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Editorial

Information and Divergence Measures

Alex Karagrigoriou 1,* and Andreas Makrides 1,2

1 Laboratory of Statistics and Data Analysis, Department of Statistics and Actuarial-Financial Mathematics,
University of the Aegean, GR-83200 Karlovasi, Greece; makrides.an@unic.ac.cy

2 Department of Computer Science, University of Nicosia, CY-1700 Nicosia, Cyprus
* Correspondence: alex.karagrigoriou@aegean.gr

The present Special Issue of Entropy, entitled Information and Divergence Mea-
sures, covers various aspects and applications in the general area of Information and
Divergence Measures.

Measures of information appear everywhere in probability and statistics. They play
a fundamental role in communication theory. They have a long history dating back to
the papers of Fisher, Shannon, and Kullback. There are many measures each claiming
to capture the concept of information or simply being measures of divergence or dis-
tance between two probability distributions. Numerous generalizations of such measures
also exist.

The concept of distance is important in establishing the degree of similarity and/or
closeness between functions, populations, and distributions. The intense engagement of
many authors with entropy and divergence measures demonstrates the significant role
they are playing in the sciences. Indeed, distances and entropies are related to inferential
statistics, including both estimation and hypothesis testing problems [1–6], model selection
criteria [7–9] and probabilistic and statistical modelling with applications in multivariate
analysis, actuarial science, portfolio optimization, survival analysis, reliability theory,
change-point problems, etc. [10–15]. Thus, the significance of entropy and divergence
measures that emerges in these and many more scientific fields is a topic of great interest to
scientists, researchers, medical experts, engineers, industrial managers, computer experts,
data analysts, etc.

All the articles included in this Special Issue were reviewed and accepted for publica-
tion because they have been found to contribute research works of the highest quality and
at the same time, they highlight the diversity of the topics in this scientific area. The issue
presents twelve original contributions that span a wide range of topics. In [16], the authors
demonstrate how to employ the techniques of the calculus of variations with a variable
endpoint to search for the closest distribution from a family of distributions generated via
a constraint set on the parameter manifold. In [17], the authors consider weighted Tsallis
and Kaniadakis divergences and establish inequalities between these measures and Tsallis
and Kaniadakis logarithms. In [18], LPI waveforms are designed within the constraints of
the detection performance metrics of radar and PISs, both of which are measured by the
Kullback–Leibler divergence, and the resolution performance metric, measured by joint
entropy with the solution based on the sequential quadratic programming method. In [19],
a bootstrap approximation of the Kullback–Leibler discrepancy is utilized to estimate the
probability that the fitted null model is closer to the underlying generating model than
the fitted alternative model. The authors also propose a bias correction either by adding a
bootstrap-based correction or by adding the number of parameters in the candidate model.
In [20], the authors extend, and compute information measures related to Shannon and
Tsallis entropies, for the concomitants of the generalized order statistics from the Farlie–
Gumbel–Morgenstern family. In [21], the evaluation of academic performance by using
the statistical K-means (SKM) algorithm to produce clusters is investigated. A simulation
experiment on the top 20 universities in China shows the advantages of the SKM algorithm
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over traditional methods. In [22], the authors introduce a closed-form expression for the
Kullback–Leibler divergence between two central multivariate Cauchy distributions used
in different signal and image processing applications where non-Gaussian models are
needed. In [23], restricted minimum Rényi’s pseudodistance estimators are defined, and
their asymptotic distribution and influence function are derived. Further, robust Rao-type
and divergence-type tests based on minimum Rényi’s pseudodistance and restricted mini-
mum Rényi’s pseudodistance estimators are considered, and their asymptotic properties
are obtained. In [24], a skew logistic distribution is proposed and extended to the skew
bi-logistic distribution to allow the modelling of multiple waves in epidemic time series
data. The proposed distribution is validated by COVID-19 data from the UK and is evalu-
ated for goodness-of-fit using the empirical survival Jensen–Shannon divergence and the
Kolmogorov–Smirnov two-sample test statistic. In [25], an approach for the derivation
of families of inequalities for set functions is suggested and applied to obtain informa-
tion inequalities with Shannon information measures that satisfy sub/supermodularity
and monotonicity properties. The author also applies the generalized Han’s inequality
to analyse a problem in extremal graph theory, with an information–theoretic proof and
interpretation. In [26], the authors focus on a general family of measures of divergence
and purpose a restricted minimum divergence estimator under constraints and a new
double-index (dual) divergence test statistic which is thoroughly examined. Finally, in [27],
by calculating the Kullback–Leibler divergence between two probability measures belong-
ing to different exponential families dominated by the same measure, the authors obtain
a formula that generalizes the ordinary Fenchel–Young divergence and define the duo
Fenchel–Young divergence which is equivalent to a duo Bregman divergence. The au-
thor also proves that the skewed Bhattacharyya distances between truncated exponential
families amount to equivalent skewed duo Jensen divergences.
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Article

Statistical Divergences between Densities of Truncated
Exponential Families with Nested Supports: Duo Bregman and
Duo Jensen Divergences

Frank Nielsen

Sony Computer Science Laboratories, Tokyo 141-0022, Japan; frank.nielsen.x@gmail.com

Abstract: By calculating the Kullback–Leibler divergence between two probability measures be-
longing to different exponential families dominated by the same measure, we obtain a formula
that generalizes the ordinary Fenchel–Young divergence. Inspired by this formula, we define the
duo Fenchel–Young divergence and report a majorization condition on its pair of strictly convex
generators, which guarantees that this divergence is always non-negative. The duo Fenchel–Young
divergence is also equivalent to a duo Bregman divergence. We show how to use these duo diver-
gences by calculating the Kullback–Leibler divergence between densities of truncated exponential
families with nested supports, and report a formula for the Kullback–Leibler divergence between
truncated normal distributions. Finally, we prove that the skewed Bhattacharyya distances between
truncated exponential families amount to equivalent skewed duo Jensen divergences.

Keywords: exponential family; statistical divergence; truncated exponential family; truncated normal
distributions

1. Introduction

1.1. Exponential Families

Let (X , Σ) be a measurable space, and consider a regular minimal exponential fam-
ily [1] E of probability measures Pθ all dominated by a base measure μ (Pθ � μ):

E = {Pθ : θ ∈ Θ}. (1)

The Radon–Nikodym derivatives or densities of the probability measures Pθ with
respect to μ can be written canonically as

pθ(x) =
dPθ

dμ
(x) = exp

(
θ�t(x)− F(θ) + k(x)

)
, (2)

where θ denotes the natural parameter, t(x) the sufficient statistic [1–4], and F(θ) the log-
normalizer [1] (or cumulant function). The optional auxiliary term k(x) allows us to change
the base measure μ into the measure ν such that dν

dμ (x) = ek(x). The order D of the family is
the dimension of the natural parameter space Θ:

Θ =

{
θ ∈ R

D :
∫
X

exp
(

θ�t(x) + k(x)
)

dμ(x) < ∞
}

, (3)

where R denotes the set of reals. The sufficient statistic t(x) = (t1(x), . . . , tD(x)) is a vector
of D functions. The sufficient statistic t(x) is said to be minimal when the D + 1 functions
1, t1(x), . . ., tD(x) are linearly independent [1]. The sufficient statistics t(x) are such that
the probability Pr[X|θ] = Pr[X|t(X)]. That is, all information necessary for the statistical
inference of parameter θ is contained in t(X). Exponential families are characterized as

Entropy 2022, 24, 421. https://doi.org/10.3390/e24030421 https://www.mdpi.com/journal/entropy
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families of parametric distributions with finite-dimensional sufficient statistics [1]. Expo-
nential families {pλ} include among others the exponential, normal, gamma/beta, inverse
gamma, inverse Gaussian, and Wishart distributions once a reparameterization θ = θ(λ) of
the parametric distributions {pλ} is performed to reveal their natural parameters [1].

When the sufficient statistic t(x) is x, these exponential families [1] are called nat-
ural exponential families or tilted exponential families [5] in the literature. Indeed, the
distributions Pθ of the exponential family E can be interpreted as distributions obtained
by tilting the base measure μ [6]. In this paper, we consider either discrete exponential
families like the family of Poisson distributions (univariate distributions of order D = 1
with respect to the counting measure) or continuous exponential families like the fam-
ily of normal distributions (univariate distributions of order D = 2 with respect to the
Lebesgue measure). The Radon–Nikodym derivative of a discrete exponential family is
a probability mass function (pmf), and the Radon–Nikodym derivative of a continuous
exponential family is a probability density function (pdf). The support of a pmf p(x) is
supp(p) = {x ∈ Z : p(x) > 0} (where Z denotes the set of integers) and the support of
a d-variate pdf p(x) is supp(p) = {x ∈ Rd : p(x) > 0}. The Poisson distributions have
support N ∪ {0} where N denotes the set of natural numbers {1, 2, . . . , }. Densities of an
exponential family all have coinciding support [1].

1.2. Truncated Exponential Families with Nested Supports

In this paper, we shall consider truncated exponential families [7] with nested supports.
A truncated exponential family is a set of parametric probability distributions obtained
by truncation of the support of an exponential family. Truncated exponential families are
exponential families but their statistical inference is more subtle [8,9]. Let ETrunc = {qθ}
be a truncated exponential family of E = {pθ} with nested supports supp(qθ) ⊂ supp(pθ).
The canonical decompositions of densities pθ and qθ have the following expressions:

pθ(x) = exp
(

θ�t(x) + k(x)− F(θ)
)

, (4)

qθ(x) =
pθ(x)

ZXTrunc(θ)
= exp

(
θ�t(x) + k(x)− FTrunc(θ)

)
, (5)

where the log-normalizer of the truncated exponential family is:

FTrunc(θ) = F(θ) + log ZXTrunc(θ), (6)

where ZXTrunc(θ) is a normalizing term that takes into account the truncated support
XTrunc. These equations show that densities of truncated exponential families only differ
by their log-normalizer functions. Let XTrunc denote the support of the distributions of
ETrunc = supp(qθ) and X = supp(pθ) the support of E . Family ETrunc is a truncated
exponential family of E that can be notationally written as EXTrunc . Family E can also
be interpreted as the (un)truncated exponential family EX with densities pXθ = pθ . A
truncated exponential family EXTrunc of E is said to have nested support when XTrunc ⊂ X .
For example, the family of half-normal distributions defined on the support XTrunc = [0, ∞)
is a nested truncated exponential family of the family of normal distributions defined on
the support X = (−∞, ∞).

1.3. Kullback–Leibler Divergence Between Exponential Family Distributions

For two σ-finite probability measures P and Q on (X , Σ) such that P is dominated by
Q (P � Q), the Kullback–Leibler divergence between P and Q is defined by

DKL[P : Q] =
∫
X

log
dP
dQ

dP = EP

[
log

dP
dQ

]
, (7)

where EP[X] denotes the expectation of a random variable X ∼ P [10]. When P �� Q, we set
DKL[P : Q] = +∞. Gibbs’ inequality [11] DKL[P : Q] ≥ 0 shows that the Kullback–Leibler

6
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divergence (KLD for short) is always non-negative. The proof of Gibbs’ inequality relies on
Jensen’s inequality and holds for the wide class of f -divergences [12] induced by convex
generators f (u):

I f [P : Q] =
∫
X

f
(

dQ
dP

)
dP ≥ f

(∫
X

dQ
dP

dP
)
≥ f (1). (8)

The KLD is an f -divergence obtained for the convex generator f (u) = − log u.

1.4. Kullback–Leibler Divergence Between Exponential Family Densities

It is well-known that the KLD between two distributions Pθ1 and Pθ2 of E amounts to
computing an equivalent Fenchel–Young divergence [13]:

DKL[Pθ1 : Pθ2 ] =
∫
X

pθ1(x) log
pθ1(x)
pθ2(x)

dμ(x) = YF,F∗(θ2, η1), (9)

where η = ∇F(θ) = EPθ
[t(x)] is the moment parameter [1] and

∇F(θ) =
[

∂

∂θ1
F(θ), . . . ,

∂

∂θD
F(θ)

]�
, (10)

is the gradient of F with respect to θ = [θ1, . . . , θD]
�. The Fenchel–Young divergence is

defined for a pair of strictly convex conjugate functions [14] F(θ) and F∗(η) related by the
Legendre–Fenchel transform by

YF,F∗(θ1, η2) := F(θ1) + F∗(η2)− θ�1 η2. (11)

Amari (1985) first introduced this formula as the canonical divergence of dually flat
spaces in information geometry [15] (Equation 3.21), and proved that the Fenchel–Young
divergence is obtained as the KLD between densities belonging to the same exponential
family [15] (Theorem 3.7). Azoury and Warmuth expressed the KLD DKL[Pθ1 : Pθ2 ] using
dual Bregman divergences in [13] (2001):

DKL[Pθ1 : Pθ2 ] = BF(θ2 : θ1) = BF∗(η1 : η2), (12)

where a Bregman divergence [16] BF(θ1 : θ2) is defined for a strictly convex and differen-
tiable generator F(θ) by:

BF(θ1 : θ2) := F(θ1)− F(θ2)− (θ1 − θ2)
�∇F(θ2). (13)

Acharyya termed the divergence YF,F∗ the Fenchel–Young divergence in his PhD
thesis [17] (2013), and Blondel et al. called such divergences Fenchel–Young losses (2020) in
the context of machine learning [18] (Equation (9) in Definition 2). This term was also used
by the author the Legendre–Fenchel divergence in [19]. The Fenchel–Young divergence
stems from the Fenchel–Young inequality [14,20]:

F(θ1) + F∗(η2) ≥ θ�1 η2, (14)

with equality if and only if η2 = ∇F(θ1).
Figure 1 visualizes the 1D Fenchel–Young divergence and gives a geometric proof

that YF,F∗(θ1, η2) ≥ 0 with equality if and only if η2 = F′(θ1). Indeed, by considering the
behavior of the Legendre–Fenchel transformation under translations:

• if Ft(θ) = F(θ + t) then F∗
t (η) = F∗(η)− η�t for all t ∈ R, and

• if Fλ(θ) = F(θ) + λ then F∗
λ(η) = F∗(η)− λ for all λ ∈ R,

7
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we may assume without loss of generality that F(0) = 0. The function F′(θ) is strictly
increasing and continuous since F(θ) is a strictly convex and differentiable convex function.
Thus we have F(θ) =

∫ θ
0 F′(θ)dθ and F∗(η) =

∫ η
0 F∗′(η)dη =

∫ η
0 F′−1(η)dη.

θ

η = ∇F (θ)

∇F = (∇F ∗)−1

θ1 θ2

η1

η2

(0, 0)

F (θ1)

F ∗(η2)
YF,F∗ (θ1, η2)

YF,F∗(θ1, η2) = F (θ1) + F ∗(η2)− θ1η2

+ − =

F (θ1) F ∗(η2) θ1η2 YF,F ∗(θ1, η2)

Figure 1. Visualizing the Fenchel–Young divergence.

The Bregman divergence BF(θ1 : θ2) amounts to a dual Bregman divergence [13]
between the dual parameters with swapped order: BF(θ1 : θ2) = BF∗(η2 : η1) where
ηi = ∇F(θi) for i ∈ {1, 2}. Thus the KLD between two distributions Pθ1 and Pθ2 of E can be
expressed equivalently as follows:

DKL[Pθ1 : Pθ2 ] = YF,F∗(θ2 : η1) = BF(θ2 : θ1) = BF∗(η1 : η2) = YF∗ ,F(η1 : η2). (15)

The symmetrized Kullback–Leibler divergence DJ [Pθ1 : Pθ2 ] between two distributions
Pθ1 and Pθ2 of E is called Jeffreys’ divergence [21] and amounts to a symmetrized Bregman
divergence [22]:

DJ [Pθ1 : Pθ2 ] = DKL[Pθ1 : Pθ2 ] + DKL[Pθ2 : Pθ1 ], (16)

= BF(θ2 : θ1) + BF(θ1 : θ2), (17)

= (θ2 − θ1)
�(η2 − η1) := SF(θ1, θ2). (18)

Note that the Bregman divergence BF(θ1 : θ2) can also be interpreted as a surface area:

BF(θ1 : θ2) =
∫ θ1

θ2

(F′(θ)− F′(θ2))dθ. (19)

Figure 2 illustrates the sided and symmetrized Bregman divergences.

θ = ∇F ∗(η)

η = ∇F (θ)

θ2 θ1

η2

η1
BF∗(η1 : η2)

=
BF (θ2 : θ1)

∇F (θ) = ∇F ∗−1(η)

BF (θ1 : θ2)

θ1 − θ2

η1 − η2

=+

BF (θ1 : θ2) BF (θ2 : θ1) SF (θ1, θ2)

Figure 2. Visualizing the sided and symmetrized Bregman divergences.
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1.5. Contributions and Paper Outline

We recall in Section 2 the formula obtained for the Kullback–Leibler divergence be-
tween two exponential family densities equivalent to each other [23] (Equation (29)). In-
spired by this formula, we give a definition of the duo Fenchel–Young divergence induced
by a pair of strictly convex functions F1 and F2 (Definition 1) in Section 3, and prove that
the divergence is always non-negative provided that F1 upper bounds F2. We then de-
fine the duo Bregman divergence (Definition 2) corresponding to the duo Fenchel–Young
divergence. In Section 4, we show that the Kullback–Leibler divergence between a trun-
cated density and a density of a same parametric exponential family amounts to a duo
Fenchel–Young divergence or equivalently to a duo Bregman divergence on swapped
parameters (Theorem 1). That is, we consider a truncated exponential family [7] E1 of an
exponential family E1 such that the common support of the distributions of E1 is contained
in the common support of the distributions of E2 and both canonical decompositions of
the families coincide (see Equation (2)). In particular, when E2 is also a truncated expo-
nential family of E , then we express the KLD between two truncated distributions as a
duo Bregman divergence. As examples, we report the formula for the Kullback–Leibler
divergence between two densities of truncated exponential families (Corollary 1), and
illustrate the formula for the Kullback–Leibler divergence between truncated exponential
distributions (Example 6) and for the Kullback–Leibler divergence between truncated
normal distributions (Example 7).

In Section 5, we further consider the skewed Bhattacharyya distance between densities
of truncated exponential families and prove that it amounts to a duo Jensen divergence
(Theorem 2). Finally, we conclude in Section 6.

2. Kullback–Leibler Divergence Between Different Exponential Families

Consider now two exponential families [1] P and Q defined by their Radon–Nikodym
derivatives with respect to two positive measures μP and μQ on (X , Σ):

P = {Pθ : θ ∈ Θ}, (20)

Q =
{

Qθ′ : θ′ ∈ Θ′}. (21)

The corresponding natural parameter spaces are

Θ =

{
θ ∈ R

D :
∫
X

exp(θ�tP (x) + kP (x))dμP (x) < ∞
}

, (22)

Θ′ =

{
θ′ ∈ R

D′
:
∫
X

exp(θ′�tQ(x) + kQ(x))dμQ(x) < ∞
}

, (23)

The order of P is D, tP (x) denotes the sufficient statistics of Pθ , and kP (x) is a term to
adjust/tilt the base measure μP . Similarly, the order of Q is D′, tQ(x) denotes the sufficient
statistics of Qθ′ , and kQ(x) is an optional term to adjust the base measure μQ. Let pθ

and qθ′ denote the Radon–Nikodym derivatives with respect to the measures μP and μQ,
respectively:

pθ =
dPθ

dμP
= exp(θ�tP (x)− FP (θ) + kP (x)), (24)

qθ′ =
dQθ′

dμQ
= exp(θ′�tQ(x)− FQ(θ′) + kQ(x)), (25)

where FP (θ) and FQ(θ′) denote the corresponding log-normalizers of P and Q, respectively.

FP (θ) = log
(∫

exp(θ�tP (x) + kP (x))dμP (x)
)

, (26)

FQ(θ) = log
(∫

exp(θ�tQ(x) + kQ(x))dμQ(x)
)

. (27)

9
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The functions FP and FQ are strictly convex and real analytic [1]. Hence, those func-
tions are infinitely many times differentiable on their open natural parameter spaces.

Consider the KLD between Pθ ∈ P and Qθ′ ∈ Q such that μP = μQ (and hence
Pθ � Qθ′ ). Then the KLD between Pθ and Qθ′ was first considered in [23]:

DKL[Pθ : Qθ′ ] = EP

[
log

(
dPθ

dQθ′

)]
, (28)

= EPθ

⎡⎢⎢⎢⎣(θ�tP (x)− θ′�tQ(x)− FP (θ) + FQ(θ′) + kP (x)− kQ(x)
) dμP

dμQ︸ ︷︷ ︸
=1

⎤⎥⎥⎥⎦,

= FQ(θ′)− FP (θ) + θ�EPθ
[tP (x)]− θ′�EPθ

[tQ(x)] + EPθ
[kP (x)− kQ(x)].

Recall that the dual parameterization of an exponential family density Pθ is Pη with
η = EPθ

[tP (x)] = ∇FP (θ) [1], and that the Fenchel–Young equality is F(θ) + F∗(η) = θ�η
for η = ∇F(θ). Thus the KLD between Pθ and Qθ′ can be rewritten as

DKL[Pθ : Qθ′ ] = FQ(θ′) + F∗
P (η)− θ′�EPθ

[tQ(x)] + EPθ
[kP (x)− kQ(x)]. (29)

This formula was reported in [23] and generalizes the Fenchel–Young divergence [17]
obtained when P = Q (with tP (x) = tQ(x), kP (x) = kQ(x), and F(θ) = FP (θ) = FQ(θ)
and F∗(η) = F∗

P (η) = F∗
Q(η)).

The formula of Equation (29) was illustrated in [23] with two examples: the KLD
between Laplacian distributions and zero-centered Gaussian distributions, and the KLD
between two Weibull distributions. Both these examples use the Lebesgue base measure
for μP and μQ.

Let us report another example that uses the counting measure as the base measure for
μP and μQ.

Example 1. Consider the KLD between a Poisson probability mass function (pmf) and a geometric
pmf. The canonical decompositions of the Poisson and geometric pmfs are summarized in Table 1.
The KLD between a Poisson pmf pλ and a geometric pmf qp is equal to

DKL[Pλ : Qp] = FQ(θ′) + F∗
P (η)− EPθ

[tQ(x)] · θ′ + EPθ
[kP (x)− kQ(x)], (30)

= − log p + λ log λ − λ − λ log(1 − p)− EPλ
[log x!] (31)

Since Epλ
[− log x!] = −∑∞

k=0 e−λ λk log(k!)
k! , we have

DKL[Pλ : Qp] = − log p + λ log
λ

1 − p
− λ −

∞

∑
k=0

e−λ λk log(k!)
k!

. (32)

Note that we can calculate the KLD between two geometric distributions Qp1 and Qp2 as

DKL[Qp1 : Qp2 ] = BFQ(θ(p2) : θ(p1)), (33)

= FQ(θ(p2))− FQ(θ(p1))− (θ(p2)− θ(p1))η(p1), (34)

We obtain:

DKL[Qp1 : Qp2 ] = log
(

p1

p2

)
−
(

1 − 1
p1

)
log

1 − p1

1 − p2
.

10
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Table 1. Canonical decomposition of the Poisson and the geometric discrete exponential families.

Quantity Poisson Family P Geometric Family Q
support N∪ {0} N∪ {0}

base measure counting measure counting measure
ordinary parameter rate λ > 0 success probability p ∈ (0, 1)

pmf λx

x! exp(−λ) (1 − p)x p
sufficient statistic tP (x) = x tQ(x) = x
natural parameter θ(λ) = log λ θ(p) = log(1 − p)
cumulant function FP (θ) = exp(θ) FQ(θ) = − log(1 − exp(θ))

FP (λ) = λ FQ(p) = − log(p)
auxiliary term kP (x) = − log x! kQ(x) = 0

moment η = E[t(x)] η = λ η = eθ

1−eθ = 1
p − 1

negentropy F∗
P (η(λ)) = λ log λ − λ F∗

Q(η(p)) =
(

1 − 1
p

)
log(1 − p) + log p

(F∗(η) = θ · η − F(θ))

3. The Duo Fenchel–Young Divergence and Its Corresponding Duo
Bregman Divergence

Inspired by formula of Equation (29), we shall define the duo Fenchel–Young divergence
using a dominance condition on a pair (F1(θ), F2(θ)) of strictly convex generators.

Definition 1 (duo Fenchel–Young divergence). Let F1(θ) and F2(θ) be two strictly convex
functions such that F1(θ) ≥ F2(θ) for any θ ∈ Θ12 = dom(F1) ∩ dom(F2). Then the duo
Fenchel–Young divergence YF1,F∗

2
(θ, η′) is defined by

YF1,F∗
2
(θ, η′) := F1(θ) + F∗

2 (η
′)− θ�η′. (35)

When F1(θ) = F2(θ) =: F(θ), we have F∗
1 (η) = F∗

2 (η) =: F∗(η), and we retrieve the
ordinary Fenchel–Young divergence [17]:

YF,F∗(θ, η′) := F(θ) + F∗(η′)− θ�η′ ≥ 0. (36)

Note that in Equation (35), we have η′ = ∇F2(θ
′).

Property 1 (Non-negative duo Fenchel–Young divergence). The duo Fenchel–Young diver-
gence is always non-negative.

Proof. The proof relies on the reverse dominance property of strictly convex and differen-
tiable conjugate functions:

Lemma 1 (Reverse majorization order of functions by the Legendre–Fenchel transform).
Let F1(θ) and F2(θ) be two Legendre-type convex functions [14]. Then if F1(θ) ≥ F2(θ) then we
have F∗

2 (η) ≥ F∗
1 (η).

Proof. This property is graphically illustrated in Figure 3. The reverse dominance property
of the Legendre–Fenchel transformation can be checked algebraically as follows:

F∗
1 (η) = sup

θ∈Θ
{η�θ − F1(θ)}, (37)

= η�θ1 − F1(θ1) (with η = ∇F1(θ1)), (38)

≤ η�θ1 − F2(θ1), (39)

≤ sup
θ∈Θ

{η�θ − F2(θ)} = F∗
2 (η). (40)

11
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Thus we have F∗
1 (η) ≤ F∗

2 (η) when F1(θ) ≥ F2(θ). Therefore it follows that YF1,F∗
2
(θ, η′)

≥ 0 since we have

YF1,F∗
2
(θ, η′) := F1(θ) + F∗

2 (η
′)− θ�η′, (41)

≥ F1(θ) + F∗
1 (η

′)− θ�η′ = YF1,F∗
1
(θ, η′) ≥ 0, (42)

where YF1,F∗
1

is the ordinary Fenchel–Young divergence, which is guaranteed to be non-
negative from the Fenchel–Young inequality.

(a)

θ

y

F = {(θ, θ log θ) : θ ∈ R+}

θ

F (θ)

F
(θ
)
−
θη

=
−
F

∗ (
η
)

slope η = ∇F (θ)

(b)

F1(θ)
F2(θ)

H1(η) = η�θ − F ∗
1 (η)

H2(η) = η�θ − F ∗
2 (η)

θ1 θ2

−F ∗
1 (η)

−F ∗
2 (η)

(0, 0)

Figure 3. (a) Visual illustration of the Legendre–Fenchel transformation: F∗(η) is measured as the
vertical gap (left long black line with both arrows) between the origin and the hyperplane of the
“slope” η tangent at F(θ) evaluated at θ = 0. (b) The Legendre transforms F∗

1 (η) and F∗
1 (η) of two

functions F1(θ) and F2(θ) such that F1(θ) ≥ F2(θ) reverse the dominance order: F∗
2 (η) ≥ F∗

1 (η).

We can express the duo Fenchel–Young divergence using the primal coordinate sys-
tems as a generalization of the Bregman divergence to two generators that we term the duo
Bregman divergence (see Figure 4) :

BF1,F2(θ : θ′) := YF1,F∗
2
(θ, η′) = F1(θ)− F2(θ

′)− (θ − θ′)�∇F2(θ
′), (43)

with η′ = ∇F2(θ
′).

12
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This generalized Bregman divergence is non-negative when F1(θ) ≥ F2(θ). Indeed,
we check that

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)�∇F2(θ

′), (44)

≥ F2(θ)− F2(θ
′)− (θ − θ′)�∇F2(θ

′) = BF2(θ : θ′) ≥ 0. (45)

F1(θ)

F2(θ)

θ

BF2(θ : θ′)

BF1,F2(θ : θ′)

θ′

Figure 4. The duo Bregman divergence induced by two strictly convex and differentiable functions F1

and F2 such that F1(θ) ≥ F2(θ). We check graphically that BF1,F2 (θ : θ′) ≥ BF2 (θ : θ′) (vertical gaps).

Definition 2 (duo Bregman divergence). Let F1(θ) and F2(θ) be two strictly convex functions
such that F1(θ) ≥ F2(θ) for any θ ∈ Θ12 = dom(F1) ∩ dom(F2). Then the generalized Bregman
divergence is defined by

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)�∇F2(θ

′) ≥ 0. (46)

Example 2. Consider F1(θ) =
a
2 θ2 for a > 0. We have η = aθ, θ = η

a , and

F∗
1 (η) =

η2

a
− a

2
η2

a2 =
η2

2a
. (47)

Let F2(θ) = 1
2 θ2 so that F1(θ) ≥ F2(θ) for a ≥ 1. We check that F∗

1 (η) = η2

2a ≤ F∗
2 (η) when

a ≥ 1. The duo Fenchel–Young divergence is

YF1,F∗
2
(θ, η′) =

a
2

θ2 +
1
2

η′2 − θη′ ≥ 0, (48)

when a ≥ 1. We can express the duo Fenchel–Young divergence in the primal coordinate systems as

BF1,F2(θ, θ′) =
a
2

θ2 +
1
2

θ′2 − θθ′. (49)

When a = 1, F1(θ) = F2(θ) = 1
2 θ2 := F(θ), and we obtain BF(θ, θ′) = 1

2‖θ − θ′‖2
2, half the

squared Euclidean distance as expected. Figure 5 displays the graph plot of the duo Bregman
divergence for several values of a.
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(a)

-3-2-1 0 1 2 3 -3 -2 -1  0  1  2  3

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

theta^2/2-eta*theta+eta^2/2

theta

eta

z

(b)

-3 -2 -1  0  1  2  3 -3 -2 -1  0  1  2  3
 0
 5

 10
 15
 20
 25

theta^2-eta*theta+eta^2/2

theta
eta

z

(c)

-3 -2 -1  0  1  2  3 -3-2
-1 0

 1 2
 3

-4-2
 0 2
 4 6
 8 10 12 14 16

theta^2/4-eta*theta+eta^2/2

theta

eta

z

Figure 5. The duo half squared Euclidean distance D2
a(θ : θ′) := a

2 θ2 + 1
2 θ′2 − θθ′ is non-negative

when a ≥ 1: (a) half squared Euclidean distance (a = 1), (b) a = 2, (c) a = 1
2 , which shows that the

divergence can be negative then since a < 1.

Example 3. Consider F1(θ) = θ2 and F2(θ) = θ4 on the domain Θ = [0, 1]. We have F1(θ) ≥
F2(θ) for θ ∈ Θ. The convex conjugate of F1(η) is F∗

1 (η) =
1
4 η2. We have

F∗
2 (η) = η

4
3

((
1
4

) 1
3
−
(

1
4

) 4
3
)

=
3

4
4
3

η
4
3 (50)

with η2(θ) = 4θ3. Figure 6 plots the convex functions F1(θ) and F2(θ), and their convex conjugates
F∗

1 (η) and F∗
2 (η). We observe that F1(θ) ≥ F2(θ) on θ ∈ [0, 1] and that F∗

1 (η) ≤ F∗
2 (η) on

H = [0, 2].

We now state a property between dual duo Bregman divergences:

14
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theta

theta^2
theta^4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
eta

eta^2/4
(3*eta^(4/3))/4^(4/3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

Convex functions F1(θ) ≥ F2(θ) Conjugate functions F∗
1 (η) ≤ F∗

2 (η)

Figure 6. The Legendre transform reverses the dominance ordering: F1(θ) = θ2 ≥ F2(θ) = θ4 ⇔
F∗

1 (η) ≤ F∗
2 (η) for θ ∈ [0, 1].

Property 2 (Dual duo Fenchel–Young and Bregman divergences). We have

YF1,F∗
2
(θ : η′) = BF1,F2(θ : θ′) = BF∗

2 ,F∗
1
(η′ : η) = YF∗

2 ,F1(η
′ : θ) (51)

Proof. From the Fenchel–Young equalities of the inequalities, we have F1(θ) = θ�η − F∗
1 (η)

for η = ∇F1(θ) and F2(θ
′) = θ′�η′ − F∗

2 (η
′) with η′ = ∇F2(θ

′). Thus we have

BF1,F2(θ : θ′) = F1(θ)− F2(θ
′)− (θ − θ′)�∇F2(θ

′), (52)

= θ�η − F∗
1 (η)− θ′�η′ + F∗

2 (η
′)− (θ − θ′)�η′, (53)

= F∗
2 (η

′)− F∗
1 (η)− (η′ − η)�θ, (54)

= BF∗
2 ,F∗

1
(η′ : η). (55)

Recall that F1(θ) ≥ F2(θ) implies that F∗
1 (η) ≤ F∗

2 (η) (Lemma 1), θ = ∇F∗
1 (η), and

therefore the dual duo Bregman divergence is non-negative:

BF∗
2 ,F∗

1
(η′ : η) = F∗

2 (η
′)− F∗

1 (η)− (η′ − η)�θ,

≥ F∗
1 (η

′)− F∗
1 (η)− (η′ − η)�∇F∗

1 (η)︸ ︷︷ ︸
BF∗1

(η′ :η)≥0

.

4. Kullback–Leibler Divergence between Distributions of Truncated
Exponential Families

Let E1 = {Pθ : θ ∈ Θ1} be an exponential family of distributions all dominated by μ
with Radon–Nikodym density pθ(x) = exp(θ�t(x)− F1(θ) + k(x))dμ(x) defined on the
support X1. Let E2 = {Qθ : θ ∈ Θ2} be another exponential family of distributions all
dominated by μ with Radon–Nikodym density qθ(x) = exp(θ�t(x)− F2(θ) + k(x))dμ(x)
defined on the support X2 such that X1 ⊆ X2. Let p̃θ(x) = exp(θ�t(x) + k(x))dμ(x) be
the common unnormalized density so that

pθ(x) =
p̃θ(x)
Z1(θ)

(56)

and

qθ(x) =
p̃θ(x)
Z2(θ)

=
Z1(θ)

Z2(θ)
pθ(x), (57)

with Z1(θ) = exp(F1(θ)) and Z2(θ) = exp(F2(θ)) being the log-normalizer functions of E1
and E2, respectively.
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We have

DKL[pθ1 : qθ2 ] =
∫
X1

pθ1(x) log
pθ1(x)
qθ2(x)

dμ(x), (58)

=
∫
X1

pθ1(x) log
pθ1(x)
pθ2(x)

dμ(x) +
∫
X1

pθ1(x) log
(

Z2(θ2)

Z1(θ2)

)
dμ(x), (59)

= DKL[pθ1 : pθ2 ] + log Z2(θ2)− log Z1(θ2). (60)

Since DKL[pθ1 : pθ2 ] = BF1(θ2 : θ1) and log Zi(θ) = Fi(θ), we obtain

DKL[pθ1 : qθ2 ] = BF1(θ2 : θ1) + F2(θ2)− F1(θ2), (61)

= F1(θ2)− F1(θ1)− (θ2 − θ1)
�∇F1(θ1) + F2(θ2)− F1(θ2), (62)

= F2(θ2)− F1(θ1)− (θ2 − θ1)
�∇F1(θ1) =: BF2,F1(θ2 : θ1). (63)

Observe that since X1 ⊆ X 2, we have:

F2(θ) = log
∫
X2

p̃θ(x)dμ(x) ≥ log
∫
X1

p̃θ(x)dμ(x) := F1(θ). (64)

Therefore Θ2 ⊆ Θ1, and the common natural parameter space is Θ12 = Θ1 ∩ Θ2 = Θ2.
Notice that the reverse Kullback–Leibler divergence D∗

KL[pθ1 : qθ2 ] = DKL[qθ2 : pθ1 ] =
+∞ since Qθ2 �� Pθ1 .

Theorem 1 (Kullback–Leibler divergence between truncated exponential family densities).
Let E2 = {qθ2} be an exponential family with support X2, and E1 = {pθ1} a truncated exponential
family of E2 with support X1 ⊂ X2. Let F1 and F2 denote the log-normalizers of E1 and E2 and
η1 and η2 the moment parameters corresponding to the natural parameters θ1 and θ2. Then the
Kullback–Leibler divergence between a truncated density of E1 and a density of E2 is

DKL[pθ1 : qθ2 ] = YF2,F∗
1
(θ2 : η1) = BF2,F1(θ2 : θ1) = BF∗

1 ,F∗
2
(η1 : η2) = YF∗

1 ,F2(η1 : θ2). (65)

For example, consider the calculation of the KLD between an exponential distribution
(view as half a Laplacian distribution, i.e., a truncated Laplacian distribution on the positive
real support) and a Laplacian distribution defined on the real line support.

Example 4. Let R++ = {x ∈ R : x > 0} denote the set of positive reals. Let E1 = {pλ(x) =
λ exp(−λx), λ ∈ R++, x > 0} and E2 = {qλ(x) = λ exp(−λ|x|), λ ∈ R++, x ∈ R} denote
the exponential families of exponential distributions and Laplacian distributions, respectively. We
have the sufficient statistic t(x) = −|x| and natural parameter θ = λ so that p̃θ(x) = exp(−|x|θ).
The log-normalizers are F1(θ) = − log θ and F2(θ) = − log θ + log 2 (hence F2(θ) ≥ F1(θ)).
The moment parameter η = ∇F1(θ) = ∇F2(θ) = − 1

θ = − 1
λ . Thus using the duo Bregman

divergence, we have:

DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1), (66)

= F2(θ2)− F1(θ1)− (θ2 − θ1)
�∇F1(θ1), (67)

= log 2 + log
λ1

λ2
+

λ2

λ1
− 1. (68)

Moreover, we can interpret that divergence using the Itakura–Saito divergence [24]:

DIS[λ1 : λ2] :=
λ1

λ2
− log

λ1

λ2
− 1 ≥ 0. (69)

we have
DKL[pθ1 : qθ2 ] = DIS[λ2 : λ1] + log 2 ≥ 0. (70)
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We check the result using the duo Fenchel–Young divergence:

DKL[pθ1 : qθ2 ] = YF2,F∗
1
(θ2 : η1), (71)

with F∗
1 (η) = −1 + log

(
− 1

η

)
:

DKL[pθ1 : qθ2 ] = YF2,F∗
1
(θ2 : η1), (72)

= − log λ2 + log 2 − 1 + log λ1 +
λ2

λ1
, (73)

= log
λ1

λ2
+

λ2

λ1
+ log2 −1. (74)

Next, consider the calculation of the KLD between a half-normal distribution and a
(full) normal distribution:

Example 5. Consider E1 and E2 to be the scale family of the half standard normal distributions and
the scale family of the standard normal distribution, respectively. We have p̃θ(x) = exp

(
− x2

2σ2

)
with Z1(θ) = σ

√
π
2 and Z2(θ) = σ

√
2π. Let the sufficient statistic be t(x) = − x2

2 so that

the natural parameter is θ = 1
σ2 ∈ R++. Here, we have both Θ1 = Θ2 = R++. For this

example, we check that Z1(θ) = 1
2 Z2(θ). We have F1(θ) = − 1

2 log θ + 1
2 log π

2 and F2(θ) =

− 1
2 log θ + 1

2 log(2π) (with F2(θ) ≥ F1(θ)). We have η = − 1
2θ = − 1

2 σ2. The KLD between two
half scale normal distributions is

DKL[pθ1 : pθ2 ] = BF1(θ2 : θ1), (75)

=
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
− 1

)
. (76)

Since F1(θ) and F2(θ) differ only by a constant and the Bregman divergence is invariant under an
affine term of its generator, we have

DKL[qθ1 : qθ2 ] = BF2(θ2 : θ1), (77)

= BF1(θ2 : θ1) =
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
− 1

)
. (78)

Moreover, we can interpret those Bregman divergences as half of the Itakura–Saito divergence:

DKL[pθ1 : pθ2 ] = DKL[qθ1 : qθ2 ] = BF2(θ2 : θ1) =
1
2

DIS[σ
2
1 : σ2

2 ]. (79)

It follows that

DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1) = F2(θ2)− F1(θ1)− (θ2 − θ1)
�∇F1(θ1), (80)

=
1
2

(
log

σ2
2

σ2
1
+

σ2
1

σ2
2
+ log 4 − 1

)
, (81)

= DKL[qθ1 : qθ2 ] + log 2. (82)

Since log 2 > 0, we have DKL[pθ1 : qθ2 ] ≥ DKL[qθ1 : qθ2 ].

Thus the Kullback–Leibler divergence between a truncated density and another den-
sity of the same exponential family amounts to calculate a duo Bregman divergence on the
reverse parameter order: DKL[pθ1 : qθ2 ] = BF2,F1(θ2 : θ1). Let D∗

KL[p : q] := DKL[q : p] be
the reverse Kullback–Leibler divergence. Then D∗

KL[qθ2 : pθ1 ] = BF2,F1(θ2 : θ1).
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Notice that truncated exponential families are also exponential families but those
exponential families may be non-steep [25].

Let E1 = {pa1,b1
θ } and E2 = {pa2,b2

θ } be two truncated exponential families of the
exponential family E = {pθ = dPθ

dμ } with log-normalizer F(θ) such that

pai ,bi
θ (x) =

pθ(x)
Zai ,bi

(θ)
, (83)

with Zai ,bi
(θ) = Φθ(bi) − Φθ(ai), where Φθ(x) denotes the CDF of pθ(x). Then the log-

normalizer of Ei is Fi(θ) = F(θ) + log(Φθ(bi)− Φθ(ai)) for i ∈ {1, 2}.

Corollary 1 (Kullback–Leibler divergence between densities of truncated exponential fam-
ilies). Let Ei = {pai ,bi

θ } be truncated exponential families of the exponential family E = {pθ}
with support Xi = [ai, bi] ⊂ X (where X denotes the support of E ) for i ∈ {1, 2}. Then the
Kullback–Leibler divergence between pa1,b1

θ1
and pa2,b2

θ2
is infinite if [a1, b1] �⊂ [a2, b2] and has the

following formula when [a1, b1] ⊂ [a2, b2]:

DKL[p
a1,b1
θ1

: pa2,b2
θ2

] = DKL[p
a1,b1
θ1

: pa1,b1
θ2

] + log
Za2,b2(θ2)

Za1,b1(θ2)
. (84)

Proof. We have pa1,b1
θ = pθ

Za1,b1
(θ)

and pa2,b2
θ = pθ

Za2,b2
(θ)

. Therefore pa2,b2
θ = pa1,b1

θ

Za1,b1
(θ)

Za2,b2
(θ)

.

Thus we have

DKL[p
a1,b1
θ1

: pa2,b2
θ2

] =
∫
X1

pa1,b1
θ1

(x) log
pa1,b1

θ1
(x)

pa2,b2
θ2

dμ(x), (85)

=
∫
X1

pa1,b1
θ1

(x) log
pa1,b1

θ1
(x)

pa1,b1
θ2

dμ(x) + log
Za2,b2(θ2)

Za1,b1(θ2)
, (86)

= DKL[p
a1,b1
θ1

: pa1,b1
θ2

] + log
Za2,b2(θ2)

Za1,b1(θ2)
. (87)

Thus the KLD between truncated exponential family densities pa1,b1
θ1

and pa2,b2
θ2

amounts
to the KLD between the densities with the same truncation parameter with an additive term
depending on the log ratio of the mass with respect to the truncated supports evaluated
at θ2. We shall illustrate with two examples the calculation of the KLD between truncated
exponential families.

Example 6. Consider the calculation of the KLD between a truncated exponential distribution
pa1,b1

λ1
with support X1 = [a1, b1] (b1 > a1 ≥ 0) and another truncated exponential distribution

pa2,b2
λ2

with support X2 = [a2, b2] (b2 > a2 ≥ 0). We have pλ(x) = λ exp(−λx) (density of
the untruncated exponential family with natural parameter θ = λ, sufficient statistic t(x) = −x
and log-normalizer F(θ) = − log θ), pa1,b1

λ1
= 1

Za1,b1
(λ)

pλ1(x), and pa2,b2
λ2

= 1
Za2,b2

(λ)
pλ2(x).

Let Φλ(x) = 1 − exp(−λx) denote the cumulative distribution function of the exponential
distribution. We have Za,b(λ) = Φb(λ)− Φa(λ) and

Fa,b(λ) = F(λ) + log(Φb(λ)− Φa(λ)) = − log λ + log(e−λa − e−λb). (88)
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If [a1, b1] �∈ [a2, b2] then DKL[pλ1 : qλ2 ] = +∞. Otherwise, [a1, b1] ∈ [a2, b2], and the exponential
family {pλ} is the truncated exponential family {qλ}. Using the computer algebra system Maxima
(https://maxima.sourceforge.io/ accessed on 15 March 2022), we find that

− Epλ
[x] =

(1 + λb)eλa − (1 + λa)eλb

λ(eλb − eλa)
= F′

a,b(λ). (89)

Thus we have:

DKL[p
a1,b1
λ1

: qa2,b2
λ2

] = BF2,F1(θ2 : θ1), (90)

= Fa2,b2(λ2)− Fa1,b1(λ1)− (λ2 − λ1)F′
a1,b1

(λ1),

= log
λ1

λ2
+ (λ2 − λ1) Epλ1

[x] + log
e−λ2a2 − e−λ2b2

e−λ1a1 − e−λ1b1
. (91)

When a1 = a2 = 0 and b1 = b2 = +∞, we recover the KLD between two exponential
distributions pλ1 and pλ2 :

DKL[pλ1 : pλ2 ] = BF(λ2 : λ1), (92)

= F(θ2)− F(θ1)− (θ2 − θ1)F′(θ1), (93)

=
λ2

λ1
− log

λ2

λ1
− 1 = DIS[λ2 : λ1]. (94)

Note that the KLD between two truncated exponential distributions with the same truncation
support X = [a, b] is

DKL[p
a,b
λ1

: pa,b
λ2
] = log

λ2

λ1
+ log

Φλ2(b)− Φλ2(a)
Φλ1(b)− Φλ1(a)

+ (λ2 − λ1)Epa,b
1
[x]. (95)

We also check Corollary 1:

DKL[p
a1,b1
λ1

: pa2,b2
λ2

] = DKL[p
a1,b1
λ1

: pa1,b1
λ2

] + log
Za2,b2(λ2)

Za1,b1(λ2)
, (96)

The next example shows how to compute the Kullback–Leibler divergence between
two truncated normal distributions:

Example 7. Let Na,b(m, s) denote a truncated normal distribution with support the open interval
(a, b) (a < b) and probability density function defined by:

pa,b
m,s(x) =

1
Za,b(m, s)

exp
(
− (x − m)2

2s2

)
, (97)

where Za,b(m, s) is related to the partition function [26] expressed using the cumulative distribution
function (CDF) Φm,s(x):

Za,b(m, s) =
√

2πs (Φm,s(b)− Φm,s(a)), (98)

with

Φm,s(x) =
1
2

(
1 + erf

(
x − m√

2s

))
, (99)

where erf(x) is the error function:

erf(x) :=
2√
π

∫ x

0
e−t2

dt. (100)
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Thus we have erf(x) = 2 Φ(
√

2x)− 1 where Φ(x) = Φ0,1(x).
The pdf can also be written as

pa,b
m,s(x) =

1
s

φ( x−m
s )

Φ( b−m
s )− Φ( a−m

s )
, (101)

where φ(x) denotes the standard normal pdf (φ(x) = p−∞,+∞
0,1 (x)):

φ(x) :=
1√
2π

exp
(
− x2

2

)
, (102)

and Φ(x) = Φ0,1(x) =
∫ x
−∞ φ(t)dt is the standard normal CDF. When a = −∞ and b = +∞,

we have Z−∞,∞(m, s) =
√

2π s since Φ(−∞) = 0 and Φ(+∞) = 1.
The density pa,b

m,s(x) belongs to an exponential family Ea,b with natural parameter θ =(
m
s2 ,− 1

2s2

)
, sufficient statistics t(x) = (x, x2), and log-normalizer:

Fa,b(θ) = − θ2
1

4θ2
+ log Za,b(θ) (103)

The natural parameter space is Θ = R×R−− where R−− = {x ∈ R : x < 0} denotes the set of
negative real numbers.

The log-normalizer can be expressed using the source parameters (m, s) (which are not the
mean and standard deviation when the support is truncated, hence the notation m and s):

Fa,b(m, s) =
m2

2s2 + log Za,b(m, s), (104)

=
m2

2s2 +
1
2

log 2πs2 + log(Φm,s(b)− Φm,s(a)). (105)

We shall use the fact that the gradient of the log-normalizer of any exponential family distribu-
tion amounts to the expectation of the sufficient statistics [1]:

∇Fa,b(θ) = Epa,b
m,s
[t(x)] = η. (106)

Parameter η is called the moment or expectation parameter [1].
The mean μ(m, s; a, b) = Epa,b

m,s
[x] = ∂

∂θ1
Fa,b(θ) and the variance σ2(m, s; a, b) = Epa,b

m,s
[x2]−

μ2 (with Epa,b
m,s
[x2] = ∂

∂θ2
Fa,b(θ)) of the truncated normal pa,b

m,s can be expressed using the following
formula [26,27] (page 25):

μ(m, s; a, b) = m − s
φ(β)− φ(α)

Φ(β)− Φ(α)
, (107)

σ2(m, s; a, b) = s2

(
1 − βφ(β)− αφ(α)

Φ(β)− Φ(α)
−
(

φ(β)− φ(α)

Φ(β)− Φ(α)

)2
)

, (108)

where α := a−m
s and β := b−m

s . Thus we have the following moment parameter η = (η1, η2) with

η1(m, s; a, b) = Epa,b
m,s
[x] = μ(m, s; a, b), (109)

η2(m, s; a, b) = Epa,b
m,s
[x2] = σ2(m, s; a, b) + μ2(m, s; a, b). (110)

Now consider two truncated normal distributions pa1,b1
m1,s1 and pa2,b2

m2,s2 with [a1, b1] ⊆ [a2, b2]

(otherwise, we have DKL[p
a1,b1
m1,s1 : pa2,b2

m2,s2 ] = +∞). Then the KLD between pa1,b1
m1,s1 and pa2,b2

m2,s2 is
equivalent to a duo Bregman divergence:
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DKL[p
a1,b1
m1,s1 : pa2,b2

m2,s2 ] = Fm2,s2(θ2)− Fm1,s1(θ1)− (θ2 − θ1)
�∇Fm1,s1(θ1),

=
m2

2s2
2
− m1

2s2
1
+ log

Za2,b2(m2, s2)

Za1,b1(m1, s1)
−
(

m2

s2
2
− m1

s2
1

)
η1(m1, s1; a1, b1)

−
(

1
2s2

1
− 1

2s2
2

)
η2(m1, s1; a1, b1). (111)

Note that Fm2,s2(θ) ≥ Fm1,s1(θ).
This formula is valid for (1) the KLD between two truncated normal distributions, or for (2) the

KLD between a truncated normal distribution and a (full support) normal distribution. Note that
the formula depends on the erf function used in function Φ. Furthermore, when a1 = a2 = −∞
and b1 = b2 = +∞, we recover (3) the KLD between two univariate normal distributions, since

log
Za2,b2

(m2,s2)

Za1,b1
(m1,s1)

= log σ2
σ1

= 1
2 log σ2

2
σ2

1
:

DKL[pm1,s1 : pm2,s2 ] =
1
2

(
log

s2
2

s2
1
+

σ2
1

σ2
2
+

(m2 − m1)
2

s2
2

− 1.

)
. (112)

Note that for full support normal distributions, we have μ(m, s;−∞;+∞) = m and
σ2(m, s;−∞;+∞) = s2.

The entropy of a truncated normal distribution (an exponential family [28]) is h[pa,b
m,s] =

−
∫ b

a pa,b
m,s(x) log pa,b

m,sdx = −F∗(η) = F(θ)− θ�η. We find that

h[pa,b
m,s] = log

(√
2πes (Φ(β)− Φ(α))

)
+

αφ(α)− βφ(β)

2(Φ(β)− Φ(α))
. (113)

When (a, b) = (−∞, ∞), we have Φ(β)− Φ(α) = 1 and αφ(α)− βφ(β) = 0 since β = −α,
φ(−x) = φ(x) (an even function), and limβ→+∞ βφ(β) = 0. Thus we recover the differential

entropy of a normal distribution: h[pμ,σ] = log
(√

2πeσ
)

.

5. Bhattacharyya Skewed Divergence Between Truncated Densities of an
Exponential Family

The Bhattacharyya α-skewed divergence [29,30] between two densities p(x) and q(x)
with respect to μ is defined for a skewing scalar parameter α ∈ (0, 1) as:

DBhat,α[p : q] := − log
∫
X

p(x)αq(x)1−α dμ(x), (114)

where X denotes the support of the distributions. The Bhattacharyya distance is

DBhat[p, q] = DBhat, 1
2
[p : q] = − log

∫
X

√
p(x)q(x)dμ(x). (115)

The Bhattacharyya distance is not a metric distance since it does not satisfy the triangle
inequality. The Bhattacharyya distance is related to the Hellinger distance [31] as follows:

DH [p, q] =

√
1
2

∫
X

(√
p(x)−

√
q(x)

)2
dμ(x) =

√
1 − exp(−DBhat[p, q]). (116)

The Hellinger distance is a metric distance.
Let Iα[p : q] :=

∫
X p(x)αq(x)1−α dμ(x) denote the skewed affinity coefficient so that

DBhat,α[p : q] = − log Iα[p : q]. Since Iα[p : q] = I1−α[q : p], we have DBhat,α[p : q] =
DBhat,1−α[q : p].
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Consider an exponential family E = {pθ} with log-normalizer F(θ). Then it is well-
known that the α-skewed Bhattacharyya divergence between two densities of an exponen-
tial family amounts to a skewed Jensen divergence [30] (originally called Jensen difference
in [32]):

DBhat,α[pθ1 : pθ2 ] = JF,α(θ1 : θ2), (117)

where the skewed Jensen divergence is defined by

JF,α(θ1 : θ2) = αF(θ1) + (1 − α)F(θ2)− F(αθ1 + (1 − α)θ2). (118)

The convexity of the log-normalizer F(θ) ensures that JF,α(θ1 : θ2) ≥ 0. The Jensen
divergence can be extended to full real α by rescaling it by 1

α(1−α)
, see [33].

Remark 1. The Bhattacharyya skewed divergence DBhat,α[p : q] appears naturally as the negative
of the log-normalizer of the exponential family induced by the exponential arc {rα(x) α ∈ (0, 1)}
linking two densities p and q with rα(x) ∝ p(x)αq(x)1−α. This arc is an exponential family of
order 1:

rα(x) = exp(α log p(x) + (1 − α) log q(x)− log Zα(p : q)), (119)

= exp
(

α log
p(x)
q(x)

− Fpq(α)

)
q(x). (120)

The sufficient statistic is t(x) = p(x)
q(x) , the natural parameter α ∈ (0, 1), and the log-normalizer

Fpq(α) = log Zα(p : q) = log
∫

p(x)αq(x)1−αdμ(x) = −DBhat,α[p : q]. This shows that
DBhat,α[p : q] is concave with respect to α since log-normalizers Fpq(α) are always convex. Grün-
wald called those exponential families the likelihood ratio exponential families [34].

Now, consider calculating DBhat,α[pθ1 : qθ2 ] where pθ1 ∈ E1 with E1 a truncated

exponential family of E2 and qθ2 ∈ E2 = {qθ}. We have qθ(x) = Z1(θ)
Z2(θ)

pθ(x), where Z1(θ)

and Z2(θ) are the partition functions of E1 and E2, respectively. Thus we have

Iα[pθ1 : qθ2 ] =

(
Z1(θ2)

Z2(θ2)

)1−α

Iα[pθ1 : pθ2 ], (121)

and the α-skewed Bhattacharyya divergence is

DBhat,α[pθ1 : qθ2 ] = DBhat,α[pθ1 : pθ2 ]− (1 − α)(F1(θ2)− F2(θ2)). (122)

Therefore we obtain

DBhat,α[pθ1 : qθ2 ] = JF1,α(θ1 : θ2)− (1 − α)(F1(θ2)− F2(θ2)), (123)

= αF1(θ1) + (1 − α)F2(θ2)− F1(αθ1 + (1 − α)θ2), (124)

=: JF1,F2,α(θ1 : θ2). (125)

We call JF1,F2,α(θ1 : θ2) the duo Jensen divergence. Since F2(θ) ≥ F1(θ), we check that

JF1,F2,α(θ1 : θ2) ≥ JF1,α(θ1 : θ2) ≥ 0. (126)

Figure 7 illustrates graphically the duo Jensen divergence JF1,F2,α(θ1 : θ2).
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θ1
θ2αθ1 + (1− α)θ2

F1(θ)
F2(θ)

JF1,F2,α(θ1 : θ2)
JF1,α(θ1, θ2)

Figure 7. The duo Jensen divergence JF1,F2,α(θ1 : θ2) is greater than the Jensen divergence JF1,α(θ1 : θ2)

for F2(θ) ≥ F1(θ).

Theorem 2. The α-skewed Bhattacharyya divergence for α ∈ (0, 1) between a truncated density of
E1 with log-normalizer F1(θ) and another density of an exponential family E2 with log-normalizer
F2(θ) amounts to a duo Jensen divergence:

DBhat,α[pθ1 : qθ2 ] = JF1,F2,α(θ1 : θ2), (127)

where JF1,F2,α(θ1 : θ2) is the duo skewed Jensen divergence induced by two strictly convex functions
F1(θ) and F2(θ) such that F2(θ) ≥ F1(θ):

JF1,F2,α(θ1 : θ2) = αF1(θ1) + (1 − α)F2(θ2)− F1(αθ1 + (1 − α)θ2). (128)

In [30], it is reported that

DKL[pθ1 : pθ2 ] = BF(θ2 : θ1), (129)

= lim
α→0

1
α

JF,α(θ2 : θ1) = lim
α→0

1
α

JF,1−α(θ1 : θ2), (130)

= lim
α→0

1
α

DBhat,α[pθ2 : pθ1 ] = lim
α→0

1
α

DBhat,1−α[pθ1 : pθ2 ]. (131)

Indeed, using the first-order Taylor expansion of

F(θ1 + α(θ2 − θ1)) ≈
α→0

F(θ1) + α(θ2 − θ1)
�∇F(θ1) (132)

when α → 0, we check that we have

1
α

JF,α(θ2 : θ1) :=
F(θ1) + α(F(θ2)− F(θ1))− F(θ1 + α(θ2 − θ1))

α
, (133)

Equation (132)
≈

α→0
������F(θ1) + α(F(θ2)− F(θ1))−������F(θ1)− α(θ2 − θ1)

�∇F(θ1)

α
, (134)

= F(θ2)− F(θ1)− (θ2 − θ1)
�∇F(θ1), (135)

=: BF(θ2 : θ1). (136)

Thus we have limα→0
1
α JF,α(θ2 : θ1) = BF(θ2 : θ1).

Moreover, we have

lim
α→0

1
α

DBhat,1−α[p : q] = DKL[p : q]. (137)
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Similarly, we can prove that

lim
α→1

1
1 − α

JF1,F2,α(θ1 : θ2) = BF2,F1(θ2 : θ1), (138)

which can be reinterpreted as

lim
α→1

1
1 − α

DBhat,α[pθ1 : qθ2 ] = DKL[pθ1 : qθ2 ]. (139)

6. Concluding Remarks

We considered the Kullback–Leibler divergence between two parametric densities
pθ ∈ E1 and qθ′ ∈ E2 belonging to truncated exponential families [7] E1 and E2, and we
showed that their KLD is equivalent to a duo Bregman divergence on swapped param-
eter order (Theorem 1). This result generalizes the study of Azoury and Warmuth [13].
The duo Bregman divergence can be rewritten as a duo Fenchel–Young divergence using
mixed natural/moment parameterizations of the exponential family densities (Definition 1).
This second result generalizes the approach taken in information geometry [15,35]. We
showed how to calculate the Kullback–Leibler divergence between two truncated normal
distributions as a duo Bregman divergence. More generally, we proved that the skewed
Bhattacharyya distance between two parametric densities of truncated exponential families
amounts to a duo Jensen divergence (Theorem 2). We showed asymptotically that scaled
duo Jensen divergences tend to duo Bregman divergences generalizing a result of [30,33].
This study of duo divergences induced by pair of generators was motivated by the for-
mula obtained for the Kullback–Leibler divergence between two densities of two different
exponential families originally reported in [23] (Equation (29)).

It is interesting to find applications of the duo Fenchel–Young, Bregman, and Jensen
divergences beyond the scope of calculating statistical distances between truncated ex-
ponential family densities. Note that in [36], the authors exhibit a relationship between
densities with nested supports and quasi-convex Bregman divergences. However, those
considered parametric densities are not exponential families since their supports depend
on the parameter. Recently, Khan and Swaroop [37] used this duo Fenchel–Young di-
vergence in machine learning for knowledge-adaptation priors in the so-called change
regularizer task.
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Abstract: In this work, we focus on a general family of measures of divergence for estimation and
testing with emphasis on conditional independence in cross tabulations. For this purpose, a restricted
minimum divergence estimator is used for the estimation of parameters under constraints and a
new double index (dual) divergence test statistic is introduced and thoroughly examined. The
associated asymptotic theory is provided and the advantages and practical implications are explored
via simulation studies.

Keywords: double index divergence test statistic; multivariate data analysis; conditional indepen-
dence; cross tabulations

1. Introduction

The concept of distance or divergence is known since at least the time of Pearson,
who, in 1900, considered the classical goodness-of-fit (gof) problem by considering the
distance between observed and expected frequencies. The problem for both discrete and dis-
cretized continuous distributions have been in the center of attention for the last 100+ years.
The classical set-up is the one considered by Pearson where a hypothesized m-dimensional
multinomial distribution, say Multi(N, p1, . . . , pm) is examined as being the underlying
distributional mechanism for producing a given sample of size N. The problem can be
extended to examine the homogeneity (in terms of the distributional mechanisms) among
two independent samples or the independence among two population characteristics. In all
such problems we are dealing with cross tabulations or crosstabs (or contingency tables).
Problems of such nature appear frequently in a great variety of fields including biosciences,
socio-economic and political sciences, actuarial science, finance, business, accounting,
and marketing. The need to establish for instance, whether the mechanisms producing
two phenomena are the same or not is vital for altering economic policies, preventing
socio-economic crises or enforcing the same economic or financial decisions to groups
with similar underlying mechanisms (e.g., retaining the insurance premium in case of
similarity or having different premiums in case of diversity). It is important to note that
divergence measures play a pivotal role also in statistical inference in continuous settings.
Indeed, for example, in [1] the authors investigate the multivariate normal case while in
a recent work [2], the modified skew-normal-Cauchy (MSNC) distribution is considered,
against normality.

Let us consider the general case of two m-dimensional multinomial distributions
for which each probability depends on an s-dimensional unknown parameter, say θ =
(θ1, . . . , θs)�. A general family of measures introduced by [3] is the dα

Φ family defined by

dα
Φ(p(θ), q(θ)) =

m

∑
i=1

qi(θ)
1+αΦ

(
pi(θ)

qi(θ)

)
; α > 0, Φ ∈ F∗ (1)
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where α is a positive indicator (index) value, p(θ) = (p1(θ), . . . , pm(θ))� and q(θ) =
(q1(θ), . . . , qm(θ))�, F∗ is a class of functions s.t. F∗ = {Φ(·) : Φ(x) strictly convex,
x ∈ R+, Φ(1) = Φ′(1) = 0, Φ′′(1) �= 0 and by convention, Φ(0/0) = 0 and 0Φ(p/0) =
limx→∞[Φ(x)/x]}.

Note that the well known Csiszar family of measures [4] is obtained for the special
case where the indicator is taken to be equal to 0 while the classical Kullback–Leibler (KL)
distance [5] is obtained if the indicator α is equal to 0 and at the same time the function
Φ(·) is taken to be Φ(x) ≡ ΦKL(x) = x log(x) or x log(x)− x + 1.

The function

Φλ(x) =
1

λ(λ + 1)

[
x(xλ − 1)− λ(x − 1)

]
∈ F∗, λ �= 0,−1

is associated with the Freeman–Tukey test when λ = −1/2, with the recommended Cressie
and Read (CR) power divergence [6] when λ = 2/3, with the Pearson’s chi-squared
divergence [7] when λ = 1 and with the classical KL distance when λ → 0.

Finally, the function

Φα(x) ≡ (λ + 1)Φλ(x)|λ=α =
1
α
[x(xα − 1)− α(x − 1)], α �= 0

produces the BHHJ or Φα-power divergence [8] given by

dα
Φα

(p(θ), q(θ)) =
m

∑
i=1

qα
i (θ){qi(θ)− pi(θ)}+

1
α

m

∑
i=1

pi(θ){pα
i (θ)− qα

i (θ)}.

Assume that the underlying true distribution of an m-dimensional multinomial ran-
dom variable with N experiments, is

X = (X1, . . . , Xm)
� ∼ Multi

(
N, p = (p1, . . . , pm)

�)
where p is, in general, unknown, belonging to the parametric family

P =
{

p(θ) = (p1(θ), . . . , pm(θ))
� : θ = (θ1, . . . , θs)

� ∈ Θ ⊂ R
s
}

. (2)

The sample estimate p̂ = ( p̂1, . . . , p̂m)� of p is easily obtained by p̂i = xi/N where xi
is the observed frequency for the i-th category (or class).

Divergence measures can be used for estimating purposes by minimizing the asso-
ciated measure. The classical estimating technique is the one where (1) we take α = 0
and Φ(x) = ΦKL(x). Then, the resulting KL minimization is equivalent to the classical
maximization of the likelihood producing the well-known Maximum Likelihood Estimator
(MLE, see ([9], Section 5.2)). In general, the minimization with respect to the parameter of
interest of the divergence measure, gives rise to the corresponding minimum divergence es-
timator (see, e.g., [6,10,11]). For the case where constraints are involved the case associated
with Csiszar’s family of measures was recently investigated [12]. For further references,
please refer to [13–21].

Consider the hypothesis

H0 : p = p(θ0) vs. H1 : p �= p(θ0), θ0 = (θ01, . . . , θ0s)
� ∈ Θ ⊂ R

s (3)

where p is the vector of the true but unknown probabilities of the underlying distribution
and p(θ0) the vector of the corresponding probabilities of the hypothesized distribution
which is unknown and falls within the family of P with the unknown parameters satisfying
in general, certain constraints, e.g., of the form c(θ) = 0, under which the estimation
of the parameter will be performed. The purpose of this work is twofold: having as a
reference the divergence measure given in (1), we will first propose a general double
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index divergence class of measures and make inference regarding the parameter estimators
involved. Then, we proceed with the hypothesis problem with the emphasis given to
the concept of conditional independence. The innovative idea proposed in this work is
the duality in choosing among the members of the general class of divergences, one for
estimating and one for testing purposes which may not be necessarily, the same. In that
sense, we propose a double index divergence test statistic offering the greatest possible
range of options, both for the strictly convex function Φ and the indicator value α > 0.

Thus, the estimation problem can be examined considering expression (1) using a
function Φ2 ∈ F∗ and an indicator α2 > 0:

dα2
Φ2

(
p, p(θ)

)
=

m

∑
i=1

p1+α2
i (θ)Φ2

(
pi

pi(θ)

)
(4)

the minimization of which with respect to the unknown parameter, will produce the
restricted minimum (Φ2, α2) divergence (rMD) estimator

θ̂
r
(Φ2,α2) = arg inf

θ∈Θ:c(θ)=0
dα2

Φ2
(p̂, p(θ)) (5)

for some constraints c(θ) = 0. Observe that the unknown vector of underlying probabilities
has been replaced by the vector of the corresponding sample frequencies p̂. Then, the testing
problem will be based on

dα1
Φ1

(
p̂, p(θ̂

r
(Φ2,α2))

)
=

m

∑
i=1

p1+α1
i (θ̂

r
(Φ2,α2))Φ1

(
p̂i

pi(θ̂
r
(Φ2,α2))

)
(6)

where Φ1(·) and α1 may be different from the corresponding quantities used for the
estimation problem in (4). Finally, the duality of the proposed methodology surfaces when
the testing problem is explored via the dual divergence test statistic formulated on the basis
of the double-α-double-Φ divergence given by

dα1
Φ1

(
p̂, p(θ̂

r
(Φ2,α2))

)
(7)

where Φ1, Φ2 ∈ F∗ and α1, α2 > 0.
The remaining parts of this work are: Section 2 presents the formal definition and the

asymptotic properties of the rMD estimator (rMDE). Section 3 deals with the general testing
problem with the use of rMDE. The associated set up for the case of three-way contingency
tables is developed in Section 4 with a simulation section emphasizing on the conditional
independence of three random variables. We close this work with some conclusions.

2. Restricted Minimum (Φ, α)-Power Divergence Estimator

In what follows, we will provide the formal definition and the expansion of the rMD
estimator and prove its asymptotic normality. The assumptions required for establishing
the results of this section for the rMD estimator under constraints, are provided below:

Assumption 1.

(A0) f1(θ), . . . , fν(θ) are the constrained functions on the s-dimensional parameter θ, fk(θ) = 0,
k = 1, . . . , ν and ν < s < m − 1;

(A1) There exists a value θ0 ∈ Θ, such that X = (X1, . . . , Xm)� ∼ Multi(N, p(θ0));

(A2) Each constraint function fk(θ) has continuous second partial derivatives;

(A3) The ν × s and m × s matrices

Q(θ0) =

(
∂ fk(θ0)

∂θj

)
k=1,...,ν
j=1,...,s

and J(θ0) =

(
∂pi(θ0)

∂θj

)
i=1,...,m
j=1,...,s
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are of full rank;

(A4) p(θ) has continuous second partial derivatives in a neighbourhood of θ0;

(A5) θ0 satisfies the Birch regularity conditions (see Appendix A and [22]).

Definition 1. Under assumptions (A0)–(A3) the rMD estimator of θ0 is any vector in Θ,
such that

θ̂
r
(Φ,α) = arg inf{θ∈Θ⊂Rs : fk(θ)=0,k=1,...,ν}dα

Φ(p̂, p(θ)). (8)

In order to derive the decomposition of θ̂
r
(Φ,α) the Implicit Function Theorem (IFT) is

exploited according to which if a function has an invertible derivative at a point then itself
is invertible in a neighbourhood of this point but it cannot be expressed in closed form [23].

