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Preface

Several decades ago, two fundamental discoveries took place in nonlinear science, which

largely determined the development of nonlinear mathematical models to the present day. These

discoveries—the special properties of solitons and the strange Lorentz attractor—determined

numerous works related to the development of methods used for the analytical and numerical study

of many mathematical models described by nonlinear differential potential nonlinear equations.

Unlike the first steps in the study of nonlinear mathematical models, when attention was primarily

paid to the development of methods used to solve interim nonlinear partial differential equations,

in recent years, much more attention has been paid to the development of methods used to study

non-integrable mathematical models with analytical solutions.

This book contains the 19 accepted articles out of the 50 manuscripts submitted to the

Special Issue “Nonlinear Partial Differential Equations: Exact Solutions, Symmetries, Methods and

Applications, 2023, 2020” of the MDPI “Mathematics” journal.

This Special Issue unites 19 papers which considers the development of research methods for

a number of nonlinear mathematical models in physics, epidemiology, mechanical engineering, and

nonlinear optics. A characteristic feature of all the articles in this issue is that the studies presented in

the papers were obtained using computer mathematics, including symbolic mathematics packages,

program codes and machine learning methods.

As the Guest Editor of the Special Issue, I am grateful to the authors of these papers for their

high-quality contributions, to the reviewers for their valuable comments that helped to improve

the submitted works, and to the administrative staff of the MDPI publications for their support in

completing this project. I am very grateful to the Section Editor Claude Zhang for attention and help

to all authors of this issue.

Nikolay A. Kudryashov

Editor
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Abstract: In this paper, we consider the stochastic fractional-space Kuramoto–Sivashinsky equa-
tion forced by multiplicative noise. To obtain the exact solutions of the stochastic fractional-space
Kuramoto–Sivashinsky equation, we apply the G′

G -expansion method. Furthermore, we generalize
some previous results that did not use this equation with multiplicative noise and fractional space.
Additionally, we show the influence of the stochastic term on the exact solutions of the stochastic
fractional-space Kuramoto–Sivashinsky equation

Keywords: stochastic Kuramoto–Sivashinsky; fractional Kuramoto–Sivashinsky; exact stochastic-
fractional solutions; (G′

G )-expansion method

1. Introduction

In recent decades, fractional derivatives have received a lot of attention because
they have been effectively used to problems in finance [1–3], biology [4], physics [5–8],
thermodynamic [9,10], hydrology [11,12], biochemistry and chemistry [13]. Since fractional-
order integrals and derivatives allow for the representation of the memory and heredity
properties of various substances, these new fractional-order models are more suited than
the previously used integer-order models [14]. This is the most important benefit of
fractional-order models in comparison with integer-order models, where such impacts
are ignored.

On the other hand, fluctuations or randomness have now been shown to be important
in many phenomena. Therefore, random effects have become significant when modeling
different physical phenomena that take place in oceanography, physics, biology, meteorol-
ogy, environmental sciences, and so on. Equations that consider random fluctuations in
time are referred to as stochastic differential equations.

Recently, some studies on the approximation solutions of fractional differential equa-
tions with stochastic perturbations have been published, such as those of Taheri et al. [15],
Zou [16], Mohammed et al. [17,18], Mohammed [19], Kamrani [20], Li and Yang [21] and
Liu and Yan [22], while the exact solutions of stochastic fractional differential equations
have not been discussed until now.

In this study, we take into account the following stochastic fractional-space Kuramoto–
Sivashinsky (S-FS-KS) equation in one dimension with multiplicative noise in the itô sense:

∂tu + ruDα
xu + pD2α

x u + qD4α
x u = ρu∂tβ, (1)

Mathematics 2021, 9, 2712. https://doi.org/10.3390/math9212712 https://www.mdpi.com/journal/mathematics
1



Mathematics 2021, 9, 2712

where r, p, and q are nonzero real constants, α is the order of the fractional space derivative,
ρ is the noise strength, and β(t) is the standard Gaussian process and it depends only on t.

The deterministic Kuramoto–Sivashinsky Equation (1) (i.e., ρ = 0) with α = 1 has been
studied by a number of authors to attain its exact solutions by different methods such as
the modified tanh-coth method [23], the tanh method and the extended tanh method [24],
homotopy analysis method [25], the (G′

G )-expansion method [26], perturbation method [27],
the Weiss–Tabor–Carnevale method [28], Painlevé expansion methods [29], the truncated
expansion method [30], the polynomial expansion method [31–37], among many others;
see also the references therein.

The motivation of this article is to find the exact solutions of the S-FS-KS (1) derived
from multiplicative noise by employing the (G′

G )-expansion method. The results presented
here improve and generalize earlier studies, such as those mentioned in [24]. It is also
discussed how multiplicative noise affects these solutions. To the best of our knowledge,
this is the first paper to establish the exact solution of the S-FS-KS (1).

In the next section, we define the order α of Jumarie’s derivative and we state some
significant properties of the modified Riemann–Liouville derivative. In Section 3, we obtain
the wave equation for the S-FS-KS Equation (1), while in Section 4 we have the exact
stochastic solutions of the S-FS-KS (1) by applying the (G′

G )-expansion method. In Section 5,
we show several graphical representations to demonstrate the effect of stochastic terms on
the obtained solutions of the S-FS-KS. Finally, the conclusions of this paper are presented.

2. Modified Riemann–Liouville Derivative and Properties

The order α of Jumarie’s derivative is defined by [38]:

Dα
x g(x) =

{
1

Γ(1−α)
d

dx

∫ x
0 (x − ζ)−α(g(ζ)− g(0))dζ, 0 < α < 1,

[g(n)(x)]α−n, n ≤ α ≤ n + 1, n ≥ 1,

where g :R → R is a continuous function but not necessarily first-order differentiable and
Γ(.) is the Gamma function.

Now, let us state some significant properties of modified Riemann–Liouville derivative
as follows:

Dα
x xδ =

Γ(1 + δ)

Γ(1 + δ − α)
xδ−α, δ > 0,

Dα
x [ag(x)] = aDα

x g(x),

Dα
x [a f (x) + bg(x)] = aDα

x f (x) + bDα
x g(x),

and
Dα

x g(u(x)) = σx
dg
du

Dα
xu,

where σx is called the sigma indexes [39,40].

3. Wave Equation for S-FS-KS Equation

To obtain the wave equation for the SKS Equation (1), we apply the next wave
transformation

u(x, t) = ϕ(η)e(ρβ(t)− 1
2 ρ2t), η =

1
Γ(1 + α)

xα − ct, (2)

where ϕ is the deterministic function and c is the wave speed. By differentiating Equation (2)
with respect to x and t, we obtain

ut = (−cϕ′ + 1
2

ρ2 ϕ − 1
2

ρ2 ϕ + ρϕβt)e(ρβ(t)− 1
2 ρ2t),

Dα
xu = σx ϕ′e[ρβ(t)−ρ2t], D2α

x u = σ2
x ϕ′′e[ρβ(t)−ρ2t]. (3)

D3α
x = σ3

x e(ρβ(t)− 1
2 ρ2t), D4α

x = σ4
x e(ρβ(t)− 1

2 ρ2t),

2
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where + 1
2 ρ2 ϕ is the Itô correction term. Now, substituting Equation (3) into Equation (1),

we obtain
− cϕ′ + r̃ϕϕ′e(ρβ(t)− 1

2 ρ2t) + p̃ϕ′′ + q̃ϕ′′′′ = 0, (4)

where we put r̃ = σxr, p̃ = σ2
x p and q̃ = σ4

x q. Taking the expectation on both sides and
considering that ϕ is deterministic function, we have

− cϕ′ + r̃ϕϕ′e−
1
2 ρ2tE(eρβ(t)) + p̃ϕ′′ + q̃ϕ′′′′ = 0. (5)

Since β(t) is standard Gaussian random variable, then for any real constant ρ we have

E(eρβ(t)) = e
ρ2
2 t. Now, Equation (5) has the form

− cϕ′ + r̃ϕϕ′ + p̃ϕ′′ + q̃ϕ′′′′ = 0. (6)

Integrating Equation (6) once in terms of η yields

q̃ϕ′′′ + p̃ϕ′ + r̃
2

ϕ2 − cϕ = 0, (7)

where we set the constant of integration as equal to zero.

4. The Exact Solutions of the S-FS-KS Equation

Here, we apply the G′
G -expansion method [41] in order to find the solutions of

Equation (7). As a result, we have the exact solutions of the S-FS-KS (1). First, we suppose
the solution of the S-FS-KS equation, Equation (7), has the form

ϕ =
M

∑
k=0

bk[
G′

G
]k, (8)

where b0, b1, ..., bM are uncertain constants that must be calculated later, and G solves

G′′ + λG′ + μG = 0, (9)

where λ, μ are unknown constants. Let us now calculate the parameter M by balancing ϕ2

with ϕ′′′ in Equation (7) as follows

2M = M + 3;

hence
M = 3. (10)

From (10), we can rewrite Equation (8) as

ϕ = b0 + b1[
G′

G
] + b2[

G′

G
]2 + b3[

G′

G
]3. (11)

Putting Equation (11) into Equation (7) and utilizing Equation (9), we obtain a polyno-
mial with degree 6 of G′

G as follows

3
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(
1
2

r̃b2
3 − 60q̃b3)[

G′

G
]6 + (−24q̃b2 + r̃b2b3 − 144q̃λb3)[

G′

G
]5

+(
1
2

r̃b2
2 − 3p̃b3 − 6q̃b1 + r̃b1b3 − 111q̃λ2b3 − 114q̃μb3 − 54q̃λb2)[

G′

G
]4

+(−cb3 + 2p̃b2 + r̃b0b3 + r̃b1b2 − 3p̃λb3 − 38q̃λ2b2 − 40q̃μb2 − 27λ3b3

−12q̃λb1 − 168q̃λμb3)[
G′

G
]3 + (−cb2 +

1
2

r̃b2
1 − p̃b1 + r̃b0b2 − 2p̃λb2

−3p̃μb3 − 7q̃λ2b1 − 8q̃μb1 − 8q̃λ3b2 − 52q̃λμb2 − 60q̃μ2b3

−57q̃λ2μb3)[
G′

G
]2 + (−cb1 + r̃b0b1 − p̃λb1 − 2p̃μb2 − q̃λ3b1

−16q̃μ2b2 − 8q̃λμb1 − 14q̃λ2μb2 − 36q̃μ2λb3)[
G′

G
]+

(−cb0 +
1
2

r̃b2
0 − p̃μb1 − q̃λ2μb1 − 6q̃μ2λb2 − 2q̃μ2b1 − 6q̃μ3b3) = 0.

By equating each coefficient of [G′
G ]i (i = 6, 5, 4, 3, 2, 1, 0) to zero, we have a system of

algebraic equations. By solving this system by using Maple, we obtain two cases:
First case:

b0 = ±30p̃
19r̃

√
− p̃
19q̃

, b1 =
90p̃
19r̃

, b2 = 0, b3 =
120q̃

r̃
,

c = ±30p̃
19

√
− p̃
19q̃

, λ = 0, μ =
p̃

76q̃
, if

p̃
q̃
< 0. (12)

In this situation, the solution of Equation (7) is

ϕ(η) = b0 + b1[
G′

G
] + b3[

G′

G
]3. (13)

By solving Equation (9) with λ = 0, μ = p̃
76q̃ if p̃

q̃ < 0, we obtain

G(η) = c1 exp(

√
− p̃
76q̃

η) + c2 exp(−
√

− p̃
76q̃

η), (14)

where c1 and c2 are constants. Putting Equation (14) into Equation (13), we have

ϕ(η) = ±30p̃
19r̃

√
− p̃
19q̃

+
90p̃
19r̃

√
− p̃
76q̃

[
c1 exp(

√− p̃
76q̃ η)− c2 exp(−

√− p̃
76q̃ η)

c1 exp(
√− p̃

76q̃ η) + c2 exp(−
√− p̃

76q̃ η)
]

+
120q̃

r̃
(

√
− p̃
76q̃

)3[
c1 exp(

√− p̃
76q̃ η)− c2 exp(−

√− p̃
76q̃ η)

c1 exp(
√− p̃

76q̃ η) + c2 exp(−
√− p̃

76q̃ η)
]3.

Hence, the exact solution in this case of the S-FS-KS (1), by using (2), has the form

u1(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃h̄

19r̃

+
90p̃h̄
19r̃

[
c1 exp(h̄( 1

Γ(1+α)
xα − ct))− c2 exp(−h̄( 1

Γ(1+α)
xα − ct))

c1 exp(h̄( 1
Γ(1+α)

xα − ct)) + c2 exp(−h̄( 1
Γ(1+α)

xα − ct))
]

+
120q̃h̄3

r̃
[
c1 exp( h̄

Γ(1+α)
xα − ch̄t)− c2 exp(−h̄( 1

Γ(1+α)
xα − ct))

c1 exp( h̄
Γ(1+α)

xα − ch̄t) + c2 exp(−h̄( 1
Γ(1+α)

xα − ct))
]3}, (15)

4
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where c = ± 30p̃
19

√− p̃
19q̃ , h̄ =

√− p̃
76q̃ and p̃

q̃ < 0.
Second case:

b0 = ±30p̃
19r̃

√
11
19q̃

, b1 =
−270p̃

19r̃
, b2 = 0, b3 =

120q̃
r̃

,

c = ±30p̃
19

√
11p̃
19q̃

, λ = 0, μ =
−11p̃
76q̃

, if
p̃
q̃
> 0. (16)

In this situation, the solution of Equation (7) is

ϕ(η) = b0 + b1[
G′

G
] + b3[

G′

G
]3. (17)

Solving Equation (9) with λ = 0, μ = −11p
76q̃ , if p̃

q̃ > 0, we obtain

G(η) = c1 exp(

√
11p̃
76q̃

η) + c2 exp(−
√

11p̃
76q̃

η). (18)

Substituting Equation (14) into Equation (13), we have

ϕ(η) = ±30p̃
19r̃

√
11p̃
19q̃

− 270p̃
19r̃

√
11p̃
76q̃

[
c1 exp(

√
11p̃
76q̃ η)− c2 exp(−

√
11p̃
76q̃ η)

c1 exp(
√

11p̃
76q̃ η) + c2 exp(−

√
11p̃
76q̃ η)

]

+
120q̃

r̃
(

√
11p̃
76q̃

)3[
c1 exp(

√
11p̃
76q̃ η)− c2 exp(−

√
11p̃
76q̃ η)

c1 exp(
√

11p̃
76q̃ η) + c2 exp(−

√
11p̃
76q̃ η)

]3.

Therefore, by using (2), the exact solution in this case of the S-FS-KS (1) has the form

u2(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃

19r̃

√
11p̃
19q̃

−270p̃�
19r̃

[
c1 exp(�( xα

Γ(1+α)
− ct))− c2 exp(−�( xα

Γ(1+α)
− ct))

c1 exp(
√

11p̃
76q̃ (

1
Γ(1+α)

xα − ct)) + c2 exp(−�( xα

Γ(1+α)
− ct))

]

+
120q̃�3

r̃
[
c1 exp(�( xα

Γ(1+α)
− ct))− c2 exp(−�( xα

Γ(1+α)
− ct))

c1 exp(�( xα

Γ(1+α)
− ct)) + c2 exp(−�( xα

Γ(1+α)
− ct))

]3}, (19)

where c = ± 30p̃
19

√
11p̃
19q̃ , � =

√
11p̃
76q̃ and p̃

q̃ > 0.
Special Cases:

Case 1: If we choose c1 = c2 = 1, then Equations (15) and (19) become

u1(x, t) = e(ρβ(t)− 1
2 ρ2t)[±30p̃

19r̃

√
− p̃
19q̃

+
90p̃h̄
19r̃

tanh(h̄(
xα

Γ(1 + α)
− ct))

+
120q̃h̄3

r̃
tanh3(h̄(

xα

Γ(1 + α)
− ct))], (20)
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where c = ± 30p̃
19

√− p̃
19q̃ , h̄ =

√− p̃
76q̃ and p̃

q̃ < 0, and

u2(x, t) = e(ρβ(t)− 1
2 ρ2t)[±30p̃

19r̃

√
11p̃
19q̃

− 270p̃�
19r̃

tanh(
�xα

Γ(1 + α)
− c�t)

+
120q̃

r̃
�3 tanh3(

�xα

Γ(1 + α)
− c�t)], (21)

where c = ± 30p̃
19

√
11p̃
19q̃ , � =

√
11p̃
76q̃ and p̃

q̃ > 0.
Case 2: If we choose c1 = 1 and c2 = −1, then Equations (15) and (19) become

u1(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p

19r̃

√
− p̃
19q̃

+
90p̃h̄
19r̃

coth(
h̄xα

Γ(1 + α)
− ch̄t)

+
120q̃h̄3

r̃
coth3(

h̄xα

Γ(1 + α)
− ch̄t))}, (22)

where c = ± 30p̃
19

√− p̃
19q̃ , h̄ =

√− p̃
76q̃ and p̃

q̃ < 0, and

u2(x, t) = e(ρβ(t)− 1
2 ρ2t){±30p̃

19r̃
�− 270p̃�

19r̃
coth(

�xα

Γ(1 + α)
− c�t)

+
120q̃�3

r̃
coth3(

�xα

Γ(1 + α)
− c�t)}, (23)

where c = ± 30p̃
19

√
11p̃
19q̃ , � =

√
11p̃
76q̃ and p̃

q̃ > 0.

Remark 1. If we put ρ = 0 (i.e., Equation (1) without noise) and α = 1 in Equations (20)–(23),
then we obtain the same results stated in [24].

5. The Influence of Noise on the S-FS-KS Solutions

Here, we discuss the influence of stochastic term on the exact solutions of the S-FS-KS
Equation (1) and fix the parameters r̃ = p̃ = q̃ = 1. We present a number of simulations for
different values of ρ (noise intensity). We utilize the MATLAB program to plot the solution
u2(t, x) defined in Equation (21) for t ∈ [0, 5] and x ∈ [0, 6] as follows:

In Figures 1–3, as seen in the first graph in each figure, the surface becomes less flat
when the noise intensity is equal to zero. However, when noise appears and the strength of
the noise grows (ρ = 1, 2, 3), we notice that the surface becomes more planar after minor
transit behaviors. This indicates that the solutions are stable due to the multiplicative
noise effects.
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ρ = 0, α = 1 ρ = 0.5, α = 1

ρ = 1, α = 1 ρ = 2, α = 1

Figure 1. Graph of solution u2 in Equation (21) with α = 1.

ρ = 0, α = 0.5 ρ = 0.5, α = 0.5

ρ = 1, α = 0.5 ρ = 2, α = 0.5

Figure 2. Graph of solution u2 in Equation (21) with α = 0.5.
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ρ = 0, α = 0.2 ρ = 0.5, α = 0.2

ρ = 1, α = 0.2 ρ = 2, α = 0.2

Figure 3. Graph of solution u2 in Equation (21) with α = 0.2.

6. Conclusions

In this paper, we presented different exact solutions of the stochastic fractional-space
Kuramoto–Sivashinsky equation, Equation (1), forced by multiplicative noise. Moreover,
several results were extended and improved such as those described in [24]. These types of
solutions can be utilized to explain a variety of fascinating and complex physical phenom-
ena. Finally, we used the MATLAB program to generate some graphical representations to
show the effect of the stochastic term on the solutions of the S-FS-KS (1). In this paper, we
considered the multiplicative noise and fractional space. In future work, we can consider
the additive noise and fractional time.
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Abstract: The problem of multicriteria optimization of a dynamic model is solved using the methods
of the similarity theory and the criteria importance theory. The authors propose the original model
of a positional system with two hydraulic actuators, synchronously moving a heavy object with a
given accuracy. In order to reduce the number of optimizing parameters, the mathematical model
of the system is presented in a dimensionless form. Three dimensionless optimization criteria that
characterize the accuracy, size, and quality of the dynamic positioning process are considered. It is
shown that the application of the criteria importance method significantly reduces the Pareto set (the
set of the best solutions). This opens up the possibility of reducing many optimal solutions to one
solution, which greatly facilitates the choice of parameters when designing a mechanical object.

Keywords: dynamics; hydraulic drive; similarity; multicriteria optimization

1. Introduction

Artificial intelligence is now widely used in industry, applied to transporting mech-
anisms, such as robots and manipulators, which move and deliver various objects to
specified positions. In simple loading systems, the accuracy of moving and positioning
of goods can be relatively low, which makes it possible to use relatively simple devices in
these cases. However, feeding a tool in processing machines requires a sufficiently high
accuracy. The movement of robots can be carried out by various actuators: pneumatic,
hydraulic, electric, etc.

Positioning control problems in transporting mechanisms (robots) are solved mainly in
two ways: using special type regulators, such as based on fuzzy logic, neural networks, and
so on or the ordinary regulators with feedback control of various type. The mathematical
models of actuators, as a rule, have a rather complex structure, consisting of higher-order
differential and algebraic equations.

Developing new devices requires the solving of a number of technical problems
associated with the choice of their type, structure, and control system, satisfied to many
requirements. In mechanical systems, hydraulic actuators are widely used. Their main
advantage in relation to pneumatic and electric actuators is their high carrying capacity
and low sensitivity to the load variation [1].

Mathematical models of hydraulic actuators and their control systems are well studied
and fully presented in works, such as [2–5]. However, the problem of finding the best
constructive solution in most cases is based of the original models not reduced to a dimen-
sionless form. Due to the abundance of differently sized variables, the general patterns of
the results obtained are often not visible, it is difficult to single out the groups of criteria
to be optimized. Additionally, it is not advisable to optimize un-grouped parameters
(variables) at the same time. This was noted by example in [6].

Mathematics 2021, 9, 2854. https://doi.org/10.3390/math9222854 https://www.mdpi.com/journal/mathematics
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In [7], the authors turn to dimensionless models, but do not use them systematically
in the search for the best solution. In this case, the dimensionless model serves only to
partially simplify the general formulation of the problem and to study the properties of the
original model. The transition to dimensionless parameters was used to select a special
object positioning control system, which should provide an approach to a given position
simultaneously with zero speed and zero acceleration in order to avoid damage to the
contact point when stopping.

The principle and process of transition to dimensionless forms have been developed
for a long time. Here we can note the fundamental works in this area [8,9]. The importance
of the theory of similarity and analogy in understanding the essence of things was noted
back in the days of Plato. In a number of philosophical works, attempts have been made
to generalize approaches to equivalence in different fields of knowledge, which gives this
direction additional significance. In [10], a general metric of transition to dimensionless
variables was considered and introduced, but it was noted that there is no uniquely best
measure of dynamic similarity, since the feasibility of any given measure depends on its
intended use.

In [11], it is shown that, due to the complexity of the mathematical description of
technical dynamic systems, when choosing their structure and parameters, they usually
turn to very laborious interactive (dialogue) procedures. A number of tools help to avoid
direct enumeration of options when using such procedures, among which the methods
of dimension and similarity theory take a significant place. These methods are based
on the use of dimensionless complexes of physical parameters of the system (criteria
of similarity and the relationship between them) together with the translation of the
mathematical description of the system into a dimensionless form [12,13]. As a result,
additional opportunities open up for identifying general patterns of dynamic processes,
which greatly facilitates making the final decision.

Experience shows that each specific problem of the dynamics of a mechanical system
requires a special approach to the formation of a dimensionless model and similarity
criteria. The structure and form of the dimensionless model depends on the accepted
units of measurement of the variables included in the equations of the model, and on the
expressions attached to its coefficients. These factors are initially unknown and are usually
formed according to the intuition and experience of the researcher, which introduces
uncertainty in the process of transition to a dimensionless model and does not guarantee
high efficiency of its use. The approach proposed below to the formation of dimensionless
models of a dynamic system of a hydraulic actuator is a development of the procedure
started in [11].

This paper illustrates an example of finding the optimal solution for a positional
system with two hydraulic actuators. This type of actuator was chosen based on the task of
controlled movement of a heavy and bulky object (load). The hydraulic actuator has the
highest power density. However, the presence of two actuators creates special problems in
control, since the drives must operate in coordination in both position and speed. Based on
this, the authors proposed an original control scheme that solves this problem based on the
use of only two valves (Figure 1): one of them regulates the average speed of the moving
object, and the other controls the distribution of fluid flows directed into the cavities of the
hydraulic cylinders [14,15].

The study of the mathematical model is carried out in dimensionless parameters, the
transition to which hydraulic actuator systems are presented in [6]. Parametric synthesis is
carried out according to the principle of multicriteria optimization. During the transition of
the system to a dimensionless form, three optimization criteria are identified with further
application of the criteria importance method. The criteria importance method significantly
reduces the optimal solutions of the system, which facilitates the selection of the best
solution when designing a mechanical object.
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Figure 1. The model of the manipulator with two hydraulic actuators: pM—actuator supply pressure;
pa—atmospheric pressure; P1, P2, P—pressure in the cavities 1, 2, 4, respectively; β, β1, β2—relative
opening areas of the respective channels.

The parametric synthesis of a mechanical system consists in choosing the values of
the parameters that make up the vector X = (x1, x2, ..., xn) that provide the best values
of the characteristics (performance indicators) of the system that make up the vector
K = (k1, k2, ..., km). Thus, the problem of multicriteria (multi-objective) optimization is
posed, in which X is a vector of variables, and K(X) is a vector of criteria (objective
functions).

To solve this problem, it is necessary to develop an adequate mathematical model of
the system under consideration, using the vector X as input parameters and calculating
the values of the characteristics K(X) at the output. Further, it is necessary to implement
a method for solving the optimization problem. In addition, in the presence of several
characteristics (m > 1), it is required to take into account the dependencies and preferences
between them.

Complex mechanical systems usually contain up to several tens of parameters n and
several characteristics m. At the same time, mathematical models of dynamic systems
contain complex connections and differential equations, and for calculations they require
the use of numerical methods. Therefore, when solving the problem of optimizing such
complex systems, the computational model usually represents a “black box”, which makes
it practically impossible to use local, gradient optimization methods [16,17]. Among the
global optimization methods working with such complex models, genetic algorithms [18],
and other variations of evolutionary algorithms, particle swarm optimization [19], and sim-
ulated annealing methods [20]. In this paper, for the global search for optimal solutions, the
parameter space investigation method [21] is used, based on the construction of sequences
of points uniformly distributed in the feasible area of the parameters X space [22].

In multicriteria optimization problems, as a rule, it is not possible to obtain a feasible
solution that is best at once according to all criteria. Using formal mathematical and
numerical methods, a set of Pareto optimal solutions can be obtained (approximated). To
select the one best solution among them, it is necessary to involve additional information
about the preferences regarding these criteria.

There are a priori and a posteriori methods for solving multicriteria optimization
problems. In a priori methods, the question of preferences is resolved before the search
for solutions is carried out. These methods include the method of identifying the “main”
criterion, as well as various methods of convolution of the criteria into one aggregated
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performance indicator. For example, the weighted sum F∑(X) = ∑m
i=1 wi ki(X), the product

F∏(X) = ∏m
i=1 kw1

i (X), or the Germeier convolution FG(X) = mini ki(X)/wi. Before
convoluting, the criteria ki are normalized in a special way. This approach allows one to
go straight to solving the optimization problem with one objective function. However,
there are a number of disadvantages behind the simplicity of this approach. First of all,
it is difficult for a person, no matter how expert he or she is, to set the exact values of the
weights reflecting the relative importance of the criteria. In addition, there are a number of
theoretical problems associated with the justification of this approach [23].

On the contrary, in a posteriori methods, optimization is performed first taking into
account all the criteria, and then preferences are analyzed. Analysis of the set of obtained
solutions is itself useful in solving such problems. First of all, a person, an expert working
with such data of optimization results, understands the possibilities available to him or
her: evaluates the areas of feasible solutions, the ranges of change in the values of the
criteria. In such an analysis, visualization tools [24], and interactive interaction of an expert
with a computer analytical system [25] play an important role. The more adequately the
expert’s real preferences are revealed, the better the solution obtained on their basis will
be. The preferences are most accurately established in the process of dialogue with the
analytical system, during which a person sees intermediate solutions, obtains a clearer idea
of the real conditions of the problem, resource opportunities, and goals. One of the most
important properties of such systems is the ability to provide explanations (justifications)
of the results and conclusions obtained, interpreting them in terms of the subject area, in a
language understandable for an expert [26].

It is known that the best solution should be chosen among the set of Pareto optimal
ones. However, this set of solutions is usually quite large. To narrow the scope of choice,
additional assumptions should be made about the preferences of experts regarding the
importance and values of the criteria. For formal modeling of these preferences and
obtaining conclusions on the basis of this information, the approach of the mathematical
theory of criteria importance was used in this work [27,28]. This method assumes a
consistent refinement of information about preferences. First, the simplest information
about ordering criteria by importance is found out. Such qualitative information is easier
to obtain than quantitative estimates of importance, and, therefore, more reliably describes
the expert’s real preferences. Next, the formal methods of the theory come into play,
which make it possible to reasonably discard from consideration some of the solutions
from the Pareto set, thereby narrowing the set of choices for the best solution. Then, if
necessary, quantitative estimates of importance are also used, but not accurate, just in the
form of intervals. Additionally, additional information about changing preferences along
the criteria scale can be used.

2. Statement of the Problem and Mathematical Model of the System

The object of research in this work is a rather complex manipulator designed to lift a
heavy, bulky load using two parallel and synchronously operating hydraulic actuators 1
and 2 (Figure 1). Let us describe the mathematical model of the object. The moving object
has a mass m = m1 + m2, where m1,2 are the mass loads applied to the actuators. The main
working cavities are the lower cavities of the actuators; however, if necessary, the upper
cavities can also be used (for example, when lowering an object). The law of motion is
mainly determined by the pressures in the lower cavities, which are connected through
the control valve 3, the intermediate cavity 4 (volume V) and the control valve 5 when the
object is lifted to the power source (with pressure pM), and when the object is lowered,
to the drain line (with pressure pA, usually equal to atmospheric). The ratios between
the effective flow area of the valve 5 and the effective flow areas of the valve channels 3
leading to the cavities of the actuators are established depending on the formulation of
the problem.

The equations of movement are:

miẍi = pi F + mi gki ẋi + PLi, i = 1, 2; (1)
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where x is the piston displacement; pi are pressures in the lower cavities; F is the effective
piston area; mi g, PLi are weight and force load on the rod, respectively; ki are coefficients
of fluid friction in the actuator.

The changes of the pressure pi in the lower cavities of the actuators and the pressure p
in the intermediate cavity are related by dependencies:

ṗ = W
(

β sign(Δp)
√
|Δp| − β1 α1 sign(Δp1)

√
|Δp1| − β2 α2 sign(Δp2)

√
|Δp2|

)
,

ṗi = Wi

(
βi αi sign(Δpi)

√
|Δpi| − ẋi

)
,

(2)

where W =
(

E f
F xv

)√
2pM

ρ , Wi =
(

E f
F (x0i+xi)

)√
2pM

ρ ; Δp = pM − p (when lifting) or Δp =

pA − p (when lowering) of the object, Δpi = p − pi; β, β1 and β2 are channel opening
degrees f , f1 and f2; E is the bulk modulus of the working fluid; xv is the length of the
intermediate cavity; ρ is working fluid density.

3. Transformation of the Model into a Dimensionless Form

According to the method of the similarity theory [8] Equations (1) and (2) are trans-
formed into a dimensionless form by replacing variables with their dimensionless analogs
λ, τ, σ, according to the relations x = q1λ, t = q2τ, p = q3σ. As a result of this replacement,
as well as mi = ci m (where i = 1, 2), ε = E/q3 and simple transformations, we obtain a
transformed system (3) and a system of Equation (4) of relations between the coefficients
Ai of the system (3) and qj.

ci A1 λ̈i = σi − ci A3 − A4 λ̇i − A6,

σ̇ = A5

(
β sign(Δσ)

√
|Δσ| − β1 α1 sign(Δσ1)

√
|Δσ1| − β2 α2 sign(Δσ2)

√
|Δσ2|

)
,

σ̇i =
ε

λ0i + λ

(
βi αi sign(Δσi)

√
|Δσi| − A2λ̇i

)
,

(3)

A1 =
m q1

q2
2 q3 F

; A2 =
q1

q2 U
; A3 =

m g
q3 F

; A4 =
ki q1

q1 q2 F
; A5 =

ε

λV
; A6 =

PLi
q3 F

. (4)

where λ, τ, σ are dimensionless analogs of displacement, time and pressure in cavity 4,
respectively; σ1, σ2 are dimensionless analogs of pressure in cavities 1 and 2.

The system (4) includes six so far unknown coefficients Ai and three, also so far
unknown, scale factors qj. This allows us to set three arbitrary values Ai, put, for example,
A1 = A2 = 1 and A3 = mg/pMF. From these conditions it is possible to determine qj, as
well as three unknown coefficients A4, A5, A6:

q1 =
m U2

pM F
; q2 =

m U
pM F

; q3 = pM; A4 =
ki U
pM F

; A5 =
ε

λV
; A6 =

PLi
pM F

, (5)

where U = ( f /F)
√

2pM
ρ is the maximum achievable piston speed in the actuator with

parameters f , F, pM; ε = E/pM is the dimensionless analogue of the bulk modulus
of liquid.

The final transformed model of the drive system presented below is obtained by
optimizing the conversion factors:

ci λ̈i = σi + ci χL − κi λ̇i + χLi,

σ̇ = KV

(
β sign(Δσ)

√
|Δσ| − β1 α1 sign(Δσ1)

√
|Δσ1| − β2 α2 sign(Δσ2)

√
|Δσ2|

)
,

σ̇i =
ε

λ0i + λ

(
βi αi sign(Δσi)

√
|Δσi| − λ̇i

)
,

(6)
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where χL = m g/pM F; χLi = PLi/pM F; KV = A5 and λ0i = x0i/qi are the reduced initial
volumes of working cavities of actuators.

The system (6) includes dimensionless parameters that are convenient to use in the
optimization process by choosing them as parameters:
KV—intermediate cavity stiffness;
λ0i—stiffness of the actuators at the initial moment of movement;
χL—manipulator total mass load;
ci—distributions of the total load between the actuators, additional resistance forces χLi,
which can be present in the system both continuously and acting discretely;
κi =

ki U
pM F —liquid friction forces;

αi = fi/ f —the ratios between the dimensions of the flow areas of the channels of valves 3
and 5.

Note that λe = 0.5(1 − cos(ωτ)) is assumed to be a given basic law of motion of the
manipulator from the initial position λ0 = 0 to the final position λe = 1; ω = π/τS is the
conditional frequency characterizes the dimensionless time of the process τS. The opening
of the valve channel 3 is characterized by the expression:

β = ϑ1

(
λe − λ1

)
+ ϑ2

(
λ̇e − λ̇1

)
. (7)

When the manipulator is operating at very low speeds, the law (7) can be replaced by
the law of uniform motion, i.e., β = 1 is accepted. We will take into account the effect of the
control system delay by replacing β in expression (7) by γ, where γ is the signal coming
from the control system. The quantity β is determined from the first-order equation:

β̇ =
1

τA
(γ − β),

where τA is the control system time constant.
If the flow areas of all channels are equal f1 = f2 = f , the mean position of the valve

shutter 3 corresponds to the coordinates β1 = β2 = 0.5 that can be taken as the initial ones.
As the control law for valve 3, we take the simplest linear law, written, for example,

relative to the first actuator β1 = 0.5 − ϑ11(λ1 − λ2); then β2 = 0.5 + β1.
We will take into account the effect of the delay of the valve control system (3) by

replacing in the law β1 with γ1, where γ1 is the signal coming from the control system,
with the definition β1 from the equation β1, where β̇1 = (1/τB)(γ − β), where τB is the
time constant of the valve control system (3).

4. The Optimization Problem

As mentioned earlier, after the transition to dimensionless parameters, three indicators
(K1, K2 and K3) were taken as the main criteria for optimality (objective functions) of the
system, which characterize the values, respectively, of the imbalance of mass loads on
actuators, power (size) of actuators and the maximum divergence of displacements of their
rods (deviation from synchronicity) in the process of movement.

K1 = |0.5 − c1|,
K2 =

m g
pM F

= χL,

K3 = Δλmax, where Δλ = |λ1 − λ2|.
The first criterion shows that the greater its value, the greater the difference in the

loads on the actuators the manipulator allows, the second characterizes the dimensions
of the actuator (the higher the value of K2, the smaller the dimensions of the actuator), an
important criterion for volumetric and mass indicators. The third criterion is responsible
for the synchronization of the movement of the two actuators, i.e., the smaller it is, the
more uniformly (synchronously) the actuators move.
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These criteria are contradictory, i.e., in the process of searching for feasible solutions in
this problem, it is not possible to obtain one solution, the best one by all three criteria at the
same time, and it is possible to single out a set of Pareto optimal solutions. For calculations
and visualization of many solutions, a unique software MOVI was used, developed with
the participation of the authors of this publication. Table 1 shows the optimized parameters
of the system and the ranges of their values.

Table 1. The optimized parameters of the system and the ranges of their values.

Parameter
Range of
Change

Comments

c1 0.3 ÷ 0.7 weight load imbalance

χL −2.0 ÷−0.4 relative total operating load on actuators, simultaneously serving
as a measure of their dimensions

λV 0.2 ÷ 1.0 the measure of the volume of the intermediate chamber

β0 0.3 ÷ 0.7 the share of the opening of the common channel in the line leading
to the actuators that relates to the first actuator

α1 0.25 ÷ 1.0 the ratio between the flow sections of the common supply channel
and the channel leading to the first actuator

α2 0.25 ÷ 1.0 the same for the channel leading to the second actuator

κ1 0.05 ÷ 0.1 coefficient of friction of the first actuator

κ2 0.05 ÷ 0.1 coefficient of friction of the second actuator

ϑ1 25 ÷ 50 position feedback ratio

ϑ2 0 ÷ 50 speed feedback ratio

ϑD 25 ÷ 50 position feedback ratio

ϑV 0 ÷ 5 speed feedback ratio

tA 0.02 ÷ 0.04 The time constant of the control system

tB 0.02 ÷ 0.04 The time constant of the valve 3 control system

λ01 0.05 ÷ 1.0 the measure of the initial (harmful) volume of the first actuator

λ02 0.05 ÷ 1.0 the measure of the initial (harmful) volume of the second actuator

χL1 0 ÷ 0.1 additional short-term intermittent drag force acting on the first
actuator

χL2 0 ÷ 0.1 additional short-term intermittent drag force acting on the second
actuator

τS 10 ÷ 50 the mass m movement time

The load parameter c1 is special and needs to be explained. The fact is that the
imbalance of the loads c1 and c2 = 1− c1 characterizes a specific load, and not the design of
the optimized manipulator. When designing a manipulator, we do not know in advance the
load parameters and cannot optimize them. However, the maximum permissible imbalance
of the loads c1 and c2 can already be considered a characteristic of the manipulator, which
can be optimized.

Let us consider in more detail how the criteria depend on the parameter c1. The
criterion K1 depends on c1 explicitly: the greater the load imbalance, the better. However,
K1 values greater than 0.2 are not required in practice. Therefore, in this problem, the
values of c1 vary from 0.3 to 0.7.

The criterion K2 does not depend on c1 at all. A typical example of the dependence of
the criterion K3 on c1 is shown in Figure 2.

With an increase in the load imbalance, the synchronization of the actuators monoton-
ically deteriorates, and asymmetrically when c1 deviates from 0.5 to the lower or higher
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side. However, starting from certain values of c1, this dependence is violated, and the
graph begins to behave unpredictably. In Figure 2 these points are circled in red. Solutions
outside these c1 values will be considered unacceptable. To detect such cases, for each
checked value of c1, we will perform several additional calculations with the load c1 up
to 0.5.

Additionally, it is necessary to take into account the asymmetry of the dependence of
K3 on c1. For every feasible solution we obtain, the ultimate allowable load will be either
less or greater than 0.5. For a symmetric case of unbalanced loads, the values of the criteria
K1 and K2 will be the same, but the value of the criterion K3 may be worse. However, we
can switch this manipulator to a more advantageous (from the point of view of K3) mode
(c1 > c2 or c1 < c2), depending on how the load lies. Therefore, this asymmetry is not
a problem.

Figure 2. An example of the dependence of the criterion K3 on the load parameter c1. The rest of the
parameters are fixed.

5. Generation of Alternative Solutions and Initial Analysis

In the software MOVI, 4000 alternative solutions were generated, the coordinates
of which are uniformly distributed in the space of variable parameters [20,21]. Of these
solutions, 2198 were found to be feasible in relation to the constraints of the model. Among
the feasible solutions, there were 96 Pareto optimal solutions. Each solution x can be

associated with a three-dimensional vector K(x) =
(

K1(x), K2(x), K3(x)
)

, the components
of which are estimates by three criteria. If the solutions are depicted as points in the
three-dimensional space of criteria, then they form a cloud in a certain area, and the points
of Pareto optimal solutions will be located on a part of the boundary of this cloud. In
Figure 3 is shown how the projections of the cloud from the points of feasible solutions to
the two-dimensional spaces of criteria are distributed. Blue rhombuses denote admissible
solutions, green circles-Pareto optimal ones.

The depiction of the set of solutions in Figure 3 represent the initial, primary infor-
mation for subsequent analysis and selection of the best solution. At the first stage, such
images make it possible to assess in what ranges of criteria values are feasible solutions.
That is, in fact, the decision maker (expert) receives primary information about the available
opportunities in terms of achieving the best values of the criteria.

The first practical conclusion based on the analysis of Figure 3 is the following: a
lot of feasible solutions are obtained with an acceptable value of the load imbalance K1.
Therefore, we can safely discard some of the solutions with weakly acceptable values of K1,
imposing an additional constraint on the feasibility of the solution K1 > 0.1, and this leaves
quite a lot of feasible solutions—821. Of these, 45 are Pareto optimal solutions. The values
of the criteria for these 45 options are shown below in Table 2. The result of imposing this
restriction in the criteria space is shown in Figure 4.
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Figure 3. The set of solutions in the space of criteria: K1 and K2. Blue dots denote admissible
solutions, green circles-Pareto optimal solutions.

Figure 4. The set of solutions in the space of criteria: (a) K1 and K2; (b) K1 and K2 on a larger scale.
Blue dots denote feasible solutions, crimson dots—infeasible ones due to the constraint K1 > 0.1,
green circles—Pareto optimal solutions.

We see that in the projections onto K1 and K2 (Figure 4a,b), the set of solutions is
expectedly divided into feasible (to the right of the line K1 = 0.1) and infeasible (to the left
of the line K1 = 0.1). Its analysis helps to verify, to make sure that the imposed constraint
on the criterion K1 led to acceptable impairments in the remaining criteria.
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Further, you can also impose constraints on the remaining criteria, and then grad-
ually increase these constraints, thereby narrowing the set of choices. This is one of
the approaches, it can be classified as intuitive, informal. Its application becomes much
more complicated with a larger number of criteria. To solve the problem of choosing the
best solution in this work, we will apply the formal approach developed in the criteria
importance theory.

6. Solving the Choice Problem by the Method of the Criteria Importance Theory

It is required to choose the best solution among the selected 45 solutions obtained at
the previous stage, taking into account the constraint K1 > 0.1.

To apply the methods of the criteria importance theory, the individual criteria K1,
K2, K3 must be brought to a homogeneous form with a common scale Z, which can be
just ordinal [26]. In this problem, we will use a 10-point scale: the higher the score, the
better, the higher the value (usefulness, preference) for the decision maker of such values
according to the criterion. To bring the criteria to the 10-point scale Z, we use linear
normalization of the criteria values and rounding. As a result, each of the 45 alternative
solutions is associated with its vector score from the set Z3 = Z × Z × Z. The values of the
initial criteria and the obtained vector scores y = (y1, y2, y3) for all 45 options are given in
Table 2. It should be noted that the requirements for minimization and maximization for
the initial criteria can be different (K1 → max, K2 → max, K3 → min), while the scores on
the scale Z are always the same (y1 → max, y2 → max, y3 → max).

Table 2. The values of the initial criteria and the obtained vector scores y = (y1, y2, y3) for 45 options.

No.
K1,

10−3 K2
K3,

10−3 y1 y2 y3 No.
K1,

10−3 K2
K3,

10−3 y1 y2 y3 No.
K1,

10−3 K2
K3,

10−3 y1 y2 y3

159 1.30 1.52 12.4 3 10 3 1267 1.76 1.32 3.7 8 8 10 2660 1.98 1.15 4.6 10 6 9
239 1.14 1.58 11.1 2 10 4 1382 1.64 1.46 7.4 7 9 7 2834 1.51 1.51 5.1 6 9 9
247 1.98 0.73 4.5 10 2 9 1615 1.69 1.44 5.2 7 9 9 2841 1.76 1.41 16.2 8 9 1
257 1.43 1.35 3.0 5 8 10 1691 1.37 1.51 4.9 4 9 9 3005 1.28 1.55 7.7 3 10 7
307 1.88 1.38 6.5 9 8 8 1734 1.90 1.32 6.3 9 8 8 3093 1.97 1.34 7.5 10 8 7
442 1.71 1.46 6.8 8 9 7 1760 1.46 1.50 5.0 5 9 9 3254 1.99 0.68 4.7 10 2 9
464 1.99 1.10 5.8 10 6 8 1847 1.96 1.40 13.8 10 8 2 3298 1.98 0.99 4.4 10 5 9
635 2.00 0.84 7.8 10 3 7 1849 1.79 1.10 3.5 8 6 10 3423 1.20 1.45 3.2 2 9 10
652 1.99 1.29 6.4 10 7 8 2010 1.84 1.38 10.0 9 8 5 3442 1.88 1.23 3.5 9 7 10
840 1.89 0.64 3.1 9 1 10 2057 1.10 1.56 8.6 1 10 6 3473 1.99 1.14 8.2 10 6 6
895 1.07 1.61 8.7 1 10 6 2112 1.75 1.40 12.2 8 8 4 3642 2.00 0.99 8.1 10 5 7
911 1.57 1.46 4.5 6 9 9 2226 1.76 1.27 6.3 8 7 8 3768 1.92 1.16 3.6 10 6 10
997 1.85 1.10 3.2 9 6 10 2236 1.99 1.17 6.5 10 6 8 3862 1.74 0.54 2.7 8 1 10
1080 1.44 1.48 3.5 5 9 10 2276 1.23 1.56 10.3 3 10 5 3900 1.93 1.37 11.8 10 8 4
1246 1.07 1.59 4.0 1 10 10 2478 1.94 1.23 3.7 10 7 10 3952 1.21 1.00 3.0 3 5 10

In fact, due to rounding, each vector score describes a certain small region in the
original 3D space of the criteria. At the same time, some solutions may be in the same
region, and then they will have the same vector score. For example, alternatives 307
and 1734 have the same vector score (9, 8, 8). Further, using the method of the criteria
importance theory, we will solve the problem of choosing the best vector score. Choosing
this vector score, we will obtain a corresponding small region in the original space of
criteria, which includes one or more solutions from the 45 considered.

In the criteria importance theory, the preferences of decision makers are modeled
using binary relations [26]. The non-strict preference relation R of the decision maker is
introduced on the set of vector scores Z3: the notation yRz means that the vector score y is
no less preferable than z. The relation R is reflexive and transitive, it generates the relations
of indifference (equivalence) I and strict preference (dominance) P:

yIz ⇔ yRz and zRy,

yPz ⇔ yRz, but zRy is not true.
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It is known that if the relation R is complete, then on a finite set of vector scores there
is at least one optimal vector score y, such that yRz holds for all other vector scores z. There
can be several optimal vector scores equivalent by the relation I. In this case, the choice of
the best vector score should be carried out among the optimal vector scores.

If the relation R is incomplete, then the best vector score should be chosen among the
non-dominated vector scores. A vector score y is called non-dominated with respect to P if
there is no other vector score z, such that zPy holds.

Since the decision maker’s preferences increase along the scale of criteria Z, the Pareto
relation is defined on the set of vector scores Z3:

yR�z ⇔ yi ≥ zi, i = 1, 2, 3;

yP�z ⇔ yR�z and y 	= z.

Among the 45 vector scores under consideration, there are 10 non-dominated with
respect to the Pareto relation P�. In fact, 9 vector scores remain, since variants with
numbers 307 and 1734 have the same vector score (9, 8, 8). These vector scores and the
corresponding alternatives are shown in Table 3.

Table 3. 10 vector scores and their the corresponding alternatives.

No. K1 K2 K3 y1 y2 y3

307 0.188 1.38 0.0065 9 8 8
442 0.171 1.46 0.0068 8 9 7

1080 0.144 1.48 0.0035 5 9 10
1246 0.107 1.59 0.0040 1 10 10
1267 0.176 1.32 0.0037 8 8 10
1615 0.169 1.44 0.0052 7 9 9
1734 0.190 1.32 0.0063 9 8 8
2478 0.194 1.23 0.0037 10 7 10
3005 0.128 1.55 0.0077 3 10 7
3093 0.197 1.34 0.0075 10 8 7

At the next step of solving the choice problem by the criteria importance method,
we enter information Ω about the ordering of criteria by importance into the software
DASS, as shown in Figure 5 [27,29]. The criterion K1 is more important than the criterion
K2(1 
 2), and the criterion K2, in turn, is more important than the criterion K3(2 
 3).

Figure 5. Non-dominated vector scores based on information about ordering criteria by importance.

As a result, there are only 4 non-dominated vector scores and the corresponding 5
alternative solutions shown in Table 4. For each of the 5 vector scores that turned out to be
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dominated with respect to PΩ, it is possible to formally explain why it should be excluded
from consideration. Namely, what other vector score dominates it and on the basis of what
information about preferences this conclusion is made:

y(307) = (9, 8, 8)P1
2(8, 9, 8)P�(8, 9, 7) = y(442),

y(2478) = (10, 7, 10)P1
2(7, 10, 10)P�(5, 9, 10) = y(1080),

y(2478) = (10, 7, 10)P1
2(7, 10, 10)P�(1, 10, 10) = y(1246),

y(2478) = (10, 7, 10)P1
2(7, 10, 10)P�(7, 9, 9) = y(1615),

y(2478) = (10, 7, 10)P1
2(7, 10, 10)P�(3, 10, 7) = y(3005),

For example, the notation (10, 7, 10)P1
2 (7, 10, 10) means that the vector score (10, 7,
10) is preferable to the vector score (7, 10, 10), since the first criterion is more important
than the second. As we can see from the constructed chains of vector scores, in this case,
in order to discard the vector scores dominated by PΩ from the information Ω about the
ordering of criteria by importance, it turned out to be enough to use only the fact that the
first criterion is more important than the second.

Table 4. The 4 non-dominated vector scores and the corresponding 5 alternative solutions.

No. y1 y2 y3 Value Function Estimation

307; 1734 9 8 8 0.846
1267 8 8 10 0.802
2478 10 7 10 0.907
3093 10 8 7 0.901

The resulting 4 vector scores remain incomparable with the introduced information
about the DM’s preferences. Next, we will analyze them from different angles. At this
stage, the value functions of these vector scores can be estimated by calculating the centroid
values of the decision maker’s preference parameters [28]. Figure 6 shows how to do this
in the software DASS, Table 4 shows the resulting values of the value functions.

Figure 6. Estimation of value functions based on the centroid values of the decision maker’s prefer-
ence parameters.

Let us continue the formal solution of the choice problem by the criteria importance
method. At the next step, we input in the software DASS (see Figure 7) interval information
about the relative importance of the criteria: the first criterion is at least 2 times more
important than the second, and no more than 4 times; the second criterion is no more than
2 times more important than the third.
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Figure 7. Non-dominated vector scores based on interval information about the importance of
criteria.

With such information about the preferences of the decision maker, the vector score
y(1267) = (8, 8, 10) turns out to be dominated. Table 5 shows the remaining non-dominated
vector scores. Their value functions have changed slightly, as the set of possible values of
preference parameters has changed (narrowed) and the corresponding centroid values of
these parameters have shifted.

Table 5. The remaining non-dominated vector scores.

No. y1 y2 y3 Value Function Estimation

307; 1734 9 8 8 0.978
2478 10 7 10 0.983
3093 10 8 7 0.980

At the next step in solving the choice problem, let us clarify the information on how
the decision maker’s preferences grow along the criterion scale Z (see Figure 8).

Figure 8. Non-dominated vector scores based on information on the scale of criteria.

As a result, there is only one non-dominated vector score (10, 7, 10), which corresponds
to the solution 2478. Additionally, in favor of this vector score, we can note the fact that the
estimation of its value function was higher than others at each step of solving the problem.

The only solution was selected using imprecise information about the preferences of
experts, given in the form of interval estimates. In the previous steps, the choice set was
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significantly narrowed down based only on qualitative assessments of preferences. The
use of partial and imprecise information about the preferences, an iterative procedure for
clarifying this information, as well as the ability to formally substantiate the conclusions
made are significant advantages of the considered method of the criteria importance theory
in comparison with other methods of multicriteria analysis.

7. Additional Visual Analysis of Alternative Solutions

After the formal analysis of the problem by the criteria importance methods, it is useful
to return to the graphical representations of the solutions. Consider 4 non-dominated vector
estimates and the corresponding 5 solutions listed in Table 4. Recall that they are selected
after a simple ordering of the criteria by importance.

Let us see where these solutions are in the space of the initial criteria K1, K2, K3. To do
this, we introduce additional constraints on the values of criteria in the software MOVI.
Note that the considered vector scores have the minimum values of the components y1, y2,
y3 equal to 8, 7, 7, respectively. In order for only solutions with estimates y1 ≥ 8, y2 ≥ 7,
and y3 ≥ 7 to remain feasible, the following constraints should be imposed on the values
of the criteria: K1 > 0.17, K2 > 1.188, and K3 < 0.0081. The result is shown in Figure 9.

Figure 9. The set of solutions in the space of criteria: K1 and K2. Selected solutions are numbered at
the top.

Figure 9 gives a general idea in which region of the original point cloud of all solutions
the solutions we have selected turned out to be. Now, let us zoom in on the display area.
In addition, we will slightly weaken the constraints on the criteria in order to exclude the
rounding effect in the process of bringing the criteria to the 10-point scale: K1 > 0.165,
K2 > 1.134 and K3 < 0.0088. This extended sample contains 39 solutions, including 14
Pareto optimal solutions. The result is shown in Figure 10.

In Figure 10, the numbers of other solutions, in addition to the selected 5 solutions
from Table 4, are marked. In these scaled figures, it is possible to compare different solutions
in pairs. In particular, to make sure that the solution 2478, chosen by the formal method, is
preferable. It is also interesting to compare the solutions 307 and 1734, which are located
side by side on all three projections and have the same vector score.
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Figure 10. An extended set of solutions in the scaled space of criteria: K1 and K2.

8. Result and Discussion

After carrying out a numerical experiment, out of the generated 4000 solutions, only
2198 were found to be feasible in relation to the constraints of the model. Among such
an abundance of solutions, it is impossible to choose the best one by examining the three-
dimensional space of optimization criteria. Obtaining the set of Pareto optimal solutions
allowed us to select 96 solutions. Further, the analysis of the criteria space was carried out
in order to reduce the area of suitable solutions, and preferences were introduced regarding
the importance and values of the criteria. Thus, we reduced the number of best solutions to
10 (Table 3), and subsequently chose one best solution. Further, the analysis of the obtained
solutions is advisable to carry out using a visual analysis of solutions as shown in [11].
Here is a description of the selected solutions.

Table 6 shows the values of the optimized parameters for the selected solutions, as
well as in Figures 11 and 12 are a visual representation of the dynamic characteristics. A
more detailed description of the visualization principles is presented in [11].

Table 6. The optimized parameters of the system and the ranges of their values.

Parameter Range 307 1267 1734 2478 3093

c1 0.3 ÷ 0.7 0.688 0.676 0.690 0.694 0.697
χL −2.0÷−0.4 −1.378 −1.320 −1.321 −1.230 −1.336
λV 0.2 ÷ 1.0 0.839 0.847 0.511 0.567 0.726
β0 0.3 ÷ 0.7 0.507 0.678 0.433 0.630 0.688
α1 0.25 ÷ 1.0 0.779 0.964 0.800 0.801 0.676
α2 0.25 ÷ 1.0 0.295 0.625 0.598 0.746 0.435
κ1 0.05 ÷ 0.1 0.059 0.057 0.052 0.087 0.052
κ2 0.05 ÷ 0.1 0.063 0.095 0.060 0.055 0.074
ϑ1 25 ÷ 50 46.729 44.714 37.561 38.153 43.732
ϑ2 0 ÷ 50 30.566 17.407 1.831 33.533 13.293
ϑD 25 ÷ 50 72.314 83.777 87.366 95.880 38.715
ϑV 0 ÷ 5 4.990 0.881 2.986 2.882 3.578
tA 0.02 ÷ 0.04 0.034 0.024 0.020 0.027 0.027
tB 0.02 ÷ 0.04 0.031 0.023 0.028 0.040 0.035

χL1 0 ÷ 0.1 0.001 0.056 0.005 0.048 0.096
χL2 0 ÷ 0.1 0.036 0.038 0.078 0.088 0.039
λ01 0.05 ÷ 1.0 0.05 0.05 0.05 0.05 0.05
λ02 0.05 ÷ 1.0 0.05 0.05 0.05 0.05 0.05
τS 10 ÷ 50 44.453 28.574 26.738 20.576 30.596

Figure 11 shows the characteristics of the movement of the system of the solution 307
with unequal mass loads on the first and second actuators (c1 = 0.688, c2 = 0.312):
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(a) indicators of the first actuator: curves of displacement and speed (λ1, λ̇1); in the upper
part of this column I—pressure in its working cavity (σ1);

(b) indicators of the second actuator: curves of displacement and speed (λ2, λ̇2); in the
upper part of this column II—pressure in its working cavity (σ2);

(c) channel opening curves (β0, β1, β2): changes in the mismatch criterion Δλ in the
movement of actuators, III—pressure in the intermediate cavity (σ).

The designations for these quantities were explained in the previous section. The
curves in Figure 12 are arranged in the same order.

The values of all parameters for each solution can be viewed in Table 6. The scale for
displacement λ is doubled relative to the pressure σ. The scale in speed λ̇ is ten times the
pressure. The β scale (flow area value) is increased five times relative to the pressure.

It follows from the graphs that under the conditions of the optimized solution 307
(Figure 11), despite the high load level of the actuators (|χL| = 1.378), and the imbalance in
loading the right and left cargo (c1 = 0.688, c2 = 0.312), the given laws of motion actuators
are implemented with good accuracy, and the pressures in all cavities after a short-term
initial disturbance quickly stabilize and are practically invisible.

Figure 11. Estimated dynamic characteristics of the solution 307.

A short-term disturbance in the system is modeled by a variable χL1,2, in Table 6
these are the variables χL1 and χL2. The first actuator is supplied with an additional
load χL1 = 0.001, and practically does not affect the positioning process, the second
actuator is supplied with χL2 = 0.036, and we see a small jump in pressure σ2, which
also insignificantly affects the positioning process. The operation of the system under the
conditions of the solution 307 is distinguished by a very low sensitivity to variations in
position and speed (λ1, λ̇1) parameters within the entire selected range.

The solution 2478 shows in Figure 12, in which unequal mass loads on the first
and second actuators (c1 = 0.694, c2 = 0.306), short-term disturbances in the system
(χL1 = 0.048 and χL2 = 0.088) are set. Despite the more significant short-term disturbances,
we see pressure surges in both actuators (σ1 and σ2 graph), which practically does not
affect the positioning process. This is primarily due to the correct choice of the remaining
parameters of the optimized system. In [11], variants are presented when, for other
parameters, but weaker perturbations, the system does not behave stably.

From a computational point of view, the process of generating 4000 alternative solu-
tions in the MOVI software took the longest time—about 3 h on a personal computer. Each
of these solutions had to be checked for feasibility, and, for this, the system of Equation (6)
had to be solved by the Runge–Kutta method several times for different values of the
parameter c1. On average, it took 15 such launches and 2.7 s to check one solution. All
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other calculations took almost no time and were invisible for experts working with the
systems. The operation of decision rules in the DASS system in problems with up to
10 criteria takes less than a second [27]. Such problems of designing new mechanisms
are one-off, individual, so it is permissible and even advisable to spend a lot of time on
solutions search and careful analysis.

Figure 12. Estimated dynamic characteristics of the solution 2478.

9. Conclusions

The procedure used in this work is based on two important factors: a rational math-
ematical model and a rational optimizing method. The effectiveness of the proposed
procedure is shown by the example of solving a complex dynamic problem-choosing the
best option for a technical project. The first factor made possible to simplify to the limit a
real computational model by reducing the number of both parameters and criteria, which
are considered as a purely physical value. The second factor allowed us to enter the area of
best solutions with a significant reduction in options variation. In conclusion, we note the
following main stages of work:

– Developing a mathematical model of the investigated physical object;
– Transition to dimensionless parameters;
– On the basis of a dimensionless mathematical model of a physical object, multi-

parameter and multicriteria optimization is carried out with the selection of the
Pareto set;

– Analysis of the criteria space in order to reduce the area of suitable solutions;
– Preferences are introduced regarding the importance and values of criteria in the form

of qualitative or imprecise quantitative (interval) estimates;
– Visual analysis of the received solutions.

As an additional stage, the proposed procedure can also include an optimization
stage in the transition from dimensionless to dimensional values. The technical design
of a robotic system with two actuators operating in accordance mode, considered as an
example, shows the effectiveness of the approach proposed.
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Abstract: Application of transformations for dependent and independent variables is used for finding
solitary wave solutions of the generalized Schrödinger equations. This new form of equation can be
considered as the model for the description of propagation pulse in a nonlinear optics. The method
for finding solutions of equation is given in the general case. Solitary waves of equation are obtained
as implicit function taking into account the transformation of variables.
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1. Introduction

In this paper, we consider the nonlinear partial differential equation

i qt + qxx + α q + β |q|n q + γ |q|2n q + δ |q|3n q + λ |q|4n q = 0, (1)

where q(x, t) is complex function, x is coordinate, t is time, n is rational number and α, β, γ,
δ, λ are parameters of Equation (1). It is easy to see that Equation (1) is the generalization
of the famous nonlinear Schrödinger equation which follows from Equation (1) at β 	= 0,
n = 2, α = γ = δ = λ = 0. Equation (1) has been presented in recent paper [1] as an
equation whose solution can be obtained using the method of transformation for dependent
and independent variables. Equation (1) is the generalization of some equations describing
propagation pulses in the nonlinear optics (see, for example, [2–19]).

The purpose of this paper is to present the method for finding solutions of Equation (1)
and to obtain the implicit solitary wave solutions of Equation (1) using the transformations
of variables.

This article is organized as follows. In Section 2, the method of finding solutions of
Equation (1) is presented taking into account the traveling wave reduction. In this Section
the general approach to finding exact solutions of Equation (1) is described as weel. The
implicit solitary waves of Equation (1) in form of kink are given in Section 3. Implicit
soliton solutions of Equation (1) are presented in Section 4.

2. Method Applied

Let us look for the exact solution of Equation (1) using the the form

q(x, t) = y(z) ei (k x−ω t), (2)

where y(z) is a function describing an optical pulse profile, ω is a frequency and k is a
wave number and z is a variable of x and t: z = x − C0 t.

Substituting (2) into Equation (1) and equating expressions for real and imaginary
parts yields the overdetermined system of equations for function y(z) in the form

(2 k − C0) yz = 0, (3)

Mathematics 2021, 9, 3024. https://doi.org/10.3390/math9233024 https://www.mdpi.com/journal/mathematics
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yzz + (ω − k2) y + α y + β yn+1 − γ y2n+1 − δ y3n+1 + λ y4n+1 = 0. (4)

Provided that C0 = 2 k we see that Equation (3) is satisfied. Multiplying Equation (4)
by yz and integrating over z, we obtain the first integral in the form

y2
z + (ω + α − k2) y2 + 2 β

n+2 yn+2 − γ
n+1 y2n+2−

2 δ
3n+2 y3n+2 + λ

2n+1 y4n+2 = C1,
(5)

where C1 is a constant of integration.
Solution of Equation (5) can be written in the form of quadrature

∫ dξ√
H[y]

= z − z0, (6)

where
H[y] = C1 − (ω + α − k2) y2 − 2 β

n+2 yn+2 + γ
n+1 y2n+2+

2 δ
3n+2 y3n+2 − λ

2n+1 y4n+2.
(7)

However integral (6) cannot be calculated in the general case.
Let us look for solution of Equation (5) in the form

y(z) = F(ξ), ξz = F(ξ)n. (8)

Using (8), we have

yz = Fξ ξz = Fξ F(ξ)n. (9)

Substituting (8) and (9) into Equation (5), we obtain the equation

F2
ξ + (ω + α − k2) F2−2n + 2 β

n+2 F2−n − γ
n+1 F2−

2 δ
3n+2 Fn+2 + λ

2n+1 F2n+2 = 0.
(10)

Equation (10) has been previously studied in papers [1–3]. It is important to note that
by using the transformation [20–23]

F(ξ) = V(ξ)− 1
n , (11)

Equation (10) can be reduced to the equation with solutions in the form of elliptic
function

V2
ξ + (ω + α − k2) n2 V4 +

2 n2 β

n + 2
V3 − n2 γ

n + 1
V2−

2 n2 δ

3n + 2
V +

n2 λ

2n + 1
= 0.

(12)

Solution of Equation (12) can be searched for in the form [24–26]

V(ξ) = V1 +
(V2 − V1) E

Y2 + E
, E =

(V1 − V3)

(V3 − V2)
, (13)

where V1, V2, V3 and V4 are the roots of the following algebraic equation

(ω + α − k2)V4 +
2 β

n + 2
V3 − γ

n + 1
V2 − 2 δ

3n + 2
V +

λ

2n + 1
= 0 (14)

and Y(ξ) is the Jacobi elliptic sine in the form

Y(ξ; k) = sn
{

n
2

√
a (V4 − V2)(V1 − V3) (ξ − ξ0); S

}
, (15)

where S is determined by the formula
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S2 =
(V1 − V4) (V1 − V3)

(V4 − V2) (V3 − V2)
. (16)

Taking into account (11), the solution F(ξ) can be expressed by the formula

F(ξ) =

[
V1(V3−V2)sn2

{
n
2

√
a(V4−V2)(V1−V3)(ξ−ξ0);S

}
+V2(V1−V3)

(V3−V2)sn2
{

1
2

√
d(V4−V2)(V1−V3) (ξ−ξ0);S

}
+V1−V3

]− 1
n

. (17)

We cannot find the explicit expression for the function ξ(z) using V(ξ) in the general
case by means of the formula ∫

V(ξ) d ξ = z − z0. (18)

However in the case of solitary wave solutions these solutions of Equation (1) can be
found as the implicit functions. To look for these solutions we use the special methods has
been developing in the last few years [27–36].

3. Implicit Solitary Wave Solutions of the Generalized Nonlinear Schrödinger
Equation in Form Kink

Let us look for the solution of Equation (12) using the logistic function. We assume
that there exist a solution of Equation (12) in the form [37–46]

V(ξ) = A0 + A1 Q(ξ), (19)

where Q(ξ) is the logistic function [37]

Q(ξ) =
1

1 + e m (ξ−ξ0)
. (20)

The function Q(ξ) is the solution of the Riccati equation in the form

Qξ = m (Q2 − Q). (21)

The function Q(ξ) satisfies the following second-order differential equation as well

Qξξ = m2 Q (Q − 1) (2 Q − 1). (22)

Substituting (19) into Equation (12) and taking Equations (21) and (22) into account,
yields the equality(

n2 A1
4ω − n2 A1

4k2 + n2 A1
4α + A1

2m2
)

Q4 +
(

4 n2 A0 A1
3α−

2 A1
2m2 − 4 n2 A0 A1

3k2 + 4 n2 A0 A1
3ω + 2 n2 A1

3β
2+n

)
Q3 +

(
A1

2m2+

6 n2 A0 A1
2β

2+n + 6 n2 A0
2 A1

2α + 6 n2 A0
2 A1

2ω − n2 A1
2g

1+n −
6 n2 A0

2 A1
2k2
)

Q2 +
(

6 n2 A0
2 A1 β

2+n − 2 n2 A0 A1 g
1+n − 2 n2 A1 δ

2+3 n −
4 n2 A0

3 A1 k2 + 4 n2 A0
3 A1 α + 4 n2 A0

3 A1 ω
)

Q − n2A04k2 + n2A04α+

n2 A0
4ω + λ n2

1+2 n − 2 n2 A0 δ
2+3 n − n2 A0

2g
1+n + 2 n2 A0

3β
2+n = 0.

(23)

We have obtained that a polynomial in solutions Q(z) is equal to zero. Such thing is
possible if and only if all coefficients are equal to zero. Taking into account this property
in (23), we derive the conditions for the parameters of Equation (1). These conditions are
the following

α = k2 − ω − m2

n2 A1
2 , (24)

β =
m2(2 + n)(A1 + 2 A0)

n2 A1
2 , (25)
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γ =

(
6 A0

2 + 6 A0 A1 + A1
2
)

m2(1 + n)

n2 A1
2 , (26)

δ = −
(2 + 3 n)m2 A0

(
2 A0

2 + 3 A0 A1 + A1
2
)

n2 A1
2 , (27)

λ = −
(1 + 2 n)m2 A0

2
(

A0
2 + 2 A0 A1 + A1

2
)

n2 A1
2 . (28)

Using solution (19) and definition (18), we get the implicit function ξ(z) in the form

(A0 + A1) ξ − A1

m
log
(

1 + e m ξ
)
= z − z0. (29)

On the other hand taking into account (8) and (11), we obtain

ξ =
1
m

log
[
(A0 + A1) yn − 1

A0 yn − 1

]
. (30)

Substituting (30) into (29)yields an implicit expression for y(z) in the form

(A0 + A1)

m
log
[
(A0 + A1) yn − 1

A0 yn − 1

]
− A1

m
log
(

A1 yn

A0 yn − 1

)
= z − z0. (31)

We have obtained implicit expressions for kinks y(ξ) and y(z), where A0, A1, m and
n are arbitrary. These values allow us to calculate the parameters α, β, γ, δ and λ for
Equation (5) using conditions (24)–(28).

Solutions (30) of Equation (10) (on the left) and (31) of (5) (on the right) are demon-
strated in Figure 1 at A0 = 1.0, A0 = 0.5, n = 2, m = 0.02 and z0 = 0.0.

Figure 1. Solutions (30) of Equation (10) (left) and (31) of (5) (right) at A0 = 1.0, A0 = 0.5, n = 2,
m = 0.02 and z0 = 0.0.

4. Implicit Optical Solitons of the Generalized Nonlinear Schrödinger Equation

Let us obtain the exact solutions in the form of solitons. We look for the solution of
Equation (12) in the form [47–51]

V(ξ) = A0 + A1 R(ξ), (32)

where the function R(ξ) solves the following equations

R2
ξ + a R4 + b R3 − c R2 = 0 (33)

and

Rξξ + 2 a R3 +
3 b
2

R2 − c R = 0 (34)
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Solution of Equation (33) is as follows [47]

R(ξ) =
4 c e−ξ

√
c

4 a c + b2 + 2 b e−ξ
√

c + e−2 ξ
√

c
. (35)

Substituting expression (32) and taking into account (33) and (34) into Equation (12),
we obtain the following polynomial(

n2 A1
4 α − n2 A1

4k2 + n2 A1
4ω − A1

2a
)

R4 +
(

4 n2 A0 A1
3α−

A1
2b − 4 n2 A0 A1

3k2 + 4 n2 A0 A1
3ω + 2 n2 A1

3β
2+n

)
R3 +

(
A1

2c+
6 n2 A0 A1

2β
2+n − 6 n2 A0

2 A1
2k2 + 6 n2 A0

2 A1
2α + 6 n2 A0

2 A1
2ω−

n2 A1
2g

1+n

)
R2 +

(
−2 n2 A0 A1 g

1+n + 6 n2 A0
2 A1 β

2+n − 2 n2 A1 δ
2+3 n −

4 n2 A0
3 A1 k2 + 4 n2 A0

3 A1 α + 4 n2 A0
3 A1 ω

)
R + λ n2

1+2 n−
n2 A0

4k2 + n2 A0
4α + n2 A0

4ω − 2 A0 δ n2

2+3 n − A0
2gn2

1+n + 2 A0
3β n2

2+n = 0,

(36)

Equating the coefficients of polynomial (36) to zero, let us find the following conditions

α =
A1

2k2n2 − A1
2n2ω + a

A1
2n2

, (37)

β = − (2 + n)(4 A0 a − A1 b)
2 A1

2n2
, (38)

γ = −
(

6 A0
2a − 3 A0 A1 b − A1

2c
)
(1 + n)

A1
2n2

, (39)

δ =

(
4 A0

2a − 3 A0 A1 b − 2 A1
2c
)

A0 (2 + 3 n)

2 A1
2n2

, (40)

λ =

(
A0

2a − A0 A1 b − A12c
)

A0
2(1 + 2 n)

A1
2n2

. (41)

Solution V(ξ) of Equation (12) can be written as the following

V(ξ) = A0 +
4 A1 c e−ξ

√
c

4 a c + b2 + 2 b e−ξ
√

c + e−2 ξ
√

c
. (42)

At the same time, we find the function ξ(z) from Equation (18)

z = A0 ξ +
2 A1

√
c√

a c
arctan

[(
4 a c + b2)eξ

√
c + b

2
√

ac

]
+ z0. (43)

Solution V(ξ) of Equation (12) is demonstrated in Figure 2 on the left hand side at
A0 = 5.0, A1 = −2, a = 2.0, b = 3.0 and c = 4.0. Dependencies ξ(z) are shown on the right
hand side of Figure 2 at A0 = 5.0, A1 = −2, a = 2.0, b = 3.0 and c = 4.0 (curve 1), A0 = 3.0,
A1 = −2, a = 2.0, b = 3.0 and c = 4.0 (curve 2) and at A0 = 1.0, A1 = −2, a = 2.0, b = 3.0
and c = 4.0 (curve 3).
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Figure 2. Solution (42) of Equation (12) at A0 = 5.0, A1 = −2, a = 2.0, b = 3.0 and c = 4.0 (left) and
(43) of (18) (right) at A0 = 5.0 (curve 1),A0 = 3.0 (curve 2) A0 = 1.0 (curve 3) and at A1 = −2.0,
a = 2.0, b = 3.0 and c = 4.0.

Taking into account Equations (8) and (11), we obtain

A0 +
4 A1 c e−ξ

√
c

4 a c + b2 + 2 b e−ξ
√

c + e−2 ξ
√

c
− y−n. (44)

Solving Equation (44) gives us two expressions for ξ(y)

ξ1,2(y) = − 1√
c

log

[
A1 b yn + 2 A1 c yn ∓ 2

√
P − b

1 − A0 y

]
, (45)

where P is as follows

P =
(

A2
1 c2 + A0 A1 b c − A2

0 a c
)

y2n + (2 A0 a c − b c) yn − ac. (46)

The dependence ξ(y) is the two-valued function. Equating ξ1(y) and ξ2(y), we obtain
the following formula for y∗

y∗ =

⎡
⎣2 A0 a − A1 b +

√
4 a c A1

2 + A1
2b2

2 A0
2a − 2 A0 A1 b − 2 A1

2c

⎤
⎦

1
n

. (47)

It can be seen that y∗ depends on the values of A0, A1, a, b and c. by substituting y∗
into (45) we obtain ξ∗. The dependence ξ(z) can be written in the form

ξ(y) =

{
ξ1(y), ξ > ξ∗,
ξ2(y), ξ < ξ∗.

(48)

Substituting ξ(y) into expression (43), yields the solitary wave in the form

z(y) =

⎧⎪⎪⎨
⎪⎪⎩

A0 ξ1(y) +
2 A1

√
c√

a c arctan
[
(4 a c+b2)eξ1(y)

√
c+b

2
√

ac

]
+ z0, z > z∗,

A0 ξ2(y) +
2 A1

√
c√

a c arctan
[
(4 a c+b2)eξ2(y)

√
c+b

2
√

ac

]
+ z0 z < z∗,

(49)

where Z∗ is found taking into account y∗.
Implicit solitary waves solutions ξ(y) of Equation (10) (on the left) and z(y) of

Equation (5) are illustrated in Figure 3 at z0 = 0.0, A0 = 5.0, A1 = −2.0, n = 1, a = 2.0,
b = 3.0, and c = 4.0.
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Figure 3. Implicit solitary waves solutions ξ(y) of Equation (10) (left) and z(y) of Equation (5) (right)
at z0 = 0.0, A0 = 5.0, A1 = −2.0, n = 1, a = 2.0, b = 3.0, and c = 4.0.

5. Conclusions

In this paper, Equation (1) has been studied. Equation (1) is the generalization of the
famous nonlinear Schrödinger equation and can be used for the description of propagation
pulses in optical fiber. Using the transformations for dependent and independent variables
we have presented the algorithm for construction of exact solutions of nonlinear differential
equations. Exact formulas for solitary waves solutions in the form of kinks and optical
solitons are given as the implicit functions. The approach for finding exact solutions can be
used for some other nonlinear differential equations.
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Abstract: The problem with training spiking neural networks (SNNs) is relevant due to the ultra-low
power consumption these networks could exhibit when implemented in neuromorphic hardware.
The ongoing progress in the fabrication of memristors, a prospective basis for analogue synapses,
gives relevance to studying the possibility of SNN learning on the base of synaptic plasticity models,
obtained by fitting the experimental measurements of the memristor conductance change. The
dynamics of memristor conductances is (necessarily) nonlinear, because conductance changes depend
on the spike timings, which neurons emit in an all-or-none fashion. The ability to solve classification
tasks was previously shown for spiking network models based on the bio-inspired local learning
mechanism of spike-timing-dependent plasticity (STDP), as well as with the plasticity that models
the conductance change of nanocomposite (NC) memristors. Input data were presented to the
network encoded into the intensities of Poisson input spike sequences. This work considers another
approach for encoding input data into input spike sequences presented to the network: temporal
encoding, in which an input vector is transformed into relative timing of individual input spikes.
Since temporal encoding uses fewer input spikes, the processing of each input vector by the network
can be faster and more energy-efficient. The aim of the current work is to show the applicability
of temporal encoding to training spiking networks with three synaptic plasticity models: STDP,
NC memristor approximation, and PPX memristor approximation. We assess the accuracy of the
proposed approach on several benchmark classification tasks: Fisher’s Iris, Wisconsin breast cancer,
and the pole balancing task (CartPole). The accuracies achieved by SNN with memristor plasticity
and conventional STDP are comparable and are on par with classic machine learning approaches.

Keywords: spiking neural networks; synaptic plasticity; spike-timing-dependent plasticity; memristor

1. Introduction

A variety of problems surround the phenomena or dynamical processes that cannot be
described by explicit laws expressed in differential equations. Such tasks could be solved
with the help of data-driven modeling, which forms an implicit model of the process of
interest by learning from the observed data. An especially relevant direction in data-driven
modeling involves spiking neural networks (SNNs) [1–3], an inherent characteristic of
which is the nonlinearity in the temporal dynamics of neurons receiving and transmitting
spikes and the dynamics of the synaptic weights during learning. The dynamics of spiking
neurons is described by nonlinear differential equations: the membrane potential of a
neuron receives non-differentiable pulses when input spikes arrive and is instantaneously
reset to its resting value upon emitting an output spike.

The practical relevance of SNNs involves the ultra-low power consumption these
networks could exhibit when implemented in neuromorphic hardware [4,5]. For instance,
the digital neuromorphic chip TrueNorth [6] spends only 26 pJ for transmitting an impulse
(spike) from neuron-to-neuron. Devices in which synapses (and possibly neurons too)
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are implemented in an analogue fashion can be even more efficient [7]. The prospective
element base for the analogue implementation of a synapsis is a memristor [8,9].

This gives relevance toward developing spiking neural network models with learning
based on synaptic plasticity mechanisms that model the conductance change of a mem-
ristor. A number of memristor plasticity models have been obtained so far, backed by
experimental measurements, in which the drift of the conductance of a memristor depends
nonlinearly on its current conductance and on the time difference between presynaptic
and postsynaptic spikes [10–14]. Spiking networks with the plasticity approximating
nanocomposite (NC) memristors (CoFeB)x(LiNbO3)1−x were shown to classify the MNIST
handwritten digits [15]. Recently, a highly-plastic poly-p-xylylene (PPX) memristor was
created [16], which makes it relevant to study the possibility of learning about SNNs, with
plasticity modeling that type of memristor.

This paper considers three synaptic plasticity models: the model of the PPX memristor
plasticity obtained by approximation of its experimental measurements, the existing NC
memristor plasticity model [15], and the additive spike-timing-dependent plasticity, which
was shown to resemble the plasticity of various types of memristors [17,18].

The aim of this paper is to numerically solve the learning dynamics of the spiking
neural network model with the aforementioned plasticity mechanisms, to obtain weights
established after learning, and to obtain the times of output spikes for given input spikes,
which are then decoded into classes to solve a classification task.

Unlike existing works devoted to SNN learning with memristor plasticity
models [15,17,19–21], which are based on frequency encoding of the input data, we use
temporal encoding, in which the information is contained in the timings of input spike
patterns, as it requires fewer spikes and, thus, less energy.

For the NC and PPX memristor plasticity models (described in Section 2.2), we show in
Section 3.1 that a neuron memorizes repetitive spike patterns. Based on this, an algorithm
for training a spiking neural network with temporal encoding is proposed in Section 2.5. The
performance of the algorithm is tested in Section 3.2 on benchmark classification problems.

2. Materials and Methods

2.1. Neuron Model

Keeping in mind the prospective possibility of hardware implementation, we strive
for a simple neuron model. We thus use the leaky integrate-and-fire model [22] for the
neuron dynamics, in which the neuron has one state variable, the membrane potential V(t),
which obeys the following dynamics as soon as it is below the threshold Vth:

dV
dt

= −V(t)− Vrest

τm
+

Isyn(t) + Iext(t)
Cm

. (1)

The neuron is considered to fire an output spike when V(t) exceeds Vth, after which
V is instantaneously reset to 0, and during the refractory period tref the neuron is unable to
fire spikes.

Iext(t) is the external stimulation current applied during training, described in
Section 2.5. Isyn(t) is the incoming postsynaptic current, summed over currents Isyn, i(t)
coming from the neuron’s input synapses:

Isyn(t) = ∑
i

Isyn, i(t),
dIsyn, i

dt
= − Isyn, i(t)

τsyn
+ wi(t)

qsyn

τsyn
Spre, i(t − tdelay). (2)

Here, Spre, i(t) is equal to 1 when a presynaptic spike arrives at the i-th input synapse
of the neuron, and to 0 otherwise. The arrivals of presynaptic spikes are governed by the
input encoding algorithm described in Section 2.4. tdelay is the delay for transmitting a
presynaptic spike to the postsynaptic neuron, in our simulations equal to the integration
timestep dt = 0.1 ms. Cm = 1 pF, qsyn = 5 fC, τsyn = 5 ms. The constants Vth, τm,
and tref are adjusted for each particular classification task and presented in Section 3.
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The dimensionless synaptic weight 0 � wi(t) � 1 changes after each presynaptic and
postsynaptic spike in accordance with the plasticity model, as defined in Section 2.2.

2.2. Plasticity Models
2.2.1. Additive Spike-Timing-Dependent Plasticity

For the sake of comparison, in addition to memristive plasticity models, which will be
presented in the next sections, we perform numerical experiments with the conventional
STDP [23] in its additive form, where the synaptic weight change Δw does not depend
on the current weight w, and only depends on the time interval Δt from the arrival of a
presynaptic spike to emitting the postsynaptic spike:

Δw =

⎧⎨
⎩

−A− · exp
(

Δt
τ−
)

if Δt < 0;

A+ · exp
(
− Δt

τ+

)
if Δt > 0.

(3)

Here, following the existing literature [24], τ+ = 20 ms, τ− = 20 ms, A+ = A− = 0.01.
Solving the synapse dynamics is performed with the help of two more state variables

for each synapse i, its presynaptic and postsynaptic eligibility traces [25] xi and yi:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi
dt

=− xi(t)
τ+

+ Spre, i(t),

dyi
dt

=− yi(t)
τ−

+ Spost(t).

dwi
dt

=max
(

A− · yi(t) · Spre, i(t), 1 − wi
)
+

+ min
(

A+ · xi(t) · Spost(t), w
)
.

(4)

2.2.2. Nanocomposite Memristor Plasticity

The plasticity model for nanocomposite memristors (CoFeB)x(LiNbO3)1−x is borrowed
from the literature [15]:

Δw(Δt) =

⎧⎨
⎩

A+ · w ·
[
1 + tanh

(
−Δt−μ+

τ+

)]
if Δt > 0;

A− · w ·
[
1 + tanh

(
Δt−μ−

τ−

)]
if Δt < 0.

(5)

The constants are kept as in the original literature [15]: A+ = 0.074, A− = −0.047,
μ+ = 26.7 ms, μ− = −22.3 ms, τ+ = 9.3 ms, τ− = 10.8 ms.

The spike timing dependence curves for different conductance values are depicted in
Figure 1A.

2.2.3. Model of Poly-p-Xylylene Memristors

PPX-based memristors, in contrast to NC-based memristors, demonstrate resistive
switching driven by electrochemical metallization mechanism: conductive filaments are
formed in them due to electromigration of metal ions [16]. This leads to a slightly different
shape of the spike timing dependence curves.

We fitted the experimental dependences of the change in synaptic conductance on the
time interval Δt between presynaptic and postsynaptic splices for PPC memristors using
the following function:

Δw(Δt) =

⎧⎨
⎩

|Δt|
τ α+e−β+

(
wmax−w

wmax−wmin

)
e−γ+( Δt

τ )
2

if Δt > 0;
|Δt|

τ α−e−β−
(

w−wmin
wmax−wmin

)
e−γ−( Δt

τ )
2

if Δt < 0.
(6)

Here τ = 10 ms, α+ = 0.32, α− = 0.01, β+ = 2.21, β− = −5.97, γ+ = 0.03, γ− = 0.15,
wmax = 1, wmin = 0.
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Figure 1. Spike timing dependence curves: the dependence of the change Δw in synaptic conductance on the interval Δt
between a presynaptic spike and a postsynaptic spike for different current synaptic conductance values w. (A): for the
nanocomposite memristors, redrawn from the original paper [15], (B): for poly-p-xylylene memristors.

