laying and sowing were not easy to detect. It
could accurately detect the quality of cotton sowing in real time and meet the actual requirements of
sowing monitoring.

Keywords: cotton precision planter; cotton seeds; broadcast monitoring; missed broadcast monitoring;
sowing quality

1. Introduction

Cotton precision sowing is the key to realize mechanized cotton planting. Sowing
quality directly affects crop growth and yield. Among them, missed sowing is an impor-
tant factor affecting sowing quality [1,2]. Therefore, breaking through the sowing quality
monitoring technology is a research hotspot in the current sowing field. It can provide key
support for technical development, such as for real-time adjustment of sowing amount,
real-time reseeding of missed sowing, and machine operation management systems. This
has important practical significance for improving the informatization of cotton preci-
sion sowing operations and promoting the quality development of mechanized sowing
operations [3,4].
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At present, it is in a closed state during the sowing process. The sowing quality
cannot be directly monitored by human senses alone [5-7]. Therefore, it is particularly
important to develop a seeding quality monitoring system. The research and application of
precision seeder monitoring systems abroad began in the 1940s. Nowadays, the research
on sowing quality monitoring technology is mature. The monitoring devices matching
with seeders are widely used [2]. Precision Planting of the United States developed a
20/20 SeedSense monitoring system using WaveVision particle sensors. It could monitor
the seeding quality in real time, and had the function of automatically correcting the seeding
performance [8]. The Sistema Full Semina precision seeding system developed by MC
electronic in Italy could realize the sowing monitoring of large and medium-sized seeds [9].
The John Deere Precision Planter was equipped with a Seed Star monitor. Statistics and
analysis were carried out in various graphics, so that the operator could grasp the seeding
quality information in real time. It uploaded data to the information center to provide data
support for subsequent operations [10]. For different crop seeds, based on photoelectric
method, image recognition method, piezoelectric method, capacitive method, etc. [11-14],
different forms of monitoring systems have been developed abroad to monitor the seeding
process in real time. Foreign seeding monitoring equipment has been commercialized and
has good performance. However, it is expensive and not suitable for domestic general
seeding tools and working environment conditions.

The domestic research on sowing monitoring system started relatively late. However,
scholars were also actively exploring and developing a planting monitoring system suitable
for the actual situation in our country. Che Yu et al. [2] designed an infrared monitoring
system for seeding quality. It could monitor the sowing count, missed sowing, and outage
of sowing, and the monitoring accuracy rate could reach more than 95%. Sun et al. [15]
adopted the non-blind area anti-dust monitoring technology of non-point source, which
improved the adaptability and monitoring accuracy of the no-tillage planter monitoring
system to the dusty environment. Zhou et al. [16,17] developed a series of seed metering
performance monitoring systems based on the dielectric properties of seeds and using
capacitance detection technology; it realized the seeding detection of corn, rice, and cot-
tonseed. Ding et al. [18-22] realized real-time monitoring of seeding frequency and total
amount of seeding based on the characteristic analysis of the collision signal between
seeds and piezoelectric films. Based on machine vision and BP neural network technology,
Tan et al. [23,24] realized the precise monitoring of the seeding amount in the holes, with
an average accuracy rate of 94.4%. To sum up, the existing monitoring methods of sowing
parameters mainly included photoelectric monitoring, capacitive monitoring, and high-
speed camera monitoring. Among them, the photoelectric monitoring method was the
most widely used, with the advantages of low cost, reliable performance, and easy main-
tenance [25]. The machine vision method could solve the problems of low measurement
accuracy and low degree of automation. However, the system was relatively complex and
the cost was high, which was not suitable for field production applications [26-28]. The
capacitive type was simple and economical, easy to maintain, and capable of non-contact
real-time measurement. However, it had weak anti-interference and unstable performance,
so it was difficult to apply it to field agricultural production activities [29].

At present, the cotton precision seeders generally adopt the method of hole seeding.
Different from the common seed metering device structure and seed metering method,
it belongs to “zero-speed seeding” (the instantaneous speed of the seeds falling into the
seedbed is close to zero relative to the ground) [30,31]. The above monitoring technology is
difficult to use directly. Therefore, to realize real-time monitoring of the sowing quality of
cotton precision planters, a method for monitoring sowing parameters based on a color-
coded electric eye color fiber optic sensor is proposed. Labview is used to build and
develop a seeding quality monitoring system, and bench tests and field performance tests
are conducted. This method is expected to improve the quality of cotton precision sowing
operations and meet the actual production needs of cotton.
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2. Materials and Methods
2.1. Research Carrier

The double-storage rotary disc type cotton vertical disc hole seed metering device is
used as the research carrier of the sowing quality monitoring system. It is mainly composed
of a moving plate, a seed-taking plate, a seed-casting bin assembly, a seed spacer, and a core
plate. The structure is shown in Figure 1. The working area is divided into 5 areas: a seed
filling area, seed clearing area, transfer area, seed transfer area, and seed casting area. The
specific working principle can be found in reference [32]. In the transit area, the installation
position of the color-coded electric eye color fiber optic sensor is determined based on the
structure of the seed spacer. It is necessary for it to face the hole of the seed tray.

Figure 1. Structural diagram of double-bin rotary disc type cotton vertical disc hole seeding and
metering device: (1) moving plate, (2) seed hopper assembly, (3) seed Spacer, (4) seed tray, and
(5) core plate.

When the seed-taking tray enters this area, the seeds in the socket will slide along the
inner wall of the socket into the seeding cavity composed of the seed-taking tray and the
seed spacer. The color-coded electric eye color fiber optic sensor collects the RGB color
of the cotton species, compares the RGB value of the reference color, and identifies the
color. It obtains the seeding amount by calculating the change in the number of pulses; the
seeding distance is obtained by multiplying the time interval between the two adjacent
pulses identified by the forward speed of the implement. Missing seeding is obtained
by comparing the actual seeding grain spacing with the expected grain spacing, and an
alarm is given. After the seeds in the socket hole pass through the color-coded electric
eye color fiber optic sensor, they slide along the inner wall of the socket hole into the seed
rowing cavity composed of the seed taking plate and the seed spacer. After entering the
seeding area again, the seeds in the warehouse slide into the duckbill along the spacer
sleeve. After the mouthpiece is opened, the cotton seeds fall into the seed hole to complete
the seeding operation. This provides the basis for the design of the subsequent seeding
quality monitoring system.

2.2. Monitoring System Design

The seeding quality monitoring system mainly includes two modules: a missed
seeding monitoring module and a visualization module. Among them, the missing-seeding
monitoring module mainly realizes the real-time monitoring of the seeding amount and the
missing-seeding situation, while the visualization module mainly realizes the visualization
of the monitoring results of seeding quality. The system structure diagram is shown in
Figure 2.
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Figure 2. Structural diagram of monitoring system.

2.2.1. Hardware Design
(1) Missing broadcast monitoring module

The missing broadcast monitoring module includes an incremental rotary encoder,
color code electric eye color fiber optic sensor, color code sensor amplifier, shielded cable,
and so on. Cotton precision planters generally use hole seeding. The cotton seed slides
directly into the duckbill from the seeding cavity. After the mouth is opened, it falls into
the seed hole to complete the seeding operation. This greatly limits the detection space.
That is, higher requirements are placed on the sensor installation location and detection
method. Therefore, this study chooses the color-coded electric eye color fiber optic sensor
(BV-501-RGB) and adopts the color automatic matching detection method. By comparing
the two different RGB colors of the seed tray and the cotton seed, the light source is selected
as three primary colors and a 4-element LED body. It solves the problem that cotton seeds
are not easy to detect. The surface of the color-coded electric eye color fiber optic sensor is
in the form of a cylindrical thread with a diameter of 6 mm. It is installed on the seed spacer
and located in the transfer area, which requires facing the hole of the seed tray, as shown in
Figure 3. It solves the problem that the sensor is not easy to install. It is connected to the
color mark sensor amplifier through the shielded cable. The detection distance is 0~50 mm.
It can adjust the detection height to control the spot size, ranging from 3 to 10 mm. It has
the characteristics of a large light-receiving surface and multi-point collection, which can
effectively reduce the misjudgment caused by uneven color.

Figure 3. Sensor installation diagram.
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The above sensors monitor whether there are cotton seeds in the hole of the seed-taking
pan, and feed back the information of the sowing quality. Among them, the color-coded
sensor amplifier is set in advance by aligning the color of the cotton with the color-coded
electric eye color fiber optic sensor. The color is memorized: if it is within the set color
threshold range, it is considered as normal seeding. A seeding status signal is sent.

An incremental rotary encoder (AB two-phase, 100 pulses) is installed on the moving
plate. It is connected with the data acquisition module through the shielded wire, which
has strong anti-interference and high cost performance. The rotating grating disc and
the optocoupler generate a counting pulse signal that can identify the direction. It is
transmitted to the industrial computer to calculate the speed of the hole seeder (that is, the
forward speed of the machine).

(2) Visualization module

The visualization module includes a data acquisition module, industrial computer,
etc. Among them, the data acquisition module is mainly used to receive the pulse signal
collected by the incremental rotary encoder and the color mark sensor amplifier. It is up-
loaded to the industrial computer through RS485 communication. The industrial computer
uses the Labview software to build the system, and the data is processed and displayed.
The industrial computer adopts a multi-function integrated machine. The interface of the
sowing quality monitoring system of the cotton precision seeder is shown in Figure 4. It can
visually display parameters such as the number of seeds, the number of missed seeds, the
speed of the hole seeder, the forward speed of the machine, and the sowing area. It realizes
real-time display, alarm, and storage of data such as alarm information and data monitoring
information. The system is equipped with a variety of detection modes suitable for various
targets. It has the advantages of good handling of workpiece motion and vibration, and
can meet the actual requirements of the sowing quality monitoring system.

Broadcast volume

o

missed broadcasts
volume

Previous cycles
[

Encoder
pulse number

Figure 4. The interface of sowing quality monitoring system of cotton precision planter.

2.2.2. Monitoring System Software Design

This software program uses Labview software graphical programming to monitor
parameters such as the number of sowings, the number of missed sowings, the speed of the
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System initiali:

hole seeder, the forward speed of the machine, and the sowing area. They are displayed on
the corresponding controls on the interface in real time. It has the functions of alarming
and storing data such as alarm information and data monitoring information (as shown
in Figure 4). The software provides quick real-time understanding of cotton planting
and missed planting status. It can solve the technical problem that cotton film-laying
and sowing is not easy to detect, and effectively improve the operation quality and work
efficiency of cotton sowing.

The system software flow chart is shown in Figure 5. Before the system starts, it
performs an initial configuration and then sets system parameters. It obtains each parameter
value through the corresponding protocol analysis. When starting the system, the color-
coded electric eye color fiber optic sensor collects the RGB color of the cotton species. At the
same time, the color mark sensor amplifier compares the reference color RGB value and the
identification color to form a pulse signal. Incremental rotary encoders generate direction-
identifiable counting pulse signals through rotating grating discs and optocouplers. They
are transmitted to the industrial computer through the data acquisition module, and the
forward speed of the machine and the seeding amount are calculated. Combined with the
machine advance speed feedback data, it obtains the seeding grain distance (multiplied by
the time interval between the two adjacent pulses identified by the implemented advance
speed). Then, through the comparison between the actual seeding grain distance and the
expected grain distance, the missed seeding can be judged, and the real-time alarm of
missed seeding can be realized. Using Labview software, the industrial computer receives
and processes sensor data in real time, and visualizes and monitors its parameters.

Sowing and missed sowing status display |}

configuration

Set system
parameters

broadcasts

:| Number of
: seeds

Number of missed |

Machine forward |}
speed :

: | Sown area

Visual display and
monitoring
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Get the machine
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Collect the counting pulse
signal of the encoder

!

Get the actual

Data acquisition " "
seeding distance

module

Industrial

Compare reference color
RGB values and identify
colors

—|

Get the seed

Form a pulse signal amount

Comparing and judging missed seeding
(the actual seeding grain spacing is greater than
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Whether to
stop the job

Get the number of
missed broadcasts

Figure 5. Program flow diagram of software system.
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2.3. Test Equipment and Methods
2.3.1. Bench Test

In this study, the cotton seeds of Xinluzao 78 were used as the experimental material.
Its thousand-grain mass was 84.40 g, and the moisture content was 4.45%. The average
values of the maximum length, maximum width, and maximum thickness of the cotton
seeds were 8.52, 4.50, and 4.48 mm, respectively. The standard deviations were 0.43, 0.32,
and 0.41, respectively. The test equipment included a double-silo turntable test bench
for the cotton vertical disc seed metering device, a stepper motor controller, and a cotton
sowing quality monitoring system. To evaluate the accuracy of sowing quantity and missed
sowing monitoring of the cotton sowing quality monitoring system, a bench test of the
sowing quality monitoring system was designed. The test bench is shown in Figure 6.

Figure 6. Test bench of the monitoring system.

The purpose of the experiment was to evaluate the accuracy and stability of the sowing
quality monitoring system of cotton precision planters. In the experiment, a double-silo
turntable type vertical disc hole seeding and metering device was used. It set different
rotational speeds for seed metering monitoring tests. The missed-seeding monitoring
module was installed on the seed spacer. An inoculation bag was used to collect cotton
seeds that had passed the missed-seeding monitoring module. By changing the speed of
the seeding disc, the amount of seeding per unit time could be adjusted. In order to ensure
that the seed meter works within the normal range of seed metering frequency, the rotation
speeds were set to 20, 25, and 30 r/min [32]. It recorded the seed number displayed by
the industrial computer. The actual number of cotton seeds in the inoculation bag was
obtained by a manual method to calculate the actual sowing rate. It was compared with the
monitoring value of the monitoring system to evaluate the accuracy of the system’s sowing
detection. The test was repeated 3 times, and the results were averaged to avoid errors.

2.3.2. Field Test

In order to investigate the stability and monitoring accuracy of the seeding monitoring
system under field working conditions, a field trial of seeding monitoring was carried
out in Tiemenguan City, Xinjiang on 20 March 2022. The test equipment was: a John
Deere 804 tractor, Tiancheng 2MBJ-2/12 cotton precision film laying planter (Xinjiang
Tiancheng Agricultural Machinery Manufacturing Co., Ltd., Tiemenguan City, Xinjiang,
China, working width 4.4 m, laying 12 rows of film holes, weight 1300 kg), vertical disc
hole seeding metering device, cotton sowing quality monitoring system, etc.

Before the sowing monitoring test, the influence of light conditions on the missed
sowing monitoring module was examined [4]. No seeds were placed in this box, leaving
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the planter in a stationary state in the field. It connected the industrial computer with
the sensing device and turned on the monitoring system. It was tested under conditions
of sunlight, artificial lighting, and artificial blocking of natural light. The test results
showed that under normal light conditions in the field, the monitoring system count
was always 0. The normal light conditions in the field had no effect on the work of the
monitoring device. In order to further test the effect of field monitoring of the monitoring
system, an appropriate amount of cotton seeds were put into the seed box. It installed
the 12-channel missing-seeding monitoring modules with different channel addresses and
different channel numbers on the 12-channel cotton precision seed metering device. The
tester held the cotton sowing monitor and showed that the industrial computer was sitting
in the co-pilot position.

During the test, the sowing quality monitoring system of the cotton precision seeder
was powered on. The data were cleared, and then the machine was started to move forward
(Figure 7a). The speed of the seeding plate was controlled by the forward speed of the
implement. This made the John Deere 804 one gear faster with a small throttle speed (about
2 km/h, the diameter of the hole seeder was 420 mm) as the base speed, which translated
into a seeding disc speed of about 25 r/min. The rotation was controlled by adjusting
the motor. The rotation speed was set to 3 levels, which were 20, 25, and 30 r/min. The
forward distance of the machine was 100 m and the number of rotations was 75.8. There
were 15 holes in each circle, with a total of 1137 holes. Monitoring of seeding and missed
seeding was recorded. By looking at the cotton seeds discharged into the soil and counting
them manually (Figure 7b), the actual seeding amount was counted. Compared with the
results obtained by the monitoring system, this was used to evaluate the work stability and
reliability of the monitoring system under field work. The test was repeated 3 times, and
the results were averaged to avoid errors.

@) (b)
Figure 7. Field sowing monitoring test site: (a) prototype field test and (b) artificial counting.

3. Results and Discussion
3.1. Bench Test

The seed breakage rate ranged from 0.10 to 0.20%, which was negligible. The monitor-
ing results of the sowing amount at different rotational speeds are shown in Table 1 and
Figure 8. In order to further evaluate the accuracy of the system’s monitoring of the missed
seeding amount, the amount of cotton seeds in the seed picking area of the hole seeder was
artificially reduced at each rotation speed, so as to increase the missed seeding amount.
According to the above method, the actual missed seeding amount on the seed bed belt
was obtained. It was compared with the monitoring value of the monitoring system to
evaluate the accuracy of the system’s missed broadcast detection. Table 2 and Figure 9
show the monitoring results of the leakage amount at different rotational speeds.

12
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Table 1. Sowing rate monitoring results of the seed meter at different speeds.

Monitor Accuracy Rate of
S S::g/(l; }g:ien) No. A‘C;(;lliln]?erfpai‘g:“ Broadcast Broadcast
3 Volume/Piece Monitoring/%
1 300 296 98.67%
2 294 291 98.98%
20 3 304 300 98.68%
4 297 302 98.51%
5 299 305 98.03%
6 302 306 98.69%
1 306 298 97.39%
2 300 294 98.00%
25 3 298 304 98.03%
4 302 296 98.01%
5 302 308 98.05%
6 303 295 97.36%
1 312 304 97.44%
2 294 286 97.28%
30 3 294 306 96.08%
4 308 315 97.62%
5 299 293 97.93%
6 305 297 97.38%

Sowing quantity monitoring of seed meter
at different speeds

100.00%
99.00%
98.00%
97.00%
96.00%
95.00%
94.00% = 30 r/min
93.00%

92.00%
91.00%
90.00%

——20 1/min
—&— 25 1/min

Accuracy rate of broadcast monitoring/%

NoO.

Figure 8. The sowing rate monitoring curve of the seed meter at different speeds.

Table 2. Missed broadcast monitoring results of the seed meter at different speeds.

. Monitor Missed Broadcast
S See;l/ (P}atg ) No. ]?Ch:ial Nt[j‘lsﬁed Broadcast Monitoring
peed/(r/min roadcast/tiece Volume/Piece Accuracy/%
1 303 295 97.36%
2 292 285 97.60%
20 3 307 300 97.72%
4 295 302 97.84%
5 297 306 97.06%
6 302 309 97.73%
1 305 295 96.72%
2 303 204 97.03%
25 3 299 310 96.45%
4 301 291 96.68%
5 297 308 96.30%
6 303 295 97.36%
1 315 302 95.87%
2 299 287 95.99%
30 3 293 306 95.75%
4 303 315 96.19%
5 299 285 95.32%
6 308 295 95.78%
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Missed broadcast monitoring results of the seed meter
at different speeds
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Figure 9. The missed broadcast monitoring curve of the seed meter at different speeds.

During the whole test process, there was no white crash screen and no wireless data
transmission failure. It could be seen from Table 1 that with the increase of the rotation
speed of the seed metering plate, the accuracy rate of sowing monitoring did not decrease
significantly. The monitoring accuracy rate was above 97%. The reason for the slight
decrease in accuracy was that the higher seeding speed would cause some smaller cotton
seeds not to be fully filled into the hole, so that they could not be monitored by the sensor.
However, the overall sowing rate monitoring accuracy of the system met the needs of
cotton precision sowing monitoring. It can be seen from Table 2 that with the increase
of the rotation speed of the seed metering plate, the monitoring accuracy of the missed
seeding quantity decreased. The reason was that the high rotation speed of the seeding
disc caused the seed flow to collide with the seeding tooth disc many times. This produced
a small number of broken seeds, which caused the sensor to falsely detect. However,
the monitoring accuracy of the system could still reach more than 95%. The monitoring
accuracy of missed broadcasts met the requirements of the monitoring system. The above
results show that the monitoring system could more accurately judge the seeding amount
and the degree of missing seeding for the stable working seed meter. This could be used
for evaluation and reference of sowing quality.

3.2. Field Test

The seed breakage rate ranged from 0.10 to 0.20%, which was negligible. The results of
field sowing monitoring are shown in Table 3 and Figure 10. The field test results showed
the following: The accuracy rate of broadcast monitoring was maintained above 93%. The
accuracy rate of missed broadcast monitoring was maintained above 91%. The seeding
monitoring system worked stably and reliably in the field under the rotating speed of the
seeding disc that met the seeding requirements. Compared with the traditional monitoring
method, the system could detect the seeding device of the hole seeder more accurately, and
find the missed seed in time. This effectively saved the amount of cotton seeds, greatly
reduced the cost of sowing, and met the requirements for monitoring the sowing status of
cotton precision hole seeders.

Compared with the results of the bench test, the monitoring accuracy of the overall
system was slightly reduced during the field test. The reason was that the cotton seeds
used in the field test had not been selected manually. Some broken seeds and debris were
included. The machine vibrated during operation. Moreover, a lot of dust in the field
adhered to the color fiber optic sensor probe and affected the optical fiber transmittance.
This subsequently calls for enhancement of the monitoring performance of the sensor and
optimization of its installation position to ensure more stability. A condenser lens or a self-
cleaning dust removal device should also be added to maintain a good light transmittance
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of the sensor and improve the environmental adaptability and operational reliability of the
system. In the future, high-precision Beidou positioning technology and mobile Internet
technology can be combined to provide support for the field sowing map, missed sowing
state map, and variable reseeding prescription operations. The parameters of the seeder
would also be automatically set, making the system function more in line with the actual
production situation and suitable for different operating scenarios.

Table 3. Field sowing monitoring test results.

Actual Actual Missed Monitor Monitor the Accuracy Rate Accura.cy Rate
Seed Plate Amount of of Missed
. No. Broadcast Broad- Broadcast . of Broadcast
Speed/(r/min) . . . Missed Broad- RN Broadcast
Volume/Piece casts/Piece Volume/Piece . Monitoring/% e o
casts/Piece Monitoring/%
1 1137 25 1107 26 97.36% 96.15%
2 1137 24 1110 23 97.60% 95.83%
3 1137 28 1111 27 97.72% 96.43%
4 1137 22 1162 21 97.84% 95.45%
5 1137 18 1171 19 97.06% 94.74%
6 1137 30 1163 31 97.73% 96.77%
20 7 1137 25 1121 24 98.59% 96.00%
8 1137 21 1155 22 98.44% 95.45%
9 1137 24 1111 25 97.71% 96.00%
10 1137 28 1109 27 97.54% 96.43%
11 1137 24 1168 23 97.35% 95.83%
12 1137 29 1110 28 97.63% 96.55%
1 1137 33 1089 31 95.78% 94.55%
2 1137 29 1187 27 95.79% 93.75%
3 1137 35 1189 33 95.63% 94.29%
4 1137 27 1187 25 95.79% 93.33%
5 1137 22 1090 23 95.87% 94.74%
6 1137 40 1075 37 94.55% 93.00%
% 7 1137 27 1195 29 95.15% 93.75%
8 1137 29 1081 27 95.07% 93.10%
9 1137 29 1195 30 95.15% 96.00%
10 1137 35 1088 33 95.69% 94.29%
11 1137 35 1196 33 95.07% 94.29%
12 1137 35 1090 37 95.87% 94.05%
1 1137 43 1078 40 94.81% 93.02%
2 1137 35 1080 32 94.99% 93.75%
3 1137 43 1200 40 94.75% 92.09%
4 1137 40 1205 37 94.36% 92.50%
5 1137 35 1074 27 94.46% 92.11%
6 1137 48 1070 32 94.11% 91.67%
30 7 1137 38 1077 36 94.72% 94.74%
8 1137 35 1199 32 94.83% 93.10%
9 1137 40 1068 43 93.93% 93.02%
10 1137 46 1069 45 94.02% 92.00%
11 1137 44 1199 41 94.83% 93.18%
12 1137 42 1070 44 94.11% 91.49%
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Sowing quantity monitoring of seed meter
at different speeds
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at different speeds
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Figure 10. The field sowing monitoring curve of the seed meter at different speeds: (a) sowing rate
monitoring and (b) missed broadcast monitoring.

4. Conclusions

In this study, a planting quality monitoring system suitable for cotton precision
planters was designed. The bench performance test of sowing quantity monitoring and
missing sowing detection was carried out on the monitoring system. A field test was
carried out on the 2MBJ-12 cotton precision film laying planter to verify the reliability of
the system. The bench test and field test of the sowing quality monitoring system of the
cotton precision planter showed that the sowing quality monitoring system worked stably
and reliably. In the bench test, the accuracy of sowing quantity monitoring was no less than
97%, while the accuracy of missing sowing monitoring was no less than 94%. In the field
test, the accuracy rate of sowing rate monitoring was no less than 93%, while the accuracy
of missed sowing monitoring was no less than 91%. This improved the work quality and
work efficiency of cotton sowing. It met the requirements for monitoring the sowing quality
of cotton precision hole seeders.
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Abstract: To reduce the cost of machinery and manual operation, greatly improve the efficiency of
maize sowing, and solve the problems of slow sowing speed, unstable operation quality, and the
difficult monitoring of the sowing process of traditional seeders, a control system for an electrically
driven precision maize seeder based on the CANopen protocol was designed. In this system, an
STMB32 is used as the main controller, and the vehicle terminal is used to set the operating parameters,
such as the spacing of sowing plants and the number of holes in the metering plate. The GPS receiver
is used to collect the forward speed of the tractor. An infrared photoelectric sensor is used to monitor
the working state of the seeder. In this study, tests were conducted on different evaluation indices.
The results showed that the detection accuracy of the photoelectric sensor reached 99.8% and the
fault alarm rate reached 100%. The qualified rate of sowing was more than 91.0%. Based on indoor
test results, the qualified rate was higher when the grain spacing was larger. The field test showed, in
terms of the seeding performance, that the control system had good stability. When the grain spacing
was set to 20 cm and the operating speed was 6~12 km/h, the qualified index was more than 89%
and the reseeding index was less than 1.93%. The variation in sowing performance between different
monomers was small, and the seeding performance was good. The control system helps to improve
the performance of the seeder.

Keywords: precision planter; motor-driven; CANopen protocol; photoelectric sensor; no-tillage

1. Introduction

Maize is the largest food crop in China and occupies an extremely important position
in the whole agricultural planting system. In the new era, with the rapid development of
China’s economy, the actual demand for corn has increased greatly [1,2]. Changes in corn
supply and demand have a great influence on maintaining national food security and stabi-
lizing the grain market and supply [3]. In recent years, with the major management mode
of agricultural production gradually developing to a large-scale and intensive direction,
to effectively ensure the cultivated area and grain production task and the completion of
sowing operations in high-yield periods, higher quality requirements have been proposed
for maize precision sowing technology [4-6]. Facing the higher cost-savings and efficiency
requirements of farmers and the more urgent demand for agricultural time, the deficien-
cies of ground wheel drive are increasingly prominent [7,8]: (1) Low operation efficiency.
At present, the operation of precision planters in China is still at a low-speed level of
6~8 km/h. (2) Unstable sowing quality. Under high-speed operation, it is easy to bump
and slip, resulting in a series of problems, such as missed sowing, reseeding, and poor
uniformity of plant spacing. (3) It is hard to monitor the sowing process [9]. Traditional
machines and tools operate in a closed environment, requiring auxiliary personnel to follow
the machine and observe, which is not only labor-intensive and costly but also easily causes
personal injury, and the observation results make it difficult to eliminate the influence
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of human subjective factors. Sensor-based electronic metering systems can minimize the
lacunae of mechanical metering systems. The application of electronic seed metering and
control systems in planters is required for better seed uniformity in the field [10].

Sound and sustainable agriculture without electronics is inconceivable today, as elec-
tronic systems are used to reduce farm inputs, protect the environment, secure farm income,
and produce high-quality products [11]. In the last few decades, a number of active seeding
control and detection systems have been proposed to solve the above-mentioned problems.
Yuan et al. [6] used prescription operation maps and GPS information, combined with
speed, to drive a servo motor seed space and achieved precision planting that could be
steplessly adjusted from 10 to 20 cm. Yang et al. [12] designed a mechatronic driving
system. Compared to the mechanical driving system, the advantage of the mechatronic
driving system is noticeable, especially when the forward speed is more than 11 km/h.
Anil et al. [13,14] developed an electromechanical drive system (EMDS) for seed metering
units of a classic single-seed planter to attain uniform seed spacing. EMDS realizes the
recommended optimal seeding rate; the possibility for fast and simple setting, synchroniza-
tion, and real-time control; the ability to work at higher speeds; single movement; and the
control of each metering unit. The dynamic relationship model between the speed of the
tractor and the speed of the metering plate is established to ensure the accurate matching of
the tractor time and the seed entry to better realize seed spacing consistency. Ding et al. [15]
proposed a control system of a motor-driven precision maize planter based on GPS speed
measurements. At the same plant spacing and operating speed, the variation coefficient
of the GPS velocity measurement method is smaller than that of the encoder velocity
measurement method. At a high speed of 12 km/h, the average qualified GPS index is
14.32% higher than that of the encoder. This shows that the GPS velocity measurement
method is more suitable for high-speed operation. Li et al. [16] resolved the problem that
GPS receivers cannot meet the requirement of precision seeding at low speed based on a
Kalman filter.

Variable-rate seeding (VRS) technology can adjust the seed input according to regional
soil differences, ensure the most suitable plant density, make full use of nutrients and
moisture in the soil, and exert the maximum yield potential in specific soil regions, thus
significantly increasing yield and reducing cost. He et al. [17,18] developed a low-cost
VRS control system based on a controller area network (CAN) bus and developed a com-
pensation algorithm for seeding lag (CASL) that could decrease the seeding lag distance
immensely. The developed VRS control system was capable of flexibly expanding planter
rows and independently controlling each row’s seeding rate. Ding et al. [19] developed
a variable rate planter row-unit driver for maize. The overall test results of the row-unit
driver confirmed that it could realize the functions of seed metering, seeding quality
detection, and CAN communication with the main controller.

To improve the seeding uniformity of a maize planter, He et al. [20] designed a GPS-
based turn compensation algorithm to offset the seeding rates of planter units. Field
experiments indicated that a four-row planter equipped with the developed turn com-
pensation control system had seeding accuracies (above 97%) and seeding coefficients of
variation (below 1.52%) values better than those of a noncompensation planter under equiv-
alent working conditions. To find the problem of seeding blockage and missing seeding in
time, Meng et al. [21] developed a monitoring system to solve the phenomenon of maize
precision seeding machines in operation and to improve the economy and efficiency of
seeding. Xie et al. [22] conducted a study testing the accuracy of the sensor to monitor
the seeding parameters of a precision metering device under different seeding speeds
and seeding spacings. Improving the accuracy of the sensor’s monitoring of the seed
passing frequency is of great help in improving the seeding monitoring accuracy under
the conditions of high seeding speed and small seeding spacing. Xie et al. [7] developed a
precision seeding parameter monitoring system based on laser sensors Field tests showed
that the average monitoring error of the seeding quantity was less than 1%, and the average
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monitoring error of the seeding qualified rate was less than 1.5%. The monitoring system
could trigger an alarm in time when the seeder had a missing seed fault.

In summary, most field experiments involving the seeder use four-row or six-row
mechanical seeders. For the eighteen-row air suction seeder, in this study, an electrically
driven precision sowing control system based on the CANopen protocol was designed, and
a circuit board integrating the motor drive and sowing quality detection was developed. A
seeding parameter dictionary with the CANopen protocol was constructed. A separable
trapezoidal integral proportional integral derivative (PID) control algorithm was used to
match the tractor speed and motor speed. In this paper, the performance of the control
system was evaluated by laboratory bench and field tests.

2. Materials and Methods
2.1. System Components

The proposed maize precision planter system consisted of a monitoring subsystem
and a mechanical device system. As shown in Figure 1, the required hardware components
included a 12 V DC power supply, an on-board computer with a CAN bus (eMT3070B,
Weintek Technology Co., Ltd., New Taipei, China), an in-house-designed integrated con-
troller based on STM32F103VET6, an infrared monitoring sensor (Shandong Zhucheng
Dilico Automotive Electronics Co., Ltd., Weifang, China), an inertial and satellite naviga-
tion module (WTGPS-200 WitMotion Shenzhen Co., Ltd., Shenzhen, China), brushed DC
motors, and in-house-designed motor speed measurement modules. The mechanical part
included a reducer, a planter plate, and a seed tube. The motor was used as an intermediary
to integrate the control system and mechanical part.

Reducer

Inertial and satcllite
navigation

Planter-unit
controller

§
s

" Brush DC motor

Figure 1. Planter monitoring system.

In detail, the on-board computer communicated with the controller via a CAN bus
and was used for setting the seed spacing, current threshold, and width; monitoring the
various working states of the system (such as the motor current and rotational speed);
and controlling the start and stop of a single motor. To reduce field wiring, in this paper,
the controller was integrated with the motor drive and CAN communication, which was
mounted on each planter unit, to expand flexibly based on the planter row number and to
adjust the motor speed to achieve the desired seeding rate. In this study, speed acquisition
was performed through inertial and satellite navigation modules with a velocity accuracy
of 0.05m/s, and bidirectional credit guaranteed communication with the controller through
RS232. A brush DC motor was utilized to drive the seed meter at a desired speed, and a
hall speed measurement module for the brushless DC motor was developed, nested on
the shaft side of the motor, and a pulse was generated by an interaction with the magnetic
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ring on the motor shaft. Additionally, a photoelectric sensor with a large field of view, high
sensitivity, and strong dust resistance was installed on the seed tube to monitor the state of
falling seeds. A circuit schematic diagram of the system with STM32F103VET6 as the main
controller is shown in Figure 2.

GNSS

i
l
Reset Circuit

EEPROM LED

CAN Bus

STM32F103VET6

Figure 2. Schematic diagram of the system circuit.

2.2. CAN Bus with CANopen Protocol

The exchange of data packets in the system was based on a CAN bus. However,
ISO 11,783 was specifically designed for tractor control system development [23-25]. In
China, fewer products have been developed using subprotocols, especially in sensors
and on-board computers. The on-board computer (eMT3070B) used in this paper had
a CAN interface and conformed to the CANopen protocol. To test the designed system
as soon as possible and to enhance the scalability at the present stage, the CANopen
protocol was used as the basic protocol. CANopen is a high-level communication protocol
based on the controller area network. It includes a communication subprotocol and a
device subprotocol and has often been presented in embedded systems and industrial
controls [26]. The CANopen protocol usually consists of three parts: a user application
layer, an object dictionary, and communication. The core part is the object dictionary, which
describes the relationship between the application object and the CANopen message. The
user application layer in this paper refers to the application interface downloaded to the
eMT3070B using EasyBuilder Pro development software provided by Weintek. Figure 3
shows the partial display interface design of the monitoring software for the eighteen-row
seeding. In the communication layer, considering the field working environment, the well-
established TJA1050 chip was selected as the transceiver of the CAN bus. This chip can
work normally even with electrostatic interference and in voltage-mutating and high-noise
environments and communicates with electricity.

To be stable, reliable, and controllable, the CANopen network needs to be set up with
a network management master (NMT-Master) that controls the start and stop of all nodes.
Communication between the on-board computer as the NMT host and the NMT slave via
the NMT network management message is responsible for the layer management, network
management, and ID distribution services. NMT management involves six states of a
CANopen node following power-up: initializing, application reset, communication reset,
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preoperational, operational, and stopped. The NMT management state transition diagram
is shown in Figure 4.

» 000H44M565
11.23

0.00

Seeding norab
0.00 . 23 Motor control

0.01

99.90

Main Motor  Navigatio: Monitor  Parameter  Systerm avig History  Monitor  Paramefer ~ Systerm

Figure 3. Partial human-computer interaction software interface.

Initializing

Boot-up message

Preoperational)—* |

Stopped

Figure 4. NMT management state transition diagram.

The object dictionary is the most important part of a device specification. It is an
ordered set of parameters and variables, including all parameters of device description and
device network state. The CANopen protocol uses an object dictionary with 16-bit indices
and 8-bit subindices, and all parameters of the device can be accessed through the object
dictionary. The parameter object dictionary of the system is defined in the 2000H-5000H (H
represents hexadecimal system) index region according to the CANopen CiA 301 document.
Real-time data use the process data object (PDO) for asynchronous one-way transmission
without a node response. The service data object (SDO) is mainly used for the parameter
configuration of slave nodes in the CANopen master station. Service validation is the
largest feature of an SDO, generating a response for each message to ensure the accuracy
of data transmission. The CAN bus system in this paper consisted of a master node and
eighteen slave nodes with 104 object dictionaries. Partial object dictionary descriptions are
shown in Table 1. The CAN bus data transmission mode is shown in Figure 5.
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Table 1. Partial object dictionary description.

Dictionary Index
Parameter Number of Bits  Transport Types
Indices Subindices
Operating speed 32 PDO 2000 00
Operating area 32 PDO 2003 00
Motor status 8 PDO 2004 00
Seeding status 8 PDO 2005 00
Seeding number 32 PDO 2006 00
Miss-seeding 32 PDO 2007 00
rate

Replay rate 32 PDO 2008 00
Seed spacing 16 SDO 2001 00
Motor control 8 SDO 2009 00

Working width 16 SDO 200A 00

Master node

Slave
node

Figure 5. CAN bus data transmission mode.

2.3. Motor Speed Matching Operation Speed

To ensure the uniformity and qualified rate of seed spacing, it is very important to
establish the dynamic matching relationship between the motor speed and the tractor
speed. The rotational speed of the motor is determined by the tractor speed, the number
of holes in the seeding plate, the transmission ratio from the reducer to the seeding plate,
and the seeding distance. Accordingly, the required rotary speed of the planter unit can be
calculated as: 1000V

R=3 XyefN @)
where R is the motor speed (r/s), V is the tractor speed (km/h), I is the transmission ratio
from the reducer to the seeding plate, X,, £ is the setting seeding distance (cm), and N is the
number of holes in the seeding plate. For a well-processed seeding cell, I and N are fixed
values. X, is set based on the agricultural technology. Therefore, the tractor speed is the
most critical factor affecting the sowing quality.

2.4. Speed Acquisition and Motor Control

GPS speed measurement is not affected by the structure of the seeder and surface
conditions and can provide a variety of data, including latitude and longitude, heading
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angle, and elevation. Compared with other velocity measurement methods, such as
encoders, it has great advantages. WTGPS-200 is a high-performance vehicle-mounted
integrated navigation system for vehicle navigation. When the signal accuracy of the GNSS
system is reduced or if the satellite signal is lost, the WTGPS-200 system uses pure inertial
navigation technology without the aid of odometer information. It can also independently
carry out high-precision positioning, velocity measurement, and attitude measurement for
vehicle carriers over a long time. The accuracy of 0.05 m/s can meet the requirements of the
GBT6973-2005 single-seed (precision) seeder test method. The controller obtains GPRMC
frames conforming to the NMEAQ183 protocol by RS232. Figure 6 shows the GPRMC frame
format with fifteen fields. Field 0, as the frame head, represents the beginning of a frame,
field thirteen is the frame data validation, and the frame ends with CR/LF. Field one to field
twelve represent the data fields, in which field seven represents the speed value. Therefore,
the seventh field in a frame can be extracted to obtain the speed.

Field O Speed Field 13

S
(SGPRMQ)<1>, <25, <3>, <4>, <5>, <6>,/<7>,)<8>, <95, <10>, <11>, <11>, <12>,/ihD\<CR><LF>
N~ - —

Figure 6. GPRMC frame format.

The real-time motor speed was controlled via the pulse width modulation (PWM)
signal generated by the STM32 chip’s internal timer. The PWM mode could generate a
signal whose frequency was determined by the TIMx_ARR register, and the duty ratio was
determined by the TIMx_CCRx register. The duty ratio could be adjusted to control the
motor speed at a certain PWM frequency. Limited to the computing power of the chip used,
more complex intelligent control algorithms are not adopted, such as adaptive PID [27],
particle swarm optimization algorithm [28], fuzzy PID Control Algorithm [29,30], and
ant colony optimization [31]. On the other hand, the experimental results indicated that
the motor speed showed a linear relationship with the duty ratio. Therefore, closed-loop
control can be carried out by the PID control algorithm [32]. PID control is a closed-loop
control method based on deviation, which can eliminate the deviation between the target
speed and the actual speed of the motor in the adjustment process. In discrete PID control,
the realization of integration is the rectangular addition calculation in the case of infinite
subdivision. In the discrete state, the time interval is large enough, and the accuracy of
rectangular integration appears to be lower in some cases. To minimize the difference, the
rectangular integration was changed into trapezoidal integration to improve the calculation
accuracy. Introducing the trapezoidal integral into the incremental PID algorithm modifies
the formula as follows:

Av(k) = Ky(e(k) —e(k—1)) + K; +Ky(e(k) —2e(k—1) +e(k—2)) (2

e(k) +e(k—1)
2
where Av(k) is the adjustment value, K}, is the proportional coefficient, K; is the integral
coefficient, K is the differential coefficient, and e(k — 1), e(k), and e(k — 2) are the last three
deviations. Figure 7 shows an analysis of the bench test data. The optimum motor speed

control could be achieved when K, was 4.15, K; was 1.2, and K; was 0.

The theoretical motor speed calculated by Formula (1) is the target value; the rotor
position sensor measures the speed signal as a feedback value. The theoretical calculation
of the target speed does not consider the influence of external factors. However, due to
the factors of actual operation, such as zero drift of the speed sensor, error of DC motor
speed measurement, and the efficiency of mechanical transmission, the error of the control
parameters (e(k)) is affected. Therefore, setting a threshold variable, t, does not perform
the PID algorithm when the deviation is less than the absolute value of the threshold.
Experimental results showed that the control precision was best when the absolute value
of threshold t was 0.15. On the other hand, if a system always has a uniform direction
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deviation, infinite accumulation and saturation can occur, which greatly affects the system
performance. To solve the problem of integral saturation, the PID algorithm anti-integral
saturation was introduced. The idea is to determine whether the control, C(k — 1), of
the previous moment has exceeded the limit when calculating e(k). If C(k —1) > Cyax
(Ciuax: sets the TIMx capture compared to the register maximum value), only negative
deviations are accumulated; if C(k — 1) < Cyyi (Cpyin: sets the TIMx capture compared to the
register minimum value), only positive deviations are accumulated. This avoids the control
quantity from staying in the saturated zone for a long time. The PID control algorithm is

shown in Figure 8.
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Figure 7. Data analysis curve of different PID parameters: (a) response curves under different K,
conditions and (b) response curves under different K; conditions.
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Figure 8. PID control algorithm.

2.5. Sowing Monitoring
To realize the real-time monitoring of the quality of maize no-tillage precision seeding
operations, a seeding monitoring system based on reflective infrared photoelectric induction
was designed. The monitoring probe used an infrared emitting diode and a photodiode as
the signal transmitting and receiving ends. During the seeding operation, corn seeds were
separated into single seeds from the seed metering device, dropped into the seed guiding
tube, and were finally discharged into the soil through the lower seed guiding mouth.
Among the working components involved in the seeding process, the structure of the
seed guiding tube was the simplest and the closest to the seed dropping point. Therefore,
mounting the seed monitoring probe on the seed guiding tube was preferred.
According to GB/T 6973-2005, the ratio of actual adjacent seed spacing, X (cm), to
theoretical seed spacing, X,.f (cm), is the benchmark for evaluating the quality of seed
metering. In addition to field measurements, the actual seed spacing is generally estimated
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by multiplying the tractor speed, V (km/h), of the seeder by the interval time, T (ms),
between adjacent seeds. The forward speed, V (km/h), of the seeder can be obtained
by the pick-up circuit. Therefore, the comparison between the actual seed spacing and
the theoretical seed spacing can be converted to a numerical comparison between the
actual adjacent seed falling time interval, T (ms), and the theoretical time interval, Ty
(ms). According to the standard, if X > 1.5X,,y, it is judged as a miss-seeding, and if
X <0.5X,f, the seeding is judged as a reseed. For the convenience of system calculation,
the judgment basis is converted to the relationship between the tractor speed, V (km/h),
and the theoretical distance, X, (cm). If VT > 54X,,f, the seeding is judged as a miss-
seeding. If VT < 18X, is judged as a reseeding and if 18X,,s < VT < 54Xy, the seeding
is a quality seeding. When a fault (miss-seeding or reseed) occurs, an alarm is triggered.
Figure 9 shows three different states of falling seeds in the seed tube. Figure 10 shows the
seed condition monitoring process.

Figure 9. Judging the state of falling seeds in the seed tube.

2.6. Performance Test of the Seeder Monitoring and Control System

To verify the performance of the seeder monitoring and control system, laboratory
bench tests and field tests were conducted. These tests included photoelectric sensor
detection performance tests, abnormal alarm rate reliability tests, motor dynamic speed
response tests, and statistical analyses of real-time sowing monitoring parameters.

The related tests were carried out on the JPS-12 seed metering device performance
test bench (Bona Technology Co., Ltd., Harbin, China). The test materials were Xinyu No.
9 hybrid maize seeds produced by the Crop Research Institute of Xinjiang Academy of
Agricultural Reclamation Sciences. The moisture content was 9.10%, the purity was 98.75%,
and the thousand-grain weight was (274.22 + 2.52) g. We randomly measured 300 seeds,
and the shape was horse tooth, and the length, width, and height were 10.04 & 1.06 mm,
7.45 £ 0.86 mm, and 5.50 &= 1.01 mm, respectively.

The seeding unit motor drive control system and experimental test setup are shown
in Figure 11. The metering device was an air suction seed metering device produced by
Precision Planting Company in the United States. The diameter of the metering plate was
4.5 mm, and the number of seed holes was 27. The DC motor was an NC3SFN-6035-CVC
carbon brush variable-resistance brush DC motor produced by Transmotec, Sweden. The
working voltage was 12 V, the current was 5.6 A, the rated speed was 10,700 r/min, and the
stall torque was 446.8 mN-m. The motor reducer was a three-stage gear reducer developed
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by Devo, Heilongjiang Province, and the deceleration ratio was 82.8125. The power output
gear of the DC motor reducer engaged with the external gear of the seeding plate.
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Figure 10. Seed condition monitoring process.
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Figure 11. Seeding parameter monitoring on the JPS-12. (a) Control cabinet; (b) test bench; (c) seeding;
(d) data statistics.
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Since no interface can obtain the real-time speed on the JPS-12 test bench, to obtain
the real-time operating speed of the seedbed belt as much as possible to simulate the field
environment, ten groups of magnetic steel were installed on the inner side of the seedbed
drive roller. NPN constant open all-pole Hall sensors were used in pulse signal detection.
Figure 12 shows the installation position of the magnetic steel and the Hall sensors. The
dynamic speed of the seedbed could be calculated according to Formula (3) after the signal
of the speed pulse was collected by the Hall sensor.

mtdn
Vy = g 3)

where Vj, is the speed of the seedbed belt (m/s), d is the roller diameter (mm), # is the
number of pulses in the T; cycle, m is the number of magnetic steels, and T, is the count
cycle (ms).

Magnetic steel b
position

Figure 12. Schematic diagram of seedbed belt speed detection.

The field experiment was conducted in Xiangshui County, Yancheng City, Jiangsu
Province, on 17 February 2022, using a dual row with an eighteen-row seeder developed
by Devo, Heilongjiang Province (Figure 13). To explore the influence of different operating
speeds on seeding performance, the negative pressure of the fan output was adjusted to
4.5 kPa, the grain spacing was set to 20 cm, and the operating speeds were changed to
8 km/h, 10 km/h, and 12 km/h. To explore the effects of different grain spacings on sowing
performance, the operating speed was 8 km/h, and the grain spacings were changed
to 15 cm, 20 cm, and 25 cm. At the same time, we explored the differences in sowing
performance parameters between different planting units. The grain spacing data were
obtained by manual measurement.

® (b)

Figure 13. Precision electric seeder and monitoring system test. (a) Eighteen-row maize precision
electric seeder and monitoring system; (b) label seed position; (c) seed spacing measurement.

According to GB/T 6973-2005, the qualified index, QI, reseed index, RI, missing index,
MI, and coefficient of variation, CV, were calculated as evaluation indices of sowing quality.

Ql = % x 100% (4)
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n
Rl = ﬁz, x 100% ()

n
MI = ﬁ(’, x 100% 6)
X - Y (1 X;) @)

1y
o= Z(anI) _ X2 (8)
np

CV = o x 100% ©)

where N’ is the total number of normalized intervals, 1y, 1y, and n, are the missing
numbers (X; € (1.5, +o0]), the qualified number (X; € (0.5,1.5]), and the replay number
(X; € [0,0.5]), respectively, n; and X; are the grain spacing number and interval median
in the i(th) interval, respectively, and X and ¢ are the mean and standard deviation of the
sample, respectively. At the same time, these indicators were evaluated according to the
NY/T 1143-2006 standard provided by the Ministry of Agriculture of China. Table 2 shows
the main performance indices of the precision seeder.

Table 2. Main performance indices of the precision seeder.

Indicators
Index Seed Spacing Seed Spacing Seed Spacing
<10 cm >10 cm~20 cm >20 cm~30 cm
Qualified index >60.0 >75.0 >80.0
Reseeding index <30.0 <20.0 <15.0
Missing index <15.0 <10.0 <8.0
Coefficient of variation <40.0 <35.0 <30.0

3. Results and Discussion
3.1. Photoelectric Sensor Monitoring Performance and Real-Time Online Monitoring Test

To test the performance of the photoelectric sensor, the numbers of monitored corn
grains at speeds of 6, 8, 10, and 12 km/h were tested in the laboratory and the field.
When the speed reached the set value, the test seeder monomer was started by the virtual
button on the on-board computer, and the seeder monomer was stopped at a random
time. The number of corn seeds collected in containers fixed below the metering tube was
manually counted. The statistical results indicate that the photoelectric sensor monitoring
performance was quite good, and there were no differences between the laboratory and
field monitoring data. Table 3 shows the statistical results of the monitoring data and actual
data. The average monitoring accuracy was 99.8%.

To test the reliability of the system fault alarm, two kilograms of corn seeds were
added to each sowing monomer. In the initial stage of operation, the metering tube was in
normal planting, and the system did not send alarm information. When the seed box was
empty, the system was checked to determine whether the alarm was prompted and whether
the corresponding sowing monomer was shown in the vehicle terminal. According to the
same method, during the normal seeding period, the seeding tube was artificially blocked
at a given time, and the system blocking alarm rate was checked. The test results of fifty
trials showed that the fault alarm rate was 100%.

The statistical analysis of the performance index data is shown in Figure 14. It can be
seen from the chart that each evaluation index was basically similar at different speeds and
substantially exceeded the standard (NY /T 1143-2006).

Overall, the qualified rate was higher when the grain spacing was larger. It was also
found that when the speed was 12 km/h, the qualified rate decreased compared with the
other speeds and the missed rate increased. The reason is that with the increase in the
speed of the seedbed belt, the sliding degree of the seedbed pulley relative to the seedbed
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belt increased, resulting in inaccurate speed measurement. When the speed was 8 km/h
and 10 km/h, the consistency of the indices is good, and the difference was significant
when the speed was 6 km/h and 12 km/h.

Table 3. Statistical results of monitoring data and actual data.

Site Speed Monitoring Value Actual Value
(km/h) A B Ch Ag B, C,
6 245 304 258 245 305 258
Laborator 8 275 236 459 275 236 460
Y 10 236 389 321 236 389 321
12 335 286 462 335 287 462
6 365 428 303 365 428 303
Field 8 274 354 482 275 355 482
1e 10 382 298 407 382 299 408
12 473 387 496 473 385 496

Table 4 shows the correlation analysis between the factors and performance indicators.
There was a strong correlation between two factors (V and X;,r) and the seed distribution
uniformity index (CV, QI, RI, and MI). In addition, the statistical values describing the
correlation between various factors and performance indicators show that there was a
strong correlation between QI, RI, MI, and V: QI decreased with an increase in V and RI,
and MI increased with an increase in V; there were significant correlations between QI and
CV and between RI and MI. The CV, RI, and MI decreased with increasing QI, and the
correlation between MI and QI was the strongest. The coefficient of determination was
0.983, and the level of visibility was far less than 0.01.

Statistical analysis of qualified rate Statistical analysis for coefficient of variation
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Figure 14. Statistical analysis of the performance index data.
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Table 4. Correlation analysis between factors and performance indicators.

Items V/(km/h) Xyef/mm CV/% Q1/% RI/% MI1/%
1.000 2 0.000 0.527 —0.791 % 0.738 * 0.843 **
V/(km/h) \ b 1.000 0.145 0.011 0.023 0.004
Xyep /mm 0.000 1.000 —0.369 0.527 —0.264 —0.474
1.000 \ 0.329 0.145 0.493 0.197
cv /% 0.527 —0.369 1.000 —0.733 % 0.717 * 0.633
° 0.145 0.329 \ 0.025 0.030 0.067
Q1% —0.791 * 0.527 —0.733 % 1.000 —0.867 ** —0.983 **
° 0.011 0.145 0.025 \ 0.002 0.000
RI% 0.738 * —0.264 0.717 * —0.867 ** 1.000 0.833 **
° 0.023 0.493 0.030 0.002 \ 0.005
MI,/% 0.843 ** —0.474 0.633 —0.983 ** 0.833 ** 1.000
° 0.004 0.197 0.067 0.000 0.005 \

Note: Because the prior uncertainty is a positive correlation or negative correlation, the double tail test was
chosen; descriptive statistics of sample data were used to calculate the average and variance; and the visibility of
the output results must be marked. When the visibility level reaches 0.05, the upper right corner uses “*’; when
the visibility level reaches 0.01, the upper right corner uses **’. 2 represents the coefficient of determination;
b represents the p value, namely, the level of dominance.

3.2. Differences in Seeding Performance among Different Planting Units in the Field

The test results of the seeding performance at different operating speeds are shown in
Table 5. When the operating speed was 8 km/h, the seeding performance was excellent.
The qualified index of single seeding was 94.14%, the reseeding index was 1.72%, and the
missing seeding index was 4.14%. With the increase in the operation speed, the reseeding
index always maintained a certain level. However, due to the insufficient wind pressure
of the fan and the irregular bounce of the seed when landing, the missing seeding index
increased significantly, resulting in a decrease in the seeding accuracy. When the operating
speed was 10 km/h, the seeding qualified index was reduced to 91.48%, and the leakage
index was increased to 7.46%. When the operating speed was 12 km/h, the seeding
qualified index was still greater than 90%.

Table 5. Results of the seeding performance at different operating speeds.

V =6 (km/h) V =8 (km/h) V =10 (km/h) V =12 (km/h)
No.2 No.7 No.2 No.7 No.2 No.7 No.2 No.7
Average distance (cm)  19.38 19.24 19.10 19.40  20.30 19.18  21.50 20.31

Items

QI/% 93.17 9340 9414 9453 9148 9194 90.35  90.01
RI/% 1.38 1.86 1.72 1.14 1.06 0.80 1.02 1.93
MI/% 5.45 4.74 4.14 4.33 7.46 7.26 8.63 8.06

Standard deviation 5.32 6.73 4.59 5.46 9.65 8.41 10.01 9.35

Note: No. 2 and No. 7 represent the second and seventh sowing planting units, respectively.

The seeding performance test results at different seed spacing settings are shown in
Table 6, and the operating speed remained 8 km/h. With the increase in the seed spacing,
the qualified index decreased and the reseeding index and leakage index increased. For a
grain spacing of 15 cm, the average qualified index of two single seedlings was 93.34%, the
average reseeding index was 2.09%, and the average missing seeding index was 4.57%.

When the operating speed was within the range of 6~12 km/h or the grain spacing
was set to 15~25 cm, there was no significant difference in the seeding performance between
the No. 2 and No. 7 planting units. These differences may be caused by factors such as the
processing technology of the planting unit mechanical mechanism, mechanical vibration,
and measurement error. Therefore, it is considered that the variability of the seeding
performance between the monomers is small. In summary, when the quality of seeds and
soil preparation meets the agronomic requirements of sowing, the electric drive seeding
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control system designed in this study meets the requirements of precision sowing under
high-speed working conditions.

Table 6. Seeding performance for different driving modes.

Items Xyef =15 cm Xyef =20 cm Xief =25 cm
No. 2 No. 7 No. 2 No. 7 No. 2 No. 7
Average distance (cm) 14.43 14.15 19.93 19.28 23.10 23.40
QI/% 91.79 92.25 93.19 93.98 94.12 94.71
RI/% 2.65 3.01 2.12 1.89 1.72 1.14
MI/% 5.56 4.74 4.69 413 4.16 4.15
Standard deviation 7.61 8.26 6.32 5.78 4.59 5.46

Note: No. 2 and No. 7 represent the second and seventh sowing planting units, respectively.

3.3. Discussion of the Results

Based on the control system of the electric drive precision seeder, laboratory bench
tests and field tests were carried out. Its performance indicators tended to be consistent,
which also fully illustrated the system reliability. The bench test explored the effects of
different operating speeds and grain spacing on the seeding performance indices. At
present, many scholars have carried out electric drive seeding experiments, and their
working performance has been greatly improved compared with the traditional mechanical
seeders. The performance indicators involved in this study are similar to those used in
previous studies. Due to the differences in the environment and mechanical structure, the
qualified rate of sowing in the field was lower than that of the bench test.

Since the test bench is designed for a traditional mechanical seeder, the influence of
the seedbed vibration and slip ratio of the seedbed belt during high-speed operation has
not been fully considered, thus affecting the test results to a certain extent [33]. In the
field experiment, previous researchers mostly used 4-row or 6-row seeding machines for
experiments. In this study, an 18-row air suction precision seeding machine was used. Due
to the increase in seeding monomers, the airflow of the fan was unstable at high speeds,
resulting in insufficient pressure during high-speed operation and a slight decrease in the
seeding qualified index; seeding monomers on both sides of the seeding machine was a
common malfunction. Nevertheless, more than 90% of the qualified rates fully met the
actual work requirements. In the selection of photoelectric sensors, based on previous
studies, a rectangular infrared radiation surface was selected, which greatly improved the
sensing area of the photoelectric sensors and reduced the blind area. The high sensitivity of
the sensor increased the fault alarm rate.

The sensors used in the system and the electronic components used in the design
circuit are commonly used in the market. Compared with the laser detection sensor used
in [7], the photoelectric sensor has a high value for practical application, and the monitoring
performance was better than the laser detection performance; compared with the expensive
LiDAR used in [10], the system used the common satellite acquisition module and achieved
good data acquisition and control effect through certain filtering algorithms. The CAN bus
control method greatly reduces the difficulty of field wiring. The brush DC motor is easier
to control and lower cost than the brushless DC motor used in [17,18]. Usually, brushless
motors perform better than brush motors.

In order to prevent electrostatic interference to the system, the electrostatic shielding
circuit was specially designed in the circuit, which improved the anti-interference properties
and robustness of the system. In practical field applications, a shielded twisted pair is
used in CAN bus transmission, and terminal resistance is connected to the transceiver
end. At the same time, CAN bus through the data link layer and physical layer has
achieved high bus data security and bus stability; the correctness of data transmission is
ensured by establishing a CANopen object dictionary. The above measures enhance the
robustness of the system to subsystem faults and electromagnetic interference. Overall,
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whether in economic cost or system performance, the system was suitable for agricultural
machinery operation.

On the other hand, the acquisition accuracy of the tractor speed directly affects the
sowing quality. Although the accuracy of GPS can meet the current operating requirements,
once the GPS signal, as the only acquisition speed, is affected, it seriously affects the
operating quality. In the future, multisensor information fusion technology will be used to
compensate for the speed signal to ensure that the speed measurement accuracy can still be
maintained under sensor fault and interference conditions to ensure the consistency of the
operation quality in a complex working environment.

4. Conclusions

A control system of an electrically driven precision maize seeder based on the CANopen
protocol was designed and developed. A circuit board with motor drive and sowing perfor-
mance detection was integrated. The matching model of vehicle speed and seeding plate
speed was established through the PID control algorithm. Terminal monitoring software
for real-time monitoring of sowing parameters was designed. According to the GB/T
6973-2005 standard, the evaluated parameters were the following: photoelectric sensor
detection performance, fault alarm rate, qualified rate, reseeding rate, and missed rate. The
following conclusions can be drawn:

(1) Interms of photoelectric sensor detection performance, there was not a large difference
between the indoor bench tests and field tests with dust pollution, and the detection
accuracy reached 99.8%. This also shows that the sensor has a strong penetration
ability and a large radiation detection surface. The fault alarm function of the system
was accurate and timely, and the fault alarm rate reached 100%.

(2) Based on the indoor test results, the qualified rate was higher when the grain spacing
was larger. It was also found that when the speed was 12 km/h, the qualified rate
decreased compared with other speeds, and the missed rate increased. When the
speed was 8 km/h and 10 km/h, the consistency of the indices was good, and the
difference was significant when the speed was 6 km/h and 12 km/h. Overall, the
qualified rate of sowing was more than 91%. At the same time, the correlation of the
seeder index parameters was analyzed: there were strong correlations between QI,
RI, MI, and V; QI decreased with increasing V; RI and MI increased with increasing
V; and CV, RI, and MI decreased with increasing QI. Furthermore, the correlation
between MI and QI was the strongest. The coefficient of determination was 0.983, and
the level of visibility was far less than 0.01.

(3) Based on field test results, the seeding performance results showed that the control
system has good stability. When the grain spacing was set to 20 cm and the operating
speed was 6~12 km/h, the qualified index was more than 90%, and the reseeding
index was less than 1.93%. The variation in sowing performance between different
monomers was small, and the seeding performance was good, which can provide a
reference for the development and design of high-speed precision corn seeders.
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Abstract: This research presents a soft gripper for apple harvesting to provide constant-pressure
clamping and avoid fruit damage during slippage, to reduce the potential danger of damage to
the apple pericarp during robotic harvesting. First, a three-finger gripper based on the Fin Ray
structure is developed, and the influence of varied structure parameters during gripping is discussed
accordingly. Second, we develop a mechanical model of the suggested servo-driven soft gripper
based on the mappings of gripping force, pulling force, and servo torque. Third, a real-time control
strategy for the servo is proposed, to monitor the relative position relationship between the gripper
and the fruit by an ultrasonic sensor to avoid damage from the slip between the fruit and fingers. The
experimental results show that the proposed soft gripper can non-destructively grasp and separate
apples. In outdoor orchard experiments, the damage rate for the grasping experiments of the gripper
with the force feedback system turned on was 0%; while the force feedback system was turned off, the
damage rate was 20%, averaged for slight and severe damage. The three cases of rigid fingers and soft
fingers with or without slip detection under the gripper structure of this study were tested by picking
25 apple samples for each set of experiments. The picking success rate for the rigid fingers was 100%
but with a damage rate of 16%; the picking success rate for soft fingers with slip detection was 80%,
with no fruit skin damage; in contrast, the picking success rate for soft fingers with slip detection off
increased to 96%, and the damage rate was up to 8%. The experimental results demonstrated the
effectiveness of the proposed control method.

Keywords: apple harvesting; soft gripper; Fin Ray effect; finite element analysis; constant-pressure
feedback; slip detection

1. Introduction

Harvesting is an important element of orchard production since it has a brief window
period, high labor intensity, and high labor volume. The high labor cost in the harvesting
stage limits the fruit industry’s development. With this backdrop, fruit-picking robots have
become a hotspot for study in related fields [1,2]. Researchers have completed several
projects and made significant progress in important technologies such as robot perception
and positioning [3,4], system integration [5], and efficient harvesting end effector design.

As a critical step in robotic harvesting, grasping determines the picking effect directly.
During harvesting, the traditional robotic rigid clamping mechanism has issues: high
requirements for fruit positioning [6] and easy damage to the apple pericarp [7,8]. In
practical applications, it not only required the grippers to be dexterous, light, stable, and
reliable to grasp but also to ensure that the appearance of the fruits is not damaged, to
prevent harming commerciality. As a result, research on non-destructive harvesting end
grippers for safe, reliable, and stable gripping is an important topic for harvesting robots
with a promising application.
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To lower the fruit damage rate, the soft gripper technology is attracting more and
more researchers’ attention. Some researchers [9-11] used soft materials on the surface of
the fingers to increase the gripper flexibility and, hence, prevent damage to grabbed objects.
However, due to the rigid support of the fingers” main body, it is also easy to cause different
degrees of damage to the fruit pericarp. Furthermore, the structure is more complex, and
the grasping stability is insufficient.

The soft structure gripper has a high adaptability, wide range of variability, and
excellent working ability for gripping objects that are susceptible to damage [12,13].

Shepherd et al. [14] proposed the PneuNet (pneumatic mesh) structure, a bending
multi-cavity pneumatic soft actuator. The soft gripper [15-17] designed by Whiteside’s
group has the characteristics of minimal pressure bearing, large deformation, and flexible
movement. However, the end contact force is limited, and the stability is insufficient when
grasping objects. A vision-equipped six-finger soft harvesting gripper [18] can identify the
type and maturity of fruits and vegetables, and it can softly grab fruits and vegetables based
on their shape but only for tiny fruits. Muscato et al. [19] created a soft citrus harvesting
gripper out of spirally organized rubber sheets that had a strong wrapping capacity for
gripping things but that lacked rigidity.

German bionics researcher Leif Kniese accidentally discovered the “Fin Ray effect” in
1997 [20], which was later widely employed in the study of robotic soft grippers [21,22]. Fin Ray
soft fingers are highly compliant and can take greater loads than other soft constructions.
Thanks to its superior grabbing stability, the Fin-Ray-effect-inspired grippers have received
extensive attention from researchers.

However, the basic finger structure is not optimal for soft grippers, and studies have re-
cently increased the gripping force by improving the finger structure [23-26]. Crooks et al. [23]
proposed a multi-material structure gripper with a higher grabbing weight, but the fabrication
method for this multi-material structure is quite tricky. Basson et al. [24] varied the slope and
curve of the cross beams in a Fin Ray finger and analyzed the stress and displacement on
the improved finger through simulation. However, the effects of other variables have not
been fully tested. Shin et al. [25] analyzed the changes in stress and displacement when the
finger touched an object by varying the number of cross beams, the front beam slope, and
the slope of the cross beams. Elgeneidy et al. [26] developed a soft finger that could handle
fragile objects by varying the angle and number of cross beams. Nevertheless, whatever
structure maximizes the Fin-Ray finger gripping force while causing no damage to the
object has yet to be determined.

Although it can greatly avoid fruit damage due to grasping by using the soft fingers, it
is not sufficient to rely solely on the soft structure to ensure the gripper’s lossless grasping.
The gripper’s lack of a force feedback system makes it unable to collect the contact state
information between fingers and gripping items, which may cause damage due to excessive
gripping force or slippage owing to insufficient gripping force.

Some researchers added force sensors to the fingers of soft grippers [27-31]. The
sensing system is simple, but the sensor deforms with soft fingers, which has a great
influence on the accuracy. When directly embedding force sensors through the manufac-
turing process but the cost is large and the universality is low due to its sophisticated
driving scheme and manufacturing method [32,33]. Some researchers [34-36] estimated
the contact force by substituting the force perception model from finger deformation by
vision. Belzile et al. [37] used the quasi-static analysis method to calculate the contact force
generated by the gripper, which realizes the internal force perception without the use of
additional force sensors, but the solution process and control algorithm are complex.

In addition to preventing fruit damage due to excessive gripping force, slip detection
is also an important factor due to the rough surface of the fingers [38,39]. Some studies
use multi-axis or more force sensors to monitor the static friction coefficient between the
finger surface and the object [40,41] or to detect vibration caused by sliding between the
two contact surfaces using piezoelectric phenomenon [42], time—frequency conversion tech-
nique [43], or filtering [44] to accomplish slip detection. However, the sensors are dependent
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on the working environment, and utilizing more sensors to gather more tactile information
would not only dramatically raise the cost but will also place a significant load on the
gripper structure and control system. Some recent studies employ tactile data for training,
and neural networks can predict item sliding [45,46], as well as physical parameters such
as temperature, electromagnetism, light intensity, and acceleration to predict slippage [47].
Liu et al. [48] introduced a novel design of the GelSight Fin Ray gripper, which used a
vision-based tactile sensor for tactile reconstruction, orientation estimation, and slip detec-
tion. But it is difficult to grasp heavier objects due to the design of its hollowed-out finger.
Nonetheless, these technologies are rarely used on harvesting grippers.

To solve the above problems, this work proposes a novel soft harvesting gripper with
flexible adaptive envelope, force feedback, slip detection, and other features. To design the
Fin-Ray finger structure in such a way that the gripping force is high enough to ensure it is
sufficient to successfully separate fruits from stems, the influence of various parameters of
the Fin Ray structure on the gripping force and deformation of the finger was investigated
through simulations, as the basis for the design of the soft gripper structure. The following
are the main contributions:

(1) A new three-finger force feedback soft gripper for the apple harvesting robot is
proposed. The relationship between the gripping force, the pulling force, and the servo
torque was established to achieve the constant-pressure flexible clamping of fruits.
Then the sensing system of the soft gripper was implemented by using the servo’s
feedback information instead of adding additional sensors, making the structure of
the gripper simpler and less costly.

(2) A force feedback gripper dynamic control approach with slip detection is presented.
The relative location of the fruit and the gripper is detected in this manner by incorpo-
rating a distance sensor, which makes the gripper structure and calculation simple.
When the fruit slippage occurs, the servo output torque is adjusted in real time to
reduce fruit harm using the feedback information.

In addition, to provide a theoretical basis for the design of the gripper, some mechanical
properties of apples are given in the experiments.

Remark 1. It should be clarified that the force feedback system and slip detection are two main
contributions in this paper. To provide a stable mechanical design of the gripper as a study basis for
these two points, we also analyze the structural parameters of Fin Ray fingers by the finite element
analysis method.

2. Structural Design of a Soft Gripper with Three Fingers
2.1. Finite-Element Analysis of Finger Structure with the Fin Ray Effect

The harvesting gripper’s finger mechanism uses a triangular Fin-Ray soft finger
component, which has a passive compliance quality and can implement an envelope while
clamping spherical items. The general construction of the finger consists of the front and
rear beams, cross beams, and base, as shown in Figure 1a. The front beam comes into
contact with the fruits, and the front and rear beams are linked by cross beams. These
cross-beam support rods are the foundation of Fin Ray fingers. Because of the presence
of these crossbeam support rods, the Fin Ray structure can withstand greater loads than
conventional flexible constructions.
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Figure 1. Characteristics of the Fin Ray finger: (a) basic components; (b) displacement of the fingertip;
(c) structure of the Fin Ray finger.

2.1.1. Pre-Preparation of the Simulation Experiment

The finger gripping force must be sufficient to improve the grasping stability. Further-
more, the pressure per unit area of the pericarp should be small enough to guarantee that
the fruit pericarp remains intact. As a result, the finger gripping force and the bending
degree are two critical criteria. The finger gripping force can ensure clamping stability,
while the finger bending degree can assure clamping stability and safety by increasing the
contact area between the fingers and the fruits. The stress of the Fin Ray finger during de-
formation is complicated by making the mathematical modeling difficult. As a result, using
the simulated tests, this research investigates the effect of the front and rear beam thickness,
the finger width, and the number of cross beams on the finger gripping force and bending
degree, as shown in Figure 1a. In the simulation experiment, the contact stress between
the finger and apple is used to characterize the gripping force, and the displacement of the
fingertip is used to characterize the bending degree, as shown in Figure 1b.

A single finger adopts a symmetrical structure; the total length of the finger is 120 mm,
and the front beam and the rear beam are each at an angle of 80° to the base. The cross
beams are parallel to the base; the distance is equal, and the thickness of the cross beams
is 1.40 mm. The little bulges are designed on the cross beams to increase the rigidity and
strengthen the load capacity, as shown in Figure 1c.