Theorem 1. Under Assumptions (A0)–(A5), the rMD estimator of θ0 is such that

θ̂
r
(Φ,α) = θ0 + H(θ0)

(
B(θ0)

�B(θ0)
)−1

B(θ0)
�diag(p(θ0)

α/2)×

× diag(p(θ0)
−1/2)(p̂ − p(θ0)) + o(‖p̂ − p(θ0)‖) (9)

where θ̂
r
(Φ,α) is unique in a neighbourhood of θ0 and

H(θ0) = I −
(

B(θ0)
�B(θ0)

)−1
Q(θ0)

�×

×
(

Q(θ0)
(

B(θ0)
�B(θ0)

)−1
Q(θ0)

�
)−1

Q(θ0),

B(θ0) = diag(p(θ0)
α/2)A(θ0), while A(θ0) = diag(p(θ0)

−1/2)J(θ0).

Proof. Let V be a neighbourhood of θ0 on which p(·) : Θ → P ⊂ lm has continuous second
partial derivatives where lm is the interior of the unit cube of dimension m. Let

F = (F1, . . . , Fν+s) : lm ×R
ν+s → R

ν+s

with

Fj(p, λ, θ) =

⎧⎪⎨⎪⎩
f j(θ), j = 1, . . . , ν

∂dα
Φ(p, p(θ))

∂θj−ν
+

ν

∑
k=1

λk
∂ fk(θ)

∂θj−ν
, j = ν + 1, . . . , ν + s.

where (p, λ, θ) = (p1, . . . , pm, λ1, . . . , λν, θ1, . . . , θs) and λk, k = 1, . . . , ν are the coefficients
of the constraints.

It holds that

Fj(p1(θ0), . . . , pm(θ0), 0, . . . , 0, θ01, . . . , θ0s) = 0, j = 1, . . . , ν + s

and by denoting γ = (γ1, . . . , γν+s) = (λ1, . . . , λν, θ1, . . . , θs), the matrix

∂F

∂γ
=

(
∂Fj

∂γk

)
j=1,...,ν+s
k=1,...,ν+s

=

(
0ν×ν Q(θ0)

Q(θ0)
� Φ

′′
(1)B(θ)�B(θ)

)

is nonsingular at (p, λ, θ) = (p(θ0), γ0) = (p1(θ0), . . . , pm(θ0), 0, . . . , 0, θ01, . . . , θ0s) with
γ0 = (0ν, θ0).

Using the IFT a neighbourhood U of (p(θ0), γ0) exists, such that ∂F/∂γ is nonsin-
gular and a unique differentiable function γ∗ = (λ∗, θ∗) : A ⊂ lm → Rν+s, such that
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p(θ0) ∈ A and {(p, γ) ∈ U : F(p, γ) = 0} = {(p, γ∗(p)) : p ∈ A} and γ∗(p(θ0)) =
(λ∗(p(θ0)), θ∗(p(θ0))) = γ0. By the chain rule and for p = p(θ0) we obtain

∂F

∂p(θ0)
+

∂F

∂γ0

∂γ0
∂p(θ0)

= 0.

Then
∂θ0

∂p(θ0)
=

(
E(θ0)
W(θ0)

)
where

E(θ0) = Φ
′′
(1)

(
Q(θ0)

(
B(θ0)

�B(θ0)
)−1

Q(θ0)
�
)−1

×

× Q(θ0)
(

B(θ0)
�B(θ0)

)−1
B(θ0)

�diag(p(θ0)
α/2)diag(p(θ0)

−1/2)

and
W(θ0) = H(θ0)

(
B(θ0)

�B(θ0)
)−1

B(θ0)
�diag(p(θ0)

α/2)diag(p(θ0)
−1/2) (10)

since
∂F

∂p(θ0)
=

(
0ν×m

−Φ
′′
(1)B(θ0)

�diag(p(θ0)
α/2)diag(p(θ0)

−1/2)

)
.

Expanding θ∗(p) around p(θ0) and using (10) gives, for θ∗(p(θ0)) = θ0,

θ∗(p) = θ0 + H(θ0)
(

B(θ0)
�B(θ0)

)−1
B(θ0)

�diag(p(θ0)
α/2)×

× diag(p(θ0)
−1/2)(p̂ − p(θ0)) + o(‖p̂ − p(θ0)‖).

Since p̂
p−→ p(θ0) eventually p̂ ∈ A and then γ∗(p̂) = (λ∗(p̂), θ∗(p̂)) is the unique solution

of the system
fk(θ) = 0, k = 1, . . . , ν

∂dα
Φ(p, p(θ))

∂θj
+

ν

∑
k=1

λk
∂ fk(θ)

∂θj
= 0, j = 1, . . . , s

and (p̂, γ∗(p̂)) ∈ U. Hence, θ∗(p̂) coincides with rMDE θ̂
r
(Φ,α) given in (9).

The theorem below establishes the asymptotic normality of rMDE which is a straight-
forward extension of Theorem 2.4 [11] since by the Central Limit Theorem we know that

√
N(p̂ − p(θ0))

L−−−→
N→∞

N(0, Σp(θ0)
) (11)

with the asymptotic variance-covariance matrix Σp(θ0)
given by diag(p(θ0))−p(θ0)p(θ0)

�.

Theorem 2. Under Assumptions (A0)–(A5), by (11) and for W(θ0) given in (10), the asymptotic
distribution of rMDE is the s-dimensional Normal distribution given by

√
N(θ̂

r
(Φ,α) − θ0)

L−−−→
N→∞

Ns(0, W(θ0)Σp(θ0)
W(θ0)

�).

Remark 1. The proposed class of estimators forms a family of estimators that goes beyond the
indicator α since it is easy to see that estimators obtained for the Csiszar’s ϕ family are given for
α = 0 in (1) and also the standard equiprobable model.
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3. Statistical Inference

In this section, we introduce the double index divergence test statistic

Tα1
Φ1

(
θ̂

r
(Φ2,α2)

)
=

2N
Φ′′

1 (1)
dα1

Φ1

(
p̂, p(θ̂

r
(Φ2,α2))

)
(12)

with Φ1, Φ2 ∈ F∗ and α1, α2 > 0 and make the additional assumptions by which we focus
on the Csiszar’s family of measures for testing purposes (the notation ϕ is used for clarity)
and the equiprobable model:

Assumption 2.

(A6) pi = 1/m, ∀i

(A7) Φ1 = ϕ, α1 = 0.

The Theorem below provides the asymptotic distribution of (12) under Assumptions
(A0)–(A7). Assumption (A7) will be later relaxed and a general asymptotic result will be
presented in the next subsection. A discussion about Assumption A6 will also be made in
the sequel.

Theorem 3. Under Assumptions (A0)–(A7) and for the hypothesis in (3) we have

T0
ϕ

(
θ̂

r
(Φ2,α2)

)
=

2N
ϕ′′(1)

dϕ

(
p̂, p(θ̂r

(Φ2,α2))
)

L−−−→
N→∞

χ2
m−1−s−ν

with θ̂
r
(Φ2,α2) given in (9).

Proof. It is straightforward that

p(θ̂
r
(Φ2,α2)) = p(θ0) + J(θ0)(θ̂

r
(Φ2,α2) − θ0) + o(‖θ̂

r
(Φ2,α2) − θ0‖)

which by Theorem 2, expression (11), and for M(θ0) = J(θ0)W(θ0) reduces to

p(θ̂
r
(Φ2,α2))− p(θ0) = M(θ0)(p̂ − p(θ0)) + op(N−1/2)

which implies that

√
N(p(θ̂

r
(Φ2,α2))− p(θ0))

L−−−→
N→∞

N(0, M(θ0)Σp(θ0)
M(θ0)

�). (13)

Combining the above we obtain

√
N

(
p̂ − p(θ0)

p(θ̂
r
(Φ2,α2))− p(θ0)

)
L−−−→

N→∞
N
(

0,
(

I
M(θ0)

)
Σp(θ0)

(I, M(θ0)
�)
)

and √
N(p̂ − p(θ̂

r
(Φ2,α2)))

L−−−→
N→∞

N(0, L(θ0))

where

L(θ0) = Σp(θ0)
− M(θ0)Σp(θ0)

− Σp(θ0)
M(θ0)

� + M(θ0)Σp(θ0)
M(θ0)

�. (14)

The expansion of dϕ(p, q) around (p(θ0), p(θ0)) yields

T0
ϕ

(
θ̂

r
(Φ2,α2)

)
=

m

∑
i=1

N
pi(θ0)

(
p̂i − pi(θ̂

r
(Φ2,α2))

)2
+ op(1) = X�X + op(1)
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where
X =

√
Ndiag(p(θ0)

−1/2)(p̂ − p(θ̂
r
(Φ2,α2)))

L−−−→
N→∞

N(0, T(θ0)).

Then, under A7, T(θ0) (see (14)) is a projection matrix of rank m − 1 − s + ν since the
trace of the matrices A(θ0)

(
A(θ0)

�A(θ0)
)−1

A(θ0)
� and A(θ0)

(
A(θ0)

�A(θ0)
)−1

Q(θ0)
�(

Q(θ0)(A(θ0)
�A(θ0)

)−1
Q(θ0)

�)−1 Q(θ0)
(
A(θ0)

�A(θ0)
)−1

A(θ0)
� is equal to s and ν,

respectively.
Then, the result follows from the fact (see ([24], p. 57)) that X�X has a chi-squared

distribution with degrees of freedom equal to the rank of the variance-covariance matrix of
the random vector X as long as it is a projection matrix.

Remark 2. Relaxation of Assumption (A6): Arguing as in [11], when the true model is not the
equiprobable the result of Theorem 3 holds true as long as α2 = 0 and approximately true when
α2 → 0.

Asymptotic Theory of the Dual Divergence Test Statistic

Having established the two main results of the work, namely the decomposition of
the proposed restricted estimator (Theorem 1) together with its asymptotic properties
(Theorem 2), as well as the asymptotic distribution of the associated test statistic under
the class of Csiszar ϕ-functions (Theorem 3) we continue below extended in a natural way
the results of [11] for the dual divergence test statistic. The extensions presented in this
section are considered vital due to their practical impication on cross tabulations discussed
in Section 4. The proofs will be omitted since both results (Theorems 4 and 5) follow along
the lines of previous results (see Theorems 3.4 and 3.9 of [11]). In what follows we adopt
the following notation:

b = m−α1 , pα1
(1) = min

i∈{1,...,m}
pi(θ0)

α1 , pα1
(m)

= max
i∈{1,...,m}

pi(θ0)
α1 , k = m − 1 − s + ν.

Theorem 4. Under Assumptions (A0)–(A7) we have

Tα1
Φ1
(θ̂

r
(Φ2,α2))

L−−−→
N→∞

bχ2
k .

Remark 3. Consider the case where Assumption (A6) is relaxed. Then, the asymptotic distribution
of the test statistic Tα1

Φ1
(θ̂

r
(Φ2,α2)) is estimated to be approximately bχ2

k where

b =
pα1
(1) + pα1

(m)

2
(15)

as long as α2 = 0 or α2 → 0. For further elaboration of this remark we refer to [11].

Remark 4. Observe that if α1 → 0 then b → 1 and the asymptotic distribution becomes χ2
k, while

for α1 away from 0 the distribution is proportional to χ2
k with proportionality index b �= 1. However,

for not equiprobable models these statements hold true as long as α2 is close to zero.

Consider now the hypothesis with contiguous alternatives [25,26]

H0 : p = p(θ0) vs. H1,N : p = p(θ0) +
d√
N

(16)

where d is an m-dimensional vector of known real values with components di satisfying
the assumption ∑m

i=1 di = 0.
Observe that as N tends to infinity, the local contiguous alternative converges to the

null hypothesis at the rate O(N1/2). Alternatives, such as those in (16), are known as Pitman
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transition alternatives or Pitman (local) alternatives or local contiguous alternatives to the null
hypothesis H0 [25].

Theorem 5. Under Assumptions (A0)–(A7) and for the hypothesis (16) we have

Tα1
Φ1
(θ̂

r
(Φ2,α2))

L−−−→
N→∞

bχ2
k(ξ

�ξ)

which represents a non-central chi-squared distribution with k degrees of freedom and non-centrality
parameter ξ�ξ for which ξ = diag(p(θ0)

−1/2)(I − J(θ0)W(θ0))d.

Remark 5. Observe that under Assumption (A6) (pi = 1/m) the asymptotic distribution is
independent of Φ, α1 and α2. As a result the associated power of the test is Pr(χ2

k(ξ
�ξ) ≥ χ2

k,a)
where a the 100(1 − a)% percentile of the distribution. If assumption A6 is relaxed then the

distribution is approximately non-central chi-squared with proportionality index b =
p

α1
(1)+p

α1
(m)

2 .

4. Cross Tabulations and Dual Divergence Test Statistic

In this section, we try to take advantage of the methodology proposed earlier for
the analysis of cross tabulations. In particular we focus on the case of three categorical
variables, say X, Y, and Z with corresponding, I, J, and K. Then, assume that the probability
mass of a realization of a randomly selected subject is denoted by pijk(θ) = Pr(X = i, Y =
j, Z = k) > 0, where here and in what follows i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , K unless
otherwise stated. The associated probability vector is given as p(θ) = {pijk(θ)} where

pijk(θ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θijk, (i, j, k) �= (I, J, K)

1 −
I

∑
i=1

J

∑
j=1

K

∑
k=1

(i,j,k) �=(I,J,K)

θijk, (i, j, k) = (I, J, K)

and the parameter space as Θ = {θijk, (i, j, k) �= (I, J, K)}. The sample estimator of pijk(θ)
is p̂ijk = nijk/N, where nijk is the frequency of the corresponding (i, j, k) cell.

In this set up the dual divergence test statistics is given as

Tα1
Φ1

(
θ̂

r
(Φ2,α2)

)
=

2N
Φ′′

1 (1)

I

∑
i=1

J

∑
j=1

K

∑
k=1

pijk(θ̂
r
(Φ2,α2))

1+αΦ1

(
p̂ijk

pijk(θ̂
r
(Φ2,α2))

)
(17)

where p̂ijk as above and the rMD estimator as

θ̂
r
(Φ2,α2) = arg inf

{θ∈Θ⊂Rs : fk(θ)=0,k=1,...,ν}

I

∑
i=1

J

∑
j=1

K

∑
k=1

pijk(θ)
1+α2 Φ2

(
p̂ijk

pijk(θ)

)
. (18)

For α1, α2 = 0 and special cases of the functions Φ1 and Φ2, classical restricted
minimum divergence estimators and associated test statistics can be derived from (18)
and (17), respectively. For example, for α1, α2 = 0, and Φ1, Φ2 = ΦKL the likelihood ratio
test statistic with the restricted maximum likelihood estimator (G2(θ̂

r
)) can be derived,

while for Φ1, Φ2 = Φλ and λ = 1 we obtain the chi-squared test statistic with the restricted
minimum chi-squared estimator (X2(θ̂

r
X2)). For Φ1, Φ2 = Φλ and λ = 2/3 the dual

divergence test statistic reduces to the power divergence test statistic with the restricted
minimum power divergence estimator (CR(θ̂r

CR)) whereas for λ = −1/2 reduces to
the Freeman–Tukey test statistic with the restricted minimum Freeman–Tukey estimator
(FT(θ̂r

FT)).
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The hypothesis of conditional independence between X, Y, and Z is given for any
triplet i, j, k by

H0 : pijk(θ0) =
pi∗k(θ0)p∗jk(θ0)

p∗∗k(θ0)
, θ0 ∈ Θ unknown

where

pi∗k(θ0) =
J

∑
j=1

pijk(θ0), p∗jk(θ0) =
I

∑
i=1

pijk(θ0) and p∗∗k(θ0) =
I

∑
i=1

J

∑
j=1

pijk(θ0).

Under the (I − 1)(J − 1)K constrained functions

fijk(θ) = p11k(θ)pijk(θ)− p1jk(θ)pi1k(θ) = 0

i = 2, . . . , I, j = 2, . . . , J, k = 1, . . . , K the above H0 hypothesis with θ0 unknown, becomes

H0 : p = p(θ0), for θ0 ∈ Θ0,

where Θ0 = {θ ∈ Θ : fijk(θ) = 0, i = 2, . . . , I, j = 2, . . . , J, k = 1, . . . , K}.

Remark 6. For practical purposes, the choice of the values of the indices is motivated by the work
of [8] where, in an attempt to achieve a compromise between robustness and efficiency of estimators,
they recommended the use of small values in the (0, 1) region. In the following subsection, our
analysis will reconfirm their findings since as it will be seen, values of both indices close to (0) (than
to one (1)) will be found to be associated with a good performance not only in terms of estimation
but also in terms of goodness of fit as it will be reflected in the size and the power of the test.

Simulation Study

In this simulation study, we use the rMD estimator and the associated dual divergence
test statistic for the analysis of cross tabulations. Specifically, we are going to compare in
terms of size and power classical tests with those that can be derived through the proposed
methodology, for the problem of conditional independence of three random variables in
contingency tables. We test the hypothesis of conditional independence for a 2 × 2 × 2
contingency table, thus in this case we have m = 8 probabilities of the multinomial model,
s = 7 unknown parameters to estimate and two constraint functions (ν = 2) which are
given by

f221(θ) = θ111θ221 − θ121θ211 and f222(θ) = θ112

(
1 −

2

∑
i=1

2

∑
j=1

2

∑
k=1

(i,j,k) �=(2,2,2)

θijk

)
− θ122θ212.

For a better understanding of the behaviour of the dual divergence test statistic given
in (17) we compare it with the four classical tests-of-fit mentioned earlier in Section 4,
namely with the G2(θ̂

r
), X2(θ̂

r
X2), CR(θ̂r

CR) and FT(θ̂r
FT). The proposed test Tα1

Φ1

(
θ̂

r
(Φ2,α2)

)
is applied for Φ1 = Φα1 , Φ2 = Φα2 and six different values of α1 and α2, α1, α2 = 10−7, 0.01,
0.05, 0.10, 0.50, and 1.50. Note that, the critical values used in this simulation study, are
the asymptotic critical values based on the asymptotic distribution bχ2

2 with b as in (15) for
the double index family of test statistics, and the χ2

2 for the classical test statistics. For the
analysis we used 100,000 simulations and sample sizes equal to n = 20, 25 (small sample
sizes) and n = 40, 45 (moderate sample sizes).
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In this study, we have used the model previously considered by [27] given by

p111 = π111 − π111w p211 = π211 + π222w − π111w

p112 = π112 + π111w − π222w p212 = π212 + π111w − π222w

p121 = π121 + π222w p221 = π221 + π222w − π111w

p122 = π122 + π111w p222 = π222 − π222w

where 0 ≤ w < 1 and πijk = pi∗∗ × p∗j∗ × p∗∗k i, j, k = 1, 2 with

π111 = 0.036254 π112 = 0.164994 π121 = 0.092809 π122 = 0.133645

π211 = 0.092809 π212 = 0.133645 π221 = 0.237591 π222 = 0.108253.

For w = 0 we take the model under the null hypothesis of conditional independence
while for values w �= 0 we take the models under the alternative hypotheses. We considered
the following values of w = 0.00, 0.30, 0.60, and 0.90. Note that the larger the value of w the
more we deviate from the null model. For the simulation study, we used the R software [28],
while for the constrained optimization the auglag function from the nloptr package [29].

From Table 1, we can observe that in terms of size the performance of the Tα1
Φ1
(θ̂

r
(Φ2,α2))

is adequate for values of α1, α2 ≤ 0.5 both for small and moderate sample sizes. In addition,
we can see that for α1 ≤ 0.10, Tα1

Φ1
(θ̂

r
(Φ2,α2)) appears to be liberal while for α1 ≥ 0.5 appears

to be conservative. We also note that the size becomes smaller as α1 and α2 increase with
α1 ≥ α2. Table 2 provides the size of the classical tests-of-fit from where we can observe
that CR(θ̂r

CR) has the best performance among all competing tests for every sample size.
In contrast, FT(θ̂r

FT) has the worst performance among all competing tests and appears to
be very liberal. Furthermore, X2(θ̂

r
X2) appears to be conservative while G2(θ̂

r
) appears to

be liberal. Note that for α1 ∈ [0.01, 0.5] and α2 ≤ 0.10, Tα1
Φ1
(θ̂

r
(Φ2,α2)) behaves better than the

G2(θ̂
r
) test statistic and its performance is quite close to the performance of the X2(θ̂

r
X2).

Table 1. Size (w = 0.00) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45. Sizes that satisfy Dale’s criterion are presented in bold.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 8.256 8.257 8.260 8.263 9.216 13.856 7.863 7.865 7.878 7.920 8.927 13.192
0.01 8.207 8.206 8.209 8.224 9.224 13.623 7.753 7.754 7.763 7.817 8.797 12.930
0.05 7.896 7.849 7.879 7.886 8.719 12.916 7.340 7.334 7.327 7.350 8.313 12.277
0.10 7.403 7.404 7.378 7.356 8.046 11.994 6.965 6.959 6.940 6.934 7.675 11.364
0.50 3.873 3.850 3.769 3.612 3.023 4.050 3.857 3.819 3.722 3.604 3.191 4.304
1.50 0.920 0.893 0.807 0.758 0.509 0.202 1.046 1.019 0.948 0.885 0.602 0.203

n = 40 n = 45

10−7 7.016 7.016 7.027 7.055 7.887 11.362 6.858 6.858 6.870 6.908 7.732 11.099
0.01 6.933 6.933 6.940 6.957 7.778 11.183 6.760 6.760 6.770 6.805 7.601 10.941
0.05 6.590 6.589 6.580 6.593 7.342 10.505 6.427 6.422 6.415 6.426 7.153 10.340
0.10 6.246 6.239 6.228 6.222 6.794 9.758 6.082 6.070 6.053 6.043 6.612 9.586
0.50 3.854 3.832 3.762 3.661 3.367 4.362 3.813 3.789 3.716 3.635 3.331 4.269
1.50 1.172 1.160 1.115 1.066 0.760 0.383 1.183 1.170 1.119 1.068 0.773 0.437

In order to examine the closeness of the estimated (true) size to the nominal size
α = 0.05 we consider the criterion given by Dale [30]. The criterion involves the following
inequality

|logit(1 − α̂n)− logit(1 − α)| ≤ d (19)
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where logit(p) = log(p/(1 − p)) and α̂n is the estimated (true) size. The estimated (true)
size is considered to be close to the nominal size if (19) is satisfied with d = 0.35. Note that
in this situation the estimated (true) size is close to the nominal one if α̂n ∈ [0.0357, 0.0695]
and is presented in Tables 1 and 2 in bold. This criterion has been used previously among
others by [27,31].

Regarding the proposed test we can see that for small sample sizes the estimated (true)
size is close to the nominal for α1 ∈ [0.10, 0.50] and α2 ≤ 0.10 while for moderate sample
sizes for α1 ∈ [10−7, 0.50] and α2 ≤ 0.10. With reference to the classical tests-of-fit we can
observe that the size of the CR(θ̂r

CR) is close to the nominal for every sample size whereas
the size of G2(θ̂

r
) and X2(θ̂

r
X2) is close only for moderate sample sizes. Finally, we note

that the estimated (true) size of FT(θ̂r
FT) fails to be close to the nominal both for small and

moderate sample sizes.
In Tables 3–5, we provide the results regarding the power of the proposed family of

test statistics for the three alternatives and sample sizes n = 20, 25, 40, 45, while Table 2
provides the results regarding the power of the classical tests-of-fit. The performance tends
to be better as we deviate from the null model and as the sample size increases both for the
classical and the proposed tests.

Table 2. Size (w = 0.00) and power (w = 0.30, 0.60, 0.90) calculations (%) for the classical tests-of-fit.
Sizes that satisfy Dale’s criterion are presented in bold.

Sample size FT G2 CR X2 FT G2 CR X2

w = 0.00 w = 0.30

n = 20 14.715 8.261 4.219 3.140 18.366 9.072 4.200 2.966
n = 25 13.664 7.865 4.333 3.477 19.674 9.846 4.783 3.646
n = 40 11.154 7.016 4.722 4.059 21.920 12.192 6.935 5.548
n = 45 10.787 6.858 4.703 4.082 22.467 12.992 7.471 6.081

w = 0.40 w = 0.45

n = 20 29.707 14.936 7.096 4.910 47.859 26.721 13.789 9.704
n = 25 35.768 18.966 9.469 7.118 62.810 38.023 20.147 15.296
n = 40 48.366 31.513 18.780 15.030 85.773 69.599 47.644 39.481
n = 45 50.821 35.381 22.367 18.217 89.108 76.685 57.000 48.451

Table 3. Power (w = 0.30) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 9.073 9.072 9.071 9.076 9.993 15.062 9.846 9.846 9.868 9.895 10.924 15.729
0.01 8.990 8.989 8.988 9.006 9.948 14.724 9.630 9.630 9.651 9.727 10.712 15.343
0.05 8.350 8.278 8.340 8.357 9.231 13.819 9.033 9.008 8.990 9.022 9.876 14.332
0.10 7.694 7.696 7.626 7.616 8.273 12.656 8.225 8.216 8.194 8.188 8.890 13.111
0.50 3.751 3.717 3.607 3.418 2.889 4.199 3.797 3.761 3.656 3.581 3.252 4.620
1.50 0.793 0.764 0.676 0.630 0.415 0.163 0.820 0.810 0.756 0.718 0.479 0.158

n = 40 n = 45

10−7 12.192 12.193 12.207 12.231 13.142 17.775 12.992 12.992 13.003 13.052 14.014 18.490
0.01 11.935 11.934 11.942 11.979 12.853 17.387 12.724 12.724 12.730 12.764 13.721 18.148
0.05 11.075 11.075 11.069 11.074 11.844 16.046 11.799 11.786 11.760 11.768 12.628 16.815
0.10 10.072 10.060 10.039 10.022 10.565 14.549 10.747 10.729 10.688 10.669 11.218 15.183
0.50 4.863 4.842 4.743 4.648 4.342 5.815 5.214 5.179 5.078 4.977 4.648 6.116
1.50 0.979 0.970 0.928 0.890 0.662 0.379 1.032 1.019 0.978 0.928 0.693 0.412
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Table 4. Power (w = 0.60) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 14.928 14.937 14.932 14.944 16.186 22.900 18.965 18.964 19.004 19.042 20.607 27.684
0.01 14.807 14.813 14.808 14.833 16.117 22.486 18.565 18.564 18.598 18.702 20.235 27.069
0.05 13.711 13.583 13.726 13.735 14.939 21.143 17.436 17.383 17.360 17.422 18.733 25.365
0.10 12.612 12.619 12.529 12.525 13.217 19.545 15.794 15.767 15.743 15.726 16.869 23.368
0.50 6.088 5.994 5.811 5.416 4.553 6.403 6.879 6.821 6.656 6.473 5.912 8.458
1.50 1.118 1.077 0.944 0.889 0.553 0.215 1.275 1.240 1.152 1.081 0.729 0.260

n = 40 n = 45

10−7 31.513 31.518 31.533 31.608 33.469 40.799 35.381 35.381 35.404 35.465 37.411 44.556
0.01 30.904 30.903 30.925 30.999 32.868 40.221 34.848 34.845 34.863 34.941 36.744 43.942
0.05 28.949 28.946 28.938 28.956 30.509 37.756 32.727 32.716 32.697 32.715 34.310 41.510
0.10 26.504 26.485 26.434 26.398 27.631 34.747 30.146 30.110 30.051 30.014 31.289 38.456
0.50 11.949 11.867 11.598 11.409 10.830 14.703 14.052 13.966 13.632 13.321 12.731 16.901
1.50 1.797 1.761 1.692 1.578 1.142 0.716 1.973 1.945 1.870 1.776 1.295 0.838

Table 5. Power (w = 0.90) calculations (%) of the Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic for sample sizes n =

20, 25, 40, 45.

α2

α1 10−7 0.01 0.05 0.10 0.50 1.50 10−7 0.01 0.05 0.10 0.50 1.50

n = 20 n = 25

10−7 26.712 26.710 26.707 26.711 28.495 37.924 38.017 38.016 38.132 38.191 40.982 50.954
0.01 26.589 26.586 26.585 26.613 28.718 37.421 37.365 37.364 37.456 37.645 40.482 50.206
0.05 25.437 25.267 25.531 25.502 27.170 35.979 35.674 35.559 35.526 35.643 38.260 48.187
0.10 24.287 24.284 24.232 24.172 24.868 33.946 33.014 32.939 32.867 32.854 35.184 45.569
0.50 12.003 11.780 11.424 10.772 8.807 11.665 14.353 14.226 13.870 13.560 12.312 16.886
1.50 1.731 1.662 1.489 1.422 0.904 0.298 2.268 2.226 2.026 1.916 1.387 0.506

n = 40 n = 45

10−7 69.599 69.605 69.637 69.755 72.196 79.363 76.685 76.685 76.731 76.805 78.802 84.683
0.01 68.923 68.923 68.954 69.049 71.518 79.003 76.177 76.173 76.192 76.264 78.143 84.344
0.05 66.310 66.309 66.306 66.365 68.576 77.069 73.760 73.745 73.732 73.766 75.748 82.751
0.10 62.500 62.455 62.372 62.343 64.660 74.161 70.295 70.264 70.144 70.131 72.172 80.319
0.50 30.094 29.904 29.349 28.848 27.895 36.902 36.612 36.465 35.792 35.073 34.056 43.732
1.50 3.748 3.678 3.472 3.210 2.269 1.562 4.349 4.274 4.017 3.747 2.665 1.927

As general comments regarding the behaviour of the proposed and the classical tests-
of-fit in terms of power we state that the best results for the Tα1

Φ1
(θ̂

r
(Φ2,α2)) are obtained

for small values of α1 in the range (0, 0.1] and large values of α2 with α1 ≤ α2. Note
that although in terms of power results become better as α2 increases in terms of size
these are adequate only for α2 ≤ 0.5. In addition, we can observe that the performance
of Tα1

Φ1
(θ̂

r
(Φ2,α2)) is better than the CR(θ̂r

CR) and X2(θ̂
r
X2) for every alternative and every

sample size for α1 ≤ 0.1 and α2 ≤ 0.5 and slightly better than G2(θ̂
r
) for small values of

α1 and large values of α2, for example for α1 = 0.01 and α2 = 0.50. Furthermore, we can
observe that for α1 = 0.1 and α2 ≤ 0.1 the size of the test is better than the size of the
G2(θ̂

r
) and slightly worst form the size of the CR(θ̂r

CR) and X2(θ̂
r
X2) test statistics while

its power is quite better than the power of the CR(θ̂r
CR) and X2(θ̂

r
X2) and slightly worst

than the G2(θ̂
r
). Additionally, we can see that as α1 and α2 tend to 0 the behaviour of the

Tα1
Φ1
(θ̂

r
(Φ2,α2)) test statistic coincides with the G2(θ̂

r
) test both in terms of size and power as

it was expected.
In order to attain a better insight about the behaviour of the test statistics, we apply

Dale’s criterion, not only for the nominal size α = 0.05, but also for a range of nominal sizes
that are of interest. Based on the previous analysis, beside the classical tests, we will focus
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our interest on the T0.05
Φ1

(θ̂
r
(Φ2,0.05)), T0.10

Φ1
(θ̂

r
(Φ2,0.10)), and T0.20

Φ1
(θ̂

r
(Φ2,0.20)). The following

simplified notation is used in every Figure, FT ≡ FT(θ̂r
FT), ML ≡ G2(θ̂

r
), CR ≡ CR(θ̂r

CR),
Pe≡ X2(θ̂

r
X2), T1≡ T0.05

Φ1
(θ̂

r
(Φ2,0.05)), T2≡ T0.10

Φ1
(θ̂

r
(Φ2,0.10)), and T3= T0.20

Φ1
(θ̂

r
(Φ2,0.20)). From

Figure 1a, we can see that for small sample sizes (n = 25) T0.20
Φ1

(θ̂
r
(Φ2,0.20)) and CR(θ̂r

CR)

satisfy Dale’s criterion for every nominal size while T0.10
Φ1

(θ̂
r
(Φ2,0.10)) and X2(θ̂

r
X2) for nom-

inal sizes greater than 0.03 and 0.06, respectively. Note that the dashed line in Figure 1
denotes the situation in which the estimated (true) size equals to the nominal size and
thus lines that lie above this reference line refer to liberal tests while those that lie below to
conservative ones. On the other hand, for moderate sample sizes (n = 45) all chosen test
statistics satisfy Dale’s criterion except FT(θ̂r

FT).
Taking into account the fact that the actual size of each test differs from the targeted

nominal size, we have to make an adjustment in order to proceed further with the compari-
son of the tests in terms of power. We focus our interest in those tests that satisfy Dale’s
criterion and follow the method proposed in [32] which involves the so-called receiver
operating characteristic (ROC) curves. In particular, let G(t) = Pr(T ≥ t) be the survivor
function of a general test statistic T, and c = inf{t : G(t) ≤ α} be the critical value, then
ROC curves can be formulated by plotting the power G1(c) against the size G0(c) for
various values of the critical value c. Note that with G0(t) we denote the distribution of the
test statistic under the null hypothesis and with G1(t) under the alternative.

(a) (b)

Figure 1. Estimated (true) sizes against nominal sizes. The shaded area refers to Dale’s criterion.
(a) n = 25. (b) n = 45.

Since results are similar for every alternative we restrict ourselves to w = 0.60 which
refers to an alternative that is neither too close nor too far from the null. For small sample
sizes (n = 25) results are presented in Figure 2, where we can see that the proposed test is
superior from the classical tests-of-fit in terms of power. However, for moderate sample
sizes (n = 45) we can observe in Figure 3 that G2(θ̂

r
) has the best performance among all

competing tests followed by the proposed test-of-fit.
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(a) (b)

Figure 2. (a) Empirical ROC curves for n = 25. (b) The same curves magnified over a relevant range
of empirical sizes.

(a) (b)

Figure 3. (a) Empirical ROC curves for n = 45. (b) The same curves magnified over a relevant range
of empirical sizes.

From the conducted analysis we conclude that regarding the proposed test there is a
trade off between size and power for different choices of the indices α1 and α2. In particular,
we can see that as α1 increases the size becomes smaller in the expense of smaller power,
while as α2 increases the power becomes better and the tests more liberal. In conclusion,
we could state that for values of α1 and α2 in the range (0.05, 0.25) the resulting test statistic
provides a fair balance between size and power which makes it an attractive alternative
to the classical tests-of-fit where for small sample sizes larger values of the indices are
preferable whereas for moderate sample sizes, smaller ones are recommended.
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5. Conclusions

In this work, a general divergence family of test statistics is presented for hypothesis
testing problems as in (3), under constraints. For estimating purposes, we introduce, discuss
and use the rMD (restricted minimum divergence) estimator presented in (8). The proposed
double index (dual) divergence test statistic involves two pairs of elements, namely (Φ2, α2)
to be used for the estimation problem and (Φ1, α1) to be used for the testing problem.
The duality refers to the fact that the two pairs may or may not be the same providing the
researcher with the greatest possible flexibility.

The asymptotic distribution of the dual divergence test statistic is found to be propor-
tional to the chi-squared distribution irrespectively of the nature of the multinomial model,
as long as the values of the two indicators involved are relative close to zero (less than 0.5).
Such values are known to provide a satisfactory balance between efficiency and robustness
(see, for instance, [8] or [3]).

The methodology developed in this work can be used in the analysis of contingency
tables which is applicable in various scientific fields: biosciences, such as genetics [33] and
epidemiology [34]; finance, such as the evaluation of investment effectiveness or business
performance [35]; insurance science [36]; or socioeconomics [37]. This work concludes
with a comparative simulation study between classical test statistics and members of
the proposed family, where the focus is placed on the conditional independence of three
random variables. Results indicate that, by selecting wisely the values of the α1 and α2
indices, we can derive a test statistic that can be thought of as a powerful and reliable
alternative to the classical tests-of-fit especially for small sample sizes.

Author Contributions: Conceptualization, A.K. and C.M.; data curation, C.M.; methodology, A.K.
and C.M; software, C.M.; formal analysis, A.K. and C.M.; writing—original draft preparation, C.M.;
writing—review and editing, A.K. and C.M.; supervision, A.K. All authors have read and agreed to
the published version of the manuscript.

Funding: The research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to express their appreciation to the anonymous referees and
the Associated Editor for their valuable comments and suggestions. The authors wish also to express
their appreciation to the professor A. Batsidis of the University of Ioannina for bringing to their
attention citation [31] which helped greatly the comparative analysis performed in this work. This
work was completed as part of the first author PhD thesis and falls within the research activities of
the Laboratory of Statistics and Data Analysis of the University of the Aegean.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The Birch regularity conditions mentioned in Assumption (A5) of Section 2 are stated
below (for details see [22])

1. The point θ0 is an interior point of Θ;
2. pi = pi(θ0) > 0 for i = 1, . . . , m;
3. The mapping p(θ) : Θ → P is totally differentiable at θ0 so that the partial derivatives

of pi(θ0) with respect to each θj exist at θ0 and p(θ) has a linear approximation at θ0
given by

pi(θ) = pi(θ0) +
s

∑
j=1

(θj − θ0j)
∂pi(θ0)

∂θj
+ o(‖θ− θ0‖), i = 1, . . . , m

as θ → θ0.
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4. The Jacobian matrix

J(θ0) =

(
∂p(θ)

∂θ

)
θ=θ0

=

(
∂pi(θ0)

∂θj

)
i=1,...,m
j=1,...,s

is of full rank;
5. The mapping inverse to θ → p(θ) exists and is continuous at θ0;
6. The mapping p : Θ → P is continuous at every point θ ∈ Θ.
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Abstract: The present paper offers, in its first part, a unified approach for the derivation of families of
inequalities for set functions which satisfy sub/supermodularity properties. It applies this approach
for the derivation of information inequalities with Shannon information measures. Connections of
the considered approach to a generalized version of Shearer’s lemma, and other related results in
the literature are considered. Some of the derived information inequalities are new, and also known
results (such as a generalized version of Han’s inequality) are reproduced in a simple and unified
way. In its second part, this paper applies the generalized Han’s inequality to analyze a problem in
extremal graph theory. This problem is motivated and analyzed from the perspective of information
theory, and the analysis leads to generalized and refined bounds. The two parts of this paper are
meant to be independently accessible to the reader.

Keywords: extremal combinatorics; graphs; Han’s inequality; information inequalities; polymatroid;
rank function; set function; Shearer’s lemma; submodularity

1. Introduction

Information measures and information inequalities are of fundamental importance
and wide applicability in the study of feasibility and infeasibility results in information
theory, while also offering very useful tools which serve to deal with interesting problems
in various fields of mathematics [1,2]. The characterization of information inequalities
has been of interest for decades (see, e.g., [3,4] and references therein), mainly triggered
by their indispensable role in proving direct and converse results for channel coding and
data compression for single and multi-user information systems. Information inequalities,
which apply to classical and generalized information measures, have also demonstrated
far-reaching consequences beyond the study of the coding theorems and fundamental limits
of communication systems. One such remarkable example (among many) is the usefulness
of information measures and information inequalities in providing information–theoretic
proofs in the field of combinatorics and graph theory (see, e.g., [5–22]).

A basic property that is commonly used for the characterization of information inequal-
ities relies on the nonnegativity of the (conditional and unconditional) Shannon entropy of
discrete random variables, the nonnegativity of the (conditional and unconditional) relative
entropy and the Shannon mutual information of general random variables, and the chain
rules which hold for these classical information measures. A byproduct of these properties
is the sub/supermodularity of some classical information measures, which also prove
to be useful by taking advantage of the vast literature on sub/supermodular functions
and polymatroids [22–31]. Another instrumental information inequality is the entropy
power inequality, which dates back to Shannon [32]. It has been extensively generalized
for different types of random variables and generalized entropies, studied in regard to its
geometrical relations [33], and it has been also ubiquitously used for the analysis of various
information–theoretic problems.

Entropy 2022, 24, 597. https://doi.org/10.3390/e24050597 https://www.mdpi.com/journal/entropy
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Among the most useful information inequalities are Han’s inequality [34], its gener-
alized versions (e.g., [15,25,30,31]), and Shearer’s lemma [7] with its generalizations and
refinements (e.g., [15,31,35]). In spite of their simplicity, these inequalities prove to be
useful in information theory, and other diverse fields of mathematics and engineering (see,
e.g., [6,35]). More specifically in regard to these inequalities, in Proposition 1 of [22], Madi-
man and Tetali introduced an information inequality which can be specialized to Han’s
inequality, and which also refines Shearer’s lemma while also providing a counterpart
result. In [30], Tian generalized Han’s inequality by relying on the sub/supermodularity
of the unconditional/conditional Shannon entropy. Likewise, the work in [31] by Kishi
et al., relies on the sub/supermodularity properties of Shannon information measures,
and it provides refinements of Shearer’s lemma and Han’s inequality. Apart of the refine-
ments of these classical and widely-used inequalities in [31], the suggested approach in the
present work can be viewed in a sense as a (nontrivial) generalization and extension of a
result in [31] (to be explained in Section 3.2).

This work is focused on the derivation of information inequalities via submodularity
and nonnegativity properties, and on a problem in extremal graph theory whose analysis
relies on an information inequality. The field of extremal graph theory, which is a subfield
of extremal combinatorics, was among the early and fast developing branches of graph
theory during the 20th century. Extremal graph theory explores the relations between
properties of graphs such as its order, size, chromatic number or maximal and minimal
degrees, under some constraints on the graph (by, e.g., considering graphs of a fixed order,
and by also imposing a type of a forbidden subgraph). The interested reader is referred
to the comprehensive textbooks [10,36] on the vast field of extremal combinatorics and
extremal graph theory.

This paper suggests an approach for the derivation of families of inequalities for set
functions, and it applies it to obtain information inequalities with Shannon information
measures that satisfy sub/supermodularity and monotonicity properties. Some of the
derived information inequalities are new, while some known results (such as the general-
ized version of Han’s inequality [25]) are reproduced as corollaries in a simple and unified
way. This paper also applies the generalized Han’s inequality to analyze a problem in
extremal graph theory, with an information–theoretic proof and interpretation. The analysis
leads to some generalized and refined bounds in comparison to the insightful results in
Theorems 4.2 and 4.3 of [6]. For the purpose of the suggested problem and analysis, the
presentation here is self-contained.

The paper is structured as follows: Section 2 provides essential notation and prelim-
inary material for this paper. Section 3 presents a new methodology for the derivation
of families of inequalities for set functions which satisfy sub/supermodularity properties
(Theorem 1). The suggested methodology is then applied in Section 3 for the derivation
of information inequalities by relying on sub/supermodularity properties of Shannon
information measures. Section 3 also considers connections of the suggested approach to a
generalized version of Shearer’s lemma, and to other results in the literature. Most of the
results in Section 3 are proved in Section 4. Section 5 applies the generalized Han’s inequal-
ity to a problem in extremal graph theory (Theorem 2). A byproduct of Theorem 2, which
is of interest in its own right, is also analyzed in Section 5 (Theorem 3). The presentation
and analysis in Section 5 is accessible to the reader, independently of the earlier material on
information inequalities in Sections 3 and 4. Some additional proofs, mostly for making the
paper self-contained or for suggesting an alternative proof, are relegated to the appendices
(Appendices A and B).

2. Preliminaries and Notation

The present section provides essential notation and preliminary material for this paper.

• N � {1, 2, . . .} denotes the set of natural numbers.
• R denotes the set of real numbers, and R+ denotes the set of nonnegative real numbers.
• ∅ denotes the empty set.
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• 2Ω �
{
A : A ⊆ Ω

}
denotes the power set of a set Ω (i.e., the set of all subsets of Ω).

• T c � Ω \ T denotes the complement of a subset T in Ω.
• {E} is an indicator of E; it is 1 if event E is satisfied, and zero otherwise.
• [n] � {1, . . . , n} for every n ∈ N;
• Xn � (X1, . . . , Xn) denotes an n-dimensional random vector;
• XS � (Xi)i∈S is a random vector for a nonempty subset S ⊆ [n]; if S = ∅, then XS is

an empty set, and conditioning on XS is void.
• Let X be a discrete random variable that takes its values on a set X , and let PX be the

probability mass function (PMF) of X. The Shannon entropy of X is given by

H(X) � − ∑
x∈X

PX(x) logPX(x), (1)

where throughout this paper, we take all logarithms to base 2.
• The binary entropy function Hb : [0, 1] → [0, log 2] is given by

Hb(p) � −p log p − (1 − p) log(1 − p), p ∈ [0, 1], (2)

where, by continuous extension, the convention 0 log 0 = 0 is used.
• Let X and Y be discrete random variables with a joint PMF PXY, and a conditional

PMF of X given Y denoted by PX|Y. The conditional entropy of X given Y is defined as

H(X|Y) � − ∑
(x,y)∈X×Y

PXY(x, y) logPX|Y(x|y) (3a)

= ∑
y∈Y

PY(y) H(X|Y = y), (3b)

and

H(X|Y) = H(X, Y)− H(Y). (4)

• The mutual information between X and Y is symmetric in X and Y, and it is given by

I(X; Y) = H(X) + H(Y)− H(X, Y) (5a)

= H(X)− H(X|Y) (5b)

= H(Y)− H(Y|X). (5c)

• The conditional mutual information between two random variables X and Y, given a
third random variable Z, is symmetric in X and Y and it is given by

I(X; Y |Z) = H(X|Z)− H(X|Y, Z) (6a)

= H(X, Z) + H(Y, Z)− H(Z)− H(X, Y, Z). (6b)

• For continuous random variables, the sums in (1) and (3) are replaced with integrals,
and the PMFs are replaced with probability densities. The entropy of a continuous
random variable is named differential entropy.

• For an n-dimensional random vector Xn, the entropy power of Xn is given by

N(Xn) � exp
(

2
n H(Xn)

)
, (7)

where the base of the exponent is identical to the base of the logarithm in (1).

We rely on the following basic properties of the Shannon information measures:
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• Conditioning cannot increase the entropy, i.e.,

H(X|Y) ≤ H(X), (8)

with equality in (8) if and only if X and Y are independent.
• Generalizing (4) to n-dimensional random vectors gives the chain rule

H(Xn) =
n

∑
i=1

H(Xi|Xi−1). (9)

• The subadditivity property of the entropy is implied by (8) and (9):

H(Xn) ≤
n

∑
i=1

H(Xi), (10)

with equality in (10) if and only if X1, . . . , Xn are independent random variables.
• Nonnegativity of the (conditional) mutual information: In light of (5) and (8), I(X; Y) ≥ 0

with equality if and only if X and Y are independent. More generally, I(X; Y |Z) ≥ 0
with equality if and only if X and Y are conditionally independent given Z.

Let Ω be a finite and non-empty set, and let f : 2Ω → R be a real-valued set function
(i.e., f is defined for all subsets of Ω). The following definitions are used.

Definition 1 (Sub/Supermodular function). The set function f : 2Ω → R is submodular if

f (T ) + f (S) ≥ f (T ∪ S) + f (T ∩ S), ∀ S , T ⊆ Ω (11)

Likewise, f is supermodular if − f is submodular.

An identical characterization of submodularity is the diminishing return property (see,
e.g., Proposition 2.2 in [23]), where a set function f : 2Ω → R is submodular if and only if

S ⊂ T ⊂ Ω, ω ∈ T c =⇒ f (S ∪ {ω})− f (S) ≥ f (T ∪ {ω})− f (T ). (12)

This means that the larger is the set, the smaller is the increase in f when a new element
is added.

Definition 2 (Monotonic function). The set function f : 2Ω → R is monotonically increas-
ing if

S ⊆ T ⊆ Ω =⇒ f (S) ≤ f (T ). (13)

Likewise, f is monotonically decreasing if − f is monotonically increasing.

Definition 3 (Polymatroid, ground set and rank function). Let f : 2Ω → R be submodular
and monotonically increasing set function with f (∅) = 0. The pair (Ω, f ) is called a polymatroid,
Ω is called a ground set, and f is called a rank function.

Definition 4 (Subadditive function). The set function f : 2Ω → R is subadditive if, for all
S , T ⊆ Ω,

f (S ∪ T ) ≤ f (S) + f (T ). (14)

A nonnegative and submodular set function is subadditive (this readily follows from
(11) and (14)). The next proposition introduces results from [25,28,37]. For the sake of
completeness, we provide a proof in Appendix A.

48



Entropy 2022, 24, 597

Proposition 1. Let Ω be a finite and non-empty set, and let {Xω}ω∈Ω be a collection of discrete
random variables. Then, the following holds:

(a) The set function f : 2Ω → R, given by

f (T ) � H(XT ), T ⊆ Ω, (15)

is a rank function.
(b) The set function f : 2Ω → R, given by

f (T ) � H(XT |XT c), T ⊆ Ω, (16)

is supermodular, monotonically increasing, and f (∅) = 0.
(c) The set function f : 2Ω → R, given by

f (T ) � I(XT ; XT c), T ⊆ Ω, (17)

is submodular, f (∅) = 0, but f is not a rank function. The latter holds since the equality
f (T ) = f (T c), for all T ⊆ Ω, implies that f is not a monotonic function.

(d) Let U ,V ⊆ Ω be disjoint subsets, and let the entries of the random vector XV be conditionally
independent given XU . Then, the set function f : 2V → R given by

f (T ) � I(XU ; XT ), T ⊆ V , (18)

is a rank function.
(e) Let XΩ = {Xω}ω∈Ω be independent random variables, and let f : 2Ω → R be given by

f (T ) � H

(
∑

ω∈T
Xω

)
, T ⊆ Ω. (19)

Then, f is a rank function.

The following proposition addresses the setting of general alphabets.

Proposition 2. For general alphabets, the set functions f in (15) and (17)–(19) are submodular,
and the set function f in (16) is supermodular with f (∅) � 0. Moreover, the function in (18) stays
to be a rank function, and the function in (19) stays to be monotonically increasing.

Proof. The sub/supermodularity properties in Proposition 1 are preserved due to the
nonnegativity of the (conditional) mutual information. The monotonicity property of the
functions in (18) and (19) is preserved also in the general alphabet setting due to (A10) and
(A14c), and the mutual information in (18) is nonnegative.

Remark 1. In contrast to the entropy of discrete random variables, the differential entropy of
continuous random variables is not functionally submodular in the sense of Lemma A.2 in [38].
This refers to a different form of submodularity, which was needed by Tao [38] to prove sumset
inequalities for the entropy of discrete random variables. A follow-up study in [39] by Kontoyiannis
and Madiman required substantially new proof strategies for the derivation of sumset inequalities
with the differential entropy of continuous random variables. The basic property which replaces
the discrete functional submodularity is the data-processing property of mutual information [39].
In the context of the present work, where the commonly used definition of submodularity is used
(see Definition 1), the Shannon entropy of discrete random variables and the differential entropy of
continuous random variables are both submodular set functions.

We rely, in this paper, on the following standard terminology for graphs. An undirected
graph G is an ordered pair G = (V, E) where V = V(G) is a set of elements, and E = E(G)
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is a set of 2-element subsets (pairs) of V. The elements of V are called the vertices of G, and
the elements of E are called the edges of G. We use the notation V = V(G) and E = E(G)
for the sets of vertices and edges, respectively, in the graph G. The number of vertices
in a finite graph G is called the order of G, and the number of edges is called the size of
G. Throughout this paper, we assume that the graph G is undirected and finite; it is also
assumed to be a simple graph, i.e., it has no loops (no edge connects a vertex in G to itself)
and there are no multiple edges which connect a pair of vertices in G. If e = {u, v} ∈ E(G),
then the vertices u and v are the two ends of the edge e. The elements u and v are adjacent
vertices (neighbors) if they are connected by an edge in G, i.e., if e = {u, v} ∈ E(G).

3. Inequalities via Submodularity

3.1. A New Methodology

The present subsection presents a new methodology for the derivation of families
of inequalities for set functions, and in particular inequalities with information measures.
The suggested methodology relies, to large extent, on the notion of submodularity of set
functions, and it is presented in the next theorem.

Theorem 1. Let Ω be a finite set with |Ω| = n. Let f : 2Ω → R with f (∅) = 0, and g : R → R.
Let the sequence

{
t(n)k

}n
k=1 be given by

t(n)k � 1
(n

k)
∑

T ⊆Ω: |T |=k
g
(

f (T )

k

)
, k ∈ [n]. (20)

(a) If f is submodular, and g is monotonically increasing and convex, then the sequence
{

t(n)k
}n

k=1
is monotonically decreasing, i.e.,

t(n)1 ≥ t(n)2 ≥ . . . ≥ t(n)n = g
(

f (Ω)

n

)
. (21)

In particular,

∑
T ⊆Ω: |T |=k

g
(

f (T )

k

)
≥
(

n
k

)
g
(

f (Ω)

n

)
, k ∈ [n]. (22)

(b) If f is submodular, and g is monotonically decreasing and concave, then the sequence{
t(n)k

}n
k=1 is monotonically increasing.

(c) If f is supermodular, and g is monotonically increasing and concave, then the sequence{
t(n)k

}n
k=1 is monotonically increasing.

(d) If f is supermodular, and g is monotonically decreasing and convex, then the sequence{
t(n)k

}n
k=1 is monotonically decreasing.

Proof. See Section 4.1.

Corollary 1. Let Ω be a finite set with |Ω| = n, f : 2Ω → R, and g : R → R be convex and
monotonically increasing. If

• f is a rank function,

• g(0) > 0 or there is � ∈ N such that g(0) = . . . = g(�−1)(0) = 0 with g(�)(0) > 0,

• {kn}∞
n=1 is a sequence such that kn ∈ [n] for all n ∈ N with kn −→

n→∞
∞,
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then

lim
n→∞

{
1
n

log

(
∑

T ⊆Ω: |T |=kn

g
(

f (T )

kn

))
−Hb

(
kn

n

)}
= 0, (23)

and if lim
n→∞

kn
n = β ∈ [0, 1], then

lim
n→∞

1
n

log

(
∑

T ⊆Ω: |T |=kn

g
(

f (T )

kn

))
= Hb(β). (24)

Proof. See Section 4.2.

Corollary 2. Let Ω be a finite set with |Ω| = n, and f : 2Ω → R be submodular and nonnegative
with f (∅) = 0. Then,

(a) For α ≥ 1 and k ∈ [n − 1]

∑
T ⊆Ω: |T |=k

(
f α(Ω)− f α(T )

)
≤ cα(n, k) f α(Ω), (25)

with

cα(n, k) �
(

1 − kα

nα

)(
n
k

)
. (26)

For α = 1, (25) holds with c1(n, k) = (n−1
k ) regardless of the nonnegativity of f .

(b) If f is also monotonically increasing (i.e., f is a rank function), then for α ≥ 1

( k
n

)α−1
(

n − 1
k − 1

)
f α(Ω) ≤ ∑

T ⊆Ω: |T |=k
f α(T ) ≤

(
n
k

)
f α(Ω), k ∈ [n]. (27)

Proof. See Section 4.3.

Corollary 2 is next specialized to reproduce Han’s inequality [34], and a generalized
version of Han’s inequality (Section 4 of [25]).

Let Xn = (X1, . . . , Xn) be a random vector with finite entropies H(Xi) for all i ∈ [n].
The set function f : 2[n] → [0, ∞), given by f (T ) = H(XT ) for all T ⊆ [n], is submodu-
lar [25] (see Proposition 1a and Proposition 2). From (25), the following holds:

(a) Setting α = 1 in (25) implies that, for all k ∈ [n − 1],

∑
1≤i1<...<ik≤n

(
H(Xn)− H(Xi1 , . . . , Xik )

)
≤
(

1 − k
n

)(
n
k

)
H(Xn) (28a)

=

(
n − 1

k

)
H(Xn), (28b)

(b) Consequently, setting k = n − 1 in (28) gives

n

∑
i=1

(
H(Xn)− H(X1, . . . , Xi−1, Xi+1, . . . , Xn)

)
≤ H(Xn), (29)

which gives Han’s inequality.

Further applications of Theorem 1 lead to the next corollary, which partially introduces
some known results that have been proved on a case-by-case basis in Theorems 17.6.1–
17.6.3 of [1] and Section 2 of [2]. In particular, the monotonicity properties of the sequences
in (30) and (32)–(34) were proved in Theorems 1 and 2, and Corollaries 1 and 2 of [2]. Both
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known and new results are readily obtained here, in a unified way, from Theorem 1. The
utility of one of these inequalities in extremal combinatorics is discussed in the continuation
to this subsection (see Proposition 3), providing a natural generalization of a beautiful
combinatorial result in Section 3.2 of [19].

Corollary 3. Let {Xi}n
i=1 be random variables with finite entropies. Then, the following holds:

(a) The sequences

h(n)k � 1
(n

k)
∑

T ⊆[n]: |T |=k

H(XT )
k

, k ∈ [n], (30)

�
(n)
k � 1

(n
k)

∑
T ⊆[n]: |T |=k

I(XT ; XT c)

k
, k ∈ [n] (31)

are monotonically decreasing in k. If {Xi}n
i=1 are independent, then also the sequence

m(n)
k � 1

(n−1
k−1)

∑
T ⊆[n]: |T |=k

H

(
∑

ω∈T
Xω

)
, k ∈ [n] (32)

is monotonically decreasing in k.
(b) The sequence

r(n)k � 1
(n

k)
∑

T ⊆[n]: |T |=k

H(XT |XT c)

k
, k ∈ [n] (33)

is monotonically increasing in k.
(c) For every r > 0, the sequences

s(n)k (r) � 1
(n

k)
∑

T ⊆[n]: |T |=k
Nr(XT ), k ∈ [n], (34)

u(n)
k (r) � 1

(n
k)

∑
T ⊆[n]: |T |=k

exp

(
− r H(XT |XT c)

k

)
, k ∈ [n], (35)

v(n)k (r) � 1
(n

k)
∑

T ⊆[n]: |T |=k
exp

(
r I(XT ; XT c)

k

)
, k ∈ [n] (36)

are monotonically decreasing in k. If {Xi}n
i=1 are independent, then also the sequence

w(n)
k (r) � 1

(n
k)

∑
T ⊆[n]: |T |=k

Nr

(
∑

ω∈T
Xω

)
, k ∈ [n] (37)

is monotonically decreasing in k.

Proof. The finite entropies of {Xi}n
i=1 assure that the entropies involved in the sequences

(30)–(37) are finite. Item (a) follows from Theorem 1a, where the submodular set functions
f which correspond to (30)–(32) are given in (15), (17) and (19), respectively, and g is the
identity function on the real line. The identity k(n

k) = n(n−1
k−1) is used for (32). Item (b) follows

from Theorem 1c, where f is the supermodular function in (16) and g is the identity function
on the real line. We next prove Item (c). The sequence (34) is monotonically decreasing by
Theorem 1a, where f is the submodular function in (15), and g : R → R is the monotonically
increasing and convex function defined as g(x) = exp(2rx) for x ∈ R (with r > 0). The
sequence (35) is monotonically decreasing by Theorem 1d, where f is the supermodular
function in (16), and g : R → R is the monotonically decreasing and convex function
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defined as g(x) = exp(−rx) for x ∈ R. The sequence (36) is monotonically decreasing
by Theorem 1a, where f is the submodular function in (17) and g is the monotonically
increasing and convex function defined as g(x) = exp(rx) for x ∈ R. Finally, the sequence
(37) is monotonically decreasing by Theorem 1a, where f is the submodular function in
(19) and g is the monotonically increasing and convex function defined as g(x) = exp(2rx)
for x ∈ R.

Remark 2. From Proposition 2, since the proof of Corollary 3 only relies on the sub/supermodularity
property of f , the random variables {Xi}n

i=1 do not need to be discrete in Corollary 3. In the
reproduction of Han’s inequality as an application of Corollary 2, the random variables {Xi}n

i=1
do not need to be discrete as well since f is not required to be nonnegative if α = 1 (only the
submodularity of f in (15) is required, which holds due to Proposition 2).

The following result exemplifies the utility of the monotonicity result of the sequence
(30) in extremal combinatorics. It also generalizes the result in Section 3.2 of [19] for
an achievable upper bound on the cardinality of a finite set in the three-dimensional
Euclidean space, expressed as a function of its number of projections on each of the planes
XY, XZ and YZ. The next result provides an achievable upper bound on the cardinality
of a finite set of points in an n-dimensional Euclidean space, expressed as a function of its
number of projections on each of the k-dimensional Euclidean subspaces with an arbitrary
k < n.

Proposition 3. Let P ⊆ Rn be a finite set of points in the n-dimensional Euclidean space with
|P| � M. Let k ∈ [n − 1], and � � (n

k). Let R1, . . . ,R� be the projections of P on each of the
k-dimensional subspaces of Rn, and let |Rj| = Mj for all j ∈ [�]. Then,

|P| ≤
(

(n
k)

∏
j=1

Mj

) 1
(
n−1
k−1)

. (38)

Let R � log M
n , and Rj �

log Mj
k for all j ∈ [�]. An equivalent form of (38) is given by the inequality

R ≤ 1
�

�

∑
j=1

Rj. (39)

Moreover, if M1 = . . . = M� and k
√

M1 ∈ N, then (38) and (39) are satisfied with equality if P is

a grid of points in Rn with k
√

M1 points on each dimension (so, M = M
n
k
1 ).

Proof. Pick uniformly at random a point Xn = (X1, . . . , Xn) ∈ P . Then,

H(Xn) = log |P|. (40)

The sequence in (30) is monotonically decreasing, so h(n)k ≥ h(n)n , which is equivalent to(
n − 1
k − 1

)
H(Xn) ≤ ∑

T ⊆[n]: |T |=k
H(XT ). (41)

Let S1, . . . ,S� be the k-subsets of the set [n], ordered in a way such that Mj is the cardinality
of the projection of the set P on the k-dimensional subspace whose coordinates are the
elements of the subset Sj. Then, (41) can be expressed in the form

(
n − 1
k − 1

)
H(Xn) ≤

�

∑
j=1

H(XSj), (42)
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and also

H(XSj) ≤ log Mj, j ∈ [�], (43)

since the entropy of a random variable is upper bounded by the logarithm of the number
of its possible values. Combining (40), (42) and (43) gives(

n − 1
k − 1

)
log |P| ≤

�

∑
j=1

log Mj. (44)

Exponentiating both sides of (44) gives (38). In addition, using the identity (n
k) =

n
k (

n−1
k−1)

gives (39) from (44). Finally, the sufficiency condition for equalities in (38) or (39) can be
easily verified, which is obtained if P is a grid of points in Rn with the same finite number
of projections on each dimension.

3.2. Connections to a Generalized Version of Shearer’s Lemma and Other Results in the Literature

The next proposition is a known generalized version of Shearer’s Lemma.

Proposition 4. Let Ω be a finite set, let {Sj}M
j=1 be a finite collection of subsets of Ω (with M ∈ N),

and let f : 2Ω → R be a set function.

(a) If f is non-negative and submodular, and every element in Ω is included in at least d ≥ 1 of
the subsets {Sj}M

j=1, then

M

∑
j=1

f (Sj) ≥ d f (Ω). (45)

(b) If f is a rank function, A ⊂ Ω, and every element in A is included in at least d ≥ 1 of the
subsets {Sj}M

j=1, then

M

∑
j=1

f (Sj) ≥ d f (A). (46)

The first part of Proposition 4 was pointed out in Section 1.5 of [35], and the second
part of Proposition 4 is a generalization of Remark 1 and inequality (47) in [20]. We
provide a (somewhat different) proof of Proposition 4a, as well as a self-contained proof of
Proposition 4b in Appendix B.

Let {Xi}n
i=1 be discrete random variables, and consider the set function f : 2[n] → R+

which is defined as f (A) = H(XA) for all A ⊆ [n]. Since f is a rank function [25],
Proposition 4 then specializes to Shearer’s Lemma [7] and a modified version of this lemma
(see Remark 1 of [20]).

In light of Proposition 1e and Proposition 4b, Corollaries 4 and 5 are obtained as
follows.

Corollary 4. Let {Xi}n
i=1 be independent discrete random variables, {Sj}M

j=1 be subsets of [n], and
A ⊆ [n]. If each element in A belongs to at least d ≥ 1 of the sets {Sj}M

j=1, then

d H

(
∑
i∈A

Xi

)
≤

M

∑
j=1

H

(
∑

i∈Sj

Xi

)
. (47)
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In particular , if every i ∈ [n] is included in at least d ≥ 1 of the subsets {Sj}M
j=1, then

d H

(
n

∑
i=1

Xi

)
≤

M

∑
j=1

H

(
∑

i∈Sj

Xi

)
. (48)

Remark 3. Inequality (48) is also a special case of [37] (Theorem 2), and they coincide if every
element i ∈ [n] is included in a fixed number (d) of the subsets {Sj}M

j=1.

A specialization of Corollary 4 gives the next result.

Corollary 5. Let {Xi}n
i=1 be independent and discrete random variables with finite variances.

Then, the following holds:

(a) For every k ∈ [n − 1],

H

(
n

∑
i=1

Xi

)
≤ 1

(n−1
k−1)

∑
T ⊆[n]: |T |=k

H

(
∑

ω∈T
Xω

)
, (49)

and equivalently,

N

(
n

∑
i=1

Xi

)
≤
{

∏
T ⊆[n]: |T |=k

N

(
∑

ω∈T
Xω

)} 1
(
n−1
k−1)

. (50)

(b) For every k ∈ [n − 1],

N

(
n

∑
i=1

Xi

)
≤ 1

(n
k)

∑
T ⊆[n]: |T |=k

N
n
k

(
∑

ω∈T
Xω

)
, (51)

where (51) is in general looser than (50), with equivalence if {Xi}n
i=1 are i.i.d.; in particular,

N

(
n

∑
i=1

Xi

)
≤
{

n

∏
j=1

N

(
∑
i �=j

Xi

)} 1
n−1

(52a)

≤ 1
n

n

∑
j=1

{
N

(
∑
i �=j

Xi

)} n
n−1

. (52b)

Proof. Let {Sj}M
j=1 be all the k-element subsets of Ω = [n] (with M = (n

k)). Then, every

element i ∈ [n] belongs to d = kM
n = (n−1

k−1) such subsets, which then gives (49) as a special

case of (48). Alternatively, (49) follows from Corollary 3b, which yields m(n)
k ≥ m(n)

n for
all k ∈ [n − 1]. Exponentiating both sides of (49) gives (50). Inequality (51) is a loosened
version of (50), which follows by invoking the AM-GM inequality (i.e., the geometric mean
of nonnegative real numbers is less than or equal to their arithmetic mean, with equality
between these two means if and only if these numbers are all equal), in conjunction with the
identity k

n (
n
k) = (n−1

k−1). Inequalities (50) and (51) are consequently equivalent if {Xi}n
i=1 are

i.i.d. random variables, and (52) is a specialized version of (50) and the loosened inequality
(51) by setting k = n − 1.

The next remarks consider information inequalities in Corollaries 3–5, in light of
Theorem 1 here, and some known results in the literature.

Remark 4. Inequality (49) was derived by Madiman as a special case of Theorem 2 in [37]. The
proof of Corollary 5a shows that (49) can be also derived in two different ways as special cases of
both Theorem 1a and Proposition 4a.
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Remark 5. Inequality (51) can be also derived as a special case of Theorem 1a, where f is the rank
function in (19), and g : R → R is given by g(x) � exp(2nx) for all x ∈ R. It also follows from
the monotonicity property in Corollary 3c, which yields w(n)

k (n) ≥ w(n)
n (n) for all k ∈ [n − 1].

Remark 6. The result in Theorem 8 of [31] is a special case of Theorem 1a here, which follows
by taking the function g in Theorem 1a to be the identity function. The flexibility in selecting the
function g in Theorem 1 enables to obtain a larger collection of information inequalities. This is in
part reflected from a comparison of Corollary 3 here with Corollary 9 of [31]. More specifically, the
findings about the monotonicity properties in (30), (31) and (33) were obtained in Corollary 9 of [31],
while relying on Theorem 8 of [31] and the sub/supermodularity properties of the considered Shannon
information measures. It is noted, however, that the monotonicity results of the sequences (34)–(37)
(Corollary 3c) are not implied by Theorem 8 of [31].

Remark 7. Inequality (52) forms a counterpart of an entropy power inequality by Artstein et al.,
(Theorem 3 of [40]), where for independent random variables {Xi}n

i=1 with finite variances:

N

(
n

∑
i=1

Xi

)
≥ 1

n − 1

n

∑
j=1

N

(
∑
i �=j

Xi

)
. (53)

Inequality (50), and also its looser version in (51), form counterparts of the generalized inequality
by Madiman and Barron, which reads (see inequality (4) in [41]):

N

(
n

∑
i=1

Xi

)
≥ 1

(n−1
k−1)

∑
T ⊆[n]: |T |=k

N

(
∑

ω∈T
Xω

)
, k ∈ [n − 1]. (54)

4. Proofs

The present section provides proofs of (most of the) results in Section 3.