The weight-dependent exponents in Equation (6) express the experimentally observed
dependence of the change in synaptic conductance on the initial conductance value. Similar
dependencies have already been applied in some works on memristic conductivity, in
particular in [26]. Parameters α+, α−, β+, β−, γ+, γ− were determined from the experimen-
tally obtained dependencies in three stages: at the first stage, experimental dependencies
were approximated by cubic splines. At the second stage, the obtained spline curves were
approximated by the function above (see Equation (6)) for each set of experimental data
by the nonlinear least squares method At the third stage, the best set of parameters was
chosen based on the maximum possible values of R2. The experimental data consisted of
measurements of the dependence of the change in synaptic conductance on Δt for four
different initial conductance values, for each of which, measurements were performed
five times, after which the results were averaged. The results of the experiments and
approximations are shown in Figure 1B.

2.3. Network Model Implementation

Overall, the network is defined by the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For each neuron j:

Vj(t) =
t∫

t̂j

exp
(
− t − t′

τm

)
·
(

Iext, for neuron j(t′) + Isyn, for neuron j(t′)
)

dt′,

Spost, j(t) = Θ
(
Vj(t)− Vth

) · Θ
(
t − t̂j − tref

)
;

For each input component i:

Spre, i(t) = ∑
ti
input

δ
(

t − ti
input

)
;

For each input synapse i of each neuron j:
dwij

dt
= Plasticity

(
wij, Spre, i, Spost, j

)
.

(7)

Here, the formal solution for a neuron’s potential Vj(t) is presented [27,28], start-
ing from the moment t̂j of its most recent spike. The initial conditions are Vj(t̂j) = 0,
wij(0) = winit. The times ti

input of the presynaptic spikes arriving from each input i during
presenting every input vector are defined in Section 2.4. Isyn are defined in Equation (2).
Plasticity refers to one of the models (3), (5), or (6). Θ is the heaviside step function.
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Solving the network dynamics is performed numerically in a piecewise manner: Vj(t)
is obtained over an interval during which Spost, j(t) and all Spre, i(t) equal 0. When a
postsynaptic spike occurs, wij is updated in accordance with the plasticity model, and t̂j is
updated to equal the current value of t. When a presynaptic spike arrives, wij is updated,
and the integration continues.

Simulations are carried out with the help of the NEural Simulation Tool (NEST)
library [29].

2.4. Input Preprocessing and Encoding

Before presenting input data to the SNN, it is normalized by applying L2 norm or
MinMaxScale (https://scikit-learn.org/stable/modules/preprocessing.html, accessed on
13 October 2021) depending on the dataset (see Section 2.6), and then processed by Gaussian
receptive fields [30–32]. The latter converts an input vector �x of dimension N, a vector
of dimension N · M, where M is the number of receptive fields. Each component xi is

transformed into M components g(xi, μ0), . . . , g(xi, μM), where g(xi, μj) = exp
(

(xi−μj)
2

σ2

)
.

Here, μj = Xi
min + (Xi

max − Xi
min) · j

M−1 is the center of the j-th receptive field, Xi
max and

Xi
min are the maximal and minimal values of the i-th component among all vectors of the

training set, which are 1 and 0, respectively, if MinMaxScale normalization is applied. M is
chosen to be 20 in all experiments.

After preprocessing, the vector obtained is encoded into a pattern of spikes to present
to the input synapses of the network. Each component xi of the preprocessed vector is
represented by one spike arriving at he i-th input synapse at time ti

input = th(1− xi), relative
to the beginning of presenting that input vector, where th is the duration of presenting one
vector. That way, the particularities of a class of input vectors are characterized by a few
of the earliest input spikes, which, in turn, correspond to the receptive fields typical to
that class.

2.5. Learning Algorithm

To solve multi-class classification tasks, on the base of local plasticity tasks, the learning
algorithm should be designed so that each neuron learns specifically the class it is assigned
to. To achieve that, we use a learning algorithm in which neurons memorize their classes
induced by a reinforcing signal (see Algorithm 1).

The network consists of as many neurons as there are classes in the classification
problem; the neurons are connected with each other by non-plastic inhibitory synapses
with fixed weights winh (see Figure 2).

Figure 2. The spiking neural network topology.
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At the training stage, the neurons receive spike patterns encoding vectors of classes of
the training sample. The neuron that corresponds to the class of the input sample being
fed at the moment is stimulated by setting a high positive Iext for a short period, starting
from xmin

i + tshift, where xmin
i is the beginning of presenting an input vector. The value

of Iext is chosen such that it causes an immediate output spike. The spike induced by
such a stimulation will lead to amplification, according to the rule of local plasticity, of
those inputs that receive spikes at earlier moments of time. To decrease the probability of
excitation of other neurons and prevent their synaptic weights from growing while giving
examples of classes that are not assigned to them at the learning stage, the threshold is set
so that only the trained neuron spikes in response to reinforcing signal. The class of the
example is determined by the neuron that generated the spike earliest.

Algorithm 1 Learning algorithm
Input: matrix of preprocessed input objects X, vector of object classes Y, neuron parameters,
plasticity parameters, initial distribution of weights
Parameter: N_epochs, th, h
Output: network weights

1: Initialize neural network: neurons, synapses and initial weights.
2: Define input spike patterns with the duration th.
3: for each xi in X do
4: search for a minimal value of xmin

i .
5: define the time since the beginning of the reinforcing signal as xmin

i + tshift, where
tshift is a reinforcing signal temporal shift.

6: define the termination time of the reinforcing signal as xmin
i + tshift + 2 * dt, where dt

is the simulation timestep.
7: Set an amplitude for the reinforcing signal.
8: end for
9: for k in N_epochs do

10: Set input spikes at the generators.
11: Set teacher current impulse times at the generators.
12: Simulate a training epoch.
13: For the next sample, times of input spikes and teacher current impulse times are

shifted on a time period equal to the epoch simulation time.
14: end for
15: return weight distribution, output spike times.

2.6. Datasets

Two benchmark classification problems are considered: Fisher’s Iris and Wisconsin
breast cancer.

The dataset of Fisher’s Iris consists of 150 flowers, described by four traits: the length
and width of the sepal and petals in centimeters. The specimens belong to three different
classes of 50 specimens each, corresponding to three species: Iris setosa, Iris virginica, and
Iris versicolor. The first class is linearly separable from the second and third, while the
second and third are not linearly separable.

The breast cancer dataset collected at the University of Wisconsin consists of 569 sam-
ples, 357 of which are classified as “benign” and 212 as “malignant”. Each sample in
the dataset represents cell characteristics from a digitized image of a fine needle aspira-
tion breast biopsy. The input vector of length 30 is composed of the mean value (among
all cells), the standard deviation, and the extreme values of each of the 10 cell nucleus
characteristics—radius, texture, perimeter, area, smoothness, compactness, concavity, con-
cave points, symmetry, and fractal dimension.

Pole balancing [33] is originally a reinforcement learning task. However, creating a
reinforcement learning algorithm for SNNs with memristive plasticity will be included in
future work. As a preliminary step for that, we here consider it as a classification task.
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In this task, the objective is to hold a massive pole attached to a moving cart by a
hinge for a given number of episodes (at least 195 out of 200) by changing the position of
the carriage. The environment is characterized by four parameters: coordinate and speed
of the carriage, as well as angle of deviation from the vertical and angular velocity of the
pole (x, ẋ, φ and φ̇). The control action which the network should predict applies a force of
1 N to the carriage in the left or right direction.

To convert this task into a classification problem, we collected a reference set of
environmental states and control actions with the help of an artificial neural network,
with one hidden layer of two neurons to the task. This network was trained using the RL
algorithm Policy Gradient (https://github.com/norse/norse/blob/master/norse/task/
cartpole.py, accessed on 24 October 2021) until the average number of episodes (carriage
movements), during which the pole remained in an acceptable position, was equal to 198
(out of 200 episodes). After the artificial neural network was successfully trained, it was run
in the CartPole environment without training, and the decisions it made at each step and
their corresponding environment states were recorded. A total of 100 runs were performed,
which resulted in the collection of 1949 input-output pairs. The collected set of pairs was
used to train the spiking neural network.

3. Results

3.1. Memorizing Repeating Patterns

The first experiment was aimed at testing the underlying effect necessary for learning
with temporal encoding. This effect was shown previously [34] for STDP: if a neuron gets a
repeating spike pattern among Poisson noise, the neuron will gradually become selectively
sensitive to this pattern. The times of spikes emitted by the neuron in response to the
pattern will gradually become closer to the beginning of its presentation.

We tested this effect by feeding a single neuron with a single vector from the Fisher’s
Iris dataset, interspersed with random Poisson spike sequences. When a repeating spike
pattern is presented to a neuron, the synaptic weights change, so that the neuron generates
spike earlier, related to the start of pattern presentation (Figure 3). The spike time even-
tually established depends on the value of the neuron threshold. At the same time, the
neuron gradually stops spiking during presenting Poisson noise. Plasticity modeling PPX
memristors is less robust to noise due to the high value of its time window constant τ.

Figure 3. Reduction over time of the delay between the start of the repetitive input spike pattern and
the output spike of the neuron.

In the next section, the learning algorithm based on the pattern memorization effect
confirmed here for all three plasticity models is tested on benchmark classification datasets:
Fisher’s Iris, Wisconsin breast cancer, and CartPole.
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3.2. Classification with SNN

For each dataset, the learning algorithm was applied three times: with STDP, with NC
plasticity, and with PPX plasticity. The plasticity model constants were kept unchanged as
originally defined. The neuron model and input encoding constants were adjusted when
necessary. As a result, the neuron membrane time constant τm was found to be 13 ms.
The neuron refractoriness period is tref = 300 ms, so that after emitting a spike, it cannot
spike again up until the end of the inter-pattern interval th = 400 ms. The initial weight of
excitatory synapses is winit = 0.5. The inhibitory weight winh = −4.

The parameters adjusted separately for each task are shown in Table 1 along with the
accuracies of solving respective classification tasks. Accuracy is measured by the F1-macro
score, since the classes are almost equal by the numbers of input vectors. Mean, minimum,
and maximum values are presented over the splits of five-fold cross-validation.

Table 1. Spiking network parameters and F1-score for different classification tasks.

Task Plasticity Vth, mV σ tshift, ms
F1, %

mean min max

Fisher’s Iris STDP 5 0.005 0 97 93 100
Fisher’s Iris NC 5 0.005 0 97 93 100
Fisher’s Iris PPX 3 0.005 0 97 93 100
Breast cancer STDP 8 0.005 3.2 94 89 97
Breast cancer NC 8 0.005 3.2 93 88 96
Breast cancer PPX 6 0.005 3.2 93 89 96
CartPole STDP 5 0.01 1.2 66 (199/200) 65 68
CartPole NC 6 0.01 1.2 63 (199/200) 62 65
CartPole PPX 5 0.01 1 60 (197/200) 60 68

4. Discussion

The fact that the results were obtained with similar neuron and synapse model parame-
ters indicates a possible applicability of the proposed learning algorithm to other problems,
while the parameters reported here could form the initial working range. Still, selecting the
network and encoding parameters individually can achieve greater accuracy. For example,
for the Wisconsin breast cancer and CartPole tasks, the timing of the reinforcing signal had
to be shifted in the positive direction.

The simplicity of the neuron model considered contributes towards the prospective
possibility of hardware implementation of the proposed learning algorithm. However,
other nonlinear forms of the neuron’s response function could be studied in further work.

5. Conclusions

This paper demonstrates the possibility of solving classification tasks using spiking
neural network models with synaptic plasticity models that approximate the plasticity of
nanocomposite and poly-p-xylylene memristors. The proposed learning algorithm was
tested on several benchmark classification tasks: Fisher’s Iris, Wisconsin breast cancer, and
the pole balancing task. The network hyperparameters were similar for all tasks, which
shows the robustness of the approach.

In the future, we plan to test the proposed algorithm on more benchmarks, and
analyze more variants of memristive plasticity models.
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Abstract: This paper retrieves highly dispersive optical solitons to complex Ginzburg–Landau
equation having six forms of nonlinear refractive index structures for the very first time. The enhanced
version of the Kudryashov approach is the adopted integration tool. Thus, bright and singular soliton
solutions emerge from the scheme that are exhibited with their respective parameter constraints.

Keywords: solitons; refractive index; Kudryashov

1. Introduction

The physics and technology of optical solitons in telecommunications industry has
totally revolutionized the modern world of quantum communications. The dynamics of
soliton propagation through a variety of waveguides [1–3], as well as the modern study of
meta-optics covers it all. Later, the concept of highly dispersive (HD) optical solitons [4–8]
that was conceived during 2019 has theoretically addressed a growing problem in the
modern telecommunications industry. This is the low count of chromatic dispersion
(CD) that is a key element in sustaining the much needed balance between it and the
self-phase modulation (SPM). HD solitons provide additional sources of dispersion to
maintain this key balance between CD and SPM for the smooth propel of solitons through
optical fibers for trans-continential and trans-oceanic distances. These additional sources
of dispersion are from inter-modal dispersion (IMD), third-order dispersion (3OD), fourth-
order dispersion (4OD), fifth-order dispersion (5OD), and sixth-order dispersion (6OD).
These lead to the concept of HD solitons although, technically, dispersive effects would
dominate the soliton propagation. Another shortcoming would be the drastic slow-down
of solitons with such a collective dispersive count.

When HD solitons first came into existence, it was on the platform of nonlinear
Schrödinger’s equation (NLSE) [9–12]. After the concept of HD solitons was first reported,
several works from this area have flooded a variety of journals over the last couple of
years [13–17]. This, in fact, includes addressing of solitons with eighth-order dispersion.
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The current paper is addressing, for the first time, HD solitons on a different platform,
namely the complex Ginzburg–Landau equation (CGLE) [18–26]. There are six forms of
nonlinear refractive index structures that are considered. The integration scheme is the
enhanced Kudryashov approach that reveals bright and singular optical solitons for each
of these six nonlinear forms. These are exhibited and their respective parameter constraint
conditions are also displayed. The detailed analysis are pen-pictured after a quick intro to
the model.

Governing Model

The perturbed HD–CGLE that is considered for the very first time in this paper is
indicated below

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + F
(
|q|2
)

q

= α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (1)

where q = q(x, t) denotes the wave profile and q∗ represents the complex conjugate of the
field q = q(x, t), while t and x represents temporal and spatial variables, sequentially. aj
(j = 1, 2, · · · , 6) are the coefficients of IMD, CD, 3OD, 4OD, 5OD, and 6OD. The first term
is linear temporal evolution and i =

√−1. γ gives the detuning effect. λ is the coefficient
of self–steepening. μ is the coefficient of higher-order dispersion. υ is the coefficient of
nonlinear dispersion. β and α are the coefficients of nonlinear term. Lastly, F

(
|q|2
)

stands
for nonlinear form.

Equation (1) is a generalized version of the perturbed CGLE [27–31]

iqt + iaqxxx + F
(
|q|2
)

q = α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
δqx + λ

(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
. (2)

This paper studies the perturbed HD–CGLE (1) with six nonlinear forms using
the integration methodology. The current paper is structured as: In Section 2, the per-
turbed HD–CGLE (1) is analyzed. In Section 3, the integration methodology is presented.
In Sections 4–9, we arrive soliton solutions with the proposed models. The results of the
paper are discussed in Section 10.

2. Mathematical Preliminaries

We presume the traveling wave transformation

q(x, t) = φ(ξ)ei(−κx+wt+θ0), ξ = x − ct, (3)

where φ(ξ) is the amplitude of the traveling wave, κ is the frequency, c is the velocity, w is
the wave number and θ0 is the phase constant. Substituting (3) into (1) gives the real part

a6φφ(6) +
(

5a5κ + a4 − 15a6κ2
)

φφ(4)

+
(

15a6κ4 − 10a5κ3 − 6a4κ2 + 3a3κ + a2 − β
)

φφ
′′

− α
(
φ′)2 − φ2

[
a6κ6 − a5κ5 − a4κ4 + a3κ3 + (α + a2)κ

2 − a1κ + γ + w
]

− κ(υ + λ)φ2m+2 + F
(

φ2
)

φ2 = 0, (4)
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and the imaginary part

[6a6κ − a5]φ
(5) +

(
6a6κ5 − 4a4κ3 − 5a5κ4 + 2a2κ + 3a3κ2 − a1 + c

)
φ′

+ φ2mφ′(2mλ + 2mμ + λ + υ) + φ
′′′(−20a6κ3 + 10a5κ2 + 4a4κ − a3

)
= 0. (5)

Equation (5) yields the velocity

c = −6a6κ5 + 4a4κ3 + 5a5κ4 − 2a2κ − 3a3κ2 + a1, (6)

and the frequency

κ =
a5

6a6
, (7)

and the constraint conditions

2mλ + 2mμ + λ + υ = 0, −20a6κ3 + 10a5κ2 + 4a4κ − a3 = 0. (8)

Equation (4) can be written as

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + Δ5φ2m+2 + F
(

φ2
)

φ2 = 0, (9)

where

Δ1 =
5a5κ + a4 − 15a6κ2

a6
, Δ5 = −κ(υ + λ)

a6
, Δ3 = − α

a6
,

Δ2 =
15a6κ4 − 10a5κ3 − 6a4κ2 + 3a3κ + a2 − β

a6
,

Δ4 = − a3κ3 − a5κ5 + a6κ6 − a4κ4 + (a2 + α)κ2 + γ − a1κ + w
a6

. (10)

3. Enhanced Kudryashov Method

The integration approach permits the formal solution

φ(ξ) =
N

∑
g=0

σg[R(ξ)]
g, σg 	= 0, (11)

where N is the order of the pole, σg (g = 0, 1, 2, · · · , N) are arbitrary constants and R(ξ)
satisfies the ordinary differential equation

R
′2(ξ) = R2(ξ)[1 − χR2p(ξ)] ln2 K, 0 < K 	= 1, (12)

along with the analytical solution

R(ξ) =
[

4A
4A2 expK(pξ) + χ expK(−pξ)

] 1
p
. (13)

Here χ, p and A are non-zero real constants and expK(pξ) = Kpξ . Plugging (11) along
with (12) into (9) yields the coefficients σg (g = 0, 1, 2, · · · , N). Substituting the coefficients
σg (g = 0, 1, 2, · · · , N) together with (13) into (11), we arrive the analytical solution of the
model Equation (1).

4. Kerr Law

The Kerr law of nonlinearity is considered as

F(φ2) = eφ2, e 	= 0, (14)
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where e is an arbitrary constant. Therefore, Equation (1) turns into

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + e|q|2q

= α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (15)

while Equation (9) simplifies to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + Δ5φ2m+2 + eφ4 = 0. (16)

Setting m = 1, Equation (16) collapses to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + (Δ5 + e)φ4 = 0. (17)

Balancing φφ(6) and φ4 gives rise to

2N + 6p = 4N =⇒ N = 3p. (18)

Case 1: With the help of p = 1, Equation (11) turns into

φ(ξ) = σ0 + σ1R(ξ) + σ2R2(ξ) + σ3R3(ξ), σ3 	= 0, (19)

where σ0, σ1, σ2 and σ3 are arbitrary constants. Substituting (19) along with (12) into (17)
causes the coefficients to

σ0 = σ1 = σ2 = 0, σ3 = 24εχ

√
35χ

Δ5 + e
ln3 K, (20)

and the constraint conditions

Δ1 = −83 ln2 K, Δ3 = −Δ2 − 7564 ln4 K
3

,

Δ4 =
(

3Δ2 − 16698 ln4 K
)

ln2 K, χ(Δ5 + e) > 0, ε = ±1. (21)

Plugging (20) together with (13) and (21) into (19), the straddled soliton is formulated
as

q(x, t) = 24εχ
(

ln3 K
)√ 35χ

Δ5 + e

[
4A

4A2 expK(x − ct) + χ expK(−(x − ct))

]3

×ei(−κx+wt+θ0). (22)

By the aid of Δ5 + e > 0 and χ = 4A2, the bright soliton is indicated below

q(x, t) = 24ε
(

ln3 K
)√ 35

Δ5 + e
sech3[(x − ct) ln K]ei(−κx+wt+θ0). (23)

By the usage of Δ5 + e < 0 and χ = −4A2, the singular soliton is considered as

q(x, t) = 24ε
(

ln3 K
)√

− 35
Δ5 + e

csch3[(x − ct) ln K]ei(−κx+wt+θ0). (24)

54



Mathematics 2021, 9, 3270

Case 2: With the help of p = 2, Equation (11) transforms to

φ(ξ) = σ0 + σ1R(ξ) + σ2R2(ξ) + σ3R3(ξ) + σ4R4(ξ) + σ5R5(ξ) + σ6R6(ξ), σ6 	= 0, (25)

where σi (i = 0, 1, · · · , 6) are arbitrary constants and R(ξ) changes to

R
′2(ξ) = R2(ξ)

[
1 − χR4(ξ)

]
ln2 K, 0 < K, K 	= 1. (26)

Inserting (25) along with (26) into (17) yields the coefficients

σ0 = σ1 = σ2 = σ3 = σ4 = σ5 = 0, σ6 = −192εχ

√
35χ

Δ4 + e
ln3 K, (27)

and the parameter constraints

Δ1 = −332 ln2 K, Δ3 = −4Δ2 − 121024 ln4 K
3

,

Δ4 =
(

12Δ2 − 1068672 ln4 K
)

ln2 K, χ(Δ5 + e) > 0, ε = ±1. (28)

Putting (27) together with (13) and (28) into (25), the straddled soliton is structured as

q(x, t) = −192εχ
(

ln3 K
)√ 35χ

Δ4 + e

[
4A

4A2 expK[2(x − ct)] + χ expK[2(x − ct)]

]3

×ei(−κx+wt+θ0). (29)

By the aid of Δ5 + e > 0 and χ = 4A2, the bright soliton is formulated as

q(x, t) = −192ε
(

ln3 K
)√ 35

Δ5 + e
sech3[2(x − ct) ln K]ei(−κx+wt+θ0). (30)

By virtue of Δ5 + e < 0 and χ = −4A2, the singular soliton is indicated below

q(x, t) = 192ε
(

ln3 K
)√

− 35
Δ5 + e

csch3[2(x − ct) ln K]ei(− κx+wt+θ0). (31)

5. Power Law

The power law of nonlinearity is structured as

F(φ2) = eφ2n, e 	= 0, (32)

where e is an arbitrary constant. Thus, Equation (1) simplifies to

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + e|q|2nq

= α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (33)

while Equation (9) collapses to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + Δ5φ2m+2 + eφ2n+2 = 0. (34)
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Setting n = m, Equation (34) transforms to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + (Δ5 + e)φ2m+2 = 0. (35)

Balancing φφ(6) and φ2m+2 yields N = 3
m . Setting

φ = [U(ξ)]
3
m , (36)

Equation (35) turns into

−9(m − 1)(2m − 3)(4m − 3)(5m − 3)(m − 3)U
′6

+ 135m(m − 1)(2m − 3)(4m − 3)(m − 3)UU
′′
U

′4

− 9Δ1m2(m − 1)(2m − 3)(m − 3)U2U
′4

− 180m2(m − 1)(2m − 3)(m − 3)U2U
′3

U
′′′
+ Δ4m6U6

− 405m2(m − 1)(2m − 3)(m − 3)U2U′′2U
′2
+ 18Δ1m3(2m − 3)(m − 3)U3U

′′
U

′2

+ 3m5U5U(6) + 45m3(2m − 3)(m − 3)U3U(4)U
′2
+ 3m4[3Δ3 − (m − 3)Δ2]U4U

′2

− 12Δ1m4(m − 3)U4U
′′′

U
′
+ 180m3(2m − 3)(m − 3)U3U

′′′
U

′′
U

′

− 18m4(m − 3)U4U(5)U
′
+ 45m3(2m − 3)(m − 3)U3(U

′′′
)3

− 9Δ1m4(m − 3)U4(U
′′
)2 − 45m4(m − 3)U4U(4)U

′′
+ 3m5Δ2U5U

′′

+ m6(Δ5 + e)U12 − 30m4(m − 3)U4(U
′′′
)2 + 3m5Δ1U5U(4) = 0. (37)

Balancing U5U(6) and U12 leads to

6N + 6p = 12N =⇒ N = p. (38)

Case 1: By virtue of p = 1, Equation (11) collapses to

U(ξ) = σ0 + σ1R(ξ), σ1 	= 0, (39)

where σ0 and σ1 are arbitrary constants. Plugging (39) along with (12) into (37), we arrive
the coefficients

σ0 = 0, σ1 =
ε ln K

m

(
9(4m + 3)(5m + 3)(2m + 3)(m + 3)(m + 1)χ3

Δ5 + e

) 1
6

, (40)

and the parameter constraints

Δ1 = − (20m2 + 36m + 27) ln2 K
m2 , χ3(Δ5 + e) > 0,

Δ3 = −

(
64m5 + 480m4 + 1512m3

+2592m2 + 2187m + 729

)
ln4 K

3m4 − (m + 3)Δ2

3
,

Δ4 = −
3
(

64m5 + 480m4 + 1512m3

+2052m2 + 1215m + 243

)
ln6 K

m6 +
3Δ2 ln2 K

m
. (41)
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Inserting (40) together with (13) and (41) into (39), the straddled soliton is modeled as

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4εA
(

9(4m + 3)(2m + 3)(5m + 3)(m + 1)(m + 3)χ3

Δ5 + e

) 1
6

ln K

m[4A2 expK(x − ct) + χ expK(−(x − ct))]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
m

×ei(−κx+wt+θ0). (42)

By the usage of Δ5 + e > 0 and χ = 4A2, the bright soliton is structured as

q(x, t) =

⎧⎪⎨
⎪⎩

4ε ln K
m

(
9(4m + 3)(2m + 3)(5m + 3)(m + 1)(m + 3)

Δ5 + e

) 1
6

×sech[(x − ct) ln K]

⎫⎪⎬
⎪⎭

3
m

×ei(−κx+wt+θ0). (43)

With the help of Δ5 + e < 0 and χ = −4A2, the singular soliton is indicated below

q(x, t) =

⎧⎪⎨
⎪⎩

4ε ln K
m

(
−9(4m + 3)(2m + 3)(5m + 3)(m + 1)(m + 3)

Δ5 + e

) 1
6

×csch[(x − ct) ln K]

⎫⎪⎬
⎪⎭

3
m

×ei(−κx+wt+θ0). (44)

Case 2: By virtue of p = 2, Equation (11) becomes

U(ξ) = σ0 + σ1R(ξ) + σ2R2(ξ), σ2 	= 0, (45)

where σ0, σ1 and σ2 are arbitrary constants. Putting (45) along with (12) into (37) causes to
the coefficients

σ0 = σ1 = 0, σ2 =
2ε ln K

m

(
9(4m + 3)(2m + 3)(5m + 3)(m + 1)(m + 3)χ3

Δ5 + e

) 1
6

, (46)

and the constraints

Δ1 = −4(20m2 + 36m + 27) ln2 K
m2 , χ3(Δ5 + e) > 0,

Δ3 =

16
(

64m5 + 480m4 + 1512m3

+2592m2 + 2187m + 729

)
ln4 K

3m4 − (m + 3)Δ2

3
,

Δ4 = −
192
(

64m5 + 480m4 + 1512m3

+2052m2 + 1215m + 243

)
ln6 K

m6 +
12Δ2 ln2 K

m
. (47)

Plugging (46) together with (13) and (47) into (45), the straddled soliton is considered
as

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8εA ln K
(

9(4m + 3)(2m + 3)(5m + 3)(m + 1)(m + 3)χ3

e + Δ5

) 1
6

m[4A2 expK[2(x − ct)] + χ expK[−2(x − ct)]]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
m

×ei(−κx+wt+θ0). (48)
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By the usage of Δ5 + e > 0 and χ = 4A2, the bright soliton is modeled as

q(x, t) =

⎧⎪⎨
⎪⎩

2ε ln K
m

(
9(4m + 3)(5m + 3)(2m + 3)(m + 3)(m + 1)

e + Δ5

) 1
6

×sech[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

3
m

×ei(−κx+wt+θ0). (49)

With the help of Δ5 + e < 0 and χ = −4A2, the singular soliton is formulated as

q(x, t) =

⎧⎪⎨
⎪⎩

2ε ln K
m

(
−9(4m + 3)(5m + 3)(2m + 3)(m + 3)(m + 1)

e + Δ5

) 1
6

×csch[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

3
m

×ei(−κx+wt+θ0). (50)

6. Parabolic Law

The parabolic law of nonlinearity is indicated below

F
(

φ2
)
= e1φ2 + e2φ4, e2 	= 0, (51)

where e1 and e2 are arbitrary constants. Consequently, Equation (1) turns into

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

e1|q|2 + e2|q|4
)

q = α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (52)

while Equation (9) decreases to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + Δ5φ2m+2 + e1φ4 + e2φ6 = 0. (53)

Setting m = 1, Equation (53) becomes

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + (Δ5 + e1)φ
4 + e2φ6 = 0. (54)

Balancing φφ(6) and φ6 causes to N = 3
2 . Setting

φ(ξ) = [U(ξ)]
3
2 , (55)

Equation (54) collapses to

315[U
′
]6 + 36Δ1U2U

′4 − 1350UU
′′
U

′4
+ 720U2U

′3
U

′′′
+ 1620U2U′′2U

′2

− 144Δ1U3U
′′

U
′2 − 360U3U(4)U

′2
+ 48[3Δ3 + Δ2]U4U

′2
+ 192Δ1U4U

′′′
U

′

+ 288U4U(5)U
′ − 1440U3U

′′′
U

′′
U

′ − 360U3(U
′′
)3 + 144Δ1U4(U

′′
)2

+ 96Δ2U5U
′′
+ 720U4U(4)U

′′
+ 480U4(U

′′′
)2 + 96Δ1U5U(4) + 96U5U(6)

+ 64e2U12 + 64(e1 + Δ5)U9 + 64Δ4U6 = 0. (56)

Balancing U5U(6) and U12 gives rise to

6N + 6p = 12N =⇒ N = p. (57)
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Case 1: By the usage of p = 1, Equation (56) permits the solution (39). Substituting
(39) along with (12) into (56) gives rise to the coefficients

σ0 = 0, σ1 =

(
135135χ3

64e2

) 1
6

ln K, (58)

and the parameters

Δ1 = −179 ln2 K
4

, Δ3 =
37295 ln4 K

48
− 5Δ2

3
,

Δ4 = −98115 ln6 K
64

+
3Δ2 ln2 K

2
, Δ5 = −e1, χ3e2 > 0. (59)

Plugging (58) together with (13) and (59) into (39), we arrive the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(

135135χ3

64e2

) 1
6

ln K

4A2 expK(x − ct) + χ expK(−(x − ct))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
2

ei(−κx+wt+θ0). (60)

Setting e2 > 0 and χ = 4A2, Equation (60) transforms to the bright soliton

q(x, t) =

{
(ln K)

(
135135

64e2

) 1
6
sech[(x − ct) ln K]

} 3
2

ei(−κx+wt+θ0). (61)

If e2 < 0 and χ = −4A2, Equation (60) yields the singular soliton

q(x, t) =

{
(ln K)

(
−135135

64e2

) 1
6
csch[(x − ct) ln K]

} 3
2

ei(−κx+wt+θ0). (62)

Case 2: By the aid of p = 2, Equation (56) holds the solution (45). Substituting (45)
along with (12) into (56) leads to the coefficients

σ0 = σ1 = 0, σ2 =

(
135135χ3

e2

) 1
6

ln K, (63)

and the constraints

Δ1 = −179 ln2 K, Δ3 =
37295 ln4 K

3
− 5Δ2

3
,

Δ4 =
(

6Δ2 − 98115 ln4 K
)

ln2 K, Δ5 = −e1, χ3e2 > 0. (64)

Inserting (63) together with (13) and (64) into (45), the straddled soliton is formulated
as

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(

135135χ3

e2

) 1
6

ln K

4A2 expK[2(x − ct)] + χ expK[−2(x − ct)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
2

ei(−κx+wt+θ0). (65)
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If e2 > 0 and χ = 4A2, Equation (65) becomes the bright soliton

q(x, t) =

{
(ln K)

(
135135

e2

) 1
6
sech[2 ln K(x − ct)]

} 3
2

ei(−κx+wt+θ0). (66)

When e2 < 0 and χ = −4A2, Equation (65) turns into the singular soliton

q(x, t) =

{
(ln K)

(
−135135

e2

) 1
6
csch[2 ln K(x − ct)]

} 3
2

ei(−κx+wt+θ0). (67)

7. Dual Power Law

The dual power law of nonlinearity is considered as

F(φ2) = e1φ2n + e2φ4n, e2 	= 0, (68)

where e1 and e2 are arbitrary constants. Hence, Equation (1) simplifies to

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

e1|q|2n + e2|q|4n
)

q = α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (69)

while Equation (9) collapses to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + Δ5φ2m+2 + e1φ2n+2 + e2φ4n+2 = 0. (70)

Setting n = m, Equation (70) decreases to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + (Δ5 + e1)φ
2m+2 + e2φ4m+2 = 0. (71)

Balancing φφ(6) and φ4m+2 gives N = 3
2m . Setting

φ(ξ) = [U(ξ)]
3

2m , (72)
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Equation (71) turns into

−9(2m − 3)(2m − 1)(4m − 3)(10m − 3)[U
′
]6

+ 270m(2m − 3)(2m − 1)(8m − 3)(4m − 3)UU
′′
U

′4

− 36m2(2m − 3)(4m − 3)(2m − 1)Δ1U2U
′4

− 720m2(2m − 3)(2m − 1)(4m − 3)U2U
′3

U
′′′

− 1620m2(2m − 1)(2m − 3)(4m − 3)U2U′′2U
′2

+ 144Δ1m3(2m − 3)(4m − 3)U3U
′′

U
′2

+ 360m3(2m − 3)(4m − 3)U3U(4)U
′2 − 48m4[(2m − 3)Δ2 − 3Δ3]U4U

′2

+ 1440m3(2m − 3)(4m − 3)U3U
′′′

U
′′

U
′ − 192Δ1m4(2m − 3)U4U

′′′
U

′

− 288m4(2m − 3)U4U(5)U
′
+ 360m3(2m − 3)(4m − 3)U3(U

′′
)3

− 144Δ1m4(2m − 3)U4(U
′′
)2 − 720m4(2m − 3)U4U(4)U

′′

+ 96m5Δ2U5U
′′
− 480m4(2m − 3)U4(U

′′′
)2 + 96m5Δ1U5U(4)

+ 96m5U5U(6) + 64m6e2U12 + 64m6(e1 + Δ5)U9 + 64m6Δ4U6 = 0. (73)

Balancing U5U(6) and U12 leads to

6N + 6p = 12N =⇒ N = p. (74)

Case 1: By the usage of p = 1, Equation (73) satisfies the solution (39). Putting (39)
along with (12) into (73), we arrive the coefficients

σ0 = 0, σ1 =
ln K
m

(
9χ3(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

64e2

) 1
6

, (75)

and the constraints

Δ1 = − (80m2 + 72m + 27) ln2 K
4m2 , Δ5 = −e1, χ3e2 > 0,

Δ3 =

(
2048m5 + 7680m4 + 12096m3

+10368m2 + 4374m + 729

)
ln4 K

48m4 − (2m + 3)Δ2

3
,

Δ4 = −
3
(

2048m5 + 7680m4 + 12096m3

+8208m2 + 2430m + 243

)
ln6 K

64m6 +
3Δ2

2m
ln2 K. (76)

Inserting (75) together with (13) and (76) into (39), we arrive the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(

9χ3(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)
64e2

) 1
6

ln K

m[4A2 expK(x − ct) + χ expK(−(x − ct))]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
2m

×ei(−κx+wt+θ0). (77)
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By virtue of e2 > 0 and χ = 4A2, Equation (77) simplifies to the bright soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
9(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

64e2

) 1
6

×sech[(x − ct) ln K]

⎫⎪⎬
⎪⎭

3
2m

×ei(− κx+wt+θ0). (78)

By the aid of e2 < 0 and χ = −4A2, Equation (77) collapses to the singular soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
−9(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

64e2

) 1
6

×csch[(x − ct) ln K]

⎫⎪⎬
⎪⎭

3
2m

×ei(− κx+wt+θ0). (79)

Case 2: With the help of p = 2, Equation (73) presumes the solution (45). Plugging
(45) along with (12) into (73) yields the coefficients

σ0 = σ1 = 0, σ2 =
ln K
m

(
9χ3(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

e2

) 1
6

, (80)

and the conditions

Δ1 = − (80m2 + 72m + 27) ln2 K
m2 , Δ5 = −e1, χ3e2 > 0,

Δ3 =

(
2048m5 + 7680m4 + 12096m3

+10368m2 + 4374m + 729

)
ln4 K

3m4 − (2m + 3)Δ2

3
,

Δ4 = −
3
(

2048m5 + 7680m4 + 12096m3

+8208m2 + 2430m + 243

)
ln6 K

m6 +
6Δ2

m
ln2 K. (81)

Substituting (80) together with (13) and (81) into (45), we attain the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(

9χ3(4m + 3)(8m + 3)(2m + 3)(10m + 3)(2m + 1)
e2

) 1
6

ln K

m[4A2 expK[2(x − ct)] + χ expK[−2(x − ct)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

3
2m

×ei(−κx+wt+θ0). (82)

With the help of e2 > 0 and χ = 4A2, Equation (82) changes to the bright soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
9(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

e2

) 1
6

×sech[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

3
2m

×ei(−κx+wt+θ0). (83)
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By the aid of e2 < 0 and χ = −4A2, Equation (82) collapses to the singular soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
−9(8m + 3)(4m + 3)(10m + 3)(2m + 3)(2m + 1)

e2

) 1
6

×csch[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

3
2m

×ei(−κx+wt+θ0). (84)

8. Polynomial Law

The polynomial law of nonlinearity is modeled as

F(φ2) = e1φ2 + e2φ4 + e3φ6, e3 	= 0, (85)

where e1, e2 and e3 are arbitrary constants. Therefore, Equation (1) simplifies to

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

e1|q|2 + e2|q|4 + e3|q|6
)

q = α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (86)

while Equation (9) collapses to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2

+ Δ5φ2m+2 + e1φ4 + e2φ6 + e3φ8 = 0. (87)

Setting m = 1, Equation (87) transforms to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2 + (Δ5 + e1)φ
4 + e2φ6 + e3φ8 = 0. (88)

Balancing φφ(6) and φ8 gives

2N + 6p = 8N =⇒ N = p. (89)

Case 1: By virtue of p = 1, Equation (88) holds the solution (39). Putting (39) along
with (12) into (88) causes to the coefficients

σ0 = 0, σ1 =

(
720 χ3

e3

) 1
6

ln K, (90)

and the constraint conditions

Δ1 = − 1
24χ2

[
e2

e4
3

(
720χ3e5

3

)2/3
+ 840χ2 ln2 K

]
, χ3e3 > 0,

Δ2 =
1

6χ2e4
3

[
6e2

3χ
(
90χ3e5

3
)1/3

(e1 + Δ5) + 10
(

ln2 K
)

e2
(
90 χ3e5

3
)2/3

−3χ2e4
3(Δ3 − 518 ln4 K)

]
,

Δ4 = −3 ln2 K
2χ2e4

3

⎡
⎣ 2

3
e2

3χ
(
90χ3e5

3
)1/3

(e1 + Δ5) +
(

ln2 K
)

e2
(
90χ3e5

3
)2/3

+ 1
3 χ2e4

3(Δ3 + 450 ln4 K)

⎤
⎦. (91)
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Plugging (90) together with (13) and (91) into (39) gives rise to the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(

720χ3

e3

) 1
6

ln K

4A2 expK(x − ct) + χ expK(−(x − ct))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ei(−κx+wt+θ0). (92)

When e3 > 0 and χ = 4A2, Equation (92) becomes the bright soliton

q(x, t) =

{(
720
e3

) 1
6

ln Ksech[(x − ct) ln K]

}
ei(−κx+wt+θ0). (93)

If e3 < 0 and χ = −4A2, Equation (92) turns into the singular soliton

q(x, t) =

{(
−720

e3

) 1
6

ln Kcsch[(x − ct) ln K]

}
ei(−κx+wt+θ0). (94)

Case 2: When p = 2, Equation (88) permits the solution (45). Substituting (45) along
with (12) into (88) yields the coefficients

σ0 = σ1 = 0, σ2 = 2
(

720χ3

e3

) 1
6

ln K, (95)

and the parameter conditions

Δ1 = − 1
24χ2

[
e2

e4
3

(
720χ3e5

3

)2/3
+ 3360χ2 ln2 K

]
, χ3e3 > 0,

Δ2 =
1

6χ2e4
3

[
6e2

3χ
(
90χ3e5

3
)1/3

(e1 + Δ5) + 40
(

ln2 K
)

e2
(
90χ3e5

3
)2/3

−3χ2e4
3(Δ3 − 8288 ln4 K)

]
,

Δ4 = −6 ln2 K
χ2e4

3

⎡
⎣ 2

3
e2

3χ
(
90χ3e5

3
)1/3

(e1 + Δ5) + 4
(

ln2 K
)

e2
(
90χ3e5

3
)2/3

+ 1
3 χ2e4

3(Δ3 + 7200 ln4 K)

⎤
⎦. (96)

Inserting (95) together with (13) and (96) into (45) gives the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8A
(

720χ3

e3

) 1
6

ln K

4A2 expK[2(x − ct)] + χ expK[−2(x − ct)]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

ei(−κx+wt+θ0). (97)

Setting e2 > 0 and χ = 4A2, Equation (97) transforms to the bright soliton

q(x, t) =

{
2 ln K

(
720
e3

) 1
6
sech[2 ln K(x − ct)]

}
ei(−κx+wt+θ0). (98)

If e2 < 0 and χ = −4A2, Equation (97) simplifies to the singular soliton

q(x, t) =

{
2 ln K

(
−720

e3

) 1
6
csch[2 ln K(x − ct)]

}
ei(−κx+wt+θ0). (99)
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9. Triple Power Law

The triple power law of nonlinearity is structured as

F(φ2) = e1φ2n + e2φ4n + e3φ6n, e3 	= 0, (100)

where e1, e2 and e3 are arbitrary constants. Thus, Equation (1) turns into

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

e1|q|2n + e2|q|4n + e3|q|6n
)

q = α
|qx|2

q∗ +
β

4|q|2q∗

{
2|q|2

(
|q|2
)

xx
−
[(

|q|2
)

x

]2
}

+ γq + i
[
λ
(
|q|2mq

)
x
+ μ
(
|q|2m

)
x
q + υ|q|2mqx

]
, (101)

while Equation (9) reduces to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2

+ Δ5φ2m+2 + e1φ2n+2 + e2φ4n+2 + e3φ6n+2 = 0. (102)

Setting n = m, Equation (102) changes to

φφ(6) + Δ1φφ(4) + Δ2φφ
′′
+ Δ3

(
φ′)2

+ Δ4φ2

+ (Δ5 + e1)φ
2m+2 + e2φ4m+2 + e3φ6m+2 = 0. (103)

Balancing φφ(6) and φ6m+2 yields N = 1
m . Setting

φ(ξ) = [U(ξ)]
1
m , (104)

Equation (103) becomes

−(2m − 1)(m − 1)(4m − 1)(3m − 1)(5m − 1)[U
′
]6

+ 15m(2m − 1)(m − 1)(4m − 1)(3m − 1)UU
′′
U

′4

− Δ1m2(2m − 1)(m − 1)(3m − 1)U2U
′4 − 20m2(2m − 1)(m − 1)(3m − 1)U2U

′3
U

′′′

− 45m2(2m − 1)(m − 1)(3m − 1)U2U′′2U
′2
+ 6Δ1m3(2m − 1)(m − 1)U3U

′′
U

′2

+ 15m3(2m − 1)(m − 1)U3U(4)U
′2 − m4[(m − 1)Δ2 − Δ3]U4U

′2

+ 60m3(2m − 1)(m − 1)U3U
′′′

U
′′

U
′ − 4Δ1(m − 1)m4U4U

′′′
U

′

− 6(m − 1)m4U4U(5)U
′
+ 15m3(m − 1)(2m − 1)U3(U

′′
)3 − 3Δ1m4(m − 1)U4(U

′′
)2

− 15m4(m − 1)U4U(4)U
′′
+ m5Δ2U5U

′′
− 10m4(m − 1)U4(U

′′′
)2 + m5Δ1U5U(4)

+ m5U5U(6) + m6e3U12 + m6e2U10 + m6(e1 + Δ5)U8 + m6Δ4U6 = 0. (105)

Balancing U5U(6) and U12 gives

6N + 6p = 12 =⇒ N = p. (106)

Case 1: When p = 1, Equation (105) admits the solution (39). Inserting (39) along with
(12) into (105) leads to the coefficients

σ0 = 0, σ1 =
ln K
m

(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3

e3

) 1
6

, (107)
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and the parameter constraints

Δ1 = − 1
m2e4

3(2m + 1)(m + 1)(3m + 1)χ2

×
{

m2e2

[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]2/3

+ 480e4
3χ2(m + 1)(m +

1
3
)(m2 +

3
5

m +
3
20

)(m +
1
2
) ln2 K},

Δ2 =
1

m4(2m + 1)(m + 1)(3m + 1)χ2e4
3

{
−(3m + 1)(2m + 1)m4Δ3e4

3χ2

+ 4m2(m2 + m +
1
2
)e2

(
ln2 K

)[
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3e5

3

]2/3

+ m4(3m + 1)(2m + 1)e2
3χ(e1 + Δ5)

[
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3e5

3

]1/3

+ (3m + 1)(2m + 1)(m + 1)(64m4 + 96m3 + 72m2 + 24m + 3)e4
3χ2 ln4 K},

Δ4 = − ln2 K
m6(m + 1)(3m + 1)χ2e4

3

×
{

m2(2m + 1) ln2 Ke2

[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]2/3

+ m4(3m + 1)(e1 + Δ5)e2
3χ
[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]1/3

+ (3m + 1)e4
3χ2
[
Δ3m5 + (m + 1)(4m + 1)2(2m + 1)2 ln4 K

]
}, χ3e3 > 0. (108)

Substituting (107) together with (13) and (108) into (39), we arrive the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4A
(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1) χ3

e3

) 1
6

ln K

m[4A2 expK(x − ct) + χ expK(−(x − ct))]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
m

×ei(−κx+wt+θ0). (109)

If e3 > 0 and χ = 4A2, Equation (109) reduces to the bright soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)

e3

) 1
6

×sech[(x − ct) ln K]

⎫⎪⎬
⎪⎭

1
m

×ei(−κx+wt+θ0). (110)

When e3 < 0 and χ = −4A2, Equation (109) changes to the singular soliton

q(x, t) =

⎧⎪⎨
⎪⎩

ln K
m

(
− (2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)

e3

) 1
6

×csch[(x − ct) ln K]

⎫⎪⎬
⎪⎭

1
m

×ei(−κx+wt+θ0). (111)
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Case 2: If p = 2, Equation (105) presumes the solution (45). Plugging (45) along with
(12) into (105) gives rise to the coefficients

σ0 = σ1 = 0, σ2 =
2 ln K

m

(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3

e3

) 1
6

, (112)

and the parameter conditions

Δ1 = − 1
m2(m + 1)(2m + 1)(3m + 1)χ2

×
{

m2e2

e4
3

[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]2/3

+ 120χ2(m + 1)(m +
1
3
)(m2 +

3
5

m +
3

20
)(m +

1
2
) ln2 K},

Δ2 =
1

m4(2m + 1)(m + 1)(3m + 1)χ2e4
3

{
−(3m + 1)(2m + 1)m4Δ3e4

3χ2

+ 16m2(m2 + m +
1
2
)e2 ln2 K

[
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3e5

3

]2/3

+ m4(3m + 1)(2m + 1)e2
3χ(e1 + Δ5)

[
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3e5

3

]1/3

+ (2m + 1)(3m + 1)(1024m4 + 1536m3 + 1152m2 + 384m + 48)(m + 1)e4
3χ2 ln4 K},

Δ4 = − 12 ln2 K
m6(m + 1)(3m + 1)χ2e4

3

×
{

4
3

m2(2m + 1) ln2 Ke2

[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]2/3

+
1
3

m4(3m + 1)(e1 + Δ5)e2
3χ
[
χ3e5

3(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)
]1/3

+
(3m + 1)e4

3χ2

3
{
[
Δ3m5 + 16(m + 1)(4m + 1)2(2m + 1)2 ln4 K

]
}, χ3e3 > 0. (113)

Inserting (112) together with (13) and (113) into (45) causes to the straddled soliton

q(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8A
(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)χ3

e3

) 1
6

ln K

m{χ expK(−2(x − ct)) + 4A2 expK(2(x − ct))}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1
m

×ei(−κx+wt+θ0). (114)

Setting e3 > 0 and χ = 4A2, Equation (114) simplifies to the bright soliton

q(x, t) =

⎧⎪⎨
⎪⎩

2 ln K
m

(
(2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)

e3

) 1
6

×sech[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

1
m

×ei(−κx+wt+θ0). (115)
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When e3 < 0 and χ = −4A2, Equation (114) transforms to the singular soliton

q(x, t) =

⎧⎪⎨
⎪⎩

2 ln K
m

(
− (2m + 1)(m + 1)(4m + 1)(3m + 1)(5m + 1)

e3

) 1
6

×csch[2 ln K(x − ct)]

⎫⎪⎬
⎪⎭

1
m

×ei(− κx+wt+θ0). (116)

10. Conclusions

This paper reports HD solitons with the perturbed CGLE having six forms of nonlinear
refractive index structures. The perturbation terms are all of Hamiltonian type and are
with maximum intensity. The integration scheme is the enhanced Kudryashov approach
that is the extended and generalized version of the pre-existing Kudryashov scheme. Thus,
straddled, bright and singular soliton solutions emerge from the scheme for each of these
six nonlinear forms that are exhibited with their respective parameter constraints. Likewise,
one can obtain a large number of HD solitons of the model equations by taking a different
selection to the parameters p and N.

There is an abundance of results that have been retrieved on the perturbed CGLE [16,28,29]
where Hamiltonian type perturbation terms are studied with maximum intensity. A spec-
trum of cubic–quartic optical solitons for the perturbed CGLE having a variety of six
forms of nonlinear refractive index structures are derived by eight powerful and prolific
integration structures [28]. Additionally, conservation laws for pure-cubic optical solitons
with the perturbed CGLE having eleven forms of nonlinear refractive index structures are
derived with the implementation of Lie symmetry analysis [29]. Lastly, pure-cubic optical
solitons with the perturbed CGLE having a dozen nonlinear refractive index structures
are recovered by two integration schemes [16]. However, compared with [16,28,29] that
secure pure-cubic or cubic–quartic optical solitons with the model equation, HD solitons
with the perturbed CGLE are given in the current paper for the very first time. The results
of this work are with unprecendented novelty and thus carry tremendous value in further
future development of the concept of HD solitons with CGLE and/or NLSE. The results
are indeed promising.

Later, conservation laws will be reported. The variational principle would lead to the
evolution of the soliton parameters in presence and/or absence of perturbative effects. Once
these fundamental results are in place, one can move further along with the development
of quasi-particle theory to suppress intra-channel collision of optical solitons. The quasi-
stationarity will also be addressed to recover soliton solutions in presence of perturbation
terms, be it Hamiltonian or non-Hamiltonian. These are just a few droplets of a wide and
deep ocean!!
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Abstract: In this work, we study the generalized 2D equal-width equation which arises in various
fields of science. With the aid of numerous methods which includes Lie symmetry analysis, power
series expansion and Weierstrass method, we produce closed-form solutions of this model. The exact
solutions obtained are the snoidal wave, cnoidal wave, Weierstrass elliptic function, Jacobi elliptic
cosine function, solitary wave and exponential function solutions. Moreover, we give a graphical
representation of the obtained solutions using certain parametric values. Furthermore, the conserved
vectors of the underlying equation are constructed by utilizing two approaches: the multiplier
method and Noether’s theorem. The multiplier method provided us with four local conservation
laws, whereas Noether’s theorem yielded five nonlocal conservation laws. The conservation laws
that are constructed contain the conservation of energy and momentum.

Keywords: generalized 2D equal-width equation; exact solution; Weierstrass elliptic functions;
Kudryashov’s method; conservation laws; Noether’s theorem

1. Introduction

It is well established that numerous physical phenomena of the real world are mod-
eled by the nonlinear partial differential equations (NPDE). Therefore, finding the exact
solutions of the NPDEs plays a vital role in the understanding of these physical phenomena.
NPDEs appear in various fields of sciences, which include the fields of biology, quantum
mechanics, economics, optical fibers, fluid dynamics, chaos theory and plasma physics, just
to mention a few. For instance, the Ginzburg–Landau equation [1] was used to describe
superconductivity and was postulated as a phenomenological model which could describe
type-I superconductors without examining their microscopic properties; the Fokas–Lenells
equation [2] is an important model that is used in solitary wave theory and optical fibers
phenomena; the Black–Scholes equation [3] is mostly used in finance—for example, it
may be used as the governing model for the price evolution of a European call; the non-
linear elastic circular rod equation [4] was used to analyze the solitary strain waves in
the nonlinear elastic rod that produce some results on the effect of the geometrical and
physical parameters of the rod on the waves—just to name a few. Scholars and researchers
have dedicated most of their time to investigating some of these models, and for this
reason, there are a number of solution methods suggested in the literature. These solution
methods include, amongst others, Bäcklund transformations [5–7], the extended simplest
equation method [8], the extended Jacobi elliptic function technique [9], power series
technique [10], tanh method [11], Lie symmetry technique [12–18], bifurcation method [19]
and (G′/G)−expansion method [20].
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Conservation laws have vast applications in the study of differential equations (DEs)
and are known as the fundamental laws of nature as they play a huge role in physics,
applied mathematics and other fields of science such as chemistry, biology, geology and
engineering. There are techniques brought forward in the literature which aid in deriving
conserved vectors which include the classical Noether’s theorem, the multiplier method, the
Ibragimov’s new theorem and the partial Lagrangian method [21–31]. It should be noted
that Noether’s theorem can only be applied to DEs which have a Lagrangian formulation.
However, many DEs exist that do not have a Lagrangian and as a result Nother’s theorem
cannot be used to derive their conservation laws. In such a situation the general method of
multipliers can be invoked to construct conservation laws. Thus, the general multiplier
method provides us with the conservation laws of a DE irrespective of whether or not the
DE comes from a variational principle.

The nonlinear third-order PDE given by

ut + 2αuux + utxx = 0 (1)

is known as the equal-width (EW) equation and was first introduced by Morrison et al. [32]
as the mathematical model that describes nonlinear dispersive waves, for example, the
waves created in shallow water channel. Several works has been conducted on this equation.
For instance, in [33], the authors presented some closed-form solutions and conservation
laws for this equation. The authors of [34] invoked the Petrov–Galerkin method utilizing
quadratic B-spline spatial finite elements to derive solutions for this equation. In [35], the
extended simple equation method along with the exponential expansion method were
employed to derive its exact solutions.

The modified equal-width (MEW) equation reads

ut + 2αu2ux + utxx = 0 (2)

and models the simulation of one-dimensional wave propagation in nonlinear media with
dispersion processes. More work that has been performed on MEW equation can be found
in [35–38] and the references therein.

In [39], the authors studied the general form of the equal width (GEW) equation with
power law nonlinearity that reads

ut + aupux − μutxx = 0 (3)

and presented exact solitary wave solutions. In addition, analytical expressions of three
invariants of motion for these solitary wave solutions were derived. Recently, the traveling
wave solution of the GEW Equation (3) was found in [40] by using the Lie symmetry
method along with the sine-cosine method.

The generalized equal width-Burgers equation

ut + aupux − δuxx − μutxx = 0 (4)

describes the propagation of nonlinear and dispersive waves with certain dissipative effects.
The exact solitary wave solutions of (4) were derived in [39].

Recently, Equation (2) was generalized to the two-dimensional modified equal-width
equation, which reads [41]

ut + u2ux − μ(utxx + utyy) = 0, (5)

where μ is a real constant. Firstly, Lie symmetries were computed, and thereafter, one-
dimensional and two-dimensional subalgebras were obtained. These were then utilized to
perform the symmetry reductions of (5) to ordinary differential equations.
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In this work, we further generalize (5) to the two-dimensional equal-width (2D-EW)
equation with power law nonlinearity, viz.,

ut + unux + αutxx + βutyy = 0 (6)

with α, β and n being nonzero constants. In this work, we provide the exact solutions of
the 2D-EW Equation (6). The classical symmetry method was employed to obtain point
symmetries of this model, and thereafter, symmetries were used to reduce (6) to some
nonlinear ordinary differential equations (NODEs). Various solution methods were then
utilized to construct solutions of these NODEs, which consequently provides us with
the exact solutions of the 2D-EW Equation (6). Moreover, the obtained solutions were
described graphically for certain parametric values. Finally, we derive both local and
nonlocal conservation laws for this model by invoking two distinct approaches.

2. Symmetries, Reductions and Solutions

In this section, we firstly compute Lie symmetries of the 2D-EW Equation (6) and
thereafter perform symmetry reductions to obtain various NODEs. By employing different
techniques on these NODE, we then construct closed-form solutions of the Equation (6).

2.1. Lie Symmetries

We consider the one-parameter group of transformations

t̄ → t + aτ(t, x, y, u), x̄ → x + aξ(t, x, y, u),

ȳ → y + aφ(t, x, y, u), ū → u + aη(t, x, y, u) (7)

with a small parameter a, for which the corresponding vector field is

Z = τ
∂

∂t
+ ξ

∂

∂x
+ φ

∂

∂y
+ η

∂

∂u
. (8)

The vector field Z is a Lie symmetry of Equation (6) whenever

Z [3](ut + unux + αutxx + βutyy)
∣∣∣
(6)

= 0. (9)

Here Z [3] is the third prolongation of (8); see for example [14]. Expanding Equation (9)
and separating the various derivatives of u lead to the determining equations:

τu = 0, τx = 0, τy = 0, τtt = 0, ξt = 0, ξu = 0, ξx = 0,

ξy = 0, φt = 0, φu = 0, φx = 0, φy = 0, nη + uτt = 0. (10)

Solving the above equations, we end up with

Z = (C1t + C2)
∂

∂t
+ C3

∂

∂x
+ C4

∂

∂y
− C1

n
u

∂

∂u
, (11)

where C1, . . . , C4 are arbitrary constants. Thus, we see that the Lie symmetries of the 2D-EW
Equation (6) are

Z1 =
∂

∂t
, Z2 =

∂

∂x
, Z3 =

∂

∂y
, Z4 = nt

∂

∂t
− u

∂

∂u
. (12)

Here, the symmetries Z1,Z2,Z3 represent the translation symmetries, whereas Z4 is
the scaling symmetry.
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2.2. Symmetry Reductions Using Z1,Z2,Z3

We use the symmetry Z = Z1 + aZ2 + bZ3, (a, b constants) to reduce the 2D-EW
Equation (6) to a NODE. The characteristic equations of symmetry Z give the invariants

f = x − at, g = y − bt, u(t, x, y) = Γ( f , g),

which reduce (6) to the NPDE

aΓ f + bΓg − ΓnΓ f + αaΓ f f f + αbΓ f f g + βaΓ f gg + bβΓggg = 0. (13)

Equation (13) has two translation symmetries ζ1 = ∂/∂ f , ζ2 = ∂/∂g. Symmetry
ζ = ζ1 + νζ2 produces the invariants

z = g − ν f , Γ( f , g) = Ψ(z)

and these invariants transform the NPDE (13) to the NODE

(aν − b)Ψ′(z)− νΨnΨ′(z) + (aαν3 − αbν2 + βνa − βb)Ψ′′′(z) = 0, (14)

which we rewrite as

AΨ′(z)− νΨn(z)Ψ′(z) + BΨ′′′(z) = 0, (15)

where A = aν − b, B = aαν3 − αbν2 + βνa − βb and z = (aν − b)t − νx + y.

2.3. Solution of (6) Using Kudryashov’s Method

We engage Kudryashov’s method [42] to construct the closed-form solution for the
2D-EW Equation (6). To do this, we start by removing the power n in the NODE (15) using
the transformation

Ψ(z) = F1/n(z). (16)

Thus, the NODE (15) becomes

(1 − 3n + 2n2)BF′(z)3 + 3n(a − n)BF(z)F′(z)F′′(z) + n2BF(z)2F′′′(z)
− n2νF(z)3F′(z) + An2F(z)2F′(z) = 0. (17)

Next, we assume that the NODE (17) has the solution of the form

F(z) =
J

∑
k=0

CkVk(z), (18)

where Ck is the unknown constants to be determined and the function V(z) satisfies the
Riccati equation

V′(z) = V2(z)− V(z), (19)

whose solution is

V(z) =
1

1 + exp(z)
. (20)

By using the balancing procedure [35] on Equation (17), we obtain J = 2. Hence, (18)
becomes

F(z) = C0 + C1V(z) + C2V2(z). (21)
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Inserting the value of F(z) from (21) into (17) and using (19), we obtain an equation
which splits into nine algebraic equations:

n2νC3
0C1 − An2C2

0C1 − Bn2C2
0C1 = 0,

4BC2
3 − n2νC2

4 + 2Bn2C2
3 + 6BnC2

3 = 0,

2n2νC4
2 − 7n2νC1C3

2 + 12Bn2C1C2
2 − 6Bn2C3

2 + 30BnC1C2
2 − 24BnC3

2 − 24BC3
2

+ 12 BC1C2
2 = 0,

2n2νC3
0C2 − n2νC3

0C1 + 3n2νC2
0C2

1 + An2C2
0C1 − 2An2C2

0C2 − 2An2C0C2
1

+ 7Bn2C0
2C1 − 8 Bn2C0

2C2 + Bn2C0C2
1 − 3 BnC0C2

1 = 0,

3n2νC0C3
1 − 2n2νC3

0C2 − 3n2νC2
0C2

1 + 9n2νC2
0C1C2 + 2An2C2

0C2

+ 2An2C0C2
1 − 6An2C0C1C2 − An2C3

1 − 12Bn2C0
2C1 + 38Bn2C2

0C2

+ 2Bn2C0C2
1 + 12BnC0C2

1 − 18BnC0C1C2 − BC3
1 = 0,

7n2νC1C3
2 − 6n2νC0C2

3 − 9n2νC2
1C2

2 + 2An2C3
2 + 12Bn2C0C2

2

+ 12Bn2C2
1C2 − 18Bn2C1C2

2 + 2Bn2C3
2 + 36BnC0C2

2 + 18BnC2
1C2 (22)

12BnC3
2 − 66BnC1C2

2 + 6BC2
1C2 − 36BC1C2

2 + 24BC2
3 = 0,

6n2νC0C3
2 − 15n2νC0C1C2

2 − 5n2νC3
1C2 + 9n2νC2

1C2
2 + 5An2C1C2

2 − 2An2C3
2

+ 30Bn2C0C1C2 − 12Bn2C0C2
2 + 2Bn2C3

1 − 21Bn2C2
1C2 + 5Bn2C1C2

2

+ 30BnC0C1C2 − 96BnC0C2
2 + 3BnC3

1 − 39BnC2
1C2 + 42BnC1C2

2 + BC3
1

+ 36BC1C2
2 − 18BC2

1C2 − 8BC3
2 = 0,

6n2νC2
0C2

2 − 9n2νC2
0C1C2 − 3n2νC0C3

1 + 12n2νC0C2
1C2 + n2νC4

1 + 6An2C0C1C2

+ An2C3
1 − 4An2C0C2

2 − 4An2C2
1C2 + 6Bn2C2

0C1 − 54Bn2C2
0C2 − 9Bn2C0C2

1

+ 24Bn2C0C1C2 + 8Bn2C0C2
2 + Bn2C3

1 − Bn2C2
1C2 − 15BnC0C2

1 + 66BnC0C1C2

+ 3BC3
1 − 24BnC0C2

2 + 3BnC3
1 − 3BnC2

1C2 − 6BC2
1C2 = 0,

15n2νC0C1C2
2 − 6n2νC2

0C2
2 − 12n2νC0C2

1C2 − n2ν C4
1 + 5n2νC3

1C2

+ 4An2C0C2
2 + 4An2C2

1C2 − 5An2C1C2
2 + 24Bn2C2

0C2 + 6Bn2C0C2
1 − 12BC1C2

2

+ 10Bn2C2
1C2 − 54Bn2C0C1C2 − 8Bn2C0C2

2 − 3Bn2C3
1 + Bn2C1C2

2 + 6BnC0C2
1

+ 84BnC0C2
2 − 78BnC0C1C2 − 6BnC3

1 + 24BnC2
1C2 − 6BnC1C2

2 − 3BC3
1

+ 18BC2
1C2 = 0.

Using Maple, we attain the solution of the above algebraic equations in the form

C0 = 0, C1 =
2A
ν
(n2 + 3n + 2), C2 = −2A

ν
(n2 + 3n + 2), B = −n2 A. (23)

Thus, corresponding to the above values, we obtain the solution for the 2D-EW
Equation (6) in the form

u(t, x, y) =

{
2
ν

A(n2 + 3n + 2)

(
exp(z)

{1 + exp(z)}2

)} 1
n

, (24)

where z = (aν − b)t − νx + y. Figure 1 demonstrates the wave profile of solution (24) for
the values a = 2, b = 6, ν = 8, n = 1, A = 1 and t = 0.
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Figure 1. The 3D and 2D wave profile of solution (24).

2.4. Solitary Wave Solution of (6)

We now seek the solitary wave solution for 2D-EW Equation (6). To achieve this task,
we focus on the NODE (15). Integrating this NODE twice and taking the constants of
integration to be zero, we obtain

Ψ′2 − 2ν

B(n + 1)(n + 2)
Ψn+2 +

A
B

Ψ2 = 0. (25)

Using the transformation Ψ(z) = V1/n(z), the NODE (25) becomes

V′2 − 2n2ν

B(n + 1)(n + 2)
V3 +

n2 A
B

V2 = 0, (26)

whose solution is

V(z) =
A(n + 1)(n + 2)

2ν
sech2

(√
− An2

4B
(z ± K)

)
,

where K = (
√

A(n + 1)(n + 2)C1)/2 and C1 is an integration constant. Thus, the solution
2D-EW Equation (6) is

u(t, x, y) =

{
A(n + 1)(n + 2)

2ν
sech2

(√
− An2

4B
(z ± K)

)}1/n

, (27)

where C1 is the integration constant and z = (aν − b)t − νx + y. In Figure 2, we give the
illustration of the solution (27) for the values ν = 0.9, A = 0.18, a = 0.2, b = 0.2, n = 1,
K = 0 and time t = 0.1.
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Figure 2. The 3D and 2D solution profiles of (27).

2.5. Solutions of (6) for n = 1
2.5.1. Solution via Direct Integration

We now seek the solution for 2D-EW Equation (6) for n = 1 via the direct integration.
Substituting n = 1 into (15) and integrating the resultant equation twice gives

Ψ′2 =
ν

3B
Ψ3 − A

B
Ψ2 − 2c1

B
Ψ − 2c2

B
, (28)

where c1, c2 are arbitrary constants. To gain the solution for the NODE (28), we assume
that κ1, κ2, κ3 are the real roots of the cubic polynomial

Ψ3 − 3A
ν

Ψ2 − 6c1

ν
Ψ − 6c2

ν

with κ1 > κ2 > κ3. Then, Equation (28) can be written as

Ψ′2 =
ν

3B
(Ψ − κ1)(Ψ − κ2)(Ψ − κ3),

whose solution [43,44] is

Ψ(z) = κ2 + (κ1 − κ2)cn2

{√
ν(κ1 − κ3)

12B
(z − z0),R2

}
, R2 =

κ1 − κ2

κ1 − κ3
,

where z0 is a constant and (cn) is the Jacobi cosine function. Consequently, the solution for
the 2D-EW Equation (6) is

u(t, x, y) = κ2 + (κ1 − κ2)cn2

{√
ν(κ1 − κ3)

12B
(z − z0),R2

}
, (29)

where z = (aν − b)t − νx + y. Figure 3 depicts the solution (29) graphically for the
parametric values κ1 = 1, κ2 = −54, κ3 = −64, B = 15, ν = 1.2, b = 0.2, ν = 0.6, a = −4,
z0 = 0 and t = −15.
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Figure 3. The 3D and 2D solution profiles of (29).

2.5.2. Solution via Weierstrass Elliptic Function Method

We begin by writing Equation (28) in the form

Ψ′2(z)− k1Ψ3(z)− k2Ψ2(z)− k3Ψ(z)− k4 = 0, (30)

where the coefficients k1, k2, k3, k4 are expressed as k1 = ν/(3B), k2 = −A/B, k3 =
−2c1/B, k4 = −2c2/B. Now, using the transformation

Ψ = V − k2

3k1
, (31)

Equation (30) reduces to

V′(ξ) = 4V3(ξ)− g2
2V(ξ)− g2

3, ξ =

√
k1

4
z, (32)

whose general solution [45] is given by

V(ξ) = ℘
(

ξ; g2
2; g3

2

)
− k2

3k1
, ξ =

√
k1

4
z, (33)

where ℘ is the Weierstrass elliptic function and g2
2, g2

3 are the invariants that are given by

g2
2 =

4k3

k1
− k2

2
3k2

1
, g2

3 =
4k4

k1
− 4k2k3

3k2
1

+
8k3

2
27k3

1
.

Thus, going back to our original variables, we obtain the solution of the 2D-EW
equation as

u(t, x, y) = ℘

(√
k1

4
z; g2

2; g3
2

)
− k2

3k1
(34)

where z = (aν − b)t − νx + y. Figure 4 illustrates the solution (34) with the parameters
assigned to be k1 = 4, k2 = 0, k3 = 1, k4 = 2, a = 3, ν = 0.1, b = 9 and t = 0.
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Figure 4. The 3D and 2D solution profiles of (34).

2.5.3. Solution via the Extended Jacobi Elliptic Function Method

We now construct exact explicit solutions of the 2D-EW Equation (6) in terms of the
Jacobi elliptic functions [9]. We apply this method to NODE (15) for the case when n = 1.
For this case, the NODE (15) becomes

AΨ′(z)− νΨ(z)Ψ′(z) + BΨ′′′(z) = 0. (35)

The equations that are used are the first-order ODEs

H′(z)2 = (1 − H(z)2)(1 − ω + ωH(z)2) (36)

and
H′(z)2 = (1 − H(z)2)(1 − ωH(z)2) (37)

whose solutions are the Jacobi elliptic cosine and the Jacobi elliptic sine functions, respec-
tively, given by

H(z) = cn(z|ω) (38)

and

H(z) = sn(z|ω), (39)

where 0 ≤ ω ≤ 1.

Cnoidal wave solutions

We now consider the solution of the NODE (35) in the form

Ψ(z) =
M

∑
j=−M

Aj H(z)j, (40)

where Aj is the undetermined constants and M is the integer greater than zero, obtained by
the balancing procedure. Using the balancing procedure on NODE (35), we obtain M = 2.
Thus, (40) becomes

Ψ(z) = A−2H(z)−2 + A−1H(z)−1 + A0 + A1H(z) + A2H(z)2. (41)

Using the above value of Ψ in (35) and invoking (36), we obtain the following algebraic
equations:

12αaν3 A−2 − 12αaν3ωA−2 − 12aνβωA−2 + 12aνβA−2 + 12αbν2ωA−2 − 12αbν2 A−2

+ 12bβωA−2 − 12bβA−2 − νA2−2 = 0,

2αaν3 A−1 − 2αaν3ωA−1 − 2aνβωA−1 + 2aνβA−1 + 2αbν2ωA−1 − 2αbν2 A−1

+ 2bβωA−1 − 2bβA−1 − νA−2 A−1 = 0,

16αaν3ωA−2 − 8αaν3 A−2 + 16aνβωA−2 − 8aνβA−2 + 2aνA−2 − 16αbν2ωA−2
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+ 8αbν2 A−2 − 16bβωA−2 + 8bβA−2 − 2bA−2 − νA2
−1 − 2A−2 A0ν = 0,

2αaν3ωA−1 − αaν3 A−1 + 2aνβωA−1 − aνβA−1 + aνA−1 − 2αbν2ωA−1 − A−1b

+ αA−1bν2 − 2A−1bβω + A−1bβ − A−1 A0ν − A−2 A1ν = 0,

αaν3 A1 − 2αaν3ωA1 − 2aνβωA1 + aνβA1 − aνA1 + 2αbν2ωA1 − αbν2 A1

+ 2bβωA1 − bβA1 + bA1 + νA0 A1 + νA−1 A2 = 0,

8αaν3 A2 − 16αaν3ωA2 − 16aνβωA2 + 8aνβA2 − 2aνA2 + 16αbν2ωA2 − 8αbν2 A2

+ 16bβωA2 − 8bβA2 + 2bA2 + νA2
1 + 2νA0 A2 = 0,

2αaν3ωA1 + 2aνβωA1 − 2αbν2ωA1 − 2bβωA1 + νA1 A2 = 0,

12αaν3ωA2 + 12aνβωA2 − 12αbν2ωA2 − 12bβωA2 + νA2
2 = 0.

Solving the above system, using Mathematica, we obtain

A−2 =
12(1−ω)(aν−b)(αν2+β)

ν , A0 = 4(aν − b)
{
((2ω−1)(αν2+β)+1)

ν

}
,

A−1 = 0, A1 = 0, A2 =
12ω(b−aν)(αν2+β)

ν .
(42)

Therefore, the solution to the 2D-EW Equation (6) is

u(t, x, y) = { 12(aν−b)(αν2+β)
ν }{ 1−ω

cn2(z|ω)
− ωcn2(z|ω)}

+4(aν − b){ ((2ω−1)(αν2+β)+1)
ν },

(43)

where 0 ≤ ω ≤ 1 and z = (aν − b)t − νx + y.

Snoidal wave solutions

Substituting (41) into (35) and making use of (37), we obtain an algebraic equation,
which splits and yields the algebraic equations:

12αbν2 A−2 − 12αaν3 A−2 − 12aνβA−2 + 12bβA−2 + νA2−2 = 0,

νA−2 A−1 − 2αaν3 A−1 − 2aνβA−1 + 2αbν2 A−1 + 2bβA−1 = 0,

8αaν3ωA−2 + 8αaν3 A−2 + 8aνβωA−2 + 8aνβA−2 − 2aνA−2 − 8αbν2ωA−2

+ 2νA−2 A0 − 8αbν2 A−2 − 8bβωA−2 − 8bβA−2 + 2bA−2 + νA2
−1 = 0,

αaν3ωA−1 + αaν3 A−1 + aνβωA−1 + aνβA−1 − aνA−1 − αbν2ωA−1 − αbν2 A−1

+ νA−1 A0 − bβωA−1 − bβA−1 + bA−1 + νA−2 A1 = 0,

aνA1 − αaν3ωA1 − αaν3 A1 − aνβωA1 − aνβA1 + αbν2ωA1 + αbν2 A1 + bβωA1

+ bβA1 − bA1 − νA0 A1 − νA−1 A2 = 0,

8αbν2ωA2 − 8αaνν2ωA2 − 8αaνν2 A2 − 8aνβωA2 − 8aνβA2 + 2aνA2 + 8αbν2 A2

+ 8bβωA2 + 8bβA2 − 2bA2 − νA2
1 − 2A0νA2 = 0,

2αaνν2ωA1 + 2aνβωA1 − 2αbν2ωA1 − 2bβωA1 − νA1 A2 = 0,

12αaνν2ωA2 + 12aνβωA2 − 12αbν2ωA2 − 12bβωA2 − νA2
2 = 0.

The solution of the above system, using Mathematica, is

A−2 =
12(aν−b)(αν2+β)

ν , A0 = (b − aν)

{
(4(ω+1)(αν2+β)−1)

ν

}
A−1 = 0, A1 = 0, A2 =

12ω(aν−b)(αν2+β)
ν .

(44)
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Therefore, the solution for 2D-EW Equation (6) is

u(t, x, y) =
{

12(aν−b)(αν2+β)
ν

}{
1

sn2(z|ω)
+ ω sn2(z|ω)

}
+(b − aν)

{
(4(ω+1)(αν2+β)−1)

ν

}
,

(45)

where 0 ≤ ω ≤ 1 and z = (aν − b)t − νx + y.

2.6. Solution of (6) for n = 2 Using Z4

We use the symmetry Z4 to reduce then 2D-EW Equation (6) for n = 2. This symmetry
has the invariants

r = x, s = y, u(t, x, y) =
1

t1/2 P(r, s) (46)

and they reduce Equation (6) to the NLPDE

αPrr + βPss − 2P2Pr + P = 0. (47)

Equation (47) has two translation symmetries

W1 =
∂

∂r
, W2 =

∂

∂s
.

Consider the symmetry W = W1 + cW2. This gives the invariants

P(r, s) = Q(z), z = s − cr,

which reduces Equation (47) to the NODE

βQ′′ + αc2Q′′ + 2cQ2Q′ +Q = 0. (48)

Power series solution

We find the solution of NODE (48) using the power series expansion method [10]. To
obtain the power series solutions, we use the hypothesis

Q(z) =
∞

∑
j=0

Ajzj, (49)

where Aj, j = 0, 1, . . . are constants to be determined. From (49), we have

Q′(z) =
∞

∑
j=0

(j + 1)Aj+1zj, Q′′(z) =
∞

∑
j=0

(j + 1)(j + 2)Aj+2zj. (50)

Substituting the values of Q, Q′, Q′′ from (49) and (50) into the NODE (48), we obtain

(
β + αc2)∑∞

j=0(j + 1)(j + 2)Aj+2zj + 2c
(

∑∞
j=0 Ajzj

)2(
∑∞

j=0(j + 1)Aj+1zj
)

+∑∞
j=0 Ajzj = 0

(51)

and this simplifies to

(
β + c2α

)
∑∞

j=0(j + 1)(j + 2)Aj+2zj + 2c ∑∞
j=0 ∑

j
i=0 ∑i

k=0(j − i + 1)Ak Ai−k Aj−i+1zj

+∑∞
j=0 Ajzj = 0.

(52)
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Hence, by inspecting the coefficients for j = 0 and j ≥ 1, we have

Aj+2 = − 1
(β + αc2)(j + 2)(j + 1)

{
2c

j

∑
i=0

i

∑
k=0

(j − i + 1)Ak Ai−k Aj−i+1 + Aj

}
, (53)

for j ≥ 0 and A0, A1 are arbitrary constants. Thus, reverting to the original variables, the
solution of the 2D-EW Equation (6) is

u(t, x, y) = A0 + A1(y − cx) + Aj+2(y − cx)j+2, (54)

where the coefficients A2, A3, A4, . . . are obtained from the recursive formula (53).

3. Conservation Laws

We now derive conservation laws for the 2D-EW Equation (6) by invoking two ap-
proaches. Firstly, we employ the multiplier method, and secondly, we use the Noether’s the-
orem.

3.1. Conservation Laws Using the Multiplier Method

We consider the zeroth-order multipliers for Equation (6), that is the multipliers M
that depend on the variables t, x, y and u only. We obtain the multipliers by using the
determining equation

Eu
{M(

ut + unux + αutxx + βutyy
)}

= 0, (55)

where Eu is the Euler–Lagrange operator defined by

Eu = ∂u − Dt∂ut − Dx∂ux − Dy∂uy − DtD2
x∂utxx − DtD2

y∂utyy + · · · . (56)

Here, Dt, Dx, Dy are the total derivatives and are given by

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + uty∂uy + · · · ,

Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + uxy∂uy + · · · ,

Dy = ∂y + uy∂u + uty∂ut + uxy∂ux + uyy∂uy + · · · .

Expanding (55) and separating on various derivatives of u, we obtain

βMtyy +Mt = 0, Mtu = 0, Muu = 0, Mx = 0, (57)

which, upon solving, yields

M = C1u + F(y) + G(t) sin(y/
√

β) + H(t) cos(y/
√

β), (58)

where C1 is a constant and F, G, H are arbitrary functions of their arguments. Now, the
conserved quantities of 2D-EW Equation (6) are derived using the divergence identity

DtCt + DxCx + DyCy = M(
ut + unux + αutxx + βutyy

)
with Ct representing conserved density and Cx, Cy being spatial fluxes.
Case 1. The multiplier M1 = u gives the conserved vector (Ct

1, Cx
1 , Cy

1), where

Ct
1 =

1
2

u2 − 1
6

(
αu2

x + βu2
y

)
+

1
3
(
αuuxx + βuuyy

)
,

Cx
1 =

1
n + 2

un+2 − 1
3

αutux +
2
3

αuutx, (59)

Cy
1 =

2
3

βuuty − 1
3

βutuy;
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Case 2. For the multiplier M2 = F(y), we obtain the conserved vector whose compo-
nents are

Ct
2 =

(
1
3

βuyy +
1
3

αuxx + u
)

F(y)− 1
3

βuyF′(y) + 1
3

βuF′′(y),

Cx
2 =

(
2
3

αutx +
1

n + 1
un+1

)
F(y), (60)

Cy
2 =

2
3

βutyF(y)− 1
3

βutF′(y);

Case 3. Using the multiplier M3 = G(t) sin
(
y/
√

β
)
, we attain the conservation law whose

components are

Ct
3 = − 1

3

{√
βuy cos

(
y√

β

)
− (αuxx + βuyy + 2u

)
sin

(
y√

β

)}
G(t),

Cx
3 =

{(
1

n + 1
un+1 +

2
3

αutx

)
G(t) +

1
3

αuxG′(t)
}

sin

(
y√

β

)
,

Cy
3 =

{
2
3

βutyG(t)− 1
3

βuyG′(t)
}

sin

(
y√

β

)
+

{
2
3

√
βuG′(t)− 1

3

√
βutG(t)

}
cos

(
y√

β

)
;

Case 4. Finally, the multiplierM4 = H(t) cos
(
y/
√

β
)

gives the conserved vector (Ct
4, Cx

4 , Cy
4),

where

Ct
4 =

1
3

{√
βuy sin

(
y√

β

)
+
(
αuxx + βuyy + 2u

)
cos

(
y√

β

)}
H(t),

Cx
4 =

{(
1

n + 1
un+1 +

2
3

αutx

)
H(t)− 1

3
αux H′(t)

}
cos

(
y√

β

)
,

Cy
4 =

{
2
3

βuty H(t)− 1
3

βuyH′(t)
}

cos

(
y√

β

)
+

{
1
3

√
βutH(t)− 2

3

√
βuH′(t)

}
sin

(
y√

β

)
.

3.2. Conservation Laws Using Noether’s Theorem

The 2D-EW Equation (6) is a third-order NPDE and, as a result, does not have a
Lagrangian. We however overcome this limitation by using the transformation u = Vx,
and this transforms the 2D-EW Equation (6) to the variational equation

Vtx + Vn
x Vxx + αVtxxx + βVtxyy = 0, (61)

which has a second-order Lagrangian L given by

L = −1
2
VtVx − 1

(n + 1)(n + 2)
Vn+2

x +
1
2

αVtxVxx +
1
2

βVtyVxy, n 	= −1,−2, (62)

because EuL = 0 on the Equation (61). Here, the Euler operator Eu is given by

Eu =
∂

∂V − Dt
∂

∂Vt
− Dx

∂

∂Vx
+ DtDx

∂

∂Vtx
+ D2

x
∂

∂Vxx
+ DxDy

∂

∂Vxy
.

The determining equation for Noether symmetries is

Z [2]L+
{

Dt(τ) + Dx(ξ) + Dy(φ)
}L− Dt(Bt)− Dx(Bx)− Dy(By) = 0, (63)
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where Z [2] is the second prolongation of

Z = τ(t, x, y,V) ∂

∂t
+ ξ(t, x, y,V) ∂

∂x
+ φ(t, x, y,V) ∂

∂y
+ η(t, x, y,V) ∂

∂V

and (Bt, Bx, By) are gauge functions that depend on (t, x, y,V). Expanding (63), we obtain
an equation which is then separated by various derivatives of V to give the following PDEs:

τx = 0, τy = 0, τV = 0, ξt = 0, ξy = 0, ξxx = 0, ξV = 0, φt = 0, φV = 0, φx = 0,

ηtx = 0, ηtx = 0, ηx = 0, Bt
V = 0, ηVV = 0, ηxV = 0, ηtV = 0, ηxV = 0, ηyy = 0,

ηyV = 0, ηtV = 0, 2ηV − φy = 0, Bx
V +

1
2

ηt = 0, ηV +
1
2

φy = 0, Bt
V +

1
2

ηx = 0,

φy + 2ηV − 2ξx = 0, Bt
t + Bx

x + By
y = 0, τt + ξx + nξx − φy − (n + 2)ηV = 0.

Solving the above overdetermined system of equations, we obtain

τ = c1, ξ = c2, φ = c3, η = yg(t) + f (t),

Bt = F4(t, x, y), Bx = −1
2

yVg′(t)− 1
2
V f ′(t) + F5(t, x, y), By = F6(t, x, y),

where c1, c2, c2 are constants, whereas f , g, F4, F5, F6 are arbitrary functions of their ar-
guments. We take F4 = F5 = F6 = 0, since they contribute to the trivial part of the
conservation laws. Thus, the Noether symmetries and their gauge functions are

Z1 =
∂

∂t
, Bt

1 = 0, Bx
1 = 0, By

1 = 0,

Z2 =
∂

∂x
, Bt

2 = 0, Bx
2 = 0, By

2 = 0,

Z3 =
∂

∂y
, Bt

3 = 0, Bx
3 = 0, By

3 = 0,

Z4 = f (t)
∂

∂V , Bt
4 = 0, Bx

4 = −1
2
V f ′(t), By

4 = 0,

Z5 = yg(t)
∂

∂V , Bt
5 = 0, Bx

5 = −1
2

yVg′(t), By
5 = 0.