The TPU 95A [49] was chosen as the finger material. The TPU soft material is a
hyperelastic nonlinear material with isotropic properties throughout the stress process.
Furthermore, because the bending deformation of the soft finger is a nonlinear large
deformation, the Yeoh model can better represent its material properties [50]. The strain
energy density function W can be written as follows:

oy oy N 1
W=3 Coh=3)+) 5-(J-17 )
i=1 k=1 "~k
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where N is the order of the model; I; is the deformation tensor; C;y and Dy are the material
constants; | is the volume ratio. When TPU is regarded as the incompressible material, | = 1.

The strain energy density function in the form of the binomial parameters is usually
used [51], and the typical binomial parameter form of the Yeoh model is

W = Co(I; — 3) + Cao(I; — 3)*. )

The fitting curve of the stress and strain of the TPU 95A was obtained through the
uniaxial tensile test, as shown in Figure 2. The material parameters obtained after processing
and analysis are shown in Table 1.

1.7 e Fitting curve
1.6 ¢ Tensile test data ....0
15
14
13
1.2
11

0.9
0.8
0.7
0.6

Stress (.10° [Pa]

0.5
0.4
0.3
0.2
0.1

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Strain [m m~-1]

Figure 2. Strain-stress curve of the tensile test and fitting using the Yeoh model (TPU95A).

Table 1. Mechanical property parameters of materials.

Materials Density Young’s Modulus Poisson’s C10 C20
(kg/m?3) (MPa) Ratio (MPa) (MPa)

PA12 1010 1900 0.4 — —

Apple [52] 840 5 0.35 — —
TPU 95A 1200 — — 3.7358 —11.88

Because the contact stress between the three fingers and the fruit is the same, the
contact between a single finger and the fruit can be considered to reduce the quantity of
simulation calculation, to simplify the analysis.

During the simulation, the center of the bottom plate of the gripper is kept aligned
with the center of the fruit at a distance of 65 mm [49].

2.1.2. Influence of Geometric Parameters on Contact Stress and Fingertip Displacement

Each geometric parameter has a varied effect on the contact stress and fingertip
displacement. All other parameters were held constant to compare their changes when the
given parameters were altered, and the influence of the given single parameter on them
was gradually optimized.

First, the influence of the thickness of the front and rear beams was analyzed. The
stress increases dramatically as the thickness increases, while the fingertip displacement
decreases, as shown in Figure 3a.
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Figure 3. Changes in stress and displacement according to three factors: (a) thickness of front and
rear beams; (b) width of fingers; (c) number of cross beams.

When the thickness of the front and rear beams is 2 mm, the stiffness of the finger after
contact with the apple cannot be guaranteed, resulting in a small gripping force and easy
fruit slip; when the thickness is 4.5 mm, the stress of the material itself will greatly limit
its bending deformation and reduce the contact area between the fingers and fruit. At the
same time, because excessive stress might cause fruit damage, the thickness of the front
and back beams should not be too tiny or too large. When the thickness is 3.5 mm, the
downward trend of the fingertip displacement becomes stronger as the thickness increases,
while the upward trend of stress tends to be soft. As a result, selecting a thickness of 3.5 mm
for the front and rear beams not only meets the requirement of the increasing gripping
force but also allows fingers to make good contact with the fruits.

The effect of the finger width was then investigated. With the increase of the width, the
fingertip displacement diminishes. However, the stress does not follow a constant pattern,
as shown in Figure 3b. When the width is 10 mm, the stress and fingertip displacement is
the greatest. This is because the finger width is excessively narrow, resulting in a limited
contact area between the finger and the apple and high contact stress acting on the apple
surface, which is easily damaged. Although the degree of the finger bend is greater when
the finger is thin, it also results in insufficient grasping stiffness and fruit slide. When the
width is 25 mm, the contact area between fingers and fruit increases, but its structure affects
its bending, and it is not suitable for collecting fruits in the complex growing environment.
When the width is 16 mm, as the width continues to increase, the fingertip displacement
decreases dramatically and the stress tends to be flat. As a result, the best finger width is
set to 16 mm in this study.

Finally, the number of beams was taken into account. Because the cross beams are the
primary components that influence the stiffness of fingers, the number of cross beams has a
substantial impact on the Young’s modulus of the fingers [25]; hence, the distribution of the
cross beams may have a major impact on the gripper performance. In distribution, there
are several combinations of the cross beams. For the sake of simplicity, just the simplest
equidistant parallel arrangement of the cross beams was considered in this study. Change
the thickness of the front and rear beams to 3.5 mm, the width of the fingers to 16 mm, and
change the number of cross beams. As the number of cross beams grows, so does the stress,
and the fingertip displacement declines first and subsequently increases. When the number
of beams is 9, the fingertip displacement reaches the maximum and then decreases again,
as shown in Figure 3c. As a result, one selects nine as the optimal number of beams.

According to the results of the aforementioned analysis, the thickness of the front
and rear beams has the greatest influence on the contact stress and fingertip displacement
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among the three geometric parameters. It is mostly because the finger surface is in direct
contact with the fruit, and the thickness of the front and rear beams has a direct impact on
the stiffness of the fingers. The structural parameters of the Fin Ray fingers are extremely
complex, and this study just considers the most basic scenario. As a result, the best
structural parameters are as follows: the thickness of the front and rear beams is 3.5 mm,
the width of the fingers is 16 mm, and the number of beams is 9.

2.2. Owverall Design of the Soft Gripper

The overall structure of the three-finger soft gripper for apple harvesting built with
optimized Fin Ray fingers is shown in Figure 4a. It can be divided into three parts: the
driving and sensing part, the transmission part, and the grasping part for clamping objects.
The driving part is performed by a servo with torque and position feedback. To measure
the relative distance between the gripper and the fruit, a distance sensor is mounted on
the servo installation side of the gripper bottom plate. The transmission part is primarily
accomplished by a slider, and the rocker mechanism was composed of a rocker, a connecting
rod, a moving plate, and guide rods, as shown in Figure 4b. The servo rotates to drive the
moving plate to move up and down. Because the fingers and their connectors are connected
with the moving plate through the support rods, the fingers will move with the moving
plate moving up and down, as shown in Figure 4c.

Connecting rod|
Distance sensor

ot plaie

Silicone sheel

(b) (9 (d)

Figure 4. Overall design of the soft gripper: (a) overall structure; (b) details of transmission and the
driving and sensing part; (c) the designed gripping mechanism; (d) details of the grasping part.

In the grasping part, three Fin-Ray finger units are evenly distributed around the
bottom plate of the gripper disc, connected with the transmission mechanism by the finger
connectors to drive the Fin Ray fingers. A silicone pad is attached to the surface of each
finger to increase the contact friction between the finger and the fruit, which ensures the
clamping stability, as shown in Figure 4d.

At the initial position, the finger connectors are inclined outward at a certain angle
relative to the bottom plate. Because the bottom of the fingers is connected in parallel with
the bottom of their connectors, and the finger has a triangular symmetrical structure, the
clamping range of the gripper is expanded.

3. Kinematic Mechanics Analysis of a Soft Gripper

The driving force begins with the servo, travels through the slider and rocker mecha-
nism, multi-link mechanism, and Fin Ray soft structure, and eventually acts on the gripped
fruit. In conclusion, the static analysis of the rigid multi-link mechanism and the soft finger
structure was performed to acquire the gripping force on the fruit surface. Simultaneously,
the relationship between the gripper pulling force and the gripping force was investigated
in connection with the pulling harvesting method. Because the three fingers are symmet-
rically arranged relative to the bottom plate of the gripper, and the structure is the same.
Furthermore, the servo output torque operates on the center of the moving plate, and the
movement process and stress situation are comparable. As a result, the stress analysis of
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the direct contact between fingers and fruit begins with a single finger, making the analysis
procedure simpler.

3.1. Force Analysis of Rigid Multi-Link

The basic structure and motion principle of the soft gripper is shown in Figure 5a,b.
The force acting on the fruits of the Fin Ray structure can be equivalent to a single concen-
trated force in the analysis of the rigid multi-link (the analysis of the soft Fin Ray structure
will be discussed below). The servo drives the rocker to rotate counterclockwise when
grabbing, the moving plate to travel down along the guide rod, and the support rod to
move. Following that, the support rod drives the finger connector to rotate around the joint
FF, resulting in the envelope-gripping movement of the finger.

Moving plate

po1 Funosouuo))

(%)

o1 opmn

poi moddng

(b)

Figure 5. Motion schematic of the gripper: (a) physical model; (b) kinematics model.

In the figure: M, is the servo output torque; Orr is the angle between the rocker and
the horizontal direction; Orr is the angle between the finger connector and the horizontal
direction; « is the angle between the front and rear beams of fingers and the base.

Because of the light weight of each moving part of the rigid multi-link, the gravity and
inertia force during the movement of the gripper can be ignored.

The mechanical analysis of the multi-link mechanism is performed under static equi-
librium conditions. The connecting rod is vertical to the moving plate at the time of initial
contact. Their angle does not alter much when the rocker is rotated. To make the calculation
easier, the difference is negligible. Among the multi-link, the connecting rod is a two-force
member, and the moving plate is employed to assess the force, as shown in Figure 6.
Therefore, one has

Fem = Fys, 3)

FCM

Figure 6. Force analysis of the moving plate.
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For which, Fcpr and Fys are in the opposite direction. Fxy is the force of member X
applying to member Y. To simplify the analysis, the sliding friction between the moving
plate and the guide rod is negligible.

Thus, the support rod is a two-force member. Figure 7a shows the force analysis
of the finger and its connector. The closing force triangle shown in Figure 7b can be
obtained according to the geometric conditions for the equilibrium of the plane-intersecting
force systems.

Figure 7. Force analysis of the finger and its connector: (a) force diagram; (b) closing force triangle.
To maintain the force balance of the finger and its connector, one obtains
Fe.cosy = Frrcos B, 4)

E.sinv + Frpsin B = Fsp, )

where F, is the contact reaction between the finger and fruit, that is the finger gripping
force; 7y is the angle between F. and the horizontal direction; B is the angle between Fgr and
the horizontal direction.

According to Equations (4) and (5),

1

—F
siny + cos y tan B Sk ©)
where -
v=5 —atOr @)
1
tanp = f (8)

L cos Opp sin?(a — OpF) h tan(a — Opf)’

where /1 is the distance from the center of fruit to the bottom plate of the gripper; Ly is the
length of component X, that is Ly, is the length of the Finger connector, and Ly is the length
of the rocker.

To obtain the relationship between the servo torque M, and the gripping force F,
the rocker is taken as the forced object, and the force situation is shown in Figure 8. The
moment balance at joint FR is

FcrLR cos0pr = M. )
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FFR

Figure 8. Force analysis of the rocker.

According to the force characteristics of the two-force members,

Fcr = Fyms = Frs = Fsr, (10)

where Frg and Fgr are in opposite directions.
From Equations (6), (9), and (10), one can obtain

1 1
F. = . .
¢ siny +cosytanfB LgcosOrr

M,. (11

3.2. Contact Force Analysis between Soft Finger and Fruit

When the finger comes into contact with the fruit, it creates an adaptable envelope,
and the contact area expands. The flexible deformation of the Fin Ray structure makes the
mechanical analysis difficult. Therefore, to facilitate the calculation, the fruit is simplified as
a regular sphere. Aiming at the picking method for pulling fruits, a simplified single-finger
plane stress model is given in Figure 9.

Figure 9. Plane force model of fruit (the forces are shown in red when the load divisions on the x-axis
are in the same direction as the x-axis and black in the opposite direction).

The contact between the finger and the fruit is divided into two areas with angles of &
and o, with the y-axis as the limit. The positive touching pressure of the fruit is simplified
as a uniform load; the size is 1; the unit is N/m, and the directions all point to the center of
the circle, whose angle with the y-axis is ¢; (i=1, 2, ... , m). Fs is the static friction force
generated by the positive pressure of the finger on the fruit. When pulling the fruit, the
positive pressure on the fruit and the component force of the static friction force generated
along the x-axis direction are the main forces to ensure the stability of grasping. Specify
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g
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that the direction of the force is positive along the positive x-axis. To obtain the resultant
force in the x-axis direction F, one has

F = [7;(Fcos g+ nsing)-rdg

=71 [Fs(siné +sinc) + n(cosd — cos )], (12)

where
Fo=p-n (13)

In the Equation, y is the maximum static friction coefficient between the finger and
the pericarp of the fruit; r is the radius of the fruit.

Therefore, from Equations (11) and (12), the relationship between the resultant force F
and the positive touching pressure on the fruit can be obtained,

F=rn-[pu(sino+sind) + (cosd — cos o). (14)

The relationship between the equivalent single concentrated force F; and the uniform
load 7 in the rigid multi-link force analysis above is

9
Fcz/ n-rdp =nr- (6 +0). (15)
-0

According to Equations (11), (14), and (15), the relationship between the servo torque
M, and the resultant force F can be obtained as

#- (sino +sind) + (cosd — cos o)

F=
Lg - (siny 4 cosytan ) - cos Og - (6 + 0)

-My. (16)

4. Soft Gripper Control Method for Slip Detection and Constant-Pressure Feedback

During the actual grasping, the gripping force is f., which is the same magnitude as
the force F; but in the opposite direction, and the pulling force is the resultant force in the
x-axis direction F. From Equations (11) and (16), the relationship between the gripping force
fe of the gripper, the pulling force F, and the servo torque M, can be obtained, as shown
in Figure 10a. Therefore, when the fruit detachment force F; is determined, the driving
torque required for fruit detachment can be calculated according to the diameter of the
fruit, thereby setting the servo output torque M;. Simultaneously, it is possible to conclude
that the gripping force f. on the fruit surface at this time. To ensure constant pressure acting
on the surface of the fruit, f. should not be greater than the maximum pressure F, that the
pericarp of the fruit can withstand.

(@) (b)

Figure 10. Model of the soft gripper control method: (a) the relationship among f, F, and M;
(b) Relative position detection between fthe ruit and the gripper.
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In addition to the fruit damage caused by the excessive gripping force of the fingers,
which also includes bruises and scratches caused by the relative sliding between the fruit
and the fingers, as shown in Figure 11. Therefore, to avoid the slippage between the fruit
and the finger during harvesting, this paper detects the relative position between the fruit
and the gripper by integrating a distance sensor to assess the fruit slippage and minimizing
the damage caused by fruit slippage during harvesting, as shown in Figure 10b.

(a) (b)

Figure 11. Damage to the fruit: (a) scratches; (b) bruises.

Combined with the constant-pressure feedback state, the specific implementation
steps of the soft gripper control method for slippage detection are as follows:

4.1. Control Method of Constant-Pressure Feedback

The required servo output torque M, can be obtained by identifying the diameter of
the target fruit. To ensure that f; is less than F;, at this time, the output torque must be
adjusted further. When the f. obtained at this time is greater than F,,, it should be ensured
that the maximum torque can be output while the fruit is safely held. From Equation (11),
let f; equal F;, at this point to obtain the critical torque M, of safe clamping, which is set as
the servo’s output torque. The gripper control method of the constant-pressure feedback is
shown in Figure 12.

Identify the diameter of the fruit,
and set the output torque

Gripping force>F),

[ Set output torque as M, ] No

[ Gripper close quickly ]‘——
v

The feedback torque is greater than the initial
torque, and the gripper slowly clamps the fruit

The output torque reaches the preset
value, the gripper stops moving

Figure 12. Gripper control method of constant-pressure feedback.
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During the no-load closing motion of the gripper, the servo output torque is stable at
an initial torque. When the feedback torque of the servo is greater than the initial torque,
the finger and the fruit seem to be in contact. To avoid fruit damage due to the impact of
the dynamic load, close the gripper quickly to reach the contact position before touching
the fruit, and slowly close the gripper after the finger is in contact with the fruit. When the
feedback torque reaches the preset value, it is assumed that the fruit has been grasped, and
the servo stops rotating.

In contrast to the sensor system embedded in the finger, the servo with feedback
information is used as the driver to ensure constant-pressure contact between the finger
and the fruit, simplifying the structure of the soft harvesting gripper and facilitating the
fruit harvesting in complex growth environments.

4.2. Control Method of Slip Detection

Fin Ray soft fingers have great advantages in dealing with the problem of fruit uni-
laterally damaged by extrusion. The cross beams act as rigid support rods to ensure the
stiffness of the fingers while also allowing the fingers to adaptively wrap the entire fruit,
preventing fruit damage due to the stress concentration.

However, it is difficult to ensure that relative slippage between the fingers and the
fruit does not occur during the fruit detachment process. Because of the rough silicone
pads attached to the surface of the fingers, the sliding friction force between the fingers
and the fruit is relatively great when there is relative slippage between them, and it is
easy to cause bruises and scratches on the fruit pericarp. As a result, effectively avoiding
relative slippage is essential to ensure that the fruit is not damaged. The condition of the
relative slippage, which causes the fruit damage, is complicated and will not be discussed
in this paper.

A slip detection method is proposed for the designed soft gripper, which obtains the
fruit position in real-time through the distance sensor. One believes that when the relative
slip distance between the fruit and the fingers AL reaches L, the fruit tends to slip off, as
shown in Figure 13. At this time, the output torque can be increased on the premise of
ensuring that the maximum gripping force F, is not exceeded, and the fruit can be clamped
to prevent further sliding; if the relative slip distance AL can still reach L, after increasing
the output torque, clamping and pulling the fruit will increase the risk of damage, such as
bruises and scratches. It means that the fruit is difficult to harvest at this point, and it is
considered a harvesting failure, and the soft gripper is released. Controlling the gripper
to perform the aforementioned operations n times, if harvesting fails all n times, give up
picking this fruit. The slip detection control method is shown in Figure 14.

Figure 13. Slipping trend of fruit.
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Robotic arm pulling to harvcstJi

Slip distance>Lg?

Increase the output torque of
the steering gear

The robotic arm moves
according to the planned path

[ Gripper releases the fruit ]

Harvesting
failure Harvesting

success
stop cees:

Figure 14. Gripper control method of slip detection.

Although the risk of harvesting failure is increased by the method proposed above,
it does not cause damage to the fruit, and the fruit after harvesting failure can still be
harvested manually without affecting its economic value or reducing economic losses.

5. Test and Analysis
5.1. Test Analysis of the Mechanical Properties of Apple

The Model E43 of MTS Exceed® Electromechanical Test Systems was used to con-
duct the relevant tests to obtain the relevant mechanical properties of the apples as the
basis for the design of the gripper in this study. The range is 100 N, and it has a force
and displacement sensor. Yantai Fushi apples were chosen as the test samples during
the experiments.

In our study, a silicone pad is attached to the surface of the finger to improve the
grasping performance by increasing the friction of the fruit’s surface. To measure the
maximum static friction coefficient ;1 between the silicone pad and the fruit, the pressure
F,, was applied to the fruit through Model E43, and a silicone pad was pasted on the upper
indenter and lower support, respectively. The tensile force of horizontally pulling the fruit
was measured with a tension meter, as shown in Figure 15, and the horizontal pulling force
F, was measured from the beginning of the fruit slippage.

Force-displacement
sensor

T

Silicone pads

Figure 15. Diagram of mechanical properties test device.

50



Agriculture 2022, 12, 1802

Ignoring the apple’s weight, it can be obtained from the static balance of the apple,
Fp = 2u x Fy. 17)

The test results and fitting function are shown in Figure 16, R? = 0.92. Therefore,
# = 0.8 can be obtained.

20, Experimental data

2 801 — Curve fitting
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Figure 16. Test data and fitting curve.
To obtain the detachment force F; required for fruit detachment, the apple was fixed
on the support and kept still; then one end of the branch was fixed with the collection of
the Model E43 and pulled axially. When the fruit branch was broken through the force

sensor, the maximum pulling force was recorded. The experimental results are shown in

Figure 17. The experiment used twenty apple samples with diameters ranging from 65 mm
to 95 mm.

401 .
351
301
251 .
201
154 o

Detachment force F, (N)

104

5 T T 5 T T T T T T T T T T T
60 65 70 75 80 8 90 95
Apple diameter (mm)

Figure 17. The influence of apple diameter on detachment force.
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The results show that F,; is distributed between 8.88 N and 39.6 N. F; generally
increased as the apple diameter increased, but a small portion showed an irregular distri-
bution. This could be because fruits with larger stem diameters have more connection force
between branches and apples, necessitating more detachment force. At the same time, in
the report of Bu [53] et al., the detachment force is much greater when the natural growth
angle of the fruit is obtuse than when it is acute, as shown in Figure 18. In this experiment,
we did not pay too much attention to the relation of detachment force to stem diameter
and fruit growth angle. The test results were consistent with those of Bu [53] et al.

Figure 18. The natural growth angle of apple.

To avoid damaging the apple pericarp due to excessive gripping force, the maximum
pressure F, that the fruit pericarp can withstand must be known. We make a rectangular
apple sample block of 10 mm x 10 mm x 20 mm near the apple’s pericarp, place it on
the middle of the support of the Model E43, and apply a load to the apple sample until it
is destroyed. The force—displacement relationship during the apple-sample compression
experiment was recorded, and the results are shown in Figure 19.

25t (3.87,22.45)

)
>
T

(2.55, 18.77)

Force(N)
= @

W
T

0 1 2 3 4 5
Displacement(mm)

Figure 19. Force-displacement curve of the apple samples.

It can be seen that, once the force reaches 15.35 N, it remains almost unchanged with a
one-stage displacement increase. This demonstrates that, when the force reaches 15.35 N,
the apple begins to tend to plastically deform. According to the energy principle of the
apple damage proposed by Schoorl [54], the damage volume of the apple is proportional to
the energy it absorbs. To reduce the amount of energy transmitted to the apples during
harvesting, set the maximum pressure F;, that apples can withstand to 15.35 N. The test
results were consistent with those of Grotte [55] et al.

5.2. Gripping Force Verification Experiment

The rated torque that the servo can provide in this soft gripper is 12 kg-cm (1.2 N-m),
assuming that the maximum torque that a single finger can provide is 0.4 N-m. Lp. is
28 mm; L is 12 mm; h is 65 mm; « is 80°, and p is 0.8. According to the structural design of
the gripper, Orr is between —12°~15°, and 0y is between —30°~53°. Given that the fruit
radius r varies, o is customarily between 0° and 40°, and ¢ is traditionally between 0° and
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25°. In the test, the diameter of the apple sample is about 90 mm. At initial contact, the
finger and the fruit can be regarded as point contact. 6 is generally around 10°, and 0 is
generally around 30°, as shown in Figure 20a. According to Equation (11), the maximum
initial gripping force f, of a single finger is approximately 15.34 N. The output torque M is
little as the first contact, so the contact force between the finger and the fruit is far less than
the maximum initial gripping force. When the gripper continues to close, c and J become
larger, v becomes smaller, and  becomes larger, so the finger gripping force f. becomes
larger, as does the pulling force F. At full contact, O is typically around —12°, and 6rg is
typically around —30°, as shown in Figure 20b. Therefore, the maximum gripping force
fe of a single finger is about 16.21 N. On the basis of Equation (16), the maximum pulling
force F of a single finger is about 14.18 N, resulting in the maximum pulling force of the
entire gripper being approximately 42.55 N.

Figure 20. Contact model of soft gripper: (a) initial contact; (b) full contact.

According to the above test results, the detachment force when pulling to harvest the
fruit is about 8.88 N-39.6 N, indicating that the designed gripper’s maximum pulling force
meets the detachment requirement.

The gripping force resulting from the adaptive bending deformation of the soft fingers
in contact with the fruit surface, which was measured by a thin-film pressure sensor (RP-L
TDS REV C.) mounted between each finger and the silicone pad, as shown in Figure 21a. The
RP-L type soft thin-film pressure sensor was composed of polyester film, high conductive
material, and pressure-sensitive material. It converts the pressure acting on the thin-film
area of the sensor into a change in resistance.

The test started when the finger made contact with the apple, and the output torque
of the servo increased by 0.2 kg-cm (0.02 N-m) each time until it reached the rated torque of
12 kg-cm (1.2 N-m). To compare the difference in the gripping force of the finger on the
surface of the fruit when the diameter of the fruit changes, apples with diameters of 70 mm,
80 mm, and 90 mm were chosen for the test, as shown in Figure 21b. In each test, the
pressure output by the sensor and the servo torque was recorded, as shown in Figure 22.

As can be seen from the figure, there is an approximate positive relationship between
the gripping force of the soft finger and the servo torque, and the image fits the theoretical
curve well. Furthermore, it can be found that the effect on the gripping force is not very
significant when the diameter of the fruit changes. Therefore, the finger output force during
picking can be controlled by adjusting the servo output torque.

Nevertheless, the single-finger gripping force at a torque up to 1.2 N-m for the fruit
diameter of 90 mm does not reach the theoretically calculated maximum value, which is
probably due to the lack of accuracy from the thin-film pressure sensor.
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Figure 21. Experimental structure diagram: (a) finger with a RP-L sensor; (b) experimental platform.
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Figure 22. Relationship between torque and gripping force.

5.3. Test Analysis on the Harvesting Performance of the Soft Gripper

During the grasping and harvesting tests, the soft gripper was fixed on Franka, a
seven-axis robotic arm with a high-sensitivity force-control performance, as shown in
Figure 23. The tests were carried out in an orchard located in Changping Distrct, Beijing.
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Figure 23. Experimental scene in the orchard.

5.3.1. Feasibility Test Analysis of Constant-Pressure Feedback System

To ensure that the finger gripping force is less than 15.35 N, the servo output torque is
set to control the maximum gripping force f.. Assuming that the detachment force required
for fruit detachment is 40 N, it can be obtained from Equation (16) that the required output
torque is 10.25 kg-cm (1.025 N-m). A single finger’s grasping force f. is 13.89 N, which is
not harmful.

Therefore, a grasping comparison test was performed to verify the improvement of the
soft gripper’s safe grasping performance by the force feedback system. In this experiment,
a total of 20 apple samples with no damage on the fruit skin were selected and divided into
two groups of ten apples each. In the first set of experiments, the force feedback system
was turned on, and the clamping test was performed on each apple. The clamping process
followed the logic of the flowchart in Figure 12, and the clamping posture is shown in
Figure 24a. After the gripper has completely and stably grasped the apple, hold it still for
5 s before releasing the fruit. In the second set of experiments, all experimental conditions
were the same except that the force feedback system was turned off. As there is no output
torque control, the clamping will stop until the servo reaches the locked rotor torque, and
the clamping posture is shown in Figure 24b. The contact area on the fruit was marked
after each release, and the fruit was then stored at the same constant temperature for 7 days.
After taking them out, make a note of the damage on the apple surface’s contact area. The
radius of the damaged area was less than 10 mm for slight damage and greater than 10 mm
for serious damage.

Figure 24. Gripper attitude with force feedback on and off: (a) force feedback on; (b) force feed-
back off.
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Observing the apple surface, the contact area of the apples clamped by the gripper
with an open force feedback system was not damaged, so the damage rate was 0%; however,
the apples were clamped by the gripper with a closed force feedback system. On the other
hand, the slight damage rate was 10%, and the severe damage rate was 10%; the specific
pericarp damage is shown in Figure 25. The experimental results show that activating the
constant-pressure feedback system improves the soft gripper’s safe grasping performance
and effectively ensures non-destructive fruit grasping.

@)

Figure 25. Specific damage to apple pericarp: (a) slightly damaged; (b) severely damaged.

5.3.2. Test Analysis of Harvesting Success Rate and Apple Damage Rate

We carried out picking experiments to verify the stability and safety of the soft har-
vesting gripper designed in this paper. The harvesting process followed the logic of the
flowcharts in Figures 12 and 14 with the force feedback system on. The soft finger length is
120 mm, while the effective gripping length is 100 mm. In the tests, Ls; was set to 10 mm. To
grab and separate the fruit, the soft picking gripper was controlled by Franka’s arm with a
pulling speed of 2 mm/s.

First, we analyzed various situations that occurred in the fruit harvesting process with
the fruit slip detection turned on. The process began with the gripper approaching the fruit
and ended with the fruit being harvested. The condition of the fruit slip and the change in
the servo output torque for the three situations of no obvious slip, first slip, and second slip
was recorded afterwards, as shown in Figure 26.

The figure shows that, even if the fruit did not slip for the first time, there would be
a slight relative movement to the finger during harvesting, which might be due to the
fingertip not being completely in contact with the fruit. After the fruit slipped slightly, the
fingertip and the fruit made complete contact, providing adequate support for the apple. It
was also conceivable that the measurement distance was floating within the accuracy range
due to a lack of sensor accuracy. When the fruit slipped for the first time, the occurrence
time was approximately 10 s, implying that the gripper pulled the fruit 2 cm. At this point,
the fruit branch was completely straightened, and sufficient force was required to detach it
from the branch; if the fruit slipped for the second time, it proved that it was not enough
to harvest the fruit under the premise of safe harvesting; in addition, further harvesting
might damage the fruit.

It can be ascertained that, during fruit harvesting, the stable servo output torque can
ensure that the fruit does not break free due to the gripper loosening.

To further verify the effectiveness of the gripper harvesting, the tests for the three cases
of rigid fingers and soft fingers with or without slip detection under the gripper structure
of this study were carried out, as shown in Figure 27. For each group of the experiments,
25 apples with completely undamaged pericarps were selected. The picking situation and
fruit harvesting damage were observed and recorded. The experimental results are shown
in Tables 2—4.
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Figure 26. The slip condition of the fruit and the change of the output torque with time.

Figure 27. Three sets of outdoor picking experiments: (a) rigid fingers; (b) soft fingers with or without
slip detection.
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Table 2. The harvesting situation of rigid fingers.

Average Diameter Average Mass (2) Number of Number of Number of Number of
(mm) 8 8 Visible Slippage ! Picking Success Picking Damage Slippage Damage
82.7536 236.748 7 25 4 3
Damaged Fruit Characteristics

Fruit Diameter . Visible Slippage Picking Success Picking Damage 2
(mm) Fruit Mass (g) or Not? or Not? or Not? Damage Causes
83.04 2457 Yes Yes Yes Slippage
86.37 280 Yes Yes Yes Slippage
88.86 262.5 Yes Yes Yes Slippage
90.23 278 No Yes Yes Grasping

1 When the slip detection is turned off, we define the visible slippage as the fruit that is about to slide to the
fingertips of the gripper or that has already broken from the gripper (the same as below). 2 Because the fruit
damage due to slippage in the gripper and due to grasping are quite different in character, we can distinguish
them more easily (the same as below).

Table 3. The harvesting situation of soft fingers without slip detection.

Average Diameter Average Mass (2) Number of Number of Number of Number of

(mm) & & Visible Slippage Picking Success Picking Damage Slippage Damage

83.7548 232.724 9 24 2 2

Damaged fruit characteristics
Fruit Diameter . Visible Slippage Picking Success Picking Damage
(mm) Fruit Mass (g) or Not? or Not? or Not? Damage Causes
82.35 235.5 Yes Yes Yes Slippage
86.66 260.3 Yes Yes Yes Slippage
Table 4. The harvesting situation of soft fingers with slip detection.
Average Diameter Average Mass (2) Number of First Number of Number of Number of

(mm) & & Slippage Second Slippage Picking Success Picking Damage

84.2252 242.932 13 7 20 0

Second Slippage Fruit Characteristics
Fruit Diameter . Second Picking Picking Damage

(mm) Fruit Mass (g) Success or Not? or Not? Damage Causes
82.32 226.5 Yes No —
83.31 233.5 Second Picking No No —
84.45 226 after First Failed No No —
84.65 256.1 Harvesting ! Yes No —
86.19 266.6 No No —
90.19 279.4 No No —
91.11 309.8 No No —

1 With slip detection on, the second slippage of the fruit means that the picking has failed. At this point, each fruit
was picked twice; it implies that the fruit has failed, and the next fruit would be chosen if both pickings failed.

Comparing Tables 2 and 3, the picking success rate for the rigid fingers is 100%, with
a damage rate of 16%, while the success rate for the soft fingers is 96%, and the damage
rate is 8%, both of these have the silicone gasket applied to the surface. This shows that
the optimized Fin-Ray soft fingers in this paper are able to reduce the fruit damage better.
At the same time, we can see that visible slippage of the fruit was common in both cases
and that most of the damage occurred during the fruit slippage in the gripper. In the rigid
fingers experiment, three fruits were damaged by slippage and one by grasping, which
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also shows that the rigid support structure is prone to fruit damage despite the flexible
silicone gasket applied to the surface. In the soft fingers experiment, both damaged fruits
were caused by slippage. Therefore, the effective control of the fruit slip in the gripper is
essential to reducing the risk of fruit damage.

Comparing Tables 3 and 4, although the picking success rate dropped to 80% with
slip detection on, there was no fruit damage. It turns out that the soft gripper with slip
detection can effectively reduce fruit damage. Despite the fact that the harvesting success
rate will decrease, the fruit will not be harmed, and its economic value will not be impacted
after manual harvesting. In addition, we can see from Table 4 that 13 fruits made the
first slippage, and in 7 of them, the second slippage occurred, further demonstrating the
prevalence of fruit sliding during picking. Although five fruits failed in the second picking,
no fruit were damaged, which indicates that the proposed control method for slip detection
is effective in preventing damage to the fruits.

According to the above experimental results, the proposed Fin-Ray soft harvesting
gripper with force feedback and fruit slip detection enables stable and non-destructive fruit
picking. Notably, to improve the harvesting lossless rate, it is necessary to sacrifice some
harvesting success rates by detecting slippage between the fruit and the fingers.

Remark 2. It should be noted that the experimental results of the outdoor harvesting could be
regarded as the effect of combining both force feedback and slip detection on the basis of the optimized
harvesting gripper.

6. Conclusions

This paper presents a three-fingered apple-harvesting soft gripper with constant-
pressure feedback inspired by the Fin-Ray effect. First, the structural parameters of the
single-soft-finger model were optimized using finite element analysis, and the influence of
different Fin Ray finger structural parameters on the contact stress and fingertip displace-
ment was investigated. The optimal structural parameters of the single soft finger were
proposed: the front and rear beam thickness is 3.5 mm; the finger width is 16 mm, and the
number of beams is 9. A three-fingered apple harvesting soft gripper was designed based
on the above-optimized fingers. The determined gripper structure’s mathematical model
was then statically analyzed, and the relationship between the gripping force, the pulling
force, and the servo torque was obtained. Therefore, the finger output force during picking
can be controlled by adjusting the servo output torque.

We also propose a dynamic control method for detecting fruit slip during apple
harvesting by integrating a distance sensor in this study. The maximum static friction
coefficient between the finger and the apple, the detachment force of the apple, and the
damaged condition of the apple were obtained through an experimental analysis of the
apple’s mechanical properties, which provides a theoretical basis for the gripper design. In
indoor experiments, the results show that the servo output torque has an approximately
linear relationship with the contact pressure between the fingers and the apple, and it is
suitable for all sizes of apple. In the outdoor orchard experiments, turning on the constant-
pressure feedback system can improve the safe grasping performance of the soft gripper,
which can effectively ensure non-destructive fruit gripping. Comparing the tests for the
three cases of rigid fingers and soft fingers with or without slip detection, the optimized
Fin-Ray soft fingers in this paper are able to reduce the fruit damage better, and opening
the slip detection can effectively avoid fruit damage. Furthermore, the stable output torque
of the servo can ensure that the fruits do not break free due to the gripper loosening
during harvesting.

In this study, we believe that the soft harvesting gripper is not only suitable for
harvesting apples but also for harvesting some other fruits (e.g., tangerine and kiwi) and
vegetables (e.g., tomato) and can provide an application reference. It has a high degree of
adaptability and can effectively avoid fruit damage by adjusting the servo output torque.
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However, our current research work still has some limitations. On the one hand, the
complex structure of the Fin Ray fingers needs further investigation, and we will conduct
more in-depth and detailed research on it in the future. On the other hand, the theoretical
analysis and design of the gripper are only for the single-pulling fruit harvesting method
in this study, which has significant limitations. This is only the first step in our exploration.
In future work, combined with the optimal method and the posture of the fruit harvesting,
the harvesting method combining gripper rotation and pulling will be studied.
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Abstract: Accurate and automatic real-time recognition of shrimp with and without shells is the key
to improve the efficiency of automatic peeling machines and reduce the labor cost. Existing methods
cannot obtain excellent accuracy in the absence of target samples because there are too many species
of shrimp to obtain a complete dataset. In this paper, we propose a tactile recognition method with
universal applicability. First, we obtained tactile data, e.g., the texture and hardness of the surface of
the shrimp, through a novel layout using the same type of sensors, and constructed fusion features
based on the energy and nonstationary volatility (ENSV). Second, the ENSV features were input to
an adaptive recognition boundary model (ARBM) for training to obtain the recognition boundary
of shrimp with and without shells. Finally, the effectiveness of the proposed model was verified by
comparison with other tactile models. The method was tested with different species of shrimp and
the results were 88.2%, 87.0%, and 89.4%, respectively. The recognition accuracy of the overall, shrimp
with shells and shrimp without shells verified the generalizability of the proposed method. This
method can help to improve the efficiency of automatic peeling machines and reduce the labor cost.

Keywords: shrimp; automatic peeling machines; tactile perception; recognition

1. Introduction

The shrimp industry is a key sector of the fishing industry [1]. Research on equipment
for the automated processing of shrimp is important because manual processing not only
leads to low productivity and high production costs but also reduces the quality of shrimp
products [2,3]. The typical process used by shrimp peeling equipment is to first remove
the head of the shrimp, followed by the shell, by squeezing it through a roller sleeve [4,5].
The automated recognition of shrimp with and without shells must be explored because
existing automatic peeling machines are not perfect and require the secondary manual
recognition of shrimp with shells.

Machine vision is widely used as a nondestructive detection technique for the qual-
ity evaluation and body measurement of shrimp [6-8] Some scholars have implemented
shrimp detection tasks by extracting color, shape, and texture features from images and
combining them with machine learning models [9-11]. Deep learning, which can auto-
matically learn the feature representations of original image pixel data without relying on
specific features, has achieved great success in the field of image recognition [12,13]. Zhang
et al. proposed a YOLOv3 multisource fish detection framework based on multiscale fusion
and identified fish bodies in fish images based on a CenterNet target detection network
with an average accuracy of 90.2% [14]. Conrady et al. constructed a sea bream recogni-
tion model based on a mask region-based convolutional neural network (R-CNN) with
good accuracy [15]. However, the visual method can recognize samples that are similar
to the training samples [16]. As there are more than 2000 shrimp species, it is difficult to
obtain a comprehensive sample dataset. In addition, its processing is mainly in the form of
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video [17], which limits its application in shrimp identification because of its long training
time and high equipment requirements.

Tactile sensing is another form of perception that ignores the influence of shrimp
species. Tactile sensing recognizes and detects the objects to be measured by analyzing
the tactile time-series signals of these objects [18,19]. It is widely used in different fields
owing to its high processing speed and recognition accuracy for objects with large force
differences [20-22] Wang’s team and Zhang's team applied principal component analysis
(PCA) to reduce the dimensionality of tactile signals and recognize different objects by
machine learning methods [23,24]. Keser’s team and Qin’s team used the discrete wavelet
transform (DWT) method to generate feature vectors of tactile sample signals and then
implemented the classification of tactile signals [25,26]. In the abovementioned studies,
most of the tactile data on the object being tested are homogeneous, and whole or partial
features are directly extracted for recognition by manual experience. However, the tactile
data obtained from the surface of the shrimp is inhomogeneous, and shrimp with shells
have complex and variable shell attachment sites, making it difficult to obtain accurate
experimental results.

In this paper, we propose a method to identify shrimp with and without shells by
tactile sensation. First, we use two sensors of the same type to obtain tactile data on the
texture and hardness of the shrimp surface, and construct fusion features based on energy
and nonstationary volatility (ENSV). Then, based on the feature distribution of the ENSV,
an adaptive recognition boundary model (ARBM) is constructed. Finally, we verify the
feasibility and generalizability of the proposed method. The main contributions of this
study are as follows.

(1)  This is an attempt to identify shrimp with and without shells using a tactile method to
address the problem of the non-universality of existing recognition methods because
of the large number of shrimp species.

(2) A physically meaningful ENSV-ARBM tactile signal processing scheme is proposed
to amplify the tactile differences between shrimp with and without shells and reduce
the effect of uncertainty in the recognition of shrimp with and without shell samples.

(3) The proposed method can meet the requirements of automatic peeling machines for
accurate recognition of different species of shrimp in real time, which helps to improve
the efficiency of automatic peeling machines and reduce the labor cost.

2. Materials and Methods
2.1. Experimental Setup

In this study, a tactile sensor was developed. When the tactile sensor slides across the
surface of an object, it senses the surface texture and hardness information of the object
and transmits signals over time through two sensing cells. The tactile sensor consists of
four carbon fiber plates (Zesheng Carbon Fiber Products Factory, Zhongshan, China) and
two piezoelectric film polyvinylidene fluoride (PVDF) sensors (Jiangmen Antai Electronics
Co., Ltd., Jiangmen, China). The fabrication of the tactile sensor proposed in this study is
simple, as shown in Figure 1a.

Four carbon fiber plates were offset and stacked in turn. When the tactile sensor
touches an object, it amplifies the vibration features to show the tactile features of the object.
Two piezoelectric film PVDF sensors with a copper block embedded in each end increases
the visibility and recognizability of the tactile signal.

One piezoelectric film PVDF sensor (Sensor A) is horizontally installed in the middle
of four carbon fiber plates. The copper block extends out of the carbon fiber plate and is in
a suspended state. In this manner, the piezoelectric film PVDF sensor can obtain the surface
texture information when the object is touched by the tactile sensor. The other piezoelectric
film PVDF sensor (Sensor B) is installed in the middle of the longest carbon fiber plate. The
copper block faces downward along the carbon fiber sheet. In this manner, the piezoelectric
film PVDF sensor can obtain the hardness information when the object is touched by the
tactile sensor. The material specifications of the tactile sensor are listed in Table 1.
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Figure 1. Schematic diagram of tactile sensor. (a) The physical diagram of tactile sensor; (b) diagram
of experimental setup of tactile time-series acquisition.

Table 1. Material and structural parameters of the tactile sensors.

Material Type Parameter Structure Type Parameter
Carbon fiber plates 150 x 30 x 1 Extended length of transverse piezoelectric film 10
(Length/mm x Width/mm x Thick/mm) PVDF sensor/mm
Piezoelectric film PVDF sensor . o
(Length/mm x Width/mm x Thick/mm) 20 x 10 x 1 Tilt angle of the sensor/ 60
Copper blocks 2.25m x 3 Carbon fiber plates offset distance/mm 3

(Bottom area/ mm? X Height/mm)

The conveyor belt speed is fixed, the carbon fiber plate of the tactile sensor scans the
surface of the shrimp. Sensor A captures information about the texture of the shrimp’s
body by vibrating as the carbon fiber plate comes into contact with the shrimp. Sensor B,
which is bent by the force created by the contact, captures information about the hardness
of the shrimp. Shrimp with shells generally have a hard and rough surface, whereas shrimp
without shells have a soft and smooth surface. This differential data of the shrimp’s body
surface is obtained through the use of two sensing units.

The experimental setup for tactile time-series acquisition is shown in Figure 1b. First,
the shrimp were transported by a conveyor belt. When the shrimp pass the laser sensor,
the data from the tactile sensor were acquired. Then, the Arduino (Shanghai Longzhan
Information Technology Co., Ltd., Shanghai, China) collected the output signals of the
tactile sensor. These were transmitted to the Bluetooth module and wirelessly transmitted
to the computer in real time for processing and analysis. The data visualization interface is
based on the LabVIEW software for computing. Finally, the obtained tactile signals were
processed in a MATLAB (mathematical tool) environment.

2.2. Data Processing

Tactile time-series data were obtained from shrimp with and without shells. First,
discrete tactile data were preprocessed by theoretical waveform analysis. Second, the ENSV
features were extracted from the preprocessed tactile data. Finally, the ENSV was input
into the ARBM to obtain the recognition models of shrimp with and without shells.

2.2.1. Tactile Signal Acquisition and Preprocessing

The tactile sensors described in Section 2.1 were used to acquire tactile data from the
shrimp. All samples were placed on a conveyor belt moving at a speed of 0.1 m/s for tactile
data acquisition. Taking into account the distance between the end of the tactile sensor and
the laser sensor, data acquisition starts 2000 ms after the laser sensor is activated to analyze
the data efficiently and reduce storage space. The sampling frequency of the analog signal
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of the tactile sensor was set to 1300 Hz, which is twice of that of the tactile data frequency
to ensure that the tactile data does not overlap in the frequency domain. To obtain the
complete tactile sensing process of the shrimps, the data capacity of one sample was set
to 5000 data points (2500 data points each for the Sensor A and Sensor B). The acquisition
ends after 5000 data were collected for each sample.

The raw signal plot is shown in Figure 2a. The blue waveform represents the data
acquired by Sensor A, i.e., the shrimp surface texture information. The red waveform
represents the data acquired by Sensor B, i.e., the shrimp hardness information. During the
dynamic process of data acquisition, the raw output signal contains a DC component, which
leads to a nonzero starting signal and different starting values for the two sensing cells.

(b) 2o 2 :
Ep DC component filtering
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=20
5 0 400 800 1200 1600 2000 2400
Number of samples
Sensor B > Z

memmw = Minimum value filtering
, M

T
400

; : , ; 8
800 1200 1600 2000 2400 :}Jzn-
E an% MWWW
Number of samples 2] el

« 0 400 800 1200 1600 2000 2400

An

Number of samples

Figure 2. Data preprocessing process diagram. (a) Waveform diagram of the original tactile signal;
(b) Waveform diagram of the tactile data after preprocessing.

When the energy features were extracted, the direct calculation of energy features
would result in large energy values for each segment. When the nonstationary volatility
was extracted, the direct calculation of nonstationary volatility of tactile signals would
result in small nonstationary volatility values for each segment. Both cases affect the
recognition accuracy of the sensor. Therefore, it is necessary to filter the DC components of
the signal. However, when the DC component is filtered, the tactile signal will contain data
less than 0, which leads to errors in the calculation of nonstationary volatility values. The
data after preprocessing are shown in Figure 2b.

To reduce the interference of DC components in feature extraction, two tactile signal
preprocessing methods were used. These are the direct filtering of the DC components
from tactile signals when extracting energy features, and the minimum value filtering of
tactile signals when extracting nonstationary volatility features. The specific raw signal
processing is expressed as Formulas (1) and (2).

SCy = TS}, — TS, (1)
SMy = TSy — min(TS}) )

where SCy is the filtered DC component signal, N is the number of sampling points per
sensing cell (N = 2500), TS}, is the original tactile signal, TS}, is the average value of the
raw tactile signal, SMy is the minimum value of the filtered signal, and min(TS};) is the
minimum value of the raw tactile signal.

Tactile signals are directly used to train the model to recognize different objects by
undergoing a complex learning process that ignores the detailed feature information about
the surface texture and hardness [27]. The segmentation of the preprocessed tactile signal
can tap into the details of the tactile signal, and reducing the signal length to process at each
instant while keeping the signal characteristics [28]. The sliding window method was used
to segment the data with a certain step size to ensure data continuity after segmentation.

66



Agriculture 2023, 13, 422

z

= Analog signals

Analog signals

The effects of data segmentation are shown in Figure 3a,b. The number of segments is
calculated by
. N-—-SI+S5s
i= 3
where 7 is the number of segments (i is an integer), N is the length of the preprocessed data,
Sl is the window data length, and Ss is the sliding step of the segments. The window data
length and sliding step length were set as 50 and 10, respectively.
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Figure 3. Schematic diagram of tactile data segmentation. (a) Schematic diagram of tactile signal
segmentation with DC component filtering; (b) schematic diagram of tactile signals segmentation
with minimum value filtering.

2.2.2. ENSV Features Extraction

Machine learning techniques combined with feature extraction methods can improve
the recognition accuracy as well as speed-up the training process. We selected the ENSV
features as the feature vector for the recognition of shrimp with and without shells. The
energy feature in ENSV characteristics can well reflect the changes of the force on the
sensor, and the nonstationary volatility feature can make the sensor more clear in the force
process. The fusion of the two features can reduce the interference of invalid information
and amplify the tactile differences between shrimp with and without shells.

First, the energy features of each segment were extracted after DC component filtering.
Second, the nonstationary volatility features of each segment were extracted after minimum
filtering. Finally, the energy and nonstationary volatility features were fused to obtain the
identification feature vector. The feature extraction process is shown in Figure 4.

In the process of acquiring tactile signals, there is a difference in the blocking force
between the tactile sensor and shrimp with and without shells. The surface of shrimp
without shells is smooth and soft, producing a small blocking force. In contrast, the surface
of shrimp with shells is rough and hard, producing a large blocking force. To describe
the process of changing force on the tactile sensor as it slides across the shrimp surface,
we extracted the energy of each segment as a feature after DC component filtering. The
calculation formula is expressed as (4). The effect is shown in Figure 4a.

i—1)Ss+Sl
L (50

Bi=—g— 4)
where E; is the average energy of each segment. Sg; is the tactile data of each segment after
DC component filtering, (n =1, 2, ..., 2500). n is the sequence number of the sampling

point. The formula of the segmented energy feature vector is expressed as (5).

E=(E,E...E) ©)
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Figure 4. Feature extraction process diagram. (a) The result of the energy features of each segment;
(b) the result of the nonstationary degree of fluctuation of each segment; (c) the result of feature
fusion.

When the tactile sensor is not in contact with the shrimp, the tactile sensor data is
stable. When the tactile sensor is in contact with the shrimp, it deforms and vibrates, and
tactile signals produce nonstationary volatilities. This type of volatility differs from that of
a stationary signal. We extracted the nonstationary volatility of each segment as a feature
after minimum value filtering. The effect is shown in Figure 4b.

Ideally, for stationary volatility data, the sum of squares of any two tactile data points
is equal to two times the square of the initial value. Let Sw;, be the value of any sampling
point in a segment after the minimum value is deleted. Sw,, |, is the value of exploring m
sampling points backwards from the nth sampling point. These are expressed as

Sw(n) = (Swy)* + (Swnim)? ©)

where Sw is a function that varies with the sampling point #, represented as Sw(n). In an
ideal case, the Sw is constant for stationary data. The mathematical expectation of the Sw
in a certain segment is

n=(i—1)Ss
N )

The relative mean square deviation (cW;) of Sw(n) and its mathematical expectation

ESwis
\/E{[Sw(n) - ESw}Z}

ESw ®)

oW; increases with the degree of nonstationarity. If the data are stationary under ideal
conditions, then ¢W; = 0. The degree of nonstationary volatility of the feature vector is
expressed as

Z(ifl)Ss+Sl Sw(n)
ESw= —n—"——

(TWZ‘:

oW = (cWy,0Wy, ..., 0W;) )

This feature amplifies the textural and hardness characteristics of the tactile sensor
during contact with the shrimp, and reduces the data interference in the noncontact state.
The expression of this feature is provided in (10) and illustrated in Figure 4c.

V=E®eW (10)
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2.2.3. ARBM Construction

As mentioned in the introduction, shrimp with shells have complex shell attachment
sites. Therefore, we propose an ARBM to solve this problem. First, the ENSV feature
vectors were pretrained using a back-propagation (BP) neural network fitting model, as
shown in Figure 5. Then, the feature vectors of shrimp samples with and without shells
were assumed to be located in different circular regions, and the center of each class was
calculated, as shown in Figure 6a. Finally, the radius of the recognition boundary was
obtained by training. The recognition boundary of shrimp without shells was retained,
while that of shrimp with shells was discarded. The shrimp with and without shells are
located outside and inside the boundary, respectively, as shown in Figure 6b.

Figure 5. Pretraining flow chart.
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recognition schematic.
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Pretraining

We pretrained the model using shrimp with and without shells as prior knowledge.
This enables more respective clustering of the ENSV feature vector distributions of shrimp
with and without shells. Artificial neural networks were used to classify the feature
dataset [29]. In general, BP neural networks do not have strict data distribution require-
ments. These can automatically transform the initial “bottom” feature representation into
the “top” feature representation through multilevel and nonlinear transformations [30].
This part uses ENSV as prior knowledge for the pretraining process. The data from Sensor
A and Sensor B are trained separately. The number of neural nodes in the input layer
corresponds to the number of segments of the samples. The model input is the ENSV
feature vectors extracted from the sample. The number of neurons in the hidden layer is 10.
The number of neural nodes in the output layer corresponds to whether the shrimps have
shells (1 for shrimp with shells and 0 for shrimp without shells), as shown in Figure 5.

Boundary Training

In this section we input the data to the pretrained neural network fitting model. Then
the fitted values of shrimp with and without shells from different sensors are obtained.
Place the values of Sensor A and Sensor B in the same two-dimensional coordinate system.
The flow chart of boundary training and recognition is shown in Figure 6.

Pretraining uses the ENSV features of Sensor A and Sensor B as input quantities and
shrimp with and without shells as output quantities. This process groups shrimp by their
class and separates different classes. To make data computation more efficient and improve
real-time processing, we use a circular boundary defined by only two parameters (radius
and cluster center) to simplify the data analysis. Before training the recognition model,
the centers of the feature vector distributions of shrimp with and without shells must be
determined. Shrimp with shells are one class, while shrimp without shells are another. The
sample dataset of a class is treated as a cluster, and the cluster centers are determined by
calculating the mean feature vector of each cluster.

1

Q),Y;)eDy

where D) = {(Ql, Y1),..., (Qj,Yj) } is the set of ENSV and its label. For shrimp with and
without shells, Y; = 1 and Y; = 0, respectively. Dy is the number of sample sets marked as
the same class.cy is the cluster center.

Define Ay as the radius of the recognition boundary relative to the center of the circle
k- The ENSV should satisfy the following constraints:

VQj € Dy, [|Q; — ckll2 < Ak (12)

where [|Qj — ci|2 represents the Euclidean distance between Q; and c. The SoftPlus
activation function was used to map the radius and radius parameters.

Ay = log(l + eAAk) (13)

where Ay is the cluster radius and Z\k is the radius parameter.

On the one hand, it is hoped that the recognition boundary can surround most shrimp
with and without shells. On the other hand, it is also hoped that the boundary of the circle
is not too far from the center of the cluster. Therefore, the following boundary loss function
is adopted.

[2=2v) +(1=0) (@ e

e= L blo-e S
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where M is the total number of shrimp samples with and without shells, and Y; is the label
of the ith sample. §; is defined as

1, i—C > Ay,
5= 1Qj — ckll2 > Ay, a5

0,11Qj — ckll2 < Ay,

Then, the radius parameter Ay is optimized using a random gradient descent:
~ —~ 9L
A =N — 11— 16
=B (16)
where 7 is the learning rate of the boundary parameters. The g% is calculated by
k
M s 9
L i (Y =k)-(=1)% 1

o) b —j=1 ( ] ) ( ) (17)

By L=k  14e M

IfY; =k, then &' (y; = k) = 1;if Yj # k, then &' (y; = k) = 0. In this way, the learned
radius parameters not only surrounds most shrimp with and without shells, but also avoids
the cluster centers of each type.

After learning the center and recognition boundary radius of shrimp with and without
shells, we discarded the boundary of shrimp with shells and retained that of shrimp without
shells. This is because shrimp with shells have different shell attachment areas, resulting in
a wider spatial distribution of feature vectors for tactile recognition. In contrast, the feature
vectors of shrimp without shells are relatively fixed. The presence of interference samples
affects the recognition accuracy when training is conducted using only shrimp samples
without shell samples. In addition, the maximum number of shrimp with shells must be
recognized to ensure the effectiveness of the industrial production process.

During the test, the distance between the test sample and the class center of shrimp
without shells was calculated. When the distance is less than the radius of the boundary of
the shrimp without shells, it is judged as shrimp without shells; otherwise, it is judged as
shrimp with shells.

3. Results and Discussion

Two experiments were conducted to evaluate the performance of the proposed method
in recognizing shrimp with and without shells. In one experiment, the species Macro-
brachium rosenbergii was selected as the training sample, and the trained ARBM was
compared with the proposed tactile recognition model. In the other experiment, five differ-
ent shrimp species were selected for testing, and the trained ARBM model was compared
with the vision model. The overall recognition accuracy for shrimp with and without shells
is the performance evaluation index expressed as (18)—(20).

TP+ TN
AT = TP+ TN+ FP+FN (18)
TP
AS = TP+ FN (19
TN
AP = FP+TN 20)

where AT is the overall recognition accuracy, TP is the number of correct recognitions of
shrimp with shells, TN is the number of correct recognitions of shrimp without shells, FP
is the number of incorrect recognitions of shrimp with shells, FN is the number of incorrect
recognitions of shrimp without shells, AS is the recognition accuracy of shrimp with shells,
and AP is the recognition accuracy of shrimp without shells.
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3.1. Compare Different Tactile Recognition Models

To verify the validity of the ENSV-ARBM, we selected headless Macrobrachium rosen-
bergii shrimps as our experimental samples. The samples of Macrobrachium rosenbergii
had a length of 8.2-9.8 cm and a weight of 35.2—40.1 g. Five hundred (500) shrimp with
shells and another 500 without shells were examined.

First, the speed of the conveyor was fixed at 0.1 m/s. The shrimps passed the tactile
sensor at specific time intervals, which must be longer than the time required to fully
acquire the tactile sensations of a shrimp. After each shrimp passes the tactile sensor, the
corresponding tag is manually recorded and the tactile data is saved. The experiment is
conducted in MATLAB 2022a 64-bit (MATLAB, 2022a) platforms using a 2.7 GHz notebook
computer with an Intel(R) Core (TM) CPU and 8 GB RAM. The samples of the tactile
recognition of shrimp are shown in Figure 7. The device described in Section 2.1 was
selected for data collection. Tactile data were collected from all experimental samples (i.e.,
500 shrimp with shells and 500 without shells). Finally, 70% of shrimp with and without
shells were randomly selected as the training set, 15% as the validation set, and 15% as the
test set.

Analog signals
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Figure 7. Plot of raw data of shrimp with and without shells.

The identification of shrimp with and without shells is based on the difference in
their waveforms. When a tactile sensor scans a shrimp with shells, the grooves on its body
cause the sensor to produce a more pronounced jitter and oscillation signal. As the surface
area of the shrimp shell increases, the duration of the oscillation signal generated by the
sensor decreases. Sensor B, located on the outermost carbon fiber plate, detects a certain
protruding waveform due to the increased hardness of the shrimp’s body. On the other
hand, when a tactile sensor scans a shrimp without shells, the friction gradually increases
as it scans the shrimp’s smooth and soft body. As a result, the waveforms obtained from
Sensors A and B on the surface carbon fiber plate are smoother and contain less energy.
The results of the comparisons with tactile perception methods proposed in the literature
are listed in Table 2.

Table 2. Comparison of the results of the proposed scheme with other tactile methods.

REF Methods AT % AS % AP %
[23] PCA-KNN 74.0 77.3 70.7
[24] PCA-SVM 72.7 66.7 78.7
[25] DWT-KNN 72.7 73.3 72
[26] DWT-ELM 77.4 78.7 76.0
Our proposed model ENSV-ARBM 88.7 85.3 92.0

The statistical results in Table 2 show that ENSV-ARBM method has the highest AT,
AS, and AP of 88.7%, 85.3%, and 92.0%, respectively. The ENSV feature is a fusion of
the energy and nonstationary volatility features, in which the energy feature reflects the
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dynamic changes in the force during the tactile process, and the nonstationary volatility
feature extracts the fluctuating data during the contact between the sensor and shrimp
surface. The fusion of these two features can effectively amplify the differences in the
surface texture and hardness between shrimp with and without shells as well as mask
invalid data to identify the physically significant features of both types of shrimps. The
ARBM is a recognition model based on the spatial distribution of the data, which enables the
secondary classification of shrimp with and without shells. The model uses the distribution
boundary of the sample space of shrimp without shells as a classification boundary in the
presence uncertainty regarding the attachment surface of shrimp samples with shells.

The results in Table 2 demonstrate the effectiveness of the ENSV-ARBM-based tactile
recognition of shrimp with and without shells. The overall recognition rate is better than
that of the other tactile recognition algorithms. Shrimp without shells are smooth and soft
to the touch, whereas shrimp with shells are rough and hard to the touch. By effectively
extracting the texture and hardness tactile features of different shrimp body surfaces, the
recognition accuracy of shrimp with and without shells can be improved. In addition, the
stable tactile data boundaries of shrimp without shells reduces the problem of the complex
shell attachment locations of shrimp with shells.

3.2. Compare Different Vision Recognition Models

To verify the generalizability of the proposed ENSV-ARBM for the tactile recognition of
shrimp with and without shells, we selected five different shrimp species for comparative
experiments using the machine vision approach and the tactile approach described in
Section 3.1. These include Panulirus argus, Macrobrachium rosenbergii, Penaeus chinensis,
Oratosquilla oratoria, and Metapenaeus ensis, as shown in Figure 8. There were 100 shrimp
with shells and 100 shrimp without shells for each species.

(a)

Figure 8. Photos of five different shrimp species. (a) Panulirus argus; (b) Macrobrachium rosenbergii;
(c) Penaeus chinensis; (d) Penaeus japonicus; and (e) Metapenaeus ensis.

After decapitation, we measured the size and weight of the shrimp samples using a
ruler and an electronic scale, respectively. The samples of Panulirus argus had a length of
13.1-15.9 cm and a weight of 69.3-72.5 g. The samples of Macrobrachium rosenbergii had a
length of 8.2-9.8 cm and a weight of 35.2-40.1 g. The samples of Penaeus chinensis had a
length of 10.7-12.8 cm and a weight of 33.3-39.8 g. The samples of Oratosquilla oratoria
had a length of 11.3-13.1 cm and a weight of 35.4—42.5 g. The samples of Metapenaeus
ensis had a length of 7.3-8.4 cm and a weight of 28.7-32.0 g.

In the area of tactile recognition, we selected the ENSV-ARBM-based tactile recognition
method for our experiments. The trained model in Section 3.1 was selected to test the
five different shrimp species. In the area of visual recognition, we used an industrial
camera (HIKVISION) with a CMOS sensor as the data source for visual recognition. The
sensor size is 22.3 mm x 14.9 mm, the effective pixels are 18 million, and the acquired
image resolution is 2928 x 3904 (pixels). To test the fairness of the assessment, samples
of 500 shrimp with shells and 500 without shells were photographed along the conveyor
belt. The image information obtained was fed into the YOLOv3 and R-CNN frameworks
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for training purposes. The trained model then was applied to test the recognition of five
different shrimp species with and without shells. The experimental results are listed in
Tables 3 and 4.

Table 3. Comparison of results between the proposed scheme and other tactile methods.

ENSV-ARBM PCA-KNN PCA-SVM DWT-KNN DWT-ELM

W AT AS AP AT AS AP AT AS AP AT AS AP AT AS AP
SPeCie S % % % % % % % % % % % % % % %
(a) 895 89.0 900 735 77.0 70.0 73.0 69.0 77.0 74.0 74.0 74.0 78.5 79.0 78.0

(b) 89.0 86.0 920 765 77.0 76.0 745 72.0 77.0 73.0 73.0 73.0 77.5 78.0 77.0

(c) 880 870 89.0 765 780 750 710 67.0 75.0 72.0 73.0 71.0 79.0 79.0 79.0

(d) 875 85.0 900 745 750 740 745 71.0 78.0 71.0 71.0 71.0 77.5 78.0 77.0

(e) 870 88.0 86.0 755 750 76.0 725 70.0 75.0 715 72.0 71.0 77.0 77.0 77.0

Mean 882 870 894 753 764 742 731 69.8 76.4 72.3 72.6 72.0 77.9 78.2 77.6

Table 4. Comparison of results between the proposed scheme and other vision methods.

ENSV-ARBM YOLOv3 R-CNN

Indicators o o o . . N . . s
m AT % AS % AP % AT % AS % AP % AT % AS % AP %

(a)
(b)
()
(d)
(e)

Mean

89.5
89.0
88.0
87.5
87.0
88.2

89.0 90.0 91.5 89.0 94.0 90.5 89.0 92.0
86.0 92.0 99.0 99.0 99.0 93.0 95.0 91.0
87.0 89.0 77.0 89.0 65.0 76.0 80.0 72.0
85.0 90.0 83.5 72.0 95.0 80.0 70.0 90.0
88.0 86.0 75.5 84.0 67.0 74.5 85.0 64.0
87.0 89.4 85.3 86.6 84.0 82.8 83.8 81.8

From Table 3, we can see that our proposed tactile perception method is better com-
pared to other tactile methods. From Table 4, in terms of the average overall recognition
accuracy, the ENSV-ARBM-based tactile recognition method exhibited the best performance
for the AT, AS, and AP with 88.2%, 87.0%, and 89.4%, respectively. This was followed by
the YOLOv3. R-CNN exhibited the worst performance for the AT, AS, and AP with 82.8%,
83.8%, and 81.8%, respectively. With regard to the recognition accuracy for each shrimp
species, the vision recognition methods for the Macrobrachium rosenbergii and Panulirus
argus were better than the tactile recognition approach.

Macrobrachium rosenbergii and Panulirus argus, with and without shells, were visu-
ally distinguished. The Penaeus chinensis and Metapenaeus ensis have transparent shells;
hence, the visual recognition method misidentified shrimp with shells as shrimp without
shells when the shells were attached to the tail. For Penaeus japonicus, both shrimp with
and without shells showed a black color; hence, the visual method misidentified shrimp
without shells as shrimp with shells.

The ENSV-ARBM-based tactile recognition method identifies whether shrimps have
shells mainly through the dynamic changes in the texture and hardness of the shrimp
surface. Although the flesh and shell of different shrimp species have different forms,
textures, and colors, the variations in texture and hardness are similar. The machine vision
training samples must be comprehensive, whereas the tactile method only identifies the
physical features of texture and hardness of shrimp with or without shells; hence, it has
better universality. The experimental results demonstrate the universality of ENSV-ARBM-
based tactile recognition and provides good results for the recognition of different shrimp
species.

4. Conclusions

A tactile recognition method based on ENSV-ARBM is proposed to address the prob-
lem of recognizing shrimp with and without shells. The method uses Macrobrachium
rosenbergii shrimp as our training samples. We obtained tactile information by a self-
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designed tactile sensor and achieved the recognition of shrimp with and without shells by
the proposed ENSV-ARBM method.

The effectiveness of the proposed ENSV-ARBM approach to tactile perception was
verified by comparison with other tactile models. The method we propose amplifies the
tactile differences between shrimp with and without shells. In addition, it overcomes the
problems of uneven distribution of tactile data and the lack of shrimp samples to enable
the recognition of shrimp with and without shells. The method was tested with different
species of shrimp and the results were 88.2%, 87.0%, and 89.4% for AT, AS, AP, respectively,
which verified the generalizability of the proposed method.

In conclusion, it has an advantage over other methods in the universality of different
species of shrimp recognition and can meet the requirements of real-time and high-accuracy
recognition for embedded devices. The method can provide an effective solution for
automatic peeling machine to recognition shrimp with and without shells.

Author Contributions: Conceptualization, X.C. and Y.X.; methodology, X.C., TW. and Y.X_; software,
Y.X,; validation, X.C., Y.X. and P.D.; formal analysis, Y.X.; investigation, P.D.; resources, E.Z.; data
curation, C.T.; writing—original draft preparation, Y.X.; writing—review and editing, X.C.; visualiza-
tion, C.W.; supervision, X.C.; project administration, X.C.; funding acquisition, X.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Guangdong Province key areas of research and development
program, grant number 2021B0202060002.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the cor-
responding author. The data are not publicly available since future studies are related to current data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

Chang, Z.Q.; Neori, A.; He, Y.Y.; Li, ].T.; Qiao, L.; Preston, S.I; Liu, P; Li, J. Development and current state of seawater shrimp
farming, with an emphasis on integrated multi-trophic pond aquaculture farms, in China—A review. Rev. Aquac. 2020, 12,
2544-2558. [CrossRef]

Zhao, L.T,; Xi, M.].; Wang, W.; Chu, X.; Zhao, X,; Yuan, Y.; Liu, 5.Q. A review of technology development process of a typical
shrimp peeling machine. J. Adv. Mech. Des. Syst. Manuf. 2015, 9, JAMDSMO0013. [CrossRef]

Zhang, X.H.; Zhao, Q.L.; Zhao, Y.D.; Wang, Z.H.; Yi, ].G. Parameter and pretreatment condition optimization of dual rollers
extrusion peeling device for Litopenaeus vannamei. Editor. Off. Trans. Chin. Soc. Agric. Eng. 2014, 30, 308-314. [CrossRef]

Yi, J.G,; Ma, J.Y.; Wang, Z.H.; Zhang, X.H.; Yang, S.H. Status and Development of Shrimp Processing Equipment. Mod. Agric.
Equip. 2020, 41, 2-11.

Zhang, X.H.; Zhao, Q.L.; Wang, Z.H.; Yi, ].G.; Wang, ]J. Parameter optimization experiment of adjustable five rollers shrimp
peeling machine. Trans. Chin. Soc. Agric. Eng. 2016, 32, 247-254.

Hosseinpour, S.; Rafiee, S.; Mohtasebi, S.S.; Aghbashlo, M. Application of computer vision technique for on-line monitoring of
shrimp color changes during drying. J. Food Eng. 2013, 115, 99-114. [CrossRef]

Hong, HM.; Yang, X.L.; You, Z.H.; Cheng, E. Visual quality detection of aquatic products using machine vision. Aquac. Eng. 2014,
63, 62-71. [CrossRef]

Hong, C.; Liu, Z.H.; Wang, X.Q.; Gao, L.; Zheng, Z.Y.; Xu, Z.L.; Jun, Z. Construction of completeness recognition method for
shrimp (Litopenaeus vannamei) based on morphological characteristics. J. Food Saf. Qual. 2021, 2, 8666-8673.

Hu, W.C,; Yang, C.Y,; Huang, D.Y. Robust real-time ship detection and tracking for visual surveillance of cage aquaculture. J. Vis.
Commun. Image Represent. 2011, 22, 543-556. [CrossRef]

Lee, DJ.; Xiong, G.M.; Lane, RM.; Zhang, D. An Efficient Shape Analysis Method for Shrimp Quality Evaluation, 2012
12th International Conference on Control, Automation. In Proceedings of the 2012 12th International Conference on Control
Automation Robotics & Vision (ICARCV), Guangzhou, China, 5-7 December 2012; pp. 865-870.

Zhang, D.; Lillywhite, K.D.; Lee, D.J.; Tippetts, B.]. Automatic shrimp shape grading using evolution constructed features. Comput.
Electron. Agric. 2014, 100, 116-122. [CrossRef]

Liu, Z.H,; Jia, X.J.; Xu, X.S. Study of shrimp recognition methods using smart networks. Comput. Electron. Agric. 2019, 169, 104926.
[CrossRef]

75



Agriculture 2023, 13, 422

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Liu, Z.H. Soft-shell Shrimp Recognition Based on an Improved AlexNet for Quality Evaluations. J. Food Eng. 2020, 266, 109698.
[CrossRef]

Zhang, L.; Huang, L.; Li, B.B.; Chen, X.; Duan, Q.L. Fish School Counting Method Based on Multi-scale Fusion and No Anchor
YOLO v3. Trans. Chin. Soc. Agric. Mach. 2021, 52, 237-244.