4.1. Proof of Theorem 1

We prove Item (a), and then readily prove Items (b)–(d). Define the auxiliary sequence

f (n)k � 1
(n

k)
∑

T ⊆Ω: |T |=k
f (T ), k ∈ [0 : n], (55)

averaging f over all k-element subsets of the n-element set Ω � {ω1, . . . , ωn}. Let the
permutation π : [n] → [n] be arbitrary. For k ∈ [n − 1], let

S1 � {ωπ(1), . . . , ωπ(k−1), ωπ(k)}, (56a)

S2 � {ωπ(1), . . . , ωπ(k−1), ωπ(k+1)}, (56b)

which are k-element subsets of Ω with k − 1 elements in common. Then,

f (S1) + f (S2) ≥ f (S1 ∪ S2) + f (S1 ∩ S2), (57)

which holds by the submodularity of f (by assumption), i.e.,

f
(
{ωπ(1), . . . , ωπ(k)}

)
+ f

(
{ωπ(1), . . . , ωπ(k−1), ωπ(k+1)}

)
≥ f

(
{ωπ(1), . . . , ωπ(k+1)}

)
+ f

(
{ωπ(1), . . . , ωπ(k−1)}

)
. (58)

Averaging the terms on both sides of (58) over all the n! permutations π of [n] gives

1
n! ∑

π

f
(
{ωπ(1), . . . , ωπ(k)}

)
=

k! (n − k)!
n! ∑

T ⊆Ω: |T |=k
f (T ) (59a)
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=
1
(n

k)
∑

T ⊆Ω: |T |=k
f (T ) (59b)

= f (n)k , (59c)

and similarly

1
n! ∑

π

f
(
{ωπ(1), . . . , ωπ(k−1), ωπ(k+1)}

)
= f (n)k , (60a)

1
n! ∑

π

f
(
{ωπ(1), . . . , ωπ(k+1)}

)
= f (n)k+1, (60b)

1
n! ∑

π

f
(
{ωπ(1), . . . , ωπ(k−1)}

)
= f (n)k−1, (60c)

with f (n)0 = 0 since by assumption f (∅) = 0. Combining (58)–(60) gives

2 f (n)k ≥ f (n)k+1 + f (n)k−1, k ∈ [n − 1], (61)

which is rewritten as

f (n)k − f (n)k−1 ≥ f (n)k+1 − f (n)k , k ∈ [n − 1]. (62)

Consequently, it follows that

f (n)k
k

−
f (n)k+1

k + 1
=

1
k

k

∑
j=1

(
f (n)j − f (n)j−1

)
− 1

k + 1

k+1

∑
j=1

(
f (n)j − f (n)j−1

)
(63a)

=

(
1
k
− 1

k + 1

) k

∑
j=1

(
f (n)j − f (n)j−1

)
− 1

k + 1

(
f (n)k+1 − f (n)k

)
(63b)

=
1

k(k + 1)

k

∑
j=1

{(
f (n)j − f (n)j−1

)
−
(

f (n)k+1 − f (n)k

)}
(63c)

≥ 0, (63d)

where equality (63a) holds since f (n)0 = 0, and inequality (63d) holds by (62). The sequence{
f (n)k

k

}n

k=1
is therefore monotonically decreasing, and in particular

f (n)k ≥ k f (n)n
n

=
k
n

. (64)

We next prove (25) when α = 1, and then proceed to prove Theorem 1. By (64)

f (n)n
n

≤
f (n)n−1

n − 1
, (65)

where, by (55),

f (n)n = f (Ω), f (n)n−1 =
1
n ∑

T ⊆Ω: |T |=n−1
f (T ). (66)

Combining (65) and (66) gives

(n − 1) f (Ω) ≤ ∑
T ⊆Ω: |T |=n−1

f (T ). (67)
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Since there are n subsets T ⊆ Ω with |T | = n − 1, rearranging terms in (67) gives (25)
for α = 1; it is should be noted that, for α = 1, the set function f does not need to be
nonnegative for the satisfiability of (25) (however, this will be required for α > 1).

We next prove Item (a). By (20), for k ∈ [n],

t(n)k =
1
(n

k)
∑

T ⊆Ω: |T |=k
g
(

f (T )

k

)
(68a)

=
1
(n

k)
∑

T ={t1,...,tk}⊆Ω
g

(
f
(
{t1, . . . , tk}

)
k

)
. (68b)

Fix Ωk � {t1, . . . , tk} ⊆ Ω, and let f̃ : 2Ωk → R be the restriction of the function f to the
subsets of Ωk. Then, f̃ is a submodular set function with f̃ (∅) = 0; similarly to (55), (65)

and (66) with f replaced by f̃ , and n replaced by k, the sequence
{ f̃ (k)j

j

}k

j=1
is monotonically

decreasing. Hence, for k ∈ [2 : n],

f̃ (k)k
k

≤
f̃ (k)k−1

k − 1
, (69)

where

f̃ (k)k = f̃ (Ωk) = f
(
{t1, . . . , tk}

)
, (70a)

f̃ (k)k−1 =
1
k ∑
T ⊆Ωk : |T |=k−1

f̃ (T ) (70b)

=
1
k ∑
T ⊆Ωk : |T |=k−1

f (T ) (70c)

=
1
k

k

∑
i=1

f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
. (70d)

Combining (69) and (70) gives

f
(
{t1, . . . , tk}

)
≤ 1

k − 1

k

∑
i=1

f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
, (71)

and, since by assumption g is monotonically increasing,

g

(
f
(
{t1, . . . , tk}

)
k

)
≤ g

(
1
k

k

∑
i=1

f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
k − 1

)
. (72)

From (68) and (72), for all k ∈ [2 : n],

t(n)k ≤ 1
(n

k)
∑

T ={t1,...,tk}⊆Ω
g

(
1
k

k

∑
i=1

f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
k − 1

)
, (73)

and

t(n)k ≤ 1
k(n

k)

k

∑
i=1

∑
T ={t1,...,tk}⊆Ω

g

(
f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
k − 1

)
(74a)

=
n − k + 1

k(n
k)

k

∑
i=1

{
∑

{t1,...,ti−1,ti+1,...,tk}⊆Ω
g

(
f
(
{t1, . . . , ti−1, ti+1, . . . , tk}

)
k − 1

)}
(74b)
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=
k! (n − k)! (n − k + 1)

n! k ∑
S⊆Ω: |S|=k−1

g
(

f (S)
k − 1

)
(74c)

=
(k − 1)! (n − k + 1)!

n! ∑
S⊆Ω: |S|=k−1

g
(

f (S)
k − 1

)
(74d)

=
1

( n
k−1)

∑
S⊆Ω: |S|=k−1

g
(

f (S)
k − 1

)
(74e)

= t(n)k−1, (74f)

where (74a) holds by invoking Jensen’s inequality to the convex function g; (74b) holds since the
term of the inner summation in the right-hand side of (74a) does not depend on ti, so for every
(k − 1)-element subset S = {t1, . . . , ti−1, ti+1, . . . , tk} ⊆ Ω, there are n − k + 1 possibilities
to extend it by a single element (ti) into a k-element subset T = {t1, . . . , tk} ⊆ Ω; (74e) is
straightforward, and (74f) holds by the definition in (20). This proves Item (a).

Item (b) follows from Item (a), and similarly Item (d) follows from Item (c), by replacing
g with −g. Item (c) is next verified. If f is a supermodular set function with f (∅) = 0, then
(57) and (58), and (61)–(63) hold with flipped inequality signs. Hence, if g is monotonically
decreasing, then inequalities (72) and (73) are reversed; finally, if g is also concave, then (by
Jensen’s inequality) (74) holds with a flipped inequality sign, which proves Item (c).

4.2. Proof of Corollary 1

By assumption f : 2Ω → R is a rank function, which implies that 0 ≤ f (T ) ≤ f (Ω) for
every T ⊆ Ω. Since (by definition) f is submodular with f (∅) = 0, and (by assumption)
the function g is convex and monotonically increasing, then (from (22), while replacing
k with kn)(

n
kn

)
g
(

f (Ω)

n

)
≤ ∑

T ⊆Ω: |T |=kn

g
(

f (T )

kn

)
≤
(

n
kn

)
g
(

f (Ω)

kn

)
, n ∈ N. (75)

By the second assumption in Corollary 1, for positive values of x that are sufficiently close
to zero, we have

• g(x) ≈ g(0) > 0 if g(0) > 0;
• g(x) scales like 1

�! g(�)(0) x� if g(0) = . . . = g(�−1)(0) = 0 with g(�)(0) > 0 for some
� ∈ N.

In both cases, it follows that

lim
x→0+

x log g(x) = 0. (76)

In light of (75) and (76), and since (by assumption) kn −→
n→∞

∞, it follows that

lim
n→∞

1
n

[
log

(
∑

T ⊆Ω: |T |=kn

g
(

f (T )

kn

))
− log

(
n
kn

)]
= 0. (77)

By the following upper and lower bounds on the binomial coefficient:

1
n + 1

exp
(

nHb

(
kn

n

))
≤
(

n
kn

)
≤ exp

(
nHb

(
kn

n

))
, (78)

the combination of equalities (77) and (78) gives equality (23). Equality (24) holds as a
special case of (23), under the assumption that lim

n→∞
kn
n = β ∈ [0, 1].
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4.3. Proof of Corollary 2

For α = 1, Corollary 2 is proved in (67). Fix α > 1, and let g : R → R be

g(x) �
{

xα, x ≥ 0,

0, x < 0,
(79)

which is monotonically increasing and convex on the real line. By Theorem 1a,

t(n)k ≥ t(n)n , k ∈ [n]. (80)

Since by assumption f is nonnegative, it follows from (20) and (79) that

t(n)k =
1
(n

k)
∑

T ⊆Ω: |T |=k
g
(

f (T )

k

)
(81a)

=
1

kα (n
k)

∑
T ⊆Ω: |T |=k

f α(T ). (81b)

Combining (80)–(81) and rearranging terms gives, for all α > 1,

∑
T ⊆Ω: |T |=k

f α(T ) ≥
( k

n

)α
(

n
k

)
f α(Ω) (82a)

=
( k

n

)α−1
(

n − 1
k − 1

)
f α(Ω), (82b)

where equality (82b) holds by the identity k
n (n

k) = (n−1
k−1). This further gives

∑
T ⊆Ω: |T |=k

(
f α(Ω)− f α(T )

)
=

(
n
k

)
f α(Ω)− ∑

T ⊆Ω: |T |=k
f α(T ) (83a)

≤
(

1 − kα

nα

)(
n
k

)
f α(Ω) (83b)

= cα(n, k) f α(Ω), (83c)

where equality (83c) holds by the definition in (26). This proves (25) for α > 1.
We next prove Item (b). The function f is (by assumption) a rank function, which

yields its nonnegativity. Hence, the leftmost inequality in (27) holds by (82). The rightmost
inequality in (27) also holds since f : 2Ω → R is monotonically increasing, which yields
f (T ) ≤ f (Ω) for all T ⊆ Ω. For k ∈ [n] and α ≥ 0 (in particular, for α ≥ 1),

∑
T ⊆Ω: |T |=k

f α(T ) ≤
(

n
k

)
f α(Ω), (84)

where (84) holds since there are (n
k) k-element subsets T of the n-element set Ω, and every

summand f α(T ) (with T ⊆ Ω) is upper bounded by f α(Ω).

5. A Problem in Extremal Graph Theory

This section applies the generalization of Han’s inequality in (28) to the following problem.

5.1. Problem Formulation

Let A ⊆ {−1, 1}n, with n ∈ N, and let τ ∈ [n]. Let G = GA,τ be an un-directed simple
graph with vertex set V(G) = A, and pairs of vertices in G are adjacent (i.e., connected by
an edge) if and only if they are represented by vectors in A whose Hamming distance is
less than or equal to τ:
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{xn, yn} ∈ E(G) ⇔
(
xn, yn ∈ A, xn �= yn, dH(xn, yn) ≤ τ

)
. (85)

The question is how large can the size of G be (i.e., how many edges it may have) as a function
of the cardinality of the set A, and possibly based also on some basic properties of the set A?

This problem and its related analysis generalize and refine, in a nontrivial way, the
bound in Theorem 4.2 of [6] which applies to the special case where τ = 1. The motivation
for this extension is next considered.

5.2. Problem Motivation

Constraint coding is common in many data recording systems and data communica-
tion systems, where some sequences are more prone to error than others, and a constraint
on the sequences that are allowed to be recorded or transmitted is imposed in order to
reduce the likelihood of error. Given such a constraint, it is then necessary to encode
arbitrary user sequences into sequences that obey the constraint.

From an information–theoretic perspective, this problem can be interpreted as follows.
Consider a communication channel W : X → Y with input alphabet X and output alphabet
Y , and suppose that a constraint is imposed on the sequences that are allowed to be
transmitted over the channel. As a result of such a constraint, the information sequences
are first encoded into codewords by an error-correction encoder, followed by a constrained
encoder that maps these codewords into constrained sequences. Let them be binary
n-length sequences from the set A ⊆ {−1, 1}n. A channel modulator then modulates these
sequences into symbols from X , and the received sequences at the channel output, with
alphabet Y , are first demodulated, and then decoded (in a reverse order of the encoding
process) by the constrained decoder and error-correction decoder.

Consider a channel model where pairs of binary n-length sequences from the set
A whose Hamming distance is less than or equal to a fixed number τ share a common
output sequence with positive probability, whereas this halts to be the case if the Hamming
distance is larger than τ. In other words, we assume that by design, pairs of sequences
in A whose Hamming distance is larger than τ cannot be confused in the sense that there
does not exist a common output sequence which may be possibly received (with positive
probability) at the channel output.

The confusion graph G that is associated with this setup is an undirected simple graph
whose vertices represent the n-length binary sequences in A, and pairs of vertices are
adjacent if and only if the Hamming distance between the sequences that they represent is
not larger than τ. The size of G (i.e., its number of edges) is equal to the number of pairs of
sequences in A which may not be distinguishable by the decoder.

Further motivation for studying this problem is considered in the continuation (see
Section 5.5).

5.3. Analysis

We next derive an upper bound on the size of the graph G. Let Xn = (X1, . . . , Xn) be
chosen uniformly at random from the set A ⊆ {−1, 1}n, and let PXn be the PMF of Xn. Then,

PXn(xn) =

⎧⎪⎨⎪⎩
1
|A| , if xn ∈ A,

0, if xn �∈ A,
(86)

which implies that

H(Xn) = log |A|. (87)

The graph G is an un-directed and simple graph with a vertex set V(G) = A (i.e., the
vertices of G are in one-to-one correspondence with the binary vectors in the set A). Its
set of edges E(G) are the edges which connect all pairs of vertices in G whose Hamming
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distance is less than or equal to τ. For d ∈ [τ], let Ed(G) be the set of edges in G which
connect all pairs of vertices in G whose Hamming distance is equal to d, so

| E(G)| =
τ

∑
d=1

| Ed(G)|. (88)

For xn ∈ {−1, 1}n, d ∈ [n], and integers k1, . . . , kd such that 1 ≤ k1 < . . . < kd ≤ n, let

x̃(k1,...,kd) � (x1, . . . , xk1−1, xk1+1, . . . , xkd−1, xkd+1, . . . , xn) (89)

be a subvector of xn of length n − d, obtained by dropping the bits of xn in positions
k1, . . . , kd; if d = n, then (k1, . . . , kn) = (1, . . . , n), and x̃(k1,...,kd) is an empty vector. By the
chain rule for the Shannon entropy,

H(Xn)− H
(
X̃(k1,...,kd)

)
= H

(
Xk1 , . . . , Xkd

| X̃(k1,...,kd)
)

(90a)

= − ∑
xn∈{−1,1}n

PXn(xn) log
(
PXk1

,...,Xkd
| X̃(k1,...,kd)

(
xk1 , . . . , xkd

| x̃(k1,...,kd)
))

(90b)

= − 1
|A| ∑

xn∈A
log

(
PXk1

,...,Xkd
| X̃(k1,...,kd)

(
xk1 , . . . , xkd

| x̃(k1,...,kd)
))

, (90c)

where equality (90c) holds by (86).
For xn ∈ {−1, 1}n, d ∈ [n], and integers k1, . . . , kd such that 1 ≤ k1 < . . . < kd ≤ n, let

x(k1,...,kd) � (x1, . . . , xk1−1,−xk1 , xk1+1, . . . , xkd−1,−xkd
, xkd+1, . . . , xn), (91)

where the bits of xn in position k1, . . . , kd are flipped (in contrast to x̃(k1,...,kd) where the bits
of xn in these positions are dropped), so x(k1,...,kd) ∈ {−1, 1}n and dH

(
xn, x(k1,...,kd)

)
= d.

Likewise, if xn, yn ∈ {−1, 1}n satisfy dH(xn, yn) = d, then there exist integers k1, . . . , kd
such that 1 ≤ k1 < . . . < kd ≤ n where yn = x(k1,...,kd) (i.e., the integers k1, . . . , kd are the
positions (in increasing order) where the vectors xn and yn differ).

Let us characterize the set A by its cardinality, and the following two natural numbers:

(a) If xn ∈ A and x(k1,...,kd) ∈ A for any (k1, . . . , kd) such that 1 ≤ k1 < . . . < kd ≤ n, then
there are at least md � md(A) vectors y ∈ A whose subvectors ỹ(k1,...,kd) coincide with
x̃(k1,...,kd), i.e., the integer md ≥ 2 satisfies

md ≤ min
xn∈A,

1≤k1<...<kd≤n

∣∣∣∣{yn ∈ A : ỹ(k1,...,kd) = x̃(k1,...,kd), x(k1,...,kd) ∈ A
}∣∣∣∣. (92)

By definition, the integer md always exists, and

2 ≤ md ≤ min{2d, |A|}. (93)

If no information is available about the value of md, then it can be taken by default
to be equal to 2 (since by assumption the two vectors xn ∈ A and yn � x(k1,...,kd) ∈ A
satisfy the equality ỹ(k1,...,kd) = x̃(k1,...,kd)).

(b) If xn ∈ A and x(k1,...,kd) �∈ A for any (k1, . . . , kd) such that 1 ≤ k1 < . . . < kd ≤ n, then
there are at least �d � �d(A) vectors yn ∈ A whose subvectors ỹ(k1,...,kd) coincide with
x̃(k1,...,kd), i.e., the integer �d ≥ 1 satisfies

�d ≤ min
xn∈A,

1≤k1<...<kd≤n

∣∣∣∣{yn ∈ A : ỹ(k1,...,kd) = x̃(k1,...,kd), x(k1,...,kd) �∈ A
}∣∣∣∣. (94)
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By definition, the integer �d always exists, and

1 ≤ �d ≤ min{2d − 1, |A| − 1}. (95)

Likewise, if no information is available about the value of �d, then it can be taken by
default to be equal to 1 (since xn ∈ A satisfies the requirement about its subvector
x̃(k1,...,kd) in (94)).

In general, it would be preferable to have the largest possible values of md and �d (i.e., those
satisfying inequalities (92) and (94) with equalities, for obtaining a better upper bound on
the size of G (this point will be clarified in the sequel). If d = 1, then md = 2 and �d = 1
are the best possible constants (this holds by the definitions in (92) and (94), which can be
also verified by the coincidence of the upper and lower bounds in (93) for d = 1, as well as
those in (95)).

If xn ∈ A, then we distinguish between the following two cases:

• If x(k1,...,kd) ∈ A, then

PXk1
,...,Xkd

| X̃(k1,...,kd) (xk1 , . . . , xkd
| x̃(k1,...,kd)) ≤ 1

md
, (96)

which holds by the way that md is defined in (92), and since Xn is randomly selected
to be equiprobable in the set A.

• If x(k1,...,kd) �∈ A, then

PXk1
,...,Xkd

| X̃(k1,...,kd) (xk1 , . . . , xkd
| x̃(k1,...,kd)) ≤ 1

�d
, (97)

which holds by the way that �d is defined in (94), and since Xn is equiprobable on A.

For d ∈ [τ] and 1 ≤ k1 < . . . < kd ≤ n, it follows from (90), (96) and (97) that

H(Xn)− H
(
X̃(k1,...,kd)

)
≥ log md

|A| ∑
xn

{xn ∈ A, x(k1,...,kd) ∈ A}

+
log �d
|A| ∑

xn
{xn ∈ A, x(k1,...,kd) �∈ A}, (98)

which, by summing on both sides of inequality (98) over all integers k1, . . . , kd such that
1 ≤ k1 < . . . < kd ≤ n, yields

∑
(k1,...,kd):

1≤k1<...<kd≤n

(
H(Xn)− H

(
X̃(k1,...,kd)

))

≥ log md
|A| ∑

(k1,...,kd):
1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) ∈ A}

+
log �d
|A| ∑

(k1,...,kd):
1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) �∈ A}. (99)

Equality holds in (99) if the minima on the RHS of (92) and (94) are attained by any element
in these sets, and if (92) and (94) are satisfied with equalities (i.e., md and �d are the maximal
integers to satisfy inequalities (92) and (94) for the given set A). Hence, this equality holds
in particular for d = 1, with the constants md = 2 and �d = 1.
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The double sum in the first term on the RHS of (99) is equal to

∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) ∈ A} = 2
∣∣Ed(G)

∣∣, (100)

since every pair of adjacent vertices in G that refer to vectors in A whose Hamming
distance is equal to d is of the form xn ∈ A and x(k1,...,kd) ∈ A, and vice versa, and every
edge {xn, x(k1,...,kd)} ∈ Ed(G) is counted twice in the double summation on the LHS of (100).
For calculating the double sum in the second term on the RHS of (99), we first calculate the
sum of these two double summations:

∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) ∈ A}+ ∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) �∈ A}

= ∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{
{xn ∈ A, x(k1,...,kd) ∈ A}+ {xn ∈ A, x(k1,...,kd) �∈ A}

}
(101a)

= ∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{xn ∈ A} (101b)

= ∑
(k1,...,kd):

1≤k1<...<kd≤n

|A| (101c)

=

(
n
d

)
|A|, (101d)

so, subtracting (100) from (101d) gives that

∑
(k1,...,kd):

1≤k1<...<kd≤n

∑
xn

{xn ∈ A, x(k1,...,kd) �∈ A} =

(
n
d

)
|A| − 2

∣∣Ed(G)
∣∣. (102)

Substituting (100) and (102) into the RHS of (99) gives that, for all d ∈ [τ],

∑
(k1,...,kd):

1≤k1<...<kd≤n

(
H(Xn)− H

(
X̃(k1,...,kd)

))

≥ 2| Ed(G)| log md
|A| +

log �d
|A|

[(
n
d

)
|A| − 2

∣∣Ed(G)
∣∣] (103a)

=

(
n
d

)
log �d +

2| Ed(G)|
|A| log

md
�d

, (103b)

with the same necessary and sufficient condition for equality in (103a) as in (99). (Recall
that it is in particular an equality for d = 1, where in this case m1 = 2 and �1 = 1.)

By the generalized Han’s inequality in (28),

∑
(k1,...,kd):

1≤k1<...<kd≤n

(
H(Xn)− H

(
X̃(k1,...,kd)

))
≤
(

n − 1
d − 1

)
H(Xn) (104a)

=

(
n − 1
d − 1

)
log |A|, (104b)
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where equality (104b) holds by (87). Combining (103) and (104) yields(
n − 1
d − 1

)
log |A| ≥

(
n
d

)
log �d +

2| Ed(G)|
|A| log

md
�d

, (105)

and, by the identity (n
d) =

n
d (n−1

d−1), we get

| Ed(G)| ≤
(n−1

d−1) |A|
(

log |A| − n
d log �d

)
2 log md

�d

. (106)

This upper bound is specialized, for d = 1, to Theorem 4.2 of [6] (where, by definition,
m1 = 2 and �1 = 1). This gives that the number of edges in G, connecting pairs of vertices
which refer to binary vectors in A whose Hamming distance is 1 from each other, satisfies

| E1(G)| ≤ 1
2 |A| log2 |A|. (107)

It is possible to select, by default, the values of the integers md and �d to be equal to 2 and
1, respectively, independently of the value of d ∈ [τ]. It therefore follows that the upper
bound in (106) can be loosened to

| Ed(G)| ≤ 1
2

(
n − 1
d − 1

)
|A| log2 |A|. (108)

This shows that the bound in (108) generalizes the result in Theorem 4.2 of [6], based only
on the knowledge of the cardinality of A. Furthermore, the bound (108) can be tightened
by the refined bound (106) if the characterization of the set A allows one to assert values
for md and �d that are larger than the trivial values of 2 and 1, respectively.

In light of (88) and (108), the number of edges in the graph G satisfies

| E(G)| ≤ 1
2

τ

∑
d=1

(
n − 1
d − 1

)
|A| log2 |A|, (109)

and if τ ≤ n+1
2 , then it follows that

| E(G)| ≤ 1
2 exp

(
(n − 1)Hb

(
τ − 1
n − 1

))
|A| log2 |A|. (110)

Indeed, the transition from (109) to (110) holds by the inequality

nθ

∑
k=0

(
n
k

)
≤ exp

(
nHb(θ)

)
, θ ∈

[
0, 1

2
]
, (111)

where the latter bound is asymptotically tight in the exponent of n (for sufficiently large
values of n).

5.4. Comparison of Bounds

We next consider the tightness of the refined bound (106) and the loosened bound
(108). Since A is a subset of the n-dimensional cube {−1, 1}n, every point in A has at most
(n

d) neighbors in A with Hamming distance d, so

| Ed(G)| ≤ 1
2

(
n
d

)
|A|. (112)
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Comparing the bound on the RHS of (106) with the trivial bound in (112) shows that the
former bound is useful if and only if

log |A| − n
d log �d

log md
�d

≤ n
d

, (113)

which is obtained by relying on the identity (n
d) =

n
d (n−1

d−1). Rearranging terms in (113) gives
the necessary and sufficient condition

|A| ≤ (md)
n
d , (114)

which is independent of the value of �d. Since, by definition, md ≥ 2, inequality (114) is
automatically satisfied if the stronger condition

|A| ≤ 2
n
d (115)

is imposed. The latter also forms a necessary and sufficient condition for the usefulness of
the looser bound on the RHS of (108) in comparison to (112).

Example 1. Suppose that the set A ⊆ {−1, 1}n is characterized by the property that for all d ∈ [τ],
with a fixed integer τ ∈ [n], if xn ∈ A and x(k1,...,kd) ∈ A then all vectors yn ∈ {−1, 1}n which
coincide with xn and x(k1,...,kd) in their (n − d) agreed positions are also included in the set A. Then,
for all d ∈ [τ], we get by definition that md = 2d, which yields τ ≤ �log2 |A|�. Setting md = 2d

and the default value �d = 1 on the RHS of (106) gives

| Ed(G)| ≤
(n−1

d−1) |A|
(

log |A| − n
d log �d

)
2 log md

�d

(116a)

=
(n−1

d−1) |A| log |A|
2 log(2d)

(116b)

=
1

2d

(
n − 1
d − 1

)
|A| log2 |A| (116c)

=
1
2

(
n
d

)
|A| · log2 |A|

n
. (116d)

Unless A = {−1, 1}n, the upper bound on the RHS of (116d) is strictly smaller than the trivial
upper bound on the RHS of (112). This improvement is consistent with the satisfiability of the
(necessary and sufficient) condition in (115), which is strictly satisfied since

|A| < 2n = (2d)
n
d = (md)

n
d . (117)

On the other hand, the looser upper bound on the RHS of (108) gives

| Ed(G)| ≤ 1
2

(
n
d

)
|A| · d log2 |A|

n
, (118)

which is d times larger than the refined bound on the RHS of (116d) (since it is based on the exact
value of md for the set A, rather than taking the default value of 2), and it is worse than the trivial
bound if and only if |A| > 2

n
d . The latter finding is consistent with (115).

This exemplifies the utility of the refined upper bound on the RHS of (106) in comparison to
the bound on the RHS of (108), where the latter generalizes Theorem 4.2 of [6] from the case where
d = 1 to all d ∈ [n]. As it is explained above, this refinement is irrelevant in the special case where
d = 1, though it proves to be useful in general for d ∈ [2 : n] (as it is exemplified here).
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The following theorem introduces the results of our analysis (so far) in the present section.

Theorem 2. Let A ⊆ {−1, 1}n, with n ∈ N, and let τ ∈ [n]. Let G = (V(G),E(G)) be an
un-directed, simple graph with vertex set V(G) = A, and edges connecting pairs of vertices in
G which are represented by vectors in A whose Hamming distance is less than or equal to τ. For
d ∈ [τ], let Ed(G) be the set of edges in G which connect all pairs of vertices that are represented by
vectors in A whose Hamming distance is equal to d (i.e., | E(G)| = ∑τ

d=1 | Ed(G)|).
(a) For d ∈ [τ], let the integers md ∈ [2 : min{2d, |A|}] and �d ∈ [min{2d − 1, |A| − 1}]

(be, preferably, the maximal possible values to) satisfy the requirements in (92) and (94),
respectively. Then,

| Ed(G)| ≤
(n−1

d−1) |A|
(

log |A| − n
d log �d

)
2 log md

�d

. (119)

(b) A loosened bound, which only depends on the cardinality of the set A, is obtained by setting
the default values md = 2 and �d = 1. It is then given by

| Ed(G)| ≤ 1
2

(
n − 1
d − 1

)
|A| log2 |A|, d ∈ [τ], (120)

and, if τ ≤ n+1
2 , then the (overall) number of edges in G satisfies

| E(G)| ≤ 1
2 exp

(
(n − 1)Hb

(
τ − 1
n − 1

))
|A| log2 |A|. (121)

(c) The refined upper bound on the RHS of (119) and the loosened upper bound on the RHS
of (120) improve the trivial bound 1

2 (
n
d)|A|, if and only if |A| < (md)

n
d or |A| < 2

n
d ,

respectively (see Example 1).

5.5. Influence of Fixed-Size Subsets of Bits

The result in Theorem 4.2 of [6], which is generalized and refined in Theorem 2 here,
is turned to study the total influence of the n variables of an equiprobable random vector

Xn ∈ {−1, 1}n on a subset A ⊂ {−1, 1}n. To this end, let X(i) denote the vector where the

bit at the i-th position of Xn is flipped, so X(i) � (X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn) for all
i ∈ [n]. Then, the influence of the i-th variable is defined as

Ii(A) � Pr
[
{Xn ∈ A} �= {X(i) ∈ A}

]
, i ∈ [n], (122)

and their total influence is defined to be the sum

I(A) �
n

∑
i=1

Ii(A). (123)

As it is shown in Chapters 9 and 10 of [6], influences of subsets of the binary hypercube
have far reaching consequences in the study of threshold phenomena, and many other
areas. As a corollary of (107), it is obtained in Theorem 4.3 of [6] that, for every subset
A ⊂ {−1, 1}n,

I(A) ≥ 2 Pr(A) log2
1

Pr(A)
, (124)

where Pr(A) � P[Xn ∈ A] = |A|
2n by the equiprobable distribution of Xn over {−1, 1}n.

In light of Theorem 2, the same approach which is used in Section 4.4 of [6] for the
transition from (107) to (124) can be also used to obtain, as a corollary, a lower bound on the
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average total influence over all subsets of d variables. To this end, let k1, . . . , kd be integers
such that 1 ≤ k1 < . . . < kd ≤ n, and the influence of the variables in positions k1, . . . , kd be
given by

I(k1,...,kd)
(A) � Pr

[
{Xn ∈ A} �=

{
X(k1,...,kd) ∈ A

}]
. (125)

Then, let the average influence of subsets of d variables be defined as

I(n,d)(A) � 1
(n

d)
∑

(k1,...,kd):
1≤k1<...<kd≤n

I(k1,...,kd)
(A). (126)

Hence, by (123) and (126), I(n,1)(A) = 1
n I(A) for every subset A ⊂ {−1, 1}n. Let

B(n,d)(A) �
{
(xn, yn) : xn ∈ A, yn ∈ {−1, 1}n \ A, dH(xn, yn) = d

}
, (127)

be the set of ordered pairs of sequences (xn, yn), where xn, yn ∈ {−1, 1}n are of Hamming
distance d from each other, with xn ∈ A and yn �∈ A. By the equiprobable distribution of
Xn on {−1, 1}n, we get

I(n,d)(A) =
1
(n

d)
∑

(k1,...,kd):
1≤k1<...<kd≤n

Pr
[
{Xn ∈ A} �=

{
X(k1,...,kd) ∈ A

}]
(128a)

=
2
(n

d)
∑

(k1,...,kd):
1≤k1<...<kd≤n

Pr
[

Xn ∈ A, X(k1,...,kd) �∈ A
]

(128b)

=
2
(n

d)
· |B

(n,d)(A)|
2n (128c)

=
|B(n,d)(A)|

2n−1 (n
d)

. (128d)

Since every point in A has (n
d) neighbors of Hamming distance d in the set {−1, 1}n, it

follows that (
n
d

)
|A| = 2

∣∣Ed(G)
∣∣+ ∣∣B(n,d)(A)

∣∣, (129)

where G is introduced in Theorem 2, and Ed(G) is the set of edges connecting pairs
of vertices in G which are represented by vectors in A of Hamming distance d. The
multiplication by 2 on the RHS of (129) is because every edge whose two endpoints are in
the set A is counted twice. Hence, by (106) and (129),

∣∣B(n,d)(A)
∣∣ = (

n
d

)
|A| − 2

∣∣Ed(G)
∣∣ (130a)

≥
(

n
d

)
|A| −

(n−1
d−1) |A|

(
log |A| − n

d log �d

)
log md

�d

(130b)

=

(
n
d

)
|A|

(
1 −

d
n log |A| − log �d

log md
�d

)
(130c)

=

(
n
d

)
|A|

(
log md − d

n log |A|
log md

�d

)
, (130d)

68



Entropy 2022, 24, 597

and the lower bound on the RHS of (130d) is positive if and only if |A| < (md)
n
d (see also

(114)). This gives from (128) that the average influence of subsets of d variables satisfies

I(n,d)(A) ≥ |A|
2n−1

(
log md − d

n log |A|
log md

�d

)
(131a)

= 2 Pr(A)

(
log md − d

n log
(
2n Pr(A)

)
log md

�d

)
(131b)

= 2 Pr(A)

( d
n log 1

Pr(A)
− log 2d

md

log md
�d

)
. (131c)

Note that by setting d = 1, and the default values md = 2 and �d = 1 on the RHS of (131c)
gives the total influence of the n variables satisfies, for all A ⊆ {−1, 1}n,

I(A) = nI(n,1)(A) (132a)

≥ 2 Pr(A) log2
1

Pr(A)
, (132b)

which is then specialized to the result in (Theorem 4.3 of [6], see (124)). This gives the
following result.

Theorem 3. Let Xn be an equiprobable random vector over the set {−1, 1}n, let d ∈ [n] and
A ⊂ {−1, 1}n. Then, the average influence of subsets of d variables of Xn, as it is defined in (126),
is lower bounded as follows:

I(n,d)(A) ≥ 2 Pr(A)

( d
n log 1

Pr(A)
− log 2d

md

log md
�d

)
, (133)

where Pr(A) � P[Xn ∈ A] = |A|
2n , and the integers md and �d are introduced in Theorem 2.

Similarly to the refined upper bound in Theorem 2, the lower bound on the RHS of (133) is
informative (i.e., positive) if and only if |A| < (md)

n
d . The lower bound on the RHS of (133) can

be loosened (by setting the default values md = 2 and �d = 1) to

I(n,d)(A) ≥ 2 Pr(A)

(
d
n

log2
1

Pr(A)
+ 1 − d

)
. (134)
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Appendix A. Proof of Proposition 1

For completeness, we prove Proposition 1 which introduces results from [25,28,37].
Let Ω be a non-empty finite set, and let {Xω}ω∈Ω be a collection of discrete random

variables. We first prove Item (a), showing that the entropy set function f : 2Ω → R in (15)
is a rank function.

• f (∅) = 0.
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• Submodularity: If S , T ⊆ Ω, then

f (T ∪ S) + f (T ∩ S)
= H(XT ∪S ) + H(XT ∩S ) (A1a)

= H(XT \S , XT ∩S , XS\T ) + H(XT ∩S ) (A1b)

= H(XT \S , XS\T |XT ∩S ) + 2 H(XT ∩S ) (A1c)

=
[
H(XT \S |XT ∩S ) + H(XS\T |XT ∩S )− I(XT \S ; XS\T |XT ∩S )

]
+2 H(XT ∩S ) (A1d)

=
[
H(XT \S |XT ∩S ) + H(XT ∩S )

]
+
[
H(XS\T |XT ∩S ) + H(XT ∩S )

]
− I(XT \S ; XS\T |XT ∩S ) (A1e)

= H(XT \S , XT ∩S ) + H(XS\T , XT ∩S )− I(XT \S ; XS\T |XT ∩S ) (A1f)

= H(XT ) + H(XS )− I(XT \S ; XS\T |XT ∩S ) (A1g)

= f (T ) + f (S)− I(XT \S ; XS\T |XT ∩S ), (A1h)

which gives

f (T ) + f (S)−
[

f (T ∪ S) + f (T ∩ S)
]
= I(XT \S ; XS\T |XT ∩S ) ≥ 0. (A2)

This proves the submodularity of f , while also showing that

f (T ) + f (S) = f (T ∪ S) + f (T ∩ S) ⇐⇒ XT \S ⊥⊥ XS\T | XT ∩S , (A3)

i.e., the rightmost side of (A2) holds with equality if and only if XT \S and XS\T are
conditionally independent given XT ∩S .

• Monotonicity: If S ⊆ T ⊆ Ω, then

f (S) = H(XS ) (A4a)

≤ H(XS ) + H(XT |XS ) (A4b)

= H(XT ) (A4c)

= f (T ), (A4d)

so f is monotonically increasing.

We next prove Item (b). Consider the set function f in (16).

• f (∅) = 0, and f (Ω) = H(XΩ).
• Supermodularity: If S , T ⊆ Ω, then

f (T ∪ S) + f (T ∩ S) = H(XT ∪S |XT c∩Sc) + H(XT ∩S |XT c∪Sc) (A5a)

=
[
H(XΩ)− H(XT c∩Sc)

]
+
[
H(XΩ)− H(XT c∪Sc)

]
(A5b)

= 2 H(XΩ)−
[
H(XT c∪Sc) + H(XT c∩Sc)

]
(A5c)

≥ 2 H(XΩ)−
[
H(XT c) + H(XSc)

]
(A5d)

=
[
H(XΩ)− H(XT c)

]
+
[
H(XΩ)− H(XSc)

]
(A5e)

= H(XT |XT c) + H(XS |XSc) (A5f)

= f (T ) + f (S), (A5g)

where inequality (A5d) holds since the entropy function in (15) is submodular (by
Item (a)).

• Monotonicity: If S ⊆ T ⊆ Ω, then
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f (S) = H(XS |XSc) (A6a)

≤ H(XS |XT c) (T c ⊆ Sc) (A6b)

≤ H(XT |XT c) (A6c)

= f (T ), (A6d)

so f is monotonically increasing.

Item (c) follows easily from Items (a) and (b). Consider the set function f : 2Ω → R in
(17). Then, for all T ∈ Ω, f (T ) = I(XT ; XT c) = H(XT )− H(XT |XT c), so f is expressed
as a difference of a submodular function and a supermodular function, which gives a
submodular function. Furthermore, f (∅) = 0; by the symmetry of the mutual information,
f (T ) = f (T c) for all T ⊆ Ω, so f is not monotonic.

We next prove Item (d). Consider the set function f : 2V → R in (18), and we need to
prove that f is submodular under the conditions in Item (d) where U ,V ⊆ Ω are disjoint
subsets, and the entries of the random vector XV are conditionally independent given XU .

• f (∅) = I(XU ; X∅) = 0.
• Submodularity: If S , T ⊆ V , then

f (T ∪ S) + f (T ∩ S)
= I(XU ; XT ∪S ) + I(XU ; XT ∩S ) (A7a)

=
[
H(XT ∪S )− H(XT ∪S |XU )

]
+
[
H(XT ∩S )− H(XT ∩S |XU )

]
(A7b)

=
[
H(XT ∪S ) + H(XT ∩S )

]
−
[
H(XT ∪S |XU ) + H(XT ∩S |XU )

]
(A7c)

=
[
H(XT ) + H(XS )− I(XT \S ; XS\T |XT ∩S )

]
−
[
H(XT ∪S |XU ) + H(XT ∩S |XU )

]
, (A7d)

where equality (A7d) holds by the proof of Item (a) (see (A2)). By the assumption on
the conditional independence of the random variables {Xv}v∈V given XU , we get

H(XT ∪S |XU ) + H(XT ∩S |XU ) = ∑
ω∈T ∪S

H(Xω |XU ) + ∑
ω∈T ∩S

H(Xω |XU ) (A8a)

= ∑
ω∈T

H(Xω |XU ) + ∑
ω∈S

H(Xω |XU ) (A8b)

= H(XT |XU ) + H(XS |XU ). (A8c)

Consequently, combining (A7) and (A8) gives

f (T ∪ S) + f (T ∩ S) =
[
H(XT ) + H(XS )− I(XT \S ; XS\T |XT ∩S )

]
−
[
H(XT |XU ) + H(XS |XU )

]
(A9a)

=
[
H(XT )− H(XT |XU )

]
+
[
H(XS )− H(XS |XU )

]
− I(XT \S ; XS\T |XT ∩S ) (A9b)

= I(XT ; XU ) + I(XS ; XU )− I(XT \S ; XS\T |XT ∩S ) (A9c)

= f (T ) + f (S)− I(XT \S ; XS\T |XT ∩S ) (A9d)

≤ f (T ) + f (S), (A9e)

where the inequality (A9e) holds with equality if and only if XT \S and XS\T are
conditionally independent given XT ∩S .
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• Monotonicity: If S ⊆ T ⊆ V , then

f (S) = I(XU ; XS ) ≤ I(XU ; XT ) = f (T ), (A10)

so f is monotonically increasing.

We finally prove Item (e), where it is needed to show that the entropy of a sum of
independent random variables is a rank function. Let f : 2Ω → R be the set function as
given in (19).

• f (∅) = 0.
• Submodularity: Let S , T ⊆ Ω. Define

U � ∑
ω∈T ∩S

Xω, V � ∑
ω∈S\T

Xω, W � ∑
ω∈T \S

Xω. (A11)

From the independence of the random variables {Xω}ω∈Ω, it follows that U, V and W
are independent. Hence, we get

[
f (T ) + f (S)

]
−
[

f (T ∪ S) + f (T ∩ S)
]

=
[

f (T )− f (T ∩ S)
]
−
[

f (T ∪ S)− f (S)
]

(A12a)

=
[
H(U + W)− H(U)

]
−
[
H(U + V + W)− H(U + V)

]
(A12b)

=
[
H(U + W)− H(U + W|W)

]
−
[
H(U + V + W)− H(U + V)

]
(A12c)

=
[
H(U + W)− H(U + W|W)

]
−
[
H(U + V + W)− H(U + V + W|W)

]
(A12d)

= I(U + W; W)− I(U + V + W; W) (A12e)

≥ I(U + W; W)− I(U + W, V; W), (A12f)

and

I(U + W, V; W) = I(V; W) + I(U + W; W |V) (A13a)

= I(U + W; W |V) (A13b)

= I(U + W; W). (A13c)

Combining (A12) and (A13) gives (11).
• Monotonicity: If S ⊆ T ⊆ Ω, then since {Xω}ω∈Ω are independent random variables,

(A11) implies that U and W are independent and V = 0. Hence,

f (T )− f (S) = H(U + W)− H(U) (A14a)

= H(U + W)− H(U + W|W) (A14b)

= I(U + W; W) ≥ 0. (A14c)

This completes the proof of Proposition 1.

Appendix B. Proof of Proposition 4

Lemma A1. Let {Bj}�j=1 (with � ≥ 2) be a sequence of sets that is not a chain (i.e., there is no
permutation π : [�] → [�] such that Bπ(1) ⊆ Bπ(2) ⊆ . . . ⊆ Bπ(�)). Consider a recursive process
where, at each step, a pair of sets that are not related by inclusion is replaced with their intersection and
union. Then, there exists such a recursive process that leads to a chain in a finite number of steps.

Proof. The lemma is proved by mathematical induction on �. It holds for � = 2 since
B1 ∩ B2 ⊆ B1 ∪ B2, and the process halts in a single step. Suppose that the lemma holds
with a fixed � ≥ 2, and for an arbitrary sequence of � sets which is not a chain. We aim to
show that it also holds for every sequence of �+ 1 sets which is not a chain. Let {Bj}�+1

j=1

72



Entropy 2022, 24, 597

be such an arbitrary sequence of sets, and consider the subsequence of the first � sets
B1, . . . ,B�. If it is not a chain, then (by the induction hypothesis) there exists a recursive
process as above which enables to transform it into a chain in a finite number of steps, i.e.,
we get a chain B′

1 ⊆ B′
2 ⊆ . . . ⊆ B′

�. If B′
� ⊆ B�+1 or B�+1 ⊆ B′

1, then we get a chain of �+ 1
sets. Otherwise, by proceeding with the recursive process where B′

� and B�+1 are replaced
with their intersection and union, consider the sequence

B′
1, . . . , B′

�−1, B′
� ∩ B�+1, B′

� ∪ B�+1. (A15)

By the induction hypothesis, the first � sets in this sequence can be transformed into a
chain (in a finite number of steps) by a recursive process as above; this gives a chain of the
form B′′

1 ⊆ B′′
2 . . . ⊆ B′′

�−1 ⊆ B′′
� . The first � sets in (A15) are all included in B′

�, so every
combination of unions and intersections of these � sets is also included in B′

�. Hence, the
considered recursive process leads to a chain of the form

B′′
1 ⊆ B′′

2 . . . ⊆ B′′
�−1 ⊆ B′′

� ⊆ B′
� ∪ B�+1, (A16)

where the last inclusion in (A16) holds since B′′
� ⊆ B′

�. The claim thus holds for �+ 1 if it
holds for a given �, and it holds for � = 2, it therefore holds by mathematical induction for
all integers � ≥ 2.

We first prove Proposition 4a. Suppose that there is a permutation π : [M] → [M] such
that Sπ(1) ⊆ Sπ(2) ⊆ . . . ⊆ Sπ(M) is a chain. Since every element in Ω is included in at least
d of these subsets, then it should be included in (at least) the d largest sets of this chain, so
Sπ(j) = Ω for every j ∈ [M − d + 1 : M]. Due to the non-negativity of f , it follows that

M

∑
j=1

f (Sj) ≥
M

∑
j=M−d+1

f (Sπ(j)) (A17a)

= d f (Ω). (A17b)

Otherwise, if we cannot get a chain by possibly permuting the subsets in the sequence{
Sj}M

j=1, consider a pair of subsets Sn and Sm that are not related by inclusion, and replace
them with their intersection and union. By the submodularity of f ,

M

∑
j=1

f (Sj) = ∑
j �=n,m

f (Sj) + f (Sn) + f (Sm) (A18a)

≥ ∑
j �=n,m

f (Sj) + f (Sn ∩ Sm) + f (Sn ∪ Sm). (A18b)

For all ω ∈ Ω, let deg(ω) be the number of indices j ∈ [M] such that ω ∈ Sj. By replacing
Sn and Sm with Sn ∩ Sm and Sn ∪ Sm, the set of values {deg(ω)}ω∈Ω stays unaffected
(indeed, if ω ∈ Sn and ω ∈ Sm, then it belongs to their intersection and union; if ω belongs
to only one of the sets Sn and Sm, then ω /∈ Sn ∩ Sm and ω ∈ Sn ∪ Sm; finally, if ω /∈ Sn
and ω /∈ Sm, then it does not belong to their intersection and union). Now, consider
the recursive process in Lemma A1. Since the profile of the number of inclusions of the
elements in Ω is preserved in each step of the recursive process in Lemma A1, it follows that
every element in Ω stays to belong to at least d sets in the chain which is obtained at the end
of this recursive process. Moreover, in light of (A18), in every step of the recursive process
in Lemma A1, the sum in the LHS of (A18) cannot increase. Inequality (45) therefore finally
follows from the earlier part of the proof for a chain (see (A17)).

We next prove Proposition 4b. Let A ⊂ Ω, and suppose that every element in A
is included in at least d ≥ 1 of the subsets {Sj}M

j=1. For all j ∈ [M], define S′
j � Sj ∩ A,

73



Entropy 2022, 24, 597

and consider the sequence
{
S′

j
}M

j=1 of subsets of A. If f is a rank function, then it is
monotonically increasing, which yields

f (S′
j ) ≤ f (Sj), j ∈ [M]. (A19)

Each element of A is also included in at least d of the subsets
{
S′

j
}M

j=1 (by construction, and

since (by assumption) each element in A is included in at least d of the subsets {Sj}M
j=1). By

the non-negativity and submodularity of f , Proposition 4a gives

M

∑
j=1

f (S′
j ) ≥ d f (A). (A20)

Combining (A19) and (A20) yields (46). This completes the proof of Proposition 4.

Remark A1. Lemma A1 is weaker than a claim that, in every recursive process as in Lemma A1,
the number of pairs of sets that are not related by inclusion is strictly decreasing at each step.
Lemma A1 is, however, sufficient for our proof of Proposition 4a.
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A Skew Logistic Distribution for Modelling COVID-19 Waves
and Its Evaluation Using the Empirical Survival
Jensen–Shannon Divergence

Mark Levene

Department of Computer Science and Information Systems, Birkbeck, University of London,
London WC1E 7HX, UK; mlevene@dcs.bbk.ac.uk

Abstract: A novel yet simple extension of the symmetric logistic distribution is proposed by intro-
ducing a skewness parameter. It is shown how the three parameters of the ensuing skew logistic
distribution may be estimated using maximum likelihood. The skew logistic distribution is then
extended to the skew bi-logistic distribution to allow the modelling of multiple waves in epidemic
time series data. The proposed skew-logistic model is validated on COVID-19 data from the UK,
and is evaluated for goodness-of-fit against the logistic and normal distributions using the recently
formulated empirical survival Jensen–Shannon divergence (ESJS) and the Kolmogorov–Smirnov
two-sample test statistic (KS2). We employ 95% bootstrap confidence intervals to assess the improve-
ment in goodness-of-fit of the skew logistic distribution over the other distributions. The obtained
confidence intervals for the ESJS are narrower than those for the KS2 on using this dataset, implying
that the ESJS is more powerful than the KS2.

Keywords: empirical survival Jensen–Shannon divergence; Kolmogorov–Smirnov two-sample test;
skew logistic distribution; bi-logistic growth; epidemic waves; COVID-19 data

1. Introduction

In exponential growth, the population grows at a rate proportional to its current size.
This is unrealistic, since in reality, growth will not exceed some maximum, called its carrying
capacity. The logistic equation [1] (Chapter 6) deals with this problem by ensuring that the
growth rate of the population decreases once the population reaches its carrying capacity [2].
Statistical modelling of the logistic equation’s growth and decay is accomplished with the
logistic distribution [3] and [4] (Chapter 22), noting that the tails of the logistic distribution
are heavier than those of the ubiquitous normal distribution. The normal and logistic
distributions are both symmetric, however, real data often exhibits skewness [5], which has
given rise to extensions of the normal distribution to accommodate for skewness, as in the
skew normal [6] and epsilon skew normal [7] distributions. Subsequently, skew logistic
distributions were also devised, as in [8,9].

Epidemics, such as COVID-19, are traditionally modelled by compartmental mod-
els such as the SIR (Susceptible-Infected-Removed) model and its extension, the SEIR
(Susceptible-Exposed-Infected-Removed) model, which estimate the trajectory of an epi-
demic [10]. These models typically rely on assumptions on how the disease is transmitted
and progresses [11], and are routinely used to understand the consequences of policies
such as mask wearing and social distancing [12]. Time series models [13], on the other
hand, employ historical data to make forecasts about the future, are generally simpler
than compartmental models, and are able to make forecasts on, for example, number of
cases, hospitalisations and deaths. The SIR model can be interpreted as a logistic growth
model [14,15]. However, as the data is inherently skewed, a skewed logistic statistical model
would be a natural choice, although, as such, it does not rely on biological assumptions in
its forecasts [16].
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Herein, we present a novel yet simple (one may argue the simplest), three parameter
skewed extension to the logistic distribution to allow for asymmetry; c.f. [16]. Nevertheless,
if instead of our extension we deploy one of the other skew logistic distributions (such as
the one described in [8]) the results would no doubt be comparable to the results we obtain
herein; however, we pursue our simpler extension, detailing its statistical properties.

In the context of analysing epidemics, the logistic distribution is normally preferred,
as it is a natural distribution to use in modelling population growth and decay. However,
we still briefly mention a comparison of the results we obtain in modelling COVID-19
waves with the skew logistic distribution, to one which, instead, employs a skew normal
distribution (more specifically we choose the, flexible, epsilon skew normal distribution [7]).
The result of this comparison implies that utilising the epsilon skew normal distribution
leads, overall, to results which are comparable to those when utilising the skew logistic
distribution. However, in practice, it is still preferable to make use of the skew logistic distri-
bution as it is the natural model to deploy in this context [17], since, on the whole, it is more
consistent with the data as its tails are heavier than those of a skew normal distribution.

Epidemics are said to come in “waves”. The precise definition of a wave is somewhat
elusive [18], but it is generally accepted that, assuming we have a time series of the number
of, say, daily hospitalisations, a wave will span over a period from one valley (minima) in
the time series to another valley, with a peak (maxima) in between them. There is no strict
requirement that waves do not overlap, although, for simplicity we will not consider any
overlap as such; see [18], for an attempt to give an operational definition of the concept
of epidemic wave. In order to combine waves, we make use of the concept of bi-logistic
growth [19,20], or more generally, multi-logistic growth, which allows us to sum two or
more instances of logistic growth when the time series spans over more than a single wave.

To fit the skew logistic distribution to the time series data we employ maximum
likelihood, and to evaluate the goodness-of-fit we make use of the recently formulated em-
pirical survival Jensen–Shannon divergence (ESJS) [21,22] and the well-established Kolmogorov–
Smirnov two-sample test statistic (KS2) [23] (Section 6.3). The ESJS is an information-theoretic
goodness-of-fit measure of a fitted parametric continuous distribution, which overcomes
the inadequacy of the coefficient of determination, R2, as a goodness-of-fit measure for non-
linear models [24]. The KS2 statistic also satisfies this criteria regarding R2; however, we
observe that the 95% bootstrap confidence intervals [25] we obtain for the ESJS are nar-
rower than those for the KS2, suggesting that the ESJS is more powerful [26] than the KS2.
Another well-known limitation of the KS2 statistic is that it is less sensitive to discrepancies
at the tails of the distribution than the ESJS statistic is, in the sense that as opposed to ESJS
it is “local”, i.e., its value is determined by a single point [27].

The rest of the paper is organised as follows. In Section 2, we introduce a skew
logistic distribution, which is a simple extension of the standard, symmetric, logistic
distribution obtained by adding to it a single skew parameter and derive some of its
properties. In Section 3, we formulate the solution to the maximum likelihood estimation of
the parameters of the skew logistic distribution. In Section 4, we make use of an extension
of the skew logistic distribution to the bi-skew logistic distribution to model a time series of
COVID-19 data items having more than a single wave. In Section 5, we provide analysis of
daily COVID-19 deaths in the UK from 30 January 2020 to 30 July 2021, assuming the skew
logistic distribution as an underlying model of the data. The evaluation of goodness-of-fit
of the skew logistic distribution to the data makes use of the recently formulated ESJS,
and compares the results to those when employing the KS2 instead. We observe that the
same technique, which we applied to the analysis of COVID-19 deaths, can be used to
model new cases and hospitalisations. Finally, in Section 6, we present our concluding
remarks. It is worth noting that in the more general setting of information modelling, being
able to detect epidemic waves may help supply chains in planning increased resistance to
such adverse events [28]. We note that all computations were carried out using the Matlab
software package.
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2. A Skew Logistic Distribution

Here, we introduce a novel skew logistic distribution, which extends, in straightforward
manner, the standard two parameter logistic distribution [3] and [4] (Chapter 22) by
adding to it a skew parameter. The rationale for introducing the distribution is that, apart
from its simple formulation, we believe that the maximum likelihood solution presented
below is also simpler than those derived for other skew logistic distributions, such as the
ones investigated in [8,9]. This point provides further justification for our skew logistic
distribution when introducing the bi-skew logistic distribution in Section 4.

Now, let μ be a location parameter, s be a scale parameter and λ be a skew parameter,
where s > 0 and 0 < λ < 2. Then, the probability density function of the skew logistic
distribution at a value x of the random variable X, denoted as f (x; λ, μ, s), is given by:

f (x; λ, μ, s) = κλ

exp
(
−λ

x−μ
s

)
s
(

1 + exp
(
− x−μ

s

))2 , (1)

noting that for clarity we write x − μ above as a shorthand for
(
x − μ

)
, and κλ is a normali-

sation constant, which depends on λ.
When λ = 1, the skew logistic distribution reduces to the standard logistic distribution

as in [3] and [4] (Chapter 22), which is symmetric. On the other hand, when 0 < λ < 1,
the skew logistic distribution is positively skewed, and when 1 < λ < 2, it is nega-
tively skewed. So, when λ = 1, κλ = 1, and, for example, when λ = 0.5 or 1.5, κλ = 2/π.
For simplicity, from now on, unless necessary, we will omit to mention the constant κλ as it
will not effect any of the results.

The skewness of a random variable X [4,5], is defined as:

E

[(
X − μ

s

)3
]

,

and thus, assuming for simplicity of exposition (due the linearity of expectations [5]) that
μ = 0 and s = 1, the skewness of the skew logistic distribution, denoted by γ(λ), is
given by:

γ(λ) =
∫ ∞

−∞
x3 exp(−λx)

s
(
1 + exp(−x)

)2 dx. (2)

First, we will show that letting λ1 = λ, with 0 < λ1 < 1, we have γ(λ1) > 0, that
is f (x; λ1, 0, 1) is positively skewed. We can split the integral in (2) into two integrals
for the negative part from −∞ to 0 and the positive part from 0 to ∞, noting that when
x = 0, the expression to the right of the integral is equal to 0. Then, on setting y = −x
for the negative part, and y = x for the positive part, the result follows, as by algebraic
manipulation it can be shown that:

exp(−λ1y)(
1 + exp(−y)

)2 >
exp(λ1y)(

1 + exp(y)
)2 , (3)

implying that γ(λ1) > 0 as required.
Second, in a similar fashion to above, on letting λ2 = λ1 + 1 = λ, with 1 < λ2 < 2, it

follows that γ(λ2) < 0, that is f (x; λ2, 0, 1) is negatively skewed. In particular, by algebraic
manipulation we have that:

exp
(
−λ2y

)(
1 + exp(−y)

)2 <
exp

(
λ2y

)(
1 + exp(y)

)2 , (4)

implying that γ(λ2) < 0 as required.
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The cumulative distribution function of the skew logistic distribution at a value x of
the random variable X is obtained by integrating f (x; λ, μ, s), to obtain F(x; μ, s, λ), which
is given by:

F(x; λ, μ, s) = κλ exp
(
−(λ − 2)

x − μ

s

)⎛⎜⎜⎜⎝ 1(
1 + exp

(
x−μ

s

)) −

λ − 1
λ − 2 2F1

(
1, 2 − λ; 3 − λ;− exp

(
x − μ

s

))⎞⎠,

(5)

where 2F1(a, b; c; z) is the Gauss hypergemoetric function [29] (Chapter 15); we assume a, b
and c are positive real numbers, and that z is a real number extended outside the unit disk
by analytic continuation [30].

The hypergeometric function has the following integral representation [29] (Chapter 15),

Γ(c)
Γ(b)Γ(c − b)

∫ 1

0

tb−1(1 − t)c−b−1

(1 − tz)a dt, (6)

where c > b. Now, assuming without loss of generality that μ = 0 and s = 1, we have that:

2F1
(
1, 2 − λ; 3 − λ;− exp(x)

)
= (2 − λ)

∫ 1

0

t1−λ(
1 + t exp(x)

) dt, (7)

where x is a real number.
Therefore, from (7) it can be verified that: (i) 2F1(1, 2 − λ; 3 − λ;− exp(x)) is monoton-

ically decreasing with x, (ii) as x tends to plus infinity, 2F1(1, 2 − λ; 3 − λ;− exp(x)) tends
to 0 and (iii) as x tends to minus infinity, 2F1(1, 2 − λ; 3 − λ;− exp(x)) tends to 1, since:

(2 − λ)
∫ 1

0
t1−λ dt = 1.

3. Maximum Likelihood Estimation for the Skew Logistic Distribution

We now formulate the maximum likelihood estimation [31] of the parameters μ, s and
λ of the skew logistic distribution. Let {x1, x2, . . . , xn} be a random sample of n values
from the density function of the skew logistic distribution in (1). Then, the log likelihood
function of its three parameters is given by:

ln L(λ, μ, s) = −n ln(s)− λ

s

n

∑
i=1

(xi − μ)− 2
n

∑
i=1

ln

(
1 + exp

(
− xi − μ

s

))
. (8)

In order to solve the log likelihood function, we first partially differentiate ln L(λ, μ, s)
as follows:

∂ ln L(λ, μ, s)
∂λ

=
n

∑
i=1

μ − xi
s

,

∂ ln L(λ, μ, s)
∂μ

=
λn
s

− 2
s

n

∑
i=1

1

1 + exp
(

xi−μ
s

) and

∂ ln L(λ, μ, s)
∂s

= −n
s
+

1
s2

n

∑
i=1

(
xi − μ

)⎛⎜⎝λ − 2

1 + exp
(

xi−μ
s

)
⎞⎟⎠. (9)
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It is therefore implied that the maximum likelihood estimators are the solutions to the
following three equations:

μ =
∑n

i=1 xi

n
,

λ =
2
n

n

∑
i=1

1

1 + exp
(

xi−μ
s

) and

s =
1
n

n

∑
i=1

(
xi − μ

)⎛⎜⎝λ − 2

1 + exp
(

xi−μ
s

)
⎞⎟⎠, (10)

which can be solved numerically.
We observe that the equation for μ in (10) does not contribute to solving the maximum

likelihood, since the location parameter μ is equal to the mean only when λ = 1. We thus look
at an alternative equation for μ, which involves the mode of the skew logistic distribution.

To derive the mode of the skew logistic distribution we solve the equation,

∂

∂x

exp
(
−λ

x−μ
s

)
s
(

1 + exp
(
− x−μ

s

))2 = 0, (11)

to obtain:

μ = x − s log
(
−λ − 2

λ

)
. (12)

Thus, motivated by (12) we replace the equation for μ in (10) with:

μ = m − s log
(
−λ − 2

λ

)
, (13)

where m is the mode of the random sample.

4. The Bi-Skew Logistic Distribution for Modelling Epidemic Waves

We start by defining the bi-skew logistic distribution, which will enable us to model
more than one wave of infections at a time. We then discuss how we partition the data
into single waves, in a way that we can apply the maximum likelihood from the previous
section to the data in a consistent manner.

We present the bi-skew logistic distribution, which is described by the sum,

f (x; λ1, μ1, s1) + f (x; λ2, μ2, s2),

of two skew logistic distributions. It is given in full as:

exp
(
−λ1

x−μ1
s1

)
s1

(
1 + exp

(
− x−μ1

s1

))2 +
exp

(
−λ2

x−μ2
s2

)
s2

(
1 + exp

(
− x−μ2

s2

))2 , (14)

which characterises two distinct phases of logistic growth (c.f. [19,32]). We note that (14) can
be readily extended to the general case of the sum of multiple skew logistic distributions;
however, for simplicity, we only present the formula for the bi-skew logistic case. Thus,
while the (single) skew logistic distribution can only model one wave of infected cases
(or deaths, or hospitalisations), the bi-skew logistic distribution can model two waves of
infections, and in the general cases, any number of waves.
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In the presence of two waves, the maximum likelihood solution to (14), would give us
access to the necessary model parameters, and solving the general case in the presence of
multiple waves, when the sum in (14) may have two or more skew logistic distributions,
is evidently even more challenging. Thus, we simplify the solution for the multiple wave
case, and concentrate on an approximation assuming a sequential time series when one
wave strictly follows the next. More specifically, we assume that each wave is modelled by
a single skewed logistic distribution describing the growth phase until a peak is reached,
followed by a decline phase; see [33] who consider epidemic waves in the context of the
standard logistic distribution. Thus, a wave is represented by a temporal pattern of growth
and decline, and the time series as a whole describes several waves as they evolve.

To provide further clarification of the model, we mention that the skew-bi logistic
distribution is not a mixture model per se, in which case there is a mixture weight for each
distribution in the sum, as in, say, a Gaussian mixture [34] (Chapter 9). In the bi-skew
logistic distribution case we do not have mixture weights, rather, we have two phases in our
context waves, which are sequential in nature, possibly with some overlap, as can be seen
in Figure 1 (c.f. [19,32]). Strictly speaking, the bi-skew logistic distribution can be viewed as
a mixture model where the mixture weights are each 0.5 and a scaling factor of 2 is applied.
Thus, as an approximation, we add a preprocessing step where we segment the time series
into distinct waves, resulting in a considerable reduction to the complexity of the maximum
likelihood estimation. We do, however, remark that the maximum likelihood estimation
for the bi-skew logistic distribution is much simpler than that of a corresponding mixture
model, due to the absence of mixture weights. In particular, although we could, in principle,
make use of the EM (expectation-maximisation) algorithm [34] (Chapter 9) and [35] to
approximate the maximum likelihood estimates of the parameters, this would not be strictly
necessary in the bi-skew logistic case, cf. [36]. The only caveat, which holds independently
of whether the EM algorithm is deployed or not, is the additional number of parameters
present in the equations being solved. We leave this investigation as future work, and focus
on our approximation, which does not require the solution to the maximum likelihood of
(14); the details of the preprocessing heuristic we apply are given in the following section.

5. Data Analysis of COVID-19 Deaths in the UK

Here, we provide a full analysis of COVID-19 deaths in the UK from 30 January 2020
to 30 July 2021, employing the ESJS goodness-of-fit statistic and comparing it to the KS2
statistic. The daily UK COVID-19 data we used was obtained from [37].

As a proof of concept of the modelling capability of the skew logistic distribution, we
now provide a detailed analysis of the time series of COVID-19 deaths in the UK from 30
January 2020 to 30 July 2021.

To separate the waves, we first smoothed the raw data using a moving average with a
centred sliding window of 7 days. We then applied a simple heuristic, where we identified
all the minima in the time series and defined a wave as a consecutive portion of the time,
of at least 72 days, with the endpoints of each wave being local minima apart from the
first wave, which starts from day 0. The resulting four waves in the time series are shown
in Figure 1; see last column of Table 1 for the endpoints of the four waves. It would be
worthwhile, as future work, to investigate other heuristics, which may, for example, allow
overlap between the waves to obtain more accurate start and end points and to distribute
the number of cases between the waves when there is overlap between them.

In Table 1, we show the parameters resulting from maximum likelihood fits of the skew
logistic distribution to the four waves. Figure 2 shows histograms of the four COVID-19
waves, each overlaid with the curve of the maximum likelihood fit of the skew logistic
distribution to the data. Pearson’s moment and median skewness coefficients [38] for the
four waves are recorded in Table 2. It can be seen that the correlation between these and
1 − λ is close to 1, as we would expect.
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Figure 1. Reported daily COVID-19 deaths from 30 January 2020 to 30 July 2021 and their minima
labelled ‘*’, resulting in four distinct waves; a moving average with a centred sliding window of 7
days was applied to the raw data.

Table 1. Parameters from maximum likelihood fits of the skew logistic distribution to the four waves,
and the day of the local minimum (End), which is the end point of the wave.

Fitted Parameters for the Skew Logistic Distribution

Wave λ μ s End

1 0.2150 3.5137 3.8443 71
2 1.0741 196.5157 14.4323 239
3 0.2297 243.0709 4.5882 334
4 1.7306 502.2758 7.0195 532

Table 2. Pearson’s moment and median skewness coefficients for the four waves, and the correlation
between 1 − λ and these coefficients.

Skewness

Wave 1 − λ Moment Median

1 0.7850 0.9314 0.2939
2 −0.0741 −0.7758 −0.0797
3 0.7703 0.9265 0.1939
4 −0.7306 −1.5555 −0.2413

Correlation 0.9931 0.9826
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Figure 2. Histograms for the four waves of COVID-19 deaths from 30 January 2020 to 30 July
2021, each overlaid with the curve of the maximum likelihood fit of the skew logistic distribution to
the data.

We now turn to the evaluation of goodness-of-fit using the ESJS (empirical survival
Jensen–Shannon divergence) [21,22], which generalises the Jensen–Shannon divergence [39]
to survival functions, and the well-known KS2 (Kolmogorov–Smirnov two-sample test
statistic) [23] (Section 6.3). We will also employ 95% bootstrap confidence intervals [25]
to measure the improvement in the ESJS and KS2, goodness-of-fit measures, of the skew-
logistic over the logistic and normal distributions, respectively. For completeness, we
formally define the ESJS and KS2.

To set the scene, we assume a time series [40], x = {x1, x2, . . . , xn}, where xt, for t =
1, 2, . . . , n is a value indexed by time, t, in our case modelling the number of daily COVID-19
deaths. We are, in particular, interested in the marginal distribution of x, which we suppose
comes from an underlying parametric continuous distribution D.

The empirical survival function of a value z for the time series x, denoted by Ŝ(x)[z], is
given by:

Ŝ(x)[z] =
1
n

n

∑
i=1

I{xi>z}, (15)

where I is the indicator function. In the following, we will let P̂(z) = Ŝ(x)[z] stand for the
empirical survival function Ŝ(x)[z], where the time series x is assumed to be understood
from context. We will generally be interested in the empirical survival function P̂, which
we suppose arises from the survival function P of the parametric continuous distribution
D, mentioned above.
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The empirical survival Jensen–Shannon divergence (ESJS) between two empirical survival
functions, Q̂1 and Q̂2 arising from the survival functions Q1 and Q2, is given by:

ESJS(Q̂1, Q̂2) =
1
2

∫ ∞

0
Q̂1(z) log

(
Q̂1(z)
M̂(z

)
+ Q̂2(z) log

(
Q̂2(z)
M̂(z)

)
dz, (16)

where:
M̂(z) =

1
2

(
Q̂1(z) + Q̂2(z)

)
.

We note that the ESJS is bounded and can thus be normalised, so it is natural to
assume its values are between 0 and 1; in particular, when Q̂1 = Q̂2 its value is zero.
Moreover, its square root is a metric [41], cf. [21].

The Kolmogorov–Smirnov two-sample test statistic between Q̂1 and Q̂2 as above, is
given by:

KS2(Q̂1, Q̂2) = max
z

|Q̂1(z)− Q̂2(z)|, (17)

where max is the maximum function, and |v| is the absolute value of a number v. We note
that KS2 is bounded between 0 and 1, and is also a metric.

For a parametric continuous distribution D, we let φ = φ(D, P̂) be the parameters
that are obtained from fitting D to the empirical survival function, P̂, using maximum
likelihood estimation. In addition, we let Pφ = Sφ(x) be the survival function of x, for D
with parameters φ. Thus, the empirical survival Jensen–Shannon divergence and the
Kolmogorov–Smirnov two-sample test statistic, between P̂ and Pφ, are given by ESJS(P̂, Pφ)

and KS2(P̂, Pφ), respectively, where P̂ and Pφ are omitted below as they will be understood
from context. These values provide us with two measures of goodness-of-fit for how well
D with parameters φ is fitted to x [22].

We are now ready to present the results of the evaluation. In Table 3, we show the
ESJS values for the four waves and the said improvements, while in Table 4, we show the
corresponding KS2 values and improvements. In all cases, the skew logistic is a preferred
model over both the logistic and normal distributions, justifying the addition of a skewness
parameter as can be see in Figure 2. Moreover, in all but one case the logistic distribution
was preferred over the normal distribution—wave 3, where the KS2 statistic of the normal
distribution was smaller than that of the logistic distribution. We observe that, for the
second wave, the ESJS and KS2 values for the skew logistic and logistic distribution were
the closest, since, as can be seen from Table 1, the second wave was more or less symmetric,
in which case the skew logistic distribution reduces to the logistic distribution.