Corresponding to each of the above Noether symmetries, we obtain the following
nonlocal conserved vectors for the 2D-EW Equation (6) by invoking formulas given in [24]:
Case 1. Z1 = ∂/∂t

Tt
1 =

1
4

αuxut − 1
(n + 1)(n + 2)

un+2 +

(
1
4

αuxx +
1
4

βuyy

) ∫
utdx

+
1
4

βut

∫
uyydx,

Tx
1 = − 1

2
αu2

t +

(
3
4

αutx +
1

n + 1
un+1 +

1
2

∫
utdx +

1
4

β
∫

utyydx
) ∫

utdx

−
(

1
4

β
∫

uyydx +
1
4

αux

) ∫
uttdx,

Ty
1 =

1
2

βuty

∫
utdx − 1

2
βut

∫
utydx;

Case 2. Z2 = ∂/∂x

Tt
2 =

1
4

αuuxx − 1
4

αu2
x +

1
4

βuuyy − 1
4

βux

∫
uyydx +

1
2

u2,

Tx
2 =

1
n + 2

un+2 +
3
4

αuutx − 1
4

αuxut +
1
4

βu
∫

utyydx +
1
4

βut

∫
uyydx,
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Ty
2 =

1
2

βuuty − 1
2

βutuy;

Case 3. Z3 = ∂/∂y

Tt
3 = − 1

4
αuxuy − 1

4
βuy

∫
uyydx +

(
1
4

αuxx +
1
4

βuyy +
1
2

u
) ∫

uydx,

Tx
3 =

(
1

n + 1
un+1 +

3
4

αutx +
1
4

β
∫

utyydx +
1
2

∫
utdx

) ∫
uydx

−
(

1
4

αux +
1
4

β
∫

uyydx
) ∫

utydx − 1
2

αutuy,

Ty
3 = − 1

(n + 1)(n + 2)
un+2 +

1
2

αuxut +
1
2

βuty

∫
uydx − 1

2
u
∫

utdx;

Case 4. Z4 = f (t) ∂/∂V

Tt
4 =

(
−1

4
βuyy − 1

4
αuxx − 1

2
u
)

f (t),

Tx
4 =

(
− 1

n + 1
un+1 − 3

4
αutx − 1

4
β
∫

utyydx − 1
2

∫
utdx

)
f (t) +

(
1
4

αux

+
1
4

βuyy +
1
2

∫
udx
)

f ′(t),

Ty
4 = − 1

2
β f (t)uty;

Case 5. Z5 = yg(t) ∂/∂V

Tt
5 =

(
−1

4
αyuxx − 1

4
βyuyy − 1

2
yu
)

g(t),

Tx
5 =

(
− 1

n + 1
yun+1 − 3

4
αyutx − 1

4
βy
∫

utyydx − 1
2

y
∫

utdx
)

g(t)

+

(
1
4

αyux +
1
4

βy
∫

uyydx +
1
2

y
∫

udx
)

g′(t),

Ty
5 =

(
1
2

βut − 1
2

βyuty

)
g(t).

We note that due to the presence of arbitrary functions f and g, we obtain infinitely
many conservation laws.

4. Conclusions

In this work, we investigated the 2D-EW Equation (6), which is used to model non-
linear dispersive waves. We computed Lie point symmetries of (6), and as a result, we
obtained four symmetries that include the three translation and one scaling symmetries.
Moreover, we performed symmetry reductions and obtained several NODEs, which were
solved with the aid of various techniques. The methods included the Kudryashov’s method,
power series expansion method, extended Jacobi elliptic method and the Weierstrass el-
liptic function method. The exact solutions obtained are the snoidal wave, cnoidal wave,
Weierstrass elliptic function, Jacobi elliptic cosine function, solitary wave and exponential
function solutions. Furthermore, the graphical representation for certain solutions was
also presented for certain parametric values in 2D and 3D, so as to give the reader a better
understanding of these solutions. Finally, using two techniques, the conservation laws for
the underlying equation were constructed. The techniques utilized were the multiplier
method which gave four local conservation laws and the classical Noether’s theorem,
which gave five nonlocal conservation laws. The conservation laws that were constructed
contained the conservation of energy and momentum.
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Abstract: The current manuscript displays elegant numerical results for cubic-quartic optical solitons
associated with the perturbed Fokas–Lenells equations. To do so, we devise a generalized iterative
method for the model using the improved Adomian decomposition method (ADM) and further
seek validation from certain well-known results in the literature. As proven, the proposed scheme is
efficient and possess a high level of accuracy.

Keywords: improved adomian decomposition method; optical soliton; Fokas–Lenells equations;
cubic-quartic optical solitons

1. Introduction

Optical solitons, which emerge from nonlinear evolution equations, have been studied
for the past few decades. The self-phase modulation (SPM) that comes from intensity-
dependent refractive index of light coupled with the chromatic dispersion (CD) leads to a
delicate balance, which sustains the solitons that travel down the fiber for intercontinental
distances. Several models that give way to optical solitons are addressed in Mathematics,
Physics and telecommunications engineering. The notion of cubic-quartic (CQ) solitons
surfaced in the realm of nonlinear fiber optics for the first time in 2017, and an avalanche of
results were eventually visible. Prior to this, it is the concept of pure-quartic solitons that
was visible [1]. Such CQ solitons were introduced due to the sheer necessity whenever CD
is low enough to be ignored and thus third-order dispersion (3OD) and fourth-order dis-
persion (4OD) effects are able to compensate for this depletion. This allows the sustainment
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of the necessary balance between the dispersion effects and SPM to be restored, allowing
stable solitons to be transmitted across intercontinental distances.

Furthermore, optical solitons have painstakingly fashioned pulse transmission tech-
nology for several waveguides [2–4]. This technical feat is described at a spectacular level
by several mathematical models. The Fokas–Lenells equation (FLE), which governs this
dynamic, was originally launched almost a decade ago [5–7]. Since its initial introduction,
this model has garnered widespread recognition in the fiber-optics community. In the past,
several types of soliton solutions for this model were recovered. However, none of these
studies have explored the implications of perturbation terms that emerge as a result of
natural factors in soliton transmission dynamics. The FLE is examined in this study, along
with a few perturbative effects.

As all previous efforts on CQ solitons have been analytical in nature, it is therefore
imperative to consider such solitons from a numerical standpoint. Thus, this article employs
a numerical approach to CQ solitons. However, the methodology used to present the
findings in this manuscript is the enhanced form of the strongly reliant Adomian’s method
called the improved Adomian decomposition method (ADM) [8]. We will, therefore,
suggest an efficient numerical scheme for solving CQ optical solitons associated with the
perturbed FLE. The approach will be based on the improved ADM. Besides, improved
ADM is a fast numerical approach for integral and functional solutions that is based on
Adomian’s method [9]. Validation of the suggested method will be carried out with recent
analytical results in the literature. The integration method reveals promising results without
the need of either linearization or any artificial boundary condition. Lastly, the improved
ADM architecture has its shortcomings. It fails to capture the effect of soliton radiation that
is a major detrimental factor in the soliton propagation.

The manuscript is arranged in the following manner: the perturbed FLE is described
in Section 2; while the governing model is addressed via the improved ADM in Section 3.
The simulated numerical results are retrieved in Section 4, and some concluding comments
are reported in Section 5.

2. Governing Model

The dimensionless form of the CQ solitons with the perturbed FLE is indicated be-
low [10]

iqt + iaqxxx + bqxxxx + |q|2(cq + idqx) = i
[
αqx + λ

(
|q|2q

)
x
+ μ
(
|q|2
)

x
q
]
, (1)

where x and t are the independent spatial and temporal variables, sequentially; while
the function q = q(x, t) is the complex wave profile. Additionally, starting with the left-
hand side, the first component indicates the temporal evolution, whereas a and b are the
coefficients of the 3OD and 4OD, sequentially; while d gives the nonlinear dispersion
term and the coefficient c is the Kerr law nonlinearity. Additionally for Equation (1), λ
is the self-steepening term, whereas the coefficients μ and α are for the higher-order and
inter-modal dispersions, sequentially.

3. Analysis of the Method

This section introduces the efficient improved ADM to derive a numerical scheme
for the CQ–FLE given in Equation (1). Initially, we offer the fundamental technique for
constructing nonlinear wave solutions of the equation. In our analysis, the complex CQ–
FLE given in Equation (1) will be converted to a real system using

q(x, t) = u1 + iu2. (2)

Plugging Equation (2) into Equation (1), we have
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i(u1 + iu2 )t + ia(u1 + iu2 )xxx + b(u1 + iu2 )xxxx
+|u1 + iu2 |2(c(u1 + iu2 ) + id(u1 + iu2 )x) = i[α(u1 + iu2 )x

+λ
(
|qu1 + iu2 |2(u1 + iu2 )

)
x
+ μ
(
|u1 + iu2 |2

)
x
(u1 + iu2 )].

(3)

Thus, from the above equation, the following system is obtained, after splitting the
real and imaginary parts as follows

u1t + au1xxx + bu2xxxx +
(
u2

1 + u2
2
)
(cu2 + du1x )

= αu1x + λ
((

q2u2
1 + u2

2
)
u2
)

x + μ
(
u2

1 + u2
2
)

xu2,
(4)

and
−u2t − au2xxx + bu1xxxx +

(
u2

1 + u2
2
)
(cu1 − du2x )

= −αu2x + λ
((

q2u2
1 + u2

2
)
u1
)

x + μ
(
u2

1 + u2
2
)

xu1,
(5)

where
u1(x, 0) = [q(x, 0)]R,

and
u2(x, 0) = [q(x, 0)]I .

Now, on using the Adomian’s approach, the solution of the above system transforms
into the following infinite series

u1(x, t) =
∞

∑
n=0

u1n(x, t), (6)

and

u2(x, t) =
∞

∑
n=0

u2n(x, t). (7)

Here u1n, u2n, n ≥ 0, will be obtained recurrently. Furthermore, in an operator form,
we re-express Equations (4) and (5) as follows

Lt(u1) + au1xxx + bu2xxxx +
(
u2

1 + u2
2
)
(cu2 + du1x )

= αu1x + λ
((

q2u2
1 + u2

2
)
u2
)

x + μ
(
u2

1 + u2
2
)

xu2,
(8)

and
Lt(u2) + au2xxx − bu1xxxx −

(
u2

1 + u2
2
)
(cu1 − du2x )

= αu2x − λ
((

q2u2
1 + u2

2
)
u1
)

x − μ
(
u2

1 + u2
2
)

xu1,
(9)

where
Lt =

∂

∂t
.

Further, using the inverse operator L−1
t on both sides of Equations (8) and (9) yields

u1(x, t) = u1(x, 0)− L−1
t au1xxx − L−1

t bu2xxxx − L−1
t
(
u2

1 + u2
2
)
(cu2 + du1x )

+L−1
t αu1x + λ

((
q2u2

1 + u2
2
)
u2
)

x + L−1
t μ
(
u2

1 + u2
2
)

xu2,

and

u2(x, t) = u2(x, 0)− L−1
t au2xxx + L−1

t bu1xxxx + L−1
t
(
u2

1 + u2
2
)
(cu1 − du2x )

+L−1
t αu2x − L−1

t λ
((

q2u2
1 + u2

2
)
u1
)

x − L−1
t μ
(
u2

1 + u2
2
)

xu1.

Next, re-expressing the above system via the Adomian polynomials, we have

u1(x, t) = u1(x, 0)− L−1
t au1xxx + L−1

t bu2xxxx + L−1
t αu1x + L−1

t A1, (10)

and
u2(x, t) = u2(x, 0)− L−1

t au2xxx − L−1
t bu1xxxx + L−1

t αu2x + L−1
t A2, (11)
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where the terms A1 and A2 in Equations (10) and (11) are the nonlinear terms represented by

A1 = −
(

u2
1 + u2

2

)
(cu2 + du1x ) + λ

((
q2u2

1 + u2
2

)
u2

)
x
+ μ
(

u2
1 + u2

2

)
x
u2, (12)

and
A2 =

(
u2

1 + u2
2

)
(cu1 − du2x )− λ

((
q2u2

1 + u2
2

)
u1

)
x
− μ
(

u2
1 + u2

2

)
x
u1, (13)

Of which A1 = ∑∞
n=0 A1n and A2 = ∑∞

n=0 A2n, where A1n, . . . , A2n, . . . are the Adomian
polynomials, which may be generated from all types of nonlinearity, using Adomian’s
specific algorithms. Plugging the solution forms in Equations (5) and (6), as well as A1 and
A2 in Equations (12) and (13), into Equations (10) and (11) yields

∑∞
n=0 u1n(x, t) = u1(x, 0)− L−1

t a ∑∞
n=0 (u1n(x, t))xxx

+L−1
t b ∑∞

n=0 (u2n(x, t))xxxx + L−1
t ∑∞

n=0 A1n,
(14)

and
∞
∑

n=0
u2n(x, t) = u2(x, 0)− L−1

t a
∞
∑

n=0
(u2n(x, t))xxx

+L−1
t b

∞
∑

n=0
(u1n(x, t))xxxx + L−1

t

∞
∑

n=0
A2n.

(15)

The following recursive relations are introduced as a result of the decomposition analysis

u1,0(x, t) = u1(x, 0), (16)

u2,0(x, t) = u2(x, 0), (17)

u1,k+1(x, t) = −L−1
t a ∑∞

n=0 (u1n(x, t))xxx
+L−1

t b ∑∞
n=0 (u2n(x, t))xxxx + L−1

t ∑A1n
n=0 A1n,

(18)

and
u2,k+1(x, t) = −L−1

t a ∑∞
n=0 (u2n(x, t))xxx

+L−1
t b ∑∞

n=0 (u1n(x, t))xxxx + L−1
t ∑∞

n=0 A2n.
(19)

Thus, we determine u1 and u2 as follows

u1 = u1,0 + u1,1 + u1,2 + . . . ,

and
u2 = u2,0 + u2,1 + u2,2 + . . . ,

and the entire approximate solution for Equation (1) is derived by plugging the preceding
equations into Equation (2), which is connected to Equations (16)–(19) to yield the following

q(x, t) = u1,0 + u1,1 + u1,2 + · · ·+ i(u2,0 + u2,1 + u2,2 + · · ·). (20)

4. Numerical Results

This section analyzes three distinct scenarios for the CQ–FLE given in Equation (1)
to demonstrate how the improved ADM scheme derived in the previous Section might
be applied. We analyze the CQ bright soliton of the perturbed FLE, which was recently
derived by Elsayed et al. [10] that is formulated as

q(x, t) = Asec h[B(x –vt)]ei(−kl x+ωl t+θ), (21)

where A and B are the soliton’s amplitude and width, sequentially, that are structured as

A = ±Δ0

10

√
− 30

Δ1
, (22)
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and

B =
1
2

√
−Δ0

5
, (23)

along with
v = −α − 3ak2 + 4bk3,

Δ0 =
1
b

(
3ak − 6bk2

)
,

and
Δ3 =

1
b
(c + dk + λk).

Moreover, from Equations (22)–(23), the constraint criteria for the possibility of bright
solitons were given by

Δ0 < 0, Δ3 < 0.

The phase component in Equation (21) represents the soliton’s velocity. θ is the phase
constant. The soliton’s frequency is

k = − a
4b

,

while the wave number is

ω = − k
(
36ka2 − 119abk2 + 119b2k3 + 25bα

)
25b

.

Consider the CQ-FLE (1) along with the parameters [10]

α = 0.1, λ = 1, μ = 1, d = 3λ + 2μ.

In addition, the initial condition at t = 0 from Equation (21) follows as

q(x, 0) = A sech[B(x)]ei(−kx+θ) . (24)

However, for the sake of numerical simulation, we consider the following three cases
of the model fixed parameters:

Case 1:
a = 0.5, b = −1, c = 1.

Case 2:
a = 1, b = −2, c = 2 .

Case 3:
a = 0.5, b = −0.5, c = 1.

In what follows, we report the absolute error differences between the exact solution
and that of the approximate solution using the improved ADM of the three solution cases
in Tables 1–3. Furthermore, we portray the respective solution cases in Figures 1–3 for
various values of t over the interval −50 ≤ x ≤ 50. Without loss of generality, these figures
are self-explanatory, as the proposed numerical method performs excellently. Additionally,
an absolute agreement is noted in these figures in the bulk parts of the bell-shaped solution;
only a small disparity is noted at the peak of the curves. This disparity can equally be
overcome when the model’s parameters are suitably chosen and, also by considering more
iterates/approximants in the series summation.
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Figure 1. Comparison of the exact and improved ADM solutions for case 1 for −50 ≤ x ≤ 50.
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Figure 2. Comparison of the exact and improved ADM solutions for case 2 for −50 ≤ x ≤ 50.
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Figure 3. Comparison of the exact and improved ADM solutions for case 3 for −50 ≤ x ≤ 50.
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Table 1. Absolute error for Case 1 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.00304922317 0.0000878266951
0.1 0.00306667344 0.0000883416821
0.2 0.00308409727 0.0000888560318
0.3 0.00310149460 0.0000893697436
0.4 0.00311886552 0.0000898828190
0.5 0.00313621000 0.0000903952578

Table 2. Absolute error for Case 2 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.00692281558 0.0001996291264
0.1 0.00692913128 0.0001998464016
0.2 0.00693539773 0.0002000633452
0.3 0.00694161507 0.0002002799558
0.4 0.00694778339 0.0002004962310
0.5 0.00695390283 0.0002007121745

Table 3. Absolute error for Case 3 for x = 20, x = 50.

t Error When x = 20 Error When x = 50

0.0 0.000574951108 4.67316035 × 10−7

0.1 0.000570769757 4.63918739 × 10−7

0.2 0.000566597435 4.60529257 × 10−7

0.3 0.000562434066 4.57147514 × 10−7

0.4 0.000558279554 4.5377342 × 10−7

0.5 0.000554133811 4.50406915 × 10−7

5. Conclusions

In conclusion, CQ optical solitons are a modern topic of great interest in the field of
optical communications. In this paper, the effect of changing the optical parameters of such
CQ solitons with perturbed FLE was studied.

The unperturbed FLE, coupled with the chromatic dispersion and spatiotemporal
dispersion has been studied for the past few decades [5–7]. The initial-boundary value
problems, that are referred to as the linearizable boundary conditions, for the FLE are
analyzed in [5]. A class of exact combined solitary wave solutions of the FLE is constructed
by adopting the complex envelope function ansatz [6]. The influences of spatiotemporal
dispersion on the characteristics of combined solitary waves are also discussed in [6]. A class
of chirped soliton-like solutions including bright, dark and kink solitons is derived in [8].
The associated chirp, including linear and nonlinear contributions, is also determined for
each of optical pulses in [7]. When compared with [5–7], none of these studies have explored
the implications of perturbation terms that emerge as a result of natural factors in soliton
transmission dynamics. Therefore, the FLE is examined in this study along with a few
perturbative effects that are crucial to many applications in photonics, performing essential
functions in lasing, frequency conversion, and entangled-photon generation. Furthermore,
these perturbative effects may be used to generate new frequency components from high
power pulses, resulting in optical pulses with spectral widths much larger than the gain-
bandwidth of optical fiber amplifiers. In other words, these nonlinear effects can be used
to make useful devices capable of processing high-speed optical signals. Additionally,
none of the works in [5–7] have addressed the implications of cubic-quartic solitons. Thus,
the current paper reports cubic-quartic solitons that are the sheer necessity whenever
CD is low enough to be ignored. As a result, CQ solitons compensate for this depletion.
Hence, CQ solitons allow the sustainment of the necessary balance between the dispersion
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effects and self-phase modulation to be restored, allowing stable solitons to be transmitted
across intercontinental distances. The results of the current paper are new and are elegant
numerical results for cubic-quartic optical solitons associated with the perturbed FLE,
where the perturbation terms are all of Hamiltonian type and the chromatic dispersion is
replaced by a combination of third-order dispersion and fourth-order dispersion.

Cubic-quartic solitons with the perturbed FLE (1) have been addressed for the ana-
lytical study and revealed quite a number of interesting solitons in nonlinear optics [10],
where bright and singular solitons have been yielded by a couple of integration approaches.
While all previous efforts on CQ solitons have been analytical in nature [10], it is therefore
imperative to consider such solitons from a numerical standpoint. Thus, the current paper
focuses on the integrability of the perturbed FLE (1) for the numerical investigation using
the improved ADM architecture for the very first time. Analytical solutions are possible
using simplifying assumptions that may not realistically reflect reality. In many applica-
tions, analytical solutions are impossible to achieve. Hence, numerical methods make it
possible to obtain realistic solutions without the need for simplifying assumptions. The
improved ADM adopted in this paper leads to the emergence of bright soliton solutions
and is being reported for the first time in this paper, which makes these results novel. The
bright soliton solutions are very important, and these soliton solutions are used to sustain
pulse transmission through optical fibers in the telecommunications industry.

A promising technique called the improved ADM, which was based on the famous
Adomian’s method, was utilized to derive a recurrent numerical scheme for the governing
model and, furthermore, was successfully applied to the model through bright soliton
solutions. The integration method firstly converts a special case of the complex-valued
system into a real-valued system. Next, the integration scheme decomposes the solutions
into infinite sums of components called infinite series. When compared with the famous
Adomian’s method, the improved ADM reveals promising results without the need of
either linearization or any artificial boundary condition. The scheme is indeed reliable as
it was discovered to display results with higher accuracy. The numerical computations
are simpler and faster than most of the traditional techniques. Finally, the method is
recommended to investigate additional evolution equations.
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Abstract: In this work, we study a time-fractional ion sound and Langmuir waves system (FISLWS)
with Atangana–Baleanu derivative (ABD). We use a fractional ABD operator to transform our system
into an ODE. We investigate multiwaves, periodic cross-kink, rational, and interaction solutions by
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1. Introduction

At the present time, various real phenomena have been formulated by integer-order
nonlinear partial differential equations (NPDEs). These supermodels are studied in dif-
ferent domains of sciences, such as engineering, chemistry, biology, physics, optics, etc.
However, it is not enough to use integer order where the nonlocal property does not
appear in these forms, so different models have been systematized in fractional NPDEs
to determine that kind of similarity [1]. By using numerical and computational schemes,
these models give more familiar properties [2–10]. To use most of these schemes, one needs
fractional operator to transform the fractional forms into nonlinear ODEs with integer
orders such as conformable fractional derivative, Caputo, Caputo–Fabrizio definition,
Riemann–Liouville derivatives, and so on [11–24]. These operators have been applied
to estimate the numeric and exact solutions of fractional order NPDEs through different
integration schemes, such as (φ6)-model expansion [25], (G′

G )-expansion [26], tan(Φ(ρ)
2 )-

expansion [27], Kudryashove scheme [28], exp((−Ψ′
Ψ )η)-expansion [29], extended auxiliary

equation technique [30], and so many others.
Here, we consider the FISLWS as follows [17],

i ABDα
t m +

1
2

mxx − nm = 0, (1)

ABD2α
t n − nxx − 2(|m|2)xx = 0, t > 0, 0 < α ≤ 1.

where me−iωpt and n illustrate the normalized electric-field of the Langmuir oscillation and
perturbation of density, respectively. Both x and t are normalized variables and ABDα

t is
the AB fractional operator in t direction.
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ABD operator is well defined as

ABDDα
a+ F(t) =

B(α)
1 − α

d
dt

∫ t

a
F(x)Gα

(−α(t − α)α

1 − α

)
dx, (2)

where Gα is Mittag-Leffler function, defined as

Gα

(−α(t − α)α

1 − α

)
=

∞

∑
n=0

( −α
1−α )

s(t − x)αs

Γ(αs + 1)
, (3)

and B(α) is the normalization function that satisfies B(1) = B(0) = 1. Thus,

ABDDα
a+ F(t) =

B(α)
1 − α

∞

∑
n=0

( −α

1 − α

)s
RL Iαs

a F(t). (4)

for more properties of this operator. This leads towards the following form,

m(x, t) = u(ξ)eiϑ, n(x, t) = v(ξ), (5)

ϑ = ax +
β(1 − α)t−s

B(α)∑∞
s=0
(− α

1−α

)sΓ(1 − αs)
,

ξ = bx +
γ(1 − α)t−s

B(α)∑∞
s=0
(− α

1−α

)sΓ(1 − αs)
,

where β and γ are arbitrary constants. This wave alteration converts Equation (1) into the
following ODE.

1
2

b2u′′ + i(γ + ab)u′ − 1
2
(a2 + 2β)u − uv = 0, (6)

(γ2 − b2)v′′ − 4b2(u′2 + uu′′) = 0.

Here, u and v are the functions of ξ. By separating the Img part from the first part of
Equation (6),

γ + ab = 0 =⇒ γ = −ab. (7)

and then by integrating the second part of Equation (6) by two times the w.r.t ξ, we obtain

v =
2b2

−b2 + γ2 u2 =
2

a2 − 1
u2. (8)

Equations (7) and (8) transform Equation (6) into the following form:

u′′ − 4
b2(a2 − 1)

u3 − a2 + 2β

b2 u = 0, (9)

or

u′′ = 4
b2(a2 − 1)

u3 +
a2 + 2β

b2 u.

The contents of this paper are arranged as follows: In Section 2, we present M-shaped
rational solitons. In Section 3, we evaluate M-shaped interaction solutions. In Section 4, we
find the multiwaves solution. In Section 5, we study homoclinic breather. In Section 6, we
investigate periodic cross-kink solutions. In Section 7, we present results and discussions
and Section 8 contains concluding remarks.
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2. M-Shaped Rational Solitons

By using the following log transformation,

u = u0 + 2(ln Φ)ξ . (10)

Equation (10) transforms Equation (9) into the following bilinear form:

u0(−a4 − 4u2
0 + a2(1 − 2β) + 2β)Φ3 + 4(−8 + (−1 + a2)b2)Φ′3 − 6ΦΦ′(8u0Φ′ + (11)

(−1 + a2)b2Φ′′)− 2Φ2((a4 + 12u2
0 − 2β + a2(−1 + 2β))Φ′ − (−1 + a2)b2Φ′′′) = 0.

We choose M-shaped rational solution in bilinear form for Φ, as follows [31]:

Φ = (b2 + b1ξ)2 + (b4 + b3ξ)2 + b5, (12)

where bi(1 ≤ i ≤ 5) all are real-valued parameters to be measured. Inserting Φ into
Equation (11) and collecting all powers of ξ, we obtain proper results, as follows (See
Figures 1 and 2):

Set I. For b2 = 0,

a = a, b = b, β = − a4 − a2 + 4u2
0

2(a2 − 1)
, b1 = ib3, b3 = b3, b4 = b4, b5 = b5, u0 = u0. (13)

Using this in Equation (12), and then by using Equations (8) and (10), we obtain

u(ξ) = u0 +
2(−2b2

3ξ+2b3(b4+b3ξ))
b5−b2

3ξ2+(b4+b3ξ)2 , (14)

v(ξ) = 2
a2−1

(
u0 +

2(−2b2
3ξ+2b3(b4+b3ξ))

b5−b2
3ξ2+(b4+b3ξ)2

)2
.

To obtain final results, we use Equation (5):

m21(x, t) = e
i
(

ax− t−s(a4−a2+4u2
0)(1−α)

2(a2−1)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
u0 +

2(2b3(b4 + b3Ω)− 2b2
3Ω)

b5 + (b4 + b3Ω)2 − b3Ω2

)
,

n22(x, t) =
2

(a2 − 1)

(
u0 +

2(2b3(b4 + b3Ω)− 2b2
3Ω)

b5 + (b4 + b3Ω)2 − b3Ω2

)2

, (15)

where Ω =
(

bx − abt−s(1−α)
B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
.

Set II. For b5 = 0,

a = a, b = b, β = − a4 − a2 + 4u2
0

2(a − 1)(a + 1)
, b1 = ib3, b2 = b2, b3 = b3, b4 = b4, u0 = u0. (16)

Using this in Equation (12), and then by using Equations (8) and (10) in Equation (5),
we obtain

m23(x, t) = e
i
(

ax− t−s(a4−a2+4u2
0)(1−α)

2(a2−1)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
u0 +

2(2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω))

(b2 + ib3Ω)2 + (b4 + b3Ω)2

)
,

n24(x, t) =
2

(a2 − 1)

(
u0 +

2(2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω))

(b2 + ib3Ω)2 + (b4 + b3Ω)2

)2

, (17)

where Ω =
(

bx − abt−s(1−α)
B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
.

103



Mathematics 2022, 10, 200

(a) (b) (c)

Figure 1. Plots of m23(x, t) in Equation (17) for a = 2, b = 1.2, u0 = −2, b2 = 3, b3 = 5, b4 = −3,
α = 0.9, respectively as three-dimensions in (a); contour in (b) and two-dimensions in (c)

Set III. For u0 = 0,

a = a, b = b, β = −1
2

a2, b1 = ib3, b2 = b2, b3 = b3, b4 = b4, b5 = b5. (18)

Using this in Equation (12), and then by using Equations (8) and (10), we obtain

u(ξ) = 2(2ib3(b2+ib3ξ)+2b3(b4+b3ξ))
b5+(b2+ib3ξ)2+(b4+b3ξ)2 , (19)

v(ξ) = 8(2ib3(b2+ib3ξ)+2b3(b4+b3ξ))2

(−1+a2)(b5+(b2+ib3ξ)2+(b4+b3ξ)2)
2 .

To obtain final results, we use Equation (5):

m25(x, t) =
2e

i(ax− a2t−s(1−α)
2B(α)∑∞

s=0(− α
1−α

)sΓ(1−αs)
)
(2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω))

b5 + (b2 + ib3Ω)2 + (b4 + b3Ω)2 ,

(20)

n26(x, t) =
8

(a2 − 1)

(
2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω)

b5 + (b2 + ib3Ω)2 + (b4 + b3Ω)2

)2

,

where Ω =
(

bx − abt−s(1−α)
B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
.

(a) (b) (c)

Figure 2. represented three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots
of m25(x, t) in Equation (20) for a = 2, b = 0.5, b2 = −3, b3 = 1, b4 = 3, b5 = −1,
α = 0.8, respectively.
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3. M-Shaped Rational Soliton Interactions with

In this part, we evaluate M-shaped rational interactions with periodic and kink waves
by using exponential and cos function in bilinear combinations.

3.1. One-Kink Soliton

For this, the bilinear form for Φ is as follows [31]:

Φ = (b2 + b1ξ)2 + (b4 + b3ξ)2 + c eb6+b5ξ + b7, (21)

where bi(1 ≤ i ≤ 7), all are real-valued parameters to be measured. Inserting Φ into
Equation (11) and collecting all powers of eb5ξ+b6 , e2(b5ξ+b6), e3(b5ξ+b6), ξeb5ξ+b6 , ξe2(b5ξ+b6),
ξ2eb5ξ+b6 , ξ3eb5ξ+b6 , ξ4eb5ξ+b6 , and ξ, we obtain proper results, as follows (See Figures 3–6):

Set I. For b2 = b6 = 0,

a = a, b = 2
√

2
√

1
a2−1 , β = − a4−a2+4b2

5
2(a−1)(a+1) , b1 = ib3, b3 = b3, b4 = b4, b5 = b5, (22)

b7 = b7, u0 = −b5.

Using Equation (22) in Equation (21), and then by using Equations (8) and (10), we obtain

u(ξ) = −b5 +
2
(

b5ceb5ξ − 2b2
3ξ + 2b3(b4 + b3ξ)

)
b7 + ceb5ξ − b2

3ξ2 + (b4 + b3ξ)2
, (23)

v(ξ) =
2
(

b5(b2
4 + b7 − ceb5ξ) + 2b3b4(−2 + b5ξ)

)2

(−1 + a2)(b2
4 + b7 + ceb5ξ + 2b3b4ξ)2

.

Using Equation (5) to obtain the required solution for Equation (1),

m31(x, t) = −
eΔ
(

4
√

2a
√

1
a2−1 b3b4b5(α − 1) + ts

(
b5(b2

4 + b7 − ceΔ1) + 4b3b4(−1 +
√

2
√

1
a2−1 b5x)

)
Ξ
)

4
√

2a
√

1
a2−1 b3b4(α − 1) + ts

(
b2

4 + b7 + ceΔ1 + 4
√

2
√

1
a2−1 b3b4x

)
Ξ

,

(24)

n32(x, t) =
2

(a2 − 1)

⎛
⎝4

√
2a
√

1
a2−1 b3b4b5(α − 1) + ts

(
b5(b2

4 + b7 − ceΔ1) + 4b3b4(−1 +
√

2
√

1
a2−1 b5x)

)
Ξ

4
√

2a
√

1
a2−1 b3b4(α − 1) + ts

(
b2

4 + b7 + ceΔ1 + 4
√

2
√

1
a2−1 b3b4x

)
Ξ

⎞
⎠

2

,

where Δ = 1
2 i(2ax +

(−a2+a4+4b2
5)t

−s(−1+α)
(−1+a)(1+a)B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs) ),

Δ1 = 2
√

2
√

1
a2−1 b5

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
,

and Ξ = B(α)∑∞
s=0(− α

1−α )
sΓ(1 − αs).
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(a) (b) (c)

Figure 3. showed three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots of m31(x, t)
in Equation (24) for a = 0.2, b3 = 1, b4 = 2, b5 = −4, b7 = −3, c = 1, α = 0.6, respectively.

(a) (b) (c)

Figure 4. illustrated three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots of
n32(x, t) in Equation (24) for a = 0.2, b3 = 1, b4 = 5, b5 = −4, b7 = −3, c = 1, α = 0.8, respectively.

Set II. For b1 = 0,

a = a, b = 0, β = −1
2

a2, b2 = b2, b3 = b3, b4 = −2b3

u0
, b5 = −1

2
u0, b6 = b6, b7 = − b2

2u2
0 − 4b2

3
u2

0
, u0 = u0. (25)

Using Equation (25) in Equation (21), and then by using Equations (8) and (10), we obtain

u(ξ) = u0 +

2
(
− 1

2 ceb6− u0ξ
2 u0 + 2b3(− 2b3

u0
+ b3ξ)

)

b2
2 + ceb6− u0ξ

2 − b2
2u2

0−4b2
3

u2
0

+ (− 2b3
u0

+ b3ξ)2
, (26)

v(ξ) =
2b4

3eu0ξu6
0ξ4

(−1 + a2)

(
ceb6 u2

0 + b2
3e

u0ξ
2 (8 − 4u0ξ + u2

0ξ2)

)2 .

Using Equation (5), we obtain the required solution for Equation (1):

m33(x, t) = e
i
(

ax− a2t−s(1−α)
2B(α)∑∞

s=0(− α
1−α

)sΓ(1−αs)

)⎛⎜⎝u0 +
2(− 4b2

3
u0

− 1
2 ceb6 u0)

b2
2 + ceb6 +

4b2
3

u2
0
− b2

2u2
0−4b2

3
u2

0

⎞
⎟⎠, (27)

n34(x, t) = 0, (∵ b = 0).
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Set III. For b2 = b6 = 0,

a = a, b =
2

√
− 6u0b5+4u2

0
a2−1

b5
, β = − 4u2

0−a2+a4

2(a2−1) , b1 =
1
3 i(b7+b2

4)u0
b4

, b3 = − (b7+b2
4)u0

3b4
, (28)

b4 = b4, b5 = b5, b7 = b7, u0 = u0.

Using Equation (28) in Equation (21), and then by using Equations (8) and (10), we obtain

u(ξ) = u0 +

2

⎛
⎝b5ceb5ξ − 2(b2

4+b7)
2u2

0ξ

9b2
4

− 2(b2
4+b7)u0(b4−

(b7+b2
4)u0ξ

3b4
)

3b4

⎞
⎠

b7 + ceb5ξ − (b2
4+b7)2u2

0ξ2

9b2
4

+ (b4 − (b7+b2
4)u0ξ

3b4
)2

, (29)

v(ξ) =
2
(
−6b5ceb5ξ + u0(b7 − 3ceb5ξ + 2b7u0ξ + b2

4(1 + 2u0ξ))
)2

(−1 + a2)
(
3ceb5ξ + b2

4(3 − 2u0ξ) + b7(3 − 2u0ξ)
)2 .

Now, using Equation (5), we obtain the required solution for Equation (1):

m35(x, t) =
eΔ
(
−4

√
2a(b2

4 + b7)u2
0Δ1(α − 1) + ts

(
6b2

5ceΔ2 − b5(b2
4 + b7 − 3ceΔ2 )u0 − 4

√
2(b2

4 + b7)u2
0Δ1x

)
Ξ
)

−4
√

2a(b2
4 + b7)u0Δ1(α − 1)ts

(
3b5(b7 + ceΔ2 )− 4

√
2b7u0Δ1x + b2

4(3b5 − 4
√

2u0Δ1x)
)

Ξ
,

(30)

n36(x, t) =
2

(a2 − 1)

⎛
⎝−4

√
2a(b2

4 + b7)u2
0Δ1(α − 1) + ts

(
6b2

5ceΔ2 − b5(b2
4 + b7 − 3ceΔ2 )u0 − 4

√
2(b2

4 + b7)u2
0Δ1x

)
Ξ

−4
√

2a(b2
4 + b7)u0Δ1(α − 1)ts

(
3b5(b7 + ceΔ2 )− 4

√
2b7u0Δ1x + b2

4(3b5 − 4
√

2u0Δ1x)
)

Ξ

⎞
⎠

2

,

where Δ = 1
2 i
(

2ax +
t−s(−a2+a4+4u2

0)(−1+α)
(−1+a)(1+a)B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
, Δ1 =

√
− u0(3b5+2u0)

−1+a2 ,

Δ2 =
2
√

2t−s
√
− u0(3b5+2u0)

−1+a2 (a(−1+α)+tsxB(α)∑∞
s=0(− α

1−α )
sΓ(1−αs))

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs) ,

and Ξ = B(α)∑∞
s=0(− α

1−α )
sΓ(1 − αs).

(a) (b) (c)

Figure 5. clarify three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots
of m35(x, t) in Equation (30) for a = 0.5, u0 = 1, b4 = 2, b5 = −4, b7 = −3, c = 1,
α = 0.8, respectively.
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(a) (b) (c)

Figure 6. explain three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots
of n36(x, t) in Equation (30) for a = 0.3, u0 = 0.8, b4 = 2, b5 = −5, b7 = −3,
c = 0.4, α = 0.8, respectively.

3.2. Two-Kink Soliton

For two-kink interaction, the bilinear solution for Φ is as follows (See Figures 7–9):

Φ = (b2 + b1ξ)2 + (b4 + b3ξ)2 + eb6+b5ξ + eb8+b7ξ + b9, (31)

where bi(1 ≤ i ≤ 9) and all are real-valued parameters to be found. Inserting Φ into
Equation (11) and collecting all powers of ξ, and e3(b5ξ+b6), e2(b5ξ+b6), e2(b7ξ+b8), ξeb5ξ+b6 ,
ξe2(b5ξ+b6), ξeb7ξ+b8 , ξe2(b7ξ+b8), ξ2eb5ξ+b6 , ξ3eb5ξ+b6 , ξ3eb7ξ+b8 , ξ4eb7ξ+b8 , ξ4eb5ξ+b6 , we ob-
tain proper results, as follows:

Set I. For u0 = 0,

a = a, b = 2
√

2
√

1
a2−1 , β = − a4−a2+16b2

7
2(a−1)(a+1) , b1 = ib3, b2 = ib4, b3 = b3, b4 = b4, (32)

b5 = −b7, b6 = b6, b7 = b7, b8 = b8, b9 = b9.

Using Equation (32) in Equation (31), and then by using Equations (8) and (10), we obtain

u(ξ) =
2
(
−b7eb6−b7ξ + b7eb8+b7ξ + 2ib3(ib4 + ib3ξ) + 2b3(b4 + b3ξ)

)
b9 + eb6−b7ξ + eb8+b7ξ + (ib4 + ib3ξ)2 + (b4 + b3ξ)2 , (33)

v(ξ) =
8

−1 + a2

(
−b7eb6−b7ξ + b7eb8+b7ξ + 2ib3(ib4 + ib3ξ) + 2b3(b4 + b3ξ)

b9 + eb6−b7ξ + eb8+b7ξ + (ib4 + ib3ξ)2 + (b4 + b3ξ)2

)2

.

Using Equation (5), we obtain the required solution for Equation (1),

m37(x, t) = −
2b7e

1
2 i(2ax+

(−a2+a4+16b2
7)t

−s(−1+α)

(−1+a)(1+a)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
eb6 − eb8+2Ω

)
eb6 + eb8+2Ω + b9eΩ ,

(34)

n38(x, t) =
8b2

7
(a2 − 1)

(
eb6 − eb8+2Ω

eb6 + eb8+2Ω + b9eΩ

)2

,

where Ω = 2
√

2
√

1
a2−1 b7

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.
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(a) (b) (c)

Figure 7. represented three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots of
n38(x, t) in Equation (34) for a = 0.5, b6 = 1, b7 = −2, b8 = 2, b9 = −6, α = 0.8, respectively.

Set II.

a = a, b = 4
√

2+i
√

2
a2−1 , β =

a2−a4−8i(−2i+
√

2)b2
7

2(a2−1) , b1 = ib3, b2 = b2, b3 = b3, b4 = −ib2, (35)

b5 = (1 + 1
2 i
√

2)b7, b6 = b6, b7 = b7, b8 = b8, b9 = 0.

Using Equation (35) in Equation (31), and then by using Equations (8) and (10), we obtain

u(ξ) =
2
(

b7eb8+b7ξ + (1 + i√
2
)b7eb6+(1+ i√

2
)b7ξ

+ 2ib3(b2 + ib3ξ) + 2b3(−ib2 + b3ξ)

)

eb8+b7ξ + eb6+(1+ i√
2
)b7ξ

+ (b2 + ib3ξ)2 + (−ib2 + b3ξ)2
, (36)

v(ξ) =
8

−1 + a2

⎛
⎜⎝ b7eb8+b7ξ + (1 + i√

2
)b7eb6+(1+ i√

2
)b7ξ

+ 2ib3(b2 + ib3ξ) + 2b3(−ib2 + b3ξ)

eb8+b7ξ + eb6+(1+ i√
2
)b7ξ

+ (b2 + ib3ξ)2 + (−ib2 + b3ξ)2

⎞
⎟⎠

2

.

Using Equation (5), we obtain the required solution for Equation (1):

m39(x, t) =
b7e

1
2 i(2ax+

(−a2+a4+8(2+i
√

2)b2
7)t

−s(−1+α)

(−1+a2)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)
(

2eb8+Ω + (2 + i
√

2)eb6+(1+ i√
2
)Ω
)

eb8+Ω + eb6+(1+ i√
2
)Ω

, (37)

n40(x, t) =
2b2

7
(a2 − 1)

⎛
⎝2eb8+Ω + (2 + i

√
2)eb6+(1+ i√

2
)Ω

eb8+Ω + eb6+(1+ i√
2
)Ω

⎞
⎠

2

,

where Ω = 4
√

2+i
√

2
−1+a2 b7

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.
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(a) (b) (c)

Figure 8. showed three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots of m39(x, t)
in Equation (37) for a = 1.5, b6 = 8, b7 = −1, b8 = 2, α = 0.6, respectively.

(a) (b) (c)

Figure 9. illustrated three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots of
n40(x, t) in Equation (37) for a = 1.3, b6 = 7, b7 = −4, b8 = −5, α = 0.6, respectively.

3.3. Periodic Waves

For periodic-wave interaction solutions, the bilinear form for Φ is as follows (See
Figures 10 and 11):

Φ = (b2 + b1ξ)2 + (b4 + b3ξ)2 + cos(b6 + b5ξ) + b7, (38)

where bi(1 ≤ i ≤ 7) and all are real-valued parameters to be found. Inserting Φ into
Equation (11) and collecting all powers of ξ and cos(b5ξ + b6), ξ cos(b5ξ + b6), ξ2 cos(b5ξ + b6),
ξ3 cos(b5ξ+b6), ξ sin(b5ξ + b6), ξ2 sin(b5ξ + b6), ξ3 sin(b5ξ + b6), ξ cos(b5ξ + b6)
sin(b5ξ + b6), ξ2 cos(b5ξ + b6) sin(b5ξ + b6), sin(b5ξ + b6)

3, we obtain proper results
as follows:

Set I. For u0 = 0,

a = a, b = 2
√

2
√

1
a2−1 , β = − a4−a2+4b2

5
2(a−1)(a+1) , b1 = ib3, b2 = b2, b3 = b3, b4 = b4, b5 = b5,(39)

b6 = b6, b7 = −b2
4 − b2

2.

110



Mathematics 2022, 10, 200

By using these parameters in Equation (38), and then by using Equations (8) and (10),
we obtain

u(ξ) =
2(2ib3(b2 + ib3ξ) + 2b3(b4 + b3ξ)− b5 sin(b6 + b5ξ))

−b2
2 − b2

4 + (b2 + ib3ξ)2 + (b4 + b3ξ)2 cos(b6 + b5ξ)
, (40)

v(ξ) =
8

−1 + a2

(
2ib3(b2 + ib3ξ) + 2b3(b4 + b3ξ)− b5 sin(b6 + b5ξ)

−b2
2 − b2

4 + (b2 + ib3ξ)2 + (b4 + b3ξ)2 cos(b6 + b5ξ)

)2

.

Now, using Equation (5), we obtain the required solution for Equation (1):

m1(x, t) =
2e

i
(

ax− (−a2+a4+4b2
5)t

−s(−1+α)

2(−1+a2)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)
(−b5 sin(b6 + b5Ω) + 2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω))

−b2
2 − b2

4 + cos(b6 + b5Ω) + (b2 + ib3Ω)2 + (b4 + b3Ω)2
,

(41)

n2(x, t) =
8

(a2 − 1)

(
−b5 sin(b6 + b5Ω) + 2ib3(b2 + ib3Ω) + 2b3(b4 + b3Ω)

−b2
2 − b2

4 + cos(b6 + b5Ω) + (b2 + ib3Ω)2 + (b4 + b3Ω)2

)2

,

where Ω = 2
√

2
√

1
−1+a2 x − 2

√
2a
√

1
−1+a2 t−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs) .

Set II. For b1 = b2 = 0,

a = a, b =
2
√
− 2

a2−1
u0

b5
, β = − a4−a2+4u2

0
2(a2−1) , b3 = b3, b4 = b4, b5 = b5, b6 = b6, b7 = b7, u0 = u0. (42)

By using these parameters in Equation (38), and then by using Equations (8) and (10) in
Equation (5), we obtain

m3(x, t) = e
i
(

ax− t−s(−a2+a4+4u2
0)(−1+α)

2(−1+a2)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
u0 +

2(−b5 sin(b6 + b5Ω) + 2b3(b4 + b3Ω))

b7 + cos(b6 + b5Ω) + (b4 + b3Ω)2

)
,

(43)

n4(x, t) =
2

−1 + a2

(
u0 +

2(−b5 sin(b6 + b5Ω) + 2b3(b4 + b3Ω))

b7 + cos(b6 + b5Ω) + (b4 + b3Ω)2

)2

,

where Ω =
2
√

2
√
− u0

−1+a2 x

b5
− 2

√
2at−s

√
− u0

−1+a2 (−1+α)

b5B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs) .

(a) (b) (c)

Figure 10. showed three-dimensions in (a); contour in (b) and two-dimensions in (c), Plots
of m3(x, t) in Equation (43) at a = 2, u0 = −2, b3 = 0.05, b4 = −3, b5 = 2, b6 = 5,
b7 = 1, α = 0.9, respectively.

111



Mathematics 2022, 10, 200

(a) (b) (c)

Figure 11. represented three-dimensions in (a); contour in (b) and two-dimensions in (c),
Plots of n4(x, t) in Equation (43) at a = 2, u0 = −1, b3 = 0.1, b4 = −3, b5 = 7, b6 = 3,
b7 = 2, α = 0.5, respectively.

4. Multiwave Solutions

For multiwave solutions, Φ in bilinear form can be assumed as [32]

Φ = z0 cosh(b2 + b1ξ) + z1 cos(b4 + b3ξ) + z2 cosh(b6 + b5ξ), (44)

where z′is and b′i s all are real-valued parameters to be measured. Inserting Φ into Equation (11)
and collecting all coefficients of cosh(b2 + b1ξ), sinh(b2 + b1ξ), cos(b4 + b3ξ) sinh(b2 + b1ξ)
sinh(b6 + b5ξ), cos(b4 + b3ξ), cosh(b6 + b5ξ), sin(b4 + b3ξ), cosh(b2 + b1ξ) sinh(b6 + b5ξ),
cosh(b2 + b1ξ) cos(b4 + b3ξ) cosh(b6 + b5ξ), and sinh(b2 + b1ξ) sin(b4 + b3ξ) sinh(b6 + b5ξ),
we obtain proper results, as follows (See Figures 12 and 13):

Case I.

a = a, b = 2
√

2
√

1
a2−1 , β = − 4u2

0−a2+a4

2(a2−1) , b1 = i
√

2u0
2 , b2 = b2, b3 =

√
2u0
2 , b4 = b4, (45)

b5 = i
√

2u0
2 , b6 = b6, u0 = u0, z0 = z0, z1 = z1, z2 = z2.

By using these values in Equation (44) and then by using Equations (8) and (10), we obtain

u(ξ) = u0 −
√

2u0

(
z1 sin(b4+

u0ξ√
2
)−iz0 sinh(b2+

iu0ξ√
2
)−iz2 sinh(b6+

iu0ξ√
2
)
)

z1 cos(b4+
u0ξ√

2
)+z0 cosh(b2+

iu0ξ√
2
)+z2 cosh(b6+

iu0ξ√
2
)

, (46)

v(ξ) = 2
a2−1

(
u0 −

√
2u0

(
z1 sin(b4+

u0ξ√
2
)−iz0 sinh(b2+

iu0ξ√
2
)−iz2 sinh(b6+

iu0ξ√
2
)
)

z1 cos(b4+
u0ξ√

2
)+z0 cosh(b2+

iu0ξ√
2
)+z2 cosh(b6+

iu0ξ√
2
)

)2

.

Using Equation (5), we obtain the following multiwave solutions for Equation (1):

m41(x, t) = e
i
(

ax+
t−s(4u2

0−a2+a4)(−1+α)

2(a2−1)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
u0 −

√
2u0(z1 sin(b4 + Λ)− iz0 sinh(b2 + iΛ)− iz2 sinh(b6 + iΛ))

z1 cos(b4 + Λ) + z0 cosh(b2 + iΛ) + z2 cosh(b6 + iΛ)

)
,

(47)

n42(x, t) =
2

(a2 − 1)

(
u0 −

√
2u0(z1 sin(b4 + Λ)− iz0 sinh(b2 + iΛ)− iz2 sinh(b6 + iΛ))

z1 cos(b4 + Λ) + z0 cosh(b2 + iΛ) + z2 cosh(b6 + iΛ)

)2

,

where Λ = 2
√

1
a2−1 u0

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.
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Case II.

a = a, b =
2
√
− 1

a2−1
u0

b5
, β = − 4u2

0+a4−a2

2(a−1)(a+1) , b1 = −b5, b2 = b2, b3 = ib5, b4 = b4, b5 = b5, (48)

b6 = b6, u0 = u0, z0 = z0, z1 = z1, z2 = z2.

By using these values in Equation (44) and then by using Equations (8) and (10), we obtain

u(ξ) = u0 +
2b5(−iz1 sin(b4+ib5ξ)−z0 sinh(b2−b5ξ)+z2 sinh(b6+b5ξ))

z1 cos(b4+ib5ξ)+z0 cosh(b2−b5ξ)+z2 cosh(b6+b5ξ)
, (49)

v(ξ) = 2
−1+a2

(
u0 +

2b5(−iz1 sin(b4+ib5ξ)−z0 sinh(b2−b5ξ)+z2 sinh(b6+b5ξ))
z1 cos(b4+ib5ξ)+z0 cosh(b2−b5ξ)+z2 cosh(b6+b5ξ)

)2
.

Using Equation (5), we obtain the following multiwave solutions for Equation (1):

m43(x, t) = e
i
(

ax+
t−s(4u2

0−a2+a4)(−1+α)

2(a2−1)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
u0 +

2b5(−iz1 sin(b4 + iΛ)− z0 sinh(b2 − Λ) + z2 sinh(b6 + Λ))

z1 cos(b4 + iΛ) + z0 cosh(b2 − Λ) + z2 cosh(b6 + Λ)

)
,

(50)

n44(x, t) =
2

(a2 − 1)

(
u0 +

2b5(−iz1 sin(b4 + iΛ)− z0 sinh(b2 − Λ) + z2 sinh(b6 + Λ))

z1 cos(b4 + iΛ) + z0 cosh(b2 − Λ) + z2 cosh(b6 + Λ)

)2

,

where Λ = 2
√

1
1−a2 u0

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.

(a) (b) (c)

(d) (e) (f)

Figure 12. Showed three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of m43(x, t) in Equation (50), for a = 0.9, u0 = 0.1, b2 = −5,
b4 = 5, b5 = 3, z0 = −2, z1 = 1, z2 = 2, α = 0.9, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 13. Represented three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of n44(x, t) in Equation (50), for u0 = 0.1, b2 = −5, b4 = 5,
b5 = 3, b6 = 10, z0 = −2, z1 = 1, z2 = 2, α = 0.9, respectively.

5. Homoclinic Breather Approach

To obtain breather solutions, Φ in bilinear form can be assumed as [32]

Φ = e−p(b1ξ+b2) + z1ep(b3ξ+b4) + z2 cos(q(b5ξ + b6)), (51)

where p, q, z1, z2, and b′i s all are real-valued parameters to be found. Inserting Φ into
Equation (11) and collecting all coefficients of ep(b4+b3ξ), sin(q(b6 + b5ξ)), cos(q(b6 + b5ξ)),
ep(b4+b3ξ) sin(q(b6 + b5ξ)), e−p(b2+b1ξ)+p(b4+b3ξ) cos(q(b6 + b5ξ)), and cos(q(b6 + b5ξ))
sin(q(b6 + b5ξ)), we obtain an algebraic system of equations, then, after solving them,
we obtain proper results, as follows (See Figures 14 and 15):

Case I.

a = a, b = 2
√

2
√

1
a2−1 , β = − a4−16b2

5q2−a2

2(a2−1) , b1 = iqb5
p , b2 = b2, b3 = iqb5

p , b4 = b4, b5 = b5, (52)

b6 = b6, u0 = 0, p = p, q = q, z1 = z1, z2 = z2.

By using these parameters in Equation (51) and then by using Equations (8) and (10),
we obtain

u(ξ) =
2ib5q(−1+eb2 p+b4 p+2ib5qξ z1+ieb2 p+ib5qξ z2 sin(q(b6+b5ξ)))

1+eb2 p+b4 p+2ib5qξ z1+eb2 p+ib5qξ z2 cos(q(b6+b5ξ))
, (53)

v(ξ) = − 8b2
5q2

a2−1

(
−1+eb2 p+b4 p+2ib5qξ z1+ieb2 p+ib5qξ z2 sin(q(b6+b5ξ))

1+eb2 p+b4 p+2ib5qξ z1+eb2 p+ib5qξ z2 cos(q(b6+b5ξ))

)2
.

Using Equation (5), we obtain the following breather solutions for Equation (1):
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m51(x, t) =
2ib5eΔq

(
−1 + eb2 p+b4 p+4iΩz1 + ieb2 p+2iΩz2 sin(q(b6 +

2
q Ω))

)
1 + eb2 p+b4 p+4iΩz1 + eb2 p+2iΩz2 cos(q(b6 +

2
q Ω))

,

(54)

n52(x, t) = − 8b2
5q2

(−1 + a2)

(−1 + eb2 p+b4 p+4iΩz1 + ieb2 p+2iΩz2 sin(q(b6 +
2
q Ω))

1 + eb2 p+b4 p+4iΩz1 + eb2 p+2iΩz2 cos(q(b6 +
2
q Ω))

)2

,

where Δ = 1
2 i
(

2ax +
(−16b2

5q2−a2+a4)t−s(α−1)
(−1+a)(1+a)B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
,

Ω =
√

2
√

1
−1+a2 b5q

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.

Case II.

a = a, b = 2
√

2
√

1
a2−1 , β = − a4+4u2

0−a2

2(a2−1) , b1 = u0
p , b2 = b2, b3 = − u0

p , b4 = b4, b5 = 0, (55)

b6 = b6, u0 = u0, p = p, q = q, z1 = z1, z2 = z2.

By using these parameters in Equation (51), and then by using Equations (8) and (10) in
Equation (5), we obtain the following solutions for Equation (1):

m53(x, t) = −
e

1
2 i
(

2ax+
t−s(4u2

0−a2+a4)(α−1)
(−1+a)(1+a)B(α)∑∞

s=0(− α
1−α

)sΓ(1−αs)

)
u0

(
1 + eb2 p+b4 pz1 − ep(Ω)z2 cos(b6q)

)
1 + eb2 p+b4 pz1 + ep(Ω)z2 cos(b6q)

,

(56)

n54(x, t) =
2u2

0
(−1 + a2)

(
1 + eb2 p+b4 pz1 − ep(Ω)z2 cos(b6q)
1 + eb2 p+b4 pz1 + ep(Ω)z2 cos(b6q)

)2

,

where Ω = b2 +
2
√

2
√

1
−1+a2 u0

(
x+ at−s(−1+α)

B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)
p .

(a) (b) (c)

Figure 14. Cont.
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(d) (e) (f)

Figure 14. Explain three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of m51(x, t) in Equation (54), at b2 = −4, b4 = −7, b5 = 10,
b6 = 3, z1 = −2, z2 = 2, p = 3, q = −0.2, α = 0.8, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 15. Clarify three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of n54(x, t) in Equation (56), at b2 = 4, b4 = −3, b6 = 3,
z1 = −1.5, z2 = 2.5, p = 1, q = −1, u0 = 1, α = 0.6, successively.

6. The Periodic Cross-Kink Wave Solutions

For this, Φ in bilinear form can be assumed as [33]

Φ = e−(b1ξ + b2) + z1eb1ξ + b2 + z2 cos(b3ξ + b4) + z3 cosh(b5ξ + b6) + b7, (57)

where z′is and b′i s all are real-valued parameters to be measured. Inserting Φ into Equation (11)
and collecting all coefficients of eb1ξ+b2 , e−b1ξ−b2 , eb2+b1ξ+2(b2+b1ξ), e−(b1ξ+b2)+2(b1ξ+b2),
cos(b4 + b3ξ), cos(b4 + b3ξ) cosh(b6 + b5ξ), e−(b1ξ+b2)+2(b1ξ+b2) cos(b4 + b3ξ),
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e−(b1ξ+b2)+2(b1ξ+b2)sin(b4 + b3ξ), cos(b4 + b3ξ) cosh(b6 + b5ξ) sinh(b6 + b5ξ),
e−(b1ξ+b2)+2(b1ξ+b2) cos(b4 + b3ξ) cosh(b6 + b5ξ), and e−(b1ξ+b2)+2b1ξ+2b2) sin(b4 + b3ξ)
sinh(b6 + b5ξ), after solving them, we attain the following parameters (See Figures 16 and 17):

Case I. For b4 = 0,

a = a, b = 8
√

2
√

1
a2−1 , β = − 64b2

1−a2+a4

2(a2−1) , b1 = b1, b2 = b2, b3 = b3, b5 = 0, b6 = b6, (58)

b7 = 0, u0 = −2b1, z1 = z1, z2 = 0, z3 = z3.

By using these values in Equation (57), and then by using Equations (8) and (10), we obtain

u(ξ) = −2b1 +
2(−b1e−b2−b1ξ+b1eb2+b1ξ z1)

e−b2−b1ξ+eb2+b1ξ z1+z3 cosh(b6)
, (59)

v(ξ) = 2
a2−1

(
−2b1 +

2(−b1e−b2−b1ξ+b1eb2+b1ξ z1)
e−b2−b1ξ+eb2+b1ξ z1+z3 cosh(b6)

)2
.

Now, using Equation (5), we obtain the following solutions for Equation (1):

m61(x, t) = −2b1e
i
2

(
2ax+

(64b2
1−a2+a4)t−s(α−1)

(a2−1)B(α)∑∞
s=0(− α

1−α
)sΓ(1−αs)

)(
2 + eΩz3 cosh(b6)

)
1 + e2Ωz1 + eΩz3 cosh(b6)

,

(60)

n62(x, t) =
8b2

1
(a2 − 1)

(
2 + eΩz3 cosh(b6)

1 + e2Ωz1 + eΩz3 cosh(b6)

)2

,

where Ω = b2 + 8
√

2
√

1
a2−1 b1

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.

Case II.

a = a, b = 2
√

2
√

1
a2−1 , β = − a4−a2−16b2

3
2(a2−1) , b1 = ib3, b2 = b2, b3 = b3, b5 = −ib3, b6 = b6, (61)

b7 = 0, z1 = z1, z2 = z2, z3 = z3.

Now, by using these values in Equation (57), and then by using Equations (8) and (10) in
Equation (5), we obtain the following solutions for Equation (1):

m63(x, t) =
2ib3eΛ

(
−2 + 2e2b2+Ωz1 − eb2 z2 + eb2+Ωz2 + eb2(−1 + eΩ)z3 cosh(b6)− eb2(1 + eΩ)z3 sinh(b6)

)
2 + 2e2b2+Ωz1 + eb2 z2 + eb2+Ωz2 + eb2(1 + eΩ)z3 cosh(b6)− eb2(−1 + eΩ)z3 sinh(b6)

,

(62)

n64(x, t) = − 8b2
3

(a2 − 1)

(
2 − 2e2b2+Ωz1 + eb2 z2 − eb2+Ωz2 − eb2(−1 + eΩ)z3 cosh(b6) + eb2(1 + eΩ)z3 sinh(b6)

2 + 2e2b2+Ωz1 + eb2 z2 + eb2+Ωz2 + eb2(1 + eΩ)z3 cosh(b6)− eb2(−1 + eΩ)z3 sinh(b6)

)2

,

where Λ = 1
2 i
(

2ax +
(−16b2

3−a2+a4)t−s(α−1)
(a2−1)B(α)∑∞

s=0(− α
1−α )

sΓ(1−αs)

)
,

and Ω = 4i
√

2
√

1
−1+a2 b3

(
x + at−s(−1+α)

B(α)∑∞
s=0(− α

1−α )
sΓ(1−αs)

)
.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Showed three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of m63(x, t) in Equation (62), for b2 = −5, b3 = 1, b6 = 5,
z1 = 1, z2 = 3, z3 = −0.5, α = 0.9, respectively.

(a) (b) (c)

Figure 17. Cont.
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(d) (e) (f)

Figure 17. Represented three-dimensions in (a); contour in (b) and two-dimensions in (c),
Graphical representation of n64(x, t) in Equation (62), for b2 = −5, b3 = 1, b6 = 5,
z1 = 1, z2 = 3, z3 = −0.5, α = 0.9, respectively.

7. Results and Discussion

The study of new imposed solutions for the ion sound and Langmuir waves (ISLWs)
has huge importance among scientists. Much of the work has been carried out on ISLWs,
for example, Mohammed et al. constructed new traveling wave solutions for ISLWs by
using He’s semi-inverse and extended Jacobian elliptic function method [34]. Shakeel et al.
studied new wave behaviors for ISLWs with the aid of modified exp-function approach [35].
Seadawy et al. used direct algebraic and auxiliary equation mapping to obtain the families
of new exact traveling wave solutions for ISLWs [36]. Tripathy and Sahoo studied a variety
of analytical solutions for ISLWs [37]. Seadawy et al. studied a variety of exact solutions
with modified Kudraysov and hyperbolic-function scheme for ISLWs [38].

Here, we obtained a variety of analytical solutions with rational and trigonometric
forms for ISLWs, in which some of them are represented graphically in 3D, contour, and
2D shapes. In Figures 1 and 2, we present M-shaped solutions for m23 and m25 with
contour and 2D plots, respectively. In Figures 3–6, we see the interactional phenomena
with M-shaped and one-kink for m31, n32, m35, and n36 at different values of the parameters.
In these figures, we see M-shaped waves with multiple bright and dark solutions. In
Figure 4, waves strongly increased their amplitude according to time. In Figures 7–9, we
see the interactional phenomena with M-shaped and two-kink for n38, m39, and n40. In
Figure 7, multiple bright, dark, and M-size solitons appear. In Figures 8 and 9, large-sized
dark and bright waves appear. Figures 10 and 11 represent the evolution of M-shaped and
periodic waves for m3 and n4. Figures 12 and 13 represent the evolution of multiwaves
solution for m43 and n44 at different values. In Figures 14 and 15, two solutions, m51 and
n54, of homoclinic breather are presented graphically, and we also see the changes in graphs
by varying the value of a. In Figures 16 and 17, we present periodic cross-kink solutions
m63 and n44 graphically, and we also see the change in waves into bright and dark solutions
by varying the value of a. As α ∈ (0, 1], in all these solutions, we can see that when α = 1,
∑∞

s=0(− α
1−α )

s does not converge.

8. Conclusions

In this work, we successfully derived some new analytic solutions for FISLWS with
Atangana–Baleanu derivative. These exact solutions are derived in the form of bilinear,
trigonometric, and exponential functions. As a result, new traveling wave solutions are
gained in the form of rational, periodic, multiwaves, multi-kink, solitary waves, bright
and dark solitons that are shown graphically in 3D, 2D, and contour structures. These
solutions play an important role in different areas of physics, engineering, and other
branches of sciences.
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Abstract: In this paper, we study a generalized scale-invariant analogue of the well-known Korteweg–
de Vries (KdV) equation. This generalized equation can be thought of as a bridge between the
KdV equation and the SIdV equation that was discovered recently, and shares the same one-soliton
solution as the KdV equation. By employing the auxiliary equation method, we are able to obtain a
wide variety of traveling wave solutions, both bounded and singular, which are kink and bell types,
periodic waves, exponential waves, and peaked (peakon) waves. As far as we know, these solutions
are new and their explicit closed-form expressions have not been reported elsewhere in the literature.

Keywords: generalized SIdV equation; auxiliary equation method; exact traveling waves; solitary
waves—kink and bell types; periodic waves; peakon

1. Introduction

Over the years, the Korteweg–de Vries (KdV) equation,

ut + 6uux + uxxx = 0, (1)

has been well studied analytically and numerically [1,2]. There are a number of physical
problems that can be represented by the KdV equation [3]. In the continuum limit, it
is the governing equation of the string in the Fermi–Pasta–Ulam–Tsingou problem. It
also describes the movement of long waves in shallow water and internal waves in a
density-stratified ocean. Additionally, acoustic waves on a crystal lattice and ion acoustic
waves in a plasma can be described by the KdV equation too [4]. Further, it is known
to be connected to the Huygens’ principle [5]. The earlier studies employed the inverse
scattering transform method to solve the KdV equation [6]. It has been shown that the KdV
equation has solitary wave solutions (single and n-solitary waves, where n is an integer)
with remarkable conservation properties. The single solitary wave solution (also, known as
soliton) of the KdV Equation (1) is of the following form:

u(x, t) =
c
2

sech2
[√

c
2

(x − ct − x0)

]
, (2)

where the wave speed c > 0 and x0 is the spatial location of the soliton at time t = 0.
Recently, while searching (with the use of genetic programming) for other equations that
could have a solution of the sech2 form as in (2), some authors (see [7] and references
therein) stumbled upon a scale-invariant analogue of the KdV equation given by

ut +

(
2 uxx

u

)
ux = uxxx. (3)
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Due to its scale-invariant property, the authors in [7] named it the SIdV equation. It
is easy to check that this equation shares the same sech2 solution as the KdV equation.
However, the SIdV equation does not possess an infinite number of conservation properties
like the KdV equation, and thus, as shown numerically in [7], its solutions after collision do
not preserve their shapes or energy. However, one can show that it has one conservation
property, namely, ∫

u2 dx.

In looking for other analytical solutions other than the sech2 form, some authors [8,9]
have studied a variant of the SIdV equation of the form

ut +

(
3 uxx

u

)
ux = uxxx. (4)

An analytical solution of kink type was obtained in [8] by solving an associated
Legendre equation. Instead, in [9], by employing the Darboux transformation along
with one, two, and three-soliton solutions of the KdV equation, one, two, and three-kink
solutions were found. It should be noted that Darboux transformation was also used in
finding kink and bell-type solutions [10] of the negative order KdV equation of the form(uxx

u

)
t
+ 2uux = 0.

In the literature, there have been studies of a generalized Korteweg–de Vries equation
of the form

ut + ( f (u))x + uxxx = 0.

Such studies have considered various choices for f (u) such as f (u) = uk+1

k+1 + u (for
some positive integer k), f (u) = eu, and f (u) = up

p (p = 1, 2, 3, 4) [11].
In this paper, we consider the generalized scale-invariant analogue of the Korteweg–de

Vries equation proposed in [7] and given by

ut +
(

3(1 − δ)u + (δ + 1)
uxx

u

)
ux = γuxxx. (5)

Here, γ and δ are nonzero real constants. Equation (5) can be thought of as a KdV-like
equation with an advecting velocity given by the expression

(
3(1 − δ)u + (δ + 1) uxx

u
)
. Note

that when δ = −1 and γ = −1, (5) reduces to the KdV Equation (1). When δ = 1 and γ = 1,
it reduces to the SIdV Equation (3). We refer to (5) as the generalized SIdV equation. One
can think of the SIdV equation as a natural extension of the KdV equation. At this juncture it
should be pointed out that a recent work [12] has shown that there are strong links between
the Sylvester equation and integrable systems such as the KdV and SIdV equations. Since
the Sylvester equation is widely used in control theory, image restoration, and signal
processing [13], one should not be surprised to find applications of the SIdV equation in
these areas too. Equation (5) was recently studied in [14] using dynamical system theory,
and it was shown that traveling waves of bell type and valley type exist. A study of the
existence of traveling waves did consider the constant of integration associated with the
general solution of (5). In fact, the bell-type and valley-type solutions were shown to exist
for varying conditions of the constant of integration. However, hitherto, no exact solutions,
in closed forms, have been reported for choices of δ and γ that are other than ±1. Our goal
was to look for exact traveling wave solutions of the generalized SIdV equation in closed
forms even when δ and γ are not equal to ±1.

There are many known powerful methods that can be used to find the exact solutions
of nonlinear partial differential equations, such as Hirota’s bilinear method [2], the inverse
scattering transform method [1], the (G′

G )-expansion method [15,16], the Riccati–Bernoulli
sub-ODE method [17,18], the homogeneous balance method [19], and the generalized
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Riccati equation mapping method [20,21]. Other recent meritorious work on finding
exact solutions include [22–28]. Further, readers interested in the solutions of fractional
differential equations or fractional forms of the KdV equation should consult [29–33].
The authors in [34] suggested a simple and useful method, known as the auxiliary equation
method, to obtain some exact traveling wave solutions of nonlinear partial differential
equations by presenting an auxiliary first-order and fourth-degree nonlinear ordinary
differential equation:

(φ′(ξ))2 = μ2 φ2(ξ) + μ3 φ3(ξ) + μ4 φ4(ξ), (6)

where μ2, μ3, and μ4 are real numbers, and the prime denotes d
dξ . In this method, the travel-

ing wave solutions of the nonlinear partial differential equation depend on the selection of
the solution φ(ξ) of the auxiliary ordinary differential equation. We applied the auxiliary
equation method to the generalized SIdV Equation (5) in our quest to find exact traveling
wave solutions in closed forms.

This paper is structured as follows: The auxiliary equation method is briefly described
in Section 2 by showing the main steps and presenting the solutions φ(ξ) of the auxiliary or-
dinary differential Equation (6). In Section 3, the auxiliary equation method is applied to the
generalized SIdV Equation (5) in order to construct exact bounded and singular traveling
wave solutions that are kink and bell types, periodic waves, exponential waves, and peakon
waves. In addition, some of the solutions obtained for the generalized SIdV Equation (5)
are presented graphically in 2D and 3D plots. Section 4 presents the conclusions.

2. Description of the Auxiliary Equation Method

Let us consider a (1 + 1)-dimensional nonlinear partial differential equation with two
variables x and t as

H(u, ux, ut, uxx, uxt, utt, . . .) = 0. (7)

In the following, the main steps are described:

Step 1. To find the exact traveling waves of Equation (7), we introduce the wave variable

u(x, t) = U(ξ), ξ = x − ωt, (8)

where ω is a non-zero constant to be sought. By substituting Equation (8) into
Equation (7), we get an ordinary differential equation as

G(U, Uξ , Uξξ , . . .) = 0. (9)

Step 2. We assume that Equation (9) has the finite series form solution

U(ξ) =
K

∑
k=0

γk φk(ξ), (10)

in which γk (k = 0, 1, 2, . . . , K) are all real numbers with γK 	= 0, and K is a positive
integer to be determined later.

Step 3. The integer K can be computed by balancing the nonlinear terms and the high-
est order derivatives arising in Equation (9). We denote the degree of U(ξ) by
Deg(U(ξ)) = K which leads to the degrees of other expressions as

Deg
(

drU
dξr

)
= K + r, Deg

(
Up
(

drU
dξr

)s)
= pK + s(K + r). (11)

Hence, the value of K can be computed in Equation (10) using Equation (11). More-
over, an analytic solution in a closed form could be obtained because the value of K
is normally a positive integer.
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Step 4. By substituting Equation (6) with Equation (10) into Equation (9), we get an algebraic
equation involving powers of φ(ξ). Then, equating the coefficients of each power
of φ(ξ) to zero yields a system of algebraic equations for μ2, μ3, μ4, ω and γk
(k = 0, 1, 2, . . . , K).

Step 5. After solving the set of over-determined algebraic equations with the aid of Maple,
one ends up with the explicit expressions for μ2, μ3, μ4, ω and γk (k = 0, 1, 2, . . . , K).

Step 6. Consequently, we may obtain different types of exact traveling wave solutions
for Equation (7), such as solitons; kink and anti-kink, bell and anti-bell, periodic,
and exponential solutions; and other solutions by substituting μ2, μ3, μ4, ω and γk
(k = 0, 1, 2, . . . , K) and the general solutions of Equation (6) into Equation (10).

The function φ(ξ) satisfies Equation (6). It should be pointed out that there is a general
solution to the auxiliary Equation (6), and for the present work, we focus on only the
solutions φ(ξ) of Equation (6) given below. Here, Δ= μ2

3−4μ2μ4, i2 = −1, and ε and η can
be any values of −1 or 1. The solutions below are presented according to the values of μ2
and Δ. Readers interested in other forms of solutions for Equation (6) can refer to [34–36].

i. When μ2 > 0,

φ1(ξ) =
−μ2μ3sech2

(√
μ2
2 ξ
)

μ2
3 − μ2μ4

(
1 + ε tanh

(√
μ2
2 ξ
))2 ,

φ2(ξ) =
μ2μ3csch2

(√
μ2
2 ξ
)

μ2
3 − μ2μ4

(
1 + ε coth

(√
μ2
2 ξ
))2 ,

φ3(ξ) =
4μ2 exp

(
ε
√

μ2ξ
)

(
exp
(
ε
√

μ2ξ
)− μ3

)2 − 4μ2μ4
.

ii. When μ2 > 0 and Δ > 0,

φ4(ξ) =
2μ2sech

(√
μ2ξ
)

ε
√

Δ − μ3sech
(√

μ2ξ
) .

iii. When μ2 > 0 and Δ = 0,

φ5(ξ) = −μ2

μ3

(
1 + ε tanh

(√
μ2

2
ξ

))
,

φ6(ξ) = −μ2

μ3

(
1 + ε coth

(√
μ2

2
ξ

))
,

φ7(ξ) = −μ2

μ3

(
1 + ε

(
tanh

(√
μ2ξ
)
+ ηi sech

(√
μ2ξ
)))

.

iv. When μ2 > 0 and Δ < 0,

φ8(ξ) =
2μ2csch

(√
μ2ξ
)

ε
√−Δ − μ3csch

(√
μ2ξ
) .

v. When μ2 < 0 and Δ > 0,

φ9(ξ) =
2μ2sec(

√−μ2ξ)

ε
√

Δ − μ3sec(
√−μ2ξ)

.
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3. Application of the Auxiliary Equation Method

In this section, we apply the auxiliary equation method to the generalized SIdV
Equation (5) in order to construct exact traveling wave solutions.

We assume that the traveling wave transform of Equation (5) is in the form u(x, t) =
U(ξ), where ξ = x − ωt and ω is the propagating wave speed, and change Equation (5)
into the ordinary differential equation

− ωUUξ + 3(1 − δ)U2Uξ + (1 + δ)UξUξξ − γUUξξξ = 0. (12)

By integrating Equation (12) once and setting the constant of integration as g, we
obtain

2(1 − δ)U3 − ωU2 − 2γUUξξ + (1 + δ + γ)U2
ξ − 2g = 0. (13)

By considering the homogeneous balance between UUξξ and U3 in Equation (13)(
2K + 2 = 3K ⇔ K = 2

)
, we then assume that the solution of Equation (13) has the form

U(ξ) = γ0 + γ1φ + γ2φ2, (14)

where φ = φ(ξ) satisfies the auxiliary Equation (6), and γ0, γ1, and γ2 are real numbers to
be determined later.

By substituting Equations (6) and (14) into Equation (13) and collecting coefficients
of polynomials of φk (k = 0, 1, . . . , 6), and then setting each coefficient to zero, a system
of algebraic equations is obtained for δ, γ, γ0, γ1, γ2, μ2, μ3, μ4, g, and ω. By solving the
resulting system of algebraic equations using Maple, we get a variety of interesting wave
solutions as described below. Every solution is constructed for parameter values, satisfying
a certain condition, making use of a suitable function from the functions that are given in
Section 2 (φ1(ξ), φ2(ξ), . . . , φ9(ξ)). However, at every instance, more solutions, in addition
to the solutions that we construct, can be found using the functions φi(ξ) (i = 1, 2, . . . , 9),
which we did not make use of in constructing the solutions. Those details are omitted
for brevity.

3.1. Traveling Wave Solutions for the Case δ ∈ R

We start by substituting the first type of solutions, namely,

γ0 = γ2 = μ4 = g = 0, γ = −2 γ1 δ − δ μ3 − 2 γ1 − μ3
2 μ3

, ω =
μ2(2 γ1 δ + δ μ3 − 2 γ1 + μ3)

2 μ3
,

and noting that Δ = μ2
3 > 0, with the solutions of Equation (6) into Equation (14), we obtain

the exact traveling wave solutions of (5) as follows:
For μ2 > 0, we have

u(x, t) = −γ1μ2

μ3
sech2

(
1
2
√

μ2 (x − ω t)
)

, (15)

which is a bell-shaped solitary wave solution when γ1 and μ3 are of the opposite signs and
an anti-bell-shaped solitary wave solution when γ1 and μ3 are of the same sign:

u(x, t) =
γ1μ2

μ3
csch2

(
1
2
√

μ2 (x − ω t)
)

, (16)

which is a singular wave solution, and

u(x, t) =
4 γ1μ2 exp(ε

√
μ2 (x − ω t))(

exp(ε
√

μ2 (x − ω t))− μ3
)2 , (17)

which is a bell-shaped solitary wave solution when μ3 < 0 and γ1 > 0, an anti-bell-shaped
solitary wave solution when μ3 < 0 and γ1 < 0, and a singular wave solution when μ3 > 0.
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For μ2 > 0, we have

u(x, t) =
2 γ1 μ2 sech

(√
μ2 (x − ω t)

)
ε
√

μ2
3 − μ3 sech

(√
μ2 (x − ω t)

) , (18)

which is a bell-shaped solitary wave solution when γ1 > 0, μ3 < 0 and ε = 1 (or when
γ1 < 0, μ3 > 0, and ε = −1), an anti-bell-shaped solitary wave solution when γ1 > 0,
μ3 > 0 and ε = −1 (or when γ1 < 0, μ3 < 0, and ε = 1), and a singular wave solution when
μ3 and ε are of the same sign.

For μ2 < 0, we have

u(x, t) =
2 γ1 μ2 sec(

√−μ2 (x − ω t))

ε
√

μ2
3 − μ3 sec(

√−μ2 (x − ω t))
, (19)

which is a periodic singular wave solution.
By substituting

γ2 = μ4 = 0, γ0 =
2 γ1 μ2

3 μ3
, g = −γ1

2μ2
3(2 γ1 δ − 3 δ μ3 − 2 γ1 − 3 μ3)

27 μ33 ,

γ = −2 γ1 δ − δ μ3 − 2 γ1 − μ3

2 μ3
, ω = −μ2(2 γ1 δ + δ μ3 − 2 γ1 + μ3)

2 μ3
,

and noting that Δ = μ2
3 > 0, with the solutions of Equation (6) into Equation (14), we

obtain the exact traveling wave solutions of (5) as follows:
For μ2 > 0, we have

u(x, t) = −γ1μ2

μ3
sech2

(
1
2
√

μ2 (x − ω t)
)
+

2 γ1 μ2

3 μ3
, (20)

which is a bell-shaped solitary wave solution when γ1 and μ3 are of the opposite signs and
an anti-bell-shaped solitary wave solution when γ1 and μ3 are of the same sign,

u(x, t) =
γ1μ2

μ3
csch2

(
1
2
√

μ2 (x − ω t)
)
+

2 γ1 μ2

3 μ3
, (21)

which is a singular wave solution, and

u(x, t) =
4 γ1μ2 exp(ε

√
μ2 (x − ω t))(

exp(ε
√

μ2 (x − ω t))− μ3
)2 +

2 γ1 μ2

3 μ3
, (22)

which is a bell-shaped solitary wave solution when μ3 < 0 and γ1 > 0, an anti-bell-shaped
solitary wave solution when μ3 < 0 and γ1 < 0, and a singular wave solution when μ3 > 0.

For μ2 > 0, we have

u(x, t) =
2 γ1 μ2 sech

(√
μ2 (x − ω t)

)
ε
√

μ2
3 − μ3 sech

(√
μ2 (x − ω t)

) + 2 γ1 μ2

3 μ3
, (23)

which is a bell-shaped solitary wave solution when γ1 > 0, μ3 < 0 and ε = 1 (or when
γ1 < 0, μ3 > 0, and ε = −1), an anti-bell-shaped solitary wave solution when γ1 > 0,
μ3 > 0 and ε = −1 (or when γ1 < 0, μ3 < 0, and ε = 1), and a singular wave solution when
μ3 and ε are of the same sign.
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For μ2 < 0, we have

u(x, t) =
2 γ1 μ2 sec(

√−μ2 (x − ω t))

ε
√

μ2
3 − μ3 sec(

√−μ2 (x − ω t))
+

2 γ1 μ2

3 μ3
, (24)

which is a periodic singular wave solution.
By substituting

γ0 =
γ1

2

6γ2
, g = −γ1

6(γ2 δ − 6 δ μ4 − γ2 − 6 μ4)

864 γ24 , μ2 =
γ1

2μ4

γ22 , μ3 = 2
γ1 μ4

γ2
,

γ = −γ2 δ − 2 δ μ4 − γ2 − 2 μ4

4 μ4
, ω = −γ1

2(γ2 δ + 2 δ μ4 − γ2 + 2 μ4)

4 γ22 ,

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
exact traveling wave solutions of (5) as follows:

u(x, t) =
γ1

2

4 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ22 (x − ω t)

))2

− γ1
2

2 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ22 (x − ω t)

))
+

γ1
2

6 γ2
, (25)

which is a bell-shaped solitary wave solution when μ4 > 0 and γ2 < 0 and an anti-bell-
shaped solitary wave solution when μ4 > 0 and γ2 > 0,

u(x, t) =
γ1

2

4 γ2

(
1 + ε coth

(√
γ1

2μ4

4 γ22 (x − ω t)

))2

− γ1
2

2 γ2

(
1 + ε coth

(√
γ1

2μ4

4 γ22 (x − ω t)

))
+

γ1
2

6 γ2
, (26)

which is a singular wave solution when μ4 > 0, and

u(x, t) =
γ1

2

4 γ2

(
1 + ε

(
tanh

(√
γ1

2μ4

γ22 (x − ω t)

)
+ ηi sech

(√
γ1

2μ4

γ22 (x − ω t)

)))2

− γ1
2

2 γ2

(
1 + ε

(
tanh

(√
γ1

2μ4

γ22 (x − ω t)

)
+ ηi sech

(√
γ1

2μ4

γ22 (x − ω t)

)))
+

γ1
2

6 γ2
,

(27)

which is a complex-valued solitary wave solution when μ4 > 0.
By substituting

γ0 = g = 0, μ2 =
γ1

2μ4

γ22 , μ3 =
2 γ1μ4

γ2
,

γ =
−(δ γ2 − 2 δ μ4 − γ2 − 2 μ4)

4 μ4
, ω =

γ1
2(δ γ2 + 2 δ μ4 − γ2 + 2 μ4)

4 γ2
2 ,

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
exact traveling wave solution of (5) as follows:

u(x, t) =
γ1

2

4 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ22 (x − ω t)

))2

− γ1
2

2 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ22 (x − ω t)

))
, (28)

which is a bell-shaped solitary wave solution when μ4 > 0 and γ2 < 0 and an anti-bell-
shaped solitary wave solution when μ4 > 0 and γ2 > 0.