Conrady, C.R; Er, S.; Attwood, C.G.; Roberson, L.A.; Vos, L. Automated detection and classification of southern African Roman
seabream using mask R-CNN. Ecol. Inform. 2022, 69, 101593. [CrossRef]

Ramik, D.M.; Sabourin, C.; Moreno, R.; Madani, K. A machine learning based intelligent vision system for autonomous object
detection and recognition. Appl. Intell. 2014, 40, 358-375. [CrossRef]

Kiyokawa, T.; Tomochika, K.; Takamatsu, J.; Ogasawara, T. Fully Automated Annotation With Noise-Masked Visual Markers for
Deep-Learning-Based Object Detection. IEEE Robot. Autom. Lett. 2019, 4, 1972-1977. [CrossRef]

Chen, X.S.; Mao, Y.Y.; Ma, X.; Qi, L. A Tactile Method for Rice Plant Recognition Based on Machine Learning. Sensors 2020, 20,
5135. [CrossRef]

Chen, X.S.; Mao, Y.Y.; Xiong, Y.S.; Qi, L.; Jiang, Y.; Ma, X. Intra-row weed density evaluation in rice field using tactile method.
Comput. Electron. Agric. 2022, 193, 106699. [CrossRef]

Iskarous, M.M.; Thakor, N.V. E-Skins: Biomimetic Sensing and Encoding for Upper Limb Prostheses. Proc. IEEE 2019, 107,
2052-2064. [CrossRef]

Luo, S.; Mou, W.X.; Althoefer, K.; Liu, H.B. iCLAP: Shape recognition by combining proprioception and touch sensing. Auton.
Robot. 2019, 43, 993-1004. [CrossRef]

Niu, H.S.; Li, H.; Gao, S.; Li, Y.; Wei, X.; Chen, YK Yue, W.J.; Zhou, W].; Shen, G.Z. Perception-to-Cognition Tactile Sensing Based
on Artificial-Intelligence-Motivated Human Full-Skin Bionic Electronic Skin. Adv. Mater. 2022, 34, 2202622. [CrossRef] [PubMed]
Wang, S.A.; Alessandro, A.; Perla, M.; Fulvio, M.; Giorgio, C. Fabric Classification Using a Finger-Shaped Tactile Sensor via
Robotic Sliding. Front. Neurorobotics 2022, 16, 808222. [CrossRef] [PubMed]

Zhang, Z.; Zhou, J.; Yan, Z.; Wang, K.; Mao, J.; Jiang, Z. Hardness recognition of fruits and vegetables based on tactile array
information of manipulator. Comput. Electron. Agric. 2021, 181, 105959. [CrossRef]

Keser, S.; Hayber, S.E. Fiber optic tactile sensor for surface roughness recognition by machine learning algorithms. Sens. Actuators
A-Phys. 2021, 332, 113071. [CrossRef]

Qin, L.H.; Yi, Z.K.; Zhang, Y.L. Enhanced surface roughness discrimination with optimized features from bio-inspired tactile
sensor. Sens. Actuators A-Phys. 2017, 264, 133-140. [CrossRef]

Kawazoe, M.; Kosemura, Y.; Miki, N. Encoding and presentation of surface textures using a mechanotactile display. Sens.
Actuators A-Phys. 2017, 261, 30-39. [CrossRef]

Soualhi, M.; Nguyen, K.; Medjaher, K. Pattern recognition method of fault diagnostics based on a new health indicator for smart
manufacturing. Mech. Syst. Signal Process. 2020, 142, 106680. [CrossRef]

Bakker, T.; Wouters, H.; Asselt, K.; Bontsema, J.; Tang, L.; Miiller, J.; Straten, G. A vision based row detection system for sugar
beet. Comput. Electron. Agric. 2008, 60, 87-95. [CrossRef]

Ruan, X.; Zhu, Y.; Li, J.; Cheng, Y. Predicting the citation counts of individual papers via a BP neural network. J. Informetr. 2020,
14,101039. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

76



ﬁ\i agriculture

Article

Exploiting the Internet Resources for Autonomous Robots

in Agriculture

Luis Emmi 1*, Roemi Fernandez 1, Pablo Gonzalez-de-Santos !, Matteo Francia 2, Matteo Golfarelli 2,
Giuliano Vitali 3, Hendrik Sandmann 4, Michael Hustedt ¢ and Merve Wollweber 4

Citation: Emmi, L.; Fernandez, R.;
Gonzalez-de-Santos, P,; Francia, M.;
Golfarelli, M.; Vitali, G.; Sandmann,
H.; Hustedt, M.; Wollweber, M.
Exploiting the Internet Resources for
Autonomous Robots in Agriculture.
Agriculture 2023, 13, 1005. https://
doi.org/10.3390/agriculture13051005

Academic Editors: Jin Yuan, Wei Ji,
Qingchun Feng and Massimo

Cecchini

Received: 16 March 2023
Revised: 17 April 2023
Accepted: 29 April 2023
Published: 2 May 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
1.0/).

1 Centre for Automation and Robotics (UPM-CSIC), 28500 Arganda del Rey, Madrid, Spain

Department of Computer Science and Engineering (DISI), Alma Mater Studiorum-University of Bologna,
40127 Bologna, Italy

Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum-University of Bologna,
40127 Bologna, Italy

Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany

*  Correspondence: luis.emmi@car.upm-csic.es

Abstract: Autonomous robots in the agri-food sector are increasing yearly, promoting the application
of precision agriculture techniques. The same applies to online services and techniques implemented
over the Internet, such as the Internet of Things (IoT) and cloud computing, which make big data, edge
computing, and digital twins technologies possible. Developers of autonomous vehicles understand
that autonomous robots for agriculture must take advantage of these techniques on the Internet to
strengthen their usability. This integration can be achieved using different strategies, but existing
tools can facilitate integration by providing benefits for developers and users. This study presents an
architecture to integrate the different components of an autonomous robot that provides access to
the cloud, taking advantage of the services provided regarding data storage, scalability, accessibility,
data sharing, and data analytics. In addition, the study reveals the advantages of integrating new
technologies into autonomous robots that can bring significant benefits to farmers. The architecture is
based on the Robot Operating System (ROS), a collection of software applications for communication
among subsystems, and FIWARE (Future Internet WARE), a framework of open-source components
that accelerates the development of intelligent solutions. To validate and assess the proposed
architecture, this study focuses on a specific example of an innovative weeding application with
laser technology in agriculture. The robot controller is distributed into the robot hardware, which
provides real-time functions, and the cloud, which provides access to online resources. Analyzing the
resulting characteristics, such as transfer speed, latency, response and processing time, and response
status based on requests, enabled positive assessment of the use of ROS and FIWARE for integrating
autonomous robots and the Internet.

Keywords: precision agriculture; autonomous robots; artificial intelligence; IoT; cloud computing

1. Introduction

The year 2022 ended with more than 8 billion inhabitants of the world. Most govern-
ments understand that feeding this vast and growing population is one of the significant
challenges they must face in the coming years. Some associations have predicted that
food production will need to increase by 70% to feed the entire population in 2050 [1].
In developed countries, cultivated land is close to its maximum output; therefore, the
solution is oriented toward optimizing the available resources. Many different cultural and
technological methods for increasing crop yield are being used. Some improve crop yields,
but at the extra cost of increasing environmental pollution and the carbon footprint. These
side effects are unacceptable in many industrialized nations, such as those in the European
Union, which is committed to using sustainable methods.
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Precision agriculture leverages technologies to achieve those objectives and avoids
undesired effects. PA is a concept for farm management founded on observation, mea-
surement, and response to crop variability [2]. It assembles different methods to manage
variations in a farm to enhance crop yield, improve commercial profit, and guarantee eco-
environmental sustainability. PA uses current information and communication technologies
(ICT), automation, and robotics to monitor crop growth, predict the weather accurately,
perform optimal irrigation, apply fertilizers smartly, manage weeds and pests accurately,
test soil quality precisely, etc.

Since the late 1980s, precision agriculture techniques have been introduced step by
step in the agricultural production sector, integrating the following;:

e  Sensors to acquire geolocated biodata of crops and soil, e.g., nitrogen sensors, vision
cameras, global navigation satellite systems (GNSS), etc.

o  Computers for analyzing those data and running simple algorithms to help farmers
make simple decisions (applying or not applying a given process, modifying a process
application map, etc.).

e  Actuators in charge of executing the decisions (opening/closing valves, altering a
trajectory, etc.) for modifying crops. As an actuator, we consider the agricultural tool,
also called the agricultural implement, and the vehicle, manually or automatically
driven, to move the tool throughout the working field and apply the farming process.

The integration of subsystems onboard robotic vehicles started in the late 1990s. Some
illustrative examples, based on retrofitting conventional vehicles, are the autonomous
agricultural sprayer [3], which focuses on achieving a pesticide spraying system that
is cheap, safe, and friendly to the environment, and the autonomous orchard vehicles
for mowing, tree pruning, and training, spraying, blossoming, and fruit thinning, fruit
harvesting, and sensing [4], both deployed in the USA. In Europe, we can find the RHEA
fleet (see Figure 1a), consisting of a fleet of three tractors that cooperate and collaborate in
the application of pesticides [5]. Regarding robotic systems based on specific structures
designed for agriculture (see Figure 1b), we can remark on LadyBird in Australia, intended
for the valuation of crops using thermal and infrared detecting systems, hyperspectral
cameras, stereovision cameras, LIDAR, and GPS [6], and Vibro Crop Robotti in Europe, built
for accurate seeding and mechanical row crop cleaning [7]. These robots were integrated
around computing systems based on centralized or elementary distributed architectures to
handle a few sensors and control unsophisticated agricultural tools.

In addition to those developments, related technologies have evolved drastically
in recent years, and now sensors can be spread throughout the field and communicate
with each other. This is possible because of the Internet of Things (IoT). This computing
concept describes how to cluster and interconnect objects and devices through the Internet,
where all are visible and can interact with each other. IoT defines physical objects with
devices (mainly sensors) and includes processing power, software applications, and other
technologies to exchange data with other objects through the Internet.

Moreover, computers can run artificial intelligence (AlI) algorithms, considering Al as
the ability of a machine (computer) to emulate intelligent human actions. The application
of Al to agriculture has been focused on three primary Al techniques: expert systems,
artificial neural networks, and fuzzy systems, with significant results in the management
of crops, pests, diseases, and weeds, as well as the monitoring of agricultural production,
store control, and yield prediction, for example [8].

Al techniques are also applied to provide vehicles with autonomy; therefore, au-
tonomous agricultural robots leverage this technology. Al-based vision systems can fulfill
the following roles:

e Detecting static or dynamic objects in their surroundings.
e Detecting row crops for steering purposes.
e Identifying plants and locating their positions for weeding are clear examples of the

current use of Al techniques in agricultural robotics [9].
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Figure 1. (a) Agricultural robots based on retrofitted conventional vehicles (RHEA fleet); (b) agricul-
tural robots designed on purpose (Courtesy of AgreenCulture SaS).

Another technology that has evolved in the last decade is cloud computing, defined
as the on-demand delivery of computing services, mainly data storage and computing
power, including servers, storage, databases, networking, software applications, artificial
intelligence methods, and analytics algorithms over the Internet. The main objective of
cloud computing systems is to provide flexible resources at adapted prices. A cloud
computing system allows the integration of data of different types, loaded from many
sources in batch and real-time. In particular, the integration can be based on georeferenced
data in the precision farming area. Data can range from trajectory data to images and
videos related to fields and missions and any sensors installed on the autonomous robot.
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Cloud computing allows the use of services available in the cloud (computing, storing,
etc.), with increasing advantages provided by big data techniques. Many agricultural
applications of big data technologies have already been introduced in agriculture [10] and
should be present in future robotic systems.

This article presents an architecture to integrate new technologies and Internet trends
in agricultural autonomous robotic systems and has two main objectives. The first objective
is to provide an example of designing control architectures to connect autonomous robots to
the cloud. It is oriented toward robot designers and gives significant technical details. The
second objective is to disclose to farmers the advantages of integrating the new technologies
in autonomous robots that can provide farmers with significant advantages regarding
(i) data storage, which is a secure and efficient way to store, but also access and share,
data, eliminating the need of physical storage and, thus, reducing the risk of data loss;
(ii) scalability, which allow the farmers to expand or reduce their storage needs, efficiently
optimizing their resources, and (iii) analytics services, which allow a farmer to analyze their
own data to make informed decisions taking advantage of the Al tools available on the
cloud. These are general advantages of using the cloud, but autonomous robots have great
potential for collecting data and must facilitate communicating those data to the cloud.

To base the architecture on a specific example, the integration of a laser-based system
for weed management is considered. Thus, Section 2 presents the material, defining the
robot’s components, and the methodology, detailing the system’s architecture. Section 3
then introduces the experiments to be assessed and discussed in Section 4. Finally, Section 5
summarizes the conclusions.

2. Materials and Methods

This section first describes the components and equipment integrated for building
the autonomous robot used to validate and assess the proposed integration methodology.
Second, the methods for the integration of components are detailed.

2.1. System Components
2.1.1. Main Process Loop in PA Autonomous Robots

The autonomous systems used for precision agriculture generally follow the structure
of an automatic control loop that consists of the following (see Figure 2):

e  Selecting the references for the magnitudes to be controlled, i.e., defining the desired
plan.

e Measuring the magnitudes of interest.

e  Making decisions based on the measured and desired values of the magnitudes
(control strategy).

e  Executing the decided actions

In our application, the selecting references are made with the smart navigation man-
ager (mission planner), the measures of the magnitudes of interest are performed with
the perception system and the IoT sensor network, the decisions are made with the smart
navigation manager (smart operation manager), and the actions are executed with the
agricultural tool and the autonomous robot that move the implement throughout the mis-
sion field. In addition, our system also takes care of the interaction with the cloud and
the operator. In our proposed integration method, these components are grouped into
modules, as illustrated in Figures 2 and 3. These modules are as follows.
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2.1.2. Agricultural Robot

A manually driven or autonomous vehicle is essential in agricultural tasks to perform
the necessary actions throughout the working field. In this case, we use a compact mobile
platform based on a commercial vehicle manufactured by AgreenCulture SaS, France. This
is a tracked platform, and, thus, it operates as a skid-steer mechanism. The track distance
can be adapted to the crop row space. Equipped with an engine or batteries, the platform
can follow predefined trajectories at 6 km/h with a position accuracy of £0.015 m using a
global positioning system (GPS) based on the real-time kinematic (RTK) technique. This
mobile platform is illustrated in Figure 4a.

Electronic box
. aseq-basel 1001 #.

Guiding Vision System

r
»

R g;?_;gensqr Bumper=¢., ‘< - Safety Glirtain

(b)

Figure 4. (a) Mobile platform (AgreenCulture SaS) and (b) autonomous laser weeding system.

2.1.3. Perception System

A perception system is based on computer vision algorithms that obtain, process,
analyze, and understand images and data from the environment. With these inputs, the
system produces numerical and symbolic information for making decisions. The perception
system for this study consists of the following systems:
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e  Guiding vision system: This system aims to detect static and dynamic obstacles in
the robot’s path to prevent the robot tracks from stepping on the crops during the
robot’s motion. Furthermore, it is also used to detect crop rows in their early growth
stage to guide the robot in GNSS-denied areas [8]. The selected perception system
consisted of a red-green-blue (RGB) wavelength vision camera and a time-of-flight
(ToF) camera attached to the front of the mobile platform using a pan-tilt device, which
allows control of the camera angle with respect to the longitudinal axis of the mobile
platform, x. Figure 4 illustrates both cameras and their locations onboard the robot.

o Weed—meristem vision system: The system is based on 3D vision cameras to provide
the controller with data on crops and weeds. These data are used to carry out the main
activity of the tool for which it has been designed: weed management, in this case.
For example, the perception system used in this study consists of an Al vision system
capable of photographing the ground and discriminating crops from weeds in a first
step using deep learning algorithms. In the second step, the meristems of the detected
weeds are identified. Figure 3 sketches this procedure.

2.1.4. Agricultural Tools

Agricultural tools focus on direct action on the crop and soil and rely on physical
(mechanical, thermal, etc.) or chemical (pesticides, fertilizers, etc.) foundations. This study
used a thermal weeding tool based on a high-power laser source that provided lethal laser
doses to be deployed on the weed meristems using scanners.

An Al video system provided the positions of the weed meristems. Indeed, this
specific solution physically integrated the Al vision system, the laser scanner, and the
high-power laser source into the laser-based weeding tool component. The video frames
acquired with this system were sent to the central controller at a rate of 4 frames/s. After
the mission, all stored images were sent to the cloud.

2.1.5. The Smart Navigation Manager (SNM)

This manager is a distributed software application responsible for driving the au-
tonomous robot and coordinating all other modules and systems. The SNM is split into
(i) the smart operation manager and (ii) the central manager, which also includes the
human-machine interface (HMI).

Smart Operation Manager (SoM)

The smart operation manager is a human—computer interaction module that can
acquire, process, and deliver information based on computer algorithms and is devoted to
assisting farmers in making accurate, evidence-based decisions. The SoM is specialized for
laser weeding technology, the tool selected for this study.

Data management is performed through the Internet using FIWARE. Data access
control is provided via a virtual private network (VPN) to secure data transfer to/from
the cloud. The visual dashboard will also be available on the HMI for field operations.
Through the dashboard, the operator will also interact with the robot.

The smart operation manager is allocated in the cloud. It contains the global mission
planner and supervisor, the map builder, and the module for managing the IoT and cloud
computing system (see Figures 3 and 5). The hardware of the SoM relies on a cluster of 10
servers.
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(a) Global Mission Planner

A planner is a software tool responsibl
and an a priori known treatment map. The p
the Internet, including the following:

e  Map information according to the data

e for computing the trajectories of the vehicle
lanner obtains some types of information from

models on the Internet;

e  Other information provided by third parties, such as weather forecasts;

e Data models to create maps for accessing already known treatment maps (sets of
points in the field) which commonly originate from third-party map descriptions
(Google Earth; Geographic Information System (GIS); GeoJSON.io, an open standard
format to represent geographical features with nonspatial qualities).

Regarding robot location, two types of

systems are envisaged, as follows:

e Absolute location based on GNSS: GNSS integrates several controllers for line tracking

and is based on Dubins paths [11];

o Relative location based on RGB and ToF cameras, LIDAR, and IoT sensors: These
methods are based on different techniques for navigation in the field and navi-
gation on the farm, such as hybrid topological maps, semantic localization and
mapping, and identification/detection of natural and artificial elements (crops,
trees, people, vehicles, etc.) through machine learning techniques.

(b) Global Mission Supervisor

A supervisor is a computational tool

responsible for overseeing and monitoring

the execution of the mission plan while helping the farmer (operator) manage potential
failures. Most supervisor systems are designed around two actions: fault detection and

fault diagnosis. The supervisor executes the

following actions:

e  Receiving alarms from the system components (vehicle, sensors, weeding tool, etc.).

e Detecting faults in real-time.
e  Executing diagnosis protocols.
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e  Collecting all available geo-referred data generated by every module onboard the
robot. The data are stored in both the robot and the cloud.

(c) Map Builder

A map builder is an application used to convert maps based on GeoJSON into FIWARE
entities. Its main function is to support farmers in using the robotic system in a simple,
reliable, and robust way by giving the robot enough information a priori (e.g., farm schema
and boundaries, field locations and shapes, crop types, and status). This module takes
advantage of the data models created by the FIWARE community to represent the farm and
other environments digitally, where they have been conditioned to be adapted to robotic
systems and especially oriented to navigation [12]. The design of the Map Builder allows
the user to accomplish the following:

o  Select the field in GeoJSON.IO, an open-source geographic mapping tool that allows
maps and geospatial data to be created, visualized, and shared in a simple and
multiformat way.

e  Assign essential attributes to comply with FIWARE. These attributes are those based
on the farmer’s knowledge. They can include static (i.e., location, type, category) and
dynamic (i.e., crop type and status, seeding date, etc.) attributes.

e  Exportin * GeoJSON format. The map obtained will be imported for extracting the
information required to fill in the FIWARE templates, which include the farms and
parcel data models, and other elements in a farm, such as buildings and roads.

This conversion makes it easier to connect the robot to the cloud by standardizing
data. These data, after processing, constitute a source for the design of processes with the
robot, and its storage and subsequent analysis can provide forecasts of future events in the
field or behavior of the robot.

(d) IoT System

This study integrates an IoT sensor network to collect data from the following:

e  The autonomous vehicle: The data and images acquired with IoT sensors onboard the
vehicle are used to monitor and evaluate performances and efficiency and to identify
the effects of treatments and traffic on surfaces.

e  The environment: Data acquired with IoT sensors deployed on the cropland are used
to (i) monitor crop development and (ii) collect weather and soil information.

Two IoT sets of devices are used in our study, as follows:

e Robot-IoT set: It consists of two WiFi high-definition cameras installed onboard the
autonomous robot (IoT-R1 and IoT-R2 in Figure 3). The cameras are triggered from
the cloud or the central controller to obtain a low frame rate (approximately 1/5 sec).
The pictures are stored in the cloud and are used to monitor the effects of the passage
of the autonomous vehicle; therefore, they should include the robot’s tracks.

e  Field-IoT set: It consists of the following (see Figure 3):

o Two multispectral cameras (IoT-F1 and IoT-F2) placed at the boundary of cropped
areas to obtain hourly pictures of crops.

o A weather station (IoT-F3) to measure precipitation, air temperature (Ta), relative
humidity (RH), radiation, and wind.

o Three soil multi-depth probes (IoT-F4) for acquiring moisture (Ts) data and three
respiration probes (IoT-F5) to measure CO, and H,O.

Every one of these components or nodes exchanges messages with the Message
Queuing Telemetry Transport (MQTT) protocol, carrying JavaScript Object Notation (JSON)
serialized information from node sensors/cameras interpreted as the entity. While metering
nodes (weather, soil probe, and respirometer) communicate by MQTT messages, camera
nodes have to transmit images (maximum of 100 pictures/day for periodic snapshots of
the area or alarms), and the use of FTP made a wide-band networking solution, such as
WiFi, mandatory instead of narrowband solutions.
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(e) Cloud Computing System

This study sets up a cloud-based data platform, which is an ecosystem that incorpo-
rates data acquired in the field. The data platform supports end-to-end data needs, such as
ingestion, processing, and storage, to provide the following:

e A data lake repository for storing mission data to be downloaded in batches for
post-mission analysis.

e A web interface for post-mission data analysis based on graphical dashboards, georef-
erenced visualizations, key performance indicators, and indices.

e A container framework for implementing “Decision Support System” functionalities
that define missions to be sent to the robot. These functionalities (e.g., the mission
planner) can be implemented and launched from the cloud platform.

e A soft real-time web interface for missions. The interface visualizes real-time robot
activities and performances or sends high-level commands to the robot (e.g., start,
stop, change mission).

These functionalities are ordered based on the strictness of real-time constraints.

The cloud-computing platform is based on the Hadoop stack and is powered by
FIWARE. We adopted an open-source solution with well-known components that can be
imported into different cloud service providers if no on-premises hardware is available.
The core component of the platform is the (FIWARE) Orion Context Broker (OCB) from
Telefonica [13], a publish/subscribe context broker that also provides an interface to query
contextual information (e.g., obtain all images from the cameras in a specific farm), update
context information (e.g., update the images), and be notified when the context is updated
(e.g., when a new image is added into the platform). The images and raw data are stored in
the HDFS (Hadoop distributed file system), while the NoSQL (not only structured query
language) MongoDB database is used to collect the contextual data from FIWARE and
further metadata necessary to manage the platform [14]. Additionally, we use Apache
KAFKA, an open-source distributed event bus, to distribute context updates from FIWARE
to all the modules/containers hosted on the cloud platform. The different cloud computing
modules/containers used in this study are illustrated in Figure 5.

Central Manager
This central manager is an application that is divided into the following:

o Obstacle detection system. This module acquires visual information from the front of
the robot (robot vision system) to detect obstacles based on machine vision techniques.

e  Local mission planner and supervisor. The planner plans the motion of the robot near
its surroundings. The local mission supervisor oversees the execution of the mission
and reports malfunctions to the operator (see Section 2.1.5).

e Guidance system. This system is responsible for steering the mobile platform to follow
the trajectory calculated by the planner. It is based on the GNSS if its signal is available.
Otherwise, the system uses the information from the robot vision system to extract the
crop row positions and follow them without harming the crop.

e  Human-machine interface

A human-machine interface (HMI) is a device or program enabling a user to commu-
nicate with another device, system, or machine. In this study, a HMI using portable devices
(android tablets) is addressed to allow farmers to perform the following:

- Supervise the mission.

- Monitor and control the progress of agricultural tasks.

- Identify and solve operational problems.

- Obtain real-time in-field access in an ergonomic, easy-to-use, and robust way.
- Maintain the real-time safety of the entire system.

To achieve these characteristics, a graphic device was integrated with the portable/remote
controller of the mobile platform. This controller provides manual and remote vehicle
control and integrates an emergency button.
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2.1.6. Sequence of Actions

The relationships among these components and modules and the information flow
are illustrated in Figures 2 and 3. The process is a repeated sequence of actions (A0 to A6),
defined as follows:

A0 The system is installed in the field, The operator/farmer defines or selects a previously
described mission using the HMI and starts the mission.

A1l The sensors of the perception module (M1) installed onboard the autonomous robot
(M2) extract features from the crops, soil, and environment in the area of interest in
front of the robot.

A2  The data acquired in action Al are sent to the smart operation manager, determining
the consequent instructions for the robots and the agricultural tool.

A3 The required robot motions and agricultural tool actions are sent to the robot controller,
which generates the signal to move the robot to the desired positions.

A4 The robot controller forwards the commands sent by the smart navigation manager
or generates the pertinent signals for the agricultural tool to carry out the treatment.

A5 The treatment is applied, and the procedure is repeated from action Al to action A5
until field completion (A6).

A6 End of mission.

2.2. Integration Methods

Integrating all of the components defined in the previous section to configure an
autonomous robot depends on the nature of the applications the robot is devoted to and the
connections and communication among the different components that must be precisely
defined. Thus, this section first describes the computing architecture of the controller,
which integrates the different subsystems and modules. Second, the interfaces between
subsystems are precisely defined. Finally, the operation procedure is defined.

2.2.1. Computing Architecture

A distributed architecture based on an open-source Robot Operating System (ROS) is
proposed to integrate the system’s main components onboard the mobile platform in this
study. ROS is the operating system most widely accepted by software developers to create
robotics applications. It consists of a set of software libraries and tools that include drivers
and advanced algorithms to help developers build robot applications [15].

In this study, ROS, installed in the central controller, is used as a meta-operating system
for the testing prototype. The necessary interfaces (bridges) are developed to establish
communication with the autonomous vehicle, the perception system, and the laser-based
weeding tool. Because of ROS versatility and its publisher/subscriber communication
model, it is possible to adapt the messages to protocols commonly used in IoT, such as
Message Queuing Telemetry Transport (MQTT).

ROS supports software developers in creating robotics functionalities to monitor and
control robot components connected to a local network. However, this solution is not
extendible to a wider network, such as the Internet. Fortunately, there exist some ROS
modules that solve the problem. One is ROSLink, a protocol for extensions defining an
asynchronous communication procedure between the users and the robots through the
cloud [16]. ROSLink performance has been shown to be efficient and reliable, and it is
widely accepted by the robotics software community [17]. Although ROSLink has been
widely used to connect robotic systems with the cloud, it is oriented toward transmitting
low-level messages. There is no convention to define standard data models that allow
intelligent robotics systems to be scalable.

One alternative to a more internet-oriented communication framework is FIWARE,
which offers interaction with the cloud using cloud services that provide well-known bene-
fits, such as (a) cost and flexibility, (b) scalability, (c) mobility, and (d) disaster recovery [18].
FIWARE is an open software curated platform fostered by the European Commission
and the European Information and Communication Technology (ICT) industry for the
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development and worldwide deployment of Future Internet applications. It attempts to
provide a completely open, public, and free architecture and a collection of specifications
that allows organizations (designers, service providers, businesses, etc.) to develop open
and innovative applications and services on the Internet that fulfill their needs [19].

In this study, a cloud-based communication architecture has been implemented us-
ing FIWARE as the core, which allows messages between the edge and the cloud to be
transferred and stored. The selection was made because this is an open-source platform
that provides free development modules and has many enablers already developing and
integrating solutions for smart agriculture.

In addition to FIWARE, we use KAFKA, a robust distributed framework for streaming
data (see Section 2.1.5) that allows producers to send data and for consumers to subscribe to
and process such updates. KAFKA enables the processing of streams of events/messages
in a scalable and fault-tolerant manner, and decouples producers and consumers (i.e., a
consumer can process data even after a producer has gone offline). For historic data, HDFS
allows the download of batches of data at any time and replicates each data in three copies
to prevent data loss.

The visual dashboard will also be available on the HMI for the field operations.
Through the dashboard, the operator will also interact with the robot. FIWARE smart data
models do not suffice to represent our application domain or to integrate the agricultural
and robotic domains; therefore, we have extended the existing models and updated some
existing entities. Since smart data models from FIWARE are overlapping and sometimes
inconsistent, we had to envision a unified model to integrate and reconcile the data. To
connect the robotic system with the cloud, specific data models were developed to represent
the different robotic elements, following the guidelines of FIWARE and its intelligent data
models [12].

The IoT devices deployed in the field must be able to establish connections through
WiFi and LoRa technologies. WiFi is a family of wireless network protocols. These protocols
are generally used for Internet access and communication in local area networks, allowing
nearby electronic devices to exchange data using radio waves. LoRa technology is a
wireless protocol designed for long-range connectivity and low-power communications
and is primarily targeted for the Internet of Things (IoT) and M2M networks. LoRa tolerates
noise, multipath signals, and the Doppler effect. The cost of achieving this is a very low
bandwidth compared to other wireless technologies. This study uses a 4G LTE-M modem
to connect to the Internet.

At a lower level of communication, CANbus or ISOBUS is generally used to control
and monitor the autonomous vehicle. This study uses CANbus and its communication
protocol CANopen. Autonomous vehicles and agricultural tools typically contain their
own safety controllers. The first behaves as a master and, in the case of a risky situation, it
commands the tool to stop.

The human—machine interface (HMI) will include a synchronous remote procedure
call-style communication over the services protocol and asynchronous communications to
ensure the robot’s safety. In addition to these ROS-based protocols, the HMI has a safety
control connected to the low-level safety system (by radiofrequency) for emergency stops
and manual control.

Figure 6 illustrates the overall architecture, indicating the following:

e The modules (Mi), presented in the previous sections.

e The interconnection between modules, presented in the next section.

e The communication technologies and protocols to configure agricultural robotic sys-
tems that integrate IoT and cloud computing technologies.

The main characteristics of this architecture are summarized in Table 1.
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(a) Field areas

(b) Field distribution

Figure 6. Experimental fields.

Table 1. Architecture components.

Architecture Component

Solutions/Comments

Operating system

ROS (Robot Operating System)

ToT-controller bridge

Hypertext Transfer Protocol (HTTP) to FIWARE
Note: FIWARE is used as a communication protocol in the cloud;
therefore, it is not necessary to use ROSLink.

ROS-based system for FIWARE tools

HTTP protocol to FIWARE
Note: FIROS has several disadvantages when developing new data
models to represent the robot, so a particular enabler will not be
used to establish communication between the robot and the cloud.

Communication with IoT devices

WiFi, serial communication
Note: Since a certain amount of data needs to be transmitted, WiFi
would suffice.

The Internet

4G LTE-M modem

Devices onboard the mobile platform

CANopen, serial

Human-machine interface (HMI).

Synchronous remote procedure call-style communication over
services protocol.
Asynchronous communications to ensure the safety of the robot.
Note: The HMI is used to provide access to SoM services through a
web interface.
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2.2.2. Interfaces between System Components

This architecture considers four main interfaces between systems and modules, as
follows:

Smart Navigation Manager (M4)/Perception System (M1) interface

To receive the raw information from the perception system (sensors, cameras, etc.),
the central manager uses direct connections via the transmission control protocol/Internet
protocol (TCP/IP) for sensors and the universal serial bus (USB) for RGB and ToF cameras.
All ToT devices use the available wireless communication technologies (WiFi and LoRa) to
access the Internet and the cloud.

To guide the robot, the obstacle detection system obtains data from the guiding
vision system (RGB and ToF cameras) through the Ethernet that communicates the central
manager with the perception system. This communication is stated using the ROS manager
and the perception—-ROS bridge (see Figure 3).

Smart Navigation Manager (M4)/Agricultural Tool (M3) interface

These systems can communicate through ROS messaging protocols, where the pub-
lisher/subscriber pattern is preferred. This interface exchanges simple test messages to
verify the communication interface.

It is worth mentioning that the perception system and the agricultural tool are con-
nected directly in some specific applications. This solution decreases the latency of data
communication but demands moving a portion of the decision algorithms from the smart
navigation manager to the tool controller; therefore, the tool must exhibit computational
features. This scheme is used in the weeding system to test the proposed architecture.

Smart Navigation Manager (M4)/Autonomous Robot (M2) interface

Initially, these systems communicate via CANbus with the CANopen protocol. The
central manager uses this protocol to receive information on the status of the autonomous
vehicle and basic information from the onboard sensors (GNSS, IMU, safety system, etc.).
A CANbus-ROS bridge is used to adapt the communication protocols.

Autonomous Robot (M2)/Agricultural Tool (M3) interface

Usually, it is not necessary for the vehicle to directly communicate with the tool because
the smart navigation manager coordinates them. However, as autonomous vehicles and
agricultural tools usually have safety controllers, there is wired communication between
the two safety controllers. In such a case, the autonomous vehicle safety controller works as
a master and commands the tool safety controller to stop the tool if a dangerous situation
appears.

Perception System (M1)/Agricultural Tool (M3)

This communication is required to inform the agricultural tools about the crop status.
In weeding applications, the information is related to the positions of the weeds. In
this specific application, the perception system (weed meristem detection module) sends
the weed meristem positions to the laser scanner module of the agricultural tool. This
communication is carried out using a conventional Ethernet connection. The metadata
generated via the detection system are made available in the existing ROS network and
sent to the smart navigation manager.

Smart Navigation Manager internal/cloud communications

The smart navigation manager is a distributed system that consists of three main
modules:
e The central manager running on the central controller.
o  The smart operation manager running on the cloud.
e The HMI running in a portable device.

90



Agriculture 2023, 13, 1005

The central manager and the smart operation manager communicate via NGSI v2,
a FIWARE application programming interface, using a FIWARE-ROS bridge to adapt
ROS protocols to NGSI v2 messages. In contrast, the HMI communicates with the central
manager via WiFi and Internet, directly accessing the web services hosted in the cloud.
The HMI exhibits a panic button connected via radiofrequency to the safety systems of the
autonomous robot and the agricultural tool.

IoT system/Cloud
There is a direct link from the IoT system to the cloud using MQTT.

2.2.2.8. Operation Procedure

To use the proposed architecture and method, the user must follow the method below.

o  Creating the map: The user creates the field map following the procedure described in
the MapBuilder module (see Section 2.1.5).

e  Creating the mission: The user creates the mission by selecting the mission’s initial
point (home garage) and destination field (study site).

e Sending the mission: The user selects the mission to be executed with the HMI (all
defined missions are stored in the system) and sends it to the robot using the cloud
services (see Section Smart Operation Manager (SoM)).

e  Executing the mission: The mission is executed autonomously following the sequence
of actions described in Section 2.1.6. The user does not need to act except for when
alarms or collision situations are detected and warned of by the robot.

e  Applying the treatment: When the robot reaches the crop field during the mission, it
sends a command to activate the weeding tool, which works autonomously. The tool
is deactivated when the robot performs the turns at the headland of the field and is
started again when it re-enters. The implement was designed to work with its own
sensory and control systems, only requiring the mobile platform for mobility and
information when it must be activated /deactivated.

e  Supervising the mission: When the robotic system reaches the crop field, it also sends
a command to the IoT sensors, warning that the treatment is in progress. Throughout
the operation, the mission supervisor module analyzes all the information collected by
the cloud computing system, generated by both the robotic system and the IoT sensors.
It evaluates if there is a possible deviation from the trajectory or risk of failure.

e  Ending the mission: The mission ends when the robot reaches the last point in the
field map computed by the MapBuilder. Optionally, the robot can stay in the field or
return to the home garage. During the mission execution, the user can stop, resume,
and abort the mission through the HMI.

3. Experimental Assessment

This section states the characteristics of the described autonomous robot with IoT
and cloud computing connectivity. To achieve this purpose, the experimental field for this
study is first described. Then, a test mission is defined to acquire data from the different
subsystems. Finally, the system characteristics are analyzed and assessed.

The characteristics obtained are not compared with similar robotic systems due to
the lack of such information in the literature. There are no published results in weeding
applications; therefore, it is difficult to compare, and the indicators have been geared
towards general cloud computing and mobile robotics characteristics. Therefore, cross-
validation has been carried out, comparing the features of the autonomous robot with the
general performance of the robot and cloud communication. Productivity, cost, and other
indicators of the presented architecture are those of the general use of cloud computing.

3.1. Study Site

The system developed for this study was tested in an experimental field located in
Madrid, Spain (40°18'45.166, —3°28/51.096"). The climate of the study site is classified as
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a hot summer Mediterranean climate with an average annual temperature of 14.3 °C and
precipitation of 473 mm.

The experimental field consisted of two areas of 60 x 20 m? that grew wheat (Triticum
aestivum L.), with crop rows at a distance of 0.10 m, and maize (Zea mays L.), with crop
rows at a distance of 0.50 m, respectively. Each area was divided into three sections of
20 x 20 m?. The sections in one area were seeded in consecutive weeks, allowing us to
conduct experiments in three-week windows. Figure 6 shows the experimental field and
the distribution of the areas and sections.

3.2. Description of the Test Mission

Tests were conducted to assess the performance and quality of integrating new tech-
nologies in autonomous robots for agriculture. First, the testing prototype was integrated
with the components introduced in Section 2; then, several IoT devices were disseminated
throughout the field (RGB and multispectral cameras, weather stations, soil probes, etc.);
finally, a mission was defined to acquire data in the study site to perform quantitative
analyses. The mission consisted of covering sections of 20 x 20 m? with wheat and maize
crops while the following occurred:

e  Acquiring data from the IoT sensor network.

e  Taking pictures of the crop.

e  Acquiring data from the guidance system.

e  Sending all the acquired information to the cloud.

The mission proposed by the planner is illustrated in Figure 7. The robot tracked the
path autonomously, and the following procedures were carried out.

oors Light Dark OSM

Figure 7. Robot’s path from the home garage to the study site. The planner provides the mission for
covering the study site.
Perception system procedure

e  Guiding vision system: This experiment was conducted in the treatment stage, where
the crop was detected to adjust the errors derived from planning and the lack of
precision of the maps. YOLOv4 [20], a real-time object detector based on a one-stage
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object detection network, was the base model for detecting early-stage growth in
maize [8], a wide-row crop. The model was trained using a dataset acquired in an
agricultural season before these tests using the same camera system [21]. Moreover, in
the case of wheat, which is a narrow-row crop, a different methodology was applied
through the use of segmentation models, such as MobileNet, a convolutional neural
network for mobile vision applications [22], trained using a dataset acquired in an
agricultural season before these tests [23], with the same camera system. The detection
of both crops was evaluated with regard to the GNSS positions collected manually for
the different crop lines.

The maize and wheat datasets were built with 450 and 125 labeled images, respectively.
Data augmentation techniques (rotating, blurring, image cropping, and brightness changes)
were used to increase the size of the datasets. For both crops, 80% of the data was destined
for training, 10% for validation, and 10% for testing.

e  The Al vision system: This system uses data from the installed RGB cameras to enable
robust automated plant detection and discrimination. For this purpose, the state-
of-the-art object detection algorithm Yolov7 is used in combination with the Nvidia
framework DeepStream. Tracking the detected plants is performed in parallel by a
pretrained DeepSort algorithm [24]. The reliability of the object detection algorithm
is evaluated using test datasets with the commonly used metrics “intersection over
union” (IoU) and “mean average precision” (mAP). This system works cooperatively
with laser scanners as a stand-alone system. The information is not stored in the cloud.

The dataset used for training weed/crop discrimination was generated in fields in
several European countries. It contains 4000 images, 1000 of which are fully labeled.
Distinctions are made according to the processing steps to be applied: weeds, grasses,
and crops. In addition, the dataset was expanded to three times its original size through
augmentation measures. As well as generating new training data, this enables robustness
against changing environmental influences, such as changing color representation, motion
blur, and camera distortion. The YoloV7 network achieved a mean average precision (mAP)
of 0.891 after 300 epochs of training. The dataset was divided into 80%, 10%, and 10% for
training, validation, and testing subsets, respectively.

Autonomous robot procedure

The navigation controller: Given a set of trajectories based on RTK-GNSS, the perfor-
mance of the guidance controller was evaluated by measuring lateral and angular error
through the incorporation of colored tapes on the ground and using the onboard RGB
camera and ToF to extract the tape positions to compute the errors concerning the robot’s
pace.

Smart Navigation Manager procedure:

e  Smart operation manager: The processing time, latency, success rate, response time,
and response status based on requests of the mission planner, IoT sensors, and cloud
computing services were evaluated using ROS functionalities that provide statistics
related to the following:

o The period of messages by all publishers.

o The age of messages.

o The number of dropped messages.

o Traffic volume to be measured in real-time.

e  Central manager: The evaluation is similar to that used for the navigation controller.

o  Obstacle detection system: YOLOv4 and a model already developed based on the
COCO database were introduced to detect common obstacles in agricultural environ-
ments and were also used for evaluation. YOLOV4 is a one-stage object detection
model, and COCO (common objects in context) is a large-scale object detection, seg-
mentation, and captioning dataset.
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4. System Assessment and Discussion

The mission described in the previous section produced crop images, sensor data, and

traffic information with the following characteristics:

Crop images: During the robot’s motion, images are acquired at a rate of 4 frames/s
to guide the robot. The RGB images are 2048 x 1536 pixels with a weight of 2.2 MB
(see Figures 8 and 9), and the ToF images feature 352 x 264 points (range of 300-5000
mm) (see Figure 10). The images are sent to the guiding and obstacle detection system
through the Ethernet using ROS (perception-ROS bridge in the perception system
and ROS manager in the central manager). A subset of these images is stored in the
cloud for further analysis. Using a FIWARE-ROS bridge with the NGSI application
programming interface, the system sends up to 4 frames/s.

Sensor data: IoT devices send the acquired data using 2.4 GHz WiFi with the MQTT
protocol and JSON format.

Traffic information: The ROS functionalities mentioned above revealed that during
a field experiment (10 min duration), the total number of delivered messages was
2,395,692, with a rate of only 0.63% dropped messages (messages that were dropped
due to not having been processed before their respective timeout), with average traffic
of 10 MB/s and maximum traffic of 160 MB at any instant of time. No critical messages
(command messages) were lost, demonstrating robustness within the smart navigation
manager. Regarding cloud traffic, during a period of time of approximately 3 h, the
messages sent to the cloud were monitored, where the number of messages received by
the cloud was measured; the delay time of the transmission of the messages between
the robot (edge) and the OCB, and between the robot and the KAFKA bus (see Figure 3),
were also measured. During this interval of time, around 4 missions were executed,
and a total of 14,368 messages were sent to the cloud, mainly the robot status and the
perception system data. An average delay of about 250 ms was calculated between
the moment the message is sent from the robot and the moment it is received in the
OCB (see Figure 11a). Moreover, the KAFKA overhead, i.e., the time it takes for a
message received by the OCB to be forwarded to the KAFKA bus and eventually
processed by a KAFKA consumer, was approximately 1.24 ms, demonstrating that the
internal communications within the server and hosted cloud services are robust (see
Figure 11b).

Figure 8. Example of a wheat image acquired with the guiding vision system and uploaded to the
cloud.
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Figure 9. Example of a maize image acquired with the guiding vision system and uploaded to the
cloud.

The system has been tested in a field with two different crops. Data related to cloud
communication and robot guidance algorithms have been collected. The communication
performance is similar to that obtained using conventional mechanisms, so we benefit from
using ROS and FIWARE without compromising performance.

Figure 10. Example of a ToF intensity image acquired with the guidance system and uploaded to the
cloud.
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Figure 11. Example of a ToF intensity image acquired with the guidance system and uploaded to the
cloud. (a) Message delay and (b) Kafka overhead.

5. Conclusions

An architecture is presented to configure autonomous robots for agriculture with
access to cloud technologies. This structure takes advantage of new concepts and technolo-
gies, such as IoT and cloud computing, allowing big data, edge computing, and digital
twins to be incorporated into modern agricultural robots.

The architecture is based on ROS, the most universally accepted collection of software
libraries and tools for building robotic applications, and FIWARE, an open architecture
that enables the creation of new applications and services on the Internet. ROS and FI-
WARE provide attractive advantages for developers and farmers. ROS and FIWARE offer
powerful tools for developers to build control architectures for complex robots with cloud
computing/IoT features, making development easier and leveraging open-source frame-
works. ROS and FIWARE, as in the proposed integration, provide reusability, scalability,
and maintenance using the appropriate hardware resources. In addition, integrating the
robot controller into the Internet allows the exploitation of autonomous robot services for
agriculture through the Internet.

On the other hand, the use of this type of architecture reveals to farmers the advantages
of communicating autonomous robots with the cloud, providing them with leading benefits
to storing data safely and efficiently, eliminating physical storage, and, thus, reducing the
risk of data loss. Data stored in the cloud makes it easy to access data from anywhere and
share it with other farmers or platforms. In addition, the services offered in the cloud are
very flexible to contract the actual storage needed at all times, optimizing the farmer’s
resources. Finally, farmers can use the analysis tools available in the cloud to make their
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own decisions. In any case, working in the cloud requires an initial investment, which is
usually recovered quickly.

The different components of the robot, particularized for a laser-based weeding robot,
are described, and the general architecture is presented, indicating the specific interfaces.
Based on these components, the article presents the action sequence of the robot and the
operating procedure to illustrate how farmers can use the system and what benefits they
can obtain.

Several experiments with two crops were conducted to evaluate the proposed in-
tegration based on the data communication characteristics, demonstrating the system’s
capabilities. The crop row detection system works correctly for both crops, tracking the
rows with an accuracy of +0.02 m. The evaluation concluded that the system could send
image frames to the cloud at 4 frames/s; messages between subsystems and modules can
be passed with a 0.63% rejection rate. Regarding the traffic of the information exchanged,
an average delay of 250 ms was detected in the messages between the robot and the OCB.
In contrast, the OCB and the KAFKA bus measured an average message of 1.24 ms. This
indicates the robustness of internal communications within the server and hosted cloud
services. This performance is in the range obtained when a system communicates with the
cloud using conventional methods, so ROS and FIWARE facilitate communication with the
cloud without compromising performance.

Future work will focus on extending cloud computing architecture to integrate digital
twins, orchestrate big data ensembles, and facilitate the work of robots with edge computing
performance.
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Abstract: Field phenotyping is a crucial process in crop breeding, and traditional manual phenotyping
is labor-intensive and time-consuming. Therefore, many automatic high-throughput phenotyping
platforms (HTPPs) have been studied. However, existing automatic phenotyping methods encounter
occlusion problems in fields. This paper presents a new in-field interactive cognition phenotyping
paradigm. An active interactive cognition method is proposed to remove occlusion and overlap
for better detectable quasi-structured environment construction with a field phenotyping robot.
First, a humanoid robot equipped with image acquiring sensory devices is designed to contain an
intuitive remote control for field phenotyping manipulations. Second, a bio-inspired solution is
introduced to allow the phenotyping robot to mimic the manual phenotyping operations. In this way,
automatic high-throughput phenotyping of the full growth period is realized and a large volume
of tiller counting data is availed. Third, an attentional residual network (AtResNet) is proposed for
rice tiller number recognition. The in-field experiment shows that the proposed method achieves
approximately 95% recognition accuracy with the interactive cognition phenotyping platform. This
Ppaper opens new possibilities to solve the common technical problems of occlusion and observation
pose in field phenotyping.

Keywords: phenotyping; agricultural robot; tiller counting; deep learning; residual network

1. Introduction

The growing population places high demands on crop yields [1]. Crop breeding is
a crucial technique to increase yields, disease resistance and other desirable properties
by improving the genetic characteristics of crops [2]. Phenotyping is a process central to
breeding, which refers to measuring the key parameters related to crop properties, such
as plant height, leaf area, leaf angle, number of grains and number of tillers [3,4]. The
phenotyping process is currently mainly performed by crop breeding experts, who measure
these parameters with manual tools and their sufficient experience.

In order to acquire crop growth status at different growth stages, breeding experts need
to perform in-field manual phenotyping for each crop at regular intervals. Undoubtedly,
this work is labor-intensive and time-consuming. The traditional manual phenotyping
method is highly experience-dependent and its efficiency and reliability are limited. As a
result, the rate of plant genome research is restricted by the rate of phenotyping, which is
defined as the “Phenotyping Bottleneck” [5].

To speed up the breeding process and relieve the bottleneck, studies on high-throughput
phenotyping platforms (HTPPs) have been widely conducted [6]. Many advanced technolo-
gies have been applied for automatic phenotyping [7]. The Scanalyzer 3D High Throughput
platform [8] developed by German research institute LemnaTec has high impact [9]. Plants
are transported by conveyers through a sequence of imaging cabinets equipped with
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various sensors to acquire various phenotype data. This system is widely used in vari-
ous phenotyping platforms, such as the Plant Accelerator of Australian Centre for Plant
Functional Genomics (ACPFG) [10]. The Plant Accelerator, consisting of four greenhouses
and two Scanalyzer 3D platforms, can accomplish high-throughput phenotyping, as well
as watering and weighing the plants. Hartmann et al. [11] developed an open-source
image analysis pipeline called HTPheno. It can acquire crop images using pipelines in
greenhouses and measure various phenotypic parameters from the images. Liu et al. [12]
presented a Digital Plant Phenotyping Platform for multiple trait measurement, such as
leaf and tiller orientation. These HTPPs significantly increased the phenotyping efficiency
compared with the traditional manual process. However, plants grown in greenhouses are
not affected by soil condition, weather variation or many other natural factors, so pheno-
types may differ from those grown naturally in fields. Moreover, to avoid the influence of
leaf occlusion and overlap on measurement, plants are planted separately, which cannot
simulate the plant interplay when planted closely in fields.

For the purpose of field high-throughput phenotyping, many field high-throughput
phenotyping platforms have been developed to date. LemnaTec also developed a field
HTPP named the Scanalyzer Field recently [13]. It is a fully automated gantry system with
an extensive measurement platform equipped with cameras and sensors. It can measure up
to 0.6 hectares of crops to acquire detailed phenotypic data. Researchers at the University
of Arizona and the United States Department of Agriculture (USDA) [14] developed a
field HTPP that included a sonar proximity sensor, sonar and GPS antenna and infrared
radiometer (IRT) sensors. The system can measure canopy height, reflectance, and some
other phenotypic parameters, but it can only acquire data overhead. The Robotanist devel-
oped by Mueller-Sim et al. [15] is a ground-based platform. It can autonomously navigate
fields to measure stalk strength with a manipulator and collect phenotypic parameters
with non-contact sensors. The platform developed by researchers at Iowa State University
employs a stereo camera rig that consists of six stereo camera heads to accomplish high
quality 3D reconstruction of sorghum plant architecture [16]. The system is carried by a
self-navigate tractor equipped with RTK-GPS signals. Zhou et al. [17] introduced a rice
panicle counting platform using images captured by an unmanned aerial vehicle based on
deep learning algorithms.

Field HTPPs automatically conduct phenotyping in natural fields with high efficiency
using automatic navigating and measurement systems. However, leaf occlusion and
overlap in field environments severely restrict the measurement accuracy of some param-
eters. This has become a key challenge for automatic in-field phenotyping and restricts
practical applications.

Tillers refer to the aboveground branches of gramineous plants, and the number
of tillers is one of the most important parameters in ecology and breeding studies. The
rice yield is usually dominated by primary tillers and some early secondary tillers [18].
As a result, tiller number is a key phenotypic trait for rice and the measurement and
analysis of the tiller number are indispensable in phenotyping [19]. Rice tillers are currently
manually counted using the separated shoots from a single plant by experts. The counting
process is inefficient and labor-intensive. Automatic tiller counting methods have been
studied in the past few years. For instance, Yang et al. [20] used an X-ray computed
tomography (CT) system to measure rice tillers on a conveyer. In their work, a mean
absolute error (MAE) of approximately 0.3 was reached. Huang et al. [21] proposed to
measure rice tillers through magnetic resonance imaging (MRI). However, it is not suitable
to perform in-field high-throughput measurements using these cumbersome and expensive
systems. Scotford et al. [22] used spectral reflectance and ultrasonic sensing techniques to
estimate tiller density and an accuracy of +125 tillers per m? was achieved. Deng et al. [23]
presented a rice tiller counting platform based on in-field images captured by smartphones
and they were measured after the rice plants were cut and the branches were removed.
Yamagishi et al. [24] proposed to count rice tillers using proximal sensing data taken by
an unmanned aerial vehicle. These methods provided some attempts for in-field tiller
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counting, but the key problem of occlusion and overlap was not addressed, restricting the
recognition accuracy in practical applications.

To tackle the occlusion and overlap problem in in-field phenotyping in this paper,
a novel phenotyping paradigm of interactive cognition is proposed. A detectable quasi-
structured environment is actively constructed for in-field phenotyping; therefore, the
cognition process can be accomplished smoothly. This method overcomes the problem of
occlusion and overlap in traditional passive automatic phenotyping methods. Meanwhile,
a field phenotyping robot is developed and a bio-inspired solution is adopted so that it
mimics the manual operations of breeding experts in fields. In this way, the phenotyping
operational schedules are regularized. Moreover, based on the interactive cognition phe-
notyping method, a rice tiller counting method based on attentional residual networks
(AtResNet) is proposed using the structured light images captured by the robot. The main
contributions of this paper are as follows:

(1)  An interactive cognition methodology is proposed for full growth period in-field
high-throughput phenotyping.

(2)  To accomplish the interactive cognition-based field phenotyping, a humanoid robot is
designed with human-in-the-loop interactive methodology.

(3) A high-accuracy rice tiller counting method based on the phenotyping platform
is proposed.

The rest of this paper is organized as follows. Section 2 introduces the interactive
cognition phenotyping method based on the humanoid robot. Section 3 presents the
bio-inspired operational forms. Section 4 describes the rice tiller counting algorithm and
Section 5 shows the experimental results. Section 6 concludes the paper.

2. Interactive Cognition Phenotyping Method

In many industrial applications, the machine vision techniques for object detection and
measurement are mature. Industrial robots generally use non-interactive passive detection
methods to achieve cognition of the surrounding environment. However, occlusion and
overlap rarely exist in industrial scenes; in other words, the scenes are structured. Hence,
non-interactive cognition methods can basically meet the cognition requirements. However,
in fields, simple machine vision inspection methods are not compatible with complex
unstructured agricultural scenes [25]. It is difficult to perform phenotyping for crops in
occlusion scenes. To solve this problem, we propose a new phenotyping paradigm of
interactive cognition. A phenotyping robot is introduced to interact with the surrounding
plants. The robot mimics breeding experts” manual operations of removing occlusion and
overlap, while performing phenotyping in fields. A detectable quasi-structured environ-
ment is constructed; therefore, full cognition of the crops can be achieved through machine
vision-based detecting methods.

2.1. Interactively Cognitive Humanoid Field Phenotyping Robot

In order to interactive with crops and construct various detectable scenes for pheno-
typing, the robot needs to have high operational dexterity. To perform the phenotyping
operations of experts, we used a bio-inspired design methodology to design the humanoid
robot ontology. The robot ontology, as shown in Figure 1, is based on an open-source
project named InMoov [26], and it has been redesigned to improve its adaptability to the
agricultural working environment. Its shoulder and arm have five degrees of freedom,
ensuring the completion of complex actions, such as those carried out by humans, and
sufficient space for movement. The manipulator is a humanoid mechanical hand, inspired
by an open-source project [27]. The mechanical hand has one degree of freedom. Five
fingers can grip and stretch at the same time so that phenotyping actions, such as separating
ears and handling stalks, can be performed.
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Camera
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Figure 1. Interactively cognitive humanoid phenotyping robot.

The robot is placed on a field truss platform that can move along the tracks in field.
The robot can move to a suitable position to interact with the plants under analysis. It can
move along two mutually perpendicular horizontal tracks with a moving speed of 0.1 m/s
to 0.3 m/s. It can descend 25 cm towards the ground and lift 75 cm above the ground.

The liftable line-structured light system equipped on the chest of the robot body is
used for environmental detection and cognition. The system consists of a Basler acA2500-
14gc color camera and line laser module that can scan up and down, driven by a stepper
motor. The camera has a horizontal and vertical resolution of 2590 x 1942 px, a frame rate
of 14 FPS, and a sensor area of 1/2.5 inch. The scanning speed is approximately 20 mm/s
and the scanning stroke is 500 mm. The 3D reconstruction of plants and measurement of
many phenotypic parameters can be realized using the structured light system.

An interactive system that consists of a raspberry Pi, a microphone and a PiCamera is
mounted on the robot’s head. The PiCamera can screen live video of the field and transmit
video streams to the server built by the raspberry Pi. The video stream delay is about 0.5 s,
and the resolution is 1280 x 960 with a 30-fps frame rate.

2.2. Interactive Cognition Phenotyping Process

When the robot moves to the front of the plant under analysis, it can actively interact
with the plant to build a more detectable environment if there is evidence of occlusion and
overlap. As shown in Figure 2, when the plant is sheltered by other plants, the robot arm
can push aside the plants to remove the occlusion. Then, the plant can be detected by the
vision system and full phenotypic data can be acquired. Similarly, when the back part of a
plant is occluded by the front part, the same active interaction process can be used to build
a phenotype detectable environment.

Figure 2. The robot removing occlusion.

The robot operates on a field truss platform and it can move along two mutually
perpendicular horizontal tracks. A fixed position in the field can be taken as the origin of
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the absolute coordinate system, and the two moving directions are the X-axis and the Y-axis,
respectively. We use the motor-driven signals of the servo motors as odometers. When the
robot moves to a position to measure a specific plant, the moving distance along the two
directions can be calculated by the pulse number of the motor-driven signals. Therefore, the
geographic coordinates of the robot can be determined. The relative distance of the plant to
the robot can be measured by the pre-calibrated structural light system and the geographic
coordinate of the plant can be determined. In our experimental field spot, where the longest
moving distance is 50 m, the measurement error of the robot geographic coordinates is
approximately 2 cm. In the robot operating space, the structural light system measurement
error is approximately 0.1 cm. In this manner, an electronic map of every plant in the field
can be established. Phenotypic data of every plant measured by the robot platform can be
recorded on the map. With the electronic map, the robot platform can measure the same
plant at different growth stages, thus establishing a complete full growth cycle phenotype
database to provide complete phenotypic data for crop breeding.

Despite the introduction of the robot technique and active interactive cognition
method, the efficiency and accuracy of automatic phenotyping can still be considerably
improved, which is required to release the “Phenotyping Bottleneck”. In addition, with the
use of electronic maps, automatic phenotyping of full growth cycles can be realized.

3. Bio-Inspired Operational Forms

In natural agricultural environments, it is extremely difficult for robots to perform
fully autonomous measurements and cognition. To date, operation in these non-structured
scenes cannot reach relatively high accuracy. As a result, phenotyping schedules and
operation need to be formulated first. Due to the humanoid structure of the robot, a bio-
inspired solution is proposed. By mimicking phenotyping operations of breeding experts,
the phenotyping operational schedules are regularized.

The human-robot interactive technique (HRI) is used to regularize the phenotyping
schedule. Breeding experts remotely control the robot platform to perform interactive
phenotyping operations with the HRI system. The HRI framework is shown in Figure 3.

Noitom PN Sen: Axis Neuron Pro
otom o Win32 Console (Visual Studio )

1 CAUsers\shen1\Desktop\

T
-
Net | N PN o
work Ry
: \\ 4 ey
H NN  — Win10
- AT RO Topu.
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Picam phone Lower Computer
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Industrial Package
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Figure 3. Human-robot interactive (HRI) framework for interactive phenotyping.

3.1. Head-Mounted Interactive System

A head-mounted interactive system is used to acquire the live scenes and voice, so
that the operator can easily manipulate the robot to interact with the in-field environment.
An approximately immersive operation experience can be obtained when breeding experts
use this system.
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The structure of the head-mounted interactive system is described in Section 2.1. The
operator wears a Royole VR standalone headset to acquire the live video. In this way, the
operator can remotely observe the scene of the robot in the current field of view in real time.
The microphone mounted at the robot head can record the sound around the robot. The
operator end and the robot end can communicate through the VR standalone headset and
the robot computer. The raspberry Pi works as a server. In this way, the operator can hear
the real-time voice that is “heard” by the robot to monitor the in-field situations better.

3.2. Motion Interactive System Based on Perception Neuron (PN) Sensor

In order to expediently control the complex movement of the multi-degree of freedom
robot and improve control precision, a wearable sensor system is adopted to map the
operator’s movement to the robot’s movement. Then, the robot can mimic the operator’s
phenotyping operations.

A perception neuron (PN) sensor system produced by Noitom Company® [28] is used.
This sensor system includes thirty-two inertial measurement units, each of which has a
three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer.

A PN sensor can export a BioVision Hierarchy (BVH) file after acquiring human
motion data. A BVH file is a universal human motion feature description format, which is
often used in skeletal animation models [29]. The BVH file describes the human skeleton
model in the joint diagram shown in Figure 4a. Each joint describes the motion information
through three rotation parameters and a complete description of the human motion is
achieved. After the BVH data collected by the PN sensor are transmitted to the robot
controller through the TCP/IP protocol, the Euler angles in the BVH need to be converted
into joint angles and sent to the lower computer.

(b)

Figure 4. Motion interaction. (a) BVH joint diagram. (b) URDF visualization. (c) Motion

interactive experiments.
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However, the actual movement of the human body is physiologically constrained. Not
every joint has three degrees of freedom, and some degrees of freedom are not independent
of each other, so there is a large difference between the BVH model and human body.
Therefore, the mapping of Euler angles to the joint angle of the robot requires a reasonable
algorithm. For example, the human shoulder joint has three degrees of freedom, which is
similar to the shoulder of the robot body, so the Euler angle of the shoulder joint motion
can be directly mapped to the robot body through rotation matrix. Since the elbow joint
of the robot body has only one bending degree of freedom and lacks a rotational one, the
elbow bending angle can be obtained by calculating the angle between the direction vector
of the large arm and forearm. The angle of rotation of the wrist joint is mapped by the angle
of rotation of the human elbow. We denote vector 71 and 72 as the large arm and forearm,
respectively, and 71 is the position direction of the X-axis. Therefore, the elbow bending
angle can be calculated as

0=m— <71, 72> = nfarccos(?l-?z)). 1)

We assume that the two rotation degrees of freedom are along the Y- and Z-axes, respectively.
The PN sensor can acquire the Euler angles of ZYX axes of the human arm, i.e., az, By, Vx-
Since the rotation degree of freedom of the X-axis does not exist in the human arm, y, ~ 0.
The rotation matrix of the elbow is formulated as

100 cospy 0 sinfy cosx,  sina, 0
R=(0 1 0 0 1 0 —sina; cosaz; 0 ]. )
0 0 1) \—sinp, 0 cosBy 0 0 1

L . L — .
The direction vector of r1 is 7} = (1,0, O)T. Therefore, the direction vector of rq is

100 cosBy 0 sinfy cosx, sinx, 0\ (1
»=RA=10 1 0 0 1 0 —sina, cosa, O 0
0 0 1/ \—sinf, 0 cosPy 0 0 1/\0 3)
cospycosa;
= —sina;
—sinfycosa;

Finally, the elbow bending angle can be obtained by
0 = 7t — arccos (ﬁa) = 1t — arccos(A, ) = T — arccos(cosﬁycosaz). 4)

The robot hand has only one degree of freedom. In order to map the human hand motion
to the maximum extent, the hand degree of freedom selects the fold angle of the human
middle finger. Because of the high degree of freedom of the human neck, the left and right
rotational degrees of freedom of the robot are directly mapped by the left and right rotation
angle of the human neck.

A Unified Robot Description Format (URDF) file is constructed in the robot operating
system (ROS) that runs on the robot’s industrial computer. It contains the joint relations of
each mechanical parts of the robot and real-time simulation of the robot can be realized
based on the URDF file, as shown in Figure 4b. ROS transmits the mapped joint angle
data in real time through the serial port to the lower machine with a 10 Hz sampling
frequency. Then, the lower machine drives the joint servos moving to the corresponding
angle. Therefore, the operator’s motion is mapped to the robot ontology. Some motion
interactive experiments are shown as Figure 4c.

3.3. Bio-Inspired Operation

Through the head-mounted interactive system and the motion interaction system
based on PN sensors, the operator can remotely control the robot in an immersive interac-
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tive way. The breeding expert must wear a full headset linked to the interactive system
in the control room, so that it is possible to observe the real-time environment around the
robot by the head-mounted interactive system through the movement of their head. The
operator observes the plants that need to be measured and moves the robot to the appro-
priate position. The operator only needs to repeat the procedure and operations during
the traditional manual phenotyping process, then the robot can be controlled to mimic
his/her action to interact with the plant. The phenotype is then measured by the machine
vision system. The naturally instructive paradigm is user-friendly and especially highly
efficient with the first person view (FPV), which can accomplish efficient phenotyping
operations [30]. The robot completely mimics the interactive operations of the breeding
experts, so this interactive form has high efficiency and strong adaptability. With the help of
the automated visual system, high-efficiency and high-precision phenotyping is achieved
through the interactive cognition method.

Regularized phenotyping forms are formed through the bio-inspired operations based
on the HRI technique. In the process of HRI, the typical operation schedules and actions
of the breeding experts are recorded. In the long term, a large amount of data is recorded
to form a manual teaching dataset. With a sufficiently large data set, the automation of
interactive cognition can be continuously improved through continuous training using
machine learning algorithms. We have conducted various studies on the human-in-the-
loop imitation control method to improve robot adaptability to uncertain environments,
although it is still challenging to realize entire task autonomy in a short period of time [31].
Eventually, fully automated bio-inspired phenotyping systems can be implemented to
replace the traditional manual phenotyping pattern.

4. In-Field Rice Tiller Counting Method
4.1. Image Acquisition

When the occlusion is removed through the interactive method illustrated above,
images of the rice plant can be captured by the camera for tiller counting. However, since
the tillers have similar colors with the background, it is difficult to recognize each tiller
from an RGB image without depth information. To provide depth information for the
images captured by an RGB camera, we use a horizontal line laser to scan the tillers. While
the structured light system scans up and down, multiple images that scan different heights
of the plant can be recorded for further tiller number recognition.

To reduce the influence of natural light on the light spots of the laser, we capture
images with a small aperture to reduce the amount of light. Under this circumstance,
the laser light spots can still be clearly identified and the rest of the regions are relatively
dark. The images are then transformed to grayscale images to reduce computation. These
grayscale images are resized to 256 x 256 pixels through bilinear interpolation to further
improve computation efficiency.

4.2. Rice Tiller Number Recognition Algorithm

After the images with laser light are obtained and preprocessed, a rice tiller counting
algorithm is then used to obtain tiller numbers from the images. In practical applications,
accurately counting the tiller number is difficult and unnecessary. In practice, the aim
of gene-editing breeding is to promote effective tillering (tillers with panicles) to obtain
high yields, while eliminating ineffective tillering (tillers without panicles) for reduced
nutrition consumption [32]. Since the panicle numbers can be statistically estimated by
drone detection, we aim to statistically estimate the total number of under-canopy tillers
and then the number of effective tillers can be estimated. Therefore, we divide the tiller
numbers into several grades and the task in this paper is to obtain the approximate ranges
of tiller numbers.

In this paper, a deep learning method based on an attentional residual network
(AtResNet) is proposed. Figure 5 illustrates the network structure. Resized grayscale images
are directly input into the network, and they are processed through stacked layers. The
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backbone network is a deep convolutional neural network (CNN) with residual connections
to ResNet [33] to prevent the overfitting problem. There are three convolutional blocks with
similar structures, each of which firstly processes the input through a two-dimensional
convolution operation as follows.

5= S (7 50°1) = 2 et 0, ©)
where xf_l denotes the input of the convolutional layer and gl = {wc'l ,bed } are the

parameters of this layer. Then, a batch normalization (BN) [31] layer is introduced to speed
up the network convergence, which is formulated for each mini-batch as follows.

. xl — E|x!

x=—— | ‘}, (©)
\/ Var[xl]

vi=a'x+p, )

where 9/ and ' are learnable parameters. E[-] and Var|-] denote the mean and variance
value, respectively. Then, a rectified linear unit (ReLU) layer is used with a rectified linear
function, which is formulated as

ReLU(x) = max(0, x). 8)

Then, a max-pooling layer is adopted, which calculates the maximum values within the
receptive field.

[ ReLU ]
(MaxPool ]

Output

Channel Attention
Block
Spatial Attention
Block

Figure 5. AtResNet model for rice tiller number recognition.

Residual connections are introduced to the second and last convolutional blocks to
accelerate network training and prevent overfitting. A convolutional layer with a1 x 1
kernel is used to perform identity mapping, which keeps the input and output size of
the convolutional block the same. Then, the output of the I-th convolutional block can be
calculated as follows.

xf = o[fen (¥ 56F) + BN (fra (¢ 1001))], ©)

where fcp is the mapping function of the convolutional block, and f; is the mapping
function of the 1 x 1 convolutional layer in residual connections. ¢ denotes the ReLU
function. The output of the last convolutional block is processed by an adaptive average
pooling (AAP) layer and two fully connected (FC) layers and the final output is a vector
whose length is the same as the tiller number grades.

Since these images are dark in most regions and the laser light spots only appear in
some small areas, attention mechanisms [34] are introduced to help the model focus on the
informative regions. Firstly, a channel attention block [35] is adopted to allocate different
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weights to different feature channels. The channel attention block firstly aggregates spatial
information through adaptive average pooling and adaptive max pooling operations. Then,
a shared convolutional network is used to generate attention maps for each aggregated
feature vector. In addition, two maps are summed to obtain the final channel attention map.
In short, these channel attention operations are summarized as follows.

Ac(x) = 05[féons (AvgPool(x)) + feony (MaxPool (x))], (10)

where x € RW*H*C represents the input features, and f5,,,, denotes the mapping function

of the shared convolutional network, which consists of a 1 x 1 convolutional layer with
C/r channels, a ReLU layer, and a 1 x 1 convolutional layer with C channels. o5 denotes
the sigmoid function. Finally, the calculated channel attention map A.(x) is applied to the
input feature by element-wise multiplication, as follows:

= A(x) ®x. (11)

Similarly, a spatial attention block [36] is adopted afterwards to obtain spatial attention
maps to help the network to focus on informative spatial regions. Channel information
is aggregated by average and maximum values. Two features are concatenated and then
processed by a convolutional layer to produce the spatial attention map. The spatial
attention operations can be summarized as follows.

As(x) = 5[ foomo ([Avg (x); Max(x)])], (12)

where fg,,,, denotes the mapping function of the convolutional layer. Finally, the calculated
spatial attention map A_s (x) is applied to the input feature by element-wise multiplication,
as follows:

X" =As(x) @ x (13)

The whole network outputs a vector 1;, which represents the predicted probability of
the i-th sample that belongs to each tiller number grade. 1j; is obtained through a softmax
function of the output y fe of the last FC layer, as follows:

eYrei

Zjﬁzl eVrei’ 14

Yij=
where yy. ; and y/; ; denote the j-th element of ¢, and 7;, respectively, and K is the number

of all tiller number grades. The network is trained by minimizing the cross-entropy loss,
which is defined as follows.

1
L= *Nzﬁlzllf:ﬂ(yi = k) log(yi x), (15)

where I(+) is the indicator function, y; is the true tiller number grade label of the i-th sample
and N is the sample number.

5. Experiment and Results
5.1. Data Description

Following the image acquisition procedure illustrated in Section 4.1, a set of images are
obtained in fields using the structured light system. Then, these images are categorized into
four classes according to the rice plant tiller number. In large-scale variant breeding, we
found that the total tiller numbers of most variants are mainly between 21 and 25 [37]. We
hoped to achieve relatively accurate tiller counting in this range. Therefore, we subdivide
this range and the numbers fewer than 21 and more than 25 are divided roughly. Some
image examples are shown as Figure 6. The details of these images are shown in Table 1.
These images are transformed to grayscale images and resized to 256 x 256. Then, they are
randomly split into a training set and a testing set with the ratio of 3:1.
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Figure 6. Some image examples of four tiller number grades (improved brightness).