Table 3. ESJS values for the skew logistic (SL), logistic (Logit) and normal (Norm) distributions,
and the improvement percentage of the skew logistic over the logistic (SL-Logit) and normal (SL-
Norm) distributions, respectively.

ESJS Values for SL, Logit and Norm Distributions

Wave SL Logit SL-Logit Norm SL-Norm

1 0.0419 0.0583 28.25% 0.0649 35.54%
2 0.0392 0.0448 12.52% 0.0613 36.17%
3 0.0316 0.0387 18.38% 0.0423 25.38%
4 0.0237 0.0927 74.47% 0.0939 74.79%

In Tables 5 and 6, we present the bootstrap 95% confidence intervals of the ESJS and
KS2 improvements, respectively, using the percentile method, while in Tables 7 and 8, we
provide the 95% confidence intervals of the ESJS and KS2 improvements, respectively,
using the bias-corrected and accelerated (BCa) method [25], which adjusts the confidence
intervals for bias and skewness in the empirical bootstrap distribution. In all cases, the
mean of the bootstrap samples is above zero with a very tight standard deviation. As noted
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above, the second wave is more or less symmetric, so we expect that the standard logistic
distribution will provide a fit to the data, which is as good as the skew logistic fit. It is thus
not surprising that in this case the improvement percentages are, generally, not significant.
In addition, the improvements for the third wave are also, generally, not significant, which
may be due to the starting point of the third wave, given our heuristic, being close to its
peak; see Figure 1. We observe that, for this dataset, it is not clear whether deploying the
BCa method yields a significant advantage over simply deploying the percentile method.

Table 4. KS2 values for the skew logistic (SL), logistic (Logit) and normal (Norm) distributions,
and the improvement percentage of the skew logistic over the logistic (SL-Logit) and normal (SL-
Norm) distributions, respectively.

KS2 Values for SL, Logit and Norm Distributions

Wave SL Logit SL-Logit Norm SL-Norm

1 0.0621 0.1245 50.14% 0.1280 51.50%
2 0.0357 0.0391 8.57% 0.0420 15.01%
3 0.0571 0.0930 38.66% 0.0854 33.18%
4 0.0098 0.0817 87.98% 0.1046 90.61%

In Table 9, we show the mean and standard deviation statistics of the confidence inter-
val widths, of the metrics we used to compare the distributions, implying that, in general,
the ESJS goodness-of-fit measure is more powerful than the KS2 goodness-of-fit measure.
This is based on the known result that statistical tests using measures resulting in smaller
confidence intervals are normally considered to be more powerful, implying that a smaller
sample size may be deployed [42].

Table 5. Results from the percentile method for the confidence interval of the difference of the ESJS
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

Percentile Confidence Intervals for ESJS Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0093 0.0317 0.0224 0.0211 0.0063
1/SL-Norm 0.0170 0.0382 0.0212 0.0278 0.0063
2/SL-Logit −0.0010 0.0066 0.0076 0.0034 0.0049
2/SL-Norm 0.0154 0.0232 0.0078 0.0201 0.0051
3/SL-Logit −0.0028 0.0112 0.0140 0.0083 0.0022
3/SL-Norm 0.0021 0.0149 0.0128 0.0120 0.0022
4/SL-Logit 0.0549 0.0810 0.0261 0.0714 0.0068
4/SL-Norm 0.0560 0.0821 0.0261 0.0722 0.0070

As mentioned in the introduction, we obtained comparable results to the above when
modelling epidemic waves with the epsilon skew normal distribution [7] as opposed to
using the skew logistic distribution; see also [43] for a comparison of a skew logistic and
skew normal distribution in the context of insurance loss data, showing that the skew
logistic performed better than the skew normal distribution for fitting the datasets tested.
Further to the note in the introduction that the skew logistic distribution is a more natural
one to deploy in this case due to its heavier tails, we observe that in an epidemic scenario,
the number of cases counted can only be non-negative, while the epsilon skew normal also
supports negative values.
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Table 6. Results from the percentile method for the confidence interval of the difference of the KS2
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

Percentile Confidence Intervals for KS2 Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0438 0.0760 0.0322 0.0621 0.0073
1/SL-Norm 0.0411 0.0821 0.0410 0.0684 0.0078
2/SL-Logit 0.0003 0.0047 0.0044 0.0033 0.0009
2/SL-Norm 0.0007 0.0092 0.0085 0.0065 0.0017
3/SL-Logit −0.0073 0.0441 0.0514 0.0343 0.0082
3/SL-Norm −0.0142 0.0365 0.0507 0.0267 0.0080
4/SL-Logit 0.0474 0.0728 0.0254 0.0680 0.0046
4/SL-Norm 0.0710 0.0962 0.0252 0.0905 0.0048

Table 7. Results from the BCa method for the confidence interval of the difference of the ESJS
between the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic
(SL) distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound,
upper bound, confidence interval, mean of samples and standard deviation of samples, respectively.

BCa Confidence Intervals for ESJS Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0087 0.0260 0.0173 0.0210 0.0062
1/SL-Norm 0.0165 0.0333 0.0168 0.0275 0.0063
2/SL-Logit −0.0009 0.0258 0.0267 0.0036 0.0053
2/SL-Norm 0.0153 0.0425 0.0272 0.0201 0.0050
3/SL-Logit −0.0024 0.0095 0.0119 0.0084 0.0023
3/SL-Norm −0.0027 0.0135 0.0162 0.0119 0.0024
4/SL-Logit 0.0308 0.0703 0.0395 0.0708 0.0074
4/SL-Norm 0.0554 0.0713 0.0159 0.0726 0.0069

Table 8. Results from the BCa method for the confidence interval of the difference of the KS2 between
the logistic (Logit) and skew logistic (SL), and between the normal (Norm) and skew logistic (SL)
distributions, respectively; Diff, LB, UB, CI, Mean and STD stand for difference, lower bound, upper
bound, confidence interval, mean of samples and standard deviation of samples, respectively.

BCa Confidence Intervals for KS2 Improvement

Wave/Diff LB of CI UB of CI Width of CI Mean STD

1/SL-Logit 0.0428 0.0801 0.0373 0.0624 0.0074
1/SL-Norm 0.0444 0.0777 0.0333 0.0683 0.0078
2/SL-Logit 0.0005 0.0047 0.0042 0.0033 0.0008
2/SL-Norm 0.0001 0.0089 0.0088 0.0064 0.0017
3/SL-Logit 0.0013 0.0445 0.0432 0.0346 0.0077
3/SL-Norm −0.0111 0.0368 0.0479 0.0263 0.0082
4/SL-Logit 0.0491 0.0739 0.0248 0.0676 0.0047
4/SL-Norm 0.0685 0.0985 0.0300 0.0908 0.0046
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Table 9. Mean and standard deviation (STD) statistics for the confidence interval (CI) widths using
the percentile (P) and BCa methods.

Summary Statistics for the CI Widths

Statistic ESJS-P KS2-P ESJS-BCa KS2-BCa

Mean 0.0172 0.0298 0.0214 0.0287
STD 0.0077 0.0176 0.0091 0.0155

6. Concluding Remarks

We have proposed the skew-logistic and bi-logistic distributions as models for single
and multiple epidemic waves, respectively. The model is a simple extension of the sym-
metric logistic distribution, which can readily be deployed in the presence of skewed data
that exhibits growth and decay. We provided validation for the proposed model using the
ESJS as a goodness-of-fit statistic, showing that it is a good fit to COVID-19 data in UK
and more powerful than the alternative KS2 statistic. As future work, we could use the
model to compare the progression of multiple waves across different countries, extending
the work of [16].
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Abstract: The Rao’s score, Wald and likelihood ratio tests are the most common procedures for
testing hypotheses in parametric models. None of the three test statistics is uniformly superior to
the other two in relation with the power function, and moreover, they are first-order equivalent and
asymptotically optimal. Conversely, these three classical tests present serious robustness problems, as
they are based on the maximum likelihood estimator, which is highly non-robust. To overcome this
drawback, some test statistics have been introduced in the literature based on robust estimators, such
as robust generalized Wald-type and Rao-type tests based on minimum divergence estimators. In
this paper, restricted minimum Rényi’s pseudodistance estimators are defined, and their asymptotic
distribution and influence function are derived. Further, robust Rao-type and divergence-based
tests based on minimum Rényi’s pseudodistance and restricted minimum Rényi’s pseudodistance
estimators are considered, and the asymptotic properties of the new families of tests statistics are
obtained. Finally, the robustness of the proposed estimators and test statistics is empirically examined
through a simulation study, and illustrative applications in real-life data are analyzed.

Keywords: Rényi’s pseudodistance; minimum Rényi’s pseudodistance estimators; restricted
minimum Rényi’s pseudodistance estimators; Rao-type tests; divergence-based tests

1. Introduction

Let (X , βX , Pθ)θ∈Θ be the statistical space associated with the random variable X,
where βX is the σ-field of Borel subsets A ⊂ X and {Pθ}θ∈Θ is a family of probability
distributions defined on the measurable space (X , βX ), whit Θ an open subset of Rp and
p ≥ 1. We assume that the probability measures Pθ are described by densities fθ(x) =
dPθ/dμ(x), where μ is a σ-finite measure on (X , βX ). Given a random sample X1, . . . , Xn,
of the random variable X with density belonging to the parametric family Pθ, the most
popular estimator for the model parameter θ is the maximum likelihood estimator (MLE),
which maximizes the likelihood function of the assumed model. The MLE has been widely
studied in the literature for general statistical models, and it has been shown that, under
certain regularity conditions, the sequence of MLEs of θ, θ̂n, is asymptotically normal and
it satisfies some desirable properties, such as consistency and asymptotic efficiency. That is,
the MLE is the BAN (best asymptotically normal) estimator. However, in many popular
statistical models, the MLE is markedly non-robust against deviations, even very small
ones, from the parametric conditions.

To overcome the lack of robustness, minimum distance (or minimum divergence) esti-
mators (MDEs) have been developed. MDEs have received growing attention in statistical
inference because of their ability to conciliate efficiency and robustness. In parametric
estimation, the role of divergence or distance measures is very intuitive: the estimates
of the unknown parameters are obtained by minimizing a suitable divergence measure
between the estimated from data and the assumed model distributions. There is a growing

Entropy 2022, 24, 616. https://doi.org/10.3390/e24050616 https://www.mdpi.com/journal/entropy
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body of literature that recognizes the importance of MDEs in terms of robustness, without
a significant loss of efficiency, with respect to the MLE. See, for instance, the works of
Beran [1], Tamura and Boes [2], Simpson [3,4], Lindsay [5], Pardo [6], and Basu et al. [7]
and the references therein.

Let G denote the unknown distribution function, with associated density g, underlying
the data. The minimum divergence (distance) functional evaluated at G, T(G), is defined as

d(g, fT(G)) = min
θ∈Θ

d(g, fθ), (1)

with d(g, fθ) being a distance or divergence measure between the densities g and fθ. As
the true distribution underlying the data is unknown, given a random sample, we could
estimate the model parameter θ, substituting in the previous expression the true distribution
G by its empirical estimation Gn. Therefore, the MDE of θ is given by

θ̂n = T(Gn), (2)

When dealing with continuous models, it is convenient to consider families of diver-
gence measures for which non-parametric estimators of the unknown density function are
not needed. From this perspective, the density power divergence (DPD) family, leading
to the minimum density power divergence estimators (MDPDEs) (see Basu et al. [7]), as
well as the Rényi’s pseudodistance (RP), leading to the minimum Rényi’s pseudodistance
estimators (MRPE) (see Broniatowski et al. [8]) between others, play an important role. The
results presented in Broniatowski et al. [8] in the context of independent and identically
distributed random variables were extended for the case of independent but not identically
distributed random variables by Castilla et al. [9].

In many situations we have additional knowledge about the true parameter value, as
it must satisfy certain constraints. Then, the restricted parameter space has the form

{θ ∈ Θ/ g(θ) = 0r}, (3)

where 0r denotes the null vector of dimension r, and g : Rp → Rr is a vector-valued
function such that the p × r matrix

G(θ) =
∂gT(θ)

∂θ
(4)

exists and is continuous in θ, and rank(G(θ)) = r. Here, superscript T represents the
transpose of the matrix. In the following, the restricted parameter space given in (3) is
denoted by Θ0, as in most situations, it will represent a composite null hypothesis.

The most popular estimator of θ under the non-linear constraint given in (3) is the
restricted MLE (RMLE) that maximizes the likelihood function subject to the constraint
g(θ) = 0r (see Silvey [10]). The RMLE encounters similar robustness problems to the
MLE. To overcome such deficiency, the restricted MDPDEs (RMDPDEs) were introduced in
Basu et al. [11] and their theoretical robustness properties were later studied in Ghosh [12].

The main purpose in this paper is extending the theory developed for the MRPE to
the restricted parameter space setting, yielding to the restricted MRPE (RMPRE), where
the parameter space has the form (3). The rest of the paper is as follows: In Section 2,
MRPE is introduced. Section 3 presents RMPRE, and its asymptotic distribution as well
as its influence function are obtained. In Section 4, two different test statistics for testing
composite null hypothesis, based on the RMRPE, are developed, and explicit expressions of
the statistics are presented for testing in normal populations. Section 5 presents a simulation
study, where the robustness of the proposed estimators and test statistics is empirically
shown. Section 6 deals with real-data situations. Finally, some conclusions are presented in
Section 7.
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2. Minimum Rényi Pseudodistance Estimators

In this section, we introduce the MRPE. We derive the estimating equations of the
MRPE and recall its asymptotic distribution.

Let X1, . . . , Xn be a random sample of size n from a population having true and
unknown density function g, modeled by a parametric family of densities fθ with θ ∈ Θ ⊂
Rp. The RP between the densities fθ and g is given, for τ > 0, by

Rτ( fθ, g) =
1

τ + 1
log

(∫
fθ(x)τ+1dx

)
+

1
τ(τ + 1)

log
(∫

g(x)τ+1dx
)

− 1
τ

log
(∫

fθ(x)τ g(x)dx
)

..

The RP can be defined for τ = 0 taking continuous limits, yielding the expression

R0( fθ, g) = lim
τ↓0

Rτ( fθ, g) =
∫

g(x) log
g(x)
fθ(x)

dx.

Then, the RP coincides with the Kullback–Leibler divergence (KL) between g and fθ,
at τ = 0 (see Pardo, 2006).

The RP was considered for the first time by Jones et al. [13]. Later Broniatowski et al. [8]
established some useful properties of the divergence, such as the positivity of the RP for
any two densities and for all values of the parameter τ, Rτ( fθ, g) ≥ 0 and uniqueness of
the minimum RP within a parametric family, that is, Rτ( fθ, g) = 0 if and only if fθ = g. The
last property justifies the definition of the MRPEs as the minimizer of the RP between the
assumed distribution and the empirical distribution of the data. It is interesting to note that
the so-called RP by Broniatowski et al. [8] had been previously considered by Fujisawa and
Eguchi [14] under the name of γ-cross entropy. In that paper, some appealing robustness
properties of the estimators based on such entropy are shown.

Given a sample X1, . . . , Xn, from Broniatowski et al. [8] it can be seen that minimizing
Rτ( fθ, g) leads to the following definition.

Definition 1. Let (X , βX , fθ)θ∈Θ⊂Rp be a statistical space. The MRPE based on the random
sample X1, . . . , Xn for the unknown parameter θ is given, for τ > 0, by

θ̂τ(X1, . . . , Xn) = arg sup
θ∈Θ

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
, (5)

where

Cτ(θ) =

(∫
fθ(x)τ+1dx

) τ
τ+1

.

Further, at τ = 0, θ̂0(X1, . . . , Xn) minimizes the KL divergence, and thus the MRPE
coincides with the MLE for τ = 0. Based on the previous definition (5), differentiating, we
obtain that the estimating equations of the MRPE are given by

n

∑
i=1

Ψτ(xi; θ) = 0p, (6)

with

Ψτ(x; θ) = fθ(x)τ(uθ(x)− cτ(θ)),

uθ(x) =
(

uθ1(x), . . . , uθp(x)
)T

, uθi (x) = ∂
∂θi

log fθ(x),

∂Cτ(θ)
∂θ = Cτ(θ)cτ(θ)τ, (7)
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being

cτ(θ) =
1

κτ(θ)
ξτ(θ) =

(
cτ,1(θ), . . . , cτ,p(θ)

)T , (8)

ξτ(θ) =
∫

fθ(x)τ+1uθ(x)dx, (9)

κτ(θ) =
∫

fθ(x)τ+1dx. (10)

The MRPE is an M-estimator and thus its asymptotic distribution and influence
function (IF) can be obtained based on the asymptotic theory of the M-estimators. Bronia-
towski et al. [8] studied the asymptotic properties and robustness of the MRPEs. The next
result recalls the asymptotic distribution of the MRPEs.

Theorem 1. Let θ0 be the true unknown value of θ. Then,

√
n(θ̂τ − θ0)

L→
n→∞

N
(
0p, V τ(θ0)

)
(11)

where
Vτ(θ) = Sτ(θ)

−1Kτ(θ)Sτ(θ)
−1 (12)

with

Sτ(θ) = −E

[
∂Ψτ(X; θ)T

∂θ

]
, (13)

Kτ(θ) = E
[
Ψτ(X; θ)ΨT

τ (X; θ)
]
. (14)

Castilla et al. [15] introduced useful notation for the computation of Vτ(θ).

Sτ(θ) = Jτ(θ)− 1
κτ(θ)

ξτ(θ)ξτ(θ)
T , (15)

Kτ(θ) = J2τ(θ) +
1

κτ(θ)

(
κ2τ(θ)
κτ(θ)

ξτ(θ)ξτ(θ)
T − ξτ(θ)ξ2τ(θ)

T − ξ2τ(θ)ξτ(θ)
T
)

, (16)

where
Jτ(θ) =

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx, (17)

and κτ(θ) and ξτ(θ) are as in (9) and (10), respectively.
Toma and Leoni-Aubin [16] defined new robust and efficient measures based on the

RP. Later, Toma et al. [17] considered the MRPE for general parametric models and de-
veloped a model selection criterion for regression models. Broniatowski et al. [8] applied
the method to the multiple regression model (MRM) with random covariates. Subse-
quently, Castilla et al. [18] developed Wald-type tests based on MRPE for the MRM, and
Castilla et al. [19] studied the MRPE for the MRM in the ultra-high dimensional set-up.
Further, Jaenada and Pardo [20,21] considered the MRPE and Wald-type test statistics for
generalized linear models (GLM). Despite Wald-type test statistics, there exist others rele-
vant test statistics having an important role in the statistical literature: the likelihood-ratio
and Rao (or score) tests, which are based on restricted estimators, usually the RMLE. Then,
it makes sense to develop robust versions of these popular statistics based on the RMRPE.

3. The Restricted Minimum Rényi Pseudodistance Estimator: Asymptotic Distribution
and Influence Function of RMRPE

In this section, we introduce the RMRPE and we derive its asymptotic distribution.
Moreover, we study its robustness properties through its influence function (IF).
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Definition 2. The RMRPE functional T̃τ(G) evaluated at the distribution G is defined by

Rτ(g, fT̃τ(G)) = min
θ∈Θ0

Rτ(g, fθ),

given that such a minimum exists.
Accordingly, given random sample X1, . . . , Xn from the distribution G, the RMRPE of θ is

defined as

θ̃τ = arg sup
θ∈Θ0

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
.

Next, the result states the asymptotic distribution of the RMRPE, θ̃τ = T̃τ(G).

Theorem 2. Suppose that the true distribution satisfies the conditions of the model and let us
denote by θ0 ∈ Θ0 the true parameter. Then, the RMRPE θ̃τ of θ obtained under the constraints
g(θ) = 0r has distribution

n1/2(θ̃τ − θ0)
L−→

n−→∞
N (0p, Στ(θ0))

where
Στ(θ0) = P∗

τ(θ0)Kτ(θ0)P∗
τ(θ0)

T ,

P∗
τ(θ0) = Sτ(θ0)

−1 − Qτ(θ0)G(θ0)
TSτ(θ0)

−1, (18)

Qτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
. (19)

and Sτ(θ0) is defined in (13), evaluated at θ = θ0.

Proof. See Appendix A.

To analyze the robustness of an estimator, Hampel et al. [22] introduced the concept of
the influence function (IF). Since then, the IF has been widely used in statistical literature to
measure robustness in different statistical contexts. Intuitively, the IF describes the effect of
an infinitesimal contamination of the model on the estimate. Then, IFs associated to locally
robust (B-robust) estimators should be bounded. Let us now obtain the IF of RMRPE and
analyze its boundedness to asses the robustness of the proposed estimators. We consider
the contaminated model gε(x) = (1 − ε) fθ(x) + εΔx, with Δx the indicator function in
x, and we denote θ̃τ,ε = T̃τ(Gε), being Gε the distribution function associated to gε. By
definition, θ̃τ,ε is the minimizer of Rτ(g, fθ) subject to g(θ̃τ,ε) = 0. Following the same
steps as in Theorem 5 in Broniatowski et al. [8], it can be seen that the influence function of
T̃τ in fθ is given by

IF(x, T̃τ , θ) = Mτ(θ)
−1[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ], (20)

where cτ(θ) was defined in (8) and

Mτ(θ) =
1∫

fθ(x)τ+1dx

[∫
fθ(x)τ+1dx

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx

−
(∫

fθ(x)τ+1uθ(x)dx
)(∫

fθ(x)τ+1uθ(x)dx
)T
]

,

with the additional condition that g(θ̃τ,ε) = 0. Note that expression (20) corresponds to
the IF of the unrestricted MRPE. Differentiating this last equation gives, at ε = 0,

G(θ)T IF(x, T̃τ , θ) = 0. (21)

Based on (20) and (21) we have
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(
Mτ(θ)

G(θ)T

)
IF(x, T̃τ , θ) =

(
[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]

0

)
.

Therefore,

(
Mτ(θ)T G(θ)

)( Mτ(θ)

G(θ)T

)
IF(x, T̃τ , θ) = Mτ(θ)

T [ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]

and

IF(x, T̃τ , θ) =
(

Mτ(θ)
T Mτ(θ) + G(θ)G(θ)T

)−1
Mτ(θ)

T [ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ]. (22)

Note that matrices Mτ(θ) and G(θ) involved in the expression (22) are defined except
for the model and tuning parameters θ and τ, and so the boundedness of the IF of the
RMRPE depends, therefore, on the boundedness of the factor

[ fθ(x)τuθ(x)− cτ(θ) fθ(x)τ ].

Therefore, the boundedness of the IF of the RMRPE depends directly on the bound-
edness of IF of the MRPE, stated in (20). The IF of the MRPE has been widely studied for
general statistical models, concluding that the MRPEs are robust for positive values of τ,
and that such robustness increases with the tuning parameter. A whole discussion can be
found in the work of Broniatowski et al. [8]. Hence, the same properties hold for RMRPEs.

4. Robust Test Statistics Based on RMRPEs

In this section, we develop two statistics based on the RMRPEs for testing composite
null hypothesis, and their asymptotic distributions are obtained. Both procedures are par-
ticularized to standard deviation testing (with unknown mean) under normal populations,
and explicit expressions of the test statistics are obtained.

4.1. Testing Based on Divergence Measures

In this section, we present the family of Rényi’s pseudodistance test statistics (RPTS)
for testing the null hypothesis given in (3). This family of test statistics is given by

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂τ
, fθ̃τ

). (23)

The RPTS, Tγ(θ̂τ , θ̃τ), can be understood as a measure between the best unrestricted
estimator of the model parameter, and the best estimator satisfying the null hypothesis.
Large values of the RPTS indicate that the model densities associated with the restricted and
unrestricted estimators are far away one from the other, and so the null hypothesis is not
supported by the observed data. Hence, we should reject H0 for large enough Tγ(θ̂τ , θ̃τ).
We can observe that the family of RPTS defined in (23) depends on two tuning parameters,
τ and γ. The first is used for estimating the unknown parameters, while the second is
applied to obtain the family of test statistics. The following theorem presents the asymptotic
distribution of the family of RPTS defined in (23).

Theorem 3. The asymptotic distribution of Tγ(θ̂τ , θ̃τ) defined in (23) coincides, under the null
hypothesis H0 given in (3), with the distribution of the random variable

r

∑
i=1

λ
τ,γ
i (θ0)Z2

i ,

where Z1, . . . , Zr are independent standard normal variables, λ
τ,γ
1 (θ0), . . . , λ

τ,γ
r (θ0) are the nonzero

eigenvalues of Mγ,τ(θ0) = Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0) and k = r. The matrices Aγ(θ0)and
Bτ(θ0) are given by,
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Aγ(θ0) =
Sγ(θ0)

κτ(θ0)
, (24)

Bτ(θ0) = Qτ(θ0)G(θ0)
TSτ(θ0)

−1. (25)

Proof. See Appendix A.

Rényi’s Pseudodistance Test Statistics for Normal Populations

Under the N (μ, σ2) model, consider the problem of testing

H0 : σ = σ0 versus H1 : σ �= σ0 (26)

where μ is an unknown nuisance parameter. In this case, the unrestricted and null parameter
spaces are given by Θ = {(μ, σ2) ∈ R2|μ ∈ R, σ2 ∈ R+} and Θ0 = {(μ, σ) ∈ R2|σ =

σ0, μ ∈ R}, respectively. If we consider the function g(θ) = σ − σ0, with θ = (μ, σ)T , the
null hypothesis H0 can be written as

H0 : g(θ) = 0

and we are in the situation considered in (26). We can observe that in our case G(θ) =

(0, 1)T . Based on (6) and taking into account the fact that fθ(x) is the normal density with
mean μ and variance σ2, the MRPE θ̂τ = (μ̂τ , σ̂τ)T of θ = (μ, σ)T is the solution of the
system of nonlinear equations⎧⎪⎪⎨⎪⎪⎩

n
∑

i=1
(Xi − μ) exp

{
− τ

2

(
Xi−μ

σ

)2
}

= 0

n
∑

i=1

{(
Xi−μ

σ

)2
− 1

1+τ

}
exp

{
− τ

2

(
Xi−μ

σ

)2
}

= 0

while the RMRPE θ̃β = (μ̃τ , σ0)
T , when σ = σ0 is the solution of the nonlinear equation

n

∑
i=1

{(
Xi − μ

σ0

)2
− 1

1 + τ

}
exp

{
−τ

2

(
Xi − μ

σ0

)2
}

= 0.

After some algebra (see the Appendix A) we obtain that the RPTS for testing (26)
under normal populations can be expressed as

Tγ(θ̂τ , θ̃τ) = 2nRγ

(
N (μ̂τ , σ̂2

τ),N (μ̃τ , σ0)
)

(27)

=
2n

γ(γ + 1)
log

⎡⎢⎣ 1
σ̂τσ

γ
0

⎛⎝
√

σ̂2
τ + γσ2

0√
γ + 1

⎞⎠γ+1⎤⎥⎦+ n
(μ̂τ − μ̃τ)

2(
γσ2

0 + σ̂2
τ

)
Based in (27), and taking into account that the eigenvalue of the matrix Aγ(θ)Bτ(θ)Kτ(θ)Bτ(θ)
is given by (see Appendix A)

lτ,γ(σ) =
1
2

(τ + 1)3

(γ + 1)2(2τ + 1)
5
2

(
3τ2 + 4τ + 2

)
,

we apply Theorem 3 such that

lτ,γ(σ0)
−1

⎛⎜⎝ 2n
γ(γ + 1)

log

⎡⎢⎣ 1
σ̂τσ

γ
0

⎛⎝
√

σ̂2
τ + γσ2

0√
γ + 1

⎞⎠γ+1⎤⎥⎦+ n
(μ̂τ − μ̃τ)

2(
γσ2

0 + σ̂2
τ

)
⎞⎟⎠ L→

n→∞
χ2

1.
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Note that the RPTS is indexed by two tuning parameters, γ and τ, the first controlling
the robustness of the pseudodistance and the second controlling the robustness on the
estimation. For simplicity, we use γ = τ for the normal population application.

Remark 1. For τ = γ = 0, the RPTS coincides with the asymptotic likelihood ratio test for
testing (26). Indeed, for τ = 0, we have that the MLE and RMLE are given, respectively, by

θ̂ = (X, σ̂2
n =

1
n

n

∑
i=1

(Xi − X)2) and θ̃ = (X, σ2
0 ).

Now, the expression of the Kullback–Leibler divergence (the RP for γ = 0) between two normal
densities, N (μ1, σ1) and N (μ2, σ2), is given by

lim
γ→0

Rγ(N (μ1, σ1),N (μ2, σ2)) =
σ2

2 − σ2
1

2σ2
1

+ ln
σ1

σ2
+

1
2
(μ1 − μ2)

2

σ2
1

. (28)

and thus the RPTS for γ = τ = 0 is

T0(θ̂, θ̃) = n
σ2

0
σ̂2

n
− n + 2n ln

σ̂n

σ0
.

On the other hand, the likelihood ratio for testing (26) is given by

λ(X1, . . . , Xn) =

(
σ̂n

σ0

)n/2
e
−n σ̂2

n
2σ2

0 en/2,

and so, both expressions are related through

−2 ln λ(X1, . . . , Xn) = T0(θ̂, θ̃).

4.2. Rao’s-Type Tests Based on RMRPE

Rao test statistics are one of the most popular score test statistics for testing a simple
and composite null hypothesis in general statistical models. For the simple null hypothesis
testing, it requires no parameter estimation, but for composite ones, the classical Rao test is
based on the likelihood score function associated with the restricted MLE (see Rao [23]).
Basu et al. [24] generalized Rao’s procedure by using score functions associated with
RMDPDEs, bringing in a considerable gain of robustness of the Rao-type test obtained.
In this section, we develop Rao-type test statistics based on the score function associated
to RMRPEs.

Let us consider the τ−score function associated to the RMRPE,

ψτ(x; θ) = fθ(x)τ(uθ(x)− cτ(θ)),

so the estimating equations for the MRPE are given by

n

∑
i=1

ψτ(xi; θ) = 0p.

Then, the τ-score statistic can be defined as

Ψτ(θ) =
n

∑
i=1

ψτ(xi; θ) =

(
n

∑
i=1

ψ1
τ(xi; θ), . . . , ∑n

i=1 ψk
τ(xi; θ)

)T

.

However, taking expectations in the corresponding quantities, it is not difficult to
show that
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E

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
= 0p

E
[(

fθ(X)2τ(uθ(X)− cτ(θ))(uθ(X)− cτ(θ))
T
)

θ=θ0

]
= Kτ(θ0),

where Kτ(θ) is defined in (16), and so, by the central limit theorem, the τ-score statistic is
asymptotically normal,

1√
n

Ψτ(θ)
L→

n→∞
N
(
0p, Kτ(θ)

)
. (29)

The previous convergence motivates the definition of the Rao-type test statistics.

4.2.1. Rao-Type Test Statistics for Testing Simple Null Hypothesis

We first consider the simple null hypothesis test

H0 : θ = θ0 vs. H1 : θ �= θ0. (30)

Then, the Rao-type test statistics Rτ(θ0) for testing (30) is defined as

Rτ(θ0) =
1
n

Ψτ(θ0)
TKτ(θ0)

−1Ψτ(θ0).

Note that here the last test statistics depend on τ through the matrices Ψτ(θ0) and
Kτ(θ0) involved in the definition, and again, the robustness of the statistics increases with
τ. Moreover, the last matrix may have an explicit expression for certain statistical models,
but otherwise it would have to be estimated from the sample.

Further, from (29), we have that, under the null hypothesis,

Rτ(θ0)
L→

n→∞
χ2

p

with p being the dimension of the parameter space. Then, the null hypothesis is rejected if
Rτ(θ0) > χ2

p,α, where χ2
p,α denotes the upper α-quantile of a chi-square distribution with p

degrees of freedom.

4.2.2. Rao-Type Test Statistics for Testing Composite Null Hypothesis

Next, let us consider composite null hypothesis of the form

H0 : g(θ) = 0r vs. H1 : g(θ) �= 0r, (31)

where the function g : Rp → Rr is a differentiable vector-valued function. Then, any vector
θ satisfying the null hypothesis belongs to a restricted parameter space given in (3). The
generalized Rao-type test statistic associated to the RMRPE with tuning parameter τ, θ̃τ ,
for testing (31) is given by

Rτ

(
θ̃τ

)
=

1
n

Ψτ(θ̃τ)
TQτ(θ̃τ)

[
Qτ(θ̃τ)

TKτ(θ̃τ)Qτ(θ̃τ)
]−1

Qτ(θ̃τ)
TΨτ(θ̃τ). (32)

Using similar arguments to Basu et al. [24], it is possible to show that, under general
regularity conditions, the Rao-type test statistics Rτ

(
θ̃τ

)
have an asymptotic chi-square

distribution with r degrees of freedom under the null hypothesis given in (31). Therefore,
the rejection region of the test is given by

{X1, . . . , Xn : Rτ(θ̃τ) > χ2
r,α}.

Again, the tuning parameter τ controls the trade-off between efficiency and robustness
of the test. Indeed, for τ = 0, the generalized Rao type test statistic Rτ=0

(
θ̃0

)
coincides

with the classical Rao test for composite null hypothesis.
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4.2.3. Rao Test for Normal Populations

Consider the test defined in (26) for testing the standard deviation value of a normal
population with unknown mean. The explicit expression of the main matrices involved in
the definition (32) for such testing procedure and assumed parametric model is given by

ψτ(X; (μ, σ)) =

⎛⎜⎝X − μ

σ2
1(

σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

,

((
X − μ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

⎞⎟⎠
T

,

Kτ((μ, σ)) =
1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)
,

Qτ((μ, σ)) =

(
0
1

)
.

The step-by-step calculation of such values are detailed in the Appendix A. Then, the
Rao-type test for composite null hypothesis of the form (31) is given by

Rτ(μ̃) =
1
n
(1 + 2τ)3/2(1 + τ)2(1 + 2τ)

3τ2 + 4τ + 2

[
n

∑
i=1

((
xi − μ̃

σ0

)2
− 1

τ + 1

)
e−

τ
2

(
xi−μ̃

σ0

)2
]2

where (μ̃τ , σ0) denotes the RMRPE with tuning parameter τ. Note that, for τ = 0, μ̃τ=0 = X.
Then, the Rao-type test statistic based on RMRPE with τ = 0 (the restricted MLE) coincides
with the classical Rao test.

5. Simulation Study: Application to Normal Populations

In this section, we empirically analyze the performance of the proposed estimators
under the normal parametric model and RPTS and Rao-type test statistics for the problem of
testing (26) in terms of efficiency and robustness. We examine the accuracy of the RMRPEs,
and we further examine the robustness properties of both families of estimators under
different contamination scenarios. Further, we investigate the empirical level and power of
the proposed test statistics under different sample sizes and contamination scenarios.

Let us consider a univariate normal model with true parameter value θ0 = (μ = 0,
σ = 1), and the problem of testing

H0 : σ = 1 vs. H1 : σ �= 1. (33)

The restricted parameter space is then given by

Θ0 = {(μ, 1) : μ ∈ R}.

In order to evaluate the robustness properties of the estimators and test statistics, we
introduce contamination in data by replacing a ε% of the observations by a contaminated
sample, where ε denotes the contamination level. We generate five different scenarios
of contamination:

• Pure data.
• Scenario 1: Slightly contaminated data. We replace a ε% of the samples by a contami-

nated sample from a normal distribution, N (0,
√

3).
• Scenario 2: Heavily contaminated data. We replace a ε% of the samples by a contami-

nated sample from a normal distribution, N (0,
√

5)

Further, in order to evaluate the power of the test, we consider an alternative true
parameter value θ1 = (0, 0.7) which does not satisfy the null hypothesis (33) (or equivalently
the restrictions of the parameter space). In this scenario, contaminated parameters are set
θ1 = (0, 1.2) for slightly and θ1 = (0, 1.5) for heavily contamination.

100



Entropy 2022, 24, 616

Figure 1 shows the root mean square error (RMSE) of the RMRPE of the scale pa-
rameter σ, for different values of the tuning parameter τ = 0, 0.2, 0.4, 0.6 and τ = 0.8
over R = 10,000 replications. As expected, large values of the tuning parameter produce
more robust estimators, which is particularly advantageous for the heavily contaminated
scenario. Furthermore, even when introducing very low levels of contamination in data,
ε = 5%, the RMRPE with moderate value of the tuning parameter outperforms the classical
MLE, without a significant loss of efficiency in the absence of contamination.

(a) (b)

Figure 1. RMSE of the RMRPE under increasing contamination levels (slightly contaminated
at left and heavily contaminated at right) for different values of the tuning parameter τ over
R = 10,000 replications. (a) Scenario 1, (b) Scenario 2.

On the other hand, Figure 2 presents the empirical level and power of both RPTS
and Rao-type test statistics based on RMRPEs for different values of the tuning parameter,
τ = 0, 0.2, 0.4, 0.6, 0.8, under increasing contamination levels. The empirical level and power
are computed as the mean number of rejections over R = 10,000 replications. The empirical
level produced by the classical ratio and Rao-type tests rapidly increases and separates
from levels obtained with any robust test. Regarding the empirical power, all robust tests
with moderate and large values of the tuning parameter outperform the classical estimator
within their family under contaminated scenarios, but Rao-type test statistics based on
RMRPEs are more conservative than RPTSs, thus exhibiting lower levels and powers. Then,
the proposed test statistics provides an appealing alternative to classical likelihood ratio
and Rao tests, with a small loss of efficiency in favor of a clear gain in terms of robustness.

Figure 2. Cont.
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(a) (b)

Figure 2. Empirical level and power under increasing contamination (slightly contaminated at left
and heavily contaminated at right) over R = 10,000 repetitions. (a) Scenario 1, (b) Scenario 2.

On the other hand, the sample size could play a crucial role in the performance of the
tests, even more accentuated when there exists data contamination. Figure 3 shows the
sample size effect on the performance of the tests in terms of empirical level, under a 10%
of contamination level in data. As discussed, Rao-type test statistics based on RMRPEs
is more conservative and so tests based on RMRPEs with positive values of the tuning
parameter produce lower empirical levels. Here, it outperforms the poor performance of
the classical Rao-type test statistics with respect to any other. Moreover, when the sample
size increases, the performance gap between non-robust and robust methods is widening.

(a) (b)

Figure 3. Empirical level under increasing sample sizes for 10% of contamination level (slightly
contaminated at left and heavily contaminated at right) over R = 10,000 repetitions. (a) Scenario 1,
(b) Scenario 2.

Following the discussions in the preceding sections, larger values of the tuning param-
eter produce more robust but less efficient estimators. Therefore, the optimal value of τ
should obtain the best trade-off between efficiency and robustness. Warwick and Jones [25]
first introduced a useful data-based procedure for the choice of the tuning parameter for the
MDPDE based on minimizing the asymptotic MSE of the estimator. However, this method
depends on the choice of a pilot estimator, and Basak et al. [26] improved the method by
removing the dependency on an initial estimator. The proposed algorithm was developed
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ad hoc for the MDPDE, but it can be easily adapted to the MRPE and RMRPE by simply
substituting the expression of the variance of the MDPDE by the variance of the MRPPE or
the RMRPE, respectively.

6. Real Data Application

Finally, we illustrate the outperformance of the proposed test statistics in two real data
applications, where the gathered information contains some outlying observations. Both
real dataset are modeled under the normal model, and hypothesis tests on the standard
deviation of the population are performed.

6.1. Telephone-Fault Data

We consider the data on telephone line faults presented and analyzed by Welch [27]
and Simpson [4]. The dataset consist of n = 14 ordered differences between the inverse test
rates and the inverse control rates in matched pairs of areas,

−988,−135,−78, 3, 59, 83, 93, 110, 189, 197, 204, 229, 289, 310.

Basu et al. ([24,28]) modeled these differences as a normal random variable and pointed
out that the first observation is a clear outlier, as its value is distant from the rest of the
data. They tested simple and composite null hypotheses for the mean under the normal
model, as well as a simple null hypothesis assuming a known mean. Here, we propose to
test for the standard deviation of the normal distribution. Note that, computing the MLE of
the sample with full and clean data (after removing the outlying observation), we obtain
(μ̂, σ̂) = (40.36, 323.08), and (μ̂, σ̂) = (119.46, 134.82), respectively. Accordingly, the outlier
clearly influences the model parameter estimates, playing a crucial role on the rejection of
any null hypothesis. We consider the composite null hypothesis

H0 : σ = 135 vs. H1 : σ �= 135, (34)

where the value σ = 135 has been chosen according to the estimation with clean data.
Figure 4 presents the RPTS (top) and Rao (bottom) test statistics (left) and p-values

(right) for the telephone data against increasing tuning parameters. While it is clearly seen
that both classical tests fail to not reject the null hypothesis when fitting the model with the
original data, the decision turns around sharply as the tuning parameter τ crosses and goes
beyond 0.2 for the RPTS and 0.15 for Rao-type test statistics based on MRPEs. On the other
hand, the decision of not rejecting is agreed by all statistics when fitting the model with
clean data. This example illustrates the great applicability of the robust methods, which are
not too affected by a such outlying observation, and the good performance of the proposed
statistics under contaminated observations, which stay stable.

Figure 4. Cont.
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Figure 4. RPTS (top) and Rao-type test statistics (bottom), jointly with their associated p-valuess
(right), for testing (34) with original and cleaned (after outliers removal) telephone-fault data.

6.2. Darwin’s Plant Fertilization Data

Darwin [29] performed an experiment to determine whether self-fertilized plants and
cross-fertilized plants have different growth rates. He sowed in pots pairs of Zea mays
plants, one self-fertilized and the other cross-fertilized, and after a specific time period, the
height of each plant was measured. A particular sample of n = 15 pairs of plants led to the
following paired differences (cross-fertilized minus self-fertilized).

−67,−48, 6, 8, 14, 16, 23, 24, 28, 29, 41, 49, 56, 60, 75

A parametric approach to analyze the data as a random sample from a normal dis-
tribution with unknown mean and standard deviation was developed by Basu et al. [24].
Here, there is not any huge outlying observation, but the first two observations seem to
be distant from the rest of the sample, influencing the model parameter estimates and
test decisions. Indeed, the MLE, computing with original data, is (μ̂, σ̂) = (20.93, 37.74),
while the MLE, when removing the two first observations, switches to (μ̂, σ̂) = (33, 21.54).
Therefore, removing influential observations may alter the decision of a test. According to
these results, we consider the testing problem

H0 : σ = 23 vs. H1 : σ �= 23. (35)

Figure 5 shows the test statistics (left) and corresponding p-values (right) for the two
families of statistics considered, the RPTS (top) and Rao-type test statistics (bottom) against
the tuning parameter value τ. Again, test statistics based on RMRPE with large enough
tuning parameters do not reject the null hypothesis, unlike tests based on low values of
τ = 0, including the RMLE. The disagreement departs when using the clean data, as all
tests agree on not rejecting the null hypothesis.

Figure 5. Cont.
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Figure 5. RPTS (top) and Rao-type test statistics (bottom), jointly with their associated p-values
(right), for testing (35) with original and cleaned (after outliers removal) Darwing data.

7. Concluding Remarks

In this paper, we presented for the first time the family of RMRPEs. We derived
their asymptotic distribution, and proved some suitable properties as consistency under
the parameter restriction and robustness against data contamination. Further, based on
these RMRPEs, we generalized two important families of statistics, namely RPTS and Rao-
type tests, for testing a composite null hypothesis. Moreover, we obtained some explicit
expressions of the RMPREs, RPTS and Rao-type test statistics for testing the variance under
a normal population with an unknown mean. It was empirically shown that the proposed
RPTS and Rao-type test statistics are robust, unlike classical tests based on the MLE, under
normal populations. Indeed, the robustness of the tests is controlled by a tuning parameter
τ, and so larger values of τ produce more robust estimators (although less efficient). Finally,
some classical numerical examples illustrate the theoretical properties and applicability of
the proposed methods.
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DPD Density Power Divergence
IF Influence Function
KL Kullback–Leibler
LRM Linear Regression Model
MLE Maximum Likelihood Estimator
MDPDE Minimum Density Power Divergence Estimator
MRPE Minimum Rényi Pseudodistance Estimator
RMRPE Restricted minimum Rényi Pseudodistance Estimator
RP Rényi Pseudodistance
RPTS Rényi Pseudodistance test statistic

Appendix A

Appendix A.1. Proof of Theorem 2

We denote

hn(θ) =
1
n

n

∑
i=1

fθ(Xi)
τ

Cτ(θ)
.

Differentiating both sides of the equality, we have

∂hn(θ)

∂θ
=

τ

Cτ(θ)

1
n

n

∑
i=1

fθ(Xi)
τ(uθ(Xi)− cτ(θ)).

Now we establish that(
∂2hn(θ)

∂θ∂θT

)
θ=θ0

P→
n→∞

− τ

Cτ(θ)
Sτ(θ0).

We have

∂2hn(θ)

∂θ∂θT =
1

Cτ(θ)
2

{
1
n

n

∑
i=1

[(
τ2 fθ(Xi)

τuθ(Xi)uθ(Xi)
T + τ fθ(Xi)

τ ∂uθ(Xi)

∂θT

)
Cτ(θ)

−τCτ(θ)cτ(θ)τ fθ(Xi)
τuθ(Xi)

T
]}

− 1

Cτ(θ)
2

{
1
n

n

∑
i=1

[(
τ

∂cτ(θ)

∂θT fθ(Xi)
τ + τ2 fθ(Xi)

τcτ(θ)uθ(Xi)
T
)

Cτ(θ)

−τCτ(θ)cτ(θ)τcτ(θ)
T fθ(Xi)

τ
]}

=
1

Cτ(θ)

{
1
n

n

∑
i=1

[
τ2 fθ(Xi)

τuθ(Xi)uθ(Xi)
T + τ fθ(Xi)

τ ∂uθ(Xi)

∂θT

− τ2cτ(θ)
T fθ(Xi)

τuθ(Xi)
T − τ

∂cτ(θ)

∂θT fθ(Xi)
τ

−τ2cτ(θ) fθ(Xi)
τuθ(Xi)

T − τ2cτ(θ)cτ(θ)
T fθ(Xi)

τ
]}

.

As n → ∞, we have (
∂2hn(θ)

∂θ∂θT

)
θ=θ0

P→
n→∞

T(θ0)

with T(θ0) being the matrix given by

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ2cτ(θ)
∫

fθ(x)τ+1uθ(x)Tdx − τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx

+τ2cτ(θ)
∫

fθ(x)τ+1uθ(x)Tdx − τ2cτ(θ)cτ(θ)
T
∫

fθ(x)τ+1dx
}

.
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From the above, after some algebra, we obtain

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx − τ2cτ(θ)

Tcτ(θ)
∫

fθ(x)τ+1dx
}

.

On the other hand, it not difficult to establish that

∂cτ(θ)

∂θT = (τ + 1)

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx∫

fθ(x)τ+1dx
+

∫
fθ(x)τ+1 ∂uθ(x)

∂θT dx∫
fθ(x)τ+1dx

−(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx

(
∫

fθ(x)τ+1dx)2 .

Therefore we have

−τ
∂cτ(θ)

∂θT

∫
fθ(x)τ+1dx = −τ(τ + 1)

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx − τ

∫
fθ(x)τ+1 ∂uθ(x)

∂θT

+τ(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx
.

Finally,

T(θ0) =
1

Cτ(θ)

{
τ2
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx + τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT dx

−τ(τ + 1)
∫

fθ(x)τ+1uθ(x)uθ(x)Tdx − τ
∫

fθ(x)τ+1 ∂uθ(x)
∂θT

+τ(τ + 1)

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx
− τ2cτ(θ)cτ(θ)

T
∫

fθ(x)τ+1dx

}

=
1

Cτ(θ)

{
−τ

∫
fθ(x)τ+1uθ(x)uθ(x)Tdx + τ

∫
fθ(x)τ+1uθ(x)dx

∫
fθ(x)τ+1uθ(x)Tdx∫

fθ(x)τ+1dx

}
= − τ

Cτ(θ)
S(θ0).

On the other hand,

√
n

∂hn(θ)

∂θ
=

τ

Cτ(θ)

1√
n

n

∑
i=1

fθ(Xi)
τ(uθ(Xi)− cτ(θ))

L→
n→∞

N
(

0p,
(

τ

Cτ(θ)

)2
Kτ(θ0)

)
,

as

E

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
= 0p

and

Cov

[(
τ

Cτ(θ)
fθ(X)τ(uθ(X)− cτ(θ))

)
θ=θ0

]
=

(
τ

Cτ(θ0)

)2
Kτ(θ0)

Then, the RMRPE estimator of θ, θ̃τ , must satisfy{
∂

∂θ hn(θ)|θ=θ̃τ
+ G(θ̃τ)λn = 0p,

g(θ̃τ) = 0r,
(A1)
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where λn is a vector of Lagrangian multipliers. Now we consider θn = θ0 + mn−1/2, with
||m|| < k, for 0 < k < ∞. We have,

∂

∂θ
hn(θ)|θ=θn

=
∂

∂θ
hn(θ)|θ=θ0

+
∂

∂θT
∂

∂θ
hn(θ)|θ=θ0

(θn − θ0) + o(||θn − θ0||2)

and

n1/2 ∂

∂θ
hn(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
hn(θ)|θ=θ0

− ∂

∂θT
∂

∂θ
hn(θ)|θ=θ0

n1/2(θn − θ0) + o(n1/2||θn − θ0||2). (A2)

However,

o(n1/2||θn − θ0||2) = o(n1/2||m||2/n) = o(n−1/2||m||2) = o(Op(1)) = op(1).

Since
lim

n→∞

∂

∂θT
∂

∂θ
hn(θ)|θ=θ0 = − τ

Cτ(θ)
Sτ(θ0)

we obtain

n1/2 ∂

∂θ
hn(θ)

∣∣∣∣
θ=θn

= n1/2 ∂

∂θ
hn(θ)|θ=θ0

+
τ

Cτ(θ)
Sτ(θ0)n1/2(θn − θ0) + op(1). (A3)

Now, we know that

n1/2g(θn) = G(θ0)
Tn1/2(θn − θ0) + op(1). (A4)

Further, the RMRPE θ̃τ must satisfy the conditions in (A1), and in view of (A3) and
(A4) we have

n1/2 ∂

∂θ
hn(θ)|θ=θ0

+
τ

Cτ(θ)
Sτ(θ0)n1/2(θ̃τ − θ0) + G(θ0)n1/2λn + op(1) = 0p. (A5)

From (A4) it follows that

G(θ0)
Tn1/2(θ̃τ − θ0) + op(1) = 0r. (A6)

Now we can express equations (A5) and (A6) in matrix form as(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0r×r

)(
n1/2(θ̃τ − θ0)

n1/2λn

)
=

(
−n1/2 ∂

∂θ hn(θ)|θ=θ0
0r

)
+ op(1).

Therefore(
n1/2(θ̃τ − θ0)

n1/2λn

)
=

(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0r×r

)−1(
−n1/2 ∂

∂θ hn(θ)|θ=θ0
0r

)
+ op(1).

However,(
τ

Cτ(θ0)
Sτ(θ0) G(θ0)

G(θ0)
T 0

)−1

=

( (
τ

Cτ(θ0)

)−1
P∗

τ(θ0) Qτ(θ0)

Qτ(θ0)
T Rτ(θ0)

)
,

where P∗
τ(θ0) and Qτ(θ0) are defined in (18) and (19), respectively. The matrix Rτ(θ0)

is the quantity needed to make the right hand side of the above equation equal to the
indicated inverse. Then,

n1/2(θ̃τ − θ0) = −
(

τ

Cτ(θ)

)−1
P∗

τ(θ0)n1/2 ∂

∂θ
hn(θ)|θ=θ0

+ op(1), (A7)
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and we know

n1/2 ∂

∂θ
hn(θ)|θ=θ0

L−→
n−→∞

N
(

0,
(

τ

Cτ(θ0)

)2
Kτ(θ0)

)
. (A8)

Now by (A7) and (A8), we have the desired result.

Appendix A.2. Proof of Theorem 3

Consider the expression Rγ( fθ, fθ̃τ
). A Taylor expansion for an arbitrary θ ∈ Θ,

around θ̃τ leads to the relation

Rγ( fθ, fθ̃τ
) = Rγ( fθ̃τ

, fθ̃τ
) +

(
∂Rγ( fθ, fθ̃τ

)

∂θ

)
θ=θ̃τ

(
θ− θ̃τ

)

+
1
2

(
θ− θ̃τ

)(∂2Rγ( fθ, fθ̃τ
)

∂θ∂θT

)
θ=θ̃τ

(
θ− θ̃τ

)T
+ o

(∥∥∥θ− θ̃τ

∥∥∥2
)

.

It is clear that Rγ( fθ̃τ
, fθ̃τ

) = 0 and

∂Rγ( fθ, fθ̃τ
)

∂θ
=

∂L1
γ(θ)

∂θ
−

∂L2
γ(θ)

∂θ
,

being

L1
γ(θ) =

1
γ + 1

log
(∫

fθ(x)γ+1dx
)

and

L2
γ(θ) =

1
γ

log
(∫

fθ(x)γ fθ̃τ
(x)dx

)
.

Then,

∂L1
γ(θ)

∂θ
=

∫
fθ(x)γ+1uθ(x)dx∫

fθ(x)γ+1dx
and

∂L2
γ(θ)

∂θ
=

∫
fθ(x)γuθ(x) fθ̃τ

(x)dx∫
fθ(x)γ fθ̃τ

(x)dx
.

Therefore, (
∂Rγ( fθ, fθ̃τ

)

∂θ

)
θ=θ̃τ

= 0.

Regarding the second derivatives, we have

∂2L1
γ(θ)

∂θ∂θT = (γ + 1)

∫
fθ(x)γ+1uθ(x)uθ(x)Tdx∫

fθ(x)γ+1dx
+

∫
fθ(x)γ+1 ∂uθ(x)

∂θT∫
fθ(x)γ+1dx

−(γ + 1)

∫
fθ(x)γ+1uθ(x)dx

∫
fθ(x)γ+1uθ(x)Tdx

(
∫

fθ(x)γ+1dx)2

and

∂2L2
γ(θ)

∂θ∂θT = γ

∫
fθ(x)γuθ(x)uθ(x)T fθ̃τ

(x)dx∫
fθ(x)γ fθ̃τ

(x)dx
+

∫
fθ(x)γ ∂uθ(x)

∂θT fθ̃τ
(x)dx∫

fθ(x)γ fθ̃τ
(x)dx

−γ

∫
fθ(x)γ fθ̃τ

(x)uθ(x)dx
∫

fθ(x)γ fθ̃τ
(x)uθ(x)Tdx(∫

fθ(x)γ fθ̃τ
(x)dx

)2 .

and so (
∂2Rγ( fθ, fθ̃τ

)

∂θ∂θT

)
θ=θ̃τ

=
Sγ(θ̃τ)

κγ(θ̃τ)
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Therefore,

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂, fθ̃τ
) = n1/2(θ̂τ − θ̃τ)

T Sγ(θ̃τ)

κγ(θ̃τ)
n1/2(θ̂τ − θ̃τ) + n × o

(∥∥∥θ̂τ − θ̃τ)
∥∥∥2
)

.

Under θ0 ∈ Θ0,
Sγ(θ̃τ)

κγ(θ̃τ)

P−→
n−→∞

Sγ(θ0)

κτ(θ0)
.

Based on θ̂τ and using by (A4) and (A5), we have that

n1/2 ∂
∂θ hn(θ)|θ=θ0

= − τ

Cτ(θ0)
n1/2Sτ(θ0)(θ̂τ − θ0) + op(1),

and using (A7), we obtain

n1/2(θ̃τ − θ0) = P∗
τ(θ0)n1/2Sτ(θ0)(θ̂τ − θ0) + op(1)

= n1/2(θ̂τ − θ0)− Qτ(θ0)G(θ0)
Tn1/2(θ̂τ − θ0) + op(1).

Therefore,

n1/2(θ̂τ − θ̃τ) = Qτ(θ0)G(θ0)
Tn1/2(θ̂τ − θ0) + op(1). (A9)

On the other hand, we know that

n1/2(θ̂τ − θ0)
L−→

n−→∞
N (0, Sτ(θ0)

−1Kτ(θ0)Sτ(θ0)
−1).

From equations (19) and (25), we can establish that

Bτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1

= Qτ(θ0)G(θ0)
−1Sτ(θ0)

−1.

Therefore, it follows that

n1/2(θ̂τ − θ̃τ)
L−→

n−→∞
N (0, Bτ(θ0)Kτ(θ0)Bτ(θ0)

T).

Now, observe from the definition that Bτ(θ0) = Bτ(θ0)
T .

Then, the asymptotic distribution of the random variables

Tγ(θ̂τ , θ̃τ) = 2nRγ( fθ̂τ
, fθ̃τ

)

and

n1/2(θ̂τ − θ̃τ)
T Sγ(θ0)

κγ(θ0)
n1/2(θ̂τ − θ̃τ)

are the same, as we have established that

n × o
(∥∥∥θ̂τ − θ̃τ

∥∥∥2
)
= op(1).

Next, we apply Corollary 2.1 in Dik and Gunst [30], which states: “Let X be a q-variate
normal random variable with mean vector 0 and variance-covariance matrix Σ. Let M be
a real symmetric matrix of order q. Let k = rank(ΣMΣ), k ≥ 1 and let λ1, . . . , λk, be the
nonzero eigenvalues of MΣ. Then, the distribution of the quadratic form XT MX coincides

with the distribution of the random variable
k
∑

i=1
λiZ2

i , where Z1, . . . , Zk are independent,

each having a standard normal variable”. In our case, the asymptotic distribution of

Tγ(θ̂τ , θ̃τ) coincides with the distribution of the random variable
k
∑

i=1
λ

τ,γ
i (θ0)Z2

i where

λ
τ,γ
1 (θ0), . . . , λ

τ,γ
k (θ0), are the nonzero eigenvalues of Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0) and
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k = min{r, rank(Bτ(θ0)Kτ(θ0)Bτ(θ0)Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0))}. (A10)

We now establish that k = r. The matrix,

Nτ(θ0) = Bτ(θ0)Kτ(θ0)Bτ(θ0)

is given by

Nτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1

Kτ(θ0)Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
G(θ0)

TSτ(θ0)
−1.

Corollary 14.11.3 in Harville [31] (p. 259) establishes the following: “For any m × n
matrix A and any m × m symmetric positive definite matrix W , rank(ATW A) = rank(A)”.
Based on this Corollary we have that rank(Nτ(θ0)) coincides with rank(Nτ(θ0)Sγ(θ0)Nτ(θ0)).

On the other hand, we know the following additional properties:

(a) rank(AB) = rank(A) if B is full rank (Corollary b.3.3 in Harville [31] (p. 83)).

(b) rank(AB) = rank(BA) if dimension of A coincides with dimension of BT .

Matrix Kτ(θ0) should be “full rank”; in fact, if Kτ(θ0) were not full rank, the variance–
covariance matrix of θ̂β and θ̃β would not be full rank (there were redundant components
in θ and this is not true).

Therefore, we have

rank(Nτ(θ0)) = (a)rank
(

Sτ(θ0)
− 1

2 G(θ0)
[

G(θ0)
TSτ(θ0)

−1G(θ0)
]−1

G(θ0)
TSτ(θ0)

−1Kτ(θ0)Sτ(θ0)
−1G(θ0)[

G(θ0)
−1Sτ(θ0)

−1G(θ0)
]−1

G(θ0)
TSτ(θ0)

− 1
2

)
= (b)rank

(
G(θ0)

TSτ(θ0)
−1Kτ(θ0)Sτ(θ0)

−1G(θ0)
[

G(θ0)
TSτ(θ0)

−1G(θ0)
]−1

)
= (a)ran

(
G(θ0)

TSτ(θ0)
−1Kτ(θ0)Sτ(θ0)

−1G(θ0)
)

= Corollary14.11.3rank
(

Sτ(θ0)
−1G(θ0)

)
= (a)rank(G(θ0)) = r.

Appendix A.3. Rényi’s Pseudodistance between Normal Populations

Here, we compute the expression of the RP between densities belonging to the normal
model with parameters (μ1, σ1) and (μ2, σ2), respectively. The RP between N (μ1, σ1) and
N (μ2, σ2) is given by

Rγ(N (μ1, σ1),N (μ2, σ2)) =
1

γ + 1
log

∫
N (μ1, σ1)

γ+1dx

+
1

γ(γ + 1)
log

∫
N (μ2, σ2)

γ+1dx − 1
γ

log
∫

N (μ1, σ1)
γN (μ2, σ2)dx

=
1

γ + 1
log L1 +

1
γ(γ + 1)

log L2 −
1
γ

log L3.

We first compute ∫
N (μ, σ)βdx

for the seek of simplicity in later calculations.
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∫
N (μ, σ)βdx =

∫ ( 1
σ
√

2π
e−

1
2 (

x−μ
σ )

2
)β

dx

=
1

σβ−1
(√

2π
)β−1

1√
β

∫ 1
σ√

β

√
2π

e
− 1

2

⎛⎝ x−μ
σ√

β

⎞⎠2

dx

=
1

σβ−1
(√

2π
)β−1

1√
β

.

Therefore,

L1 =
1

σ
γ
1

(√
2π
)γ

1√
γ + 1

and L2 =
1

σ
γ
2

(√
2π
)γ

1√
γ + 1

.

In relation with L3 we have,

L3 =
∫

N (μ1, σ1)
γN (μ2, σ2)dx

=
∫ 1

σ
γ
1

(√
2π
)γ e

− 1
2

⎛⎝ x−μ1
σ1√

γ

⎞⎠2

1
σ2
√

2π
e−

1
2

(
x−μ2

σ2

)2

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
×

×
∫

exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣x2

⎛⎜⎝ 1(
σ1√

γ

)2 +
1
σ2

2

⎞⎟⎠− 2x

⎛⎜⎝ μ1(
σ1√

γ

)2 +
μ2

σ2
2

⎞⎟⎠+
μ2

1(
σ1√

γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣ μ2
1(

σ1√
γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭×

×
∫

exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣x2

⎛⎜⎝ 1(
σ1√

γ

)2 +
1
σ2

2

⎞⎟⎠− 2x

⎛⎜⎝ μ1(
σ1√

γ

)2 +
μ2

σ2
2

⎞⎟⎠
⎤⎥⎦
⎫⎪⎬⎪⎭dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣ μ2
1(

σ1√
γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭ exp

{
1
2

A2

B2

}
B
√

2π ×

×
∫ 1√

2πB
exp

{
−1

2

(
x − A

B

)2
}

dx

=
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣ μ2
1(

σ1√
γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭ exp

{
1
2

A2

B2

}
B
√

2π.

Now it is necessary to obtain A and B. However, for this, we have,⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

B2 = 1(
σ1√

γ

)2 +
1

σ2
2

A
B2 =

(
μ1(
σ1√

γ

)2 +
μ2
σ2

2

)
.
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Then,

A

⎛⎜⎝ 1(
σ1√

γ

)2 +
1
σ2

2

⎞⎟⎠ =
μ1(
σ1√

γ

)2 +
μ2

σ2
2

and

A =

μ1(
σ1√

γ

)2 +
μ2
σ2

2

1(
σ1√

γ

)2 +
1

σ2
2

=

σ2
2 μ1+μ2

(
σ1√

γ

)2

σ2
2

(
σ1√

γ

)2

σ2
2+

(
σ1√

γ

)2

σ2
2

(
σ1√

γ

)2

=
σ2

2 μ1 + μ2
σ2

1
γ

σ2
2 +

σ2
1

γ

=
γσ2

2 μ1 + μ2σ2
1

γσ2
2 + σ2

1
.

We have,
1

B2 =
1(

σ1√
γ

)2 +
1
σ2

2
=

γ

σ2
1
+

1
σ2

2
=

σ2
2 γ + σ2

1
σ2

1 σ2
2

Therefore,
B =

σ1σ2√
σ2

2 γ + σ2
1

.

On the other hand,

A2

B2 =

(
γσ2

2 μ1 + μ2σ2
1

γσ2
2 + σ2

1

)2
σ2

2 γ + σ2
1

σ2
1 σ2

2
=

(
γσ2

2 μ1 + μ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

and

L3 =
1

σ
γ
1

(√
2π
)γ

1
σ2
√

2π
exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣ μ2
1(

σ1√
γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭ exp

{
1
2

A2

B2

}
B
√

2π

=
1

σ
γ
1

(√
2π
)γ

1
σ2

exp

⎧⎪⎨⎪⎩−1
2

⎡⎢⎣ μ2
1(

σ1√
γ

)2 +
μ2

2
σ2

2

⎤⎥⎦
⎫⎪⎬⎪⎭ exp

{
1
2

(
γσ2

2 μ1 + μ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

}
σ1σ2√

σ2
2 γ + σ2

1

=
σ1σ2√

σ2
2 γ + σ2

1

1

σ
γ
1

(√
2π
)γ

1
σ2

exp

{
1
2

[(
γσ2

2 μ1 + μ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

− γμ2
1σ2

2 + σ2
1 μ2

2
σ2

2 σ2
1

]}
.

However,(
γσ2

2 μ1 + μ2σ2
1
)2(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

− γμ2
1σ2

2 + σ2
1 μ2

2
σ2

2 σ2
1

=

(
γσ2

2 μ1 + μ2σ2
1
)2 −

(
γμ2

1σ2
2 + σ2

1 μ2
2
)(

γσ2
2 + σ2

1
)(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

=
γ2σ4

2 μ2
1 + μ2

2σ4
1 + 2γσ2

2 μ1μ2σ2
1(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

−γ2μ2
1σ4

2 + γμ2
1σ2

2 σ2
1 + μ2

2γσ2
2 σ2

1 + μ2
2σ4

1(
γσ2

2 + σ2
1
)
σ2

1 σ2
2

=
2γσ2

2 μ1μ2σ2
1 − γμ2

1σ2
2 σ2

1 − μ2
2γσ2

2 σ2
1(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

=
σ2

2 σ2
1 γ
(
2μ1μ2 − μ2

1 − μ2
2
)(

γσ2
2 + σ2

1
)
σ2

1 σ2
2

= −γ(μ1 − μ2)
2(

γσ2
2 + σ2

1
)
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Therefore,

L3 =
1

σ
γ−1
1

√
σ2

2 γ + σ2
1

1(√
2π
)γ exp

{
−1

2
γ(μ1 − μ2)

2(
γσ2

2 + σ2
1
) }.

Then,

Rγ(N (μ1, σ1),N (μ2, σ2)) =
1

γ + 1
ln L1 +

1
γ(γ + 1)

ln L2 −
1
γ

ln L3

=
1

γ + 1
ln

1

σ
γ
1

(√
2π
)γ

1√
γ + 1

+
1

γ(γ + 1)
ln

1

σ
γ
2

(√
2π
)γ

1√
γ + 1

− 1
γ

ln
1

σ
γ−1
1

√
σ2

2 γ + σ2
1

1(√
2π
)γ +

1
2

γ(μ1 − μ2)
2

γ
(
γσ2

2 + σ2
1
)

=
1

γ(γ + 1)

(
ln

σ
γ−1
1

σ
γ
2
√

γ + 1

√
σ2

1 + γσ2
2 + γ ln

1
σ1
√

γ + 1

√
σ2

1 + γσ2
2

)

+
1
2

γ(μ1 − μ2)
2

γ
(
γσ2

2 + σ2
1
)

=
1

γ(γ + 1)
ln

1
σ1σ

γ
2

⎛⎝
√

σ2
1 + γσ2

2√
γ + 1

⎞⎠γ+1

+
1
2
(μ1 − μ2)

2(
γσ2

2 + σ2
1
)

For γ → 0 we have,

lim
γ→0

Rγ(N (μ1, σ1),N (μ2, σ2)) =
σ2

2 − σ2
1

2σ2
1

+ ln
σ1

σ2
+

1
2
(μ1 − μ2)

2

σ2
1

. (A11)

Appendix A.4. Computation of the Nonzero Eigenvalues of Aγ(θ0)Bτ(θ0)Kτ(θ0)Bτ(θ0)

We know that the matrix ξ(θ) can be expressed as

ξ(θ) = cτ(θ)κ(θ)

with
κ(θ) =

∫
fθ(x)τ+1dx =

1

στ
(√

2π
)τ√

1 + τ
.

Then,

ξ(θ) =
1

στ
(√

2π
)τ√

1 + τ

(
0,− τ

(τ + 1)
1
σ

)T
.

Therefore,

cτ(θ) =
ξ(θ)

κ(θ)
=

(
0,− τ

(τ + 1)
1
σ

)
.

On the other hand

∂ log fμ,σ(Xi)

∂μ
=

Xi − μ

σ2 and
∂ log fμ,σ(Xi)

∂σ
= − 1

σ
+

1
σ3 (Xi − μ)2

and

uθ(Xi) =

(
Xi − μ

σ2 ,− 1
σ
+

1
σ3 (Xi − μ)2

)
.
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Then,
Ψτ(X; θ) =

(
Ψ1

τ(X; θ), Ψ2
τ(X; θ)

)
is given by

Ψτ(X; θ) =

⎛⎜⎝X − μ

σ2
1(

σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

,

((
X − μ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

⎞⎟⎠
and

Kτ(θ) = E
[
Ψτ(X; θ)Ψτ(X; θ)T

]
.

Now we obtain the elements of that matrix,

K11
τ (θ) = E

⎡⎢⎣(X − μ

σ2

)2 1(
σ
√

2π
)2τ

e−
2τ
2

(
X−μ

σ

)2

⎤⎥⎦
=

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

1
σ2

K12
τ (θ) = K21

τ (θ) = E

⎡⎢⎣(X − μ

σ2

)((
X − μ

σ

)2
− 1

1 + τ

)
1
σ

1(
σ
√

2π
)2τ

e−
2τ
2

(
X−μ

σ

)2

⎤⎥⎦
= 0

and

K22
τ (θ) = E

⎡⎢⎣((X − μ

σ

)2
− 1

1 + τ

)2
1
σ2

1(
σ
√

2π
)2τ

e−
2τ
2

(
X−μ

σ

)2

⎤⎥⎦
=

1
σ2

3τ2 + 2 + 4τ(
σ
√

2π
)2τ

(1 + 2τ)5/2(1 + τ)2

and

Kτ(θ) =

⎛⎜⎝ 1

(σ
√

2π)
2τ
(1+2τ)3/2

1
σ2 0

0 1
σ2

3τ2+2+4τ

(σ
√

2π)
2τ
(1+2τ)5/2(1+τ)2

⎞⎟⎠
=

1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)
.