By substituting

γ1 = μ3 = 0, γ = −3 γ0 δ − 4 δ μ2 − 3 γ0 − 4 μ2

8 μ2
, g =

1
4

γ0
3(1 − δ) + γ0

2μ2(δ + 1),
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μ4 =
2 γ2 μ2

3 γ0
, ω = −2μ2(δ + 1) +

3
2

γ0(1 − δ),

and noting that Δ = − 8μ2
2γ2

3γ0
, with the solutions of Equation (6) into Equation (14), we

obtain the exact traveling wave solutions of (5) as follows:
For γ0γ2 < 0 and μ2 > 0, we have

u(x, t) = γ0

(
1 − 3

2
sech2(

√
μ2(x − ωt))

)
, (29)

which is a bell-shaped solitary wave solution when γ0 < 0 and an anti-bell-shaped solitary
wave solution when γ0 > 0.

For γ0γ2 > 0 and μ2 > 0, we have

u(x, t) = γ0

(
1 +

3
2

csch2(
√

μ2(x − ωt))
)

, (30)

which is a singular wave solution.
For γ0γ2 < 0 and μ2 < 0, we have

u(x, t) = γ0

(
1 − 3

2
sec2(√−μ2(x − ωt)

))
, (31)

which is a periodic singular wave solution.
By substituting

γ0 = γ1 = g = μ3 = 0, γ =
−(δ γ2 − 2 δ μ4 − γ2 − 2 μ4)

4 μ4
, ω =

μ2(δ γ2 + 2 δ μ4 − γ2 + 2 μ4)

μ4
,

and noting that Δ = −4 μ2μ4, with the solutions of Equation (6) into Equation (14), we
obtain the exact traveling wave solution of (5) as follows:

For μ4 < 0 and μ2 > 0, we have

u(x, t) = −γ2μ2

μ4
sech2(

√
μ2(x − ωt)), (32)

which is a bell-shaped solitary wave solution when γ2 > 0 and an anti-bell-shaped solitary
wave solution when γ2 < 0.

3.2. Traveling Wave Solutions for the Case δ ∈ R \ {±1}
By substituting

g = 0, γ = 2 (δ + 1), ω = 4 μ2(δ + 1), γ0 =
−2 μ2(δ + 1)

δ − 1
, γ2 =

− γ1
2(δ − 1)

8 μ2(δ + 1)
,

μ3 =
− γ1(δ − 1)

3 (δ + 1)
, μ4 =

γ1
2(δ − 1)2

48 μ2(δ + 1)2 ,

and noting that Δ = γ1
2(δ−1)2

36 (δ+1)2 > 0, with the solutions of Equation (6) into Equation (14),

we obtain the exact traveling wave solutions of (5) as follows:
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For μ2 > 0, we have

u(x, t) =
−γ1

2(δ − 1)μ2 sech2(√μ2(x − ωt)
)

2 (δ + 1)
(

ε
6

√
γ1

2(δ−1)2

(δ+1)2 +
γ1(δ−1) sech(

√
μ2(x−ωt))

3 (δ+1)

)2

+
2 γ1μ2 sech

(√
μ2(x − ωt)

)
ε
6

√
γ1

2(δ−1)2

(δ+1)2 +
γ1(δ−1) sech(

√
μ2(x−ωt))

3 (δ+1)

− 2 μ2(δ + 1)
δ − 1

,

(33)

which is a bell-shaped solitary wave solution when |δ| > 1, γ1 > 0, and ε = 1 (or when
|δ| > 1, γ1 < 0, and ε = −1); an anti-bell-shaped solitary wave solution when 0 < |δ| <
1, γ1 > 0 and ε = −1 (or when 0 < |δ| < 1, γ1 < 0 and ε = 1); and a singular wave solution
when |δ| > 1 and γ1 and ε are of the opposite signs, and when 0 < |δ| < 1 and γ1 and ε are
of the same sign.

For μ2 < 0, we have

u(x, t) =
−γ1

2(δ − 1)μ2 sec2(
√−μ2(x − ωt))

2 (δ + 1)
(

ε
6

√
γ1

2(δ−1)2

(δ+1)2 +
γ1(δ−1) sec(

√−μ2(x−ωt))
3 (δ+1)

)2

+
2 γ1μ2 sec(

√−μ2(x − ωt))

ε
6

√
γ1

2(δ−1)2

(δ+1)2 +
γ1(δ−1) sec(

√−μ2(x−ωt))
3 (δ+1)

− 2 μ2(δ + 1)
δ − 1

,

(34)

which is a periodic wave solution.
By substituting

g = 0, γ =
2
3
(δ + 1), ω = −2 γ0(δ − 1), γ1 =

−2 μ3(δ + 1)
3 (δ − 1)

, γ2 =
μ3

2(δ + 1)2

9 γ0(δ − 1)2 ,

μ2 =
−3 γ0(δ − 1)

2 (δ + 1)
, μ4 =

− (δ + 1)μ3
2

6 γ0(δ − 1)
,

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
exact traveling wave solutions of (5) as follows:

u(x, t) =
γ0

4

⎛
⎝1 + ε tanh

⎛
⎝1

4

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠

2

− γ0

⎛
⎝1 + ε tanh

⎛
⎝1

4

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠+ γ0,

(35)

which is a bell-shaped solitary wave solution when |δ| > 1, γ0 < 0, and ε = 1 or when
0 < |δ| < 1, γ0 > 0, and ε = −1 and an anti-bell-shaped solitary wave solution when
|δ| > 1, γ0 < 0, and ε = −1 or when 0 < |δ| < 1, γ0 > 0, and ε = 1,

u(x, t) =
γ0

4

⎛
⎝1 + ε coth

⎛
⎝1

4

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠

2

− γ0

⎛
⎝1 + ε coth

⎛
⎝1

4

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠+ γ0,

(36)
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which is a singular wave solution when |δ| > 1 and γ0 < 0 or when 0 < |δ| < 1 and γ0 > 0,
and

u(x, t) =
γ0

4

⎛
⎝1 + ε

⎛
⎝tanh

⎛
⎝1

2

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠+ ηi sech

⎛
⎝1

2

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠
⎞
⎠

2

− γ0

⎛
⎝1 + ε

⎛
⎝tanh

⎛
⎝1

2

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠+ ηi sech

⎛
⎝1

2

√
−6 γ0(δ − 1)

δ + 1
(x − ω t)

⎞
⎠
⎞
⎠
⎞
⎠

+ γ0,

(37)

which is a complex-valued solitary wave solution when |δ| > 1 and γ0 < 0 or when
0 < |δ| < 1 and γ0 > 0.

By substituting

γ0 = γ2 = g = 0, γ1 =
μ3 (δ + 1)
6 (δ − 1)

, γ =
1
3
(δ + 1), ω =

2
3

μ2(δ + 1),

and noting that Δ= μ2
3−4μ2μ4, with the solutions of Equation (6) into Equation (14), we

obtain the exact traveling wave solutions of (5) as follows:
For Δ > 0 and μ2 > 0, we have

u(x, t) =
μ3 (δ + 1)μ2 sech

(√
μ2(x − ωt)

)
3 (δ − 1)

(
ε
√

Δ − μ3 sech
(√

μ2(x − ωt)
)) , (38)

which is a bell-shaped (or an anti-bell-shaped) solitary wave solution when μ4 < 0 and a
singular wave solution when μ4 > 0.

For Δ = 0 and μ2 > 0, we have

u(x, t) = −
μ2(δ + 1)

(
1 + ε tanh

(
1
2
√

μ2(x − ωt)
))

6 (δ − 1)
, (39)

which is a kink-shaped (or an anti-kink-shaped) solitary wave solution,

u(x, t) = −
μ2(δ + 1)

(
1 + ε coth

(
1
2
√

μ2(x − ωt)
))

6 (δ − 1)
, (40)

which is a singular wave solution, and

u(x, t) = −μ2(δ + 1)
(
1 + ε

(
tanh

(√
μ2(x − ωt)

)
+ iη sech

(√
μ2(x − ωt)

)))
6 (δ − 1)

, (41)

which is a complex-valued solitary wave solution.
For Δ < 0 and μ2 > 0, we have

u(x, t) =
μ3 (δ + 1)μ2 csch

(√
μ2(x − ωt)

)
3 (δ − 1)

(
ε
√−Δ − μ3 csch

(√
μ2(x − ωt)

)) , (42)

which is a singular wave solution.
For Δ > 0 and μ2 < 0, we have

u(x, t) =
μ3 (δ + 1)μ2 sec(

√−μ2(x − ωt))

3 (δ − 1)
(

ε
√

Δ − μ3 sec(
√−μ2(x − ωt))

) , (43)
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which is a periodic solitary wave solution when μ4 < 0 or a periodic singular wave solution
when μ4 > 0. On the other hand, we can get a peakon solution for the generalized SIdV
Equation (5) from Equation (39) that is given by

u(x, t) = −
μ2(δ + 1)

(
1 − tanh

(
1
2
√

μ2 |x − ωt|
))

6 (δ − 1)
, (44)

for when 0 < |δ| < 1, where the peak is located at the point − μ2(δ+1)
6 (δ−1) and for when

|δ| > 1, where the trough is located at the point − μ2(δ+1)
6 (δ−1) , where μ2 > 0, γ = 1

3 (δ + 1),

and ω = 2
3 μ2(δ + 1).

By substituting

γ0 = γ1 = g = 0, γ =
2
3
(δ + 1), ω =

4
3

μ2(δ + 1), γ2 =
−2 μ4(δ + 1)

3 (δ − 1)
,

and noting that Δ= μ2
3−4μ2μ4, with the solutions of Equation (6) into Equation (14), we

obtain the exact traveling wave solutions of (5) as follows:
For Δ > 0 and μ2 > 0, we have

u(x, t) =
−8 μ4(δ + 1)μ2

2 sech2(
√

μ2 (x − ωt))

3 (δ − 1)
(

ε
√

Δ − μ3 sech(
√

μ2 (x − ωt))
)2 , (45)

which is a bell-shaped (or an anti-bell-shaped) solitary wave solution when μ4 < 0 and a
singular wave solution when μ4 > 0.

For Δ = 0 and μ2 > 0, we have

u(x, t) =
−2 μ4(δ + 1)μ2

2
(

1 + ε tanh
(

1
2
√

μ2(x − ωt)
))2

3 (δ − 1)μ32 , (46)

which is a kink-shaped (or an anti-kink-shaped) solitary wave solution.
For Δ > 0 and μ2 < 0, we have

u(x, t) =
−8 μ4(δ + 1)μ2

2 sec2(
√−μ2 (x − ωt))

3 (δ − 1)
(

ε
√

Δ − μ3 sec(
√−μ2 (x − ωt))

)2 , (47)

which is a periodic solitary wave solution when μ4 < 0 or a periodic singular wave solution
when μ4 > 0.

3.3. Traveling Wave Solutions for the Case δ ∈ R \ {−1}
By substituting

γ2 = 0, γ =
1
3
(δ + 1), g =

γ0
3(6 δ γ1 + δ μ3 − 6 γ1 + μ3)

6 γ1
, ω =

−γ0 (12 δ γ1 + δ μ3 − 12 γ1 + μ3)

3 γ1
,

μ2 =
γ0(3 δ γ1 + δ μ3 − 3 γ1 + μ3)

γ1(δ + 1)
, μ4 =

−γ1(6 δ γ1 − δ μ3 − 6 γ1 − μ3)

4 γ0(δ + 1)
,

and noting that

Δ =
3 γ1
(
6 δ2γ1 + δ2μ3 − 12 δ γ1 + 6 γ1 − μ3

)
(δ + 1)2 ,

with the solutions of Equation (6) into Equation (14), we obtain the exact traveling wave
solutions of (5) as follows:
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For γ0γ1μ3 > 0 and δ = 1 (and therefore Δ = 0), we have

u(x, t) = −εγ0 tanh
(

1
2

√
γ0μ3

γ1
(x − ωt)

)
, (48)

which is a kink-shaped (or an anti-kink-shaped) solitary wave solution with boundary
values ±γ0 at left and right infinities.

For γ0γ1μ3 > 0 and δ = 6 γ1−μ3
6 γ1+μ3

(and therefore Δ = 0), we have

u(x, t) =
−εγ0

2
tanh

(√
2

4

√
γ0μ3

γ1
(x − ωt)

)
+

γ0

2
, (49)

which is a kink-shaped (or an anti-kink-shaped) solitary wave solution with boundary
values 0 and |γ0| at left and right infinities or a kink-shaped (or an anti-kink-shaped)
solitary wave solution with boundary values −|γ0| and 0 at left and right infinities.

For μ2 = γ0(3 δ γ1+δ μ3−3 γ1+μ3)
γ1(δ+1) > 0 and Δ =

3 γ1(6 δ2γ1+δ2μ3−12 δ γ1+6 γ1−μ3)
(δ+1)2 > 0, we

have

u(x, t) =
2 γ0(3 δ γ1 + δ μ3 − 3 γ1 + μ3) sech

(√
μ2 (x − ωt)

)
(δ + 1)

(
ε
√

Δ − μ3 sech
(√

μ2 (x − ωt)
)) + γ0, (50)

which is a bell-shaped (or an anti-bell-shaped) solitary wave solution.

3.4. Traveling Wave Solutions for the Case δ = 1

By substituting

δ = 1, g = 0, γ0 = 0, γ1 = 0, μ4 = 0, γ =
4
3

, ω =
8
3

μ2,

and noting that Δ = μ2
3 > 0, with the solutions of Equation (6) into Equation (14), we obtain

the exact traveling wave solutions of (5) as follows:
For μ2 > 0, we have

u(x, t) =
γ2μ2

2

μ32 sech4
(

1
2
√

μ2 (x − ωt)
)

, (51)

which is a bell-shaped solitary wave solution when γ2 > 0 and an anti-bell-shaped solitary
wave solution when γ2 < 0,

u(x, t) =
γ2μ2

2

μ32 csch4
(

1
2
√

μ2 (x − ωt)
)

, (52)

which is a singular wave solution, and

u(x, t) =
16 γ2μ2

2 exp2(ε
√

μ2 (x − ωt))(
exp(ε

√
μ2 (x − ωt))− μ3

)4 , (53)

which is a bell-shaped solitary wave solution when μ3 < 0 and γ2 > 0, an anti-bell-shaped
solitary wave solution when μ3 < 0 and γ2 < 0, and a singular wave solution when μ3 > 0.

By substituting

δ = 1, g = 0, γ0 = 0, γ2 = 0, μ3 = 0, μ4 = 0, ω = μ2 (2 − γ),

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
following exponential traveling wave solution:
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u(x, t) =
4 γ1μ2

exp(ε
√

μ2 (x − ωt))
, (54)

where μ2 > 0. On the other hand, we can get a peakon solution for the generalized SIdV
Equation (5) from Equation (54) that is given by

u(x, t) =
4 γ1μ2

exp
(√

μ2 |x − ωt|) , (55)

for μ2 > 0 and ω = μ2 (2 − γ), where the peak is located at the point 4 γ1μ2.
By substituting

δ = 1, g = 0, γ0 = 0, γ1 = 0, μ3 = 0, μ4 = 0, ω = 4 μ2(2 − γ),

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
following exponential traveling wave solution:

u(x, t) =
16 γ2μ2

2

exp(ε
√

4 μ2 (x − ωt))
, (56)

where μ2 > 0. On the other hand, we can get a peakon solution for the generalized SIdV
Equation (5) from Equation (56) that is given by

u(x, t) =
16 γ2μ2

2

exp
(√

4 μ2 |x − ωt|) , (57)

for μ2 > 0 and ω = 4 μ2 (2 − γ), where the peak is located at the point 16 γ2μ2
2.

By substituting

δ = 1, g = 0, γ0 = 0, γ2 = 0, μ3 = 0, γ =
2
3

, ω =
4
3

μ2,

and noting that Δ = −4 μ2μ4, with the solutions of Equation (6) into Equation (14), we ob-
tain the exact traveling wave solutions of (5) as follows:

For μ2 > 0, we have

u(x, t) =
4 γ1μ2 exp(ε

√
μ2 (x − ωt))

exp(ε
√

4 μ2 (x − ωt))− 4 μ2μ4
, (58)

which is a bell-shaped solitary wave solution when μ4 < 0 and γ1 > 0, an anti-bell-shaped
solitary wave solution when μ4 < 0 and γ1 < 0, and a singular wave solution when μ4 > 0.

For μ2 > 0 and μ4 < 0, we have

u(x, t) =
γ1μ2 sech

(√
μ2 (x − ωt)

)
ε
√−μ2μ4

, (59)

which is a bell-shaped solitary wave solution when γ1 ε > 0 and an anti-bell-shaped solitary
wave solution when γ1 ε < 0.

3.5. Traveling Wave Solutions for the Case δ = −1

By substituting

δ = −1, γ2 = 0, μ4 = 0, γ =
2 γ1

μ3
, g = −γ0

2(γ0μ3 − γ1μ2)

μ3
, ω =

2 (3 γ0μ3 − γ1μ2)

μ3
,

and noting that Δ = μ2
3 > 0, with the solutions of Equation (6) into Equation (14), we obtain

the exact traveling wave solution of (5) as follows:
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For μ2 > 0, we have

u(x, t) = γ0 −
γ1μ2 sech2

(
1
2
√

μ2 (x − ωt)
)

μ3
, (60)

which is a bell-shaped solitary wave solution when γ1μ3 < 0 and an anti-bell-shaped
solitary wave solution when γ1μ3 > 0. On the other hand, it is important to mention
that the bell-shaped solitary wave Equation (60) when δ = −1, γ0 = 0, γ1 = −1, μ2 = c,
and μ3 = 2 (and therefore ω = 6 γ0 + c) becomes

u(x, t) = γ0 +
c
2

sech2
(√

c
2

(x − (6 γ0 + c) t)
)

,

which is a solution of the KdV Equation (1), and if γ0 = 0, then we get the soliton solution
Equation (2) of the KdV Equation (1).

By substituting

δ = −1, γ =
γ2

2 μ4
, μ2 =

γ1
2μ4

γ22 , μ3 =
2 γ1μ4

γ2
, g = −γ0

2(4 γ0γ2 − γ1
2)

4 γ2
, ω =

12 γ0γ2 − γ1
2

2 γ2
,

and noting that Δ = 0, with the solutions of Equation (6) into Equation (14), we obtain the
exact traveling wave solution of (5) as follows:

For μ4 > 0, we have

u(x, t) =
γ1

2

4 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ2
2 (x − ωt)

))2

− γ1
2

2 γ2

(
1 + ε tanh

(√
γ1

2μ4

4 γ22 (x − ωt)

))
+ γ0, (61)

which is a bell-shaped solitary wave solution when γ2 < 0 and an anti-bell-shaped solitary
wave solution when γ2 > 0.

By substituting

δ = −1, γ1 = 0, μ3 = 0, μ4 =
γ2

2 γ
, g = 2 γ γ0

2μ2 − γ0
3, ω = −4 γ μ2 + 6 γ0,

and noting that Δ = −2 μ2γ2
γ , with the solutions of Equation (6) into Equation (14), we

obtain the exact traveling wave solution of (5) as follows:
For μ2 > 0 and γγ2 < 0, we have

u(x, t) = γ0 − 2 μ2 γ sech2(
√

μ2 (x − ωt)), (62)

which is a bell-shaped solitary wave solution when γ < 0 and an anti-bell-shaped solitary
wave solution when γ > 0.

In order to get a better visual understanding of the solutions that we obtained, some
of the solutions for the generalized SIdV Equation (5) are presented graphically in 2D and
3D plots in Figures 1–4.

Figure 1 shows a rich array of bounded solutions from a solitary pulse (δ = 2) to a
kink (δ = 1

2 ) and to a periodic wave (δ = 2) for values of δ other than either 1 or negative 1.
In Figure 2, one can see a singular solitary wave and a singular periodic wave for

the δ-value of 2. If the singular solitary pulse is compared to the bounded solitary wave
in Figure 1 for δ = 2, the only difference is in the choice of μ3. The singular pulse is
obtained with a positive μ3, whereas the bounded solitary pulse is found with a negative
μ3. Similarly, if one compares parameter values for the singular solitary pulse with the
bounded solitary wave in Equation (23) when ε = 1, it can be observed that the singular
pulse is obtained with a positive μ3, whereas the bounded solitary pulse is found with a
negative μ3.
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Figure 1. The exact solutions of the generalized SIdV Equation (5) over the time interval [0, 10].
The left is a bell-shaped solitary wave solution (18) when γ1 = 1, δ = 2, μ2 = 1, μ3 = −1, and ε = 1,
the middel is an anti-kink-shaped solitary wave solution (39) when δ = 1

2 , μ2 = 1
4 , μ3 = 1, μ4 = 1,

and ε = −1, and the right is a periodic solitary wave solution (43) when δ = 2, μ2 = −1
5 , μ3 = 1,

μ4 = −1, and ε = 1.

Figure 2. The exact solutions of the generalized SIdV Equation (5) at t = 0. The left is a singular
wave solution (18) when γ1 = 1, δ = 2, μ2 = 1, μ3 = 1, and ε = 1, the middel is a periodic singular
wave solution (19) when δ = 2, μ2 = −1, μ3 = 1, γ1 = 1, and ε = 1, and the right is a kink-shaped
solitary wave solution (48) when δ = 1, μ3 = 1, γ0 = 1, γ1 = 1, and ε = −1.

Figure 3 presents other bounded solitary pulse solutions (as opposed to the KdV
soliton of the sech2 form) of the forms of sech, sech2, and sech4 for δ values of either 1 or
negative 1.

Figure 4 shows the peaked solutions (peakons) that we are able to find for two different
δ values. Note that a peakon has a discontinuous first derivative at its peak.
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Figure 3. The exact solutions of the generalized SIdV Equation (5) at t = 0. The left is a bell-shaped
solitary wave solution (51); namely, u(x, t) = sech4( 1

2 x − 4
3 t) when δ = 1, γ = 4

3 , γ2 = 1, μ2 = 1,
and μ3 = 1, the middle is a bell-shaped solitary wave solution (59); namely, u(x, t) = sech(x − 4

3 t)
when δ = 1, γ = 2

3 , γ1 = 1, μ2 = 1, μ4 = −1, and ε = 1, and the right is a bell-shaped solitary
wave solution (60); namely, u(x, t) = 1

2 + 1
2 sech2( 1

2 x − 2t) when δ = −1, γ0 = 1
2 , γ1 = −1, μ2 = 1,

and μ3 = 2.

Figure 4. The exact peakon wave solutions of the generalized SIdV Equation (5) over the time interval

[0, 5]. The left side shows a peakon wave solution (44)—namely, u(x, t) = 1
2

[
1 − tanh( 1

2 |x − t|)
]

when δ = 1
2 and μ2 = 1; and the right side shows a peakon wave solution (55), namely, u(x, t) =

exp(−|x − t|) when δ = 1, γ = 1, μ2 = 1, and γ1 = 1
4 . The peakon solution is obtained when

kink and anti-kink solutions (or two exponential solutions of the opposite forms) move in the same
direction with the same speed.

4. Conclusions

In this paper, we considered a generalized SIdV equation that is KdV-like, with an
advecting velocity given by

(
3(1 − δ)u + (δ + 1) uxx

u
)
. Making use of the auxiliary equation

method, for different values of δ, we were able to find closed-form expressions for a variety
of solutions, both bounded and singular. Interestingly, we showed that the SIdV equation
(i.e., when δ = 1) has solitary wave solutions of bell type of the forms of sech and sech4 in
addition to the sech2 solution that it shares with the KdV equation (see Figure 3). Further,
we even obtained peakon solutions for the SIdV equation (δ = 1) and for the generalized
SIdV equation when δ is any value (see Figure 4 when δ = 1

2 ). The solutions found in this
work are new and have not been reported elsewhere in the literature. Looking ahead, one
could explore to determine whether the generalized SIdV equation possesses multiple kink
or bell-type solutions, as was shown for the negative order KdV equation [10]. In addition,
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one could build on the work in [12] and expand our knowledge to understand how one
may be able to employ the SIdV equation in engineering applications such as control theory
and image restoration. Our work also demonstrated the versatility of the auxiliary equation
in extracting an array of interesting solutions from a KdV-like advection equation.
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Abstract: This work analytically recovers the highly dispersive bright 1–soliton solution using for
the perturbed complex Ginzburg–Landau equation, which is studied with three forms of nonlinear
refractive index structures. They are Kerr law, parabolic law, and polynomial law. The perturbation
terms appear with maximum allowable intensity, also known as full nonlinearity. The semi-inverse
variational principle makes this retrieval possible. The amplitude–width relation is obtained by
solving a cubic polynomial equation using Cardano’s approach. The parameter constraints for the
existence of such solitons are also enumerated.

Keywords: solitons; Kudryashov; Cardano; semi-inverse; perturbation

MSC: 78A60; 35C08; 37K40

1. Introduction

One of the most important necessities with a mathematical model that describes
soliton propagation across inter-continental distances is its integrability to secure an exact
soliton solution. This provides the ease and convenience of conducting further analysis
with such a solution structure at our disposal. Some such conveniences are the study
of quasi-monochromatic solitons, the computing of the collision-induced timing jitter,
the application of the variational principle, the implementation of the moment method
approach, or even the application of collective variables to secure the dynamical system of
soliton parameters [1–30]. Thus, it is necessary to recover the structure of a soliton. There
are diverse approaches that can make this soliton solution retrieval possible. These range
of approaches are visible in various works across the board. However, in specific situations,
securing a soliton solution is rendered to be challenging. In fact, under such situations, the
classic approach of inverse scattering transform is not applicable either, since the model
fails the Painleve test of integrability. In such a situation, a modern approach of integrability
has been successfully applied to recover an analytical bright 1–soliton solution. This is
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the application of the semi-inverse variational principle (SVP) that was proposed by J. H.
He [11,12,17].

SVP was successfully implemented to a variety of problems in a wide range of physical
situations. Apart from photonics, some such fields are fluid dynamics [2,9,10,12,13,23],
relativistic quantum mechanics [21,24], plasma physics [4], mathematical chemistry [11],
and various others [5,13–17,22,26]. In particular, the application of optics problems has been
quite noticeably successful and widely visible, as reported [1–20]. The models that have
been commonly studied in optics, with the implementation of SVP, are the Lakshmanan–
Porsezian–Daniel model [1,7], Schrödinger’s nonlinear model [20], and the Fokas–Lenells
model [8]. In this context, solitons were studied with chromatic dispersion [1] as well
as cubic–quartic dispersive effects [7]. The novelty of the work ushers in with an estab-
lished analytical soliton solution for an arbitrary maximum intensity where all pre-existing
integration approaches fail.

The current paper will address SVP, for the first time, with the complex Ginzburg–
Landau equation (CGLE) [3,19,25]. This will appear with six dispersion sources that con-
stitute highly dispersive (HD) optical solitons [6,15,16,25]. The perturbation terms appear
with maximum allowable intensity, i.e., AKA full nonlinearity [3–8,15,16,22]. Three forms of
nonlinear refractive index structures are addressed: cubic (or Kerr) nonlinearity [1,3,14,25],
parabolic (or cubic–quintic) nonlinearity [14,25], and polynomial nonlinearity [15,16,25].
Bright 1–soliton is finally extracted, for each law, where the soliton amplitude–width rela-
tion is recoverable by solving a cubic polynomial equation using Cardano’s approach [6].
The significance of the work is the retrieval of an analytical bright 1–soliton solution in
spite of the fact that the perturbed CGLE is not rendered integrable by any of the pre-
existing algorithms. The details are exhibited after introducing the model together with its
perturbation terms.

Governing Model

The general form of CGLE without the perturbation terms reads as [25]

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
1

|q|2q∗

[
α|q|2

(
|q|2
)

xx
− β
{(

|q|2
)

x

}2
]
+ F
(
|q|2
)

q = 0.
(1)

Here, q(x, t) depicts the wave profile that travels down the optical fiber and is a
complex valued function. The first term denotes the linear temporal evolution that has
its coefficient as i =

√−1. The coefficients of aj for 1 ≤ j ≤ 6 represent the six dispersion
terms. Here, a1 gives the inter-modal dispersion; a2 accounts for the chromatic dispersion;
while a3 till a6 yield the third-order, fourth-order, fifth-order, and sixth-order dispersion
effects sequentially. Next, α and β come from the nonlinear effects that are considered in
CGLE [25]. The intensity-dependent nonlinear refractive index of the fiber is governed
by the real valued functional F. The current paper will consider three nonlinear forms:
cubic (or Kerr) nonlinearity, parabolic (or cubic–quintic) nonlinearity, and polynomial
nonlinearity.

With perturbation terms turned on, the CGLE extends to

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
1

|q|2q∗

[
α|q|2

(
|q|2
)

xx
− β
{(

|q|2
)

x

}2
]
+ F
(
|q|2
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
.

(2)

The perturbation terms stem from the self-steepening effect, the self-frequency shift,
and nonlinear dispersion, which are represented by the coefficients of λ, θ, and σ, re-
spectively. The parameter m comes from maximum permissible intensity, also known as
full nonlinearity.
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2. Mathematical Start-Up

The starting hypothesis to handle Equation (2) is the substitution

q(x, t) = g(x − vt)ei(−κx+ωt+θ0) = g(s)ei(−κx+ωt+θ0). (3)

Here in (3), the function g(x, t) is the traveling wave hypothesis while from the phase,
ω is the wave number, while θ0 is the phase constant and κ represents the frequency.
Inserting (3) into (2) gives way to the following set of relations. The real part gives:

(−ω − a6κ6 + a5κ5 + a4κ4 − a3κ3 − a2κ2 + a1κ
)

g
+
(
a2 + 2α + 3a3κ − 6a4κ2 − 10a5κ3 + 15a6κ4)g′′

+
(
a4 + 5a5κ − 15a6κ2)g(iv) + a6g(vi) + 2(α − 2β)

(g′)2

g +F
(

g2)g = κ(λ + σ)g2m+1.
(4)

The imaginary part yields:

{(2m + 1)λ + 2mθ + σ}g2mg′
+
(
v − a1 + 2a2κ + 3a3κ2 − 4a4κ3 − 5a5κ4 + 6a6κ5)g′

−(a3 − 4a4κ − 10a5κ2 + 20a6κ3)g′′′ − (a5 − 6a6κ)g(v) = 0.
(5)

In (4) and (5), the notations g′ = dg/ds, g′′ = d2g/ds2, g′′′ = d3g/ds3, g(iv) = d4g/ds4,
g(v) = d5g/ds5 and g(vi) = d6g/ds6 are adopted. Next, introducing the parameters

P1 = −a6κ6 + a4κ4 + a5κ5 − a3κ3 − a2κ2 + a1κ − ω, (6)

P2 = a2 + 2α + 3a3κ − 6a4κ2 − 10a5κ3 + 15a6κ4, (7)

P3 = a4 + 5a5κ − 15a6κ2, (8)

and setting
α = 2β, (9)

Equation (4) transforms to

P1g + P2g′′ + P3g(iv) + a6g(vi) + F
(

g2
)

g = κ(λ + σ)g2m+1. (10)

Thus, with (9), the governing Equation (2) modifies to:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(

|q|2
)

x

}2
]
+ F
(
|q|2
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
.

(11)

Next, the imaginary part Equation (5) gives the following parameter constraints

(2m + 1)λ + 2mθ + σ = 0, (12)

v = a1 − 2a2κ − 3a3κ2 + 4a4κ3 + 5a5κ4 − 6a6κ5, (13)

a3 − 4a4κ − 10a5κ2 + 20a6κ3 = 0, (14)

and
a5 = 6a6κ. (15)

Equation (13) gives the velocity. The relations (12)–(15) stay the same, irrespective of
the type of nonlinearity considered.
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3. Application of SVP

From Equation (10), multiplying by g′ and integrating gives

P1g2 + P2(g′)2 − P3(g′′ )2 + a6(g′′′ )2

+2
∫

F(g2)gg′dg − κ(λ+σ)
m+1 g2m+2 = K,

(16)

where K is the integration constant. The stationary integral is introduced as below

J =
∫ ∞

−∞

[
P1g2 + P2(g′)2 − P3(g′′ )2 + a6(g′′′ )2

+2
∫

F
(

g2)gg′dg − κ(λ+σ)
m+1 g2m+2

]
dx. (17)

The bright 1–soliton to (11) is the same as that of the homogeneous counterpart, namely
with λ = θ = σ = 0, whose structure is of the form:

g(s) = A f {sec hB(x − vt)}, (18)

where the functional form of the bright soliton, given by f , is based on the type of nonlin-
earity in question. The amplitude (A) and inverse width (B) of the soliton will be recovered
by the coupled system of Equations (1)–(18):

∂J
∂A

= 0, (19)

and
∂J
∂B

= 0. (20)

This principle will be applied to study HD bright 1–soliton to (11) for three nonlin-
ear forms.

3.1. Kerr Law

The refractive index structure is presented as

F(s) = b0s, (21)

where b0 is a real-valued constant parameter. Thus, Equation (11) reads as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(

|q|2
)

x

}2
]
+ b0|q|2q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(22)

so that (16) comes out as

2P1g2 + 2P2
(

g′
)2 − 2P3(g′′ )2 + 2a6(g′′′ )2 + b0g4 − 2κ(λ + σ)

m + 1
g2m+2 = K. (23)

The stationary integral, in this case, is introduced as

J =
∫ ∞

−∞

[
2P1g2 + 2P2(g′)2 − 2P3(g′′ )2

+2a6(g′′′ )2 + b0g4 − 2κ(λ+σ)
m+1 g2m+2

]
dx. (24)

The solution of (22), for λ = θ = σ = 0, is given as [19]

g(x − vt) = Asec h3[B(x − vt)]. (25)
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By substituting this 1–soliton solution into (24), one can obtain

J = 16P1
15

A2

B + 144
35 P2 A2B − 592

35 P3 A2B3 + 15,024
1155 a6 A2B5

+ 256
693

b0 A4

B − κ(λ+σ)
m+1

PA2m+2

B ,
(26)

where

P =
8m(3m + 1)(3m + 2)

(2m + 1)(6m + 1)(6m + 5)

Γ(3m)Γ
(

1
2

)
Γ
(

3m + 1
2

) . (27)

The coupled pair of Equations (19) and (20), for Kerr law, is given as:

P1

15
+

9
35

P2B2 − 37
35

P3B4 +
939
1155

a6B6 +
32
693

b0 A2 − κ(λ + σ)

16
PA2m = 0, (28)

and

− P1

15
+

9
35

P2B2 − 111
35

P3B4 +
4695
1155

a6B6 +
16
693

b0 A2 − κ(λ + σ)

16(m + 1)
PA2m = 0. (29)

Adding (28) and (29) leaves us with

18
35

P2B2 − 148
35

P3B4 +
5634
1155

a6B6 +
48
693

b0 A2 − κ(λ + σ)(m + 2)
16(m + 1)

PA2m = 0. (30)

Equation (30) can be restructured as a cubic polynomial equation in u:

au3 + bu2 + cu + d = 0, (31)

with the following notations:
B2 = u, (32)

a =
5634
1155

a6, (33)

b = −148
35

P3, (34)

c =
18
35

P2, (35)

and

d =
48

693
b0 A2 − κ(λ + σ)(m + 2)

16(m + 1)
PA2m. (36)

By Cardano’s method, (31) and (32) solves to [6]:

B =

⎡
⎣{(− b3

27a3 +
bc

6a2 − d
2a

)
−
√(

− b3

27a3 +
bc

6a2 − d
2a

)2
+
(

c
3a − b2

9a2

)3
} 1

3

+

{(
− b3

27a3 +
bc

6a2 − d
2a

)
+

√(
− b3

27a3 +
bc

6a2 − d
2a

)2
+
(

c
3a − b2

9a2

)3
} 1

3

− b
3a

⎤
⎦

1
2

.

(37)

The constraint for this solution to exist is

a6 	= 0, (38)

along with the discriminant
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(
− b3

27a3 +
bc

6a2 − d
2a

)2

+

(
c

3a
− b2

9a2

)3

> 0. (39)

Moreover,

{(
− d

2a +
bc

6a2 − b3

27a3

)
−
√(

− d
2a +

bc
6a2 − b3

27a3

)2
+
(

c
3a − b2

9a2

)3
} 1

3

+

{(
− d

2a +
bc

6a2 − b3

27a3

)
+

√(
− d

2a +
bc

6a2 − b3

27a3

)2
+
(

c
3a − b2

9a2

)3
} 1

3

> b
3a .

(40)

Thus, the HD bright 1–soliton to (22) is introduced as (see Figure 1)

q(x, t) = Asec h3[B(x − vt)]ei(−κx+ωt+θ0). (41)

 

Figure 1. Profile of the HD bright 1–soliton (41) setting all arbitrary parameters to unity.

Here, the inverse width (B) is explicitly expressed via (37), provided that the constraint
conditions given by (38)–(40) are maintained.

3.2. Parabolic Law

The refractive index structure is indicated below

F(s) = b1s + b2s2, (42)

where b1 and b2 are real-valued constant parameters. Then, Equation (11) evolves as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx

+a6qxxxxxx +
β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(

|q|2
)

x

}2
]
+
(

b1|q|2 + b2|q|4
)

q

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(43)

so that (16) comes out as

6P1g2 + 6P2(g′)2 − 6P3(g′′ )2 + 6a6(g′′′ )2

+3b1g4 + 2b2g6 − 6κ(λ+σ)
m+1 g2m+2 = K.

(44)

The stationary integral, in this case, is structured as

J =
∫ ∞

−∞

[
6P1g2 + 6P2(g′)2 − 6P3(g′′ )2 + 6a6(g′′′ )2

+3b1g4 + 2b2g6 − 6κ(λ+σ)
m+1 g2m+2

]
dx. (45)
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The solution of (43), for λ = θ = σ = 0, is given as [19]

g(x − vt) = Asec h
3
2 [B(x − vt)]. (46)

Byubstituting this 1–soliton solution into (45), one can obtain

J = πP1
A2

B + 9π
16 P2 A2B − 153

128 P3 A2B3 + 21,429
4096 a6 A2B5

+ 16
15

b1 A4

B + 35π
192

b2 A6

B − 6κ(λ+σ)P
m+1

A2m+2

B ,
(47)

where

P =
2(3m + 1)

3m(3m + 2)

Γ
(

3m
2 + 1

2

)
Γ
(

1
2

)
Γ
( 3m

2
) . (48)

The coupled pair of Equations (19) and (20), for parabolic law, is:

πP1 +
9π
16 P2B2 − 153π

128 P3B4 + 21,429π
4096 a6B6

+ 32
15 b1 A2 + 35π

64 b2 A4 − 2κ(λ + σ)PA2m = 0,
(49)

and
−πP1 +

9π
16 P2B2 − 459π

128 P3B4 + 107,145π
4096 a6B6

− 16
15 b1 A2 − 35π

192 b2 A4 + 2κ(λ+σ)
m+1 PA2m = 0.

(50)

Adding (49) and (50) yields

9π
8 P2B2 − 153π

32 P3B4 + 64,287π
2048 a6B6

+ 16
15 b1 A2 + 70π

192 b2 A4 − 2mκ(λ+σ)
m+1 PA2m = 0.

(51)

Equation (51) is reducible to (31) with

a =
64, 287π

2048
a6, (52)

b = −153π

32
P3, (53)

c =
9π

8
P2, (54)

and

d =
16
15

b1 A2 +
70π

192
b2 A4 − 2mκ(λ + σ)

m + 1
PA2m. (55)

Hence, the HD bright 1–soliton to (43) reads as (see Figure 2)

q(x, t) = Asec h
3
2 [B(x − vt)]ei(−κx+ωt+θ0). (56)
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Figure 2. Profile of the HD bright 1–soliton (56) setting all arbitrary parameters to unity.

Here, the inverse width (B) is explicitly expressed via (37), providing that the con-
straint conditions given by (38)–(40) are maintained.

3.3. Polynomial Law

The refractive index structure extends to

F(s) = b1s + b2s2 + b3s3, (57)

where b1, b2, and are real-valued constant parameters. Hence, Equation (11) comes out as

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx

+
(

b1|q|2 + b2|q|4 + b3|q|6
)

q + β

|q|2q∗

[
2|q|2

(
|q|2
)

xx
−
{(

|q|2
)

x

}2
]

= i
[
λ
(
|q|2mq

)
x
+ θ
(
|q|2m

)
x
q + σ|q|2mqx

]
,

(58)

so that (16) now is

12P1g2 + 12P2(g′)2 − 12P3(g′′ )2 + 12a6(g′′′ )2

+6b1g4 + 4b2g6 + 3b3g8 − 12κ(λ+σ)
m+1 g2m+2 = K.

(59)

The stationary integral, for polynomial law, reads as

J =
∫ ∞

−∞

[
12P1g2 + 12P2(g′)2 − 12P3(g′′ )2 + 12a6(g′′′ )2

+6b1g4 + 4b2g6 + 3b3g8 − 12κ(λ+σ)
m+1 g2m+2

]
dx. (60)

The solution of (58), for λ = θ = σ = 0, is [19]

g(x − vt) = Asec h[B(x − vt)]. (61)

By substituting this 1–soliton solution into (60), one can obtain

J = 3P1
A2

B + P2 A2B − 7
5 P3 A2B3 + 31

7 a6 A2B5 + b1 A4

B
+ 8b2

15
A6

B + 12b3
35

A8

B − 3κ(λ+σ)P
m+1

A2m+2

B ,
(62)

where

P =
m

2m + 1

Γ(m)Γ
(

1
2

)
Γ
(

m + 1
2

) . (63)
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The coupled pair of Equations (19) and (20), for polynomial law, formulates as:

3P1 + P2B2 − 7
5 P3B4 + 31

7 a6B6 + 2b1 A2

+ 24
15 b2 A4 + 48

35 b3 A6 − 3κ(λ + σ)PA2m = 0,
(64)

and
−3P1 + P2B2 − 21

5 P3B4 + 155
7 a6B6 − b1 A2

− 8
15 b2 A4 − 12

35 b3 A6 − 3κ(λ+σ)
m+1 PA2m = 0.

(65)

Adding (64) and (65) implies to

2P2B2 − 28
5 P3B4 + 186

7 a6B6 + b1 A2 + 16
15 b2 A4

+ 36
35 b3 A6 − 3(m+2)κ(λ+σ)

m+1 PA2m = 0.
(66)

Again, Equation (66) is transformable to the cubic polynomial Equation (31) where

a =
186

7
a6, (67)

b = −28
5

P3, (68)

c = 2P2, (69)

and

d = b1 A2 +
16
15

b2 A4 +
36
35

b3 A6 − 3(m + 2)κ(λ + σ)

m + 1
PA2m. (70)

Hence, the HD bright 1–soliton to (58) comes out as (see Figure 3)

q(x, t) = Asec h[B(x − vt)]ei(−κx+ωt+θ0). (71)

 

Figure 3. Profile of the HD bright 1–soliton (71) setting all arbitrary parameters to unity.

Here, the inverse width (B) is explicitly expressed via (37), providing that the constraint
conditions given by (38)–(40) are maintained.

4. Conclusions

This work obtains an analytical expression of the HD bright 1–soliton to the perturbed
CGLE by SVP, where the perturbation terms are considered with the maximum allowable
intensity. Three nonlinear forms are addressed. Such an analytical 1–soliton solution, with
arbitrary intensity parameters, in its closed form, and is not recoverable by any of the
pre-existing integration algorithms.

There are some shortcomings to this approach. It is only the bright soliton that is
obtainable using this approach. This scheme fails to retrieve singular or dark solitons since
the stationary integral is rendered to be divergent with singular or dark solitons. The bright

149



Mathematics 2022, 10, 987

1–soliton solutions that are recovered for three nonlinear forms are not exact since they are
obtained by the usage of a principle, namely the SVP. Therefore, the results of this work
cannot be compared with any pre-existing results since there are none. The homogenous
model was first proposed during 2021 [25] and the current paper is the very first one to
extend the model with perturbation terms and with full nonlinearity. The simulations,
therefore, provide a visual accuracy to the proposed approach, namely the SVP.

This analytical soliton solution can take us further along with advanced studies. Some
of them include the analysis of quasi-monochromatic solitons, the computing of the soliton
parameter dynamics with the help of the variational principle, the study of the collision-
induced timing jitter and the numerical simulation of the problem with the application of
the Adomian decomposition algorithm, Laplace ADM, and variational iteration approach.
More research results that can be aligned with the current findings [27–30] exist.
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Abstract: This paper is a numerical simulation of highly dispersive optical solitons in birefrin-
gent fibers with polynomial nonlinear form, which is achieved for the first time. The algorithmic
approach is applied with the usage of the Laplace–Adomian decomposition scheme. Dark and
bright soliton simulations are presented. The error measure has a very low count, and thus, the
simulations are almost an exact replica of such solitons that analytically arise from the governing
system. The suggested iterative scheme finds the solution without any discretization, linearization,
or restrictive assumptions.

Keywords: solitons; polynomial law; Laplace–Adomian decomposition; birefringence

MSC: 78A60

1. Introduction

The term highly dispersive (HD) optical soliton was conceived a couple of years
ago. Later, it was studied by several authors including N. Kudryashov [1–5]. The two
essential factors that make the propel of solitons through fibers and other waveguides
possible are the self-phase modulation (SPM) and chromatic dispersion (CD). When CD
runs low during soliton transmission, the balance between nonlinearity and dispersion
is compromised. This would lead to a catastrophic situation. To avoid such a scenario,
CD is compensated with other sources of dispersion, and they are sixth-order dispersion
(6OD), fifth-order dispersion (5OD), fourth-order dispersion (4OD), third-order dispersion
(3OD) and inter-modal dispersion (IMD). The inclusion of six dispersive effects secures
HD solitons. This however has other detrimental effects although they are being ignored
in the current paper. They are the presence of soliton radiation and the slowdown of
solitons due to this shedding of energy. Pulse splitting or polarization-mode dispersion
is another feature in the dynamics of optical soliton propagation that cannot be avoided.
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This leads to the effect of differential group delay, which cumulatively would lead to
birefringence. The split-pulse dynamics in birefringent fibers is the focus of attention in
the current paper. The dynamics of such soliton pulses are studied when the nonlinear
form is of the polynomial type. The numerical simulations are recovered by the aid of
the Laplace–Adomian decomposition method (LADM) that is a manifestation of the pre-
existing Adomian decomposition approach. Dark and bright solitons are addressed in this
work. The low error measure leads to an almost exact replica of solitons that have been
analytically recovered in the past. The results are displayed after a recapitulation of the
known analytical results.

Our work is divided in several sections. In the “Governing Equation” section, we pro-
vide a brief introduction to the model given by the highly dispersive nonlinear Schrödinger
equation with cubic–quintic–septic law. We also illustrate the model by taking into account
the birefringence effect. In the “Description and Application of the LADM” section, we
describe the Laplace–Adomian decomposition method to be applied to approximate the
solution of the highly dispersive nonlinear Schrödinger equation with polynomial law. In
the “Graphical Representations” section, the results of the numerical experiment are shown
in tables and graphs. Finally, in the “Conclusions” section, we summarize our findings and
present our final conclusions.

2. Governing Equation

The highly dispersive nonlinear Schrödinger with polynomial nonlinear form is pre-
sented below [6–16]:

iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx
+a6qxxxxxx +

(
b1| q|2 + b2 |q|4 + b3|q|6

)
q = 0.

(1)

Here, ak (1 ≤ k ≤ 6) and bl (1 ≤ l ≤ 3) are real-valued constants, while q = q(x, t) is a
complex-valued function. a6 gives 6OD, a5 is associated with 5OD, a4 arises from 4OD, a3
stems from 3OD, a2 is related to CD, and a1 emerges from IMD. x is the spatial variable; q
stands for the soliton profile; t is the temporal variable; the first term signifies the temporal
evolution, where i =

√−1; and b1, b2, and b3 secure the polynomial nonlinear form.
Additionally, the subscript t and x denote distinct order temporal and spatial derivatives.

The main governing system derived from the model (1) is considered as [6]

iut + ia1
1ux + a1

2uxx + ia1
3uxxx + a1

4uxxxx + ia1
5uxxxxx + a1

6uxxxxxx
+
(
b1

11|u
∣∣2 + b1

12 |v|2
)
u +

(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u

+
(

b3
11|u|6 + b3

12|u|4|v|2 + b3
13|u|2|v|4 + b3

14|v|6
)

u = 0,
(2)

ivt + ia2
1vx + a2

2vxx + ia2
3vxxx + a2

4vxxxx + ia2
5vxxxxx + a2

6vxxxxxx

+
(
b1

21|v
∣∣2 + b1

22 |u|2
)
v +
(

b2
21|v|4 + b2

22|u|2|v|2 + b2
23|u|4

)
v

+
(

b3
21|v|6 + b3

22|v|4|u|2 + b3
23|v|2|u|4 + b3

24|u|6
)

v = 0.
(3)

Here, b1
j1, b2

j1, b3
j1, b1

j2, b2
j2, b2

j3, b3
j2, b3

j3, b3
j4 (j = 1, 2), and aj

k (1 ≤ k ≤ 6) are real-valued

constants, while v = v(x, t) and u = u(x, t) are complex-valued functions. b1
j1, b2

j1, and b3
j1

give the self-phase modulation; u and v stand for the soliton profiles; b1
j2, b2

j2, b2
j3, b3

j2, b3
j3,

and b3
j4 secure the cross-phase modulation, and the first terms imply linear evolutions. aj

6

gives 6OD, aj
5 is associated with 5OD, aj

4 arises from 4OD, aj
3 stems from 3OD, aj

2 is related

to CD, and aj
1 emerges from IMD.

It must be noted that in order to derive (2) and (3) from (1), for birefringent fibers, it is
necessary to split q(x, t) = u(x, t) + v(x, t), to substitute it into (1), and then to write the
two components of the equation after neglecting the effects of four wave mixing.
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Bright and Dark Solitons

The dark solitons with the present governing system of (2) and (3) are formulated as
following [6]: {

u(x, t) = (A1tanh(x − ν1t))ei[−κ1x+ω1t+θ1],
v(x, t) = (A2tanh(x − ν2t))ei[−κ2x+ω2t+θ2],

(4)

where the parameters are listed as [6]

A1 = ±

√√√√√√−

(
30κ4

1a1
6 − 20κ3

1a1
5 + 600κ2

1a1
6 − 12κ2

1a1
4

−200κ1a1
5 + 6κ1a1

3 + 2a1
2 + 1232a1

6 − 40a1
4

)
b1

11 + b1
12

, (5)

ν1 = 5a1
5κ4

1 − 6a1
6κ5

1 − 2a1
2κ1 − 3a1

3κ2
1 + 4a1

4κ3
1 + a1

1, (6)

A2 = ±

√√√√√√−

(
30κ4

2a2
6 − 20κ3

2a2
5 + 600κ2

2a2
6 − 12κ2

2a2
4

−200κ2a2
2 + 6κ2a2

3 + 2a2
2 + 1232a2

6 − 40a2
4

)
b1

22 + b1
21

, (7)

ν2 = 5a2
5κ4

2 − 6a2
6κ5

2 − 2a2
2κ2 − 3a2

3κ2
2 + 4a2

4κ3
2 + a2

1, (8)

with the following natural constraint:

(
b1

j2 + b1
j1

)( 30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
< 0. (9)

In the above, A1 and A2 are free parameters of the dark soliton, while the velocities of
the two components of the dark solitons are ν1 and ν2.

The bright solitons with the strategic governing system (2) and (3) are introduced
below [6]: {

u(x, t) = (B1sech(x − ν1t))ei[−κ1x+ω1t+θ1],
v(x, t) = (B2sech(x − ν2t))ei[−κ2x+ω2t+θ2],

(10)

where the parameters are enumerated as

B1 = ±

√√√√√√
(

30κ4
1a1

6 − 20κ3
1a1

5 + 600κ2
1a1

6 − 12κ2
1a1

4
−200κ1a1

5 + 6κ1a1
3 + 2a1

2 + 1232a1
6 − 40a1

4

)
b1

11 + b1
12

, (11)

ν1 = 5a1
5κ4

1 − 6a1
6κ5

1 − 2a1
2κ1 − 3a1

3κ2
1 + 4a1

4κ3
1 + a1

1, (12)

B2 = ±

√√√√√√
(

30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
b1

22 + b1
21

, (13)

ν2 = 5a2
5κ4

2 − 6a2
6κ5

2 − 2a2
2κ2 − 3a2

3κ2
2 + 4a2

4κ3
2 + a2

1, (14)

with the following natural constraint:

(
b1

j2 + b1
j1

)( 30κ4
2a2

6 − 20κ3
2a2

5 + 600κ2
2a2

6 − 12κ2
2a2

4
−200κ2a2

2 + 6κ2a2
3 + 2a2

2 + 1232a2
6 − 40a2

4

)
> 0. (15)

In this context, the parameters B1 and B2 are the amplitudes of the two components of
bright solitons that travel with velocities ν1 and ν2, respectively.
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3. Description and Application of the LADM

The integration scheme is derived from the decomposition algorithm that has been
reported in [17] by the aid of Laplace transform [18]. The solution of a governing model is
structured as the local truncation of a convergent series of functions [19].

To address this scheme, the governing system (2) and (3) is presented below:

ut = −a1
1ux + ia1

2uxx − a1
3uxxx + ia1

4uxxxx
−a1

5uxxxxx + ia1
6uxxxxxx + iN1(u, v),

(16)

vt = −a2
1vx + ia2

2vxx − a2
3vxxx + ia2

4vxxxx
−a2

5vxxxxx + ia2
6vxxxxxx + iN2(u, v).

(17)

Equations (16) and (17) are also formulated as

Dtu = iN1(u, v) +
3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u, (18)

Dtu = iN2(u, v) +
3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v (19)

by virtue of initial conditions v(x, 0) = g(x) and u(x, 0) = f (x). Here, Nj are differential
operators containing all nonlinear terms, Dk

x stands for a partial derivative of order k in
terms of the independent variable x, and Dt stands for first-order derivative in terms of the
independent variable t. Thus, the operators Nj are presented below:

N2(u, v) =
(
b2

21|v
∣∣4 + b2

22 |u|2|v
∣∣2 + b2

23 |u|4
)
v +
(
b1

21|v
∣∣2 + b1

22 |u|2
)
v

+
(

b3
21|v|6 + b3

22|v|4|u|2 + b3
23|v|2|u|4 + b3

24|u|6
)

v,
(20)

N1(u, v) =
(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u +

(
b1

11|u
∣∣2 + b1

12 |v|2
)
u

+
(

b3
11|u|6 + b3

12|u|4|v|2 + b3
13|u|2|v|4 + b3

14|v|6
)

u.
(21)

Using the Laplace transform in the system with (18) and (19) along with the initial
conditions, one secures

v(x, s) =
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v + iN2(u, v)

}
+

g(x)
s

, (22)

u(x, s) =
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u + iN1(u, v)

}
+

f (x)
s

. (23)

By the aid of the conventional inverse Laplace transform L−1, we arrive at the following:

v(x, t) = L−1

[
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
v + iN2(u, v)

}]
+ v(x, 0), (24)

u(x, t) = L−1

[
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
u + iN1(u, v)

}]
+ u(x, 0). (25)

Now, the solution functions v and u in the Adomian decomposition algorithm are
extracted as

v(x, t) =
∞

∑
n=0

vn(x, t), u(x, t) =
∞

∑
n=0

un(x, t). (26)
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Additionally, the nonlinear terms in Equations (20) and (21) are decomposed in Ado-
mian polynomials [17–19] as

N2(u, v) =
(
b2

21|v
∣∣4 + b2

22 |u|2|v
∣∣2 + b2

23 |u|4
)
v +
(
b1

21|v
∣∣2 + b1

22 |u|2
)
v

+
(
b3

21|v|6 + b3
22|v|4|u

∣∣2 + b3
23 |v|2|u

∣∣4 + b3
24 |u|6

)
v

=
∞
∑

n=0
Bn(u0, . . . , un; v0, . . . , vn),

(27)

N1(u, v) =
(
b2

11|u
∣∣4 + b2

12 |u|2|v
∣∣2 + b2

13 |v|4
)
u +

(
b1

11|u
∣∣2 + b1

12 |v|2
)
u

+
(

b3
11|u|6 + b3

12|u|4|v|2 + b3
13|u|2|v|4 + b3

14|v|6
)

u

=
∞
∑

n=0
An(u0, . . . , un; v0, . . . , vn),

(28)

where An and Bn are enumerated as follows [20]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B0 =
(
b1

21|v0
∣∣2 + b1

22 |u0|2
)
v0 +

(
b2

21|v0|4 + b2
22|u0|2|v0|2 + b2

23|u0|4
)

v0

+
(

b3
21|v0|6 + b3

22|v0|4|u0|2 + b3
23|v0|2|u0|4 + b3

24|u0|6
)

v0,

Bn = 1
n

n−1
∑

k=0
(k + 1)

(
uk+1

∂
∂uk

Bn−1 + vk+1
∂

∂vk
Bn−1

)
, n ≥ 1,

(29)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 =
(
b1

11|u0
∣∣2 + b1

12 |v0|2
)
u0 +

(
b2

11|u0|4 + b2
12|u0|2|v0|2 + b2

13|v0|4
)

u0

+
(

b3
11|u0|6 + b3

12|u0|4|v0|2 + b3
13|u0|2|v0|4 + b3

14|v0|6
)

u0,

An = 1
n

n−1
∑

k=0
(k + 1)

(
uk+1

∂
∂uk

An−1 + vk+1
∂

∂vk
An−1

)
, n ≥ 1.

(30)

Plugging (26)–(28) into (24) and (25) yields the solution functions:

∞

∑
n=0

vn = L−1

[
1
s
L
{

3

∑
k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

) ∞

∑
n=0

vn + i
∞

∑
n=0

Bn

}]
+ v(x, 0), (31)

∞

∑
n=0

un = L−1

[
1
s
L
{

3

∑
k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

) ∞

∑
n=0

un + i
∞

∑
n=0

An

}]
+ u(x, 0). (32)

Therefore, the vn and un components for the system with (16) and (17) are yielded by
the following algorithm:

⎧⎨
⎩ un+1(x, t) = L−1

[
1
sL
{

3
∑

k=1

(
ia1

2kD2k
x − a1

2k−1D2k−1
x

)
un + iAn

}]
, n ≥ 0,

u0(x, t) = u(x, 0) = f (x),
(33)

⎧⎨
⎩ vn+1(x, t) = L−1

[
1
sL
{

3
∑

k=1

(
ia2

2kD2k
x − a2

2k−1D2k−1
x

)
vn + iBn

}]
, n ≥ 0,

v0(x, t) = v(x, 0) = g(x).
(34)

Finally, adding the components un(x, t) and vn(x, t) along with the solution functions
in (26), an approximation for the system with (16) and (17) is obtained.

Convergence of the Proposed Method

The following theorem provides a necessary condition for the convergence of the
proposed technique. The results are standard and can be seen in [21].

Theorem 1. Let N be an operator from a Hilbert Space H into H, and let u be an exact solution
of Equation (1). ∑∞

j=0 uj converges to the exact solution u, if there exists β, 0 ≤ β < 1, such that
||uk+1||≤ β||uk||, for every k ≥ 0.
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Proof of Theorem 1. We have

S0 = 0,
S1 = S0 + u1 = u1,

S2 = S1 + u2 = u1 + u2,
...

Sn = Sn−1 + un = u1 + u2 + . . . + un,

and we show that {Sn} is a Cauchy sequence in a Hilbert Space H. Now, for

||Sn+1 − Sn||=||un+1||≤ β||un|| ≤ β2||un−1|| ≤ . . . ≤ βn+1||u0||,

for every n, m ∈ N, n ≥ m, we have

||Sn − Sm|| = ||(Sn − Sn−1) + (Sn−1 − Sn−2) + · · ·+ (Sm+1 − Sm)||
≤ ||Sn − Sn−1||+||Sn−1 − Sn−2||+ · · ·+||Sm+1 − Sm||
≤ βn||u0||+ βn−1||u0||+ · · ·+ βm+1||u0||
≤ (βm+1 + βm+2 + · · ·)||u0|| = βm+1

1−β ||u0||

From the previous inequality, we have

||Sn − Sm|| → 0, as n → ∞, m → ∞.

Hence, {Sn} is the Cauchy sequence in the Hilbert space H; therefore, it has a limit
u ∈ H, which is the exact solution of Equation (1), namely

u = lim
n→∞

Sn.

Now, we have the following theorem, of which the proof is a direct consequence of
Theorem 1. �

Theorem 2. Assume that u is the exact solution of Equation (1). Let {SN} be the sequence of the
approximate series solutions defined by Equation (26). Then, it holds for every t ≥ 0.

max
a≤x,y≤b

|u(x, y, t)−
N

∑
j=0

uj(x, y, t)| ≤ βm+1

1 − β
||u0||.

From this analysis, it is evident that the Adomian decomposition method combined
with the Laplace transform requires less effort in comparison with the traditional Adomian
decomposition method. This method considerably decreases the number of calculations. In
addition, the Adomian decomposition procedure is easily established without requiring
the problem to be linearized.

4. Graphical Representations

In this section, we solve some numerical examples, and we also present the results
obtained graphically as well as the absolute error committed by the LADM approximation.
Additional references to the recent application of LADM to a similar mathematical model
can be seen in [22–24].

4.1. Dark Soliton Simulation

To display the dark soliton numerical simulation for the governing system (2) and (3),
we consider the following coefficients:
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Case A: Let us consider the following:

⎧⎨
⎩

a1
1 = 1.34, a1

2 = 1.5, a1
3 = −3.2, a1

4 = −2.1, a1
5 = 5.2, a1

6 = 0.21,
b1

1 = 6.2, b2
11 = 3.3, b2

12 = 0.11, a2
1 = 0.67, a2

2 = 3.1, a2
3 = −0.3,

a2
4 = 1.1, a2

5 = −5.9, a2
6 = 0.33, b1

2 = 4.6, b2
21 = 2.2, b2

22 = 3.7.
(35)

Together with the initial conditions, we obtain the following:

f (x) = 3.04tanh(x)ei[−0.22x+0.76],

g(x) = 2.91tanh(x)ei[1.13x−2.34].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 1. In
Table 1, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.

Figure 1. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case A.

Table 1. Case A: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 4.7 × 10−8 3.5 × 10−8 2.3 × 10−9 3.9 × 10−8 5.2 × 10−8

0.3 5.0 × 10−7 4.6 × 10−7 3.7 × 10−8 4.9 × 10−7 6.1 × 10−7

0.5 5.2 × 10−7 5.6 × 10−7 4.9 × 10−7 5.8 × 10−7 7.0 × 10−6

0.8 6.1 × 10−5 4.8 × 10−5 5.5 × 10−7 4.3 × 10−5 6.9 × 10−5

Case B: Let us consider the following:

⎧⎨
⎩

a1
1 = 0.33, a1

2 = 0.89, a1
3 = −1.4, a1

4 = 0.9, a1
5 = 1.1, a1

6 = 0.59,
b1

1 = 2.2, b2
11 = 1.23, b2

12 = 0.5, a2
1 = 8.1, a2

2 = 0.36, a2
3 = 1.1,

a2
4 = −0.27, a2

5 = 3.22, a2
6 = 1.06, b1

2 = 2.8, b2
21 = 0.66, b2

22 = 2.3.
(36)

By the aid of the initial conditions, we obtain the following:

g(x) = 4.09tanh(x)ei[2.09x+0.95],
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f (x) = 6.11tanh(x)ei[5.5x+1.23].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 2. In
Table 2, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.

Figure 2. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case B.

Table 2. Case B: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 3.2 × 10−8 3.0 × 10−8 2.1 × 10−9 3.3 × 10−8 3.8 × 10−8

0.3 6.1 × 10−7 5.1 × 10−7 3.4 × 10−8 5.6 × 10−7 6.7 × 10−7

0.5 6.8 × 10−7 6.0 × 10−7 2.9 × 10−7 6.2 × 10−7 6.9 × 10−6

0.8 7.2 × 10−5 6.4 × 10−5 3.5 × 10−7 6.6 × 10−5 8.0 × 10−5

4.2. Bright Soliton Simulation

To depict the bright soliton numerical simulation for the governing system (2) and (3),
we consider the following coefficients:

Case C: Let us consider the following:

⎧⎨
⎩

a1
1 = 0.01, a1

2 = 1.23, a1
3 = 0.53, a1

4 = 0.11, a1
5 = 0.97, a1

6 = 1.6,
b1

1 = 3.6, b2
11 = 1.11, b2

12 = 2.6, a2
1 = 3.01, a2

2 = 0.12, a2
3 = 3.6,

a2
4 = −4.7, a2

5 = −2.01, a2
6 = 0.2, b1

2 = 0.3, b2
21 = 6.1, b2

22 = 2.11.
(37)

With the help of the initial conditions, we obtain the following:

g(x) = 2.74sech(x)ei[8.34x−0.35],

f (x) = 2.23sech(x)ei[−3.09x−1.01].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 3. In
Table 3, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.
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Figure 3. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case C.

Table 3. Case C: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 4.5 × 10−8 3.7 × 10−8 1.8 × 10−9 3.2 × 10−8 4.9 × 10−8

0.3 4.4 × 10−7 4.7 × 10−7 2.3 × 10−9 4.6 × 10−7 4.0 × 10−7

0.5 8.8 × 10−7 5.7 × 10−7 3.3 × 10−8 5.2 × 10−7 8.3 × 10−6

0.8 7.2 × 10−5 3.4 × 10−5 7.5 × 10−8 2.9 × 10−5 7.0 × 10−5

Case D: Let us consider the following:

⎧⎨
⎩

a1
1 = 9.0, a1

2 = 4.2, a1
3 = 0.33, a1

4 = 0.31, a1
5 = 0.08, a1

6 = 0.03,
b1

1 = 5.08, b2
11 = 4.1, b2

12 = −9.2, a2
1 = 1.16, a2

2 = 0.4, a2
3 = −9.0,

a2
4 = −2.03, a2

5 = 0.1, a2
6 = 0.21, b1

2 = 2.1, b2
21 = 0.7, b2

22 = 0.33.
(38)

By virtue of the initial conditions, we obtain the following:

f (x) = 6.02sech(x)ei[−0.57x−36.01],

g(x) = 5.74sech(x)ei[11.6x+3.08].

The 2D and 3D illustrations for |v|2 and |u|2 for this case are shown in Figure 4. In
Table 4, we show the absolute error committed in the numerical simulation of the present
case for different values of the (x, t) pair and for N = 15.

Table 4. Case D: Absolute error for different values of (x, t) considering N = 15 steps.

(t,x) −2.0 −1.0 0 1.0 2.0

0.1 7.2 × 10−8 4.4 × 10−8 5.2 × 10−9 4.2 × 10−8 6.9 × 10−8

0.3 6.3 × 10−7 4.7 × 10−7 6.3 × 10−9 4.6 × 10−7 5.3 × 10−7

0.5 7.8 × 10−7 5.9 × 10−7 7.7 × 10−8 5.5 × 10−7 8.0 × 10−6

0.8 8.3 × 10−5 2.4 × 10−5 9.0 × 10−7 3.1 × 10−5 9.1 × 10−5
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Figure 4. (Above) Three-dimensional illustrations of the numerical simulation and exact solution, and
two-dimensional illustration of the approximation of |u|2; (Below) three-dimensional illustrations of
the numerical simulation and exact solution, and two-dimensional illustration of the approximation
of |v|2 for Case D.

From the physics perspective, the surface plots of HD bright and dark solitons are
accurate representations of the actual pulses that travel down an optical fiber based on the
studied model. The error measure is impressive and acceptable as computed. These pulses
are computed in such a way that the radiation component is completely avoided so that
the core soliton regime is under focus, both for bright and dark solitons. Another source to
receive a visual effect to the model would be an oscilloscope, which is outside the scope
of the current work since this paper focuses on a specific numerical scheme, namely the
application of LADM to handle HD solitons with polynomial law of nonlinear refractive
index change.

5. Conclusions

This paper is an exhibit of numerical simulations for dark and bright HD solitons
with polynomial nonlinear form. The LADM scheme has made this display possible. Dark
and bright soliton surface plots are included with an error measure that is impressively
small. The results are thus a step towards the final goal that is to address the model in
dispersion-flattened fibers. The immediate next thought, however, is the study of HD
solitons with non-local nonlinearity.

The current results are going to be pretty helpful with its implementation in a photonics
lab when the experimental research is conducted to take a look at the eye diagrams without
the soliton radiation. The results of this paper would therefore provide a forefront view
of the bright and dark HD solitons. Thus, apart from physicists and mathematicians, the
results would reach the desk of electrical engineers, whose successful observations on an
oscilloscope would be closer to reality. These observations would be just before rubber
meets the road.

Other areas of expansion would be to address the model with the inclusion of the
effect of soliton radiation. With HD solitons, soliton radiation is unavoidable and that
would unavoidably be quite pronounced. Therefore, it is imperative to include its effect
and to study the model with its presence. This would require the usage of beyond all-order
asymptotics and/or the theory of unfoldings to quantify the radiation effect followed by its
numerical implementation. Such studies will be taken up with time, and the results will be
disseminated thereafter.
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Abstract: This manuscript consist of diverse forms of lump: lump one stripe, lump two stripe,
generalized breathers, Akhmediev breather, multiwave, M-shaped rational and rogue wave solutions
for the complex cubic quintic Ginzburg Landau (CQGL) equation with intrapulse Raman scattering
(IRS) via appropriate transformations approach. Furthermore, it includes homoclinic, Ma and
Kuznetsov-Ma breather and their relating rogue waves and some interactional solutions, including
an interactional approach with the help of the double exponential function. We have elaborated the
kink cross-rational (KCR) solutions and periodic cross-rational (KCR) solutions with their graphical
slots. We have also constituted some of our solutions in distinct dimensions by means of 3D and
contours profiles to anticipate the wave propagation. Parameter domains are delineated in which
these exact localized soliton solutions exit in the proposed model.

Keywords: NLSE; lump solitons; breathers; multiwave

MSC: 35J05; 35J10; 35K05; 35L05

1. Introduction

The analysis of the solitary wave solutions (SWs) for various nonlinear partial differ-
ential Equations (NLPDEs) play a significant role in different aspects of mathematical and
physical phenomena [1–5]. Mainly natural phenomena arising in applied science, such as
nuclear physics, chemical reactions, optical fibres [6–10], fluid mechanics, plasma, physics
and ecology, can sometimes be modeled and described by NLPDEs [11–21]. Construct-
ing the SWs of these equations has become a global interest in recent years. Hence, an
enormous number of mathematical experts have attempted to invent various approaches
by which one can obtain the exact solutions of such equations. Nowadays, some new
effective techniques have been residential and well known [22]. To learn the mechanism of
phenomena for the NLPDEs in physics and engineering, their SWs are calculated. There
are many integration architectonics, such as Lie symmetry analysis [23], Backlund trans-
formations [24], conservation laws, symmetry bifurcation [25], extended tanh-function,
spontaneous symmetry [26], Painleve and Lie symmetries [27], CESTAC Method [28],
polynomial law [29], computational architectonic, Semi inverse technique [30], HBM [31],
mapping algorithm [32], (G′/G) expansion algorithm [33], Kudryashove architectonic [34],
auxiliary equation scheme [35] and exp((−ϕ′/ϕ)η)-expansion scheme [36]. The Riccati-
Bernoulli sub-ODE method, optimal homotopy asymptotic approach, Exp-function al-
gorithm, sine-cosine process, tanh-sech mechanism, extended tanh-scheme, F-expansion
method, homogeneous balance technique, Jacobi elliptic function mechanism and several
others have been developed to obtain SWs. A massive number of NLPDEs can be purely
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solved by the abovementioned methods. However, there is no a specific approach by which
we can deal with all NLPDEs. In addition, some NLPDEs cannot be effortlessly solved by
most traditional methods. The proposed method, which allows us to execute tedious and
sophisticated algebraic calculations, is utilized to establish solitary wave solutions, peaked
wave solutions and exact wave solutions for NLPDEs.

The NLPDEs are mainly valuable zones for nonlinear optics to reveal the proliferation
distinctively short pulse in ultra-fast signal routing and telecommunication and light pulse
propagation in condensed matter [37–41]. There are lots of recognized model, such as the
modified KP-Equation [24], Fokas Equation [23], rth Dym Equation [21], Pochhammer-
Chree model [14], modified Equation [11], fractional NLSE [20], fiber Bragg gratings
model [29], Einstein’s vacuum field Equation [27], double-chain model [13], Wazwaz
Benjamin model [12], modified Veronese Web Equation [42], (KMN)-Equation [30], Sawada
Kotera Equation [31] and Fokas–Lenells model.

Recently, lump and interactional solutions (LISs) have shown significance to depict the
wave features for various NLPDEs. For instance, LISs were studied by Zhou et al. with the
Hirota Satsuma model [43], LIsS were found by Wang et al. with the Burgers model [44],
Wu et al. worked on lump, periodic lump solutions in the KP model [45] and, similarly, Li
et al. studied various lumps for BLMP model [46]. Breather soliton is a nonlinear wave in
which energy is localized in space but oscillates in time, or vice versa, and has been newly
reported in an optical fiber cavity. Cavity solitons (CSs) are localized pulses of light that can
be wound up in nonlinear optical resonators and have sparked imperative study curiosity
in the perspective of micro resonator-based frequency comb generation, and are found
in a range of subfields of natural science, for instance fluid dynamics, solid-state physics,
plasma physics, molecular biology, chemistry and nonlinear optics [47]. Recently, Rizvi
et al. investigated breathers for NLEE [15], Seadawy et al. interpreted breather solutions
for NLEE [42], Ahmed et al. studied breathers for the general (2 + 1)-rth dispersionless
Equation [21], and Ahmed et al. found kinky breathers for the nonlinear model [48], among
many other studies. Multiwave solutions (MS) for nonlinear models have its own worth.
Seadawy et al. worked on MS for the HS-Equation [15], Ahmed et al. studied MS for the
(2 + 1)-rth dispersionless Equation [21], Rizvi et al. reported MS for NLEE [42], Seadawy
et al. worked on MS for the nonlinear model [48], Wazwaz analyzed rogue wave and
breathers [49], etc.

In this template, we begin our analysis by taking the CQGL-equation with IRS term [22];

iΔz +
1
2

Δtt + γ|Δ|2Δ = iδΔ + iβΔtt + iε|Δ|2Δ − ν|Δ|4Δ + iμ|Δ|4Δ + Tr

(
|Δ|2
)

t
Δ, (1)

where z is the normalized propagation distance, t is the retarded time and Δ is the normal-
ized envelope of the pulse. For a laser system, the interpretation of distinct coefficients is as
follows: β shows spectral filtering or gain dispersion, μ expresses higher-order correction to
the nonlinear absorption or amplification, ε shows nonlinear gain, ν shows a higher-order
correction term to the nonlinear refractive index, Tr shows the IRS coefficient, γ displays
the positive Kerr effect (or negative Kerr effect if negative) and δ is a constant gain (or loss
if negative). The stated equation is a canonical model for weakly nonlinear, dissipative
systems and one of the most studied nonlinear equations in the physics community. It
can be used to describe a vast variety of nonlinear phenomena, such as Bose–Einstein
condensation, superconductivity, strings in field theory, superfluidity, lasers and liquid
crystals.

In order to solve Equation (1), we insert Δ = p + iq, where |Δ| = √p2 + q2. Thus,
Equation (1) may be converted into real and imaginary parts:

{
p3γ + q2γp + p5ν + 2p3q2ν + q4νp + δq + p2εq + q3ε + p4μq + 2p2q3μ + q5μ + 1

2 ptt + βqtt − qz = 0,
−δp − p3ε − q2εp − μp5 − 2μp3q2 − μq4 p + γp2q + γq3 + νp4q + 2νp2q3 + νq5 − βptt +

1
2 qtt + pz = 0.

(2)
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The document for the upcoming sections will be detailed in a sequence: in Section 2,
we will evaluate the lump solutions for the proposed model form with few graphical slots.
In Section 3, there will be a concise discussion of lump one stripe solutions with some
3D and contour graphical slots. In Section 4, we will construct lump two stripe results
with some suitable profiles. Section 5 consist of a Ma-breather (MB) and its relating rogue
wave. Similarly, in Section 6, we will evaluate the Kuznetsov-Ma breather (KMB) with
some suitable 3D and contour shapes. In Section 7, we will find the generalized breathers
(GB) for proposed equation with their relating figures. Section 8 includes Akhmediev
breathers (AB) along with some profiles for the concerned model. Similarly, Section 9 will
detail the procedure to construct standard rogue waves. In Section 10, we will explain
the methodology for finding multiwave solutions. In the same way, we will compute
homoclinic breathers for the proposed equation in Section 11. There will be M-shaped
solitons in Section 12. In Section 13, there will be an interaction approach for the proposed
model. We will find kink cross-rational (KCR) solutions in Section 14. Section 15 includes
periodic cross-rational (PCR) solutions along with some 3D and contour profiles for the
concerned model. Section 16 contains the results and a discussion about our newly achieved
solutions and we will make an suitable comparison with earlier work. Finally, in Section 17,
we will provide some concluding annotations.

2. Lump Solution

For the lump solutions of Equation (2), we apply the subsequent ansatz [43,44]:

p =
6
ρ
(ln g)z , q =

6
ω
(ln h)z , (3)

and get the proceeding form:

2p2γωg2h3gz + 2q2γωg2h3gz + 2p4νωg2h3gz + 4p2q2γωg2h3gz + 2q4νωg2h3gz

+2ωh3g2
t gz − ωgh3gttgz + 2δρg3h2hz + 2p2ερg3h2hz + 2q2ερg3h2hz + 2p4μρg3h2hz (4)

+4p2q2μρg3h2hz + 2q4μρg3h2hz + 4βρg3h2
t hz + . . . + 2βρg3h2hztt − 2ρg3h2hzz = 0.

Now, the function g and h in Equation (4) can be considered as [43,44]:

g = ξ2
1 + ξ2

2 + a2, h = ξ2
1 + ξ2

2 + a3, (5)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3) are specific real parameters. Now,
using g and h into Equation (4) and solving the coefficients of the z and t implies:

Set I. When

a0 =
(
−4 +

√
15
)

a1, a1 = a1, a2 = 0, ρ = ρ, ω = ω. (6)

These generated parameters make the lump solution:

Δ1 =
−6
(
−4 +

√
15
)

R1 +
(
−4 +

√
15
)2

a2
1

(
2a1(t + a1z) + 2

(
−4 +

√
15
)

a1R2

)
a2

1

(
(t + a1z)2 +

(
t +
(
−4 +

√
15
)

a1z
)2
) + Ω1, (7)

where R1 = a2
1 +
(
−4 +

√
15
)

a2
1, Ω1 =

6i(2a1(t+a1z)+2(−4+
√

15)a1(t+(−4+
√

15)a1z))(
(−4+

√
15)2a3

1
a3
1−(−4+

√
15)a3

1+(−4+
√

15)a3
1
+(t+a1x)2+(t+(−4+

√
15)a1z)

2
)

ω

and R2 = t +
(
−4 +

√
15
)

a1z.

3. Lump One Stripe Solution

To get the lump one stripe solution, we apply the transformation shown in
Equation (4) [50]:
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g = ξ2
1 + ξ2

2 + a2 + b0ek1z+k2t , h = ξ2
1 + ξ2

2 + a3 + b0ek1z+k2t, (8)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3), k1, k2 and b0 are any specific real
parameters. Now, using g and h in Equation (4) and solving the coefficients of the z and t:

Set I. When a2 = 0:

a0 = −a1, a3 =
−6b0ω

b0ω(νp6q2 + νq4 + γp2 + γq2)
, a5 = a5, ω = ω, ρ = ρ, k2 = 0. (9)

These parameters exhibit the required solution to Equation (2):

Δ2 =
6
(

b0ek1zk1 − 2a1(t − a1z) + 2a1(t + a1z)
)

ρ
(

b0ek1z + (t − a1z)2 + (t + a1z)2
) + Ω2. (10)

where Ω2 =
6i(b0ek1zk1−2a1(t−a1z)+2a1(t+a1z))(

b0ek1z+(t−a1z)2+(t+a1z)2− 6
p2γ+q2γ+p4ν+2p2q2ν+q4ν

)
ω

.

4. Lump Two Stripe Solution

To obtain the lump two stripe solution, we assume the subsequent transformation in
Equation (4) [50]:

g = ξ2
1 + ξ2

2 + a2 + b0ek1z+k2t + b1ek3z+k4t , h = ξ2
1 + ξ2

2 + a3 + b0ek1z+k2t + b1ek3z+k4t, (11)

where ξ1 = a0z + t, ξ2 = a1z + t., while ai(1 ≤ i ≤ 3), k1, k2, k3, k4, b0 and b1 are any specific
real parameters. Now, using g and h in Equation (4) and solving the coefficients of the z
and t:

Set I. When a1 = a2 = a3 = 0:

a0 = a0, a5 = a5, b1 =
−5k3δ

7k2
3 − 5k3δ

, β =
b1ω
(

7k3
2 − 5k3δ

)
10b1k3δρ

, ρ =
−4k2

3 + 5k3

5k3
. (12)

These parameters exhibits the required solution to Equation (2):

Δ3 =

6
(

b0ek2t+k1zk1 − ek4t+k3zk3(5k3−4k2
3)

−5k3+11k2
3

+ R3

)

ρ

(
b0ek2t+k1zk1 − ek4t+k3zk3(5k3−4k2

3)
−5k3+11k2

3
+ R4

) +

6i
(

b0ek2t+k1zk1 − ek4t+k3zk3(5k3−4k2
3)

−5k3+11k2
3

+ R3

)

ω

(
b0ek2t+k1zk1 − ek4t+k3zk3(5k3−4k2

3)
−5k3+11k2

3
+ R4

) , (13)

where R3 = 2a0(t + a0z) and R4 = t2 + (t + a0z)2.

5. Ma-Breather (MB) and Its Relating Rogue Wave

We assume g and h in Equation (4) as [44]:

g = 1 + α1 + ei(p1x) + e−i(p1x)eλ1t+γ1 + β1e2(λ1t+γ1) , h = 1 + α2 + ei(p2x) + e−i(p2x)eλ2t+γ2 + β2e2(λ2t+γ2), (14)

where α1, α2, p1, p2, λ1, λ2, γ1 and γ2 are any parameters. Now, using g and h in
Equation (4) and letting the coefficients of exp and cos functions be zero:

Set I. When γ1 = β2 = 0:

α1 = α1, α2 = α2, μ =
ip2 − 2δ − 2p2ε − 2q2ε − 5βλ2

2

2(p2 + q2)
2 , p1 = p1, a4 = a4. (15)

These parameters form the Ma-breather solution to Equation (1):
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Δ4 =
6etλ1

(−ie−ip1z p1 + ieip1z p1
)
α1(

1 + etλ1
(
e−ip1z + eip1z

)
α1
)
ρ

+
6ieγ2+tλ2

(−ie−ip2z p2 + ieip2z p2
)
α2(

1 + eγ2+tλ2
(
e−ip2z + eip2z

)
α2 + e2(γ2+tλ2)β2

)
ω

. (16)

6. Kuznetsov-Ma Breather (KMB) and Its Relating Rogue Wave

We assume g and h in Equation (4) as [44]:

g = e−p1(b2z−b1t) + a1 cos(p(b2z + b1t)) + a2 cos(p(b2z − b1t)),

h = e−p2(b3z−b4t) + a3 cos(p(b3z + b4t)) + a4 cos(p(b3z − b4t)), (17)

where p1, p2, b1, b2, b3, b4, a1, a2, a3 and a4 are any parameters to be found. Now, using g
and h in Equation (4) and letting the coefficients of exp and cos functions be zero follows:

Set I. When:

p1 = p1, ν =
−p2

1
(
γ2 + μ

)
p2 , a1 = a1, γ = γ, a3 = a3, ρ = ρ. (18)

These parameters form the proposed solution to Equation (1):

Δ5 =
6
(
−b2e−p1(−b1t+b2z)p1 + a2b2ep1(−b1t+b2z)p1 − a1b2 p sin(p(b1t + b2z))

)
ρ
(
e−p1(−b1t+b2z) + a2ep1(−b1t+b2z) + a1 cos(p(b1t + b2z))

) + Ω3, (19)

where Ω3 =
6i
(
−b3e−p2(−b3t+b4z)p2+a4b3e−p2(−b3t+b4z)p2−a3b3 p sin(p(b4t+b3z))

)
ω
(

e−p2(−b3t+b4z)+a4ep2(−b3t+b4z)+a3 cos(p(b4t+b3z))
) .

7. Generalized Breathers (GB)

In order to obtain generalized breathers we use ansatz [51]:

Δ(z, t) = 2bc
(

6
κ

ln Ψ(z, t)
)

z
+ m, (20)

where b, c and m are any particular constants. Inserting Equation (20) into Equation (1), we
have:

m3γκ5ψ5 − imδκ5ψ5 − im3εκ5ψ5 + m5κ5νψ5 + m5κ5νψ5 + 36bcm2γκ4ψ4ψz − 12ibcδκ4ψ4ψz

−36ibcm2εκ4ψ4ψz − 60ibcm4μκ4ψ4ψz + 60bcm4νκ4ψ4ψz + 12bcmTrκ4ψ3ψtψz + 12bcκ4ψ2ψzψ2
t (21)

−24ibcβκ4ψ2ψ2
t ψz − 6bcκ4ψ3ψttψz + 12ibcβκ4ψ3ψttψz + . . . + 12ibcκ4ψ4ψzz − 12ibcβκ4ψ4ψzt = 0.