Table 1. Dataset details.

Grade Tiller Number Image Number
I <21 120
II 21~22 278
I 23~25 280
v >25 100

5.2. Experiment Setup

We use all the images in the training set to train the AtResNet and test the model using
the testing set samples. The detailed parameter settings used in the experiment are listed in

Table 2.

Table 2. Parameter details of AtResNet.

Layer

Parameter

Output Size

Convl
Pooll
Conv2
Pool2
Conv3

Pool3
Channel Attention

Spatial Attention

AAP
FC1
FC2

Kernel size: 5 x 5
Stride: 2 x 2
Padding: 2
Kernel number: 16
Kernel size: 2 x 2
Kernel size: 3x3
Stride: 1 x 1
Padding: 1
Kernel number: 32
Kernel size: 2 x 2
Kernel size: 3 x 3
Stride: 1 x 1
Padding: 1
Kernel number: 64
Kernel size: 2 x 2
r: 16
Kernel size: 7 x 7
Stride: 1 x 1
Padding: 3
Kernel number: 1
Output size: 4 x 4
Unit number: 128
Unit number: 4

128 x 128 x 16

64 x 64 x 16

64 x 64 x 32

32x32x2

32 x 32 x 64

16 x 16 x 64

4 x4 x64
128 x 1
4x1

The network is implemented by PyTorch on an NVIDIA GTX 1660 GPU. It is trained
by the Adam optimizer with a learning rate of 0.001 for 50 epochs. In each mini-batch,
64 samples are inputted into the system. A convolutional neural network (CNN) without
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residual connections and attention operations, and a ResNet without attention operations
are also implemented for performance comparison. They share the same backbone structure
and parameters with the AtResNet and all the experiments are repeated for 10 trials to
reduce randomness.

5.3. Results

The experiment results of all the three methods are shown in Table 3. From the
recognition results, we can observe that these deep learning-based methods achieved more
than 93% tiller number recognition accuracy. This is satisfactory for practical applications.
In addition, the proposed AtResNet outperforms the other two methods. We also illustrate
the training and testing accuracy and loss values during the training process in Figure 7.
We can observe that the AtResNet has lower accuracy and fewer loss fluctuations during
model testing. It may be because the introduction of residual connections and attention
operations helps the model to converge faster.

Table 3. Tiller number recognition accuracy (%) of three methods.

Method Mean Standard Deviation
CNN 93.49 1.64
ResNet 94.21 2.06
AtResNet 94.72 1.70
1.0
2.0
£3
%
=g,
0.5
0.4 MAMAMANAN
0.0
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Itcrations
(a) (b)
L0 AN,
8]
%2
3
I
0.2
0
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Itcrations
(0) (d)

Figure 7. Training and testing accuracy and loss value curve. (a) CNN accuracy. (b) CNN loss.
(c) AtResNet accuracy. (d) AtResNet loss. Blue line denotes training process and orange line denotes
testing process.

To further explore the recognition results, we also analyze the confusion matrix of
the results, as shown in Figure 8. It is observed that all the three methods can accurately
recognize images with grade IV tiller numbers. For grade II and III, the AtResNet displays
higher recognition accuracy compared with the other two methods. Figure 9 shows some
examples of spatial attention maps. The different colors represent different relative attention
values. We can observe that the laser spot regions have different attention values with other
dark areas. So, the network can selectively focus on the informative regions.
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Figure 8. Confusion matrix of tiller number recognition results.
.

Figure 9. Examples of spatial attention maps in AtResNet.

6. Conclusions

This paper presents a new in-field phenotyping paradigm. An interactive cognition
method is proposed to overcome the problem of occlusion and overlap in traditional pas-
sive automatic phenotyping methods. A bio-inspired solution is introduced so that the
phenotyping robot can mimic the manual phenotyping operations. In this way, automatic
high-throughput phenotyping of full growth cycles is realized. A tiller number recogni-
tion method (AtResNet) is proposed based on interactive cognition. In-field images are
collected for the experiments. The experiment results show that the proposed method
can achieve approximately 95% tiller number recognition accuracy and outperforms other
deep learning-based methods. This paper provides a new solution to the occlusion and
observation pose problems in field phenotyping. Although drone detection can estimate
the panicle number in a more efficient way, the proposed method overcomes the difficulty
of under-canopy tiller counting, which assists in effective and ineffective tillering counting.
Compared with traditional manual breeding processes, the proposed in-field phenotyping
paradigm offers a more efficient solution to repeating phenotyping across the full growth
period. In future work, we will develop multiple phenotyping robots and explore the con-
trol scheme of switching between them to further improve in-field phenotyping efficiency.
Moreover, the panicle counting method based on drone detection over the canopy will be
studied to estimate effective tillering.
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Abstract: In order to enable the picking robot to detect and locate apples quickly and accurately in the
orchard natural environment, we propose an apple object detection method based on Shufflenetv2-
YOLOX. This method takes YOLOX-Tiny as the baseline and uses the lightweight network Shuf-
flenetv2 added with the convolutional block attention module (CBAM) as the backbone. An adaptive
spatial feature fusion (ASFF) module is added to the PANet network to improve the detection accu-
racy, and only two extraction layers are used to simplify the network structure. The average precision
(AP), precision, recall, and F1 of the trained network under the verification set are 96.76%, 95.62%,
93.75%, and 0.95, respectively, and the detection speed reaches 65 frames per second (EPS). The
test results show that the AP value of Shufflenetv2-YOLOX is increased by 6.24% compared with
YOLOX-Tiny, and the detection speed is increased by 18%. At the same time, it has a better detection
effect and speed than the advanced lightweight networks YOLOVS5-s, Efficientdet-d0, YOLOv4-Tiny,
and Mobilenet-YOLOv4-Lite. Meanwhile, the half-precision floating-point (FP16) accuracy model on
the embedded device Jetson Nano with TensorRT acceleration can reach 26.3 FPS. This method can
provide an effective solution for the vision system of the apple picking robot.

Keywords: machine vision; picking robot; apple detection; YOLOX; ShufflenetV2

1. Introduction

China’s apple planting area and output account for more than 50% of the world [1],
but its picking is still dominated by manual picking, with high cost. Therefore, the apple
picking robot is the development direction in the future. How to locate and detect apples
quickly and accurately in the natural environment is the focus and difficulty of vision
research of picking robots [2].

At present, the research on fruit detection at home and abroad is mainly divided
into target detection based on the traditional algorithm and target detection based on
the deep learning algorithm, and both have made some progress. Traditional algorithms
require artificially designed features [3], and their accuracy and detection speed are not
as good as those of deep learning algorithms. Currently, they are mostly used for image
preprocessing. Xia [4] proposed a method for fruit segmentation based on the K-means
clustering algorithm. The Canny edge detection operator was used to extract the fruit
contour, the Y-node search algorithm was used for contour separation, and finally, the
least squares method was used for contour reconstruction. Liu [5] used a simple linear
iterative clustering algorithm to segment the apple image collected in the orchard into
super-pixel blocks, and used the color features extracted by blocks to determine the target
candidate region. Lv [6] calculated the distance of each fruit in the connected area by using
the Euclidean distance method, extracted the effective peak from the smoothed curve by
using the improved local extreme value method, and determined the shape of overlapping
apples according to the number of peaks. Bochkovskiy [7] chose incandescent lighting to
obtain images at night. In the image segmentation stage, the power transformation was
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used to improve the R-G color difference threshold segmentation method, and the genetic
algorithm was introduced to optimize the solution of the maximum interclass variance.
The accuracy was 94% and the detection speed was 2.21 FPS.

The detection algorithm based on deep learning has wider applicability than the
traditional algorithm. When using a specific dataset, it can learn deeper features and
obtain higher accuracy. It is easier to detect the target. In recent years, deep learning
has been used in a wide range of industries. Some scholars have conducted in-depth
research on apple target detection based on deep learning. Sa [8] basically achieved rapid
detection and achieved an F1 score of 0.838 by using the improved Fast R-CNN training
RGB color and near-infrared images to detect fruits. Zhao [9] used the improved YOLOv3
algorithm with 13 layers to prove that it is feasible to use the deep learning algorithm in the
natural environment under the verification of different illumination directions, different
growth stages of apples, and different picking times. Mazzia [10] achieved a detection
speed of 30 FPS using a modified YOLOv3-Tiny network on a matched embedded device,
the Jetson AGX Xaver. However, the Jetson AGX Xaver is very expensive and its AP is
only 83.64%, which does not satisfy the need for detection accuracy. Yan [11] using the
improved YOLOV5 can effectively identify grasping apples that are not obscured by leaves
or only obscured by leaves, and nongrasping apples that are obscured by branches or other
fruits. Wu [12] achieved 98.15% AP and 0.965F1 using an improved EfficientNet-YOLOV4
dataset augmented by foliage occlusion data. However, its model capacity is 158 M, and
the real-time detection speed is only 2.95 FPS. Chu [13] designed a novel Mask-RCNN
for apple detection. By adding a suppression branch to the standard Mask-RCNN to
suppress nonapple features, its F1 index is 0.905, but the detection speed is only 4 FPS. The
suppression branch of this method is designed according to color, which is only effective
when the color difference between fruit and leaf is large. When the color difference is not
large, due to light, disease, or debris, the detection effect may not be good.

Although the above studies have all achieved some results for apple recognition in
different scenarios, they all have similar problems. That is, high detection speed and high
detection accuracy cannot be satisfied simultaneously. At the same time, according to the
current research literature, several directions have been little studied. First, most of the
current research on apple recognition has focused on apples that are dense, overlapping,
or obscured by foliage, with very little research on apples in the context of bagging. Sec-
ondly, there are few studies related to apple detection models running on edge devices to
determine how the detection models will perform in practice. To solve the above problems,
an apple detection algorithm based on YOLOX-Tiny is proposed in this paper. It can meet
the needs of a picking robot working with high precision and in real time. Compared to
similar studies, our main contributions are the following two.

(1) A novel lightweight apple detector was designed. The ShufflenetV2-YOLOX model
was designed from a practical perspective based on the orchard environment and
obtained excellent detection speed and detection accuracy.

(2) It was validated and deployed on the Jetson Nano, an edge device. It was validated
that the model can meet the requirements for real-time and high-precision detection
on an edge device, and can provide an effective solution for picking robots.

2. Materials and Methods
2.1. Apple Image Acquisition and Data Augmentation

This paper takes the Fuji apple, the largest main apple variety in China, as the research
object, and collects apple images from the apple demonstration base in Feng County,
Xuzhou City, Jiangsu Province, China. Considering the possible natural environment in the
actual orchard picking, the images of unbagged apples, bagged apples, and apples under
weak light at night are collected.

In the process of image acquisition, in order to ensure the clarity of the image and meet
the working environment of the picking robot, we keep the distance between the camera
and the fruit at 0.3 m—2 m. In the night apple image acquisition, a single LED lamp is
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used for illumination, and the brightness of the fruit area is changed by changing different
illumination angles. A total of 1793 pictures are taken during the shooting, including
apple images under different natural conditions such as forward light, backlight, side light,
overlap, and occlusion, 577 apple images without bagging during the day, 567 apple images
bagged during the day, and 649 apple images including bagging at night, as shown in
Figure 1. Among them, the appearance of apples in the daytime will vary greatly due to
the different angles and intensity of light. Bagging can not only prevent the fruit from
being harmed by dust, pests, and pesticide residues, but also make the fruit surface smooth
and beautiful, and increase the effective yield and income. However, due to a layer of
plastic bags on the surface, the apple will be in an irregular state, and its surface and
shape characteristics will be disturbed. This makes traditional image detection methods,
such as texture, color difference, and Hough Circles transformation, unable to effectively
detect apples [8]. At the same time, there are often water droplets in the plastic bag, which
will bring greater difficulties to image detection. Because the image of apples at night is
presented under the irradiation of a strong light source, there may be significant contrast
on the same picture. For example, the surface of apples directly illuminated by the light
source will be strong and bright, resulting in the lack of surface feature information, while
those not directly directed will be relatively dark and difficult to detect. Therefore, apple
images in the above cases will interfere with image detection to a certain extent [13].

(a) Unbagged apples

(b) Bagged apples (c) Apples at night

Figure 1. Apple image in natural state.

The apple dataset images collected in this experiment are small in number and contain
complexities such as bagging, nighttime, occlusion, and overlap. Deep learning has certain
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GaussianNoise

requirements on the size of the dataset. If the original dataset is relatively small, it cannot
meet the training of the network model well, thus affecting the performance of the model.
Image enhancement is the process of expanding the dataset by processing the original
image, which can improve the performance of the model to a certain extent. Therefore, we
use the imgaug algorithm for data enhancement, using mirror flip, changing brightness,
flipping up and down, adding Gaussian noise, dropout, scaling, and other operations
to mix and enhance the images with a 10-fold enhancement factor, while ensuring the
morphological features are intact. Finally, 17,930 images are obtained, as shown in Figure 2.
Although the augmented dataset is slightly different from the actual situation, the blurring
is quite beneficial in improving the robustness of the model. The models trained with the
data-enhanced dataset have higher accuracy compared to the unfuzzed dataset [14].

CoarseDropout
Figure 2. Image after data augmentation.

The annotation software used in this paper is Labellmg, and the annotation file format
is “xml”. To better compare different types of networks and training sets, the images are
converted to Pascal VOC format. At the same time, the training set and verification set
are generated according to the ratio of 9:1, and 30 apple images in the complex natural
environment are selected as the test set to verify the detection effect of the model. All
networks used in this paper are based on the pre-training of the ImageNet dataset, use
migration learning to train 150 epochs on this dataset, and select the best one as the
detection weight parameter to load into the network.

2.2. Design of Apple Object Detection Network
2.2.1. Baseline Selection

There are a number of deep learning methods available, and one of the most effective
networks for target detection is the convolutional neural network. These are divided into
one-stage networks and two-stage networks [15-19]. The one-stage network is superior
in detection speed, and the accuracy rate is also high. The neural network used for target
detection is divided into the one-stage network and two-stage network according to the
detection stage. The one-stage network is better in detection speed and high in accuracy.
The YOLO series is a representative one-stage network, and among them, YOLOX is the
latest version [20], which is improved with YOLOv3 + Darknet53 as the baseline. YOLOX
adopts understanding coupling, Mosaic and Mixup image enhancement technology, anchor-
free, SIMOTA, and other tricks, which is greatly improved compared with the previous
YOLOvV4 and YOLOVS.
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YOLOX is divided into x, 1, m, s, tiny, and nano models from large to small according
to the proportion of network depth and network width. Different models of networks can
be selected according to different use scenarios. Among them, YOLOX-Tiny is a lightweight
network in the YOLOX series, and its detection accuracy and speed are better than YOLOv4-
Tiny, which is suitable for deployment in apple picking robots. However, the detection
accuracy and detection speed of YOLOX-Tiny still have room for improvement compared
with advanced apple detection algorithms at home and abroad.

2.2.2. ShufflenetV2-YOLOX Network Design

To meet the needs of the apple picking robot, it is necessary to improve the accu-
racy and detection speed of the network based on YOLOX-Tiny. This paper proposes a
ShufflenetV2-YOLOX network. Figure 3 shows its network structure. First, this method
takes YOLOX-Tiny as the baseline and uses the lightweight network Shufflenetv2 added
with CBAM as the backbone. At the same time, ASFF is added after the PANnet network to
improve the accuracy of network detection. Deleting a feature extraction layer reduces the
amount of parameter calculation of the whole network, improves the detection speed of the
network, and makes it meet the needs of real-time and high precision on embedded devices.
The head network adopts YOLOX’s decoupled head. It is divided into two parts: object
prediction and position regression, which are predicted separately and then integrated
for prediction. The loss function of the detection frame position can choose to use the
traditional Intersection over Union (IOU) loss and Generalized Intersection over Union
(GIOU) loss [21,22], and both OBJ loss and CLS loss use the Binary Cross Entropy loss
method. To deal with the complex situation in orchard apple target detection, we select the
better GIOU loss as the IOU loss of the detection frame.

IOU = SOVerlap 1)
Snuion
Ac — Snui
GIOU = 10U — e~ Snuion| )
Ac

where Soyerlap 18 the area of intersection of the predicted bounding box and the true bound-
ing boxX. Synion is the area of the union of the two bounding boxes [14]. A, is the minimum
enclosing rectangle that predicts the border and the true frame.
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Figure 3. The network structure of ShufflenetV2-YOLOX. 1: Backbone Network Design; 2: Increase
Attention Mechanism; 3: Add the ASFF Module; 4: Prune the Feature Layer.
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Following the selection of the baseline model, the modeling phase is divided into four
main stages. The first step is to replace the backbone network with ShufflenetV2. In the
second step, the attention mechanism CBAM is added. The third step is to add the adaptive
feature fusion mechanism ASFF. Finally, the feature extraction layer is reduced.

Backbone Network Design

YOLOX-Tiny is the lightweight network of YOLOX, which is achieved only by reduc-
ing the network width and depth. Compared with those specialized lightweight networks,
itis not enough, so the first thing we need to do is to choose a lightweight network to replace
YOLOX-Tiny backbone. ShuffleNetV2 is improved from ShuffleNet and has achieved excel-
lent results in lightweight networks [23,24]. It inherits grouped convolution, depthwise
separable convolution, and channel shuffle operations of ShuffleNet, and also improves the
original unreasonable parts according to four efficient network pairs.

ShufflenetV2 is an image classification network in which the global average pooling
and fully connected layers modules are added to achieve higher results in the ImageNet
network competition and are useless for object detection networks. In order to replace
the backbone of YOLOX-Tiny, we choose to keep only the network structure before stage4
in the ShufflenetV2 network, and then extract the output from each stage and connect it
to PANet instead of CSPDarkNet. This can not only improve the running speed but also
meet the design of the target detection network. The structure of ShufflenetV2 in YOLOX is
shown in Figure 4.
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Figure 4. Shufflenetv2 network structure.

Increase Attention Mechanism

As the convolutional neural network (CNN) becomes deeper, the effective features
become sparse. At this time, we need to introduce the “attention” mechanism. The attention
mechanism can automatically learn and calculate the contribution of input data to output
data so that it can ignore irrelevant noise information and focus on key information. CBAM
is an attention mechanism module that combines space and channel [25]. Compared with
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the SE attention mechanism that only focuses on channels, it can achieve better results.
CBAM consists of a Channel Attention Module and Spatial Attention Module, which carry
out Attention on the channel and space, respectively, as shown in Figure 5. In this paper,
the CBAM module is added to the stage of the ShufflenetV2 backbone network, which can
strengthen the apple features learned by the network.
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Figure 5. CBAM.

Add the ASFF Module

Feature pyramid can fuse features of different layers and detect images of different
sizes, but the inconsistency between features of different scales is its main limitation. The
ASFF module can make each feature layer focus on identifying objects that fit its grid size,
spatially filter features on other layers, and retain only useful information for composition.
This can solve the problem of indistinguishable fruits of different sizes clustered together
in apple images [5]. Other layers in ASFF are adjusted to the same size as the current layer
through convolution operations and fused to obtain adaptive weights. The adaptive weight
is then combined with each layer to finally obtain a fusion module of the same size as the
current layer. Its structure is shown in Figure 6. This paper adds an ASFF module after
the PANet network to learn the relationship between different feature maps. This allows
apples of different sizes to be predicted by the corresponding feature layers, improving the
detection accuracy of the network.

Prune the Feature Layer

Adding modules can improve the detection accuracy of the network but also reduce
the detection speed of the network. To improve the detection speed of the network to
meet the real-time requirements, this paper chooses to delete one feature extraction layer
in PANet and adjust the structure, and only uses two feature layers (TFL) to reduce the
amount of calculation. Figure 7 shows the PANnet part of the YOLOX-tiny network. The
black box shows the reduced network structure and the number of anchors. We only keep
the 13 x 13 and 26 x 26 outputs, i.e., out2 and out3, respectively.
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Figure 7. PANet with two feature layers.

Using only two feature layers can not only reduce the number of convolution kernels
and computational complexity of PANet but also reduce the computing power required for
prediction. In the case of 416 x 416 input size and num_class = 1, deleting a layer of feature
layer Head will reduce the original 3549 anchors to 845 anchors. Although this will reduce
the detection ability of small targets, it will not select long-distance small targets as objects
during the operation of the apple picking robot, and the actual effect verification will not
reduce the detection effect of the model too much.

3. Results and Discussion

The training equipment used in this paper is a PC device with the Windows 10
operating system. The system is equipped with an Intel e5-2683 processor, 64 GB of
memory, four NVIDIA GTX1080ti graphics cards, and 11 GB of video memory. The
algorithm programs used in this paper are written in the Python language on PyCharm,
and CUDA and cuDNN are used for network training acceleration. The training epoch is
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set to 150, the batch size is set to 64, and the input image size is set to 416 x 416. Input
size and detection speed are mutually exclusive quantities and a smaller image input
size speeds up detection. Therefore, the input image size is set to 416 x 416 to improve
the real-time performance of the model detection. For all network models to compare
performance fairly, the same input size needs to be set in the comparison experiments. This
has a significant impact on the performance of the network models. The test equipment
uses the Windows 10 operating system, AMD Ryzen7 4800 h processor, 16 GB of memory,
an NVIDIA GTX1650 graphics card, and 4 GB of graphics memory (Table 1).

Table 1. Test System Hardware.

Computer Configuration Specific Parameters
Operating system Windows 10
CPU AMD Ryzen 7 4800H
Random Access Memory 16 GB
GPU NVIDIA GTX1650

To verify the detection effect of the model on apples in the natural environment, this
paper uses 30 complex orchard pictures as the test set, including 5 daytime unbagged apple
pictures, 12 daytime bagged apple pictures, 10 nighttime unbagged apple pictures, and
3 nighttime bagged apple pictures. As nighttime and bagging are the focus and difficulty of
the current research on picking robot vision, this paper chooses the nighttime and bagging
test images to account for a higher proportion, which can better reflect the model’s detection
effect on apples in the natural environment.

In this paper, AP, Precision, Recall, Param, FPS, and F1 are selected as the comparison
standards for detection effects to determine the pros and cons of the model. Param repre-
sents the number of parameters the network contains, and FPS represents the number of
pictures the model can detect in one second. Taking the IOU threshold of 0.5 as the standard,
the AP value is the area under the Precision—Recall (PR) curve formed by Precision and
Recall. F1 score can be regarded as a weighted average of model accuracy and recall, which
takes into account both the accuracy and recall of the model.

3.1. ShufflenetV2-YOLOX Model Performance Verification

To validate the effectiveness of the network improvement method, we chose to conduct
ablation experiments to evaluate each step. AP, Param, and FPS were chosen as the
evaluation metrics. The results of the ablation experiment are shown in Table 2.

Table 2. Ablation experiment.

YOLOX-Tiny ShufflenetV2 CBAM ASFF TFL AP Param(M) FPS
v 90.52% 5.03 55
v v 91.69% 3.19 53
v v v 94.16% 3.61 52
v v v v 97.29% 6.68 48
v v v v v 96.76% 5.40 65

It can be seen from the data in Table 2 that each step of improvement is an effective
improvement, which effectively improves the detection speed or detection accuracy of
the model. The AP value of the ShufflenetV2-YOLOX method is 96.76%, which is 6.24%
higher than that of the original YOLOX-Tiny method. Although the Param is increased
by 0.4 m, the detection speed is increased by 18% to 65 FPS. Both the CBAM module and
ASFF module effectively improve the detection effect of the network, and the method of
deleting the feature layer also improves the detection speed within the range of tolerable
reductions in accuracy. Due to the use of depthwise separable convolution and channel
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shuffle operations in ShufflenetV2, when CSPDarknet is replaced, although the amount of
network parameters is reduced, the detection speed is not improved.

Different deployment devices are suitable for different network structures. For ex-
ample, a PC can use a CPU or GPU for inference. Depthwise separable convolutions are
more suitable for running on CPUs, and normal convolutions are more suitable for running
on GPUs. Due to the depthwise convolution and channel shuffle operations used in Shuf-
flenetV2, inference on a GPU is not the best choice. Using ShufflenetV2 as the backbone
network can achieve 15.6 FPS on the Ryzen7 4800 h(CPU), while YOLOX-Tiny can only
achieve 11.5 FPS. In practice, we can choose different network structures based on different
deployment devices.

3.2. Apple Detection Effect in Natural State

Apple recognition in complex environments has always been a research challenge.
In this experiment, to verify the recognition effect of the trained model for different fruit
states, apples without bags, apples with bags, and apples at night from the test set are
detected. Figure 8 shows the apple detection results in a natural environment using the
ShufflenetV2-YOLOX model. According to the detection results, the model proposed in
this paper achieves good recognition results in various situations and meets the accuracy
requirements of the apple picking robot.

Figure 8. Apple detection effect in natural environment based on ShufflenetV2-YOLOX
network model.

For images of unbagged apples during the day, the model can detect most of the
apples, with only a few overlapping and too distant apples having detection errors. Images
of bagged apples are not only sticky, overlapping, and obscured, but also irregular in shape
due to the film on the surface of the bagged fruit. There are gaps between the fruit and
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the film, which compromise the texture and color characteristics of the apple surface. As
a result, bagged apples can be identified less accurately than nonbagged apples. Because
of the low ambient light at night, apples close to a light source will have more distinctive
features. As a result, apples close to the light source are easily detected, while apples away
from the light source are difficult to detect. This is the biggest obstacle to nighttime image
detection. In the future, the overall effect would be improved if more effort could be put
into planning the lighting system to achieve more uniform illumination. Some obscured or
small targets may not be detected, due to the limitation of the input image size of 416 x 416.
All models have the same problem. Increasing the input size of the image can improve the
detection of the model to some extent, but at the expense of detection speed. For example,
ShufflenetV2-YOLOX has a detection speed of 65 FPS at an input size of 416 x 416 and
60 FPS at an input size of 640 x 640. Although this is a reduction of 5 frames, the detection
is much better and many small targets can be detected. However, the small targets are
apple targets that are further away from the picking robot. For the apple picking robot, the
small targets are not its working targets and do not affect the actual results. In subsequent
work, a threshold pattern can be used, ignoring apples with a detection area smaller than a
certain percentage. A target that focuses on a larger proportion of the area is an apple with
a shorter distance. This facilitates the work of the picking robot.

Table 3 shows the precision and recall of the model detection in the three cases, the
number of apples in the pictures, and the number of apples detected. There were 31 images
containing 372 apple targets, of which 345 were detected. Our model can effectively address
the low recall of apple detection networks under bagged and nighttime conditions.

Table 3. Detection results in different scenarios.

Number of AP Recall Number of Number of
Images Apples Apples Detected
Total 31 96.76% 93.75% 372 345
Unbagged apples 11 97.29% 94.45% 134 125
Bagged apples 9 95.53% 93.15% 110 102
Apple at night 11 95.86% 93.45% 128 118

3.3. Apple Detection Effects Contrast Experiment of Different Models

To verify the superiority of the ShufflenetV2-YOLOX model proposed in this paper,
it is compared with YOLOv5-s, YOLOv4-Tiny, Efficientdet-d0, Mobilenetv2-YOLOv4-lite,
and YOLOX-Tiny [7,26,27]. Figure 9 shows the apple detection results of ShufflenetV2-
YOLOX and other models in the natural environment. ShufflenetV2-YOLOX, YOLOv4-
Tiny, YOLOX-Tiny, Mobilenetv2-YOLOv4-lite, and YOLOv5-s have an image input size of
416 x 416, and Efficientdet-d0 has better results because its network settings have a fixed
input size of 512 x 512. To make each model have a clearer contrast effect, this paper selects
the apples detected by all models as the total set and marks the detection effect diagram
of each model. The white circle indicates the missed area, and the blue circle indicates
the missed area. The more white and blue circles, the worse the effect of the model. As
can be seen from Figure 9, apple targets during the day are bright in color and distinct in
shape. Most models perform best on unbagged apples during the day. On the other hand,
the plastic bags on the surface of the apples can blur their color and shape characteristics,
resulting in the target and background being too close together. Bagged apples are therefore
very susceptible to missed detection. At night, apples under strong light and low light
are difficult to detect due to illumination problems. However, the ShufflenetV2-YOLOX
model proposed in this paper has the least white and blue circles in the detection images,
indicating that it has the highest recall rate. In particular, apple images in bagging and at
night, although not all targets in the image are detected, have a significant advantage over
other lightweight networks. This shows that the model can effectively solve the problem of
low recall rate of the apple detection network under bagging and night conditions.
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(e). MobilenetV2-YOLOvA4-lite

Figure 9. Cont.
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(f). Efficientdet-d0

Figure 9. Comparison of ShufflenetV2-YOLOX with other advanced networks for apple
detection effects.

Figure 10 shows a comparison of the PR curves of the different models for apple
detection. Table 4 shows a comparison of AP, precision, recall, F1, parameters, and FPS
for the different models. In terms of detection accuracy, YOLOv4-Tiny is a simplified
lightweight network from YOLOv4 with an AP of 89.14%, which is close to the performance
of YOLOX-Tiny. YOLOV5-s is currently one of the best detection results among lightweight
networks, with a relatively high recall and detection accuracy. The AP and F1 reach
95.44% and 0.94, respectively. Mobilenet-YOLOv4-lite achieves an AP of 92.99%. It has the
highest accuracy of the tested models with 95.96%, but it does not have a high recall of
83.59%, which does not meet the apple target detection requirements. The performance
of Efficientdet-d0 is similar to that of Mobilenet-YOLOv4-lite. The ShufflenetV2-YOLOX
model proposed in this paper has a high recognition accuracy with an AP of 96.76% and
a detection accuracy of 95.62%. In particular, the recall rate is the highest score among
all lightweight networks, reaching 93.75%. Compared to other models, our model can
effectively detect bagged and nighttime apple targets from low-resolution images, which is
responsible for its high recall rate.
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Figure 10. PR curve comparison of ShufflenetV2-YOLOX with other advanced networks.
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Table 4. Comparison of ShufflenetV2-YOLOX with other lightweight networks.

Models AP Precision Recall F1 Param (M) FPS
YOLOX-Tiny 90.52% 94.06% 74.22% 0.83 5.03 55
YOLOv4-Tiny 89.14% 89.64% 87.89% 0.89 5.77 54
Mobilenet-YOLOv4-lite 92.99% 95.96% 83.59% 0.89 10.30 22
YOLOV5-s 95.44% 94.82% 92.97% 0.94 7.20 18
Efficientdet-d0 92.89% 95.91% 86.42% 0.91 3.69 21
Ours 96.76% 95.62% 93.75% 0.95 5.40 65

In terms of detection speed, Yolov4-tiny and YOLOX-Tiny have an advantage in detec-
tion speed due to their lightweight network structure design, which can reach around 55
FPS. YOLOV5-s is a little slower at 18 FPS, and Efficientdet-d0 has fewer network param-
eters but is slow because it uses a lot of deeply divisible volume integrals. Although its
floating-point operations per second (FLOPS) are small, it spends more time on memory
access costs, so the speed is not ideal at 21 FPS. MobilenetV2-YOLOv4-lite uses MobilenetV2
to replace the YOLOv4 backbone, but the PANet is still large, and it uses deep detachable
convolution instead of partial convolution, so the detection speed is not ideal, only 22 FPS.
Our ShufflenetV2-YOLOX benefits from a lightweight backbone network with a low num-
ber of parameters. The anchor-free and two feature extraction layers can in turn reduce
parameters and computations while satisfying the actual apple orchard detection. This
results in a fast recognition speed of up to 65 FPS.

With higher detection accuracy and speed, ShufflenetV2-YOLOX enables real-time,
accurate, and fast recognition of apples in natural environments, making it more suitable
for deployment in apple picking robots.

3.4. Apple Detection Effect in Embedded Devices

Traditional deep learning algorithms use an Industrial Personal Computer (IPC) as
the deployment device, which is not suitable for real-time apple detection in the field, due
to its weight and power limitations. The edge device has powerful arithmetic power, small
size, light weight and low power consumption. It can locally perform arithmetic processing
on the collected data and is a good choice to replace IPCs, and NVIDIA Jetson Nano is the
most cost-effective edge device available [10].

The apple picking experimental platform with Jetson Nano as the controller is shown
in Figure 11. It mainly consists of a moving part, a gripper, a visual recognition system, and
a robot arm. When the apple picking robot starts the picking task, it will first detect and
select an apple through the visual recognition system. Then, it sends the apple’s position
information to the control system, and the robot arm is driven to approach the apple. The
gripper will be driven to the designated position to grab the apple and use the cutter to cut
off the stalk.

Figure 11. The apple picking experimental platform.
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In this paper, we use Jetson Nano as an embedded deployment platform with software
environment JetPack-4.5.1, TensorRT-7.1.3, and the image input size set to 416 x 416. The
Pytorch model is first transformed into an ONNX model, and then TensorRT is used to
quantify the accuracy of the parameters of the model and to merge the workflow so that
it keeps the model running on the GPU as much as possible, thus allowing the model to
run faster. We test the inference speed of the Pytorch Single-precision floating-point (FP32)
model, ONNX INT64 model, TensorRT FP32 model, and TensorRT FP16 model on Jetson
Nano. In Figure 12, the arrows refer to the increase or decrease in accuracy as a result of
this operation compared to the previous phase.
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Figure 12. ShufflenetV2-YOLOX models for inference speed and AP accuracy on Jetson Nano.

On the Jetson Nano, the ShufflenetV2-YOLOX model with Pytorch FP32 can run at a
speed of 11.5 FPS. The ONNX model, on the contrary, runs slower because of its parameter
precision of double precision (INT64). As shown in Figure 11, we can see that TensorRT
is very effective in accelerating the model. The TensorRT FP32 detects 47.8% faster with
essentially no change in AP accuracy, reaching 17.1 FPS, while the TensorRT FP16 model
detects 26.3 FPS with only a 0.88% loss in AP, a 53.8% improvement compared to the
TensorRT FP32, and a 128.3% improvement compared to the original Pytorch FP32 model.
ShufflenetV2-YOLOX is fully capable of meeting the real-time requirements of picking
robots on embedded devices.

3.5. Comparison of ShufflenetV2-YOLOX with Existing Apple Target Recognition Methods

Table 5 gives the ShufflenetV2-YOLOX proposed in this paper as well as existing apple
detection approaches. In the FPS column, PC and Edge indicate the speed at which the
method runs in the computer and edge devices, respectively.

As can be seen from Table 5, the ShufflenetV2-YOLOX model proposed in this paper
does not achieve the highest detection accuracy though, being 1.4 percentage points lower
in AP compared to other methods mentioned in the literature. The possible reasons for
this are considered: On the one hand, the dataset used in this thesis is complex, with three
scenarios present. Each image contains an average of 12 apple targets, which raises the
difficulty of apple detection. On the other hand, the network designed in this thesis is a
light network, which focuses more on the operation speed of the network. Therefore, it is
slightly lacking in detection accuracy. Compared with the methods in [12,13], the improved
network in this thesis is more lightweight and improves the detection speed by 62 FPS and
61 FPS, respectively. The study in [10] can achieve a detection speed of 30 FPS on edge
devices. However, the Jetson AGX Xaver it uses is eight times more expensive than the
Jetson Nano used in this paper and is not cost-effective. Its AP is only 83.64%, well below
our 96.76%.

Compared to the parameters in the literature, the ShufflenetV2-YOLOX model pro-
posed in this paper has more outstanding advantages. Real-time detection can be achieved
while ensuring detection accuracy.
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Table 5. Comparison between ShufflenetV2-YOLOX and existing detection methods.

Detection .
Methods Data Sets Network Input Size AP FPS F1
. Improved o
Literature [10] Dense apple YOLOV3-Tiny 1920 x 1080 83.64% 30 (Edge) \
. Apple shaded EfficientNet- o
Literature [12] by leaves YOLOVA 416 x 416 98.15% 2.95 (PC) 0.96
Literature [13] Apple Mask-RCNN 280 x 720 \ 4 (PC) 0.905
Unbagged apples,
ShufflenetV2- o 65 (PC)/
Our Baiged applt.es and YOLOX 416 x 416 96.76% 26.3 (Edge) 0.95
pple at night

4. Conclusions

To solve the problems associated with apple object detection in natural environments,
this paper presented ShufflenetV2-YOLOX, an improved apple object detection method
based on YOLOX-Tiny. The method was trained using a dataset of apples under daytime,
bagged, and nighttime conditions. By replacing the backbone network, adding an attention
mechanism, adding adaptive feature fusion, and reducing the number of feature extraction
layers, the detection speed and detection accuracy of the model were improved.

The AP, accuracy, recall, F1, and FPS of the trained model were 96.76%, 95.62%, 93.75%,
0.95, and 65 FPS, respectively. A 6.24% improvement in AP and 10 FPS improvement
in detection speed were achieved compared to the original YOLOX-Tiny network work.
In addition, compared to the advanced lightweight networks YOLOV5-s, Efficientdet-d0,
YOLOv4-Tiny, and Mobilenet-YOLOv4-Lite, the AP increased by 1.32%, 3.87%, 7.62%,
and 3.77%, respectively, and the detection speed increased by 47 FPS, 44 FPS, 11 FPS,
and 43 FPS, respectively. This shows that the feature fusion mechanism and the attention
mechanism can improve the accuracy of apple detection in natural environments at an
additional cost. The application of anchorless detectors overcame the drawbacks of past
Anchor-based detectors, which were computationally intensive and reduced the setting of
hyperparameters and post-processing. At the same time, the application of a lightweight
backbone network and the use of only two feature extraction layers reduced the size
of the model and increased the detection speed. For some embedded devices with low
computational power, such as the NVIDIA Jetson Nano, the detection speed could reach
11.5 FPS, while with TensorRT acceleration, the inference speed of the TensorRT FP16 model
reached 26.3 FPS at the expense of only 0.88% AP.

In summary, it offers significant advantages over other current lightweight networks
in terms of detection speed and detection accuracy, and significantly improves recall rates
for night and bagged apples. It can meet the requirements of real-time and high-precision
detection for embedded devices. The method can provide an effective solution for vision
systems for apple-picking robots.
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Abbreviations

ASFF Adaptive Spatial Feature Fusion AP Average Precision

CBAM  Convolutional Block Attention Module CNN Convolutional Neural Network
FP32 Single-precision Floating-point FP16 Half-precision Floating-point

FPS Frames Per Second FLOPS  Floating-point Operations Per Second
GIOU  Generalized Intersection over Union 10U Intersection over Union

INT64  Double Precision IPC Industrial Personal Computer

PR Precision-Recall TFL Two Feature Layers
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Abstract: This research was mainly focused on the evaluation of path planning approaches as a
prerequisite for the automation of bale collection operations. A comparison between a traditional
bale collection path planning approach using traditional vehicles such as tractors, and loaders with
an optimized path planning approach using a new autonomous articulated concept vehicle with
neighborhood reach capabilities (AVN) was carried out. Furthermore, the effects of carrying capacity
on reduction in the working distance of the bale collection operation was also studied. It was
concluded that the optimized path planning approach using AVN with increased carrying capacity
significantly reduced the working distance for the bale collection operation and can thus improve
agricultural sustainability, particularly within forage handling.

Keywords: agriculture; path planning; neighborhood collection; autonomous vehicle; genetic algo-
rithm; global optimization; bale collection problem; forage handling

1. Introduction

Up until present, the application of scientific and technological developments through
increased mechanization and precision farming have provided several opportunities in agri-
cultural production and within forage handling operations. Some promising engineering
developments in the 20th century with regard to forage handling include forage harvesters,
balers, and the automated wrapping equipment of balers using stretch films 25 um thick
to reduce the risks of dust, molds, spores, and mycotoxin respiratory allergenic disorders
in livestock and humans. Baler machines have made it possible to trade silage (harvest
and storage of moist grass using fermentation) in portable packages between farms, which
typically weigh 600-800 kg freshly cut per bales and are more popular on smaller farms
with limited labor and financial resources to construct silos [1,2].

Bales made up of hay or silage formed by hay are usually too heavy to be picked up
by humans alone. Thus, they are picked up from fields using conventional utility vehicles
such as tractors or loaders operated by a human. These kinds of operations are labor
intensive and associated with health and accident risks [3]. There is also a potential to
further improve the efficiency and environmental impact since most decisions are made by
humans and thus limited to human capacities in terms of sensing, multitasking, planning,
consequence analysis, etc.

Therefore, in this study, the possibility of using a new autonomous agricultural vehicle
with the neighborhood pick-up capabilities concept (AVN) was investigated. The research
focused on off-board path planning, which is a critical task within the complete automation
process of the bale pick-up operation.

Research in the route or path planning of agricultural field tasks can be broadly
categorized into two groups based on the similarity of operations: coverage path planning
(CCP) and point-to-point path planning (P2P). It has been observed by [4] that agricultural
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operations that required coverage path planning have been slightly more investigated. Most
solutions for the path planning of agricultural field operations are based on optimization
methods utilizing heuristic approaches or metaheuristic approaches depending upon the
size and context of the problem [5]. In situations where vehicle routes must be planned
over large areas with high economical risk, methods such as metaheuristics perform an
extensive search for a solution and should thus be preferred [6].

Route planning for agricultural field operations (AFOs) involving the use of vehicles
is referred to as vehicle route planning (VRP), which is a well-studied problem in the field
of operational planning. Recently, VRP solutions have been applied to the planning and
execution of various agricultural field tasks by researchers for the scheduling of the trans-
portation of livestock [7,8] mission planning for coverage operation such as grass mowing
and seedling [9], biomass operation scheduling [10], farm-to-farm path determination for
scheduling crop harvesting [11], and route planning for fertilizer application [12]. Recently,
a decision tool to support farmers in the operational planning of field operations was
proposed by [13] to assist in field partitioning, route generation, and evaluation.

Significant improvements have been shown for AFOs in research by the automation
of the AFOs. A study [14] on field coverage operations for an autonomous tractor using a
mission planner showed a 50% reduction in non-working distance. Coverage operations
were then further studied for irregular shaped fields with obstacles [15,16]. In another
implementation by [17], the optimal covering route and feasible positions for grain transfer
between the combine harvesters and tractors were generated using VRP and the minimum
cost network flow.

The application and comparability of metaheuristics for AFOs have been widely stud-
ied and is still ongoing. Recently, a hybrid genetic algorithm (GA) was tested by [18] for a
capacitive vehicle route problem (CVRP) by utilizing Gillett and Miller, Downhill, and near-
est neighbor heuristics to generate the initial population and refine solutions of GA. Experi-
mental results showed that the hybrid approach generated good solutions for CVRP with
low computational cost. In another research by [19] with regard to capacitated coverage
path planning problem for arable field, two popular metaheuristics—simulated annealing
optimization (SAO) and ant colony optimization (ACO) techniques—were evaluated and
it was found that SAO performed better than ACO. Aside from AFOs, a multi-objective
optimal solution to priority-based waste collection and transportation was proposed by [20]
using particle swarm optimization, local search, and simulated annealing (SAO). The op-
timized solution resulted in a 42.3% reduction in the negative effects of greenhouse gas
emissions compared to traditional waste management.

So far, few studies have investigated the bale management in fields. There exists
few published studies on the sequence optimization of the bale collection operation using
wagons or loaders. The intended bale field operation was described as a bale collection
problem (BCP) and was solved as a traveling salesman problem using GA by [21]. While in
another study on BCP in [22], a heuristic-based approach based on K-mean clustering and
nearest neighbor techniques to optimize the bale collection route were tested in simulation.
Comparative results from both studies showed significant improvement in the final gener-
ated route. However, no other research studies were found on the route optimization of
bale collection and no single study was found on the bale collection on fields, especially
with the prerequisite of neighborhood pick-up possibilities.

1.1. Objective

The objective of the research presented in this paper was to optimize the bale
collection operation by means of travelled distance using notion of an autonomous
articulated vehicle with neighborhood collection capability (AVN) and compare that
with traditional collection methods.
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1.2. Scope

The research focused on the development of a global route plan for bale collection
operations in simulation for notion of using AVN. For a global route plan, a static and
known environment was considered since bale positions and fields are static entities. Bale
positions were assumed to been known from a previous baling operation.

The following additional general assumptions were made:

- Only bale collection operation was studied;

- Anotion of new type of agricultural vehicle (AVN) was considered for the application;
- The AVN was considered to be a nonholonomic point like robot for the path generation;
- Kinetic constraints of the vehicle were excluded;

- Feasibility is measured only by total travelled distance.

2. Research Methodology

To investigate the effects of different bale collection strategies, a simulation approach
was chosen. Path planning is typically performed in computer environments, which further
makes feasibility evaluation easy compared to real life experimental strategies (i.e., to
measure the feasibility on path suggestions on an actual field).

Two different approaches were studied and verified through the testing of situations
with outcome pre-knowledge. The first approach imitates the bale collection strategy of
farmers by always choosing the closest bales from the current position. The other approach
instead uses a GA to optimize the collection order and position within a radius from
which the AVN can reach. To investigate the differences in travelled distance (i.e., chosen
feasibility) between a traditional and proposed collection approach, two different fields
of the same size and with the same number of bales with a pre-determined distribution
was studied. One was a simple rectangular field (field 1) and the other was a L-shaped
field with more geometrical constraints (field 2). This enables investigations of possible
dependencies on field complexity. With the fields selected, some simulation parameters
could be set (e.g., grid size, inflation length, number of possible pick-up positions etc.) by
conducting verifying tests to find a trade-off between the computational time and accuracy.
Then, the experiments were designed by choosing which parameters to vary and thus
which simulations to run. To enable comparison, the results from these simulations were
then compiled into tables and some paths were also visualized, enabling the analysis of
collection order as well as verification on the feasibility.

The traditional approach was generated by considering how humans would operate
in a typical agricultural environment for bale collection operation. Generally, a human
operator would pick-up the next visible bales closest to the present location. Such a heuristic
approach could be programmed by using the nearest neighbor algorithm. Through this
approach, two different cases were studied: one with a traditional pick-up vehicle which
always has to go to the nearest bales and another with the AVN.

In addition, an optimization approach based on commonly used GA was further
developed, thus enabling a comparison to the traditional approach. Here, two different
strategies for initial population generation were used to show the effects on convergence.

Verification of the simulations were conducted by running a test simulation on config-
urations where the results were pre-known. In addition, the results from all simulations
were analyzed manually to make sure that the paths were consistent.

2.1. Model Description

In this study, a notion of an AVN (see Figure 1) with a regular forwarder crane of 10 m
long was used for the modeling. For comparison, traditional agricultural vehicles (e.g.,
tractors or loaders) were also modeled. These traditional vehicles are typically equipped
with front loaders requiring additional traveling for the loading of each bale (i.e., they
cannot load bales onto themselves). This effect is excluded in the traditional vehicle models
in this study, leading to underestimation of the travelled distance.
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Figure 1. Autonomous off-road vehicle platform—Autonomous articulated vehicle with neighbor-
hood reach capability (AVN).

The problem formulation for the bale collection operation with a crane makes it
somewhat unique. The AVN can collect bales at a radius R, which makes the situation a close
enough traveling salesman problem (CETSP) [23]. The CETSP is a NP hard, combinatorial
problem, and some recent solutions for CETSP have been proposed based on the discrete
gravitation search algorithm and self-organizing maps [24,25]. However, the vehicle can
have different carrying capacities, thus leading to a close enough traveling salesman
problem with a capacity constraint. In this study, the collection sequence and collection
positions minimizing the total travelled distance was searched for and thus the CETSP is
defined as

ming (%, BP,CP) (1)

where X is the bale pick up sequence; CP is the desired collection position at radius R
(specified by AVN reach radius) around the bale positions (BP); miny, is a function that
calculates the minimum length tour at collection positions around each bale.

Agricultural Field Models

The agricultural fields were modeled in two steps. To represent “go” and “no go”
areas (obstacles), binary occupancy maps (BOM) [26] were used and to find non-collision
paths within the “go” areas, probability roadmaps (PRM) [27] were used.

In this research, to investigate the possible effects of field complexity, two different
fields were studied. Field 1 (see Figure 2) is a rectangular field without any obstacle areas
imitating a quite typical environment for bale collection operations. Field 2 (see Figure 3)
on the other hand, is a representation of an irregular more complex agricultural field with
obstacle or intrusion areas. For both fields, bales were positioned by calculating the distance,
going in straight lines from one end to the other until the whole field was covered, and the
harvesting vehicle had collected enough material to form a bale based on the average yield,
etc. given in Table 1.

Figure 2a shows the BOM of field 1 where black dots indicates bales occupancy
and Figure 2b shows the inflated BOM of field 1. To reduce the calculation intensity for
simulations, only 10 discrete points on each bale collection radius were used, which are
represented as black dots surrounding the inflated bales in Figure 2b.

7
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Figure 2. (a) Binary occupancy map of the bale position in field 1. (b) Inflated binary occupancy map

of the bale position in field 1.
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Figure 3. (a) Binary occupancy map (BOM) of the bale position in field 2. (b) Inflated binary
occupancy map (BOM) of the bales and bale collection positions in field 2.

Table 1. Bale distribution parameters.

Bale Distribution Parameters

Average grass yield ~7000 kg/ha
Average weight of bales ~700 kg
Harvester width ~3.0m
~330 m

Distance req to make one bale by harvester
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Figure 3a shows the BOM of field 2 where black dots indicates bales occupancy and
Figure 3b shows the inflated BOM of field 2 including the discretized collection points at
AVN’s reach radius.

The distance traveled to release a bale can then be calculated through

d x HW x ngss = IK/HB @)

where d is the distance required to make one bale by harvester; HW is the harvester width;
WHB is the average weight of one bale; and ngss is the average grass yield in a typical
season. “x’ represents multiplication operator. Based on the parameters in Table 1 and
Equation (2), bales were released after a travelled distance of around 330 m (some minor
adjustments were made if the release position coincided with the boundary of the field).

Binary Occupancy Maps for Field 1 and Field 2

A typical agricultural environment for the bale collection operation was modeled in
2D using binary occupancy maps. Bales are represented as occupied circle areas and once
a bale is picked up, it is removed from the BOM. To take the collection vehicle size into
consideration, the occupied areas were further inflated in the BOM. In Table 2, all BOM
settings for both fields (simple and complex) are summarized.

Table 2. Binary occupancy map (BOM) setting for both fields.

Binary Occupancy Map Based Settings for Both Fields

Total field area 3 hectares
Grid cell size 1m
Grid resolution im
(cells/meter?)
Inflation 1.3m

Probabilistic Roadmaps

To further reduce the calculation intensity for the GA-simulations, static PRM was
used (stationary nodes and connection lines) to generate the collision free paths. The same
number of nodes and connection distance was used for both fields and the chosen PRM
parameters are given in Table 3.

Table 3. Selected PRM settings for the simulation.

PRM Graph Parameters

Number of nodes

Storage position, start position, end
position and potential pickup points
1000 for each bale and/or each
(Fixed position nodes + bales position
random nodes)

Fixed position nodes

Nodes besides fixed nodes are
Random nodes randomly generated once and
remained fixed afterward for all cases

Connection distance

50

The quality of the PRM depends on the number of nodes and connection distance and
also impacts the calculation intensity. For this study, 1000 nodes and 50 m in connection
distance was evaluated as a suitable trade-off.

The “bale storage position, pick-up positions (also bale positions for traditional pick-
up vehicle), start- and end position of the vehicle” were pre-defined nodes and then another
1000 randomly generated nodes were added. PRMs for both fields were kept fixed, despite
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the changes in map (e.g., when bales are picked up) to speed up the computation. However,
PRM connection lines did not cross the bale areas even after being removed.
Figure 4 shows the PRM for field 1 (a) and field 2 (b).
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Figure 4. (a) Static PRM for field 1. (b) Static PRM for field 2.

2.2. Bales Collection Path Approaches
Two approaches to generate the bale collection paths were studied. The idea was to

imitate the bale collection approach of a farmer and compare it to a bale collection approach

based on optimization.

2.2.1. Nearest Neighbor Approach
One way of imitating how farmers collect bales, which was used for this study, is

through the nearest neighbor approach. It was here assumed that a farmer will choose
the nearest bales from its current position and then continue collecting one by one based
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on proximity. In the case of a traditional collection vehicle, the bale center is used as the
collection position. On the other hand, for the AVN, the nearest bale is first derived and
then the collection point around the bale that is closest to the Euclidian vector from the
previous collection position to the current nearest bale center is derived. A straight-line
path is used if no obstacles are intersected, otherwise a collision free path based on PRM
is derived. This approach uses the MATLAB® built-in nearest neighbor search algorithm
based on Euclidean distance between the set of points in free space. In case when there are
obstacles in the space, it may result in false positive in comparison to the farmers’ visual
judgment in a real situation.

2.2.2. Optimization Approach

Optimization of the total distance travelled (fitness function) was carried out by use of
a GA, which has good performance on finding the global optimum, has possibilities for
parallelization, and can be applied to various types of problems. However, GA can become
very calculation intensive and therefore, a lot of emphasis has been spent on simplifications,
making each iteration as fast as possible.

Since the notion of an agricultural vehicle (see Figure 1) with neighborhood collection
capability is used for this study, bales were collected not only in a certain order, but also from
a point on a circle with a certain radius (corresponding to the crane length) surrounding
the bales. Thus, a traveling solution is defined by a collection order and a set of points
on the collection circumference (i.e., collection angles). Since the collection order is a
permutation while collection angles are a set of constrained real numbers between 0 and 27
(not a permutation), it was decided to use two GAs. Hence, the first GA (GA1) was used to
optimize the collection order represented as chromosome in the population of permutations
of the bales” identities. For each collection order proposed by the first GA, a second GA
(GA2) was then used to optimize the collection positions for each bale. To speed up the
calculations, a discrete number of collection positions were defined from which GA2 had
to choose. In this way, the number of possible combinations were significantly decreased,
and integer representation was used for the chromosomes, which also contributes to
computational efficiency. For both GAs, the built in “ga”-solver in MATLABO was used.
However, since GA1 is based on permutation chromosomes, custom functions for the
initial population, crossovers, and mutations were developed (for GA2, default settings
for these properties were used). To enable a comparison of the initial conditions, two
different cases of population initialization were tested (i.e., randomized initialization and
nearest neighbor initialization). Crossovers were conducted by flipping a random sized
part of the chromosomes while the mutations were carried out by swapping two elements
in the chromosome. After evaluating the performance by means of computational time and
accuracy, the following settings were used for both GAs:

Population size = 50

Crossover fraction = 50%

Function tolerance =1 x 107°

Elite count = 10

Maximum nr. of stalling generations = 50
Maximum nr. of generations = 100

For GA1, vectorization (i.e., working with the complete population for each iteration in-
stead of sequentially working which each chromosome in sequence) and no parallelization
was used, while the opposite was used for GA2, thus enabling GA2 to evaluate different
sets of collection angles in parallel, which is possible since there exist no dependencies
between those solutions.

At the lowest computational level (i.e., for a suggested collection order and set of
collection angles), the total travelled distance can be calculated. Here, between two subse-
quent collection points, a straight line path was derived if no collision in the occupancy
map occurred. Otherwise, the PRM was used to find the shortest collision free path (within
the pre-generated PRM network). To further improve the computational efficiency, all
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simulated collection orders were stored together with the, for that order, optimized set of
collection positions. For each new generation, this enabled an initial check of whether the
suggested collection orders have already been optimized by means of collection angles
or not. If not, a new optimization simulation is initiated, otherwise the already stored
feasibility value is used.

A 20-core computer was used for the parallel computations, leading to a total simula-
tion time for all set of parameters (field type, carrying capacities) of about 5 days.

3. Results

Simulations with the same set of parameters were carried out for both field 1 and field
2. The simulations included both the nearest neighbor and the optimization approaches.
For the nearest neighbor, to enable a fair comparison, two different cases were studied.
In the first case, notion of traditional vehicle without distance collection possibilities was
modeled and referred to as the “benchmark”. In the other case, the AVN notion was used
and referred to as the “nearest neighbor with radius R” (referred as NNR). Additionally, the
optimization approach was divided into two cases using the AVN notion. In the first case,
random permutations of the pickup sequence were used for the initial population, which here
is referred to as “random permutation initialization” (RPI). For the second case, the nearest
neighbor collection sequence was included in the initial population, which is referred to as
the “nearest neighbor permutation initialization” (NNPI). For each of these four cases, the
three different carrying capacities 1, 10, and all bales were evaluated, leading to 12 different
simulations for each field. The resulting paths for carrying capacity CC = 10 are shown in the
main text while the paths for the remaining simulations can be found in Appendix A.

3.1. Nearest Neighbor Approach

Figure 5 shows the resulting paths for field 1 with CC = 10 of the benchmark-(U)
and NNR case (L). Circle ‘0’ represents bales heuristically optimized pickup positions and
dots ‘e’ and *.” represents bales positions and discretized pickup position at reach radius
respectively. By adding a reach radius, the traveled distance was reduced from 1750 m to
1590 m while the collection sequence remained.

Figure 6 shows the resulting paths for field 2 with CC = 10 of the benchmark-(L) and
NNR case (R). By adding a reach radius, the traveled distance was reduced from 1470 m to
1300 m while the collection sequence remained.

3.2. Optimization Approach

Figure 7a shows the resulting paths for field 1 with CC = 10 of the RPI case where ‘x’
represents bales optimized pickup positions. Figure 7b shows the corresponding fitness
convergence where black dots “-’represent the best fitness in each generation and marker
'+’ represents the average population fitness value in each generation. Figure 7c shows
the resulting path of the NNPI case with the corresponding fitness convergence (d). By
incorporating a nearest neighbor optimization as guess in the initial collection sequence
population, the travelled distance was reduced from 1470 m to 1360 m.

141



Agriculture 2022, 12,1977

Simple Field 1
Benchmark
(Farmers approach with traditional vehicles)
Path Length (m) =1750
100
80
Z 60
= 4
>
20
0
0 50 100 150 200 250 300
X [meters]
NNR
(Farmers approach with AVN)
Path Length=1590
100
z
3
2
>

250 300

100 150
X [meters]

Figure 5. Resulting paths for field 1 with CC = 10 of benchmark-(U) and NNR (L).

Complex Field 2
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Figure 6. Resulting paths for field 2 with CC = 10 of benchmark-(L) and NNR (R).
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Figure 7. Resulting paths for field 1 with CC = 10 of (a) RPI case (b) RPI convergence, (c) NNPI case
and (d) NNPI convergence.

Figure 8a shows the resulting paths for field 2 with CC = 10 of the RPI case and the
corresponding fitness convergence (b). Figure 8c shows the resulting path of the NNPI case with
the corresponding fitness convergence (d). By incorporating a nearest neighbor in the initial
collection sequence population, the travelled distance was reduced from 1490 m to 1230 m.

3.3. Results Compilation

Results of the travelled distance for all simulations are compiled in Tables 4 and 5
where the two path planning approaches and their respective subcases are arranged in
columns from left to right for the three different carrying capacities given in rows. For
the optimization approach, solutions for CC = 1 had weak dependency on the collection
order. Some deviations compared to NNR might occur due to the fact that the discrete
collection positions do not necessary coincide with a straight line from the storage location
to the bales. Hence the NNR with CC =1 is an approximation for the optimized approach.
Table 4 shows the compiled results of the travelled distance for field 1.
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Figure 8. Resulting paths for field 2 with CC = 10 of (a) RPI case, (b) RPI convergence, (c) NNPI case,
and (d) NNPI convergence.
Table 4. Compiled results for field 1.
Path Distance (m)
Path Planning Nearest Neighbor Approach Optimization Approach
Approaches (Traditional vehicles) (AVN notion) (AVN notion)
Subcases Benchmark NNR RPI NNPI
Vehicles Carrvin CcC=1 9630 ~9040 ~9040 ~9040
e (C{j)g CcC=10 1750 1550 1470 1360
pacity CC=all 1160 990 860 820

It can be observed in Table 4 that an increasing carrying capacity for all three cases
resulted in a significant distance reduction. Percentage reduction in the travelled distance
in field 2 for the three carrying capacities are shown in Figure 9.
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Table 5. Result compilation for field 2.

Path Distance (m)

Path Planning Nearest Neighbor Approach Optimization Approach
Approaches (Traditional vehicles) (AVN notion) (AVN notion)
Subcases Benchmark NNR RPI NNPI
Vehicles Carrvin CC=1 8900 8380 ~8380 ~8380
e (C{j) 8 cC=10 1470 1300 1490 1230
pacity CC=all 990 830 880 740
100 Field 1
I cc=1-all
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80
S 70
@
2
S 60
»
©
c 50
c
2 40
3]
3
o 30
o
20
10
0

Benchmark NNR Best Optimization
Carrying Capacity(CC)

Figure 9. Travelled distance reduction for the three carrying capacities within each case for field 1.

Figure 10 shows a comparison of the path planning cases for two carrying capacities
(CC =1 will give approximately the same result for the different cases) by means of per-
centage reduction in the travelled distance. Black bars represent NNR over the benchmark,
white bar with solid line borders NNPI over the benchmark and white bar with the dashed
dotted border NNPI over NNR.

Table 5 shows the compiled results of travelled distance for field 2.

Percentage reduction in the travelled distance in field 2 for three carrying capacities
are shown in Figure 11.

Figure 12 shows comparison path planning cases for two carrying capacities (CC = 1
will give approximately the same result for all cases) by means of a percentage reduction
in the travelled distance. The black bar represents the NNR over benchmark, the white
bar with solid line borders NNPI over benchmark, and the white bar with dashed dotted
border is the NNPI over NNR.
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Figure 11. Travelled distance reduction for three carrying capacities within each case for Field 2.

146



Agriculture 2022, 12,1977

Field 2
100
I \NR improvement over Benchmark
90 [ Best Optimization improvement over Benchmark
[ 'Best Optimization improvement over NNR

80
S
©
2
S 60
@
]
c 50
c
L2 40t
3]
3
3 L
o 30 25

20 f 16.1 16.9

ol 11.5 98

52 ! i
| = | |
0 i ! i
CC=10 CC=all

Carrying Capacity(CC)

Figure 12. Comparison of the travelled distance reduction for two carrying capacities among each
case for field 2.

4. Discussion

In order to simplify the computational intensity in optimizing the path planning task
for the bale collection operations, there have been a number of approximations made in
the modeling, as described in the scope and modeling part of the paper. This includes
neglecting vehicle kinetics, considering bale collection only, keeping the PRM network static,
discretization of the collection positions, etc. The GA is also significantly dependent on
settings for the optimization algorithm, which effects both the accuracy and calculation time.
Convergence to an optimal solution is, for instance, highly dependent on the size of the initial
population and number of generations. Apart from CC = 1, the benchmark approach will
always underestimate the travel distance since the loading stage is excluded from the distance
calculation (i.e., relative improvements by the AVN will also be underestimated). Although
these approximations will affect the output in an absolute manner, it is plausible that the
relative behavior will remain, which was therefore focused on in making conclusions.

Taking the modeling limitations into consideration, some key insights were gained by
analyzing the simulation results. It was found that adding carrying capacity significantly
reduced the traveling distance for the bale collection operations. There was an exponential
decaying trend in the distance reduction with respect to the carrying capacity. Hence, the
bale collection procedure can be significantly improved, even with a small carrying capacity
added. Comparing the benchmark with NNR showed that NNR reduced the travelled
distance by about 10-20% (depending on field type and carrying capacity). Comparing the
nearest neighbor strategy with optimization, the collection order may change for optimiza-
tion (whether this is generally true or not cannot be concluded by the data presented in
this paper). As would be expected, the simulations showed that the optimization approach
reduced the travelled distance compared to the nearest neighbor approach. Compared to
the benchmark, this reduction was about 20-30% for field 1 and 15-25% for field 2 and
compared to NNR, this reduction was around 10-20% for field 1 and around 5-10% for field
2. Thus, the relative travelled distance reduction for the optimized solutions was slightly
higher for the regular simple field (Field 1) compared to the complex field (Field 2). These
travelled distance improvements can be compared to the similar studies by [21,22], which
showed a 6.0 and 6.8% reduction for similar cases, respectively. It should be noted that
the convergence to optimal solution strongly depended on the choice of initial population.
The results indicate that the nearest neighbor initialization is a better choice than randomly
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permutated initialization independent of carrying capacities and field complexity (similar
results for both fields).

5. Conclusions

It can be concluded that a vehicle with neighborhood collection capabilities and added
carrying capacity can significantly reduce the travelled distance for bale collection opera-
tions (the benchmark model even gives an underestimation in this study). To generate short
paths, the optimization approach is superior compared to the nearest neighbor approach
and including the benchmark collection order in the initial population for the genetic
algorithm improves the convergence compared to random initialization. Hence, imple-
menting the optimization path planning approach, neighborhood collection capabilities,
and adding a carrying capacity will have a significant effect on the farmers” economic and
environmental sustainability. By reducing the working distance through optimized path
planning implies less fuel consumption and more cost effectiveness. Although the primary
focus in this study was on bale collection operation, it is plausible that the same approach is
applicable in similar activities both within agriculture and beyond, for example, in forestry.
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Appendix A

Figure A1 shows the resulting paths for field 1 with CC =1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 9630 m to
9040 m while the collection sequence remained.

Figure A2 shows the resulting paths for field 1 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 1160 m to
990 m while the collection sequence remained.

Figure A3a shows the resulting paths for Field 1 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A3c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
from 860 m to 820 m.
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Figure Al. Resulting paths for field 1 with CC =1 of (a) the benchmark and (b) NNR.

Path Length (m) =1160

v
5]
k)
E
>
0 50 100 150 200 250 30C
X [meters]
(a)
Path Length=990
@
5}
°
E
>
0 50 100 150 200 250 30C
X [meters]
(b)

Figure A2. Resulting paths for field 1 with CC = all of (a) the benchmark and (b) NNR.
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Figure A3. Resulting paths for field 1 with CC = all of (a) the RPI case, (b) RPI convergence, (c) NNPI

case, and (d) NNPI convergence.

Figure A4 shows the resulting paths for field 2 with CC =1 of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 8900 m to
8380 m while the collection sequence remained.
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Figure A4. Resulting paths for field 2 with CC =1 of (a) the benchmark and (b) NNR.
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Figure A5 shows the resulting paths for field 2 with CC = all of the benchmark-(a) and
NNR case (b). By adding a reach radius, the traveled distance was reduced from 960 m to
830 m while the collection sequence remained.
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Figure A5. Resulting paths for field 2 with CC = all of (a) the benchmark and (b) NNR.

Figure A6a shows the resulting paths for field 2 with CC = all of the RPI case and
the corresponding fitness convergence (b). Figure A6c shows the resulting path of the
NNPI case with the corresponding fitness convergence (d). By incorporating a nearest
neighbor in the initial collection sequence population, the travelled distance was reduced
from 880 m to 740 m.
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Figure A6. Resulting paths for field 1 with CC = all of (a) the RPI case, (b) RPI convergence, (c) NNPI
case, and (d) NNPI convergence.
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Abstract: To achieve pest elimination on leaves with laser power, it is essential to locate the laser
strike point on the pest accurately. In this paper, Pieris rapae (L.) (Lepidoptera: Pieridae), similar
in color to the host plant, was taken as the object and the method for identifying and locating the
target point was researched. A binocular camera unit with an optical filter of 850 nm wavelength was
designed to capture the pest image. The segmentation of the pests’ pixel area was performed based
on Mask R-CNN. The laser strike points were located by extracting the skeleton through an improved
ZS thinning algorithm. To obtain the 3D coordinates of the target point precisely, a multi-constrained
matching method was adopted on the stereo rectification images and the subpixel target points in the
images on the left and right were optimally matched through fitting the optimal parallax value. As
the results of the field test showed, the average precision of the ResNet50-based Mask R-CNN was
94.24%. The maximum errors in the X-axis, the Y-axis, and the Z-axis were 0.98, 0.68, and 1.16 mm,
respectively, when the working depth ranged between 400 and 600 mm. The research was supposed
to provide technical support for robotic pest control in vegetables.

Keywords: robotic pest control; Mask R-CNN; skeleton extraction; binocular vision; stereo matching

1. Introduction

Physical pest control with laser power is widely considered as effective in reducing
the pollution to the environment and even the damage to human health from the chemical
pesticide [1,2]. Since 1980, many researchers have explored the outcome of pest elimination
with lasers [3-5]. It has been demonstrated in these studies that laser power can cause
damage to the exoskeleton and underlying tissues of pests, disrupt the anabolism of tissue
cells, and ultimately kill pests [6,7]. Li et al. [5] found that the 24 h mortality rate of the
fourth larval instar of Pieris rapae (L.) (Lepidoptera: Pieridae) reached 100% under the
optimal working parameter combination of laser power of 7.5 W, an irradiation area of
6.189 mm?, the laser opening time of 1.177 s, and the irradiation position in the middle of
the abdomen. Therefore, to make laser pest control technology applicable in engineering
settings, a pest control device is required to accurately focus the laser on the middle of the
pest’s abdomen to ensure that the laser kills the pests precisely under intense energy.

In this respect, machine vision technology can be applied to identify the pests present
in the field [8,9]. However, most pests have a protective color for defense. In particular,
the image background is complex and pest image features are less than prominent due
to the intensive planting of crops [10]. Moreover, prior research on pest identification has
mainly focused on the classification and counting of the pest species, with little attention
paid to the 3D location of pests. Therefore, deep learning technology and binocular vision
are integrated in this study to accurately identify and locate the laser strike point on the
pest, thus providing technical support for robotic pest control in vegetables.
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The mask regional convolutional neural network (Mask R-CNN) model first proposed
by He et al. [11] can be used for instance segmentation and detection of pest images
and achieves multiple research results in pest detection tasks [12,13]. Wang et al. [14]
constructed a Drosophila instance segmentation model for automatically detecting and
segmenting Drosophila wing, chest, and abdomen images, with an average precision of
94%. The instance segmentation can obtain target contour information without image
morphological processing and is more suitable for accurate pest identification in laser pest
control tasks. However, the above methods are used to segment RGB images of pests in
specific environments, such as laboratory environments [15] and yellow sticky traps [16].
Existing algorithms still accurately segment pest targets with protective color characteristics
in field environments.

As an extension of computer vision technology, near-infrared (NIR) imaging technol-
ogy is used in insect species identification [17] and plant disease monitoring [18] widely.
Sankaran et al. [19], based on visible-near infrared and thermal imaging technology, quickly
identified citrus greening with an average precision of 87%. Luo et al. [20] used NIR
imaging technology to track and monitor the structure and physiological phenology of
Mediterranean tree-grass ecosystems under seasonal drought. Our team [21] proposed a
monocular camera unit with an 850 nm optical bandpass filter to capture the image for
identifying the pests, and the NIR image was confirmed to highlight the gray difference
between the larvae of P. rapae and the vegetable leaves (Figure 1).

Figure 1. Comparison of near-infrared imaging effects of Pieris rapae on cabbage leaves. (a) The
original image. (b) Near-infrared image. In the process of image acquisition, P. rapae and cabbage
leaves were placed in a black box and an 850 nm infrared filter was installed on the camera to collect
near-infrared images with an 850 nm ring light source. The original image is not equipped with a
filter but is equipped with a white ring light with the same power as the 850 nm.

After identifying and segmenting pests in the field, the laser strike point is located
in three dimensions based on binocular stereo vision. Stereo matching is an important
factor affecting the location accuracy of binocular vision. Based on the constraint range and
search strategy, the matching algorithm can be divided into local [22,23], global [24,25], and
semi-global [26,27] stereo matching. However, the smaller larvae of P. rapae remain. With
the 4th and 5th instar larvae of P. rapae as an example, their average widths reach 1.564 mm
and 2.738 mm, respectively [28]. The above stereo matching of the global parallax map
for the small target pests will result in low matching efficiency and poor location accuracy.
Therefore, on the basis of the determined operation range, the candidate matching region
was narrowed by the multi-constrained method to improve the efficiency and location
accuracy of the stereo matching.