Now we obtain the matrix Sτ(θ). We have

ξ(θ) = cτ(θ)κ(θ)

with
κ(θ) =

∫
fθ(x)τ+1dx =

1

στ
(√

2π
)τ√

1 + τ
.
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Then,

ξ(θ) =
1

στ
(√

2π
)τ√

1 + τ

(
0,− τ

(τ + 1)
1
σ

)T

and

1
κ(θ)

ξ(θ)ξ(θ)T =
1

στ+2
(√

2π
)τ√

1 + τ

(
0 0
0 τ2

(τ+1)2

)
.

On the other hand

Jτ(θ) = E

⎡⎢⎣
⎛⎝ 1

σ4 (X − μ)2 1
σ2

(
1
σ − 1

σ3 (X − μ)2
)
(X − μ)

1
σ2

(
1
σ − 1

σ3 (X − μ)2
)
(X − μ)

(
1
σ − 1

σ3 (X − μ)2
)2

⎞⎠ 1(
σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

⎤⎥⎦

J11
τ (θ) = E

⎡⎢⎣ 1
σ4 (μ − X)2 1(

σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

⎤⎥⎦ =
1

στ+2
1

(τ + 1)3/2
1(√
2π
)τ

J12
τ (θ) = J21

τ (θ) = 0

J22
τ (θ) = E

⎡⎢⎣( 1
σ
− 1

σ3 (μ − X)2
)2 1(

σ
√

2π
)τ e−

τ
2

(
X−μ

σ

)2

⎤⎥⎦ =
1

στ+2
1(√
2π
)τ

1√
1 + τ

2 + τ2

(1 + τ)2

Therefore

Jτ(θ) =
1

στ+2
1(√
2π
)τ

1√
1 + τ

( 1
1+τ 0
0 2+τ2

(1+τ)2

)

Sτ(θ) = Jτ(θ)−
1

κ(θ)
ξ(θ)ξ(θ)T

=
1

στ+2
1(√
2π
)τ

1√
1 + τ

(( 1
1+τ 0
0 2+τ2

(1+τ)2

)
−
(

0 0
0 τ2

(τ+1)2

))

=
1

στ+2
1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)

Now we have,

• The matrix
[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1
(G(θ) = (0, 1)T)

G(θ0)
TSτ(θ0)

−1G(θ0) =
(

0 1
)⎛⎜⎝ 1

στ+2
1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)⎞⎟⎠
−1(

0
1

)

=
1
2

σ2στ(τ + 1)
5
2
(√

2
√

π
)τ

• The matrix Qτ(θ0) = S−1
τ (θ0)G(θ0)

[
GT(θ0)S−1

τ (θ0)G(θ0)
]−1
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Qτ(θ0) =

⎛⎜⎝ 1
στ+2

1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)⎞⎟⎠
−1(

0
1

)(
1
2

σ2στ(τ + 1)
5
2
(√

2
√

π
)τ
)−1

=

(
0
1

)

• The matrix Bτ(θ0) = Sτ(θ0)
−1G(θ0)

[
G(θ0)

TSτ(θ0)
−1G(θ0)

]−1G(θ0)
TSτ(θ0)

−1 =

Qτ(θ0)G(θ0)
TSτ(θ0)

−1

Bτ(θ0) = Qτ(θ0)GT(θ0)S−1
τ (θ0) =

(
0
1

)(
0 1

)⎛⎜⎝ 1
στ+2

1(√
2π
)τ

1√
1 + τ

(
1

1+τ 0
0 2

(τ+1)2

)⎞⎟⎠
−1

=

(
0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

• The matrix Mγ,τ(θ0) =
Sγ(θ0)
κγ(θ0)

Bτ(θ0)Kτ(θ0)Bτ(θ0)

Mγ,τ(θ0) =
σγ
(√

2π
)γ√

1 + γ

σγ+2
1(√
2π
)γ

1√
1 + γ

( 1
1+γ 0
0 2

(γ+1)2

)

×
(

0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

× 1
σ2

1(
σ
√

2π
)2τ

(1 + 2τ)3/2

(
1 0
0 3τ2+2+4τ

(1+τ)2(1+2τ)

)

×
(

0 0

0 1
2 σ2στ(τ + 1)

5
2
(√

2
√

π
)τ

)

=

⎛⎝ 0 0

0 1
2

(τ+1)3

(γ+1)2(2τ+1)
5
2

(
3τ2 + 4τ + 2

) ⎞⎠.
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Abstract: This paper introduces a closed-form expression for the Kullback–Leibler divergence (KLD)
between two central multivariate Cauchy distributions (MCDs) which have been recently used in
different signal and image processing applications where non-Gaussian models are needed. In this
overview, the MCDs are surveyed and some new results and properties are derived and discussed
for the KLD. In addition, the KLD for MCDs is showed to be written as a function of Lauricella
D-hypergeometric series F(p)

D . Finally, a comparison is made between the Monte Carlo sampling
method to approximate the KLD and the numerical value of the closed-form expression of the latter.
The approximation of the KLD by Monte Carlo sampling method are shown to converge to its
theoretical value when the number of samples goes to the infinity.

Keywords: Multivariate Cauchy distribution (MCD); Kullback–Leibler divergence (KLD); multiple
power series; Lauricella D-hypergeometric series

1. Introduction

Multivariate Cauchy distribution (MCD) belongs to the elliptical symmetric distri-
butions [1] and is a special case of the multivariate t-distribution [2] and the multivariate
stable distribution [3]. MCD has been recently used in several signal and image processing
applications for which non-Gaussian models are needed. To name a few of them, in speckle
denoizing, color image denoizing, watermarking, speech enhancement, among others.
Sahu et al. in [4] presented a denoizing method for speckle noise removal applied to a
retinal optical coherence tomography (OCT) image. The method was based on the wavelet
transform where the sub-bands coefficients were modeled using a Cauchy distribution.
In [5], a dual tree complex wavelet transform (DTCWT)-based despeckling algorithm was
proposed for synthetic aperture radar (SAR) images, where the DTCWT coefficients in each
subband were modeled with a multivariate Cauchy distribution. In [6], a new color image
denoizing method in the contourlet domain was suggested for reducing noise in images
corrupted by Gaussian noise where the contourlet subband coefficients were described
by the heavy-tailed MCD. Sadreazami et al. in [7] put forward a novel multiplicative
watermarking scheme in the contourlet domain where the watermark detector was based
on the bivariate Cauchy distribution and designed to capture the across scale dependencies
of the contourlet coefficients. Fontaine et al. in [8] proposed a semi-supervised multi-
channel speech enhancement system where both speech and noise follow the heavy-tailed
multi-variate complex Cauchy distribution.

Kullback–Leibler divergence (KLD), also called relative entropy, is one of the most
fundamental and important measures in information theory and statistics [9,10]. KLD was
first introduced and studied by Kullback and Leibler [11] and Kullback [12] to measure the
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divergence between two probability mass functions in the case of discrete random variables
and between two univariate or multivariate probability density functions in the case of
continuous random variables. In the literature, numerous entropy and divergence mea-
sures have been suggested for measuring the similarity between probability distributions,
such as Rényi [13] divergence, Sharma and Mittal [14] divergence, Bhattacharyya [15,16]
divergence and Hellinger divergence measures [17]. Other general divergence families
have been also introduced and studied like the φ-divergence family of divergence measures
defined simultaneously by Csiszár [18] and Ali and Silvey [19] where the KLD measure
is a special case, the Bregman family divergence [20], the R-divergences introduced by
Burbea and Rao [21–23], the statistical f -divergences [24,25] and recently the new family
of a generalized divergence called the (h, φ)-divergence measures introduced and studied
in Menéndez et al. [26]. Readers are referred to [10] for details about these divergence
family measures.

KLD has a specific interpretation in coding theory [27] and is therefore the most
popular and widely used as well. Since information theoretic divergence and KLD in
particular are ubiquitous in information sciences [28,29], it is therefore important to establish
closed-form expressions of such divergence [30]. An analytical expression of the KLD
between two univariate Cauchy distributions was presented in [31,32]. To date, the KLD of
MCDs has no known explicit form, and it is in practice either estimated using expensive
Monte Carlo stochastic integration or approximated. Monte Carlo sampling can efficiently
estimate the KLD provided that a large number of independent and identically distributed
samples is provided. Nevertheless, Monte Carlo integration is a too slow process to be
useful in many applications. The main contribution of this paper is to derive a closed-form
expression for the KLD between two central MCDs in a general case to benchmark future
approaches while avoiding approximation using expensive Monte Carlo (MC) estimation
techniques. The paper is organized as follows. Section 2 introduces the MCD and the
KLD. Section 3 gives some definitions and propositions related to a multiple power series
used to compute the closed-form expression of the KLD between two central MCDs. In
Sections 4 and 5, expressions of some expectations related to the KLD are developed by
exploiting the propositions presented in the previous section. Section 6 demonstrates some
final results on the KLD computed for the central MCD. Section 7 presents some particular
results such as the KLD for the univariate and the bivariate Cauchy distribution. Section 8
presents the implementation procedure of the KLD and a comparison with Monte Carlo
sampling method. A summary and some conclusions are provided in the final section.

2. Multivariate Cauchy Distribution and Kullback–Leibler Divergence

Let X be a random vector of Rp which follows the MCD, characterized by the following
probability density function (pdf) given as follows [2]

fX(x|μ, Σ, p) =
Γ( 1+p

2 )

π
p
2 Γ( 1

2 )

1

|Σ| 1
2

1

[1 + (x − μ)TΣ−1(x − μ)]
1+p

2

. (1)

This is for any x ∈ Rp, where p is the dimensionality of the sample space, μ is the location
vector, Σ is a symmetric, positive definite (p × p) scale matrix and Γ(.) is the Gamma
function. Let X1 and X2 be two random vectors that follow central MCDs with pdfs
fX1(x|Σ1, p) = fX1(x|0, Σ1, p) and fX2(x|Σ2, p) = fX2(x|0, Σ2, p) given by (1). KLD provides
an asymmetric measure of the similarity of the two pdfs. Indeed, the KLD between the two
central MCDs is given by

KL(X1||X2) =
∫
Rp

ln
(

fX1(x|Σ1, p)
fX2(x|Σ2, p)

)
fX1(x|Σ1, p)dx (2)

= EX1{ln fX1(X)} − EX1{ln fX2(X)}. (3)

Since the KLD is the relative entropy defined as the difference between the cross-entropy
and the entropy, we have the following relation:
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KL(X1||X2) = H( fX1 , fX2)− H( fX1) (4)

where H( fX1 , fX2) = −EX1{ln fX2(X)}denotes the cross-entropy and H( fX1) = −EX1{ln fX1(X)}
the entropy. Therefore, the determination of KLD requires the expression of the entropy
and the cross-entropy. It should be noted that the smaller KL(X1||X2), the more similar are
fX1(x|Σ1, p) and fX2(x|Σ2, p). The symmetric KL similarity measure between X1 and X2 is
dKL(X

1, X2) = KL(X1||X2) + KL(X2||X1). In order to compute the KLD, we have to derive
the analytical expressions of EX1{ln fX1(X)} and EX1{ln fX2(X)} which depend, respec-
tively, on EX1{ln[1 + XTΣ−1

1 X]} and EX1{ln[1 + XTΣ−1
2 X]}. Consequently, the closed-form

expression of the KLD between two zero-mean MCDs is given by

KL(X1||X2) =
1
2

log
|Σ2|
|Σ1|

− 1 + p
2

(
EX1{ln[1 + XTΣ−1

1 X]} − EX1{ln[1 + XTΣ−1
2 X]}

)
. (5)

To provide the expression of these two expectations, some tools based on the multiple
power series are required. The next section presents some definitions and propositions
used for this goal.

3. Definitions and Propositions

This section presents some definitions and exposes some propositions related to
the multiple power series used to derive the closed-form expression of the expectation
EX1{ln[1 + XTΣ−1

1 X]} and EX1{ln[1 + XTΣ−1
2 X]}, and as a consequence the KLD between

two central MCDs.

Definition 1. The Humbert series of n variables, denoted Φ(n)
2 , is defined for all xi ∈ C, i =

1, . . . , n, by the following multiple power series (Section 1.4 in [33])

Φ(n)
2 (b1, . . . , bn; c; x1, . . . , xn) =

∞

∑
m1=0

..
∞

∑
mn=0

(b1)m1 . . . (bn)mn

(c)∑n
i=1 mi

n

∏
i=1

xmi
i

mi!
. (6)

The Pochhammer symbol (q)i indicates the i-th rising factorial of q, i.e., for an integer
i > 0

(q)i = q(q + 1) . . . (q + i − 1) =
i−1

∏
k=0

(q + k) =
Γ(q + i)

Γ(q)
(7)

3.1. Integral Representation for Φ(n)
2

Proposition 1. The following integral representation is true for Real{c} > Real{∑n
i=1 bi} > 0

and Real{bi} > 0 where Real{.} denotes the real part of the complex coefficients

∫
. . .
∫

Δ

(
1 −

n

∑
i=1

ui

)c−
n
∑

i=1
bi−1 n

∏
i=1

ubi−1
i exiui dui = B

(
b1, . . . , bn, c −

n

∑
i=1

bi

)
Φ(n)

2 (b1, . . . , bn; c; x1, . . . , xn) (8)

where Δ = {(u1, . . . , un)|0 ≤ ui ≤ 1, i = 1, . . . , n; 0 ≤ u1 + . . . + un ≤ 1} and the multivariate
beta function B is the extension of beta function to more than two arguments (called also Dirichlet
function) defined as (Section 1.6.1 in [34])

B(b1, . . . , bn, bn+1) =
∏n+1

i=1 Γ(bi)

Γ(∑n+1
i=1 bi)

. (9)
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Proof. The power series of exponential function is given by

exiui =
∞

∑
mi=0

xmi
i

mi!
umi

i . (10)

By substituting the expression of the exponential into the multiple integrals we have

∫
..
∫

Δ

(
1 −

n

∑
i=1

ui

)c−∑n
i=1 bi−1 n

∏
i=1

ubi−1
i exiui dui

=
∫

..
∫

Δ

(
1 −

n

∑
i=1

ui

)c−∑n
i=1 bi−1( n

∏
i=1

∞

∑
mi=0

xmi
i

mi!
umi+bi−1

i dui

)
(11)

=
∞

∑
m1=0

..
∞

∑
mn=0

( n

∏
i=1

xmi
i

mi!

)
× ID

where the multivariate integral ID, which is a generalization of a beta integral, is the type-1
Dirichlet integral (Section 1.6.1 in [34]) given by

ID =
∫

. . .
∫

Δ

(
1 −

n

∑
i=1

ui

)c−∑n
i=1 bi−1 n

∏
i=1

umi+bi−1
i dui

=
∏n

i=1 Γ(bi + mi)Γ(c − ∑n
i=1 bi)

Γ(c + ∑n
i=1 mi)

. (12)

Knowing that Γ(bi + mi) = Γ(bi)(bi)mi , the expression of ID can be written otherwise

ID =
∏n

i=1 Γ(bi)Γ(c − ∑n
i=1 bi)

Γ(c)
∏n

i=1(bi)mi

(c)∑n
i=1 mi

. (13)

Finally, plugging (13) back into (12) leads to the final result

Γ(c −
n
∑

i=1
bi)

n
∏
i=1

Γ(bi)

Γ(c)

+∞

∑
m1,...,
mn=0

n
∏
i=1

(bi)mi

(c)∑n
i=1 mi

n

∏
i=1

xmi
i

mi!
= B

(
b1, . . . , bn, c −

n

∑
i=1

bi

)
Φ(n)

2 (b1, . . . , bn; c; x1, . . . , xn) (14)

Given Proposition 1, we consider the particular cases n = {1, 2} one by one as follows:
Case n = 1

1
B(b1, c − b1)

∫ 1

0
ub1−1

1 ex1u1(1 − u1)
c−b1−1du1 =

∞

∑
m1=0

(b1)m1

(c)m1

xm1
1

m1!
= Φ(1)

2 (b1; c; x1) = 1F1(b1, c; x1) (15)

where 1F1(.) is the confluent hypergeometric function of the first kind (Section 9.21 in [35]).
Case n = 2

1
B(b1, b2, c − b1 − b2)

∫∫
u1≥0,u2≥0,
u1+u2≤1

ub1−1
1 ub2−1

2 ex1u1+x2u2(1 − u1 − u2)
c−b1−b2−1du1du2

=
∞

∑
m1=0

∞

∑
m2=0

(b1)m1(b2)m2

(c)m1+m2

xm1
1

m1!
xm2

2
m2!

= Φ(2)
2 (b1, b2; c; x1, x2) = Φ2(b1, b2, c; x1, x2) (16)

where the double series Φ2 is one of the components of the Humbert series of two
variables [36] that generalize Kummer’s confluent hypergeometric series 1F1 of one variable.
The double series Φ2 converges absolutely at any x1, x2 ∈ C.
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3.2. Multiple Power Series F(n)
N

Definition 2. We define a new multiple power series, denoted by F(n)
N and given by

F(n)
N (a; b1, . . . , bn; c, cn; x1, . . . , xn)

= x−a
n

+∞

∑
m1,...,
mn=0

(a)∑n
i=1 mi

(a − cn + 1)∑n
i=1 mi

(a + bn − cn + 1)∑n
i=1 mi

∏n−1
i=1 (bi)mi

(c)∑n−1
i=1 mi

n−1

∏
i=1

(
xi
xn

)mi 1
mi!

(1 − x−1
n )mn

mn!
. (17)

The multiple power series (17) is absolutely convergent on the region |xix−1
n |+ |1 − x−1

n | < 1 in
Cn, ∀ i ∈ {1, . . . , n − 1}.

The multiple power series F(n)
N (.) can also be transformed into two other expressions

as follows

F(n)
N (a; b1, . . . , bn; c, cn; x1, . . . , xn)

=
+∞

∑
m1,...,
mn=0

(a − cn + 1)∑n−1
i=1 mi

(bn)mn(a)∑n
i=1 mi

(a + bn − cn + 1)∑n
i=1 mi

∏n−1
i=1 (bi)mi

(c)∑n−1
i=1 mi

n−1

∏
i=1

xmi
i

mi!
(1 − xn)mn

mn!
, (18)

= x1−cn
n

+∞

∑
m1,...,
mn=0

(a − cn + 1)∑n
i=1 mi

(bn − cn + 1)mn(a)∑n−1
i=1 mi

(a + bn − cn + 1)∑n
i=1 mi

∏n−1
i=1 (bi)mi

(c)∑n−1
i=1 mi

n−1

∏
i=1

xmi
i

mi!
(1 − xn)mn

mn!
. (19)

By Horn’s rule for the determination of the convergence region (see [37], Section 5.7.2), the
multiple power series (18) and (19) are absolutely convergent on region |xi| < 1, ∀ i ∈
{1, . . . , n − 1}, |1 − xn| < 1 in Cn.

Equation (18) can then be deduced from (17) by using the following development
where the F(p)

N function can be written as

F(n)
N (a; b1, . . . , bn; c, cn; x1, . . . , xn) = x−a

n

+∞

∑
m1,...,

mn−1=0

(a)∑n−1
i=1 mi

(a − cn + 1)∑n−1
i=1 mi

(a + bn − cn + 1)∑n−1
i=1 mi

∏n−1
i=1 (bi)mi

(c)∑n−1
i=1 mi

×
n−1

∏
i=1

(
xi
xn

)mi 1
mi!

∞

∑
mn=0

(α)mn(α − cn + 1)mn

(α + bn − cn + 1)mn

(1 − x−1
n )mn

mn!
(20)

and α = a + ∑n−1
i=1 mi is used here to alleviate writing equations. Using the definition of

Gauss’ hypergeometric series 2F1(.) [34] and the Pfaff transformation [38], we can write

∞

∑
mn=0

(α)mn(α − cn + 1)mn

(α + bn − cn + 1)mn

(1 − x−1
n )mn

mn!
= 2F1

(
α, α − cn + 1; α + bn − cn + 1; 1 − x−1

n
)

(21)

= xα
n 2F1

(
α, bn; α + bn − cn + 1; 1 − xn

)
(22)

= xα
n

∞

∑
mp=0

(α)mn(bn)mn

(α + bn − cn + 1)mn

(1 − xn)mn

mn!
. (23)

By substituting (23) into (20), and using the following two relations:

(a)∑n−1
i=1 mi

(α)mn = (a)∑n
i=1 mi

, (24)

(a + bn − cn + 1)∑n−1
i=1 mi

(α + bn − cn + 1)mn = (a + bn − cn + 1)∑n
i=1 mi

(25)

we can get (18).
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The second transformation is given as follows

2F1
(
α, α − cn + 1; bn − cn + α + 1; 1 − x−1

n
)

= xα−cn+1
n 2F1

(
bn − cn + 1, α − cn + 1; α + bn − cn + 1; 1 − xn

)
(26)

= xα−cn+1
n

∞

∑
mn=0

(α − cn + 1)mn(bn − cn + 1)mn

(α + bn − cn + 1)mn

(1 − xn)mn

mn!
. (27)

By substituting (27) into (20), we get (19).

Lemma 1. The multiple power series F(n)
N is equal to the Lauricella D-hypergeometric function

F(n)
D (see Appendix A) [39] when a − cn + 1 = c and is given as follows

F(n)
N (a; b1, . . . , bn; c, cn; x1, . . . , xn) =

+∞

∑
m1,...,
mn=0

(a)∑n
i=1 mi ∏n

i=1(bi)mi

(a + bn − cn + 1)∑n
i=1 mi

n−1

∏
i=1

xmi
i

mi!
(1 − xn)mn

mn!
(28)

= F(n)
D (a, b1, . . . , bn; a + bn − cn + 1; x1, . . . , xn−1, 1 − xn) (29)

Proof. By using Equation (18) of the multiple power series F(n)
N and after having simpli-

fied (a − cn + 1)∑n−1
i=1 mi

to the numerator and (c)∑n−1
i=1 mi

to the denominator, we can get
the result.

3.3. Integral Representation for F(n+1)
N

Proposition 2. The following integral representation is true for Real{a} > 0, Real{a − cn+1 +
1} > 0, and Real{a − cn+1 + bn+1 + 1} > 0

Γ(a)Γ(a − cn+1 + 1)
Γ(a − cn+1 + bn+1 + 1)

F(n+1)
N (a; b1, . . . , bn+1; c, cn+1; x1, . . . , xn+1)

=
∫ ∞

0
e−rra−1Φ(n)

2 (b1, . . . , bn; c; rx1, . . . , rxn)U(bn+1, cn+1; rxn+1)dr (30)

where U(·) is the confluent hypergeometric function of the second kind (Section 9.21 in [35]) defined
for Real{b} > 0, Real{z} > 0 by the following integral representation

U(b, c; z) =
1

Γ(b)

∫ ∞

0
e−zttb−1(1 + t)c−b−1dt (31)

and Φ(n)
2 (·) is defined by Equation (6).

Proof. The multiple power series Φ(n)
2 and the confluent hypergeometric function U(·) are

absolutely convergent on [0,+∞]. Using these functions in the above integral and changing
the order of integration and summation, which is easily justified by absolute convergence,
we get ∫ ∞

0
e−rra−1Φ(n)

2 (b1, . . . , bn; c; rx1, . . . , rxn)U(bn+1, cn+1; rxn+1)dr

=
∞

∑
m1=0

..
∞

∑
mn=0

(b1)m1 . . . (bn)mn

(c)∑n
i=1 mi

(
n

∏
i=1

xmi
i

mi!

)
I (32)

where integral I is defined as follows

I =
∫ ∞

0
e−rr

a−1+
n
∑

i=1
mi

U(bn+1, cn+1; rxn+1)dr. (33)

124



Entropy 2022, 24, 838

Substituting the integral expression of U(·) in the previous equation and replacing α =
a + ∑n

i=1 mi to alleviate writing equations, we have

I =
1

Γ(bn+1)

∫ ∞

0

∫ ∞

0

e−(1+xn+1t)rrα−1tbn+1−1

(1 + t)−(cn+1−bn+1−1)
drdt. (34)

Knowing that [35] ∫ ∞

0
e−(1+xn+1t)rrα−1dr =

Γ(α)
(1 + xn+1t)α

(35)

and∫ ∞

0

tbn+1−1(1 + t)cn+1−bn+1−1

(1 + xn+1t)α
dt =

Γ(bn+1)Γ(α − cn+1 + 1)
Γ(α + bn+1 − cn+1 + 1) 2F1(α, bn+1; α + bn+1 − cn+1 + 1; 1 − xn+1) (36)

the new expression of I is then given by

I =
Γ(α)Γ(α − cn+1 + 1)

Γ(α + bn+1 − cn+1 + 1)

+∞

∑
mn+1=0

(α)mn+1(bn+1)mn+1

(α + bn+1 − cn+1 + 1)mn+1

(1 − xn+1)
mn+1

mn+1!
. (37)

Using the fact that Γ(α) = Γ(a)(a)∑n
i=1 mi

and (a)∑n
i=1 mi

(α)mn+1 = (a)∑n+1
i=1 mi

, and developing

the same method to Γ(α + bn+1 − cn+1 + 1), the final complete expression of the integral is
then given by

Γ(a)Γ(a − cn+1 + 1)
Γ(a + bn+1 − cn+1 + 1)

∞

∑
m1=0

..
∞

∑
mn+1=0

(b1)m1 . . . (bn)mn

(c)∑n
i=1 mi

(a − cn+1 + 1)∑n
i=1 mi

(bn+1)mn+1(a)∑n+1
i=1 mi

(a + bn+1 − cn+1 + 1)∑n+1
i=1 mi

n

∏
i=1

xmi
i

mi!

× (1 − xn+1)
mn+1

mn+1!
=

Γ(a)Γ(a − cn+1 + 1)
Γ(a − cn+1 + bn+1 + 1)

F(n+1)
N (a; b1, . . . , bn+1; c, cn+1; x1, . . . , xn+1). (38)

4. Expression of EX1{ln[1 + XT Σ−1
1 X]}

Proposition 3. Let X1 be a random vector that follows a central MCD with pdf given by fX1(x|Σ1, p).
Expectation EX1{ln[1+XTΣ−1

1 X]} is given as follows

EX1
{

ln[1 + XTΣ−1
1 X]

}
= ψ

(
1 + p

2

)
− ψ

(
1
2

)
(39)

where ψ(.) is the digamma function defined as the logarithmic derivative of the Gamma function
(Section 8.36 in [35]).

Proof. Expectation EX1{ln[1 + XTΣ−1
1 X]} is developed as follows

EX1{ln[1 + XTΣ−1
1 X]} =

A

|Σ1|
1
2

∫
Rp

ln[1 + xTΣ−1
1 x]

[1 + xTΣ−1
1 x]

1+p
2

dx (40)

where A = Γ( 1+p
2 )π− 1+p

2 . Utilizing the following property
∫

log(x) f (x)dx = ∂
∂a

∫
xa f (x)

dx
∣∣
a=0, as a consequence the expectation is given as follows

EX1{ln[1 + XTΣ−1
1 X]} =

A

|Σ1|
1
2

∂

∂a

∫
Rp
[1 + xTΣ−1

1 x]a−
1+p

2 dx
∣∣∣∣
a=0

(41)

Consider the transformation y = Σ−1/2
1 x where y = [y1, y2, . . . , yp]T . The Jacobian

determinant is given by dy = |Σ1|−1/2dx (Theorem 1.12 in [40]). The new expression of
the expectation is given by
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EX1{ln[1 + XTΣ−1
1 X]} = A

∂

∂a

∫
Rp
[1 + yTy]a−

1+p
2 dy

∣∣∣∣
a=0

. (42)

Let u = yTy be a transformation where the Jacobian determinant is given by (Lemma 13.3.1
in [41])

dy =
π

p
2

Γ( p
2 )

u
p
2 −1du. (43)

The new expectation is as follows

EX1{ln[1 + XTΣ−1
1 X]} =

Γ( 1+p
2 )

π1/2Γ( p
2 )

∂

∂a

∫ +∞

0
u

p
2 −1(1 + u)a− 1+p

2 du
∣∣∣∣
a=0

(44)

Using the definition of beta function, we can write that∫ +∞

0
u

p
2 −1(1 + u)a− 1+p

2 du =
Γ( p

2 )Γ(
1
2 − a)

Γ( 1+p
2 − a)

. (45)

The derivative of the last integral w.r.t a is given by

∂

∂a

∫ +∞

0
u

p
2 −1(1 + u)a− 1+p

2 du
∣∣∣∣
a=0

=
Γ( p

2 )Γ(
1
2 )

Γ( 1+p
2 )

[
ψ(

1 + p
2

)− ψ(
1
2
)

]
(46)

Finally, the expression of EX1{ln[1 + XTΣ−1
1 X]} is given by

EX1{ln[1 + XTΣ−1
1 X]} = ψ

(
1 + p

2

)
− ψ

(
1
2

)
. (47)

5. Expression of EX1{ln[1 + XT Σ−1
2 X]}

Proposition 4. Let X1 and X2 be two random vectors that follow central MCDs with pdfs given,
respectively, by fX1(x|Σ1, p) and fX2(x|Σ2, p). Expectation EX1{ln[1 + XTΣ−1

2 X]} is given
as follows

EX1{ln[1 + XTΣ−1
2 X]} = ψ

(
1 + p

2

)
− ψ

(
1
2

)
+ ln λp

− ∂

∂a

{
F(p)

D

(
a,

1
2

,
1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

. (48)

where λ1,. . . , λp are the eigenvalues of the real matrix Σ1Σ−1
2 , and F(p)

D (.) represents the Lauricella
D-hypergeometric function defined for p variables.

Proof. To prove Proposition 4, different steps are necessary. They are described in the
following:

5.1. First Step: Eigenvalue Expression

Expectation EX1{ln[1 + XTΣ−1
2 X]} is computed as follows

EX1{ln[1 + XTΣ−1
2 X]} =

A

|Σ1|
1
2

∫
Rp

ln[1 + xTΣ−1
2 x]

[1 + xTΣ−1
1 x]

1+p
2

dx (49)
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where A = Γ( 1+p
2 )π− 1+p

2 . Consider transformation y = Σ−1/2
1 x where y = [y1, y2, . . . , yp]T .

The Jacobian determinant is given by dy = |Σ1|−1/2dx (Theorem 1.12 in [40]) and matrix

Σ = Σ
1
2
1 Σ−1

2 Σ
1
2
1 is a real symmetric matrix since Σ1 and Σ2 are real symmetric matrixes.

Then, the expectation is evaluated as follows

EX1{ln[1 + XTΣ−1
2 X]} = A

∫
Rp

ln[1 + yTΣy]

[1 + yTy]
1+p

2

dy. (50)

Matrix Σ can be diagonalized by an orthogonal matrix P with P−1 = PT and Σ = PDP−1

where D is a diagonal matrix composed of the eigenvalues of Σ. Considering that yTΣy =
tr(ΣyyT) = tr(PDPTyyT) = tr(DPTyyTP), the expectation can be written as

EX1{ln[1 + XTΣ−1
2 X]} = A

∫
Rp

ln[1 + tr(DPTyyTP)]

[1 + yTy]
1+p

2

dy. (51)

Let z = PTy with z = [z1, z2, . . . , zp]T be a transformation where the Jacobian determinant
is given by dz = |PT |dy = dy. Using the fact that tr(DPTyyTP) = tr(DzzT) = zTDz and
yTy = zTPTPz = zTz, then the previous expectation (51) is given as follows

EX1{ln[1 + XTΣ−1
2 X]} = A

∫
Rp

ln[1 + zTDz]

[1 + zTz]
1+p

2

dz (52)

= A
∫
R

..
∫
R

ln[1 + ∑
p
i=1 λiz2

i ]

[1 + ∑
p
i=1 z2

i ]
1+p

2

dz1 . . . dzp (53)

where λ1,. . . , λp are the eigenvalues of Σ1Σ−1
2 .

5.2. Second Step: Polar Decomposition

Let the independent real variables z1, . . . , zp be transformed to the general polar
coordinates r, θ1, . . . , θp−1 as follows, where r > 0, −π/2 < θj ≤ π/2, j = 1, . . . , p − 2,
−π < θp−1 ≤ π [40],

z1 = r sin θ1 (54)

z2 = r cos θ1 sin θ2 (55)

zj = r cos θ1 cos θ2 . . . cos θj−1 sin θj, j = 2, 3, . . . , p − 1 (56)

zp = r cos θ1 cos θ2 . . . cos θp−1. (57)

The Jacobian determinant according to theorem (1.24) in [40] is

dz1 . . . dzp = rp−1
p−1

∏
j=1

| cos θj|p−j−1drdθj. (58)

It is clear that with the last transformations, we get ∑
p
i=1 z2

i = r2 and the multiple integral
in (53) is then given as follows

EX1{ln[1 + XTΣ−1
2 X]} = A

∫ +∞

0

rp−1

[1 + r2]
1+p

2

∫ π/2

−π/2
..
∫ π

−π

(
p−1

∏
j=1

| cos θj|p−j−1

)
×

ln
[
1 + r2(λ1 sin2 θ1 + . . . + λp cos2 θ1 . . . cos2 θp−1)

]
dr

p−1

∏
j=1

dθj. (59)

By replacing the expression of sin2 θj by 1 − cos2 θj, for j = 1, . . . , p − 1, we have the
following expression
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λ1 sin2 θ1 + . . . + λp cos2 θ1 . . . cos2 θp−1 = λ1 + (λ2 − λ1) cos2 θ1

+ . . . + (λp − λp−1) cos2 θ1 cos2 θ2 . . . cos2 θp−1. (60)

Let xi = cos2 θi be a transformation to use where dxi = 2x1/2
i (1 − xi)

1/2dθi. Then the
expectation given by the multiple integral over all θj, j = 1, . . . , p − 1 is as follows

2A
∫ +∞

0

rp−1

[1 + r2]
1+p

2

∫ 1

0
. . .
∫ 1

0

(
p−1

∏
j=1

x
p−j

2 −1
j (1 − xj)

− 1
2

)
ln[1 + r2Bp(x1, . . . , xp−1)]drdx1 . . . dxp−1 (61)

where Bp(x1, . . . , xp−1) = λ1 + (λ2 − λ1)x1 + . . . + (λp − λp−1)x1x2 . . . xp−1, p ≥ 1 and
B1 = λ1. In the following, we use the notation Bp instead of Bp(x1, . . . , xp−1) to alleviate
writing equations.

Let t = r2 be transformation to use. Then, one can write

= A
∫ +∞

0

t
p
2 −1

[1 + t]
1+p

2

∫ 1

0
. . .
∫ 1

0

(
p−1

∏
j=1

x
p−j

2 −1
j (1 − xj)

− 1
2

)
ln[1 + tBp]dtdx1 . . . dxp−1. (62)

In order to solve the integral in (62), we consider the following property given by
∫

log(x) f (x)
dx = − ∂

∂a

∫
x−a f (x)dx

∣∣
a=0 and the following equation given as follows(
1 + Bpt

)−a
=

1
Γ(a)

∫ +∞

0
ya−1e−(1+Bpt)ydy. (63)

Making use of the above equation, we obtain a new expression of (62) given as follows

EX1{ln[1 + XTΣ−1
2 X]}

= − ∂

∂a

{
A

Γ(a)

∫ +∞

0

t
p
2 −1

[1 + t]
1+p

2

∫ +∞

0
ya−1e−(1+Bpt)y

1∫
0

. . .
1∫

0

p−1

∏
j=1

x
p−j

2 −1
j (1 − xj)

− 1
2 dxjdydt

}∣∣∣∣
a=0

(64)

= − ∂

∂a

{
A

Γ(a)

∫ +∞

0

t
p
2 −1

[1 + t]
1+p

2

∫ +∞

0
ya−1e−yH(t, y)dydt

}∣∣∣∣
a=0

(65)

where H(t, y) is defined as

H(t, y) =
∫ 1

0
. . .
∫ 1

0
e−Bpty

p−1

∏
j=1

x
p−j

2 −1
j (1 − xj)

− 1
2 dxj. (66)

5.3. Third Step: Expression for H(t,y) by Humbert and Beta Functions

Let x′i = 1 − xi, i = 1, . . . , p − 1 be transformations to use. Then

(λ2 − λ1)x1 = (λ2 − λ1)(1 − x′1) (67)

(λ3 − λ2)x1x2 = (λ3 − λ2)(1 − x′1)[1 − x′2] (68)

(λ4 − λ3)x1x2x3 = (λ4 − λ3)(1 − x′1)(1 − x′2)[1 − x′3] (69)
... =

...

(λp − λp−1)
p−1

∏
i=1

xi = (λp − λp−1)
p−1

∏
i=1

(1 − x′i). (70)

Adding equations from (67) to (70), we can state that the new expression of the function
Bp becomes
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Bp = λp − (λp − λ1)x′1 − (λp − λ2)(1 − x′1)x′2 − (λp − λ3)(1 − x′1)(1 − x′2)x′3
− . . . − (λp − λp−1)(1 − x′1) . . . (1 − x′p−2)x′p−1. (71)

Then, the multiple integral H(t, y) given by (66) can be written otherwise

H(t, y) =
∫ 1

0
. . .
∫ 1

0
e−Bpty

p−1

∏
j=1

(1 − x′j)
p−j

2 −1x′−
1
2

j dx′1 . . . dx′p−1. (72)

Let the real variables x′1, x′2, . . . , x′p−1 be transformed to the real variables u1, u2, . . . , up−1 as
follows

u1 = x′1 (73)

u2 = (1 − x′1)x′2 = (1 − u1)x′2 (74)

u3 = (1 − x′1)(1 − x′2)x′3 = (1 − u1 − u2)x′3 (75)
...

up−1 =
p−2

∏
i=1

(1 − x′i)x′p−1 = (1 −
p−2

∑
i=1

ui)x′p−1. (76)

The Jacobian determinant is given by

du1 . . . dup−1 =
p−1

∏
j=1

(
1 −

j−1

∑
i=1

ui

)
dx′1 . . . dx′p−1. (77)

Accordingly, the new expression of Bp becomes

Bp = λp −
p−1

∑
i=1

(λp − λi)ui. (78)

As a consequence, the new domain of the multiple integral (72) is Δ = {(u1, u2, . . . , up−1) ∈
Rp−1; 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 − u1, 0 ≤ u3 ≤ 1 − u1 − u2, . . . , and 0 ≤ up−1 ≤ 1 − u1 −
u2 . . . − up−2}, and the expression of H(t, y) is given as follows

H(t, y) =
∫

. . .
∫

Δ
e−Bpty

p−1

∏
j=1

(
1 −

j−1

∑
i=1

ui

)−1(
uj

1 − ∑
j−1
i=1 ui

)− 1
2 p−1

∏
j=1

(
1 −

uj

1 − ∑
j−1
i=1 ui

) p−j
2 −1

duj (79)

=
∫

. . .
∫

Δ
e−Bpty

p−1

∏
j=1

u− 1
2

j

(
1 −

j

∑
i=1

ui

) p−j
2 −1(

1 −
j−1

∑
i=1

ui

) 1
2−

p−j
2

du1 . . . dup−1 (80)

=
∫

. . .
∫

Δ
e−Bpty

(
1 −

p−1

∑
i=1

ui

) p
2 −

p−1
2 −1 p−1

∏
j=1

u− 1
2

j duj (81)

= e−λpty
∫

. . .
∫

Δ

(
1 −

p−1

∑
i=1

ui

)− 1
2 p−1

∏
i=1

u− 1
2

i e(λp−λi)uitydui. (82)

Using Proposition 1, we subsequently find that

H(t, y) = e−λptyB
(

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

)
Φ(p−1)

2

(
1
2

, . . . ,
1
2︸ ︷︷ ︸

p−1

;
p
2

; (λp − λ1)ty, (λp − λ2)ty, . . . , (λp − λp−1)ty
)

. (83)
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where Φ(p−1)
2 (.) is the Humbert series of p − 1 variables and B( 1

2 , . . . , 1
2 ) is the multivariate

beta function. Applying the following successive two transformations r = ty (dr = tdy)
and u = 1/t (du = −u2dt), the new expression of the expectation given by (65) is written
as follows

EX1{ln[1 + XTΣ−1
2 X]} = − ∂

∂a

{
A

Γ(a)
B
(

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

) ∫ +∞

0
ra−1e−λpr

× Φ(p−1)
2

(
1
2

, . . . ,
1
2︸ ︷︷ ︸

p−1

;
p
2

; (λp − λ1)r, . . . , (λp − λp−1)r
)( ∫ +∞

0
ua− 1

2 (1 + u)−
1+p

2 e−rudu
)

dr
}∣∣∣∣

a=0
. (84)

5.4. Final Step

The last integral is related to the confluent hypergeometric function of the second kind
U(.) as follows∫ +∞

0
ua− 1

2 (1 + u)−
1+p

2 e−rudu = Γ(a +
1
2
)U(a +

1
2

, a + 1 − p
2

, r). (85)

As a consequence, the new expression is

EX1{ln[1 + XTΣ−1
2 X]} = − ∂

∂a

{
A

Γ(a + 1
2 )

Γ(a)
B
(

1
2

, . . . ,
1
2

)

×
+∞∫
0

ra−1e−λprΦ(p−1)
2

(
1
2

, . . . ,
1
2

;
p
2

; 1; (λp − λ1)r, . . . , (λp − λp−1)r
)

U(a +
1
2

, a + 1 − p
2

, r)dr
}∣∣∣∣

a=0
. (86)

Using the transformation r′ = λpr and the Proposition 2, and taking into account the
expression of A, the new expression becomes

EX1{ln[1 + XTΣ−1
2 X]} = − ∂

∂a

{
B(a + 1

2 , p
2 )

B( 1
2 , p

2 )
λ−a

p

× F(p)
N

(
a;

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

;
p
2

, a − p
2
+ 1; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, λ−1

p

)}∣∣∣∣
a=0

(87)

Knowing that

∂

∂a

{
B( p

2 , a + 1
2 )

B( p
2 , 1

2 )

}∣∣∣∣
a=0

= ψ

(
1
2

)
− ψ

(
1 + p

2

)
, and (88)

F(p)
N

(
a;

1
2

, . . . ,
1
2

, a +
1
2

;
p
2

, a − p
2
+ 1; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, λ−1

p

)∣∣∣∣
a=0

= 1, (89)

the new expression of EX1{ln[1 + XTΣ−1
2 X]} becomes

EX1{ln[1 + XTΣ−1
2 X]} = ψ

(
1 + p

2

)
− ψ

(
1
2

)
− ∂

∂a

{
λ−a

p F(p)
N

(
a;

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

;
p
2

, a − p
2
+ 1; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, λ−1

p

)}∣∣∣∣
a=0

. (90)

Applying the expression given by (18) of Definition 2 and relying on Lemma 1, the final
result corresponds to the D-hypergeometric function of Lauricella F(p)

D (.) given by
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EX1{ln[1 + XTΣ−1
2 X]} = ψ

(
1 + p

2

)
− ψ

(
1
2

)

− ∂

∂a

{
λ−a

p

+∞

∑
m1,...,
mp=0

(a)∑
p
i=1 mi

(a + 1
2 )mp ∏

p−1
i=1 (

1
2 )mi

(a + 1+p
2 )∑

p
i=1 mi

p−1

∏
i=1

(
1 − λi

λp

)mi 1
mi!

(1 − λ−1
p )mp

mp!

}∣∣∣∣
a=0

(91)

= ψ

(
1 + p

2

)
− ψ

(
1
2

)
− ∂

∂a

{
λ−a

p F(p)
D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

. (92)

The final development of the previous expression is as follows

EX1{ln[1 + XTΣ−1
2 X]} = ψ

(
1 + p

2

)
− ψ

(
1
2

)
+ ln λp

− ∂

∂a

{
F(p)

D

(
a,

1
2

,
1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

. (93)

In this section, we presented the exact expression of EX1{ln[1+XTΣ−1
2 X]}. In addition,

the multiple power series F(p)
D which appears to be a special case of F(p)

N provides many
properties and numerous transformations (see Appendix A) that make easier the conver-
gence of the multiple power series. In the next section, we establish the KLD closed-form
expression based on the expression of the latter expectation.

6. KLD between Two Central MCDs

Plugging (39) and (93) into (5) yields the closed-form expression of the KLD between
two central MCDs with pdfs fX1(x|Σ1, p) and fX2(x|Σ2, p). This result is presented in the
following theorem.

Theorem 1. Let X1 and X2 be two random vectors that follow central MCDs with pdfs given,
respectively, by fX1(x|Σ1, p) and fX2(x|Σ2, p). The Kullback–Leibler divergence between central
MCDs is

KL(X1||X2) = −1
2

log
p

∏
i=1

λi +
1 + p

2

[
log λp

− ∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

]
(94)

where λ1,. . . , λp are the eigenvalues of the real matrix Σ1Σ−1
2 , and F(p)

D (.) represents the Lauricella
D-hypergeometric function defined for p variables.

Lauricella [39] gave several transformation formulas (see Appendix A), whose rela-
tions (A5)–(A7), and (A9) are applied to F(p)

D (.) in (94). The results of transformation are
as follows
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F(p)
D

(
a,

1
2

, . . . ,
1
2

, a +
1
2

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)

= λ
a+ p

2
p

p−1

∏
i=1

λ
− 1

2
i F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2

, a +
1
2

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λp

λp−1
, 1 − λp

)
(95)

=

(
λ1

λp

)−a

F(p)
D

(
a,

1
2

, . . . ,
1
2

, a +
1
2

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λ2

λ1
, 1 − 1

λ1

)
(96)

= λa
pF(p)

D

(
a,

1
2

, . . . ,
1
2

; a +
1 + p

2
; 1 − λ1, 1 − λ2, . . . , 1 − λp

)
(97)

= λa
p

p

∏
i=1

λ
− 1

2
i F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2

; a +
1 + p

2
; 1 − 1

λ1
, 1 − 1

λ2
, . . . , 1 − 1

λp

)
. (98)

Considering the above equations, it is easy to provide different expressions of KL(X1||X2)
shown in Table 1. The derivative of the Lauricella D-hypergeometric series with respect to
a goes through the derivation of the following expression

∂

∂a

{
F(p)

D

(
a,

1
2

,
1
2

, . . . ,
1
2

, a +
1
2

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

(99)

=
+∞

∑
m1,...,
mp=0

∂

∂a

{ (a)∑
p
i=1 mi

(a + 1
2 )mp

(a + 1+p
2 )∑

p
i=1 mi

}∣∣∣∣
a=0

p−1

∏
i=1

(
1
2

)
mi

(
1 − λi

λp

)mi 1
mi!

(1 − λ−1
p )mp

mp!
(100)

The derivative with respect to a of the Lauricella D-hypergeometric series and its trans-
formations goes through the following expressions (see Appendix B for demonstration)

∂

∂a

{ (a)∑
p
i=1 mi

(a + 1
2 )mp

(a + 1+p
2 )∑

p
i=1 mi

}∣∣∣∣
a=0

=
( 1

2 )mp(1)∑
p
i=1 mi

( 1+p
2 )∑

p
i=1 mi

(∑
p
i=1 mi)

, (101)

∂

∂a

{ (a)∑
p
i=1 mi

(a + 1+p
2 )∑

p
i=1 mi

}∣∣∣∣
a=0

=
(1)∑

p
i=1 mi

( 1+p
2 )∑

p
i=1 mi

(∑
p
i=1 mi)

, (102)

∂

∂a

{
(a + 1

2 )mp

(a + 1+p
2 )∑

p
i=1 mi

}∣∣∣∣
a=0

=
( 1

2 )mp

( 1+p
2 )∑

p
i=1 mi

[ mp−1

∑
k=0

1
k + 1

2
−

∑
p
i=1 mi−1

∑
k=0

1

k + 1+p
2

]
, (103)

∂

∂a

{
1

(a + 1+p
2 )∑

p
i=1 mi

}∣∣∣∣
a=0

=
−1

( 1+p
2 )∑

p
i=1 mi

∑
p
i=1 mi−1

∑
k=0

1

k + 1+p
2

. (104)

To derive the closed-form expression of dKL(X
1, X2) we have to evaluate the expression

of KL(X2||X1). The latter can be easily deduced from KL(X1||X2) as follows

KL(X2||X1) =
1
2

log
p

∏
i=1

λi −
1 + p

2

[
log λp

+
∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λp

λp−1
, 1 − λp

)}∣∣∣∣
a=0

]
. (105)

Proceeding in the same way by using Lauricella transformations, different expressions of
KL(X2||X1) are provided in Table 1. Finally, given the above results, it is straightforward to
compute the symmetric KL similarity measure dKL(X

1, X2) between X1 and X2. Technically,
any combination of the KL(X1||X2) and KL(X2||X1) expressions is possible to compute
dKL(X

1, X2). However, we choose the same convergence region for the two divergences for
the calculation of the distance. Some expressions of dKL(X

1, X2) are given in Table 1.
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Table 1. KLD and KL distance computed when X1 and X2 are two random vectors following central
MCDs with pdfs fX1 (x|Σ1, p) and fX2 (x|Σ2, p).

KL(X1||X2)

= − 1
2

log
p

∏
i=1

λi +
1 + p

2

[
log λp −

∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

]
(106)

= − 1
2

log
p

∏
i=1

λi −
1 + p

2
λ

p
2
p

p−1

∏
i=1

λ
− 1

2
i

∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λp

λp−1
, 1 − λp

)}∣∣∣∣
a=0

(107)

= − 1
2

log
p

∏
i=1

λi +
1 + p

2

[
log λ1 −

∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λ2

λ1
, 1 − 1

λ1

)}∣∣∣∣
a=0

]
(108)

= − 1
2

log
p

∏
i=1

λi −
1 + p

2
∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1, . . . , 1 − λp

)}∣∣∣∣
a=0

(109)

= − 1
2

log
p

∏
i=1

λi −
1 + p

2

p

∏
i=1

λ
− 1

2
i

∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − 1

λ1
, . . . , 1 − 1

λp

)}∣∣∣∣
a=0

(110)

KL(X2||X1)

=
1
2

log
p

∏
i=1

λi −
1 + p

2

[
log λp +

∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λp

λ1
, . . . , 1 − λp

λp−1
, 1 − λp

)}∣∣∣∣
a=0

]
(111)

=
1
2

log
p

∏
i=1

λi −
1 + p

2
λ
− p

2
p

p−1

∏
i=1

λ
1
2
i

∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

(112)

=
1
2

log
p

∏
i=1

λi −
1 + p

2

[
log λ1 +

∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λ1

λ2
, 1 − λ1

)}∣∣∣∣
a=0

]
(113)

=
1
2

log
p

∏
i=1

λi −
1 + p

2
∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − 1

λ1
, . . . , 1 − 1

λp

)}∣∣∣∣
a=0

(114)

=
1
2

log
p

∏
i=1

λi −
1 + p

2

p

∏
i=1

λ
1
2
i

∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1, . . . , 1 − λp

)}∣∣∣∣
a=0

(115)

dKL(X
1, X2)

=
1 + p

2

[
log λp −

∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

− λ
− p

2
p

p−1

∏
i=1

λ
1
2
i

× ∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2

, a +
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1

λp
, . . . , 1 − λp−1

λp
, 1 − 1

λp

)}∣∣∣∣
a=0

]
(116)

= − 1 + p
2

[
∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ1, . . . , 1 − λp

)}∣∣∣∣
a=0

+
p

∏
i=1

λ
1
2
i

∂

∂a

{
F(p)

D

(
1 + p

2
,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
;

1 − λ1, . . . , 1 − λp

)}∣∣∣∣
a=0

]
(117)

= − 1 + p
2

[ p

∏
i=1

λ
− 1

2
i

∂

∂a

{
F(p)

D
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2
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λ1
, . . . , 1 − 1

λp

)}∣∣∣∣
a=0

+
∂

∂a

{
F(p)

D

(
a,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
;

1 − 1
λ1

, . . . , 1 − 1
λp

)}∣∣∣∣
a=0

]
(118)

7. Particular Cases: Univariate and Bivariate Cauchy Distribution

7.1. Case of p = 1

This case corresponds to the univariate Cauchy distribution. The KLD is given by
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KL(X1||X2) = −1
2

log λ − ∂

∂a

{
2F1(a,

1
2

; a + 1; 1 − λ)

}∣∣∣∣
a=0

(119)

where 2F1 is the Gauss’s hypergeometric function. The expression of the derivative of 2F1 is
given as follows (see Appendix C.1 for details of computation)

∂

∂a

{
2F1(a,

1
2

; a + 1; 1 − λ)

}∣∣∣∣
a=0

=
∞

∑
n=1

(
1
2

)
n

1
n
(1 − λ)n

n!

= −2 ln

(
1 + λ1/2

2

)
. (120)

Accordingly, the KLD is then expressed as

KL(X1||X2) = log
(1 + λ

1
2 )2

4λ
1
2

(121)

= log
(1 + λ− 1

2 )2

4λ− 1
2

= KL(X2||X1). (122)

We conclude that KLD between Cauchy densities is always symmetric. Interestingly,
this is consistent with the result presented in [31].

7.2. Case of p = 2

This case corresponds to the Bivariate Cauchy distribution. The KLD is then given by

KL(X1||X2) = −1
2

log λ1λ2 −
3
2

∂

∂a

{
F1(a,

1
2

,
1
2

; a +
3
2

; 1 − λ1, 1 − λ2)

}∣∣∣∣
a=0

(123)

where F1 is the Appell’s hypergeometric function (see Appendix A). The expression of the
derivative of F1 can be further developed

∂

∂a

{
F1(a,

1
2

,
1
2

; a +
3
2

; 1 − λ1, 1 − λ2)

}∣∣∣∣
a=0

=
+∞

∑
n,m=0

(1)m+n(
1
2 )n(

1
2 )m

( 3
2 )m+n

1
m + n

(1 − λ1)
n

n!
(1 − λ2)

m

m!
. (124)

In addition, when the eigenvalue λi for i = 1, 2 takes some particular values, the
expression of the KLD becomes very simple. In the following, we show some cases:

(λ1 = 1, λ2 �= 1) or (λ2 = 1, λ1 �= 1)

For this particular case, we have

∂

∂a

{
F1(a,

1
2

,
1
2

; a +
3
2

; 1 − λi, 0)
}∣∣∣∣

a=0
=

∂

∂a

{
2F1(a,

1
2

; a +
3
2

; 1 − λi)

}∣∣∣∣
a=0

(125)

= − ln λi +
1√

1 − λi
ln
(

1 −√
1 − λi

1 +
√

1 − λi

)
+ 2. (126)

The demonstration of the derivation is shown in Appendix C.2. Then, KLD becomes
equal to

KL(X1||X2) = ln λi −
3
2

1√
1 − λi

ln
(

1 −√
1 − λi

1 +
√

1 − λi

)
− 3. (127)
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λ1 = λ2 = λ

For this particular case, we have

∂

∂a

{
F1(a,

1
2

,
1
2

; a +
3
2

; 1 − λ, 1 − λ)

}∣∣∣∣
a=0

=
∂

∂a

{
2F1(a, 1; a +

3
2

; 1 − λ)

}∣∣∣∣
a=0

(128)

= − 2√
1 − λ−1

ln(
√

λ +
√

λ − 1) + 2. (129)

For more details about the demonstration see Appendix C.3. The KLD becomes equal to

KL(X1||X2) = − ln λ +
3√

1 − λ−1
ln(

√
λ +

√
λ − 1)− 3. (130)

It is easy to deduce that

KL(X2||X1) = ln λ +
3√

1 − λ
ln(

√
λ−1 +

√
λ−1 − 1)− 3. (131)

This result can be demonstrated using the same process as KL(X1||X2). It is worth to
notice that KL(X1||X2) �= KL(X2||X1) which leads us to conclude that the property of
symmetry observed for the univariate case is no longer valid in the multivariate case.
Nielsen et al. in [32] gave the same conclusion.

8. Implementation and Comparison with Monte Carlo Technique

In this section, we show how we practically compute the numerical values of the
KLD, especially when we have several equivalent expressions which differ in the region of
convergence. To reach this goal, the eigenvalues of Σ1Σ−1

2 are rearranged in a descending
order λp > λp−1 > . . . > λ1 > 0. This operation is justified by Equation (53) where it can
be seen that the permutation of the eigenvalues does not affect the expectation result. Three
cases can be identified from the expressions of KLD.

8.1. Case 1 > λp > λp−1 > . . . > λ1 > 0

The expression of KL(X1||X2) is given by Equation (109) and KL(X2||X1) is given
by (115).

8.2. Case λp > λp−1 > . . . > λ1 > 1

KL(X1||X2) is given by the Equation (110) and KL(X2||X1) is given by (114).

8.3. Case λp > 1 and λ1 < 1

This case guarantees that 0 ≤ 1 − λj/λp < 1, j = 1, . . . , p − 1 and 0 ≤ 1 − 1/λp < 1.
The expression of the KL(X1||X2) is given by Equation (106) and KL(X2||X1) is given
by (112) or (113). To perform an evaluation of the quality of the numerical approximation of
the derivative of the Lauricella series, we consider a case where an exact and simple expression
of ∂

∂a{F(p)
D (.)}|a=0 is possible. The following case where λ1 = . . . = λp = λ allows the

Lauricella series to be equivalent to the Gauss hypergeometric function given as follows

F(p)
D

(
a,

1
2

, . . . ,
1
2︸ ︷︷ ︸

p

; a +
1 + p

2
; 1 − λ, . . . , 1 − λ

)
= 2F1

(
a,

p
2

; a +
1 + p

2
; 1 − λ

)
. (132)

This relation allows us to compare the computational accuracy of the approximation of the
Lauricella series with respect to the Gauss function. In addition, to compute the numerical
value the indices of the series will evolve from 0 to N instead of infinity. The latter is chosen
to ensure a good approximation of the Lauricella series. Table 2 shows the computation
of the derivative of F(p)

D (.) and 2F1(.), along with the absolute value of error |ε|, where
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p = 2, N = {20, 30, 40}. The exact expression of ∂
∂a{2F1(.)}|a=0 when p = 2 is given by

Equation (129). We can deduce the following conclusions. First, the error is reasonably low
and decreases as the value of N increases. Second, the error increases for values of 1 − λ
close to 1 as expected, which corresponds to the convergence region limit.

Table 2. Computation of A = ∂
∂a{2F1(.)}|a=0 and B = ∂

∂a{F(p)
D (.)}|a=0 when p = 2 and λ1 = . . . =

λp = λ.

N = 20 N = 30 N = 40

1 − λ A B |ε| B |ε| B |ε|
0.1 0.0694 0.0694 9.1309 × 10−16 0.0694 9.1309 × 10−16 0.0694 9.1309 × 10−16

0.3 0.2291 0.2291 3.7747 × 10−14 0.2291 1.1102 × 10−16 0.2291 1.1102 × 10−16

0.5 0.4292 0.4292 2.6707 × 10−9 0.4292 1.2458 × 10−12 0.4292 6.6613 × 10−16

0.7 0.7022 0.7022 5.9260 × 10−6 0.7022 8.2678 × 10−8 0.7022 1.3911 × 10−9

0.9 1.1673 1.1634 0.0038 1.1665 7.2760 × 10−4 1.1671 1.6081 × 10−4

0.99 1.7043 1.5801 0.1241 1.6267 0.0776 1.6514 0.0529

In the following section, we compare the Monte Carlo sampling method to approximate
the KLD value with the numerical value of the closed-form expression of the latter. The
Monte Carlo method involves sampling a large number of samples and using them to
calculate the sum rather than the integral. Here, for each sample size, the experiment is
repeated 2000 times. The elements of Σ1 and Σ2 are given in Table 3. Figure 1 depicts the
absolute value of bias, mean square error (MSE) and box plot of the difference between the
symmetric KL approximated value and its theoretical one, given versus the sample sizes. As
the sample size increases, the bias and the MSE decrease. Accordingly, the approximated
value will be very close to the theoretical KLD when the number of samples is very large. The
computation time of the proposed approximation and the classical Monte Carlo sampling
method are recorded using Matlab on a 1.6 GHz processor with 16 GB of memory. For the
proposed numerical approximation, the computation time is evaluated to 1.56 s with N = 20.
The value of N can be increased to further improve the accuracy, but it will increase the
computation time. For the Monte Carlo sampling method, the mean time values at sample
sizes of {65,536; 131,072; 262,144} are {2.71; 5.46; 10.78} seconds, respectively.
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Figure 1. Top row: Bias (left) and MSE (right) of the difference between the approximated and
theoretical symmetric KL for MCD. Bottom row: Box plot of the error. The mean error is the bias.
Outliers are larger than Q3 + 1.5 × IQR or smaller than Q1 − 1.5 × IQR, where Q1, Q3, and IQR are
the 25th, 75th percentiles, and the interquartile range, respectively.
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Table 3. Parameters Σ1 and Σ2 used to compute KLD for central MCD.

Σ Σ11, Σ22, Σ33, Σ12, Σ13, Σ23

Σ1 1, 1, 1, 0.6, 0.2, 0.3
Σ2 1, 1, 1, 0.3, 0.1, 0.4

To further encourage the dissemination of these results, we provide a code available as
attached file to this paper. This is given in Matlab with a specific case of p = 3. This can be
easily extended to any value of p, thanks to the general closed-form expression established
in this paper.

%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% Compute the KL divergence and d i s t a n c e between two c e n t r a l m u l t i v a r i a t e Cauchy
% d i s t r i b u t i o n .
%% Input :
% + Sigma1 : Symmetric p o s i t i v e d e f i n i t e ( p*p ) s c a l e matrix
% + Sigma2 : Symmetric p o s i t i v e d e f i n i t e ( p*p ) s c a l e matrix
% + nb : i n d i c e s used to compute the KL and dis ; nb = { 2 0 , 3 0 , 4 0 , e t c } .
% I n c r e a s e nb means i n c r e a s e the p r e c i s i o n and a l s o the computation time .
%% Output :
% + KL_12 : KL divergence between X1 and X2 : KL( X1||X2 )
% + KL_21 : KL divergence between X2 and X1 : KL( X2||X1 )
% + Esp_12 : e x pe c t a t i o n E_ {X} \ { ln [1+ X^T* Sigma2 ^{ −1}*X ] } } where X~MCD( Sigma1 , p=3)
% + Esp_21 : e x pe c t a t i o n E_ {X} \ { ln [1+ X^T* Sigma1 ^{ −1}*X ] } } where X~MCD( Sigma2 , p=3)
% + dis : d i s t a n c e between X1 and X2 : dis = KL( X1||X2 ) + KL( X2||X1 )
%% Example :
% Sigma1 = [1 0 . 6 0 . 2 ; 0 . 6 1 0 . 3 ; 0 . 2 0 . 3 1 ] ;
% Sigma2 = [1 0 . 3 0 . 1 ; 0 . 3 1 0 . 4 ; 0 . 1 0 . 4 1 ] ;
% [ KL_12 , KL_21 , Esp_12 , Esp_21 , d is ] = fonction_KL_MCD_final ( Sigma1 , Sigma2 , 2 0 ) ;
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
funct ion [ KL_12 , KL_21 , Esp_12 , Esp_21 , d is ] = fonction_KL_MCD_final ( Sigma1 , Sigma2 , nb )
format long ;
p = 3 ;

vpr = r e a l ( e ig ( Sigma1 * inv ( Sigma2 ) ) ) ;
vpr = s o r t ( vpr , ’ ascend ’ ) ;

nbre = nb ;
[N,M, L ] = ndgrid ( 0 : nbre , 0 : nbre , 0 : nbre ) ;

i f vpr ( p) < 1
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%% Der iva t ive of Fd ( a ,1/2 ,1/2 ,1/2 ; a+(1+p)/2;1 − vpr (1 ) ,1 − vpr (2 ) ,1 − vpr ( 3 ) ) | a=0
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

H = N+M+L ;
H(H==0)= i n f ;
commun = (1 − vpr ( 1 ) ) . ^N./ f a c t o r i a l (N) . * ( 1 − vpr ( 2 ) ) . ^M./ f a c t o r i a l (M) . * ( 1 − vpr ( 3 ) ) . ^ L./ f a c t o r i a l ( L ) . * . . .

pochhammer (1/2 ,N) . * pochhammer(1/2 ,M) . * pochhammer(1/2 ,L ) ;
h1 = commun . * pochhammer ( 1 ,N+M+L ) . / pochhammer ( ( 1+p)/2 , N+M+L ) * 1 . /H;
derive1 = sum(sum(sum( h1 ) ) ) % Eq . ( 1 0 2 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
J = N+M+L−1;
A=[0 , cumsum ( 1 . / ( ( p+1)/2 + ( 0 : p* nbre − 1 ) ) ) ] ;
f o r i =1 : nbre+1

f o r j =1 : nbre+1
f o r l =1: nbre+1

G( i , j , l )= −A( J ( i , j , l ) + 2 ) ;
end

end
end
h2 = commun . *G;
derive2 = sum(sum(sum( h2 ) ) ) % Eq . ( 1 0 4 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Esp_12 = ps i (1/2 + p/2)− ps i (1/2) − derive1
Esp_21 = ps i (1/2 + p/2)− ps i (1/2) − prod ( vpr ) . ^ ( 1 / 2 ) * derive2
KL_12 = −1/2* log ( prod ( vpr ) ) −(1+p)/2* derive1 % Eq . ( 1 0 9 )
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KL_21 = 1/2* log ( prod ( vpr ) ) −(1+p)/2* prod ( vpr ) . ^ ( 1 / 2 ) * derive2 % Eq . ( 1 1 5 )

e l s e i f vpr ( 1 ) > 1
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%% Derivat ive of Fd ( ( 1 +p)/2 ,1/2 ,1/2 ,1/2 ; a+(1+p)/2;1 −1/ vpr (1) ,1 −1/ vpr (2) ,1 −1/ vpr ( 3 ) ) | a=0
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

J = N+M+L−1;
A=[0 , cumsum ( 1 . / ( ( p+1)/2 + ( 0 : p* nbre − 1 ) ) ) ] ;
f o r i =1 : nbre+1

f o r j =1 : nbre+1
f o r l =1: nbre+1

G( i , j , l )= −A( J ( i , j , l ) + 2 ) ;
end

end
end
commun = (1 −1/vpr ( 1 ) ) . ^N./ f a c t o r i a l (N) . * ( 1 − 1 / vpr ( 2 ) ) . ^M./ f a c t o r i a l (M) . * ( 1 − 1 / vpr ( 3 ) ) . ^ L./ f a c t o r i a l ( L ) . * . . .

pochhammer (1/2 ,N) . * pochhammer(1/2 ,M) . * pochhammer(1/2 ,L ) ;
h1 = commun . *G;
derive1 = sum(sum(sum( h1 ) ) ) % Eq . ( 1 0 4 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
H = N+M+L ;
H(H==0)= i n f ;
h2 = commun . * pochhammer ( 1 ,N+M+L ) . / pochhammer ( (1 +p)/2 , N+M+L ) * 1 . /H;
derive2 = sum(sum(sum( h2 ) ) ) % Eq . ( 1 0 2 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Esp_12 = ps i (1/2 + p/2)− ps i (1/2) − prod ( vpr ) . ^ ( − 1 / 2 ) * derive1
Esp_21 = ps i (1/2 + p/2)− ps i (1/2) − derive2
KL_12 = −1/2* log ( prod ( vpr ) ) −(1+p)/2* prod ( vpr ) . ^ ( − 1 / 2 ) * derive1 % Eq . ( 1 1 0 )
KL_21 = 1/2* log ( prod ( vpr ) ) −(1+p)/2* derive2 % Eq . ( 1 1 4 )

e l s e
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
%% Der ivat ive of Fd ( a ,1/2 ,1/2 , a +1/2; a+(1+p)/2;1 − vpr ( 1 ) / vpr (3 ) ,1 − vpr ( 2 ) / vpr (3) ,1 −1/ vpr ( 3 ) ) | a=0
%* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

H = N+M+L ;
H(H==0)= i n f ;
commun = (1 − vpr ( 1 )/ vpr ( 3 ) ) . ^N./ f a c t o r i a l (N) . * ( 1 − vpr ( 2 ) / vpr ( 3 ) ) . ^M./ f a c t o r i a l (M) . * . . .

(1 −1/vpr ( 3 ) ) . ^ L./ f a c t o r i a l ( L ) . * . . .
pochhammer (1/2 ,N) . * pochhammer(1/2 ,M) . * pochhammer(1/2 ,L ) ;

h1 = commun . * pochhammer ( 1 ,N+M+L ) . / pochhammer ( ( 1+p)/2 ,N+M+L ) . /H;
derive1 = sum(sum(sum( h1 ) ) ) % Eq . ( 1 0 1 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
J = N+M+L−1;
J J = L−1;

A = [ 0 , cumsum ( 1 . / ( ( p+1)/2 + ( 0 : p* nbre − 1 ) ) ) ] ;
B = [ 0 , cumsum( 1 . / ( 1 / 2 + ( 0 : nbre − 1 ) ) ) ] ;
f o r i =1 : nbre+1

f o r j =1 : nbre+1
f o r l =1: nbre+1

G( i , j , l )= B ( J J ( i , j , l ) + 2 ) − A( J ( i , j , l ) + 2 ) ;
end

end
end
h2 = commun . *G;
derive2 = sum(sum(sum( h2 ) ) ) % Eq . ( 1 0 3 ) and (A1)
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Esp_12 = ps i (1/2 + p/2)− ps i (1/2) + log ( vpr ( p ) ) − derive1
Esp_21 = ps i (1/2 + p/2)− ps i (1/2) − vpr ( p)^( −p / 2 ) * ( vpr ( 1 ) * vpr ( 2 ) ) ^ ( 1 / 2 ) * derive2
KL_12 = −1/2* log ( prod ( vpr ) ) −(1+p)/2*( − log ( vpr ( p ) ) + derive1 ) % Eq . ( 1 0 6 )
KL_21 = 1/2* log ( prod ( vpr ) ) −(1+p)/2* vpr ( p)^( −p / 2 ) * ( vpr ( 1 ) * vpr ( 2 ) ) ^ ( 1 / 2 ) * derive2 % Eq . ( 1 1 2 )

end

dis = KL_12 + KL_21

9. Conclusions

Since the MCDs have various applications in signal and image processing, the KLD
between central MCDs tackles an important problem for future work on statistics, machine
learning and other related fields in computer science. In this paper, we derived a closed-
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form expression of the KLD and distance between two central MCDs. The similarity
measure can be expressed as function of the Lauricella D-hypergeometric series F(p)

D . We
have also proposed a simple scheme to compute easily the Lauricella series and to bypass
the convergence constraints of this series. Codes and examples for numerical calculations
are presented and explained in detail. Finally, a comparison is made to show how the Monte
Carlo sampling method gives approximations close to the KLD theoretical value. As a final
note, it is also possible to extend these results on the KLD to the case of the multivariate
t-distribution since the MCD is a particular case of this multivariate distribution.
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Appendix A. Lauricella Function

In 1893, G. Lauricella [39] investigated the properties of four series F(n)
A , F(n)

B , F(n)
C , F(n)

D
of n variables. When n = 2, these functions coincide with Appell’s F2, F3, F4, F1, respectively.
When n = 1, they all coincide with Gauss’ 2F1. We present here only the Lauricella series
F(n)

D given as follows

F(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) =

∞

∑
m1=0

. . .
∞

∑
mn=0

(a)m1+...+mn(b1)m1 . . . (bn)mn

(c)m1+...+mn

xm1
1

m1!
. . .

xmn
n

mn!
(A1)

where |x1|, . . . , |xn| < 1. The Pochhammer symbol (q)i indicates the i-th rising factorial of
q, i.e.,

(q)i = q(q + 1) . . . (q + i − 1) =
Γ(q + i)

Γ(q)
if i = 1, 2, . . . (A2)

If i = 0, (q)i = 1. Function F(n)
D (.) can be expressed in terms of multiple integrals as

follows [42]

F(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) =

Γ(c)
Γ(c − ∑n

i=1 bi)∏n
i=1 Γ(bi)

×
∫

Ω
. . .