For finding the required solutions, we use the following assumption in Equation (21):

ψ =
(1 − 4c) cosh(σt) +

√
2c cos(ρz) + iσ sinh(σt)√

2c cos(ρz)− cosh(σt)
eit, (22)

where σ, ρ and c are constants to be found. The coefficients of cosh, sinh and exp functions
are defined as follows:

a = a, b = b, m = 0, c =
1
2

, ρ = ρ, σ = σ. (23)

These values implies the following GB profiles of Equation (1):

Δ6 =

6bie−it(cos(ρz)− cosh(σt))
(

−eitρ sin((ρz))
cos(ρz)−cosh(σt) +

eitρ sin((ρz))(cos((ρz))−cosh(σt)+iσ sinh(σt))
(cos(ρz)−cosh(σt))2

)
κ cos(ρz)− cosh(σt) + iσ sinh(σt)

. (24)
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8. Akhmediev Breathers (AB)

We use the following transformation in Equation (21) [52]:

ψ =
√

p0
(1 − 4a) cosh(bz) + ib sinh(bz) +

√
2a cos(ω mod T)√

2a cos(ω mod T)− cosh(bξ)
, (25)

where ωmod interprets the perturbation frequency (PF) with p0 as the power. The coefficients
a and b depends on ωmod and are defined by 2a = 1 − (ωmod

ωc
)2 and b = [8a(1 − 2a)]2 with

ω2
c = 4p0γ

|β2| . Setting the coefficients of trigonometric and hyperbolic functions be zero:

a = a, b = b, c = c, ω =

√
4 − 82

2iβ
, ρ = ρ, p0 = p0. (26)

These values imply the AB of Equation (1) to be as follows:

Δ7 = m +

12bc

⎛
⎝√

2a cos

⎛
⎝ t
√
− i(4−8a)

β√
2

⎞
⎠− cosh(bz)

⎞
⎠Ω4

√
p0κ

⎛
⎝√

2a cos

⎛
⎝ t
√
− i(4−8a)

β√
2

⎞
⎠+ (1 − 4a) cosh(bz) + ib sinh(bz)

⎞
⎠

, (27)

where:

Ω4 =

⎛
⎜⎜⎜⎜⎝

b
√

p0 sinh(bz)

⎛
⎝√

2a cos

⎛
⎝ t
√
− i(4−8a)

β√
2

⎞
⎠+(1−4a) cosh(bz)+ib sinh(bz)

⎞
⎠

⎛
⎝√

2a cos

⎛
⎝ t
√
− i(4−8a)

β√
2

⎞
⎠−cosh(bz)

⎞
⎠

2 +
√

p0(ib2 cosh(bz)+(1−4a)b sinh(bz))

√
2a cos

⎛
⎝ t
√
− i(4−8a)

β√
2

⎞
⎠−cosh(bz)

⎞
⎟⎟⎟⎟⎠.

9. Standard Rogue Wave (SRW) Solutions

For evaluating the SRW, we apply the subsequent assumption in Equation (21) [44]:

ψ = −
(

1 − 4(1 + 2it)
1 + 4z2 + 4t2

)
eit, (28)

Setting the coefficients of exponential function, z and t be zero will follow:

b = b, β =
−i
2

, m =

√
−3iε + 3γ +

√
20δμ − 9ε2 − 18iγε + 20iδν + 9γ2

10(iμ − ν)
, c = c, κ = κ. (29)

These values implies the SRW to Equation (1):

Δ8 = − 384bc(1 + 2it)z

(1 + 4t2 + 4z2)
(
−1 + 4(1+2it)

1+4t2+4z2

)
κ
+

√
−3iε + 3γ +

√
20δμ − 9ε2 − 18iγε + 20iδν + 9γ2

10(iμ − ν)
. (30)

10. Multiwaves Solutions (MS)

For these type of results, we use the preceding transformation in Equation (2) [48]:

Δ(z, t) = ψ(ξ)eιθ , ξ = k1z − c1t, θ = k2z − c2t. (31)

Using the above transformation, we obtain the real and imaginary parts of equal
Equation (2), by considering the real part only:

γψ3 + νψ5 + c1Trψψ
′ − 1

2
c2

1ψ +
1
2

c2
1ψ

′′
+ 2βc1c2ψ

′
= 0. (32)
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Now, by way of following the assumption in Equation (32):

ψ = 2(ln f )ξ , (33)

we obtain:

−c2
2 f 4 f

′ − 4βc1c2 f 3 f
′2
+ 2c2

1 f 2 f
′3
+ 8γ f 2 f

′3 − 4c1Tr f 2 f
′3
+ 32ν f

′5
+ 4c1c2β f 4 f

′′ − 3c2
1 f 3 f

′
f
′′

+4c1 f 3Tr f
′
f
′′
+ c2

1 f 4 f
′′′
= 0 (34)

To get the MS of Equation (34), we use anstaz [48]:

f = b0 cosh(a1ξ + a2) + b1 cos(a3ξ + a4) + b2 cosh(a5ξ + a6), (35)

where a1, a2, a3, a4, a5 and a6 are any specific constants. Substituting Equation (35) into
Equation (34) with Mathematica and letting the coefficients of hyperbolic and trigonometric
functions to zero:

Set I. When:

a1 = a1, a2 = a2, a3 =
−1
2

a5, a4 = a4, a5 = a5, b0 = 0, b1 = b1, c1 = c1. (36)

Using the above values, we have:

Δ9 =
2ei(−c2t+k2z)

(
1
2 a5b1 cos

(
a4 − 1

2 a5(−c1t + k1z)
)

sin
(

a4 − 1
2 a5(−c1t + k1z)

)
+ Ω5

)
b1 cos

(
a4 − 1

2 a5(−c1t + k1z)
)
+ b2 cosh(a6 + a5(−c1t + k1z))

, (37)

where Ω5 = a5b2 cosh(a6 + a5(−c1t + k1z)) sinh(a6 + a5(−c1t + k1z)).

11. Homoclinic Breather (HB)

In this approach we assume f the form [48]:

f = e−p(a2+a1ξ) + b1ep(a4+a3ξ) + b0 cos(p1(a6 + a5ξ)), (38)

where a′is denotes any particular constants. Inserting Equation (38) into Equation (34) and
collecting coefficients of exponential and trigonometric functions to be zero yields:

Set I. When:

a1 =
1
2

a5, a2 = a2, a3 = a3, c1 =
−2a2

5νp2

Tr
, b1 = b1, a5 = a5. (39)

Via the above values we obtain:

Δ10 =

2

⎛
⎝−1

2 a5b1 pe
p
(

a4− 1
2 a4

(
k1z+

2a2
5 p2tν
Tr

))
− 1

2 a5 pe
−p
(

a2− 1
2 a5

(
k1z+

2a2
5 p2tν
Tr

))⎞
⎠ei(−c2t+k2z)

b1e
p
(

a4− 1
2 a4

(
k1z+

2a2
5 p2tν
Tr

))
+ e

−p
(

a2− 1
2 a5

(
k1z+

2a2
5 p2tν
Tr

)) . (40)

12. M-Shaped Rational Solitons

For these solutions, we consider the form [48,53]:

f = (d1ξ + d2)
2 + (d3ξ + d4)

2 + d5, (41)

where di(1 ≤ i ≤ 5), are any parameters. Put f into Equation (34) and solving coefficients
of ξ to get subsequent result on parameters:
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Set I. Whenever d5 = d2 = 0:

d1 = id3, d3 = d3, d4 =
c2

1d3

√
c4

1d2
3 + 24βc1c2γ

6βc1c2
, c1 = c1, c2 = c2. (42)

Using the above values, we obtain:

Δ11 =

2ei(−c2t+k2z)
(
−2d2

3(−c1t + k1z) + 2d3

(
d3(−c1t + k1z) + c2

1d3
√

c4
1d2

3+24βc1c2γ
6βc1c2

))

−d3
2(−c1t + k1z)2 +

(
d3(−c1t + k1z) + c2

1d3
√

c4
1d2

3+24βc1c2γ
6βc1c2

)2 . (43)

13. Interactional Solutions with Double Exponential Form

We use the following hypothesis [48]:

f = b1e−a1ξ+a2 + b2ea3ξ+a4 . (44)

where a1, a2, a3 and a4 are some constants. Inserting Equation (44) into Equation (34) and
solving coefficients of exponential functions, a system of equations is obtained. By solving
it:

Set I.

a1 =
(

2 −
√

3
)

a3, a2 = a2, c1 =
8a2

3ν
(

7 − 4
√

3
)

Tr
, a3 = a3, a4 = a4. (45)

Using the above values we have:

Δ12 =

2

⎛
⎝a3b2e

a4+a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

)
+
(

2 −√
3
)

a3b1e
a2+(2−√

3)a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

)⎞
⎠ei(−c2t+k2z)

b2e
a4+a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

)
+ b1e

a2+(2−√
3)a3

(
k1z− 8(7−4

√
3)a2

3tν
Tr

) . (46)

14. Kink Cross-Rational (KCR) Solutions

For KCR solutions, we consider f as [54,55]:

f = g0 + e−(a1ξ+a2) + k1ea1ξ+a2 + (b1ξ + b2)
2 + (b3ξ + b4)

2, (47)

where ai and bi are some constants. Inserting Equation (47) into Equation (34) and solving
coefficients of exponential functions:

Set I.

a1 =

√
−3
32μ

c1, b1 = b1, b2 = b2, k1 = 0, a2 = a2, ν =
2
5

μ, Tr =
3
√

−3
32μ c2

1 + 8βc2

4
√

−3
32μ c1

, b3 = b3, b4 = b4. (48)

Using the above values we have:

Δ13 =

2ei(−c2t+k2z)
(
−2b1(b2 − b1c2t) + 2b3(b4 − b3c2t)− 1

4

√
− 3

2μ c2e−a2+
1
4

√
− 3

2μ c2
2t
)

e−a2+
1
4

√
− 3

2μ c2
2t
+ g0 + (b2 − b1c2t)2 + (b4 − b3c2t)2

. (49)

15. Periodic Cross-Rational (PCR) Solutions

We use the following hypothesis [54,55]:

f = g0 + (a1ξ + a2)
2 + (a3ξ + a4)

2 + k1 cos(b1ξ + b2) + k2 cosh(b3ξ + b4), (50)
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where ai and bi are some constants. Inserting Equation (50) into Equation (34) and solving
coefficients of exponential, trigonometric and hyperbolic functions:

Set I.
a1 = a1, b3 =

−4γ

3k2c2
1

, c2 = 0, Tr =
3
4

c1, b1 = 0, b4 = b4. (51)

Using the above values we have:

Δ14 =

2ei(k2z)

⎛
⎝2a1(a2 + a1(−c1t + k1z))2 + 2a3(a4 + a3(−c1t + k1z))2 −

4γ sinh
(

b4− 4(−c1t+k1z)γ

3c2
1k2

)
3c2

1

⎞
⎠

g0 + (a2 + a1(−c1t + k1z))2 + (a4 + a3(−c1t + k1z))2 + k2 cosh
(

b4 − 4(−c1t+k1z)γ
3c2

1k2

) . (52)

16. Result and Discussions

A lot of work has been done on the proposed model: Akhmediev et al. found sin-
gularities via a simple approach [56], Soto Crespo et al. studied pulse solutions for the
case of normal group-velocity dispersion [57], Yan et al. found stable transmission of
solitons for the concerned model via the asymmetric method [58], Biswas et al. worked on
Dromion-like structures for the variable-coefficients CQGL-equation by using the asym-
metric method [59], Gurevich et al. investigated soliton explosions for the CQGL-equation
via explosion modes [60], Uzunov et al. studied pulsating solutions for the CQGL-equation
by using the variation method and the method of moments [61], Nikolov et al. interpreted
the influence of the higher-order effects on the solutions for the concerned model [62],
Mihalache et al. analyzed the coaxial vortex solitons forthe CQGL-Equation [63], Fang
et al. worked on soliton dynamics [64], Djoko et al. investigated the effects of the septic
nonlinearity [65], Mou et al. studied discrete localized excitations [66] and Liu et al. ana-
lyzed harmonic and damped motions of dissipative solitons for the proposed model [67].
However, in this work, we have applied the appropriate transformations method to obtain
the stated solutions for the governing model.

This article contains five classes of breather solutions (i.e., MB, KBM, GB, AB and
homoclinic breather solutions), as well as lump, lump one stripe, lump two stripe and rogue
wave solutions. Furthermore, a detailed analysis of SRW solution is made. Multiwave,
M-shaped and interactional solutions are computed for ensuing model. These type of
solutions, utilized in diverse fields of sciences, i.e., optics, engineering, physics and biology
etc. [11–21]. A breather is a nonlinear localized wave and is a periodic solution of discrete
lattice equations. Our newly attained results show a discrepancy of their shapes by appro-
priate choices of parameters. Now, we can definitely understand the geometric structure
from Figure 1, which shows the lump profiles with one bright and dark soliton of the solu-
tion Δ1 in Equation (7) via distinct parameters ω = 1. The bright and dark soliton behavior
of three-dimensional profiles steadily increases the value of (i) a1 = 5, (ii) a1 = 10 and
(iii) a1 = −3. Figure 2 shows the contour shapes for Figure 1 successively. The lump one
stripe profiles of the solution Δ2 in Equation (10) are interpreted via distinct values of
ω = 5, k1 = 2, ρ = 4, γ = −1, p = 2, q = −1, ν = 1 and b0 = 3. Three-dimensional profiles
are shown in Figure 3 at (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −2. Figure 4 shows the contour
shapes for Figure 3 successively. Similarly, Figure 5 shows the lump two stripe graphs of
the solution Δ3 in Equation (13) for the distinct values of ω = 5, k1 = 2, ρ = 4, γ = −1,
k2 = 1, k3 = 1, k4 = 2 and b0 = 3, with three-dimensional profiles at (i) a0 = 5, (ii) a0 = 10
and (iii) a0 = −2. Figure 6 builds contour profiles for Figure 5 successively. The MB graphs
of the solution Δ4 in Equation (16) are interpreted via distinct values of ω = 5, p1 = 2,
p2 = 3, α1 = 1, α2 = 2.5, λ1 = 1, λ2 = 2, β2 = 3, ρ = 4 and γ2 = 1. Three-dimensional
profiles at (i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −1 are shown in Figure 7. Figure 8 shows
the contour profiles for Figure 7. In the same way, Figure 9 presents the KMB graphs of
solution Δ5 in Equation (19) through values of a1 = 2, a3 = 1, a4 = 3, ω = 5, p1 = 2, p2 = 3,
b1 = 1, b2 = 2.5, b3 = 1, b4 = 2 and ρ = 4, with three-dimensional profiles at (i) a2 = 5,
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(ii) a2 = 20 and (iii) a2 = −1. Figure 10 shows the contour profiles for Figure 9. The GB
profiles of the solution Δ6 in Equation (24) are formed through values of κ = 5, b = 1 and
ρ = 4. Three-dimensional graphs at (i) σ = 0.2, (ii) σ = 0.8 and (iii) σ = −0.1 are shown in
Figure 11. Similarly, Figure 12 shows the contour profiles for Figure 11. The AB profiles of
the solution Δ7 in Equation (27) are formed through values of a = 5, b = 1, c = 3, p0 = 4
and m = 5. Three-dimensional graphs at (i) β = 5, (ii) β = 10 and (iii) β = −3 are shown in
Figure 13, while Figure 14 shows the contour graphs for Figure 13. The SRW profiles of
the solution Δ8 in Equation (30) are constructed for values of ε = 0.5, b = 1, c = 3, γ = 0.1,
ν = 10, μ = 2 and κ = 2. Three-dimensional graphs at (i) δ = −5, (ii) δ = 10 and (iii) δ = 20
are shown in Figure 14. Figure 15 shows the contour graphs for Figure 14. Similarly, MS
graphs of solution Δ9 in Equation (37) are formed with a6 = 0.2, c1 = 1, k1 = 3, a4 = 0.1,
b1 = 10, b2 = 2, c2 = 2 and k2 = 3. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3 and
(iii) a5 = 7 are shown in Figure 15. Figure 16 shows the contour shapes for Figure 15. The
HB profiles of solution Δ11 in Equation (43) are constructed for values of c1 = 2, c2 = 1,
k1 = 3, k2 = 0.1, γ = 1 and β = 5. Three-dimensional graphs at (i) d3 = −5, (ii) d3 = 3
and (iii) d3 = 15 are shown in Figure 17. Figure 18 shows the contour shapes for Figure 17,
while the MS profiles of the solution Δ11 in Equation (40) are constructed for values of
b1 = 0.5, p = 1, a4 = 3, a2 = 2, k1 = 0.1, ν = 1 and Tr = 2. Three-dimensional graphs at (i)
a5 = −5, (ii) a5 = 3 and (iii) a5 = 10 are shown in Figure 19. Figure 20 shows the contour
shapes for Figure 19. When the value of a5 steadily increases, we can see that the waves
come closer to interact with each other. In the same manner, Figure 21 presents the soliton
profiles of the solution Δ12 in Equation (46) for values of a4 = 2, b2 = 1, b1 = 3, a2 = 0.1,
Tr = 1, c2 = 5, k2 = 2 and ν = 3, with three-dimensional graphs at (i) a3 = −5, (ii) a3 = 0.1
and (iii) a5 = 4. When the value of k2 steadily increases, we can see from the behavior of the
M-shaped wave that the waves come closer to interact with each other. Similarly, Figure 22
shows the contour shapes for Figure 21 successively. The KCR profiles of the solution
Δ13 in Equation (49) are formed for values of b2 = 1, b1 = 3, a2 = 0.1, μ = 2, g0 = 3,
b3 = 2, b4 = 5, c2 = 4 and k2 = 2. Three-dimensional graphs at (i) a2 = −5, (ii) a2 = 1 and
(iii) b2 = 40 are shown in Figure 23. Figure 24 shows the contour shapes for Figure 23
successively. The PCR graphs of the solution Δ14 in Equation (52) are formed for particular
values of b2 = 1, a4 = 2, a2 = −3, μ = 2, g0 = 7, b2 = 1, c1 = 3, k1 = 0.1, c2 = 6, γ = 2 and
k2 = 1. Three-dimensional graphs at (i) a1 = −4, (ii) a1 = 0 and (iii) a1 = 30 are shown in
Figure 25. Finally, Figures 26–28 shows the contour shapes for Figure 25 successively.

Figure 1. The lump profiles of the solution Δ1 in Equation (7) are presented via distinct parameters
ω = 1. Three-dimensional profiles at (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −3.
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Figure 2. Contours graphs for Figure 1.

Figure 3. The lump one stripe profiles of the solution Δ2 in Equation (10) are interpreted via distinct
values of ω = 5, k1 = 2, ρ = 4, γ = −1, p = 2, q = −1, ν = 1, b0 = 3. Three-dimensional profiles are
shown in (i) a1 = 5, (ii) a1 = 10 and (iii) a1 = −2.

Figure 4. Contour displays for Figure 3.
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Figure 5. The lump two stripe graphs of the solution Δ3 in Equation (13) are interpreted via distinct
values of ω = 5, k1 = 2, ρ = 4, γ = −1, k2 = 1, k3 = 1, k4 = 2, b0 = 3. Three-dimensional profiles at
(i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −2.

Figure 6. Contour graphs for Figure 5.

Figure 7. The MB graphs of the solution Δ4 in Equation (16) are interpreted via distinct values of
ω = 5, p1 = 2, p2 = 3, α1 = 1, α2 = 2.5, λ1 = 1, λ2 = 2, β2 = 3, ρ = 4, γ2 = 1. Three-dimensional
profiles at (i) a0 = 5, (ii) a0 = 10 and (iii) a0 = −1.
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Figure 8. Contour graphs for Figure 7.

Figure 9. The KMB graphs of the solution Δ5 in Equation (19) are interpreted through values of a1 = 2,
a3 = 1, a4 = 3, ω = 5, p1 = 2, p2 = 3, b1 = 1, b2 = 2.5, b3 = 1, b4 = 2 and ρ = 4. Three-dimensional
profiles at (i) a2 = 5, (ii) a2 = 20 and (iii) a2 = −1.

Figure 10. Contour graphs for Figure 9.
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Figure 11. The GB profiles of the solution Δ6 in Equation (24) are made through values of κ = 5,
b = 1 and ρ = 4. Three-dimensional graphs at (i) σ = 0.2, (ii) σ = 0.8 and (iii) σ = −0.1.

Figure 12. Contour graphs for Figure 11.

Figure 13. The AB profiles of the solution Δ7 in Equation (27) are made through values of a = 5,
b = 1, c = 3, p0 = 4 and m = 5. Three-dimensional graphs at (i) β = 5, (ii) β = 10 and (iii) β = −3.
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Figure 14. Contour slots for Figure 13.

Figure 15. The SRW profiles of the solution Δ8 in Equation (30) are made for values of ε = 0.5, b = 1,
c = 3, γ = 0.1, ν = 10, μ = 2 and κ = 2. Three-dimensional graphs at (i) δ = −5, (ii) δ = 10 and (iii)
δ = 20.

Figure 16. Contour slots for Figure 15.
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Figure 17. The MS graphs of the solution Δ9 in Equation (37) are made for values of a6 = 0.2, c1 = 1,
k1 = 3, a4 = 0.1, b1 = 10, b2 = 2, c2 = 2, k2 = 3. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3
and (iii) a5 = 7.

Figure 18. Contour slots for Figure 17.

Figure 19. The HB profiles of the solution Δ11 in Equation (43) are constructed for values of c1 = 2,
c2 = 1, k1 = 3, k2 = 0.1, γ = 1 and β = 5. Three-dimensional graphs at (i) d3 = −5, (ii) d3 = 3 and
(iii) d3 = 15.
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Figure 20. Contour slots for Figure 19.

Figure 21. The MS profiles of the solution Δ11 in Equation (40) are constructed for values of b1 = 0.5,
p = 1, a4 = 3, a2 = 2, k1 = 0.1, ν = 1 and Tr = 2. Three-dimensional graphs at (i) a5 = −5, (ii) a5 = 3
and (iii) a5 = 10.

Figure 22. Contour slots for Figure 21.
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Figure 23. The soliton profiles of the solution Δ12 in Equation (46) are made for values of a4 = 2,
b2 = 1, b1 = 3, a2 = 0.1, Tr = 1, c2 = 5, k2 = 2 and ν = 3. Three-dimensional graphs at (i) a3 = −5,
(ii) a3 = 0.1 and (iii) a5 = 4.

Figure 24. Contour profiles for Figure 23.

Figure 25. The KCR profiles of the solution Δ13 in Equation (49) are formed for values of b2 = 1,
b1 = 3, a2 = 0.1, μ = 2, g0 = 3, b3 = 2, b4 = 5, c2 = 4 and k2 = 2. Three-dimensional graphs at
(i) a2 = −5, (ii) a2 = 1 and (iii) b2 = 40.
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Figure 26. Contour profiles for Figure 25.

Figure 27. The PCR graphs of the solution Δ14 in Equation (52) are formed for particular values
of b2 = 1, a4 = 2, a2 = −3, μ = 2, g0 = 7, b2 = 1, c1 = 3, k1 = 0.1, c2 = 6 and γ = 2, k2 = 1.
Three-dimensional graphs at (i) a1 = −4, (ii) a1 = 0 and (iii) a1 = 30.

Figure 28. Shows contour shapes for Figure 27.

17. Concluding Remarks

We have considered the CQGL-equation under the influence of intrapulse Raman
scattering (IRS) and constructed distinct localized wave solutions by employing test func-
tions with the aid of an appropriate transformations method. Five classes of breather
solutions (i.e., Ma, Kuznetsov-Ma, GB, AB, homoclinic breather solutions), as well as lump,
lump one stripe, lump two stripe and rogue wave solutions were successfully evaluated.
Furthermore, a detailed analysis of SRW solution was performed. Multiwave, M-shaped,
interactional solutions, KCR solutions and PCR solutions are computed for the ensuing
model. Interaction behaviors between multiple-lump waves and soliton were also dis-
cussed. Multiple-lump wave evolution with time was also observed. We graphically
presented many valuable results obtained here. The conditions imposed on the parameters
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have been explicitly demonstrated to guarantee that they were well defined and that the
solutions were localized. To our knowledge, the results are new for the governing equation.
These results may be useful for the experimental realization of undistorted transmission
of optical waves in optical fibers and further understanding of their optical transmission
properties. Finally, we hope that the exact nature of these solitary waves interpreted here
may be profitably exploited in designing the optimal Raman fiber laser experiments.
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Abstract: The nonlinear phenomena in numbers are modelled in a wide range of fields such as
chemical physics, ocean physics, optical fibres, plasma physics, fluid dynamics, solid-state physics,
biological physics and marine engineering. This research article systematically investigates a (2+1)-
dimensional generalized Bogoyavlensky–Konopelchenko equation. We achieve a five-dimensional
Lie algebra of the equation through Lie group analysis. This, in turn, affords us the opportunity
to compute an optimal system of fourteen-dimensional Lie subalgebras related to the underlying
equation. As a consequence, the various subalgebras are engaged in performing symmetry reductions
of the equation leading to many solvable nonlinear ordinary differential equations. Thus, we secure
different types of solitary wave solutions including periodic (Weierstrass and elliptic integral),
topological kink and anti-kink, complex, trigonometry and hyperbolic functions. Moreover, we utilize
the bifurcation theory of dynamical systems to obtain diverse nontrivial travelling wave solutions
consisting of both bounded as well as unbounded solution-types to the equation under consideration.
Consequently, we generate solutions that are algebraic, periodic, constant and trigonometric in nature.
The various results gained in the study are further analyzed through numerical simulation. Finally,
we achieve conservation laws of the equation under study by engaging the standard multiplier
method with the inclusion of the homotopy integral formula related to the obtained multipliers. In
addition, more conserved currents of the equation are secured through Noether’s theorem.

Keywords: a (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation; Lie point
symmetries; optimal system of Lie subalgebras; bifurcation theory; exact solitary wave solutions;
conservation laws

MSC: 35B06; 35L65; 37J15

1. Introduction

Fluid mechanics is a branch of physics concerning the mechanics of fluids such as
liquids, gases, and plasmas and the forces on them. Applications of fluid mechanics are
found in a wide range of disciplines which include civil, chemical, mechanical as well as
biomedical engineering, geophysics, oceanography, astrophysics, biology and meteorol-
ogy [1–5]. Nonlinear partial differential equations (NLPDE) in the fields of mathematics
and physics play numerous important roles in theoretical sciences. They are the most
fundamental models essential for studying nonlinear phenomena. Such phenomena oc-
cur in oceanography, the aerospace industry, meteorology, nonlinear mechanics, biology,
population ecology, plasma physics and fluid mechanics, to mention a few. In [1] the
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authors studied a generalized advection–diffusion equation which is a nonlinear partial
differential equation in fluid mechanics, characterizing the motion of a buoyancy propelled
plume in a bent-on absorptive medium. Moreover, in [2], a generalized Korteweg–de Vries–
Zakharov–Kuznetsov equation was studied. This equation delineates mixtures of warm
adiabatic fluid, hot isothermal as well as cold immobile background species applicable in
fluid dynamics. Furthermore, the authors of [3] considered an NLPDE where they explored
the important inclined magneto-hydrodynamic flow of an upper-convected Maxwell liquid
through a leaky stretched plate. In addition, the heat transfer phenomenon was studied
with the heat generation and absorption effect. Plasmas considered as ‘the most abundant
form of ordinary matter in the universe’ have been observed to be associated with stars
which extend to the rarefied intracluster medium and possibly the intergalactic regions [4].
For instance, the authors of [4], for various types of the cosmic dusty plasmas, considered
an observationally/experimentally-supported (3+1)-dimensional generalized variable-
coefficient Kadomtsev–Petviashvili (KP)-Burgers-type equation. This equation could de-
pict the dust–magneto–acoustic, dust–acoustic, magneto–acoustic, positron–acoustic, ion–
acoustic, ion, electron–acoustic, quantum–dust–ion–acoustic or dust–ion–acoustic waves
in one of the cosmic/laboratory dusty plasmas. The reader can access more examples
in [5–12].

Observation has shown that nonlinear partial differential equations appear to model
diverse physical systems, such as found in water wave theory, condensed matters, nonlinear
mechanics, the aerospace industry, plasma physics, nonlinear optics lattice dynamics and
so on [13–19]. In order to really understand these physical phenomena, it is of immense im-
portance to secure results for differential equations (DEs) that control these aforementioned
phenomena. Moreover, the research on nonlinear travelling waves (periodic, solitary, kink
together with anti-kink), as well as the integrability of diverse significant nonlinear partial
differential equations in the likes of the KdV equation [20], sine-Gordon equation [21] and
nonlinear Schrödinger equation [22] possess vast practical values. All these involved exact
solutions afford us the opportunity of being given information that aids sound under-
standing of the mechanism involved in the complicated physical phenomena, as well as
dynamical procedures that are modelled via these nonlinear evolution equations [23].

However, no general and systematic theory was available to be applied to NLPDEs
so that their closed-form solutions can be obtained. Nonetheless, in recent times mathe-
maticians and physicists have evolved effective techniques to achieve viable analytical so-
lutions to NLPDEs, such as inverse scattering transform [13], Bäcklund transformation [24],
F-expansion technique [25], extended simplest equation approach [26], Lie symmetry analy-
sis [27–31], the

(
G′
G

)
—expansion technique [32], Darboux transformation [33], sine-Gordon

equation expansion technique [34] as well as the Kudryashov approach [35], modified
extended direct algebraic approach [36,37], the sine-cosine method [11], Hirota’s bilin-
ear technique [38], the exp-function expansion technique [12], and the auxiliary ordinary
differential equation approach [10]; the list continues.

Furthermore, in recent years, the bifurcation technique [39] among other techniques
has been used for obtaining both bounded and unbounded solutions of NLPDE. This
technique allows for the extensive study of the dynamical performance of the analytic
travelling wave solutions as well as their phase portrait analysis via the engagement of
the theory of dynamical systems. In [40] Jiang et al. investigated the dynamical behaviour
of points of equilibrium together with the bifurcations of phase portraits involved in
the travelling wave results for the CH-γ equation. In addition, Saha [41] also exhibited
the existence of smooth alongside non-smooth travelling wave solutions of generalized
KP-MEW equations by the exploitation of the bifurcation theory of planar dynamical
system. Das et al. [42,43] equally examined the existence together with stability analysis
of the dispersive solution of the KP-BBM as well as KP equations with the prevalence of
dispersion consequence.
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A two-dimensional generalization of the well-recognized Korteweg–de Vries equation
yields the Bogoyavlensky–Konopelchenko equation [44]:

pt + αpxxx + βpxxy + 6αppx + 4βppy + 4βpx∂−1
x py = 0, (1)

with constant coefficients α and β, where ∂−1
x =

∫
dx. Inserting ∂−1

x p = u into Equation (1),
one attains the equivalent structure of (1) as [45]:

utx + 6αuxuxx + 4βuxuxy + 4βuyuxx + αuxxxx + βuxxxy = 0. (2)

In [45] with uy = vx in (2), the authors integrated the result once to obtain a system
of NLPDE. Further, they utilized the Lie group theoretic approach to obtain solutions
to the system of equations. Added to that is the fact that they engaged the method to
secure conservation laws of the equations. Besides, the authors employed a new concept of
nonlinear self-adjointness of differential equations in conjunction with formal Lagrangian
for constructing nonlocal conservation laws of the system. In [46], Triki et al. investigated
the Bogoyavlensky–Konopelchenko Equation (2) and secured some shock wave solutions
to the equation. In addition, various applications of (2) were highlighted in [45,46]. This
established version describes an interconnection of a long wave propagation directed
towards the x-axis together with a Riemann wave propagation directed towards the y-
axis [47]. Some authors examined (2) with 4β replaced by 3β and secured the solution of
the resultant model. For instance, a Darboux transformation as well as some travelling
wave solutions were given in [48] for Equation (2). We note that the replacement earlier
mentioned presents Equation (2) as a special case of the KdV model in [49]. In addition to
that, a few particular properties of the equation have also been explored.

Chen et al. [50] contemplated the NLPDE called (2+1)-dimensional generalized
Bogoyavlensky–Konopelchenko equation stated as:

vtx + α(6vxvxx + vxxxx) + β(vxxxy + 3vxvxy + 3vxxvy) + γ1vxx + γ2vxy + γ3vyy = 0, (3)

which exists in plasma physics and fluid mechanics with α, β, γ1, γ2, γ3, nonzero real
valued constants and v = v(t, x, y). The authors got the Lump-type solutions together
with lump solutions of (3) with the employment of symbolic computation given in Hirota
bilinear form [51] as:

(DtDx + αD4
x + βD3

xDy + σDxDy + γD2
x + νD2

y) f · f = 0,

achieved under the transformations:

u = 12αβ−1(ln f )xx, v = 12αβ−1(ln f )x,

with nonzero real constants σ, γ and ν, where f is an analytic function depending on x, y and
t, Dx, Dy and Dt are regarded as the bilinear derivative operators given by [38,51], which
they used in constructing new closed-form and explicit solutions that include two-wave
alongside polynomial solutions for the equation. In addition, the lump-type solution found
comprises eleven parameters together with six independent parameters (arbitrary), as well
as non-zero conditions. Not only that, lump solutions were achieved by considering a
particular class of parameters, the motion track of which is also theoretically and graphically
delineated. In the same vein, lower-order lump solution of (3) has been presented [52].
The authors of [53] confirmed in their work the existence of diverse wave structures for (3)
delineating nonlinear waves in applied sciences. In this regard, on the basis of Hirota’s
bilinear structure and diverse test schemes, various kinds of exact solutions, comprising
breather-wave, double soliton, rational, cross-kink, mixed-type, as well as interaction
solutions to the equation, were formally extracted.
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Moreover, in [54], the authors considered a version of (3) in the form:

utx + k1uxxxx + k2uxxxy +
2k1k3

k2
uxuxx + k3uxuxy + k3uxxuy + γ1uxx + γ2uxy + γ3uyy = 0,

with real function u = u(x, y, t) with scaled time variable t as well as scaled space variables
x, y and real constants k1, k2, k3, γ1, γ2, γ3. They went ahead to examine the equation which
applies in fluid mechanics and plasma physics by utilizing the Lie symmetry technique to
obtain symmetries of the equation. Besides, the

(
G′
G

)
−expansion technique, polynomial

expansion as well as power series expansion methods were adopted to achieve some
solutions of the equation by the authors.

In this article, we investigate the (2+1)-dimensional generalized Bogoyavlensky–
Konopelchenko equation ((2+1)-D genBKe), a version of (3) structured as:

Δ ≡ utx + α(6uxuxx + uxxxx) + βuxxxy + 3(ρuxuxy + δuxxuy) + γuxx + σuxy + νuyy = 0, (4)

applicable in plasma physics and fluid mechanics with α, β, σ, γ, ν, ρ and δ as nonzero real
valued constants. In the study, we carry out explicit solutions of the (2+1)-D genBKe (4) to
achieve its abundant closed-form and travelling wave solutions. Thus, we catalogue the
article in the subsequent format. Section 2, presents the Lie group analysis of Equation (4)
where the obtained generators are adopted in computing its optimal system of Lie subalge-
bras. In addition, each Lie subalgebra is explored to reduce (4) and obtain solutions of the
underlying equation. In Section 3, we adopt the bifurcation theory of the dynamical system
to secure some nontrivial travelling wave solutions of the under-study equation. Numerical
simulations of the secured solutions are conducted for further analysis and discussion in
Section 4. Furthermore, Section 5 furnishes the conservation laws of (2+1)-D genBKe to be
constructed via the standard multiplier technique with the use of the homotopy formula. In
addition, we engage Noether’s theorem to gain more conserved vectors of (4) with ρ = 2δ.
Shortly after, we present the concluding remarks.

2. Lie Symmetry Analysis

This section first presents the algorithm for the computation of the Lie point symme-
tries of (2+1)-D genBKe (4) together with its differential generators. Thereafter, we engage
them to calculate the optimal system of Lie subalgebras and utilize them to generate exact
solutions for (4).

2.1. Lie Point Symmetries

Here in this subsection, we contemplate the one-parameter Lie group of infinitesi-
mal transformations

t̃ −→ t + ε ξ1(t, x, y, u) + O(ε2),

x̃ −→ x + ε ξ2(t, x, y, u) + O(ε2),

ỹ −→ y + ε ξ3(t, x, y, u) + O(ε2),

ũ −→ u + ε η(t, x, y, u) + O(ε2),

with ε standing for the parameter of the group alongside ξ1, ξ2, ξ3, η serving as the infinites-
imals of the transformations depending on t, x, y, and u. Thus utilizing ε (one-parameter),
Lie group of infinitesimal transformation in compliance with invariant conditions [55,56],
solution space (t, x, y, u) of (2+1)-D genBKe (4) stays invariant and can also transform into
another space (t̃, x̃, ỹ, ũ).

190



Mathematics 2022, 10, 2391

In accordance with the technique for deciding the infinitesimal generators of nonlinear
differential equations (NLDE), we shall secure the infinitesimal generator of (4). Symmetry
group of (2+1)-D genBKe (4) will be found by exploring vector field:

X = ξ1(t, x, y, u)
∂

∂t
+ ξ2(t, x, y, u)

∂

∂x
+ ξ3(t, x, y, u)

∂

∂y
+ η(t, x, y, u)

∂

∂u
, (5)

where ξ i, i = 1, 2, 3 such that ξ ′s and η are functions depending on t, x, y alongside u. We
recall that (5) is a symmetry of (2+1)-D genBKe (4) if invariance condition,

pr(4)XΔ|Δ=0 = 0, (6)

holds. Here pr(4)X denotes the fourth prolongation of (X ) [29] defined by:

pr(4)X = X + ζt∂ut + ζx∂ux + ζy∂uy + ζtx∂utx + ζxx∂uxx + ζxy∂uxy + ζyy∂uyy

+ ζxxxx∂uxxxx + ζxxxy∂uxxxy ,

with the ζt, ζx, ζy, ζtx, ζxx, ζxy, ζyy, ζxxxx and ζxxxy, given as:

ζt = Dt(η)− utDt(ξ
1)− uxDt(ξ

2)− uyDt(ξ
3),

ζx = Dx(η)− utDx(ξ
1)− uxDx(ξ

2)− uyDx(ξ
3),

ζy = Dy(η)− utDy(ξ
1)− uxDy(ξ

2)− uyDy(ξ
3),

ζtx = Dx(ζ
t)− uttDx(ξ

1)− utxDx(ξ
2)− utyDx(ξ

3),

ζxx = Dx(ζ
x)− utxDx(ξ

1)− uxxDx(ξ
2)− uxyDx(ξ

3),

ζxy = Dx(ζ
y)− utyDx(ξ

1)− uyxDx(ξ
2)− uyyDx(ξ

3),

ζyy = Dy(ζ
y)− utyDy(ξ

1)− uxyDy(ξ
2)− uyyDy(ξ

3),

ζxxxx = Dx(ζ
xxx)− uxxxtDx(ξ

1)− uxxxxDx(ξ
2)− uxxxyDx(ξ

3),

ζxxxy = Dx(ζ
xxy)− uxxytDx(ξ

1)− uxxxyDx(ξ
2)− uxxyyDx(ξ

3), (7)

and the total derivatives Dt, Dx as well as Dy defined as:

Dt = ∂t + ut∂u + utt∂ut + utx∂ux + · · · ,

Dx = ∂x + ux∂u + uxx∂ux + utx∂ut + · · · ,

Dy = ∂y + uy∂u + uyy∂uy + uyt∂ut + · · · .

Writing out the expanded form of determining Equation (6) and splitting it over
the various derivatives of u, we get twenty-two overdetermined systems of linear partial
differential equations:

ξ2
u = 0, ξ3

u = 0, ξ1
u = 0, ηuu = 0, ξ1

y = 0, ξ1
x = 0, ξ3

x = 0, ηxu = 0,

ηyu − ξ2
xy = 0, ηyu − 3ξ2

xy = 0, ηu + ξ2
x = 0, ξ3

y − 3ξ2
x = 0,

ηu + ξ2
x = 0, αξ2

x + βξ2
y − αξ3

y = 0, 2αηu − δξ2
y − ρξ2

y + 2αξ2
y = 0, ξ2

xx = 0,

ηtu + 6αηxx + 3ρηxy + σηyu − ξ2
tx − σξ2

xy − νξ2
yy + 4αηxxxu + 3βηxxyu = 0,

6αηx + 3δηy − ξ2
t + γξ2

x − σξ2
y + γξ3

y + 6αηxxu + 3βηxyu = 0,

2ξ2
x − ξ1

t + ξ3
y = 0, 3δηxx + 2νηyu − νξ3

yy + βηxxxu = 0,

ηtx + γηxx + σηxy + νηyy + αηxxxx + βηxxxy = 0,

3ρηx + 2σξ2
x − 2νξ2

y − ξ3
t + 3βηxxu = 0.
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Solving the system of linear PDEs via symbolic software MathLie, one procures ξ1, ξ2,
ξ3 and η given as:

ξ1 = c1, ξ2 = f1(t), ξ3 = c2 + c3t, η =
1

3δρ

{
δc3x − 2αc3y + 3δρ f2(t) + ρy f ′1(t)

}
.

If we define arbitrary functions f1(t) and f2(t) as f1(t) = c4 and f2(t) = c5, where c4
and c5 are arbitrary constants, thus with the aid of (5), the solution purveys vectors:

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 =

∂

∂t
, X4 =

∂

∂u
, X5 = t

∂

∂y
+

(
x

3ρ
− 2α

3δρ
y
)

∂

∂u
. (8)

Theorem 1. (2+1)-D genBK Equation (4) admits a five dimensional Lie algebra L5 spanned by the
vectors X1, . . . ,X5.

The associated group transformations for X1, . . . ,X5 are

G1 : (t̃, x̃, ỹ, ũ) −→ (t, x + ε1, y, u),

G2 : (t̃, x̃, ỹ, ũ) −→ (t, x, y + ε2, u),

G3 : (t̃, x̃, ỹ, ũ) −→ (t + ε3, x, y, u),

G4 : (t̃, x̃, ỹ, ũ) −→ (t, x, y, u + ε4),

G5 : (t̃, x̃, ỹ, ũ) −→
(

t, x, y + ε5t, u +
ε5

3ρ
− 2αε5

3δρ
y − αε2

5
3δρ

t

)
,

with ε1, . . . , ε5 representing real numbers. We realize that G1 portrays the x-translation, G2
the y-translation and G3 the t-translation.

Theorem 2. If u = f (t, x, y) is a solution of the (2+1)-D genBKe (4), then so are the functions
presented as:

G1(ε1) : u(t, x, y) = f (t, x − ε1, y),

G2(ε2) : u(t, x, y) = f (t, x, y − ε2),

G3(ε3) : u(t, x, y) = f (t − ε3, x, y),

G4(ε4) : u(t, x, y) = f (t, x, y) + ε4,

G5(ε5) : u(t, x, y) = f (t, x, y − ε5t)− ε5

3ρ
+

2αε5

3δρ
y +

αε2
5

3δρ
t.

2.2. Optimal System of One-Dimensional Subalgebras

It is revealed that it is unfeasible to list all possible group-invariant solutions. As a result,
the situation necessitates an effective, systematic and efficient means of classifying these
solutions. The moment this is achieved, the optimal system of group-invariant solutions is
then formed. Ibragimov et al. [57] invoke a robust approach that depends on the commutator
table in achieving the one-dimensional subalgebras optimal system. In consequence, we give
the commutator table (table of Lie brackets) of (4) associated with (8) in Table 1, that is

Table 1. Lie brackets.

[Xi , Xj] X1 X2 X3 X4 X5

X1 0 0 0 0 δX4

X2 0 0 0 0 −2αX4

X3 0 0 0 0 3δρX2

X4 0 0 0 0 0
X5 −δX4 2αX4 −3δρX2 0 0
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We state here that apparently {X1,X2,X3,X4,X5} is closed under the Lie bracket.
Besides, we express an arbitrary operator X ∈ L5 as:

X = l1X1 + l2X2 + l3X3 + l4X4 + l5X5. (9)

In a bid to secure the linear transformations related to vector l = (l1, l2, l3, l4, l5), we
have the generator defined as:

Ei = ck
ijl

j ∂

∂lk , i = 1, 2, 3, 4, 5, (10)

with ck
ij given for the relation [Xi,Xj] = ck

ijXk. On taking cognizance of Equation (10)
alongside Table 1, generators E1, E2, E3, E4, E5 are presented as:

E1 = δl5 ∂

∂l4 , E2 = −2αl5 ∂

∂l4 , E3 = 3δρl5 ∂

∂l2 , E4 = 0,

E5 = 2αl2 ∂

∂l4 − δl1 ∂

∂l4 − 3δρl3 ∂

∂l2 .

In association with E1, E2, E3, E4 and E5, we give the Lie equations possessing param-
eters a1, a2, a3, a4 and a5 having the initial criteria l̃|ai=0 = l, i = 1, . . . 5, as

dl̃1

da1
= 0,

dl̃2

da1
= 0,

dl̃3

da1
= 0,

dl̃4

da1
= δl̃5,

dl̃5

da1
= 0,

dl̃1

da2
= 0,

dl̃2

da2
= 0,

dl̃3

da2
= 0,

dl̃4

da2
= −2αl̃5,

dl̃5

da2
= 0,

dl̃1

da3
= 0,

dl̃2

da3
= 3δρl̃5,

dl̃3

da3
= 0,

dl̃4

da3
= 0,

dl̃5

da3
= 0,

dl̃1

da4
= 0,

dl̃2

da4
= 0,

dl̃3

da4
= 0,

dl̃4

da4
= 0,

dl̃5

da4
= 0,

dl̃1

da5
= 0,

dl̃2

da5
= −3δρl̃3,

dl̃3

da5
= 0,

dl̃4

da5
= −δl̃1 + 2αl̃2,

dl̃5

da5
= 0. (11)

Consequently, we give the transformations involved in the solution of Equations (11) as

T1 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4 + δa1l5, l̃5 = l5,

T2 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4 − 2αa2l5, l̃5 = l5,

T3 : l̃1 = l1, l̃2 = l2 + 3δρa3l5, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T4 : l̃1 = l1, l̃2 = l2, l̃3 = l3, l̃4 = l4, l̃5 = l5,

T5 : l̃1 = l1, l̃2 = l2 − 3δρa5l3, l̃3 = l3, l̃4 = l4 − 3αδρa2
5l3 + 2αa5l2 − δa5l1, l̃5 = l5.

Optimal Classification

We observe the fact that the transformations Ti, i = 1, . . . , 5 actually map vector X ∈ L5
presented by (9) to vector X̃ ∈ L5 expressed via the relation:

X̃ = l̃1X1 + l̃2X2 + l̃3X3 + l̃4X4 + l̃5X5.

The technique involved in the construction of optimal system in this process demands
the simplification of general vector structured as:

l = (l1, l2, l3, l4, l5), (12)

by engaging transformations T1, T2, T3, T4, T5. We are captivated to seek for simplest repre-
sentative of each class of alike vectors of (12) by inserting these representatives in (9) and

193



Mathematics 2022, 10, 2391

so, we gain one-dimensional subalgebras optimal system of (2+1)-D genBKe (4). Thus, we
structured the classifications into two different cases.

Case 1. l5 	= 0
1.1. l1 = 0,

We contemplate transformation T3 by taking a3 = −l2

3δρl5 , we can then make l̃2 = 0.
Thus vector (12) reduces to the structure:

l = (0, 0, l3, l4, l5). (13)

Moreover, if we take a1 = −l4

δl5 from T1 which makes l̃4 = 0, then we further reduce
vector (13) to:

l = (0, 0, l3, 0, l5). (14)

Evidently, since (14) cannot be further reduced, without loss of generality, we assume
that l3 = 1 and l5 = ±1. Therefore, we have the optimal representative:

X3 ±X5. (15)

Next, we contemplate the case of l3 	= 0 and first consider the resultant subalgebra
when l2 	= 0.

1.1.1. l3 	= 0,
1.1.1.1. l2 	= 0,

By taking a2 = l4

2αl5 from transformation T1, we can make l̃4 = 0. Now, since l1 = 0
and l2 = l3 = l5 	= 0, then vector (12) becomes:

l = (0, l2, l3, 0, l5).

If we suppose that l2 = 1 and l3 = l5 = ±1, then we have the representative

X2 ±X3 ±X5. (16)

Remark 1. We notice here that for the case of l2 = 0, we achieve an optimal representative earlier
obtained and consequently contribute no additional subalgebra to the optimal system.

1.1.2. l3 = 0.
We take, in this case, a3 = −l2

3δρl5 from T3, so that we make l̃2 = 0. In addition,

by considering a5 = −l4

2αl2−δl2 in T5, thereby making l̃4 = 0, we secure vector:

l = (0, 0, 0, 0, l5)

and so we have the optimal representative:

X5. (17)

1.1.2.1. l4 	= 0.
By taking a5 = l2

3δρl3 from T5, we have the reduced form of vector (12) as

l = (0, 0, 0, l4, l5),

which can not be simplified further and so we gain the representative:

X4 ±X5. (18)

Now, we contemplate some subcases when l1 	= 0 with a view to obtaining all possible
optimal representatives.
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1.2. l1 	= 0,
1.2.1. l4 = 0,
1.2.1.1. l3 	= 0,

By making a3 = −l2

3δρl5 in transformation T3 which occasions the possibility of making

l̃2 = 0, we have the vector:
l = (l1, 0, l3, 0, l5),

which we can not further streamline and so we gain the optimal representative:

X1 ±X3 ±X5. (19)

1.2.1.2. l3 = 0.
By taking in transformation T5, a5 = −l4

2αl2−δl2 and a5 = l2

3δρl3 , we have the vector:

l = (0, 0, 0, l4, l5),

which can not be simplified further and so we gain the representative:

X1 ±X5. (20)

Next, we consider the case of l4 	= 0 and then take into account the resultant subalgebra
when l3 = 0.

1.2.2. l4 	= 0,
1.2.2.1. l3 = 0,

By taking a3 = −l2

3δρl5 in transformation T3, we make l̃2 = 0 and so we have vector:

l = (l1, 0, 0, l4, l5),

which gives rise to the optimal representative:

X1 ±X4 ±X5. (21)

We reveal here that remark (1) absolutely applies to the case of l4 = 0 and l3 	= 0.

Case 2. l5 = 0.
In this second part of the process, we contemplate the structure of vector (12) as:

l = (l1, l2, l3, l4, 0). (22)

Finally, we consider the case of l4 	= 0 and then take into account the optimal represen-
tatives when l1 = 0.

2.1. l4 	= 0,
2.1.1. l1 = 0.

By contemplating the parameter a5 = l2

3δρl3 in transformation T5, one can definitely

make l̃2 = 0 and so, we have the reduced form of vector (22) to be given as:

l = (0, 0, l3, l4, 0),

which consequently yields the optimal representative:

X3 ±X4. (23)

2.1.2. l1 	= 0.
Conversely, if we consider l1 	= 0 with l3 = 0, using T3 where a3 = −l2

3δρl5 , occasions
vector (22) giving us:

l = (l1, 0, 0, l4, 0)
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and so we gain the subalgebra
X1 ±X4. (24)

2.2. l4 = 0.
By taking l2 	= 0 and also considering the converse (l2 = 0) with the use of T5 where

a5 = l2

3δρl3 , we gain the respective subalgebras:

X1 ±X2 ±X3, X1 ±X3. (25)

2.2.1. l3 = 0,
If we take the parameter a5 = l2

3δρl3 in transformation T5, that is l̃2 = 0, one gets:

X1. (26)

Finally, if we take l1 = 0 with l2 	= 0 and in addition contemplate a case of l3 	= 0 with
l1 = 0, we get in the respective situations:

X2, X3. (27)

Conclusively, by gathering the operators secured (that is, (15)–(21), (23)–(25) and (27)),
we arrive at a theorem, which is:

Theorem 3. The subsequent operators provide an optimal system of one-dimensional subalgebras
of the Lie algebra which is spanned by vectors X1,X2,X3,X4,X5 of (2+1)-D genBKe (4):

X1,X2,X3,X5,X3 ±X5,X4 ±X5,X1 ±X5,X3 ±X4,X1 ±X3,X1 ±X4,X2 ±X3 ±X5,X1 ±X3 ±X5,
X1 ±X4 ±X5,X1 ±X2 ±X3.

2.3. Group-Invariants and Some Exact Solutions

This subsection presents group-invariant solutions of (2+1)-D genBKe (4) by exploring
results presented in Theorem 3. Thus, furnishing some exact solutions of (4). Therefore, we
utilize the Lagrangian system given as [27,29]:

dt
ξ1(t, x, y, u)

=
dx

ξ2(t, x, y, u)
=

dy
ξ3(t, x, y, u)

=
du

η(t, x, y, u)
,

to secure the group-invariant solutions related to the vector fields.

2.3.1. Optimal Subalgebra X1

The characteristic equation corresponding to optimal subalgebra X1 = ∂/∂x is

dt
0

=
dx
1

=
dy
0

=
du
0

. (28)

On solving system (28), one gains invariants alongside their group-invariant as:

T = t, Y = y, where u(t, x, y) = G(T, Y). (29)

Therefore, by using the functions and variables from (29) in (4), we obtain:

GYY = 0,

which gives a solution in terms of T and Y but by back-substitution, we have

u(t, x, y) = f1(t)y + f2(t). (30)

Arbitrary functions f1 and f2 are depending on t in (30), a solution of (4).
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2.3.2. Optimal Subalgebra X2

The group-invariant associated with optimal subalgebra X2 = ∂/∂y is calculated as:

u(t, x, y) = G(T, X), with T = t, X = x. (31)

On utilizing the obtained group-invariant, (2+1)-D genBKe (4) is transformed to:

GTX + 6αGXGXX + αGXXXX + γGXX = 0. (32)

As a consequence, we gain a logarithmic-hyperbolic function solution in this regard
as:

G(T, X) = 2A2 tanh(A1T + A2X + A0) + A2 ln
{

tanh(A1T + A2X + A0)− 1
tanh(A1T + A2X + A0) + 1

}

+
4
3

A2
2X − γ

6α
X − A1

6αA2
X +

∫
f (T)dT,

where A0, A1 as well as A2 are arbitrary constants. Therefore, on retrograding to the basic
variables, one achieves a solution of (2+1)-D genBKe (4) in this case as:

u(t, x, y) = 2A2 tanh(A1t + A2x + A0) + A2 ln
{

tanh(A1t + A2x + A0)− 1
tanh(A1t + A2x + A0) + 1

}

+
4
3

A2
2x − γ

6α
x − A1

6αA2
x +

∫
f (t)dt. (33)

Further investigation of PDE (32) reveals that it has four Lie point symmetries,

R1 =
∂

∂T
+ F1(T)

∂

∂G
, R1 =

∂

∂X
+ F2(T)

∂

∂G
, R3 = T

∂

∂X
+

(
1

6α
X + F3(T)

)
∂

∂G
,

R4 = T
∂

∂T
+

1
3

X
∂

∂X
+

(
F4(T)− γ

9α
X − 1

3
G
)

∂

∂G
.

We contemplate some special cases of the generators obtained. Letting F1(T) = 1, we
have solution of R1 as G(T, X) = T + φ(r), r = X, that further reduces (4) to:

γφ′′(r) + 6αφ′(r)φ′′(r) + αφ′′′′(r) = 0,

whose result furnishes a trigonometric function solution of (2+1)-D genBKe (4) as:

u(t, x, y) = t −
√

γ

α
tan
[√

γ

4α

(
x ±√

αC0
)]

+ C1. (34)

C0 and C1 are integration constants. Moreover, taking F2(T) = 1, we have G(T, X) =
X + φ(r), r = T, which gives a trivial solution. Besides, for F1(T) = F2(T) = 0, we consider
a linear combination Q = c0R1 + c1R2 whose solution is G(T, X) = φ(r), r = c0X − c1T.
Utilizing the gained outcome, we reduce Equation (4) to:

γc0φ′′(r)− c1φ′′(r) + 6αc2
0φ′(r)φ′′(r) + αc3

0φ′′′′(r) = 0. (35)

On solving nonlinear ordinary differential equation (NODE) (35), we secure:

u(t, x, y) = C1 ∓
√

c1 − γc0

αc0
tanh

[
1

2c3/2
0

√
c1 − γc0

α

(
c3/2

0
√

αC0 ∓ (c0x − c1t)
)]

, (36)

which is an hyperbolic solution of (4) with C0 and C1, integration constants. In addition,
taking F3(T) = 0, we have outcome G(T, X) = X2/12αT + φ(r), r = T, which gives no

197



Mathematics 2022, 10, 2391

solution of interest. Besides, for F4(T) = 0, we have the result G(T, X) = T−1/3φ(r)−
γX/6α, r = XT−1/3 which eventually transforms (4) to:

18αφ′(r)φ′′(r) + 3αφ′′′′(r)− rφ′′(r)− 2φ′(r) = 0.

2.3.3. Optimal Subalgebra X3

Lie optimal subalgebra X3 = ∂/∂t reduces (2+1)-D genBKe (4) to the PDE

σGXY + γGXX + νGYY + 6αGXGXX + 3ρGXGXY + 3δGYGXX

+ αGXXXX + βGXXXY = 0 (37)

through the group-invariant alongside its invariants calculated and presented as

u(t, x, y) = G(X, Y), whereas X = x, Y = y.

Consequently, we secure a solution of (37) with respect to X and Y but by back-
substitution, we find a steady-state hyperbolic solution of (4) in this regard as:

u(t, x, y) =

[(
Ω0ρ + Ω0δ + 4αν − δσ − ρσ − 4A2

1βδ − 4A2
1βρ
)

cosh
(

Ω1

2ν

)]−1

×
{

4Ω0 A1β sinh
(

Ω1

2ν

)
− 16A3

1β2 sinh
(

Ω1

2ν

)
− 4A2

1 A2βδ cosh
(

Ω1

2ν

)

− 4A2
1 A2βρ cosh

(
Ω1

2ν

)
+ 8A1αν sinh

(
Ω1

2ν

)
− 4A1βσ sinh

(
Ω1

2ν

)

+ Ω0 A2δ cosh
(

Ω1

2ν

)
+ Ω0 A2ρ cosh

(
Ω1

2ν

)
+ 4A2αν cosh

(
Ω1

2ν

)

− A2δσ cosh
(

Ω1

2ν

)
− A2ρσ cosh

(
Ω1

2ν

)}
, (38)

where Ω0 =
√

16A4
1β2 − 16ανA2

1 + 8σβA2
1 − 4γν + σ2, Ω1 = Ω0 A1y − 4A3

1βy + 2A1νx −
A1σy + 2A0ν, where A0 and A1 are arbitrary constants of solution. On performing the Lie
symmetry analysis on (37), we obtain translation symmetries

R1 =
∂

∂X
, R2 =

∂

∂Y
, R3 =

∂

∂G
.

We contemplate the linear combination of the three generators as Q = c0∂/∂X +
c1∂/∂Y + c2∂/∂G. Therefore, Q furnishes the solution G(X, Y) = c2/c0X + φ(r), where
r = Y − c1/c0X. Engaging the function and its variables, we reduce (4) to:

αc4
1φ(4)(r)− βc3

1c0φ(4)(r) + 6αc2
1c2c0φ′′(r) + γc2

1c2
0φ′′(r) + c4

0νφ′′(r)− 3c1c2c2
0ρφ′′(r)

− c1c3
0σφ′′(r)− 6αc3

1c0φ′(r)φ′′(r) + 3c2
1c2

0δφ′(r)φ′′(r) + 3c2
1c2

0ρφ′(r)φ′′(r) = 0. (39)

On solving the fourth-order NODE (39), we achieve the trigonometric function:

u(t, x, y) = ± 1√
c0Δ0c2

1(2αc1 − c0(δ + ρ))

{
− 2Δ0i

√
Δ1 tan

[√
Δ0

2Δ1

(
αc4

1 A1

− βc0c3
1 A1 ∓ i(c0y − c1x)

√
Δ1

c0

)]}
+

c2

c0
x + A2, (40)
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where Δ0 = σc2
0c1 − νc3

0 − 6αc2
1c2 + c0c1(3ρc2 − γc1), Δ1 = c3

1(αc1 − βc0) with constant
of integrations A1 and A2. We observe that the obtained result presented in (40) is a
steady-state complex trigonometric function solution of (4).

2.3.4. Optimal Subalgebra X3 + aX5, a ∈ {−1, 1}
The group-invariant related to subalgebra X3 + aX5 is calculated and presented as:

u(t, x, y) = G(X, Y) +
2a2α

9δρ
t3 +

a
3ρ

x − 2aα

3δρ
y, where X = x, Y = y − 1

2
at2. (41)

Invoking the function given in (41) along with the variables, we transform (4) to:

aGXY + σGXY + γGXX + νGYY − atGXY + 3ρGXGXY + 6αGXGXX

+ 3δGYGXX + αGXXXX + βGXXXY = 0. (42)

On applying the Lie theoretic approach on (42), we achieve three generators:

R1 =
∂

∂X
, R2 =

∂

∂Y
, R3 =

∂

∂G
.

Now, the similarity solution of R1 = ∂/∂X purveys G(X, Y) = φ(r), with r = Y. Thus
using the function reduces (4) to differential equation φ′′(r) = 0 whose solution is:

φ(r) = A0r + A1,

where A0 and A1 are integration constants. On retrograding to the basic variables,

u(t, x, y) =
2a2α

9δρ
t3 +

a
3ρ

x − 2aα

3δρ
y + A0

(
y − 1

2
at2
)
+ A1. (43)

Next, we gain the solution related to generator R2 as G(X, Y) = φ(r), with r = X.
In consequence, we reduce Equation (4) to a fourth-order NODE expressed as:

γφ′′(r) + 6αφ′(r)φ′′(r) + αφ′′′′(r) = 0.

Thus, on solving the NODE and reverting to the fundamental variables, one obtains:

u(t, x, y) =
2a2α

9δρ
t3 +

a
3ρ

x − 2aα

3δρ
y −
√

γ

α
tan
[√

γ

4α

(
x ±√

αA1
)]

+ A2, (44)

with A1 and A2, integration constants. On contemplating the combination of R1 and R2
as Q = c0R1 + c1R2. In consequence, Q furnishes the solution G(X, Y) = φ(r), where
r = Y − c1/c0X. Imploring the function and its variables transforms (4) to:

ac1c3
0tφ′′(r)− ac1c3

0φ′′(r) + αc4
1φ(4)(r)− βc3

1c0φ(4)(r) + γc2
1c2

0φ′′(r) + c4
0νφ′′(r)

− c1c3
0σφ′′(r)− 6αc3

1c0φ′(r)φ′′(r) + 3c2
1c2

0δφ′(r)φ′′(r) + 3c2
1c2

0ρφ′(r)φ′′(r) = 0. (45)

On solving NODE (45), we secure a complex tan-hyperbolic solution of (4) as:

u(t, x, y) =
2a2α

9δρ
t3 +

a
3ρ

x − 2aα

3δρ
y ± 2iΩ1

c2
1(2αc1 − c0(δ + ρ))

tanh

{
Ω2

2c3
1(αc1 − βc0)

×
[

αc4
1 A1 − βc0c3

1 A1 ∓ i
√

c0(c3
1(αc1 − βc0))

(
y − a

2
t2 − c1

c0
x
)]}

+ A2, (46)
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where Ω1 =
√

c3
1(αc1 − βc0)(νc2

0 + γc2
1 + c0c1(a(t − 1)− σ)), A1 together with A2 constant

of integration and Ω2 =
√

c0(νc2
0 + γc2

1 + c0c1(a(t − 1)− σ)). Furthermore, we contem-
plate the combinations of all the symmetries as Q = c0R1 + c1R2 + c2R3. Hence, Q pro-
duces the solution G(X, Y) = c2/c0X + φ(r), where r = Y − c1/c0X. On utilizing function
G(X, Y) as well as its variables, we reduce (4) to NODE

ac1c3
0tφ′′(r)− ac1c3

0φ′′(r) + αc4
1φ(4)(r)− βc3

1c0φ(4)(r) + 6αc2
1c2c0φ′′(r) + γc2

1c2
0φ′′(r)

+ c4
0νφ′′(r)− 3c1c2c2

0ρφ′′(r)− c1c3
0σφ′′(r)− 6αc3

1c0φ′(r)φ′′(r) + 3c2
1c2

0δφ′(r)φ′′(r)
+ 3c2

1c2
0ρφ′(r)φ′′(r) = 0. (47)

The solution of (47) gives us complex trigonometric function satisfying (4) as:

u(t, x, y) =
2a2α

9δρ
t3 +

a
3ρ

x − 2aα

3δρ
y +

c2

c0
x ±

2Ω3i
√

c3
1(αc1 − βc0)√−c0Ω3c2

1(2αc1 − c0(ρ + δ))

× tan

{ √−Ω3

2c3
1(αc1 − βc0)

[
βc0c3

1 A1 − αc4
1 A1 ∓

√
c0c3

1(αc1 − βc0)

×
(

y − a
2

t2 − c1

c0
x
)]}

+ A2, (48)

where Ω3 = νc3
0 + c0c2

1(a(t − 1)− σ) + 6αc2
1c2 + c0c1(γc1 − 3ρc2) with A1 and A2 repre-

senting the integration constants of the solution.

2.3.5. Optimal Subalgebra X2 + aX3 + bX5, a, b ∈ {−1, 1}
We reduce (4) via X2 + aX3 + bX5 to a NLPDE with dependent variables X, Y as:

3aγρGXX + 3aσρGXY + 3aνρGYY − 3ρGXY + 9aρ2GXGXY + 18aαρGXGXX

+ 9aδρGYGXX + 3aαρGXXXX + 3aβρGXXXY + b = 0, (49)

by utilizing the invariants with their group-invariant expressed via the function

X = x, Y =
1
2a

(
2ay − bt2 − 2t

)
, where we calculated the group-invariant as

u(t, x, y) = G(X, Y) +
2b2α

9a2δρ
t3 +

bα

3a2δρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t. (50)

On applying Lie symmetry algorithm to Equation (49), we achieve three generators

R1 =
∂

∂X
, R2 =

∂

∂Y
, R3 =

∂

∂G
.

Similarity solution to R1 = ∂/∂X yields G(X, Y) = φ(r), where r = Y. Therefore
using the function reduces (4) to the linear ordinary differential equation (LODE)

3aρνφ′′(r) + b = 0.

The solution to the LODE is φ(r) = −br2/6aνρ + A1r + A2, where A1 and A2 are
integration constants. Hence, solution to (2+1)-D genBKe (4) in this regard is:

u(t, x, y) =
2b2α

9a2δρ
t3 +

bα

3a2δρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t − b
24a3νρ

(
2ay − bt2 − 2t

)2

+
A1

2a

(
2ay − bt2 − 2t

)
+ A2. (51)
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In the same vein, generator R2 furnishes G(X, Y) = φ(r), r = X, so (4) becomes:

3aαρφ′′′′(r) + 3aγρφ′′(r) + 18aαρφ′(r)φ′′(r) + b = 0. (52)

No solution of (52) can be secured. However, considering a special case of the equation
with b = 0, one achieves a trigonometric solution of (4) in this regard as

u(t, x, y) =
2b2α

9a2δρ
t3 +

bα

3a2δρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t

−
√

γ

α
tan
(√

γ

4α

(
x ∓√

αA1
))

+ A2, (53)

which is actually an algebraic-trigonometric solution of (2+1)-D genBKe (4). Further,
imploring generators R1 and R2, we obtain solution function G(X, Y) = φ(r), r = Y −
c1/c0X. On applying the function in Equation (4) changes it to NODE

3aαc4
1ρφ(4)(r)− 3aβc3

1c0ρφ(4)(r) + 3aγc2
1c2

0ρφ′′(r) + 3ac4
0νρφ′′(r)− 3ac1c3

0ρσφ′′(r)

− 18aαc3
1c0ρφ′(r)φ′′(r) + 9ac2

1c2
0δρφ′(r)φ′′(r) + 9ac2

1c2
0ρ2φ′(r)φ′′(r) + bc4

0

+ 3c1c3
0ρφ′′(r) = 0. (54)

We let b = 0 to gain an elliptic solution of (54) and give it a simple representation:

α0φ′′(r) + α1φ′(r)φ′′(r) + α2φ(4)(r) = 0 (55)

where α0 = 3aγc2
1c2

0ρ+ 3ac4
0νρ− 3ac1c3

0ρσ+ 3c1c3
0ρ, α1 = −18aαc0c3

1ρ+ 9ac2
0c2

1δρ+ 9ac2
0c2

1ρ2,
α2 = 3aαc4

1ρ − 3aβc0c3
1ρ. Integrating (55) twice with φ′(r) = Θ(r) gives

Θ′(r)2 = − α1

3α2
Θ(r)3 − α0

α2
Θ(r)2 − 2A0

α2
Θ(r)− 2A1

α2
, (56)

where A0 and A1 are integration constants. We engage the transformation,

Θ(r) = −12α2

α1
℘(r)− α0

α1
. (57)

Thus, we reckon Equation (56) as NODE with Weierstrass elliptic function [58,59]

℘′(r)2 − 4℘(r)3 + g1℘(r) + g2 = 0, (58)

with the involved Weierstrass elliptic invariants g1 and g2 expressed as:

g1 =
1

12α2
2

(
α2

0 − 2α1 A0

)
, and g2 =

1
216α3

2

{
α3

0 + 3α1(α1 A1 − α0 A0)
}

. (59)

Contemplating (57) alongside (58) and reverting to the basic variables yields:

u(t, x, y) =
2b2α

9a2δρ
t3 +

bα

3a2δρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t − α0

2aα1

(
2ay − bt2 − 2t

)

+
α0c1

α1c0
x +

12α2

α1
ζ

{
1
2a

(
2ay − bt2 − 2t

)
− c1

c0
x;

1
12α2

2

(
α2

0 − 2α1 A0

)
,

1
216α3

2

{
α3

0 + 3α1(α1 A1 − α0 A0)
}}

. (60)
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Next, we consider the combination of obtained symmetries as Q = c0∂/∂X + c1∂/∂Y +
c2∂/∂G. Consequently, Q gives the function G(X, Y) = c2/c0X + φ(r), where r = Y −
c1/c0X. Invoking the function and its variables, we reduce (4) to:

3aαc4
1ρφ(4)(r)− 3aβc3

1c0ρφ(4)(r) + 18aαc2
1c2c0ρφ′′(r) + 3aγc2

1c2
0ρφ′′(r) + 3ac4

0νρφ′′(r)
− 9ac1c2c2

0ρ2φ′′(r)− 3ac1c3
0ρσφ′′(r)− 18aαc3

1c0ρφ′(r)φ′′(r) + 9ac2
1c2

0δρφ′(r)φ′′(r)

+ 9ac2
1c2

0ρ2φ′(r)φ′′(r) + bc4
0 + 3c1c3

0ρφ′′(r) = 0. (61)

Just as earlier demonstrated, we present simplified structure of (61) with b = 0 as:

α5φ(4)(r) + 6α4φ′(r)φ′′(r)− α3φ′′(r) = 0, (62)

where α3 = 9ac1c2c2
0ρ2 + 3ac1c3

0ρσ − 18aαc2
1c2c0ρ − 3aγc2

1c2
0ρ − 3c1c3

0ρ − 3ac4
0νρ,

α4 = −3aαc3
1c0ρ + 3/2ac2

1c2
0δρ + 3/2ac2

1c2
0ρ2, α5 = 3aαc4

1ρ − 3aβc3
1c0ρ. On Integrating (62)

α5φ′′′(r) + 3α4φ′(r)2 − α3φ′(r) + K0 = 0, (63)

with integration constant K0. On engaging the representations expressed as:

φ′(r) = α5

α4
Θ(r), λ =

α3

α5
, K1 =

K0α4

α2
5

, (64)

Equation (63) then becomes the second order nonlinear differential equation:

Θ′′(r) + 3Θ(r)2 − λΘ(r) + K1 = 0 (65)

Equation (65) multiplied by Θ′(r) and integrating the outcome furnishes,

Θ′(r)2 = −(2Θ(r)3 − λΘ(r)2 + 2K1Θ(r) + 2K2),

with integration constant K2. Suppose that the algebraic equation Θ(r)3 − 1
2 λΘ(r)2 +

K1Θ(r) + K2 = 0 possesses roots ϑ1, ϑ2, ϑ3 with the property ϑ1 > ϑ2 > ϑ3, then

Θ′(r)2 = −2(Θ(r)− ϑ1)(Θ(r)− ϑ2)(Θ(r)− ϑ3). (66)

Equation (66) possess a highly famous solution expressed with regards to Jacobi elliptic
function (cn) [58,60] which we present in the structure,

Θ(r) = ϑ2 + (ϑ1 − ϑ2) cn2

(√
ϑ1 − ϑ3

2
r
∣∣∣Δ2

)
, where Δ2 =

ϑ1 − ϑ2

ϑ1 − ϑ3
. (67)

Reckoning (67) as well as (64) and retrograding to the basic variables gives:

u(t, x, y) =
2b2α

9a2δρ
t3 +

bα

3a2δρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t +
α5

α4

{
r(ϑ2 + ϑ1(Δ2 − 1))

Δ2

+

√
2(ϑ1 − ϑ2)dn

(√
ϑ1−ϑ3

2 r
∣∣∣Δ2
)

E
[

am
(√

ϑ1−ϑ3
2 r

∣∣∣Δ2
)∣∣∣Δ2

]

√
ϑ1 − ϑ3Δ2

√
dn
(√

ϑ1−ϑ3
2 r

∣∣∣Δ2
)2

}
+

c2

c0
x, (68)

with E representing elliptic integral of the second kind while ‘am’ and ‘dn’ are respectively
amplitude and delta elliptic functions. Besides, we notice that in relation (67) and (68)
some limits of Jacobi elliptic functions cn and dn exist which give rise to some other

functions such as hyperbolic and trigonometric. For instance, limΔ2→0 cn
(

r
∣∣∣Δ2
)
= cos(r),
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limΔ2→0 dn
(

r
∣∣∣Δ2
)
= 1, limΔ2→1 cn

(
r
∣∣∣Δ2
)
= sech (r) and limΔ2→1 dn

(
r
∣∣∣Δ2
)
= sech (r),

whereas r = 1/2a
(
2ay − bt2 − 2t

)− c1/c0x.

2.3.6. Optimal Subalgebra X1 + aX3 + bX5, a, b ∈ {−1, 1}
Lie optimal subalgebra X1 + aX3 + bX5 produces similarity transformation variables,

X =
1
a
(ax − t), Y =

1
2a

(
2ay − bt2

)
, whereas the group-invariant is secured as

u(t, x, y) = G(X, Y) +
2b2α

9a2δρ
t3 − b

6a2ρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t.

Engaging the found similarity variables reduces (2+1)-D genBKe (4) to an NLPDE

3aγρGXX + 3aσρGXY + 3aνρGYY − 3ρGXX + 9aρ2GXGXY + 18aαρGXGXX

+ 9aδρGYGXX + 3aαρGXXXX + 3aβρGXXXY + b = 0, (69)

The Lie theoretic approach used in studying Equation (69) yields its symmetries as:

R1 =
∂

∂X
, R2 =

∂

∂Y
, R3 =

∂

∂G
.

On following the usual process solution to R1 = ∂/∂X secures G(X, Y) = φ(r),
with r = Y. Subsequently utilizing the function obtained reduces (4) to the LODE,

3aρνφ′′(r) + b = 0. (70)

On solving the linear ordinary differential Equation (70), we obtain a solution of (4) as:

u(t, x, y) =
A0

2a

(
2ay − bt2

)
+

2b2α

9a2δρ
t3 − b

6a2ρ
t2 +

(
b

3aρ
x − 2bα

3aδρ
y
)

t

− b
24a3νρ

(
2ay − bt2 − 2t

)2
+ A1, (71)

with integration constants A0 and A1. In addition R2 gives the solution G(X, Y) = φ(r),
with r = X. On engaging the function secured, we reduce (4) to the LODE,

3aαρφ′′′′(r) + 3aγρφ′′(r) + 18aαρφ′(r)φ′′(r)− 3ρφ′′(r) + b = 0.

In a bid to secure a solution of (4) in this instance, we let b = 0 and, as a consequence:

u(t, x, y) =
2αb2t3

9a2δρ
− bt2

6a2ρ
+

bx
3aρ

− 2αby
3aδρ

− (aγ − 1)
√

aα(1 − aγ)

aα(1 − aγ)

× tanh

[
1
2

√
1 − aγ

aα

(
ax − t

a
±√

aαC1

)]
+ C2, (72)

which is an algebraic–hyperbolic solution of (2+1)-D genBKe (4) with integration constants
C1 and C2. On following the usual procedure, R1 and R2 linearly combined yields the
solution G(X, Y) = φ(r), r = c0Y − c1X and these transform (4) to:

3aαc4
1ρφ(4)(r)− 3aβc0c3

1ρφ(4)(r) + 3aγc2
1ρφ′′(r) + 3ac2

0νρφ′′(r)− 3ac0c1ρσφ′′(r) + b

− 18aαc3
1ρφ′(r)φ′′(r) + 9ac0c2

1δρφ′(r)φ′′(r) + 9ac0c2
1ρ2φ′(r)φ′′(r)− 3c2

1ρφ′′(r) = 0. (73)
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Now, having observed that no solution of (73) can be secured in its current state, we
take a special case b = 0 of the equation. We present in an easier way (73) as:

β2φ(4)(r)− β1φ′(r)φ′′(r)− β0φ′′(r) = 0, (74)

where β0 = 3ac1c0ρσ + 3c2
1ρ − 3aγc2

1ρ − 3ac2
0νρ, β1 = 18aαc3

1ρ − 9ac0c2
1δρ − 9ac0c2

1ρ2,
β2 = 3aαc4

1ρ − 3aβc0c3
1ρ. We let φ′(r) = Θ(r) in (74) and integrating the equation gives

2β2Θ′′(r)− β1Θ(r)2 − 2β0Θ(r) = 2C0, (75)

where C0 is the integration constant. On taking the multiplication of (75) and Θ′(r) and
subsequently integrating the resulting NODE, one then achieves:

Θ′(r)2 =
β1

3β2
Θ(r)3 +

β0

β2
Θ(r)2 +

2C0

β2
Θ(r) +

2C1

β2
, (76)

with integration constant C1. We get a Weierstrass elliptic solution [61] of (4) via:

Θ(r) = W(r)− β0

β1
, (77)

which is the transformation needed in this regard to reduce (76) to elliptic function,

W2
ξ = 4W3 − g2W − g3, where ξ =

√
β1

12β2
r. (78)

That is, a Weierstrass elliptic function with elliptic invariants g1 and g2 secured as:

g1 =
24C0

β1
− 12β2

0
β2

1
, and g2 =

8β3
0

β3
1
− 24β0C0

β2
1

+
24C1

β1
. (79)

On reckoning (77), we possess the solution of (76) with regards to Θ(r) as:

Θ(r) = ℘

(√
β1

12β2
(r − r0);

24C0

β1
− 12β2

0
β2

1
,

8β3
0

β3
1
− 24C0β0

β2
1

+
24C1

β1

)
− β0

β1
.

On reverting to the basic variables, one achieves the solution of Equation (4) as:

u(t, x, y) =
2αb2t3

9a2δρ
− bt2

6a2ρ
+

(
bx
3aρ

− 2αby
3aδρ

)
t − 2

√
3β2

β1
ζ

{
1
2

√
β1

3β2

×
[

c0

2a

(
2ay − bt2

)
− c1

a
(ax − t)

]
− r0;

24C0

β1
− 12β2

0
β2

1
,

8β3
0

β3
1
− 24C0β0

β2
1

+
24C1

β1

}
− β0

β1

[
c0

2a

(
2ay − bt2

)
− c1

a
(ax − t)

]
− r0, (80)

which is a Weierstrass elliptic solution of (4) where r0 is an arbitrary constant. Next, we
contemplate the combination of the three found symmetries as performed earlier, and
secure G(X, Y) = c2X + c0φ(r), with r = c0Y − c1X which transform (4) to:

3aαc0c4
1ρφ(4)(r)− 3aβc2

0c3
1ρφ(4)(r) + 18aαc0c2c2

1ρφ′′(r) + 3aγc0c2
1ρφ′′(r) + b

− 9ac2
0c2c1ρ2φ′′(r)− 3ac2

0c1ρσφ′′(r)− 18aαc2
0c3

1ρφ′(r)φ′′(r) + 9ac3
0c2

1δρφ′(r)φ′′(r)
+ 9ac3

0c2
1ρ2φ′(r)φ′′(r)− 3c0c2

1ρφ′′(r) + 3ac3
0νρφ′′(r) = 0.
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In order to gain more general solution of (4) in this regard, we let b = 0 and so:

β3φ(4)(r) + 12β4φ′(r)φ′′(r)− β5φ′′(r) = 0, (81)

where β3 = 3aαc0c4
1ρ − 3aβc2

0c3
1ρ, β4 = 3/4ac3

0c2
1δρ + 3/4ac3

0c2
1ρ2 − 3/2aαc2

0c3
1ρ,

β5 = 9ac2
0c2c1ρ2 − 18aαc0c2c2

1ρ− 3aγc0c2
1ρ+ 3ac2

0c1ρσ+ 3c0c2
1ρ− 3ac3

0νρ. On the integration
of Equation (81) and invoking the representation φ′(r) = β3/2β4 Θ(r), we obtain:

Θ′′(r) + 3Θ(r)2 − ωΘ(r) + A1 = 0, (82)

where ω = β5/β3 with A1 = 2β4 A0/β2
3, A0 and A1 being integration constants. Next, we

multiply (82) by Θ′(r) and integrate the result with regards to r and secure

Θ′(r)2 + 2Θ(r)3 − ωΘ(r)2 + 2A1Θ(r) + 2A2 = 0. (83)

Thus, (83) occasions a well notable Jacobi elliptic cosine function solution [61] with
cubic polynomial roots θ3 < θ2 < θ1 and besides, parameter 0 ≤ Ω2

0 ≤ 1. In consequence,
we recover u(t, x, y), the solution of Equation (4) in this instance as:

u(t, x, y) =
2αb2t3

9a2δρ
+

bx
3aρ

t − bt2

6a2ρ
− 2αby

3aδρ
t +

c2

a
(ax − t) + θ2r

+
c0β3

2β4

{√
2(θ1 − θ2)sn

(√
θ1−θ3

2 r
∣∣∣Ω2

0

)
cos−1

[
dn
(√

θ1−θ3
2 r
∣∣∣Ω2

0

)∣∣∣Ω2
0

]

√
θ1 − θ3

√
1 − dn

(√
θ1−θ3

2 r
∣∣∣Ω2

0

)2

}
, (84)

where Ω2
0 = (θ1 − θ2)/(θ1 − θ3) and r = c0/2a(2ay − bt2) − c1/a(ax − t). Moreover,

the Jacobi sine elliptic function sn possesses the property that as Ω2
0 → 0, we have sn(r) →

sin(r) and as Ω2
0 → 1, we also obtain sn(r) → tanh(r).

2.3.7. Optimal Subalgebra X1 + aX2 + bX3, a, b ∈ {−1, 1}
The Lagrangian system related to X1 + aX2 + bX3 solves to give group-invariant

u(t, x, y) = G(X, Y), where X = x − t/b, Y = y − at/b. (85)

On using the function alongside other expressions from (85) in (4), we have:

bγGXX + bσGXY + bνGYY − aGXY − GXX + 3bρGXGXY + 6bαGXGXX

+ 3bδGYGXX + bαGXXXX + bβGXXXY = 0. (86)

As a consequence, we secure the solution of (86) with respect to X and Y but reverting
to the fundamental variables gives a solution of (2+1)-D genBKe (4) as:

u(t, x, y) =
−4i
(

βΩ0 + αβ + b(2αν − βσ − 4β2 A2
1)
)

Ω0(δ + ρ) + Ω1

{
A1 sech

[
1

2b2ν

(
a2 A1t

+ Ω0 A1(at − by) + b2(A1(σ + 4βA2
1)y − ν(2A0 + 2A1x))− bA1(ay

+ t(a(σ + 4βA2
1)− 2ν))

)]}{
A2(Ω0(δ + ρ) + a(δ + ρ) + b(4αν − δσ

− ρσ − 4βA2
1(δ + ρ))) + sech

[
1

2b2ν

(
a2 A1t + Ω0 A1(at − by)

+ b2
[

4A1y
(

1
4

σ + βA2
1

)
− ν(2A1x + iπ + 2A0)

]
− 4A1b

[
1
4

ay
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+ t
[

a
(

βA2
1 +

1
4

σ

)
− 1

2
ν

]])]}−1

, (87)

where Ω0 =
√

ν(4b − 4b2γ − 16αb2 A2
1) + (a − bσ − 4bβA2

1), Ω1 = a(δ+ ρ)+ b(4αν− δσ−
ρσ − 4β(δ + ρ)A2

1) with constants A0 and A1 arbitrary. Function (87) is a complex bright
soliton solution of (4). Furthermore, investigation revealed that Equation (86) possesses
three Lie point symmetries which are given as

R1 =
∂

∂X
, R2 =

∂

∂Y
, R3 =

∂

∂G
.