In this study, we designed a 3D locating system for pests’ laser control to eliminate the
above problems of inconspicuous pest image features, unclear location of strike points, and
inefficient matching algorithms. A binocular camera unit with an optical filter of 850 nm
wavelength was designed to capture the pest image. The ResNet50-based Mask R-CNN
extracted the bounding box and the segmentation mask of the P. rapae pixel area, and the
laser strike point was located in the middle of the pest abdomen, which was extracted
through an improved ZS thinning algorithm with smoothing iterations. Furthermore, a
multi-constrained matching method was adopted on the stereo rectification images. The
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subpixel target points in the images on the left and right were optimally matched by fitting
the optimal parallax value with the most similar feature between the template area among
the two images. The 3D coordinates of each laser strike point were located according to its
pixel coordinates in the two images. Finally, the recognition and localization performance
of the system for targets at different locations was evaluated by implementing it on a field
test platform. The research results can provide theoretical reference for the automatic laser
strike of the pest control robot.

2. Materials and Methods
2.1. Binocular NIR Vision Unit

The 3D locating system was composed of a binocular vision system, a light source
module, and host computer software, as shown in Figure 2a. In this system, the binocular
vision system was composed of two gigabit industrial cameras produced by Hangzhou
Haikang Robot Technology Co., Ltd. (Zhejiang, China). The camera model was MV-CA060-
10GC, which is equipped with the lens model MVL-HF0628M-6MPE and a near-infrared
filter of 850 nm. The resolution of each camera is 3072 (H) x 2048 (V), the focal length is
6 mm, and the frame rate is 15 fps. The two cameras were installed on the camera frame
in parallel, and the baseline length was 50 mm. In addition, the system was illuminated
by an 850 nm diffuse light bar, which can emit light evenly without shadows. The image
processing platform adopted a Lenovo notebook ThinkPad P1, 24 GB RAM, Inter-Core
i7-8750H@2.20 GHz, Windows 10, 64-bit system. The software system was mainly based
on the OpenCV visual library and the TensorFlow deep learning framework.

Light controller

Camera

850 nm Infrared filte

o

Lens
S—
i
r
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850 nm Diffuse light .
A L ..
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G

Figure 2. The binocular NIR vision unit and the example of collected images. (a) The visual system
composition. (b—e) Regular cabbage as background and P. rapae larvae in different positions and
postures taken from the collected NIR images.

Before image acquisition, a chessboard calibration board with a square size of 30 mm
x 30 mm was used to perform stereo correction on the binocular camera [29]. In the process
of image acquisition, the acquisition device was placed immediately above the cabbage
leaves under natural illumination to collect images of P. rapae in the field. The collected
images are shown in Figure 2b—e.

2.2. System Architecture

The flow of the field pest 3D locating system proposed in the study is shown in Figure 3,
which mainly includes three parts: (1) pest identification and instance segmentation of
the Mask R-CNN, (2) locating the laser strike point by extracting the skeleton of the pest,
and (3) the 3D localization of laser strike point involved matching template preprocessing,
multi-constraint narrowing of the matching region, subpixel stereo matching, and 3D
coordinate extraction.
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Figure 3. Structure diagram of the 3D locating system for field pests.

2.2.1. Instance Segmentation of Pieris rapae Image Area Based on Mask R-CNN
(1) Mask R-CNN Model

The accuracy of pest contour segmentation directly affects the accuracy of the laser
strike point and stereo matching parallax. Based on the self-built NIR field P. rapae image
dataset, this paper selected ResNet50-based Mask R-CNN [11] to identify and segment the
pests” image area. The model structure is shown in Figure 4, which mainly includes the
following steps:

1.  The feature extraction network ResNet50 [30] extracted multi-scale information from
the input image and generated a series of feature maps.

2. According to the mapping relationship between the feature map and the input image,
the region proposal network (RPN) used the sliding window of the convolution layer
to scan the anchor box in the feature map and generated a series of regions of interest
(RoI) through classification and regression.

3. The Rol Align determined the eigenvalue of each point in the Rol and then performed
pooling and other operations to match and align the target candidate region obtained
by the RPN network with the feature map.

4. The feature maps output by Rol Align were input to the fully connected (FC) layers
and the fully convolutional network (FCN). The former identified P. rapae and located
the respective bounding boxes, and the latter segmented the pixel area of the larvae.

(2) Dataset augmentation and labeling

In total, 1000 images of P. rapae larvae in different poses were collected in the Brassica
oleracea field. The sample numbers were expanded to 2000 by rotation, magnification,
and horizontal and vertical mirroring, which improves the robustness of the recognition
model [31]. Among them, each image contains at least one P. rapae larvae. We then marked
the outline of P. rapae with the help of the open-source tool LabelMe. This tool can pick
P. rapae masks from images and output a dataset in COCO format. Finally, the dataset
was divided into a training set and a validation set according to the ratio of 8:2 for model
training.
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Figure 4. Overall Mask R-CNN with the ResNet50 model structure.

(3) Transfer training

The model training was completed using a PC with the following hardware environ-
ment: 32 GB RAM, Inter-Xeon E5-2623 v3*2@3.00 GHz, and NVIDIA GeForce RTX2080.
The software system uses the TensorFlow deep learning framework under Windows 10
and 64-bit operating systems for coding and training and was configured with Python3.6,
Anaconda 5.3.1, and CUDA10.0 compilation environments.

The training method adopted the transfer training method. The Mask R-CNN was
initialized with the feature extraction network weights of the pre-trained model, while
the object classification, bounding box regression, and FCN parameters were randomly
initialized. During training, the initial learning rate was 0.001, the momentum parameter
was 0.9, and the batch size was set to 1. In the RPN structure, the anchor point sizes were
32, 64,128, 256, and 512. The anchor point frame ratio was 0.5:1:2.

The model object detection and region segmentation results are shown in Figure 5.
The high-quality segmentation mask distinguishes pests from the background, which can
be used to calculate the location of the laser strike point directly.

®) )

Figure 5. Visualization results of the ResNet50-based Mask R-CNN. (a—d) P. rapae larvae in different
positions and postures taken from the collected NIR images. (a) Multiple pests, (b) curled pests, (c)
occlusion state, and (d) dorsal position of the leaf.

2.2.2. Pest Skeleton Extraction and Strike Point Location
(1) Laser strike point

Laser pest control requires focusing the laser on the middle of the pest abdomen to
ensure that the laser kills the pests with intense energy. The body of P. rapae larvae is
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tubular and segmented, as shown in Figure 6. The middle part of the abdomen irradiation
position was between the 8th and 9th segments, near the midpoint of the skeleton [5,32].
Therefore, this paper set the laser strike point as the midpoint of the skeleton of the pest
image area. The improved ZS thinning algorithm was used to extract pest skeletons. Then,
pest skeleton chain code was established to extract the skeleton midpoint coordinates to
determine the final strike point.

The body center line

Skeleton midpoint
(laser strike point)

Figure 6. Characteristics of the Pieris rapae larvae and locating the laser strike point. The body of P.
rapae larvae can be divided into the head (I), the thorax (II), and the abdomen (III). The numbers 1-14
denote the different segments of the larvae, separated by blue lines.

(2) Pest skeleton extraction based on improved ZS thinning algorithm

The skeleton consists of a single pixel, which provides an orientation for extracting
the laser strike point coordinates. However, due to the different positions and postures
of pests in the field and the sensitivity of the traditional skeleton extraction algorithm to
the boundary, the extracted pest skeletons display the phenomenon of a non-single-pixel
width and end branches, as shown in Figure 7.

(d)

Figure 7. Visualization of the ZS thinning algorithm. (a,d) The segmentation mask of the Mask
R-CNN. (b,e) The pest skeleton images. (c,f) The local details of the pest skeleton.

To solve these problems in the above-mentioned thinning process, this paper intro-
duced an improved ZS thinning algorithm [33] with smoothing iterations to extract pest
skeletons. The whole skeleton process was divided into three iterative processes: smooth
iteration, global iteration, and two-stage scanning.

In the smooth iteration, the candidate deletion points were extracted based on the
refinement constraints of the traditional ZS algorithm. Then, the smooth pixel points in the
candidate deletion points were preserved in the smooth iteration process, which suppress
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the branching at the end of the pest skeleton, as shown in Figure 8. Among them, the
definition of smooth pixel points satisfies Equation (1):

5 < Ny(Py) <6 1

where Nj,(Py) denotes the number of pixels with value 1 in the neighborhood of the
scanning point P.

Figure 8. Example of the smooth pixel point determination. The numbers 1-6 denote the candidate
deletion points extracted by the ZS thinning algorithm, where 2, 4, and 6 denote the smooth pixel
points.

In smoothing iteration and global iteration, the reserved template under 24 neigh-
borhood subdomains was added. The candidate deletion points that meet the retention
template were reserved, which avoided the problem of topological structure deletion. Fig-
ure 9a—i shows the pixel set of the retention templates. The 24 neighborhood pixels were
divided into 4 x 4 subdomains in 4 different directions for generating specific structures in
different directions. Figure 9a-h was used to maintain diagonal lines of two-pixel widths,
and Figure 91 was used to maintain the 2 x 2 square structure.

Figure 9. The retention templates and the deletion templates. (a-i) The retention templates in different
directions. (j-m) The deletion templates in different directions. The pixels of scanning points are
marked as Py, and pixel sets Py of 8 neighborhoods and 24 neighborhoods are constructed, where
x=1,2,... 24. The pixel Py in the gray square can be either 1 or 0.

In the two-stage scanning, the deletion templates under 8 neighborhoods were used
to eliminate the pixels with non-single-pixel widths that form an included angle of 90. The
definition of the deletion templates satisfied Figure 9j-m.

Based on the improved ZS thinning algorithm, the pest skeletons in Figure 7a,d were
extracted again. The visualization is shown in Figure 10.
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(b)

Figure 10. Visualization of the improved ZS thinning algorithm. (a,b) The pest skeleton images

extracted from Figure 7a,d.

(8) Strike point location

After extracting the skeleton of pests with a single-pixel width, the system used
Freeman chain code notation [34] to extract the linked list. Then, the skeleton pixel length
was calculated by combining the chain code and the midpoint position coordinate was
located according to the pointer. The visualization results of different processing stages are
shown in Figure 11.

© @

Figure 11. Visualization of the pest skeleton extraction and laser strike point location for differ-
ent stages: (a) The identification and segmentation result of an NIR P. rapae image, (b) extracted
segmentation mask image, (c) thinning treatment, and (d) coordinates of laser strike points.

2.2.3. The Multi-Constrained Stereo Matching Method

In this study, we only need to calculate the 3D spatial coordinates of the laser strike
point and, thus, a multi-constraint stereo matching algorithm was proposed. As shown in
Figure 12, the algorithm constructs two constraints in the matching process.

(1)  The first construct: Row Constraint

After the binocular camera (Figure 12a) completed the camera calibration and stereo
correction, the same pest satisfied the constraint of peer-to-peer sequential consistency in
the stereo rectification images [35]. Therefore, using the pest segmentation mask in the
image on the left as the template, template matching was performed on the same row in
the image on the right according to the row constraint.
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Assuming that the coordinate of the laser strike point in the image on the left was
p1(x1,1), the range of the coordinate py(x,y2) of the center point of the matching box in
the image on the right can be limited to y, = v, as shown in Figure 12b.

~~ . The second constraint S

The left limit of the center poin}f\ TR S

in the matching template T

Pun¥1-(5BHuia) 1) The right limit of ™~ _ AN Paos Ko VowsHns)
the center point in R A mas Yo max

the matching template Sy A

P08/ Huo).y1) L P Vo T
S Y parn .

(b)

Figure 12. Search range of the multi-constraint stereo matching method. (a) The binocular vision
locating system. The red frame is the binocular public area, the blue frame is the operation area for
locating pests, and the depth range is H,,j, ~ Hpax. L is the leaf spreading degree; & is the plant
height; and [ is the bottom leaf height of the cabbage. fy is the camera fixed parameter. (b) The
spatial geometric diagram. O¢y and Oc; are the optical centers of the cameras on the left and right,
Cr. and Cg are the imaging planes of the binocular cameras, and the image coordinate systems are
X101Y7 and X,0,Y), respectively. py(x1,y1 ) is the laser strike point in the image on the left; py(x2,2)
is the center point of the best matching box in the image on the right; P(X, Y, Z) are the target pests.

(2) The second construct: Column Constraint

For the laser pest control robot to effectively identify field pests and facilitate the
trajectory planning of its striking equipment, the working area was regarded as a cuboid
(Figure 12a). According to the principle of triangulation [35], the coordinate of the target
point in the world coordinate system can be calculated by Equation (2):

7= JB__ _ [B @

(x1 —x2)px X1 —x2
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where B is the baseline distance of the binocular cameras, f is the focal length of the cameras,
Hx is the physical size of each pixel in the X-axis direction of the imaging plane, and fy is
the fixed parameter of the camera, which is determined during camera calibration.

In Equation (2), if the depth range of the operation area, the coordinate p1(x1,y1) of
the target in the image on the left, and the camera fixed parameter f, were known, the
range of the X-axis of the target in the image on the right can be limited. The specific
equation of x, was as follows.

X1 — fB <xp<x— fB 3)
Hmin max

where H,,;;, and Hy,qy are the value ranges of the Z-axis of the system operation area in the
world coordinate system (Figure 12).

Based on the multiple constraints above, the matching range of the template on the
polar line of the target image on the right can be further restricted.

In the matching process, the normalized cross-correlation coefficient with linear illu-
mination invariance was selected to measure the match similarity [36]:

R(x,y,d \/Z

12;"1[T(x+1y+]) T(x,y)][I x+i7dy+f)*7(x7dy)] de [fxB fXB] @

T(x+iy+1) ~ Ty VoL O [+ i—dy+ /) - T(x - d,y)]° Hinaz” Hinin

where R(x,y,d) is the normahzed correlation quantity when the midpoint (x, y) is located
in parallax d in the matching area of the camera image on the right. Here, 1 is the width of
the template window; m is the height of the template window; T(x + i,y + f) is the pixel
value of the template window point (x + i,y + j); and T(x,y) is the average pixel value
of the template window. I(x +i—d,y + j) is the pixel value of the matching area point
(x+i—d,y+j);and I(x — d,y) is the average pixel value of a template window with a
side length of m x n defined by the point (x — d, y) as the center.

After obtaining the parallax dy with the maximum similarity (Equation (4)), the algo-
rithm extracted the matching similarity R(x,y, d) of the adjacent parallaxes (dy — 2, dy —
1,dy + 1,dp + 2) with phase-pixel-level accuracy and constructed a parallax-similarity (d-R)
pointset, as shown in Figure 13. Then, the quadratic, cubic, and quartic polynomial fitting
curves were performed on the pointset to obtain the polynomial curve with the highest
fitting degree (R?). The abscissa of the crest (Figure 13, Point S) at the best fitting curve
was the parallax under subpixel accuracy. Finally, the 3D coordinates of each pest in the
world coordinate system were calculated by the subpixel parallax.
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Figure 13. Polynomial fitting curves of disparity and similarity.
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3. Test and Results
3.1. Experiments

To evaluate the recognition and localization accuracy of the laser strike point, combined
with the characteristics of the actual operating conditions of the cabbage greenhouse, we
further collected the P. rapae images at different positions in the vegetable field to construct
a test set (Experiment 1: n = 70, Experiment 2: n = 30). The system automatically outputs
and saves the identification and segmentation results of the P. rapae pixel area and records
the 3D coordinates of the laser strike point.

The experiment was conducted in the cabbage field (28.18 N, 113.07 E) of Hunan
Agricultural University in Changsha, Hunan Province, as shown in Figure 14. According to
the leaf spreading degree (350 + 46.6 mm), plant height (300 & 25.6 mm), and bottom leaf
height (32 £ 6.7 mm) of the field cabbage, the distance between the origin of the binocular
camera and the effective operation area of the laser was set to 400-600 mm. The length of
the working area along the X-axis was 400 mm and the Yc-axis was 260 mm.

Figure 14. Accuracy test platform site. Key: 1. visual processing platform; 2. binocular camera
with an 850 nm filter; 3. linear displacement sensor; 4. fixed support frame; 5. digital display for
displacement sensor; 6. cabbage.

3.1.1. Experiment 1: Accuracy Evaluation of Pest Identification and Instance Segmentation
Network

Combined with the test sample images (n = 70) of different scenarios, the number
of P. rapae that were manually labeled and automatically identified by the model were
recorded. Three indicators, precision value (Equation (5)), recall value (Equation (6)), and
F;-measure (Equation (7)), were used to evaluate the recognition performance of the Mask
R-CNN model on the target.

TP
P= TP+ FP ®)
TP
R= TP+ FN ©)
2 x PR
F = PR )

where TP is a correctly predicted positive sample, FP is an incorrectly predicted negative
sample, and FN is an incorrectly predicted positive sample.

3.1.2. Experiment 2: Performance Evaluation of the 3D Locating System

The image coordinate deviation and the actual depth deviation between the auto-
location results of the laser strike point and the manual annotation results were used to
evaluate the performance of the 3D locating system.

Given that the absolute deviation of coordinates represents different physical dis-
tances in images of different scales, it is impossible to characterize the true locating error
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quantitatively. In experiment 2, we collected 30 pairs of binocular images of the same
P. rapae at different locations in the vegetable field. Therefore, it is assumed that the physical
diameter of the P. rapae body width in the area of the laser strike point was constant and d
represented the pixel width of P. rapae body in images of different scales (Figure 6). The
X-axis, Y-axis location error of the world coordinate system was represented by the ratio of
the pixel deviations (ex,ey) and d of the system output and the manually marked point on
the x coordinate, y coordinate of the image.

In experiment 2, a linear displacement sensor (provided by Shenzhen Howell Technol-
ogy Co., Ltd. (Shenzhen, China), KPM18-255) was used to measure the vertical distance
from the pest surface to the camera plane. The sensor position accuracy was 0.05 mm. The
displacement sensor is installed in a base with a magnet. The base can be adsorbed on the
top plate in such a way that the displacement sensor is always perpendicular to the imaging
plane and can move horizontally in the plane of the top plate, as shown in Figure 15.

Figure 15. Accuracy testing experiment equipment. Key: 1. digital display for displacement sensor;
2. 850 nm diffuse light bar; 3. binocular camera with an 850 nm filter; 4. base with a magnet; 5. linear
displacement sensor; 6. Pieris rapae.

3.2. Validity Results of Mask R-CNN

The model training (Section 2.2.1) results showed that the average precision (AP),
AP%30 and APY75 of the ResNet50-based Mask R-CNN model constructed on the self-built
NIR field P. rapae image dataset reached 94.24%, 98.74%, and 96.79%, respectively.

Manual detection was performed on 70 images in the test set. The target distribution
of the test set was actually 158 P. rapae larvae, and each image contains at least one.

Then, the test set images were input into the above models. The object detection results
of the larvae in the image samples of the test set by the model are shown in Table 1. The
values of precision, recall, and F; were 96.65%, 97.47%, and 96.55%, respectively, showing
the effectiveness of the proposed model.

Table 1. Identification results for the P. rapae larvae in the test set.

Number !
N P FP FN
158 154 3 4 95.65 97.47 96.55

1 N is the total number of larvae in the test set. TP, FP, and FN are the quantities of correctly predicted positive
samples, incorrectly predicted negative samples, and incorrectly predicted positive samples, respectively.

Precision (%)  Recall (%) F1 (%)

3.3. 3D Localization Results of Field Pests

The binocular stereo vision system completed the camera calibration and stereo cor-
rection, and the results are shown in Table 2. The reprojection error was 0.36 pixels, and the
calibration results meet the test requirements [37].
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Table 2. The internal and external parameters of the binocular stereo vision system.

Parameters Left Camera Right Camera
Focus/mm 6
Cell size/pm 2.4 (Sx) x 2.4 (Sy)
Center column (Cx)/ pixel 1589.60 1609.84
Center row (Cy)/pixel 1034.15 1051.87
2nd order radial distortion (K1)/1/pixel? —0.087540 —0.086044
4th order radial distortion (K2)/1/pixel* 0.162294 0.155954
6th order radial distortion (K3)/1/ pixel6 0.000185 0.000337
2nd order tangential distortion (P1)/1/pixel® 0.000210 —0.000308
2nd order tangential distortion (P2)/1/pixel? —0.065631 —0.056233
Image size/pixel 3072(H) x 2048(V)
Baseline distance/mm 49.50
Reprojection error/pixel 0.36

3.3.1. X-Axis and Y-Axis Location Error

In this paper, the ratio of the image positioning deviation of the laser strike point of
different scales to the pixel width of the P. rapae body was used as the X-axis and Y-axis
location error, and the results are shown in Figure 16. In the sample images of the whole
test set (N = 30), all larvae were correctly recognized and segmented and the average image
location errors in the x coordinate and the y coordinate of the laser strike point were 0.09
and 0.07, respectively. The maximum errors in different scenarios were 0.23 and 0.16.
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Figure 16. The location error of the laser strike point on the X-axis, the Y-axis, and the Z-axis. d
denotes the pixel width of the P. rapae body in images of different scales. The location error is
represented by the ratio of the x coordinate, y coordinate deviation (ex,ey) and d.

In the experiment, the same P. rapae larvae were used in different locations of the
vegetable field and the larval body width was 4.16 mm (Manual measurement). Therefore,
the average absolute error of the X-axis of the laser strike point was 0.40 mm and the
maximum error was 0.98 mm. The average absolute error of the Y-axis was 0.30 mm, and
the maximum error was 0.68 mm.

Considering the distance between the real and the located point, the average absolute
error of the total location error in the X-Y plane was 0.53 mm, and the maximum error was
1.03 mm. All the located point were within the effective strike range in the middle of the
pest abdomen (Figure 6).

3.3.2. Z-Axis Location Error

Analysis of Figure 16 shows the visual location error in the depth direction of the
system when the working depth was between 400 and 600 mm. The average absolute error
was 0.51 mm, and the maximum error value was 1.15 mm. The root mean square error and
the mean absolute percentage error of the system were 0.58 mm and 0.10%, respectively,
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which shows that there is a strong explicit correlation between the estimated depth and the
actual depth of the system.

4. Discussion

An automatic laser strike point localization system was established in this study based
on the multi-constraint stereo matching method, which provided a basis for pests’ laser
control. Three aspects of the proposed model will be discussed in this section, i.e., the
effects of the segmentation model, the effect of the location method, and the effect of the
stereo matching method. Further improvements for the 3D locating system will also be
pointed out in this section.

4.1. Analyses of Instance Segmentation Result

Experiment 1 showed that the segmentation results (AP, AP0 and AP0'75) of the
ResNet50-based Mask R-CNN model were higher than 94% on the self-built NIR image
dataset of P. rapae. The good segmentation performance of the network proves that the
application of near-infrared imaging technology is feasible for pest identification, with
protective color characteristics in multi-interference scenes.

In the sample images of the whole test set, the number of correctly predicted, incor-
rectly predicted, and unrecognized P. rapae were 154, 3, and 4, respectively. Among them,
the number of incorrectly predicted and unrecognized P. rapae in a single P. rapae image
was 0. The main causes of errors are: (1) When two or more P. rapae larvae overlap each
other, the larvae bodies are blocked. This situation increases the difficulty of identification,
resulting in multiple pests being identified as a whole or a single pest being only partially
segmented (Figure 17a). (2) In the near-infrared image, the soil color is close to that of
the cabbage bugs. When a leaf has a hole to expose the soil and the shape is a long strip,
the model will misjudge it as a P. rapae larva (Figure 17b). Furthermore, the complicated
network structure also makes the training time of Mask R-CNN longer. The detection time
for a single image in the segmentation network was 460 ms.

Figure 17. False identification results. (a) Two P. rapae larvae overlap each other and (b) leaf holes
mistakenly identified as P. rapae.

4.2. Analyses of Location Result

According to the segmentation mask in the bounding box, the laser strike point was
located as the midpoint of the skeleton of pest image area, which was extracted through
an improved ZS thinning algorithm. This method solves the problem of pest contour
extraction based on deep learning, which greatly improves the robustness and efficiency of
the algorithm.

However, this method cannot accurately locate the laser strike point in some special
cases. The main causes of errors are: (1) When the P. rapae is partially occluded by leaves
or the inclination angle is large, the method of locating the laser strike point through the
midpoint of the skeleton is inaccurate because only a part of the pest skeleton is extracted
(Figure 18a). (2) If the P. rapae larvae curl up in a ring, the pest segmentation mask is a circle.
The laser strike points finally obtained by the above location method is near the center of
the circle and is not within the effective strike range (Figure 18b).
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Figure 18. Incorrect location results in special cases. (a) The body of the P. rapae shaded by leaves.
(b) The larvae curl up in a ring.

Fortunately, the above situation is not common. Fieldwork indicates that the P. rapae
larvae are mostly found on the leaf surface in the morning, sunset, and night and are
mainly located on the petioles, leaf veins, and undeveloped new leaves of the outer leaves.
Especially at sunrise and at night, the P. rapae larvae can be clearly seen from the top of the
plant when illuminated with light. The larvae curl up only when hit by external stimuli
and usually become strip shaped. In general, the location method is suitable in most cases.
However, the method still needs to be further improved to adapt to complex working
conditions.

4.3. Analyses of the Multi-Constraint Stereo Matching Result

Experiment 2 showed that the average location errors on the X-axis, the Y-axis, and the
Z-axis of the laser strike point were 0.40, 0.30, and 0.51 mm, respectively, and the maximum
errors were 0.98, 0.68, and 1.16 mm. The system has high location accuracy on the X-axis
and the Y-axis. Considering the distance between the real and the located point, the average
absolute error of the total location error in the world coordinate system was 0.77 mm. The
maximum error was 1.45 mm.

With the fourth and fifth instar larvae of P. rapae as an example, their average widths
reach 1.564 mm and 2.738 mm, respectively [28]. Considering that the laser strikes vertically
downward and the irradiation area is 6.189 mm? (diameter 2.8 mm) [5], the effective stroke
of the laser end effector is increased by a maximum of 1.45 mm for accommodating the
location error of the laser strike point. The extra travel poses less technical risk to the
design and motion control of the laser strike device. The results satisfy the localization
requirements of lasers to strike P. rapae larvae accurately.

The reasons for the errors are as follows: As the depth increases, the proportion of the
pest area in the whole image is smaller, which results in pest segmentation and location
errors. There are errors in internal and external parameters, which lead to an increase in
the system error. Moreover, manual measurement error of the displacement sensor can also
result in errors.

Overall, the average time of the entire pest localization process, including field pest
identification, contour segmentation, and 3D coordinate position, was 0.607 s. Because the
matching area was reduced, the stereo matching algorithm proposed in the study takes only
24.2% of the total time, approximately 0.147 s, which shows that the matching algorithm
can quickly and accurately locate the three-dimensional coordinates of pests in the field
after obtaining the pest segmentation results.

4.4. Discussion about Further Improvement Aspects

The data for this experiment were mainly collected at a depth of 400-600 mm above
the ground. In the follow-up research, the relationship between the spatial resolution
of the image and the laser strike point location accuracy of the proposed system can be
further analyzed to obtain the best spatial solution. In this experiment, all images were
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collected from directly above. However, this will result in a lack of image information for
pests that may be occluded by leaves or have a larger body inclination. This is somewhat
detrimental to understanding the overall situation of pest infestation. In future research,
the data of pests located on leaves should be collected from multiple angles to generate
well-established and accurate 3D location information of pests.

5. Conclusions

A novel 3D locating system based on binocular vision was proposed for laser pest
control, combining a Mask R-CNN, pest skeleton extraction, and multi-constraint stereo
matching. The ResNet50-based Mask R-CNN model was trained and validated with a
self-built NIR field P. rapae image dataset collected in a real-world agriculture scene. The
AP, recall, and F; values were 94.24%, 97.47%, and 96.55% of the Mask R-CNN, respectively,
showing the adaptability of the proposed model.

Furthermore, when the working depth varied between 400 and 600 mm, the average
location errors were 0.40 mm, 0.30 mm, and 0.51 mm and the maximum errors were
0.98,0.68, and 1.16 mm for the 3D system in the X-axis, Y-axis, and Z-axis direction. The
conclusions of this study provide a design basis for the follow-up research and development
of the laser pest control execution system.

Since the laser strike point extraction in this paper was limited to the processing
of two-dimensional image features, there is still room for improvement in object point
localization methods and accuracy evaluation experiments. In the future, the depth camera
can be further used to obtain the overall 3D pose information of the pests to improve the
target localization accuracy.
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Abstract: Currently, pineapple processing is a primarily manual task, with high labor costs and low
operational efficiency. The ability to precisely detect and locate pineapple eyes is critical to achieving
automated pineapple eye removal. In this paper, machine vision and automatic control technology
are used to build a pineapple eye recognition and positioning test platform, using the YOLOVS5I target
detection algorithm to quickly identify pineapple eye images. A 3D localization algorithm based on
multiangle image matching is used to obtain the 3D position information of pineapple eyes, and the
CNC precision motion system is used to pierce the probe into each pineapple eye to verify the effect
of the recognition and positioning algorithm. The recognition experimental results demonstrate that
the mAP reached 98%, and the average time required to detect one pineapple eye image was 0.015 s.
According to the probe test results, the average deviation between the actual center of the pineapple
eye and the penetration position of the probe was 1.01 mm, the maximum was 2.17 mm, and the
root mean square value was 1.09 mm, which meets the positioning accuracy requirements in actual
pineapple eye-removal operations.

Keywords: pineapple eye; three-dimensional; YOLOVS5; stereo-matching

1. Introduction

Pineapple is a fruit with a high added economic value. In 2018, China’s yearly
pineapple production was approximately 1.64 million tons [1]. Approximately 30% of
pineapples are utilized for production and processing [2]. The processing of pineapple is
complicated, especially because even after the pineapple has been skinned, there are still
many eyes on its surface that need to be removed. Currently, the main way to remove
pineapple eyes is to do so manually with special tools, which is labor intensive and has high
labor costs and low production efficiency. The key to automatically removing pineapple
eyes is to rapidly and accurately identify and locate pineapple eyes.

Machine vision technology is frequently utilized in fruit recognition and quality
inspection because of its noncontact nature, high speed, and high precision [3]. In traditional
machine vision technology, targets are primarily recognized based on characteristics such
as color, shape, and texture. Li et al. [4] proposed a field recognition system for pineapple
based on monocular vision through threshold segmentation, morphological processing, and
other operations to recognize pineapples and obtain pineapple center point information.
Lin et al. [5] presented a segmentation method using texture and color features, and Leung-
Malik textures and HSV color features were fused to realize the detection and recognition
of citrus fruit. Lv et al. [6] proposed a method to deepen the fruit region and improve
the edge definition in images by using a histogram equalization algorithm. Then, the R-B
color difference image based on histogram equalization was obtained, and green apple
recognition was realized. Kurtulmus et al. [7] used circular Gabor texture analysis for green
citrus object recognition. When the fruit surface is uneven in color, shadowed, or obscured
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due to environmental factors such as light, the recognition quality of traditional machine
vision technology is significantly reduced [8].

By applying machine learning technology to fruit image analysis, a better applica-tion
effect and higher efficiency can be obtained [9]. Li Han et al. [10] used a naive Bayes classifier
to classify fruit and nonfruit regions, and the interference caused by the color similarity of
green tomatoes and green foliage backgrounds was eliminated to improve the fruit recognition
accuracy. Wang et al. [11] proposed a litchi recognition algorithm based on K-means clustering,
which can better resist the influence of illumination changes and can maintain high accuracy
for recognition under occlusion and different lighting conditions. Zhao et al. [12] extracted the
Haar-like features of grayscale images and used the AdaBoost classifier for classification and
recognition. In the actual environment, the detection accuracy rate of ripe tomatoes reached
96%, and the classifier structure was simple.

In recent years, object detection based on deep learning has shown great advantages
in the field of fruit image recognition [13,14]. The convolutional neural network, with its
fast detection speed and excellent ability to extract target features, not only reduces the
workload but also improves the recognition speed and accuracy [15]. Zhang Xing et al. [16]
proposed a study on pineapple picking and recognition under a complex field environment
based on the improved YOLOv3. The multiscale fusion training network was used to
detect single-category pineapple, and a detection and recognition rate of approximately
95% was achieved using this method. Tian et al. [17] proposed an improved YOLOvV3
model to identify apples at different growth stages in orchards. The model was used with
the DenseNet method to process low-resolution feature layers; this method effectively
enhances feature propagation, promotes feature reuse, improves network performance,
and has good recognition performance under apple overlap and occlusion conditions.
Yu et al. [18] proposed a mask R-CNN algorithm to identify 100 wild strawberry images.
The results demonstrated that the average recognition accuracy was 95.78% and the recall
rate was 95.41%. Zhang et al. [19] proposed a real-time detection method for grape clusters
based on the YOLOV5s deep learning algorithm. By training and adjusting the parameters
of the YOLOv5s model on the data set, the fast and accurate detection of grape clusters was
finally realized. The test results showed that the precision, recall, and mAP of the grape
cluster detection network were 99.40%, 99.40%, and 99.40%, respectively.

Studies related to fruit positioning, which are widely used, have mainly focused
on the three-dimensional positioning of fruit for robot picking, and methods include
binocular stereo vision, structured light stereo vision, and monocular stereo vision. In
binocular stereo vision, not only can the image information of different angles of the target
be obtained, but the three-dimensional position information of the target through stereo
matching can also be obtained [20]. Therefore, this is a widely used approach in fruit and
vegetable recognition [21], positioning [22], and acquisition of phenotypic parameters [23].
Luo et al. [24] proposed a method for solving and positioning enclosure based on binocular
stereo vision. When the depth distance was within 1000 mm, the positioning error was
less than 5 mm. However, the calibration process of the binocular camera is complex, and
the calculational burden of the algorithm was relatively large [25]. Stereovision, which is
based on structured light, is a combination of structured light technology and binocular
stereo vision technology. Through structured light matching, the corresponding pixels
of the left and right cameras are subjected to stereo matching, parallax calculation, and
recovery of the three-dimensional data of the scene. Zhang et al. [26] used a machine vision
system based on a near-infrared array structure and three-dimensional reconstruction
technology to realize the recognition and positioning of apple stems and calyxes. However,
structured light stereo vision is easily affected by illumination [27]. Monocular stereo
vision positioning can be divided into monocular camera positioning of one, two, or more
images. The positioning of a single image mainly relies on the mapping relationship
between the known spatial information of the characteristic light points, lines, or other
image features to obtain the position coordinate information [28]. Generally, images from
different perspectives are obtained using the positioning method by changing the position
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of the camera, and the matching relationship of image feature points is used to obtain
the relative positional relationship between the cameras during multiple shots to realize
the positioning of the target. Zhao et al. [29] used a monocular color camera to build a
vision system to locate the picking point of litchi clusters and realize the three-dimensional
positioning of litchi clusters.

To date, there have been no research reports on pineapple eye machine-vision recog-
nition or positioning. Based on the analysis of the existing research in the field of fruit
recognition and positioning, deep learning technology based on convolutional neural
networks is proposed in this paper to carry out research on pineapple eye recognition.
On this basis, combined with the entire circumference-image-acquisition-of-pineapple
method, the three-dimensional localization of pineapple eyes is realized by applying the
stereo-matching method of monocular and multiangle images.

2. Materials and Methods
2.1. Structure and Working Principle of the Test Platform

The structure of the pineapple eye recognition and positioning test platform is shown
in Figure 1. The notebook is an HP-Shadow Elf equipped with an Intel i7-10750H CPU@2.60
GHz processor, 16 GB RAM, and an NVIDIA GeForce GTX1650Ti graphics card. The 64-bit
Windows 10 operating system is installed, and the software development environment is
Visual Studio2017 + OpenCV4.0.0. The color camera is an Imaging Source DFK41BU02
with a resolution of 1280(H) x 960(V), a frame rate of 15 fps, and an 8.5 mm Computar lens.
A CR-9600-R ring light source is installed directly under the camera lens. The Mitsubishi
FX3U-32MT PLC controller is used as the control core, and the PLC is connected to the
notebook through the serial communication port. The motion platform is composed of
a clamping cylinder, servo motor, linear slide, probe cylinder, and probe. The peeled
pineapple is clamped using the clamping cylinder and rotated at a precise angle by the
servo motor to acquire the entire circumference of the pineapple image. In this paper, a
probe is used to evaluate the accuracy of the identification and positioning algorithm. The
probe is installed on the probe cylinder and can be inserted into the pineapple through the
telescopic movement of the probe cylinder. The probe cylinder, which can accurately move,
is installed and positioned in the direction parallel to the pineapple axis.

(a)

(®) )

‘motion platform
=] O

Figure 1. Structure of the test platform. (a) color camera, (b) ring light source, (c) notebook, (d) light
source controller, (e) PLC controller, (f) linear slide, (g) probe cylinder, (h) probe, (i) pineapple eye,
(j) servo motor, (k) clamping cylinder, and (1) pineapple.
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2.2. Image Acquisition of Pineapple Eyes

Goodfarmer Philippine pineapples, which were manually peeled and placed on the
test platform for image acquisition, were used for the experiments. Before image acquisition,
the dot calibration plate was used to reduce the lens distortion and perspective distortion
caused by the tilt of the camera [30]. To obtain the images of all pineapple eyes and provide
a sufficient number of images for multiangle image stereo matching, images of pineapples
were collected in 60° intervals, and 6 images were collected for each pineapple. Figure 2
shows images of the same pineapple collected from different angles. From this figure, there
are obvious differences in the shape and size of pineapple eyes.

Figure 2. Images of the same pineapple at different angles. (a) 0 degrees; (b) 60 degrees; () 120 degrees;
(d) 180 degrees; (e) 240 degrees; (f) 300 degrees.

2.3. Pineapple Eye Recognition Algorithm Based on YOLOvS

In this paper, YOLOVS is selected as the target detection network for pineapple eye
recognition. Among the commonly used object detection networks, strong detection perfor-
mance is achieved with the YOLOvV5 network [31], which uses mosaic data enhancement,
adaptive anchor frame calculation, and adaptive image scaling at the input end. In the
backbone network, the features of the target adopted through Focus and CSPNet (cross-
stage partial network) can be quickly extracted. In the neck network, FPN (feature pyramid
network) and PANet are used for multiscale fusion of the extracted features. GloU (gen-
eralized intersection over union) loss is used as the loss function of the target detection
frame in the output end. NMS (nonmaximum suppression) is introduced to filter out the
overlapping candidate frames and obtain the best prediction output. These improvements
ensure the detection accuracy and speed of small targets and have the advantages of a
shallow structure, small weight file, and relatively low requirements for the configuration
of the mounted equipment.

There are 4 versions of YOLOV5 [32]: YOLOv5s, YOLOv5m, YOLOvV5], and YOLOv5x.
The width and depth of the YOLOv5s model are the initial values. This model is small
and fast and is suitable for the detection of small and simple datasets. The YOLOv5m
and YOLOv5x models have the deepest depths and are suitable for detection on large
and complex datasets. As the depth of the network increases, the detection accuracy
is improved, while the detection speed is reduced. In YOLOV5, the learning ability of
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the neural network improves, the amount of calculation is reduced, and high detection
accuracy is maintained. To maximize the detection speed while maintaining sufficient
detection accuracy, YOLOVSI is used in this paper as the pineapple eye detection model.
The structure of YOLOV5I is shown in Figure 3.

Input Output

Focus -= Convolution il Batch normalization | Leaky ReLU
CBL BottleneckCSP k= Cross Stage Partial

BottleneckCSP } Spatial pyramid pooling

CBL
Bottleneck CSP
CBL
BottleneckCSP
SPP

Concat
Upsample
CBL
BottleneckCSP

Concat

BottleneckCSP
CBL
Concat
BottleneckCSP
CBL

CBL Upsample Concat

BottleneckCSP CBL BottleneckCSP

Figure 3. YOLOv5I model structure.

To construct the experimental dataset, 240 pineapple images were obtained from
40 pineapples. Then, the image was processed with data enhancements, such as rotation
and horizontal and vertical mirror images, to improve the robustness of the recognition
mode, and 600 pineapple images were finally obtained, with a total of approximately
18,000 pineapple eyes. The pineapple eye images were manually labeled one by one by
labeling software. Pineapple eyes in the image were marked with a rectangular box and
then named P. The labeling information was stored in the PASCALVOC (Pattern Analysis,
Statical Modeling and Computational Learning, Visual Object Classes) format [33], in which
the coordinates, labels, and serial numbers of each box are contained. The pineapple eye
image, labeled data, and other files were saved according to the PASCALVOC dataset
directory structure to build the pineapple eye dataset.

The 600 pineapple eye images enhanced by the dataset were divided into a training set,
validation set, and test set at an 8:1:1 ratio. Because the size of the pineapple eye target is small,
to improve the detection accuracy, the input size is 640 x 640 pixels, 32 images were taken as
a batch, and the weight parameters were updated once for each batch of images trained.

YOLOVS5 incorporates the current mainstream detection approach FPN (feature pyra-
mid network) [34] and inherits the grid generation idea of the YOLO algorithm.
The 640 x 640 feature plot is divided into grid areas of equal size S x S cells (usually
80 x 80, 40 x 40, or 20 x 20). After maximum suppression, the output end of the network
outputs the prediction information of all grid information. The prediction information of
each grid includes the classification probability and confidence of the target as well as the
center coordinates and length and width of the box surrounding the detection target. The
classification probability represents the classification information of the predicted target in
the grid region, and the confidence represents the probability of the detection target in the
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rotation axis-

rotation axis<

grid region. The central coordinates and length-and-width information of the box represent
the specific size and position of the target predicted by the grid.

2.4. Three-Dimensional Positioning Algorithm for Pineapple Eyes

In this paper, images of pineapples are collected using 30° intervals; obviously, the
same pineapple eye appears on multiple consecutive images. By analyzing these images
and matching the same pineapple eyes in different images, the parallax information of the
pineapple eye can be obtained. The depth information of the pineapple eye can be obtained
through triangulation. In this paper, two images with an angle difference of 90° are used as
a group for stereo matching analysis to obtain the three-dimensional position information
of all pineapple eyes. Considering the high similarity of pineapple images from different
angles, the traditional stereo-vision-matching algorithm is not expected to perform well.
In addition, a large amount of calculation is required in this algorithm, which also has
low efficiency. Therefore, this algorithm is not suitable for the needs of actual production.
Figure 4a,b show the comparison of the y degree and y + 90-degree pineapple eye images.
Here, one pineapple eye appears in both images.

Ct (Uet,Ven

\ C (UeVo)
/

(€)

: (b) ¥+90 degree

Figure 4. Epipolar constrained stereo matching. (a) y degree; (b) y + 90 degree; (c) calculate d of
distance schematic diagram.

The central coordinates (uc,v.) and (uc1,v.1) are used to describe the position of the
pineapple eye in the two images. Therefore, the position of the pineapple eye in the two
images must satisfy the following two constraints: (1) the center of the pineapple eye is
located on the same vertical line in the two images, thatis, v.; = v¢. (2) The row coordinates
of the center of the pineapple eye on the two images can be predicted by the displacement
of the center of the pineapple eye after the pineapple is rotated by 90°, namely, u, = u, +d.

In order to obtain the value d in Figure 4c, Figure 5 is used to describe the solution
process in detail, f is the focal length, and S is the distance between point O and point p, the
optical center of the camera; R is the radius on the contour of the pineapple cross-section
through C of the pineapple eye. We can obtain Formula (1).

n= arctan(%)

R = Ssiny

hdx f M
Rsinr = S—Rcosr

d=d+dy=Rsinr+ Rcosr

where d, represents the physical size of a pixel on the u-axis, which is 0.00465 mm in this
paper, 77 is the angle between the Op and the Ap, and r is the OG and the OC;.
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Figure 5. Schematic diagram of the 90° rotation distance of the pineapple eye center point.

Since the contour of the pineapple cross section through C of the pineapple eye is
not an ideal circle, and due to system errors such as installation and imaging, u. and v
cannot fully meet the above constraints; therefore, a certain tolerance A is added when
finding a matching pineapple eye in the v + 90 degree image. In other words, we search for
the target pineapple eye within the rectangular box (11,1 — A0 — Aue + Avg + A). To
ensure that there is only one pineapple eye in the rectangular box, A is set to a third of the
minimum distance between the two pineapple eyes in the image. Obviously, according to
the above constraints, the pineapple eye below the rotation axis in Figure 4a is not found in
Figure 4b, so there is no need to perform a matching operation.

In this paper, a 3D localization algorithm for pineapple eyes based on monocular
multiangle image matching is proposed. After obtaining the image coordinates of the same
pineapple eye in two images with a difference of 90°, the depth of the pineapple eye is
calculated by triangulation. The information is then used to calculate the three-dimensional
position information of the pineapple eye. The camera coordinate system O._X.Y.Z, is
established with the camera optical center as the origin, as shown in Figure 6. The center
point C of any pineapple eye is selected as the measurement object. (1., v.) represents
the pixel value of pineapple eye center C under the imaging plane, O; is the intersection of
the imaging plane of the pineapple eye center point C and the camera optical axis, and the
pixel value is (19,v9) .

The circle in Figure 7 is the cross-sectional profile of the pineapple through point C.
¥ is the angle between the line segment OC and the optical axis of the camera, which
satisfies the formula ¢ = arctan(%) . The pineapple is rotated clockwise in the direction
indicated by the arrow in the figure. p refers to the optical center of the camera. The distance
between point C and point p of the camera optical center is W, the distance between point
O and point p of the camera optical center is S, and /; is the number of pixels in the axial
direction of the pineapple eye imaging plane. When the pineapple rotates clockwise by
90°, which is equivalent to a 90° counterclockwise rotation of the camera, as shown in the
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dotted line in Figure 8, I, is the number of pixels in the axial direction of the pineapple eye
imaging plane after rotation. The following formula can be obtained from Figure 7:

o= arctan(%) @

B= arctan(%)

|
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Figure 6. Camera coordinate system for the pineapple eye.
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Figure 7. Schematic diagram of the pineapple eye depth information calculation.
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Figure 8. Three-dimensional positioning schematic diagram.

In this formula, d, represents the physical size of a pixel on the u-axis, which is
0.00465 mm in this paper. « and B can be solved by using Formula (2), and #; and h; in
Figure 7 can be simultaneously solved according to the following equations.

_ S(i—tan(p))tan(a)
h = 17taﬂ:(aﬁ)ta:(nﬁ)a

_ S(i—tan(a))tan(p)
hy = 17taanﬂ(aa)ta:(nﬁ)

®)

In Formula (3), h; is the distance between point C and point O1, mm. h; is the distance
between point C and point K, mm. Figure 7 shows that the center point C of the pineapple
eye is imaged at time ¢, and the object distance of the imaging planeis W = S — hy. Then,
the number of pixels of pineapple eye point C on the imaging plane and in the camera
coordinate system are determined using the following equation:

dy(te—ug) _ X
=W

dx<vgf*v0> _ Y (4)
f - W

In other words, at time ¢, the center point C of the pineapple eye fulfills the matrix in
the camera coordinate system, with the camera optical center serving as the origin:

X u. —ug 0
Yo | =Wlo. —vy 0
Ze

0 0 1
To facilitate subsequent experiments and the operation of removing pineapple eyes in
practical engineering applications, the pineapple three-dimensional space coordinate with
O as the center is established O_XYZ. The geometric vector approach is used to translate
the camera coordinates into the 3D space coordinates of the pineapple eye, as shown in
Figure 8.

©)

e Pt

X=-X.

Y =Y. x cos(—a) + (S — Z;) x sin(—n) (6)
Z=5—((S—Z) x cos(a) + Yc x sin(«))

Furthermore, the three-dimensional coordinates of the pineapple eye (X, Y, Z) are

converted to the probe, which can be used for eye removal after changing to the eye-removal
tool. Position L and pineapple rotation angle 6 are represented by the space coordinates
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(L,0), and O, is the starting point of the probe. As shown in Figure 9, the corresponding
conversion formula is as follows:

@)

Image acquisition I

Acquisition completed |

l

|
— ¥=0° |

Identify and match the
pineapple eye on the y and
Y +90 degree image

’ Store all pineapple eyes ‘
Y +30° coordinate (L,0)
~

Remove deplicated
pineapple eyes

Figure 9. Flow diagram of the 3D positioning method for pineapple eyes.

In Equation (7), X; is the distance from the optical center of the horizontal axis camera
to the starting point of the probe. Because the pineapple is rotating during the image
acquisition process, all the calculated coordinates of the pineapple eyes are the result of
the calculation of the current pineapple angle conditions. To obtain the coordinates of all
pineapple eyes for the whole pineapple in the same coordinate space, we should reverse
rotate the coordinates of all pineapple eyes to the 0° position. Therefore, Formula (7) should
be modified to the following:

Y . 180 )]
P

The position information of all pineapple eyes can be obtained after image stereo
matching and pineapple eye position computation. To ensure that the position information
of each pineapple eye is calculated, the image acquisition angle interval is set to 30 degrees,
which leads to the same pineapple eye being calculated in multiple sets of images. This
results in more calculated pineapple eyes than the actual number of pineapple eyes. To
avoid the same pineapple eye being repeatedly calculated, a successful match of a pineapple
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eye in the image is marked. When using the image and the next picture, the marked
pineapple eye does not participate in the matching calculation.

2.5. Flow Diagram of 3D Positioning Algorithm

The flow diagram of the 3D positioning algorithm for pineapple eyes based on mul-
tiangle image stereo matching in the study is shown in Figure 9. It mainly includes all
pineapple eye image acquisition to identify and match the pineapple eye on the y and
Y + 90-degree image. When matching images on the y degree and y + 90 degree, all the
pineapple eye coordinates (L, 0) are stored in a list. When matching the next set of images
(v + 30 degree and y + 120 degree), some pineapple eyes which are duplicated with the
previous set of images will inevitably be obtained. Because the pineapple eye coordinate
(L, 0) is a global coordinate, the coordinates (L,6) are approximate. By comparing the
newly obtained pineapple eye coordinates with the pineapple eye coordinates stored in the
list, it is easy to find and eliminate duplicate pineapple eyes. In this paper, the Euclidean
distance judgment is used as the judgment basis; when the distance between the two
pineapple eyes is less than 1 mm, the two pineapple eyes are considered to be duplicate
pineapple eyes.

2.6. Probe Positioning Test

In this paper, a probe test method is proposed for evaluating the positioning accuracy
of the positioning system. The probe mounted on the linear slide, as illustrated in Figure 10,
may be accurately moved and positioned in the direction of the pineapple axis. At the same
time, the servo drive motor rotates the pineapple at a precise angle. Therefore, according
to the coordinates (L, 0) of any pineapple eye, the probe can be moved to the position of
the pineapple eye and inserted into the pineapple eye through the extension action of the
probe cylinder. The deviation er (error) between the actual center of the pineapple eye and
the probe penetration position can be calculated to evaluate the positioning accuracy of the
pineapple eye:

er =/ (Wa/2 — Wy — 0.99) + (Hp/2 — Hy — 0.99) ©)

Figure 10. Measurement principle of the probe position error. 1. pineapple eye, 2. probe, and
3. pineapple eye center point.

In Equation (9), er is the error, and Wj is the distance between the left edge of the
pineapple eye and the right edge of the probe, in mm. W; is the maximum length of the
pineapple eye in the horizontal direction, in mm. Hj is the distance between the upper
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edge of the pineapple eye and the lower edge of the probe, in mm. Hj is the maximum
length of the pineapple eye in the vertical direction, in mm. The probe radius is 0.99 mm.

Using five Goodfarmer Philippine pineapples, the diameter of the pineapple eye was
9-12 mm (manual measurement) after manual peeling. The positioning test is carried out
on the built-in test platform. When the probe reaches each pineapple eye position, a Vernier
caliper is used to successively measure the distances W;, W, , Hy, and Hj, as shown in
Figure 11.

Figure 11. Measuring the pineapple eye error with a Vernier caliper. (a) W; measurement; (b) Hy
measurement; (c) W, measurement; (d) H, measurement.

3. Results and Discussion
3.1. YOLOw5 Model Performance Evaluation

To evaluate the detection effect of the pineapple eye recognition model, the model
recognition accuracy and detection efficiency are mainly measured from four parameters:
recall (R), precision (P), average accuracy (AP), and detection time of a single pineapple eye.

_ TP
P = mpirp
_ TP
R= 1prrN (10)
1
AP = [ PdR

The AP value in Formula (10) is the area between the P-R curve and the coordinate
axis, TP represents the number of positive samples (pineapple eyes) correctly predicted
as positive samples, TN denotes the number of negative samples correctly predicted as
negative samples, FP indicates the number of negative samples predicted as positive
samples, and FN suggests the number of positive samples predicted as negative samples.

The curve of network model training is shown in Figure 12. Figure 12a shows the
loss function curve of training, with a minimum value of 0.01689. Figure 12b shows the
accuracy P (precision) curve, and the maximum accuracy is 97.8%. Figure 12c shows the
recall rate R (recall) curve, and the maximum recall rate is 97.5%. Figure 12d shows the
mean average precision curve when the IOU threshold is set to 0.5.
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Figure 12. Model training results. (a) Value of loss varies with the number of iterations; (b) P vary
with the number of iterations; (c) R vary with the number of iterations; (d) mAP@0.5 vary with the
number of iterations.

100

The P-R curve is a graph that depicts the relationship between precision and recall. The
abscissa represents R, while the ordinate represents P. The region contained in the P-R curve
and the coordinate axis is AP. The larger the area between the curve and the coordinate axis
is, the better the model recognition effect. Figure 13 shows the P-R curve with a threshold of
0.5 generated in the training process. Since there is only one recognition target in this paper,
the AP is equal to the mAP (mean Average Precision). The mAP is 99.2%.
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Figure 13. P-R curve.

To further verify the YOLOv5I model performance for pineapple eyes, the YOLOvVS5I
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set; the target distribution of the test set was actually 1806 pineapple eyes. Then, the test
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set images were input into the above models, respectively. The target recognition results of
the pineapple eyes in the image samples of the test set by the model are shown in Table 1.
The YOLOVS5 (1, s, m, and x) values of mAP at a confidence of 0.5 were 98%, 97.6%, 97.8%,
and 98%, respectively, showing the effectiveness of the proposed model. Additionally, the
average times required to detect one pineapple eye image were 0.015s, 0.012's, 0.019 s,
and 0.024 s, respectively. Figure 14 shows the YOLOV5I detection effect diagram with a
confidence level greater than 0.5.

Table 1. Identification results for the pineapple eyes in test set.

Models Precision (%) Recall (%) mAP (%) Average Time(s)
YOLOvVS5I 98.0 96.6 98.0 0.015
YOLOv5s 98.3 96.2 97.6 0.012
YOLOv5m 97.9 96.3 97.8 0.019
YOLOv5x 98.1 96.5 98.0 0.024
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Figure 14. YOLOV5I detection effect diagram.

Average time is the time to detect one pineapple eye image.

In order to further analyze the accuracy of the YOLOvV5] model in pineapple eye image
detection, the training results of YOLOvV5I and the target detection model Mask R-CNN
were compared with a threshold of 0.5, as shown in Table 2. As can be seen from Table 2,
the mAP and detection speed of YOLOV5I are significantly higher than Mask R-CNN.

Table 2. Comparison models of YOLOv5] and Mask R-CNN.

Models mAP (%) Average Time (s)
YOLOVS5I 99.2 0.015
Mask R-CNN 97.5 0.021

3.2. Result of Probe Positioning Test

The probe positioning test result, as shown in Figure 15, reveals that of the five Good-
farmer Philippine pineapples after manual peeling (460 pineapple eyes in total, 444 pineap-
ple eyes were successfully recognized), the deviation between the actual center of the
pineapple eye and the probe puncture position was 1.01 mm, and the maximum was
2.17 mm, with a root mean square value of 1.09 mm.
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Figure 15. Probe positioning test.

3.3. Discussion

The YOLOvV5 model has high detection accuracy on the self-built pineapple eye dataset.
In the sample images of the whole test set, the accuracy, recall, and AP of the model are higher
than 96%, indicating that the YOLOV5 recognition algorithm is feasible. The reason why a few
pineapple eyes could not be successfully identified is that the pineapple eyes on both sides of
the image are prone to distortion. This situation increases the recognition difficulty, resulting
in some pineapple eye recognition errors. Therefore, further research on the optimization
methods of models and parameters is needed to improve detection accuracy.

The localization experiment demonstrates that collecting images of the entire pineap-
ple circumference at even intervals and employing multiangle image matching with high
positioning precision may effectively accomplish three-dimensional localization of the
pineapple eye. Simultaneously, pineapple eye coordinates have been converted into a form
that can be directly applied by the actuator, which provides a good foundation for the
further development of pineapple eye-removal equipment for practical operations.

4. Conclusions

A pineapple eye recognition algorithm was presented based on deep learning. YOLOv5
was used as the target detection network for pineapple eye recognition. The 600 pineapple
eye images enhanced by the dataset are divided into a training set, validation set, and test
set with an 8:1:1 ratio. The values in the final model validation of precision, recall, and
mAP (mean average precision) were 97.8%, 97.5%, and 99.2%, respectively. The YOLOv5I
network was compared with YOLOv5s, YOLOv5m, and YOLOv5x on 60 images in the test
set. The YOLOVS5 (1, s, m, and x) values of mAP were 98%, 97.6%, 97.8%, and 98%, showing
the effectiveness of the proposed model. Additionally, the average times required to detect
one pineapple eye image were 0.015 s, 0.012 s, 0.019 s, and 0.024 s. The detection results of
YOLOV5I and Mask R-CNN were further compared, and the results showed that YOLOv5I
was significantly higher than that of Mask R-CNN in both the mAP and detection speed.

A pineapple eye location algorithm based on monocular multiangle image stereo match-
ing was proposed. Two images with different angles of 90° were selected as a group for
stereo-matching analysis to obtain the three-dimensional position information of all pineapple
eyes, establish a camera three-dimensional coordinate system with the camera optical center as
the origin, and obtain the three-dimensional space coordinates (X, Y, Z) of the all pineapple
eye through the geometric vector method. To facilitate subsequent experiments and the
operation of removing pineapple eyes in practical engineering applications, in this paper, the
three-dimensional space coordinate (X, Y, Z) of the pineapple eye was transformed into the
space coordinate (L, #) with the probe (or eye-removal tool) position L and the rotation angle
6 of the pineapple as the reference. The probe test results showed that the average deviation
between the actual center of the pineapple eye and the puncture position of the probe was
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1.01 mm, the maximum was 2.17 mm, the root mean square value was 1.09 mm, and the
positioning accuracy met the needs of the automated eye-removal operations.

The pineapple eye recognition and positioning algorithm proposed in this paper
provides an important theoretical basis for the development of automatic pineapple-eye-
removal equipment. The practical application performance of the algorithm needs to
be verified and improved in the actual eye-removal operation. At the same time, only
one variety of pineapple was tested, and the peeling operation was performed manually.
The applicability of the algorithm to different varieties of pineapples and machine-peeled
pineapples also needs to be further verified.
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Abstract: The working environment of a picking robot is complex, and the motion-planning algorithm
of the picking manipulator will directly affect the obstacle avoidance effect and picking efficiency of
the manipulator. In this study, a time-optimal rapidly-exploring random tree (TO-RRT) algorithm is
proposed. First, this algorithm controls the target offset probability of the random tree through the
potential field and introduces a node-first search strategy to make the random tree quickly escape
from the repulsive potential field. Second, an attractive step size and a “step-size dichotomy” are
proposed to improve the directional search ability of the random tree outside the repulsive potential
field and solve the problem of an excessively large step size in extreme cases. Finally, a regression
superposition algorithm is used to enhance the ability of the random tree to explore unknown space
in the repulsive potential field. In this paper, independent experiments were carried out in MATLAB,
Movelt!, and real environments. The path-planning speed was increased by 99.73%, the path length
was decreased by 17.88%, and the number of collision detections was reduced by 99.08%. The TO-RRT
algorithm can be used to provide key technical support for the subsequent design of picking robots.

Keywords: picking manipulator; motion planning; TO-RRT; step-size dichotomy; regression
superposition

1. Introduction

Citrus is one of the most economically important crops in the world, and it is also
the most cultivated fruit in southwestern China. Currently, citrus fruits are mainly picked
manually, which is time-consuming, laborious, and expensive. According to a survey, the
labor used in citrus picking operations accounts for 33 ~ 50% of the whole production
process. With the sharp decline in the number of rural employees in China, the development
of the citrus industry has been severely restricted. To improve the efficiency of picking and
enhance the competitiveness of China’s citrus industry, both the research and development
of citrus-picking robots have become research hotspots at home and abroad, and the path
planning of the picking manipulator is one of the most difficult technologies.

In recent years, a series of path-planning methods have been proposed. The artificial
potential field (APF) can be used to prevent the manipulator from colliding with obstacles
when approaching the target. However, the APF easily falls into a local minimum, and
it easily falls into oscillation in a complex environment [1]. Compared to the APF, the
rapidly-exploring random tree (RRT) is more adaptable, faster, and more variable, but
it is difficult to find the best path when using this approach [2]. Bidirectional RRT and
RRT-connect algorithms are used to generate two random trees at the initial node and
the target node, respectively, which improves the search speed compared with the RRT
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algorithm, but the path is still not optimal [3,4]. The RRT-star (RRT*) algorithm is used to
make the path gradually converge with the optimum in the search process by reselecting the
parent node and rerouting, but its running time is longer than that of the RRT algorithm [5].
Mohammed et al. [6] defined a straight line connecting the initial node and the target node
so that the generation probability of the random tree node was normally distributed with
the distance from the straight line, preventing excessive searching and avoiding falling into
local extreme values. However, the searching ability in a complex environment still needs
to be improved. Akgun et al. [7] combined the bidirectional RRT and RRT* algorithms to
optimize the search time. Jeong et al. [8] proposed an RRT*-Quick method, which caused
the nodes to tend to share the same parent node in a circular (or spherical) neighborhood.
While the path generated using this method was smoother than the path generated by the
RRT* algorithm, the search time increased slightly. Jeong et al. [9] introduced an informed-
RRT algorithm into the RRT*-quick method to limit the sampling space of the random tree
and solve the problem of increased search time caused by expanding the search domain
in the process of improving the quality of the solution. When the tree nodes reached the
maximum, the RRT* Fixed Nodes (RRT*EN) algorithm was used to remove a weak node
and add a high-performance node so that the generated tree node was much smaller than
the one in the RRT* algorithm. However, this method had little performance gap with the
RRT* algorithm before the tree nodes reached the maximum number of nodes [10].

The RRT* algorithm has a strong ability to optimize the path cost, but its search
efficiency is low. Cao et al. [11] introduced the target gravity to the RRT algorithm, and
the attraction generated by the random node and the attraction generated by the target
node were used to jointly guide the generation of new nodes in the random tree. This
method improved the search speed of the random tree, but it could not escape the obstacle
area quickly when blocked by obstacles. Wang et al. [12] changed the sampling area
and assigned node state values so that the random tree could only be expanded through
boundary nodes to reduce the generation of invalid nodes, but many redundant nodes
were generated near obstacles. Zhang et al. [13] screened new nodes based on a biased-RRT
algorithm. If the distance between the new node and the parent node was greater than the
distance between the new node and any other nearby node, the new node was discarded.
This method can be used to prevent excessive searching of the space and reduce the total
number of nodes. Gong et al. [14] made the search direction of the random tree always
point to the target node and performed local path planning near the obstacles. Although
this method could reduce excessive searching of the space, its escape speed was slow
when the random tree was blocked by many large obstacles. Li et al. [15] put forward an
adaptive RRT-connect (ARRT-connect), which allowed the random tree to still have good
performance in a narrow environment, and path planning could still be completed in a
short time. Gao et al. [16] proposed a planning method based on an independent potential
field that made the manipulator explore the gradient direction when it was far away from
the target and avoided obstacles through the random search. Wang et al. [17] selected tree
nodes according to the geometric structure and position of obstacles so that a path with a
lower cost could be quickly obtained, but the effect of avoiding obstacles with irregular
shapes was poor.

In this paper, based on a citrus tree environment, taking the shortest time as the
optimization goal, and taking the Franka manipulator as the experimental platform, the
RRT algorithm is improved in multiple dimensions. Its main contributions are as follows:

1.  Onthebasis of the biased-RRT, the potential field function and the adaptive probability
threshold are introduced, so that the random tree has corresponding growth strategies
in different potential fields. The above strategies improve the directional search ability
of random trees in the repulsive potential field and enhance the escape ability of
random trees in the repulsive potential field;

2. To solve the problem of “falling into a trap” in the repulsive potential field of random
trees, a node-first search strategy is proposed, which makes the selection of extended
nodes of random trees more purposeful;
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3. Proper step size is crucial to improve search ability. Using an attractive step size is
helpful to reduce the number of collision detections and computational complexities
outside the repulsive potential field. “Step-size dichotomy” solves the problem of
random trees colliding with obstacles many times due to too large of step size in the
repulsive potential field;

4. By introducing a regression superposition algorithm, the random tree can avoid
over-searching space in the repulsive potential field and enhance the escape ability.

The rest of this article is organized as follows: The basic principles of the RRT algorithm,
as well as some improvement methods and the design process of the TO-RRT algorithm,
including the adaptive probability threshold, the node-first search strategy, an attractive
step size, “step-size dichotomy”, and a regression superposition algorithm are introduced
in Section 2. In Section 3, the performance of various algorithms in MATLAB, Movelt!, and
the real environment are compared. The main contributions of the article and future work
are discussed in Section 4. The full text is summarized in Section 5.

2. Materials and Methods
2.1. RRT Algorithm

The RRT algorithm, which is a spatial search algorithm based on random sam-
pling, aims to generate a collision-free random tree connecting the first and the last
positions [18,19].

Each time the Tree grows, a random node g,,,4 is generated in the space. Then, the
tree node g4y closest to q,4y,4 is found in the tree, and a new tree node gy is found in
the direction of §uear — Grqng With a fixed step A and is connected to §year as FuearGnew- 1f
neither gyew NOT rearGnew collide with obstacles, §yew and Frearfnew are added to the random
tree. After several expansions, if the distance between guew and g, is less than the given
threshold, the Tree finds a path connecting ;¢ to ggo1, as shown in Algorithm 1.

Algorithm 1. RRT Algorithm.

: Tree < Qinit

:fori=1tondo

* Grand < RandomSample(Crye.);

: Gnear < NearestPoint(Tree, qan4);
: Gnew < Extend(Guear, Grand, A);

: if CollisionFree(qnear, new) then

: AddNewPoint(Tree, gnew);

: end if

. if Distance(qnew, qgo,,l) < Pmin then
10: return Tree

11: end if

12: end for

O 00N O Ul N

2.2. Some Improvement Methods

The RRT algorithm can be used to effectively explore high-dimensional space, but the
path cost is high, and the algorithm takes a long time to reach completion. The biased-RRT
algorithm can be used to effectively solve the shortcomings of the RRT algorithm [20-23],
as shown in Algorithm 2.
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Algorithm 2. Biased-RRT Algorithm.

1: Tree < qipit

2:fori=1tondo

3: if RandomNumber <= m then

4t Grang < RandomSample(Crye,);
5: else

6: Grand <= qgoal;

7: end condition

8: Guear < NearestPoint(Tree, §,qn4);
9: qnew < Extend(quear, Grand, A);
10: if CollisionFree(qnear, Gnew) then
11: AddNewPoint(Tree, quew);

12: end if

13: if Distance(qnew, 9goa1) < Pmin then
14: return Tree

15: end if

16: end for

In Algorithm 2, 4,,,4 is determined by the size between the random number, RandomNumber,
and the probability threshold m. If RandomNumber <= m, 4,4 takes any point in the
space; otherwise, the target node is taken as the sampling point.

The biased-RRT algorithm is used to guide the growth of the random tree, increase the
effectiveness of sampling points, and shorten the time of path planning. However, when
obstacles obstruct the growth of random trees, the biased-RRT algorithm cannot escape the
obstacles quickly. Therefore, some scholars have put forward corresponding solutions, as
shown in Table 1.

Table 1. Comparison of RRT improvement methods.

RRT Type Algorithm Name Solutions
The random tree search is guided by gradually changing the sampling area, and it is
Biased-RRT NC-RRT [12] expanded through the boundary nodes as much as possible through the node control
mechanism.
Biased-RRT RRT-BCR [13] A regression mecha'msrr} is introduced to pr'event excessive searching, and an adaptive
expansion mechanism is introduced to avoid the repeated search of expansion nodes.
An initial path planner and a path replanner are proposed. When encountering
* . *
RRT MOD-RRT* [24] obstacles, the path replanner selects alternative paths to avoid collision.
P-RRT PBG-RRT [25] By giving weights to the goal and random points, the random tree deviates from
obstacles.
The random tree is guided to deviate from an obstacle through the APF, and the
RRT* HSRRT* [26] heuristic sampling scheme of Gaussian function is used to generate sampling points

near the obstacle to improve the search efficiency.

Note: NC-RRT, Node Control-RRT; RRT-BCR, Biased-RRT algorithm with boundary expansion mechanism and
regression mechanism; MOD-RRT*, multi-objective RRT*; PBG-RRT, rapidly exploring random tree based on
heuristic probability bias-goal; HSRRT*, heuristically sampling-based rapidly exploring random tree.

2.3. TO-RRT Algorithm
2.3.1. Adaptive Probability Threshold

At present, some improved RRT algorithms have been used to add potential field
functions to the target node qgo,, random nodes 4,44, and obstacles. The random tree
changes its growth direction under the action of a combined potential field, which makes
it expand to the target when avoiding obstacles [27-33]. This kind of algorithm improves
the search efficiency of the random tree, but each expansion of the random tree requires
several vector operations of the potential field force, which occupies a large amount of the
system memory. In addition, if the repulsive potential field of the obstacles is considered,
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the algorithm may fall into a local minimum problem, as is common in APF, resulting in
Gnear being unable to generate a new node ¢, as shown in Figure 1.

[ S
qinit

\ Frep Fat
‘ . @ (soal
il Qnear

obstacle

Repulsive potential field

Figure 1. The algorithm falls into a local minimum.

Considering the complexity and uncertainty of the above algorithm in different envi-
ronments, an attractive potential field and a repulsive potential field for the target node
and obstacle, respectively, based on the biased-RRT algorithm were established. Therefore,
the probability threshold changed according to the different types of potential fields.

Similar to the APF algorithm, the range of the attractive potential field was the whole
operating space, while the range of the repulsive potential field was limited to a certain
distance around the obstacle. In the range of the repulsive potential field, if the random
tree tended to search for the target node 4./, the random tree had a strong ability to grow
biased. At this time, if the obstacle blocked gg,,, multiple failed growth near obstacles
could occur for the random tree, so it tended to search randomly within the repulsive
potential field. When the random tree left the range of the repulsive potential field, it
continued to tend to search for ggo,, as shown in Algorithm 3.

Algorithm 3. Probability Threshold under the Control of Potential Field.

: if RandomNumber <= threshold(qnew, obstacle) then
* Grand < RandomSample(Cpe,);

else

Grand <~ Ggoals

end if

. return q,4,4

SANSUN S

The growths of the random tree under both the control of the constant probability
threshold and the adaptive probability threshold are shown in Figure 2a,b, respectively.
Figure 2a shows that, if the random tree maintained a constant probability threshold
during the search process, the obstacle did not affect the goal of random tree expansion.
If the adaptive probability threshold was adopted, the random tree chose a better growth
direction according to the location tendency of the new node. It was learned through many
experiments that the probability threshold outside the scope of the repulsive potential field
was 0.3, and the probability threshold inside the range of the repulsive field was 0.7.