∫ n

∏
i=1

ubi−1
i (1 −

n

∑
i=1

ui)
c−∑n

i=1 bi−1(1 −
n

∑
i=1

xiui)
−a

n

∏
i=1

dui (A3)

where Ω = {(u1, u2, . . . , un); 0 ≤ ui ≤ 1, i = 1, . . . , n, and 0 ≤ u1 + u2 + . . . + un ≤ 1},
Real(bi) > 0 for i = 1, . . . , n and Real(c − b1 − . . . − bn) > 0. Lauricella’s FD can be written
as a one-dimensional Euler-type integral for any number n of variables. The integral form
of F(n)

D (.) is given as follows when Real(a) > 0 and Real(c − a) > 0

F(n)
D (a, b1, . . . , bn; c; x1, . . . , xn) =

Γ(c)
Γ(a)Γ(c − a)

∫ 1

0
ua−1(1 − u)c−a−1(1 − ux1)

−b1 . . . (1 − uxn)
−bn du. (A4)
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Lauricella has given several transformation formulas, from which we use the two following
relationships. More details can be found in Exton’s book [43] on hypergeometric equations.

F(n)
D (a, b1, . . . , bn; c; x1, . . . , xn)

=
n

∏
i=1

(1 − xi)
−bi F(n)

D

(
c − a, b1, . . . , bn; c;

x1

x1 − 1
, . . . ,

xn

xn − 1

)
(A5)

= (1 − x1)
−aF(n)

D

(
a, c −

n

∑
i=1

bi, b2, . . . , bn; c;
x1

x1 − 1
,

x1 − x2

x1 − 1
, . . . ,

x1 − xn

x1 − 1

)
(A6)

= (1 − xn)
−aF(n)

D

(
a, b1, . . . , bn−1, c −

n

∑
i=1

bi; c;
xn − x1

xn − 1
,

xn − x2

xn − 1
, . . . ,

xn − xn−1

xn − 1
,

xn

xn − 1

)
(A7)

= (1 − x1)
c−a

n

∏
i=1

(1 − xi)
−bi F(n)

D

(
c − a, c −

n

∑
i=1

bi, b2, . . . , bn; c; x1,
x2 − x1

x2 − 1
, . . . ,

xn − x1

xn − 1

)
(A8)

= (1 − xn)
c−a

n

∏
i=1

(1 − xi)
−bi F(n)

D

(
c − a, b1, . . . , bn−1, c −

n

∑
i=1

bi; c;
x1 − xn

x1 − 1
, . . . ,

xn−1 − xn

xn−1 − 1
, xn

)
. (A9)

Appendix B. Demonstration of Derivative

Appendix B.1. Demonstration

We use the following notation α = ∑
p
i=1 mi to alleviate the writing of equations.

Knowing that ∂
∂c (c)k = (c)k

(
ψ(c + k) − ψ(c)

)
, ψ(c + k) − ψ(c) = ∑k−1

�=0
1

c+� and (c)k =

∏k−1
i=0 (c + i) we can state that

∂

∂a

{
(a)α

(a + 1+p
2 )α

}
=

(a)α[ψ(a + α)− ψ(a)− ψ(a + 1+p
2 + α) + ψ(a + 1+p

2 )]

(a + 1+p
2 )α

=

α−1
∏

k=0
(a + k)

(
α−1
∑

k=0

1
a+k − 1

a+ 1+p
2 +k

)
(a + 1+p

2 )α

. (A10)

Using the fact that

α−1

∏
k=0

(a + k)
α−1

∑
k=0

1
a + k

=
α−1

∏
k=1

(a + k) +
α−1

∏
k=0,k �=1

(a + k) + . . . +
α−2

∏
k=0

(a + k) (A11)

we can state that

∂

∂a

{
(a)α

(a + 1+p
2 )α

}∣∣∣∣
a=0

=
(α − 1)!

( 1+p
2 )α

=
(1)α

( 1+p
2 )α

1
α

. (A12)

Appendix B.2. Demonstration

∂

∂a

{
(a)α(a + 1

2 )mp

(a + 1+p
2 )α

}
=

(a + 1
2 )mp(a)α[ψ(a + α)− ψ(a) + ψ(a + 1

2 + mp)− ψ(a + 1
2 )]

(a + 1+p
2 )α

−

(a)α(a + 1
2 )mp [ψ(a + 1+p

2 + α)− ψ(a + 1+p
2 )]

(a + 1+p
2 )α

(A13)

=

(a + 1
2 )mp

α−1
∏

k=0
(a + k)

[
α−1
∑

k=0

1
a+k − 1

a+ 1+p
2 +k

+
mp−1

∑
k=0

1
a+ 1

2+k

]
(a + 1+p

2 )α

. (A14)
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By developing the previous expression we can state that

∂

∂a

{
(a)α(a + 1

2 )mp

(a + 1+p
2 )α

}∣∣∣∣
a=0

=
( 1

2 )mp(α − 1)!

( 1+p
2 )α

=
( 1

2 )mp(1)α

( 1+p
2 )α

1
α

. (A15)

Appendix B.3. Demonstration

∂

∂a

{
(a + 1

2 )mp

(a + 1+p
2 )α

}
=

(a + 1
2 )mp

(a + 1+p
2 )α

[ mp−1

∑
k=0

1
a + 1

2 + k
−

α−1

∑
k=0

1

a + 1+p
2 + k

]
. (A16)

As a consequence,

∂

∂a

{
(a + 1

2 )mp

(a + 1+p
2 )α

}∣∣∣∣
a=0

=
( 1

2 )mp

( 1+p
2 )α

[mp−1

∑
k=0

1
1
2 + k

−
α−1

∑
k=0

1
1+p

2 + k

]
. (A17)

Appendix B.4. Demonstration

∂

∂a

{
1

(a + 1+p
2 )α

}
= −ψ(a + 1+p

2 + α)− ψ(a + 1+p
2 )

(a + 1+p
2 )α

(A18)

=
−1

(a + 1+p
2 )α

α−1

∑
k=0

1

a + 1+p
2 + k

. (A19)

Finally,

∂

∂a

{
1

(a + 1+p
2 )α

}∣∣∣∣
a=0

=
−1

( 1+p
2 )α

α−1

∑
k=0

1
1+p

2 + k
. (A20)

Appendix C. Computations of Some Equations

Appendix C.1. Computation

Let f be a function of λ defined as follows:

f (λ) =
∞

∑
n=1

(
1
2

)
n

1
n
(1 − λ)n

n!
. (A21)

The multiplication of the derivative of f with respect to λ by (1 − λ) is given as follows

(1 − λ)
∂

∂λ
f (λ) = −

∞

∑
n=1

(
1
2

)
n

(1 − λ)n

n!
= 1 − λ−1/2. (A22)

As a consequence,

∂

∂λ
f (λ) =

1 − λ−1/2

1 − λ
=

−λ−1/2

1 + λ1/2 . (A23)

Finally,

f (λ) = −2 ln
1 + λ1/2

2
. (A24)
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Appendix C.2. Computation

∂

∂a

{
2F1

(
a,

1
2

; a +
3
2

; 1 − λi

)}∣∣∣∣
a=0

=
∞

∑
n=1

( 1
2 )n(1)n

( 3
2 )nn

(1 − λi)
n

n!

= f (λi) (A25)

where f is a function of λi. The multiplication of the derivative of f with respect to λi by
(1 − λi) is given as follows

(1 − λi)
∂

∂λi
f (λi) = −

∞

∑
n=1

( 1
2 )n(1)n

( 3
2 )n

(1 − λi)
n

n!
(A26)

= − 2F1

(
1
2

, 1;
3
2

; 1 − λi

)
+ 1. (A27)

Knowing that

2F1

(
1
2

, 1;
3
2

; 1 − λi

)
=

arctan(
√

λi − 1)√
λi − 1

(A28)

=
1

2
√

1 − λi
ln
(

1 +
√

1 − λi

1 −√
1 − λi

)
(A29)

we can deduce an expression of

∂

∂λi
f (λi) =

arctan(
√

λi − 1)
(λi − 1)3/2 +

1
1 − λi

. (A30)

Accordingly,

f (λi) = − ln λi − 2
arctan(

√
λi − 1)√

λi − 1
+ 2 (A31)

= − ln λi +
1√

1 − λi
ln
(

1 −√
1 − λi

1 +
√

1 − λi

)
+ 2. (A32)

Appendix C.3. Computation

∂

∂a

{
2F1

(
a, 1; a +

3
2

; 1 − λ

)}∣∣∣∣
a=0

=
∞

∑
n=1

(1)n(1)n

( 3
2 )nn

(1 − λ)n

n!

= f (λ) (A33)

where f is a function of λ. The multiplication of the derivative of f with respect to λ by
(1 − λ) is given as follows

(1 − λ)
∂

∂λ
f (λ) = −

∞

∑
n=1

(1)n(1)n

( 3
2 )n

(1 − λ)n

n!
(A34)

= − 2F1

(
1, 1;

3
2

; 1 − λ

)
+ 1. (A35)

Knowing that

2F1

(
1, 1;

3
2

; 1 − λ

)
=

1√
λ

arcsin(
√

1 − λ)√
1 − λ

(A36)

we can state that

∂

∂λ
f (λ) = − 1√

λ

arcsin(
√

1 − λ)

(1 − λ)3/2 +
1

1 − λ
. (A37)
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As a consequence,

f (λ) = −2
√

λ arcsin(
√

1 − λ)√
1 − λ

+ 2 (A38)

= − 2√
1 − λ−1

ln(
√

λ +
√

λ − 1) + 2. (A39)
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Abstract: With the globalization of higher education, academic evaluation is increasingly valued
by the scientific and educational circles. Although the number of published papers of academic
evaluation methods is increasing, previous research mainly focused on the method of assigning
different weights for various indicators, which can be subjective and limited. This paper investigates
the evaluation of academic performance by using the statistical K-means (SKM) algorithm to produce
clusters. The core idea is mapping the evaluation data from Euclidean space to Riemannian space
in which the geometric structure can be used to obtain accurate clustering results. The method can
adapt to different indicators and make full use of big data. By using the K-means algorithm based on
statistical manifolds, the academic evaluation results of universities can be obtained. Furthermore,
through simulation experiments on the top 20 universities of China with the traditional K-means,
GMM and SKM algorithms, respectively, we analyze the advantages and disadvantages of different
methods. We also test the three algorithms on a UCI ML dataset. The simulation results show the
advantages of the SKM algorithm.

Keywords: statistical K-means; academic evaluation; statistical manifold; clustering

1. Introduction

University academic evaluation involves using different indicators and methods to
measure the academic level of universities. It has great motivating, guiding and restrict-
ing effects on the development of universities, thus gaining more and more attention
nowadays [1–4]. In [5], the authors proposed a statistical method of constructing an evalua-
tion system for the transformation of scientific and technological achievements by using
Principal Component Analysis (PCA) and the comprehensive indicator method. In [6],
the authors used Decision-making Trial and Evaluation Laboratory (DEMATEL) and the
entropy-weighting method to give assessments on the research innovation ability of uni-
versities in a subjective and objective way. In [7], the authors used the Analytic Hierarchy
Process (AHP) method to design the evaluation indicators and give the corresponding
weights. However, these works are all based on the specific design of weighted indicators,
which cannot avoid the interference of the subjective thoughts of the evaluators and highly
depend on the type of universities. In addition, with the development of big data, more
and more statistic data are generated yet not properly used, as it is hard to attribute weights
for so many indicators. In this paper, we introduce the statistical K-means algorithm to
give the academic evaluation results of universities. The idea is mapping the evaluation
data together with the clustering problem from Euclidean space to Riemannian space.
Specifically, the local statistics are used as parameters to determine a special parameter
distribution, which projects all data points into parameter space to obtain a parameter point
cloud. This idea has been well applied in many research fields. In [8], the authors take a
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step forward in image and video coding by extending the well-known Vector of Locally
Aggregated Descriptors (VLAD) onto an extensive space of curved Riemannian manifolds.
In [9], the authors propose a method which allows us to fuse information from feature
representations from both Euclidean and Riemannian spaces by mapping data in a Repro-
ducing Kernel Hilbert Space (RKHS). This method achieves state-of-the-art performance on
the problem of pose-based gait recognition. These findings suggest that this idea has great
value and significance in the information field. In this paper, our main contributions can be
summarized as two points. Firstly, we use statistical manifolds theory to extract features
from the origin point cloud, which is capable of processing the high-dimensional data and
proves to be a great substitution of the traditional method PCA. Secondly, we use clustering
methods to give an evaluation on the academic level of Chinese universities instead of
scoring or rating. With the change of the cluster numbers, the underlying relationships of
universities in terms of subject development can be found, and the academic level can be
assessed by the clustering results subjectively. These two points also provide new research
ideas for related problems.

The paper is organized as follows. In Section 2, we introduce some basic knowledge
about multivariate normal distribution manifold, difference functions and Gaussian mixture
models. In Section 3, we introduce the local statistical methods and statistical K-means
(SKM) algorithm. In Section 4, we describe the work of data pre-processing, including the
data source and data pre-processing strategies, and we introduce the criteria for assessing
the clustering algorithms. In Section 5, we conducted the simulation experiments with the
traditional K-means, GMM and SKM algorithm for the top 20 universities of China and
analyze their advantages and disadvantages, respectively. A UCI ML dataset is also tested
to quantitatively measure the algorithms.

2. Preliminary

2.1. Multivariate Normal Distribution Manifold

Information geometry is used to solve some nonlinear and stochastic problems in
the information field, because compared with the treatment in the Euclidean space, the
one of Riemannian manifold can often achieve precise results. The statistical manifold
is a set of all probability density functions with some regular conditions. In addition, by
introducing the Fisher information matrix as a Riemannian metric, the statistical manifold
becomes a Riemannian manifold. It is well known that the Kullback–Leibler divergence
is a suitable difference function measuring the difference of two points on the statistical
manifold, even though it is not a real distance function [10,11]. The manifold of a family of
multivariate normal distributions is an important statistical manifold and is widely applied
to the researches of signal processing, image processing, neural networks and so on. The
K-means algorithm on statistical manifolds introduced in this paper is to transform the data
point cloud in Euclidean space into the parameter point cloud on the statistical manifold of
a family of multivariate normal distributions, and then, it applies cluster analysis to the
parameter point cloud.

Definition 1. We call a set
S = {p(x; θ) | θ ∈ Θ ⊂ R

n}
an n-dimensional statistical manifold, where p(x; θ) is the probability density of functions, with
some regular conditions.

Since each n multivariate normal distribution density function can be determined
by an n-dimensional vector (mean) and an n-order symmetric positive definite matrix
(covariance matrix), the manifold that consists of the family of normal distributions is
closely related to manifold of the symmetric positive definite matrices [12].
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Definition 2. The manifold of symmetric positive definite matrices SPD(n) is defined as

SPD(n) =
{

P ∈ M(n) | PT = P, and xT Px > 0, ∀x ∈ R
n − {0}

}
,

where M(n) is the set of n-order matrices and PT denotes the transpose of the matrix P. The smooth
structure on SPD(n) is induced as the submanifold of the general linear group GL(n,R), which is
a set of all non-singular matrices.

Definition 3. The multivariate normal distribution manifold consists of the probability density
functions of all n multivariate normal distributions, which is defined as

Nn =

{
f
∣∣∣ f (μ, Σ) =

1√
(2π)n det(Σ)

exp
{
− (x − μ)TΣ−1(x − μ)

2

}}
,

where μ ∈ Rn and Σ ∈ SPD(n) are the mean and the covariance matrix of the distributions,
respectively, and (μ, Σ) is called the parameter coordinate of Nn.

It is worth noting that Nn is topologically homeomorphic in the product space Rn × SPD(n).

2.2. Difference Functions on Multivariate Normal Distribution Manifold

In this paper, we need to consider the difference between the probability density
functions of different multivariate normal distributions. We select the Wasserstein distance
as the difference function. At the same time, we also use Kullback–Leibler divergence,
which is a difference function commonly used in classical information theory. We will
introduce these difference functions respectively below [13–15].

2.2.1. Wasserstein Distance

The Wasserstein distance of the probability measure on Rn describes the energy
required to transfer between the two distributions.

In particular, for the multivariate normal distribution, the literature [13] gives a spe-
cific expression.

Proposition 1. The Wasserstein distance between P1, P2 ∈ Nn is

D2
W(P1, P2) = ‖μ1 − μ2‖2 + tr

(
Σ1 + Σ2 − 2(Σ1Σ2)

1
2
)

, (1)

where (μ1, Σ1) and (μ2, Σ2) correspond to the distribution of P1 and P2, respectively.

Unfortunately, there is not a simply explicit expression of the geometric mean of the
Wasserstein distance; hence, this paper temporarily replaces the geometric mean with the
arithmetic mean in the simulation experiments.

2.2.2. Kullback–Leibler Divergence

Kullback–Leibler (KL) divergence is a non-negative function which measures the
difference between any two probability density functions. It is worth noting that KL
divergence is not a distance function, since it does not satisfy the symmetry and triangle
inequality. In the following, we give its definition and the expression of its geometric mean.

Definition 4. Let P1, P2 be two probability density functions. KL divergence is defined as

DKL(P1||P2) = EP1

[
log

P1

P2

]
, (2)

and it can be shown that DKL(P1||P2) ≥ 0; the equality holds if and only if P1 = P2.
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In particular, for any P1, P2 ∈ Nn with the parameters (μ1, Σ1) and (μ2, Σ2), by direct
calculation, we can obtain

DKL(P1‖P2) =
1
2

{
log

|Σ2|
|Σ1|

− n + tr
(

Σ−1
2 Σ1

)
+ (μ2 − μ1)

TΣ−1
2 (μ2 − μ1)

}
. (3)

Under the parameter coordinate (μ, Σ), the expression of the geometric mean c(C) =
argmin

P∈Nn

1
m ∑m

i=1 DKL(Pi||P) is very complicated, and it is not convenient to use. In order to

overcome the difficulty, we will throughout the equation change the probability density
function of P ∈ Nn into the form of exponential distribution. In fact, by setting x1 = x,
x2 = − 1

2 xTx and θ1 = Σ−1μ, θ2 = Σ−1, we can obtain the form of exponential distribution

P(x; μ, Σ) = P(x1, x2; θ) = exp{〈x, θ〉 − ϕ(θ)}, (4)

where x = (x1, x2), θ = (θ1, θ2) is called the natural parameter, 〈x, θ〉 is the inner product
of x and θ, and the function ϕ(θ) = 1

2

(
θT

1 θ−1
2 θ1 − log|θ2| − n log 2π

)
is called the potential

function, which is a convex function.
By using the potential function ϕ, we can define the generalized KL divergence,

namely the Bregman divergence on Nn, as

Bϕ(P2‖P1) := ϕ(θ2)− ϕ(θ1)− 〈∇ϕ(θ1), θ2 − θ1〉, (5)

where θ1, θ2 are two parameters of Nn.

Remark 1. By means of the exponential form for the probability density functions P1, P2 ∈ Nn,
direct calculation yields

Bϕ(P2‖P1) = DKL(P1‖P2).

2.3. Mean of Parameter Point Clouds

The main idea of the traditional K-means algorithm is that for a given data cloud with
the scale m,

Cm = {pi ∈ R
n | i = 1, · · · , m},

which is abbreviated as C, by using the clustering algorithm, we divide the point cloud
into K classes. The effect of the traditional K-means algorithm is mainly affected by the
selection of initial cluster centers, the expression of data and the difference function.

In order to avoid the shortage of the traditional K-means algorithm, we will consider
the clustering algorithm on the Riemannian space instead of the Euclidean space so that
we can use the geodesic distance and KL divergence but the Euclidean distance and obtain
better clustering results.

Now, we give the definition of the geometric mean of point cloud C in Nn under
different difference functions D.

Definition 5. The geometric mean c(C) of point cloud C = {(μ1, Σ1), · · · , (μm, Σm)} in Nn is

c(C) := argmin
(μ,Σ)∈Nn

1
m

m

∑
i=1

D((μi, Σi), (μ, Σ)).

In practical problems, the calculation of the geometric mean of some difference func-
tions may be very complicated; thus, we will use the arithmetic mean instead of the
geometric mean.

Definition 6. The parameter space Rn × SPD(n) of Nn is a convex set. Hence, the arithmetic
mean c(C) of the parameter point cloud C = {(μ1, Σ1), · · · , (μm, Σm)} in Nn can be defined as
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c(C̃) =
1
m

m

∑
i=1

(μi, Σi).

Now, we introduce the geometric mean of the point cloud C with respect to the
KL divergence.

From (5), we can obtain the following proposition [16].

Proposition 2. The geometric mean of the point cloud C with respect to the KL divergence exists
and is unique, and is equal to the arithmetic mean in the above natural coordinates.

Furthermore, we can see that the geometric mean of the point cloud C with respect to
the Bregman divergence Bϕ exists and is unique, and it is equal to the arithmetic mean in
natural coordinates, hence the geometric mean of point cloud C about KL divergence exists
and is unique, and it is equal to the arithmetic mean in natural coordinates, that is,

c(C) = argmin
P∈Nn

1
m

m

∑
i=1

DKL(P‖Pi) = P

(
x1, x2;

1
m

m

∑
i=1

θi

)
. (6)

In the following K-means algorithm with KL divergence as the difference function,
the Proposition 2 ensures that the geometric mean of the parameter point cloud can be
explicitly given by the arithmetic mean after parameter transformation.

2.4. Gaussian Mixture Models

The mixture model is a probability model that can be used to represent an over-
all distribution with K sub-distributions. In other words, the mixture model represents
the probability distribution of observational data overall, which is a mixture of K sub-
distributions. The mixture model does not require the observational data to provide
information about the sub-distributions to calculate the probability that the observational
data are in the overall distribution.

In general, a mixture model can use any probability distribution, but due to the good
mathematical properties and good computational performance of the Gaussian distribution,
the Gaussian mixture model is the most widely used model in practice [17].

Definition 7. The probability distribution of Gaussian mixture models is

P(x | Θ) =
K

∑
i=1

αi pi(x | θi), (7)

where Θ = (α1, . . . , αK, θ1, . . . , θK) such that αi ≥ 0, ∑K
i=1 αi = 1, αi is the probability that the

observational data belong to the i-th submodel and pi is the Gaussian distribution density function
of the i-th submodel, whose parameter is θi.

3. Statistical K-Means Algorithm

The K-means algorithm on statistical manifolds, which we refer to as the SKM algo-
rithm, consists of three parts: local statistical method, K-means algorithm, and selection
of difference function. This section first introduces the K-nearest neighbor local statistical
method and then introduces the details of the SKM algorithm.

3.1. Local Statistical Method

The point cloud is a sampling of some specified features in the objective world,
each of which we consider to have the same properties within a small neighborhood.
Mathematically, we obtain neighborhood properties through local statistics. Specifically, we
use local statistics as parameters to describe a parameter distribution. Two sets of different
local statistics can determine two different distributions on the same parameter distribution
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family. This idea is equivalent to finding a distribution for any point in the point cloud and
its neighbors in the point cloud (subclouds of the point cloud) such that the subcloud is a
sample of that distribution.

For the initial point cloud without any annotation, we have no reason to think that its
local statistics conform to some special distribution. We believe that the factors affecting
the local distribution of point clouds in their natural background are complex enough;
consequently, the local statistics can be generated from a multivariate normal distribution
according to the Central Limit Theorem. Therefore, we only need to calculate the mean and
covariance matrix of each point of the point cloud in its local area to determine a normal
distribution. By doing this, the entire point cloud will be projected as a parameter point
cloud on the family of multivariate normal distribution, and then, the K-means algorithm is
used on the parameter point cloud to cluster the original data. The data are then classified
using their differences in neighborhood densities [18–21].

For the selection of the neighborhood in the point cloud, we use the k-nearest neighbor
method: that is, for any positive integer k, find a k Euclidean nearest neighbor of some
point in the point cloud. This method can reflect the number density of local point clouds.
Next, we introduce the selection method of k-nearest neighbors.

Definition 8. Let Cm = {pi ∈ Rn | i = 1, 2, · · · , m} be a point cloud of scale m, abbreviated C.
For any p ∈ Cm,

k-N(p, k) =
{

pj ∈ Cm, j ∈ [i1, · · · , ik] | ‖pl − p‖ ≥
∥∥pj − p

∥∥, ∀l /∈ [i1, · · · , ik]
}

is called the k-nearest neighbor of p in Cm, abbreviated as k-N, and p ∈ k-N ⊆ C.

Denote μ(k-N) = E[k-N(p, k)] − p and Σ(k-N) = Cov[k-N(p, k)] as the mean and
covariance matrices of the distances between data points in p and N(p, k), respectively,
thus defining the local statistical map

Ψk : C → Nn, (8)

where Ψk(p) := f (μ(k-N), Σ(k-N)) = 1√
(2π)n det(Σ)

exp
{
− (x−μ)TΣ−1(x−μ)

2

}
. It is worth

noting that we refer to the image of point cloud C under the local statistical map Ψk

k̃C := Ψk[C], k̃C ⊆ Nn

as the parameter point cloud under the k-nearest neighbor method in this paper.

3.2. Details of the SKM Algorithm

Giving the image of point cloud C under the k-nearest neighbor and local statistical
mapping k̃C = Ψk[C], which is the parameter point cloud in Nn, it is reasonable that
we cluster the parameter points to gain the potential classifications among the original
data, and the core idea of the SKM algorithm is the application of the K-means algorithm
together with non-Euclidean difference functions. The SKM algorithm’s performance
depends on the choice of difference functions, which makes the SKM algorithm flexible for
various tasks.

The specific steps of the SKM algorithm are as Algorithm 1:
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Algorithm 1 Statistical K-Means Cluster Algorithm

Input: point cloud C, k-nearest neighbor indicator k, initial cluster center c0
1, · · · , c0

k , thresh-
old ε

Output: a K division of point cloud C
1: By local statistics methods, the point cloud C is represented as a point cloud in the

manifold of n-dimensional normal distribution family k̃C
2: Input the initial cluster centers c0

1, · · · , c0
k and, based on the selected difference function,

apply the K-means algorithm to k̃C, where the distances between parameter points are
given by the difference function, and the centroid ci

j is updated to the current geometric
mean of each division

3: According to the indicator division of k̃C clustering l1, · · · , lk, the output C[l1], · · · , C[lk]
is a division of the origin cloud C

4. Data Pre-Processing and Preparations

After the introduction of the SKM algorithm, we can prepare the data for our method
to simulate on. This section mainly explains the work of data pre-processing and the criteria
to assess the cluster results.

4.1. Data Pre-Processing

Here, the original data of the experiment are selected among the top 20 universities
in mainland China in terms of scientific research funding in 2021. A total of 32 types of
indicators from 2010 to 2019 are taken into account. Data sources are the WOS and CSSCI
databases alongside the analysis platform of CNKI [22–24]. The names of universities and
statistical indicators are as Tables 1 and 2.

Table 1. The names of the twenty universities and their abbreviations.

University Name Abbreviation

Tsinghua University THU

Zhejiang University ZJU

Peking University PKU

Sun Yat-sen University SYSU

Shanghai Jiao Tong University SJU

Fudan University FDU

Shandong University SDU

Huazhong University of Science and Technology HUST

Xi’an Jiaotong University XJU

Southeast University SEU

Beihang University BUAA

Harbin Institute of Technology HIT

Tongji University TJU

Wuhan University WHU

Northwestern Polytechnical University NPU

Jilin University JLU

Beijing Normal University BNU

Central South University CSU

Beijing Institute of Technology BIT
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Table 2. Selection of thirty-two statistical indicators.

Category Indicator

SCI
Total Posts

Total Cited

SSCI
Total Posts

Total Cited

CSCD
Total Posts

Total Cited

CSSCI Total Posts

Patent

Number of Patent Applications

Number of Invention Patent Applications

Number of Utility Model Patent Applications

Number of Industrial Design Patent Applications

Number of Patent Authorizations

Number of Invention Patent Authorizations

Number of Utility Model Patent Authorizations

Number of Industrial Design Patent Authorizations

Funding

Amount of State-Level Funding

Amount of Ministrial Funding

Amount of Provincial Funding

Number of National Natural Science Funds

Amount of National Natural Science Funding

Number of National Social Science Funds

Newspaper

Number of Posts

Number of Citations

Average Cited

Number of Downloads

Average Downloads

Posts on Local Newspaper

Posts on Central Newspaper

Rewards

The State Science and Technology Awards

State-Level Teaching Award

Honors from Ministry and Province

Academic Association Awards

Assuming that xi as the i-th indicator, the numerical expression of academic perfor-
mance of a university s in the year y is denoted by

Xs,y = (x1, x2, · · · , xk)
T .

It is natural that we make up a matrix X(s, y) whose element is the academic per-
formance vector Xs,y. Hence, the row represents different universities, and the column
represents the different years. Since our indicators are in different dimensions, we apply
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the z-score normalization on the indicators of every column: namely, normalize the same
indicator of different universities in the year.

xnor =
x − mean(X)

std(X)
, x ∈ X.

The normalization makes indicators among different years comparable, which forms
the basis of clustering.

4.2. Clustering Assessment Criteria

The commonly used clustering assessment criteria can be generally devided into two
classes, external assessment and internal assessment. The external assessment needs a
reference model as the benchmark, while the internal assessment simply measures the
clustering results from the perspective of compactness, connectivity and so on. Since there
is no state-of-the-art reference model or ranking in this field, it is convincing to choose
proper internal assessment criteria. In this paper, we use the Davies–Bouldin Index (DBI),
Dunn Index (DI) and Silhouette Score (SC) as the clustering assessment criteria, which have
been proved to be effective in such problems [25,26].

Assume that C = {C1, C2, · · · , Ck} as the cluster result, where |C| represents the
number of samples in C, dist(xi, xj) represents the distance metric of sample xi and xj, μi
represents the center of cluster Ci. Giving definitions as follows

avg(C) =
2

|C|(|C| − 1) ∑
1≤i≤j≤|C|

dist(xi, xj),

diam(C) = max
1≤i≤j≤|C|

{dist(xi, xj)},

dmin(Ci, Cj) = min
xi∈Ci ,xj∈Cj

{dist(xi, xj)},

dcen(Ci, Cj) = dist(μi, μj).

Then, we can define DBI, DI and SC as

DBI =
1
k

k

∑
i=1

max
i �=j

(
avg(Ci) + avg(Cj)

dcen(μi, μj)
),

DI =
min

1≤i≤j≤m
{dmin(Ci, Cj)}

max
1≤l≤m

{diam(Cl)}
,

s(xi) =
b − a

max(a, b)
, a =

1
|Cq| − 1 ∑

xi ,xj∈Cq

dist(xi, xj),

b =
1

∑ |C| − |Cq| ∑
xi∈Cq ,xj /∈Cq

dist(xi, xj), SC =
∑ s(xi)

∑ |C| .

The three indicators evaluate the clustering results from different perspectives. DBI
measures the maximum similarity between clusters; hence, the smaller DBI is, the better
the clustering result is; DI calculates the ratio of the minimum cluster distance and the
largest intra-class discrete distance, and a good clustering result should make the value as
big as possible; the SC value of each sample represents the degree of matching relationship
between the sample and its cluster; therefore, the higher the SC value in general, the better
the clustering result.

5. Data Cloud Simulation

In this section, we will respectively apply the traditional K-means, GMM and the
SKM algorithm on the processed data. By analyzing the cluster results and calculating the
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assessment criteria scores, we can compare the performance of different algorithms as well
as give the academic levels of the 20 universities. The estimation of university academic
level is given by the most reasonable cluster result, as all these cluster algorithms evolve
random processes.

5.1. The K-Means Algorithm Clustering

To avoid the influence of sparse data and speed up the process of convergence, PCA is
used at first to reduce the data dimension [27]. The PCA scree plot is displayed as Figure 1.

Figure 1. PCA Scree Plot. The red line is the variance plot and explains the proportion of variation by
each component from PCA; the green dotted line is the split line to better present components that
have variance bigger than 1.

Often, there are two ways to obtain the number of principal components, that is, to
retain a certain percentage of the variance of the original data or to retain only the principal
components with eigenvalues greater than 1 according to Kraiser’s rule [28,29]. It can be
seen in the shown PCA results that there are five principal components with eigenvalues
greater than 1, and when the number of principal components is 6, the cumulative variance
contribution rate reaches more than 0.8. We finally choose to keep six principal components,
that is, compress the 32-dimension original data to six dimensions. It is worth mention-
ing that several indicators ignored in previous research prove to contribute signficantly
according to the PCA results, which are shown above. This is a strong testament to the
effectiveness of big data.

There are many methods for deciding the number of clusters K. One simple way is
to observe the sum of the squarred errors (SSE) with the change of K and select the point
where SSE changes from steep to gentle. However, the Figure 2 shows that there is no
very clear elbow point. As a consequence, we choose to use the Gap Statistic method [30].
Every K corresponds to a Gapk and sk, and K is selected as the minimal K that makes
Gapk − Gapk+1 + sk+1 ≥ 0. We conduct simulations 50 times, as random sampling is
also used in the Gap Statistic. The results are shown in Figure 3, and Figure 4 shows
the most common case. It can be seen that when K = 4, 6, the GapDiffs are most likely
to be greater than 0. Although inferior to K = 4, 6, K = 5 also shows a considerable
frequency. Considering that academic performance evaluation needs an adequate K to
produce reasonable results, we finally chose K as 4, 5 and 6.

In order to obtain credible results, we limit the iteration times of each simulation to
20, so as to avoid bad cases caused by random initialization. In addition, we merge those
simulations that have very similar initialization and cluster results. We select the most
representive case by comparing their clustering evaluation criteria [31,32]. This strategy
makes it easier for us to analyze the performance of different algorithms. For eack K, we
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conduct 30 independent simulations and give the cluster details. To better visualize the
clusters, we map the original data points to a plane using PCA. The results are shown in
the table and graph below.

Figure 2. Sum of the Squared Errors Plot.

Figure 3. Results of Gap Statistic Simulations.

Figure 4. Gap Statistic Typical Result.
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When K = 4, we can see from Figure 5 that the cluster completeness is well preserved.
Only Xi’an Jiaotong University and Tongji University have small parts divided into different
clusters, and the rest of the data points of the same university are all in the same cluster.

Figure 5. Clustering results of K-means when K = 4.

When K = 5, the cluster result Figure 6 still shows very good completeness. However,
some universities have changed from one cluster to another. Peking University itself
becomes one new cluster, and Wuhan University becomes clustered with Beijing Normal
University and Fudan University.

Figure 6. Clustering results of K-means when K = 5.

When K = 6, things begin to change. We can see from Figure 7 that so-called rag bags,
which mean small parts of data points that cannot be well clustered, begin to increase. This
actually has a bad effect on the cluster homogenity. Shanghai Jiao Tong University and
Sun Yat-sen University now also change the cluster and join with Fudan University, while
Wuhan University and Beijing Normal University remain together.
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Figure 7. Clustering results of K-means when K = 6.

It can be seen from Table 3 that the clustering indicators of the K-means algorithm
are relatively stable. DBI is basically maintained between 1.3 and 1.6, DI is basically
maintained between 0.05 and 0.08, and SC is mostly distributed above 0.3. It is in line
with the previous SSE result and proves the cluster result to be reasonable. For results,
with the change of K, the data points of Tsinghua University and Zhejiang University in
all years are always the only two in the same cluster, which indicates that the academic
level of these two universities is very close and there is a large gap between the two and
the remaining universities. In addition, in all years data points of Central South University,
Jilin University, Sichuan University, Huazhong University of Science and Technology,
Shandong University, Tongji University, etc. always appear in the same cluster, indicating
their academic level is close; Northwestern Polytechnical University, Beihang University,
Beijing Institute of Technology, Harbin Institute of Technology and Southeast University
are in the same situation, and the difference between these two clusters may be that the
universities in the latter cluster have a strong color of science and engineering along with a
national defense background. Considering that Xi’an Jiaotong University has a relatively
uniform distribution in the two clusters with the change of K, it is likely that the academic
level is close. We also notice that the clustering results of Wuhan University, Sun Yat-sen
University, Fudan University, Shanghai Jiao Tong University, Beijing Normal University,
Peking University and other universites changed greatly with the change of K. When K = 4,
Beijing Normal University and Peking University are in the same cluster, but it is then
divided as K increases. One explanation is that when K is small, Beijing Normal University
and Peking University are clustered together because they have similar backgrounds in
humanities and social sciences. However, because of the huge difference of academic level,
the two are then divided. This also explains the cluster variance for Fudan University, Sun
Yat-sen University, Wuhan University, and Shanghai Jiao Tong University. These are all
comprehensive universities, and characteristics of both (1) humanities and social science
and (2) science and engineering are relatively distinct. Therefore, for different K, they
can be in the same cluster with Beijing Normal University or in the cluster of science and
engineering backgrounds.
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Table 3. K-means clustering results.

K Number of Cases Samples in Different Clusters DBI DI SC

4 27 90 60 30 20 1.56 0.06 0.30

4 3 84 65 31 20 1.68 0.06 0.29

5 14 91 50 29 20 10 1.45 0.07 0.33

5 7 86 55 29 20 10 1.47 0.08 0.33

5 4 84 56 30 20 10 1.49 0.07 0.32

5 4 75 67 28 20 10 1.50 0.06 0.32

5 1 82 57 30 20 11 1.40 0.06 0.32

6 10 71 51 27 21 20 10 1.41 0.07 0.34

6 7 74 51 30 20 15 10 1.40 0.07 0.34

6 5 78 51 28 22 11 10 1.39 0.07 0.34

6 4 81 58 20 20 11 10 1.30 0.07 0.35

6 4 78 51 30 20 11 10 1.35 0.07 0.35

5.2. The GMM Clustering

Different from the K-means algorithm, the Gaussian mixture model uses Gaussian dis-
tributions as feature descriptors, and it is able to softly assign weights for each component
thanks to the Expectation Maximization (EM) algorithm. Consequently, the GMM can form
clusters of more complicated shapes, which makes it suitable for the university academic
data. Under the consideration of consistence with K-means and from the experience of
previous work [33], we take the same simulation conditions as the K-means. The Gap
Statistic method can also be applied to the GMM, so it is reasonable to choose the same K
values. The results are shown in the table and graph below.

We can see from Table 4 that the overall performance of the GMM is better than the
K-means in terms of clustering criteria. During the change of N-class, we can see that
there are actually two patterns. The results of Figures 8 and 9 are actually very similar
to that of the K-means. However, Figures 10 and 11 present a very unbalanced result.
In thier case, almost all the universities of science and technology are clustered together,
and the rest of the universites are actually always the same ones. Although good cluster
criteria scores are obtained, the results of the GMM actually cannot be used for university
academic evaluation, as they make no effective divisions. This indicates that a different
feature extraction method is needed, and we use the SKM algorithm.

Table 4. GMM clustering results.

N Class Number of Cases Samples in Different Clusters DBI DI SC

4 14 102 48 30 20 1.52 0.08 0.31

4 8 95 75 20 10 1.61 0.08 0.29

4 5 140 20 20 20 1.35 0.18 0.34

4 3 102 48 30 20 1.52 0.08 0.31

5 11 102 48 20 20 10 1.31 0.10 0.33

5 7 91 49 30 20 10 1.46 0.15 0.32

5 6 89 47 30 20 11 1.40 0.06 0.33

5 4 55 53 52 20 20 1.68 0.03 0.27

5 2 120 20 20 20 20 1.34 0.16 0.36
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Table 4. Cont.

N Class Number of Cases Samples in Different Clusters DBI DI SC

6 11 91 49 20 20 10 10 1.34 0.17 0.33

6 5 83 47 30 20 10 10 1.32 0.07 0.36

6 4 70 51 49 10 10 10 1.50 0.15 0.30

6 4 70 49 40 20 11 10 1.40 0.15 0.33

6 3 118 41 11 10 10 10 1.19 0.14 0.38

6 2 120 20 20 20 10 10 1.19 0.16 0.38

6 1 120 20 20 20 20 1.18 0.21 0.38

Figure 8. One case of the GMM when N = 4.

Figure 9. One case of the GMM when N = 5.
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Figure 10. The other case of the GMM when N = 4.

Figure 11. The other case of the GMM when N = 5.

5.3. The SKM Algorithm Clustering

The idea of the SKM algorithm is based on the assumption that in the original data
point cloud, the neighborhood of each point should have a convergent property with this
point. The point cloud is the sampling and discretization of real physical quantities, so the
rationality of this assumption is quite natural. In our simulation, we firstly use the k-nearest
neighbor method to select points near each data point and map this subcloud to an N-
dimensional normal distribution family manifold. Then, we apply the SKM algorithm with
non-Euclidean difference functions and analyze their clustering results. For the selection of
k, we simply choose k = 10, which is the number of the points in the origin point cloud
for every university. The choice not only enables the points from the same university to
be mapped to one distribution on statistical manifolds in theory: it also has been proven
in our simulation that when k = 10, the SKM algorithm could achieve convergence faster
compared to other k-values.

In this simulation, we use the KL divergence and the Wasserstein difference functions.
Due to the use of the local statistical method, there is no need for dimension reduction;

160



Entropy 2022, 24, 1004

in other words, the application of PCA is skipped. Especially, as there is a one-to-one
correspondence between the point clouds on Euclidean space and on manifolds, and in the
Euclidean space we have obtained K values, we just keep it unchanged as our simulation
parameters[34]. The other simulation strategies are the same as those in Section 4.1. The
results are shown in the table and graph below.

The first is the result of using KL divergence.
When K = 4, we can see similar results with K-means from Figure 12; the cluster

completeness is also well preserved. However, this time, Peking University is divided into
a separate cluster, and Beijing Normal University is divided into a large cluster.

Figure 12. Clustering results of SKM about KL divergence when K = 4.

Compared with K-means, we can see from Figure 13 that the biggest difference when
K = 5 is that this time, Sun Yat-sen University, Fudan University, and Shanghai Jiao Tong
University are in the same cluster. Except for Peking University, Zhejiang University, and
Tsinghua University, the rest are divided into two main clusters.

Figure 13. Clustering results of SKM about KL divergence when K = 5.
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When K = 6, it also fails to cluster a small number of data points well. In Figure 14,
Peking University, Tsinghua University, and Zhejiang University were each divided into
a cluster.

Figure 14. Clustering results of SKM about KL divergence when K = 6.

The result for the Wasserstein distance is below.
When K = 4, we can see from Figure 15 that the difference between using Wasserstein

distance and KL divergence is that when using Wasserstein distance, Fudan University
is divided into the same cluster as Peking University. The rest of the results are basically
the same.

Figure 15. Clustering results of SKM about Wasserstein distance when K = 4.

When K = 5, the SKM results in Figure 16 are basically the same with using Wasser-
stein distance and KL divergence, but with using KL divergence, it is more likely that small
parts of data points cannot be well clustered.
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Figure 16. Clustering results of SKM about Wasserstein distance when K = 5.

When K = 6, the clustering results with using Wasserstein distance in Figure 17
are less stable relative to KL divergence. In addition, the Wasserstein distance produce
clusters with a very small number of samples, which indicates that it cannot distinguish
the mainfolds on this problem very well.

Figure 17. Clustering results of SKM about Wasserstein distance when K = 6.

We can see from Tables 5 and 6 that the SKM algorithm is inferior to the K-means and
GMM method on the two indicators of DBI and DI. From the definitions of DBI and DI,
we speculate that this can be caused by the local statistical methods. During the process
of selecting a local point cloud, we use the K-nearest neighbor strategy. It can better
reflect the statistical density characteristics of a local point cloud, but on the other hand, it
may also cause the selected area to be non-convex, resulting in a diffrent distribution in
parameter space from the original space. However, the SC indicator of both metrics for
the SKM algorithm performs better than that in K-means and GMM. We attribute this to
the introduction of non-Euclidean metrics, which achieve a more granular comparison.
It can also be seen from the degree of dispersion of the statistical indicators that the two
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indicators in this section fluctuate considerably, as the selection of the initial cluster center
will greatly affect the final clustering, which is a manifestation of the high sensitivity of
the SKM algorithm. Between the two metric functions of the SKM algorithm, the KL
divergence performs better, as it gives more stable results and better interpretability, while
the Wasserstein distance has greatly varied indicators and gives clusters of high similarities.

Table 5. SKM clustering results with KL divergence.

K Number of Cases Samples in Different Clusters DBI DI SC

4 17 110 60 20 10 2.51 0.04 0.65

4 8 103 67 20 10 2.77 0.04 0.63

4 5 100 60 20 20 3.23 0.03 0.64

5 12 104 46 20 20 10 2.87 0.04 0.66

5 11 109 38 23 20 10 3.40 0.03 0.65

5 4 58 57 55 20 10 3.10 0.04 0.67

5 3 87 52 31 20 10 3.08 0.05 0.66

6 13 109 39 22 10 10 10 3.12 0.04 0.66

6 10 84 43 25 20 18 10 4.55 0.02 0.64

6 7 68 41 39 22 20 10 3.54 0.03 0.69

Table 6. SKM clustering results with Wasserstein distance.

K Number of Cases Samples in Different Clusters DBI DI SC

4 21 119 61 10 10 2.03 0.07 0.54

4 5 140 40 10 10 1.78 0.11 0.58

4 4 101 60 20 19 2.66 0.02 0.54

5 15 101 54 20 19 6 2.34 0.02 0.56

5 8 84 59 37 10 10 2.68 0.04 0.54

5 7 73 67 30 20 10 3.11 0.03 0.55

6 17 101 54 19 10 10 6 2.17 0.04 0.58

6 7 84 59 37 10 9 1 2.37 0.02 0.56

6 6 92 63 19 10 10 6 2.66 0.05 0.56

In terms of clustering results, the clusters given by the SKM algorithm are generally
similar to the results of K-means and general cases of GMM, and they actually have better
discrimination on the universities of science and technology than the other case of GMM,
but there are still some interesting phenomena. After verification and comparison, it can
be seen that using several Riemann metrics defined on symmetric positive definite man-
ifolds, the obtained clustering effect is not as good as KL divergence. Hence, we choose
KL divergence as the distance function for clustering. In the results of KL divergence,
the clustering results are relatively more stable and have no university spans from one
cluster to another. The biggest difference is that the KL divergence does not give a divi-
sion among comprehensive universities; instead, it further divides universities of science
and engineering, resulting in the cluster of Peking University, Beihang University and
Northwestern Polytechnical University as well as Harbin Institute of Technology, Southeast
University, Xi’an Jiaotong University. As for Wasserstein distance, it has unsatifactory
indicators and results. Especially when K = 6, the Wasserstein metric produce clusters with
a very small number of samples, which indicates that it cannot distinguish the mainfolds
on this problem very well. It is worth noting that the dimension of the data on which the
SKM algorithm is applied is 32 compared to six for the traditional K-means and GMM
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algorithms. In this case, the SKM algorithm still obtains remarkable clustering results,
which proves the potential of the SKM algorithm in terms of processing large amounts of
high-dimensional data.

To further assess the three algorithms quantitatively, we apply them on a UCI ML
dataset [35] and compare the accuracies. We choose to use the ’Steel Plates Faults Data
Set’ provided by Semeion from the Research Center of Sciences of Communication, Via
Sersale 117, 00128, Rome, Italy. Every sample in the dataset consists of 27 features, and
the task is to classify whether a sample has any of the seven faults. We choose this dataset
because it has similar feature dimensions with our origin problem and it provides various
indicators to classify, which can better assess the different clustering algorithms. The
results are produced under the same condition as the simulation set above, including data
pre-processing methods and cluster parameters. The classification accuracies of different
algorithms on the seven faults are shown in Table 7.

Table 7. Classification Accuracies on the Fault Dataset.

Fault Type K-Means GMM SKM (KL Div.) SKM (Wass)

Pastry 0.7208 0.7398 0.7450 0.9181

Z-Scratch 0.7084 0.7244 0.7400 0.9016

K-Scatch 0.9366 0.9521 0.9547 0.7991

Stains 0.7609 0.7810 0.7979 0.9624

Dirtiness 0.7697 0.7897 0.7970 0.9711

Bumps 0.5971 0.6131 0.6318 0.7924

Other Faults 0.6033 0.6121 0.6479 0.6528

Ave. Accu. 0.7281 0.7433 0.7592 0.8568

We can see that the SKM algorithm is greatly advantageous over the K-means and the
GMM algorithm on accuracy scores. In comparison, the dataset provider’s model has an
average accuracy of 0.77 on this dataset [36]. In addition, in terms of cluster indicators, we
can see from Table 8 that the SKM algorithm has better performance on the SC score, but
it does not perform well on the DBI score, which is basically consistent with the results
on the Chinese University dataset. The result exactly reveals the great potential of the
SKM algorithm on the application of many other fields. It could be a great replacement of
traditional Euclidean-based cluster methods in a certain problem.

Table 8. DBI, DI and SC Indicators on the Fault Dataset.

Indicator K-Means GMM SKM (KL Div.) SKM (Wass)

DBI 1.53 1.43 2.99 2.67

DI 0.01 0.02 0.01 0.02

SC 0.36 0.37 0.54 0.49

6. Conclusions and Future Work

In this paper, we propose a university academic evaluation method based on statistical
manifold combined with the K-means algorithm, which quantifies the academic achieve-
ment indicators of universities into point clouds and performs clustering on Euclidean
space and the family of multivariate normal distributions manifolds, respectively. The
simulation results show that in terms of DBI and DI, the SKM algorithm is inferior to the
method of direct PCA weight reduction and K-means clustering in Euclidean space. On
the SC indicator, the SKM algorithm is significantly better than the traditional K-means
method in both difference functions. The GMM has a slightly better performance than
the K-means, but it still lacks necessary discrimination to tell apart the universites of sim-

165



Entropy 2022, 24, 1004

ilar backgrounds. This shows that the SKM algorithm can extract features that are hard
to capture in Euclidean space, thus achieving more fine-grained feature recognition and
clustering. The great ability is attributed to the process of mapping original data to the
local statistics, which forms the parameter distribution on statistical manifold.

By analyzing the cluster results, we can also demonstrate that most of the universities
evaluated have very similar academic levels, and their main differences come from their
developing backgrounds. This conclusion explains the reason why university ratings
could vary greatly in different leaderboards, and it indicates that different evaluation
perspectives may be taken for different universites. Clustering would be useful when
seperating different types of universities, and this paper provides a promising way.

In the future, we need to strictly construct the theoretical model of the point cloud
and explain the principle of local statistics according to the theory of probability theory.
On this basis, we try to propose other local statistical methods and analyze their effective-
ness. Furthermore, this paper discusses the case where KL divergence and Wasserstein
distance are used as difference functions, and other distance functions can be discussed
as difference functions later, which may lead to better clustering algorithms. Finally, the
explicit expression of the geometric mean of the Wasserstein distance adopted in this paper
is still an unsolved problem, and we replace its geometric mean with the arithmetic mean.
If this problem is solved, it is possible that the simulation results of the algorithm will be
more accurate.
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Abstract: In this paper we recall, extend and compute some information measures for the concomi-
tants of the generalized order statistics (GOS) from the Farlie–Gumbel–Morgenstern (FGM) family.
We focus on two types of information measures: some related to Shannon entropy, and some related
to Tsallis entropy. Among the information measures considered are residual and past entropies which
are important in a reliability context.

Keywords: concomitants; GOS; FGM family; Shannon entropy; Tsallis entropy; Awad entropy;
residual entropy; past entropy; Fisher–Tsallis information number; Tsallis divergence

1. Introduction

The notion of concomitants or induced order statistics arose in the early 1970s in the
works of David [1] and Bhattacharya [2]. Briefly, when there is a sample from a bivariate
distribution ordered by the first variate, the second variate paired with the r-th first variate
is called the concomitant of the r-th-order statistic. Concomitants are important in situations
in which are implied two characteristics and measuring one of them can influence the other.
Therefore, they have applications in many fields such as selection procedures, inference
problems, double sampling plans and systems reliability. For example, in [3,4] are studied
from a reliability point of view complex systems with components which have two sub-
components that performs different tasks, and in [5], the distribution theory of lifetimes
of two component systems is discussed. In studies regarding the concomitants there are
two elements that have to be mentioned: the kind of dependence between first and second
variate, and the kind of order for the first variate. The majority of studies are based on the
hypothesis of simple order statistics, but there are also studies that assume different kinds
of orders such as as record values order or generalized order statistics.

Generalized order statistics (GOS) was introduced by Kamps [6] and it is a unifying
concept for various types of order statistics such as simple order statistics, record values,
sequential order statistics.

In this paper, we focus on the concomitants of GOS and with the dependence structure
between the first variate and the second variate given by the Fairlie–Gumbel–Morgenstern
(FGM) family. This family is a flexible family of bivariate distributions used as a modeling
tool for bivariate data in many fields [7], one such field being Reliability, see [3–5]. The
FGM family has a simple analytical form, but it can describe only relatively weak depen-
dence because the correlation coefficient between the two components cannot exceed 1/3.
To prevent this limitation, extensions of FGM family have been proposed, for example,
iterative FGM distributions or Huang–Kotz FGM distributions [8–12]. The results obtained
in our paper will be generalized for these extensions of FGM family in a future work.

For the concomitants mentioned above, we recall and determine properties that some
information measures have. The information measures that we deal with are in two
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categories, information measures related to Shannon entropy and information measures
related to Tsallis entropy.

Since it was introduced in physics and adapted to information theory by Shannon
in 1948, the concept of entropy has become more and more important in fields such as
information theory, code theory, probability and statistics, reliability.

In probability and statistics, entropy measures the uncertainty associated to a random
variable. Taking as a starting point Shannon entropy, a series of entropies have been
defined as a generalization of it. For the concomitants of GOS from the FGM family, we will
look at Shannon-derived and Tsallis-derived entropies, and our main aim is to determine
Awad-type extensions for all the considered entropies, because Awad entropies do not
have several drawbacks that Shannon entropy, for example, has: different systems with
the same entropy, possible negative values for continuous distributions, different results in
discrete and continuous case of linear random variable transformation, etc.

Furthermore, for the concomitants of GOS from FGM, we will determine not only
entropies, but also other information measures such as Tsallis divergence and shift-invariant
Fisher–Tsallis information number.

In the following sections, we recall some definitions and properties of GOS and their
concomitants, in particular, when the bivariate distribution is in the FGM family. Then,
we will discuss Shannon-type entropies, Tsallis-type entropies, Fisher information and
divergences for concomitants of GOS from the FGM family. For these concomitants, in the
last section, we will introduce new extensions and results on information measures.

2. Generalized Order Statistics and Their Concomitants for the FGM Family

2.1. Generalized Order Statistics

The concept of GOS was introduced by Kamps [6], in 1995, who proposed an unifying
pattern of various order statistics:

Definition 1. The random variables X(1, n, m̃, k),. . . , X(n, n, m̃, k) are called GOS based on
distribution function F with density function f , if their joint density function is given by:

f (x1, . . . , xn) = k

(
n−1

∏
j=1

γj

)(
n−1

∏
i=1

(1 − F(xi))
mi f (xi)

)
(1 − F(xi))

k−1 f (xn) (1)

on the cone F−1(0) < x1 ≤ x2 · · · ≤ xn < F−1(1) of Rn with parameters n ∈ N, n ≥ 2, k > 0,
m̃ = (m1, . . . , mn−1), γr = k + n − r + ∑n−1

j=r mj > 0, for all r ∈ {1, 2, . . . , n − 1}.

Some particular cases of GOS are:

• Simple order statistics with m1 = m2 = · · · = mn−1 = 0 and k = 1;
• Common record values with m1 = m2 = · · · = mn−1 = −1 and k = 1;
• Sequential order statistics with γi = (n − i + 1)αi, α1, α2, . . . , αn > 0;
• Progressive type II censored order statistics based on censoring scheme (R1, R2, . . . , Rn)

with γn = k = Rn + 1, γr = n− r+ 1−∑n
i=r, 1 ≤ r ≤ n and mr = Rr, 1 ≤ r ≤ n, [13,14].

As a result of the complex formula of the joint density, finding the marginal distribu-
tions of (1) is a difficult task, but in some particular cases, marginal densities can be found.
In [6], the marginal densities are determined for m1 = m2 = . . . mn−1 = m, and in [15] for
γ1 �= γj, 1 ≤ i �= j ≤ n. In the following, we will suppose that m1 = m2 = . . . mn−1 = m,
i.e., we are in the m-GOS case where simple order statistics, record values and progressive
type II censored order statistics with equi-balanced censoring scheme are included. Now,
the density (1) becomes:

f (x1, . . . , xn) = k

(
n−1

∏
j=1

γj

)(
n−1

∏
i=1

(1 − F(xi))
m f (xi)

)
(1 − F(xi))

k−1 f (xn) (2)
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on the cone F−1(0) < x1 ≤ x2 · · · ≤ xn < F−1(1) of Rn with parameters n ∈ N, n ≥ 2,
k > 0, m, γr = k + (n − r)(m + 1) > 0, for all r ∈ {1, 2, . . . , n − 1}.

The marginal density function of the r-th GOS, r = 1, 2, . . . , n, in this case, is given
by [6]:

fr(x) =
cr−1

(r − 1)!
(1 − F(x))γr−1 f (x)gr−1

m (F(x)) (3)

where cr−1 = ∏r
j=1 γj and for x ∈ [0, 1):

gm(x) =

{
1

m+1 (1 − (1 − x)m+1), m �= −1

log
(

1
1−x

)
m = −1.

Remark 1. For m = 0 and k = 1, i.e., the case of simple order statistics, we have γr = n − r + 1,
cr−1 = γ1γ2 . . . γr = n(n − 1) . . . (n − r + 1), g0(F(x)) = F(x), and (3) becomes the well-
known marginal density of the r-th-order statistic.

For m = −1 and k = 1, i.e., the case of record values, (3) becomes

fr(x) =
1

(r − 1)!
f (x)[− ln(1 − F(x))]n−1, (4)

the marginal density of the r-th record value.
For progressive type II censored order statistics with equi-balanced censoring scheme, the form

of the marginal density is the same as the form of (3), with m = R, R being the removal number.

2.2. Concomitants

The term concomitant was introduced by David (1973) [1] and has the following
definition:

Definition 2. Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be iid bivariate random variables with cumula-
tive distribution function F(x, y). Then, the Y variate associated to the r-th-order statistic of X-s,
X(r:n), denoted by Y[r:n], is the concomitant of X(r:n).

A natural use of concomitants is in selection procedures when k individuals are chosen
on the basis of their X-values. Then, the corresponding Y-values represent performance
on an associated characteristics. In Reliability Theory, the role of the concomitants is
emphasized in [3–5].

2.3. Concomitants of FGM Family

The FGM bivariate distribution family has a flexible form and it was studied by
Farlie [16], Gumbel [17], Morgenstern [18], and Johnson and Kotz [19].

Definition 3. Let X and Y be two random variables with distribution functions FX and FY,
respectively. Additionally, let α be a real number. Then, the FGM family has the distribution
function:

FX,Y(x, y) = FX(x)FY(y)[1 + α(1 − FX(x))(1 − FY(y))]. (5)

The corresponding probability density function (pdf) of (5) is:

fX,Y(x, y) = fX(x) fY(y)[1 + α(1 − FX(x))(1 − FY(y))], (6)

where fX(x) fY(y) are the marginals of fX,Y(x, y).
The parameter α ∈ [−1, 1] is known as the association parameter and the two random

variables X and Y are independent when α = 0. For α �= 0, there is a dependence between
the two variables, characterized by the FGM-copula whose properties were studied in [20].
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Concomitants of FGM family, related to GOS, started to come into notice with the
work of Beg and Ahsanullah in 2008 [21] where the density g[r,n,m,k] of the concomitant of
the r-th GOS is derived:

g[r,n,m,k](y) = fY(y) + α(2FY(y)− 1) fY(y)C∗(r, n, m, k), (7)

where
C∗(r, n, m, k) = 1 − 2

cr−1

(γ1 + 1)(γ2 + 1) . . . (γr + 1)

is a constant.

Remark 2. If m = 0, k = 1, then C∗(r, n, 0, 1) = −(n − 2r + 1)/(n + 1) and

g[r,n,0,1](y) = fY(y)− α
n − 2r + 1

n + 1
(2FY(y)− 1) fY(y) (8)

is the density of the concomitant of r-th-order statistic from the FGM family.
If m = −1, k = 1, then C∗(r, n,−1, 1) = 1 − 21−r and

g[r,n,−1,1](y) = fY(y)− α(21−r − 1)(2FY(y)− 1) fY(y). (9)

If we are in the case of progressive type II censoring order statistics with equi-balanced censoring
scheme, the density of the concomitant of r-th-order statistic from the FGM family is (7) with m = R,
the removal number.

The cumulative distribution function and the survival function of the concomitant of
r-th-order statistic can also be computed:

G[r,n,m,k](y) = fY(y) + α(1 − FY(y)) fY(y)C∗(r, n, m, k), (10)

G[r,n,m,k](y) = 1 − fY(y)− α(1 − FY(y)) fY(y)C∗(r, n, m, k). (11)

In the following, in order to make it easier to read computations, we make the notations:
Y∗
[r] = Y[r,n,m,k], g[r] = g[r,n,m,k], G[r] = G[r,n,m,k], Ḡ[r] = Ḡ[r,n,m,k], C∗

r = C∗(r, n, m, k).

3. Information Measures for the Concomitants from the FGM Family, Existing Results

In this section, we will recall some definitions and results for the information measures
of the concomitants of GOS from the FGM family.

3.1. Shannon and Shannon-Related Entropies

Shannon entropy was introduced by Shannon in 1948 [22], it has multiple applications
and it can be defined as:

HS(X) = −E[log f (X)] (12)

Information measures for concomitants derived from the FGM family have been stud-
ied by Tahmasebi and Behboodian: in [23] for concomitants of order statistics, and in [24]
for concomitants of GOS. Using (7), they proved that for the Shannon entropy of Y[r],
the concomitant of the r-th generalized order statistics is:

HS(Y∗
[r]) = W(r, α, n, m, k) + HS(Y)(1 − αC∗

r )− 2αC∗
r φ f (u), (13)

where

W(r, α, n, m, k) =
1

4αC∗
r
{(1 − C∗

r α)2 log(1 − C∗
r α)− (1 + C∗

r α)2 log(1 + C∗
r α)}+ 1

2
, (14)

and

φ f (u) =
∫ 1

0
log fY(F−1

Y (u))du. (15)
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Remark 3. In [23] are analyzed the properties of (13) in the particular case when m = 0 and
k = 1, i.e., when the GOS reduces to the simple order statistics, and therefore, the entropy from (13)
in this case is the Shannon entropy of the concomitant of r-th-order statistic:

HS(Y[r]) = W(r, α, n, 0, 1) + HS(Y)
(

1 + α
n − 2r + 1

n + 1

)
+ 2α

n − 2r + 1
n + 1

φ f (u) (16)

In [24], Shannon entropy for record values is also mentioned:

HS(R[r]) = W(r, α, n,−1, 1) + HS(Y)(1 + α(21−r − 1)) + 2α(21−r − 1)φ f (u). (17)

If we are in the case of progressive type II censoring order statistics with an equi-balanced
censoring scheme, the Shannon entropy of the concomitant of r-th-order statistic from the FGM
family is (13) with m = R, the removal number.

Awad, in 1987, ref. [25] noticed that Shannon entropy, in the continuous case, does
not fulfill the condition that the entropy is preserved under the linear transformation and
proposed the following entropy known also in the literature as Sup-entropy:

HSA(X) = −E
[

log
f (X)

δ

]
(18)

where δ = sup{ f (x)|x ∈ R}. We will call this entropy Shannon–Awad entropy.
Residual and past Shannon entropies were defined in the context of reliability, being

important in measuring the amount of information that a residual life or a past life of a unit
has. In the following, the random variable X with pdf f , cdf F, and survival function F̄, is
considered positive and it has the meaning of a lifetime of a unit.

Residual entropy is introduced and its properties are analyzed in the works of
Ebrahimi [26] and Ebrahimi and Pellerey [27]. Residual entropy is based on the idea
of measuring the expected uncertainty contained in the conditional density of X − t given
X > t [27]:

HS(X; t) = −E
[

log
f (X)

F̄(t)

∣∣∣∣X > t
]

. (19)

In terms of failure rate, the residual entropy can be written as:

HS(X; t) = 1 − E[log λF(X)|X > t],

where λF(·) = f (·)/F(·) is the failure rate function.
Similar to the definition of the residual entropy, DiCrescenzo and Longobardi [28]

introduced past entropy as a dual to the residual entropy. Past entropy measures the
uncertainty about past life of a failed unit:

HS
(X; t) = −E

[
log

f (X)

F(t)

∣∣∣∣X < t
]

. (20)

In terms of reversed failure rate, past entropy can be written as:

HS
(X; t) = 1 − E[log τF(X)|X < t],

where τF(·) = f (·)/F(·) is the reversed failure rate function.
Residual and past entropies for concomitants of GOS from the FGM family were

determined by Mohie EL-Din et al. in [29]. They considered also concomitants of other
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types of GOS, but the form of the entropies is similar. The residual entropy of the r-th
concomitant of GOS from the FGM family is [29]:

HS(Y∗
[r]; t) = log G[r](t)−

1
G[r](t)

{
(1 − αC∗

r )[FY(t)(log FY(t)− HS(Y; t))]+ (21)

+ 2αC∗
r φ f (t) + K1(r, t, α, n, m, k)

}
,

where

K1(r, t,α, n, m, k) =
1

2αC∗
r

{−1
4

[(1 + αC∗
r )

2 − (1 + αC∗
r (2FY(t)− 1))2]+ (22)

+
1
2
[(1 + αC∗

r )
2 log(1 + αC∗

r )− (1 + αC∗
r (2FY(t)− 1))2 log(1 + αC∗

r (2FY(t)− 1))]
}

,

and
φ f (t) =

∫ ∞

t
FY(y) fY(y) log fY(y)dy. (23)

We notice that for t = 0, the residual entropy (21) becomes the entropy (13).

Remark 4. For m = 0 and k = 1, we obtain residual Shannon entropy for the concomitant of
r-th-order statistic:

HS(Y[r]; t) = log G[r](t)−
1

G[r](t)

{(
1 − α

n − 2r + 1
n + 1

)
[FY(t)(log FY(t)− HS(Y; t))]− (24)

− 2α
n − 2r + 1

n + 1
φ f (t) + K1(r, t, α, n, 0, 1)

}
.

For m = −1 and k = 1, we obtain residual Shannon entropy for the concomitant of r-th record
value:

HS(R[r]; t) = log G[r](t)−
1

G[r](t)

{
(1 − α(21−r − 1))[FY(t)(log FY(t)− HS(Y; t))]− (25)

− 2α(21−r − 1)φ f (t) + K1(r, t, α, n,−1, 1)
}

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Shannon entropy of the concomitant of r-th-order statistic from the FGM family is (21)
with m = R, the removal number.

In a similar way, the past entropy for the concomitant of the r-th GOS from the FGM
family is defined as [29]:

HS
(Y∗

[r]; t) = log G[r](t)−
1

G[r](t)
{
(1 − αC∗

r )[FY(t)(log FY(t)− HS
(Y; t))]+ (26)

+ 2αC∗
r φ f (t) + K2(r, t, α, n, m, k)

}
,

where

K2(r, t,α, n, m, k) =
1

2αC∗
r

{−1
4

[(1 + αC∗
r (2FY(t)− 1))2 − (1 − αC∗

r )
2]+ (27)

+
1
2
[(1 + αC∗

r (2FY(t)− 1))2 log(1 + αC∗
r (2FY(t)− 1))− (1 − αC∗

r )
2 log(1 − αC∗

r )]

}
,

and

φ f (t) =
∫ t

0
FY(y) fY(y) log fY(y)dy. (28)

We notice that for t → ∞, the past entropy (26) becomes the entropy (13).
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3.2. Tsallis and Tsallis-Related Entropies

For the first time, Tsallis entropy was introduced and used in the context of Cybernetics
Theory by Harvda and Charvat [30], but it has become well known since its definition as a
generalization of Boltzmann–Gibbs statistics, in the context of thermodynamics, by Tsallis
in 1988 [31]. Being the starting point of the field of non-extensive statistics, Tsallis entropy
is a non-additive generalization of the Shannon entropy and for a continuous random
variable X with density function f , it can be defined as:

HT(X) =
1

q − 1

{
1 −

∫ +∞

−∞
[ f (x)]qdx

}
q > 0, q �= 1. (29)

When q → 1, Tsallis entropy approaches to Shannon entropy. Tsallis entropy has, in turn,
various generalizations, see, for example, [32].

Another important element in non-extensive statistics is logq function:

logq x =
x1−q − 1

1 − q
, x > 0, q �= 1, (30)

and Tsallis entropy can be obtained using this function in two ways:

HT(X) = E
[

logq
1

f (X)

]
=

1
q − 1

E
[
1 − [ f (X)]q−1

]
.