Linearly combining the symmetries furnishes the function G(X, Y) = c2X + c0φ(r),
with r = c0Y − c1X. Thus, on engaging the function, we further reduce (4) to:

bβc0c3
1φ(4)(r)− ac0c1φ′′(r)− αbc4

1φ(4)(r)− 6αbc2c2
1φ′′(r)− bγc2

1φ′′(r)− bc2
0νφ′′(r)

+ 3bc0c2c1ρφ′′(r) + bc0c1σφ′′(r) + 6αbc0c3
1φ′(r)φ′′(r)− 3bc2

0c2
1δφ′(r)φ′′(r)

− 3bc2
0c2

1ρφ′(r)φ′′(r) + c2
1φ′′(r) = 0. (88)

Therefore, we present Equation (88) in a lesser structure as:

α1φ′′(r)− α2φ′(r)φ′′(r) + α3φ(4)(r) = 0, (89)

α1 = −ac0c1 + c2
1 − 6αbc2c2

1 − bγc2
1 − bc2

0ν + 3bc0c2c1ρ + bc0c1σ, α2 = 3bc2
0c2

1δ + 3bc2
0c2

1ρ −
6αbc0c3

1, α3 = bβc0c3
1 − αbc4

1. We set φ′(r) = Θ(r) in (89) and by integrating the resulting
NODE repeatedly two times, we secure a first order NODE presented as:

Θ′(r)2 =
α2

3α3
Θ(r)3 − α1

α3
Θ(r)2 − 2C0

α3
Θ(r)− 2C1

α3
,

with constants of integration C0 and C1. On contemplating the cubic polynomial α2
3α3

Θ(r)3 −
α1
α3

Θ(r)2 − 2C0
α3

Θ(r)− 2C1
α3

= 0, whose real roots are a2 < a1 < a0, we have

Θ2
r =

α2

3α3
(Θ − a0)(Θ − a1)(Θ − a2),

with real roots a0, a1 as well as a2 satisfying algebraic relations expressed as:

a0a1 + a0a2 + a1a2 = −2C0

α3
, a0a1a2 = −2C1

α3
, a0 + a1 + a2 = −α1

α3

According to [62], we express a primitive solution of (4) via the elliptic function,

u(t, x, y) = c2x − c2

b
t + c0

{√
12α3(a0 − a1)2

α2(a0 − a2)Δ8
0

{
EllipticE

[
sn
(

α2(a0 − a2)

12α3
(r − r0),

Δ2
0

)
, Δ2

0

]}
+

[
a1 − (a0 − a1)

1 − Δ4
0

Δ4
0

]
(r − r0) + C2

}
, (90)

with r = c0(y − at/b)− c1(x − t/b), r0 and C2 arbitrary constants. Besides, parameter Δ2
0

and incomplete elliptic integral EllipticE[m; z] are accordingly expressed as:

Δ2
0 =

a0 − a1

a0 − a2
and EllipticE[m; z] =

∫ m

0

√
1 − z2w2

1 − w2 dw.
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3. Travelling Wave Solutions

We examine the travelling wave solutions of the (2+1)-D genBKe (4). Generally
speaking, travelling wave solutions of a partial differential equation emanates as special
group-invariant solutions wherein the considered group is translational with respect to
space of independent variables.

Here in this study, we engage linear combination of the translation operators X1,X2
and X3, namely X = ρX1 + εX2 + μX3 with constant values σ and ε. Following the usual
Lie symmetry procedure, we utilize X to reduce (4) to fourth-order NODE,

Aψ′′(z)− Bψ′(z)ψ′′(z) + Cψ′′′′(z) = 0, (91)

via the travelling wave z = px + qy + rt where p = ε, q = μc − ρ, r = −εc and so
A = p(r + σq + γp) + νq2, B = −6p2(αp + βq) and C = p3(αp + βq).

Integrating (91) just once supplies a third-order ODE,

Aψ′ − 1
2

Bψ′2 + Cψ′′′ + C1 = 0, (92)

where C1 is regarded as an integration constant. Multiplying Equation (92) by ψ′′, in-
tegrating once as well as simplifying the resulting equation, we have the second-order
nonlinear ODE

1
2

A(ψ′)2 − 1
6

B(ψ′)3 +
1
2

C(ψ′′)2 + C1ψ′ + C2 = 0, (93)

where C2 is an integration constant. Equation (93) can be rewritten as

(ψ′′)2 =
B

3C
(ψ′)3 − A

C
(ψ′)2 − 2C1

C
ψ′ − 2C2

C
. (94)

Suppose Ψ = ψ′, Equation (94) becomes:

Ψ′2 =
B

3C
Ψ3 − A

C
Ψ2 − 2C1

C
Ψ − 2C2

C
. (95)

3.1. Bifurcation and Explicit Solutions

Here we use the bifurcation theory method [39,63,64] of dynamical systems to obtain
some nontrivial solutions of (95), which is the reduced form of (91).

Suppose from Equation (95) we say:

P3(Ψ) =
B

3C
Ψ3 − A

C
Ψ2 − 2C1

C
Ψ − 2C2

C
. (96)

We can deduce from Equation (94) that:

d2Ψ
dz2 =

B
2C

Ψ2 − A
C

Ψ − C1

C
. (97)

Let Ψ′ = w, then (95) is equivalent to planar dynamical system,

dΨ
dz

= w,
dw
dΨ

=
B

2C
Ψ2 − A

C
Ψ − C1

C
, (98)

which invariably possesses the first integral H(Ψ, w) calculated as:

H(Ψ, w) =
w2

2
− B

6C
Ψ3 +

A
2C

Ψ2 +
C1

C
Ψ = h, (99)

where h is the constant of integration and function H(Ψ, w) is Hamiltonian.
It is obvious to see that Hamiltonian H(Ψ, w) = h = −C2

C corresponds to Equation (96).
As a result, we observe that the dynamical system behaviors of ordinary differential
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Equation (95) from the orbits of the above system (98) relates to H(Ψ, w) = −C2
C . Appar-

ently, phase orbits given via the vector field relative to system (98) decides all the results
that can be gained for (96).

An investigation of bifurcation of the planar dynamical system (98) secures diverse
kinds of solutions of (96) contemplated under various coefficient conditions. Thus, the dy-
namical character and closed-form solutions of ODE (96) are generated.

We first study the equilibrium points of the system (98) to attain the dynamical action
of the system. Evidently, the roots of P′

3(Ψ) = 0 are regarded as the abscissas of the points
of equilibrium included in the system (98). Moreover, we suppose that Ψe is one of the
roots of P′

3(Ψ) = 0, meaning that, (Ψe, 0) stands as an equilibrium point of system (98).
By the reason of theory of planar dynamical systems [63,64], the matrix needs to be studied.

D f (Ψ0, 0) =
[

0 1
P′′

3 (Ψe) 0,

]

where
P′′

3 (Ψe) =
2B
C

Ψ − 2A
C

of the linearized system of (98) exists at a point (Ψe, 0). The point of equilibrium (Ψ, 0)
is a center which has a punctured neighborhood wherein any solution procured is taken
as a periodic orbit; if det(D f (Ψe, 0)) = −P′′

3 (Ψe) > 0. It is said to be a saddle point if
det(D f (Ψe, 0)) = −P′′

3 (Ψe) < 0. Nevertheless, we call it a cusp point if det(D f (Ψe, 0)) =
−P′′

3 (Ψe) = 0. It is needed to equally investigate boundary curves related to the centers
as well as the orbits that serve as a connector between the saddle points or cusp points
which the Hamiltonian H(Ψ, w) = h determines in order to obtain the phase portraits other
than the equilibriums. Evidently, system (98) possesses neither equilibrium point nor a

cusp when A2+2BC1
C2 ≤ 0, hence system (98) has no trivial nontrivial bounded solutions.

Nonetheless, (98) has two equilibrium points when A2+2BC1
C2 > 0. Let

Ψ±
e =

1
B

(
A ±

√
A2 + 2BC1

)

H(Ψ±
e , 0) = h± =

1
3B2C

(
(A2 + 2BC1)[A ±

√
A2 + 2BC1] + ABC1

)
,

then (Ψ+
e , 0) is a saddle point, (Ψ−

e , 0) is also a center and h+ > h−.
When we have h+ > h > h−, Hamiltonian H(Ψ, w) = h defines a family of periodic

orbits present around the center given as (u−
e , 0) which is confined by the boundary curves

defined by function H(Ψ, w) = h+. Notwithstanding, H(Ψ, w) = h+ explains a homoclinic
orbit that passes through the saddle point (Ψ+

e , 0).
We now consider some cases of (96) and obtain the following solutions.
Case (1.) Equation (96) possesses a bounded solution which approaches Ψ+

e as z goes
to infinity:

Ψ(z) =
1
B

{
(A +

√
A2 + 2BC1)− 3

√
A2 + 2BC1 sech2

[
1
2

4

√(
A2 + 2BC1

C2

)
(z − z0)

]}
, (100)

where z0 is an arbitrary constant. Integrating (100) and returning to the original variables
secures a nontrivial solitary wave solution of (4) in this regard as:

u(t, x, y) =
1
B

{(√
A2 + 2BC1 + A

)
z − z0 − 6

√
A2 + 2BC1

4
√

A2+2BC1
C2

× tanh

(
1
2

4

√
A2 + 2BC1

C2 z − z0

)}
, (101)
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with z = px + qy + rt and z0 arbitrary constant. We also have a constant solution

Ψ(z) =
1
B

(
A +

√
A2 + 2BC1

)
as well as an unbounded solution:

Ψ(z) =
1
B

{
(A +

√
A2 + 2BC1) + 3

√
A2 + 2BC1 csch2

[
1
2

4

√(
A2 + 2BC1

C2

)
(z − z0)

]}
. (102)

Integrating (102) and retrograding to the original variables, we secure an unbounded
solution of (2+1)-dimensional gBK (4) as:

u(t, x, y) =
1
B

{(√
A2 + 2BC1 + A

)
z − z0 − 6

√
A2 + 2BC1

4
√

A2+2BC1
C2

× coth

(
1
2

4

√
A2 + 2BC1

C2 z − z0

)}
, (103)

where z = px + qy + rt and z0 is an arbitrary constant.
Case (2.) Since B

3C > 0, then for any arbitrary real constant

Φ ∈
((

A−2
√

A2+2BC1

)
B ,

(
A−

√
A2+2BC1

)
B

)
,

Ψ(z) = Φ − 1
2

(
3Φ − 3A

B
+

√
−3Φ2 +

6A
B

Φ +
9A2

B2 +
24C1

B

)
sn2(Ω+(z − z0), k+), (104)

where

Ω+ =

√
2

4

√
− B

C
Φ +

A
C

+
B

3C

√
−3Φ2 +

6A
B

Φ +
9A2

B2 +
24C1

B
and

k+ =
2
√

3Φ2 − 6A
B Φ − 6C1

B

−3Φ + 3A
B +

√
−3Φ2 + 6A

B Φ + 9A2

B2 + 24C1
B

.

The integration of (104) secures a bounded nontrivial solution of (4) as:

u(t, x, y) = kz + P0

⎧⎪⎪⎨
⎪⎪⎩
√

6(3A − BP1)

⎛
⎜⎜⎝Q +

E[am(R)|R1]
[
sn2(S|S1)− S2

]
dn(Q1|Q2)

√
1 − 2

√
3Q0 sn2(R)
P1− 3A

B

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭

P0 =
1

B

√
3A−3Bk+

√
3B

√
3A2+2BkA−B2k2+8BC1

B2

C

, P1 = 3k +

√
9A2 + 6BkA − 3B2k2 + 24BC1

B2

Q =

z

√√√√ 3A+B

(√
9A2+6BkA−3B2k2+24BC1

B2 −3k

)

C

(
− 3A

B − 3k +
√

9A2+6BkA−3B2k2+24BC1
B2

)

12
√

2
√

k(Bk−2A)−2C1
B

,
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R =
z

√√√√ 3A+B

(√
9A2+6BkA−3B2k2+24BC1

B2 −3k

)

C

2
√

6

∣∣∣∣∣ 2
√

3Q0

− 3A
B − 3k +

√
9A2+6BkA−3B2k2+24BC1

B2

S =
z

√√√√ 3A+B

(√
9A2+6BkA−3B2k2+24BC1

B2 −3k

)

C

2
√

6
, R1 =

2
√

3
√

k(Bk−2A)−2C1
B

− 3A
B − 3k +

√
9A2+6BkA−3B2k2+24BC1

B2

,

S1 =
2
√

3
√

k(Bk−2A)−2C1
B

− 3A
B − 3k +

√
9A2+6BkA−3B2k2+24BC1

B2

, Q1 =
z

√√√√ 3A+B

(√
9A2+6BkA−3B2k2+24BC1

B2 −3k

)

C

2
√

6
,

S2 =
− 3A

B − 3k +
√

9A2+6BkA−3B2k2+24BC1
B2

2
√

3
√

k(Bk−2A)−2C1
B

, Q2 =
2
√

3
√

k(Bk−2A)−2C1
B

− 3A
B − 3k +

√
9A2+6BkA−3B2k2+24BC1

B2

,

where E[am (R|R1)] is an elliptic integral of the second kind sn(S|S1), am(R|R1) and
dn(Q1|Q2) denotes accordingly elliptic sine, amplitude as well as delta functions. In addi-
tion to that, variable z = px + qy + rt with arbitrary constant z0 is taken as zero.

Case (3.) Equation (96) possesses no nontrivial bounded solutions. However, at the
instance when −2C2

C = 2h−, we have an unbounded solution that is expressed as

Ψ(z) =
1
B

{
(A −

√
A2 + 2BC1) + 3

√
A2 + 2BC1 sec2

[
1
2

4

√(
A2 + 2BC1

C2

)
(z − z0)

]}
(105)

and a constant solution also given in this case as:

Ψ(z) =
1
B

(
A −

√
A2 + 2BC1

)
.

Integrating (105) with regards to variable z − z0, one achieves:

u(t, x, y) =
1
B

{
V0 tan

(
1
2
(z − z0)

4

√
A2 + 2BC1

C2

)
+ (z − z0)

(
A −

√
A2 + 2BC1

)}
, (106)

where we have V0 =
6
√

A2+2BC1

4
√

A2+2BC1
C2

, z = px + qy + rt and z0 as an arbitrary constant.

We note from the dynamical system earlier stated that we can deduce the fact that:

dw
dΨ

= B0Ψ2 + B1Ψ + B2, (107)

where B0 = B
2C , B1 = − A

C and B2 = −C1
C . In clear terms, we can suggest that phase

orbits given by the vector fields of dynamical system (98) determined the collection of
all the solutions of (97). Thus, we state here that bounded solutions of (97) relates to the
bounded phase orbits that system (98) has which will have to be investigated. Along the
orbit connected with H(Ψ, w) = h, we have:

(
dΨ
dz

)2
=

2B0

3
Ψ3 + B1Ψ2 + 2B2Ψ + 2h. (108)
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As a consequence, the general formula associated with the solutions of (97) can as well
be given viz; ∫ Ψ

0

dΨ√
(2B0Ψ3/3) + B1Ψ2 + 2B2Ψ + 2h

= ±
∫ z

z0

dz. (109)

Nonetheless, it may be laborious to know the properties as well as the shapes of (109)
that are actually decided by the parameters B0, B1, B2 and h. Obviously, the abscissas
possessed by equilibrium points of dynamical system (98) are zeros of B0Ψ2 + B1Ψ+ B2 = 0.
Clearly, the system (98) has no bounded orbits when B2

1 − 4B0B2 < 0. We suppose that
B2

1 − 4B0B2 > 0 in order for us to examine the bounded orbits owned by system (98). We

designate Ψ± = (−B1 ±
√

B2
1 − 4B0B2)/2B0, and as such we have E+(Ψ+, 0) alongside

E−(Ψ−, 0) which represent two equilibrium points of system (98). As expounded by
the theory of planar dynamical system, we realize that E− is a center and also E+ is a
saddle point. We indicate here that h± = H(Ψ±, 0), and, by doing a careful computation,
we achieve:

h± =
1

12B2
0

{(
B2

1 − 4B0B2

)[
−B1 ±

√
B2

1 − 4B0B2

]
+ 2B0B1B2

}
. (110)

Evidently, h− < h < h+ and we have it that H(Ψ, w) = h+ correlates to homoclinic
orbits. Moreover, H(Ψ, w) = h− relates to the center E− and then H(Ψ, w) = h, where
h+ < h < h− is related to a class of closed orbits that surround center E− which are
encompassed by a homoclinic orbit. Meaning that (109) defines bounded solutions if and
only if the condition given as h+ ≤ h < h− holds. Precisely, (109) explains a family of
periodic solutions whenever h+ < h < h−.

When h = h+, Equation (109) explains a bounded solution that tends towards Ψ+ as z
goes to infinity. In fact,

2B0

3
Ψ3 + B1Ψ2 + 2B2Ψ + 2h+ =

2B0

3
(Ψ − Ψ+)

2(Ψ − Ψ0),

with Ψ0 = −(B1 + 2
√

B2
1 − 4B0B2)/2B0. In consequence (109) can be reduced to:

∫ Ψ

Ψ0

dΨ
(Ψ − Ψ+)

√
B0(Ψ − Ψ0)

=

√
2
3
(z − z0),

from which we can get the exact solution in the structure of a secant hyperbolic

Ψ = Ψ+ − (Ψ+ − Ψ0)sech2

(√
B0(Ψ+ − Ψ0)

6
(z − z0)

)
, (111)

where z = px + qy + rt and z0 is an arbitrary constant. By further simplification,
Equation (111) becomes:

Ψ = Ψ+ −
3
√

B2
1 − 4B0B2

2B0
sech2

[
1
2

[
B2

1 − 4B0B2

]1/4
(z − z0)

]
, (112)

and this is regarded as an exact bounded solution of (97).
Therefore, we consider the lemma stated as follows.

Lemma 1. The general second-order ODE (97) has bounded solutions if and only if B2
1 − 4B0B2 > 0.

The bounded solutions can be expressed as (109) in an implicit form. In fact, provided h− < h < h+,
(109) defines a family of bounded periodic solutions and h = h+ defines a bounded solution
which approaches Ψ+ as z goes to infinity and can be expressed explicitly as (112), where Ψ+ =

(−B1 +
√

B2
1 − 4B0B2)/2B0 and h± is defined by (110).
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Bounded Travelling Wave Solutions to the Generalized (2+1)-Dimensional
Bogoyavlensky–Konopelchenko Equation

According to analysis and results in the above subsection, it is evident that (97)
possesses only two kinds of bounded solutions, amidst of which one is found out to be
a family of periodic solutions whereas another is discovered to be a family of solutions
which approaches a fixed number as z tends to infinity. It is noteworthy to assert here that
what we are targeting is to study the bounded travelling wave solutions associated with
(2+1)-D genBKe (4) which are determined via Ψ = dψ/dz, and Ψ satisfies (97). So we have
to investigate how we can get the bounded solution of (97).

Visibly, ψ(z) =
∫ z

z0
Ψ(z)dz whereas Ψ(z) can implicitly be expressed as stated in (109).

By virtue of the geometry meaning of the integral as well as the properties of the solutions
of (97), we get the travelling wave solutions to the (2+1)-D genBKe (4). In order to achieve
the bounded solutions needed, we choose the integral constant C1 to be zero that implies
B2 = 0 in (112) and as such

ψ(z) = C1 − 3
√|B1|

B0
tanh

[√|B1|
2

(z − z0)

]
;

which means

ψ(z) = C1 +
16p

3

√∣∣∣∣ (r + σq + γp)
p2(αp + βq)

∣∣∣∣tanh

[
1
2

√∣∣∣∣ (r + σq + γp)
p2(αp + βq)

∣∣∣∣(z − z0)

]
,

that is, the family of analytic bounded kink traveling wave solutions to the (2+1)-D gen-
BKe (4), with z = px + qy + rt and z0 alongside C1 regarded as arbitrary constants.

Nonetheless, we may not be able to achieve bounded solutions from the family of
periodic solutions of (97). We can easily see that if Ψ(z) is a periodic solutions of (97), in the
same vein, ψ(z) =

∫ z
z0

Ψ(z)dz is bounded if and only if
∫ T

0 Ψ(z)dz = 0, where T represents
the period of the function Ψ(z). Recall that the period of the function Ψ(z) which is given
by (109) with h− < h < h+ is dependent continuously on the parameters, B0, B1, B2 and h.
So
∫ T

0 Ψ(z)dz continuously depends on the parameters, B0, B1, B2 and h as well. Suppose

we have it that V(B0, B1, B2, h) =
∫ T

0 Ψ(z)dz; as a consequence, V(B0, B1, B2, h) is defined
as a continuous function of B0, B1, B2 and h. The prove to showcase the existence of the root
of V(B0, B1, B2, h) = 0 to furnish us with the idea of the existence of the bounded periodic
travelling wave solutions to (2+1)-D genBKe (4) is given in [65].

Theorem 4. The generalized (2+1)-dimensional Bogoyavlensky–Konopelchenko equation possesses
two types of bounded travelling wave solutions given as:

(1) The generalized (2+1)-dimensional Bogoyavlensky–Konopelchenko equation has a family of
analytic bounded kink travelling wave solutions:

u(t, x, y) = C1 +
16p

3

√∣∣∣∣ (r + σq + γp)
p2(αp + βq)

∣∣∣∣ tanh

[
1
2

√∣∣∣∣ (r + σq + γp)
p2(αp + βq)

∣∣∣∣(px + qy + rt − z0)

]
, (113)

where z0 and C1 are two arbitrary constants;
(2) The generalized (2+1)-dimensional Bogoyavlensky–Konopelchenko equation possesses at least

two families of bounded periodic travelling wave solutions which are determined implicitly by
(109) and

u(z) =
∫ z

z0

Ψ(z)dz,

where z = px + qy + rt and z0 is an arbitrary constant.
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4. Dynamical Wave Behaviour and Analysis of Solutions

The physical phenomena of those secured closed-form solutions can be captured more
clearly via graphical evaluation. The obtained solutions of the (2+1)-D genBKe equation
comprises kink and anti-kink waves, periodic solitons waves, multi-soliton waves, singular
solitons, as well as mixed dark–bright waves of different dynamical structures. Those
secure solutions contain several sets of arbitrary constants and functions, which conse-
quently exhibit diverse dynamical structures of multiple solitons through their numerical
simulations. We present the structure of the dynamical behaviour of the waves in 3D, 2D
and density plots with the aid of Maple software. The singular periodic wave structure in
Figure 1 depicts the dynamics of solitary wave solution (34) where we utilize the param-
eters values γ = 100, α = 1, C0 = 1, C1 with variables y = 0 and −1 ≤ t, x ≤ 1. Figure 2
represents topological kink soliton solution (36) in 3D, 2D and density plots where we
engage values γ = 1, α = 4, C0 = 1, C1 = 10, c0 = 1, c1 = 100 where y = 0, −10 ≤ t ≤ 10
and −4 ≤ x ≤ 4. Now, for (30), we contemplate a few different choices of arbitrary
functions f1(t) and f2(t) and for the fact that the solution contains variable y, we consider
another function of y as g(y). Therefore, since the solution is a function of t and y, we
first consider f (t) = 3 sech4 (t), f (t) = ( f1(t), f2(t)) and g(y) = cos(y) − sin(y), using
Maple software, we further illustrate the solution in Figure 3 with the range −π ≤ t ≤ π
and −2π ≤ y ≤ 3π where we have x = 0. Hence, the numerical simulation reveals a
doubly-periodic interaction between two-solitons with different amplitudes. Further, we
choose f (t) = 3 sech4 (t) and g(y) = −(2 tanh(y) + cos(y)) in Figure 4 where we have
variables x = 0 as well as t and y in the range −π ≤ t ≤ π and −2π ≤ y ≤ 3π. This
then exhibits periodic interaction between solitons at varying amplitude and frequency
along yt-axis. Moreover, on selecting f (t) = 3 sech (t) and g(y) = −(2 tanh2(y) + sin(y)),
we plot Figure 5 where −π ≤ t ≤ π, −2π ≤ y ≤ 3π and x = 0. This occasions pe-
riodic interaction between solitons travelling at different amplitude but moving in the
same direction. In Figure 6 we choose f (t) = 3 sech (t)− Si(t) and g(y) = − sin(y) along
with −3π ≤ t ≤ 3π and −2π ≤ y ≤ 4π. We can see in the figure three soliton inter-
actions. These include a kink with t-axis periodic and y-axis periodic, which is clearly
revealed in the propagation of the amplitude. Meanwhile, selection of f (t) = 3 sech (t)
and g(y) = −(2 cn (t, y) + sin(y)) with x = 0, −3π ≤ t ≤ π and −2π ≤ y ≤ 3π furnishes
doubly-periodic and 1-soliton interactions as portrayed in Figure 7. The interaction depicts
an upsurge of wave propagating at varying amplitude, travelling at different velocity and
time intervals. Moreover, we can see in Figure 8 a periodic interaction existing between
two-solitons with opposite amplitude and propagating at a uniform frequency. This is
achieved by allocating f (t) = 3 sech (t) and g(y) = −3t cos(y) where x = 0, −π ≤ t ≤ π
and −2π ≤ y ≤ 6π. Besides, Figure 9 exhibits wave dynamical behaviour surfacing from a
collision between a kink and a soliton solution purveyed by assigning f (t) = 4 sech (t) and
g(y) = t tanh(y) with x = 0, −π ≤ t ≤ π and −π ≤ y ≤ 4π. Finally on wave interactions,
we assign functions f (t) = 40 sech (t) and g(y) = 20t sech2 (y) in Figure 10 where x = 0,
−π ≤ t ≤ π and −π ≤ y ≤ 4π. The resultant effect of the soliton collisions gives a
two-soliton wave propagating with opposite amplitude along yt-axis.
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Figure 1. Solitary wave depiction of singular periodic solution (34) at y = 0.

Figure 2. Solitary wave depiction of topological anti-kink soliton (36) at y = 0.

Figure 3. Wave depiction of soliton interaction with variant amplitudes at x = 0.
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Figure 4. Wave profile depiction of soliton interaction with different amplitudes, frequency and also
propagating along the same direction when variable x = 0.

Figure 5. Wave profile depiction of soliton interaction with varying amplitudes but acting and
propagating along the same direction where we have variable x = 0.

Figure 6. Wave profile depiction of soliton interaction with variant amplitudes and frequency with
the wave propagation taking place at different level when x = 0.
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Figure 7. Wave profile depiction of soliton interaction with varying amplitudes, frequency and also
propagating at different time intervals when variable x = 0.

Figure 8. Wave profile depiction of soliton interaction with variant amplitudes and frequency with
the propagation in the opposite directions when we have variable x = 0.

Figure 9. Wave depiction of soliton interaction at different amplitude with x = 0.
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Figure 10. Wave profile depiction of soliton interaction at varying amplitude and propagating at a
constant velocity and also moving in different directions when x = 0.

Next, the kink solution (72) is depicted with Figure 11 with dissimilar constant values
a = 1, b = 1, C1 = 1, C2 = 2, α = 2, δ = 1, γ = −1, ρ = 1 at y = 1 and −10 ≤ t, x ≤ 10.
The various dynamical behaviour of periodic solution (84) is exhibited in Figures 12–14
using parameter values a = −1, b = −1, c0 = 1, c1 = 1, c2 = −1, α = 1, β3 = 1, β4 = 1,
δ = 1, ρ = 1, θ1 = 9, θ2 = 1, θ3 = −1, Ω2

0 = 0.09 at t = 2 and −2 ≤ x, y ≤ 2, a = −1,
b = −1, c0 = 1, c1 = 1, c2 = −1, α = 1, β3 = 1, β4 = 1, δ = 1, ρ = 1, θ1 = 9, θ2 = 1,
θ3 = −1, Ω2

0 = 0.09 at t = 5 and −2 ≤ x, y ≤ 2 as well as a = −1, b = −1, c0 = 1, c1 = 1,
c2 = −1, α = 1, β3 = 1, β4 = 1, δ = 1, ρ = 1, θ1 = 9, θ2 = 1, θ3 = −1, Ω2

0 = 0.09 at t = 2
and −2 ≤ x, y ≤ 2 accordingly. Moreover, the motion character of solution are further
depicted in Figures 15 and 16 respectively via values a = −1, b = −1, c0 = 1, c1 = 1,
c2 = −1, α = 1, β3 = 1, β4 = 1, δ = 1, ρ = 1, θ1 = 40, θ2 = 2, θ3 = −5, Ω2

0 = 0.26 at t = 2
and −2 ≤ x, y ≤ 2 alongside a = −1, b = −1, c0 = 1, c1 = 1, c2 = −1, α = 1, β3 = 1,
β4 = 1, δ = 1, ρ = 1, θ1 = 50, θ2 = 5, θ3 = −5, Ω2

0 = 0.26 at t = 3 and −2 ≤ x, y ≤ 2.
The Weierstrass elliptic function solution (60) is represented graphically in Figure 17 with
unalike parametric values a = 1, b = 1, c0 = 1, c1 = 2, α = 2, α0 = 1, α1 = 1, α2 = 2,
δ = 1, ρ = 1, A0 = 1, A1 = 2 where y = 1 and −10 ≤ x, y ≤ 10. This wave depiction
reveals a multi-soliton wave structure which is a significant wave in nonlinear science
and engineering.

Figure 11. Solitary wave depiction of hyperbolic function solution (72) at y = 1.
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Figure 12. Solitary wave profile depiction of elliptic solution (84) at t = 2.

Figure 13. Solitary wave profile depiction of elliptic solution (84) at t = 5.

Figure 14. Solitary wave profile depiction of elliptic solution (84) at t = 2.
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Figure 15. Solitary wave profile depiction of elliptic solution (84) at t = 2.

Figure 16. Solitary wave profile depiction of elliptic solution (84) at t = 3.

Further, we depict the elliptic integral solution (68) in Figures 18–21. This is achieved
by invoking dissimilar constant values a = −1, b = −1, c0 = 1, c2 = −1, α = 2, α4 = 1,
α5 = 1, δ = 1, ρ = 1, ϑ1 = 3, ϑ2 = 2, ϑ3 = 1, Δ2 = 0.09 at t = 2 and −1 ≤ x, y ≤ 1,
a = −1, b = −1, c0 = 1, c2 = 1, α = 2, α4 = 1, α5 = 5, δ = 1, ρ = 1, ϑ1 = 3, ϑ2 = 2,
ϑ3 = 1, Δ2 = 0.09 when t = 1 and −1 ≤ x, y ≤ 1, a = 1, b = −1, c0 = 1, c2 = 1,
α = 2, α4 = 1, α5 = 5, δ = 1, ρ = 1, ϑ1 = 3, ϑ2 = 2, ϑ3 = 1, Δ2 = 0.09 at t = 1 and
−1 ≤ x, y ≤ 1 as well as a = 1, b = 1, c0 = 1, c2 = 0, α = 1, α4 = 1, α5 = 1, δ = 1, ρ = 1,
ϑ1 = 3, ϑ2 = 2, ϑ3 = 1, Δ2 = 0.08 at t = 0 and −1 ≤ x, y ≤ 1 respectively. We notice
that the dynamical wave behaviour of elliptic integral solution (68) reveals a mixed dark
and bright soliton wave profile which is akin to hyperbolic secant and hyperbolic tangent
functions. It is known that the elliptic solution disintegrates to elementary hyperbolic
functions by taking some special limits. These functions comprise secant hyperbolic and
tangent hyperbolic. It will be recalled that these two constitute bell and anti-bell shapes
respectively. As a consequence, this asserted relationship and the interconnections between
elliptic solutions and the involved functions are conspicuously revealed in Figures 18–21.
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Figure 17. Solitary wave depiction of Weierstrass elliptic solution (60) at y = 1.

Figure 18. Solitary wave depiction of elliptic integral solution (68) at t = 2.

Figure 19. Solitary wave depiction of elliptic integral solution (68) at t = 1.
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Figure 20. Solitary wave depiction of elliptic integral solution (68) at t = 1.

Figure 21. Solitary wave depiction of elliptic integral solution (68) at t = 0.

The various nontrivial solitary wave solutions obtained from bifurcation analysis of
(2+1)-D genBKe (4) in this study, to actually view their dynamical character, numerical
simulation of the involved parameters are performed using Mathematica 11.3. Therefore,
we reveal the nontrivial bounded solution (101) via 3D, 2D and density plots in Figure 22
with varying parameter values r = 0.2, p = 0.1, q = 0.3, A = 0.05, B = 5, C = 1.02, C1 = 8
with t = 0.4 and −6 ≤ x, y ≤ 6. The solution (103) is portrayed in Figure 23 using unalike
values r = 0.2, p = 0.1, q = 0.3, A = 0.05, B = 7, C = 1.05, C1 = 9 with t = 0.7 and
−8 ≤ x, y ≤ 8. Moreover, unbounded solution (106) is represented in Figure 24 through
3D, 2D as well as the density plot with constant values r = 0.2, p = 0.1, q = 0.3, A = 0.5,
B = 5, C = 1, C1 = 4 with t = 0.2 and −10 ≤ x, y ≤ 10. We further exhibit the travelling
wave solution (113) in Figures 25–28 using dissimilar values of parameters respectively
given as: r = 0.5, p = 1, q = 1, α = 5, β = 200, σ = 90, γ = 100, C1 = 4 with t = −2 and
−10 ≤ x, y ≤ 10; r = 0.1, p = 1, q = 1, α = −50, β = 200, σ = 90, γ = 100, C1 = 0 with
x = −3 and −10 ≤ t, y ≤ 10; r = 0.1, p = 1, q = 1, α = −50, β = 200, σ = 90, γ = 100,
C1 = 0 with x = 3 and −10 ≤ t, y ≤ 10; r = 0.1, p = 1, q = 1, α = −50, β = 200, σ = 90,
γ = 100, C1 = 0 with y = 5 and −10 ≤ t, x ≤ 10.

Significant observations

Figure 17 portrays a localized wave structure of multi-solitons of Equation (4). The dy-
namical structure appears due to the balance between nonlinearity and the dispersion term.
Figures 18–21 depicts the coexistence between bright and dark solitons with various wave
structures. It is eminent that bright soliton profiles are identified with hyperbolic secant
functions. The bright soliton solution usually assumes a bell-shaped figure and also propa-
gates in an undistorted manner without any variation in shape for arbitrarily long distances.
Nevertheless, dark soliton solutions which usually exhibit anti-bell wave structures, config-
ured also as topological optical solitons, are characterized by hyperbolic tangent functions.
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Moreover, important to note is the fact that Equation (56) which can be seen in various cases
of symmetry reductions via optimal subalgebras in this study is reminiscent of the ordinary
differential equation (ODE) achieved in the quintessential work conducted by Korteweg along
with De Vries in [18]. In addition to that, this ODE is interconnected with long waves which
propagate along a rectangular canal. Moreover, ODE (56) delineates stationary waves and
by imposing some certain constraints for example having the fluid undisturbed at infinity,
Korteweg and De Vries secured negative and positive solitary waves alongside cnoidal wave
solutions [18,66].
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Figure 22. Wave profile depiction of nontrivial bounded solution (101) at t = 0.4.
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Figure 23. Wave profile depiction of nontrivial unbounded solution (103) at t = 0.7.
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Figure 24. Wave profile depiction of nontrivial unbounded solution (106) at t = 0.2.
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y
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Figure 25. Tavelling wave profile depiction of nontrivial solution (113) at t = −2.

y

x

Figure 26. Tavelling wave profile depiction of nontrivial solution (113) at x = −3.

y

x

Figure 27. Tavelling wave profile depiction of nontrivial solution (113) at x = 3.

y

x

Figure 28. Tavelling wave profile depiction of nontrivial solution (113) at y = 5.

5. Conservation Laws

This section reveals the constructed conservation laws for (2+1)-D genBKe (4) by the
engagement of the multipier method [67] along with the well-known Noether’s theorem [68].
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5.1. Conserved Vectors via Homotopy Formula

It is germane to state that the multiplier technique is advantageous in the sense that it
works for any PDE either with or without variational principle [6,28,67]. In other words,
the multiplier method does not require the availability of variational principle before the
conserved vectors of a given PDE is obtained. To derive the conserved vectors of (2+1)-D
genBKe (4), we first determine the second-order multipliers via the criteria,

δ

δu
(ΛΔ) = 0, (114)

with Λ = Λ(t, x, y, u, ut, ux, uy, uxx, uxy) and the Euler operator δ/δu expressed as:

δ

δu
=

∂

∂u
− Dt

∂

∂ut
− Dx

∂

∂ux
− Dy

∂

∂uy
+ DtDx

∂

∂utx
+ DxDy

∂

∂uxy

+ D2
x

∂

∂uxx
+ D2

y
∂

∂uyy
+ D4

x
∂

∂uxxxx
+ D3

xDy
∂

∂uxxxy
.

On expanding Equation (114) and using the standard Lie theory algorithm, one achieves:

Λyy = 0, Λyux = 0, Λuxux = 0, Λx = 0, Λu = 0, Λut = 0,

Λuy = 0, Λuxx = 0, Λuxy = 0,

which can be solved without much tedious process thereby giving the value of Λ as

Λ(t, x, y, u, ut, ux, uy, uxx, uxy) = f ′1(t)y − 3(ρ − δ)ux f1(t) + C1ux + f2(t), (115)

with arbitrary functions f1(t) and f2(t) dependent on t. Meanwhile, the homotopy integral
formula [69] for the multiplier can be expressed as:

T =
∫ 1

0

{
u
((

∂ΔΛ
∂ut

)∣∣∣u=u(λ)
− Dx

(
∂ΔΛ
∂utx

)∣∣∣u=u(λ)

)}
dλ,

X =
∫ 1

0

{
u
((

∂ΔΛ
∂ux

)∣∣∣u=u(λ)
− Dx

(
∂ΔΛ
∂uxx

)∣∣∣u=u(λ)
+ D2

x

(
∂ΔΛ
∂uxxx

)∣∣∣u=u(λ)

−D3
x

(
∂ΔΛ

∂uxxxx

)∣∣∣u=u(λ)

)
+ ut

(
∂ΔΛ
∂utx

)∣∣∣u=u(λ)
− uy

(
Dx

(
∂ΔΛ
∂uxxy

)∣∣∣u=u(λ)

−D2
x

(
∂ΔΛ

∂uxxxy

)∣∣∣u=u(λ)

)
+ ux

((
∂ΔΛ
∂uxx

)∣∣∣u=u(λ)
− Dx

(
∂ΔΛ
∂uxxx
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)

+uxy
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∂ΔΛ
∂uxxy

)∣∣∣u=u(λ)
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(
∂ΔΛ

∂uxxxy
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)
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((
∂ΔΛ
∂uxxx

)∣∣∣u=u(λ)

)

+uxxx

((
∂ΔΛ

∂uxxxx
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)
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(
−Dx

(
∂ΔΛ
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)

+uxxy
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∂ΔΛ

∂uxxxy

)∣∣∣u=u(λ)

)}
dλ,

Y =
∫ 1

0

[
u
{(

∂ΔΛ
∂uy

)∣∣∣u=u(λ)
− Dy

(
∂ΔΛ
∂uyy
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(
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)∣∣∣u=u(λ)

−D3
x

(
∂ΔΛ

∂uxxxy

)∣∣∣u=u(λ)

}
+ uy

(
∂ΔΛ
∂uyy

)∣∣∣u=u(λ)
+ ux

(
∂ΔΛ
∂uxy

)∣∣∣u=u(λ)

+uxxx

(
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dλ.

(116)
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As a consequence, the three multipliers Λ1 = ux, Λ2 = f ′1(t)y − 3(ρ − δ)ux f1(t) and
Λ3 = f2(t) from (115) secures the conservation laws, accordingly as:

T1 =
1
4

u2
x −

1
4

uuxx,

X1 =
1
8

βuuxxxy +
1
4

σuuxy +
1
2

νuuyy + αuxuxxx +
5
8

βuxuxxy +
1
4

σuxuy

− 3
8

βuxxuxy +
1
8

βuxxxuy + δu2
xuy +

1
2

ρu2
xuy +

1
2

γu2
x +

1
4

utux

− 1
2

αu2
xx +

1
4

uutx + 2αu3
x + ρuuxuxy − δuuxuxy,

Y1 = δuuxuxx − ρuuxuxx +
1
2

ρu3
x +

1
4

σu2
x −

1
8

βu2
xx −

1
4

σuuxx +
1
2

νuxuy

+
1
4

βuxuxxx − 1
8

βuuxxxx − 1
2

νuuxy;

T2 =
3
4

ρuuxx f1(t)− 3
4

δ f1(t)uuxx +
3
4

δu2
x f1(t)− 3

4
ρu2

x f1(t) +
1
2

yux f ′1(t),

X2 =
3
4

δutux f1(t)− 3
4

ρutux f1(t) + 3αu2
xy f ′1(t) +

3
2

γδu2
x f1(t) + γyux f ′1(t)

+ αyuxxx f ′1(t) +
3
4

βyuxxy f ′1(t) +
1
2

σyuy f ′1(t) + 6αδu3
x f1(t)− 6αρu3

x f1(t)

+ 3δ2u2
xuy f1(t)− 3

2
ρ2u2

xuy f1(t) +
3
4

δuutx f1(t)− 3
4

ρuutx f1(t) +
3
2

αρu2
xx f1(t)

− 3
4

δuux f ′1(t)−
3
2

γρu2
x f1(t)− 3

2
αδu2

xx f1(t)− 3
4

ρσuxuy f1(t)− 3ρ2uuxuxy f1(t)

− 3
2

δρu2
xuy f1(t)− 15

8
βρ f1(t)uxuxxy +

3
4

δσuxuy f1(t)− 3δ2uuxuxy f1(t)

− 3
4

ρσuuxy f1(t) +
3
4

δσuuxy f1(t)− 3
8

βρuuxxxy f1(t) +
3
8

βδuuxxxy f1(t)

+
3
4

ρyuxuy f ′1(t) + 6δρuuxuxy f1(t)− 1
4
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1
2
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1
2
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+
1
2
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3
2

νρuuyy f1(t) + 3αδuxuxxx f1(t)− 3αρuxuxxx f1(t)

+
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8
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3
2
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2
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4
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3
2
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9
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3
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3
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νρuuxy f1(t)− 3
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3
8
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4
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3
2

δyuuxx f ′1(t)−
3
4
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2
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+
3
4
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4
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3
2
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3
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3
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3
4
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3
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2

σyux f ′1(t) +
1
4
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3
2

ρ2u3
x f1(t)− νu f ′1(t);

T3 =
1
2

ux f2(t),

X3 =
3
4

βuxxy f2(t) + 3αu2
x f2(t) + γux f2(t) +

1
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− 3
2

δuuxy f2(t) +
3
4

ρuuxy f2(t) +
3
2

δuxuy f2(t) +
3
4

ρuxuy f2(t) +
1
2

ut f2(t)

− 1
2

u f ′2(t),

Y3 =
1
2

σux f2(t) +
1
4

βuxxx f2(t) + νuy f2(t) +
3
2

δuuxx f2(t)− 3
4

ρuuxx f2(t)

+
3
4

ρu2
x f2(t).

5.2. Conserved Vectors via Noether Theorem

This subsection furnishes the Noether theorem [68,69] to achieve the conserved cur-
rents of the (2+1)-D genBKe (4) with ρ = 2δ. Consequently, Equation (4) admits a La-
grangian Lagrangian (L) whose equivalent minimal differential order is given as:

L =
1
2

βuxxuxy − 1
2

utux − αu3
x +

1
2

αu2
xx −

1
2

γu2
x −

3
2

δu2
xuy − 1

2
σuxuy − 1

2
νu2

y, (117)

which can easily be ascertained by inspection. Thus we arrive at a Lemma:

Lemma 2. The (2+1)-D genBKe (4) forms the Euler–Lagrange equation with the functional

J(v) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
L(t, x, y, ut, ux, uy, uxx, uxy)dtdxdy,

where the conforming function of Lagrange L is as given in (117).

We achieve variational symmetry P by employing symmetry invariance condition
expressed as:

pr(2)PL+ L[Dt(ξ
1) + Dx(ξ

2) + Dy(ξ
3)] = Dt(Bt) + Dx(Bx) + Dy(By), (118)

with the gauge functions Bt, Bx and By depending on (t, x, y, u). In addition, the second
prolongation pr(2)P of P can be recovered by the relation:

pr(2)P = P + ζt ∂

∂ut
+ ζx ∂

∂ux
+ ζy ∂

∂uy
+ ζxx ∂

∂uxx
+ ζxy ∂

∂uxy
,

with the variable coefficients as defined in (7) and P = ξ1∂/∂x + ξ2∂/∂y + ξ3∂/∂t + η∂/∂u.
Separating the monomials from the expansion of (118) secures the presented system of
linear partial differential equations. They are:

ξ1
x = 0, Bt

u + 2ξ1
u = 0, ξ1

u + Bt
u = 0, ξ1

t + ξ3
y − Bt

t + 2ηu − 3ξ2
x = 0,

ξ1
u = 0, ξ2

x = 0, ηx = 0, ξ2
u = 0, ξ3

u = 0, ξ1
uu = 0, ξ2

uu = 0, ξ1
u + Bt

u = 0,

ηuu − 2ξ2
xu = 0, 2ηxu − ξ2

xx = 0, ξ1
u = 0, ξ1

x = 0, ξ3
u = 0, ξ3

u = 0, ξ3
x = 0,

ξ1
xu = 0, Bt

u + ξ1
u = 0, ξ1

xu = 0, ξ1
xx = 0, ξ3

uu = 0, ξ3
xu = 0, ξ3

xu = 0, ξ3
xx = 0,

ηxx = 0, Bt
u + 2ξ1

u = 0, ξ3
u = 0, ξ1

u + Bt
u = 0, 4αξ3

u + 5βξ2
u = 0, 2αξ3

u + 3δξ2
u = 0,

4αξ1
xu + βξ1

yu = 0, 2αξ3
uu + βξ2

uu = 0, 2αηxx + βηxy = 0, βξ1
xy + 2αξ1

xx = 0,

Bx
x + By

y = 0, 2αηuu − βξ2
uy − 4αξ2

xu = 0, 2βηxu − 2βξ3
xy − 2αξ3

xx = 0,

6δξ3
x + σξ3

u + νξ2
u = 0, σξ1

x + 2νξ1
y + ξ3

x = 0, σηx + 2νηy + 2By
u = 0,

βηuu − 4αξ3
xu − βξ3

uy − βξ2
xu = 0, βηuy − βξ2

xy + 4αηxu − 2αξ2
xx = 0,

σξ1
u + 6δξ1

x + σBt
u + ξ3

u = 0, ηt + 2γηx + σηy + 2Bx
u = 0,

6αξ1
x + 3δξ1

y + γξ1
u + γBt

u + ξ2
u = 0, Bt

t − ξ3
y + 2γξ1

x + σξ1
y − 2ηu = 0,

ξ2
t − γξ1

t − γξ3
y + γBt

t − 2γηu + γξ2
x + σξ2

y − 6αηx − 3δηy = 0
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γξ2
u − 2αξ1

t − 2αξ3
y + 2αBt

t − 6αηu + 4αξ2
x + 3δξ2

y = 0,

6αξ3
x − 9δηu + 3δξ2

x + γξ3
u + σξ2

u + 3δBt
t − 3δξ1

t = 0,

2γξ3
x − 6δηx − 2σηu + 2νξ2

y − σξ1
t + σBt

t + ξ3
t = 0,

2βηu − 3βξ2
x − 4αξ3

x + βξ1
t + βξ3

y − βBt
t = 0,

σξ3
x − νξ2

x + νBt
t − νξ1

t − 2νηu + νξ3
y = 0.

We achieve the solution of the system with regards to ξ1, ξ2, ξ3 and η as

ξ1 = c1t + c2, ξ3 =
2
3

c1y − 4αν

9δ
c1t +

1
3

c1σt + c3, Bt =
2
3

c1t + F3(x, y),

ξ2 =
1
3

c1x +
2α

9δ
c1y + F1(t), η = − 1

27δ2

{
(−2σαc1 + 6γc1δ − 9δF′

1(t))y
}
+ F2(t),

Bx =
1

54δ2

{
(6γc1δσ − 2c1ασ2 − 9δσF′

1(t)− 9δyF′′
1 (t)− 27δ2F′

2(t))u
}
+ G(t, x, y),

By =
1

27δ2

{
ν(6γc1δ − 2σαc1 − 9δF′

1(t))u
}− ∫ Gx(t, x, y)dy + F4(t, x).

Functions F1(t), F2(t), F3(x, y), F4(x, t), and G(t, x, y) in the solution are arbitrary so
are constants c1, c2 and c3. Thus, we have the five Noether symmetries together with their
respective gauge functions as:

P1 =
∂

∂t
, Bt = 0, Bx = 0, By = 0,

P2 =
∂

∂y
, Bt = 0, Bx = 0, By = 0,

P3 = t
∂

∂t
+

(
1
3

x +
2α

9δ
y
)

∂

∂x
+

(
2
3

y − 4αν

9δ
t +

1
3

σt
)

∂

∂y
− 1

27δ2 (6γδ − 2σα)
∂

∂u
,

Bt =
2
3

t, Bx =
σ

54δ2 (6γδ − 2ασ)u, By =
ν

27δ2 (6γδ − 2ασ)u,

PF1 = F1(t)
∂

∂x
+

1
3δ

yF′
1(t)

∂

∂u
, Bt = 0, Bx = −

(
9σ

54δ
F′

1(t) +
9

54δ
yF′′

1 (t)
)

u,

By = − ν

3δ
F′

1(t)u,

PF2 = F2(t)
∂

∂u
, Bt = 0, Bx = −1

2
F′

2(t)u, By = 0.

We invoke the relation [70]:

Tk = Lτk + (ξα − ψα
xj τ

j)

(
∂L

∂ψα
xk

−
k

∑
l=1

Dxl

( ∂L
∂ψα

xl xk

))
+

n

∑
l=k

(ηα
l − ψα

xl xj τ
j)

∂L
∂ψα

xkxl

,

to secure the conserved vectors for the six Noether symmetries respectively as:

Tt
1 =

1
2

αu2
xx − αu3

x −
1
2

γu2
x +

1
2

βuxxuxy − 3
2

δu2
xuy − 1

2
σuxuy − 1

2
νu2

y,

Tx
1 = 3αutu2

x + αutuxxx − αuxxutx + γutux +
3
4

βutuxxy − 1
4

βuxxuty

− 1
2

βutxuxy + 3δutuxuy +
1
2

σutuy +
1
2

u2
t ,

Ty
1 =

1
4

βutuxxx − 1
4

βuxxutx +
3
2

δutu2
x +

1
2

σutux + νutuy;

Tt
2 =

1
2

uxuy,
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Tx
2 =

1
2

utuy + 3αu2
xuy + αuxxxuy − αuxxuxy +

3
4

βuyuxxy − 1
2

βu2
xy

− 1
4

βuxxuyy + γuxuy + 3δuxu2
y +

1
2

σu2
y,

Ty
2 =

1
2

αu2
xx −

1
2

utux − αu3
x −

1
2

γu2
x +

1
4

βuxxuxy +
1
4

βuxxxuy +
1
2

νu2
y;

Tt
3 =

1
6

xu2
x − tαu3

x −
1
2

γtu2
x −

3
2

δtuyu2
x +

1
9δ

αyu2
x −

1
27δ2 ασyux

+
1
3

yuyux − 2
9δ

ανtuyux − 1
3

tσuyux +
1
9δ

yγux − 1
2

νtu2
y

+
1
2

αtu2
xx +

1
2

βtuxyuxx,

Tx
3 =

2
3

xαu3
x +

4
9δ

α2yu3
x +

1
6

γxu2
x −

2
9δ2 α2σyu2

x +
7
3

αyuyu2
x +

1
2

δxuyu2
x

− 4
3δ

α2νtuyu2
x + ασtuyu2

x + 3αtutu2
x +

7
9δ

αγyu2
x + 2δyu2

yux

− 4
3

ανtu2
yux + δσtu2

yux − 2
27δ2 αγσyux +

4
3

γyuyux − 4
9δ

αγνtuyux

+
1
3

γσtuyux − 2
9δ

ασyuyux − 1
6

βuxyux − 1
3

αuxxux − 1
18δ

αβuxxux

+
1
4

βxuxxyux +
1
6δ

αβyuxxyux +
1
3

xαuxxxux +
2
9δ

α2yuxxxux

+ γtutux + 3δtuyutux +
2
9δ

γ2yux +
1
6

σ2tu2
y −

1
6

νxu2
y −

1
9δ

ανyu2
y

+
1
3

σyu2
y −

2
9δ

ανσtu2
y −

1
3

βyu2
xy +

2
9δ

αβνtu2
xy −

1
6

βσtu2
xy −

1
6

αxu2
xx

− 1
9δ

α2yu2
xx −

1
27δ2 ασ2yuy +

1
9δ

γσyuy +
1

54δ2 αβσuxx − 1
6

βuyuxx

− 1
6

yβuyyuxx +
1
9δ

αβνtuyyuxx − 1
12

βσtuyyuxx +
1
2

tu2
t −

2
3

αyuxyuxx

− 1
12

βxuxyuxx +
4
9δ

α2νtuxyuxx − 1
3

ασtuxyuxx − 1
18δ

αβyuxyuxx

− 1
18δ

βγuxx − 1
18δ2 αβσyuxxy +

1
2

βyuyuxxy − 1
3δ

αβνtuyuxxy

+
1
4

βσtuyuxxy +
1
6δ

βγyuxxy − 2
27δ2 α2σyuxxx +

2
3

αyuyuxxx

− 4
9δ

α2νtuyuxxx +
1
3

ασtuyuxxx +
2
9δ

αγyuxxx − 1
27δ2 ασyut +

1
3

yuyut

− 2
9δ

ανtuyut +
2
3

σtuyut +
3
4

βtuxxyut + αtuxxxut +
1
9δ

γyut − 1
4

βtuxxuty

− 1
2

βtuxyutx − αtuxxutx − 1
9δ

γσu +
1

27δ2 ασ2u,

Ty
3 =

1
2

δxu3
x −

1
3

αyu3
x +

4
9δ

α2νtu3
x −

1
3

ασtu3
x +

2
9δ

αγνtu2
x +

1
6

σxu2
x

− 1
6

γσtu2
x +

3
2

δtutu2
x −

1
27δ2 ασ2yux +

1
9δ

γσyux +
1
3

νxuyux

+
2
9δ

ανyuyux − 1
12

βuxxux +
1

12
βxuxxxux +

1
18δ

αβyuxxxux

− 1
3

yutux +
2
9δ

ανtutux +
1
3

σtutux − 2
9δ

αν2tu2
y +

1
3

νyu2
y +

1
6

νσtu2
y

+
1
3

αyu2
xx −

1
12

βxu2
xx −

2
9δ

α2νtu2
xx +

1
6

ασtu2
xx −

1
18δ

αβyu2
xx

+
2
9δ

γνyuy − 2
27δ2 ανσyuy +

1
6

βyuxyuxx − 1
9δ

αβνtuxyuxx
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+
1
12

βσtuxyuxx − 1
54δ2 αβσyuxxx +

1
6

βyuyuxxx − 1
9δ

αβνtuyuxxx

+
1
12

βσtuyuxxx +
1

18δ
βγyuxxx + νtuyut +

1
4

βtuxxxut

− 1
4

βtuxxutx − 2
9δ

γνu +
2

27δ2 ανσu;

Tt
F1

=
1
2

u2
xF1(t)− 1

6δ
yuxF′

1(t),

Tx
F1

= 2αu3
xF1(t) + αuxxxuxF1(t)− 1

2
αu2

xxF1(t) +
1
2

γu2
xF1(t)

+
3
4

βuxuxxyF1(t)− 1
4

βuxxuxyF1(t) +
3
2

δu2
xuyF1(t)− 1

6δ
yutF′

1(t)

− 1
2

νu2
yF1(t) +

1
12δ

βuxxF′
1(t)−

1
δ

αyu2
xF′

1(t)−
1
3δ

αyuxxxF′
1(t)

− 1
4δ

βyuxxyF′
1(t)−

1
3δ

γyuxF′
1(t)− yuxuyF′

1(t)−
1
6δ

σyuyF′
1(t)

+
1
6δ

σuF′
1(t) +

1
6δ

yuF′′
1 (t),

Ty
F1

=
1
4

βuxxxuxF1(t)− 1
4

βu2
xxF1(t) +

3
2

δu3
xF1(t) +

1
2

σu2
xF1(t)

+ νuxuyF1(t)− 1
12δ

βyuxxxF′
1(t)−

1
6δ

σyuxF′
1(t)−

1
2

yu2
xF′

1(t)

− 1
3δ

νyuyF′
1(t) +

1
3δ

νuF′
1(t);

Tt
F2

= − 1
2

uxF2(t),

Tx
F2

= − 3αu2
xF2(t)− αuxxxF2(t)− γuxF2(t)− 3

4
βuxxyF2(t)− 3δuxuyF2(t)

− 1
2

σuyF2(t)− 1
2

utF2(t) +
1
2

uF′
2(t),

Ty
F2

= − 1
4

βuxxxF2(t)− 3
2

δu2
xF2(t)− 1

2
σuxF2(t)− νuyF2(t).

6. Particular Notes on the Conservation Laws

In the latter part of our investigation in this study, local conservation laws, which
have an important place in the use of linearization techniques, numerical schemes as well
as stability analysis of solutions were achieved. It is well understood that conservation
laws are the key ingredients in a bid to deduce the physical aspects of the underlying
model. Some well known conserved quantities in physics are the conservation of mass
(or matter), energy (power), momentum (linear or angular) as well as Hamiltonian.
For instance, the conservation of energy is a consequence of the time invariance of
physical systems. In this regard, added to the fact already known that the prevalence
of functions in the conserved quantities reveals that the model under consideration
has a limitless number of conservation laws, T1, X1 and Y1 correspond to conservation
of momentum.

7. Conclusions

This paper presents a study carried out on the (2+1)-dimensional generalized
Bogoyavlensky–Konopelchenko Equation (4). Lie group analysis is invoked to obtain
solutions to the equation via the corresponding optimal system of Lie subalgebras in one
dimension where various members of the system are engaged to perform the reductions
of (4). As a result of the action, diverse solitary wave solutions were achieved and these
include elliptic integrals, trigonometric, Weierstrass, complex, topological kink and anti-
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kink functions. Moreover, on adopting the bifurcation theory of dynamical systems, we
obtained nontrivial bounded and unbounded travelling wave solutions of (4) comprising
algebraic, rational, periodic, hyperbolic as well as trigonometric functions. Numerical
simulations of the various results gained are performed, analyzed and discussed. Fur-
ther to that, we derived conservation laws of the equation by engaging the multiplier
technique and Noether’s theorem where we secured various local conserved vectors.
In addition to the diverse advantages and merits of the achieved solutions in this study
in various fields of science and engineering, the conservation laws investigated are also
of importance. In classical physics, we have these laws consisting of the conservation of
energy, and linear as well as angular momentum. Conserved quantities are crucial to our
comprehension of the physical world which are seen to be basic laws of nature. Thus,
they possess a wide range of applications in physics, and in other diverse fields of study,
for instance, chemistry and engineering to mention a few. Some of these applications
have been given earlier. Therefore, our results can be utilized for experimental and
applied purposes for further studies in various areas of research in science, technology
and engineering.
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ODEs Ordinary Differential equations
LODEs Linear Ordinary Differential equations
NODEs Nonlinear Ordinary Differential equations
PDEs Partial differential equations
NLDEs Nonlinear differential equations
NLPDEs Nonlinear partial differential equations
LIPDEs Linear partial differential equations
KdV Kortweg-de Vries
KP Kadomtsev–Petviashvili
KP-MEW Kadomtsev–Petviashvili-Modified Equal Width equation
KP-BBM Kadomtsov-Petviashivilli-Benjamin-Bona-Mahony
(2+1)-D genBKe (2+1)-dimensional generalized Bogoyavlensky–Konopelchenko equation
2D Two-dimensional
3D Three-dimensional
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1. Introduction

One of the newly developed concepts in nonlinear optics, applicable to a variety of
optoelectronic devices, is highly dispersive (HD) solitons. This emerges out of dire necessity
when chromatic dispersion (CD) runs low. Thus, to replenish this low count, additional
dispersion terms are taken into consideration. These are sixth-order dispersion (6OD);
fifth-order dispersion (5OD); fourth-order dispersion (4OD); third-order dispersion (3OD);
and inter–modal dispersion (IMD). The effect of soliton radiation, with such higher order
dispersion terms to offset the low count of CD, is neglected to keep the model simple. Other
means to compensate for the low count of CD is to introduce Bragg gratings in the fiber
structure so that the dispersive reflectivity that it produces additionally replenishes this
low count [1–32]. The current paper is the first of its kind to include both effects to offset
this low CD. Such a model would also lead to soliton solutions.

The model would, therefore, be handled with the Kerr law of nonlinearity. The
method of integrability would be two-fold and both due to Kudryashov. The first approach
is the generalized Kudryashov’s approach, followed by the lately developed enhanced
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Kudryashov’s scheme [9–16]. These two approaches can collectively yield a full spectrum
of solitons, which are recovered and enumerated in the present paper. The parametric
restrictions, also known as certain conditions, are extracted for the solitons to exist. The
remaining details are presented in the rest of the paper via the unique integration tools that
are discussed.

Governing Model

The perturbed HD nonlinear Schrödinger’s equation is firstly introduced as below:

iϕt + ia1 ϕx + a2 ϕxx + ia3 ϕxxx + a4 ϕxxxx + ia5 ϕxxxxx + a6 ϕxxxxxx + b|ϕ|2 ϕ
= i
[
λ
(|ϕ|2 ϕ

)
x + μ

(|ϕ|2)x ϕ + θ|ϕ|2 ϕx
]
,

(1)

such that θ, μ, λ, b and al , (l = 1–6) depict real-valued constant parameters, whereas
ϕ(x, t) purports a complex-valued function. Setting λ = μ = θ = 0 extracts the governing
equation [16]. a1 comes from the IMD, a2 implies to the CD, a3 is related to the 3OD, a4
stems from the 4OD, a5 purports the 5OD and a6 stands for the 6OD. The first term arises
from the temporal evolution, where i =

√−1. μ and θ yield the nonlinear dispersions, b
arises from Kerr law nonlinearity, λ comes from the self-steepening (SS) and ϕ = ϕ(x, t)
purports the soliton wave.

For the first time in fiber Bragg gratings, the strategic governing model derived from
(1) reads as

iUt + ia11Vx + a12Vxx + ia13Vxxx + a14Vxxxx + ia15Vxxxxx + a16Vxxxxxx
+
(
b11|U|2 + b12|V|2)U + iα1Ux + β1V + σ1U∗V2

= i
[
λ1
(|U|2U

)
x + μ1

(|U|2)xU + θ1|U|2Ux
]
,

(2)

and
iVt + ia21Ux + a22Uxx + ia23Uxxx + a24Uxxxx + ia25Uxxxxx + a26Uxxxxxx

+
(
b21|V|2 + b22|U|2)V + iα2Vx + β2U + σ2V∗U2

= i
[
λ2
(|V|2V

)
x + μ2

(|V|2)xV + θ2|V|2Vx
]
,

(3)

such that σj, λj, μj, αj, β j, θj, bj1, bj2 and ajl , (1 ≤ l ≤ 6, j = 1, 2) depict real-valued constant
parameters, whereas V(x, t) and U(x, t) purport complex-valued functions. aj1 and αj
come from the IMD, aj2 imply the CD, aj3 are related to the 3OD, aj4 stem from the 4OD,
aj5 purport the 5OD and aj6 stand for the 6OD. The first terms arise from the temporal
evolution, where i =

√−1. μj and θj yield the nonlinear dispersions, σj denote the four-
wave mixing, bj1 arise from the self-phase modulation, β j signify the detuning parameters,
bj2 denote the cross-phase modulation, λj signify the SS, whilst V(x, t) and U(x, t) purport
the soliton waves.

2. Mathematical Analysis

The governing model admits the analytical solutions

U(x, t) = g1(ξ) exp[iΩ(x, t)],

V(x, t) = g2(ξ) exp[iΩ(x, t)],
(4)

such that
Ω(x, t) = −κx + ωt + θ0, ξ = x − vt. (5)

Here, gj(ξ) and Ω(x, t) signify real-valued functions, whereas v, k, ω and θ0 purport
real-valued constants. For the soliton wave, Ω(x, t) depicts the phase component, ξ depicts
the wave variable, θ0 arises from the phase constant, v stems from the velocity, ω denotes
the wave number, gj(ξ) come from the amplitude components and κ depicts the frequency.

Placing (4) and (5) into (2) and (3) extracts the strategic equations
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a16g(6)2 +
(
a14 − 5a15κ − 15a16κ2)g(4)2

+
(
a12 + 3a13κ − 6a14κ2 − 10a15κ3 + 15a16κ4)g′′

2
+(α1k − ω)g1 +

(
β1 − a12κ2 + a11κ + a14κ4 − a13κ3 − a16κ6 + a15κ5)g2

+[b11 − κ(λ1 + θ1)]g3
1 + (b12 + σ1)g1g2

2 = 0,

(6)

a26g(6)1 +
(
a24 − 5a25κ − 15a26κ2)g(4)1

+
(
a22 + 3a23κ − 6a24κ2 − 10a25κ3 + 15a26κ4)g′′

1
+(α2k − ω)g2 +

(
a21κ + β2 − a23κ3 − a22κ2 + a25κ5 + a24κ4 − a26κ6)g1

+[b21 − κ(λ2 + θ2)]g3
2 + (b22 + σ2)g2

1g2 = 0,

(7)

(a15 − 6a16κ)g(5)2 +
(
a13 − 4a14κ − 10a15κ2 + 20a16κ3)g′′′

2
−[3λ1 + 2μ1 + θ1]g2

1g′1 + (α1 − v)g′1
+
(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)g′2 = 0,

(8)

(a25 − 6a26κ)g(5)1 +
(
a23 − 4a24κ − 10a25κ2 + 20a26κ3)g′′′

1
−[3λ2 + 2μ2 + θ2]g2

2g′2 + (α2 − v)g′2
+
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5)g′1 = 0.

(9)

Set
g2(ξ) = Πg1(ξ), Π 	= 0, Π 	= 1, (10)

where Π depicts real-valued constant parameters. Hence, Equations (6)–(9) appear as

a16Πg(6)1 +
(
a14 − 5a15κ − 15a16κ2)Πg(4)1

+
(
a12 + 3a13κ − 6a14κ2 − 10a15κ3 + 15a16κ4)Πg′′

1
+
[
α1k − ω +

(
β1 − a12κ2 + a11κ + a14κ4 − a13κ3 − a16κ6 + a15κ5)Π]g1
+
[
b11 − κ(λ1 + θ1) + (b12 + σ1)Π2]g3

1 = 0,

(11)

a26g(6)1 +
(
a24 − 5a25κ − 15a26κ2)g(4)1

+
(
a22 + 3a23κ − 6a24κ2 − 10a25κ3 + 15a26κ4)g′′

1
+
[
(α2k − ω)Π + a21κ + β2 − a23κ3 − a22κ2 + a25κ5 + a24κ4 − a26κ6]g1

+
[
b22 + σ2 + b21Π2 − κ(λ2 + θ2)Π2]Πg3

1 = 0,

(12)

(a15 − 6a16κ)Πg(5)1 +
(
a13 − 4a14κ − 10a15κ2 + 20a16κ3)Πg′′′

1
−[3λ1 + 2μ1 + θ1]g2

1g′1
+
[
α1 − v +

(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π]g′1 = 0,

(13)

(a25 − 6a26κ)g(5)1 +
(
a23 − 4a24κ − 10a25κ2 + 20a26κ3)g′′′

1
−[3λ2 + 2μ2 + θ2]Π3g2

1g′1
+
[
(α2 − v)Π + a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5]g′1 = 0.

(14)

Equations (13) and (14) yield the certain restrictions

κ =
aj5

6aj6
, (15)

aj3 − 4aj4κ − 10aj5κ2 + 20aj6κ3 = 0, (16)

3λj + 2μj + θj = 0, (17)

v = −α1 +
(
a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π,

v = −α2 +
1
Π
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5), (18)

while Equation (18) extracts the constraint relation

α2 =

α1Π +
(
a21 − 2a22κ − 3a23κ2 + 4a24κ3 + 5a25κ4 − 6a26κ5)

−(a11 − 2a12κ − 3a13κ2 + 4a14κ3 + 5a15κ4 − 6a16κ5)Π2

Π
. (19)
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Moreover, Equations (11) and (12) admit the strategic constraints

a16Π
a26

=
(a14−5a15κ−15a16κ2)Π

a24−5a25κ−15a26κ2

=
(a12+3a13κ−6a14κ2−10a15κ3+15a16κ4)Π

a22+3a23κ−6a24κ2−10a25κ3+15a26κ4

=
α1k−ω+(β1+a11κ−a12κ2−a13κ3+a14κ4+a15κ5−a16κ6)Π
(α2k−ω)Π+β2+a21κ−a22κ2−a23κ3+a24κ4+a25κ5−a26κ6

= b11−κ(λ1+θ1)+(b12+σ1)Π2

[b22+σ2+b21Π2−κ(λ2+θ2)Π2]Π
,

(20)

and the certain parametric restrictions

ω =

Π

[
17κ2(a26a12 − a16a22)− 11κ3(a16a23 − a26a13)
+20a16(Πα2k + β2 + a21κ)− 20a26(β1 + κa11)

]
−20a26α1k

20(a16Π2−a26)
,

a24 = a16a22+3a16a23κ−a26a12−3a26a13κ+8a26a14κ2

8a16κ2 ,

a25 = 40a26a15κ3+a16a22+3a16a23κ−a26a12−3a26a13κ
40a16κ3 ,

b22 =

a26b11 − a26κλ1 − a26κθ1 + (a16κλ2 − a16b21 + a16κθ2)Π4

+(a26b12 + a26σ1 − a16σ2)Π2

a16Π2 .

(21)

Equation (11) is also extracted as

g(6)1 + Ω4g(4)1 + Ω2g′′
1 + Ω1g1 + Ω3g3

1 = 0, (22)

where
Ω4 = a14−5a15κ−15a16κ2

a16
,

Ω2 = a12+3a13κ−6a14κ2−10a15κ3+15a16κ4

a16
,

Ω1 = − α1k−ω+(β1−a12κ2+a11κ+a14κ4−a13κ3−a16κ6+a15κ5)Π
a16Π ,

Ω3 = b11−κ(λ1+θ1)+(b12+σ1)Π2

a16Π .

(23)

From the standpoint of electromagnetic theory, Equations (1)–(3) are a far cry from the
basic alphabets of electromagnetic theory, namely Maxwell’s equation. It is well known
that Maxwell’s equation led to the derivation of the nonlinear Schrodinger’s equation
(NLSE) with the Kerr law of nonlinear refractive index by the aid of multiple scales. This
is alternatively known as the cubic Schrodinger’s equation. It is interesting to point out
here that NLSE is a special case of the Schrodinger’s equation that appears in Quantum
Mechanics when the potential function is the intensity of light. This so happens since
the refractive index of light is intensity dependent. Thus, there exists a close proximity
between Schrodinger’s equation in Quantum Mechanics and NLSE in Quantum Optics. The
extended or perturbed version of NLSE is also derived from Maxwell’s equation with the
inclusion of higher order perturbation terms. These are typically some of the Hamiltonian
type of perturbation terms that would include self-steepening effect, self-frequency shift,
inter-modal dispersion, detuning effect, and others.

Later, it was realized that the CD alone turns out to be insufficient to maintain the
much-needed delicate balance between CD and self-phase modulation (SPM) because of its
depletion with trans-continental and trans-oceanic distance soliton transmission through
optical fibers. This would lead to a catastrophic pulse collapse. Thus, to circumvent
this situation, the concept of HD solitons was conceived a couple of years ago where the
low count of CD would be supplemented with higher order dispersion terms. Another
engineering marvel that was proposed a couple of decades ago is the introduction of the
gratings structure by Bragg, which would lead to the arrest of the pulse collapse and
introduce dispersive reflectivity which would maintain the necessary balance between CD
and SPM. The current paper is a combination of both, namely introducing HD solitons as
well as Bragg grating’s structure to ensure the uninterrupted long-distance transmission of
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solitons. Thus, Equations (2) and (3) can be derived from (1), just as the coupled equation
for birefringent fibers are derived from the scalar version of the NLSE. Here, in (2) and (3),
the variables U and V represent the forward and backward propagating waves in the cubic
nonlinear core.

In this paper, the higher order dispersion terms as well as the nonlinear dispersion due
to θj (j = 1, 2) are all taken to be strong dispersion. This would only slow down the soliton of
the soliton and would introduce some constraints or connectivity between these dispersions
and other Hamiltonian perturbation parameters. These are reflected in relations (15)–(17)
and the velocity slowdown is reflected in (18) along the two core components. However,
the integrability of model (2) and (3) would not be affected. Evidently, these dispersion
terms would introduce a considerable amount of soliton radiation. This effect is discarded
in the current paper since the study of soliton radiation falls in the continuous regime
and can be handled as a separate project with the usage of the variational principle or the
method of moments, or even by the theory of unfoldings. Finally, if the dispersive effect
was taken to be weak, it would lead to the emergence of quasi-monochromatic solitons
that can be recovered only with the usage of multiple scales [21]. However, again, this is
outside the scope of the current work.

While the governing equation with Hamiltonian perturbation terms is integrable
with the application of the inverse scattering transform which would have additionally
revealed soliton radiation effects analytically, this paper focuses on the retrieval of bound
state solitons only by the aid of the generalized Kudryashov’s approach and the enhanced
Kudryashov’s method. The details of the retrieval of solitons using these two algorithms
are presented in the subsequent sections.

3. Generalized Kudryashov’s Method

The integration technique satisfies the analytical solution

g1(ξ) =
∑N

k=0 AkFk(ξ)

∑M
h=0 BhFh(ξ)

, AN 	= 0, BM 	= 0, (24)

such that F(ξ) admits the ancillary equation

F′(ξ) = F(ξ)[F(ξ)− 1] ln H, 0 < H 	= 1, (25)

and the explicit solutions

F(ξ) =
1

1 + ε expH(ξ)
, (26)

F(ξ) =
1

1 + ε[cosh(ξ ln H) + sinh(ξ ln H)]
. (27)

Here, ε = ±1, expH(ξ) = H(ξ), Ak (k = 1 − N) and Bh (h = 1 − M) denote constants,
whereas N and M arise from the balance principle.

Setting ε = 1, Equation (27) evolves as the dark soliton

F(ξ) =
1
2

[
1 − tanh

(
1
2

ξ ln H
)]

, (28)

whilst setting ε = −1, Equation (27) yields the singular soliton

F(ξ) =
1
2

[
1 − coth

(
1
2

ξ ln H
)]

. (29)

Balancing g3
1 with g(6)1 extracts the restriction

N − M + 6 = 3(N − M) =⇒ N = 3 + M. (30)

When M = 1, Equation (24) reads as
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g1(ξ) =
A4F4(ξ) + A3F3(ξ) + A2F2(ξ) + A1F(ξ) + A0

B1F(ξ) + B0
, A4 	= 0, B1 	= 0. (31)

Placing (31) with the usage of (25) into (22) leaves us the results

A4 = 24B1

√
− 35

Ω3
ln3 H, A3 = 0, A2 = −54B1

√
− 35

Ω3
ln3 H,

A1 = 6B1

√
− 35

Ω3
ln3 H, A0 = 9B1

√
− 35

Ω3
ln3 H, B1 = B1, B0 = 3

2 B1,

(32)

Ω4 = −83 ln2 H, Ω2 = 946 ln4 H, Ω1 = 1260 ln6 H, Ω3 < 0. (33)

Inserting (32) together with (27)–(29) into (31) acquires the explicit solutions:

(I) The combo bright-singular soliton solutions:

U(x, t) = ±9
√
− 35

Ω3

(
ln3 H

)
⎡
⎢⎢⎢⎣1 +

4−6

{
1 + εsinh[(x − vt) ln H]
+ε cosh[(x − vt) ln H]

}
{

1 + εsinh[(x − vt) ln H]
+ε cosh[(x − vt) ln H]

}3

⎤
⎥⎥⎥⎦

× exp[i(−κx + ωt + θ0)],

(34)

V(x, t) = ±9Π
√
− 35

Ω3

(
ln3 H

)
⎡
⎢⎢⎢⎣1 +

4−6

{
1 + εsinh[(x − vt) ln H]
+ε cosh[(x − vt) ln H]

}
{

1 + εsinh[(x − vt) ln H]
+ε cosh[(x − vt) ln H]

}3

⎤
⎥⎥⎥⎦

× exp[i(−κx + ωt + θ0)].

(35)

(II) The singular soliton solutions:

U(x, t) = ±3
√
− 35

Ω3

(
ln3 H

){
coth2

[
1
2 (x − vt) ln H

]
− 3
}

coth
[

1
2 (x − vt) ln H

]
× exp[i(−κx + ωt + θ0)],

(36)

V(x, t) = ±3Π
√
− 35

Ω3

(
ln3 H

){
coth2

[
1
2 (x − vt) ln H

]
− 3
}

coth
[

1
2 (x − vt) ln H

]
× exp[i(−κx + ωt + θ0)].

(37)

(III) The dark soliton solutions:

U(x, t) = ±3
√
− 35

Ω3

(
ln3 H

){
tanh2

[
1
2 (x − vt) ln H

]
− 3
}

tanh
[

1
2 (x − vt) ln H

]
× exp[i(−κx + ωt + θ0)],

(38)

V(x, t) = ±3Π
√
− 35

Ω3

(
ln3 H

){
tanh2

[
1
2 (x − vt) ln H

]
− 3
}

tanh
[

1
2 (x − vt) ln H

]
× exp[i(−κx + ωt + θ0)].

(39)

4. Enhanced Kudryashov’s Method

The integration algorithm admits the explicit solution

g1(ξ) =
N

∑
j=0

KjZj(ξ), KN 	= 0, (40)

such that Z(ξ) holds the ancillary equation

Z′2(ξ) = Z2(ξ)
[
1 − πZ2s(ξ)

]
ln2 H, 0 < H 	= 1, (41)

and the analytical solution
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Z(ξ) =
[

4η

(4η2 − π)sinh(sξ ln H) + (4η2 + π) cosh(sξ ln H)

] 1
s
. (42)

Here π, Kj (j = 0 − N), s and η depict real-valued constant parameters. Balancing g3
1

and g(6)1 in (22) secures the certain restriction

3N = N + 6s =⇒ N = 3s. (43)

Case 1 : When s = 1, Equation (40) evolves as

g1(ξ) = K3Z3(ξ) + K2Z2(ξ) + K1Z(ξ) + K0, K3 	= 0. (44)

Inserting (44) with the help of (41) into (22) leaves us the results:
Result 1:

K3 = −24π

√
35π

Ω3
ln3 H, K2 = 0, K1 =

288
17

√
35π

Ω3
ln3 H, K0 = 0, (45)

Ω4 =
581
17

ln2 H, Ω2 =
92659
289

ln4 H, Ω1 = −102825
289

ln6 H, πΩ3 > 0. (46)

Plugging (45) with the usage of (42) into (44) formulates the combo solitons

U(x, t) = ±24
√

35π
Ω3

(
ln3 H

)⎛⎜⎜⎝ 4η(
4η2 − π

)
sinh[(x − vt) ln H]

+
(
4η2 + π

)
cosh[(x − vt) ln H]

⎞
⎟⎟⎠

×
{

12
17 − π

(
4η

(4η2−π)sinh[(x−vt) ln H]+(4η2+π) cosh[(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)],

(47)

V(x, t) = ±24Π
√

35π
Ω3

(
ln3 H

)⎛⎜⎜⎝ 4η(
4η2 − π

)
sinh[(x − vt) ln H]

+
(
4η2 + π

)
cosh[(x − vt) ln H]

⎞
⎟⎟⎠

×
{

12
17 − π

(
4η

(4η2−π)sinh[(x−vt) ln H]+(4η2+π) cosh[(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)].

(48)

When Ω3 > 0 and π = 4η2, the bright solitons evolve as

U(x, t) = ± 24
17

√
35
Ω3

(
ln3 H

){
12 − 17 sech 2[(x − vt) ln H]

}
×sech [(x − vt) ln H] exp[i(−κx + ωt + θ0)],

(49)

V(x, t) = ± 24
17 Π
√

35
Ω3

(
ln3 H

){
12 − 17 sech 2[(x − vt) ln H]

}
×sech [(x − vt) ln H] exp[i(−κx + ωt + θ0)],

(50)

where as setting Ω3 < 0 and π = −4η2 secures the singular solitons

U(x, t) = ± 24
17

√
− 35

Ω3

(
ln3 H

){
12 + 17 csch 2[(x − vt) ln H]

}
×csch [(x − vt) ln H] exp[i(−κx + ωt + θ0)],

(51)

V(x, t) = ± 24
17 Π
√
− 35

Ω3

(
ln3 H

){
12 + 17 csch 2[(x − vt) ln H]

}
×csch [(x − vt) ln H] exp[i(−κx + ωt + θ0)].

(52)

Result 2:

K3 = 24π

√
35π

Ω3
ln3 H, K2 = 0, K1 = 0, K0 = 0, (53)
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Ω4 = −83 ln2 H, Ω2 = 1891 ln4 H, Ω1 = −11025 ln6 H, πΩ3 > 0. (54)

Placing (53) with the help of (42) into (44) formulates the combo solitons

U(x, t) = ±24π
√

35π
Ω3

⎛
⎜⎜⎝ 4η ln H(

4η2 − π
)
sinh[(x − vt) ln H]

+
(
4η2 + π

)
cosh[(x − vt) ln H]

⎞
⎟⎟⎠

3

× exp[i(−κx + ωt + θ0)],

(55)

V(x, t) = ±24Ππ
√

35π
Ω3

⎛
⎜⎜⎝ 4η ln H(

4η2 − π
)
sinh[(x − vt) ln H]

+
(
4η2 + π

)
cosh[(x − vt) ln H]

⎞
⎟⎟⎠

3

× exp[i(−κx + ωt + θ0)].

(56)

When Ω3 > 0 and π = 4η2, the bright solitons read as

U(x, t) = ±24

√
35
Ω3

(
ln3 H

)
sech 3[(x − vt) ln H] exp[i(−κx + ωt + θ0)], (57)

V(x, t) = ±24Π

√
35
Ω3

(
ln3 H

)
sech 3[(x − vt) ln H] exp[i(−κx + ωt + θ0)], (58)

whereas Ω3 < 0 and π = −4η2 retrieves the singular solitons

U(x, t) = ±24

√
− 35

Ω3

(
ln3 H

)
csch 3[(x − vt) ln H] exp[i(−κx + ωt + θ0)], (59)

V(x, t) = ±24Π

√
− 35

Ω3

(
ln3 H

)
csch 3[(x − vt) ln H] exp[i(−κx + ωt + θ0)]. (60)

Case 2 : When s = 2, Equation (40) reads as

g1(ξ) = K6Z6(ξ) + K5Z5(ξ) + K4Z4(ξ) + K3Z3(ξ)
+K2Z2(ξ) + K1Z(ξ) + K0, K6 	= 0.

(61)

Plugging (61) with the help of (41) into (22) reveals the results:
Result 1:

K6 = − 192
17 π

√
10115π

Ω3
ln3 H, K5 = 0, K4 = 0, K3 = 0,

K2 = 2304
289

√
10115π

Ω3
ln3 H, K1 = 0, K0 = 0,

(62)

Ω4 =
2324
17

ln2 H, Ω2 =
1482544

289
ln4 H, Ω1 = −6580800

289
ln6 H, πΩ3 > 0. (63)

Inserting (62) with the usage of (42) into (61) extracts the combo solitons

U(x, t) = ±192
√

35π
Ω3

(
ln3 H

)⎛⎜⎜⎝ 4η(
4η2 − π

)
sinh[2(x − vt) ln H]

+
(
4η2 + π

)
cosh[2(x − vt) ln H]

⎞
⎟⎟⎠

×
{

12
17 − π

(
4η

(4η2−π)sinh[2(x−vt) ln H]+(4η2+π) cosh[2(x−vt) ln H]

)2
}
× exp[i(−κx + ωt + θ0)],

(64)
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V(x, t) = ±192Π
√

35π
Ω3

(
ln3 H

)⎛⎜⎜⎝ 4η(
4η2 − π

)
sinh[2(x − vt) ln H]

+
(
4η2 + π

)
cosh[2(x − vt) ln H]

⎞
⎟⎟⎠

×
{

12
17 − π

(
4η

(4η2−π)sinh[2(x−vt) ln H]+(4η2+π) cosh[2(x−vt) ln H]

)2
}

× exp[i(−κx + ωt + θ0)].

(65)

When Ω3 > 0 and π = 4η2 the bright solitons come out as

U(x, t) = ± 192
17

√
35
Ω3

(
ln3 H

)
sech[2(x − vt) ln H]

{
12 − 17 sech 2[2(x − vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(66)

V(x, t) = ± 192
17 Π

√
35
Ω3

(
ln3 H

)
sech[2(x − vt) ln H]

{
12 − 17 sech 2[2(x − vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(67)

whilst setting Ω3 < 0 and π = −4η2 acquires the singular solitons

U(x, t) = ± 24
17

√
− 35

Ω3

(
ln3 H

)
csch[2(x − vt) ln H]

{
12 + 17 csch 2[2(x − vt) ln H]

}
× exp[i(−κx + ωt + θ0)],

(68)

V(x, t) = ± 24
17 Π
√
− 35

Ω3

(
ln3 H

)
csch[2(x − vt) ln H]

{
12 + 17 csch 2[2(x − vt) ln H]

}
× exp[i(−κx + ωt + θ0)].

(69)

Result 2:

K6 = 192π

√
35π

Ω3
ln3 H, K5 = 0, K4 = 0, K3 = 0,K2 = 0, K1 = 0, K0 = 0, (70)

Ω4 = −332 ln2 H, Ω2 = 30256 ln4 H, Ω1 = −705600 ln6 H, πΩ3 > 0. (71)

Putting (70) with the usage of (42) into (61) secures the combo solitons

U(x, t) = ±192π
√

35π
Ω3

⎛
⎜⎜⎝ 4η ln H(

4η2 − π
)
sinh[2(x − vt) ln H]

+
(
4η2 + π

)
cosh[2(x − vt) ln H]

⎞
⎟⎟⎠

3

× exp[i(−κx + ωt + θ0)],

(72)

V(x, t) = ±192Ππ
√

35π
Ω3

⎛
⎜⎜⎝ 4η ln H(

4η2 − π
)
sinh[2(x − vt) ln H]

+
(
4η2 + π

)
cosh[2(x − vt) ln H]

⎞
⎟⎟⎠

3

× exp[i(−κx + ωt + θ0)].