2.3.2. Node-First Search Strategy

According to the biased-RRT algorithm, when RandomNumber > m, q.q,4 takes the
coordinate value of g¢,, and then selects the g,eqr closest to 4,4 in the random tree as the
parent node of g0 If the random tree only expands to the target in each search round
without considering the random search, then the new node in this search round will become
the parent node of the new node in the next search round, and the random tree is a straight
line segment connecting g;y;; and qgoq1-
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Figure 2. Threshold comparison. (a) Constant probability threshold; (b) Adaptive probability
threshold.

As in Section 2.3.1, when the end node of the random tree expands to the range of the
repulsive potential field, the random tree tends to select any node in the space as g,4,4 in
the next search selection, so the probability of random expansion of the end node is small.
If the next round of search satisfies RandomNumber > threshold, since the end node of the
random tree is closest to q¢oq1, Gg0n Will be expanded, causing the newly generated path to
collide with the obstacle. To summarize, when RandomNumber > threshold, the end node
collides with the obstacle; when RandomNumber <= threshold, any node in the tree will
be selected for expansion, which is no different from the traditional RRT algorithm. This
phenomenon is called “falling into a trap”, as shown in Figure 3.

) [ ]
./H/. qgorl @— qgoal

obstacle obstacle
Repulsive potential field Repulsive potential field
(@) (b)

-- o
qgoal

obstacle

qgoal

obstacle

Repulsive potential field
(©) (d)

Figure 3. The random tree falls into a trap in the repulsive potential field. (a) The random tree

Repulsive potential field

entering obstacle potential field; (b) The random tree begins to expand randomly; (¢) The random
trees collide with obstacles; (d) The random tree is expanded several times.

For this reason, a node-first search strategy was proposed in this paper, as shown
in Algorithm 4. When the g, of the random tree grew into the range of the repulsive
potential field of obstacles, a virtual spherical surface with a radius » and center g, was
generated. If RandomNumber <= threshold was satisfied in the next round of search, point
Grand on the virtual spherical surface was preferentially selected, and ., was used as the
parent node of the next round of search to generate a new node gyeq2. If gnew2 and the line
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segment Gpewfnew2 did not collide with obstacles, the path and .2 Were kept. A new
search round continued until the end node of the random tree was separated from the
obstacles, as shown in Figure 4.

Algorithm 4. Node-First Search Algorithm.

: if RandomNumber <= threshold(quew, obstacle) then
: if Distance(qpew, obstacle) < Rypy then

* Jrand < Sl’hen’(qnew, rvirtual);

else

* Qrand < RandomSample(Cpe,);

end if

else

* Grand < Ggoals

: end if

10: return q,4,,4

O N QU W N

(rand

(new2

new

(goal

qinit virtual sphere
obstacle

Repulsive potential field
Figure 4. Schematic diagram of the node-first search strategy.

2.3.3. Attractive Step Size and Step-Size Dichotomy

From the above description, the node-first search strategy was used to prevent the
random tree “falling into a trap” within the range of the repulsive potential field. Since the
random tree has a certain probability of random search outside the range of the repulsive
potential field of obstacles, more iterations will be generated. An appropriate step size can
effectively reduce the iterations of the random tree. In the case that the length of the path is
determined, a small step size will cause more collision detections and distance calculations,
and a large step size will often make the random tree collide with obstacles. Therefore, the
step size should be expanded as much as possible on the premise of reducing the number
of collisions [34,35].

According to the APF algorithm, the attractive force of g4, acts on the whole operating
space and is proportional to the distance between the end joints of the manipulator, which
is beneficial to control the growth step of the RRT. If obstacles are not considered, the
random tree should increase the step size when it is far away from g4, to quickly expand
t0 Ggoq1- When the random tree is closer to ggy, if it continues to maintain a large step
size, a large number of redundant nodes will be generated at 44,4, as shown in Figure 5a.
Therefore, the random tree should gradually approach g4, with small step sizes, as shown
in Figure 5b.

For this reason, an attractive step size was proposed, which was defined as:

attStepsize = k x Distance(qnear, dgoal) (1)

where attStepsize represents the attractive step size, and k is the attractive parameter.
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Figure 5. Fixed step size and attractive step size. (a) Fixed step size; (b) Attractive step size.

If obstacles are considered, the step size of the random tree in the random search
is fixed, and an attractive step size is taken when growing toward Jgoal- This method
ensures that the random tree grows toward g¢,, as soon as possible outside the range of
the repulsive potential field and avoids collisions with obstacles due to excessive steps
within the range of the repulsive potential field.

The parameters of the potential field function of the manipulator are different in
different operating spaces. For example, when the attractive parameter k is too large,
attStepsize will increase accordingly. If Distance(quear, obstacle) < attStepsize, quew Will
collide with obstacles. In addition, the end nodes tend to grow toward goal outside the
range of the repulsive potential field. Therefore, the random tree still has a high probability
of colliding with obstacles in the next round of search.

For this reason, a “step-size dichotomy” was introduced to solve the problem of
excessive step size. When ¢;,eqr grew toward Jgoal and there were obstacles between them,
the distance d,,,, between g0 and the obstacles was calculated. If d,,,, <= attStepsize,
the attStepsize was shortened to the original value of 271, and the sizes of attStepsize and
d,0p Were compared again until d,,,, > attStepsize; see Algorithm 5.

Algorithm 5. Step-size Dichotomy.

1: if Collision(qneuy,qgoa,) then

2: while adpStepsize > Distance(qnear, obstacle) do
3: adpStepsize = adpStepsize/2;

4: end while

5: else

6: attStepsize = k x Distance(qnmr,qgo,l]);

7: end if

8

: return attStepsize

2.3.4. Regression Superposition Algorithm

From Section 2.3.3, if the random tree grows within the range of the obstacle repulsive
potential field, a large number of redundant nodes will be generated on the surface of the
obstacle due to the high probability of the random search, as shown in Figure 6a. As a
result, a regression superposition algorithm is proposed in this section to adaptively select
extended nodes and change the step size of the random search, as shown in Figure 6b.
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qgoal

(a) (b)

Figure 6. Differences before and after improvement. (a) The random trees generated a large number
of nodes on the surface of obstacles; (b) The random tree had fewer nodes on the obstacle surface.

The regression superposition algorithm consists of a regression algorithm [36] and a
step-size superposition algorithm. In the regression algorithm, if the distance between gy¢
and geqr was larger than the distance between g, and any node g; in the random tree
except Jpear, it was considered to meet the regression conditions:

Distance(qnear, qnew) > Distance(quear, q;) o)
q; € Tree

If Formula (2) was satisfied, ;.0 was regarded as a regression node. The regression
node would not become the tree node of the random tree, but it was removed until a new
node that did not meet the regression condition was found, as shown in Figure 7a.

qw2\+2£q:c“2 .
oY At+e? A
Qinit *_ A+42¢
p<A+2e

4 obstacle

Repulsive potential field

(a) (b)

Z
s
-

o7 bstacl
2 obstacle

qinit

(9

Figure 7. Regression superposition algorithm. (a) Regression algorithm; (b) Regression superposition

algorithm; (c) Step-size superposition algorithm. Note: A, the initial step size; ¢, the step size of
superposition; p, the distance between g,y and any node.

To further reduce the number of tree nodes, the step-size superposition algorithm
was incorporated based on a regression algorithm. When the random tree was searched
randomly, the initial step size was set to A, and the step size was increased by ¢ after each
round of the random search until the extended branches of the random tree collided with
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obstacles. Then, the search step size of the next round was returned to the initial step size
A, and the step size was superimposed again until the random tree searched toward gg,1,
as shown in Figure 7c.

The random tree used an attractive step size when searching toward g0, to reduce
the generation of redundant nodes. During the random search of the random tree, the
regression superposition algorithm was used to enhance the ability of the random tree to
search the unknown space, as shown in Figure 7b.

The TO-RRT algorithm was used to dynamically adjust the growth direction of the
random tree by the probability threshold controlled by the potential field and to define
two different growth methods according to the different growth directions. Therefore, the
random tree could quickly grow to the target outside the range of the repulsive potential
field and quickly determine the escape path within the range of the repulsive potential
field. The algorithm flow chart is shown in Figure 8.

Build a 3D
map

Build

Adjust probability
potential threshold

ep-size
dichotomy

Node-first
search strategy

End of
planning

Figure 8. Flowchart of the TO-RRT algorithm. Note: A, yes; N, no.

3. Results
3.1. Comparative Experiment of Path Planning in a Complex Environment

To verify the speed, stability, and low path cost of the TO-RRT algorithm, the RRT
algorithm, the biased-RRT algorithm with a target offset probability of 50%, the TO-RRT
algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm are compared in this
section using complex environments (i.e., a multi-sphere environment, a multi-rectangle
environment, a single-channel environment, and a multi-channel environment).

In the simulation experiment, the initial step size was 2, the maximum number of
failed growth times was 100,000, the map size was 50 x 50 x 50, the starting point was
(1,1, 1), and the target point was (49, 49, 49). The blank area in the map represented the
obstacle-free area, other colors represented the obstacle area, the blue path represented the
random tree, the black path represented the collision-free path from the starting point to
the target point, and the red path represented the path optimized by the greedy algorithm.

Figure 9a,e,i,m,q show that, although the RRT algorithm can be used to find a collision-
free path from the initial point to the target point, the whole space was searched, so that
the highest amount path nodes were generated. Compared with the RRT algorithm, the
biased-RRT algorithm did not search too much invalid space, so there were fewer path
nodes. When using the RRT-BCR algorithm and the NC-RRT algorithm, the sizes of the
random trees were reduced through a regression mechanism and an adaptive sampling
area, respectively. The TO-RRT algorithm was used to greatly reduce the number of nodes
in the space, and its complexity was the lowest. Figure 9b,f,j,n,r show that the RRT algo-
rithm still searched the whole space. Although the biased-RRT algorithm generated fewer
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nodes than the RRT algorithm, the search tree generated a large number of nodes on the
surface of obstacles, which increased the number of iterations. The NC-RRT algorithm
made the random tree tend to expand through boundary nodes through the node control
mechanism, so it had fewer redundant nodes. It can be seen from Figure 9¢,d,g,hk,1,0,p,s,t
that the RRT algorithm and the biased-RRT algorithm could not quickly find the “escape
channel”. Although the RRT-BCR algorithm limited the expansion of nodes that were
prone to collision, it increased the expansion times of other nodes. Due to the regression
superposition algorithm and node-first search strategy introduced into the TO-RRT algo-
rithm, the random tree could quickly search the nearby area to find the “escape channel” in
the repulsive potential field.

There are certain errors and contingencies in a single experiment. To better reflect
a real situation, 10 simulation experiments were carried out in the same environment as
described above, shown in Figure 10.

Figure 10 shows that the TO-RRT algorithm maintained strong stability in 10 experi-
ments and did not traverse the whole space due to being blocked by obstacles, while the
RRT algorithm and the biased-RRT algorithm both generated a large number of nodes in the
space. In addition, the RRT-BCR algorithm had fewer path nodes than the biased-RRT algo-
rithm, and in the NC-RRT algorithm, there was little difference in the path in each search.
The comparison of the running times of the three algorithms in different environments
is shown in Figure 11. Figure 11 shows that the RRT algorithm had the longest running
time and poor running-time stability, especially in a single-channel environment, with the
longest running time at 45.6057 s and the shortest running time at 1.2880 s. Compared
with the RRT algorithm, the biased-RRT algorithm had a much shorter running time and
strong running-time stability, but the search time in a complex environment was longer.
The longest running times of the TO-RRT algorithm in the four environments were 0.0225 s,
0.0420's, 0.0618 s, and 0.0443 s, and the shortest running times were 0.0056 s, 0.0134 s, 0.0101
s, and 0.0115 s. The difference between the longest search time and the shortest search time
in a single environment did not exceed 0.06 s, which not only indicated a short search time
but also a strong and stable running time. The NC-RRT algorithm performed poorly in a
multi-rectangle environment, with a difference of 4.44 times between the longest running
time and the shortest running time, while the RRT-BCR algorithm was only 3.82 times.

Table 2 shows the average values of each index of the 3 algorithms over 10 experiments
(biased-RRT represents the biased-RRT algorithm with a target offset probability of 50%). In
the multi-sphere environment, the TO-RRT algorithm had a running time that was 99.74%
less than the RRT algorithm, which was mainly because the number of collision detections
and the number of failed node growths of the former were reduced by 99.39% and 97.17%,
respectively, compared with the latter. In addition, compared with the RRT algorithm, the
number of path nodes in the TO-RRT algorithm was reduced by 82.92%, which shortened
the length of its search path by 18.99%. When the random tree encountered a large area
of obstacles, the TO-RRT algorithm was used to reflect the advantages in the search time
more than the RRT algorithm. For example, the number of tree nodes and the number of
failed growths of nodes of the RRT algorithm in the multi-rectangle environment reached
17,358.3 and 3144.8, respectively, resulting in a running time of 7.8822 s, while the running
time of the TO-RRT algorithm was only 0.0213 s. In addition, the RRT-BCR algorithm
performed better than the NC-RRT algorithm in a multi-rectangle environment, and its
running time was shortened by 29.14% compared with the NC-RRT algorithm because the
RRT-BCR algorithm removed nodes that collided many times when facing obstacles with
large occlusion areas. The biased-RRT algorithm produced too much failure growth when
encountering obstacles with large areas. For example, in a multi-channel environment,
the node failure growth rate of the biased-RRT algorithm was 62.54%, while the RRT
algorithm and TO-RRT algorithm had node failure growth rates of only 36.40% and 15.82%,
respectively. Therefore, the biased-RRT algorithm was not ideal in a complex environment.
Since the NC-RRT algorithm always took the area between the configuration point and the
target as the sampling radius and tended to use boundary nodes for expansion, it could not
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produce valid nodes when the obstacle was between the configuration point and the target.
For example, in multi-channel and multi-rectangle environments, the collision detection
times of the NC-RRT algorithm were 21,487 times and 55,077 times. In summary, compared
with the other algorithms, the TO-RRT algorithm had significant advantages in searching
speed and the number of nodes in the random tree.

Figure 9. The performances in different environments of: the RRT algorithm (a—d); the biased-RRT
algorithm with a target offset probability of 50% (e-h); the TO-RRT algorithm (i-1); the RRT-BCR
algorithm (m-p); and the NC-RRT algorithm (q-t).
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Figure 10. Ten experiments each of: the RRT algorithm (a—d); the biased-RRT algorithm with a target
offset probability of 50% (e-h); the TO-RRT algorithm (i-1); the RRT-BCR algorithm (m-p); and the
NC-RRT algorithm (q-t).
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Figure 11. The running times of the RRT algorithm, the biased-RRT algorithm with a target offset
probability of 50%, the TO-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm.
(a) Multi-sphere environment; (b) Multi-rectangle environment; (c) Single-channel environment;
(d) Multi-channel environment.
Table 2. Experimental results of each algorithm in different environments.
. . Node
Algorithm Running Path Length Tree Nodes Path Nodes Collls1.0n Failed Node Failure
. Detection Growth
Type Time (s) (cm) (Number) (Number) Growth
(Number) (Number) o
Rate (%)
RRT 5.6342 124.6008 10,454.3 60.9 10,693.7 229.4 2.15
Biased-RRT 0.0617 100.1367 140.1 54 228 87.9 38.55
Multi-sphere TO-RRT 0.0147 100.9338 229 10.4 65.5 6.5 9.92
RRT-BCR 0.0545 101.9241 113.4 54.3 123.2 9.8 7.95
NC-RRT 0.0324 94.3765 50.6 50.2 183.7 133.1 78.46
RRT 7.8822 140.9832 14,213.5 68.7 17,358.3 3144.8 18.12
Multi- Biased-RRT 0.1860 125.8082 414.3 62.9 1033.9 619.6 59.93
rectanele TO-RRT 0.0213 110.1866 32.7 13.2 135.5 17.3 12.77
g RRT-BCR 0.1121 121.8465 243.8 60.4 2944 50.6 17.19
NC-RRT 0.1709 107.2454 55.8 53.6 55,077 54,519 99.99
RRT 12.4436 131.1145 8333.9 64.2 13,560.3 5226.4 38.54
Sinel Biased-RRT 0.1074 108.6431 2422 55.5 607.3 365.1 60.12
h‘“g e'l TO-RRT 0.0254 107.4978 3238 127 130.7 20 15.30
channe RRT-BCR 0.0707 109.4179 159.3 55.8 203.8 445 21.83
NC-RRT 0.0406 96.7172 49.8 49.8 659 609.2 92.44

202



Agriculture 2022, 12, 581

Table 2. Cont.

Collision  Failed Node Node
Algorithm Running Path Length Tree Nodes Path Nodes . Failure
. Detection Growth
Type Time (s) (cm) (Number) (Number) Growth
(Number) (Number) o
Rate (%)
RRT 8.0047 134.4688 11,702.5 64.7 18,399.5 6697 36.40
» Biased-RRT 0.1461 114.4721 3229 56.9 861.9 539 62.54
hMu “‘l TO-RRT 0.0301 117.5516 51.8 16.1 2225 35.2 15.82
channe RRT-BCR 0.1276 120.4389 278.8 61.8 369.3 90.5 2451
NC-RRT 0.0821 102.7622 55.3 52.8 21,487 20,934 97.43
RRT 8.4912 132.7918 11,176.05 64.625 15,002.95 3824.4 23.8025
A Biased-RRT 0.1253 112.2650 279.875 57.325 682.775 4029 55.285
Yegage TO-RRT 0.0229 109.0425 35.05 13.1 138.55 19.75 13.4525
ndex RRT-BCR 0.0912 113.4070 198.825 58.075 247.675 48.85 17.87
NC-RRT 0.0815 100.2753 52.875 51.6 19,351.675 19,061.48 92.08

Note: RRT, rapidly-exploring random tree; Biased-RRT, rapidly-exploring random tree with target Bias; TO-RRT,
time-optimal rapidly-exploring random tree; RRT-BCR, Biased-RRT with boundary expansion mechanism and
regression mechanism; NC-RRT, Node Control-RRT.

3.2. Obstacle Avoidance Test Based on the Robotics Toolbox

To verify the feasibility of the TO-RRT algorithm on the manipulator, Robotics Toolbox
10.2 in MATLAB was used to model the Franka manipulator. Franka is a 7-DOF robot with
high precision and fast response. Its payload is 3 kg, and the maximum contact area is
855 mm. The Franka manipulator can realize two-way communication between itself and
the workstation through the Franka Control Interface (FCI) and an Ethernet connection.
Therefore, complete real-time control can be achieved with a sampling frequency of 1 kHz.
In terms of picking performance, Franka’s pose repeatability is within 0.1 mm. Even at the
highest speed of 2 m/s, the path deviation can be ignored, which provides good working
conditions for fruit picking. The physical object of the Franka manipulator and its D-H
parameters are shown in Figure 12a and Table 3, respectively.

le position
» 30 le position1
= le position2
N 20 le position3

Z axis

Y axis

(b) ()

Figure 12. Materials and results of simulation experiments based on using Robotics Toolbox. (a) The
physical object of the Franka manipulator; (b) Trunk model; (¢) The Franka manipulator avoids
obstacles.
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Table 3. D-H parameters.

Link i Link Offset a;(m) Link Length d;(m) Link Twista;(rad) Link Twist 6;(rad)

1 0 0.333 z 6
2 0 0 0 6
3 0 0.316 0 6
4 0.0825 0 z 0,
5 ~0.0825 0.384 —z 05
6 0 0 0 06
7 0.088 0 z 67

To simplify the trunk and improve the operation speed of the TO-RRT algorithm, the
trunk was regarded as a combination of spheres [29], as shown in Figure 12b and Table 4.
To judge whether the manipulator collided with obstacles, the shortest distance d,jision
from the center of the sphere to the origin of the coordinate system of adjacent links of the
manipulator was used. The three-dimensional coordinates of each joint of the manipulator
were obtained through a forward kinematics solution, and if the manipulator did not collide
with the tree trunk, the following conditions must be met:

dcollision >R+ (3)
Table 4. Obstacle parameters.
Number Obstacle Coordinates (cm) Obstacle Radius (cm)
1 (25,55,48) 5
2 (25,53,47) 5
3 (25,51,46) 5
4 (25,49,45) 5

In the formula, R = 5 cm is the radius of the obstacle ball, and » = 3 cm is the radius
of the cylinder.

Figure 12¢ shows the Franka manipulator using the TO-RRT algorithm to plan its
path, and the minimum-snap trajectory optimization algorithm was used to smooth the
trajectory of the manipulator [37,38]. Figure 13 shows the shortest distance.

3.3. Comparative Experiments in a Virtual Picking Environment

The motion-planning experiment of the Franka manipulator was initially realized
through Robotics toolbox, which proved that the TO-RRT algorithm was feasible in the
motion of the manipulator. Movelt! was used in this section to build a virtual picking
environment and to conduct comparative experiments on different algorithms in this
environment. The experimental parameters are shown in Table 5.

During the experiment, the maximum search time was 10 min, the maximum number
of failed searches was 10,000, and the search domain was {x,y,z| -1 <x <1, -1<y<
1,—1 < z < 1}(m). Due to the large number of sampling points generated, the global
search time of the RRT algorithm was 243.322451 s. Compared with the RRT algorithm,
the search time of the biased-RRT algorithm was only 3.720342 s. However, affected by
the nature of obstacles and the probability threshold, the collision-free path generated
by the biased-RRT algorithm was less smooth. In contrast, since the NC-RRT algorithm
controlled the sampling interval, its trajectory was the smoothest among all the algorithms.
Compared with the previous algorithms, the TO-RRT search time and path length were
only 0.074915 s and 0.63548128 m, respectively, due to the generation of smaller random
trees. The simulation results are shown in Table 6 and Figure 14.
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Figure 13. The shortest distance from the center of the sphere to the origin of the coordinate system

of adjacent links of the manipulator. (a)

Obstacle with coordinates (25,55,48); (b) Obstacle with

coordinates (25,53,47); (c) Obstacle with coordinates (25,51,46); (d) Obstacle with coordinates (25,49 45).
C;Cj1 represents the distance between the line segment between coordinate system 7 and coordinate

system i + 1 and the center of the sphere.

Table 5. Experimental parameters.

Initial Pose

Pose of Citrus 1 Pose of Citrus 2

(0.106155, 0.227978, (—0.234434, 0.360095,

Position (0.3595, 0, 0.643499) 0.744871) 0.737649)
Orientation (—0.65328, —0.270598, (—0.636052, 0.309414, (—0.771505, 0.309187,
0.653283, 0.270599) 0.231336, 0.66797) 0.226895, 0.507644)
Table 6. Experimental data using Movelt!.
RRT Biased-RRT TO-RRT RRT-BCR NC-RRT
Global planning time(s) 243.322451 3.720342 0.074915 1.222014 0.181070
Global waypoints(number) 41 29 7 20 15
Path length at obstacle
: 1.89919096 1.46801193 0.63548128 0.592291 0.53239712
avoidance(m)
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Figure 14. The use of Movelt! with: the RRT algorithm (a—c); the biased-RRT algorithm with a target
offset probability of 50% (d—f); the TO-RRT algorithm (g—i); the RRT-BCR algorithm (j-1); and the
NC-RRT algorithm (m-o).

3.4. Contrastive Experiments in Real Environments

To test the performance of TO-RRT in actual picking, the Franka manipulator was
taken as the moving object, the citrus as the operation object, and the tree trunk as the
obstacle avoidance object to construct a multi-objective citrus-picking environment. The
environmental parameters are shown in Tables 7 and 8. First, the manipulator adjusted
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its pose to the initial state, and its joint angle was (0, —%,0, — 75,0, 5,0). Second, the three-
dimensional coordinates of the citrus, the parameter information of obstacles, and the
picking pose of the manipulator were transmitted to the planning thread, and the continu-
ous and collision-free trajectory was obtained through inverse kinematics. Finally, Movelt!
published the trajectory through moveit_commander to move_group and transmitted the
control signal to the robot controllers to complete the picking action. The control block
diagram is shown in Figure 15. The experimental results showed that the TO-RRT algorithm
could be used to effectively reduce the nodes, shorten the planning time, and reduce the
movement time of the manipulator, as shown in Figure 16 and Table 9.

Table 7. Obstacle information.

Number Obstacle Coordinates (m) Obstacle Radius (cm)
1 (0.369822, —0.153781, 1.04791) 1
2 (0.426765, —0.149826, 1.00189) 1
3 (0.45418, —0.186812, 0.947317) 1
4 (0.330284, —0.344084, 1.01095) 1.5
5 (0.384351, —0.371103, 0.94411) 1.5
6 (0.48388, —0.335959, 0.897789) 1.5

Table 8. Target information.

Coordinates (m)

Base coordinates (0,0,0)
Citrus 1 coordinates (0.208763, —0.432806, 0.764728)
Citrus 2 coordinates (0.423718, 0.0602042, 0.994)

Planning and control

Motion planning Communication

Build the 3D

Perceptual transform
map

Send control
signal
Target
information

Ethernet
communication

Path planning

Coordinate
transformation Inverse
kinematics

Robot
controllers
Manipulator
movement

Collision
detection

Environmental
information

Figure 15. Control block diagram.
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(b)

Figure 16. The manipulator reached Citrus 1 and Citrus 2 and avoided the branches. (a) Initial state of
manipulator; (b) The manipulator reaches the first citrus; (c) Obstacle avoidance of the manipulator;
(d) The manipulator reaches the second citrus.

Table 9. Comparison of the planning time and movement time.

Algorithm Type Planning Time(s) Movement Time(s)
RRT 53.873985 84.3975
Biased-RRT 0.0883 18.0498
TO-RRT 0.0508 17.3703
RRT-BCR 0.0771 17.9238
NC-RRT 0.0649 17.7131

4. Discussion
4.1. Analysis

From Figure 10a—d, since the RRT algorithm did not consider the effect of target offset
probability, the entire workspace was searched in all environments. The above problems led
to the huge scale of the random tree and caused more collision detection times. Therefore,
the path length and movement time of the manipulator were the longest among all the
algorithms, as shown in Tables 6 and 9. From Table 2, the biased-RRT algorithm avoided
redundant searching through heuristic guidance, effectively reducing the number of tree
nodes and collision detection times. From the average index in Table 2, since the RRT-BCR
algorithm removed nodes that collided multiple times, its node failure growth rate was very
low. However, this approach took a considerable amount of computation time, only 0.0112 s
less than the biased-RRT algorithm, as shown in Table 9. From the average index in Table 2,
the path length of the NC-RRT algorithm was the shortest, and the running time was second
only to the TO-RRT algorithm. As can be seen from the multi-rectangle environment in
Table 2, the NC-RRT algorithm had to continuously expand its sampling space when facing
obstacles with large occlusion areas, resulting in 55,077 collision detections (which was
the highest among all the algorithms). From Table 2, the TO-RRT algorithm reduced the
numbers of path nodes and collision detections through an attractive step size, reduced
the number of node failure growth through the node-first search strategy, and, finally,
enhanced the escape ability through the regression superposition algorithm. However, the
TO-RRT algorithm produced larger steps near obstacles, which led to a slightly longer path
length than the other improved algorithms, as shown in Table 6.

4.2. Future Work

Industry 5.0 is a new generation of the industrial revolution representing “personal-
ization”, in which personalized products and services are created for humans by using the
creativity of human experts to interact with efficient, intelligent, and precise machines. The
key technologies of Industry 5.0, such as human—computer interaction, collaborative robots,
and edge computing (EC), can provide ideas and technical support for Agriculture 5.0 [39].

As the number of China’s aging population increases by the year, the number of
rural employees has dropped sharply, and original agricultural production methods can
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no longer meet the development needs of the current citrus industry. Through the high
integration of artificial intelligence and mechanical equipment, the transformation and
upgrade of the production mode of China’s agricultural industry can be realized. The
improved method proposed in this paper can be used in the fields for picking robots and
pruning robots and for the path planning of orchard patrol robots [40-42]. By analyzing
the characteristics of a citrus tree environment, the work presented in this paper aimed
to optimize the time required and improve it on the basis of a traditional algorithm to
greatly shorten the planning time of the manipulator and reduce the movement time of
the manipulator to a certain extent. However, the detection of obstacles is an objective
challenge faced by this method.

In recent years, path planning through deep reinforcement learning (DRL) has become
a research hotspot. A robot senses environmental information through sensors and trains
the samples in the process of continuous interaction with the environment to complete an
efficient, accurate, and low-environment-dependence path-planning method. The fusion
of deep reinforcement learning and traditional path-planning algorithms has gradually
become a research trend. For example, LM-RRT determines the selection probability of
extension and connection trees based on reinforcement learning and guides the trees to
pass through narrow channels quickly [43]. Based on this, the research on improving the
TO-RRT algorithm by reinforcement learning will be discussed in the next stage.

5. Conclusions

A time-optimal RRT algorithm based on the characteristics of the complex environment
of citrus trees was proposed in this paper. The constructed algorithm had an attractive
potential field and a repulsive potential field for the target node and obstacle, respectively.
In addition, dynamic adjustment of the probability threshold under the action of the
superimposed potential field was achieved, and a node-first search strategy was used to
solve the “falling into a trap” problem. In addition, an attractive step size and a “step-
size dichotomy” were introduced in this algorithm so that the random tree could expand
the step size as much as possible on the premise of reducing the number of collisions.
Finally, a regression superposition algorithm was used to improve the search efficiency
of the random tree in the range of the obstacle repulsive potential field. The TO-RRT
algorithm was simulated in complex environments, and the motion-planning of the Franka
manipulator was carried out using Robotics Toolbox and Movelt! It can be seen from the
simulation results that the TO-RRT algorithm had fewer tree nodes, collision detection
times, and failed growth times, so this algorithm had a shorter planning time than the RRT
algorithm, the biased-RRT algorithm, the RRT-BCR algorithm, and the NC-RRT algorithm,
especially when the random tree faced a large obstacle area. To obtain the performance
of the algorithm in real work, we built a real picking environment indoors. Through the
performance evaluation of various indicators of the different algorithms, it was proved that
the TO-RRT algorithm still had a good performance in movement time.
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Abstract: Achieving fast and accurate recognition of garlic clove bud orientation is necessary for
high-speed garlic seed righting operation and precision sowing. However, disturbances from actual
field sowing conditions, such as garlic skin, vibration, and rapid movement of garlic seeds, can
affect the accuracy of recognition. Meanwhile, garlic precision planters need to realize a recognition
algorithm with low-delay calculation under the condition of limited computing power, which is a
challenge for embedded computing platforms. Existing solutions suffer from low recognition rate
and high algorithm complexity. Therefore, a high-speed method for recognizing garlic clove bud
direction based on deep learning is proposed, which uses an auxiliary device to obtain the garlic clove
contours as the basis for bud orientation classification. First, hybrid garlic breeds with the largest
variation in shape were selected randomly and used as research materials, and a binary image dataset
of garlic seed contours was created through image sampling and various data enhancement methods
to ensure the generalization of the model that had been trained on the data. Second, three lightweight
deep-learning classifiers, transfer learning based on MobileNetV3, a naive convolutional neural
network model, and a contour resampling-based fully connected network, were utilized to realize
accurate and high-speed orientation recognition of garlic clove buds. Third, after the optimization
of the model’s structure and hyper-parameters, recognition models suitable for different levels of
embedded hardware performance were trained and tested on the low-cost embedded platform. The
experimental results showed that the MobileNetV3 model based on transfer learning, the naive
convolutional neural network model, and the fully connected model achieved accuracy of 98.71,
98.21, and 98.16%, respectively. The recognition speed of the three including auxiliary programs
was 19.35, 97.39, and 151.40 FPS, respectively. Theoretically, the processing speed of 151 seeds per
second achieves a 1.3 hm? /h planting speed with single-row operation, which outperforms state-of-
the-art methods in garlic-clove-bud-orientation recognition and could meet the needs of high-speed
precise seeding.

Keywords: garlic seeding; orientation recognition; garlic clove righting; deep learning; fully
connected neural network

1. Introduction

Garlic is a globally cultivated crop due to its rich nutritional and medicinal value.
According to 2022 statistical data from the FAO, the garlic planting area in China in 2020
was about 830,000 hectares, and garlic production reached 20 million tons, the largest in
the world. However, the current mechanized planting of garlic is not efficient, and the
sowing period of garlic is very short, so high-speed, high-efficiency, and accurate planters
are urgently needed.

Many studies have shown that the orientation of garlic cloves buds during garlic
sowing into the soil significantly affects the time and consistency of seedling emergence,
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garlic yield, and garlic bulb quality [1,2]. One study showed that when the garlic clove
buds were facing upward and the inclination angle was within £45°, all the indexes of
garlic plants performed well. When the garlic clove buds were placed horizontally, the
performance of each index was slightly inferior to that of the garlic clove buds facing
upward. When the garlic clove buds were facing downward and the inclination angle was
within +45°, the performance of each index was the worst, making them prone to garlic
seed necrosis, uneven seedling emergence time, disordered and weak growth, and other
problems [3]. Therefore, the precise sowing of garlic first needs to meet the agronomic
requirements of garlic planting with clove buds being placed upright.

Cangshan and Jinxiang garlic are the most widely cultivated garlic breeds in China. At
present, existing garlic planters mostly adopt a righting mechanism to adjust the garlic
clove bud direction. The garlic cloves of Cangshan are neat and uniform, and their weight,
geometric shape, and the center of gravity are consistent, which could be utilized by a
mechanical mechanism to achieve garlic bud upright sowing into soil [4,5]. Jinxiang garlic,
the most commonly planted variety, is a hybrid breed with variable sizes of cloves, irregular
geometric shape, and unstable center of gravity, and the mechanical righting method often
has a poor effect [6]. The righting of hybrid garlic seeds remains an open problem, and
beyond that, high-speed precision sowing requires shorter cycling time for righting seeds.

The correct recognition of garlic clove bud orientation is the foundation of garlic clove
righting operation, and computer vision is the only feasible way to judge the clove bud
orientation of hybrid breed garlic. In the early stage, some studies tried to use artificial
feature engineering to solve the orientation recognition of garlic seeds, such as the density
of edges [7], the position of centroid [8], the curvature of contour [9], etc. These methods
are effective for garlic cloves with a standard shape, but poor for garlic cloves with residual
garlic husks and abnormal spikes, while commercial garlic seeds often have residual husks
and irregular geometric shapes, so the robustness of the artificial features engineering
algorithm is not ideal, and the actual use is very poor.

At present, as automatic feature-learning methods, deep-learning methods perform
well and have been widely used in the agricultural field [10], including in the orientation
recognition of garlic clove buds [11]. However, some methods can only identify the
position of qualified garlic clove buds, lack a description of unqualified positions, and
cannot provide position information to support the righting operation of the garlic planter.

The above-mentioned studies are limited to the scope of algorithms and theory, while
some other studies are focused on practical application, including the integration of al-
gorithms in embedded hardware that can be equipped with garlic planters [12]. Li et al.
designed an automatic righting device for garlic clove buds based on the Jetson Nano proces-
sor. The success rate of garlic clove bud righting of the device reached 96.25%, and when the
number of parallel sowing rows was 12, its sowing efficiency was 0.099-0.132 hm? /h [13].
The righting method of Li et al. requires a Jetson Nano processor in each righting channel
to achieve the planting efficiency of 0.099-0.132 hm?/h. However, the hardware cost of
Jetson Nano is relatively high (US $99), so this design may not be conducive to commer-
cial application.

So far, no research has tried to realize fast and accurate recognition of garlic seed
orientation that can meet the needs of high-speed and accurate sowing of garlic with a
low-cost embedded processor, and no research has attempted to solve the problem that
the abnormal shape of garlic seeds, such as garlic skin residue, etc., affects orientation
recognition. The above two research gaps hinder the practical application and large-
scale promotion of machine-vision-based garlic seed orientation identification methods.
Therefore, this paper proposes a robust, lightweight, and high-performance garlic bud
orientation recognition method based on deep learning to achieve high-speed and accurate
orientation recognition based on a single low-cost embedded processor.

Disturbances from actual field sowing conditions, such as garlic skin, vibration, and
rapid movement of garlic seeds, can affect the accuracy of recognition. Meanwhile, garlic
precision planters are in need of a recognition algorithm with a low delay calculation under
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the condition of limited computing power, which is a challenge for embedded computing
platforms. In order to solve these problems, this study carried out the following work:

e  Building of a special data set for model training, including shape anomalies such as
garlic residue and motion blur, to ensure the generalization ability of the model to
real scenes.

e  Use of multiple deep-learning and feature-compression methods to realize garlic bud
direction recognition and optimization of the model by tune operations.

e  Performance tests of the models on low-cost embedded boards, selection of the optimal
model, comparison with other methods to verify the superiority of this method.

The main contributions of this paper are as follows: an efficient method for obtaining
a contour map is proposed, and a data enhancement method is proposed on this basis;
quick-recognition models of lightweight CNN MobileNetV3 and naive CNN based on the
contour map are proposed for high-speed recognition of garlic seed orientation; a high-
speed contour orientation recognition method based on highly compressed contour features
is proposed that realizes ultra-high-speed recognition on low-cost embedded platform.

Finally, a recognition speed of 151.40 FPS was achieved on the OrangePi 3 LTS, which
can support sowing operations at a speed of 1.3 hm?/h, which is superior to the state-of-
the-art method of garlic orientation recognition.

2. Materials and Methods
2.1. Garlic Clove Data Collection

In the field of deep learning, especially in image recognition, the collection of complete
datasets that cover all application conditions is critical. The operator can judge the direction
of a garlic clove bud mainly based on an outline of visual information. Based on this, the
binary contour image of garlic seeds is used as the basis for judging the orientation of garlic
cloves. Along with the support of a specific device, it is very easy to obtain an outline of
garlic cloves. This paper used a strong light source as the background, obtained the shadow
image and binary image of the garlic seed, and then applied the findcontours function of
the graphics library OpenCV. This design has the following advantages: first, the binary
contour image eliminates the imaging differences between different image sensors. Second,
using a single-channel image as the input of the CNN model helps to reduce the amount of
computation. Third, many traditional methods [7,9] also use contour images as input data,
and using binary contours as model input is conducive to algorithm integration between
different devices.

2.1.1. Garlic Clove Image Sample Collection

Deep learning requires that the training data and test data meet the conditions of
being independent and identically distributed to ensure the generalization ability of the
model. In the practical application stage of the model, the input data of the model must
be independent and identically distributed with the training set in order to make the
model work effectively. Therefore, considering the practical application of a deep learning
model in a garlic planter, the training samples should cover wider morphological diversity
distribution to enhance the robustness of model. When selecting training samples, one
should not only ensure the garlic clove sizes, weights, and appearance, but also consider the
influence of garlic seed production technology and other factors on garlic seed morphology,
such as skin residue.

In this paper, the binary contour image was used as the model input, and the morpho-
logical features such as color and texture were discarded in the process of extracting the
contours, while some edge features were preserved. Commercial garlic seeds are prone to
having residual garlic skins and abnormal spikes. These garlic skin residues have a great
impact on the extraction of contour images, and sometimes the extracted contour images
may seriously deviate from the standard shape of garlic seeds. Therefore, the selection of
training samples should also consider the situation of carried garlic skins while seeding.
Because the individual shape of garlic cloves of hybrid garlic breed is the most diverse, we
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randomly selected Jinxiang garlic and divided it into cloves, retained all the garlic cloves
without screening, and obtained a total of 735 garlic cloves for image samples. When
dividing garlic cloves, about } of the skin residue of the garlic cloves was retained to ensure
consistency with real sowing of garlic seeds, as shown in Figure 1a.

Camera

reflection

reflection’/

HHHIHHH I

Background light source
(b)

Figure 1. (a) Garlic clove samples and (b) image acquisition device.

Sample Acquisition Device and Image Preprocessing

In order to directly obtain the contour images of the garlic cloves, a garlic seed shooting
device was designed that uses a transparent clamping belt to clamp and transmit the garlic
cloves and adopts the method of back illumination of area light source. The area light
source is placed below the transparent clamping belt, and the image sensor is placed
above the transparent clamping belt. The clamping transmission module is wrapped by
an opaque shell to avoid the influence of external light on image acquisition. The light
emitted by the area light source passes through a transparent clamping tape to form a clear
garlic clove shadow image on the vision sensor, as shown in Figure 1b. The image collected
under the ideal state is shown in Figure 2a. However, because the reflection in the shell
cannot be completely eliminated, some reflected light will still be cast on the upper surface
of the garlic clove, and the continuous transmission of the garlic clove will bring the dust
that adhered to the garlic clove into the shell, reducing the contrast between the shadow
area of the garlic clove and the background, as shown in Figure 2b.

The above situation increases the difficulty of binarization of shadow image. Because
the shadow of the garlic seed image is too dark, the binarization performance to achieve
contour is poor. Manually adjusting the binarization threshold can alleviate the problem of
misclassifying the area around the shadow image, but the shadow of the garlic clove will
be lost and cannot be applied automatically, as shown in Figure 2¢,d. An extremely low-
computation pixel compensation method is proposed to solve this problem. The control
system records an image of the empty conveyor belt without cloves, and then calculates
the pixel difference matrix between this image and a pure white image and saves it as
a pixel compensation matrix. When intercepting the garlic clove shadow image frame,
the intercepted image frame is added to the pixel difference matrix, and then the Otsu
binarization method [14] is used to obtain a high-quality binarized image, as shown in
Figure 3. The calculation rules are shown in Equations (1) and (2), where O represents the
image with no load when the device is initialized; C stands for the pixel compensation
matrix; X represents the image frame collected in real time; X’ represents the image frame
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after compensation; and m and 1 represent the number of rows and columns of the pixel
matrix, respectively.

@
@

C=255-0 = [255 - 0;]]

m-n

X' =X+C= [max(x,-]- +cij, 255)}

m-n

(a) (b)

*"rﬂ

-\
© @

Figure 2. The lighting environment in the device affects shadow imaging. (a) Idealized shadow image,
(b) Actual shadow image, (c) Otsu-based binary image, (d) Fixed-threshold-based binary image.

(d) (e) #

Figure 3. Contour extraction after pixel compensation. (a) Background of conveyor, no clove, (b) Pixel
compensation matrix, (c) Compensated garlic clove shadow, (d) Binary shadow image, (e) Outline of
garlic seed, (f) Contour sampling points.
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Dataset Acquisition Method

During the sample image acquisition, the mechanical device introduced in the previous
section was used to transmit garlic seeds, the vision sensor on it was used to record a video,
and then the image frames were extracted from the acquired video. A total of 1470 original
image samples were obtained. Among them, 1172 images were randomly selected as
the training set, and the remaining 298 images were used as the validation set. Since the
length-width ratio of most image sensors is 4:3, when applied to the seeder, the long side of
the picture was parallel to the travel direction of garlic seeds to obtain a larger observation
field of garlic seeds. In order to meet this demand, the image samples used for model
training were processed with the same length-width ratio and were finally saved with an
image size of 640 x 480 by cutting or expanding the image boundary (Figure 4). Image
rotation does not change the shape of garlic cloves. In this study, the original image samples
were all adjusted to the upward state of garlic clove buds through image rotation operation.
In the data enhancement stage, image samples with other orientations were generated

through image rotation.
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Figure 4. Part of the original sample.

2.1.2. Data Enhancement for Datasets

Because the original images were adjusted to the garlic clove bud upward state, the
key task in data enhancement was to generate image samples with left, bottom, and right
orientation. In addition, some image transformations need to be performed on the image
samples to make the images of the dataset more diverse to ensure the generalization
ability of the model. In order to make the training data and the validation data conform
to the conditions of independent and identical distribution, the same data augmentation
operation was performed on the training samples and the validation samples, and the
samples in the training set and validation set were always isolated during this process. The
image enhancement methods include horizontal flipping, stretching, shearing, translation,
rotation, and motion blur. All these methods except motion blur can be realized by two-
dimensional geometric transformation, which can be completed by multiplying the pixel
matrix of the image by a homogeneous transformation matrix. The mathematical expression
of this process is shown in Equation (3). In order to enhance the generalization of the sample
to the image acquisition environment in the garlic seeder, these methods need to follow a
certain logical order.

X" = Mg-Ms-My-M;-M,-X (3)
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o = o
— o g

sy 0 0 1 dy O 1 0 ty cosf —sinf 0
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where X represents the original image, and X’ represents the image after transformation; Mf,
M;s, Mz, My, and M, represent the transformation matrix of horizontal inversion, stretching,
shearing, translation, and rotation, respectively; w represents the width of the image; sy
and s, represent the stretching ratio in two directions; dy and dy represent the shearing
amplitude in two directions; ¢y and t, represent the translation distance in two directions; ¢
represents the rotation angle of the image.

Morphological Diversity

First, a flip operation on the image was performed. Due to the irregular shape of garlic
cloves, they usually show different external contours when the two sides of their abdomen
are facing vertically downward. Therefore, the diversity of the dataset can be increased
through the horizontal flipping operation (Figure 5). After this operation, the sample size

doubled to 2940.
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Figure 5. Horizontal reversal amplification sample.

Then, stretch, shear, and translation were performed. These three operations can
effectively increase the morphological diversity of the image and are still effective after
image rotation. The stretching operation range was a random value in the range of 0-20%.
The strength of the shear operation was a random value in the range of 0-10. The range
of translation operation amplitude was a random value in the range of 0-10%. Through
the overlapping operation of the above three transformations, the image samples were
amplified to 29,400. The amplified samples are shown in Figure 6.

Image Rotation and Class Generation

When the plane is divided into four equal regions, upper, left, lower and right, the
range of each region is 90°. In order to ensure the generalization ability of the model
for irregular orientation, before generating image categories, a random small-amplitude
rotation operation was performed on the image samples. The rotation amplitude in the
ideal state should be + 45°, but the original image was manually rotated and righted, and
there might be subtle deflection that is not easy to detect. Furthermore, because the data
enhancement operation includes shear transformation of random amplitude, a rotation
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transformation in the range of +30° was performed on each image, acting directly on the
original image, without generating new image samples. The transformed samples are
shown in Figure 7.
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Figure 6. Stretching, shearing, and translation.
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Figure 7. Image samples after rotation in the range of + 30°.

After completing the above operations, each original image was rotated by 90, 180,
and 270° counterclockwise to obtain the standard left, lower, and right images. At this time,
the sample size expanded to 117,600. The samples of each orientation class are shown in
Figure 8.

Motion Blur and Contour Extraction

Seeding speed is an important performance index of garlic seeders. In order to achieve
high-speed seeding, garlic seed images should be collected in motion, which may lead to
motion blur in the collected images. Because of the influence of uncertain motion blur on
contour extraction, the data enhancement operation should also include motion blur with a
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certain probability and range. In this study, image samples were randomly selected with a
probability of 50%, and motion blur with random amplitude was applied in the direction
parallel to the long edge of the image (Figure 9).
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Figure 8. Samples of each orientation class.

—~

After all the data enhancement operations were completed, the contour of the image
samples were extracted one by one, finally forming the garlic seed contour dataset for
model training (Figure 10).

Figure 9. Motion blur in different direction classes.

Figure 10. Final generated outer contour image samples.
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Logical Sequence of Data Enhancement Operations

If the rotation operation used to generate the orientation classification is performed
before the zoom, stretch, shear, and translation operations, image samples with greater
morphological differences can be generated, theoretically promote the generalization ability
of the deep-learning model during training. However, it was found in experiments that
datasets with the same orientation classification morphology have better performance. A
possible reason is that when the four classifications contain samples with the same morphol-
ogy, the deep learning model can suppress the influence of morphology on classification
and pay more attention to the high-level semantic feature of “orientation”.

Because motion blur is directional, motion blur transformation should be carried out
after rotation transformation, and motion blur may affect the edge contour, so contour
extraction should be carried out after motion blur operation.

Storage of Dataset

The lightweight CNN model discussed has low computation complexity. A large batch
size can be used in training on PC, and the training/inferring time of each batch is very
short. In the initial practice, it was found that the transmission speed of training samples
was often lower than the processing speed of the model; therefore, the way the dataset
is stored has been improved. In the experimental environment of this paper, when using
TFRecord format defined in TensorFlow [15] to store datasets, the input speed of samples
could reach more than 10 times that of batch reading image files, which is faster than the
inference speed of all deep learning models introduced in this paper. Therefore, this format
is used as one of the storage schemes for datasets and testing of several CNN models.

The fully connected model proposed in Section 2.2.3 takes the pixel coordinates of
garlic clove contours as the input. When the dataset composed of image samples is
converted into the form of pixel coordinate array, the volume of the dataset is further
reduced, and the whole dataset can be loaded into memory during training. The format
DataFrame of Pandas [16] is used to store an array of contour point coordinates for all
samples, which is changed to H5 format for loading on each training task. For the above
two dataset formats, the shuffle operation was implemented for each training epoch to
obtain better training results.

2.2. Lightweight Recognition Model of Garlic Clove Bud Orientation

For the garlic seed orientation recognition method studied in this paper, its accuracy is
the first important criterion. Secondly, it is of practical significance to improve the running
speed of the recognition model under the premise of ensuring accuracy. At the same time,
the hardware cost of the algorithm application is also one of the factors considered in this
paper, which is a necessary condition to ensure the generalizability of the application. Low
hardware cost means low computing performance, so the complexity of the recognition
model needs to be greatly reduced, which should be key for input features and lightweight
models. Therefore, the main contribution of this paper is to propose a deep-learning model,
that is, to improve the recognition rate and running speed of the model, give priority to
ensuring the accuracy of the algorithm, and try to lighten the model on this basis to adapt
to low-cost embedded platforms. The application of a convolutional network and a fully
connected neural network in garlic-clove orientation recognition was attempted in this
study. The convolutional network included MobileNetV3 [17] with relatively complex
structure and the naive CNN model, composed of convolutional-pooling stacking only.
These directly used garlic contour image samples as input, and automatically completed
feature extraction through image convolutional operations. The fully connected model
used the contour point coordinate set sampled from the image samples as the input, and
the contour point sampling operation can be regarded as a feature extraction method.
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2.2.1. Transfer Learning Based on MobileNetV3

MobileNetV3 is an excellent lightweight deep-learning model with two versions, large
and small, which can be used as solutions for different levels of hardware performance. The
TensorFlow framework comes with MobileNetV3 implementation code based on Keras API
and provides six groups of pre-training parameters for training from an ImageNet dataset,
which correspond to three forms of large and small models: standard width, 0.75 width,
and standard width minimal mode. Based on this, transfer learning was tested.

The input size of the model is directly related to the amount of calculation required.
In terms of ensuring the recognition performance of the model, the smaller the input size,
the better. It was found in the experiment that when the image sample size was scaled
to 120 x 160, the recognition performance of the model did not decrease significantly, so
the input size of the MobileNetV3 model was modified to (120, 160, 1). The orientation of
garlic clove buds was divided into four categories; the output size of the corresponding
model is a 4-dimensional vector. Because the input and output of the model are redefined,
only the weight values of the intermediate layers that are consistent with the original
model parameter structure were loaded when loading the pre-training weights, and the
intermediate layers with different structures were equivalent to training from zero.

Twelve model structures, including six with pre-training weights, were trained. The
training results (Table 1) show that the transfer learning is effective. Using the pre-trained
weights on the ImageNet dataset to perform transfer learning on the garlic seed outline, the
image dataset could obtain a higher accuracy than starting training from zero. Overall, the
large model performed better than the small model. The performance of the minimalistic
mode was lower than that of the non-minimalistic mode, but this gap was not noticeable
when pre-trained weights were not used. By comparing the number of parameters and
calculation of different models, it can be seen that reducing the width factor mainly reduces
the amount of calculation required for the model, which can improve the running speed
of the model, while the minimalistic mode mainly reduces the number of parameters of
the model, which can reduce the memory consumption of the model. The accuracy rate of
all the model forms can reach above 0.96, and they all have certain application value. The
structure of MobileNetV3-Large is shown in Figure 11.

Table 1. Overview of the performance of the transfer learning model.

Parameter Calculated Accuracy of Accuracy of
Model Form Quantity Quantity Training from Transfer
(FLOPs) Zero Learning
Large 1.0 4.04 M 0.178 G 0.97468 0.98352
Large 0.75 2.61 M 0.126 G 0.97423 0.98037
Large 0.5 1.36 M 0.0592 G 0.97111 -
Large 1.0 minimalistic 2.55M 0.168 G 0.97224 0.97808
Large 0.75 minimalistic 1.71M 0.119G 0.96860 -
Large 0.5 minimalistic 0.97 M 0.0544 G 0.96541 -
Small 1.0 146 M 0.0453 G 0.96981 0.97434
Small 0.75 0.98 M 0.0339 G 0.96723 0.97528
Small 0.5 0.55M 0.0177 G 0.96381 -
Small 1.0 minimalistic 0.99M 0.0401 G 0.96733 0.96848
Small 0.75 minimalistic 0.69 M 0.0298 G 0.96194 -
Small 0.5 minimalistic 041 M 0.0149 G 0.96035 -

Note: - indicates that the test could not be performed due to a lack of pre-trained weights.
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Figure 11. Structure of MobileNetV3.

2.2.2. Naive CNN Model

Compared with classic CNN models such as AlexNet [18] and VGG NETS [19], Mo-
bileNetV3 has a relatively complex model structure, and includes some advanced designs,
such as depthwise separable convolution [20], inverse residual block structure [21], squeeze-
and-excitation block [22] and h-swish [17] activation function. Along with their support,
MobileNetV3 shows excellent classification performance for some large-scale natural image
datasets. The garlic contour image is very different from natural images. As a binary
image, its content density and information density are very low. In order to explore which
designs of MobileNetV3 are most helpful to the classification task of garlic contour images,
some experiments were done. By training a modified model that separately applies the
squeeze-and-excitation module, h-swish activation function, and 5 x 5 convolution kernel,
this study found that the 5 x 5 convolution kernel had the greatest impact on model
performance among the three, while the squeeze-and-excitation and the h-swish activation
function had little effect on model performance. After determining the importance of
convolutional kernel size, a series of naive CNN models with a structure similar to VGG
NETS were constructed, which were compared with MobileNetV3 to analyze the impact of
inverse residual block structure on the performance of the model and further verify the
importance of convolutional kernel size.

In order to make the training results of the models more comparable, the same training
conditions as MobileNetV3 transfer learning were used to train these models. The perfor-
mance achieved after full convergence is shown in Table 2. Because these models have a
simple structure, compared with the MobileNetV3 model, the parameters and calculation
of the naive CNN model with similar performance are greatly reduced. This seems to
indicate that the model with a simple structure is more suitable for solving the direction
judgment problem of garlic clove contour images, but the naive CNN model does not
match the performance achieved by MobileNetV3-Large transfer learning using the same
training strategy.
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Table 2. List of Naive CNN models.

Out Stride 1 2 3 4 5 6 7
1 Input and rescaling
Conv3 x 4 Conv3 x 8 Conv5 x 8 Conv3 x 8 Conv3 x 8
Conv3 x 8 Conv3 x 8 Conv5 x 8 Conv5 x 16
2 Conv3 x 4 Conv3 x 8 Convb x 8
Max Pool Max Pool Max Pool Conv3 x 8 Conv3 x 8 Max Pool Max Pool
Max Pool (Stride =2)
Conv3x8 Comv3x16 Convsx 16  Comv3x 16 Convdx16
Conv3 x 16 Conv3 x 16 Conv5 x 16 Conv5 x 32
4 Conv3 x 8 Conv3 x 16 Conv5 x 16
Max Pool Max Pool Max Pool Conv3 x 16 Conv3 x 16 Max Pool Max Pool
Max Pool (Stride = 2)
Conv3 x 16  Conv3 x 32 Conv5 x 32 gog"g : gi ggﬁvg . gi Conv5 x 32 Conv5 x 64
8 Conv3 x 16 Conv3 x 32  Conv5 x 32 onv M Conv5 x 32 Conv5 x 64
Max Pool Max Pool Max Pool Conv3 x 32 Conv3 x 32 Max Pool Max Pool
Max Pool (Stride = 2)
Conv3 x 32 Conv3 x 64  Convs x 64 gog"g i gi gogvg i gi Conv5 x 64  Conv5 x 128
16 Conv3 x 32  Conv3x 64  Conv5 x 64 onv onv Conv5 x 64  Conv5 x 128
Max Pool Max Pool Max Pool ~ COnV3x 64 Convdxx6d Ty b ) Max Pool
00 00 00 Max Pool (Stride = 2) 00 00
Conv3 x 64 Conv3 x 128 Conv5 x 128 Conv3 x 128  Conv3 x 128  Conv5 x 128  Conv5 x 256
Conv3 x 128  Conv3 x 128  Conv5 x 128  Conv5 x 256
32 Conv3 x 64 Conv3 x 128  Conv5 x 128
Max Pool Max Pool Max Pool Conv3 x 128  Conv3 x 128  Conv5 x 128  Conv5 x 256
axroo ax oo ax oo Max Pool (Stride = 2) Max Pool Max Pool
Conv3 x 128  Conv3 x 256  Conv5 x 256 Conv3 x 256  Conv3 x 256  Convb x 256  Conv5 x 512
M Conv3 x 256  Conv3 x 256 Conv5 x 256  Conv5 x 512
Conv3 x 128  Conv3 x 256  Conv5 x 256
GAP CAP CAP Conv3 x 256  Conv3 x 256  Conv5 x 256  Convb x 512
GAP GAP GAP GAP
* Efficient last stage (from MobileNetV3)
Accuracy 0.95448 0.96892 0.97079 0.97249 0.96569 0.97617 0.97844
Params 39.18 K 143.8 K 155.9 K 2382 K 238.2 K 248.3 K 921.8K
FLOPs 9.94M 294 M 420M 499 M 36.3 M 299 M 97.2M

Note: * Indicates that after Global Average Pooling, the size of the feature map will already be 1. The calculation
of Out Stride no longer makes sense.

The performance of the naive CNN model provides some guidance for the optimiza-
tion of the model. Comparing model 1 and model 2 in Table 2, there is a large gap in the
performance of the model when the number of channels of each convolutional layer is dou-
bled. It can be seen that ensuring the width of the model is one of the key factors to improve
the performance of the model, but the cost of doubling the width is high, and the number
of parameters and calculations is doubled. Comparing model 2 and model 3, it is further
verified that the convolutional kernel of 5 x 5 is more efficient than the convolutional kernel
of 3 x 3, and because of the depthwise separable convolution, the increase in the number of
parameters and calculation is not large. Comparing model 4 and model 5, the max-pooling
operation is more reliable than the down-sampling method using a convolutional layer
with a step size of two as a characteristic graph. Comparing model 3 and model 6, the
position of the lower sampling layer in the model will also affect the performance of the
model. In general, the low layer of the model (close to the input layer) does not need to
stack too many convolutional layers, while the high layer of the model (close to the output
layer) needs to stack more convolutional layers.

2.2.3. Contour-Resampling-Based Fully Connected Network

Because the information density of the binarized contour image samples is extremely
low, using CNN to solve the classification problem of such images seems to be a waste of
performance, so another solution was tried.
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The contour image samples in the dataset can be represented as a coordinate set
of contour pixel points that only contains elements twice the number of contour pixel
points (horizontal and vertical coordinate values). The number of contour pixels in some
480 x 640 size contour maps is counted, and the number of contour pixels is within 800,
while the total number of pixels in the overall contour map is up to 307,200. Therefore,
the set of contour point coordinates of each image sample is used as the model input,
and building a fully connected neural network can also solve the orientation recognition
problem of garlic clove contour images. Although this method needs to increase the steps
of extracting contour points from the collected image, the increased amount of calculation
is very small. Along with the help of OpenCV, the extraction process of contour points is
also very easy to implement.

Uniform Input Size

It is very difficult to realize the variable length input of a neural network. Because
the number of contour pixels contained in each contour image sample is different, it is
necessary to unify the number of contour pixels of the sample first. Hence, the equidistant
sampling method is used to sample a fixed number of point coordinates from the contour
of each image, and then draw a polygon with these sampled points and observe its ability
to reconstruct the original sample through artificial vision (Figure 12). It was found that
when 50 contour points were sampled, the polygon formed was very close to the shape
of the original sample. Through the above sampling method, 50, 100, and 200 contour
point sets of all contour image samples were collected and combined with the orientation
classification of the samples as the training dataset of the fully connected model. A fully
connected model with three Hidden layers and 512, 256, and 128 neurons was used for
testing. It was found that there was no significant difference in the recognition rate of
the model when 200, 100, or 50 sampling points were used, but using fewer sampling
points could effectively reduce the number of parameters and calculations of the model, so
50 points is preferable.

original 5 points 10 points 25 points 50 points 100 points 200 points
contour contour contour contour contour contour contour

sample 1

sample 2

sample 3

sample 4

Figure 12. The ability of contour points with different sampling rates to restore the original contour.

The matrix shape of the contour point set obtained by the findcontours function of
OpenCV is [n, 2], where n is the number of contour points, and the matrix shape of the
contour point set after sampling is [, 2], where m is the number of sampling points, and
the dimension with length of 2 contains the horizontal and vertical coordinates of each
contour point. For the fully connected model discussed in this section, the input of each
layer of the model should be a one-dimensional vector, so it is necessary to flatten the
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contour point set. There are two ways to flatten: the first from the point dimension, the
other from the coordinate dimension. The first flattening method was chosen (the value of
the data_format parameter corresponding to the Keras Flatten layer is “channels_last”).

Structure of Fully Connected Model

Through the testing of several fully connected models defined by Keras API, it was
found that when the number of Hidden layers of the model was less than three, increasing
the number of fully connected layers was effective. When the number of layers exceeded
three, increasing the number of fully connected layers could not significantly improve the
recognition rate of the model. Using more neurons can improve the performance of the
model, but increasing the number of neurons will greatly increase the number parameters
of the model, resulting in the model becoming bloated. The preliminary test results of
typical models are shown in Table 3. The accuracy of the model with 4096, 2048, and
1024 neurons in the Hidden layer reached 0.97893. The accuracy of the model with 1024,
512, and 256 neurons in the Hidden layer was 0.97465. The accuracy of the model with 512,
256, and 128 neurons in the Hidden layer was 0.97241.

Table 3. Overview of fully connected models.

No. 1 2 3 4 5 6 7 8
Input and Flatten
1501224 o12 1024 512
Number of 4096 2048 1024 256 512 256
Neurons in 2048 1024 512 128 256 128
Each Layer 1024 512 256 o1 128 gi <10 <10
32
Accuracy 0.97893 0.97619 0.97465 0.97341 0.97241 0.97249 0.97469 0.97253
Params 1216 M 3.460 M 1.075 K 1.118M 2204 K 230.7 K 9.902 M 2581 M
FLOPs 243 M 6.92M 215M 223M 0444 M 0.465 M 19.8M 518 M

The structure of the fully connected model is shown in Figure 13. Each fully connected
layer includes a batch normalization [23] layer. It is particularly noteworthy that adding
batch normalization layers after the flat layer can greatly improve the convergence speed
of the model.

Hidden
o Hidden
Flatten [ ) [ ] Hidden
Output
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Figure 13. Fully connected model. Note: both the Flatten and Hidden layers are connected to the
Batch Normalization layer, but only the Batch Normalization layer of the Hidden layer applies the
activation function. N1, N2 and N3 are the number of undetermined Hidden layer neurons.
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Conv 3x3x16 valid

2.2.4. Model Optimization

In order to obtain faster computing speed and higher accuracy, the three deep learn-
ing models have been greatly optimized, and the optimization directions include model
lightweighting and model training tuning.

Implementation of Lightweight Convolutional Model

It was found that when the size of the input image of MobileNetV3 was reduced to
60 x 80, the recognition rate of the model decreased significantly, while in the relevant
test of the naive CNN model, the input of 60 x 80 did not greatly reduce performance of
the model.

The stride of the first standard convolution layer of the MobileNetV3 model is 2.
When it was modified to 1, the performance of small-sized input of 60 x 80 was improved.
Removing the 1 x 1 standard convolutional layer before the Global Average Pooling [24]
layer did not reduce the recognition rate of the model, but it could reduce the number of
parameters and computation of the model and improve the convergence speed of the model.

For the naive CNN model, the actual receptive field of the 3 x 3 convolutional kernel
when using the input size of 60 x 80 was larger than the actual receptive field of the
5 x 5 convolution kernel when using the input size of 120 x 160. Since the edge of
the garlic contour image is a background does not contain anything, the convolutional
layers in the first two groups of the convolutional-pooling modules could be modified to
valid padding. Due to the above adjustments and halved input size, two convolutional-
pooling modules can be removed to achieve the same feature map size, which can greatly
reduce the number of parameters and computations in the model. Since the input of
the model is only a single-channel image, the use of standard convolution at the input
of the model only increases the number of calculations and parameters by very little
compared with the depthwise separable convolution. This change has been tested to
slightly improve the performance of the model. The naive CNN model structure obtained
after the abovementioned optimization procedure is shown in Figure 14.
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Figure 14. Naive CNN model after lightweighting.

Model Training and Tuning

Three optimizers: Adam [25], Nadam [26], and SGD were tested in model training.
The final convergence results of Adam’s optimizer in multiple training tests of the same
model were unstable. Nadam and SGD were more stable than Adam, but Nadam had
the greatest computational complexity of the three and the slowest performance. SGD is
theoretically less efficient than Adam and Nadam, but the fully connected model proposed
in Section 2.2.3 could converge stably when the learning rate of SGD was set to 1.0 or even
higher. In this way, both the convergence speed of the model and convergence stability
could be guaranteed. In addition, the computational complexity of SGD was the lowest of
the three, and the computational speed was the fastest.
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Five activation functions comprising Tanh, Relu6 [27], Gelu [28], Swish [29], and h-
swish [17] were tested, and the convergence curve for the fully connected model is shown
in Figure 15. When using the SGD optimizer, the effect of swish and h-swish was better
(1000-epochs validation set accuracy is 0.97611 and 0.97586, respectively), and because the
computational complexity of Hard-Swish was lower than that of Swish, and the model
using h-swish was more reliable in weight value quantization, the fully connected model
uses the h-swish activation function.
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Figure 15. Convergence curves of different activation functions. Note: the above convergence curves
were all measured on the fully connected model proposed in Section 2.2.3, and the range shown in
the figure is 100 to 1000 epochs.

For the garlic seed contour dataset, the training loss values of the three types of models
tested are close to 0 in the later stage of the training process, the training set accuracy
can be close to 100%, and the validation set accuracy is different. This is an overfitting
phenomenon, and the loss flooding method [30] has a significant effect on it. The idea of
this method is to keep the training loss value always above a certain threshold delta, so
that the model can continue to learn and possibly converge to a better performing state.
In the optimization process of the model, there may be a large number of local optimum
points. The random walk strategy of the loss flooding method requires the optimizer to
have a large enough optimization stride to ensure that the model escapes the local optimum
point. When the model is optimized to a good state range, the weight value needs to
be saved in time to prevent missing the state. In the later stages of the finite number of
training iterations, the probability of the random walk method obtaining a better state
becomes very low, but continuing to train the model with a smaller learning rate can often
make the model’s performance improve again in the short term, so the learning rate decay
method combined with the loss flooding method is very effective. In order to ensure that
the model is in an ideal state when the learning rate decay is triggered, a program is written
to dynamically load the weights saved during the last state boost each time the learning
rate decays.

The LSR [31] method was also used. When the LSR method was applied alone, the
model was trained with a label_smoothing parameter of 0.2, and the obtained validation
set accuracy was comparable to the loss flooding method with a delta of 0.1. When the
loss flooding method was combined with the LSR method, the delta and label_smoothing
parameters were set to 0.7 and 0.2, and the accuracy of the validation set obtained was
slightly improved, but the accidental components were not excluded.

Based on the above methods, L1/L2 regularization and Dropout [32] regularization
were further tried. L1/L2 regularization is effective for convolutional models, but not for
fully connected models. Dropout regularization looks simple and crude, but it significantly
improves the performance of the fully connected model.
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2.3. Application Method in Embedded System

The application of deep learning models in seeders requires some additional support
programs and control programs. First, the deep-learning model will give a direction
judgment for any input image, including the image when no garlic seeds pass by. Therefore,
in order to avoid meaningless direction judgment and device linkage, for each frame of a
collected image, a judgment should be made on whether it contains garlic seeds. Secondly,
since the deep learning models constructed in this paper are all based on the contour image
of garlic seeds or their sampling point sets as the basis for classification, an additional
program is required to extract binarized contour image or resampling the contour points.
A flow chart of the complete orientation judgment process is shown in Figure 16.

LLoad deep learning model

Initialize image sensor

Take the no—-load image of the clamping belt and
calculate the brightness compensation matrix

Image sensor working?

Yes
Get image frame
Exist

garlic seed in the center
of image?

Yes

Binarization and contour extraction

Generate contour map or sample contour points

model inference Orientation judgment

Result output

Figure 16. Flow chart of orientation judgment procedure.

Under backlight illumination, it can be judged whether a garlic seed is passing by
monitoring the change of the average pixel value of the central area of the camera’s field of
view. Figure 17 shows the relationship between the average pixel value and the movement
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of a garlic seed in the camera’s field of view. When a garlic seed passes through the camera’s
field of view, it is captured with multiple frames of images, then compared to the image
frames of single garlic seed, and an image with the lowest average pixel value in the central
area is obtained, which is the optimal image frame. This process is shown in Figure 18.

250

200

150

100

Figure 17. Relationship between the pixel mean value of the central area of the field of view and the
position of garlic seeds.

Get the image frame and
calculate the Mean of the
pixels in the center area

The mean
smaller than
threshold?

Orientation

Record or refresh determination

temporary frames
and minimum Mean

Clear temporary
frame

No
1

Figure 18. Frame retrieval flow chart.
After obtaining the optimal image frame, brightness compensation is performed,

binarization of the image is completed, and the contours from the binarized image are
extracted. The output of the contour extraction algorithm is a set of contour points. For
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the CNN model that takes the contour image as input, the set of contour points needs to
be drawn as a contour image. For the fully connected model that takes the set of contour
points as input, it is necessary to reduce the number of contour point coordinates to a
number suitable for the input of the model through sampling.

3. Results and Discussion
3.1. Model Test and Result

After a series of optimization operations, some typical models were retrained, and
their performances are shown in Table 4. Of these models, the transfer learning model
based on MobileNetV3-Large has the highest recognition rate of 98.71% on the validation
set. However, compared to other models in Table 4, MobileNetV3-Large is too bloated.
The recognition rate of the standard-width MobileNetV3-Small model is second only to
the MobileNetV3-Large model, but its parameters and computation are still too large. The
naive CNN model in Figure 14 performs better than the MobileNetV3-Small with reduced
width factor, and its performance is close to that of the standard-width MobileNetV3-Small,
but it has the lowest number of parameters among all the models in the table. The fully
connected model with 512, 256, and 128 neurons in the Hidden layer achieves almost
the same accuracy as the naive CNN model with extremely low computational cost and
parameter cost. It has the fastest speed and the most cost-effective application.

Table 4. Performance of the optimized model.

Calculated Accuracy of Accuracy of

Model Param:ter Quantity Training from Transfer E;IISCOI‘T
Quantity (FLOPs) Zero (%) Learning (%) acro
MobileNetV3-Large 1.0 4.04M 0.178 G * 98.71 0.98717
Small 1.0 894.1 K 41.8M * 98.42 0.98412
Small 0.5 minimalistic 1225K 13.7M 97.67 * *
Small 0.25 minimalistic 46.9 K 748 M 97.58 * *
Small 0.1 minimalistic 232K 544 M 97.34 * *
Naive CNN model 61.9 K 179M 98.21 * 0.98216
Fully Connected Model 220.4 K 0.444 M 98.16 * 0.98157

The * in Table 4 means that there is no test.

The last column of Table 4 shows the macro F1 score of the models. The F1 score of the
four models are almost equal to the accuracy rate, which indicates that the recognition rate
of the models for the four orientation categories are very balanced. The ROC curve and
AUC value of the models also support this point. The ROC curves of the four orientations
are almost identical with only a small gap, and they cover each other in the graph and are
difficult to distinguish, as shown in Figure 19. Meanwhile, the macro average AUC and the
AUC of each classification are close to 1, which indicates that the recognition effect of the
models for each orientation classification are very good.