Tsallis entropy has applications in many fields, from statistical mechanics and thermody-
namics, to image processing and reliability, sometimes being more suited to measuring
uncertainty than classical Shannon entropy [33,34].

In [35], Tsallis entropy was computed and its properties obtained for record values
and their concomitants when the bivariate distribution is in the FGM family.

Similar to the Shannon case, we can think about residual and past variants of the
Tsallis entropy in the context of reliability. In [36], Nanda and Paul introduced residual

Tsallis entropy as the ’first kind residual entropy of order β’. In our notation, β is q:

HT(X; t) =
1

q − 1

{
1 −

∫ ∞

t

[
f (x)
F(t)

]q
dx
}

=
1

q − 1

{
1 − 1

[F(t)]q

∫ ∞

t
[ f (x)]qdx

}
. (31)

In addition to entropy type information measures, there are another two types infor-
mation measures that can be associated to probability distributions—Fisher measures and
divergence measures [37].

3.3. Fisher Information Number

Fisher information measures the amount of information that we can obtain from a
sample about an unknown parameter and therefore, it measures the uncertainty included
in a unknown characteristic of a population. If the parameter is a location one, then Fisher
information is shift-invariant and has the form:

I f =
∫ +∞

−∞

(
∂

∂x
log f (x)

)2
f (x)dx = E

[(
∂

∂x
log f (x)

)2
]

. (32)

Shift-invariant Fisher information, also called Fisher Information Number (FIN), was
studied in [38]. It has applications in statistical physics where it is also known by the
name extreme physical information [39], and it is used in analyzing the evolution of
dynamical systems.

For the concomitants of GOS from the FGM family, the Fisher information number
was determined in [40].
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3.4. Divergence Measures

Divergences are useful tools when a measure of the difference between two probability
distributions is needed and therefore, they have applications in various fields, from in-
ference for Markov chains, [41–43] to machine learning [44,45]. One of the best-known
divergence is Kullback–Leibler divergence [46,47], which for two continuous random
variables Z1, with probability density f1, and Z2 with probability density f2 is :

KLD(Z1, Z2) =
∫ +∞

−∞
f1(z)log

(
f1(z)
f2(z)

)
dz. (33)

Kullback–Leibler divergence for the concomitants of GOS from the FGM family was
computed in [24] and the result is distribution-free.

One of the generalizations of Kullback–Leibler divergence measure is Tsallis diver-
gence, which expands Kullback–Leibler divergence in a similar way to that in which Tsallis
entropy extends Shannon entropy. There is a very rich literature on Tsallis divergence or
Tsallis relative entropy in the case of the discrete distributions, see, for example, [48–50].
Tsallis divergence for continuous distributions does not appear so frequently in the litera-
ture, being studied mainly in Machine Learning context, [44,45]. Tsallis divergence for the
concomitants will be determined in this paper in the next section.

4. Information Measures for the Concomitants from FGM Family, New Results

In this section, we will provide some generalizations of the existing results on the
information measures for the concomitants of GOS from the FGM family, results that
are mentioned in previous section. We are interested in Awad-type extensions of the
entropies, in residual and past Tsallis entropies, in Tsallis type extension of the FIN, and in
Tsallis divergence.

4.1. Shannon and Shannon-Related Entropies

One can easily notice that the relationship between Shannon–Awad entropy (18) and
Shannon entropy (12) is:

HSA(X) = HS(X) + log δ. (34)

In the following, we provide natural extensions of the results obtained in [24], consid-
ering Shannon–Awad entropy instead of Shannon entropy. Thus, Shannon–Awad entropy

of the concomitant of the r-th GOS from the FGM family is:

HSA(Y∗
[r]) =W(r, α, n, m, k) + (HSA(Y)− log δ)(1 − αC∗

r )− 2αC∗
r φ f (u) + log δ[r], (35)

where W(r, α, n, m, k) and φ f are given by (14) and (15) and

δ = sup{ fY(x)|x > 0}, δ[r] = sup{g[r](x)|x > 0}.

Remark 5. For the simple OS, the r-th OS concomitant from the FGM family, Shannon–Awad
entropy is:

HSA(Y[r]) = W(r, α, n, 0, 1) + (HSA(Y)− log δ)

(
1 + α

n − 2r + 1
n + 1

)
+ (36)

+ 2α
n − 2r + 1

n + 1
φ f (u) + log δ[r],

with δ[r] = sup{g[r](x)|x > 0} and g[r] being here the pdf of the concomitant r-th-order statistics.
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For the record values, the r-th record value concomitant from the FGM family, Shannon–Awad
entropy is:

HSA(R[r]) = W(r, α, n,−1, 1) + (HSA(Y)− log δ)
[
1 + α(21−r − 1)

]
+ (37)

+ 2α(21−r − 1)φ f (u) + log δ[r]

with δ[r] = sup{g[r](x)|x > 0} and g[r] being here the pdf of the concomitant r-th record value.
In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,

the Shannon–Awad entropy of the concomitant of r-th-order statistic from the FGM family is (35)
with m = R, the removal number.

An extension of the above entropies are residual and past Shannon–Awad entropies.
We define residual Shannon–Awad entropy as:

HSA(X; t) = −E

⎡⎣log
f (X)

F(t)δF̄
(t,∞)

∣∣∣∣X > t

⎤⎦, (38)

where
δF̄
(t,∞) =

1
F(t)

sup{ f (x)|x ∈ (t, ∞)}. (39)

In terms of failure rate, residual Shannon–Awad entropy can be obtained:

HSA(X; t) = 1 − E[log λ(X)|X > t] + log δF̄
(t,∞). (40)

We notice that the relationship between residual Shannon entropy and residual
Shannon–Awad entropy is similar to (34) and it is:

HSA(X; t) = HS(X; t) + log δF̄
(t,∞). (41)

In a similar way, we can extend past Shannon entropy to past Shannon–Awad entropy:

HSA
(X; t) = −E

[
log

f (X)

F(t)δF
(0,t)

|X < t

]
, (42)

where
δF
(0,t) =

1
F(t)

sup{ f (x)|x ∈ (0, t)}. (43)

As a function of reversed failure rate, past Shannon–Awad entropy can be written:

HSA
(X; t) = 1 − E[log τ(X)|X < t] + log δF

(0,t). (44)

We can write also the relationship between past Shannon–Awad entropy and past Shannon
entropy:

HSA
(X; t) = HS

(X; t) + log δF
(0,t). (45)

Taking into account the above relationships, (21), and (26), we can obtain the Awad-
type extension of the Shannon entropy for the concomitant of r-th GOS from the FGM
family, when the concomitant represents the residual life or the past life of a unit.
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Theorem 1. Residual Shannon–Awad entropy for the concomitant of r-th GOS from the FGM
family is:

HSA(Y∗
[r]; t) = log G[r](t)−

1
G[r](t)

{
(1 − αC∗

r )[FY(t)(log FY(t)− HSA(Y; t) + δ
F̄Y
t,∞)]+ (46)

+ 2αC∗
r φ f (t) + K1(r, t, α, n, m, k)

}
+ log δ

Ḡ[r]
(t,∞)

where K1(r, t, α, n, m, k) and φ f (t) are given by (22), (23) respectively, and

δ
F̄Y
(t,∞)

=
1

FY(t)
sup{ fY(x)|x ∈ (t, ∞)}, δ

Ḡ[r]
(t,∞)

=
1

G[r](t)
sup{g[r](x)|x ∈ (t, ∞)}.

Past Shannon–Awad entropy for the concomitant of r-th GOS from the FGM family is:

HSA
(Y∗

[r]; t) = log G[r](t)−
1

G[r](t)
{
(1 − αC∗

r )[FY(t)(log FY(t)− HSA
(Y; t) + δ

FY
(0,t))]+ (47)

+ 2αC∗
r φ f (t) + K2(r, t, α, n, m, k)

}
+ log δ

G[r]
(0,t)

where K2(r, t, α, n, m, k) and φ f (y), and δ(0,t) are given by (22) and (23) respectively, and

δ
FY
(0,t) =

1
FY(t)

sup{ fY(x)|x ∈ (0, t)}, δ
G[r]
(0,t) =

1
G[r](t)

sup{g[r](x)|x ∈ (0, t)}.

Corollary 1. The residual Shannon–Awad entropy for the concomitant of r-th-order statistic is:

HSA(Y[r]; t) = log G[r](t)−
1

G[r](t)

{(
1 + α

n − 2r + 1
n + 1

)
[FY(t)(log FY(t)− HSA(Y; t) + δ

F̄Y
t,∞)]+ (48)

− 2α
n − 2r + 1

n + 1
φ f (t) + K1(r, t, α, n, 0, 1)

}
+ log δ

Ḡ[r]
(t,∞)

.

The residual Shannon–Awad entropy for the concomitant of r-th record value is:

HSA(R[r]; t) = log G[r](t)−
1

G[r](t)

{
(1 + α(21−r − 1))[FY(t)(log FY(t)− HSA(Y; t) + δ

F̄Y
t,∞)]+ (49)

− 2α(21−r − 1)φ f (t) + K1(r, t, α, n,−1, 1)
}
+ log δ

Ḡ[r]
(t,∞)

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Shannon–Awad entropy of the concomitant of r-th-order statistic from the FGM family
is (46) with m = R, the removal number.

Similar results can be obtained also for past Shannon–Awad entropy.

4.2. Tsallis and Tsallis-Related Entropies

Information measures related to Tsallis entropy for the concomitants are very few in
the literature. In [35], Tsallis entropy and residual Tsallis entropy for the concomitants of
the record values from the FGM family are obtained. In this subsection, we will obtain
more general results, computing Tsallis entropies for the concomitants of generalized order
statistics and, furthermore, considering Awad-type extensions of the Tsallis entropies.

Theorem 2. Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT(Y∗
[r]) =

1
q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r EU

[
fY(F−1

Y (U))q−1Uk−s
]}

, (50)

where U is an U(0, 1) random variable and EU is the expectation of fY(F−1
Y (U))q−1Uk−s.
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Proof. Taking into account the definitions of Tsallis entropy (29) and the density of the
concomitants (6), we obtain:

HT(Y∗
[r]) =

1
q − 1

{
1 −

∫ ∞

0
[g[r](y)]

qdy
}

=

=
1

q − 1

(
1 −

∫ ∞

0
[ fY(y)]q(1 + αC∗

r (2FY(y)− 1))qdy
)

.

We have that:

(1 + αC∗
r (2FY(y)− 1))q =

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r [FY(y)]k−s.

Additionally, if we consider the transformation

FY(y) = u; y = F−1
Y (u), fY(y)dy = du,

the result (50) follows.

Corollary 2. The Tsallis entropy for the concomitant of r-th-order statistic is:

HT(Y[r]) =
1

q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n − 2r + 1

n + 1

)k

× (51)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

.

The Tsallis entropy for the concomitant of r-th record value is:

HT(R[r]) =
1

q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (52)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (50) with
m = R, the removal number.

We now discuss some Tsallis-related entropies. First, we give an Awad-type extension
of Tsallis entropy and then we focus on Residual Tsallis, Past Tsallis entropies and their
Awad-type extensions.

Several Awad-type extensions have been proposed in the literature ([51,52]). Now, we
introduce this type of extension for Tsallis entropy and we define Tsallis–Awad entropy

for a continuous random variable X which take values in R:

HTA(X) =
1

q − 1

{
1 −

∫ +∞

−∞

[
f (x)

δ

]q−1
f (x)dx

}
=

1
q − 1

{
1 − 1

δq−1

∫ +∞

−∞
[ f (x)]qdx

}
, (53)

where δ = sup{ f (x)|x ∈ R}.
We notice that the relationship between Tsallis–Awad entropy and Tsallis entropy is:

HTA(X) = δ1−qHT(X) + logq δ. (54)

Using (50) and (54), we can obtain the expression of Tsallis–Awad entropy for the
concomitant of the r-th GOS from the FGM family:
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Theorem 3. Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM family is:

HTA(Y∗
[r]) =

δ1−q

q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ, (55)

where U is an U(0, 1) random variable, and, in this case, δ = sup{g[r](x)|x > 0}.

Corollary 3. The Tsallis–Awad entropy for the concomitant of r-th-order statistic is:

HT(Y[r]) =
δ1−q

q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n − 2r + 1

n + 1

)k

× (56)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ.

The Tsallis–Awad entropy for the concomitant of r-th record value is:

HT(R[r]) =
δ1−q

q − 1

{
1 −

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (57)

× EU

[
fY(F−1

Y (U))q−1Uk−s
]}

+ logq δ.

In the case of progressve type II censoring order statistics with equi-balanced censoring scheme,
the Tsallis–Awad entropy of the concomitant of r-th-order statistic from the FGM family is (55) with
m = R, the removal number.

In a similar way to the definition of residual Tsallis (31), we can consider the past

Tsallis entropy:

HT
(X; t) =

1
q − 1

{
1 −

∫ t

0

[
f (x)
F(t)

]q
dx
}

=
1

q − 1

{
1 − 1

F(t)q

∫ t

0
[ f (x)]qdx

}
. (58)

Taking into account Theorem 2, the following theorem is naturally deduced:

Theorem 4. Residual Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT(Y∗
[r]; t) =

1
q − 1

{
1 − 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r × (59)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
,

where U is an U(0, 1) random variable and EU is the conditional expectation of
fY(F−1(U))q−1Uk−s, given U > FY(t).

Past Tsallis entropy for the concomitant of the r-th GOS from the FGM family is:

HT
(Y∗

[r]; t) =
1

q − 1

{
1 − 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r × (60)

× EU

[
fY(F−1

Y (U))q−1Uk−s|U < FY(t)
]}

,

where U is a U(0, 1) random variable and EU is the conditional expectation of
fY(F−1(U))q−1Uk−s, given U < FY(t).
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Corollary 4. The residual Tsallis entropy for the concomitant of r-th-order statistic is:

HT(Y[r]; t) =
1

q − 1

{
1 − 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n − 2r + 1

n + 1

)k

× (61)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
,

The residual Tsallis entropy for the concomitant of r-th record value is:

HT(R[r]; t) =
1

q − 1

{
1 − 1(

Ḡ[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (62)

× EU

[
fY(F−1(U))q−1Uk−s|U > FY(t)

]}
.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (59)
with m = R, the removal number.

Similar results can be obtained for past Tsallis entropy.

We now introduce Residual Tsallis–Awad entropy:

HTA(X; t) =
1

q − 1

⎧⎪⎨⎪⎩1 − 1(
δF
(t,+∞)

)q−1

∫ +∞

t

[
f (x)
F(t)

]q
dx

⎫⎪⎬⎪⎭ (63)

=
1

q − 1

⎧⎪⎨⎪⎩1 − 1
F(t)

E

⎡⎢⎣
⎡⎣ f (X)

F(t)δF
(t,∞)

⎤⎦q−1∣∣∣∣X > t

⎤⎥⎦
⎫⎪⎬⎪⎭, (64)

where δF
(t,∞) =

1
F(t)

sup{ f (x)|x ∈ (t,+∞)}.
Past Tsallis–Awad entropy can also be defined:

HTA
(X; t) =

1
q − 1

⎡⎢⎣1 − 1(
δF
(0,t)

)q−1

∫ t

0

[
f (x)
F(t)

]q
dx

⎤⎥⎦ (65)

=
1

q − 1

⎧⎨⎩1 − 1
F(t)

E

⎡⎣[ f (X)

F(t)δF
(0,t)

]q−1∣∣∣∣0 < X < t

⎤⎦⎫⎬⎭. (66)

where δF
(0,t) =

1
F(t) sup{ f (x)|x ∈ (0, t)}.

We notice that a similar relationship to (54) can be written for residual Tsallis entropies
and for past Tsallis entropies:

HTA(X; t) =
(

δF
(t,∞)

)1−q
HT(X; t) + logq δF

(t,∞), (67)

HTA
(X; t) =

(
δF
(0,t)

)1−q
HT

(X; t) + logq δF
(0,t), (68)

and the following theorem can be proven:

181



Entropy 2022, 24, 1361

Theorem 5. Residual Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM
family is:

HTA(Y∗
[r]; t) =

(δ
G[r]
(t,∞)

)1−q

q − 1

{
1 − 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r × (69)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

,

where U is an U(0, 1) random variable, and δ
G[r]
(t,∞)

= 1
G[r](t)

sup{g[r](x)|x ∈ (t,+∞)}.

Past Tsallis–Awad entropy for the concomitant of the r-th GOS from the FGM family is:

HTA
(Y∗

[r]; t) =
(δ

G[r](t)
(0,t) )1−q

q − 1

{
1 − 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαkC∗k

r × (70)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U < FY(t)
]}

+ logq δ
G[r]
(0,t),

where U is an U(0, 1) random variable, and δ
G[r]
(0,t) =

1
G[r]

sup{g[r](x)|x ∈ (0, t)}.

Corollary 5. The residual Tsallis–Awad entropy for the concomitant of r-th-order statistic is:

HTA(Y[r]; t) =
(δ

G[r]
(t,∞)

)1−q

q − 1

{
1 − 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k

(
n − 2r + 1

n + 1

)k

× (71)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

.

The residual Tsallis–Awad entropy for the concomitant of r-th record value is:

HTA(Y[r]; t) =
(δ

G[r]
(t,∞)

)1−q

q − 1

{
1 − 1(

G[r](t)
)q

q

∑
k=0

k

∑
s=0

(−1)s
(

q
k

)(
k
s

)
2k−sαk(−1)k(21−r − 1

)k× (72)

×EU

[
fY(F−1

Y (U))q−1Uk−s|U > FY(t)
]}

+ logq δ
G[r]
(t,∞)

.

In the case of progressive type II censoring order statistics with equi-balanced censoring scheme,
the residual Tsallis entropy of the concomitant of r-th-order statistic from the FGM family is (59)
with m = R, the removal number.

Similar results can be obtained for past Tsallis entropy.

4.3. Fisher–Tsallis Information Number

Various generalizations of FIN have been proposed, see, for example, [53–55]. In [53],
the FIN is generalized, replacing the expectation and the logarithm functions with their q
variants, and in [54], a (β, q)-Fisher information is defined. We here consider the following
extension FIN, which we call Fisher–Tsallis information number:

I f = Ef

[(
∂

∂x
logq f (x)

)2
]

, (73)

where logq is given by (30). This extension is a type of extension from [54], with β = 2 and
q = 1.

For the concomitants of the GOS from FGM family, we have the following theorem
which can be seen as an extension of the results obtained in [40]:
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Theorem 6. For the r-th concomitant Y∗
[r] of GOS from a FGM family, the Tsallis–Fisher informa-

tion number for a location parameter is:

Ig[r] = I1 + I2 + I3, (74)

where

I1 = EU

[
( fY(F−1(U)))−2q( f ′Y(F−1

Y (U)))2(1 + C∗
r α(1 − 2U))2−2q

]
,

I2 = 4C∗2
r α2 · EU

[
( fY(F−1(U)))4−2q(1 + C∗

r α(1 − 2U))−2q
]
,

I3 = −4C∗2
r α · EU

[
fY(F−1(U)))2−2q f ′Y(F−1

Y (U))(1 + C∗
r α(1 − 2U))1−2q

]
.

Proof. From (73), we have

Ig[r] = Eg[r]

[
(g[r](Y))

−2q(g′[r](Y))
2
]
.

Using the expression (7) for the density g[r], it results in

Ig[r] = Eg[r]

[
fY(Y)−2q[1 + C∗

r α(1 − 2FY(Y))
]−2q

[
f ′Y(Y)(1 + C∗

r α(1 − 2FY(Y)))− 2( fY(Y))2C∗
r α
]2
]

.

Thus,

Ig[r] =Eg[r]

[
( fY(Y))−2q[1 + C∗

r α(1 − 2FY(Y))
]−2q

·
[
( f ′Y(Y))

2(1 + C∗
r α(1 − 2FY(Y)))2 + 4( fY(Y))4C∗2

r α2−

− 4 f ′Y(Y)( fY(Y))2C∗
r α(1 + C∗

r α(1 − 2FY(Y)))
]]

.

After some computations,

Ig[r] =Eg[r]

[
( fY(Y))−2q( f ′Y(Y))

2(1 + C∗
r α(1 − 2FY(Y)))2−2q

]
+

+ 4C∗2
r α2Eg[r]

[
fY(Y)4−2q(1 + C∗

r α(1 − 2FY(Y)))−2q
]
−

− 4C∗
r αEg[r]

[
( fY(Y))2−2q f ′Y(Y)(1 + C∗

r α(1 − 2FY(Y)))1−2q
]
.

After the transformation U = FY(Y), with U ∼ U(0, 1) we obtain (74).

4.4. Tsallis Divergence

We consider Tsallis divergence for two densities, f1 and f2, as it is defined in [44]:

TD(Z1, Z2) =
∫ +∞

−∞
f1(z)logq

(
f2(z)
f1(z)

)
dz (75)

that can also be expressed as:

TD(Z1, Z2) =
1

1 − q
Ef1

[(
f1(z)
f2(z)

)q−1

− 1

]
. (76)

We notice that this divergence is the divergence considered in [36], with φ(x) =
logq(1/x), it is the divergence analyzed in [56], with k = 1 − q, and it is Tsallis Relative
Entropy from [57].
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When q → 1, Tsallis entropy becomes Shannon entropy and also Tsallis divergence be-
comes Kullback–Leibler divergence (33). The next theorem generalizes the results from [23],
computing Tsallis divergence for two concomitants of GOS from the FGM family.

Theorem 7. Let Y[r] and Y[s] the r-th and the s-th concomitants of the GOS from the FGM family
with the densities g[r] and g[s]. Then, the Tsallis divergence of g[s] from g[r] has the following form:

TD(Y[r], Y[s]) =
1

1 − q
[D1 − D2 − 1], (77)

where

D1 =
1

q(q + 1)

(
C∗

r
C∗

r − C∗
s

)q−1
(1 + C∗

r α)q+1F1

(
q + 1, q − 1, q + 1,−C∗

s (1 + C∗
r α)

C∗
r − C∗

s

)
,

D2 =
1

q(q + 1)

(
C∗

r
C∗

r − C∗
s

)q−1
(1 − C∗

r α)q+1F1

(
q + 1, q − 1, q + 1,−C∗

s (1 − C∗
r α)

C∗
r − C∗

s

)
,

with F1 being the hypergeometric function.

Proof. In (76), we replace f1 and f2 with the concomitants densities:

g[r](y) = fY(y)[1 + C∗
r α(2Fy(y)− 1)],

g[s](y) = fY(y)[1 + C∗
s α(2Fy(y)− 1)],

and we compute the expectation:

Eg[r]

⎡⎣( g[r](Y)
g[s](Y)

)q−1
⎤⎦ =

∫ ∞

0
g[r](y)

(
g[r](Y)
g[s](Y)

)q−1

dy (78)

=
∫ ∞

0
fY(y)[1 + C∗

r α(2FY(y)− 1)]
(

fY(y)[1 + C∗
r α(2FY(y)− 1)]

fY(y)[1 + C∗
s α(2FY(y)− 1)]

)q−1

dy.

First, we make the transformation:

FY(y) = u, y = F−1
Y (u), fY(y)dy = du,

and we obtain

Eg[r]

⎡⎣( g[r](Y)
g[s](Y)

)q−1
⎤⎦ =

∫ 1

0

[1 + C∗
r α(2u − 1)]q

[1 + C∗
s α(2u − 1)]q−1 du. (79)

Then, we make the transformation:

2u − 1 = v, u = (v + 1)/2, 2du = dv,

and we obtain:

Eg[r]

⎡⎣( g[r](Y)
g[s](Y)

)q−1
⎤⎦ =

1
2

∫ 1

−1

[1 + C∗
r αv]q

[1 + C∗
s αv]q−1 dv. (80)
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We use the general formula:

1
2

∫ 1

−1

(1 + ax)A

(1 + bx)B dx = (81)

=
1

A(A + 1)

{
(1 + a)A+1(1 + b)−B

[
a(1 + b)

a − b

]B

F1

(
A + 1, B, A + 1,− b(1 + a)

a − b

)
−

−(1 − a)A+1(1 − b)−B
[

a(1 − b)
a − b

]B

F1

(
A + 1, B, A + 1,− b(1 − a)

a − b

)}
,

where F1 is the hypergeometric function. It results in:

Eg[r]

⎡⎣( g[r](Y)
g[s](Y)

)q−1
⎤⎦ = D1 − D2.

5. Conclusions

This paper is focused on information measures related to Shannon entropy, Tsallis
entropy, Fisher information, and divergences for the concomitants of GOS from the FGM
family. We review the literature on the mentioned information measures and we generalize
existing results. The study of the concomitants, pairs of the order statistics in a sample
from a bivariate distribution, ordered by one variate, could have applications in reliability,
for example, in the analysis of the lifetime uncertainty of complex systems. For this reason,
we also discuss residual and past versions of the entropies. Considering generalized order
statistics (GOS) results in an increasing complexity of computations, but it gives a general
form of the computed measures that can be applied for the concomitants of various order
statistics.
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Abstract: When choosing between two candidate models, classical hypothesis testing presents two
main limitations: first, the models being tested have to be nested, and second, one of the candidate
models must subsume the structure of the true data-generating model. Discrepancy measures have
been used as an alternative method to select models without the need to rely upon the aforementioned
assumptions. In this paper, we utilize a bootstrap approximation of the Kullback–Leibler discrepancy
(BD) to estimate the probability that the fitted null model is closer to the underlying generating
model than the fitted alternative model. We propose correcting for the bias of the BD estimator either
by adding a bootstrap-based correction or by adding the number of parameters in the candidate
model. We exemplify the effect of these corrections on the estimator of the discrepancy probability
and explore their behavior in different model comparison settings.

Keywords: bootstrap discrepancy comparison probability (BDCP); discrepancy comparison probabil-
ity (DCP); likelihood ratio test (LRT); model selection; p-value

1. Introduction

Hypothesis testing and p-values are routinely used in applied, empirically oriented
research. However, practitioners of statistics often misinterpret p-values, particularly in
settings where hypothesis tests are used for model comparisons. Riedle, Neath and Ca-
vanaugh [1] attempt to address this issue by providing an alternate conceptualization of the
p-value. The authors introduce and investigate the concept of the discrepancy comparison
probability (DCP) and its bootstrapped estimator, called the bootstrap discrepancy com-
parison probability (BDCP). The authors establish a clear connection between the BDCP
based on the Kullback–Leibler discrepancy (KLD) and the p-values derived from likelihood
ratio tests. However, this connection only exists when using the bootstrap discrepancy
(BD) that arises from the “plug-in” principle, which yields a biased approximation to the
KLD. Similarly to complexity penalization of the Akaike Information Criterion (AIC), we
establish that an intuitive bias correction to the BD is the addition of k, the number of
functionally independent parameters in the candidate model. We also propose utilizing a
bootstrap-based correction, which can be justified under less stringent assumptions. We
analyze how well the bootstrap approach corrects the bias of the BDCP and the BD, and we
show that, in most settings, its performance is comparable to simply adding k.

2. Methodological Development

2.1. Background

When faced with the task of choosing amongst competing models, statisticians of-
ten use discrepancy or divergence functions. One of the most flexible and ubiquitous
divergence measures is the Kullback–Leibler information. To introduce this measure in
the present context, consider a vector of independent observations y = (y1, y2, . . . , yn)T

such that y is generated from an unknown distribution g(y). Suppose that a candidate

Entropy 2022, 24, 1483. https://doi.org/10.3390/e24101483 https://www.mdpi.com/journal/entropy
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model f (y|θ) is proposed as an approximation for g(y), and that this model belongs to the
parametric class of densities

F = [ f (y|θ) : θ ∈ Θ],

where Θ is the parameter space for θ. The Kullback–Leibler information, given by

IKL(g, θ) = Eg

[
log

g(y)
f (y|θ)

]
,

captures the separation between the proposed model f (y|θ) and the true data-generating
model g(y).

Although not a formal metric, IKL(g, θ) is characterized by two desirable properties.
First, by Jensen’s inequality, IKL(g, θ) ≥ 0 with equality if and only if g(y) = f (y|θ). Second,
as the dissimilarity between g(y) and f (y|θ) increases, IKL(g, θ) increases accordingly.

Note that we can write

2IKL(g, θ) = Eg[−2 log( f (y|θ))]− Eg[−2 log(g(y))]

= Eg[−2�(θ|y))]− Eg[−2 log(g(y))],

where log( f (y|θ)) = �(θ|y). In the preceding relation, for any proposed candidate model,
the quantity Eg[−2 log(g(y))] is constant. Only the quantity Eg[−2�(θ|y)] changes across
different models, which means it is the only quantity needed to distinguish among various
models. The expression

d(g, θ) = Eg[−2�(θ|y))]
is known as the Kullback–Leibler discrepancy (KLD) and is often used as a substitute
for IKL(g, θ).

In practice, the goal is to determine the propriety of fitted models of the form f (y|θ̂),
where θ̂ = argmaxθ∈Θ �(θ|y). The KL discrepancy for the fitted model is given by

d(g, θ̂) = Eg[−2�(θ|y)]|θ=θ̂ .

2.2. The Discrepancy Comparison Probability and Bootstrap Discrepancy Comparison Probability

Suppose that we have two nested models that are formulated to characterize the sam-
ple y, and we designate one of the models the null, represented by θ1, and the other model
the alternative, represented by θ2. The discrepancies under the fitted null and alternative
models are given by d(g, θ̂1) and d(g, θ̂2), respectively. We can use these discrepancies
to define the Kullback–Leibler discrepancy comparison probability (KLDCP), which is
given by

P = Pr[d(g, θ̂1) < d(g, θ̂2)].

The KLDCP evaluates the probability that the fitted null model is closer to the true
data-generating model than the fitted alternative. The values of d(g, θ̂1) and d(g, θ̂2) are
calculated from the same sample. For example, a KLDCP of 0.8 means that the fitted null
has a smaller discrepancy than the fitted alternative in 80% of the samples drawn from the
same distribution and of the same size. The development and interpretation of the KLDCP
is presented in depth by Riedle, Neath and Cavanaugh [1].

We can estimate the KLDCP using the bootstrap approximation of the joint distribu-
tion of d(g, θ̂1) and d(g, θ̂2). The bootstrap joint distribution is based on the discrepancy
estimators that arise from the “plug-in” principle, as described by Efron and Tibshirani [2] ,
which replaces all the elements of the KLD by their bootstrap analogues. Specifically, we
replace g by the empirical distribution ĝ; y by the bootstrap sample from ĝ, which we call
y∗; and finally, θ̂ by the maximum likelihood estimate (MLE) derived under the bootstrap
sample y∗, which we call θ̂∗. With these replacements, the bootstrap version of the KLD is
given by
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d(ĝ, θ̂∗) = Eĝ[−2�(θ|y)]|θ=θ̂∗

=
n

∑
i=1

−2�i(θ̂
∗|yi) (because each yi is independent.)

= −2�(θ̂∗|y),

where �i represents the contribution to the likelihood based on the ith response yi.
Now, in order to build a bootstrap distribution, we must draw various bootstrap

samples from y. Suppose that we draw j = 1, 2, . . . , J bootstrap samples, and for each of
these samples, we calculate the MLE of θ, which we denote as θ̂∗(j). This allows us to
obtain a set of J different bootstrap discrepancies; this set is defined as{

d(ĝ, θ̂∗(j)) : j = 1, . . . , J
}

,

and these variates can be used to construct the bootstrap analogue of the discrepancy
distribution.

Finally, we can extend this procedure to the setting of the null and alternative models.
For each bootstrap sample, we calculate θ̂∗2 (j) and θ̂∗1 (j), which are the bootstrap sam-
ple MLEs of θ2 and θ1, respectively. We then compute the discrepancies d(ĝ, θ̂∗2 (j)) and
d(ĝ, θ̂∗1 (j)) for the null and alternative models, respectively. This collection of J pairs of null
and alternative bootstrap discrepancies defines the set{

(d(ĝ, θ̂∗1 (j)), d(ĝ, θ̂∗2 (j))) : j = 1, . . . , J
}

,

which characterizes the bootstrap analogue of the joint distribution of d(ĝ, θ̂1) and d(ĝ, θ̂2)).
The bootstrap distribution can be utilized to estimate the bootstrap analogue of the DCP,
given by

P∗ = Pr∗[d(ĝ, θ̂∗1 ) < d(ĝ, θ̂∗2 )].

By the law of large numbers, we can approximate P∗ by calculating the proportion of
times when d(ĝ, θ̂∗1 (j)) < d(ĝ, θ̂∗2 (j)) in the J bootstrap samples that were drawn. Thus, if I
is an indicator function, we can define an estimator of the DCP, which we call the bootstrap
discrepancy comparison probability (BDCP), as follows:

BDCP =
1
J

J

∑
j=1

I[d(ĝ, θ̂∗1 (j)) < d(ĝ, θ̂∗2 (j))]. (1)

3. Bias Corrections for the BDCP

An important issue that arises in the bootstrap estimation of the KLD is the negative
bias of the discrepancy estimators that materializes from the “plug-in” principle. The
following lemma establishes and quantifies this bias for large-sample settings under an
appropriately specified candidate model.

Lemma 1. For a large sample size, assuming that the candidate model subsumes the true model,
we have

Eg
{

E∗[−2�(θ̂∗|y)]
}
≈ Eg[d(g, θ̂)]− k,

where E∗ is the expectation with respect to the bootstrap distribution, and k is the dimension of
the model.

Proof. For a maximum likelihood estimator θ̂, it is well known that for a large sample size
and under certain regularity conditions, we have

(θ̂ − θ)T I(θ|y)(θ̂ − θ) ∼ χ2
k , (2)
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provided that the model is adequately specified. In the preceding, χ2
k denotes a centrally

distributed chi-square random variable with k degrees-of-freedom.
Now, consider the second-order Taylor series expansion of −2�(θ̂∗|y) about θ̂, which

results in
− 2�(θ̂∗|y) ≈ −2�(θ̂|y) + (θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂). (3)

By taking the expected value of both sides of (3) with respect to the bootstrap distribu-
tion of θ̂∗, we obtain

E∗
(
−2�(θ̂∗|y)

)
≈ −E∗

(
2�(θ̂|y)

)
+ E∗

(
(θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂)

)
≈ −2�(θ̂|y) + k (by the approximation in (2)),

= AIC − k,

where AIC denotes the Akaike information criterion.
Finally, it has been established that if the true model is contained in the candidate

class at hand, and if the large sample properties of MLEs hold, then AIC serves as an
asymptotically unbiased estimator of the KLD. Thus,

Eg
(
E∗
(
−2�(θ̂∗|y)

))
≈ Eg(AIC)− k

≈ Eg(d(g, θ̂))− k.

The preceding expression can be re-written as

Eg(d(g, θ̂)) ≈ Eg
(
E∗
(
−2�(θ̂∗|y)

))
+ k,

which implies that the bias correction k must be added to the bootstrap discrepancy in the
estimation of the KLD. The BD estimator corrected by the addition of k will be called BDk.

Now, focus again on Equation (3). By subtracting (−2�(θ̂|y)) from both sides of the
equation, we obtain

− 2�(θ̂∗|y)− (−2�(θ̂|y)) ≈ (θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂). (4)

As mentioned previously, if the candidate model is adequately specified, then the
distributional approximation in (2) holds true. However, if this model specification as-
sumption is not met, then we can utilize the approximation in (4) to find a suitable bias
correction via the bootstrap. The bootstrap has been used for bias corrections in similar
problem contexts [3,4].

By applying the expected value with respect to the bootstrap distribution of θ̂∗ to both
sides of (4), we obtain

E∗
(
−2�(θ̂∗|y)

)
− (−2�(θ̂|y)) ≈ E∗

(
(θ̂∗ − θ̂)T I(θ̂|y)(θ̂∗ − θ̂)

)
. (5)

The goal is then to find an approximation of E∗
(
−2�(θ̂∗|y)

)
− (−2�(θ̂|y)). Note that

by the law of large numbers, we have that when J → ∞,

1
J

J

∑
j=1

−2�(θ̂∗(j)|y) −→ E∗(−2�(θ̂∗|y)).

Thus, for J → ∞, we can assert

1
J

J

∑
j=1

−2�(θ̂∗(j)|y)− (−2�(θ̂|y)) −→ E∗(−2�(θ̂∗|y))− (−2�(θ̂|y)).
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The preceding result shows that 1
J ∑J

j=1 −2�(θ̂∗(j)|y)− (−2�(θ̂|y)) serves as an asymp-

totically unbiased estimator of E∗(−2�(θ̂∗|y))− (−2�(θ̂|y)). We therefore propose using

kb =
1
J

J

∑
j=1

−2�(θ̂∗(j)|y)− (−2�(θ̂|y))

as a bootstrap-based correction of the BD. A more in-depth derivation and exploration of
the kb correction can be found in Cavanaugh and Shumway [5].

Subsequently, the bootstrap approximation of the KLD with a bootstrap-based bias
correction is expressed by E∗(−2�(θ̂∗|y)) + kb, and is estimated by

BDb =
1
J

J

∑
j=1

−2�(θ̂∗(j)|y) + kb.

It follows that the bootstrap bias-corrected BDCP would be defined as

BDCPb =
1
J

J

∑
j=1

I

[
d(ĝ, θ̂∗1 (j)) + k1b < d(ĝ, θ̂∗2 (j)) + k2b

]
, (6)

where k1b and k2b correspond to the bootstrap-based corrections for the null and alternative
models, respectively.

Similarly, the k bias-corrected BD is expressed as

BDk =
1
J

J

∑
j=1

−2�(θ̂∗(j)|y) + k,

and the k bias-corrected BDCP is given by

BDCPk =
1
J

J

∑
j=1

I

[
d(ĝ, θ̂∗1 (j)) + k1 < d(ĝ, θ̂∗2 (j)) + k2

]
, (7)

where k1 and k2 are the number of functionally independent parameters that define the
null and alternative models, respectively.

4. Simulation Studies

The following simulation sets are designed to explore the bias when estimating both
the DCP based on the Kullback–Leibler discrepancy (KLDCP) and the expected value of the
KLD. We present different hypothesis testing scenarios, not all of which are conventional,
under a linear data-generating model and for varying sample sizes. Each setting exhibits
three different approaches to formulating the BD: adding the bootstrap-based correction
(BDb), adding k (BDk), and leaving the estimator uncorrected.

4.1. Settings for Simulation Sets

For Sets 1 to 5, the true data-generating model is of the form

yi = xT
i β0 + εi,

with βT
0 =

[
β0,1 β0,2 · · · β0,p

]
, xT

i =
[
1 xi2 · · · xip

]
, and

[
xi2 · · · xip

]T ∼ Np−1(μ, Σ), (8)

where the entries of μ are chosen from {−1, 1} with equal probability, and Σ = diagp−1(100).
For Sets 1 to 4, we have εi ∼ N(0, σ2

0 ); for Set 5, we have that εi ∼ td f=5, where td f denotes
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the Student’s t distribution based on d f degrees of freedom; and for Set 6, we have that
εi ∼ Z · N(0, 1) + (1 − Z) · N(0, 50), where Z ∼ Bernoulli(π) with π = 0.85.

In the setting at hand, the true data-generating model g has parameters θ = (βT
0 , σ2

0 )
T .

Hurvich and Tsai [6] showed that for the family of approximating models y = Xβ + ε,
where X is the design matrix and ε ∼ N(0, σ2 In), with maximum likelihood estimators
given by

β̂ = (XTX)−1XTy

and

σ̂2 =
(y − Xβ̂)T(y − Xβ̂)

n
,

the KLD measure d(g, θ̂) is given by

d(g, θ̂) = n log(2πσ̂2) +
nσ2

0
σ̂2 +

(Xβ0 − Xβ̂)T(Xβ0 − Xβ̂)

σ̂2 . (9)

The expected value of the KLD for the null and the alternative models was approxi-
mated by averaging the KLD over 5000 samples generated from g. These 5000 KLD values,
computed using (9), approximate the joint distribution of d(g, θ̂1) and d(g, θ̂2); hence, the
simulation-based estimator of the KLDCP is given by

P̂ =
1

5000

5000

∑
i=1

I[d(g, θ̂1(i)) < d(g, θ̂2(i))]. (10)

This KLDCP estimate is calculated 100 times in order to estimate the KLDCP distribu-
tion and its expected value.

Finally, for each of the 5000 samples, we calculate the BD and the BDb using 200 boot-
strap samples. However, to attenuate the simulation variability incurred by the mixture
distribution, the number of bootstrap samples in Set 6 was increased to 500. The results
displayed in the tables are based on averages over the 5000 samples.

Set 1: Null hypothesis is correctly specified, and alternative hypothesis is overspecified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + εi,

where εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = 0.5 and
[
xi2 xi3

]T is sampled as indicated
in (8).

For the hypothesis testing setting in Set 1, the null and alternative models are defined as

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5 + β6xi6 + β7xi7.

Note that the null model is adequately specified, while the alternative model contains
the true model plus four additional explanatory variables. These extra explanatory vari-
ables are generated from the distribution indicated in (8).

Set 2: Null hypothesis is underspecified, and alternative hypothesis is correctly specified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + εi,

where εi ∼ N(0, 45), β0,1 = 1, β0,2 = 0.11, β0,3 = 0.13, β0,4 = 0.12, β0,5 = −0.11, and[
xi2 xi3 · · · xi5

]T is sampled as indicated in (8).
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For the hypothesis testing setting in Set 2, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3 + β4xi4,

H2 : yi = β1 + β2xi2 + β3xi3 + β4xi4 + β5xi5.

Here, the alternative model has the same structure as the data-generating model, but
the null model is missing one of the explanatory variables in the true model, namely x5.

Set 3: Both null and alternative models are underspecified, but the null is closer to the data-generating
model.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + β0,6xi6 + εi,

where εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = 0.5, β0,4 = β0,5 = −0.5, β0.6 = 0.1, and[
xi2 xi3 · · · xi6

]T is sampled as indicated in (8).
For the hypothesis testing setting in Set 3, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β4xi4 + β6xi6.

In this setting, both the null and alternative candidate models have the same number
of explanatory variables, and they are both missing variable x4. However, there is a slight
difference in the effect sizes of the variables for these models. For the alternative, the effect
sizes are −0.5 and 0.1 for x4 and x6, respectively. On the other hand, the effect size for the
null model is 0.5 for both x2 and x3. When comparing the null and alternative models, the
smaller effect size on x6 sets the alternative further away from the true model.

Set 4: Both null and alternative models are equally underspecified.

Consider the true data-generating model given by

yi = β0,1 + β0,2xi2 + β0,3xi3 + β0,4xi4 + β0,5xi5 + β0,6xi6 + β0,7xi7 + εi,

with εi ∼ N(0, 50), β0,1 = 1, β0,2 = β0,3 = β0,6 = β0,7 = 0.5, β0,4 = β0,5 = −0.5, and[
xi1 xi2 · · · xi7

]T is sampled as indicated in (8).
For the hypothesis testing setting in Set 4, the null and alternative models are

H1 : yi = β1 + β2x2i + β3xi3,

H2 : yi = β1 + β4xi4 + β5xi5.

Here, the null and alternative candidate models are equally underspecified because
they have the same number of explanatory variables with the same effect sizes, and neither
model captures the true data-generating model.

Set 5: Null model has correct mean specification and alternative model is overspecified, but both are
misspecified with respect to the error distribution, which is a Student’s t distribution.

Consider the true data generating model given by

yi = β0,1 + εi,

with εi ∼ td f=5 and β0,1 = 1. Therefore, σ2
0 = 5

3 .
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For the hypothesis testing setting in Set 5, the null and alternative models are

H1 : yi = β1,

H2 : yi = β1 + β2xi2,

where xi2 ∼ N(1, 100). This setting is similar to the one displayed in Set 1, where the null
is properly specified while the alternative is overspecified. However, the models in the
setting at hand inadequately specify the distribution of the errors.

Set 6: Null model has correct mean specification, and the alternative model is overspecified, but both
are misspecified with respect to the error distribution, which is a mixture of normals.

Consider the true data-generating model given by

yi = β0,1 + εi,

with εi ∼ Z · N(0, 1) + (1− Z) · N(0, 50), where Z ∼ Bernoulli(π) with π = 0.85. Therefore,

σ2
0 = 0.85(1) + 0.15(50)

= 8.35.

For the hypothesis testing setting in Set 6, the null and alternative models are

H1 : yi = β1,

H2 : yi = β1 + β2xi2,

where xi2 ∼ N(1, 100). This setting is similar to the one featured in Set 5. However, the
errors in the setting at hand are generated from a mixture of normal distributions.

4.2. KLDCP Estimates From Simulations

For the tables showing the KLDCP simulation results, the columns are labeled
as follows.

(1) KLDCP corresponds to results based on the distribution of 100 replicates of KLDCP,
where each KLDCP is calculated using (10). Note that the null and alternative KLD
joint distribution is characterized based on discrepancy replicates obtained through (9).

(2) BDCPb corresponds to results based on the distribution of 5000 replicates of BDCPb.
Each BDCPb is computed using (6) with 200 bootstrap samples for Sets 1–5 and
500 bootstrap samples for Set 6.

(3) BDCPk corresponds to results based on the distribution of 5000 replicates of BDCPk.
Each BDCPk is computed using (7) with 200 bootstrap samples for Sets 1–5 and
500 bootstrap samples for Set 6.

(4) BDCP corresponds to results based on the distribution of 5000 replicates of the un-
corrected BDCP. Each BDCP is computed using (1) with 200 bootstrap samples for
Sets 1–5 and 500 bootstrap samples for Set 6.

4.3. Estimates of the Expected KLD From Simulations

For the tables showing the KLD results, the columns are labeled as follows.

(1) E(KLD) corresponds to the average of 5000 discrepancies calculated using (9).
(2) E(BD) corresponds to the average of 5000 replicates of BD, where each BD is calcu-

lated by
1
M

M

∑
m=1

−2�(θ̂∗(m)|y).

We have that M = 200 for Sets 1–5 and M = 500 for Set 6.
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(3) ΔBDb corresponds to the difference between the estimate of E(BD), with each BD
corrected by kb and the estimate of E(KLD) described in (1). In other words, if we let
j ∈ {1, 2 . . . , 5000} be the number of simulated data sets, B̃Dj be the BD estimate for
each data set j, and kjb be the kb correction for data set j, then

ΔBDb =
1

5000

5000

∑
j=1

[
B̃Dj + kjb

]
− E(KLD).

(4) ΔBDk shows the same difference described in (3), but using k instead of kb, which
results in

ΔBDk =
1

5000

5000

∑
j=1

[
B̃Dj + k

]
− E(KLD).

4.4. Discussion of Simulation Results

As mentioned previously, in the conventional hypothesis testing scenario for com-
paring nested models, Riedle, Neath and Cavanaugh [1] established that the uncorrected
BDCP approximates the p-value derived from the likelihood ratio test. Therefore, in the
case where the null candidate model is correctly specified, both the uncorrected BDCP and
the p-value have a Uni f orm(0, 1) distribution. This behavior is displayed in Table 1, where
for large sample sizes, the mean and median of the BDCP distribution are around 0.5. This
is a problematic feature of the uncorrected BDCP and p-values because the measure does
not reliably favor the null model in those settings where the null is true. However, we see
that for large sample sizes, both the BDCPk and the BDCPb values are close to 1, which
clearly favors the null model.

Table 2 shows the results from the setting where the alternative hypothesis is correctly
specified, while the null is underspecified. Here, we would expect all the discrepancy prob-
abilities to be close to 0, as seen in the case where the sample size is N = 500. However, for
smaller sample sizes, i.e., N = 25 and N = 50, we observe larger values for the discrepancy
probabilities. In fact, for N = 25, the BDCPb is 0.89 and, with a mean and median close
to 0.5, the uncorrected BDCP exhibits similar behavior to the case where the null is true.
This phenomenon is expected within the framework of model selection, where additional
explanatory variables are favorable if there is a sufficient sample size to adequately estimate
their effects. If the sample size is too small to construct reliable estimates, then it is best to
choose smaller models, even at the expense of model misspecification.

The results from Tables 1, 3–6 show that when estimating the KLDCP with a small sample
size (N = 25 to N = 100), the BDb performs either better than or as well as the BDk. For large
sample sizes, all simulation sets exhibit a similar performance for both corrections.

For discrepancy estimation, Tables 7–10 show that across all sample sizes, kb over-
corrects for the bias of the discrepancy approximation, and the over correction is more
prominent for small sample sizes. It is worth noting that this evident over-estimation
from the BDb is accompanied by a superior bias reduction of the corresponding KLDCP
estimator. For instance, Table 7 shows a significant over-estimation by BDb compared to
BDk, especially in the small sample settings. However, the corresponding estimator of the
KLDCP, displayed in Table 1, exhibits less bias for BDCPb than for BDCPk.

Finally, Tables 11 and 12 show that, across all sample sizes, the correction by kb markedly
reduces the bias compared to the correction by k. This means that in the setting where the
mean structure is correctly specified for the null and overspecified for the alternative, but both
models are incorrectly specified with respect to the error distribution, the bootstrap-based
correction evidently outperforms the simple correction of k.

In most cases, however, the bias reductions resulting from the kb and the k corrections
are comparable. Therefore, our simulation studies suggest that if the null and/or the
alternative models are misspecified, then correcting by either kb or k will generally yield
comparable estimators of the expected KLDCP.
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Table 1. Distribution approximations for Set 1, where the null model is correctly specified, while the
alternative model is overspecified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.878 0.868 0.515

Median 1.000 1.000 1.000 0.515

SD 0.000 0.233 0.241 0.282

N = 100

Mean 1.000 0.918 0.864 0.564

Median 1.000 1.000 0.995 0.580

SD 0.000 0.186 0.225 0.256

N = 50

Mean 1.000 0.966 0.875 0.631

Median 1.000 1.000 0.980 0.650

SD 0.000 0.111 0.193 0.220

N = 25

Mean 1.000 0.999 0.886 0.739

Median 1.000 1.000 0.955 0.755

SD 0.000 0.012 0.144 0.156

Table 2. Distribution approximations for Set 2, where the null model is underspecified, while the
alternative model is correctly specified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 0.001 0.022 0.021 0.011

Median 0.001 0.000 0.000 0.000

SD 0.000 0.088 0.085 0.043

N = 100

Mean 0.156 0.470 0.428 0.264

Median 0.156 0.340 0.280 0.170

SD 0.005 0.390 0.378 0.257

N = 50

Mean 0.372 0.691 0.597 0.409

Median 0.372 0.905 0.630 0.360

SD 0.007 0.350 0.354 0.266

N = 25

Mean 0.617 0.890 0.698 0.536

Median 0.617 0.990 0.785 0.535

SD 0.006 0.213 0.280 0.222
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Table 3. Distribution approximations for Set 3, where the null and alternative models are underspec-
ified, but the null model is closer to the true data-generating model.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 1.000 1.000 1.000

Median 1.000 1.000 1.000 1.000

SD 0.000 0.013 0.013 0.013

N = 100

Mean 0.979 0.910 0.910 0.910

Median 0.979 1.000 1.000 1.000

SD 0.002 0.244 0.244 0.244

N = 50

Mean 0.916 0.807 0.808 0.808

Median 0.916 0.970 0.970 0.970

SD 0.004 0.311 0.309 0.309

N = 25

Mean 0.804 0.692 0.699 0.699

Median 0.805 0.845 0.840 0.840

SD 0.005 0.314 0.303 0.303

Table 4. Distribution approximations for Set 4, where the null and alternative models are equally
underspecified.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 0.498 0.507 0.507 0.507

Median 0.498 0.570 0.580 0.580

SD 0.007 0.478 0.478 0.478

N = 100

Mean 0.500 0.510 0.509 0.509

Median 0.500 0.562 0.567 0.567

SD 0.007 0.442 0.442 0.442

N = 50

Mean 0.500 0.502 0.502 0.502

Median 0.500 0.505 0.515 0.515

SD 0.007 0.407 0.406 0.406

N = 25

Mean 0.501 0.501 0.501 0.501

Median 0.501 0.490 0.495 0.495

SD 0.007 0.353 0.345 0.345
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Table 5. Distribution approximations for Set 5, where the null and alternative models are misspecified
with respect to the error distribution. Here, the errors are generated from a Student’s t distribution.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.794 0.794 0.499

Median 1.000 1.000 1.000 0.500

SD 0.000 0.329 0.328 0.289

N = 100

Mean 1.000 0.807 0.794 0.507

Median 1.000 1.000 1.000 0.515

SD 0.000 0.318 0.323 0.284

N = 50

Mean 1.000 0.825 0.790 0.508

Median 1.000 1.000 0.995 0.505

SD 0.000 0.301 0.315 0.273

N = 25

Mean 1.000 0.862 0.790 0.525

Median 1.000 1.000 0.985 0.530

SD 0.000 0.270 0.306 0.261

Table 6. Distribution approximations for Set 6, where the null and alternative models are misspecified
with respect to the error distribution. Here, the errors are generated from a mixture of normal distributions.

Statistic KLDCP BDCPb BDCPk BDCP

N = 500

Mean 1.000 0.783 0.786 0.487

Median 1.000 1.000 1.000 0.484

SD 0.000 0.338 0.335 0.289

N = 100

Mean 1.000 0.808 0.793 0.495

Median 1.000 1.000 0.998 0.496

SD 0.000 0.322 0.325 0.283

N = 50

Mean 1.000 0.851 0.793 0.502

Median 1.000 1.000 0.994 0.494

SD 0.000 0.286 0.311 0.269

N = 25

Mean 1.000 0.906 0.787 0.509

Median 1.000 1.000 0.986 0.490

SD 0.000 0.229 0.300 0.246
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Table 7. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 1. Here, the null model is correctly specified,
while the alternative model is overspecified.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 3378.949 3375.407 0.488 0.411

Alternative 3383.138 3375.578 0.686 0.362

N = 100

Null 679.282 675.291 0.385 −0.030

Alternative 684.115 676.667 2.518 0.521

N = 50

Null 342.167 338.498 1.267 0.268

Alternative 348.245 342.348 7.476 2.065

N = 25

Null 174.334 171.169 3.657 0.910

Alternative 183.828 193.249 43.328 17.290

Table 8. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 2. Here, the null model is underspecified, while
the alternative model is correctly specified.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 3340.491 3335.733 0.410 0.290

Alternative 3328.467 3322.581 0.319 0.143

N = 100

Null 672.373 667.928 1.210 0.520

Alternative 671.137 665.628 1.493 0.454

N = 50

Null 339.515 334.726 1.891 0.226

Alternative 339.923 334.181 2.888 0.305

N = 25

Null 174.136 171.376 7.446 2.223

Alternative 176.073 174.320 13.270 4.106

Table 9. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 3. Here, the null and alternative models are
underspecified, but the null model is closer to the true data-generating model.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 3726.902 3726.159 3.401 3.332

Alternative 3832.770 3832.395 3.704 3.626
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Table 9. Cont.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 100

Null 745.967 745.809 4.358 3.943

Alternative 766.212 766.813 4.947 4.528

N = 50

Null 373.419 373.704 5.309 4.325

Alternative 383.156 384.020 5.843 4.858

N = 25

Null 187.563 188.745 8.082 5.245

Alternative 191.924 194.082 8.878 6.088

Table 10. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 4. Here, the null and alternative models are
equally underspecified.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 3923.423 3923.908 5.022 4.948

Alternative 3923.580 3924.705 5.475 5.399

N = 100

Null 784.021 784.917 5.080 4.670

Alternative 784.042 785.026 5.241 4.823

N = 50

Null 391.751 393.155 6.335 5.343

Alternative 391.753 393.131 6.222 5.239

N = 25

Null 195.732 198.616 9.602 6.821

Alternative 195.862 198.690 9.598 6.804

Table 11. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 5. Here, the null and alternative models are
misspecified with respect to the error distribution, and the errors are generated from a Student’s
t distribution.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 1678.652 1672.369 −2.224 −4.178

Alternative 1679.695 1672.387 −2.248 −4.231

N = 100

Null 338.728 334.154 −0.920 −2.471

Alternative 339.866 334.300 −0.728 −2.438
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Table 11. Cont.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 50

Null 171.377 167.500 −0.231 −1.839

Alternative 172.640 167.847 0.283 −1.714

N = 25

Null 87.689 83.577 −0.434 −2.077

Alternative 89.311 84.495 0.869 −1.785

Table 12. Expected value of the KLD, its bootstrap estimate, and the bias of the corrected bootstrap
estimates for the null and alternative models in Set 6. Here, the null and alternative models are
misspecified with respect to the error distribution, and the errors are generated from a mixture of
normal distributions.

Hypothesis E(KLD) E(BD) ΔBDb ΔBDk

N = 500

Null 2488.932 2480.154 −0.389 6.554

Alternative 2490.012 2480.141 −0.310 6.659

N = 100

Null 508.122 497.000 −0.383 8.404

Alternative 509.426 497.237 −0.597 8.459

N = 50

Null 263.382 252.424 −2.852 8.590

Alternative 264.974 253.245 −3.930 8.361

N = 25

Null 144.895 131.870 −4.361 10.842

Alternative 147.551 134.298 −7.782 9.956

5. Application: Creatine Kinase Levels during Football Preseason

In this section, we apply the BDCP to a data set from a biomedical setting. The goal
of this application is to understand the changes in creatine kinase (CK) levels observed
on the blood samples of college football players during preseason training. In order to
properly explain the variation of CK, we must select between competing models that use
different demographic and clinical variables. We will analyze the models selected by the kb
corrected, the k corrected and the uncorrected BDCP, and we will compare the results to
the selection of models via the more conventional p-value approach.

5.1. Overview of Application

During strenuous exercise, skeletal muscle cells break down and release a variety of
intracellular contents. When in excess, a condition known as exertional rhabdomyolysis
(ER) can occur, which may result in life-threatening complications such as renal failure,
cardiac arrhythmia and compartment syndrome. Creatine kinase (CK) is one of the proteins
released during muscle breakdown, and measuring its levels is the most sensitive test for
assessing muscular damage that could lead to ER [7].

During the off-season workouts in January 2011, a group of 13 University of Iowa
football players developed ER. This event led to a prospective study where 30 University of
Iowa football athletes were followed during a 34-day preseason workout camp. Variables
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such as body mass index (BMI) and CK levels were obtained from blood samples that were
drawn at the first, third, and seventh day of the camp. Other demographic and clinical
variables such as age, number of semesters in the program and history of rhabdomyolysis
were also collected.

The initial results of the study, published by Smoot et al. [8], show that the CK levels at
later time points were significantly different than the levels at earlier times. However, most
of the clinical and demographic variables were not significant in explaining the levels of
CK. One of the underlying issues with this type of modeling analysis is that the significance
of each variable can only be assessed by hypothesis tests with nested models. For example,
suppose that we wish to determine the significance of BMI in the presence of semesters in
the program. To obtain a p-value for BMI, we need to formulate a hypothesis test where the
null model only contains semesters in the program, while the alternative model contains
both BMI and semesters in the program.

Although this setting may be useful in some scenarios, it is too limiting. For instance,
suppose that we wish to choose between two non-nested models where one contains BMI
and the other contains semesters in the program. Although a conventional test based on
linear regression models would not be able to answer this question, the BDCP approach
could indeed determine the propriety of either model in this type of non-nested setting.

In the analysis of this data set, we let CK3 be the log of CK levels measured at the
seventh day of the camp, CK1 be the log of CK levels measured at the first day of the camp,
and Semesters be the number of semesters at the program. Of note, the log transformation
is routinely applied in studies involving CK levels in order to justify approximate normality,
as the raw levels tend to have heavily right-skewed distributions.

Now, consider the following hypothesis testing settings.

Setting 1: Testing the propriety of the model containing CK1.

H1 : CK3 = β1,

H2 : CK3 = β1 + β2 CK1.

Setting 2: Testing the propriety of the model containing CK1 and Semesters over the model
containing only CK1.

H1 : CK3 = β1 + β2 CK1,

H2 : CK3 = β1 + β2 CK1 + β3 Semesters.

Setting 3: Head-to-head comparison of non-nested models.

H1 : CK3 = β1 + β2 CK1 + β3 BMI,

H2 : CK3 = β1 + β2 CK1 + β3 Semesters.

5.2. Results of Application

The results for the application are summarized in Table 13. Settings 1 and 2 illustrate
the congruence between BDCP and p-values in the case of hypothesis testing based on
nested models. Setting 1 assesses the propriety of a model that includes only the intercept
against a model that includes both the intercept and the levels of CK1. The p-value for
CK1 in this setting is 0.001, which means that, using a level α of 0.05, CK1 is significant in
explaining the variation in CK3 levels. Both the BDCPk and BDCPb are 0.075, which means
that there is a 7.5% chance that the null model is preferred over multiple bootstrap samples,
indicating that the model containing CK1 is superior.

Once we establish that CK1 is an important variable to include in our model, the next
step is to determine if additional variables can improve our model fit. Setting 2 displays a
hypothesis test where the null model only contains CK1, while the alternative contains both
CK1 and Semesters. The p-value for Semesters is 0.734, which means that Semesters is not
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statistically significant, and a reasonable investigator would choose to exclude Semesters
from the final model. The corrected BDCP values arrive at the same conclusion. For
instance, the BDCPb is 0.995, which indicates that the across multiple bootstrap samples,
the null model is chosen 99.5% of the time; therefore, the BDCP encourages us to choose
the model that excludes Semesters.

Table 13. From left to right: results for Setting 1, Setting 2, and Setting 3. BDCPk is the BDCP corrected
by k, BDCPb is the BDCP corrected by kb, and BDCP is the uncorrected BDCP. Results are based on
200 bootstraps samples.

BDCP

BDCPk 0.075 BDCPk 0.990 BDCPk 0.815

BDCPb 0.075 BDCPb 0.995 BDCPb 0.780

BDCP 0.055 BDCP 0.495 BDCP 0.815

p-Value

CK1 0.001 CK1 0.001 CK1 0.001

Semesters 0.734 BMI 0.176

Semesters 0.936

The rationale for testing Semesters is based on the idea that more senior athletes
tend to rigorously maintain their workout habits during the off season, mostly because of
experience and maturity. Therefore, Semesters is a variable that may confound the effects
of CK1 on the variation of CK3. Additionally, medical literature has shown that BMI highly
correlates with CK levels and the development of ER [9], which means that one should also
test for the propriety of models that include BMI. Thus, one could ask if a model featuring
BMI would be better than a model featuring Semesters. This results in a hypothesis testing
scenario where the null and alternative models are non-nested, as exhibited in Setting 3.

First, note that the p-values displayed in the table for Setting 3 do not answer the
question at hand. These p-values are obtained from partial tests applied to the full model
containing both variables. On the other hand, the BDCP gives us meaningful information
about the performance of adding BMI versus adding Semesters. The BDCPb tells us that
there is a 78% probability that the model containing BMI is a better fit than the model
containing Semesters. If we use the BDCPk instead, the probability increases to 81.5%. In
both cases, if we are debating weather to include BMI or Semesters as an adjusting variable,
the BDCP clearly favors the inclusion of BMI.

6. Conclusions

When deciding between two competing models, practitioners of statistics normally
utilize traditional hypothesis testing methods that rely on the assumption that one of
the candidate models is properly specified. This approach is problematic because it is
unreasonable to assume that one of the proposed models is precisely true. In addition,
these methods are only applicable for nested models. To avoid any underlying assumptions
and model structure limitations, Riedle, Neath and Cavanaugh [1] propose the use of the
bootstrap discrepancy probability (BDCP) to assess the propriety of the fit of two candidate
models. However, the bootstrap discrepancy (BD) utilized in this work provides a biased
estimator of the Kullback–Leibler discrepancy (KLD).

When hypothesis testing assumptions are met, the BDCP asymptotically approximates
the likelihood ratio test p-value. Therefore, similarly to p-values, the distribution of the
BDCP is uniform if the null hypothesis is true. Hence, in settings when the null is true, the
BDCP would be of limited value in choosing the appropriate model.

In this paper, we proposed utilizing the kb or the k corrected BDCP, namely BDCPb and
BDCPk, respectively. The BDCPb employs the BDb, a bootstrap corrected estimator of the
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KLD, while the BDCPk uses the BDk, a BD corrected by adding the number of functionally
independent parameters in the candidate model. We showed that for most settings, the
BDb serves as an over-corrected estimator of the KLD, but the corresponding BDCPb is
less biased than the BDCPk for the estimation of the KLDCP. However, in the case when
there is distributional misspecification, we showed that the BDb has negligible bias for the
estimation of expected value of the KLD.

Moreover, the estimation of the bootstrap correction kb utilizes the same bootstrap
samples that were used to calculate the BD; therefore, we argue that the computational
requirements of estimating kb are not too burdensome. However, if the sample size is
moderately large compared to the number of parameters in the model, then we showed that
using k to correct the bias generally results in comparable values of the KLDCP estimates.
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Abstract: In this paper, the design of low probability of intercept (LPI) radar waveforms considers not
only the performance of passive interception systems (PISs), but also radar detection and resolution
performance. Waveform design is an important considerations for the LPI ability of radar. Since
information theory has a powerful performance-bound description ability from the perspective of
information flow, LPI waveforms are designed in this paper within the constraints of the detection
performance metrics of radar and PISs, both of which are measured by the Kullback–Leibler diver-
gence, and the resolution performance metric, which is measured by joint entropy. The designed
optimization model of LPI waveforms can be solved using the sequential quadratic programming
(SQP) method. Simulation results verify that the designed LPI waveforms not only have satisfactory
target-detecting and resolution performance, but also have a superior low interception performance
against PISs.
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1. Introduction

Low probability of intercept (LPI) radar waveforms have been developed to combat
passive interception systems (PISs) for several decades [1–3]. Common LPI waveforms in-
clude FM/PM signals, FSK/PSK signals, etc. [2,4–7], which utilize wideband modulations
to spread the energy in a frequency. LPI radar waveform design is a primary means of
affecting the interception performance of PISs, which is actually a compromise between
radar performance (which contains detection and resolution performance) and the inter-
ception performance of the PIS. In this paper, the dispersion of waveform energy in a
frequency can be implemented through the compromise between the optimal detection
performance, resolution performance, and LPI performance of radar by adjusting their
frequency amplitudes.

In frequency amplitude adjustment modeling, it is crucial to establish the performance
metrics of both the radar and the PIS. For radar detection performance, besides metrics such
as output signal-to-noise ratio (SNR), relative entropy, and mean square error, the method
of maximizing mutual information has been widely used in optimal radar waveform
design (see [8–11] and references therein). Zhu et al. [12] presented the Kullback–Leibler
divergence (KLD) as more appropriate than mutual information to describe optimal radar
detection performance. The KLD is defined as

D(x; n1) = Ey[D(x; n1|y)]− I(x; y), (1)

where x = y + n1 is the received radar signal, y is the target response, n1 is the background
radar noise, E(·) denotes capture expectation, I(·) denotes mutual information, and D(·)
denotes the KLD. For radar resolution performance, the most classic and common metric
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is the ambiguity function [13]. In this paper, we will design a simpler resolution metric
for radar by using joint entropy. For PISs, the common interception performance metric
includes the peak-to-average power ratio, time–bandwidth product, and so on (see [2,7,14]
and references therein). Here, we regard the KLD, denoted by D(z; n2), between the
intercept signal z and background noise n2 of a PIS as the effective interception performance
metric of a PIS for LPI radar waveform design. Thus, by maximizing the detection and
resolution performance of radar and minimizing the interception performance of the PIS,
an optimization problem of frequency amplitudes can be established and solved with the
constraint of a fixed transmission power.

2. LPI Radar Waveform Design Method

We presume the real radar signal s(t) is emitted by the transmitting antenna with
gain Gt in the target direction. It can be scattered and intercepted by the target, which is
equipped with a PIS. We denote x(t) = y(t) + n1(t) as the signal received by the receiving
antenna of the radar with gain Gr, where y(t) = αs(t) ∗ h(t) is the target response, h(t) is

the target impulse response, α =

√
GtGrλ2L1
(4π)3R4 is the energy attenuation coefficient, λ is the

wavelength, R is the distance to the target, L1 is the total radar path loss, and the symbol “∗“
denotes convolution. Meanwhile, the signal intercepted by the receiving antenna of the PIS

with gain Gi can be denoted as z(t) = βs(t) + n2(t), where β =

√
GtGiλ

2L2
(4π)2R2 , L2 is the path

loss between radar and target. We also assume that h(t), n1(t), and n2(t) are zero-mean
Gaussian random processes.

For the convenience of analysis, we split the frequency interval W of the radar
waveform into a large number of sufficiently small and disjointed frequency intervals
Fk = [ fk, fk + δ f ], so that for all f ∈ Fk, we have S( f ) ≈ S( fk), where S( f ) is the frequency
domain waveform of s(t). We denote zk and n2,k as components of z and n2, with frequen-
cies in Fk, where z is the received signal vector of the PIS whose elements are the samplings
of z(t), and n2 is the corresponding background noise vector of the PIS. Based on sampling
theory, we suppose the sampling frequency is 2δ f , and therefore the sample size is 2δ f T,
where T denotes the duration of signals.

According to the expressions of the KLD between two Gaussian probability density
functions (PDFs) and the entropy of a Gaussian random variable, the terms in Equation (1)
can be calculated as

Ey[D(x; n1|y)] = T
∫
W

2α2
∣∣S( f )

∣∣2σ2
H( f )

TPN1( f )
d f , (2)

I(x; y) = T
∫
W

ln

[
1 +

2α2
∣∣S( f )

∣∣2σ2
H( f )

TPN1( f )

]
d f , (3)

where σ2
H( f ) is the variance of H( f ), which is the Fourier transform of h(t), and PN1( f ) is

the one-sided power spectral density (PSD) of n1(t).
Thus, the KLD between x and n1 can be written as

D(x; n1) = T
∫
W

{
2α2

∣∣S( f )
∣∣2σ2

H( f )
TPN1( f )

− ln

[
1 +

2α2
∣∣S( f )

∣∣2σ2
H( f )

TPN1( f )

]}
d f . (4)

In the design of LPI radar waveforms, the resolution performance should also be
considered, which is another quite important performance measure for radar. In this paper,
we use autocorrelation to describe radar resolution performance, which is a more concise
way of representing the ambiguity function. For time, the worse the autocorrelation is, the
better the range resolution is. Correspondingly, for frequency, the worse the autocorrelation
is, the better the velocity resolution is. Next, we will utilize joint entropy to describe
the autocorrelation.
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Suppose the samplings of the transmitted waveform s = [s(1), s(2), · · · , s(L)]T come
from the normal distribution with mean 0 and variance σ2

l . Then, the entropy of sample
s(l) can be computed as

Entropy[s(l)] =
1
2
[log 2π + 1] +

1
2

log σ2
l . (5)

Since the joint probability density function of these samples is
p(s) = (2π)L|R|− 1

2
exp

(
− 1

2 sT |R|−1s
)

, the joint entropy of these samples can be calcu-
lated as

Entropy[s] =
L
2
[log 2π + 1] +

1
2

log |R|, (6)

where R is the sample covariance matrix of transmitted waveform s, which can be estimated

as R̂ =
(
ri,j
)L,L

i=1,j=1, ri,j =
1
L

L−|i−j|
∑

l=1
s(l)s( l+|i − j|), and R is a Toeplitz and symmetric matrix.