(73)

When Ω3 > 0 and π = 4η2, the bright solitons shape up as

U(x, t) = ±192

√
35
Ω3

(
ln3 H

)
sech 3[2(x − vt) ln H] exp[i(−κx + ωt + θ0)], (74)

V(x, t) = ±192Π

√
35
Ω3

(
ln3 H

)
sech 3[2(x − vt) ln H] exp[i(−κx + ωt + θ0)], (75)

where as setting Ω3 < 0 and π = −4η2 formulates the singular solitons
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U(x, t) = ±192

√
− 35

Ω3

(
ln3 H

)
csch 3[2(x − vt) ln H] exp[i(−κx + ωt + θ0)], (76)

V(x, t) = ±192Π

√
− 35

Ω3

(
ln3 H

)
csch 3[2(x − vt) ln H] exp[i(−κx + ωt + θ0)]. (77)

5. Conclusions

The current work is the first of its kind to combine the two compensatory means
to offset the low count of CD that is being implemented in optoelectronics for the first
time. HD solitons were implemented together with a Bragg gratings structure to produce
dispersive reflectivity that would work together to create performance enhancement. The
effect of soliton radiation and slowdown of solitons due to the presence of higher order
dispersions are neglected. The retrieval of solitons for the model has been successfully
achieved by the two Kudryashov approaches. The enhanced Kudryashov’s approach
turned out to be especially useful for bright solitons, while the generalized Kudryashov’s
scheme failed to recover the much-needed bright solitons.

This successful retrieval of solitons paves the way for further developments in this
newly formulated model. An immediate thought would be to obtain the conservation laws
to the governing model that would give a plethora of physical insight into the governing
model, which would follow up with additional features such as the quasi-monochromatic
soliton dynamics and others. Later, this model would also be taken up with additional
forms of self–phase modulation. We are awaiting the results that align with the latest
findings [17–20] and expect to receive them soon.
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On the Short Wave Instability of the Liquid/Gas Contact
Surface in Porous Media
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Abstract: We consider a problem of hydrodynamic stability of the liquid displacement by gas in
a porous medium in the case when a light gas is located above the liquid. The onset of instability
and the evolution of the small shortwave perturbations are investigated. We show that when using
the Darcy filtration law, the onset of instability may take place at an infinitely large wavenumber
when the normal modes method is inapplicable. The results of numerical simulation of the nonlinear
problem indicate that the anomalous growth of the amplitude of shortwave small perturbations
persists, but the growth rate of amplitude decreases significantly compared to the results of linear
analysis. An analysis of the stability of the gas/liquid interface is also carried out using a network
model of a porous medium. It is shown that the results of surface evolution calculations obtained
using the network model are in qualitative agreement with the results of the continual approach, but
the continual model predicts a higher velocity of the interfacial surfaces in the capillaries. The growth
rate of perturbations in the network model also increases with decreasing perturbation wavelength
at a constant amplitude.

Keywords: porous media; stability; pore-scale network model; drainage

MSC: 35Q35; 35B35

1. Introduction

Stability of filtration flows with liquid/gas interfaces in rocks and soils has been
studied both analytically and numerically in a large number of works. These problems are
of great practical interest. Gas drainage is considered as an effective method to enhance
oil recovery (see [1–4]). The efficiency of oil/water or oil/gas displacement depends on
the stability of the interface between the oil-saturated region and the region containing
displacement fluid (gas) [5]. An increase in the concentration of impurities and contamina-
tion of groundwater occurs when groundwater evaporates, as well as when the boundary
between fresh water and solutions is unstable [6–9]. Another example where this insta-
bility plays a significant role is geothermic systems. In many cases, their existence can be
explained by convective heat transfer to the surface of the Earth due to the instability of
the interfaces between regions saturated with water, steam, and a steam–water mixture
inside high-temperature rocks [10–15]. The problem of the stability of the water layer in
the soil located above the air-saturated region was studied in [13,16] in relation to artificial
underground structures. The occurrence of instability of the oil–gas interface during oil
extraction from a field with a gas cap was investigated in [17].

These studies were provided by the use of the continual hydrodynamic approach. It
was assumed that the filtration process is described by Darcy’s law, and there is a narrow
region that separates the gas and liquid region determined by some surface equation. It was
shown in the linear approximation within the use of the normal mode method that for a given
amplitude of the interface perturbation there is a certain range of parameters where the
rate of growth of the amplitude increases indefinitely with decreasing wavelength [13–16].
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This fact casts doubt on the applicability of the Darcy equation in the context of
studying the onset of instability, as well as determining geometric characteristics of the
finger-like structures of a liquid or gas. In [18] the stability of oil flow in a collector with
a gas cap was studied under the assumption that oil motion obeys the Brinkman law.
Within the normal mode analysis, it was established that the growth rate of short wave
perturbations tends to zero with increasing wavenumber.

In recent times, pore-network modeling has been used increasingly to study water
imbibition and drainage in porous media. Relative permeability studies conducted using
the pore-scale network models have shown that the obtained results are in qualitative
agreement with the data of laboratory measurements (e.g., see [19–25]. In [26], a network
approach to the modeling of non-Newtonian rheology was used to understand some of
the more detailed features of polymer flow in porous media. This approach provided a
mathematical bridge between the behavior of the non-Newtonian fluid in a single capillary
and the macroscopic behavior as deduced from the pressure drop–flow rate relation across
the whole network model. In [27], the network approach was presented which simulates
2-phase oil/water displacement during water imbibition. In [28], a pore-network model
of the shale matrix was developed and used to simulate CO2 migration in organic-rich
shale formations. The pore space is modeled as a set of pore bodies connected by pore
throats. An imbibition efficiency calculation method was proposed in [29]. The acyclic
pore model was improved and was used to study how the pore structure affects imbibition
performance. An analytical analysis of the relationship between the pore-scale forces and
the Darcy-scale pressure drops was presented in [30]. An extensive and detailed discussion
of the application of network models can be found in [31–33].

In this work, we study the evolution of perturbations of the gas/oil contact surface
with a decrease in pressure in an oil-saturated region and compare the results obtained
within continual and network models of a porous media. When a liquid is displaced
by a gas in a porous medium, the gas–liquid interface is linearly unstable within the
continuum model using Darcy’s law (see, for example, [17]). The rate of growth of interface
perturbations increases indefinitely with decreasing wavelength at a constant amplitude of
the perturbation. Below, we show that linear analysis is not applicable in this case, and we
will use the numerical solution. The results of the numerical solution also show that the
perturbation growth rate increases without limit with decreasing wavelength. In this case,
the use of the continuum model is impossible without modification, which requires studies
using direct numerical simulation on the pore scale. Therefore, we use simple network
models to identify the physical mechanisms that can help achieve successful modeling of
the interface motion. This paper is organized as follows: Section 2 contains the formulation
of the problem within the framework of the continual model using Darcy’s law. We show
that the linear approximation is inapplicable for determining the growth rate of short-wave
perturbations. In Section 3, we study the wavelength dependence of the growth rate of
short-wave perturbations using a numerical approach in the framework of the continual
model. In Section 4, a similar problem is studied within the network model of porous
media. Section 5 contains a discussion of the obtained results and conclusion notes.

2. Formulation of the Problem

We consider the problem of oil extraction from the field with a gas cap. Assume that
the gas cap is separated from the oil-saturated reservoir by a horizontal interface. When
producing oil located under the gas zone, the pressure in the oil reservoir decreases, and the
interface moves down. If the motion of the interface is unstable, gas breakdown may occur
in the direction of the production well. In this case, regions saturated with immobile oil are
formed. Thus, the study of the instability of filtration flows with a gas/liquid interface is
an important issue when developing a field with a gas cap.

In recent years, gas gravity drainage technology has been widely used worldwide
(see [1–4]). The flow diagram is shown in Figure 1 and is a simplification of the real-life
example with the horizontal interlayer. Let a horizontal layer of a porous homogeneous
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medium be located over a high-permeability layer with constant pressure PL. This layer
models a horizontal production well or a hydraulic fracture. For the considered problem of
the evolution of interface perturbations, the pressure may be assumed to be constant, since
the permeability of this layer is several orders of magnitude higher than the permeability
at z > 0. The problem is solved in Cartesian coordinates (x, y, z) with the axis z pointing
upwards. In the low permeable layer at 0 < z < s(x, t) (Ω f region) there is a liquid, and
the region Ωg ( z > s(x, t) ) is filled with gas with constant pressure Pg. Here, t is time and
s(x, t) is the z-coordinate of the interface. The horizontal coordinate x varies in the range
(−∞, ∞).

Figure 1. The computational domain used for the Darcy scale numerical simulation. Ω f is the
low-permeability liquid region, Ωg the gas region. The highly permeable layer (the interlayer) is
located at z < 0.

At the gas/liquid interface, pressure jumps so that the pressure drop equals to the
capillary pressure

Pc(z) = PΩ f (x, s(x, t))− Pg. (1)

Here, the capillary pressure Pc is negative if the rock is wettable and positive otherwise.
Similar to [17], we assume that capillary pressure depends on the vertical coordinate z.

In the region Ω f , the continuity equation is valid, and we assume that Darcy’s law
is satisfied

div vw = 0, vw = − k
m μw

grad (P − ρwg z). (2)

Here, vw is the average pore velocity, m the ratio between the pores’ area and the total
cross-sectional area, k the permeability, μw the viscosity of the liquid, g the gravity, and ρ
the density of the liquid. From Equation (2), it follows that the pressure inside the region
Ω f satisies the Laplace equation

�P = 0. (3)

We neglect the evaporation of the liquid at the contact surface, so there is no mass
flow through the gas/liquid interface. Therefore, the equation for the normal component
of local velocity of the contact surface takes the form

Vn = − k
m μw

[grad (P − ρw gz)]n. (4)

Similar equations have been used in [17].
Figure 1 presents the large-scale (Darcy scale) flow through porous media. The real

gas/liquid interface is located in pores. If most of the moving interface are belonged to
some narrow region between gas-dominated and liquid-dominated zones, this region may
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be approximated by the surface [14,15] as shown in Figure 1. This surface has a radius of
curvature, but this radius is not used to calculate surface tension.

We write the problem equations and boundary conditions

(x, z) ∈ Ω f : �P = 0,

z = 0 : P = PL,

z = s(x, t) : P = Pg + Pc(z), (5)

Vn = − k
m μw

[grad (P − ρw gz)]n.

We introduce variable L with the dimension of length so that L ≥ s(x, 0) and define
dimensionless variables

τ =
tgρwk
μwLm

, ζ = zL−1, χ = xL−1, s = sL−1,

p(χ, ζ, τ) = P(x, z, t)(ρwgL)−1.

We transform the relations (5) to the form

∂2

∂ζ2 p (χ, ζ, τ ) +
∂2

∂χ2 p (χ, ζ, τ ) = 0, (6)

p (χ, 0, τ ) = pL, (7)

p (χ, s (χ, τ ), τ ) = pc(s (χ, τ )) + pg, (8)

Vn = 1 − ∂

∂ζ
p (χ, ζ, τ )|ζ=s(χ,τ ), (9)

s(χ, 0) = s0(χ).

If the contact surface is flat and perpendicular to the axis ζ, then problem (6)–(9) has
the solution independent of the coordinate χ

pb(ζ) = pL +
(pg + pc(h(τ))− pL)ζ

h(τ)
, (10)

dh(τ)
dτ

= Vn = −1 − pg + pc(h(τ))− pL

h(τ)
, (11)

where h(τ) is the coordinate of the flat gas/liquid interface.
In [16,17], the evolution of the infinitesimal harmonic perturbations of the solution

(10)–(11) was studied by the normal mode method, and expression is obtained for the
growth rate of the amplitude of the perturbation of the interface η̂(τ)

dη̂(τ)

dτ
= η̂(τ)

αdK
tanh(Kh(τ))h(τ)

, (12)

where K is the wavenumber of perturbation, η̂(τ) is its amplitude, and αd is given by

αd = pg + pc(h(τ))− pL − h(τ) dpc(ζ)/dζ|ζ=h(τ). (13)

If αd > 0, then the amplitude of perturbations increases. In the case K → 0, we obtain

dη̂(τ)

dτ
∼ η̂(τ)

αd
h(τ)

. (14)
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In the limit K → ∞ we obtain
d η̂(τ)

dτ
∼ Kη̂(τ)

αd
h(τ)

. (15)

The relationship (15) predicts an arbitrarily large growth rate with increasing K for
any given amplitude. This result contradicts the physical essence of the process under
consideration. This problem has been repeatedly pointed out in [13,17] and others.

The relation (15) is obtained under the assumption that∣∣∣∣ds (χ, τ )

dχ

∣∣∣∣� 1. (16)

Since
s (χ, τ ) = h(τ) + η̂(τ)eiKχ

and
ds (χ, τ )

dχ
= iKη̂(τ)eiKχ,

the condition (16) leads to
Kη̂(τ) � 1. (17)

From inequality (17) and relation (15), we then obtain that in the limit K → ∞

d η̂(τ)

dτ
� αd

h(τ)
. (18)

From expression (18), it follows that the growth rate of the amplitude is limited when
condition (15) is valid. Inequality (18) is the condition for the applicability of the linear
approximation. Thus, in the range of applicability of linear approximation, Darcy’s law does
not lead to unphysical values of the growth rate of the perturbation and the filtration rate.

Since the linear analysis of stability is inapplicable when the amplitude of the pertur-
bations and wave length are of the same order of magnitude, we will study the evolution
of the perturbation numerically.

3. The Rate of Change of the Amplitude of the Harmonic Disturbance in the
Nonlinear Case

We consider the wavelength dependence of the rate of change of the amplitude of the
harmonic perturbation without using the linear approximation. We will use the system of
Equation (5) assuming that the capillary pressure is constant. In this case, in all relations
used, the value Pg enters only in combination Pg + Pc. Hence, without loss of generality,
we can set Pc = 0. In [16], it has been shown that gravity does not affect the evolution of
perturbations, so in what follows we will consider the system of equations

(x, z) ∈ Ωa : �P = 0,

z = 0 : P = PL,

z = s(x, t) : P = Pg, (19)

Vn = −κ [grad P]n,

where κ = k/(m μw). Consider the evolution of the perturbations of the main flow. The
main flow is described by the equations

P(z) = PL +
(Pg − PL) z

H(t)
, (20)

dH(t)
dt

= −κ
Pg − PL

H(t)
, (21)

Here, H(t) is the coordinate of the flat gas/liquid interface.
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In [34], a numerical–analytical method was proposed for evaluation of the filtration
flow with gas/liquid interface under the assumption that the contact surface is infinitely
thin, i.e., is a discontinuity. The Laplace Equation (3) for pressure is solved using the
boundary element method. In a numerical calculation, the gas/liquid interface is a broken
line composed of segments. The numerical method is described in detail in [34]. This
method allows accurate and robust computation of the evolution of a multiply connected
boundary of a water-saturated region in a porous media (see, e.g., [16,35–37]).

We set κ = 1, H(t) = 1, PL = 1 and Pg = 2 and A = 0.1. Then, we set the coordinate
of the perturbed gas/liquid interface according to the expression

s(x, 0) = 1 + A cos(Kx). (22)

The pressure on the interface is assumed constant, so the liquid velocity is directed
along the normal to this surface and is equal to the normal component of this surface’s
velocity. In the absence of perturbations, the flat interface would remain flat and move
along the axis z with velocity Vf = dH(t)/dt. We denote by U(x, t) the normal velocity of
the interface in the reference frame moving along axis z with velocity Vf . For the velocity
of the surface at the vertices of perturbations, we introduce notations Uu and Ud so that

Uu = U(0, t)− Vf , Ud = −(U(λ/2, t)− Vf ),

as shown in Figure 1.
Figures 2 and 3 show the normal velocity of various points of the contact surface

U(x, 0) for the wave lengths λ = 4 and λ = 0.04. The results in Figure 2 were obtained
for the amplitude value A/λ = 0.025, so that condition (17) is satisfied. In this case, the
dependency of velocity on the coordinate x can be approximately described by the linear
result AK sin(Kx). The growth rates of the amplitudes upwards Uu and downwards Ud
differ insignificantly.

Figure 3 corresponds to A/λ = 2.5, so condition (17) is violated. In this case, the
dependency of velocity on the coordinate x differ significantly from the dependency shown
in Figure 2. The growth rate of the amplitude upwards Uu and downwards Ud differ by
more than seven times, and the velocity of the surface U(x) is close to zero outside the
narrow regions in the vicinity of maximum and minimum points of the perturbation profile.
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Figure 2. The interface (blue line) and growth rate (orange line) of the perturbations. Perturbation
wave length is λ = 4, its amplitude is A = 0.1.

Figures 4 and 5 show the dependencies of the growth rate of perturbations amplitude
Ud and Uu on the ratio A/λ. It can be seen from Figure 4 that for A/λ < 0.1 the calculated
values of the amplitude growth rate upwards Uu and downwards Ud differ insignificantly
and are in good agreement with the results obtained in the linear approximation. If A/λ > 1
(see Figure 5), the growth rate Uu is close to one. This means that the upper vertex of the
perturbation profile stops, since the velocity of the interface Vf as a whole is equal to
−1. The downwards growth rate Ud (blue line) increases linearly with A/λ, although
significantly slower than linear analysis predicts (green line).
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Figure 3. The interface (blue line) and growth rate (orange line) of the perturbations. Perturbation
wave length is λ = 0.04, its amplitude is A = 0.1.
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Figure 4. Dependence of Ud (orange line) and Uu (green line) on the ratio A/λ ∈ (0, 2). The blue line
shows the linear approximation results.
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Figure 5. Dependence of Ud (orange line) and Uu (green line) on the ratio A/λ ∈ (2, 10). The blue
line shows the linear approximation results.

From these results, it is clearly seen that the anomalous growth of short-wave pertur-
bations is preserved in the nonlinear case.

If we introduce surface tension at the gas/liquid interface, then in the linear approxi-
mation, perturbations with a wavelength less than a certain threshold value decay, and the
instability is not anomalous. In a porous medium at the pore scale, the gas / liquid interface
cannot be represented as a smooth surface, since the movement occurs within individual
capillaries. In this case, effective surface tension related to the curvature of the interfacial
surface can only be introduced formally. Consider whether there is an unlimited increase
in the growth rate of the perturbation amplitude with reduction of the wavelength, taking
into account the microscopic features of the gas/liquid interface movement. To analyze
the fundamental physical effects arising in this case, we will use the network model of
porous media.
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4. The Network Model of a Porous Medium

We represent a porous medium as a system of intersecting capillaries, as shown in
Figure 6. Such a two-dimensional structure was proposed in [26] and used in [27] to
calculate oil displacement by water. We assume that the gas–liquid interface in a pore
throat is a simply connected surface. There is no the liquid behind the interface in a pore
throat. All capillaries of the structure in each of the direction have the same length Δl.
We assign indices (i, j) to each node so that its coordinate can be evaluated from relations
zi = iΔl and xj = jΔl. Assume that the velocity of the liquid depends on the length of
the capillary, the pressure on its ends and a parameter κ. The latter is determined via the
diameter and other properties of the capillary. There is a drop of pressure on the gas–liquid
interface. This pressure drop equals the capillary pressure (see Equation (1)). If capillary
pressure is constant, we may add the capillary pressure to the gas pressure Pa and ignore
for the sake of simplicity.

Figure 6. The network model of a porous medium.

We introduce the variable Ci,j that equals one if the node is filled with liquid, and zero
if it is filled with gas. In what follows, we will assume that each node filled with gas is
connected to the gas cap by capillaries (also filled with gas). In this case, the pressure in
each such node is Pg.

The velocity of the liquid in the vertical capillary connecting nodes (i, j) and (i + 1, j)
is given by the relation

vij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ
Pi,j−Pi+1,j

Δl , Ci,j = 1, Ci+1,j = 1,

κ
Pi,j−Pg
zsij−zi

, Ci,j = 1, Ci+1,j = 0,

κ
Pg−Pi+1,j
zi+1−zsij

, Ci,j = 0, Ci+1,j = 1,

, (23)

where zsij is the z-coordinate of the gas/liquid interface inside the capillary connecting
nodes (i, j) and (i + 1, j).

Similarly, we calculate the velocity of the liquid in the horizontal capillary connecting
nodes (i, j) and (i, j + 1) with relations

uij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

κ
Pi,j−Pi,j+1

Δl , Ci,j = 1, Ci,j+1 = 1,

κ
Pi,j−Pg
xsij−xj

, Ci,j = 1, Ci,j+1 = 0,

κ
Pg−Pi,j+1
xi+1−xsij

, Ci,j = 0, Ci,j+1 = 1.

(24)

Here, xsij is the x-coordinate of the gas/liquid interface inside the capillary connecting
nodes (i, j) and (i, j + 1).
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We assume that the liquid does not accumulate inside the nodes. Hence, we obtain
the conservation relation

ui,j − ui,j−1 + vi,j − vi−1,j = 0. (25)

Substituting the expressions for v and u (23), (24) into Equation (25) with Ci,j = Ci−1,j =
Ci+1,j = Ci,j−1 = Ci,j+1 = 1 we obtain

Pi−1,j − 2Pi,j + Pi+1,j

Δl
+

Pi,j−1 − 2Pi,j + Pi,j+1

Δl
= 0. (26)

The continuous analog of Equation (26) is

Δl
∂2P
∂z2 + Δl

∂2P
∂x2 = 0. (27)

Equation (27) is equivalent to Equation (3), so the latter is approximated by Equation (26).
To determine the velocity of the gas/liquid interface, we need to calculate the liquid

velocities in those capillaries that are not completely filled with liquid, as shown in Figure 7.

Figure 7. Diagram of the gas/liquid interface motion in capillaries.

Inside the capillary, connecting nodes (i, j) and (i + 1, j), shown in Figure 7, liquid
between points A and B have the velocity

vB = κ (Pg − Pi,j)/δAB,

where δAB is the distance between points A and B. Similarly, the gas/liquid interface at the
point C between nodes (i, j) and (i, j + 1) has the velocity

vC = κ (Pg − Pi,j)/δAC,

where δAC is the distance between points A and C.
If the stencil shown in Figure 7 is used to solve the continual model system (19)

numerically, then the last equation of this system implies that the normal velocity of the
interface (B, C) is determined by the expression

vBC = κ (Pg − Pi,j)/δAD,

where
δAD =

δAB δAC√
δ2

AB + δ2
AC

.
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The intersection point of the BC segment with the vertical capillary connecting nodes
(i, j) and (i + 1, j) moves with velocity

v̂B = vB

(
1 +

δ2
AB

δ2
AC

)
,

and the similar point on the horizontal capillary connecting nodes (i, j) and (i, j + 1) moves
with velocity

v̂C = vC

(
1 +

δ2
AC

δ2
AB

)
.

From these expressions, it follows that

v̂B > vB, v̂C > vC,

so the network model under consideration predicts a lower interface propagation velocity
than the continual model does.

The exception is when the interface is parallel to the capillaries, as shown in Figure 8.
In this case, both of the models give the same value of the interface velocity

v f 1 = κ (Pg − PL)/H.

However, significant differences between the network and continual models remain. Within
the network model, the velocity of the liquid in vertical capillaries is v f 1, while in horizontal
capillaries the liquid is at rest. The liquid inside horizontal capillaries is not displaced by
gas when the contact surface moves, as shown in Figure 8. On the other hand, the continual
model assumes complete liquid displacement.

(a) (b)

Figure 8. The network model and gas/liquid interface at t = 0 (a) and t = Δl/v f 1 (b).

If the flat contact surface is located relative to the capillaries, as shown in Figure 9,
then the liquid velocity in any capillary is

vc2 = κ
Pg − PL√

2H
.

The z-component of this velocity, i.e., normal velocity of the line segment connecting the
interface points, is

v f 2 = κ
Pg − PL

2H
.

In this case, the liquid is displaced from all capillaries located above this line.
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Figure 9. The network model and gas/liquid interface.

Thus, the considered capillary model exhibits strong anisotropy. The velocity of the
flat contact surface can vary by a factor of two depending on the angle between the direction
of interface propagation and the capillaries. The average mass flux in the direction of the
z-axis is the same in both models. In this sense, the considered network model is isotropic.
In the case shown in Figure 8, the contact surface has twice the velocity as in the case shown
in Figure 9; however, in the first case, only half of the liquid is displaced.

When the shape of the gas/liquid interface is not flat, the problem reduces to the
numerical solution of the system of the linear algebraic Equation (26). The number of
equations in the system is equal to the number of nodes with unknown pressure.

This system has a sparse band matrix with five non-zero elements in each row, three
of which are on and on either side of the main diagonal. We use the library SuperLU to
solve this system of linear algebraic equations (SLAE) numerically.

We consider the case κ = 1, h(τ) = 1, Pc(ζ) = 0, PL = 1 and Pg = 2. Within the
linear approximation, the growth rate of the perturbation amplitude can be evaluated by
the formula (14). In Figure 10, we show the results of calculating the amplitude growth
rate depending on the ratio A/λ within the models mentioned above, as well as in linear
approximation. The continual model predicts, as discussed above, lower velocity values.

0.0 0.3 0.6 0.9 1.2
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3
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U
d

linear approximation

continual model

network model
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45 degrees rotation

Figure 10. Growth rate calculation results: blue line—linear approximation; orange line—continual
model; green line—network model; red line—network model with 45 degrees rotation.

We show that the network model has a discrete analogue of the anomalous shortwave
instability. Consider the simplified network model shown in Figure 11. The network
consists of one row of nodes with vertical coordinate z = H, and each node is connected
with an interlayer by capillaries of length H. The pressure inside the interlayer is PL. Inside
the capillaries connected to nodes from above, the height of the liquid is h1 for the first
node and ha for the others. The pressure at the gas/liquid interface is constant and equal to
Pg. The total number of nodes is N.
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Figure 11. Simplified network model of a porous medium with one horizontal capillar layer. The
parts of the channels filled with liquid are marked with a thick line.

For the first node, we have Equation (26) in the form

P1 − Pg

h1
+

P1 − P2

Δx
+

P1 − PL
h

= 0. (28)

For the N-th node we have

PN − Pg

ha
+

PN − PN−1

Δx
+

PN − PL
h

= 0, (29)

and for intermediate nodes with 1 < i < N Equation (26) gives

Pi − Pg

ha
+

Pi − Pi−1

Δx
+

Pi − Pi+1

Δx
+

Pi − PL
h

= 0. (30)

In the case of N = 2 from Equations (28) and (29) we obtain

U1 = κ

(
PL − Pg

)
(2 ha + Δx)

(h + 2 ha + Δx)h1 + h(ha + Δx)
. (31)

If h1 = ha and ha � h, from (31) we obtain

U1 ≈ κ
PL − Pg

h
, (32)

where U1 is the absolute value of the velocity of the gas/liquid interface inside the upper
capillary of the first node. In the case h1 � ha, ha � h and ha = Δx, we have

U1 ≈ 3
2

κ
PL − Pg

h
. (33)

From (32) and (33), it follows that the liquid velocity inside the upper capillary of node 1
increases by 1.5 times with decreasing h1 from Δx to 0 if the liquid height in neighboring
nodes is constant and equal Δx. The relative change of the liquid height is small compared
to h.

The shortwave perturbations occurs when Δx � ha, h1 � ha, and ha � h. In this case,
if N = 2, we obtain

U1 ≈ 2κ
PL − Pg

h
, (34)
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and the value U1 in this limiting case increases indefinetly with an increase in the number
of nodes N according to the expression

U1 ≈ Nκ
PL − Pg

h
. (35)

Thus, the considered simplified network model with one row of nodes predicts an unbound
increase in the growth rate of perturbations with decreasing wavelength.

The sophistication of the model by adding another row of nodes (see Figure 12) does
not lead to a significant results change. For example, for the case shown in Figure 11 we
obtain U1 = 2.407, and U1 = 2.307 for the case shown in Figure 12. This estimate is made
for N = 3, Δx = 0.001, ha = 0.1, and h1 = 0.1ha. In the limiting case, when Δx � ha,
h1 � ha, and ha � h, the result (35) stands.

Figure 12. Simplified network model of a porous medium with two horizontal capillary layers. The
parts of the channels filled with liquid are marked with a thick line.

If the perturbation curvature radius near the perturbation vertex is comparable to the
capillary length Δl, then the height of the liquid column in neighboring vertical capillaries
may vary significantly, as shown in Figure 13b . The fewer capillaries used in the network
model, the greater this change. The results obtained above predict that the smaller the ratio
of the heights of the liquid column in the right vertical capillary and the neighboring one,
the greater the liquid velocity in the right capillary. In Figure 13a, the height of the liquid
column in the right vertical capillary differs slightly from the height in the neighboring
capillary. In Figure 13b, the height of the liquid column in the right capillary is several
times less than in neighboring capillaries. As shown below, the calculations confirm that
the interface velocities in the right capillary are significantly different for the cases shown
in Figure 13a,b. We note that the positions of the perturbations differ only in the distance
from the vertex to the nearest horizontal capillary filled with liquid.

In Figure 14, we show the dependence of the perturbation vertex growth rate Ud on
the number of capillaries per perturbation wavelength. The results are presented for two
positions of the vertex of the perturbation relative to the capillaries shown in Figure 13.
When the number of capillaries exceeds 300, the difference in the velocity values turns out
to be less than 10%, but when the number of capillaries is 40, the velocities differ by almost
a factor of two.

257



Mathematics 2022, 10, 3177

(a) (b)

Figure 13. Two different examples of the location of the gas/liquid interface. The vertex of interface
is located below (a) and above (b) the nearest horizontal capillary.

40 120 200 280 360

Nx

2.5

3.0

3.5

4.0

U
d

0.1Δl

0.9Δl

Figure 14. Amplitude growth rate at the lower point of perturbation at x = λ/2, depending on the
number of vertical capillaries. The upper and lower lines correspond to the cases when the size of the
part of the capillary occupied by the liquid is 0.1Δl (blue line) and 0.9Δl (orange line), respectively
(see Figure 13a,b).

5. Discussion of Results and Conclusions

An analysis of the stability of the gas/liquid interface in a porous medium under the
displacement of liquid by gas has been carried out. Within the continual model using the
Darcy law, it has been shown that the linear analysis of stability by the normal modes
method is not applicable in the case when the wave amplitude is small compared to the
characteristic dimensions of the main flow but exceeds the perturbation wavelength. The
onset of the shortwave instability of solutions of the continual model has been studied
within the complete model, i.e., without resorting to linearization. Such a study has been
carried out using the original numerical method developed by the authors. This method
allows accurate and robust computation of the evolution of perturbations of the gas/liquid
interface. It has been found that the rate of amplitude growth increases with decreasing
wavelength. No signs of reaching the asymptotic value have been found up to the ratio of
the amplitude to the wavelength equal to 10.

The network model has also been used to study the shortwave instability as a tool for
improving the understanding of the physics and micromechanics of liquid flow in a porous
medium in that part of the regularities that remain outside the scope of the continual model.
A model with a regular topology and a coordination number of four has been used. It has
been shown that although inside the region occupied by the liquid, the equations of the
network model approximate the equations of the continual model well, the movement of
interfacial surfaces in capillaries is not described by the continual model. The continual
model predicts a higher velocity of the interfacial surface than the network one. In this
case, the network model exhibits a significant anisotropy depending on the orientation
when calculating the velocity of interfacial surfaces in capillaries. In the general case, the
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displacement of the liquid from the capillaries occurs incompletely, and the liquid remains
in a part of the capillaries even under the assumption that the instability does not onset.

The performed calculations have shown that the velocity of the interfacial surfaces in
the channels also increases with a decrease in the perturbation wavelength at a constant
amplitude. Thus, the considered network model, like the continual model, does not
allow predicting the width of the fastest growing finger-like structures observed in the
experiment and should be improved. Such improvement, which primarily takes into
account the processes occurring at the intersections of capillaries and the nonuniform
distribution of the coordination number, is planned to be carried out at the next stage of
the study.
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Abstract: The family of the generalized Schrödinger equations with Kerr nonlinearity of unrestricted
order is considered. The solutions of equations are looked for using traveling wave reductions. The
Painlevé test is applied for finding arbitrary constants in the expansion of the general solution into
the Laurent series. It is shown that the equation does not pass the Painlevé test but has two arbitrary
constants in local expansion. This fact allows us to look for solitary wave solutions for equations of
unrestricted order. The main result of this paper is the theorem of existence of optical solitons for
equations of unrestricted order that is proved by direct calculation. The optical solitons for partial
differential equations of the twelfth order are given in detail.

Keywords: generalized nonlinear Schrödinger equation; Kerr nonlinearity; optical soliton; simplest
equation method; dispersion of unrestricted order

MSC: 35A24; 35C05; 35C07; 35C08

1. Introduction

The investigation of the effect of high-order dispersion on the propagation of pulses
in a nonlinear optical medium has been presented in several papers (see, for example,
papers [1–17]). Usually, these studies were aimed at constructing optical solitons for
specific high-order equations. The appearance of terms with a high order of dispersion
in the generalized nonlinear Schrödinger equation is explained by taking into account
the expansion of the mode propagation constant in a Taylor series around the carrier
frequency [18–20]. The influence of terms with high-order derivatives is usually neglected,
since the coefficients of these derivatives have smaller values compared to the coefficients
for low-order derivatives. However, it is known that neglecting the influence of high-
order derivatives in nonlinear mathematical models is often incorrect, since their influence
appears at late times and long distances of wave propagation. In this connection, in the
paper [12], a hypothesis about the form of an optical soliton for the generalized nonlinear
Schrödinger equations with Kerr nonlinearity and an unrestricted order of dispersion was
formulated.

In this paper, we consider the family of the generalized nonlinear Schrödinger equa-
tions in the form

i qt +
n

∑
j=1

α2j q2j,x + i
n

∑
j=2

α2j−1 q2 j−1,x = β |q|2 q,

n ∈ N, qm,x =
∂mq
∂xm , m ∈ N,

(1)

where i2 = −1, q(x, t) is a complex function, and t and x are independent variables.
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The following equations belong to the equations of family (1). We have the famous
nonlinear Schrödinger equation at n = 1 [19]:

i qt + α2 qxx = β |q|2 q. (2)

Substituting n = 2 into (1) yields the partial differential equation of the fourth or-
der [11]:

i qt + α2 qxx + i α3 qxxx + α4 qxxxx = β |q|2 q. (3)

The differential equation of the sixth order in the form [12]

i qt + α2 qxx + i α3 qxxx + α4 qxxxx + i α5 qxxxxx + α6 qxxxxxx = β |q|2 q (4)

is obtained by substituting n = 3 into (1), and so on.
At first glance, it seems that Equation (1) does not have any physical meaning and

cannot have any physical applications. However, it should be kept in mind that the second
term of the Taylor series expansion of the function q(x, t) is used to take into account the
effect of dispersion in the nonlinear Schrödinger equation [19]. Equation (1) is interesting
in that it takes into account higher orders of dispersion when describing the propagation of
a pulse in an optical medium.

The objective of this paper is to find the optical solitons of Equation (1) at all integer
n ∈ N in analytical form.

The paper is organized as follows. In Section 2, we use the Painlevé test to investigate
the integrability of Equation (1). Using traveling wave reduction, we obtain two arbitrary
constants in the expansion of the general solution in the Laurent series. In Section 3, we
prove the theorem of existence of optical solutions for the generalized nonlinear Schrödinger
equation with the Kerr nonlinearity and dispersion of unrestricted order. We present the
form of optical soliton for the equation with the unrestricted order of dispersion. In
Section 4, we present the calculations of parameters of the equation and optical soliton of
the generalized nonlinear Schrödinger equation of the twelfth order.

2. Application of the Painlev é Test to Equation (1)

We look for the optical solitons of Equation (1) in the form

q(x, t) = y(z) ei(kx+ω t+θ0). (5)

Substituting (5) into Equation (1), we obtain the imaginary part of Equation (1) in the
linear form

n

∑
j=1

P2j−1 y2 j−1,z = 0 (6)

and the real part of the nonlinear equation in the form

n

∑
j=1

P2j y2 j,z − β y(z)3 = 0, (7)

where P2 j and P2j+1 are expressions depending on the coefficients α2 j, (j = 1, . . . , n) and
α2 j+1, (j = 0, . . . , n − 1).

In the next section, we demonstrate that the problem of finding optical solitons of
Equation (1) is reduced to the solution of Equation (7). In this section, we apply the Painlevé
test to understand the integrability of Equation (7).

It is well known that the Painlevé analysis is one of the powerful approaches for
determining the integrability of nonlinear differential equations. It allows us to find the
necessary conditions for the existence of a general solution of a differential equation. The
application of the Painlevé test to the analysis of nonlinear differential equations consists,
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as a rule, of three consecutive steps. In the first step, an equation with leading terms
corresponding to Equation (7) and the number of branches of the expansion in the Laurent
series are found.

Taking into account Equation (7), we obtain the equation with the leading members in
the form

α2n y2n,z − β y3 = 0. (8)

Equation (8) is autonomous, and the first term in the expansion of the general solution
of Equation (7) in the Laurent series is determined by substituting the expression

y(z) = d0 zp (9)

into (8).
We obtain two branches of the expansion of the general solution of Equation (7):

p = −n, d0 = ±
√

α2n (3n − 1)!
β (n − 1)!

. (10)

In the second step, we define the Fuchs indices that can determine the arbitrary
coefficients of the expansion of the general solution into a Laurent series. With this aim, we
substitute the solution in the form

y(z) = ±
√

α2n (3n − 1)!
β (n − 1)!

z−n + dj zj−n (11)

into Equation (8) and equate the coefficients of dj to zero. As a result, we obtain the algebraic
equation for the index j in the form

E = (n − j)(n − j + 1)(n − j + 2) . . . (3n − 2 − j) (3n − j − 1)−

3 n (n + 1)(n + 2) . . . (3n − 2) (3n − 1) = 0.

(12)

From Equation (12), the two following integer Fuchs indices follow in the form

j1 = −1. j2 = 4 n. (13)

We cannot find the other Fuchs indices in the general case. We performed calculations
for n = 2, 3, 4, 5, and n = 6 and found that remaining Fuchs indices are complex numbers.
As a result, we obtain that Equation (7) does not pass the Painlevé test.

We see that there is always one arbitrary constant z0 in the expansion of the solution
into the Laurent series because we can shift z → z − z0. However, in the third step, we
have to check the coefficient at j = 4 n in the Laurent series expansion. Unfortunately, for
this step of the Painlevé test, one can only check easily for the first several values of n.

For example, let us consider Equation (7) at n = 3. It takes the form

a6 yzzzzzz + a4 yzzzz + a2 yzz − a0 y − β y3 = 0, (14)

where the coefficients a6, a4, a2, and a0 depend on coefficients α6, α4, α2, k, and ω by
formulas

a6 = α6, a4 = α4 + 15 k2 α6, a2 = α2 + 6 k2α4 + 75 k4 α6,

a0 = ω + k2α2 + 3 k4 α4 + 35 k6 α6.

(15)

The equation with leading members corresponding to Equation (14) can be written as
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a6 yzzzzzz − β y3 = 0. (16)

Substituting

y =
b0

zp (17)

into Equation (14), we obtain two branches of the expansion of the general solution of
Equation (14):

p = 3, b0 = ±24

√
35 a6

β
. (18)

Substituting the solution y(z) in the form

y = ±24

√
35 a6

β
z−3 + bj zj−3 (19)

again into Equation (16) and equating coefficients of aj to zero, we find the following Fuchs
indices

j1 = −1, j2 = 12, j3,4,5,6 =
11
2

±
√
−67 ± 4 i

√
1151

2
. (20)

We obtain that Equation (14) does not pass the Painlevé test and therefore is not
integrable.

However, we need to check the arbitrary coefficient corresponding to the Fuchs index
j2 = 12. With this aim we use the Laurent series for the solution of Equation (14) with
undetermined coefficients in the form

y(z) =
b0

z3 +
b1

z2 +
b2

z
+ b3 + b4 z + b5 z2 + b6 z3 + b7 z4 + b8 z5+

b9 z6 + b10 z7 + b11 z8 + b12 z9 + . . . .

(21)

Substituting series (21) into Equation (14), we obtain the following values of coeffi-
cients for the expansion of the solution in the Laurent series

b0 = ±24

√
35 a6

β
, b1 = 0, b2 =

12 a4
√

35 βa6

83 βa6
, b3 = 0, (22)

b4 =
a2
√

35 β a6

210 β a6
− 1177 a4

2√35 β a6

1446690 β a62 , b5 = 0, (23)

b6 = − a0
√

35 β a6

2520 β a6
− 11 a2 a4

√
35 β a6

209160 β a62 +
967 a4

3√35 β a6

120075270 βa63 , b7 = 0, (24)

b8 =

√
35 β a6 a0 a4

418320 β a62 −
√

35 β a6 a2
2

1058400 β a62 +
2857

√
35 β a6 a2 a4

2

3645658800 βa63 −

4775989
√

35 β a6 a4
4

50229886946400 β a64 , b9 = 0,

(25)

b10 =

√
35 β a6 a0 a2

23284800 β a62 − 337
√

35 β a6 a0 a4
2

13367415600 β a63 +
431
√

35 β a6a2
2a4

20292703200 β a63 −

1524433
√

35 βa6 a2 a4
3

139796432344800 β a64 +
2194769053

√
35 β a6 a4

5

1926115244846654400 β a65 , b11 = 0.

(26)
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We also obtain that b12 is an arbitrary constant. As a result, we obtain the expansion
in the Laurent series with two arbitrary constants, taking into account the arbitrariness of
b12 and z0 because we can change the variable z → z − z0. Therefore, Equation (7) is not
integrable but this equation can have the special solution with two arbitrary constants. This
fact tells us that the solution of Equation (7) can be found using the method of simplest
equations [21].

3. Theorem of Existence for the Optical Soliton of Equation (1) with
Unrestricted Dispersion

In this section, we prove that Equation (1) at any integer n has the solution in the form
of bright optical soliton. We formulate this fact in the form of the following theorem.

Theorem 1. The function of x and t in the form

q(x, t) =
22n An μn ei (k x+ω t−θ0)(

4 μ ν e−
√

μ(x−C0t−x0) + e
√

μ(x−C0t−x0)
)n , (27)

where An, μ, ν, k, x0, and θ0 are arbitrary constants and value 2 n gives the order of equation, is a
bright soliton of Equation (1) at any integer n ∈ N and certain constraints on αj (j = 1, 2, . . . n),
C0, and ω.

Proof. The proof of this theorem is obtained using direct calculations.
For compatibility of the system of Equations (6) and (7) we first find the constraints on

the coefficients α2j−1 (j = n, n − 1, . . . , 2) and C0 from the linear Equation (6). In this case,
any smooth function y(z) is a solution of Equation (6). Therefore, the problem of finding
the solution of Equation (1) is reduced to the solution of Equation (7).

We look for the solution of Equation (7) as follows [21–25]:

y(z) = An R(z)n, (28)

where R(z) is a solution of Equation [21]:

R2
z = μ R2 − ν R4. (29)

Differentiating (29) with respect to z, we obtain

Rzz = μ R − 2 ν R3. (30)

It is easy to see that all solutions of Equation (29) are also solutions of Equation (30).
Taking into account the solution (28) and Equations (29) and (30), we obtain

yzz = An n2 μ Rn − An ν n(n + 1) Rn+2, (31)

yzzzz = An μ2 n4 Rn − 2 An μ ν
(

n4 + 3 n2 + 4 n2 + 2n
)

Rn+2+

An ν2
(

n4 + 6 n3 + 11 n2 + 6n
)

Rn+4.

(32)

By induction we obtain the equality

y2n,z = An Fn μn Rn + ... + An νn Gn R3n, y2n,z =
d2ny
dz2n , (33)

where Fn and Gn are polynomials in n.
One can also note that

y3 = A3
n R(z)3n. (34)

265



Mathematics 2022, 10, 3409

Taking into account (33) and (34), we can find the coefficient from Equation (7) in
the form

a2n = (−1)n A2
n β

Gn νn . (35)

Then, using the value a2n, we can find the coefficients a2j (j = n − 1, n − 2, . . . , 1) and
ω.

The solution of Equation (29) takes the form [21–25]

R(z) = ± 4 μ

4 μ ν e−
√

μ(z−z1) + e
√

μ(z−z0)
. (36)

Substituting (36) into (28), we obtain the function (27) that is a solution of Equation (1)
with constraints on the parameters of the equation. Thus, there is always solution (27) of
Equation (1).

We have to note that solution (27) of Equation (1) in the case of an unrestricted order
is new. However, earlier, in papers [11,12,26], solutions were found at n = 1, n = 2, and
n = 3. These solutions coincide with solutions obtained by formulas (27) at n = 1, n = 2,
and n = 3. The approach of this section can also be used to study fractional differential
equations considered in papers [27–29].

4. Optical Solitons of the Twelfth-Order Equation (1)

Let us demonstrate the application of the method for construction of solution (27) of
the twelfth-order Equation (1). Assuming n = 6 in Equation (1), we obtain the equation in
the form

i qt + α2 q2,x + i α3 q3,x + α4 q4,x + i α5 q5,x + α6 q6,x + i α7 q7,x+

α8 q8,x + i α9 q9,x + α10 q10,x + i α11 q11,x + α12 q12,x = β |q|2 q.
(37)

Substituting solution (5) into Equation (37) and equating the imaginary and real parts
to zero, we obtain the system of Equations (6) and (7). The equation for the imaginary part
takes the form

(12 α12 k + α11) y11,z +
(

10 α10 k − 220 α12 k3 − 55 α11 k2 + α9

)
y9,z+(

792 α12 k5 + 330 α11 k4 − 120 α10 k3 − 36 α9 k2 + 8 α8 k + α7

)
y7,z+(

252 α10 k5 − 792 α12 k7 − 462α11k6 + 126α9 k4 − 56 α8, k3 − 21 α7 k2+

6 α6 k + α5) y5,z +
(

220 α12 k9 + 165 α11 k8 − 120 α10 k7 − 84 α9 k6+

56 α8 k5 + 35 α7 k4 − 20 α6 k3 − 10 α5 k2 + 4 α4 k + α3

)
y3,z+(

10 α10 k9 − 12 α12 k11 − 11 α11 k10 + 9 α9 k8 − 8 α8 k7 − 7 α7 k6+

6 α6 k5 + 5 α5 k4 − 4 α4 k3 − 3 α3 k2 + 2 α2 k − C0

)
yz = 0

(38)

The equation for the real part can be written as
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α12y12,z +
(

α10 − 66α12 k2 − 11α11 k
)

y10,z +
(

495α12 k4 + 165 α11 k3−
45α10 k2 − 9α9 k + α8

)
y8,z +

(
210α10 k4 − 924 α12 k6 − 462 α11 k5+

84α9 k3 − 28α8 k2 − 7 α7 k + α6

)
y6,z +

(
α4 + 495α12 k8 + 330 α11 k7−

210α10 k6 − 126α9 k5 + 70α8 k4 + 35 α7 k3 − 15α6 k2 − 5 α5 k
)

y4,z+(
45α10 k8 − 66α12 k10 − 55α11 k9 + 36α9 k7 − 28α8 k6 − 21 α7 k5+

15α6 k4 + 10 α5 k3 − 6 α4 k2 − 3 α3 k + α2

)
y2,z +

(
α12 k12 + α11 k11−

α10 k10 − α9 k9 + α8 k8 + α7 k7 − α6 k6 − α5 k5 + α4 k4 + α3 k3−
α2 k2 − ω

)
y − β y3 = 0.

(39)

From Equation (38) we obtain the constraints on the parameters of Equation (1) in the
form

α11 = −12 α12 k, (40)

α9 = −440 α12 k3 − 10 α10 k, (41)

α7 = −12672 α12 k5 − 240 α10 k3 − 8 α8 k, (42)

α5 = −215424 α12 k7 − 4032 α10 k5 − 112 α8 k3 − 6 α6 k (43)

α3 = −1745920 α12 k9 − 32640 α10 k7 − 896 α8 k5 − 40 α6 k3 − 4 α4 k (44)

C0 = 4245504 α12 k11 + 79360 α10 k9 + 2176 α8 k7+

96 α6 k5 + 8 α4 k3 + 2 α2 k.

(45)

Equation (38) is satisfied for any smooth function y(z) at conditions (40)–(45).
We look for the solution of Equation (39) in the form

y(z) = A6 R(z)6, (46)

where R(z) is the function (36). Substituting (36) into Equation (39) and taking into account
the derivatives of R(z) and conditions (40)–(45), we obtain the polynomial in R(z) which
has to be equal to zero. Equating the coefficients of this polynomial to zero, we find the
additional constraints on the parameters of Equation (1) in the form

α12 =
A6

2β

2964061900800 ν6 , (47)

α10 = − β
(
33 k2 + 398 μ

)
A6

2

1482030950400 ν6 , (48)

α8 =
A6

2β
(
165 k4 + 11940 k2μ + 82256 μ2)

988020633600 ν6 , (49)

α6 = − A6
2β
(
231 k6 + 41790 k4μ + 1727376 k2μ2 + 9460432 μ3)

741015475200 ν6 , (50)
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α4 =
A6

2β k8

5988003840 ν6 +
199 k6μ A6

2β

3528645120 ν6 +
5141 k4μ2 A6

2β

882161280 ν6 +

34781 k2μ3 A6
2β

181621440 ν6 +
2930269 μ4 A6

2β

2894591700 ν6 ,

(51)

α2 = − A6
2β k10

44910028800 ν6 − 199 A6
2β k8μ

16467010560 ν6 − 5141 A6
2β k6μ2

2205403200 ν6 −
34781 A6

2β k4μ3

181621440 ν6 − 2930269 A6
2β k2μ4

482431950 ν6 − 3131984 μ5 A6
2β

80405325 ν6 ,

(52)

ω =
A6

2β k12

269460172800 ν6 +
199 A6

2β k10μ

82335052800 ν6 +
5141 A6

2β k8μ2

8821612800 ν6 +

34781 A62β k6μ3

544864320 ν6 +
2930269 A6

2β k4μ4

964863900 ν6 +
3131984 A6

2β k2μ5

80405325 ν6 −
4096 A6

2β μ6

7293 ν6 .

(53)

The solution of the generalized Schrödinger Equation (37) can be written as follows:

q(x, t) =
4096 A6 μ6 ei(kx+ω t+θ0)(

4 μ ν e−
√

μ(x−C0 t−z0) + e
√

μ(x−C0 t−z0)
)6 . (54)

One can note that A6, μ, ν, k, z0, and θ0 are arbitrary constants in solution (54).
However, the parameters C0 and ω are determined by formulas (45) and (53). The other
parameters of Equation (37) are found taking into account formulas (40)–(44) and (47)–(52).

5. Conclusions

In this paper, we considered the generalized Schrödinger equation with Kerr nonlin-
earity and unrestricted order of dispersion. We applied the Painlevé test and showed that
equations of this family are not integrable in the general case, and the Cauchy problem
cannot be solved by the inverse scattering transform. However, we obtained that there
are two arbitrary constants in the expansion of the general solution into the Laurent series
and we showed there are special solutions of Equation (1). We looked for solutions of this
equation using the traveling wave reduction. We proved the theorem claiming that all
differential equations of this family have optical solitons in analytical form. We presented
the detailed calculations for the nonlinear differential equations of the twelfth order.
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Abstract: 2D numerical modeling algorithms of multi-component, multi-phase filtration processes of
mass transfer in frost-susceptible rocks using nonlinear partial differential equations are a valuable
tool for problems of subsurface hydrodynamics considering the presence of free gas, free water, gas
hydrates, ice formation and phase transitions. In this work, a previously developed one-dimensional
numerical modeling approach is modified and 2D algorithms are formulated through means of
the support-operators method (SOM) and presented for the entire area of the process extension.
The SOM is used to generalize the method of finite difference for spatially irregular grids case.
The approach is useful for objects where a lithological heterogeneity of rocks has a big influence
on formation and accumulation of gas hydrates and therefore it allows to achieve a sufficiently
good spatial approximation for numerical modeling of objects related to gas hydrates dissociation in
porous media. The modeling approach presented here consistently applies the method of physical
process splitting which allows to split the system into dissipative equation and hyperbolic unit.
The governing variables were determined in flow areas of the hydrate equilibrium zone by applying
the Gibbs phase rule. The problem of interaction of a vertical fault and horizontal formation containing
gas hydrates was investigated and test calculations were done for understanding of influence of
thermal effect of the fault on the formation fluid dynamic.

Keywords: nonlinear partial differential equations; differential constraints; gas hydrates; multi-component
fluid dynamic; permafrost formation

MSC: 00A71; 65N06; 76S05; 35M1

1. Introduction

Presently natural gas hydrates are studied extensively worldwide for reasons well
beyond energy resources: besides the potential for becoming a novel fuel, methane hydrates
present a potential hazard related [1,2] to methane emission during hydrate dissociation,
particularly due to influence of climate changes. Part of the discovered and hypothetical
occurrences are affiliated with permafrost regions and the Arctic Ocean shelves. In a
large number of studies there are hypothesis formulated and detailly investigated about
relationship between gas hydrates dissociation and multiple natural processes, including
those with possible grave consequences, such as cratering onshore in northern regions and
broad-scale gas fluxes through the ocean floor.

Capabilities of modeling of gas hydrates-related processes are still limited leading to
a scientific debate on the effects of possible wide-spread gas hydrate dissociation. When
applying the modeling to the gas hydrates processes in cryolithic zone of polar regions and
shelves of the Arctic Ocean, it is necessary to consider one additional phase in the general
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scheme for calculations, which is the ice phase. The current study is devoted to mathemati-
cal modelling of gas hydrates dissociation in porous media allowing consideration of the
presence of ice and the associated phase transitions. As the basis for the study the widely
applied model of mass, energy and momentum balance equations is taken into account
under the assumption of the thermodynamic equilibrium process behavior. Based on the
balance equations, a unique method of physical processes splitting, established for 3-phase
system and presented by the authors in their previous paper [3], is improved and applied
for the “gas–water–gas hydrates–ice” 4-phase system. Furthermore, it is the first time when
the characteristic properties for the splitted 4-phase system (i.e., upward/downward flow
direction for saturation unit and ice phase concentration values) are analyzed . This study
is dedicated to the newly-presented model of physical processes splitting for the 4-phase
system and its results.

As the main method of analysis the physical processes splitting is used. This allows
to split the system into dissipative equation and saturation unit, which is responsible for
convection transfer of saturation parameters and primarily typified by hyperbolic features.
The splitting approach allows to use implicit/explicit numerical solution schemes, which
are applicable for phase transition problems, and avoid excessive time step refinement.

A gradual expansion of the method’s capabilities is being conducted in the study by
inclusion in the integrated algorithm increasing number of phases and components, which
naturally appear in an array of scientific, technical and ecological problems.

In Section 2, in addition to the system “gas–water–gas hydrates”, which was consid-
ered in previous works [4], there is a new icy phase included.

In Section 3, the saturation unit equations’ properties are analyzed by method of char-
acteristics.

In Section 4, based on the support-operators method (SOM) there were built difference
schemes on nonregular grids of moderate-dimension, applied to the problems at hand,
allowing to describe models with complex (heterogeneous) lithological structure and
material properties by means of the support operators method [5,6].

In Section 5, the difference schemes, built in Section 4, are used for the models split by
physical processes describing the “gas–water–gas hydrate–ice” system. In Section 6, there
are test calculations are presented exemplified by the problem of interaction of vertical fault
and horizontal seam containing gas hydrates.

Review of the Support-Operators Method (SOM), Mathematical Models and Software for Hydrates
Formation

Calculations of gas hydrates phase transitions using different approaches were de-
scribed in a large number of models considering generation, migration and accumulation
of gas through the hydrate stability zone ([7–9]). Most models are based on regular grids
which require high computational power and time to calculate the results. The support
operators’ method makes it possible to numerically simulate a number of problems of
mathematical physics in complex inhomogeneous areas. The method was developed by
Russian scientists and received worldwide recognition. In English literature, the terms
“support operators’ method”, or SOM, and “mimetic finite difference method” are used.
A detailed modern review is given in [5].

The application of this method makes it possible to carry out mathematical modeling
of various problems of fluid filtration in the process of hydrocarbon production with a
detailed account of the features of the geological and lithological structure of the reservoir,
tectonic disturbances, allows to analyze both the dynamics of fluids on the scale of the
entire field (and more broadly, the region), within the framework of one model, and local
processing going on the area that is of most interest to the user.

The support operator method (SOM) is a generalization of the finite difference method
to irregular grids. The great advantage of this method in comparison with others is its
persistence, i.e., automatic fulfillment of the fluid mass conservation law incorporated into
the main formulas of the method. This allows to avoid calculation errors in the form of the
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appearance of fictitious sources and sinks not related to the physics of the process, which
arise on other methods.

The proposed method has been worked out in detail both in theoretical aspects
(analysis of convergence, stability, accuracy estimates) and in practical ones. The developed
software package supports both building of a computational grid—which is close in all
details to the reservoir geometry—with the accuracy required by the user and at the same
time with a relatively small number of nodes and carrying out calculations on it.

Application of the SOM to the problems of dissociation of gas hydrates in a porous
media is described in [4] with references to earlier works. At present, the complex includes
programs for calculating two-dimensional (areal or profile) joint filtration of liquid and gas
on an irregular grid, as well as problems of dissociation of gas hydrates in a porous media.

The software package is open for expansion, i.e., to the inclusion of more complex
models of hydro- and thermodynamics of reservoir fluids, theology of the reservoir matrix,
etc. The proposed set of algorithms and programs can serve as a mathematical basis for
predicting the behavior of reservoir fluids in the process of developing oil and gas fields,
as well as gas hydrate deposits.

Currently, in addition to the support operator method [4], there are a number of
computer systems for calculating fluid dynamics in the reservoir, taking into account
gas hydrates, such as CMG STARS, STOMP-HYDT-KE [10], TOUGH+HYDRATE [11],
developed by Lawrence Berkeley National Laboratory in the USA; MH21-HYDRES [12],
created as part of the national hydration program in Japan with the support of a number of
scientific and commercial organizations, RetrasoCodeBright (RCB) created in Norway [13],
SuGaR-TCHM, developed in Germany [13], etc. They are based on the use of computer
systems for solving ordinary problems of underground fluid dynamics with the inclusion
of blocks corresponding to hydrate thermodynamics. These methods, developed earlier,
continue to be modernized and supplemented with new blocks that allow us to study
more complex problems, include additional phases and other elements of the physics
of reservoir systems in the analysis of the deformation properties of reservoirs. New
methods continue to emerge, for example [14]. The resulting developments are widely
used in mathematical modeling of specific gas hydrate deposits and analysis of the results
of laboratory experiments. Many of these software systems account for salt dissolved
in water.

A review of several methods at the beginning of 2016 was carried out in [15], published
in a special issue of the journal [16] dedicated to gas hydrates. This review reflects the state
of mathematical modeling of hydrate fluid dynamics in the reservoir, as well as methods
for calculating the kinetics of formation and dissociation of gas hydrates at the beginning
of 2016. A modern review of some methods is contained in the work [17] devoted to
international cooperation in the field of testing numerical methods for solving problems
of underground hydrodynamics related to gas hydrates, in which a significant part of the
groups involved in the development of the corresponding software takes part.

2. Physical Processes Splitting in Mathematical Model of the
“Gas–Water–Gas Hydrates–Ice” System

For the hydrate equilibrium zone (HEZ) the initial conservation Equations (fluid mass
balance equations for liquid (or ice) phase and gas in free and bounded state) in porous
media can be expressed in the following divergence form (for water and gas accordingly):

∂

∂t
{m(SνSwρwi + (1 − Sν)ρνβw)}+ div[ρwVw] + qw = 0, (1)

∂

∂t
{

m
(
Sν(1 − Sw)ρg + (1 − Sν)ρν(1 − βw)

)}
+ div

[
ρgVg

]
+ qg = 0. (2)

Energy balance equation is written as following:
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∂

∂t
{

m
[
Sν(Swρwiεwi + (1 − Sw)ρgεg) + (1 − Sν)ρνεν

]
+ (1 − m)ρsεs

}
+div

{
ρwεwVw + ρgεgVg + P

(
Vw + Vg

)}
+ div W + qs = 0,

W = −(m(Sν

(
Swλwi + (1 − Sw)λg

)
+ (1 − Sν)λν

)
+ (1 − m)λs

)∇T,

(3)

where indexes g, w, i, ν, s are relating to gas, water, ice, hydrate, rock matrix of porous media,
wi is relating to ice-water mixture; P—pressure, T—temperature, t—time, m = m(r, P)—
porosity, r—position vector, Sw—water saturation (water and ice), βw—mass fraction
of water in hydrate, Sg = 1 − Sw—gas saturation, ν—hydrate saturation, Sν = 1 − ν—
hydrate thawing, ρl = ρl(P, T), λl = λl(P, T), ε l = ε l(P, T)—densities, thermal conduction
coefficients, internal energy of components (l = g, w, ν, s, i), Vα and qα—filtration velocity
and sources density of phase α = w, g.

Let us introduce the following notation:

Ci + Cw = 1, Ci, Cw—solid ice and liquid water volume fractions;
ρwi = Cwρw + Ciρi—density of water–ice mixture;
Sνi = Sν(1 − (1 − Cw)Sw)—porous volume fraction (mδV) without solid inclusions hy-
drates and ice;

Swi =
CwSw

CwSw + (1 − Sw)
—fraction of water in the system “liquid water–gas”.

Consequently, solid part of porous volume (mδV) will be given by:

(1 − Sνi) = [(1 − Sν) + (1 − Cw)SwSν].

Thermodynamic parameters: λwi = Cwλw + (1 − Cw)λi—water–ice mixture ther-
mal conductivity coefficient, εwi = [Cwρwεw + (1 − Cw)ρiεi]/ρwi—water–ice mixture inter-
nal energy.

Capillary forces are neglected. It is assumed, that filtration velocities of liquid and
gaseous phases in porous media satisfy the Darcy’s Law:

Vα = − ki · krαi
μα

(∇P − gρα), α = w, g, (4)

where g—gravity acceleration vector, ki = k(r, Sνi, P)—recalculation of absolute perme-
ability k(r, Sν, P) considering part of porous media with frozen water, krαi = krα(Swi)—
recalculation of phase relative permeability krα(Sw), μα = μα(P, T)—viscosity of water
and gas.

The system of Equations (1) and (2) at a fixed value of determinative thermodynamic
variables is named saturation unit , meaning that these equations serve for determination
of water saturation Sw and hydrate thawing Sν.

Dependence of the variables on pressure and temperature in the phase equilibrium
zone comes down to dependence on pressure only on virtue phase equilibrium relationship,
which in its concrete form does not influence the mathematical structure of the system of
equations describing the process. There are a lot of studies devoted to analyzing these
relationships. In the numerical calculations that were conducted for the present study,
we used the model being developed in present paper, and the following relationship was
used [18,19]:

T = Tdis(P) = A ln P + B, (5)

where A and B—empirical constants.
Hydrate internal energy is being expressed through energies of the gas and water–ice

mixture that the hydrate consists of as follows:

βwiwi + (1 − βw)ig = iν + htr, (6)

where htr—internal latent heat of hydrate mass unit’s phase transition.
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Enthalpy:

il = ε l + P/ρl , (7)

where ε l(P, T)—phase internal energy, index l denotes a phase (≡ g/w/wi/ ν).
For the system of equations for thawed zone, where there are no hydrates, Sν = 1.

In this case energy balance conservation Equations (1)–(3) take on the form of:

∂

∂t
(mSwρwi) + div[ρwVw] + qw = 0, (8)

∂

∂t
(
m(1 − Sw)ρg

)
+ div

[
ρgVg

]
+ qg = 0, (9)

∂

∂t
{

m(Swρwiεwi + (1 − Sw)ρgεg) + (1 − m)ρwεw
}

+ div
{

ρwεwVw + ρgεgVg + P(Vw + Vg)
}
+ div W + qε = 0,

(10)

where W = −(m(Swλwi + (1 − Sw)λg
)
+ (1 − m)λs

)∇T.
The system of Equations (1)–(5) completely describes filtration processes in porous

media with solid rock matrix saturated with gas hydrates considering both its formation
and dissociation in the hydrate equilibrium zone. Similarly, the system of Equations (8)–(10)
describes filtration processes for the thawed zone with absence of gas hydrates.

The governing piezoconductive dissipative equation of the hydrates theory for deter-
mination of pressure P, similarly to [20], is derived as following:

mδε

{
Sν

[
Sw

(ρwi)t
ρwi

+ (1 − Sw)

(
ρg
)

t
ρg

]
+ (1 − Sν)

(ρν)t
ρν

+
(m)t

m

}

+
ψ

mρν

{
m
{

Sν

[
Swρwi(εwi)t + (1 − Sw)ρg

(
εg
)

t

]
+ (1 − Sν)ρν(εν)t

}}
+

ψ

mρν
[(1 − m)ρsεs]t + δεDIG +

ψ

mρν
DIGε = 0,

(11)

where

DIG =
1

ρwi
div(ρwVw) +

1
ρg

div
(
ρgVg

)
+

(
qw

ρwi
+

qg

ρg

)
, (12)

DIGε =
[
div(ρwεwVw)− εwi div(ρwVw)

]
+
[
div
(
ρgεgVg

)− εg div
(
ρgVg

)]
+div

[
P
(
Vw + Vg

)]
+ div W +

(
qε − εwiqw − εgqg

)
= (εw − εwi)div(ρwVw)

+ρwVw∇εw + ρgVg∇εg + div
[
P
(
Vw + Vg

)]
+ div W +

(
qε − εwiqw − εgqg

)
.

(13)

Here

ψ

mρν
=

(
ϕ − 1

ρν

)
≥ 0, ϕ =

βw

ρwi
+

(1 − βw)

ρg
(14)

—specific (per unit) volume kick,

δε = βwεwi + (1 − βw)εg − εν ≥ 0 (15)

—specific (per unit) energy kick.
Introducing of hydrate system pressure capacity:
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Dp = mδε

{
Sν

[
Sw

(ρwi)p

ρwi
+ (1 − Sw)

(
ρg
)

p

ρg

]
+ (1 − Sν)

(ρν)p

ρν
+

(m)p

m

}

+
ψ

mρν

{
m
{

Sν

[
Swρwi(εwi)p + (1 − Sw)ρg

(
εg
)

p

]
+ (1 − Sν)ρν(εν)p

}
+ [(1 − m)ρsεs]p

}
,

(16)

will rewrite Equation (11) in compact form:

Dp
∂P
∂t

+ δεDIG +
ψ

mρν
DIGε = 0. (17)

For the thawed zone without hydrates the dissipative unit:

Sw

ρwi

∂

∂t
(mρwi) +

1 − Sw

ρg

∂

∂t
(
mρg

)
+ DIG = 0, (18)

where

DIG =
1

ρwi
div(ρwVw) +

1
ρg

div(ρgVg) +

(
qw

ρwi
+

qg

ρg

)
(19)

and

m
[

Swρwi
∂εwi
∂t

+ (1 − Sw)ρg
∂εg

∂t

]
+

∂

∂t
[(1 − m)ρsεs] + DIGε = 0, (20)

where

DIGε = (εw − εwi)div(ρwVw) + ρw Vw∇εw +ρg Vg∇εg +div[P(Vw + Vg)]

+ div W + (qε − εwiqw − εgqg).
(21)

Therefore, complete physical processes splitting of problems of hydrate equilibrium
and thawed zones is conducted using the following numerical solution of connected
problems.

The derived system of equations is a generalization of the system obtained in the
paper [4], for the processes related to gas hydrates in conditions allowing for the presence
of ice.

3. Saturation Unit Analysis Using the Method of Characteristics

For simplification in this section g = 0.

3.1. Properties of Saturations Transfer Unit Sν, Sw if 0 ≤ Cw ≤ 1

From the system of Equations (1) and (2) the following system is derived:

(Sν)
′
t +

1
ψ

ρw

ρwi

P′
x

μw
(kikrwi)

′
x +

1
ψ

P′
x

μg
(kikrgi)

′
x =< . . . >, (22)

(Sw)
′
t −

ρw

ρwi

ψg

mSνψ

P′
x

μw
(kikrwi)

′
x +

ψw

mSνψ

P′
x

μg
(kikrgi)

′
x =< . . . > . (23)

Taking only diagonal values of the spatial derivatives matrix for Sν and Sw:

(Sν)
′
t +

{
(ki)

′
Sνi

ψ

[
ρw

ρwi

krwi
μw

+
krgi

μg

]
P′

x(Sνi)
′
Sν

}
(Sν)

′
x+ < . . . > (Sw)

′
x =< . . . >, (24)
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(Sw)
′
t+ < . . . > (Sν)

′
x

+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ki)
′
Sνi

mSνψ

[−ρw

ρwi

krwi
μw

ψg +
krgi

μg
ψw

]
P′

x(Sνi)
′
Sw
−

− ki
mSνψ

[
ρw

ρwi

(krwi)
′
Swi

μw
ψg −

(krgi)
′
Swi

μg
ψw

]
P′

x(Swi)
′
Sw

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(Sw)

′
x =< . . . > .

(25)

The notation < . . . > denotes an absence of spatial–time derivatives of values Sν and
Sw in the matrix;

ψg

mρν
=

1 − βw

ρg
− 1 − Sw

ρν
if Swi > Sw min,

ψw

mρν
=

βw

ρwi
− Sw

ρν
if Swi < Sw max.

Clearly that: ψ = ψw + ψg > 0.

(Sνi)
′
Sν

= (1 − CiSw) > 0 , (Sνi)
′
Sw

= −CiSν < 0 , (Swi)
′
Sw

=
Cw

(1 − CiSw)
2 > 0 . (26)

Since the analysis of signs of the flow of a system of equations, which is similar to
(1)–(4), but without hydrates (Sν = 1), gives for invariant Sw expressions, which are similar
to −P′

xψg and −P′
xψw, but without ψg and ψw functions—then the necessary condition

required to cross-link hydrate and non-hydrate flow areas is the following requirements:

ψg

mρν
=

1 − βw

ρg
− 1 − Sw

ρν
> 0 under the conditions Swi > Sw min , (27)

ψw

mρν
=

βw

ρwi
− Sw

ρν
> 0 under the conditions Swi < Sw max . (28)

The requirements (27) and (28), from the component-wise kicks of specific (per unit)
volume along with phase transition point of view, can be interpreted as following. Un-
der the condition of complete dissociation of hydrate, unit the volume of released gas must
be greater than (1 − Sw) (where Sw is the volume fracture in ice of hydrate) and unit of the
volume of released water–ice mixture must be greater than Sw.

Hyperbolical analysis of saturation unit (1) and (2) demonstrates, that under difference
approximation:

1. In fluid components of absolute permeability ki = k(Sνi) it’s necessary to take hydrate

thawing Sν in the downward flow direction, since ρw
ρwi

krwi
μw

+
krgi
μg

> 0.

2. In fluid components of absolute permeability ki = k(Sνi) water saturation Sw is taken

in the upward flow direction, if − ρw
ρwi

krwi
μw

ψg +
krgi
μg

ψw > 0, and Sw is taken in the

downward flow direction, if − ρw
ρwi

krwi
μw

ψg +
krgi
μg

ψw < 0.

3. In fluid components of relative permeability krwi = krw(Swi) and krgi = krg(1 − Swi)

water saturation Sw is taken in the upward flow direction considering ρw
ρwi

(krwi)
′
Swi

μw
ψg −

(krgi)
′
Swi

μg
ψw > 0.

Grid approximation (upward/downward flow direction) for Cw and Ci will be clari-
fied further.
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3.2. Properties of Water–Ice Phase Transfer (0 < Cw < 1, P′
t = T′

t = 0) under Hydrate
Equilibrium Conditions

In spatial areas, where the phase equilibrium of the water–ice mixture is presented
(0 < Cw < 1), phase transition temperature T0 and pressure P are considered constant
and given. With that, piezoconductivity Equation (11) is used for calculation of volume
water–ice phase fracture transferring Cw. In the areas where there are constant and given
Cw = 1 (i.e., water if T ≥ T0) or Cw = 0 (ice if T ≤ T0), the same equation is applied
for calculation of evolution of thermodynamic parameters T and P. Related areas are
changed dynamically in time with optional phase transition surface boundary (Stefan’s
problem [21]), and this phenomenon is supposed to be analyzed with specific numerical
algorithms. In the present section we study hyperbolic properties of water–ice phase
transfer (0 < Cw < 1, P′

t = T′
t = 0) considering hydrate equilibrium.

In the case of four phases (hydrate, gas, water–ice mixture) being in thermodynamic
equilibrium the piezoconductivity Equation (11) will take the form of:

mδε

{
Sν

[
Sw

1
ρwi

∂ρwi
∂t

]}
+

ψ

mρν

{
m
{

Sν

[
Swρwi

∂εwi
∂t

]}}
+ δεDIG +

ψ

mρν
DIGε = 0, (29)

where

DIG =
1

ρwi
div(ρwVw) +

1
ρg

div
(
ρgVg

)
+

(
qw

ρwi
+

qg

ρg

)
, (30)

DIGε = [div(ρwεwVw)− εw div(ρwVw)] + (εw − εwi)div(ρwVw)+

+
[
div
(
ρgεgVg

)− εg div
(
ρgVg

)]
+ div

[
P
(
Vw + Vg

)]
+ div W+

+
(
qε − εwiqw − εgqg

)
.

(31)

Considering that

(ρwi)
′
t = (ρw − ρi)(Cw)

′
t, ρw > ρi, (32)

(εwi)
′
t = [(Cwρwεw + Ciρiεi)/(Cwρw + Ciρi)]

′
t =

=
1

ρ2
wi
[ρwi(ρwεw − ρiεi)(Cw)

′
t − ρwiεwi(ρw − ρi)(Cw)

′
t] =

=
1

ρwi
[ρw(εw − εwi) + ρi(εwi − εi)](Cw)

′
t, εw > εwi > εi,

(33)

the equation will reach the following form:

mSνSw

{
δε
(ρw − ρi)

ρwi
+

ψ

mρν
[ρw(εw − εwi) + ρi(εwi − εi)]

}
(Cw)

′
t

+ δεDIG +
ψ

mρν
DIGε = 0.

(34)

Assuming

Cwi = mSνSw

{
δε
(ρw − ρi)

ρwi
+

ψ

mρν
[ρw(εw − εwi) + ρi(εwi − εi)]

}
> 0, (35)

we get a more compact form of the piezoconductivity equation:

Cwi(Cw)
′
t + δεDIG +

ψ

mρν
DIGε = 0. (36)

Next we will modify (30) and (31):
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DIG = −
{

ρw

ρwi

1
μw

(kikrwi)
′
Cw

+
1

μg
(kikrgi)

′
Cw

}
P′

x(Cw)
′
x+ < . . . >, (37)

DIGε = −
{{

[ρw(εw − εwi) + P]
1

μw
(kikrwi)

′
Cw

+ P
1

μg
(kikrgi)

′
Cw

P′
x

}

+ mSνSw(λw − λi)T′
x

}
(Cw)

′
x+ < . . . > .

(38)

Here the expressions < . . . > do not contain derivatives of Cw with respect to t and x.
It is also clear that for thermal conductivity coefficient of water–ice mixture λwi = Cwλw +
(1 − Cw)λi it is true that (λwi)

′
Cw

= λw − λi. Thus, the value Cw in the expression λwi(Cw)
is being approximated in the upward flow direction (−λwiT′

x), if λw > λi. Furthermore,
otherwise—in the downward flow direction if λw < λi.

For absolute permeability in expressions (37) and (38) the following evaluation is true:

ki = k(Sνi), Sνi = Sν(1 − CiSw), (Sνi)
′
Cw

= SνSw > 0, (ki)
′
Cw

= (k(Sνi))
′
Sνi
(Sνi)

′
Cw

> 0.

For relative permeability of water, we have:

krwi = krw(Swi), Swi =
CwSw

1 − CiSw
, (Swi)

′
Cw

=
Sw(1 − Sw)

(1 − CwSw)2 , (krwi)
′
Cwi

= (krw(Swi))
′
Swi

(Swi)
′
Cw

> 0.

Therefore we get (kikrwi)
′
Cw

> 0, i.e., in (37) and (38) in expressions (kikrwi) the values
Cw and Ci are approximated in the upward filtration flow direction. Similarly, for relative
permeability of gas we have following evaluation:

krgi = krg(1 − Swi), (krgi)
′
Cwi

= (krg(1 − Swi))
′
Swi

(Swi)
′
Cw

< 0.

Hence:

(kikrgi)
′
Cw

= (ki)
′
Cw

krgi + ki(krgi)
′
Cw

.

In other words, in (37) and (38) in expressions (kikrgi) the values Cw, Ci, included in ki,
are approximated in the upward flow direction. Otherwise these values Cw, Ci, included in
relative gas permeability krgi, are approximated in the downward flow direction.

3.3. Properties of Saturation Transfer Sw if 0 ≤ Cw ≤ 1 in Hydrate-Thawed Zone (Sν = 1)

From Equation (12) we get following form of water saturation transfer equation:

mρwi(Sw)
′
t − ρw

1
μw

(kikrwi)
′
Sw

P′
x(Sw)

′
x =< . . . > .

Here < . . . > does not contain any derivative of Sw with respect to t and x, and Sν = 1.
For permeabilities it is true that

(kikrwi)
′
Sw

= ki(krwi)
′
Sw

+ (ki)
′
Sw

krwi = ki(krw)
′
Swi

(Swi)
′
Sw

+ (ki)
′
Sνi
(Sνi)

′
Sw

krwi .

Furthermore, the following evaluations are true: (see Section 3.2):

(krw)
′
Swi

> 0, (Swi)
′
Sw

> 0, (ki)
′
Sνi

> 0, (Sνi)
′
Sw

< 0.

Hence in krwi = krw(Swi) considering Swi = CwSw/(1 − CiSw) Sw is approximated
in the upward flow direction. In ki = k(Sνi) if Sνi = 1 − CiSw and Sν = 1 take Sw in the
downward direction.

3.4. Properties of Water–Ice Phase Transfer (0 < Cw < 1, T′
t = 0) in Hydrate-Thawed Zone

(Sν = 1)

The equations of piezoconductivity (18) and energy (20) are being solved simultane-
ously related to increments ∂P and ∂Cw considering T0 = const in water–ice transfer zone.
Particularly, in approximation div W = 0 from (20) we can derive ∂Cw through ∂P and
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substitute in (18). Analysis of water–ice phase transferring process Cw in thawed zone
(Sν = 1) is the analogue of the hydrate equilibrium case (see Section 3.2).

Particularly, Cw, Ci are taken in the upward flow direction for ki and krwi, and for krgi
these values (Cw, Ci) are taken downward.

4. Difference Schemes on Non-Regular Grids

For grids of the support operators method, consisting of cells (Ω), formed by nodes
(ω), faces (σ) and edges (λ), it is characteristic that there is an isolated conjugate grid
(“shifted”) consisting of domains d(ω) around nodes ω (see Figure 1).

Figure 1. A basis building using the SOM algorithms. Solid lines determine cells created in modeling
area and responsible for different sediment matter. Dashed lines serve to create a border at a
homogeneous matter and to calculate the flow over the border.

Faces of the node domain are determined by the metric operator of the grid σ(λ) =

∑
ϕ(λ)

Vϕe′ϕ(λ) (see also below). Here, the bases ϕ(λ) are in pairs included in the cells Ω(λ),

adjacent to the edge λ. The metric calibration of the difference grid involves choosing the
volumes of bases (with natural normalization condition ∑

ϕ(Ω)
Vϕ = VΩ). It determines a

construction of an isolated conjugant mesh for various grids classes, such as triangular-
quadrangular, tetrahedral, parallelepiped, prismatic, etc. 2D grids or 3D grids and their
adaptation for vector analysis of continuous boundary value problems. The example of a
triangular-quadrangular 2D grid illustrates the specific choice of local basis volumes Vϕ.

We introduce a family of irregular difference grids in the region O. We consider the
example when the grid consists of triangular and also quadrangular cells (Ω), edges (λ),
nodes (ω), bases (ϕ), and related to them the boundaries (σ (λ)) of the node balance domains
d(ω) (see Figure 1).

The system of initial (covariant) unit vectors e(λ)created by the edges forms the bases
ϕ. We accept the centers of cells Ω and edges λ like the arithmetic mean of radius vectors
of their nodes ω. The curve is a surface that connects two adjacent cells through a cell or
an edge:

σ(λ) = ∑
ϕ(λ)

vϕe′ϕ(λ).

It is also oriented like the unit vector e(λ). Here e′ϕ(λ) are the unit vectors of the re-
ciprocal bases with respect to the initial bases. The expression vϕ = 1

6 |e(λ1)× e(λ2)|
represents the base volume for a triangular cell Ω, containing as basis ϕ and vϕ =
1
4 |e(λ1)× e(λ2)| for a quadrangular cell, if λ1(ϕ) and λ2(ϕ) are the edges forming the
basis ϕ. In a last step, ∑

ϕ(λ)
is summation over all bases ϕ, in the configuration of which

the edge λ had place. The nodal domains d(ω) are formed by the surfaces σ(λ(ω)) closed
around the node ω.

The internal divergence of a vector field DIN : (ϕ) → (ω) is defined by approximating
of the Gauss’s theorem on d(ω):

DIN X = ∑
λ(ω)

sλ(ω)τX(λ), τX(λ) = ∑
ϕ(λ)

vϕ(e
′
ϕ(λ), Xϕ).
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Here ∑
λ(ω)

is the summation over all edges λ having a common node ω.

The grid vector field X is given by its representations in the bases Xϕ. We use ( )Δ to
denote the approximation of the corresponding differential expressions and have:

( ∫
O

(X,∇u)dv
)

Δ
= −

( ∫
O

u div Xdv −
∫

∂O

u(X, ds)
)

Δ
= −∑

ω

(uω, DIN X) = ∑
ϕ

vϕ(Xϕ, GRAD u).

Gradient vector field GRAD : (ω) → (ϕ) is given by its representations in bases:

GRAD u = ∑
λ(ϕ)

Δλue′ϕ(λ), Δλu = − ∑
ω(λ)

sλ(ω)uω = uω∗ − uω.

We assume a vector field Xϕ = Kϕ GRAD u as Xϕ in the bases ϕ and we obtain a
self-adjoint nonnegative operator −DIN X : (ω) → (ω) or −DIN K GRAD: (ω) → (ω).
The flow vector field X here is given by its components in the bases Xϕ. This flow vector
field is determined by the gradient properties of the scalar grid function u given at the
nodes ω and the grid symmetric positive definite tensor field of conductivity K, that is
given by their representations in the bases Kϕ. This operator will be strictly positive if the
first boundary value problem is specified at least in one boundary node of a connected
difference grid, i.e., the scalar grid function becomes zero in this boundary node.

Water and ice saturations, its volume fractions and hydrate thawing are taken in
absolute and relative permeabilities in the upward or downward flow direction in according
to analysis in Section 3. Particularly, in the absence of ice volume fracture the absolute
permeability k(Sν) in bases ϕ at edges (λ(ϕ)), forming these bases, always is taken in the
downward flow direction (as thawing). Relative permeabilities krw(Sw) and krg(1 − Sw)
are taken in the upward flow direction (as water- and gas saturations), i.e., as in the case of
2 phases thawed zone with the absence of hydrates.

5. Approximation of Divergent-Piezoconductive Difference Schemes in the Thawed
Zone in the Medium with Gas Hydrate Inclusions and Water–Ice Phase

5.1. Hydrate-Equilibrium Zone with Water–Ice Phase

We introduce some notations for the grid functions of the support operator method
(Section 4, see Figure 1) as well. We will refer to its nodes ω previously employed in the
continuum model values

m, Sν, Sνi, Sw, Swi, Cw, Ci, ρν, ρw, ρi, ρwi, ρg, ρs, P, T, εν, εw, εi, εwi, εg, εs, μw, μg, krwi, krgi, qw, qg, qε.

We assign the vector functions to the grid bases ϕ in accordance with Section 4

Vw, Vg, ∇εw, ∇εg, ∇P, ∇T, W.

We assign the grid functions that represent the discontinuous material properties of
substances to cell Ω

m, k, λν, λw, λg, λs.

The relations are clear

mω = ∑
ϕ(ω)

VϕmΩ(ϕ), (1 − m)ω = ∑
ϕ(ω)

Vϕ(1 − mΩ(ϕ)) = Vω−mω, Vω = ∑
ϕ(ω)

Vϕ,

i.e., mω and (1 − m)ω perform the volume of the pore domain d(ω) (see Figure 1) and its
frame part, respectively.

Then, we introduce the difference derivatives on time and the space-point (in the grid
nodes ω) time interpolations at = (â − a)/τ, a(δ) = δâ + (1 − δ)a on the time layers t and
t̂ = t + τ (τ > 0 is the time step). Here the interpolation weight δ may depend on the
spatial grid node ω. Under the value
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δν =
√
(mSν )̂

/(√
(mSν )̂ +

√
(mSν)

)
, 0 < Sν < 1.

we will understand the free-volume time approximation of the grid functions given at the
nodes ω. The proportion of the pore volume, intended for free movement of the liquid and
gas will determine the interpolation weight δν. The result of such an approximation allows
us to conduct discrete transformations of equations related to their splitting by physical
processes, which will be similar to continual ones. Other arbitrary interpolations with
respect to time will be denoted [ ]~. They can relate to different elements, such as grid
nodes ω, bases ϕ etc.

We express the approximation of Equations (1) and (2) in the following form.
Conservation equations which are representing by themselves balance of water and

gas components

{m[SνSwρwi + (1 − Sν)ρνβw]}t + DIN(ρwVw)
~ + q~

w = 0, (39)

{
m
[
Sν(1 − Sw)ρg + (1 − Sν)ρν(1 − βw)

]}
t + DIN(ρgVg)

~ + q~
g = 0. (40)

By the means of GRAD operator flow of water (ρwVw)~ and gas (ρgVg)~ are approx-
imated in the grid bases ϕ considering discretization of Darcy’s law (4) on implicit time
layer by any of the standard methods [6,22]:

(ρwVw)
P~

ϕ = −
(

ρw
kikrwi

μw

)~

Δϕ

GRAD P~ +

(
ρ2

w
kikrwi

μw

)~

Δϕ

gk,

(ρgVg)
P~

ϕ = −
(

ρg
kikrgi

μg

)~

Δϕ

GRAD P~ +

(
ρ2

g
kikrgi

μg

)~

Δϕ

gk.