Based on the program flow introduced in Section 2.3, representative experimental
models were selected and converted to TFlite format for speed testing on OrangePi 3 LTS.
The test results are shown in Table 5. For the three CNN models in the table, due to their
own calculation being more complicated, adding the complete process has little impact on
its speed. The fully connected model itself has simple calculation and fast inference speed,
but the ability of the support program to provide input data for the model is limited, and it
finally reached a speed of about 151.40, which is still more than 50% faster than the fastest
CNN model.
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Figure 19. ROC and AUC for models with recognition rates over 98%.

Table 5. Inference speed of the model on OrangePi 3 LTS.

. . . Fully
Model MobileNetV3 MobileNetV3 Naive CNN Connected
Large Small Model
Network
Model inference speed (FPS) 23.86 76.20 136.30 929.75
Complete process speed (FPS) 19.35 59.80 97.39 151.40

3.2. Discussion
3.2.1. Reliability Verification Experiment

In order to verify the validity of the data and model, a program was written to rotate
the image samples 90° counterclockwise before extracting the contours and then extract
the contour to identify its orientation, as shown in Figure 20. Since the original orientation
categories up, left, bottom, and right correspond to labels 0, 1, 2, and 3 respectively, the
category labels output by the model after the rotation should be 1, 2, 3, and 0. In the test,
all the tested models can achieve almost the same recognition rate as before the sample
rotation, as shown in Table 6.
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Figure 20. Sample rotation test of the model.

Table 6. Orientation recognition rate of the model to the rotated sample.

Model MobileNetV3  MobileNetV3 Naive CNN Fully Connected
Large Small Model Network
Accuracy (%) 98.64 98.42 98.04 98.02

3.2.2. Comparison with Statistical Learning

The difficulty in applying statistical learning methods to image recognition is how to
extract image features. The method of sampling fixed coordinate points at equal intervals
of contour lines introduced in Section Uniform Input Size greatly reduces the feature
dimension of the image, which can be regarded as a kind of feature extraction method.
Based on this, several statistical learning algorithms such as KNN, SVM, and lightGBM [33]
were fitted and tested using a dataset of 50 contour sampling points, but none of them
matched the classification performance of the neural network algorithm.

In the test of the KNN algorithm, the NCA [34] algorithm is used to reduce the
dimension of the data samples of 50 sampling points to generate a vector of a specific
dimension and use it as the input of the KNN algorithm. In the parameter adjustment test,
when the dimension of the model input vector, that is, the NCA output vector, was reduced
to 25, and the number of adjacent elements of the KNN model is 16, the recognition rate of
the validation set of the KNN model reaches a peak at 93.70%.

In the test of the SVM algorithm, the performance of the RBF kernel function was
significantly higher than that of linear and poly kernel functions. The randomized search
CV method was used to select C and gamma parameters. When C is 98.21 and gamma is
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0.0044, the accuracy of the validation set of the SVM model reaches 94.06% of the optimal
figure in the experiment.

In the test of the lightGBM algorithm, PCA algorithm was used to reduce the dimen-
sion of data samples at 50 sampling points. When the dimension of data samples was
reduced to 25, num_leaves and max_depth parameter of the lightGBM algorithm were 127
and 8, respectively, and the recognition rate of the validation set of the lightGBM model
could reach an optimal 96.56% in the experiment.

If PCA is not used, the lightGBM model can only achieve a recognition rate of less
than 92% of the validation set, which indicates that the processing of the PCA algorithm not
only reduces the dimension of the sample vector but also improves the ability of the data to
represent the original sample. After follow-up tests, the improvement of model accuracy by
PCA preprocessing is limited to gbdt-based algorithms such as XGBoost [35] and lightGBM
and cannot greatly improve the recognition rate of validation sets of KNN, SVM, and fully
connected neural networks. Using PCA to convert the coordinate data of 50 sampling
points into a 25-dimensional vector can reduce the complexity of the model. For the fully
connected model in Table 4, after modifying the model input to a 25-dimensional vector, the
number of parameters was reduced to 183.6 K. The amount of computation was reduced to
0.36 M, but the recognition rate on the validation set dropped to 97.97%.

As a comparison, the accuracy and running speeds of KNN, SVM, lightGBM, and the
fully connected model on the embedded platform are shown in Table 7. Obviously, the
speed of the fully connected model is better than that of the statistical learning model.

Table 7. Performance comparison of statistical learning models and fully connected model.

Model KNN SVM  lightGBM Fully Connected Model
Accuracy (%) 93.70 94.06 96.56 98.16
Model inference speed (FPS) 37.34 82.63 118.30 929.75

3.2.3. Comparison with Methods in Other Literature

Table 8 lists the garlic orientation recognition methods and their recognition rates
described in the literature in recent years. It can be seen that the recognition rate of the
method proposed in this paper is higher than other methods. Since all these studies use
private datasets, this horizontal comparison is only for reference. However, because the
samples contained in the dataset constructed in this paper uniquely retain the common
morphological abnormalities and motion blur phenomena in the real scene, the reliability
of the recognition rate achieved by the model in this study is at least not lower than that of
other studies.

Table 8. Comparison of recognition rate of methods in related literatures.

Article Ref. [7] Ref. [11] Ref. [12] Ref. [13] This Article

Accuracy (%) 92.67 97.50 >90.56 * 97.25 >98

Note: * Ref. [12] only published that the success rate of garlic seeds righting is 90.56. It can be inferred that the
recognition rate must be greater than this value.

The generally high recognition rates of the models proposed in this paper indicate that
the dataset enhancement method and the contour-image-based garlic-clove-bud orientation
recognition models adopted in this paper are effective. The form of binarized contour
image unifies the pixel value distribution of contour points, so that the information of image
samples can be completely expressed by the coordinate set of contour points. The feature
extraction method of contour point equidistant sampling further reduces the dimension of
the input data, so that the extremely lightweight fully connected neural network can also
complete the orientation classification task of garlic seeds with high accuracy and speed.
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3.2.4. Application Prospect

The operating speed of the garlic planter can be calculated by Equation (4), where n
represents the sowing efficiency (hm? /h), w represents the plant spacing (m), 1 represents
the row spacing (m) and v represents the sowing speed (pieces/second).

n=0.36-v-w-h 4)

The garlic sowing efficiency of the existing garlic seed adjustment method is in the
range of 0.05-0.2 hm? /h [36,37]. According to the planting standards of 0.2 m row spacing
and 0.12 m plant spacing, the four orientation recognition models in Table 5 can reach
sowing speeds of 0.16, 0.51, 0.84, and 1.30 hm?/h, respectively. The above speed is the
ideal single-row seeding speed. It can also be used in multi-row seeders in the form of
controlling multiple rows through a single board. It only needs a single embedded board
with the same performance as the OrangePi 3 LTS. If there are performance bottlenecks in
the other devices that make up the garlic planter, the hardware configuration can be further
reduced, thereby reducing the manufacturing cost of the planter.

4. Conclusions

To meet the need of high-speed garlic seed righting operations and low-cost onboard
embedded computing platforms, the contour-based multiple lightweight deep-learning
models including transfer learning based on MobileNetV3, naive CNN model, and a con-
tour resampling-based fully connected neural network are proposed for garlic-clove-bud
orientation recognition and tested by the image garlic seed samples with the same con-
ditions as a field planter, and the best model was selected for parameter optimization.
All of the models’ recognition rate of garlic clove bud orientation exceeded 98%. The
MobileNetV3 model based on transfer learning, the naive CNN model, and the fully con-
nected model achieved accuracy of 98.71, 98.21, and 98.16%, respectively, all far exceeding
statistical learning methods. The parameters of the three are 4.04 M, 61.9 K, and 220.4 K,
respectively. The calculation amount of the three is 0.178 G, 17.9 M, and 0.44 M FLOPs,
respectively. The recognition speed of the three including auxiliary programs is 19.35, 97.39,
and 151.40 FPS, respectively.

Experimental results showed that the contour-image-based garlic-clove-bud orienta-
tion recognition method is effective. The form of binarized contour image unifies the pixel
value distribution of contour points, so that the information of garlic clove samples can be
completely expressed by the coordinate set of contour points. Resampling of contour points
further compresses sample features and simplifies the structure of deep-learning models.
Ideally, a fully connected neural network based on contour resampling could support a
seeding rate of 1.3 hm?/h. Therefore, the garlic-clove-bud orientation recognition based
on deep learning proposed by this paper can meet the needs of high-speed and accurate
sowing of garlic.

The main goals of this research for the future are to complete the integration of garlic
species orientation recognition algorithm and orientation device, verify the effect of system
integration, and continuously improve the device; collect more garlic seed contour image
samples to join the dataset and train the model to continuously enhance its generalization
ability; and try to generalize the orientation recognition algorithm proposed in this paper
to other problems in the agricultural field.
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Abstract: Given the problem of the low tensile performance of the plastic film used in China, which
brings about difficulties in curl-up film collecting, in this study, a contrast test was carried out on
the tensile property of high-performance film for full recycling and the ordinary polyethylene film
(PE film) that is used extensively in China. Test results showed that, within the service period, the
elongation at break and tensile yield stress of the high-performance film were higher than those of
ordinary polyethylene film, and, within the film-laying period of 0~30 days, the reduction scale of
the elongation at break and tensile yield stress was higher than that within the film-laying period of
30~180 days. In this study, in order to obtain the lowest tensile performance of the film by curl-up film
collecting, the operation principles of the curl-up film collectors were analyzed. The test on the force
of curling up the film in the process of overcoming the force between the film and soil was analyzed.
Test and analysis results showed that, for different sampling positions, film pick-up angles, and
film types, the tensile stress on the film while pulling it up was within a range of 15.97~21.86 MPa.
In order to verify the curling up effect of differently structured film collectors on different types
of film with different thicknesses, a field test on film curl-up collecting was designed. A contrast
test was carried out on two types of curl-up film collectors, 1JRM-2000 and 11SM-1.2, and the test
results showed that the film recycling rate and working performance on the film laid in the same
year by the film collector with a fixed film pick-up angle were higher than those for varying film
pick-up angles. The curl-up film collector fixed with an automatic film-guiding mechanism is not
affected by the velocity difference between the linear velocity of the film curl-up mechanism and the
advancing velocity of the machine. The film recycling rate and working performance on the film
laid in the same year by the 11SM-1.2 curl-up film collector can meet the operational requirements
for collecting high-performance film with thicknesses of 0.008 mm and 0.01 mm. This research can
provide a reference for simplifying the structure of residual plastic film collectors, increasing the film
recycling rate, and reducing the cost.

Keywords: high-performance film for full recycling; film recycling; field experiment; film recycling rate

1. Introduction

Film mulching technology has the advantages of increasing temperature and moisture;
preventing plant diseases, insects and weeds; and promoting crop growth [1]. In 2019,
the amount of plastic film used in China reached 1.379 x 10° t, and the area covered by
plastic film reached 1.76281 x 107 hm? [2], which ranked first in the world. However,
the farmland residual film recycling technology in China started relatively late, and the
long-term, large-scale use of ultra-thin and low-strength plastic film has caused a series of
problems, such as soil compaction, a decreased seedling rate, and crop yield reduction [3].

At present, manual recycling is mainly adopted in the treatment of non-point source
pollution of farmland residual film, mechanical recycling, and the use of degradable plastic
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film. Manual recycling of residual film is time-consuming, laborious, and costly, and it
is difficult to motivate farmers [4]. Residual film recycling is not required after laying
degradable residual film, since the film can decompose through natural degradation [5],
however, degradable plastic film is not yet mature in cost control and production tech-
nology; the high cost of use and the unpredictable degradation effect during use make it
difficult to implement large-scale promotion and use [6,7]. Mechanical recycling of residual
film is currently the most widely used method for its high operating efficiency and low
operating cost. The mulch film widely used in China has two levels of thickness, 0.008 mm
and 0.01 mm, and its tensile property is lower than the mulch film with a thickness of
0.025 mm or more, which is commonly used abroad. Residual plastic film collectors used
abroad are mostly curl-up residual film recycling machines with a simple mechanical
structure demanding a good tensile performance of plastic film [8], while development of
the residual plastic film collectors used in China is restricted by the poor tensile properties
of plastic film. According to the planting mode of crops, a variety of film collectors with
different mechanical structures has been developed, mainly including drum type, spring
tooth type, and tooth chain type [9], which are not only complex in structure but also have a
lower film recycling rate than those developed in foreign countries. Mari et al. [10] studied
the application of biodegradable plastic mulch films (BDMs) in strawberry planting, and
the research results showed that BDMs are a viable alternative to PE mulch. However,
Anunciado [6] pointed out in the study of BDMs that the extent of change to the physic-
ochemical properties of BDMs, due to agricultural weathering, is greatly affected by the
polymeric composition and is greater in warmer climates. Steinmetz [11] studied BDMs
and mentioned that the high use cost restricted the popularization of BDM. Therefore,
due to the high cost of agricultural weathering, the technology of BDMs cannot effectively
solve the problem of non-point source pollution of residue film in fields. Zhang et al. [12]
performed parameter optimization on the Arc-Shaped Nail-Tooth Roller-Type Recovery
Machine for Sowing Layer Residual Film, and the field test results showed that this machine
type could achieve a normal residual film collection rate of 66.8% on common polyethylene
mulching film. Zhou et al. [13] developed a kind of film collector with a film-removing
plate, and this device can achieve a film collection rate of 86.93% on common polyethylene
mulching film in ideal conditions. However, in the process of collecting the polyethylene
mulching film, there are still residue films uncollected in the field, thus, the film-collecting
effect was not satisfactory. Qu et al. [14] replaced the traditional rheological processing of
drag and shear on high polymer materials with plasticizing transport based on volume
elongational rheology, which reduced the macromolecular chain breakage of high polymer
materials and greatly improved the mechanical properties of film molded by processing
extreme rheological plastics, such as polyethylene. Based on the complex blow-molding
technology, through dynamic distribution, the film can be overlaid for 3-5 layers, and
the macromolecules are oriented in different directions between the layers to achieve an
interweaving effect; thus, the tensile performance of the film is greatly enhanced, and the
“high-performance film for full recycling to the curl-up film recycling method” (which can
be called “high-performance film”) was developed [15,16]. Since the tensile performance
of the high-performance film is better than that of common polyethylene film, laying the
high-performance film for full recycling can greatly improve the film collecting rate, and
the production cost of the high-performance film is very low compared with BDMs; there-
fore, this technology has become an effective means to solve non-point source pollution of
residue films in agricultural fields.

A contrast test on the tensile property of high-performance film and ordinary polyethy-
lene film under different test factors was carried out, and the variation rules of the tensile
properties of both films during the film-laying period of 0-180 days, as well as the minimum
tensile level for the 180-day film-laying period, were obtained. Moreover, the operation
principles of the curl-up residual plastic film collector were analyzed, and the curl-up col-
lecting of the film for the 180-day film-laying period was carried out. Through an analysis
on overcoming the force between the soil and the film during curl-up collecting of the film,
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the tensile stresses on the film while the curl-up film collector pulled it up under different
test factors were obtained. The field test on the curl-up collecting of film was carried out.
By comparing the film recycling rate on the film laid in the same year and the working
performance of the two residual plastic film collectors of different structures, the proper
structure adaptable to the curl-up collecting of high-performance film was obtained. This
research can provide theoretical support for simplifying the structure of residual plastic
film collectors, enhancing the film recycling rate, and reducing the cost of film recycling.

2. Contrast Test on the Tensile Properties of High-Performance Film and Ordinary
Polyethylene Film

In order to obtain the variation law of the tensile properties of the high-performance
film and the ordinary polyethylene film laid in a cotton field in Xinjiang within their service
period and the minimum tensile level at the end of the service period, the film-laying
period, the film thickness, sampling direction, and sampling position were used as test
factors; the elongation at break and tensile yield stress were used as test indexes to carry
out the contrast test on the two types of films.

2.1. Basic Information of the Test Field

Maigaiti County is located in the southwestern part of Xinjiang Uygur Autonomous
Region, which includes the western part of the Tarim Basin, the eastern part of the Kashgar
region, the southwestern edge of the Taklimakan Desert, the northern foot of the Karakoram
Mountains, the lower reaches of the Yarkant River, and the lower reaches of the Tiznafu
River (77°28'-79°05 east longitude, 38°25'-39°22' north latitude). This county has a
temperate continental dry climate with sufficient sunshine, a large temperature difference
between day and night, very little precipitation, hot summers and cold winters, and a
windy and sandy spring. The average annual sunshine is 2836.5 h, the annual average
temperature is 11.8 °C, and the annual average precipitation is 56.5 mm.

2.2. Test Materials and Field Management

Considering local production conditions, the high-performance film and ordinary
polyethylene film with thicknesses of 0.008 mm and 0.01 mm were laid on the cotton test
field in Maigaiti county on 30 April 2021. The film-laying site is shown in Figure 1. The
planting mode of one film, which covered three pipes and six rows with 660 mm + 100 mm
of machine-harvested cotton was adopted in the test field. The plant spacing was 12.5 cm,
and routine management of the field was adopted for water—fertilizer management. The
high-performance film was manufactured by Guangdong Siico Technology Co., Ltd.,
(Guangdong, China); the ordinary polyethylene film is manufactured by Xingnong In-
dustry and Trade Co., Ltd. in Bayingolin Mongol Autonomous Prefecture, in Xinjiang
province, China. The film-laying situation in the test field is shown in Figure 1.

protective row

| PE film with thickness of
0.008 mm
(Control group)

high-performance film with
thickness of 0.008 mm
(Test group)

PE film with thickness of
0.01 mm
(Control group)

high-performance film with
thickness of 0.01 mm
(Test group)

protective row

Figure 1. Diagram of plastic film laying in test field.
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2.3. Test Design
2.3.1. Test Factors and Levels

Both high-performance film and ordinary polyethylene film are made from high-
molecular compounds [17]. Therefore, at the same sampling spot, their tensile performance
is affected mainly by natural erosion, material aging, material thickness, and material
anisotropy [18]. Thus, the film-laying period, sampling position, film thickness, and
sampling direction were chosen as the test factors in the test on the film tensile property.

Material anisotropy determines that different tensile properties are obtained by testing
the film from different directions. Hence, the direction along the film-laying direction was
defined as the horizontal direction, while the perpendicular direction of the film-laying
direction was defined as the vertical direction. The degree of sunniness and the natural
erosion effect on the different positions of the film (near and far away from the plants) may
vary due to degree of shading of the cotton plants on the film, thus, the sample-taking
positions on the film were divided into near-end positions and far-end positions.

2.3.2. Test Indexes

According to the requirements of GB/T 1040.3-2006 Plastics—Determination of Tensile
Properties, the elongation at break of the film and the tensile yield stress were taken as the
test indexes, and the calculation method is as follows:
_L—1L
Lo

et X 100% (1)
where L is the distance between the marked lines when the sample is torn off, mm; L is the
distance between the original graticule lines, mm.

_h

= bd

(2)
where F, is the breaking load of the sample, N; b is the sample width, mm; and d is the
sample thickness, mm.

2.3.3. Determination of Test Parameters

The strain data sample frequency is obtained based on test speed, the ratio of the
distance between the original graticule lines of the standard sample and the original clamp
distance, and the minimum resolution of the obtained strain signal of the accurate data,
and its calculation method is as follows:

- ULO
Jmin = 60Lr

®G)

where f i, is the sampling frequency of minimum strain data, Hz; v is the test speed,
mm/min; L. is original clamp distance, mm; and r is the minimum resolution of the
obtained strain signal of the accurate data, mm.

According to the recommended test speed and the original clamp distance of the
standard samples in GB/T 1040.1-2018, v = 10 mm/min, L. = 115 mm, the CMT-6103
electronic universal testing machine, which is controlled by a microcomputer, obtained the
minimum resolution of the obtained strain signal of the accurate data, which was 0.008 mm.
After calculation, the sampling frequency of the minimum strain data was obtained, and
fmin = 9.06 Hz.

The load data sampling frequency is based on the test speed, strain range, minimum
resolution of the obtained strain signal of accurate data, and the initial clamp distance, in
which the elastic modulus, test speed, and clamp distance determine the load growth rate.
The ratio between the load growth rate and the minimum resolution of the obtained strain
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signal of accurate data determines the load data sampling frequency of the test machine.
The calculation method is as follows:

)

F v
Joree = ¥ = Rex G0 x L x5 x 1073
where 1.-" is the load growth rate, %, and Ae is the strain range of the samples. Ae = 3 x 102
was selected according to standard requirements, and the sampling frequency of the load
data was calculated to be 9.66 Hz.

In this test, an extensometer is used as the strain indicating device, and it should be
a Level 1 extensometer as required by GB/T 12160-2019, that is, the relative error of the
gauge length is +1%, the percent of reading is 0.5%, the absolute value is 1 um, the relative
error is +£1%, and the absolute error is +3 pum.

In order to avoid the toe at the initial stage in the stress—strain curve, in measuring
the related stress, the prestress on the sample before the test should satisfy Equation (5)
as follows:

0<op<o*/100 ®)

where 0y is the prestress at the beginning of the test, MPa; c* is the tensile yield stress of
the material, MPa. In order to make the prestress at the beginning of the test adapt to the
two types of film, c* should be less than the lower value of the tensile yield stress of the
two types of film; thus, oy = 0.09 Mpa was selected [19].

2.3.4. Sample Collection

The service period of the film laid on the cotton field of south Xinjiang in China is
about 180 d. In order to reflect the tensile property variation process of the two types of
film during their service periods, film samples were collected every 30 d from the film-
laying date to carry out the tensile property test; the samples were collected seven times.
Each time, the sampling objects included two sets of high-performance film and ordinary
polyethylene film of 0.008 mm and 0.01 mm in thickness, with a width of slightly more
than 300 mm and a length of slightly more than 660 mm. After sample collection, the film
samples were rinsed to remove the impurities for airing. On each selected sample film,
eight standard tensile pieces were cut down by a cutter and used as test material, as shown
in Figure 2. The size of the standard tensile film pieces is shown in Figure 3. During each
instance of sample collection, the intact film sample pieces were obtained on dry, hard, flat
land, and the sampling positions were marked on the film.

~

] [l
! ! -
\ \ g
! ! E
| | v%
! ! o
| | 2
| | g
\ \ 5
| |
L L
100mm 100mm

Figure 2. Schematic diagram of sampling location: 1—cotton plant, 2—vertical film sampling,
3—horizontal film sampling, 4—film sample piece, [—near-end position, II—far-end position.
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6=0.008mm or 0.01mm
Lines of clamping positions

Marked line
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705\ 50mm
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E 115mm
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Figure 3. Standard tensile sample of film.

2.3.5. Test Scheme

Before the test, a low-power magnifying glass was used to check the test samples; the
sample pieces with unsmooth and frayed edges or damages were eliminated to avoid test
errors caused by stress concentration on the damaged parts of the sample pieces in the test.
The CMT-6103 electronic universal testing machine controlled by a microcomputer was
used to carry out a test on the film tensile property. According to Equations (1) and (2),
the elongation at break and tensile yield stress of the film were calculated. The test was
repeated four times, and test results were averaged. The test process is shown in Figure 4.
Figure 4a shows the state of the sample after prestressing, and Figure 4b—d show the tensile
process of the sample after loading.

(b) () (d)

Figure 4. Process of the tensile test of film. (a) shows the state of the sample after prestressing,
(b—d) show the tensile process of the sample after loading.

3. Test on Curl-Up Force in Film Collecting

The curl-up residual plastic film collector is generally composed of the film pick-
up mechanism, film-guiding mechanism, film-curling mechanism, impurity separation
mechanism, and film-unloading mechanism [20]. During operation, the film pick-up
mechanism loosens the soil on the film surface on both sides of the film and separates the
film from the soil [21]. Then, the film-guiding mechanism transmits the film to the impurity
separation mechanism to the film-curling mechanism. The impurity separation mechanism
separates the soil, roots, and stems from the film through vibration or sweeping. The
film-curling mechanism curls up the film to a suitable size, and, finally, the film-unloading
device unloads the residue film package after curling up.
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In the test on the curl-up force during film collecting, by simulating the process of
overcoming the force from the soil to the film during curl-up collecting of the residue
film, the tensile stresses on the film while the curl-up film collector pulls up the film under
different test factors were obtained. In collecting film, the film pick-up mechanism separates
the film from the soil and forms a film pick-up angle «; the curl-up force F is formed in
curl-up collecting film. The force between the film and soil under the effect of the curl-up
force is shown in Figure 5. Since the soil on the film’s surface at the slope has the tendency
to move downwards, there is a friction f, from the film against the soil on the film at the
slope. At the same time, the film is uncovered by the film pick-up mechanism along the
film pick-up angle a. The cohesion force between the film and soil prevents the film from
moving and forms a downward force F, along the film pick-up angle .

1

“ AiGl “ '

$G2A

Figure 5. Diagram of force between plastic film and soil under the action of curl-up force: 1—soil
under the film, 2—soil on the film, 3—film, 4—film-curling mechanism.

In Figure 5, N is the support force from the soil and film on the flat ground to the soil
on the film; Gy is the gravity of the soil on the film; N, is the support force from the film at
the slope to the soil on the film; and G is the gravity of soil on the film at the slope. Then,
the mechanics equilibrium equation during operation of the curl-up residual plastic film
collector is established as follows:

F:Fa+stinDc—f2
Ny — Gpcosa =0 6)
-G =0

In order to prevent the film from being torn down due to the speed difference between
the linear velocity of the film-curling mechanism and the advancing speed of the machine,
the linear velocity of the curling speed should be equal to the advancing speed of the
machine, and the speed should be uniform, so as to avoid tearing down the film with the
rigid impact from an abrupt change in the film collecting speed. The test on the curl-up
force in film collecting was carried out. By measuring the curl-up force F, the tensile stresses
on film during the curl-up collecting process under different factor levels were obtained.

3.1. Test Conditions

The field test was carried out at the field research and development base of the
Northwest Oasis Agricultural Environment Key Laboratory of the Ministry of Agriculture,
Tuobuliqi Town, Korla City, Bayingolin Mongolian Autonomous Prefecture, Xinjiang Uygur
Autonomous Region in early November 2021. The planting mode (660 mm (wide row)
+ 100 mm (narrow row)) with protective rows on both sides was adopted, and the film
thicknesses were 0.008 mm and 0.01 mm for both the high-performance film and ordinary
polyethylene film. The ground was relatively flat, and the drip irrigation belt had been
recycled. Using the TZS-1 soil moisture tester, the moisture content of the surface soil was
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16.2%. Before the test, the height of the stubbles in the test field was controlled within
120 mm. The test field is shown in Figure 6.

o

Figure 6. Test field on curl-up force in film collecting: 1—HP-50 type Digital Display Pull and Push
Strength Calculator, 2—film.

3.2. Test Method and Design
3.2.1. Test Factors and Levels

It can be known based on Equation (6) that the value of the curl-up force F is related
to cohesion between the soil under the film and the film F,, the film pick-up angle, the
gravity of the soil on the film at the slope in the film pick-up Gy, and the friction f, between
the film and the soil on the film. Since the moisture content of the soil under the film of
different types is different, the higher the moisture content under the film, the higher the
cohesion Fa of the soil under the film to the film. The mass of soil on the film is related
to the film-laying position. Since cotton plants can shield sandstorms, with the passage
of time, the mass of soil near the middle part of the field is lower, and the friction of the
film to the soil on the film at the slope is related to the friction coefficient between the soil
friction and soil, as well as the mass of soil on the film. Therefore, the sampling position,
film pick-up angle, and the types and positions of the laid film were used as test factors.
For each planting line of 100 m, the front point of each line was defined as position 1, and
25 m from position 1 along the film-laying direction was defined as position 2; 50 m from
position 1 along the film-laying direction was defined as sampling position 3. According to
the film pick-up angle of the 1JRM-2000 curl-up film collector, the standard range of the
film pick-up angle was determined to be 30-75°. The table of test factor levels in the test on
the curl-up force during film collecting is shown in Table 1.

Table 1. Test factor levels.

Levels Sampling Position  Film Pick-Up Angle Type of Film
1 Position 1 30° High-performance film
2 Position 2 45° Ordinary polyethylene film
3 Position 3 60°
4 75°
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3.2.2. Test Method
The tensile stress on the film was selected as the test index, which is calculated by
Equation (7):

U:w )

where 0 is the tensile stress on the film, MPa.

In the test, the process of generating the curl-up force on the film with the curl-up
film collector was simulated. Figure 7 shows the diagram of the operation process of the
1JRM-2000 curl-up film collector.
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740mm
2
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\
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Figure 7. Operation process of the 1JRM-2000 curl-up film collector: 1—film, 2—film-curling mecha-
nism, 3—film pick-up mechanism, 4—operation platform, 5—body frame, 6—traction mechanism,
7—deep limiter, 8—soil.

During operation, the variation range of the film pick-up angle is «;-a;. According to
Figure 8, during the operation process of the curl-up film collector, the collected residue
film would continually wrap around the film-curling device, increasing the film pick-up
angle with the increase in the diameter of the residue film wrapping around the film-
curling device. The HP-50 digital display pull- and push-strength calculator was adopted
to measure the curl-up force. During the force measurement, one end of the film was
connected with the pull and push strength calculator, and the other end was at different
angles with the ground to simulate the changing process of film pick-up angle during the
curl-up collecting of film. The value of the film pick-up angle is controlled by the digital
display angle ruler. When the film is initially pulled up, the soil on the film accumulates,
and the film is subject to greater soil gravity. When the film is pulled up higher, the
accumulation speed of the soil is similar to that of soil falling down from the film. At this
time, the soil gravity is in dynamic equilibrium, and the curl-up force becomes stable. The
digital display pull- and push-strength calculator was used to record the maximum value
of the curl-up force in pulling up the film, and the obtained curl-up force was substituted
into Equation (7) to calculate the tensile stress of the film.
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@ N | (b)

Figure 8. Test field of curl-up collecting of film. (a) 11SM-1.2 curl-up film collector; (b) 1JRM-2000
curl-up film collector.

3.3. Results and Analysis
3.3.1. Results and Analysis of Contrast Test on the Tensile Properties of High-Performance
Film and Ordinary Polyethylene Film

Table 2 shows the contrast test results of the tensile properties of the high-performance
film and the ordinary polyethylene film laid in the Xinjiang cotton fields with a service
period of 0-180 days.

Table 2 shows that the elongation at break and tensile yield stress of the high-performance
film before and during use were higher than those of the ordinary polyethylene film; the
elongation at break and tensile yield stress of the film with a thickness of 0.01 mm were
higher than those of the film with a thickness of 0.008 mm. The tensile property of the
film at a near-end position was higher than that of the film at a far-end position. When the
sampling direction was horizontal, the elongation at break and tensile yield stress of the
ordinary polyethylene film were higher than those when the film was collected vertically.
For the high-performance film, and the elongation at break collected horizontally was
higher than that collected vertically; its tensile yield stress was lower than that collected
vertically. This is due to the different anisotropy of the high-performance film from the
ordinary polyethylene film caused by the orientation of the macromolecules between the
layers of the high-performance film. With the increase in the film-laying period, both the
elongation at break and tensile yield stress of the high-performance film and ordinary
polyethylene film decreased. The variation in the scales of the decrease in the elongation at
break and tensile yield stress of the film is shown in Table 3. During the film-laying period
of 0~30 days, the scales of the decrease in the elongation at break and tensile yield stress
were higher than those during the film-laying period of 30~180 days. When the film-laying
period was 120 days and 180 days, the scale of decrease in the elongation at break of the
ordinary polyethylene film with a thickness of 0.01 mm collected horizontally at a far-end
position and the high-performance film with a thickness of 0.008 mm collected horizontally
at a near-end position were negative. This is caused by difference in the thickness of the film
and different sampling positions, since the thickness error of film is +0.003~—0.002 mm.
Each instance of sampling is located at that of the previous instance; thus, it may have little
effect on the scale of decrease in the elongation at break of the film, which shows that there
was little variation in the tensile property of the film when the film-laying periods were
90~120 days and 150~180 days.
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3.3.2. Results and Analysis of Test on Curl-Up Force in Film Collecting

The software Allpairs was used to generate a hybrid orthogonal table for the test [22],
and the test results are shown in Table 4.

Table 4. Test plans and results.

The Tensile Stress on

Test No. Sampling Position  Film Pick-Up Angle/ Type of Film the Film/MPa
1 Position 1 30 High-performance film 21.86
2 Position 2 30 Ordinary polyethylene film 19.125
3 Position 1 45 Ordinary polyethylene film 19.364
4 Position 2 45 High-performance film 19.83
5 Position 3 60 High-performance film 16.427
6 Position 1 60 Ordinary polyethylene film 18.217
7 Position 3 75 Ordinary polyethylene film 15.97
8 Position 1 75 High-performance film 17.039
9 Position 3 30 High-performance film 17.513
10 Position 3 45 Ordinary polyethylene film 16.824
11 Position 2 60 High-performance film 17.726
12 Position 2 75 Ordinary polyethylene film 16.013
(k1) 19.12 19.499 18.399
(k1) 18.174 18.673 17.586
(*k1)s 16.684 17.457
(k1)a 16.341
Ry 2.436 3.158 0.813
According to the analysis of the results in Table 4, it can be obtained that under
different test factors, the required film tensile stress for the operation of the curl-up
film collector was 15.97-21.86 MPa. By comparing the value with the results of the
film tensile property test, the minimum tensile yield stress of the high-performance film
with a thickness of 0.01 mm was higher than the required minimum film tensile stress
during normal operation of the curl-up film collector. The results of the range anal-
ysis showed that the influence order of the test factors on the film tensile stress was
Film Pick-up Angle > Sampling Position > Type of Film; the film tensile stress achieved the
maximum value when position 1 was chosen as the sampling position, the film pick-up
angle was 30°, and the film type was high-performance film.
In order to find out the significance level of the test factors on the test indexes, a
variance analysis was made on the above test results, and the analysis results are shown
in Table 5.
Table 5. Variance analysis.
Indexes Sources of Variance ~ Sum of Squares  Degree of Freedom Mean Square F Value  Significance
Sampling Position 12.07 2 6.035 6.771 **
The tensile Film Pick-up Angle 16.07 3 5.357 6.01 **
stress Y on the Type of Film 0.81 1 0.81 0.909
film/MPa Residual error 4.457 5 0.891
Sum 33.407 11

Note: ** means the effect is very significant.

According to the analysis results in Table 4, the required film tensile stress for the
operation of the curl-up film collector under different test factors was 15.97~21.86 MPa. By
comparing this range with the results of the film tensile property test, only the minimum
tensile yield stress of the high-performance film with a thickness of 0.01 mm was higher
than the minimum film tensile stress required in normal operation of the curl-up film
collector. The range analysis results showed that the influence order of the test factors
on the film tensile stress was Film Pick-up Angle > Sampling Position > Type of Film; the
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film tensile stress achieved the maximum value when position 1 was used as the sampling
position, the film pick-up angle was 30°, and the film type was high-performance film.

In order to verify the significance level of each test factor on the test indexes, a variance
analysis was made on the above test results, and the analysis results are shown in Table 5.

It can be observed from Table 5 that the sampling position and film pick-up angle had
significant influence on the film tensile stress, while the type of film had an insignificant
influence on the film tensile stress. During the service period of the film, due to various
reasons, such as the wind-blown sand, the soil on the film accumulates. Since the cotton
plants can stop the sand, the soil accumulated around the center of each row along the
film-laying direction decreases; the longer the service period of the film, the more obvious
this tendency becomes. Therefore, when the sampling position was the front point of each
row, the soil quantity on the film was highest; thus, the curl-up force required to pull up
the film is very high. With the shift of the sampling position to the center of each row and,
therefore, with less soil on the film, the curl-up force required to pull up the film reduces.
According to Equation (7), the film tensile stress is directly proportional to the curl-up force;
thus, the sampling position had a significant influence on the film tensile stress. The angle
between the direction of the curl-up force and the ground is equal to the film pick-up angle.
The larger the film pick-up angle, the larger the valid component force to pull up the film
would become, and the smaller the curl-up force is required. Thus, the film pick-up angle
had a significant influence on the film tensile stress. Although the type of film has influence
on the soil’s moisture content under the film, it has small influence on the cohesion of the
soil under the film and the gravity of the soil on the film; thus, the type of film has an
insignificant influence on the film tensile stress.

4. Field Test on Curl-Up Collecting of Film

By considering the test results of the contrast test on the tensile property under different
test factors and the field test on film curl-up collecting between high-performance film and
ordinary polyethylene film, the high-performance film with a thickness of 0.01 mm satisfied
the requirements for the tensile stress of film in curl-up collecting. Since the value of the
film pick-up angle is inversely proportional to the required curl-up force during curl-up
collecting of the film, the film pick-up angle of the machine was set to 45°-75° for film
collecting. In order to verify the effect of the curl-up collecting of the film for film collectors
with different structures on different types of film with different thicknesses, a test on field
film curl-up collecting was designed, and the test site is shown in Figure 8.

4.1. Test Method and Design

The 1JRM-2000 curl-up film collector and the 11SM-1.2 curl-up film collector were
used for a contrast test in the field research and development base of the Key Laboratory of
Northwest Oasis Agricultural Environment of Ministry of Agriculture, in Tuobuligi Town,
Korla City, Bayingolin Mongolian Autonomous Prefecture of Xinjiang Uygur Autonomous
Region, China, during March of 2022. According to the standard GB/T25412-2021, the film
recycling rate of the device on the film laid in the same year and the working performance
of the device were used as test indexes. The structures of the two types of collectors are
shown in Figure 9.

According to Figure 9, when the 11SM-1.2 curl-up film collector was working, the
eight groups of film pick-up mechanisms at the front and the two groups of side-film
shovels separated the film and soil; the film-guiding and impurity separation mechanisms
separated impurities from the film and sent the film to the film-curling mechanism. The
film-curling mechanism rotated and winded the film on it. While unloading the film, the
hydrocylinder was manually controlled, and the film unloading mechanism unloaded the
film package. During the working process, the film pick-up angle remained unchanged
and was determined by the angle of the film pick-up mechanism. If the film pick-up angle
is too large, the soil penetration angle of the film pick-up mechanism is too large, and
the soil produces high resistance against the film pick-up mechanism. If the film pick-up

252



Agriculture 2022, 12, 1051

angle is too small, it produces high film tensile stress and tears off the film. Thus, the film
pick-up angle was determined to be 45°. During operation of the 1JRM-2000 curl-up film
collector, the soil-loosening shovel on the deep limiter in the front of the film collector first
loosens the soil around the side film. The film-cutting mechanism cuts the soil from the
center along the film-laying direction, and then the film pick-up mechanism in the middle
of the machine separates the cut film from the soil. With the forward movement of the
machine, by manually controlling the hydrocylinder, the film-unloading mechanism opens,
and, during the working process of the machine, the film pick-up angle increases with the
increase in the diameter of the film package.

(b)

Figure 9. Schematic diagram of structure of two types of curl-up film collectors. (a) 11SM-1.2 curl-

up film collector: 1—film-unloading mechanism, 2—film-curling mechanism, 3—film-guiding and
impurity separation mechanism, 4—body frame, 5—drive system, 6—film-pulling mechanism, 7—
depth wheel components, 8—traction mechanism, 9—film pick-up mechanism, 10—side-film shovel;
(b) 1JRM-2000 curl-up film collector: 1—operation platform, 2—depth limiter, 3—film-unloading
mechanism, 3—film-curling mechanism, 4—film-cutting mechanism, 5—traction mechanism, 6—film
pick-up mechanism, 8—body frame.

According to the requirements of “five-point random sampling” [23], a measurement
area of 200 m x 3.8 m was selected, and test points were chosen within this area. From
the four corners of the measurement area along the diagonal lines, four measurement
points were randomly determined within the range of one-quarter to one-eighth of the
diagonal length, in addition to the intersection of the diagonal lines as the five pre-operation
measuring points. Then, five points were selected as post-operation measuring points in
the same area near to, but not overlapping, the five pre-operation measuring points. The
measuring points cover a length of 5 m and the width of the film, which is 1.25 m. After
controlling the stubble height of the cotton plants within 120 mm, the two film collectors
started working simultaneously from the start of each row on the same type of film for
an operation length of 200 m. The test was repeated three times, and the test results were
averaged. Before the machine reached the operation position, a length of 50 was set as the
accelerating region to let the machine adjust to a suitable speed. Timing started when the
machine entered the operation position, and timing stopped after the machine completed
an operation length of 200 m. After operation, residue film pieces were taken from the five
pre-operation and post-operation measurement points in the two measurement areas. The
residual film taken from each measuring point was washed, dried, and weighed, and the
average value was calculated. The film recycling rate on the film laid in the same year can
be calculated according to Equation (8):

J=(1- %) x 100% ®)
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where ] is the film recycling rate of the film laid in the same year by the machine, %; W is
the mass of residue film laid in the same year in the field after machine operation, g; and
Wy is the mass of residue film laid in the same year before machine operation, g.

4.2. Test Results and Analysis

Test results are listed in Table 6. The results of the test come from “five-point sampling”,
which is suitable for the survey objects with relatively uniform population distribution
and good representativeness. In order to exclude errors caused by accidental factors, three
replicate groups were arranged for each sampling, and the final results were averaged.

Table 6. Results of field test on curl-up collecting of film.

Film Recycling Rate of

Test No. CTOYIII’:C;’; Type of Film Tll‘:ﬁkm/“;f;"f the Film Laid in the Per fo‘:’;:l:llc’gkm.h
Same Year/%
1 1JRM-2000 High-performance film 0.01 81.16 6.15
2 1JRM-2000 High-performance film 0.008 73.26 4.79
3 1JRM-2000 Ordinary polyethylene film 0.01 57.31 3.76
4 1JRM-2000 Ordinary polyethylene film 0.008 55.43 3.13
5 11SM-1.2 High-performance film 0.01 96.11 9.37
6 11SM-1.2 High-performance film 0.008 85.45 8.24
7 11SM-1.2 Ordinary polyethylene film 0.01 78.52 7.88
8 11SM-1.2 Ordinary polyethylene film 0.008 7249 7.64

Table 6 shows that, during the curl-up film collecting of the 1JRM-2000 curl-up film
collector on film with different thicknesses, the film recycling rate of the film laid in the
same year and the working performance were lower than that of the 11SM-1.2 curl-up
film collector. During the working process of the 1JRM-2000 curl-up film collector, with
the increase in the film pick-up angle, the curl-up force changes, and the film is easily
broken down during film pick-up. In order to collect the film more easily, the 1JRM-2000
film collector used soil-loosening shovels to loosen the soil around the side film to reduce
the force on film. After the soil was loosened, some side film still adhered to the soil and
could not be collected, making the film recycling rate of this device lower than that of the
11SM-1.2 curl-up film collector. When the type of film to be collected was high-performance
film, since the mechanical properties of the high-performance film were higher than those
of the ordinary polyethylene film, the film-cutting mechanism could not effectively cut off
the high-performance film, thereby preventing the machine from improving the working
performance. When the type of film to be collected was high-performance film, since the
mechanical properties of the high-performance film were higher than those of the ordinary
polyethylene film, the film-cutting mechanism could not effectively cut it off, which shows
the low working performance of the machine. When the type of film to be collected was
ordinary polyethylene film, whose minimum tensile yield stress should be lower than the
required film tensile stress for the normal operation of the curl-up film collector, the force
direction on the film kept changing during operation, and the film was easily broken. In
this case, it was necessary to pull the broken film manually to the film-curling mechanism,
and thus the working performance of the machine was greatly affected. Since the film
pick-up angle of the 11SM-1.2 curl-up film collector is a fixed value, during collecting of
the film, the curl-up force is only determined by factors such as the soil quantity on the
film. When there is little change in the curl-up force, the film is not broken, and, moreover,
with the assistance of the film-guiding mechanism, in the case of film breakage during
curl-up collecting, the film-guiding mechanism can transmit the newly separated film from
the soil to the film-curling mechanism without manual operation. It can be obtained from
the results of the field test on the curl-up collecting of the film that the 11SM-1.2 curl-up
film collector achieved film recycling rates of 85.45% and 96.11% on the high-performance
film with thicknesses of 0.008~0.01 mm laid in the same year; the 1JRM-2000 curl-up
film collector achieved the film recycling rate of 81.16% on the high-performance film
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with a thickness of 0.01 mm laid in the same year, which could satisfy the requirements
of GB/T25412-2021 and achieved working performances of 8.24 km/h, 9.37 km/h, and
6.15 km/h and satisfied the requirements for agricultural production.

Due to the long-term use of ultra-thin and low-strength plastic films in China, the
residual film collectors developed in China are mainly aimed at collecting low-tensile
strength plastic films. The current related researches includes: The Agricultural Mechaniza-
tion Research Institute of Xinjiang Academy of Agricultural Sciences [24] has developed a
4JSM-2.1A arc-reciprocating residual film collector; Jiangsu University [25] has developed
a combined residual film reclaimer with upper conveyor chain; and China Agricultural
University [26] has developed a collecting and separating device for strip plastic film
baler. The residual film collected by this device is fragmented, and the film collection
mechanism also collects some impurities into the film collecting box during the recycling
process, so the collected film can only be reused through granulation, and it is difficult to
completely remove impurities, such as the straw, soil and other impurities mixed in the
residual film fragments. The cost of using residual film for granulation remains high, and
many downstream enterprises of residual film recycling should only rely on government
subsidies to support them. It can be concluded in this study that the tensile strength and
weather resistance of the high-performance film for full recycling are better than those of
the ordinary polyethylene film, and the residual film can be recycled by means of pick-
up recycling. The collection of low-tensile strength plastic film and the collected plastic
film with high integrity have relatively few impurities, which greatly reduces the cost of
collecting residual film for downstream enterprises.

5. Conclusions

(1) A contrast test was carried out on the tensile properties of high-performance film
and ordinary polyethylene film, and the test results showed that the elongation at break
and the yield stress of the high-performance film before and during the operation were
higher than those of the ordinary polyethylene film. The tensile property at a near-end
position of the cotton plants was higher than that for a far-end position. When the sampling
direction was horizontal, the elongation at break and the tensile yield stress of the ordinary
polyethylene film were higher than those when the sampling direction was vertical, and the
elongation at break of the high-performance film was higher than that when the sampling
direction was vertical, its tensile yield stress was lower than that when the sampling
direction was vertical. With the increase in the film laying period, the elongation at break
and tensile yield stress had downward tendencies, and, within 0-30 days, the scales of
decrease in the elongation at break and tensile yield stress were higher than those during
30-180 days.

(2) Test results showed that the range in tensile stress on the film was 15.97~21.86 MPa
when the film is pulled up from different sampling positions, at different film pick-up
angles, and with different types of film. The minimum tensile yield stress of the high-
performance film with a thickness of 0.01 mm was higher than the maximum film tensile
stress required for pulling up the film by the curl-up film collector. The influence order of
the test factors on the film tensile stress was film pick-up angle > sampling position > type
of film. After a variance analysis on the test data, the results showed that the sampling
position and film pick-up angle had significant influences on the tensile stress of the film,
while the type of film had an insignificant influence.

(3) Test results showed that during operation of the film collectors, the 11SM-1.2
curl-up film collector with a fixed film pick-up angle achieved a higher film recycling rate
on the film laid in the same year and a higher working performance in collecting film of
different types and with different thicknesses than the 1JRM-2000 curl-up film collector.
The 11SM-1.2 curl-up film collector achieved a film recycling rate of 85.45% and 96.11%
on the high-performance film with thicknesses of 0.008 mm and 0.01 mm. The 1JRM-2000
curl-up film collector achieved a film recycling rate of 81.16% on the high-performance
film with a thickness of 0.01 mm laid in the same year, which satisfied the requirements of
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GB/T25412-2021. Its working performances were 8.24 km/h, 9.37 km/h, and 6.15 km/h,
respectively, which could satisfy the demand in production.

(4) In real production, the linear velocity of the film-curling mechanism and the
advancing speed of the machine cannot be equally consistent; therefore, the monitoring-
feedback—control system is generally adopted to realize a dynamic equilibrium between
the linear velocity of the film-curling mechanism and the advancing speed of the machine,
thus enhancing the complexity of the machine. If the difference between the linear velocity
of the film-curling mechanism and the advancing speed of the machine is too large, the film
is easily torn off. Since the automatic film-guiding mechanism can automatically supply
film, the working performance of the 11SM-1.2 curl-up film collector is not affected by the
difference between the linear velocity of the film-curling mechanism and the advancing
speed of the machine.

(5) In the future, we can optimize the curl-up collecting method of film collectors from
the perspective of a simulation analysis, and subsequent tests should consider test indexes,
such as the number of instances of film breakage and the impurity rate of the film, to find
out the optimal mechanical structure and working parameters, and to make preparations
for secondary or multiple utilizations of the collected film.
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Abstract: The fresh weight of vegetables is an important index for the accurate evaluation of growth
processes, which are affected by factors such as temperature and radiation fluctuation, especially in a
passive solar greenhouse. Predicting dynamic growth indexed by fresh weight in a solar greenhouse
remains a challenge. A novel method for predicting the dynamic growth of leafy vegetables based on
the in situ sensing of phenotypic and environmental data of batches is proposed herein, enabling
prediction of the dynamic fresh weight of substrate-cultivated lettuce grown in a solar greenhouse
under normal water and fertilizer conditions. Firstly, multibatch lettuce cultivation experiments
were carried out and batch datasets constructed by collecting growth environmental data and lettuce
canopy images in real time. Secondly, the cumulative environmental factors and instantaneous fresh
weights of the lettuce batches were calculated. The optimum response time in days was then explored
through the most significant correlations between cumulative environmental factors and fresh weight
growth. Finally, a dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and the fresh
weight increments of batches. The results showed that the computing time setpoint of cumulative
environmental factors and instantaneous fresh weight of lettuce was 8:00 AM and the optimum
response time was 12 days, and the average R? values among samples from three batches reached
95.95%. The mean relative error (MRE) of fresh weight prediction 4 days into the future based on
data from the current batch was not more than 9.57%. Upon introducing another batch of data, the
prediction 7 days into the future dropped below 8.53% MRE; upon introducing another two batches,
the prediction 9 days into the future dropped below 9.68% MRE. The accuracy was improved by the
introduction of additional data batches, proving the model’s feasibility. The proposed dynamic fresh
weight growth prediction model can support the automatic management of substrate-cultivated leafy
vegetables in a solar greenhouse.

Keywords: fresh weight prediction; growth model; naive Bayesian network; solar greenhouse;
substrate-cultivated lettuce

1. Introduction

In line with an annual increase in greenhouse planting area in recent years [1,2], the so-
lar greenhouse, a relatively low-cost, environmentally controllable, and highly productive
option for farmers, has become the predominant facility type used to provide year-round
vegetable production in northern China [3,4]. A solar greenhouse has a large roof area along
the south side which is passively heated by sunlight during the daytime [5]. Meanwhile,
a thermal blanket is rolled over the greenhouse at night to hold heat inside the structure,
and a northern brick wall preserves heat inside the structure [6]. Compared with Venlo
greenhouses [7], passive solar greenhouses generally provide only basic environmental
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control with low-cost equipment [8]. In addition, the use of advanced automated fertigators
to ensure sufficient water and fertilizer absorption of vegetables in solar greenhouses has
become popular owing to significant labor savings [9]. In production in a Venlo green-
house, environmental control technology [10,11] is used to regulate indoor environmental
parameters such as light, temperature, humidity, and carbon dioxide, making the vegetable
growth environment close to optimal. Solar greenhouses have the disadvantages of large
temperature fluctuation ranges and frequently weak solar radiation [12], which is not
conducive to crop growth, making the crop growth models established in Venlo greenhouse
systems unsuitable for application in solar greenhouses.

In a suitable environment, vegetable growth adheres to certain inherent laws through-
out the plant’s life cycle [13]. Scholars have studied many crop growth models [14-17] with
the aim of guiding future crop production in greenhouse systems through regulation of
the environment, water, and fertilizer. In one greenhouse crop growth system, a machine
learning method based on the expectation maximum algorithm was applied to link envi-
ronmental parameters with crop growth [18]. Based on only a small number of samples,
future crop growth could be predicted several days in advance. Thus, the feasibility of
using environmental parameters to predict vegetable growth in greenhouse systems has
been verified. However, in the above-mentioned model, leaf area index, evapotranspiration,
and dry weight were taken as crop growth indicators, and the leaf area index and dry
weight were obtained by destructive methods at intervals of one week. For one thing,
indicators obtained using destructive methods cannot provide growth indicators over
the whole life cycle sequence of a specific plant, and indicators for shorter time intervals
were not obtained. For another, many vegetables needed to be planted in order to assess
indicators using destructive sampling during the vegetable growth period, and the process
was inefficient and cumbersome. Moreover, the indicators used to measure vegetable
growth could not directly reflect the current vegetable yield (i.e., fresh weight).

The fresh weight of vegetables is an important index for accurate evaluation of the
growth process, so it is of great significance to apply the fresh weight index to the predic-
tion of crop growth. Compared with hydroponic vegetables, the online, nondestructive
monitoring of the fresh weight of substrate-cultured vegetables during the growth process
is a challenge. In view of the importance of fresh weight, Yanes et al. [19] proposed a deep
learning image segmentation method to obtain information from canopy images for the
estimation of fresh weight of hydroponic lettuce, and a regression model relating lettuce
size and fresh weight was established. Jung et al. [20] established a model of the relation-
ship between the projected area of lettuce canopy and fresh weight in an environmentally
controllable, water-based lettuce cultivation system based on the morphological analysis
machine vision method. Jiang et al. [21] developed a fresh weight estimation system for
hydroponic lettuce based on online image processing, which realized high-precision esti-
mation of the fresh weight of lettuce and allowed environmental control for high-quality
production. In hydroponic vegetable production systems, the plants can be removed from
the nutrient solution temporarily and directly weighed without hindering their continuous
growth. This is convenient for nondestructive calibration of fresh weight and makes it easy
to realize nondestructive, high-precision fresh weight estimation. In substrate culture sys-
tems, the plants can be taken out of the substrate and directly weighed to accurately obtain
the fresh weight. However, plants weighed in this way will not continue to grow [22,23],
and the subsequent fresh weight growth cannot be obtained. It is difficult to achieve
nondestructive estimation of the fresh weight of substrate-cultivated vegetables. In order
to solve this problem, Liu et al. [24] proposed a fresh weight estimation method based on
the fusion of phenotypic characteristics and environmental parameters, which was used
to realize nondestructive estimation of the individual and population fresh weights of
substrate-cultured lettuce in a solar greenhouse.

However, accurate prediction of dynamic fresh weight growth based on in situ sensing
in solar greenhouse systems is still a challenge. Fresh weight growth of vegetables is affected
by many complex environmental factors [25]. Large indoor temperature fluctuations and

260



Agriculture 2022, 12, 1959

frequently weak solar radiation in solar greenhouse systems lead to differences in the
fresh weight growth of different batches. There is a complex and uncertain relationship
between vegetable fresh weight growth and environmental factors. Therefore, in contrast
to the static modeling of fresh weight under hydroponic conditions [19], a novel prediction
method for the dynamic growth of leafy vegetables based on phenotypic and environmental
data of batches is proposed herein, which is able to predict the dynamic fresh weight
of substrate-cultivated lettuce in a solar greenhouse system under normal water and
fertilizer conditions.

The main contributions of this paper are as follows:

(1) Multibatch substrate-cultivated lettuce cultivation experiments were carried out,
with the growth environment and lettuce canopy images monitored in real time. A dataset
was built using phenotypic and environmental data of batches.

(2) Computation of the cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response time was explored
via the most significant correlations between cumulative environmental factors and fresh
weight growth.

(3) A dynamic fresh weight prediction model was established using a naive Bayesian
network, based on cumulative environmental factors, instantaneous fresh weight, and fresh
weight increments of batches, which can be used to predict the dynamic fresh weight of
substrate-cultured lettuce in a solar greenhouse system.

2. Materials and Methods
2.1. Experimental Design

The experimental site was Solar Greenhouse No. 6 in Shandong Agricultural Univer-
sity Science and Technology Innovation Park, located in Tai’an City, Shandong Province,
China (36.16° N, 117.16° E). The greenhouse has a span of about 8 m, a height of about
4 m, and a length of about 50 m from east to west. The experimental material was Italian
lettuce, which was produced by Hebei Maohua Seed Industry Limited Company. The main
characteristics of this lettuce are a semi-erect form, plant height of about 26 cm, develop-
ment of about 28 cm, and nearly round leaves. The color is emerald green, and the loose
leaves do not form a ball. In order to improve the accuracy of the dynamic fresh weight
prediction model, multiple batches of planting experiments were carried out. The same
variety of lettuce was used for the multiple batches of planting experiments. When the
lettuce seedlings in a batch had grown to five leaves and a heart, the batch was transplanted
into a planting tank filled with substrate.

The aboveground growth environment of the lettuce was the closed microclimate
environment of the passive solar greenhouse. Due to the structural characteristics of a
passive solar greenhouse, only simple environmental regulation could be achieved during
the lettuce growth process, barring the introduction of heating, fans, supplementary lights,
etc. For example, in the morning, the thermal blanket was opened to allow storage of
heat from the sunlight. At noon, the vent was opened to allow natural ventilation for
dehumidification, cooling, and air exchange. In the evening, the thermal blanket was closed
for insulation, so as to ensure a normal indoor lettuce growth environment and prevent
frostbite of the lettuce plants. The underground growth environment of the lettuce plants
was the substrate. The substrate had the characteristics of good ventilation and a good
drainage effect, but the water retention effect was relatively poor. Therefore, Yamazaki
formula nutrient solution at a 100% concentration was used for irrigation via the water
and fertilizer application system in the greenhouse (Figure 1), ensuring normal water and
fertilizer conditions throughout the lettuce cultivation experiment.
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Figure 1. Lettuce cultivation experiment.

2.2. Acquisition of Environmental Data and Lettuce Images in the Solar Greenhouse

An environmental monitoring and image acquisition platform (Figure 1) was used
to record the temperature, humidity, photosynthetically active radiation, carbon dioxide
concentration, and lettuce canopy images in the solar greenhouse during the lettuce culti-
vation experiment. The platform was mainly composed of a support mechanism, guide
rail slide, hanger, cross bar, sensor, and controller. The support mechanism was used to
support the guide rail slide so that the guide rail slide could move horizontally in the
north-south direction at a certain height from the ground. The guide rail slide was fixed at
the upper end of the support mechanism and the cross bar equipped with the sensor was
connected through the hanger, so that the sensor could move in the north-south direction
synchronously with the cross bar. The height of the cross bar could be adjusted according
to the current situation, and the cross bar and the guide rail slide were kept vertical in the
horizontal direction. The guide rail slide was controlled by the controller and the cross bar
equipped with sensors was moved to complete the environmental monitoring and image
acquisition tasks in the upper part of the planting area.

2.3. Calculation of Environmental Factors and Instantaneous Fresh Weight
2.3.1. Calculation of Cumulative Radiant Heat Product

The effects of temperature and radiation on the fresh weight of lettuce can be measured
by the cumulative radiant heat product. The specific calculation formula is as follows [26]:

0 (T <Ty)
T-T,
—% (T, <T<Ty)
(Tab <T< Tau)

Ryp = - €]
Bl (T <T<Tw)
(T > Tw)
Tep = Y Rrep @)
24
RTEP = Z(RTEi X PARi X 3600/106) (3)

i=1
where T}, is the lower limit of growth temperature (°C), T, is the upper limit of growth
temperature (°C), T, is the lower limit of optimum growth temperature (°C), T, is the
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upper limit of optimum growth temperature (°C), T is the ambient temperature (°C), Rrg is
the relative thermal effect, Rrep is the daily cumulative radiant heat product (MJ-m~2.d71),
Rr; is the relative thermal effect in the i-th hour, P,,; is the average photosynthetically
active radiation in the i-th hour (MJ-m~2-d~1), and Tgp is the cumulative radiation heat
product (MJ-m~2).

2.3.2. Calculation of Crop Evapotranspiration

If reference evapotranspiration is used to replace crop evapotranspiration, there will
be a large error. Therefore, in order to improve the accuracy of calculation of crop evapo-
transpiration, the crop coefficient was used to correct the reference evapotranspiration. The
specific calculation formula is as follows [27]:

ET. = ETy- K, 4)
~ 0.408A(Rn — G) + 71555 (es — ¢a) -
o A+ 164y
2505 - exp ( 779575
B P\ 1T+2373 ©)
(T +237.3)
s = es(TmaX) + es(Tmin) (7)
2
17.27T, ;
es(Tomax/min) = 0.6108 - exp (%) ®)
max/ min M
RHmax RHpin
- es(Tiin) 100 + 5(Tmax) 100
€q = > )
R=K-Pux (10)
R, =aR+b (11)

where ET) is the reference evapotranspiration under full irrigation (cm-d~1), A is the slope
of the saturated vapor pressure curve (kPa-°C~1), R, is the net radiation of the crop canopy
(MJ-m~2.d™1), G is the soil heat flux density (MJ-m~2-d~"), 7 is the dry and wet table
constant (kPa-°C~1), T is the daily average temperature at the height of 1.5 to 2.5 m above
the surface (°C), Tyyax/min is the daily maximum or minimum air temperature at the height
of 1.5 to 2.5 m above the surface (°C), ¢s is the average saturated vapor pressure at the
height of 1.5 to 2.5 m above the surface (kPa), ¢, is the average actual vapor pressure at
the height of 1.5 to 2.5 m above the surface (kPa), RH,;sy/min is the daily maximum or
minimum relative humidity at the height of 1.5 to 2.5 m above the surface (%), ET,; is the
evapotranspiration of crops on the i-th day under full irrigation (cm/d), K. is the crop
coefficient, R is the total solar radiation (MJ-m~2-d 1), P4y is the photosynthetically active
radiation (MJ-m~2-d~1), K is the conversion coefficient between photosynthetically active
radiation and total solar radiation, and a and b are the conversion coefficients between net
radiation and total radiation.

If G=0, v =0067, K. = 0.7, 1.00 or 0.95 [28], K = 80/39 [29], a = 0.8277, and
b =0.2909 [30], then ET, can be calculated using Formulas (4)-(11) and the indoor tempera-
ture, humidity, and photosynthetically active radiation.

2.3.3. Calculation of Instantaneous Fresh Weight and Fresh Weight Increment

Based on the previous research results of this research group [24], the online, nonde-
structive calculation of the fresh weight of substrate-cultivated lettuce grown in a solar
greenhouse was realized by combining the data of phenotypic characteristics and environ-
mental characteristics. Firstly, the collected lettuce canopy images were used to extract
phenotypic characteristics such as shape, color, and texture. Then, using the online moni-
toring values of temperature and photosynthetically active radiation, cumulative radiant
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heat product was calculated as an environmental factor. Finally, the above factors were
introduced into the model for fresh weight estimation of substrate-cultivated lettuce grown
in a solar greenhouse, and the instantaneous fresh weight of the lettuce was obtained
(Figure 2). The fresh weight increment was obtained by subtracting the instantaneous fresh
weight at one time point from another.

Canopy image : ‘ Pro]ected area of
(m—= ] Sha el
!l Camera L ro;ected penmeter g
of canopy 3
. E} S
Vertical 3 = H
S
shooting < : o
=] i ]
: g
5oy =
b 5 =3
- o= 8
¥
; - =
W ':\J> g
- 'Y Cumulative e
: : diant heat nvironmental
T " ; ! Pho tosynthe tically Mathematical operation *‘ rap;%xa ucea characteristic data |
______ b v | active radiation”_ 1
Al
. f f f R
Photosyntheticall; >

active radiation . o @ r»,;
#.:Vﬁ Sk — 0 0 0——) [ Tin

Instant fresh weight [T ] [1 ] i
of lettuce l fresh weight 1 ‘ ‘ fresh weight 2 ‘ ‘ fresh weight 3 | fresh weight n >

v

Time L
t

A i i

2 3 n
Figure 2. Schematic diagram of calculation of instantaneous fresh weight.

2.4. Exploration of Optimum Response Time in Days

In order to study the optimum response time of the most significant correlations
between cumulative environmental factors and fresh weight growth, a naive Bayesian
network [31-33] was used to establish the relationship model. There were n — k elements
in the dataset, including cumulative environmental factors, instantaneous fresh weight,
and fresh weight increments of the previous k days, and the dataset was divided into a
training set and a test set. The training set was introduced into the naive Bayesian network
for model training, and the test set was used for model testing.

The determination coefficient of the model was calculated by referring to Formula
(12) using predicted values and measured values, and was used to examine the degree of
correlation between predicted values and measured values of the samples in the dataset.
The normal value range is from 0 to 1, and the closer it is to 1, the better the model fits the
data. The calculation formula is as follows:

n 2
2 iy (y_testi —y_pre;)
R*=1- == ’ N (12)
"1 (y_test; — y_mean)

where y_test; is the measured value of the i-th sample in the dataset (g), y_pre; is the
predicted value of the i-th sample in the dataset (g), and y_mean is the average of the
measured values of all samples in the dataset (g).

The coefficient of determination was used as the evaluation index of the model. The
larger the coefficient of determination, the more significant the relationship between cumu-
lative environmental factors and fresh weight growth.
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Environmental

The solution process with the most significant response between cumulative envi-
ronmental factors and fresh weight growth in the previous k days is shown in Figure 3.
The figures on the y axis represent the environmental parameters (temperature, humidity,
photosynthetically active radiation, and carbon dioxide concentration) or the instantaneous
fresh weight of lettuce at a certain time. Firstly, instantaneous fresh weight on day 1, cumu-
lative environmental factors (cumulative radiant heat product, crop evapotranspiration,
and average carbon dioxide concentration), and fresh weight increment from day 1 to day
k + 1 were taken as the first element group in constructing the dataset. The instantaneous
fresh weight on day 2, cumulative environmental factors, and fresh weight increment from
day 2 to day k + 2 were used as the second element group in constructing the dataset.
Correspondingly, instantaneous fresh weight on day n — k, cumulative environmental
factors, and fresh weight increment from day # — k to day n were taken as the last element
group in constructing the dataset, which had a total of n — k element groups. The dataset
was then divided into a training set and a test set, and the training set was substituted into
the naive Bayesian network for model training. Finally, the test set was substituted into
the above model and the determination coefficient was calculated, which was used as the
evaluation index for the significance of the response between cumulative environmental
factors and fresh weight growth in the previous k days.
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Figure 3. Schematic diagram of the solution process for the most significant response between
cumulative environmental factors and fresh weight growth in the previous k days.

2.5. Establishment of Dynamic Fresh Weight Growth Prediction Model

Using the above methods, it was easy to obtain the optimum response time of the most
significant correlations between cumulative environmental factors and the fresh weight
growth of substrate-cultivated lettuce grown in a solar greenhouse. Thus, a dynamic fresh
weight prediction model was constructed, using the collected data to predict the dynamic
fresh weight growth of lettuce.
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2.5.1. Predicting the Fresh Weight on the Next Day

Firstly, a dataset labeled 1 is constructed using instantaneous fresh weight, cumulative
environmental factors, and fresh weight increment in the previous k days from day 1
to day ng, with a total of 1y — k elements. The dataset labeled 1 is imported into the
naive Bayesian network for training and testing of the model. Then, instantaneous fresh
weight on day 1y — k + 1 and cumulative environmental factors from day ng — k + 1 to
day ng + 1 are taken as the inputs of the above model, and the fresh weight increment
from day 1y — k + 1 to day ng + 1 is derived by substituting the above model. Finally, the
instantaneous fresh weight on day 7 + 1 is calculated and the relative error is calculated.
The specific calculation formula is as follows:

My = Mg + Antyy (13)

mo m
RE = [Mio— Mno] (14)

Muo
1 «n
MRE =~ Y| RE; (15)
1 2

o= \/ — Y. (RE;— MRE) (16)

where Am],_, is the predicted value of fresh weight increment from day g to day k (g),
is the measured value of instantaneous fresh weight on day k (g), 11/, is the predicted value
of instantaneous fresh weight on day n (g), m,0 is the measured value of instantaneous
fresh weight on day ng (g), RE is the relative error between the predicted value and
measured value of instantaneous fresh weight (%), MRE is the mean relative error (%), and
0 is the standard deviation of relative error (%).

2.5.2. Predicting the Fresh Weight in the Next 2 Days

(@ Using the method of predicting the fresh weight on the next day, the fresh weight
increment from day ny — k — 1 to day ng + 1 can be obtained.

@ The instantaneous fresh weight on day nyp — k + 1, cumulative environmental
factors, and predicted fresh weight increment from day ng — k + 1 to day ng + 1 are taken
as the last element group to construct a new dataset labeled 2, with a total of nyp — k + 1
elements. The dataset labeled 2 is imported into the naive Bayesian network for training
and testing of the model.

(® The cumulative environmental factors from day ny — k + 2 to day ny + 2 and the
instantaneous fresh weight on day ny — k + 2 are taken as the inputs of the above model,
and the fresh weight increment from day ny — k + 2 to day ng + 2 is derived by substituting
them into the above model.

@ With reference to Equations (13) and (14), the instantaneous fresh weight on day
1y + 2 and the relative error are calculated.

2.5.3. Predicting the Fresh Weight in the Next my Days

Schematic diagram of the solution process for predicting fresh weight in the next m
days based on the phenotypic and environmental data from the previous k days is shown
as Figure 4.
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Figure 4. Schematic diagram of the solution process for predicting fresh weight in the next m days
based on the phenotypic and environmental data from the previous k days.

(@ According to the method of predicting the fresh weight in the next 2 days, the fresh
weight increment from day 1y — k — 2 to day ng + 2 can be obtained.

(@ By analogy, the instantaneous fresh weight on day 1y — k + my — 1, cumulative
environmental factors, and predicted fresh weight increment from day ng — k + my — 1 to
day ng + mg — 1 are taken as the last element to construct a new dataset labeled 1y, which
has a total of 1y — k + mp — 1 elements. The dataset labeled 1 is imported into the naive
Bayesian network for training and testing of the model.

(® The cumulative environmental factors from day 1y — k + mg to day ny + mg and the
instantaneous fresh weight on day ng + m are taken as the inputs of the above model, and
the fresh weight increment from day ng — k + my to day ng + my is derived by substituting
them into the above model.

@ With reference to Equations (13) and (14), the instantaneous fresh weight on day
ng + myp and the relative error are calculated.

Therefore, through the above methods, the future fresh weight can be predicted using
phenotypic and environmental data. For example, if instantaneous fresh weight on the
next day is predicted, the cumulative environmental factors from day 1y — k + 1 to day
ng + 1 will be used, which from day 1y — k + 1 to day n are real and known. However,
the cumulative environmental factors from day 7 to day 19 + 1 have not occurred and are
unknown. Even if there is an error in estimating the environmental factors from day g
to day np + 1, the impact on the accuracy of the cumulative environmental factors from
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day np — k + 1 to ng + 1 is only 1/k. The overall error generated in fresh weight dynamic
prediction is not too large.

3. Results and Discussion
3.1. Fresh Weight Growth Curve of Lettuce

It can be seen from Figure 5 that on both sunny and cloudy days, the changes in fresh
weight at nighttime are not obvious, while the changes in fresh weight during the daytime
are relatively obvious. The fresh weight tends to decrease in the morning when the sun
suddenly becomes stronger. The fresh weight then rises slowly and gradually recovers.
When the sun is shining brightly at noon, the fresh weight tends to decrease again. The fresh
weight recovers slowly in the afternoon, and it tends to remain stable. The main reason is
that the transpiration during the daytime is obviously higher than that at nighttime [34],
and the lettuce water content changes faster under the high temperatures, strong light,
and low humidity of the daytime. Transpiration is an important indicator for measuring
plant water content [35], and its strength is closely related to the degree of water loss in
plants [36]. Moreover, water absorption through roots is the main way that water content is
maintained in plants [37]. When the water lost by transpiration is higher than that absorbed
by roots, the fresh weight of lettuce shows a downward trend. With the decrease of water
content in a lettuce plant, a larger pull force is created, forcing the root to absorb more water
to maintain normal metabolism and to supplement the water lost through transpiration.
When the rate of water absorption by the roots increases slowly, approaching and exceeding
the rate of water loss by transpiration, the fresh weight decreases slowly, stops gradually,
and begins to increase. Finally, the fresh weight approaches the previous fresh weight
range. During the processes of losing water through transpiration and absorption of water
through the roots, and with the increase of photosynthesis of the lettuce leaves, the content
of organic matter produced by photosynthesis gradually increases in the plant, making
the lettuce larger in volume and allowing more water to be stored in the plant. The fresh
weight of lettuce will then increase.

Changes of instantaneous fresh weight Changes of instantaneous fresh weight
- with time with time
= 60 & 80 -
e, z
4 =
45 + 2 60
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= i
s 30 F &40 W
= _W—m—.—.—'—.—.—.—.—.
8 ]
= °
g 15t S 20
E 8
2 =]
k= 8
0 L L Eo0
0 9 12 15 18 21 0 3 6 9 12 15 18 21
Time/h Time/h

(@ (b)

Figure 5. Fresh weight growth curves in different weather conditions. (a) On a cloudy day, (b) on a
sunny day.

By comparing the change of fresh weight on a sunny day with that on a cloudy day, it
was found that the variation in fresh weight growth on the sunny day was higher than that
on the cloudy day. This was mainly due to the higher temperatures, stronger illumination,
and lower humidity on the sunny day than on the cloudy day, meaning that the volumes of
water lost through transpiration and absorbed by the roots were greater and the variations
of fresh weight were stronger. There is no sunlight at nighttime and there is little change in
temperature and humidity. The water lost by transpiration and the water absorbed by roots
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is relatively stable. At the same time, compared with a cloudy day, lettuce has a higher level
of photosynthesis and accumulates more organic matter on a sunny day, which enables
lettuce to absorb more water, increasing its fresh weight.

In order to accurately construct the relationship between the environmental factors
and fresh weight growth, the calculation time of cumulative environmental factors and
instantaneous fresh weight of lettuce was set at 8:00 AM.

3.2. Optimum Response Time

It can be seen from Figure 6 that the response relationship between cumulative envi-
ronmental factors and fresh weight growth over different cumulative days was different
during the growth process among different samples in the same batch. With the increase in
the number of cumulative days, the predicted determination coefficient showed a trend of
increase at first. There was an individual decline in this process, but it did not affect the
trend of increase. When the cumulative time reached 12 days, the determination coefficients
for samples 1, 2, and 3 reached maximum values of 97.02%, 95.64%, and 97.06%, followed
by a trend of decrease. In this process, there was an individual increase, but it did not
affect the decreasing trend. The optimum response time of the most significant correlation
between cumulative environmental factors and fresh weight growth among the different
samples in the same batch was 12 days.

Response relationship between cumulative Response relationship between cumulative Response relationship between cumulative
environmental factors and fresh weight - environmental factors and fresh weight - environmental factors and fresh weight
growth in different cumulative days b growth in different cumulative days 3 growth in different cumulative days

2 100% 2100%
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Figure 6. The response relationship between cumulative environmental factors and fresh weight
growth among the different samples in the same batch. (a) Sample 1, (b) sample 2, (c) sample 3.

It can be seen from Figure 7 that the response relationship between cumulative environ-
mental factors and fresh weight growth in different cumulative days was different during
the growth process among the different samples in different batches. With the increase of
cumulative days, the determination coefficient showed a trend of gradual increase at first.
In this process, there was a decline in some cases, but it did not affect the trend of increase.
When the determination coefficient reached the maximum value, it began to decrease. In
this process, there was an increase in some cases, but it did not affect the decreasing trend.
In the samples from the first batch, the coefficient of determination reached a maximum
value of 97.57% for 13 cumulative days. The determination coefficient for 12 cumulative
days was 97.29%, which was very close to the maximum value of the determination co-
efficient, and only 0.28% lower. In the samples of the second batch, the determination
coefficient reached a maximum value of 94.14% for 13 cumulative days. The determination
coefficient for 12 cumulative days was 93.47%, which was very close to the maximum value
of the determination coefficient, and only 0.67% lower. In the samples of the third batch,
the determination coefficient reached a maximum value of 97.72% for 10 cumulative days.
The determination coefficient for 11 cumulative days was 97.39%, which was very close to
the maximum value, and only 0.33% lower. The determination coefficient for 12 cumulative
days was 97.09%, which was very close to the maximum value, and only 0.63% lower.
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Figure 7. The response relationship between cumulative environmental factors and fresh weight
growth among the samples in different batches. (a) Samples from the first batch, (b) samples from
the second batch, (c) samples from the third batch.

It can be seen in Table 1 that with the increasing number of cumulative days, the aver-
age value of the determination coefficient in the three batches of samples showed a trend
of first increasing and then decreasing. When the cumulative time reached 12 days, the
average of the determination coefficient reached its maximum value of 95.95%, indicating
that the optimum response time of the most significant correlation between cumulative
environmental factors and fresh weight growth among different samples in the different
batches was 12 days.

Table 1. Numerical distribution table of adjacent regions with maximum values of the coefficient of
determination in different batches.

Cumulative First Batch Second Batch Third Batch

Days Samples Samples Samples Average
10 0.9117 0.7976 0.9772 0.8955
11 0.9122 0.8339 0.9739 0.9067
12 0.9729 0.9347 0.9709 0.9595
13 0.9757 0.9414 0.8866 0.9346

3.3. Using Batch Data to Predict the Dynamic Fresh Weight of Lettuce

It is obvious from Figure 8 that the fresh weight on the next day can be predicted by
using only the data from the current batch (MRE; = 6.25%, 01 = 7.05%). The relative error
(Figure 9) of predicting fresh weight using only the data from the current batch fluctuated
greatly at first, and there was one point with a relative error of 40.9%. Subsequently, the
relative error fluctuation began to stabilize. This is mainly because the number of elements
constructed from the data of the current batch was relatively small at the initial stage, and
the accuracy of the model trained by the naive Bayesian network was relatively low. With
the increase of the number of elements in the dataset, the accuracy of the model trained by
the naive Bayesian network gradually improved, and the relative error started to decrease.

It can be seen from Table 2 that only the data from the current batch were used to
predict fresh weight, and the relative error gradually increased with the increasing number
of future days (MRE: 6.25% < 6.50% < 7.88%, 0: 7.05% < 6.76% < 11.17%). The data from
the current batch with the introduction of another batch were used to predict fresh weight,
and the relative error had a tendency to increase with the increasing number of future
days (MRE: 4.86% < 5.57% < 6.50%, 0: 5.77% < 6.04%, 5.77% < 5.78%). The data from
the current batch with the introduction of another two batches were used to predict fresh
weight, and the relative error gradually increased with the increasing number of future days
(MRE: 4.35% < 5.40% < 5.29%, 0: 4.87% < 5.38% < 6.11%).
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Figure 8. Prediction of fresh weight on the next day. Note: Predicted value 1 is the value of fresh
weight on the next day predicted using the data of the current batch. Predicted value 2 is the value of
fresh weight on the next day predicted by introducing another batch. Predicted value 3 is the value
of fresh weight on the next day predicted by introducing the data from another 2 batches.

The relative error of predicting fresh weight on day n

50
. 40
I3
5
5 30 |
o
B
5 20 f
2
=
=

10

0

12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Day/d

Figure 9. The relative error of predicting fresh weight using only the data from the current batch.

Table 2. Prediction of fresh weight error over the next 3 days.

Error Day 1 in the Future Day 2 in the Future Day 3 in the Future
Batches MRE o MRE o MRE o
Current batch 6.25% 7.05% 6.50% 6.76% 7.88% 11.17%
Introducing another batch 4.86% 5.77% 5.57% 6.04% 6.50% 5.78%
Introducing another 2 batches 4.35% 4.87% 5.40% 5.38% 5.29% 6.11%

As shown in Figure 10, the data from the current batch were used to predict the fresh
weight in the future. With the increasing number of future days, the MRE of fresh weight
prediction gradually increased. In other words, the accuracy of predicting fresh weight in
the future gradually decreased, and the MRE of fresh weight prediction over 4 days based
on data from the current batch was not more than 9.57%.
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Figure 10. Comparison chart of the mean relative error of predicted future fresh weight.

Upon introducing another batch of data, the MRE of fresh weight prediction gradually
increased with the increasing number of future days. However, it was lower than that of
the fresh weight predicted using only the data from the current batch, and the MRE of fresh
weight prediction in the next 7 days based on the introduction of another batch of data was
not more than 8.53%, indicating that the accuracy of predicting fresh weight was improved
by introducing another batch.

After introducing the data from another two batches, the MRE of fresh weight pre-
diction tended to increase with increasing number of future days. However, it was lower
than that for the fresh weight predicted using the data with only one additional batch, and
the MRE of fresh weight prediction over 9 days based on the introduction of data from
another two batches was not more than 9.68%, indicating that the accuracy of the fresh
weight prediction could be further improved by introducing more batches.

4. Conclusions and Future Work

A dynamic fresh weight growth prediction model based on phenotypic and environ-
mental batch data was proposed, and was used to predict the dynamic fresh weight growth
of substrate-cultivated lettuce in a solar greenhouse under normal water and fertilizer
conditions. The computation of cumulative environmental factors and instantaneous fresh
weight of batches of lettuce was achieved. The optimum response days were explored
through the most significant correlations between cumulative environmental factors and
fresh weight growth. A dynamic fresh weight prediction model was established using a
naive Bayesian network based on cumulative environmental factors, instantaneous fresh
weight, and fresh weight increments of batches. Experimental results showed that the
calculation time setpoint of cumulative environmental factors and instantaneous fresh
weight of lettuce was 8:00 AM and the optimum response time was 12 days. The MRE of
fresh weight prediction over 4 days based on data from the current batch was not more
than 9.57%; upon introducing another batch of data, the prediction over 7 days dropped
to not more than 8.53% MRE; upon introducing another two batches, the prediction over
9 days dropped to not more than 9.68% MRE, proving the model’s feasibility.

In future work, the proposed dynamic growth prediction model of fresh weight
will be integrated with an automatic management system and sensing data to support
an autonomous fertigation strategy for substrate-cultivated leafy vegetables in a solar
greenhouse system, playing an important role in promoting the automatic cultivation and
management of vegetables in agricultural applications.
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Abstract: To improve the automation, welding efficiency, and welding quality of duckbill welding of
the cotton seeder, this study designed a cotton seeder duckbill welding robot. According to the char-
acteristics of the duckbill weldment and welding requirements, the overall structure of the welding
robot was determined, including the girdle feeding mechanism, static duckbill feeding mechanism,
hinge feeding mechanism, welding fixture, welding actuator, and control system. To realize the
continuous automatic feeding, positioning, fixing, welding, and unloading of the workpiece in the
duckbill welding, the feeding mechanism adopts the method of cooperative cooperation of inductive
proximity switch, electromagnet, and cylinder. The main body of the welding fixture adopts the
pneumatic clamping method; the welding actuator adopts the synchronous belt module electric drive
so that the welding torch can move in a straight line along the X axis and the Z axis. The welding
process of the duckbill was simulated by Simufact Welding software, and the deformation and stress
changes of the weldment were compared and analyzed when the single-sided single welding, the
bilateral symmetrical double welding torch, two welding forms, and two welding process parameters
were used to determine the welding process parameters of the welding robot. The prototype was
made and the welding test was carried out. The test results show that the duckbill welding robot of
the cotton seeder has stable feeding, solid clamping, accurate positioning, and high welding efficiency.
According to the national standard, the appearance of the duckbill weld is inspected. The surface of
the duckbill weld and the heat-affected zone has no cracks, incomplete fusion, slag inclusion, crater,
and porosity. The forming quality of the welded parts is good. The design of the duckbill welding
robot for cotton seeder is helpful in solving the problems of cumbersome positioning and clamping
and low efficiency in manual and semi-automatic duckbill welding robots, which provides a strong
guarantee for the large-scale and standardized welding production of the dibbler duckbill.

Keywords: cotton seeder; duckbill; Simufact Welding; welding robot; automated welding

1. Introduction

The plastic mulching technique is one of the most widely used and effective technical
measures to improve soil water storage capacity and plant water use efficiency [1,2]. At
present, cotton sowing in Xinjiang is based on the method of sowing on film, which is
carried out on the soil covered with the film [3,4]. The duckbilled dibbler is used for sowing
on film in Xinjiang. The duckbill of the dibbler will cut the film at the sowing position
and form holes in the soil. The welding quality of the duckbill of the dibbler is the key to
affecting the quality of the hole and the speed of operation [5].

The number of welded duckbills in Xinjiang is about millions every year. Before 2017,
the welding method of cotton planter duckbill was manual welding. Welding workers
manually position, fix, and weld the three parts of the duckbill, static duckbill, hinge,
and girdle. Manual welding has the following problems: unstable welding quality, low
efficiency, high labor intensity, and low degree of automation. In 2017, we developed a semi-
automatic duckbill welding robot. This semi-automatic welding robot needs to be loaded,
positioned, fixed, and unloaded manually, and the welding operation is completed by the
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robot. The welding robot improves the welding efficiency of the duckbill. The purpose
of this study is to further improve duckbill welding automation, welding efficiency, and
welding quality, as well as reduce the labor intensity of welding duckbills.

There are many ways to improve welding efficiency and welding quality. For example,
on the one hand, some research can be conducted on harmonic drive transmission [6-8].
This method can improve the welding quality by improving the positioning accuracy of
the welding robot manipulator. On the other hand, according to the characteristics of the
welding object and the welding requirements, a special welding robot can be designed
to replace manual welding [9-13]. For example, Siileyman ERSOZ et al. [14] proposed
a robot system that can automatically complete measurement and welding operations
for products that are difficult to manually complete standard measurement or welding
operations. Namkug Ku et al. [15] designed a self-driving mobile welding robot for double-
hull structures in shipbuilding. Stephen Mulligan et al. [16] developed and demonstrated an
autonomous, mobile welding robot capable of fabricating large-scale customized structures.
Jiang Yi et al. [17] designed a series-parallel-series hybrid structure mobile welding robot
for welding corrugated plates of liquefied natural gas (LNG) membrane tanks. At present,
there is little research on the application of special welding robots in the field of duckbill
welding of the cotton planters.

Different from the traditional plane welding operation, the weld of the duckbill part
is a fillet weld. Its processing technology is complex, the welding workload is large, and
the weld is prone to defects [18]. The traditional welding process relies on experience
to determine the amount of deformation, the reasonable welding method, and welding
process parameters, which rely on experience and cannot fully and quantitatively grasp
the law of welding deformation. With the development of finite element technology, the
welding simulation is fully applied to the actual production and used to guide the process
design and gradually became an effective means to provide technical support for the control
of process measures in the welding robot manufacturing process [19-22].

To design a duckbill welding robot to improve the welding quality, stability, and
welding efficiency of the duckbill parts of the cotton seeder, this study first analyzes the
characteristics of the duckbill parts and then uses Simufact Welding software to simulate
and analyze the duckbill welding process, which effectively provides technical support
for the welding deformation control process measures of the duckbill welding robot in
the manufacturing process. Finally, a cotton seeder duckbill welding robot is designed,
and the reliability of the welding robot is verified by the welding test. The research results
provide ideas for further improving the quick automatic feeding, clamping, positioning,
and welding of the duckbill of the dibbler, as well as provide basic and technical support
for the automatic welding of the duckbill of the dibbler.

2. Welding Object Characteristics
2.1. Assembly Structure of Duckbill Welding Parts

The assembly relationship diagram of duckbill welding parts is shown in Figure 1.
The dibbler is one of the key components of the cotton mulching seeder, which is used to
complete the seeding process. Sowing quality has a significant impact on crop growth and
yield [23,24]. The duckbill part cuts the film at the seeding position during the seeding
operation and forms holes in the soil. The duckbill is welded by three parts: the static
duckbill, hinge, and girdle. The welding quality has a very important influence on the
hole-forming effect of the dibbler and the seed falling position.
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Figure 1. The assembly relationship diagram of duckbill welding parts.

2.2. Material Properties of Duckbill Welding Parts

As shown in Figure 2, the duckbill of a cotton seeder is composed of a girdle, static
duckbill, and hinge, and its structural parameters are shown in Table 1. The material
of duckbill parts is Q235, which is an ordinary carbon structural steel. The chemical
composition and mechanical properties are shown in Table 2. Q235 has low carbon and
alloy element content and excellent welding performance. Generally, special process
measures, such as preheating and post-weld heat treatment, are not required during
welding. However, when the incorrect welding form is adopted, the appearance of the
weld will also appear poor, forming cracks.

Girdle Static duck bill ~ Hinge  Duckbill component

Figure 2. Physical drawing of the duckbill welding parts of the cotton seeder.

Table 1. Structural parameters of duckbill welding parts.

Parts Length (mm) Width (mm) Thickness (mm) Height (mm) Mass (g)

Girdle 78.12 68.30 211 5.90 73.046
Static duck bill 34.09 27.52 2.57 74.97 77.747

Hinge 69.02 36.11 2.08 7.97 39.281

Table 2. Material properties of Q235.

C (Mass Fraction)/% Mn Si S P
0.14~0.19 0.30~0.65 0.30 <0.050 <0.045
Tensile strength (MPa) Yield point (MPa) Elongation (%)
375~500 235 26
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2.3. Weld and Welding Requirements Analysis

As shown in Figure 3, the weld of the duckbill welding part is two fillet welds, which
are: weld 1 formed by the static duckbill and the hinge and girdle, and weld 2 formed on
another back symmetrical surface.

Statie duck bill | [\,

Weld 1

Figure 3. The weld diagram of duckbill welding parts.

An inappropriate welding process will increase the deformation of duckbill welding,
resulting in the following problems: (1) the girdle and seeding wheel being difficult to
assemble; (2) the following performance being affected; and (3) the quality of the hole being
unstable. Duckbill parts in the process of sowing operation need to film soil punching and
work under great pressure. The duckbill parts of the welding quality requirements are very
high, including the ability to weld duckbill weld surface without cracks, crater shrinkage,
and welding tumor defects.

3. Simulation and Analysis of the Welding Process

Welding deformation is the most important factor affecting welding quality. Welding
deformation will lead to a manufacturing delay, economic cost, and reduced productivity.
Excessive deformation may seriously damage manufacturing in extreme cases, leading to
failure [25]. At the same time, high welding residual stresses in the weld can adversely
affect the safety and performance of welded components [26,27]. In this study, Simufact
Welding software is used to simulate the welding process of duckbill welding parts, and the
influence of deformation and the stress of weldments under a single-sided single welding
torch and bilateral symmetrical double welding torch, two welding forms, and two welding
process parameters, is analyzed.

3.1. Heat Source Model

In welding simulation, a reasonable heat source model is very important for the
accurate calculation of post-weld deformation and welding stress [28]. To realize the
simulation calculation, the commonly used heat source models are the classical Gaussian
distribution heat source model and the double ellipsoid heat source model [29,30]. The
Gaussian model can obtain better calculation accuracy for planar high-energy beam welds
in simulation calculations. The double ellipsoid heat source model is more close to the
actual welding situation of a fillet weld, so this study chooses the double ellipsoid heat
source model for calculation.

The heat flux density expression of the front part of the double ellipsoid heat source is:

_ 6V3figo exp 73x2 3y? B 322

qr(x,y,z) = abe; T ( SRy ﬁ) €]
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The heat flux distribution expression of the second half of the double ellipsoid heat
source is: /3 5 ) 5
6v/3ftq0 3x¢ 3y~ 3z
'Y = . 2
qb(x Y Z) abey It ex ( C% 22 B2 2

In the formula: g4, b, s and c;, are oval shape parameters of the heat source; g is the
heat input power, and g¢ = 7UI; and ]5:, fp are the heat flux distribution coefficients of the
ellipsoid before and after the heat source, f; + f, = 2.

3.2. Establishment of Welding Model

The solid model of duckbill welded parts was established by SolidWorks, and then
the model was imported into Hypermesh for hexahedral meshing. The number of finite
element mesh nodes was 37,394, and the number of finite elements was 27,997. The divided
model was imported into Simufact Welding for assembly and configuration, as shown in
Figure 4. In this study, the weldment material is Q235, and the energy input per unit length
of the weld (line energy) is calculated according to Equation (3).

Q=44 ®3)

[

Model legend
Fixture-7
Fixture-6
Fixture-5
Fixture-4
Fixture-3
Fixture-2
Fixture-1
Supporting platform
Girdle
Hinge
Static duck bill

Figure 4. Meshing model of duckbill welding parts.

In the formula: Q is the line energy; I is the welding current; U is the welding voltage;
v is the welding speed; and 7 is the welding thermal efficiency. As the weld of duckbill
weldment is fillet weld, the welding heat is relatively concentrated. In this study, the
welding thermal efficiency is taken as 0.8 in the simulation process [31].

3.3. Welding Simulation Results and Analysis
3.3.1. Effect of the Unilateral Single Welding Torch and Bilateral Symmetrical Double
Welding Torch on Welding Deformation and Stress

Figure 5 shows the deformation of the duckbill welding parts under the single welding
torch and the bilateral symmetrical double welding torch. By comparing and analyzing
their total displacement cloud diagrams, the following conclusions were obtained: The area
of deformation was larger under the condition of the single welding torch. This is because
the two sides of the workpiece are uniformly heated and uniformly contracted at the same
time by using the bilateral symmetrical double welding torch to reduce the distribution of
welding deformation. The maximum displacement difference under the two conditions is
0.09 mm.
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(a) (b)

Figure 5. Total displacement diagram of the single welding torch and bilateral symmetrical double
welding torch. (a) Single welding torch; (b) bilateral symmetrical double welding torch.

Figure 6 shows the equivalent stress diagram under the condition of the single welding
torch and the bilateral symmetrical double welding torch. It can be seen from the figure
that under the two conditions, the equivalent stress decreases rapidly from the center of
the weld generation area, and then tends to be gentle until it is close to zero. A large stress
is generated in the weld zone, which is one of the main reasons for the deformation of the
static duckbill. After welding, the weldment is cooling, and the volume shrinkage around
the weld is caused by the decrease in temperature. However, the weldment is constrained
to prevent its shrinkage, so large tensile stress is generated in the weld area. Under both
conditions, the maximum stress difference produced by the duckbill component is 7.28 MPa,
but welding a duckbill component with a single torch takes more time than with a bilateral
symmetrical double torch. Therefore, this study finally chose the welding method of the
bilateral symmetrical double welding torch.

(a) (b)

Figure 6. Equivalent stress diagram under the condition of the single welding torch and bilateral
symmetrical double welding torch. (a) Single welding torch; (b) bilateral symmetrical double
welding torch.

3.3.2. Effect of Welding Form on Welding Deformation and Stress

Figure 7, respectively, shows the use of continuous welding and spot welding under
the two forms of total displacement cloud. From Figure 7, it can be seen that the displace-
ment areas of the two were mainly distributed at the top of the static duckbill, and the
deformation of the rest was relatively small. This is because the deformation of the fixed
part is smaller than that of the free part. The position and deformation of the fixed part
will be greatly limited under the action of the clamping device, so the thermal deformation
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is reduced during the welding cycle. The maximum displacement of continuous welding
is 0.98 mm, and that of spot welding is 0.26 mm. This is because in the weld, continuous
welding, compared to spot welding, outputs greater thermal energy.

Total displacemont [mm)
0.98
0.89

(@) (b)

Figure 7. Total displacement diagram under continuous welding and spot welding conditions.
(a) Continuous welding; (b) spot welding.

Figure 8 is the equivalent stress diagram of continuous welding and spot welding. It
can be seen from Figure 8 that the stress distribution of spot welding is smaller than that
of continuous welding, and the difference in their maximum stress value is 121.89 MPa.
Their stress distribution is similar, the stress distribution appears to diffuse from the weld
to the distance and then weaken, but it is obvious that the stress distribution of continuous
welding is wider and wider. This study finally chose the welding form of spot welding.

Equivalent stress [WPa]
499,41
449,47
399. 53
349,59
209,65
249.71
199.76
149, 82
90.88
49.94

@) (b)
Figure 8. Equivalent stress diagram under continuous welding and spot welding. (a) Continuous
welding; (b) spot welding.

3.3.3. Effect of Welding Process Parameters on Welding Deformation and Stress

Figure 9 is the total displacement diagram of the duckbill welded parts when the
welding speed is 4 mm/s and 10 mm/s. It can be seen from the figure that the total
displacement difference between the two welding speeds is 0.13 mm, but at the welding
speed of 4 mm/s, the deformation area is relatively larger. This is because the deposition
amount of the wire metal on the unit-length weld is inversely proportional to the welding
speed, and the melting width is inversely proportional to the square of the welding speed.
Therefore, when the welding speed increases, the energy decreases, the penetration depth
and width decrease, and the deformation area is relatively reduced.
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Figure 9. Total displacement diagram at the welding speed of 4 mm/s and 10 mm/s; (a) 4 mm/s;
(b) 10 mm/s.

Figure 10 is the equivalent stress diagram under the two welding speeds of 4mm/s
and 10 mm/s. As can be seen from the figure: 4 mm/s welding speed under the maximum
equivalent stress is larger and the equivalent stress of a wider range of areas. Welding
speed is directly related to the size of the welding productivity, and to obtain the maximum
welding speed, should be on the premise of quality assurance as far as possible, according
to the specific circumstances of the appropriate adjustment of welding speed, to ensure
that the weld height and width are the same. In this study, the welding speed is finally
selected as 10 mm/s.

Eauivalent stress [WPal

(@) (b)
Figure 10. Equivalent stress diagram at the welding speed of 4 mm/s and 10 mm/s; (a) 4 mm/s;
(b) 10 mm/s.

4. Design of Duckbill Welding Robot for Cotton Seeder
4.1. Structure Composition and Working Principle

The duckbill welding robot of the cotton planter is mainly composed of a girdle
feeding mechanism, static duckbill feeding mechanism, hinge feeding mechanism, support
table, welding fixture, welding actuator, and control system, as shown in Figure 11.

Working process: Firstly, the girdle feeding mechanism completes the girdle feeding,
and then the hinge and the static duckbill feeding structure completes the feeding work
in turn. After the three welding parts of the girdle, the hinge, and the static duckbill are
all loaded, the workpiece enters the position to be welded, the clamping cylinder works
to clamp the workpiece, and the welding actuator moves and performs welding. After
the welding is completed, the welding platform is opened, and the weldment falls to
the ground.
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Figure 11. Structure diagram of duckbill welding robot for cotton seeder. 1. Girdle feeding mech-
anism; 2. static duckbill feeding mechanism; 3. hinge feeding mechanism; 4. support platform;
5. welding fixture; 6. welding actuator.

4.2. Design of Girdle Feeding Mechanism

According to the analysis of the assembly requirements of the duckbill parts, the
feeding mechanism needs to meet the following requirements: (1) the hinge and the girdle
should be vertical; (2) the static duckbill and the hinge are symmetrically distributed in
the transverse center when they are matched with the girdle; (3) the static duckbill should
avoid shielding girdle under the mouth. According to the above assembly requirements
and the structural parameters of duckbill welding parts, the feeding structure is designed.
The feeding mechanism realizes the sequential feeding action of welded parts through the
cooperation of an inductive proximity switch, electromagnet, and cylinder.

The structure size of the girdle feeding mechanism is 800 mm x 68 mm x 22 mm. It
adopts a modular design and is installed on the support platform through the aluminum
profile pillar. The working process is as follows: When the inductive proximity switch
detects that there is a girdle in the storage chute, the electromagnet is energized and absorbs
the second girdle, and the cylinder shrinks. The first girdle falls freely to the girdle waiting
area due to gravity, and finally, the mini cylinder pushes the girdle into the welding area.
The girdle feeding mechanism is shown in Figure 12.

Figure 12. Structure diagram of the girdle feeding mechanism. 1. Welding area; 2. girdle blanking
waiting for area; 3. cylinder; 4. inductive proximity switch; 5. electromagnet; 6. storage chute;
7. girdle; 8. mini cylinder.
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4.3. Design of Static Duckbill and Hinge Feeding Mechanism

To save space, the static duckbill feeding mechanism and the hinge feeding mechanism
adopt an integrated design, and the assembly relationship of the parts is shown in Figure 13.
The static duckbill and the hinge feeding mechanism are equipped with fixed plates to fix
inductive proximity switches, electromagnets, and cylinders.

Guide bar, .
7

< ~
Partial enlarged section view

ouanbas Ajquiassy

Assembly relation of parts of static duck bill and hinge feeding mechanism

Figure 13. Structure diagram of static duckbill and hinge feeding mechanism. 1. Block cover;
2. cylinder; 3. inductive proximity switch; 4. electromagnet; 5. static duckbill; 6. arc feeding plate;
7. girdle; 8. connecting plate; 9. storage chute; 10. fixed plate 2.

The width of the storage chute of the hinge feeding mechanism is bent according to
the dimensions of the hinge, and the bending angle is 90°. To ensure that the hinge is
perpendicular to the girdle during blanking, the lower end of the storage chute adopts a
circular arc design, and its arc inner diameter is 100 mm. To prevent the hinge from sliding
out of the arc guide rail when feeding, the guide bars are symmetrically distributed on both
sides to guide and limit displacement. The verticality of the hinge is ensured by limiting
the outer side of the guide bar and the arc guide rail. The guide bar is shown in the partially
enlarged section view in Figure 13.

The main component of the static duckbill feeding mechanism is an arc feeding plate,
and the arc feeding plate is connected with the hinge storage chute through a connecting
plate. When the static duckbill is feeding, the contact with the feeding plate is strip contact,
and the contact area is small, which greatly reduces the friction when sliding. When
sliding, the static duckbill slides along the outer edge of the arc feeding plate. To prevent
it from sliding out directly at the outer arc position, a block cover is placed at the lug of
the hinge storage chute. The feeding accuracy of the static duckbill will directly affect the
welding quality. Therefore, there are multiple through holes on the arc feeding plate and
the connection plate, respectively, and the porous coordination ensures structural stability.
The static duckbill and hinge feeding mechanism structure diagram is shown in Figure 13.

4.4. Design of Welding Fixture

As shown in Figure 14, the welding fixture is mainly composed of three parts: girdle
clamping mechanism, hinge clamping mechanism, and static duckbill clamping mechanism.
The girdle clamping device is positioned by a limit block and clamped by a girdle pusher.
The girdle first slides down from the girdle storage chute to the girdle waiting area, and
the girdle push plate sticks out. According to the four-point positioning principle, the
transverse and longitudinal positioning and clamping of the girdle are completed.
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Figure 14. Structure diagram of welding fixture. 1. Limit block; 2. limit block; 3. limit block;
4. welding workbench; 5. static duckbill clamping device; 6. girdle push plate; 7. static duckbill;
8. hinge; 9. hinge clamping device; 10. girdle; 11. limit block.

The hinge clamping mechanism is composed of a guide bar and a hinge push plate.
The guide bar is close to the side wall of the storage chute, symmetrically distributed on
both sides, and plays a guiding and limiting role to the hinge. The guide bar is shown
in the partially enlarged section of Figure 13. After the hinge is loaded onto the welding
platform, the hinge is pushed out to complete the positioning of the hinge.

The static duckbill clamping mechanism is mainly composed of a cylinder and clamp
push plate. The arc feeding plate supports and guides the static duckbill. After the static
duckbill slides down to the welding workbench, the clamp push plate is pushed out to
complete the horizontal and vertical positioning of the static duckbill.

The bottom of the welding workbench is composed of two welding bottom plates and
two cylinders. The welding workbench can open and close under the action of the cylinder.

4.5. Welding Actuator

The schematic diagram of the welding actuator is shown in Figure 15. The welding
actuator can move back and forth in a straight line along the X axis and Z axis. The stroke
in the X axis direction is 100~150 mm, and the stroke in the Z axis direction is 150~200 mm.
The double welding torch is symmetrically distributed on the welding torch bracket of the
X axis linear slider. The movement of the X axis and Z axis is completed by the stepper
motor electric drive synchronous belt module, and the movement speed is controlled by
Siemens S7-1200PLC and the stepper motor driver. The Z axis selection has a brake stepper
motor, which is locked when power fails, to prevent sliding.

Figure 15. Welding actuator structure diagram. 1. Welding torch; 2. welding torch bracket; 3. X axis
linear slider; 4. Z axis linear slider.

4.6. Control System Design

The cotton seeder duckbill welding robot controller is the Siemens S7-1200PLC. The
communication between PLC and human-machine interaction (HMI) is Ethernet. PLC
realizes manual and automatic control of the girdle, static duckbill, and hinge feeding
operation. It also controls welding parameters, fixtures, welding actuators, and welding
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platforms. HMI enables manual and automatic program switching of welding robots and
monitors the working conditions of welding robots to ensure the safe and smooth operation
of welding operations. The control system flow chart is shown in Figure 16.
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Figure 16. Control system flow chart.
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5. Results and Discussion
5.1. Cotton Seeder Duckbill Welding Robot Test Results and Analysis

The welding wire used in the welding test is a 1.2 mm diameter solid wire (JQ-MG50-6;
Tianjin Golden Bridge Welding Materials Group Co., Ltd., Tianjin, China), the protective
gas is a mixture of CO; and argon gas, and the cotton planter duckbill welding robot was
tested. The welding process parameters used in the test are shown in Table 3. The cotton
seeder duckbill welding robot is shown in Figure 17.

Table 3. Welding process parameters.

Welding Current Welding Voltage Welding Speed
(A) (v) (mm s)
38 26 10

Figure 17. Cotton seeder duckbill welding robot.

286



Agriculture 2023, 13, 31

The cotton seeder duckbill welding robot factory test photo is shown in Figure 18. The
Human Machine Interface (HMI) of the cotton seeder duckbill welding robot is shown
in Figure 19. According to the national standard DL/T 868-2004 welding procedure
qualification procedure [32], the appearance of the weld after duck beak welding is analyzed.
It can be seen from Figure 20 that there are no defects such as unmelted, porosity, and
undercutting on the weld surface, and the welding quality is good. After testing, the
welding efficiency of the cotton seeder duckbill welding robot is 6-7 times faster than that
of the manual, and 600-800 duckbills can be welded per hour. The weld is well-formed.
The welding pass rate is 85%, which can meet the needs of practical engineering. The
development of the cotton seeder duckbill welding robot will greatly improve the welding
efficiency of the duckbill parts and promote the large-scale and standardized production of
the duckbill of the cotton seeder. The forming of welding parts is shown in Figure 20. The
cotton seeder duckbill welding robot performance comparison is shown in Table 4.

(b)

Figure 18. Factory test of cotton seeder duckbill welding robot. (a) Welding test site; (b) welding test
in progress.
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Figure 20. Welding forming of duckbill parts.
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Table 4. The cotton seeder duckbill welding robot performance comparison.

Welding Method ~ Welding Duckbill Efficiency Welding Qualification Rate

Assessment Indicators (Piece/h)
Manual welding 100-130 99%
Semi-automatic duckbill welding equipment 200-300 100%
Cotton seeder duckbill welding robot 600-800 85%

5.2. Discussion

In this paper, a duckbill welding robot for cotton seeder is designed, including the
mechanical structure and control system of the welding robot. The efficiency of a cotton
seeder duckbill welding robot was greatly improved compared with manual work and semi-
automatic welding robots, but there is still unqualified welding in the duckbill welding test.
The main reason for this phenomenon is that there are some errors in the manufacturing
and assembly of the parts of the duckbill welding robot for the cotton seeder. Mechanical
vibration will occur during the operation, which will affect the accuracy of welding parts
and the accuracy of welding gun welding. In the follow-up study, improving the welding
robot parts manufacturing and assembly accuracy, and further optimizing the structure,
will improve the welding robot welding qualification rate.

6. Conclusions

In this study, the characteristics of the duckbill parts were analyzed first, and then the
welding process of the duckbill parts was simulated by Simufact Welding software. The
whole process of welding was observed intuitively. At the same time, the deformation and
stress changes of the weldment were compared and analyzed when the unilateral single
welding torch and the bilateral symmetrical double welding torch, two welding forms, and
two welding process parameters, were used. On this basis, a kind of cotton seeder duckbill
welding robot was designed, and the welding test was carried out. The results show that
the cotton seeder duckbill welding robot has high welding efficiency and good forming
quality of welded parts. The design of the cotton seeder duckbill welding robot greatly
improves the welding efficiency of the duckbill, which helps to solve the problems of low
welding efficiency and unstable welding quality in manual welding and semi-automatic
welding robots, and provides a strong guarantee for large-scale and standardized welding
production of the duckbill.
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Abstract: The detection of poultry egg microcracks based on electrical characteristic models is a new
and effective method. However, due to the disorder, mutation, nonlinear, time discontinuity, and
other factors of the current data, detection algorithms such as support-vector machines (SVM) and
random forest (RF) under traditional statistical characteristics cannot identify subtle defects. The
detection system voltage is set to 1500 V in the existing method, and higher voltages may cause
damage to the hatched eggs; therefore, how to reduce the voltage is also a focus of research. In
this paper, to address the problem of the low signal-to-noise ratio of microcracks in current signals,
a wavelet scattering transform capable of extracting translation-invariant and small deformation-
stable features is proposed to extract multi-scale high-frequency feature vectors. In view of the
time series and low feature scale of current signals, various convolutional networks, such as a
one-dimensional convolutional neural network (IDCNN), long short-term memory (LSTM), bi-
directional long short-term memory (Bi-LSTM), and gated recurrent unit (GRU) are adopted. The
detection algorithm of the wavelet scattering convolutional network is implemented for electrical
sensing signals. The experimental results show that compared with previous works, the accuracy,
precision, recall, F1-score, and Matthews correlation coefficient of the proposed wavelet scattering
convolutional network on microcrack datasets smaller than 3 pum at a voltage of 1000 V are 99.4393%,
99.2523%, 99.6226%, 99.4357%, and 98.8819%, respectively, with an average increase of 2.0561%. In
addition, the promotability and validity of the proposed detection algorithm were verified on a
class-imbalanced dataset and a duck egg dataset. Based on the good results of the above experiments,
further experiments were conducted with different voltages. The new feature extraction and detection
method reduces the sensing voltage from 1500 V to 500 V, which allows for achieving higher detection
accuracy with a lower signal-to-noise ratio, significantly reducing the risk of high voltage damage to
hatching eggs and meeting the requirements for crack detection.

Keywords: nondestructive detection; poultry eggs; wavelet scattering convolutional network;
microcurrent signal analysis; egg’s electrical characteristic model

1. Introduction

Eggs are one of the best sources of nutrition for human beings and are known as the
best protein food. To ensure the quality of eggs, cracked eggs produced in packaging,
processing, transportation, and other links should be eliminated. Cracks in eggs will not
only lead to a reduction of freshness but also breed bacteria and do harm to health [1,2].
The quality and safety of eggs is a matter of concern to the public, so the detection of egg
cracks is a necessary operation before the eggs enter the market for consumption. Manual
detection is high-cost, low-efficiency, and depends on detection experience. After a long
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period of operation, the probability of missing cracks and false detection increases due to
visual fatigue. This can also cause some damage to the operators’ vision [3]. With the con-
tinuous development of industrialization and informatization, people are trying to find an
automatic detection method to reduce the labor intensity of this task while simultaneously
improving efficiency and accuracy.

Numerous techniques for egg crack detection have been put forth by researchers and
academics, of which acoustic [4-7] and visual [8-11] methods are the most well-known and
established. Crack detection based on acoustic characteristics is realized by collecting knock
response signals with sound sensors after mechanical excitation on several parts of the egg
surface, analyzing and processing the signal differences between the intact area and the
cracked area of the egg surface, and finally extracting characteristic parameters. However,
its accuracy easily suffers from interference by eggshell thickness, external noise, and the
knock location. The detection of cracks in poultry eggs based on visual characteristics
involves taking pictures of the surface of poultry eggs with an industrial camera and
transmitting the images to supporting software. By analyzing the images, the software
can identify the characteristics of cracked and intact eggs and then construct a model
for discrimination. Nevertheless, many simple factors must be considered in practice,
such as the camera’s resolution, the recognition algorithm, and the shape of the egg crack.
Additionally, the online detection speed and accuracy for microcracks cannot meet today’s
requirements. Hence, significant limitations remain on industrial sites.

The detection method based on high-voltage discharge has a good ability to detect
leakage. Hu [12] proposed a “conductivity method” for ampoule bottle detection, applying
a 3000 V~5000 V direct current(DC) on the tested drug bottle and judging the leakage of
the test sample by setting the threshold value of the measured current. Yan et al. [13] used
20 kHz of high voltage to carry out their experiment and finally verified the feasibility
of high-voltage discharge for the detection of small leaks of large infusion plastic bottles.
The micro-current high-voltage discharge method is similar to the traditional high-voltage
discharge method. It requires that the package itself is not conductive and the contents are
conductive, creating a difference between the electrical parameters of a defect-free package
and a defective package. The micro-current high-voltage discharge method can also be
used to detect tiny cracks or damages to sealed packaging in the food industry. With the
further deepening of the basic theoretical research on the dielectric properties of eggs, egg
crack detection based on electrical properties will become our research direction.

Recent research shows that detecting cracked eggs using the response model of egg
electrical characteristics can effectively compensate for the shortcomings of the above
methods [14]. Figure 1 illustrates how the electrical characteristic model can be used to
detect egg cracks. The capacitors include the two electrodes and the egg in the center, and
the eggshell is the insulator. Due to its low resistance value, the egg liquid is approximately
the conductor. The current value detected is either a capacitance jump, a breakdown, or a
combination of both. When the egg is intact, the whole system is in equilibrium, and the
current value will remain stable . When the egg has a crack, the electrical characteristic
model will change when the electrode passes through the crack, resulting in a transient
current. Therefore, if the voltage of the two electrodes is kept constant and only the
breakdown of the air medium is allowed, it is possible to identify cracked eggs based on
the change in the current signal. Traditional machine learning methods have been used
to classify the current signals, and the accuracy of detecting eggs with microcracks less
than 3 pym compared to intact eggs was found to be 99%. Relevant experiments also prove
that the proposed method has a certain universality and versatility. However, it has three
shortcomings. In terms of the experimental device, the electrode position is fixed, which
can easily cause the egg size to not fit with the upper electrode, thus causing errors in
detection. In signal analysis, the extracted features are inadequate to allow capturing the
details and changes of cracked eggs in the current signal, so further study of the feature
extraction method of the current signal is necessary. A further area of research is how to
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reduce the 1500 V voltage used in the experiments because it is too high and might harm
the unhatched eggs.

Therefore, this research aimed to propose an accurate and effective nondestructive
method based on the electrical characteristics of eggs to detect cracks in poultry eggs in the
industrial field on the basis of existing experiments [14]. The main objectives of the study
are as follows:

e To modify the experimental device so that the electrode fits the egg to avoid missed or
wrong detection due to data acquisition;

e To adjust the analysis algorithm, to analyze the characteristics of the microcurrent
signal, and to design a feature extraction and classification algorithm that is effective
for the current signal;

e Toinvestigate how to reduce the voltage while maintaining detection accuracy and
reducing the damage caused by high voltage to unhatched eggs.

Figure 1. Schematic diagram of capacitor system composed of electrode and egg body in poultry
egg crack detection method based on egg electrical characteristic model [14]. d; and d; represent the
thickness of the upper and lower layers of the eggshell; ¢; represents the dielectric constant of egg
liquid; and &, represents the relative dielectric constant, which represents the dielectric or polarization
physical parameter of the dielectric material.

Employing wavelet scattering transform, Jinghui Li et al. [15] stratified and dispersed
the information of a heart sound signal to each layer so that the information would not
be lost and maintained the stability of signal features, which effectively expressed the
corresponding characteristic information of the signal. Then they obtained the charac-
teristic matrix of the signal , which was input into a double support-vector machine for
classification, yielding excellent results. Ahmad A. Al-Taee et al. [16] used deep wavelet
scattering transform as a feature extraction method for electromyographic signals and
compared it with other wavelet methods, significantly improving the performance of elec-
tromyographic pattern recognition. Liu Hui et al. [17] adopted a wavelet scattering network
to extract the features of the fault zero sequence current signal. Academics have found
that wavelet scattering transform can extract both simple and complex characteristics from
low-frequency and high-frequency signals, respectively, and thus can reduce intra-class
differences to the greatest extent while preserving inter-class differentiation. The fault
feature vector is input into bi-directional LSTM, which has the advantages of high identifi-
cation accuracy and short training time compared with the fault identification methods in
other literature. In addition, wavelet scattering convolutional neural networks have been
widely used in sound, image , and time series fields due to their superior performance and
perfect mathematical properties, and some achievements have been made [18-21]. To our
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knowledge, no researchers have applied appropriate research methods and ideas to detect
microcurrent signals in eggs.

In recent years, deep learning has been rapidly developed. Because of its advantages
of automatic feature extraction, ability to process unstructured data, and high accuracy, it
has been widely used and studied in industrial defect detection. Yu et al. [22] combined
convolutional neural networks(CNN), migration learning, and decision-level images to
propose a vision-based automatic recognition method for the identification of the surface
condition of concrete structures and designed an improved Dempster-Shafer (D-S) algo-
rithm, which greatly improved the recognition accuracy of concrete structures. Yu et al. [23]
used the improved bird swarm algorithm to optimize a 2DCNN, which performed better
than other machine learning models in the evaluation of the torsional capacity of rein-
forced concrete (RC) beams. Deep learning has also shown strong performance in the
processing of one-dimensional(1D) data. Hu et al. [24] designed a fault diagnosis method
based on a one-dimensional convolutional neural network (1IDCNN) and L2-support-vector
machine(L2-SVM) for unbalanced data, which, compared with other intelligent methods,
significantly improved the recognition accuracy and diagnostic performance of the model
compared with other intelligent methods in processing unbalanced data. Le et al. [25]
developed a IDCNN for automated fault diagnosis, which can autonomously learn damage-
sensitive features without pre-processing and can accurately diagnose potential faults that
damage the smart chain. Relevant research [26-28] also shows that deep learning exhibits
good performance in processing time series classifications.

Therefore, this study focuses on applying wavelet scattering on poultry eggs based on
real-time electrical characteristics. The main innovations and contributions of this research
can be summarized as follows:

e Inorder to solve the problem of missing detection caused by the lack of fit between the
egg and the electrode due to the fixed position of the upper electrode, we improved
the micro-crack detection system based on discharge analysis . We added a size
identification device so that the upper electrode position can be automatically moved
and fitted according to the size of the egg.

e Given the problem that the extracted features are inadequate to capture the details
and changes in a cracked egg in the current signal, we applied the wavelet scattering
transform to obtain the features of the micro-current signal. Using deep learning
methods, we classified the features extracted and attained satisfactory results with
local translation invariance and elastic deformation stability.

e The proposed and existing methods’ effects were compared and analyzed. The class-
imbalanced dataset and duck egg dataset were used to verify the versatility and
effectiveness of the proposed method. Finally, the experiments with different voltage
effects were conducted to verify that the proposed method can obtain higher accuracy
on data with a low signal-to-noise ratio while reducing the sensing voltage and further
reducing the risk of damage to unhatched eggs caused by high voltages.

The remaining chapters are organized as follows. Section 2 introduces the deployment
of experimental equipment and the method of microcurrent signal analysis. In Section 3,
we compare and analyze the experimental results to verify the effectiveness of the proposed
method. Finally, the whole paper is summarized and the future research on egg crack
detection is prospected in Section 4.

2. Materials and Methods
2.1. Egg Electrical Characteristic Crack Detection System

In this study, a crack detection system for poultry eggs based on real-time electrical
characteristics was developed. As shown in Figure 2a, the system is mainly composed of
four parts: a data acquisition platform, a high-voltage power supply, a controller, and a
computer processing system. The data acquisition platform includes a visual detection part
and a discharge detection part. The visual detection part is used to detect the size of eggs
and control the automatic electrode adjustment mechanism. The discharge detection part
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comprises a rotating mechanism, a discharge electrode, an automatic electrode regulating
mechanism, etc. The rotating mechanism ensures that eggs of different sizes can rotate
flexibly and uniformly. The automatic electrode regulating mechanism adjusts up and
down according to the data from the visual detection part to provide stable and reliable
surface contact, as shown in Figure 2b. Through preliminary experiments and debugging,
conductive silica gel was used as the electrode material for crack detection under a voltage
of 1000 V, average humidity of 40% , and an average temperature of 18.5 °C. In this
experiment, the current value is strictly controlled, and the automatic protection mechanism
is triggered when the current exceeds 1 mA so that no damage will be caused to the eggs. In
this study, the microcurrent signal obtained from an egg under the electrical characteristic
crack detection system was used to evaluate and detect egg cracks. The detection and
collection frequency of the detection system was set at 100 Hz, the collection time was 4.5 s,
and the data length was 450 points. The data of egg rotation were collected 2.5 times in a
single time, and one datum was collected for each egg.
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(a) (b)
Figure 2. Discharge principle and experimental setup. (a) Schematic diagram of poultry egg crack

detection system based on real-time electrical characteristics. (b) The nondestructive detecting device
based on electrical characteristics of eggs used in this paper.

After the eggs are subjected to the application of a DC voltage, the data acquisition card
acquires the micro-current signal from 450 sample points on the eggs. Three representative
egg samples are selected for analysis, as shown in Figure 3a—c, which are examples of
cracked egg samples, minimally cracked egg samples, and intact egg samples, respectively.
Figure 3d shows a micro-current detection signal of the cracked egg sample in Figure 3a.
When the electrode is swept to the crack location, a strong current response is generated,
and the sample shows a sudden rise in a steady microcurrent signal. Figure 3f shows the
microcurrent detection signal of the intact egg sample, which does not produce a strong
current reaction under DC voltage. There is no special change in the whole rotation process,
and the sample is very stable. The existing classification algorithm based on the electrical
characteristic signals of eggs can have a good classification effect on the above samples.
However, for some extremely tiny cracks, such as thsoe in Figure 3c, a microcurrent signal
is used, as shown in Figure 3e. The strong current response is small, and the performance
is similar to that of intact egg samples. Currently, the existing classification algorithms
based on the electrical signal characteristics of eggs struggle to distinguish those extremely
small cracks.
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Figure 3. Comparison of current signal changes between cracked and intact eggs, where the abscissa
is the sampling point, and the ordinate is the microcurrent. (a) A cracked egg sample. (b) An
indistinguishable cracked egg sample. (c) An intact egg sample. (d) Micro-current signal of sample (a).
(e) Micro-current signal of sample (b). (f) Micro-current signal of sample (c).

In order to verify the accuracy of the results, each experiment was executed multiple
times. In each experiment, the training set and test set used by different methods remained
the same. We randomly selected 70% of the sample data as the training set and the
remaining 30% as the testing set for scattering feature extraction and then input these data
to the deep learning network for classification for different experiments.

2.2. Detection Framework

The framework of the current crack detection algorithm based on the egg electrical
characteristics model is shown in part A of Figure 4. The time, frequency , and wavelet
domain features were manually extracted, and the traditional machine learning algorithm
was used for classification [14]. The features extracted by such methods are fixed, making
it challenging to capture multi-scale features and, therefore, easy to overlook feature
variations in detail. At the same time, traditional machine learning algorithms have
low compatibility with feature dimensions and high dependence on features, leading to
limitations in classification. Considering this situation, this paper investigates the feature
extraction and classification of current signals separately, using wavelet scattering transform
in conjunction with deep learning methods for experiments.Part Proposed of Figure 4
illustrates the algorithm framework based on the wavelet scattering convolution network
used in this paper. In the feature extraction part, we used the wavelet scattering transform
to extract the features of the current signal, which has the properties and advantages of
translation invariance and local deformation stability and does not require a manual design
to extract features from the signal. It is immune to translational and slight deformation
information and discards the parts of the signal sensitive to translation and deformation
while obtaining high-frequency information. The classification part was analyzed using
deep learning methods, which have the advantages of high learning ability, portability,
and compatibility with feature dimensions compared to traditional methods. In this paper,
we tried different deep-learning methods to study the algorithms that can be used for the
classification of microcurrent signals.
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2.2.1. Wavelet Scattering Transform-Based Feature Extraction

Wavelet scattering transform (WST) [29-31] is an improved time-frequency analysis
method based on wavelet transform, which solves the shortcomings of wavelet transform
changing with time and has the advantages of translation invariance and local deformation
stability of signal analysis and feature extraction. The wavelet scattering network is a
framework for automatically extracting input signal features, requiring convolutional,
nonlinear, and average cascade operations. After constructing the wavelet scattering
network, the scattering coefficient matrix of training data can be obtained. The framework
is shown in Figure 5a. In the wavelet scattering transform network, the convolution task
is performed by the wavelet, the modular operator is used for nonlinearization, and the
filtering function of the wavelet low-pass filter completes the pooling task.
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Figure 5. Principle of wavelet scattering transform. (a) Framework of wavelet scattering network.
(b) Structure of wavelet scattering transform.

Wavelet scattering takes the modulus of the wavelet transform, mainly because the
mean value of the wavelet coefficient is 0. In contrast, the mean value of linear transforma-
tion will not change, so the non-0 wavelet coefficient can be obtained through nonlinear
transformation to carry specific information. After removing the complex phase of all
wavelet scattering coefficients, operator |W| can be obtained. By convolving with input
signal X, the operator of the wavelet modulus transformation can be obtained:

IWIX = {S(X), U(X)} M)
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S(X) = X x ¢y )
U(X) = |X X 9] ®)

Equation (1) contains two parts: S(X) (see Equation (2), where ¢y is the low-pass
filter) is the invariant part, namely the scattering coefficient, which is the low-pass filtering
and averaging of the input signal. It represents the translation invariance of the wavelet
scattering transform, with the purpose of extracting the low-frequency information of
the input signal and removing the high-frequency information. U(X) (see Equation (3),
where 1, is high frequency wavelet) is the covariant part, representing the high frequency
information on scale A and acting as the exchange modulus of the nonlinear wavelet change.
It is also the input to the next transformation and represents the stability of the operator,
with the purpose of recovering the high-frequency information lost by the operation of the
invariant part.

Therefore, the Oth-order wavelet scattering transform information is:

[Wo|X = {So(X), Uo(X)} 4)
So(X) = X x ¢y ®)
Uo(X) = |X X 9o (6)

By taking the Oth-order high-frequency Uy (X) as the input X; of the first-order scatter-
ing transform and calculating with the new wavelet modulus operator, the information of
the 1st-order wavelet scattering transform is obtained.

Wi Xy = {S1(X1), U1 (X1)} )
51(X1) = Xq X ¢y = [X X Yol * Py ®)
Up(X1) = X1 X Par] = |[X X Paol X Pai] )

Similarly, by iterating the above process, the ¢ — 1-order high-frequency U1 (X;_1)
can be used as the input X, of the first-order scattering transform to operate with the new
wavelet modulus operator for the higher g-order scattering transform:

[We|Xg = {Sg(Xs), Ug (Xg) } (10)

The structure of the scattering transformation is shown in Figure 5b. Input current
signals are iterated successively in layers, forming a series of scattering coefficients from
order 0 to order g:

SG(X) = {SO(X)rsl(Xl)r"' /Sg(Xg)} (11)

The scattering coefficient is the extracted micro-current wavelet scattering feature.
After collecting the microcurrent signal of the egg, the wavelet scattering network is
constructed to extract the wavelet scattering characteristics of the microcurrent signal, and a
wavelet time scattering network with two cascaded filter banks is constructed. The first
filter bank has eight wavelets per octave, the second filter bank has one wavelet per octave,
the wavelet filter in the two filter banks is shown in Figure 6a,b, and the Littlewood-Paley
sums of the filter banks are shown in Figure 6¢. Figure 6d shows the Gabor small wave used
for its low-pass filter to prove the invariance scale, obtain the inverse Fourier transform of
the scale function, and center itin 0 s.
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Figure 6. The principle of wavelet scattering characteristic parameters used in this paper. (a) The first
filter bank with 8 wavelets per octave. (b) The second filter bank with 1 wavelet per octave. (c) The

Littlewood —Paley sums of the filter banks. (d) The real and imaginary parts of the coarsest-scale
wavelet from the first filter bank.

2.2.2. Classification Modeling Methods

Compared with traditional machine learning methods, deeper networks can accom-
modate richer semantic information and are more effective in processing temporal order,
feature dimensionality, and scale. LSTM can effectively capture the association between
long sequences, which is very effective in processing temporal information and can also alle-
viate the phenomena of gradient disappearance or explosion . Bi-LSTM is a combination of
forward LSTM and backward LSTM, which can effectively use the input forward and back-
ward feature information. GRU can effectively capture the association of long sequences,
and the number of parameters used is small, which can also reduce the risk of overfitting.
1DCNN features scale shifts and invariance, region awareness, comprehensive feature
learning, and fault tolerance, which can compensate for the shortcomings of other shallow
classification algorithms with inadequate feature learning and poor generalization ability.

The data used in this paper are characterized by disorder, mutation, nonlinearity, and
time discontinuity. Therefore, in this study, LSTM, Bi-LSTM, GRU, and 1IDCNN were used
to classify the features extracted from wavelet scattering. The details of these methods are
as follows.

Long short-term memory (LSTM) [32] is a particular recurrent neural network (RNN),
which is an improved neural network used to solve the problems of gradient disappearance
and gradient explosion inherent to traditional RNNs in long sequence samples. The neural
unit of LSTM contains three different gate structures: forgetting gates, input gates, and
output gates to control information. Its appearance successfully solves the problem that
the original RNN cannot store information for a long time and can effectively reduce the
feature input dimension of the signal and enhance the temporal modeling capability.

Bi-directional long short-term memory (Bi-LSTM) [33] is a variant of LSTM, which
refers to the combination of forward LSTM and reverse LSTM. The forward and reverse
layers are simultaneously connected to the input and output layers through different
weights. There is input each time, while the hidden layer has two node vectors, which can
be transmitted from forward to backward or backward to forward. The state transmission
is bidirectional. It can learn not only the rule of forward data but also the rule of backward
data. Applying LSTM twice can improve the long-term dependence on learning and thus
improve the model’s accuracy.
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A gated recurrent unit (GRU) [34] is a simple variant of LSTM, and its working
principle is similar to LSTM. It has two gates: update doors and reset doors. GRU aims to
reduce parameters to optimize the cell structure and improve operational efficiency, making
converging during training more manageable. Its flexible and straightforward structure
guarantees accuracy while significantly reducing the time required for classification.

A convolutional neural network (CNN) [35] is a typical representative of deep learning,
consisting of an input layer, convolutional layer, pooling layer, fully connected layer, and
output layer. Similar in structure to CNN, a one-dimensional convolutional neural network
(IDCNN) [36] refers to a CNN whose input is a one-dimensional vector; similarly, its
convolution kernel is one-dimensional, and it carries out a one-dimensional convolution
operation. It is a deep learning algorithm suitable for processing one-dimensional data.
Compared with 2DCNN, the convolution kernel of IDCNN only needs to be scanned in one
direction. The convolutional layer performs convolution operations on the one-dimensional
input signal and the one-dimensional convolution kernel and then extracts the features
through the activation function. The pooling layer scales and maps the input data through
the pooling kernel and extracts features while reducing the dimension of the data. This
paper uses max pooling, which selects the maximum value of each small region as the
output. Pooling operations can reduce the size of spatial information, improve operational
efficiency, and reduce the risk of overfitting.

As we all know, the selection of hyperparameters affects the performance of deep
learning to a large extent. The improper setting of hyperparameters may lead to under-
fitting and over-fitting of the network model during training, so that the samples outside
the training samples cannot be accurately classified. In this paper, the method of grid
search [37] is used for hyperparameter selection first, and the optimal hyperparameter
method is determined by traversing the given parameter combination to determine the
optimal value performance. Finally, we used the methods of LSTM, Bi-LSTM, GRU, and
1DCNN to classify the extracted feature data. The maximum number of rounds of training
was 150. The Adam optimizer was applied. The learning rate was 0.01. The learning rate
decline factor was set to 0.2. The number of iterations when the learning rate decreases was
5. The fully connected layer had two layers, and the number of corresponding classifica-
tions in the second layer was finally classified using the probability of the Softmax layer.
The prediction label of the test sample was the output.

2.3. Performance Indicators

We divided all samples in the classification model into positive and negative sam-
ples. In this paper, cracked eggs were labeled as positive samples, and intact eggs were
marked as negative samples. The prediction category determined by the model was ob-
tained by predicting the sample data output in the model. In order to better evaluate the
classification performance of the proposed detection model, five evaluation indicators, ac-
curacy (ACC), precision (P), recall (R), Fl-score (F1), and Matthews correlation coefficient
(MCC), were used to comprehensively evaluate the algorithm models regarding their
classification ability.

We define the false-positive (FP) rate as the number of negative samples that the
model incorrectly predicts as positive samples. We define the true-positive (TP) rate as the
number of positive samples correctly predicted by the model as positive samples. We define
the false-negative (FN) rate as the number of positive samples that the model incorrectly
predicts as negative samples and the true-negative (TN) rate as the number of negative
samples correctly predicted by the model as negative samples.

Accuracy (ACC), precision (P), recall (R), and F1-Score (F1) are common performance
indicators used to evaluate the predictive ability of classification models, and their calcula-
tion formulas are as follows:

TP+ TN

ACC= Tp Py TN+ EN < 100% (12)
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TP
P=T51Fp (13)
TP
R= TP+ FN (14)
P xR
Fl=2x 5 (15)

The Matthews correlation coefficient (MCC) [38] comprehensively considers TP, TN,
FP, and FN. It is considered to be a better measure of the classifier’s performance. The value
range of the MCC is [—1, 1]. A value of 1 means that the prediction is entirely consistent
with reality, a value of 0 means that the predicted result is not as good as the result of
random prediction, and a value of —1 means that the predicted result is inconsistent with
the actual result. MCC is defined as follows:
TP x TN — FP x FN

MCC = (16)
\/(FP + TP)(TP + FN)(FN + TN)(TN + FP)

We used ACC, P, R, F1, and MCC as the evaluation indicators of the proposed method.
In addition, the training time and preference time of the model were considered as a metric
for performance evaluation, as they are of great significance to the real-time detection of
cracked eggs.

2.4. Experimental Environment

All experimental calculations in this study were performed using MATLAB R2022a
software, and the experimental computer processor was an 11th Gen Intel (R) Core (TM)
i5-11400H @ 2.70GHz 2.69 GHz, Windows 10 (64-bit) Professional version.

3. Results and Discussion
3.1. Experimental Data

The experimental data came from fresh eggs purchased at the farmers’ market near the
laboratory . The eggs were cleaned and transported to the laboratory. The mass of each egg
was between 43.2 g~62.3 g. The intact samples were observed under 10x magnification,
and a total of 400 eggs were observed. To quickly obtain a sufficient number of egg
microcrack samples, we selected 220 cracks of different types and positions by exerting
external forces on different positions of eggs through the egg crack collision machine .
The width of the artificial microcracks was generally less than 3 microns, which is usually
not easy to observe with the human eye. The samples that could not be subjected to a
discharge test due to excessive force or improper operation during the production process
were rejected . Finally, a total of 356 egg samples that met the requirements were selected
for experimentation, as shown in Table 1.

Table 1. The number of egg samples used by the electrical characteristic crack detection system to
obtain a microcurrent signal.

Label Count Percent
Cracked 187 52.5281
Intact 169 47.4719

3.2. Wawvelet Scattering Transform Features

Based on the settings described above, a wavelet scattering network was constructed
to extract the wavelet scattering characteristics of the microcurrent signal. After the signal
input network, the wavelet scattering transformation was carried out layer by layer, and the
Oth scattering output was the convolution coefficient of the original signal and scale function.
Figure 7 shows the partial scattering results obtained from the cracked egg sample in
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Figure 3e and the intact egg sample in Figure 3f and the scattering coefficient of 8 time
windows, respectively.

289
288 26345
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285

Figure 7. Comparison of wavelet scattering characteristics of cracked eggs and intact eggs. (a) The
Oth scattering output of Figure 3e of cracked egg sample. (b) The Oth scattering output of Figure 3f of
intact egg sample. (c) Scattering coefficients for 8 time windows of Figure 3e of cracked egg sample.
(d) Scattering coefficients for 8 time windows of Figure 3f of intact egg sample.

The scattering feature of the cracked egg signal maintains the undulation information
at the crack, and the scattering feature of the intact egg signal clarifies the small deformation
in the original signal process and maintains the elastic deformation stability of the signal.
The feature matrix extracted by the wavelet scattering network maintains the stability of
the signal feature while ensuring that the information is not lost so that the cracked egg and
intact egg signal features extracted by wavelet scattering transformation have an apparent
distinction. The first and second order output a matrix of wavelet scattering coefficients,
the dimensions of which represent the scattering path and wavelet scale, respectively.
A current signal with a data size of 450 x 1 is input to the wavelet scattering network
to extract the wavelet scattering feature with a data size of 64 x 8, where each row and
column correspond to one scattering path and one time window, respectively.

3.3. Comparison of Experimental Results and Analysis
3.3.1. Experimental Results

Based on the optimal hyperparameters, we constructed and trained the wavelet
scattering convolutional network to classify the microcurrent signals. In addition, we also
used the previously studied methods to classify the microcurrent signals. The resulting
comparison of the final classification is shown in Table 2. By comparing the five models, it
can be found that WST+1DCNN gets higher results on index ACC (99.4393%), F1 (99.4357%)
and MCC (98.8819%). WST+GRU and WST+1DCNN get higher results on R (99.6226%)
index, WST+Bi-LSTM obtains higher results on index P (99.6154%). In general, the detection
effects of WST+LSTM, WST+Bi-LSTM, WST+GRU, and WST+1DCNN based on the wavelet
scattering convolutional network are superior to existing methods [14]. The algorithm based
on WST+1DCNN has the best recognition effect and can effectively and accurately detect
cracked eggs. The accuracy is 2.0561% higher than the accuracy of the existing method [14].
In terms of the real-time implementation of the method, the training time of the previous
method is faster, being almost half of that of the method studied in this paper. Considering
that all models can be pre-trained, the research in this paper is acceptable in terms of
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training time. We found that all five methods were able to keep the reasoning time within
0.01 s, with the previous research method processing the fastest at 0.0009 s. In contrast,
previous studies used machine learning to extract manual features, while this study uses
deep learning to implement, which requires the integration of multiple convolutional blocks,
so the network architecture is deep and the time is relatively long. However, the results
obtained in this study have met the requirements of industrial real-time detection of egg
cracks, and the processing speed is faster than other microcrack detection techniques; see
Table 3 for details. In conclusion, the method proposed in this paper can detect cracked
eggs effectively and accurately and is acceptable in practical application.

Table 2. Experimental results of electrical signal classification algorithm based on wavelet scattering
transformation feature.

Methods ACC P R F1 Mcc Training Inference
Time (s) Time (s)
Existing Method [14] 97.3832% 97.3577% 98.0984% 97.7210% 95.5056% 6.7906 0.0009
WST+LSTM 97.9439% 98.4761% 97.3585% 97.9119% 95.8971% 11.4690 0.0028
WST+Bi-LSTM 98.5047% 99.6154% 97.3585% 98.4725% 97.0355% 13.3880 0.0029
WST+GRU 99.2523% 98.8819% 99.6226% 99.2488% 98.5115% 12.0574 0.0036
WST+1DCNN 99.4393% 99.2523% 99.6226% 99.4357% 98.8819% 13.2714 0.0033

Table 3. Comparison of inference time between the proposed method and other crack detection tech-

niques.
Author Detection Mode Inference Time (s)
Sun et al. [39] Vision-based 1.65 + 0.50
Wang et al. [40] Acoustic-based 0.2
Purahong et al. [41] Vision-based 0.08
Sun et al. [42] Vision-based 0.98 + 0.06
Sun et al. [43] Acoustic-based 0.281
Proposed Method Electrical-based 0.0033

To further verify the validity of the method proposed in this paper, we re-experimented
on the dataset used in the existing method [14] and conducted a comparative study. A
total of 770 egg signals were collected, including 367 intact egg signals and 403 cracked egg
signals. The final results are shown in Table 4. Compared with the existing egg microcrack
classification algorithm based on the electrical characteristics model, our proposed method
has improved the accuracy rate by 0.3478% in the dataset . Considering the results above,
the results obtained in this study on the detection of microcracks based on the electrical
characteristics of eggs are better than those obtained by the preliminary experimental
methods. It mainly considers feature extraction and classification algorithm. In the aspect
of feature extraction, the existing method extracted the time domain feature, frequency
domain feature and wavelet feature of the micro-current signal. A specific function calcu-
lates the features extracted by the manual design-based feature extraction method, so the
extracted features will ignore the changes in detail, resulting in some of the distinguishing
representative features being ignored, such as the cracked egg feature shown in Figure 8a,
where the crack changes are subtle. The features extracted by traditional manual design
methods focus on the general information of the signal and therefore struggle to capture the
variations in detail. The wavelet scattering transform used in this paper extracts invariant
and small deformation-stable features to extract multi-scale high-frequency feature vectors.
The features extracted from the sample in Figure 8a using the wavelet scattering transform
are shown in Figure 8b, which is significantly different from the regular intact egg signal
features shown in Figure 8c. It can maintain the undulation information at the crack so
that the features at the crack can have a clear representation in the whole feature matrix
for classification and differentiation. In the aspect of classification algorithm, the machine
learning method was used for classification in the previous experiment. Compared with the
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machine learning algorithm, the deep learning algorithm used in this study can effectively
capture the correlation between long sequences and has a good effect in the processing of
time sequences, feature dimensions, and scales and can carry out the comprehensive learn-
ing of features. Therefore, the method proposed in this paper can improve the performance
of the model according to the electrical characteristics of eggs and can be used online in the
detection of microcracked eggs in industrial applications.

Table 4. Comparison of the results of the dataset used in the existing method [14].

Existing Method [14] Proposed Method
ACC 99.0435% 99.3913%
P 99.2331% 99.6911%
R 99.0769% 99.2308%
F1 99.1529% 99.4601%
McCC 98.0598% 98.7649%
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Figure 8. Comparison of sample features extracted using wavelet scattering transform. (a) Variation
in detail of hard-to-capture microcrack sample signals. (b) Extraction of 8 time windows of feature
information for such cracked eggs using WST, where eight different colors lines in the figure represent
the information of the eight time windows. (c) Extraction of 8 time windows of feature information
for intact eggs using WST, where eight different colors lines in the figure represent the information of
the eight time windows.

3.3.2. Ablation Study

To evaluate the superior performance of the microcrack nondestructive detection
algorithm for egg electrical characteristics based on wavelet scattering convolution network
proposed in this paper, the extracted current original signal and the characteristics processed
by wavelet scattering transformation were inputted to four classification methods for
comparison, including LSTM, Bi-LSTM, GRU, and 1DCNN. The results are shown in
Figure 9a. For the four classification methods, the accuracy of the wavelet scattering feature
extraction was 2.243%, 1.8692%, 3.3644%, and 2.9907% higher than the accuracy of directly
feeding microcurrent signals into the deep learning network. The average statistical error
of accuracy of LSTM, Bi-LSTM, GRU, and 1DCNN is 0.9622%, 0.6339%, 0.9157%, and
0.5449% respectively. The results indicate that under the same conditions, the features
extracted by wavelet scattering transformation were more recognizable and more capable
of distinguishing cracked eggs from intact eggs.

The wavelet scattering network finally constructed in this paper has two cascaded
filter banks. The first filter bank has eight wavelets per octave, and the second has one
wavelet per octave. As for the selection of filter banks, the experiment proves that the
scattering coefficient energy converges rapidly with the deepening of the network, and the
energy after the two-layer network structure is about 1% [30], so two cascades of filter
banks are constructed in this paper. For the number of wavelets per octave in the filter bank,
different experiments as shown in Figure 9b have been made, proving that the combination
of (8, 1) has the best result.
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