Under ( )~
Δϕ are considered approximation of corresponding expressions in the grid

bases ϕ with some time interpolation.
However, in the presence of thermobaric relationship in the form of (5), for conser-

vation of continuum properties of quadratic forms legitimacy of thermodynamic values
gradients in the form of

∫
ε div(ρV)dV (see also (43) below) it’s more appropriate to have

the Darcy’s law energetic form. We will get one from the assumptions below.
Considering pressure–temperature relationships (5) in three phase equilibrium zone

hydrate–water–gas it’s allowed to write

dεw = ε′wpdP, dεg = ε′gpdP,

where ε′wp and ε′gp—full derivatives from internal energy with respect to pressure.
That way Darcy’s law (4) in the grid bases ϕ (that is formed by nodes, in which is

fulfilled the thermobaric relationship (5)) we present in the energetic form:

(ρwVw)
ε~

ϕ = −
(

ρw
kikrwi
μwε′wp

)~

Δϕ

GRAD ε
(δν)
w +

(
ρ2

w
kikrwi

μw

)~

Δϕ

gk,

(ρgVg)
ε~

ϕ = −
(

ρg
kikrgi

μgε′gp

)~

Δϕ

GRAD ε
(δν)
g +

(
ρ2

g
kikrgi

μg

)~

Δϕ

gk.

Thus

(ρwVw)
~
ϕ =

{
(ρwVw)

P~

ϕ

∣∣∣(ρwVw)
ε~

ϕ

}
, (ρgVg)

~
ϕ =

{
(ρgVg)

P~

ϕ

∣∣∣(ρgVg)
ε~

ϕ

}
.

Internal energy balance equation that is approximating (3) has the form of:
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{
m
[
Sν

(
Swρwiεwi + (1 − Sw)ρgεg

)
+ (1 − Sν)ρνεν

]
+ (1 − m)ρsεs

}
t

+ DIN
[(

ε
(δν)
w

)
up
(ρwVw)

~
]
+ DIN

[(
ε
(δν)
g

)
up

(
ρgVg

)~
]

+ DIN
{[

P
(
Vw + Vg

)]~}
+ DIN W~ + q~

ε = 0.

(41)

Index “up” in the expression for water energy (ε
(δν)
w )up denotes, that corresponding

values are taken in the upward direction of flow (ρwVw)~ in earlier determined divergence
DIN(ρwVw)~. The index “up” is understood similarly in the expression for gas energy
(ε

(δν)
g )up.

Energy from pressure forces work [P(Vw + Vg)]~ and full heat flow W~ in the media
are approximated in the grid basis ϕ, for example, at the implicit time layer by standard
method [6,22]:

[
P(Vw + Vg)

]~
ϕ
=

(
P

ρw

)~

ϕ

(ρwVw)
P~

ϕ +

(
P
ρg

)~

ϕ

(ρgVg)
P~

ϕ .

Next, discrete analogue of piezoconductivity dissipative Equation (11), disintegrated
by physical processes with saturation processes transfer unit, (39) and (40), but differentially
equal to system of the model initial conservation law (39)–(41), has the form of:

δ
(δν)
ε

⎧⎨
⎩[(mSν)Sw]

(1−δν)
(ρwi)t

(ρwi)
(δν)

+ [(mSν)(1 − Sw)]
(1−δν)

(
ρg
)

t

(ρg)
(δν)

+ [m(1 − Sν)]
(1−δν)

(ρν)t

(ρν)
(δν)

+ (m)t

⎫⎬
⎭

+
[
ψ
/
(mρν)

]~{
[(mSν)Swρwi]

(1−δν)(εwi)t + [(mSν)(1 − Sw)ρg]
(1−δν)

(
εg
)

t

+ [m(1 − Sν)ρν]
(1−δν)(εν)t +

[
(1 − m)ρsεs

]
t

}
+ δ

(δν)
ε DIG~ +

[
ψ
/
(mρν)

]~DIG~
ε = 0,

(42)

δε = [βwεwi + (1 − βw)εg]− εν,
[
ψ
/
(mρν)

]~
=
[

βw
/
(ρwi)

(δν) + (1 − βw)
/
(ρg)

(δν)
]
− 1
/
(ρν)

(δν) ,

DIG~ =
1

(ρwi)
(δν)

DIN(ρwVw)
~ +

1

(ρg)
(δν)

DIN
(
ρgVg

)~
+

q~
w

(ρwi)
(δν)

+
q~

g

(ρg)
(δν)

,

DIG~
ε =

[
DIN

{
(ε

(δν)
w )up(ρwVw)

~
}
− (εwi)

(δν) DIN(ρwVw)
~
]

+
[
DIN

{
(ε

(δν)
g )up(ρgVg)

~
}
− (εg)

(δν) DIN
(
ρgVg

)~
]

+ DIN
{[

P
(
Vw + Vg

)]~}
+ DIN W~ +

(
q~

ε − εwi
(δν)q~

w − εg
(δν)q~

g

)
.

(43)

5.2. Two-Phase Thawed Zone

Similarly to Section 5.1, considering the grid function Sν = 1 in nodes ω, we get two-
phase series of completely conservative differential schemes in the thawed zone. Instead of
using an interpolation weight δν, we here consequently introduce the weight

δ1 =
√
(m)̂

/(√
(m)̂ +

√
(m)

)

in the grid nodes ω.
Conservation equations, representing by themselves mass balance of water and gas

components in the thawed zone will have the form of:

{mSwρwi}t + DIN(ρwVw)
~ + q~

w = 0, (44)

{
m(1 − Sw)ρg

}
t + DIN(ρgVg)

~ + q~
g = 0. (45)
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In the thawed zone by means of GRAD operator the flows of water (ρwVw)~ and gas
(ρgVg)~ are determined in non-energetic form, i.e., are approximated in the grad bases ϕ
by values (ρwVw)P~

ϕ and (ρgVg)P~
ϕ accordingly (see Section 5.1).

Internal energy balance in the thawed zone approximating (10), has the form of:

{
m
(
Swρwiεwi + (1 − Sw)ρgεg

)
+ (1 − m)ρsεs

}
t
+ DIN

[(
ε
(δ1)
w

)
up
(ρwVw)

~
]

+ DIN
[(

ε
(δ1)
g

)
up

(
ρgVg

)~
]
+ DIN

{[
P
(
Vw + Vg

)]~}
+ DIN W~ + q~

ε = 0.
(46)

Definition of differential objects (indexes “up”, pressure forces, heat flow) are the same
as in Section 5.1.

Further excluding the Sw function, which is determined in the grid nodes ω, from the
differential derivative sign with respect to time, from (44)–(46), we get completely conser-
vative differential equations determining non-isothermal process of piezoconductivity in
thawed zone:

(Sw)
(δ1)

(ρwi)
(δ1)

[mρwi]t +
(1 − Sw)

(δ1)

(ρg)
(δ1)

[
mρg

]
t + DIG~ = 0, (47)

(m)(1−δ1)
{
[Swρwi]

(δ1)(εwi)t +
[
(1 − Sw)ρg

](δ1)
(
εg
)

t

}
+
[
(1 − m)ρsεs

]
t
+ DIG~

ε = 0. (48)

The combination of difference mass DIG~and energy DIG~
ε divergences in the grid

nodes ω along with operation of active sources q~
w, q~

g , q~
ε are determined similarly to (43),

but with change of interpolation weight δν to weight δ1.

5.3. On the Expediency of Using Numerical Simulation of One-Dimensional Problems of
Dissociation of Gas Hydrates in a Porous Media: A Vertical Fault in a Large Strike Formation

Building non-one-dimensional models requires very large geological and geophysical
information, which, especially in hard-to-reach northern regions or on the seabed, is
difficult, costly, and sometimes impossible to obtain. The results of the calculations are not
always easily visible, behind the details one cannot see the main defining characteristics of
the process. Conducting a large number of calculations to compare the results and obtain
final conclusions can require a significant amount of time. Therefore, the study of one-
dimensional problems that require much less initial information and are much easier and
faster to solve can be useful in many cases. In addition, downsizing of the models is possible
if one of the scales is much larger than the others (for example, the case of a thin layer),
and if the area under consideration is much larger than the size of the inhomogeneities.

One of these problems is to study the dissociation of gas hydrate from a vertical fault
at the boundary of a large strike area along a plane whose vertical dimensions are small
compared to the horizontal ones. Problems of this kind may correspond to the structure of
observed areas of degassing in several seas often associated with fault systems.

To illustrate, consider a typical geological profile (Figure 2) and its discretization in 2D
modeling [4]:
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Figure 2. Geological profile of the Varandey–Adzvinskaya structure zone (above): K1–Q—Lower
Cretaceous–Quaternary, J—Jurassic, T3—Upper Triassic, P2—Upper Permian, P1—Lower Permian,
C1–P1—Lower Carboniferous–Lower Permian, D3—Upper Devonian, D2—Mid Devonian, S1—
Lower Devonian Ordovician, D—Devonian, S—Silurian, T–P—Triassic–Permian; grid approximation
of the upper profile (bottom).

With a good knowledge of the reservoir, knowledge of its properties, water, and hy-
drate saturation in each grid node, two-dimensional numerical modeling can be used.
However, if there is little initial information and it is inaccurate, which is natural in
this kind of problems, the use of high-precision methods is impractical. A model that
matches the accuracy of the available data is more likely to be a one-dimensional vertically
averaged model.

Models of this kind are widely used in problems associated with gas hydrates in a
porous medium.

6. Test Calculation for the Problem of Interaction of Vertical Fault and Horizontal
Seam Containing Gas Hydrates

We consider the problem of interaction of vertical fault and horizontal seam containing
gas hydrate, that in initial approximation can be considered as one-dimensional horizontal
problem in Cartesian coordinates x ∈ [0, L], L is the length of calculation area. Herewith,
gravity, due to the horizontal geometry, does not affect the process. We are interested in the
region near the fault x ∈ [0, L1] (L1 is about few meters). Note that, due to the parabolic
nature of the pressure problem, the computational domain must greatly exceed the region
of interest, L1 � L, so that the solution in the vicinity of the fault (at a distance of about a
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meter from it) is practically independent of the boundary conditions at the other boundary
of the area. L is taken about 300 m.

It is assumed that the depth of the formation corresponds to the conditions for the
existence of methane hydrates, and initially the pore space of the formation is uniformly
filled with water, gas, and gas hydrate. Thus, for initial time moment we set:

Sw(x, t = 0) = S∗
w = 0.6, Sν(x, t = 0) = S∗

ν = 0.7,

P(x, t = 0) = P0 = 30 bar, T(x, t = 0) = T0 = Tdis(P0).

The initial pressure corresponds to a depth of 300 m, at which the existence of thermo-
dynamically equilibrium methane hydrates is possible in the region of the permafrost.

The fault corresponds to the left boundary x = 0. The difference grid is uniform with
a step h = 0.01 m at a distance of up to 1 m from the fault, and then increases exponentially
with q = 1.05. The time steps are constant τ = 10 sec. The condition Sν = 1 is set on
the fault. For joining two-phase and three-phase regions, the overheated state method is
used [23].

The problem of thermal influence of a fault is considered. On the left boundary,
an increased temperature value is set, compared to the reservoir one:

T(x = 0, t) = T1 = T0 + 5 > T0 = Tdis(P0)

and non-flow conditions:

∇xP(x = 0, t) = 0.

On the right (remote) boundary, unperturbed boundary conditions are set—the values
of the variables coincide with their initial values:

Sw(x = L, t) = S∗
w , Sν(x = L, t) = S∗

ν , P(x = L, t) = P0 , T(x = L, t) = T0 .

Due to the zero flow velocity on the fault wall (due to the no-flow condition), the satu-
ration values at x = 0 do not affect the process.

For the calculation, values of the parameters characteristic of the Messoyakha gas
hydrate field were chosen [4].

Figures 3–6, below show the results of numerical calculations for a number of time
points: pressure, temperature, thawing, water saturation profiles.

Figure 3. Pressure profile of deviation from initial pressure value P − P0, P0 = 30 bar (P0—initial
value, P—instantaneous value), for time moments t = 0.1, 1, 10 days. X-axis: calculation length in
horizontal direction of the reservoir is taken long way from the fault (up to 100 m), where 0 X-value
represents the fault.
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(a)

(b) (c)

Figure 4. (a) Temperature profile T for time moments t = 0.1, 1, 10 days. X-axis: calculation length in
horizontal direction of the reservoir is taken long way from the fault (up to 100 m), where 0 X-value
represents the fault. (b) Temperature profile T in the nearest area around the fault for time moments
t = 0.1, 1, 10, 100 days. X-axis: calculation length in horizontal direction of the reservoir is taken
close to the fault (up to 2 m), where 0 X-value represents the fault. (c) Temperature increasing profile
T − Tdis(P) (Tdis(P) is the temperature of the dissociation that is a function of pressure instantaneous
value) in the area around the fault for time moments t = 0.1, 1, 10, 100 days. X-axis: calculation
length in horizontal direction of the reservoir is taken close to the fault (up to 2 m), where 0 X-value
represents the fault.

Figure 5. Hydrate thawing profile Sν in the area of the fault for the time moments t = 0.1, 1, 10, 100
days. X-axis: calculation length in horizontal direction of the reservoir is taken close to the fault (up
to 2 m), where 0 X-value represents the fault.
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Figure 6. Water saturation profile Sw in the area of the fault for the time moments t = 0.1, 1, 10, 100 days.
X-axis: calculation length in horizontal direction of the reservoir is taken close to the fault (up to 2 m),
where 0 X-value represents the fault.

7. Conclusions

Two-dimensional modeling algorithms elaborated in the paper are useful for a problem
of filtering multiphase and multicomponent flows for porous media with joint solid-phase
inclusions from hydrates and water-ice mixture. A two-units mathematical model is im-
plemented, which makes it possible to single out hyperbolic and dissipative subsystems
in the corresponding system of equations and allows to build effective numerical algo-
rithms for solving fluid dynamic problems in multi-component and multi-phase system.
The Gibbs phase rule is used for systems with one thermodynamic degree of freedom in
the hydrate-equilibrium zone to determine types of dissociative bonds between thermody-
namic variables. The calculations performed show the interaction dynamic of a three-phase
zone containing hydrate, gas and water, and a two-phase zone containing only gas and
water. The results show the possibility of applying the developed methods to real problems
related to gas hydrates. The approach can be successfully applied for study of natural gas
hydrates in frozen-susceptible rocks.
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Abstract: The problem of constructing and justifying the discrete algorithms of the support operator
method for numerical modeling of differential repeated rotational operations of vector analysis
(curl curl) in application to problems of magnetohydrodynamics is considered. Difference schemes
of the support operator method on the unstructured meshes do not approximate equations in the
local sense. Therefore, it is necessary to prove the convergence of these schemes to the exact solution,
which is possible after analyzing the error structure of their approximation. For this analysis, a
decomposition of the space of mesh vector functions into an orthogonal direct sum of subspaces
of potential and vortex fields is introduced. Generalized centroid-tensor metric representations of
repeated operations of tensor analysis (div, grad, and curl) are constructed. Representations have
flux-circulation properties that are integrally consistent on spatial meshes of irregular structure. On
smooth solutions of the model magnetostatic problem on a tetrahedral mesh with the first order of
accuracy in the rms sense, the convergence of the constructed difference schemes is proved. The
algorithms constructed in this work can be used to solve physical problems with discontinuous
magnetic viscosity, dielectric permittivity, or thermal resistance of the medium.

Keywords: self-gravitation; magnetohydrodynamic forces; support operator method; mathematical
modeling

MSC: 65N12; 76W05; 00A71; 65M06

1. Introduction

Support operator method (SOM) [1–3] in the construction of the difference schemes
is used for a consistent approximation (in the sense of some integral identities) of the
conjugate operations of vector analysis (div, grad, curl, etc.) and their combinations that
are necessary for the numerical modeling of mathematical physics problems. The SOM
allows for constructing the difference schemes on irregular meshes for many equations of
this class, including nonlinear ones, in particular, with the fulfillment of the principle of
complete conservatism [4]. In particular, to solve the problems of magnetic gas dynamics
and for the development of hydrodynamic instabilities, the computational schemes should
ensure conservation laws with an error that must be time-limited in order to be able to
consider asymptotic solutions for the problems. These requirements together led to the
development of integrally consistent approximations of systems of partial differential
equations that arise in continuum mechanics.

The construction of consistent approximations is subjected to the multiphysical nature
of most practical problems in continuum mechanics and magnetic gas dynamics. This
branch of the theory of mesh methods for solving initial-boundary value problems for
systems of partial differential equations has a long history and has turned out to be very
productive. A classic example is the construction of completely conservative difference
schemes for gas dynamics [4]. Matching the approximations for the momentum balance
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equations, gas internal energy, and magnetic energy makes it possible to obtain their differ-
ence analogs. From these analogs, one can obtain the total energy balance equation which
is free of “nonphysical” terms, i.e., those that do not have a physical nature, but occur
only as a result of the chosen method of approximation. Thus, completely conservative
schemes can be used in two basic equivalent forms, obtained one from another by algebraic
transformations, either one that includes the total energy balance equation, or component-
by-component balances of the kinetic, internal energy of the gas and magnetic energy.
The latter form is important in such applications as, for example, calculations of high-
velocity flows of gas mixtures, in cases where the characteristic energy relaxation time is
longer than the characteristic momentum relaxation time, and the temperatures of individ-
ual components can differ markedly during the motion. Integral-consistent approximations
are important in multiphysics calculations with a complicated description of energy ex-
change: gas dynamics of chemically reacting flows, radiation gas dynamics, magnetic gas
dynamics, hydro-gasdynamic processes with energy flows to condensed matter, etc.

The SOM under consideration is actively studied and applied to practice problems.
Let us take a look at some of them. Ref. [5] presents a comprehensive workflow for
modeling integrally consistent single-phase flow and transport in a fractured porous
medium using a discrete fracture matrix approach. In [6], the relationship between surface
and underground flows was studied on completely unstructured meshes corresponding to
complex soil structures. To accommodate the distorted grids that inevitably result from
the explicit representation of complex soil structures, a mimetic finite-difference scheme
structure (which is analogous to SOM) of spatial sampling is used to connect surface and
underground flows. The Ref. [7] presents a mimetic finite-difference discretization of an
arbitrary order for the diffusion equation with asymmetric positive definite tensor diffusion
coefficient in a mixed formulation on general polygonal meshes. This scheme was tested on
a non-stationary problem of modeling the Hall effect in resistive magnetohydrodynamics
(MHD). In [8], the convergence of a new family of mimetic difference schemes for linear
diffusion problems was studied. In contrast to the traditional approach, the diffusion
coefficient enters both into the primary mimetic operator, i.e., into discrete divergence,
and into the scalar product in the space of gradients. The diffusion coefficient is evaluated
at different locations in the mesh, i.e., inside the mesh cells and on the mesh faces.

In Ref. [9], the explicit and implicit mimetic finite-difference schemes for the Landau–
Lifshitz equation describing the dynamics of magnetization inside ferromagnetic materials
were developed and analyzed. These schemes operate on common polyhedral meshes,
which provide the flexibility to model magnetic devices of various shapes. The Ref. [10]
presents a new family of mimetic difference schemes for solving elliptic partial differential
equations in direct form on unstructured polyhedral meshes. Higher-order schemes are con-
structed using higher-order moments. The developed schemes are verified numerically on
diffusion problems with constant and spatially variable tensor coefficients. In [11], the sta-
bility and convergence properties of the mimetic finite-difference method for diffusion-type
problems on polyhedral meshes were studied. The optimal rates of convergence of scalar
and vector variables in a mixed formulation of the problem are proved.

In Ref. [12], two new numerical methods for spatial discretization are presented, based
on a mimetic finite-difference method for a degenerate partial differential equation in one
dimension known as the Black–Scholes partial differential equation, which governs option
pricing. To deal with partial differential equation degeneracy, a new customized finite-
difference mimetic scheme is proposed along with the standard finite-difference mimetic
method. Temporal discretization is performed according to the standard implicit scheme.
In addition, rigorous proofs of convergence in the corresponding normed spaces are
proposed. In [13], a systematic approach was developed to obtain mimetic finite-difference
discretizations for the divergence and gradient operators, which provides the same order of
accuracy at the boundary and internal mesh nodes. In Ref. [13], a second-order version of
these operators is used to develop a new mimetic finite-difference method for the stationary
diffusion equation. A theoretical and numerical analysis of this new method is presented,
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including an original and non-standard proof of the quadratic convergence rate of this
new method.

In Ref. [14], a numerical analysis was performed to study the heat transfer in a three-
dimensional magnetohydrodynamic flow of a magnetic nanofluid (ferrofluid) through a
bidirectional exponentially stretching sheet of a hybrid nanofluid. The research results
showed that, with an increase in the shape factor and generation/absorption parame-
ters, the temperature above the surface increased. The obtained data prove that the skin
friction coefficient corresponds to the magnetic parameters and the suction/injection pa-
rameters. Ref. [15] considers the magneto-hyperbolic-tangent liquid model taking into
account magnetohydrodynamic processes. MHD has several applications in heat exchanger
manufacturing, spacecraft strength, thermal enrichment, polymer technology, power gener-
ators, petroleum industry, and crude oil refining. In [15], hydromagnetic characteristics
were studied under convective and stratified model constraints. Ref. [16] considers the
magnetohydrodynamic flow and heat transfer of a non-Newtonian micropolar dusty liquid,
suspended Cu-Al2O3 hybrid nanoparticles, past a stretching sheet in the presence of non-
linear thermal radiation, variable thermal conductivity, and various shapes of nanoparticles
(bricks, cylinders, platelets, and blades). H2O is used as base fluid. The effect of various
parameters on the velocity and temperature profiles is analyzed for a given heat flux and a
given surface temperature. An increase in the Hartmann number led to a decrease in speed
due to the Lorentz force. The temperature also increased as a result of the increase in the
Hartmann number due to the Joule heating effect.

In Ref. [17], the entropy generation of nanofluids between two stretching rotating disks
under the action of magnetohydrodynamic and thermal radiation is considered. In [17],
ethylene glycol (CH2OH)2 is used as the base liquid, and carbon nanotubes, which include
both single-walled carbon nanotubes and multi-walled nanotubes, are used as nanopar-
ticles. The effect of the radiation parameter, magnetic field, porosity, suction/injection,
and Brinkmann number on the skin friction coefficient and Nusselt number are studied.
In [18], a magnetohydrodynamic flow is studied in the presence of microorganisms and
nanoparticles on the surface. The desired results are the number of motile microorgan-
isms, the Nusselt number, the coefficient of friction of the skin, and the Sherwood number.
The influence of Brownian motion, thermal radiation, Schmidt number, thermophoresis,
Peclet number, magnetic field, and bioconvection Schmidt number on the desired results
have been studied. In [19], a three-dimensional estimate of the convective heat transfer
properties of a magnetohydrodynamic flow of a nanofluid consisting of mobile oxytactic
microorganisms and nanoparticles passing through a rotating cone was obtained. The in-
fluence of various factors on the distribution of velocity, temperature, and concentration is
studied, taking into account the addition of a magnetic field, thermal radiation, and viscous
dissipation to the calculations. Changing the magnetic parameter from 0 to 1 led to a
decrease in the temperature distribution by approximately 3.11%.

The expansion of the practice of using grids of irregular structure is due to the need
to solve applied problems of mathematical physics in geometrically nontrivial areas. One
such very effective method for constructing consistent approximations is the method of
support or integrally consistent operators. The idea of constructing integrally consistent
approximations of differential operators was realized in [20,21], where approximations
on rectangular grids were obtained. Generalizations of this method to the case of irreg-
ular grids appeared as a result of the analysis of the development of projection-grid and
variational-difference schemes for equations of elliptic type [22], as well as variational-
difference schemes for equations of gas and magnetic gas dynamics [23]. In the works of
this direction, in particular, the possibilities of constructing difference schemes without as-
sumptions about the structure of the difference grid were studied [24–26]. It turned out that
the natural basis for the corresponding difference constructions approximating differential
operators is the integral identities of vector and tensor analysis [27]. Since these identities
connect vector analysis operators in an invariant form, for their use in constructing grid
approximations, the natural form of representation of the original differential equations
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(and the corresponding boundary value problems) is invariantly defined operators. In this
case, it turns out to be possible to construct an approximation of any one of the operators,
for example, the gradient. Some integral identities link operators of different types, i.e., act-
ing on scalar and vector functions, which allows, for example, to obtain an approximation
of the divergence of a vector field as a generated operator [28,29], which, together with
the gradient difference operator, satisfies the difference analogue of the corresponding
integral identity.

The problems of research and justification for these schemes are less developed. In this
work, on the classical solutions of the model magnetostatic problem on tetrahedral irregular
meshes, the convergence of SOM difference schemes for repeated rotational operations
of vector analysis (curl curl) with zero eigenvalues of the spectral problem is proved. All
equations are linear and, moreover, with constant coefficients. This choice is explained by
the desire to highlight the problems associated exclusively with the irregularity of the mesh
and to show the commonality of approaches to their solution. Convergence is proved at the
geometric level, i.e., depending on the degree of coordination of the geometry of the mesh
and its metric properties with template functionals that determine the specific form of the
difference scheme. In this case, the sufficient smoothness of the solution of the original
differential problem is assumed.

The considered difference schemes generally do not approximate the equations in the
local sense; therefore, the proof of convergence is possible after analysis of the structure
of the approximation error. An investigation of this problem leads to a splitting of the
space of vector mesh functions into an orthogonal direct sum of the subspaces of potential
and vortex ones. As applied to the SOM difference scheme for the magnetostatic problem,
the difference rotor of the circulations calculation error is zero. Therefore, this error is the
difference gradient of some mesh function gradξ. The norm of circulation error gradξ is
determined by the energy of the metric mesh operator G [30]. The action of the metric
operator G on the area of the faces of the cells �S, in turn, is consistent with the sizes of the
cells (the location of the centers of gravity of the cells, faces, and edges). We introduce a
decomposition of the space of mesh vector functions into the orthogonal direct sum of the
subspaces of potential and vortex fields, so that the error in computing the circulations is a
potential function.

Thus, in the present work, on sufficiently smooth solutions of the differential problem
on tetrahedral meshes with the first order of accuracy in the mean-square sense, the conver-
gence of SOM difference schemes for repeated rotational operations (curl curl) with zero
eigenvalues of the spectral problem is proved. There are no restrictions on the tetrahedral
mesh, except for its non-degeneracy.

2. Covariant Representation of a Mesh Dot Product on the Mesh (σ)· (φ)

Cells (Ω) are made up of faces (σ) and nodes (ω). The bases ϕ(Ω) are formed by the
unit normal�e(σ) of the faces σ forming the given basis. Its central node ω(Ω) corresponds
to such a basis ϕ(Ω). In the bases ϕ(Ω), their volumes Vϕ > 0 are selected with the
normalization condition in the cell ∑

ϕ(Ω)
Vϕ = VΩ. Spatial meshes with the above-described

structural elements were introduced in [1,30] and are shown in Figure 1a. The strengths of
the magnetic field are componentwise related to the normals�e(σ) of which the bases ϕ(Ω)
are composed.
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Figure 1. Mesh and mesh bases: (a) tetrahedron; (b) boundary approximation of the Poynting flux;
(c) magnetic circulation on the boundary contour

−−−−→
C∂σC∂λ, sσ(λ) = −1, s∂σ = −1. Beyond the face ∂σ,

the cell ∂Ω is located.

Using the facet weight volume Vσ = ∑
ϕ(σ)

Vϕ > 0, we introduce the mesh dot product

approximating the integral
∫
O
(�̄h,�g)dV in the domain O in its covariant representation

( ¯̄h, g′)σ = ∑
ϕ

Vϕ ∑
σ(ϕ),σ̃(ϕ)

Gr′ϕ(σ, σ̃)h̄′(σ̃)g′(σ).

Here, by the definition,

(h̄1, h̄2)σ = ∑
σ

Vσ h̄1(σ)h̄2(σ).

Thus, the metric operator G, including ¯̄h = Gh̄′, is actually introduced according to
the formula

¯̄h(σ) =
1

Vσ
∑

ϕ(σ)

Vϕ ∑
σ̃(ϕ)

Gr′ϕ(σ, σ̃)h̄′(σ̃).

We have constructed a positive definite self-adjoint operator G : (σ) → (σ), G =
G∗ > 0 on the mesh. It is given by a family of Gram matrices Gr′ϕ(σ, σ̃) = (�e′ϕ(σ),�e′ϕ(σ̃))
in local bases ϕ. Here, �e′ϕ(σ) are the vectors of the mutual basis ϕ with respect to the
initial one formed by the vectors�e(σ). This operator G connects the covariant h′(σ) and
contravariant ¯̄h(σ) representations of the magnetic field strength. For triangular 2d cells Ω
according to [1], the base volume is defined as Vϕ = 1

6 |�e1 × �e2|. Here, �e1 and �e2 are sides of
the triangle forming the basis ϕ.

Likewise in a quadrangular cell, it is Vϕ = 1
4 |�e1 × �e2|. For tetrahedral 3D cells Ω, it is

selected as Vϕ = 1
4 VΩ, ϕ ∈ Ω.

What has been described in this section is generalized to non-unit normals�e(σ) to cell
faces σ.

Mesh divergence DIV : (σ) → (Ω) is given as:

DIV �g =
1

VΩ
∑

σ(Ω)

sσ(Ω)g′(σ)S(σ). (1)

Here, S(σ) is the area of the face σ divided by the length�e(σ) of the ort
√
(�e(σ),�e(σ)),

i.e., the specific area. If the normal�e(σ) to the cell Ω is external, then sσ(Ω) = +1. For the
inner normal, this sign function is equal to minus one.

The cell scalar product is defined as

(F1, F2)Ω = ∑
Ω

VΩF1ΩF2Ω.

Using (1) from the difference analogue of the integral identity [3]:
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∫
O

gradF�̄hdV +
∫

O
Fdiv�̄hdV =

∫
Σ

F�̄hd�S

in the area O closed by the surface Σ, we obtain the mesh operator GRAD : (Ω) → (σ)

(GRADF, h̄′)σ + (F, DIV�̄h)Ω = ∑
∂σ

s∂σF∂σ h̄′(∂σ)S(∂σ). (2)

On the boundary faces ∂σ in this identity, S(∂σ) is the specific area. s∂σ = +1 for
the outer surface normal�e(∂σ) and s∂σ = −1 if otherwise. In addition, the function F∂σ

is defined on the boundary faces ∂σ. The quantities ¯̄h = Gh̄′ and F are arbitrary mesh
functions; therefore, on the faces σ, we obtain

GRADF =
ΔF
h′ , h′ = Vσ

S(σ)
,

where
ΔF = − ∑

Ω(σ)

sσ(Ω)F(Ω) + s∂σF∂Ω.

The last term in the expression for ΔF on the face σ is added at the boundary of the
region (i.e., σ = ∂σ).

3. Difference Evolution Model of the Magnetic Energy of the System

3.1. Metric Support-Operator Meshes for MHD Processes

hτ(λ) > 0 is the length of the oriented edge λ divided by the length of the ort
vector

√
(�eτ(λ),�eτ(λ)). This is the specific length of the edge. The oriented area �S∂σ

of the boundary face ∂σ is divided into the sum of the areas of the surface bases �S∂ϕ

inside this face �S∂σ = ∑
∂ϕ(∂σ)

�S∂ϕ. The boundary edge ∂λ has a superficial near edge area

S∂λ = ∑
∂ϕ(∂λ)

S∂ϕ and a transverse length h′Σ(∂λ) = S∂λ/hτ(∂λ). The mesh (λ).(ϕ) is

formed by local bases ϕ of edges λ with oriented vectors�eτ(λ). Electric field strengths�e
are componentwise related to the edges of a given mesh. To define the metric operator
Gτ on (λ).(ϕ), we consider the dot product: (e1, e2)λ = ∑

λ
Vλe1(λ)e2(λ) with near-edge

volume Vλ = ∑
ϕ(λ)

Vϕ > 0. The continual scalar product
∫

O (�e,�b)dV in the entire region O is

approximated by the representation

(ē, b′)λ = ∑
ϕ

Vϕ ∑
λ̃(ϕ),λ(ϕ)

Gr′τϕ(λ, λ̃)e′(λ̃)b′(λ).

Thus, the metric operator Gτ , including ē = Gτe′, is actually introduced by the formula

ē(λ) =
1

Vλ
∑

ϕ(λ)

Vϕ ∑
λ̃(ϕ)

Gr′τϕ(λ, λ̃)e′(λ̃).

In the sense of the scalar product (e1, e2)λ, we have constructed a positive definite self-
adjoint operator Gτ : (λ) → (λ), Gτ = Gτ

∗ > 0. It is given by a family of Gram matrices
in local mutual basis ϕ. Here,�e′τϕ(λ) are the vectors of the mutual basis ϕ with respect to
the initial one formed by the vectors�eτ(λ). The index τ determines the object relation to
the mesh (λ).(ϕ). This operator Gτ connects the covariant e′(λ) and contravariant ē(λ)
representations of the electric field intensity. Approximating Stokes’ theorem on the cell
face σ, we obtain a mesh rotor ROD : (λ) → (σ) (see Figure 2a) acting on an electric field�e:

(ROD�e)′ = 1
S(σ) ∑

λ(σ)

sλ(σ)e′(λ)hτ(λ). (3)
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Figure 2. Circular matching of oriented normals to faces σ on the left and tangents along mesh edges
λ on the right. The sign function sλ(σ) = ±1 (a) takes values according to whether the orientation
of the edge�eτ(λ) coincides with the direction of rotation about the normal�e(σ). The sign function
sσ(λ) = ±1 (b) is defined similarly, but the contour is made up of oriented face normals�e(σ), and
the rotation is around the tangent along the edges�eτ(λ).

Here, S(σ) is the area of the face σ divided by the length of the ort
√
(�e(σ),�e(σ)).

From Figure 2, sign functions sλ(σ) = ±1, sσ(λ) = ±1 are set (including sλ(σ) = sσ(λ)).
The boundary sign function s∂λ(∂ϕ) is equal to plus one if in the surface basis ∂ϕ(∂σ) the
rotation from the unit vector�eτ(∂λ) to the complementary to it in ∂ϕ(∂σ) determines the
outward normal to the region. Otherwise, s∂λ(∂ϕ) = −1.

On the edges ∂λ of the boundary of the region O, as well as an electric field e′(∂λ),
we consider a magnetic field �̄hτ with components h̄′τ(∂λ) tangential to the surface of the
region. Using (3) from the difference analog of the integral identity [3]:

∫
O
�e curl �̄hdV −

∫
O
�̄h curl �edV =

∫
Σ
[�̄hτ ×�e]d�s (4)

in the area O, closed by the surface Σ, we obtain the mesh operator

(e′, ROG�̄h)λ − ( ¯̄h, (ROD�e)′)σ = ∑
∂λ

e′(∂λ)hτ(∂λ)(�̄hd�h)Σ(∂λ). (5)

The operator ROG acts on magnetic field �̄h.
From the approximation in the surface basis ∂ϕ of the mixed product [�̄hτ ×�e]d�s in (4),

the magnetic circulation transverse to the edge ∂λ is determined on the surface of the region
(see Figure 1b)

(�̄hd�h)Σ(∂λ) = − 1
hτ(∂λ) ∑

∂ϕ(∂λ)

s∂λ(∂ϕ)S∂ϕ√
det‖Grτ∂ϕ‖

h̄′τ(∂λ̃)|∂λ̃(∂ϕ) 	=∂λ. (6)

Grτ∂ϕ is Gram matrix composed of orts�eτ(∂λ) and�eτ(∂λ̃) in a surface basis ∂ϕ. Its
determinant is:

det‖Grτ∂ϕ‖ = (�eτ(∂λ),�eτ(∂λ)) · (�eτ(∂λ̃),�eτ(∂λ̃)) · sin2 ̂�eτ(∂λ)�eτ(∂λ̃)|∂λ(∂ϕ) 	=∂λ̃(∂ϕ). (7)

For the angle ϕ = ̂�eτ(∂λ)�eτ(∂λ̃) between the vectors of the surface basis ∂ϕ, the
identity is fulfilled

|[�e′τϕ(λ)×�e′τϕ(λ̃)]| = sin(π − ϕ)/{|�eτ(λ)| · |�eτ(λ̃)|cos2(π/2 − ϕ)} = 1/
√

det‖Grτ∂ϕ‖.
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Hence, the integral conjugate to the operator ROD, the operator ROG of interest to us,
will be obtained from (5):

ROG�̄h = 1/S′
τ [ ∑

σ(λ)

sσ(λ) ¯̄h(σ)h′(σ) + (�̄hd�h)Σ(∂λ)], S′
τ = Vλ/hτ . (8)

If the magnetic circulation (�̄hd�h)Σ(∂1λ) is used to close the contour around the surface
edge ∂1λ in the ROG operator, then the first boundary value problem (Dirichlet) is consid-
ered to be posed on this edge ∂1λ. The edge ∂λ = {∂1λ|∂0λ}, in other words, we will un-
derstand as σ(∂0λ), and we will put on it the second boundary value problem (Neumann),
if the electric circulation e′(∂0λ) · hτ(∂0λ) along the surface edge ∂0λ is defined. This edge
closes the contours of the faces σ(∂0λ) in (3) for the operator ROD. In this case, the operation
ROD ROG : (σ) → (σ), including ROD ROG = (ROD ROG)∗ ≥ 0 turns out to be self-
adjoint and non-negative according to (5) in the sense of the scalar product (·, ·)σ. For the
operation ROG ROD : (λ) → (λ), we similarly have ROG ROD = (ROG ROD)∗ ≥ 0,
in the sense of the scalar product (·, ·)λ. Due to the metric properties of the meshes (σ).(ϕ)
and (λ).(ϕ), as well as mesh-oriented flow-circulation relationships (see Figure 2), the prop-
erties of operations DIV ROD�e = 0 in the mesh cells Ω are fulfilled.

3.2. Metric Properties of Rotary Operations on Tetrahedral Meshes

Let us justify the approximation of the operation ROG�̄h (see (5), (8)) and its circula-
tion properties.

On the tetrahedral mesh, we also set the form of a closed conjugate magnetic contour
(σ(λ)) with an axis around the edge λ. For the surface edges ∂λ, the contribution to the
spatial closure of the contour will be made taking into account the approximation of the
Poynting vector on the faces ∂σ.

Consider the contour of magnetic circulation around the edge λ, formed by adjacent
tetrahedra (see Figure 1a). We introduce the centroid points of the tetrahedron (for Ω, σ
and λ):

�cΩ =
1
4 ∑

ω(Ω)

�rω, �cσ =
1
3 ∑

ω(σ)

�rω, �cλ =
1
2 ∑

ω(λ)

�rω.

Here,�rω are vectors defining the spatial arrangement of nodes forming cells Ω, faces
σ and edges λ. Deferring these vectors from the node O (see Figure 1a), we obtain

−→
OCΩ =

1
4
(
−→
OA +

−→
OB +

−→
OD),

−→
OCσ =

1
3
(
−→
OA +

−→
OB +

−→
OD),

−→
OCλ =

1
2
(
−→
OA +

−→
OD),

−−−→
CΩCσ =

−→
Cσ − �CΩ.

We transform the expression from (8)

S′
τ ROG�̄h − (�̄hd�h)Σ(∂λ) = ∑

σ(λ)

sσ(λ) ¯̄h(σ)h′(σ) = ∑
σ(λ)

sσ(λ)(Gh̄′)(σ)h′(σ) =

= ∑
σ(λ)

sσ(λ)
1

Vσ
∑

ϕ(σ)

Vϕ ∑
σ̃(ϕ)

Gr′ϕ(σ, σ̃)h̄′(σ̃) Vσ

S(σ)
= ∑

σ(λ)

sσ(λ)

S(σ) ∑
Ω(σ)

∑
ϕ(σ)∈Ω

Vϕ�e′ϕ(σ) ·�̄hϕ

= ∑
σ(λ)

sσ(λ) ∑
Ω(σ)

1
4

1
3

hΩ⊥σ ∑
ϕ(σ)∈Ω

�e′1ϕ(σ) ·�̄hϕ.

The vector of the magnetic field intensity in the basis ϕ is �̄hϕ = ∑σ̃(ϕ) h̄′(σ̃)�e′ϕ(σ̃).
The height in the tetrahedron Ω drawn to the face σ is denoted as hΩ⊥σ. In addition, on the
ϕ-basis,�e′1ϕ(σ) is the mutual (contravariant) vector corresponding to the unit normal to the
face σ. The representation takes place (see Figure 1a)
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1
12

hΩ⊥σ ∑
ϕ(σ)∈Ω

�e′1ϕ(σ) = sσ(Ω)
−−−→
CΩCσ.

This identity constructs the circulation of the magnetic field intensity between the
gravity centers of the cell Ω and one of its faces σ as

sσ(Ω)

⎛
⎝ Cσ∫

CΩ

�̄hd�e

⎞
⎠

Δ

=
1

12
hΩ⊥σ ∑

ϕ(σ)∈Ω
�e′1ϕ(σ)

�̄hϕ.

Because of this, (8) can be represented in the form

S′
τ ROG�̄h − (�̄hd�h)Σ(∂λ) = ∑

σ(λ)

sσ(λ) ∑
Ω(σ)

sσ(Ω) ·
⎛
⎝ Cσ∫

CΩ

�̄hd�e

⎞
⎠

Δ

.

The Pointing electromagnetic energy flux approximated on the surface of the region Σ
on the right-hand side of (4) is consistent with the discrete representation of the boundary
magnetic circulation (5), (6) between the gravity centers of the surface faces ∂σ and the
midpoints of their edges ∂λ(∂σ) (see Figure 1c). The corresponding contours have a
geometric representation (see (6))

sσ(λ)s∂σ
−−−−→
C∂σC∂λ = −1/hτ(∂λ) ∑

∂ϕ(∂λ)∈∂σ

s∂λ(∂ϕ) · S∂ϕ√
det‖Grτ∂ϕ‖

�eτ(∂λ̃)|∂λ̃(∂ϕ) 	=∂λ.

The intersection point of the medians C∂σ in the triangle ∂σ is connected to vectors−−−−→
C∂σC∂λ by the midpoint of one of its edges ∂λ(∂σ). ∂ϕ are surface bases in the triangle ∂σ.
Their area can be represented as S∂ϕ = 1

3 S∂σ⊃∂ϕ through the area of the triangle S∂σ⊃∂ϕ

containing this basis ∂ϕ. s∂σ = +1 is true for the outer surface normal�e(∂σ) and s∂σ = −1,
if otherwise.

By virtue of the above geometric reasoning, we see that the discrete magnetic circula-
tion on

−−−−→
C∂σC∂λ can be represented as

sσ(λ)s∂σ

⎛
⎝ C∂λ∫

C∂σ

�̄hd�e

⎞
⎠

Δ

= − 1
hτ(∂λ) ∑

∂ϕ(∂λ)∈∂σ

s∂λ(∂ϕ) · S∂ϕ√
det‖Grτ∂ϕ‖

h̄′τ(∂λ̃)|∂λ̃(∂ϕ) 	=∂λ.

Finally,

S′
τ ROG�̄h = ∑

σ(λ)

sσ(λ) ∑
Ω(σ)

sσ(Ω)

⎛
⎝ Cσ∫

CΩ

�̄hd�e

⎞
⎠

Δ

+ ∑
∂σ(∂λ)

sσ(λ)s∂σ

⎛
⎝ C∂λ∫

C∂σ

�̄hd�e

⎞
⎠

Δ

. (9)

Equality (9) means that the rotor of the magnetic field (see (8)) can be represented
by a spatially closed centroid contour circulation around the axis of the edge λ. A spatial
contour connects the gravity centers of cells Ω and faces σ around the edge λ. On the
boundary face ∂σ, the intersection point of its medians is connected to the middle of the

axial edge ∂λ(∂σ), on which S′
τ ROG�̄h(λ) is defined. From the spatial closeness of the

circulation representation (9) on the mesh, it follows that

ROG�̄h ≡ 0 at �̄h = const.
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4. Convergence of Difference Schemes of the Support Operator Method for Rotational
Operations of Vector Analysis on Tetrahedral Meshes

4.1. Formulation of the Problem

On sufficiently smooth solutions, the approximation by difference schemes of support
operator method [31]

curl �H = �f (�r), (10)

�H = curl �E (11)

with solenoidal magnetic field (div�H = 0) is considered, for which with necessity [32]
a certain field �E exists, incl. (11) holding. It is also assumed that a certain distribution
of current densities �f (�r), for which (10) holds, and boundary tangential components of
magnetic field �Hτ |Σ are explicitly given. Obviously, “electric” field �E is determined to be
accurate for a constant and homogeneous spectral problem (with �f (�r) = 0 and �Hτ |Σ = 0)
having zero eigenvalue.

For the solenoidality of the function �f (i.e., div�f = 0), the existence of the function �F,
incl. �f = curl �F is necessary and sufficient [32]. For Equations (10) and (11), we consider
the boundary-value problem with the tangential components of the magnetic field defined
on the boundary Σ of the region O

�Hτ |Σ = �Fτ |Σ. (12)

In addition, obviously, for any closed loop Γ bounding the surface ΣΓ the following
will be satisfied: ∫

Γ
�Hd�h =

∫
ΣΓ

�f d�S.

The difference scheme of the support operator method will have the form

VλROG�̄h = fλ, (13)

h̄′ = (ROD�e)′. (14)

Hereinafter, when investigating the convergence of this difference scheme (13) and (14),
the specific lengths of the edges hτ(λ) and the areas of faces S(σ) are considered to be unit
(see (3), (1)). We represent the electric flow fλ through the area

�Sλ =
⋃

(Ω(λ),σ(λ))∈Ω

�SΩσλ

penetrated by the vector �eτ(λ) in the form

fλ = ∑
Ω(λ)

∑
σ(λ)∈Ω

∫
�SΩσλ

�f (�r)d�S =

= ∑
σ(λ)

sσ(λ) ∑
Ω(σ)

sσ(Ω)(
∫ Cσ

CΩ

�Fd�e) + ∑
∂σ(∂λ)

sσ(λ)s∂σ(
∫ C∂λ

C∂σ

�Fd�e). (15)

Here, �SΩσλ is the area vector of the triangle connecting the gravity center of cell CΩ,
face Cσ, edge Cλ and oriented towards the vector �eτ(λ) (see Figure 1a). Equality (15) is
obtained using the Stokes theorem for a joint contour of triangles �Sλ around an edge λ.

By reasoning of Section 3.2 (see also (8), (9)), we can assume

fλ = VλROG�F (16)
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believing

F̄(σ)h′(σ) = ∑
Ω(σ)

sσ(Ω)(
∫ Cσ

CΩ

�Fd�e), (17)

(�Fd�h)Σ(∂λ) = ∑
∂σ(∂λ)

sσ(λ)s∂σ(
∫ C∂λ

C∂σ

�Fd�e). (18)

By virtue of condition (12), when studying the convergence of the difference
scheme (13), (14), we will also instead of (6) assume

(�̄hd�h)Σ(∂λ) = ∑
∂σ(∂λ)

sσ(λ)s∂σ(
∫ C∂λ

C∂σ

�Hd�e), (19)

∫ C∂λ

C∂σ

�Hd�e =
∫ C∂λ

C∂σ

�Fd�e. (20)

4.2. Solvability of the Difference Problem

We study the solvability conditions for problems (13), (14), and (20). Introduce internal
rotation RNG : (σ) → (λ) as

S′
τ RNG�̄h = ∑

σ(λ)

sσ(λ) ¯̄h(σ)h′(σ) = S′
τ ROG�̄h − (�̄hd�h)Σ(∂λ),

S′
τ(λ) = Vλ/hτ(λ), h′(σ) = Vσ/S(σ).

Obviously, by virtue of (5),

(e′, RNG�̄h)λ = ( ¯̄h, (ROD�e)′)σ.

The homogeneous system of equations corresponding to the problems (13), (14),
and (20) has the form

VλRNG�̄h = 0, h̄′ = (ROD�e)′, (21)

(e′, RNG�̄h)λ = ( ¯̄h, (ROD�e)′)σ = (G(ROD�e)′, (ROD�e)′)σ ≥ 0.

Hence, we see that the operator of homogeneous system RNGROD : (λ) → (λ) is
self-adjoint and non-negative. Thus, the solution of a conjugate homogeneous system has
the property (ROD�e)′ = 0 (for example,�e = const). The orthogonality condition on the
right-hand side in (13) according to (8) has the form

∑
λ

e′(λ)[ fλ − (�̄hd�h)Σ(∂λ)] = 0

or, taking into account (16)–(20), we have

(e′, RNG�F)λ = (F̄, (ROD�e)′)σ = 0.

Thus, since (ROD�e)′ = 0, for any �F in the solenoidal representation �f = curl �F in
accordance with (17), the condition of orthogonality of the solution of the homogeneous
conjugate system of Equation (21) and the right-hand side (13) under condition (20) is
fulfilled. This is the condition for the solvability of problem (13), (14), (20) by the Fredholm
matrix theorem [33].

4.3. Accuracy of the Difference Scheme

Now, consider the question of accuracy of difference scheme (13), (14), (20).
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Integrating (10) over the area �Sλ around the edge λ, we find

VλROG�H = fλ

where

H(σ)h′(σ) = ∑
Ω(σ)

sσ(Ω)(

Cσ∫
CΩ

�Hd�e), (22)

(�Hd�h)Σ(∂λ) = ∑
∂σ(∂λ)

sσ(λ)s∂σ(

C∂λ∫
C∂σ

�Hd�e) (23)

and, subtracting (13) from this equation, we obtain

VλRGN(�H −�̄h) = 0. (24)

Conditions (24) mean that, in the cell Ω, there is a grid function ξΩ such that

H − ¯̄h = GRADξ =
Δξ

h′

and constant on the boundary faces ∂σ, i.e., ξ∂σ = const. This constant will be considered
equal to zero, const = 0. We obtain the equation that the function ξ satisfies. We have

G−1GRADξ = H′ − h̄′, GH′ = H.

Summing up this equality over the cell faces Ω, taking into account DIV�̄h = 0
(see (14)), we obtain

DIV
−−−−−→
GRADξ = DIV�H

by (2); taking into account ξ∂σ = 0, we have

(G(GRADξ)′, (GRADξ)′)σ = (G(GRADξ)′, H′)σ ≥ 0.

From identity (2) for ξ∂σ = 0, for any difference solenoidal function
−−−−→
ROD�E (i.e.,

DIV
−−−−→
ROD�E = 0), by virtue of its orthogonality to

−−−−−→
GRADξ, we have

‖GRADξ‖2
σ = (G(GRADξ)′, H′ − (ROD�E)′)σ ≤ ‖GRADξ‖σ · ‖H − ROD�E‖σ.

Here, as applied (3), which determines (ROD�E)′, we have

E′(λ)hτ(λ) =
∫

λ

�Ed�e (25)

and the integrals of the exact solution �E (see (11)) are taken along the edges λ oriented by
�eτ(λ). The norms of grid vectors on the faces σ here are understood ‖X‖σ =

√
(GX′, X′)σ,

as well as ‖X‖∗ =
√
(X, X)∗, (X, Y)∗ = ∑σ X(σ)Y(σ).

The boundaries of the spectrum of a self-adjoint, positive definite operator VσG :
(σ) → (σ) consisting of Gram matrices Gr′σ(σ, σ̃) in mutual bases (see Section 2), provided
that tetrahedral mesh is non-degenerate, can be estimated as

0 <
γ1

h
(X, X)∗ ≤ (VσGX, X)∗ ≤ γ2

h
(X, X)∗.
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The corresponding estimate for the inverse operator has the form

0 <
h

γ2
(X, X)∗ ≤ ((VσG)−1X, X)∗ ≤ h

γ1
(X, X)∗.

Here, γ1 and γ2 are bounded (O(1)) quantities that do not tend to zero and do not
depend on the grid step h > 0.

A mesh is considered non-degenerate if:
1. There is a parameter h > 0 characterizing the partition detail of computational

domain O and having the meaning of linear dimensions of grid elements.
2. The unreasonable sizes of grid elements are uniformly evaluated for the entire

grid family:

a1h3 ≤ VΩ ≤ a2h3, b1h2 ≤ S(σ) ≤ b2h2, c1h ≤ hτ(λ) ≤ c2h.

3. The ratio of nonspecific areas of faces S(σ), as well as the lengths of edges hτ(λ)
included in one basis φ, uniformly across h, does not tend to zero and is bounded above by
the number O(1).

4. Among the dihedral and flat corners of the cells Ω, there are no very sharp and very
obtuse ones, i.e., they are all uniformly across h enclosed in the range from Θ to π − Θ with
a non-zero angle Θ = O(1).

Next, we obtain

‖GRADξ‖2
σ ≤ ‖H − ROD�E‖2

σ =

= ((H′ − (ROD�E)′), (VσG)(H′ − (ROD�E)′))∗ ≤ h
γ1

‖(VσG)(H′ − (ROD�E)′)‖2∗.

On the face σ according to (22), we have

[(VσG)H′](σ) = H(σ)h′(σ) = ∑
Ω(σ)

sσ(Ω)[�HCσ · −−−→CΩCσ + O(h2)].

Here, �HCσ is the magnetic field for solving problems (10), (11), and (20) at the gravity
center Cσ of face σ (see Figure 1a).

According to (3) and (25), on face σ, we estimate

(ROD�E)′(σ̃) = 1
S(σ̃) ∑

λ(σ̃)

sλ(σ̃)
∫

λ

�Ed�e =

=
1

S(σ̃)

∫
σ̃

curl �Ed�S =
1

S(σ̃)

∫
σ̃

�Hd�S = [�HCσ + O(h)]�e(σ̃).

The last integral is taken over the oriented area of the face S(σ̃)�e(σ̃) from the operator
template VσG on the face σ. S(σ̃) is a specific area of the face σ̃. Obviously on the face σ,

[(VσG)�e](σ) = ∑
Ω(σ)

∑
ϕ(σ)∈Ω

∑
σ̃(ϕ)

VϕGr′φ(σ, σ̃)�e(σ̃) = ∑
Ω(σ)

∑
ϕ(σ)∈Ω

Vϕ�e′ϕ(σ) =

= ∑
Ω(σ)

sσ(Ω) · −−−→CΩCσ.

Hence,

[(VσG)(ROD�E)′](σ) = ∑
Ω(σ)

∑
ϕ(σ)∈Ω

∑
σ̃(ϕ)

VϕGr′φ(σ, σ̃)[�HCσ +

O(h)]�e(σ̃) = �HCσ ∑
Ω(σ)

sσ(Ω)
−−−→
CΩCσ + O(h2).
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We see
[(VσG)(H′ − (ROD�E)′)](σ) = O(h2),

i.e.,

‖H − h̄‖2
σ ≤ h

γ1
∑
σ

O(h4) = O(h2),

because in total, the summation ∑σ contains O(h−3) terms.
Finally, we obtain an estimation

‖H − h̄‖σ = O(h)

which shows the convergence of the considered difference problems (13), (14), and (20)
to the continuum problems (10) and (11) with the boundary condition �Hτ |Σ with the first
order of accuracy on smooth solutions.

5. Evolution of Electromagnetic Energy

In the numerical modeling of astrophysical problems with consideration of the mag-
netohydrodynamic phenomena, the processes of matter supercompression may occur (the
density changes by several orders of magnitude). Thus, it is important to take into account
the corresponding energy transformations of magnetohydrodynamic, as well as kinetic,
and internal energy during the evolution of a star at a discrete level. This problem is solved
by constructing a completely conservative difference transformation [4] of the magnetic
energy of the medium, which considers these magnetohydrodynamic processes.

Accounting for magnetohydrodynamic forces in the construction of completely con-
servative difference schemes is associated with significant difficulties [4]. Using the method
of support operators [1], an integrally consistent difference scheme is proposed in this
work, which makes it possible to match the change in the kinetic, internal, and magnetohy-
drodynamic energies [30]. As a basic operator, this method uses the result of varying the
magnetohydrodynamic energy of the system, which is a discrete convolution of two tensors.
The first tensor is the Maxwell tensor in the difference medium under study, which is fully
responsible for all magnetohydrodynamic processes unfolding against the background
of the hydrodynamic motion of matter. The second tensor is the symmetrized strain rate
tensor, which represents kinematic motions in this system. The operator conjugate to
the convolution of these tensors, due to the technology of the support operator method,
automatically gives a magnetic force (the divergence of the Maxwell tensor) acting on the
nodal balance domains of the difference medium.

In conclusion, let us consider the issue of applying the developed tools for discrete
integrally consistent modeling of rotational operations of vector analysis in application to
magnetohydrodynamic problems.

Let O be a flux region with a surface Σ (d�s is the externally oriented area) and a mass
M concentrated in it. dM is the constant mass of Lagrangian particles of the medium
occupying the volume dV. In the magnetohydrodynamic approximation, the integral
balance of magnetic energy in a medium has the form [31]:

c2

8π

∫
O(t̂)

�̂̄h
2
dV̂ =

c2

8π

∫
O(t)

�̄h
2
dV +

t̂∫
t

dτ
( ∫

O(τ)

(Dh̄ − D)dV −
∫

Σ(τ)

�qd�s
)

. (26)

The Maxwell tensor is given by the representation th̄ = (c2/4π)(�̄h ·�̄h − 0.5�̄h
2
δ) where

δ is the metric tensor, �̄h is the magnetic field strength divided by the speed of light c, and�e
is the electric field strength in the coordinate system associated with the moving particle.
D = (c2/4π)�ecurl�̄h is the Joule heating per unit volume of the medium. Dh̄ = tr(th̄tν)
is the magnetic dissipative function. The kinematic tensor is given by the representation
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tν = 0.5(d�ν/d�r+ grad�ν), where�ν is the velocity of the medium particles. �q = (c2/4π)[�e×�̄h]
is the Poynting vector, which determines the external flux of electromagnetic energy.

The corresponding Maxwell equations for the electromagnetic field in the circulation
circuits Hτ and H limiting the surface Σ are written as [31]:

d

(∫
Σ

�̄hd�s

)
/dt =

∮
Hτ

�ed�hτ ,
∫
Σ

X−1
τ �ed�s =

∮
H

h̄d�h. (27)

Here, d/dt is the substantial derivative. Xτ is the positive definite tensor of magnetic
viscosity in the medium (Xτ = c2/(4πσ)). For the current density in a medium with
conductivity σ, Ohm’s law is also valid in the form: �j = σ�e = (c2/4π)curl�̄h,�e = Xτcurl�̄h.
On a closed surface Σ, the relation

∫
Σ

�̄hd�s = 0 follows from the condition of the absence of

magnetic charges.
Passing to discretization, we represent the evolution of the magnetic field on the faces

of the mesh (σ).(ϕ) (the first Maxwell equation from (27)) in the form

d(h̄′S)/dt = −S(ROD�e)′. (28)

From (28), we see that, in the absence of magnetic charges in the mesh cell Ω at the
initial moment, the condition of their absence is always satisfied in this cell. The normal
components of the magnetic field h̄′(σ) are assumed to be continuous on the mesh faces.

Furthermore, on the mesh (λ).(ϕ), analogous with the metric operator Gτ : (λ) → (λ)
(see Section 3.1), for a self-adjoint, positive-definite magnetic conductivity tensor ρτφ =
(X−1

τ )ϕ, which approximates the reciprocal magnetic viscosity in the medium in the mesh
bases ϕ, we introduce the metric conductivity operator Gρτ : (λ) → (λ) and the second
Maxwell equation from (27) for the electric field flux can be represented as

Gρτe′ = ROG�̄h, Gρτe′ = 1/Vλ ∑
ϕ(λ)

Vϕ ∑
λ̃(ϕ)

Gr′ρτϕ(λ, λ̃)e′(λ̃). (29)

Here, the Gram matrices of the conductivity of the medium are defined as

Gr′ρτϕ(λ, λ̃) = (�e′τϕ(λ), ρτϕ�e′τϕ(λ̃)).

Obviously, the operator Gρτ = (Gρτ)∗ > 0 is also self-adjoint and positive definite
on the mesh (λ).(ϕ). The tangential components e′(λ) of the electric field are considered
continuous on the mesh (λ).(ϕ).

From (28), taking into account (3) from Section 3.1, it follows

(c2/4π)∑
σ

Vσ
¯̄h(σ)[1/S(σ)][d(h̄′(σ)S(σ))/dt] = −(

∫
O

DdV)Δ − (
∫

Σ
�qd�s)Δ.

Here, the Joule heating of the entire volume of the medium

(
∫

O
DdV)Δ = (c2/4π)(Gρτe′, e′)λ = ∑

ϕ

DϕVϕ ≥ 0

is defined as its sum in local bases ϕ

Dϕ = (c2/4π) ∑
λ(ϕ),λ̃(ϕ)

Gr′ρτϕ(λ, λ̃)e′(λ)e′(λ̃) = (c2/4π)(�eϕ, ρτϕ�eϕ) ≥ 0
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with electric field strengths in these bases�eϕ = ∑λ(ϕ) e′(λ)�e′τϕ(λ). It is also obvious that, for

the flux of the Poynting vector�q = c2

4π [�e ×�̄h] through the surface Σ, bounding the required
area O, the representation follows(∫

Σ
�qd�s
)

Δ
= −(c2/4π)∑

∂λ

e′(∂λ)hτ(∂λ)(�̄hdh)Σ(∂λ).

Let us now transform the expression for changing the magnetic energy (see (26)) on
the mesh (σ).(ϕ) with the metric operator G

(c2/8π)d[( ¯̄h, h̄′)σ]/dt = (c2/4π)∑
σ

Vσ
¯̄h(σ)[1/S(σ)][d(h̄′(σ)S(σ))/dt] + ∑

ϕ

Dh̄ϕVϕ,

Dh̄ϕ = (c2/4π) ∑
σ(ϕ),σ̃(ϕ)

h̄′(σ)h̄′(σ̃)(th̄
ν(−1/2)ϕ)

σσ̃,

(th̄
ν(−1/2)ϕ)

σσ̃ =
Vϕ

2h′ϕ(σ)h′ϕ(σ̃)
d
dt

(
h′ϕ(σ)h′ϕ(σ̃)Gr′ϕ(σ, σ̃)

Vϕ

)
,

(th̄
νϕ)

σσ̃ = 1/[2h′ϕ(σ)h′ϕ(σ̃)]
d
dt

(
h′ϕ(σ)h′ϕ(σ̃)Gr′ϕ(σ, σ̃)

)
, h′ϕ(σ) = Vϕ/S(σ).

Finally, we have the law of conservation of magnetic energy:

(c2/8π)d[(Gh̄′, h̄′)σ]/dt = ∑
ϕ

Dh̄ϕVϕ −
(∫

O
DdV

)
Δ
−
(∫

Σ
�qd�s
)

Δ
.

Since Dh̄ = (c2/4π)tr(�̄h · �̄h(tν − 0.5tr(tν)δ)), we conclude that the quantities
(th̄

ν(−1/2)ϕ
)σσ̃ and (th̄

νϕ)
σσ̃ approximate on the mesh (σ).(ϕ) the magnetically consistent

contravariant tensor (tν − 0.5tr(tν)δ)σσ̃ and contravariant symmetrized strain velocity
tensor (tν)σσ̃, respectively.

6. Conclusions

The work is devoted to the construction and justification of difference schemes of the
support operator method in relation to the modeling of repeated rotational operations of
vector analysis (curl curl) for problems of magnetohydrodynamics. Discrete algorithms of
the method of support operators on spatial grids of irregular structure do not approximate
equations in the local sense. Because of this, it becomes necessary to prove the convergence
of these schemes to the exact solution. The solution to this problem is possible after
analyzing the structure of the approximation error of the schemes under consideration.
In this work, the convergence of difference schemes of the support operator method is
proved for repeated rotational operations of vector analysis based on classical solutions of a
model magnetostatic problem. Convergence is proved in the root-mean-square sense with
the first order of accuracy on irregular tetrahedral meshes. The case of zero eigenvalues
of the spectral problem is considered. The proof is carried out in mesh-dependent norms
related to the energy of the metric operator of the mesh, which is not subject to any
restrictions, except for its non-degeneracy. For the research carried out, generalized centroid-
tensor metric representations of repeated operations of tensor analysis (div, grad, and curl)
have been developed. Metric representations have flux-circulation properties and are
integrally consistent on meshes of irregular structure. The developed mesh centroid-tensor
metric formalism is also used in this work to analyze the time evolution of electromagnetic
energy on a mesh in the magnetohydrodynamic approximation. Generalized centroid-
tensor metric transformations can also be used in other problems in the theory of the
support operator method. In addition, an algorithm for the evolution of electromagnetic
energy, integrally consistent with the kinetic and internal energies of the medium, has been
developed in the work. As a result, a completely conservative difference transformation
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of the magnetic energy of the medium was constructed, which takes into account these
magnetohydrodynamic processes. Accounting for magnetohydrodynamic forces in the
construction of completely conservative difference schemes is associated with significant
difficulties. Integral matching of kinetic and magnetohydrodynamic energies due to the
methodology of support operators automatically gives the magnetic force acting on the
nodal balance domains of the difference medium.
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Abstract: Two modifications with variable coefficients of the well-known SEIR model for epidemic
development in the application to the modeling of the infection curves of COVID-19 are considered.
The data for these models are information on the number of infections each day obtained from the
Johns Hopkins Coronavirus Resource Center database. In our paper, we propose special methods
based on Tikhonov regularization for models’ identification on the class of piecewise constant
coefficients. In contrast to the model with constant coefficients, which cannot always accurately
describe some of infection curves, the first model is able to approximate them for different countries
with an accuracy of 2–8%. The second model considered in the article takes into account external
sources of infection in the form of an inhomogeneous term in one of the model equations and is
able to approximate the data with a slightly better accuracy of 2–4%. For the second model, we also
consider the possibility of using other input data, namely the number of infected people per day.
Such data are used to model infection curves for several waves of the COVID-19 epidemic, including
part of the Omicron wave. Numerical experiments carried out for a number of countries show that
the waves of external sources of infection found are ahead of the wave of infection by 10 or more
days. At the same time, other piecewise constant coefficients of the model change relatively slowly.
These models can be applied fairly reliably to approximate many waves of infection curves with high
precision and can be used to identify external and hidden sources of infection. This is the advantage
of our models.

Keywords: COVID-19 pandemic; inverse problems; time-dependent SEIR model

MSC: 34A55

1. Introduction

The mathematical modeling of epidemics has a long history (see, for example, [1]).
However, the spread of COVID-19 has given this area of research a significant expansion
and advancement. Due to the avalanche of publications on this topic, we cannot discuss
all areas in detail here. We only note that along with the classical SIR-type models based
on ordinary differential equations and improved recently (see, for example, [2,3]), models
have appeared that include partial differential equations (see, for example, [4]), models
with stochastic differential equations (e.g., [5]), agent-based models [6], etc. In turn, each
of these areas has received internal development and generalization. For example, in SIR
models, a direction associated with the use of fractional derivatives has emerged (see,
e.g., [7], etc.). In our work, we study some extension of the classical SIR-type model and do
not use other approaches.

SIR models have the form of specific systems of ordinary differential equations and
contain coefficients that have an important epidemiological meaning. However, some of
the coefficients, and sometimes all, are unknown. Therefore, the question of finding them
is very relevant, using, for example, data on the dynamics of the number of infected people
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and, possibly, other data. Thus, an inverse coefficient problem arises for the corresponding
SIR system. Methods for solving such inverse problems are well developed. An overview
of such methods can be found, for example, in [8]. Specific implementations of the methods,
based mainly on various optimization algorithms, are detailed in numerous works (see, for
example, [9–15] and others). A detailed analysis of these approaches and a block diagram
of their connection are given, for example, in [16].

In the classical formulation of inverse problems for SIR models, the coefficients are
assumed to be constant. However, it turned out that such models are not always adequate
to epidemiological data, and, as a rule, do not explain the emergence of pandemic waves.
In this regard, we note a recent publication [17], which proposes a new multi-wave SIR
model that can explain the generation of pandemic waves. The principal feature of this
model is a new form of differential equations and the use of functions with a retarded
argument, while the coefficients of the model are constant.

In our work, we use two other approaches within the framework of SIR models. Our
goal is rather modest: an adequate description of the data of the inverse problem, namely,
the dynamics of the number of infected for some countries. The first approach uses time-
varying coefficients in our SIR model, and here we develop the results of work [18]. To
adequately reproduce the data, we solve the inverse coefficient problem for the model on
the class of piecewise constant coefficients with some additional restrictions on the latter.
This makes it possible to model inverse problem data with sufficiently high accuracy for a
number of countries, but does not describe the generation of epidemic waves. This feature
can be explained by the fact that standard SIR models, as a rule, are written for closed
systems that do not take into account the external flow of infections. Therefore, to describe
the emergence of epidemic waves, we supplement the modeling with variable coefficients
by assuming that there are unknown external sources of infection that change over time.
These can be in the aggregate latent carriers of the infection, which are activated at different
times of the year due to weather conditions, as well as carriers of the infection arriving
from other countries and other sources. Mathematically, these sources are modeled by
including an additional term, represented by an unknown function of time, in one of the
equations of our SIR-type model. To find this term and the coefficients, the problem of
minimizing the discrepancy between the data and their analogs calculated from the model
is solved under restrictions on piecewise constant coefficients and on the source. Based
on the coefficients and sources found, it is possible to fairly accurately reproduce data on
infections from several waves of the epidemic for a number of countries. We solved this
problem using data from The Johns Hopkins Coronavirus Resource Center (CRC) [19] for
Austria, the Czech Republic, Germany, France, Italy and Russia. The time of the receipt
of data is 10 February 2022. Comparison of COVID-19 cases from different sources has
been studied [20]. Due to the size of the article, we are unable to give all these results
in detail, so we include figures in the article that correspond only to the calculations for
Austria and Russia. For the rest of the countries, we confine ourselves to presenting some
numerical data.

2. Modeling of Individual Waves of Epidemic

The SEIR model is widely used in mathematical epidemiology. In this section, we use
its modification with variable coefficients from [18]. The model has the following form:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.
S = −β(t)S(I + E)
.
E = β(t)S(I + E)− (γ(t) + δ(t))E, t0 < t < t1
.
I = δ(t)E − γ(t)I

S(t0) = α, E(t0) = 0, I(t0) = I0

(1)
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It will be used for different countries with different values for number N of people
included in epidemic process. The main variables of the model are defined as follows: S(t)
is the proportion of people who can be infected at time t; E(t) is proportion of infected
people in whom illness is not identified yet at time t, but they are able to infect surrounding
people; and I(t) is the proportion of ill people with confirmed diagnoses at time t. One can
calculate the number of people from the entered relative values by multiplying by N. The
choice of total number N of people for considered countries is discussed [9]. Moreover, the
proportion R(t) of recovered people at time t can be determined from system (1) by using
the equation:

.
R = μE + νI, R(t0) = R0. However, we do not use this equation, because

our goal is an adequate modeling of the quantity I(t). So, we consider in this section the SEI
model (1).

Note that we assume that coefficients of Equation (1) can be variable unlike the
standard SEIR model. The time t was measured in days. The coefficients of system (1) have
the following meaning: β(t) is proportional to probability of infection and is measured in
1/days; γ(t) is the reciprocal of the mean time to diagnosis of infection, 1/days; δ(t) is the
inverse value of the average time to cure the patient from the moment of diagnosis, 1/days.

The coefficients can vary due to health measures in specific country. For example, a
decrease in β(t) can consider the response to introduced restricted measures. A weakening
of these measures can result in an increase in β(t). An Increase in γ(t) can be interpreted
as a decrease in the average time of the determination of illness, while an increase in δ(t)
reflects a decrease in the average time of recovering.

Previously, in [18], the inverse problem of finding α, β = β(t), γ = γ(t), δ = δ(t)
from the data Idat(t), I0 was posed. Similar to [19], the input data for the inverse problem
were taken from the statistics of C = confirmed, R = recovered, D = died given in the
database of The Johns Hopkins CRC [19] and were computed as Idat(t) = C − R − D for
some countries. To model piecewise constant coefficients, we divide the time axis into
segments of the form [tn, tn+1] with constant length Δt = 7. Then, we solve the inverse
problem with constant values α, β, γ, δ separately at each segment. The corresponding
solution is found out by the minimization of the following discrepancy functional at
t ∈ [tn, tn+1]:

Φ(α,β,γ, δ) =
‖I(t; α,β,γ, δ)− Idat(t)‖L2[tn ,tn+1]

‖Idat(t)‖L2[tn ,tn+1]

under a priori constraints of the form K = {0 ≤ α ≤ α0, 0 ≤ β ≤ β0, 0 ≤ γ ≤ γ0, 0 ≤ δ ≤ δ0}
with estimates α0, β0, γ0, δ0 known from the literature. Here, I(t; α,β,γ, δ) is the solution of
(1) for given α, β, γ, δ. Collecting the results of such minimization for all segments, we ob-
tain a solution in the form of piecewise constant functions β = β∗(t), γ = γ∗(t), δ = δ∗(t)
and of a set {αn}. However, such a problem can be ill-posed for each segment, and this is
expressed in an ambiguous solution to the discrepancy minimization problem. To isolate a
single solution, we used a special variant of Tikhonov regularization [21]. We present it in
the form of computation method 1.

Method 1.

Step 1. Set the values of the regularization parameter λm = λ010−m (m = 0, 1, . . .).

Step 2. For each parameter λm and for each segment [tn, tn+1], n = 0, 1, . . . , nmax, we
minimize on the set K the Tikhonov functional of the form

Mλm(α,β,γ, δ) = λmΩ(α,β,γ, δ) + Φ2(α,β,γ, δ)

where the functional

Ω(α,β,γ, δ) =
(α− αn)

2 + (β− βn)
2 + (γ− γn)

2 + (δ− δn)
2

αn2 + βn
2 + γn

2 + δn2 . (2)

determines the relative deviation of the parameters from their values αn, βn, γn, δn obtained
at the previous minimization on the segment [tn−1, tn]. For n = 0, these quantities are equal to
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zero. So, at step 2 we obtain the coefficients αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm), and
solving problem (1) for these coefficients, we then find the functions

Nn+1(λm) = Φ(αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm)),
Ωn+1(λm) = Ω(αn+1(λm), βn+1(λm), γn+1(λm), δn+1(λm)).

Step 3. Choice of the regularization parameter λ = λ∗. To calculate it, we first find the
averages N(λm) = Nn(λm), Ω(λm) = Ωn(λm) across all segments for each λm. Next, we
build a Pareto curve, N(λm) vs. Ω(λm), which in the theory of regularization is called an
L-curve, and next find on it the point closest to the origin. The value of the parameter λm
corresponding to this point is taken as the optimal value of the regularization parameter λ∗.

Step 4. We repeat step 2 for λ = λ∗ and for each segment [tn, tn+1] and find out the
optimal coefficients α∗

n+1, β∗
n+1, γ∗n+1, δ∗n+1. Combining these coefficients for all intervals,

we obtain the regularized piecewise coefficients

β = β∗(t), γ = γ∗(t), δ = δ∗(t) : β∗(t) = β∗
n+1, γ∗(t) = γ∗n+1, δ∗(t) = δ∗n+1, t ∈ [tn, tn+1], n = 0, 1, . . . , nmax.

Step 5. At the end, we solve system (1) for each interval [tn, tn+1] with the found coefficients
α∗

n+1, β∗
n+1, γ∗n+1, δ∗n+1, and so we find the function Icalc(t), which is an approximation for

Idat(t). At the same time, we find the functions Scalc(t), Ecalc(t).
The procedure described in Method 1 has the following meaning. We try to simultane-

ously minimize two functionals for each time interval, namely the discrepancy Φ(α,β,γ, δ)
and Ω(α,β,γ, δ). This means the best approximation of the problem data using the model
while ensuring the smallest change in the model parameters when moving from the pre-
vious time interval to the next. To do this, we use a combination of Φ(α,β,γ, δ) and
Ω(α,β,γ, δ) in the form of the Tikhonov functional. The weight parameter λm shows what
is more important for us, to accurately approximate the data or to provide small changes
in the model parameters. At step 3, the weight selection procedure gives a compromise
value λ = λ∗ for all time intervals at once. So, we provide the smallest deviation of the
calculated value Icalc(t) from the data Idat(t) for all points in time with the smallest change
in the model parameters.

A result of such a procedure for solving the inverse problem is shown in Figure 1 for
Russia. All calculations were carried out in MATLAB. The top subplot shows the initial data
Idat(t) and calculated approximation Icalc(t). The values are converted to the number of
people. These curves almost do not differ graphically. The middle subplot shows calculated
piecewise coefficients β = β∗(t), γ = γ∗(t), δ = δ∗(t). The bottom subplot shows the
residual values (discrepancy), Φmin(α,β,γ, δ), when minimizing at each time interval. An
important characteristic of Method 1 is the average value for Φmin(α,β,γ, δ) over all time
intervals, Φmin, which characterizes the quality of the approximation of data Idat(t) by
the found approximate function Icalc(t). For Russia, we obtain Φmin = 0.02. For other
countries, these values are presented in Table 1.

Table 1. Accuracy of the approximation of data for Method 1.

Country Austria Czech Rep. Germany France Italy

Φmin 0.040 0.071 0.050 0.081 0.077

Thus, the presented procedure for solving the inverse problem makes it possible to
approximate the data for model (1) with good accuracy (2–8%). It is interesting to note that
the coefficients β = β∗(t), γ = γ∗(t), δ = δ∗(t) calculated in solving the inverse problem
generally change slowly, and this is what we wanted by applying Method 1.

Unfortunately, model (1) does not describe well all waves of the COVID-19 epidemic.
Such sharply growing waves as for the Omicron strain are approximated by this model
with a significant error. For such waves, the model needs to be corrected by including a
mechanism for generating successive waves.
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Figure 1. The input and calculated data, the coefficients of the model and discrepancy for epidemic
in Russia.

3. A mechanism of Successive Waves Simulation in SEI Model

Some models are known from the literature that describe the mechanism of the gener-
ation of epidemic waves (see, e.g., [17]). In this article, we consider one of the possibilities
for changing the SEI model (1) so that such generation occurs in it as well. Formally, we
ensure this by including an additional term f (t) in the third equation of system (1). After
multiplying by N, the function f (t) represents the additional number of infected people per
day. Therefore, the new modification of the SEI model has the form⎧⎪⎪⎪⎨

⎪⎪⎪⎩

.
S = −β(t)S(I + E)
.
E = β(t)S(I + E)− (γ(t) + δ(t))E, t0 < t < t1
.
I = δ(t)E − γ(t)I + f (t)

(3)

with the same initial conditions S(t0) = α, E(t0) = 0, I(t0) = I0. This additional term
can, for example, be considered as a source of infections associated with hidden carriers
that are seasonally activated due to weather changes. Moreover, this term may include
the transition of infection into the country in question from abroad. For model (3), we
first set the inverse problem of finding the values α, β = β(t), γ = γ(t), δ = δ(t) and the
function f (t) using the same data Idat(t) = C − R − D as in Section 2. We again assume
piecewise constancy of the quantities β(t), γ(t), δ(t), f (t) on time intervals [tn, tn+1] and
try to minimize a new discrepancy of the form

Φ1(α,β,γ, δ, f ) =
‖I(t; α,β,γ, δ, f )− Idat(t)‖L2[tn ,tn+1]

‖Idat(t)‖L2[tn ,tn+1]
.

for such interval under restrictions (α,β,γ, δ) ∈ K and f ≥ 0. Here, I(t; α,β,γ, δ, f ) is the
solution to system (3) for given quantities α,β,γ, δ, f .

Again, taking into account the ambiguity of the solution of such an inverse problem,
we apply for its solution Method 2, a modification of Method 1. It is based on introduction
of the external source of infection f (t). In this modification, we replace the quantities
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α, β(t), γ(t), δ(t) with their analogs α, β(t), γ(t), δ(t), f (t) and use the discrepancy of
the form Φ1 instead of Φ. Moreover, the functional (2) is replaced by the following:

Ω1(α,β,γ, δ, f ) =
(α− αn)

2 + (β− βn)
2 + (γ− γn)

2 + (δ− δn)
2 + ( f − fn)

2

αn2 + βn
2 + γn

2 + δn2 + fn2 .

As a result of applying Method 2, we obtain another approximate counterpart Icalc(t)
of the data Idat(t) and corresponding piecewise constant optimal coefficients of model (3),
β∗(t), γ∗(t), δ∗(t), f ∗(t).

Now we present the results of numerical experiments on modeling epidemic waves
using model (3) and Method 2 for some countries. Figure 2 refers to Russia. The top subplot
represents the curves Idat(t) and Icalc(t). One can see their practical coincidence. This
subplot also shows a curve representing the dynamics of the changes in external sources of
infection, f ∗(t). Since curves Icalc(t) and f ∗(t) are very different in scale, graph 10 f ∗(t) is
given instead of f ∗(t). All values are converted to the number of people.

Figure 2. Results of modeling of epidemic for Russia: 1—Idat(t), 2—Icalc(t), 3—10 f ∗(t).

The lower subplot demonstrates the found dynamics of the coefficients. Next, Figure 3
refers to Austria. Again, we present in the upper subplot the quantity 5 f ∗(t) instead of
f ∗(t) along with Idat(t) and Icalc(t).

Similar calculations for other countries show that data approximations, that is the
average discrepancies Φ1, min, for model (3) are generally better than those for model (2),
and this is due to using the source f (t). This is presented in the Table 2.

Table 2. Accuracy of the approximation of data for Method 2.

Country Czech Rep. Germany France Italy

Φ1, min 0.0438 0.0327 0.0248 0.0155
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Figure 3. Results of modeling of epidemic for Austria: 1—Idat(t), 2—Icalc(t), 3—5 f ∗(t).

At the same time, the coefficients γ(t), δ(t) vary insignificantly, while the coefficient
β(t) changes more markedly. In all numerical experiments, it turned out that the found
waves of external sources of infection, f (t), were ahead of the wave of infection I(t) by 10
or more days.

4. Applying Other Data

Unfortunately, data provided by Hopkins Coronavirus Resource Center database do
not contain information about recovered persons R = R(t) for several recent waves of the
epidemic. Therefore, we cannot use, for example, input values Idat(t) = C − R − D dated
10 February 2022 in our models. In this situation, we use the number of infected people per
day, that is the quantity

.
I(t), as a new type of data for the inverse problem. Accordingly,

the inverse problem here is related to the minimization of the residual of the form

Φ2(α,β,γ, δ, f ) =
‖ .

I(t; α,β,γ, δ, f )− .
Idat(t)‖L2[tn ,tn+1]

‖ .
Idat(t)‖L2[tn ,tn+1]

.

Here,
.
Idat(t) is the data presented in [19] and the value of

.
I(t; α,β,γ, δ, f ) can be

found from the equation
.
I = δ(t)E − γ(t)I + f (t) after solving problem (3) with given

coefficients α, β = β(t), γ = γ(t), δ = δ(t), f = f (t). In this case, we use a modification
of Method 2 with Φ1 replaced by Φ2 to approximate data

.
Idat(t) by

.
I(t; α,β,γ, δ, f ).

The results of such numerical experiments are shown in Figures 4 and 5 again for
Russia and Austria. In these calculations, the initial conditions are taken at points t0

other than 0, due to the small value of data
.
Idat(t) for t < t0, where values are compared

with background.
We have to note that the accuracy of the approximation of data

.
Idat(t) is 5–10 times

worse here than for data Idat(t) = C − R − D in Section 3. The Table 3 confirms this.

Table 3. Accuracy of approximation for other data.

Country Czech Rep. Germany USA Italy

Φ2, min 0.294 0.268 0.183 0.245
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Figure 4. Results of modeling with new data for Russia: 1—Idat(t), 2—Icalc(t), 3—8 f ∗(t).

Figure 5. Results of modeling with new data for Austria: 1—Idat(t), 2—Icalc(t), 3— f ∗(t).

Thus, the use of Idat(t) = C − R − D seems to be preferable if such data are available.
Nonetheless, we can observe for data

.
Idat(t) the same effect that the peak of source f (t)

precedes the peak of infection I(t).

5. Discussion and Conclusions

Numerical experiments with the identification of model (1), which includes piecewise
constant coefficients, show that for a number of countries the data to the inverse problem,
i.e., infection curves, can be approximated with a high accuracy of 2–8%. This is true for
modeling both an isolated wave of an epidemic and a sequence of waves that do not rise
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sharply. In this case, the found piecewise constant coefficients generally change slightly. For
example, the coefficient γ(t) (see Figure 1) approximately changes by 3%. Identification is
carried out here using the proposed Method 1 based on Tikhonov regularization. However,
for infection waves with a sharp increase, the approximation errors grow tenfold.

To overcome this trouble, we introduce an additional term f (t) into model (1). The
term takes into account external and latent sources of infection. For model (3), an identifica-
tion process similar to Method 1 can be proposed. Then, for the data at our disposal, the
model makes it possible to approximate all successive infection peaks, up to the Omicron
peak, with an accuracy of about 2–4% for different countries. This is somewhat better than
for model (1). This is significantly better (by a factor of 2 to 5) than the results that can
be obtained using the algorithm from [18] when trying to approximate several epidemic
waves without the term f (t) using spline variable coefficients.

When modeling the Omicron peak, we encountered the lack of a series of data in
the Hopkins Coronavirus Resource Center database. Therefore, we had to use other data
that can be extracted from this database, namely the number of infected people per day.
Applying another modification of our Method 1 for the identification of model (3) with
such input data for some countries, we approximated the infection curves for all waves,
including the Omicron wave, with an accuracy of about 10–30%.

The three parts of our work noted here also show the degree of applicability of the
SEI models used to describe the COVID epidemic. These models can be applied fairly
reliably to approximate many waves of infection curves with high precision and can
be used with a certain degree of confidence to identify external and hidden sources of
infection. It distinguishes our models from other models with variable coefficients known
in the literature.
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