If the designed waveform has a perfect resolution performance, then the samples are
independent. It means that the joint entropy is equal to the sum of the entropy of each

sample, that is: Entropy[s] =
L
∑

l=1
Entropy[s(l)]. In fact, the designed waveform cannot have

a perfect resolution performance. The joint entropy and the sum of the entropy of each

sample have a relationship as follows: Entropy[s] ≤
L
∑

l=1
Entropy[s(l)]. Therefore, we use

the difference between the joint entropy and the sum of the entropy of each sample as the
metric of resolution performance, which can be expressed as

ΔEs =
L

∑
l=1

Entropy[s(l)]− Entropy[s] =
1
2

L

∑
l=1

logσ2
l − 1

2
log |R|, (7)

where ΔEs ≥ 0.
From Equation (7), we find that the smaller the value of the metric, the better the

resolution performance of the transmitted waveform, and when the transmitted waveform
is white Gaussian noise, the value of the metric ΔEs is equal to zero, which means the white
Gaussian noise has a perfect resolution performance. In the design of LPI waveforms, we
need to minimize ΔEs. For solving it conveniently, since R is a Toeplitz and symmetric
matrix, we can simplify the metric ΔEs to a convex function, which can be expressed as

ΔEs
�

=

c
∑

j=2
r1,j

(c − 1)PS
=

c
∑

j=2

L−|1−j|
∑

l=1
s(l)s( l+|1 − j|)

(c − 1)LPS
, (8)

where c is the constraint number of the time delay or Doppler shift, which can be set
according to the practical application, since we do not need to constrain the autocorrelation
for each time delay and Doppler shift, and PS is the average power spectral density of the
transmitted waveform, which is used for the purpose of normalization, that is, the upper
bound of ΔEs

�
is equal to one.

For frequency, resolution performance has the same computational procedure. We
only need to substitute s(l) with S( fl), and we denote the metric of resolution performance
for frequency as ΔEs

�
.

It is a common view that white noise is the best LPI waveform. The closer the distance
between intercept signal z and background noise n2, the more difficult it is to detect and
recognize the intercept signal. The KLD has been confirmed to be a powerful and accurate
tool to measure the information of multivariate data, with lesser complexity and superior
performance among the existing distance measures, such as L1, Bhattacharyya distance,
Hellinger distance, f− divergence, etc. [15–17]. Therefore, here we use KLD as the PDF
distance measure, which is denoted as D(z; n2).
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The KLD between zm
k and nm

2,k, which are samples of zk and n2,k in each frequency

fm ∈ Fk can be written as D
(

zm
k ; nm

2,k

)
=

β2|S( fk)|2
PN2 ( fk)

, where PN2( f ) is the one-sided power

spectral density (PSD) of n2(t), that is a function of SNR. The lower SNR a waveform
possesses in each frequency, the harder it is for a PIS to intercept it. This agrees with our
common knowledge and experience. In order to solve the following optimization problem
smoothly, we take the natural exponential function of D

(
zm

k ; nm
2,k

)
, which can maintain the

monotonicity near |S( fk)|2. It can be denoted as D̃
(

zm
k ; nm

2,k

)
= exp

{
β2|S( fk)|2

PN2 ( fk)

}
. Thus, the

modified KLD between component zk and n2,k is

D(zk; n2,k) = 2δ f TD̃
(

zm
k ; nm

2,k

)
= 2δ f T exp

{
β2
∣∣S( fk)

∣∣2
PN2( fk)

}
. (9)

When δ f → 0 , the modified KLD between z and n2 can be obtained as

D(z; n2) = 2T
∫
W

exp

{
β2
∣∣S( f )

∣∣2
PN2( f )

}
d f . (10)

Since the KLDs D(x; n1) and D(z; n2) can be used to measure the detection per-
formance of radar and a PIS respectively, and ΔEs

�
and ΔEs

�
can be used to measure

the resolution performance of radar, we can design an LPI radar waveform which not
only has superior target detecting and resolution performance, but also has superior
LPI performance against PIS interception based on these four metrics. The optimiza-
tion problem of LPI radar waveform design can be straightforwardly described as
s� = arg{maxsD(x; n1), minsΔEs

�
, minsΔEs

�
, minsD(z; n2)}, under the constraint that the

average transmitted power is fixed, denoted by
∫
W
∣∣S( f )

∣∣2d f = Ps .
LPI radar waveform design is a trade-off between the performance of radar and of

PISs, which is to maximize the detection and resolution performance of radar and minimize
the interception performance of PISs. In fact, the primary task of the emitted waveform
is to accomplish target detection and resolution. The designed radar waveform should
be considered for its LPI capability under the condition of meeting radar performance.
Therefore, we minimize the KLD D(z; n2) of the PIS in the situation that the KLD D(x; n1),
ΔEs
�

, and ΔEs
�

of radar make some concessions, which can be expressed as

s� = arg
{

min
s

D(z ; n2)
}

s.t. D(x; n1) ≥ γ, ΔEs
� ≤ ν1, ΔEs

� ≤ ν2,
∫
W
∣∣S( f )

∣∣2d f = Ps,
(11)

where γ is the value of D(x; n1) required to meet radar detection performance, and ν1
and ν2 are the values of ΔEs

�
and ΔEs

�
needed to meet the radar resolution performance

for range and velocity, respectively. All of them can be set to various values in different
competing scenarios.

In order to achieve the optimal solution of Equation (11), the discrete form of the
optimization problem first needs to be obtained, which can be written as
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s� = arg

⎧⎨⎩min
s

2Tb
L
∑

l=1
e

β2 |S( fl )|2
PN2

( fl )

⎫⎬⎭,

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tb
L
∑

l=1

{
2α2|S( fl)|2σ2

H( fl)

TPN1 ( fl)
− ln

[
1 +

2α2|S( fl)|2σ2
H( fl)

TPN1 ( fl)

]}
≥ γ

c
∑

j=2

L−|1−j|
∑

l=1
s(l)s( l+|1−j|)

(c−1)LPS
≤ ν1,

c
∑

j=2

L−|1−j|
∑

l=1
S( fl)S( fl+|1−j|)

(c−1)LPS
≤ ν2

b
L
∑

l=1
|S( fl)|2 = Ps

0 ≤
∣∣∣S( fl)

∣∣∣2 ≤ Ps
b , l = 1, · · · , L

,

(12)

where fl , l = 1, · · · , L are the uniform partition points in the frequency interval W and
b = fl+1 − fl .

When γ = 0, ν1 = 1, and ν2 = 1, that is, the LPI waveform is optimized without regard
to radar detection and resolution performance, the optimized waveform—considering only
the interception performance of the PIS—is |S�( f )|2 = Ps/W , under the assumption that
the background noise n2 is a white Gaussian noise, whose PSD PN2( f ) is a constant. Thus,
in this case we can draw a conclusion that for PISs, it is most difficult to intercept a radar
waveform whose power is distributed equally within the whole bandwidth W . When
the radar resolution and interception performance of the PIS are not considered, and only
the radar detection performance is considered, the radar detection performance metric
D(x; n1) is maximized, and the optimized waveform concentrates all waveform energies
at the frequency where σ2

H( fl)/PN1( fl) achieves the maximum value. The optimized LPI
waveform in Equation (12) should be a compromise between one optimized solution,
i.e., energy is distributed equally in all frequencies, considering only the interception
performance of the PIS, and another optimized solution, i.e., energy is concentrated at a
certain frequency, considering only radar detection performance.

An efficient method for solving nonlinear constrained optimization problems is the
combination of the interior point and sequential quadratic programming (SQP) methods.
Here, we use the algorithm proposed by Byrd [18] to solve the optimization problem in
Equation (12), which jointly utilizes trust regions to ensure the robustness of iterations.

3. Simulation Results

In this section, several simulation experiments are provided. The simulation parame-
ters are: Gt = Gr = 30 dB, Gi = 0 dB, λ = 0.03 m, W = 512 MHz, T = 25 ns, L1 = −20 dB,
L2 = −10 dB, and R = 100 km. We suppose the target heading for the radar is an F-16 air-
craft, whose variance σ2

H( f ), f ∈ [9.744, 10.252] GHz with azimuth 0.05
◦

and elevation
5
◦

between the radar and the target has been calculated by electromagnetic software, which
is shown as the grey dotted line in Figure 1.

In order to verify the superiority of our proposed LPI radar waveform design
method, SNR loss is treated as a performance degradation metric for radar and the PIS,
which can be defined as δsnr = snropt − snrpro, where snropt is the output SNR for the
optimized waveforms proposed by Zhu et al. [12], which just considers the maximization
of radar detection performance, and snrpro is the output SNR for the proposed optimized
LPI radar waveforms, which not only consider optimal radar detection performance, but
also consider the resolution performance of the radar and interception performance of the
PIS. The output SNRs are obtained by matched filtering of the radar and time–frequency
analysis of the PIS.
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|S
(f)

|2

H2
(f)

Figure 1. Optimized LPI radar waveforms under the constraint of radar detection performance
(white Gaussian noise, PN1 = PN2 = 1.9531 × 10−18, Ps = 20 kw), the variance of target impulse
response σ2

H( f ).

3.1. LPI Waveform Design Considering Radar Detection Performance and the PIS

The baby-blue dotted lines (only one-sided PSDs are shown) in Figure 1 (experiment 1:
white Gaussian noise) and Figure 2 (experiment 2: colored Gaussian noise) are the optimal
radar waveforms for target detection proposed by Zhu et al. [12], which place all their
power at the frequency where σ2

H( f )/PN1( f ) (denoted by C( f )) is maximum. The aim of
the proposed LPI waveform design method is to reduce the peak power under a certain
loss of radar detection and resolution performance and a fixed transmission power, in order
to decrease the interception performance of the PIS. That is, some power will be placed
at other frequencies. In this subsection, we first consider radar detection performance,
and the combination of radar detection and resolution performance is considered in the
next subsection.

|S
(f)

|2

H2
(f)

/P
N1

(f)

Figure 2. Optimized LPI radar waveforms under the constraint of the radar detection performance
(colored Gaussian noise, PN1 = PN2, Ps = 5 kw), target-to-noise ratio σ2

H( f )/PN1( f ) of radar, PSD of
colored Gaussian noise PN2( f ).
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For experiment 1, since PN2( f ) is a constant, only by putting some power at the
frequency where C( f ) is the secondary maximum can we furthest reduce the peak power
to minimize D(z; n2) under a given radar detection performance constraint γ, as the green
and red lines show in Figure 1. With the relaxing of constraint γ, the power of the optimized
LPI waveform will be put at the corresponding frequencies in a descending order of C( f )
(as the deep blue and purple lines show in Figure 1) until the energy is distributed equally
within the whole bandwidth (as the black dotted line shows in Figure 1). For experiment 2,
since PN2( f ) is not a constant anymore, the frequencies at which the power reduced from
the baby-blue dotted line can be placed are related to both C( f ) and PN2( f ). As the light
green and red lines show in Figure 2, the reduced power is first placed at the frequency
where PN2( f ) is maximum, which can minimize the D(z; n2) in Equation (10). With the
decrease in the value of the radar detection performance constraint γ, the optimized LPI
waveforms are the result of the combined effects of PN2( f ) and C( f ) (as the deep blue and
purple lines show in Figure 2). When γ tends to zero, the optimized waveform is almost
completely influenced by PN2( f ), and they have the same shape, as the black dotted line
shows in Figure 2.

Since the PIS has no prior information about the transmitted waveform, a reduction
in peak power may have a serious effect on its output SNR. In contrast, radar can reduce
the effect significantly using the matched filtering technique. As shown in Figure 3, with
the decrease in radar detection performance constraint γ, the performance degradation
δsnr gradually increases and remains unchanged in the end. The degradation of radar
performance for experiment 1 and 2 stays within 5 dB, while that of the PIS can finally
reach 20 dB. As there is such a large performance degradation gap between the radar and
the PIS, the optimized radar waveform can achieve a superior LPI performance.
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Figure 3. Performance degradation versus radar detection performance constraint.

3.2. LPI Waveform Design Considering Radar Detection and Resolution Performance and PIS
Interception Performance

Since the LPI waveforms (which are designed to minimize the interception perfor-
mance of a PIS with a certain loss of radar detection performance) do not have good range
and velocity resolution, we also need to further design LPI radar waveforms to satisfy a
given requirement of radar resolution performance. In this subsection, we further optimize
the LPI radar waveforms, which are designed in experiment 2 of Section 3.1, to meet the
requirements of radar detection and resolution performance simultaneously. Under the
background of colored Gaussian noise, whose PSD is displayed in Figure 2, the designed
LPI waveforms are shown in Figure 4 with different values of resolution constraints ν1
and ν2, and a given radar detection performance constraint γ = 0.0001. In these designs,
the constrained normalized Doppler shifts are in the interval [−2, 2], and the constrained
normalized time delays are in the interval [−0.1575, 0.1575], the length of which can be
set according to the actual demands, which is the reflection of parameter c in Equation (8).
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As shown in Figure 4, the power of these optimized LPI waveforms has been put at the
frequencies where C( f ) has a local extremum to implement the maximization of the radar
detection performance. In Figure 4, we can also find that the smaller the value of the
resolution performance constraints ν1 and ν2, that is, the higher the requirement level of
radar resolution performance, the more the power is put at the frequencies where C( f ) has
a local extremum. This is because it is meant to satisfy the higher requirement of resolu-
tion performance by sacrificing more LPI performance, that is to put more power at the
frequencies where C( f ) has a local extremum, under a certain requirement γ = 0.0001 of
radar detection performance. There are the same conclusions when the constrained nor-
malized Doppler shifts and normalized time delays are extended to the intervals [−3, 3]
and [−0.2362, 0.2362], respectively, as Figure 5 shows.

|S
(f)

|2

Figure 4. Optimized LPI radar waveforms under the constraint of radar detection and resolution
performance (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained normalized
Doppler shifts are in [−2, 2]; constrained normalized time delays are in [−0.1575, 0.1575]).

|S
(f)

|2

Figure 5. Optimized LPI radar waveforms under the constraint of radar detection and resolution
performance (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained normalized
Doppler shifts are in [−3, 3]; constrained normalized time delays are in [−0.2362, 0.2362]).

The one-dimensional zero-delay and zero-Doppler cuts of the ambiguity function of
these optimized LPI radar waveforms are shown in Figures 6 and 7 for different intervals
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of constrained normalized Doppler shifts and normalized time delays. Figure 6a displays
the one-dimensional zero-delay cuts of the ambiguity function of those optimized LPI
radar waveforms, whose constrained normalized Doppler shifts are in the interval [−2, 2].
From Figure 6a, we find that the peak values of each sidelobe become smaller and smaller
with the fall in the value of resolution performance metrics ν1 and ν2 in the constrained
interval [−2, 2], which means velocity resolution can be improved effectively under the
constraint of resolution performance. From Figure 6a, we can find that the first sidelobe
can be suppressed to −20 dB below the maximum of the mainlobe with the resolution
performance constraint ν1 = ν2 = 2 × 10−7, while the first sidelobe is −4.2 dB without
a resolution performance constraint. Figure 7a shows the one-dimensional zero-delay
cuts of the ambiguity function, whose constrained normalized Doppler shifts are in the
interval [−3, 3]. In the same way, we can find the sidelobes have better suppression, with
reduction of the values of resolution performance metrics ν1, and ν2, in a wider range
[−3, 3] of normalized Doppler shift. From Figure 7a, we can see that the first sidelobe
can be suppressed to −22 dB below the maximum of the mainlobe with the resolution
performance constraint ν1 = ν2 = 2 × 10−7, while the first sidelobe is −4.3 dB without
resolution performance constraint. Figures 6b and 7b give the one-dimensional zero-
Doppler cuts of the ambiguity function of those optimized LPI radar waveforms with
the constrained intervals [−0.1575, 0.1575] and [−0.2362, 0.2362] of normalized time delay,
respectively. In Figure 6b, we see that the sidelobes can acquire better suppression with
reduction of the values of the resolution performance metrics ν1 and ν2 in the constrained
normalized time delay interval [−0.1575, 0.1575], which means the range resolution of
radar can be effectively improved under the constraint of resolution performance. From
Figure 6b, we see that the first sidelobe can be suppressed from −51 dB to −62 dB below the
maximum of the mainlobe with the resolution performance constraint ν1 = ν2 = 2 × 10−7.
In Figure 7b, we have the same result in a wider constrained normalized time delay interval
[−0.2362, 0.2362]. Thus, we can draw the conclusion that the LPI radar waveforms can be
designed to effectively satisfy the given requirements of radar detection and resolution
performance, which can also be verified in Figures 8–10. These three figures furnish the
ambiguity functions with different radar detection performance constraints γ = 0.0001
(Figures 8 and 9) and γ = 0.0005 (Figure 10), and different constrained intervals for radar
resolution performance (Figures 8 and 10: normalized Doppler shifts [−2, 2], normalized
time delays [−0.1575, 0.1575]; Figure 9: normalized Doppler shifts [−3, 3], normalized
time delays [−0.2362, 0.2362]). In each figure, different constraint levels of resolution
performance have been simulated, and we can see that the sidelobe in the constraint
interval has been effectively suppressed with ν1 = ν2 = 2 × 10−7 compared to other
subfigures, which can be suppressed in more Doppler shifts and time delays by increasing
the value of parameter c in Equation (8).

In order to verify the superiority of LPI performance of the designed radar waveforms,
we calculate the performance degradations δsnr for radar and PIS in different constraint
parameters and compare the optimized waveforms with a common LPI radar waveform
(Frank, P1–P4). In Table 1, we find that there is a huge gap in performance degradation
between the radar and the PIS for the optimized waveforms (radar detection constraint
γ = 0.0001; resolution performance constraint ν1 = ν2 = 2 × 10−7; optimized waveform 1:
constrained normalized Doppler shifts are in [−2, 2], constrained normalized time delays
are in [−0.1575, 0.1575]; optimized waveform 2: constrained normalized Doppler shifts are
in [−3, 3], constrained normalized time delays are in [−0.2362, 0.2362]). The performance
degradation of radar is 2.6dB, while the performance degradation of the PIS is 11.2 dB. As
there are such huge gaps, the optimized waveforms can achieve a superior LPI performance.
Compared with the common LPI radar waveforms, our designed waveforms still have a
significant LPI superiority, as shown in Table 1. For each compared LPI radar waveform
(Frank, P1–P4), we can find the SNR loss of radar for optimized waveforms is approximately
equal to that of the compared waveform, as the second row shows. However, the SNR
losses of the PIS are different between compared waveforms and the optimized waveforms.

215



Entropy 2022, 24, 1515

As the third row shows, the SNR loss of the PIS of each compared waveform is nearly
3 dB less than that of the optimized waveforms. Therefore, we can conclude that our
designed waveforms can maximize the performance degradations of PISs when they meet
the requirements of radar detection and resolution performance.
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Figure 6. (a) One-dimensional zero-delay cuts of the ambiguity function of optimized LPI radar
waveforms; (b) One-dimensional zero-Doppler cuts of the ambiguity function of optimized LPI radar
waveforms; (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained normalized
Doppler shifts are in [−2, 2]; constrained normalized time delays are in [−0.1575, 0.1575]).

Table 1. SNR losses for the common low probability of intercept (LPI) radar waveforms and
optimized waveforms (radar detection constraint γ = 0.0001; resolution performance constraint
ν1 = ν2 = 2 × 10−7; optimized waveform 1: constrained normalized Doppler shifts are in [−2, 2],
constrained normalized time delays are in [−0.1575, 0.1575]; optimized waveform 2: constrained
normalized Doppler shifts are in [−3, 3], constrained normalized time delays are in [−0.2362, 0.2362]).

Optimized
Waveform 1

Optimized
Waveform 2

Frank P1 P2 P3 P4

δsnr of radar (dB) 2.63 2.64 2.63 2.63 2.61 2.63 2.63

δsnr of PIS (dB) 11.22 11.25 8.15 8.12 7.96 8.12 8.12
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Figure 7. (a) One-dimensional zero-delay cuts of the ambiguity function of optimized LPI radar
waveforms; (b) One-dimensional zero-Doppler cuts of the ambiguity function of optimized LPI radar
waveforms; (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained normalized
Doppler shifts are in [−3, 3]; constrained normalized time delays are in [−0.2362, 0.2362]).

Figure 8. Ambiguity function of optimized LPI radar waveforms for different resolution performance
constraints ν1 and ν2 (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained
normalized Doppler shifts are in [−2, 2]; constrained normalized time delays are in [−0.1575, 0.1575]).
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Figure 9. Ambiguity function of optimized LPI radar waveforms for different resolution performance
constraints ν1 and ν2 (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0001; constrained
normalized Doppler shifts are in [−3, 3]; constrained normalized time delays are in [−0.2362, 0.2362]).

Figure 10. Ambiguity function of optimized LPI radar waveforms for different resolution perfor-
mance constraints ν1 and ν2 (colored Gaussian noise, PN1 = PN2, Ps = 5 kw, γ = 0.0005; constrained
normalized Doppler shifts are in [−2, 2]; constrained normalized time delays are in [−0.1575, 0.1575]).

4. Conclusions

In response to the LPI requirements of modern military radar, waveforms with a
fixed average power constraint have been designed from the perspective of information
flow to minimize the interception performance of a PIS (which is measured by the KLD
in this paper) under the condition that both the detection performance and resolution
performance of the radar make some concessions. In this paper, we presented a simple
information theoretic metric to measure the resolution performance of radar by utilizing the
joint entropy theory. Simulations verify the superiority of the designed radar waveforms in
radar detection, resolution performance, and the LPI performance.

Author Contributions: Conceptualization, J.C. and F.W.; methodology, J.C.; software, J.C., Y.Z. and
J.W.; validation, J.C., F.W. and J.Z.; formal analysis, Y.Z. and J.C.; investigation, Y.Z.; resources, J.Z.;
data curation, J.Z.; writing—original draft preparation, J.C.; writing—review and editing, J.W. and
F.W.; visualization, Y.Z.; supervision, J.Z.; funding acquisition, J.C., J.W. and F.W. All authors have
read and agreed to the published version of the manuscript.

218



Entropy 2022, 24, 1515

Funding: This work was supported in part by the National Natural Science Foundation of China
under grant 62171229, in part by the Natural Science Foundation of Jiangsu Province under
grant BK20190772, and in part by the National Aerospace Science Foundation of China under
grant 20200020052005.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schrick, G.; Wiley, R.G. Interception of LPI radar signals. In Proceedings of the IEEE International Conference on Radar, Arlington,
VA, USA, 7–10 May 1990; pp. 108–111.

2. David, L., Jr. An Introduction to RF Stealth, 2nd ed.; SciTech: Raleigh, NC, USA, 2021; pp. 5–10.
3. Lou, M.; Zhong, T.; Li, M.; Li, X.; Li, Z.; Wu, J.; Yang, J. Low Probability of Intercept Waveform Optimization Method for Sar

Imaging. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium,
11–16 July 2021; pp. 3963–3966.

4. LeMieux, J.A.; Ingels, F.M. Analysis of FSK/PSK modulated radar signals using Costas arrays and complementary Welti codes.
In Proceedings of the IEEE International Conference on Radar, Arlington, VA, USA, 7–10 May 1990; pp. 589–594.

5. Kim, I.; Park, K.; Song, M.K.; Song, H.; Lee, J.Y. Design of LPI signals using optimal families of perfect polyphase sequences.
In Proceedings of the 2016 International Symposium on Information Theory and Its Applications (ISITA), Monterey, CA, USA,
30 October 2016–2 November 2016; pp. 261–264.

6. Warnke, L.; Correll, B., Jr.; Swanson, C.N. The density of Costas arrays decays exponentially. IEEE Trans. Inf. Theory 2022, 1–7.
[CrossRef]

7. Chen, J.; Wang, F.; Zhou, J. The metrication of LPI radar waveforms based on the asymptotic spectral distribution of Wigner
matrices. In Proceedings of the 2015 IEEE International Symposium on Information Theory (ISIT), Hong Kong, China, 14–19 June
2015; pp. 331–335.

8. Bell, M.R. Information theory and radar waveform design. IEEE Trans. Inf. Theory 1993, 39, 1578–1597. [CrossRef]
9. Xiao, Y.; Deng, Z.; Wu, T. Information–theoretic radar waveform design under the SINR constraint. Entropy 2020, 22, 1182.

[CrossRef] [PubMed]
10. Qian, J.; Zhao, L.; Shi, X.; Fu, N.; Wang, S. Cooperative design for MIMO radar-communication spectral sharing system based on

mutual information optimization. IEEE Sens. J. 2022, 22, 17184–17193. [CrossRef]
11. Tang, B.; Zhang, Y.; Tang, J. An efficient minorization maximization approach for MIMO radar waveform optimization via relative

entropy. IEEE Trans. Signal Process. 2018, 66, 400–411. [CrossRef]
12. Zhu, Z.; Kay, S.; Raghavan, R.S. Information-theoretic optimal radar waveform design. IEEE Signal Process. Lett. 2017, 24, 274–278.

[CrossRef]
13. Chen, Z.; Liang, J.; Wang, T.; Tang, B.; So, H.C. Generalized MBI algorithm for designing sequence set and mismatched filter bank

with ambiguity function constraints. IEEE Trans. Signal Process. 2022, 70, 2918–2933. [CrossRef]
14. Shu, Y.; Chen, Z. Evaluation and simulation of LPI radar signals’ low probability of exploitation. In Proceedings of the 2nd

International Conference on Image, Vision and Computing (ICIVC), Chengdu, China, 2–4 June 2017; pp. 842–846.
15. Tang, J.; Cheng, J.; Xiang, D.; Hu, C. Large-difference-scale target detection using a revised Bhattacharyya distance in SAR images.

IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]
16. Hilali, A.E.; Chergui, M.; Wahbi, B.E.; Ayoub, F. A study of the relative operator entropy via some matrix versions of the Hellinger

distance. In Proceedings of the 4th International Conference on Advanced Communication Technologies and Networking
(CommNet), Rabat, Morocco, 3–5 December 2021; pp. 1–6.

17. Nomura, R.; Yagi, H. Optimum intrinsic randomness rate with respect to f -divergences using the smooth min entropy.
In Proceedings of the IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia, 12–20 July 2021;
pp. 1784–1789.

18. Byrd, R.H.; Gilbert, J.C.; Nocedal, J. A trust region method based on interior point techniques for nonlinear programming. Math.
Program. 2000, 89, 149–185. [CrossRef]

219





Citation: Sfetcu, R.-C.; Sfetcu, S.-C.;

Preda, V. Some Properties of

Weighted Tsallis and Kaniadakis

Divergences. Entropy 2022, 24, 1616.

https://doi.org/10.3390/e24111616

Academic Editors: Karagrigoriou

Alexandros and Makrides Andreas

Received: 29 September 2022

Accepted: 2 November 2022

Published: 5 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Some Properties of Weighted Tsallis and
Kaniadakis Divergences
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Abstract: We are concerned with the weighted Tsallis and Kaniadakis divergences between two
measures. More precisely, we find inequalities between these divergences and Tsallis and Kaniadakis
logarithms, prove that they are limited by similar bounds with those that limit Kullback–Leibler
divergence and show that are pseudo-additive.

Keywords: Tsallis logarithm; Kaniadakis logarithm; weighted Tsallis divergence; weighted
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1. Introduction

Shannon entropy, in the form we know it, was introduced by Boltzmann and used by
Shannon in the context of Information Theory. This entropy has applications in Statistical
Thermodynamics, Combinatorics and Machine Learning. In Machine Learning, Shannon
entropy represents the basis for building decision trees and fitting classification models.

In the last couple of years, many generalizations of Shannon entropy appeared: Tsallis
entropy, Kaniadakis entropy, Rényi entropy, Varma entropy, weighted entropy, relative
entropy, cumulative entropy, etc. These entropies have applications in areas such as Physics,
Information Theory, Probabilities, Communication Theory, and Statistics.

Tsallis entropy was introduced by C. Tsallis in [1] and is applied to: Income distribution
(see [2,3]), Internet (see [4]), Non-coding human DNA (see [5]), Plasma (see [6]), and Stock
exchanges (see [7,8]).

Kaniadakis entropy was introduced by G. Kaniadakis in [9] and is useful in many areas
like: Finance (see [10–12]), Astrophysics (see [13,14]), Networks (see [15,16]), Economics
(see [17,18]), and Statistical Mechanics (see [19–21]).

S. Kullback and R.A. Leibler were concerned “to measure” “the distance” or “the
divergence” between statistical populations and they generalized Shannon entropy by
defining, in [22], a nonsymmetric measure, called Kullback–Leibler divergence. This
divergence between two probability measures μ1 and μ2 on a measurable non-negligible

set A is additive, non-negative and greater than log
(

μ1(A)

μ2(A)

)
, where log is the classical

logarithm function. Divergences are a key tool in Information Geometry (see [23]).
The goodness of fit test is based on the Corrected Weighted Kullback–Leibler diver-

gence (see [24]) and, as a consequence, it inherits all special characteristics of this divergence
measure. Narowcki and Harding proposed the use of weighted entropy as a measure of
investment risk (see [25]). Afterwards, Guiaşu used the weighted entropy to group data
with respect to the importance of specific regions of the domain (see [26]), Di Crescenzo
and Longobardi propose the weighted residual and past entropies (see [27]) and Suhov and

Entropy 2022, 24, 1616. https://doi.org/10.3390/e24111616 https://www.mdpi.com/journal/entropy
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Zohren proposed the quantum version of weighted entropy and its properties in Quantum
Statistical Mechanics (see [28]).

Working with the Kullback–Leibler divergence formula and using the same technique
like in the cases of Tsallis and Kaniadakis entropies (i.e., classical logarithm is replaced
by Tsallis logarithm, respectively, by Kaniadakis logarithm), Tsallis and Kaniadakis diver-
gences were introduced in some papers (see [29–32]).

Motivated by the aforementioned facts and by the papers [33–35], we deal with the
weighted Tsallis and Kaniadakis divergences in this article.

In the following, we briefly describe the structure of the paper. Section 2 is dedicated
to preliminaries. In Section 3, using some inequalities concerning the Tsallis logarithm,
we obtain inequalities between the weighted Tsallis and Kaniadakis divergences on a
non-negligible measurable arbitrary set and Tsallis logarithm, respectively, Kaniadakis
logarithm (see Theorem 1). Finally, we prove that the weighted Tsallis and Kaniadakis
divergences are limited by bounds that are similar to those that limit Kullback–Leibler
divergence (see Theorem 2). In Section 4, we define the weighted Tsallis and Kaniadakis
divergences for product measure spaces and prove some pseudo-additivity properties for
them (see Theorem 3).

Other interesting results related to the present topics can be found in: [36–40].

2. Preliminary Facts

Definition 1. Let k ∈ R∗. We consider the Tsallis logarithm given by

logT x =

⎧⎨⎩
xk − 1

k
if x > 0

0 if x = 0

and the Kaniadakis logarithm given via

logK x =

⎧⎨⎩
xk − x−k

2k
if x > 0

0 if x = 0.

Remark 1. It is easy to see that logK
k x =

1
2

(
logT

k x + logT
−k x

)
for any x ≥ 0.

We have lim
k→0

logT
k x = lim

k→0
logK

k x = log x for any x > 0 (“log” is the classical logarithm

function).

Definition 2. Let (Ω, T ) be a measurable space and μ, ν : T → R+ = [0, ∞) ∪ {∞} two
measures. We say that μ is absolutely continuous with respect to ν if, for any A ∈ T such that
ν(A) = 0, one has μ(A) = 0.

Notation 1. If μ and ν are absolutely continuous with respect to each other, we denote this fact by
μ ∼ ν.

In the absence of other mentions, we work in the following scenario: Let (Ω, T , μi),
i = 1, 2 be two measure spaces and λ a measure on (Ω, T ) such that μi ∼ λ for any i = 1, 2.
With the help of Radon–Nikodým Theorem we find two non-negative measurable functions

f1 and f2 defined on Ω such that μi(A) =
∫

A
fidλ for any A ∈ T and any i = 1, 2. Consider

w : Ω → (0, ∞) a weight function (i.e., w is a non-negative measurable function).
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Definition 3. Let A ∈ T . The weighted Tsallis divergence on A between μ1 and μ2 is defined via

Dw,T
k (μ1|μ2, A) =

⎧⎪⎪⎨⎪⎪⎩
1∫

A
wdμ1

∫
A

w logT
k

(
f1

f2

)
dμ1 if μ1(A) �= 0

0 if μ1(A) = 0

and the weighted Kaniadakis divergence on A between μ1 and μ2 is given by

Dw,K
k (μ1|μ2, A) =

⎧⎪⎪⎨⎪⎪⎩
1∫

A
wdμ1

∫
A

w logK
k

(
f1

f2

)
dμ1 if μ1(A) �= 0

0 if μ1(A) = 0.

Remark 2. We assume that all divergences and integrals which appear in this paper are finite.

Remark 3. We can see that the values of Dw,T
k (μ1|μ2, A) and Dw,K

k (μ1|μ2, A) do not depend on

the choice of reference measure λ (because
f1

f2
=

dμ1/dλ

dμ2/dλ
=

dμ1

dμ2
).

3. Bounds of the Weighted Tsallis and Kaniadakis Divergences

The proof of the following lemma is elementary and is omitted.

Lemma 1. For any x ∈ (0, ∞) \ {1}, let ϕx : R \ {0} → R,

ϕx(t) =
xt − 1

t
.

The function ϕx is strictly increasing.

The next two corollaries are very useful in this article.

Corollary 1. Let x > 0 and k ∈ (−1, ∞) \ {0}. Then,

x logT
k x ≥ x − 1

and the equality is valid if and only if x = 1.

Corollary 2. Let x > 0 and k ∈
(
−1

2
, 1
)
\ {0}. Then,

2(
√

x − 1)√
x

≤ logT
k x ≤ x − 1.

We have equality in these inequalities if and only if x = 1.

Theorem 1. Let A ∈ T such that μi(A) �= 0 for any i = 1, 2.
(a) Assume that k ∈ (−1, ∞) \ {0}. Then,

Dw,T
k (μ1|μ2, A) ≥ logT

k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠.

(b) Assume that k ∈ (−1, 1) \ {0}. Then,

Dw,K
k (μ1|μ2, A) ≥ logK

k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠.
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In both cases, the equality holds if and only if
f1(ω)

f2(ω)
=

∫
A

wdμ1∫
A

wdμ2

λ − a.e. for ω ∈ A.

Proof. (a) We will make the proof in two steps.

Step 1. Assume that
∫

A
wdμ1 =

∫
A

wdμ2. Because logT
k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠ = 0, we have to

show that Dw,T
k (μ1|μ2, A) ≥ 0.

According to Corollary 1, we have

Dw,T
k (μ1|μ2, A) =

1∫
A

wdμ1

∫
A

w logT
k

(
f1

f2

)
dμ1 =

1∫
A

wdμ1

∫
A

w · f2

f1
· f1

f2
logT

k

(
f1

f2

)
dμ1 ≥

1∫
A

wdμ1

∫
A

w · f2

f1

(
f1

f2
− 1

)
dμ1 =

1∫
A

wdμ1

∫
A

w
(

1 − f2

f1

)
dμ1 =

1 − 1∫
A

wdμ1

∫
A

w · f2

f1
dμ1 = 1 −

∫
A

wdμ2∫
A

wdμ1

= 0.

The equality holds if and only if
f1(ω)

f2(ω)
= 1 μ1 − a.e, i.e., if and only if

f1(ω)

f2(ω)
= 1

λ − a.e.
Step 2. Let A ∈ T with μi(A) �= 0 for any i = 1, 2. We define the measures μ̃1 and μ̃2

via

μ̃i(B) =
μi(B)∫
A

wdμi

for any B ∈ T and any i = 1, 2.

We remark that
∫

A
wdμ̃1 =

∫
A

wdμ̃2 = 1.

Hence the weighted Tsallis divergence between μ̃1 and μ̃2 on A is

DT
k (μ̃1|μ̃2, A) =

∫
A

w · f1∫
A

wdμ1

· logT
k

⎛⎜⎜⎜⎜⎜⎝
f1∫

A
wdμ1

f2∫
A

wdμ2

⎞⎟⎟⎟⎟⎟⎠dλ =

∫
A

w · f1∫
A

wdμ1

· logT
k

⎛⎜⎝ f1

∫
A

wdμ2

f2

∫
A

wdμ1

⎞⎟⎠dλ.

We deduce from Step 1 that DT
k (μ̃1|μ̃2, A) ≥ 0.

So,
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0 ≤
∫

A
w · f1∫

A
wdμ1

· logT
k

⎛⎜⎝ f1

∫
A

wdμ2

f2

∫
A

wdμ1

⎞⎟⎠dλ =
∫

A
w · f1∫

A
wdμ1

·

⎛⎜⎝ f1

∫
A

wdμ2

f2

∫
A

wdμ1

⎞⎟⎠
k

− 1

k
dλ =

∫
A

w · f1∫
A

wdμ1

·

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

·
(

f1

f2

)k
− 1

k
dλ =

∫
A

w · f1∫
A

wdμ1

·

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

·
[(

f1

f2

)k
− 1 + 1

]
− 1

k
dλ =

∫
A

w · f1∫
A

wdμ1

·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

·

(
f1

f2

)k
− 1

k
+

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

− 1

k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dλ =

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

Dw,T
k (μ1|μ2, A) +

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

− 1

k
.

Hence, Dw,T
k (μ1|μ2, A) ≥

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠
k

·

1 −

⎛⎜⎝
∫

A
wdμ2∫

A
wdμ1

⎞⎟⎠
k

k
= logT

k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠.

The equality holds if and only if
f1(ω)∫
A

wdμ1

=
f2(ω)∫
A

wdμ2

λ − a.e. for ω ∈ A, i.e., if and

only if
f1(ω)

f2(ω)
=

∫
A

wdμ1∫
A

wdμ2

λ − a.e. for ω ∈ A.

(b) Because logK
k x =

1
2

(
logT

k x + logT
−k x

)
, we obtain

Dw,K
k (μ1|μ2) =

1
2

(
Dw,T

k (μ1|μ2) + Dw,T
−k (μ1|μ2)

)
≥

1
2

⎛⎜⎝logT
k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠+ logT
−k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠
⎞⎟⎠ = logK

k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠ (see (a)).

We have equality in the preceding inequality if and only if
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1
2

(
Dw,T

k (μ1|μ2, A) + Dw,T
−k (μ1|μ2, A)

)
=

1
2

⎛⎜⎝logT
k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠+ logT
−k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠
⎞⎟⎠,

which is equivalent to Dw,T
k (μ1|μ2, A) = logT

k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠ and Dw,T
−k (μ1|μ2, A) =

logT
−k

⎛⎜⎝
∫

A
wdμ1∫

A
wdμ2

⎞⎟⎠ and these are equivalent to
f1(ω)

f2(ω)
=

∫
A

wdμ1∫
A

wdμ2

λ − a.e. for ω ∈ A.

Theorem 2. Let A ∈ T such that μi(A) �= 0 for any i = 1, 2 and
∫

A
wdμ1 =

∫
A

wdμ2.

(a) Assume that k ∈
(
−1

2
, 1
)
\ {0}. Then,

1∫
A

wdμ1

∫
A

w

(√
dμ1

dμ2
− 1

)2

dμ2 ≤ Dw,T
k (μ1|μ2) ≤

1∫
A

wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2.

(b) Assume that k ∈
(
−1

2
,

1
2

)
\ {0}. Then,

1∫
A

wdμ1

∫
A

w

(√
dμ1

dμ2
− 1

)2

dμ2 ≤ Dw,K
k (μ1|μ2) ≤

1∫
A

wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2.

Proof. (a) We have (see Corollary 2)

Dw,T
k (μ1|μ2) =

1∫
A

wdμ1

∫
A

w · f1

f2
· logT

k

(
f1

f2

)
dμ2 ≥

1∫
A

wdμ1

∫
A

w · f1

f2
·

2

(√
f1

f2
− 1

)
√

f1

f2

dμ2 =
1∫

A
wdμ1

∫
A

2w ·
√

f1

f2
·
(√

f1

f2
− 1

)
dμ2 =

1∫
A

wdμ1

∫
A

2w ·
√

dμ1

dμ2
·
(√

dμ1

dμ2
− 1

)
dμ2 =

1∫
A

wdμ1

∫
A

w ·
(

2 · dμ1

dμ2
− 2

√
dμ1

dμ2

)
dμ2 =

1∫
A

wdμ1

∫
A

w · dμ1

dμ2
dμ2 − 2 · 1∫

A
wdμ1

∫
A

w ·
√

dμ1

dμ2
dμ2 +

1∫
A

wdμ1

∫
A

wdμ2 =

1∫
A

wdμ1

∫
A

w ·
(√

dμ1

dμ2
− 1

)2

dμ2.

On the other hand (see again Corollary 2),

Dw,T
k (μ1|μ2) =

1∫
A

wdμ1

∫
A

w · f1

f2
· logT

k

(
f1

f2

)
dμ2 ≤ 1∫

A
wdμ1

∫
A

w · f1

f2
·
(

f1

f2
− 1

)
dμ2 =

1∫
A

wdμ1

∫
A

w · dμ1

dμ2
·
(

dμ1

dμ2
− 1

)
dμ2 =

1∫
A

wdμ1

∫
A

w ·
((

dμ1

dμ2

)2
− dμ1

dμ2

)
dμ2 =
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1∫
A

wdμ1

∫
A

w ·
(

dμ1

dμ2

)2
dμ2 − 2 · 1∫

A
wdμ1

∫
A

w · dμ1

dμ2
dμ2 +

1∫
A

wdμ1

∫
A

wdμ2 =

1∫
A

wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2.

(b) Using (a) we obtain

1
2
· 1∫

A
wdμ1

∫
A

w

(√
dμ1

dμ2
− 1

)2

dμ2 +
1
2
· 1∫

A
wdμ1

∫
A

w

(√
dμ1

dμ2
− 1

)2

dμ2 ≤

1
2

Dw,T
k (μ1|μ2) +

1
2

Dw,T
−k (μ1|μ2) ≤

1
2
· 1∫

A
wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2 +

1
2
· 1∫

A
wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2.

Hence,

1∫
A

wdμ1

∫
A

w

(√
dμ1

dμ2
− 1

)2

dμ2 ≤ Dw,K
k (μ1|μ2) ≤

1∫
A

wdμ1

∫
A

w
(

dμ1

dμ2
− 1

)2
dμ2.

4. Pseudo-Additivity of the Weighted Tsallis and Kaniadakis Divergences

Let (Ω, T , μi), i = 1, 2 be two measure spaces and λ1 a measure on (Ω, T ) such that
μi ∼ λ1 for any i = 1, 2. We consider Radon–Nikodým derivatives f (1)1 and f (1)2 on Ω,

i.e., f (1)i =
dμi
dλ1

for any i = 1, 2. Let also (S,S , νj), j = 1, 2 be two measure spaces and

λ2 a measure on (S,S) such that νj ∼ λ2 for any j = 1, 2. We apply Radon–Nikodým

Theorem and find the non-negative measurable functions f (2)1 and f (2)2 defined on S such

that f (2)j =
dνj

dλ2
for any j = 1, 2. We take w1 : Ω → (0, ∞) and w2 : S → (0, ∞) two

weight functions.
We consider the measure λ on (Ω × S, T × S) induced by λ1 and λ2. Because μi × νi

is absolutely continuous with respect to λ, we apply Radon–Nikodým Theorem and find

two non-negative measurable functions f1 and f2 on Ω × S such that fi =
d(μi × νi)

dλ
for

any i = 1, 2.
The uniqueness from Radon–Nikodým Theorem assures us that fi(ω, s) =

f (1)i (ω) f (2)i (s) for any ω ∈ Ω, s ∈ S and any i = 1, 2.
Let A ∈ T and B ∈ S .
We define the weighted Tsallis divergence for product measures via

Dw1w2,T
k (μ1 × ν1|μ2 × ν2, A × B) =

1∫∫
A×B

w1w2d(μ1 × ν1)

∫∫
A×B

w1(ω)w2(s) logT
k

(
f1(ω, s)
f2(ω, s)

)
d(μ1 × ν1)(ω, s) =

1∫
A

w1dμ1

∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f1(ω, s) logT
k

(
f1(ω, s)
f2(ω, s)

)
dλ(ω, s) if

(μ1 × ν1)(A × B) �= 0

and

Dw1w2,T
k (μ1 × ν1|μ2 × ν2, A × B) = 0 if (μ1 × ν1)(A × B) = 0.

The weighted Kaniadakis divergence for product measures is given by
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Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A × B) =

1∫∫
A×B

w1w2d(μ1 × ν1)

∫∫
A×B

w1(ω)w2(s) logK
k

(
f1(ω, s)
f2(ω, s)

)
d(μ1 × ν1)(ω, s) =

1∫
A

w1dμ1

∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f1(ω, s) logK
k

(
f1(ω, s)
f2(ω, s)

)
dλ(ω, s) if

(μ1 × ν1)(A × B) �= 0

and

Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A × B) = 0 if (μ1 × ν1)(A × B) = 0.

Lemma 2 (see [41]). We have the following pseudo-additivity property for Tsallis logarithm (valid
for any x, y > 0):

logT
k (xy) = logT

k x + logT
k y + k(logT

k x)(logT
k y).

Theorem 3. Let A ∈ T and B ∈ S such that (μ1 × ν1)(A × B) �= 0. The weighted Tsallis and
Kaniadakis divergences for product measures satisfy the following pseudo-additivity properties:

(a) Dw1w2,T
k (μ1 × ν1|μ2 × ν2, A × B) = Dw1,T

k (μ1|μ2, A) + Dw2,T
k (ν1|ν2, B) +

kDw1,T
k (μ1|μ2, A)Dw2,T

k (ν1|ν2, B).
(b) Dw1w2,K

k (μ1 × ν1|μ2 × ν2, A × B) = Dw1,K
k (μ1|μ2, A) + Dw2,K

k (ν1|ν2, B) +
k
2

(
Dw1,T

k (μ1|μ2, A)Dw2,T
k (ν1|ν2, B)− Dw1,T

−k (μ1|μ2, A)Dw2,T
−k (ν1|ν2, B)

)
.

(c) Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A× B) =

1∫
B

w2dν1

⎛⎝∫
B

w2(s) f (2)1 (s)

(
f (2)1 (s)

f (2)2 (s)

)k

dλ2(s)

⎞⎠ ·

Dw1,K
k (μ1|μ2, A) +

1∫
A

w1dμ1

⎛⎝∫
A

w1(ω) f (1)1 (ω)

(
f (1)1 (ω)

f (1)2 (ω)

)−k

dλ1(ω)

⎞⎠Dw2,K
k (ν1|ν2, B).

Proof. (a) According to Lemma 2, we have

Dw1w2,T
k (μ1 × ν1|μ2 × ν2, A × B) =

1∫
A

w1dμ1

∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f1(ω, s) logT
k

(
f1(ω, s)
f2(ω, s)

)
dλ(ω, s) =

1∫
A

w1dμ1

· 1∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f (1)1 (ω) f (2)1 (s) logT
k

(
f (1)1 (ω)

f (1)2 (ω)

)
dλ1(ω)dλ2(s) +

1∫
A

w1dμ1

· 1∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f (1)1 (ω) f (2)1 (s) logT
k

(
f (2)1 (s)

f (2)2 (s)

)
dλ1(ω)dλ2(s) + k ·

1∫
A

w1dμ1

· 1∫
B

w2dν1

·

∫∫
A×B

w1(ω)w2(s) f (1)1 (ω) f (2)1 (s)

(
logT

k

(
f (1)1 (ω)

f (1)2 (ω)

))(
logT

k

(
f (2)1 (s)

f (2)2 (s)

))
dλ1(ω)dλ2(s) =

1∫
A

w1dμ1

(∫
A

w1(ω) f (1)1 (ω) logT
k

(
f (1)1 (ω)

f (1)2 (ω)

)
dλ1(ω)

)
1∫

B
w2dν1

·

(∫
B

w2(s) f (2)1 (s)dλ2(s)
)
+
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1∫
A

w1dμ1

(∫
A

w1(ω) f (1)1 (ω)dλ1(ω)

)
1∫

B
w2dν1

(∫
B

w2(s) f (2)1 (s) logT
k

(
f (2)1 (s)

f (2)2 (s)

)
dλ2(s)

)
+

k · 1∫
A

w1dμ1

(∫
A

w1(ω) f (1)1 (ω) logT
k

(
f (1)1 (ω)

f (1)2 (ω)

)
dλ1(ω)

)
1∫

B
w2dν1

·

(∫
B

w2(s) f (2)1 (s) logT
k

(
f (2)1 (s)

f (2)2 (s)

)
dλ2(s)

)
=

Dw1,T
k (μ1|μ2, A) + Dw2,T

k (ν1|ν2, B) + kDw1,T
k (μ1|μ2, A)Dw2,T

k (ν1|ν2, B).

(b) Because logK
k x =

1
2

(
logT

k x + logT
−k x

)
, we have

Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A × B) =

1∫
A

w1dμ1

∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f1(ω, s) logK
k

(
f1(ω, s)
f2(ω, s)

)
dλ(ω, s) =

1∫
A

w1dμ1

· 1∫
B

w2dν1

·
∫∫

A×B
w1(ω)w2(s) f (1)1 (ω) f (2)1 (s) ·

1
2

(
logT

k

(
f (1)1 (ω) f (2)1 (s)

f (1)2 (ω) f (2)2 (s)

)
+ logT

−k

(
f (1)1 (ω) f (2)1 (s)

f (1)2 (ω) f (2)2 (s)

))
dλ1(ω)dλ2(s) =

1
2

(
Dw1w2,T

k (μ1 × ν1|μ2 × ν2, A × B) + Dw1w2,T
−k (μ1 × ν1|μ2 × ν2, A × B)

)
.

Using (a), we get

Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A × B) =

1
2

(
Dw1,T

k (μ1|μ2, A) + Dw2,T
k (ν1|ν2, B) + kDw1,T

k (μ1|μ2, A)Dw2,T
k (ν1|ν2, B)

)
+

1
2

(
Dw1,T
−k (μ1|μ2, A) + Dw2,T

−k (ν1|ν2, B)− kDw1,T
−k (μ1|μ2, A)Dw2,T

−k (ν1|ν2, B)
)
=

Dw1,K
k (μ1|μ2, A) + Dw2,K

k (ν1|ν2, B) +
k
2

(
Dw1,T

k (μ1|μ2, A)Dw2,T
k (ν1|ν2, B)− Dw1,T

−k (μ1|μ2, A)Dw2,T
−k (ν1|ν2, B)

)
.

(c) It is easy to prove that

logK
k (xy) = yk · xk − x−k

2k
+ x−k · yk − y−k

2k
= yk logK

k x + x−k logK
k y for any x, y ∈ (0, ∞).

Hence,

Dw1w2,K
k (μ1 × ν1|μ2 × ν2, A × B) =

1∫
A

w1dμ1

∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f1(ω, s) logK
k

(
f1(ω, s)
f2(ω, s)

)
dλ(ω, s) =

1∫
A

w1dμ1

· 1∫
B

w2dν1

∫∫
A×B

w1(ω)w2(s) f (1)1 (ω) f (2)1 (s)
[(

f (2)1 (s)

f (2)2 (s)

)k

logK
k

(
f (1)1 (ω)

f (1)2 (ω)

)
+

(
f (1)1 (ω)

f (1)2 (ω)

)−k

logK
k

(
f (2)1 (s)

f (2)2 (s)

)]
dλ1(ω)dλ2(s) =

1∫
A

w1dμ1

(∫
A

w1(ω) f (1)1 (ω) logK
k

(
f (1)1 (ω)

f (1)2 (ω)

)
dλ1(ω)

)
·
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1∫
B

w2dν1

⎛⎝∫
B

w2(s) f (2)1 (s)

(
f (2)1 (s)

f (2)2 (s)

)k

dλ2(s)

⎞⎠+

1∫
A

w1dμ1

⎛⎝∫
A

w1(ω) f (1)1 (ω)

(
f (1)1 (ω)

f (1)2 (ω)

)−k

dλ1(ω)

⎞⎠ ·

1∫
B

w2dν1

(∫
B

w2(s) f (2)1 (s) logK
k

(
f (2)1 (s)

f (2)2 (s)

)
dλ2(s)

)
=

1∫
B

w2dν1

⎛⎝∫
B

w2(s) f (2)1 (s)

(
f (2)1 (s)

f (2)2 (s)

)k

dλ2(s)

⎞⎠Dw1,K
k (μ1|μ2, A) +

1∫
A

w1dμ1

⎛⎝∫
A

w1(ω) f (1)1 (ω)

(
f (1)1 (ω)

f (1)2 (ω)

)−k

dλ1(ω)

⎞⎠Dw2,K
k (ν1|ν2, B).

5. Conclusions

With the help of some inequalities concerning Tsallis logarithm, we obtained inequali-
ties between the weighted Tsallis and Kaniadakis divergences on an arbitrary measurable
non-negligible set and Tsallis logarithm, respectively, Kaniadakis logarithm (Theorem 1).
We showed that the aforementioned divergences are limited by similar bounds with those
that limit Kullback–Leibler divergence (Theorem 2) and proved that are pseudo-additive
(Theorem 3).
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Abstract: We consider the problem of finding the closest multivariate Gaussian distribution on a
constraint surface of all Gaussian distributions to a given distribution. Previous research regarding
geodesics on the multivariate Gaussian manifold has focused on finding closed-form, shortest-
path distances between two fixed distributions on the manifold, often restricting the parameters
to obtain the desired solution. We demonstrate how to employ the techniques of the calculus of
variations with a variable endpoint to search for the closest distribution from a family of distributions
generated via a constraint set on the parameter manifold. Furthermore, we examine the intermediate
distributions along the learned geodesics which provide insight into uncertainty evolution along the
paths. Empirical results elucidate our formulations, with visual illustrations concretely exhibiting
dynamics of 1D and 2D Gaussian distributions.

Keywords: geodesic; Fisher information; differential geometry; transversality; multivariate Gaussian

1. Introduction

The importance of a metric to measure the similarity between two distributions has
weaved itself into a plethora of applications. Fields concerning statistical inference [1–3],
model selection [4–6] and machine learning have found it necessary to quantify the likeness
of two distributions. A common approach to measure this similarity is to define a distance
or divergence between distributions using the tenets of information geometry, e.g., the
Fisher–Rao distance or the f-divergence [7], respectively. To the best of our knowledge,
research and results in information geometry have predominantly focused on establishing
similarities between two given distributions. Here, we consider an important class of
problems where one or both endpoint distributions are not fixed, but instead, constrained
to live on subset of the parameter manifold.

When one relaxes the fixed endpoint requirements, the development of finding the
shortest path between a given distribution and constraint surface (not single distribu-
tion) must be reconsidered using transversality conditions [8,9] for the standard length-
minimizing functional. This is precisely the focus of the present work, where we derive the
transversality conditions for working in the Riemannian space of multivariate Gaussian
distributions. This approach opens new avenues for research and application areas where
one no longer needs to provide the ending distribution but rather a description of the
constraint set where the most similar model must be discovered. For example, applications
such as domain adaptation [10–12] can be reformulated such that the optimal target domain
distribution is discovered among a constraint family starting from a known source distribu-
tion estimated from training data, or even model selection [4–6,13,14], where a search in a
constrained family of distributions may be better aligned with the desired objective versus
evaluating the MLE fit penalized by parameter cardinality.

In this work, we have purposefully chosen to work in the natural parameter space
of multivariate Gaussians (mean vector, μ, and covariance matrix, Σ) and address the
problem formulation in a completely Riemannian context. We are aware of the usual dually
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flat constructions [2,15,16] afforded by information geometry using divergence measures
and the Legendre transformation. Though elegant in their algebraic constructions, these
alternate parameterizations have yet to be employed in most statistical and machine-
learning applications. Hence, we develop all geometric motivations and consequential
mathematical derivations using Riemannian geometry and the natural parameter space,
i.e., we employ the Fisher information matrix metric tensor and find the length-minimizing
curve to the constraint set.

The remainder of this paper is organized as follows. In Section 2, we give a summary
of important results concerning geodesics on manifolds. In Section 3, we provide a brief
introduction to the techniques of calculus of variations with the goal of developing the
Euler-Lagrange equations necessary to find the shortest path between two multivariate
Gaussian distributions. In this section, we restrict ourselves to problems in which both
the initial and final distributions are known exactly. Following this, in Section 3.3, we
develop the conditions required to satisfy transversality constraints, or constraints where
either the initial and/or final distribution are determined from those residing on a defined
subsurface of the manifold rather than being exactly known. The results from these sections
are employed in Section 4, where we explore various constraint surfaces and numerical
experiments to demonstrate the utility of our variable-endpoint framework. Finally, some
closing perspectives and remarks are given in Section 5.

2. Related Works

Most efforts towards measuring distances on statistical manifolds build on the foun-
dation started by Fisher in [17], in which he introduces the idea of the information matrix.
In [18] Kullback and Leibler published a pioneering effort to describe this distance. Works
such as [19,20], endowed statistical distributions with geometrical properties. However, it
was Rao [21] that expanded on the ideas of Fisher that defined a metric for statistical models
based on the information matrix. The information matrix satisfies the conditions of a metric
on a Riemannian statistical manifold, and is widely used because of its invariance [22]. This
connection between distance and distributions encouraged others to explore the distance
between specific families of distributions [23]. Among these families include special cases
of the multivariate normal model [24], the negative binomial distribution [25], the gamma
distribution [26,27], Poisson distribution [28], among others.

In [29], the authors offer a detailed exploration of geodesics on a multivariate Gaussian
manifold. They show that there exists a geodesic connecting any two distributions on a
Gaussian manifold. However, a closed-form solution for the most general case remains an
open problem.

In [30] and expanded on in [31], the authors offer a very detailed discussion, focusing
primarily on the univariate normal distribution for which a closed-form solution for the
Fisher–Rao distance is known. Here, the authors focus on a geometrical approach, aban-
doning the “proposition-proof” format offered in previous research. With this geometric
approach, closed-form solutions to various special cases are derived: univariate Gaussian
distributions, isotropic Gaussian distributions, and Gaussian distributions with diagonal
covariance matrix.

Another novel application of geodesics on a Gaussian statistical manifold is explored
in [32], where the authors use information geometry for shape analysis. Shapes were repre-
sented using a K-component Gaussian Mixture Model, with the number of components
being the same for each shape. With this, each shape occupied a unique point on a common
statistical manifold. Upon mapping two shapes to their points on this manifold, the authors
use an iterative approach to calculate the geodesic between these two points, with the
length of the geodesic offering a measure of similarity of the shapes. Furthermore, because
of the iterative approach to solving for the geodesic, all intermediate points along path are
revealed. These points can be mapped to their own unique shapes, essentially showing
the evolution from one shape to another. This shape deformation exhibits the benefit of
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analyzing more than just the distance between points on a manifold and that “walk” along
the path has real substance.

In [33], the authors explore the complexity of Gaussian geodesic paths, with the
ultimate goal of relating the complexity of a geodesic path on a manifold to the correlation
of the variables labeling its macroscopic state. Specifically, the authors show that, if there
is a dependence between the variables, the complexity of the geodesic path decreases.
Complexity, for these purposes is defined as the volume of the manifold traversed by the
geodesic connecting a known initial state to a future state, which is well defined. It is shown
that this volume decays by a power law at a rate that is determined by the correlation
between the variables on the Gaussian manifold.

In [34], the authors use the geometry of statistical manifolds to study how the quantum
characteristics of a system are affected by its statistical properties. Similar to our work,
the authors prescribe an initial distribution on the manifold of Gaussians and examine the
geodesics emanating from it, without dictating a specific terminating distribution. The
authors show that these paths tend to terminate at distributions that minimize Shannon
entropy. However, unlike our work, these paths are free to roam on the manifold and are not
required to terminate on a specific surface on the manifold. Furthermore, the most relevant
part of the author’s work considers only univariate Gaussians with a two-dimensional
parameter manifold, without ever considering higher dimensions.

Though we have chosen to work with Riemannian geometry, it is worth mentioning
that information geometry often employs dualistic geometries that can be established using
divergence measures. In [35], the authors detail the use of divergence measures to obtain
the dual coordinates for space of multivariate Gaussians. However, they point out that
the choice of divergence measure is not unique and resulting geometries lack the same
interpretative power of the natural parameterization.

Though these previous works operate in the space of multivariate Gaussians and
deriving geodesics therein, they all require defining the initial and terminal distributions
on the manifold. In this work, we address a novel problem of finding the geodesics when
the terminal conditions are hypersurface constraints rather than a single point. Technically,
these transversality conditions are variable boundary conditions placed on the initial
and final distributions requiring them to reside on a parametric surface typically defined
by constraining the coordinates. The usefulness of these variable boundary conditions
has emerged in many areas including physics [36] in which the author studied wetting
phenomenon on rough surfaces and in [37], where the authors studied the elasticity of
materials. Additionally, in [8,38,39], transversality conditions were employed in economic
optimal control problems with a free-time terminal condition. However, as practical as
transversality conditions have been in the above fields, their application in information
geometry literature is deficient.

3. Geodesics for Fixed-Endpoint Problems

We begin by briefly developing standard calculus of variation results for discovering
the shortest path between fixed points on a differentiable manifold. Then, the result is
applied to the space of multivariate Gaussians, with detailed derivations for the case
of bivariate Gaussians. We finally extend the formulation to show how to incorporate
variable-endpoint boundary conditions.

3.1. General Euler-Lagrange Equations

Among differential calculus’ many applications are problems regarding finding the
maxima and minima of functions. Analogously, techniques of calculus of variation operates
on functionals, which are mappings from a space of functions to its underlying field of
scalars. considering the functional L[y], the typical formulation of a calculation of variations
problem is
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min L[y] =
∫ x1

x0

F(x, y, ẏ)dx

y(x0) = y0 y(x1) = y1

(1)

where initial and terminal values are defined as (x0, y0) and (x1, y1), respectively and ẏ is
notation for the derivative. In general, y can be a vector of functions dependent on x, a
vector of independent variables. The theory behind finding the extremum to problems such
as these are analogous to single variable calculus, in which we a vanishing first derivative
to locate critical points. Here, we locate the extremal functions using functional derivatives,
leading to solving the Euler-Lagrange equations outlined in Section 3.2.

Though the formulation of finding the shortest path as a calculus of variations problem
is rather elementary, its solution is involved. Obviously, in Euclidean geometry, this path
is a straight line, and this distance is easily found. However, moving these ideas onto
statistical manifolds complicates both the geometry and the calculus of this seemingly
elementary problem. Analogous to the Euclidean setting, in a Riemannian manifold such
as our space of Gaussians, solving for the shortest path L, involves the summation of many
infinitely small arc lengths, ds

ds2 = θ̇T g(θ)θ̇, (2)

where θ is a parameter vector, g(θ) is a metric tensor dependent on the parameter vector
and (·)T represents the transpose of a vector. The metric tensor for Euclidean space is the
identity matrix but on the multivariate Gaussian manifold, this metric tensor is the Fisher
information matrix, discussed later in Section 3.2.

This makes the functional we wish to minimize

P =
∫ x1

x0

√
θ̇T g(θ)θ̇dx (3)

or, because the square root is a monotonically increasing function, we can conveniently use

F =
∫ x1

x0

θ̇T g(θ)θ̇dx. (4)

With this, the calculus of variation problem that solves for the minimum distance on a
manifold is

min F [θ] =
∫ x1

x0

θ̇T g(θ)θ̇dx

θ(x0) = [θ01, θ02, . . . , θ0n] θ(x1) = [θ11, θ12, . . . , θ1n]

(5)

In the present context, the Fisher information metric tensor g(θ) = g(μ, Σ), the natural
parameterization for multivariate Gaussians. Moreover, θ0 and θ1 are the parameters of the
initial and final distributions.

The minimizer to Equation (5) is the well-known Euler-Lagrange equation, a system of
second-order differential equations. These equations operate on the function in Equation (4).
Accordingly, we define

K = θ̇T g(θ)θ̇ (6)

With this, the Euler-Lagrange equations are

Kθ −
d

dx
Kθ̇ = 0. (7)

where Kθ and Kθ̇ are the functional derivatives with respect the curve θ(x).
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3.2. Euler-Lagrange Equation for Gaussian Distributions

The Fisher information matrix is a measure of how much information about the
parameter of interest from a multivariate distribution is revealed from random data space.
Intuitively, it can be considered an indication of how “peaked” a distribution is around a
parameter. If the distribution is sharply peaked, very few data points are required to locate
it. As such, each data point carries a lot of information.

For a multivariate probability distribution, the Fisher information matrix is given by

gi,j(θ) =
∫

f (x; θ)
∂

∂θi
log f (x; θ)

∂

∂θj
log f (x; θ)dx, (8)

where the index (i, j) represents the appropriate parameter pair of the multivariate parame-
ter vector θ.

Alternatively, there are additional useful forms of the Fisher information, provided
that certain regularity conditions are satisfied. First, the Fisher information matrix is the
expectation of the Hessian of the log likelihood of the density function. Specifically,

gi,j(θ) = −E
[

∂2

∂θi∂θj
log f (x; θ)

]
= −E [H], (9)

where H is the Hessian matrix of the log-likelihood.
Second, the Fisher information can be calculated from the variance of the score function

g(θ) = Var(S f (x; θ)), (10)

where
S f (x; θ) = ∇ log f (x; θ). (11)

Most importantly and for our purposes, the Fisher information matrix is the metric
tensor that will define distances on Riemannian Gaussian manifold. Given a distribution
on a manifold, by use of this metric tensor, we can minimize an appropriate functional to
find a closest second distribution residing on a constrained subset the manifold. A class of
problems covered by variable-endpoint conditions in the calculus of variations.

Consider the n-dimensional multivariate Gaussian with density given by

f (xn : μn, Σ) = 2π− n
2 det(Σ)−

1
2 exp− (X − μ)TΣ−1(X − μ)

2
(12)

where X is the random variable vector, μ = μ1, μ2, ..., μn is the n-dimensional mean vector
of the distribution and Σ is the n × n covariance matrix.

Since the covariance matrix is symmetric, it contains (n+1)(n)
2 number of unique pa-

rameters, i.e., the number of diagonal and the upper (or lower) triangular elements. With
the n-dimensional mean vector, the total number of scalar parameters in an n-dimensional
multivariate Gaussian is (n+3)n

2 , which will be the size of the Fisher information matrix. For
all further developments in the parameter space, these parameters are collected in a single
vector, θ such that

θ = {μ1, μ2, ...μn
θ1,θ2,...,θn

, σ2
1,1, σ2

1,2, ..., σ2
n,n}

θn+1,...,θ (n+3)n
2

(13)

To clarify, this new parameter θ has the mean vector μ as its first n components and the
resulting components are made up of the unique elements of the covariance matrix, starting
with the first row, followed, by the second row but without the first entry, since Σ1,2 = Σ2,1
and Σ1,2 is already included in θ. We capture all the parameters of the multivariate Gaussian
distribution in this non-traditional vector form because it is more conceptually in line with
the calculation of the Fisher information matrix defined in Equation (8).

237



Entropy 2022, 24, 1698

Therefore, using Equations (8) and (12), the Fisher information for the general multi-
variate Gaussian distribution is

gij(μ, Σ) =
1
2

tr

[(
Σ−1 ∂Σ

∂θi

)(
Σ−1 ∂Σ

∂θj

)]
+

∂μ

∂θi

T
Σ−1 ∂μ

∂θj
(14)

for which a very detailed proof can be found in the Appendix A of this paper. In the case of
the bivariate Gaussian distribution, this 5 × 5 matrix has only 15 unique elements, because
of its symmetry. Once again, the detailed derivation of each of the elements is provided in
the Appendix A. The resulting metric tensor elements are

g11 =
σ2

2
σ2

1 σ2
2 − σ2

12

g22 =
σ2

1
σ2

1 σ2
2 − σ2

12

g33 =
1
2

(
σ2

2
σ2

1 σ2
2 − σ2

12

)2

g44 =
1
2

(
σ2

1
σ2

1 σ2
2 − σ2

12

)2

g55 =
σ2

1 σ2
2 + σ2

12(
σ2

1 σ2
2 − σ2

12
)2

g12 = − σ12

σ2
1 σ2

2 − σ2
12

= g21

g34 =
1
2

(
σ12

σ2
1 σ2

2 − σ2
12

)2

= g43

g35 = − σ12σ2
2(

σ2
1 σ2

2 − σ2
12
)2 = g53

g45 = − σ12σ2
1(

σ2
1 σ2

2 − σ2
12
)2 = g54

(15)

All elements dealing with the information between a component of μ and an element of Σ
vanish, which is a property extended to every multivariate Gaussian distribution of higher
dimensions as well.

3.3. Variable-Endpoint Formulation: Transversality Boundary Conditions

Our development so far has focused on summarizing the usual situation of finding
the length-minimizing path between two fixed points on a Riemannian manifold. We now
shift to the situation of allowing one or both of the initial or final endpoints (distributions
in this context) to be variable. This changes both the scope and the mathematics of the
problem and requires the use of transversality boundary conditions.

Transversality conditions have been useful in other applications. In economics, the
conditions are needed to solve the infinite horizon [40,41] problems. Other applications
are found in biology [42] and physics [43]. However, to the best of our knowledge, there
is little to no prior work investigating variable-endpoint formulations in the domain of
information geometry. As we will demonstrate, the crux of employing these methods
revolves around appropriately defining the parameter constraint surface. Though our
results here provide concrete examples of interesting constraint surfaces, guidance on
prescribing these subsets or developing techniques for automatically learning them will be
important areas for future research.
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The transversality conditions take into account the constrained hypersurface, φ(θ),
from the coordinates parameterizing the distributions of the statistical manifold. If, for
example, we are given an initial distribution and are asked to find which distribution on
φ(θ) is closest, the usual geodesic problem formulated in Equation (5) now becomes

min F [θ] =
1
2

∫ x1

x0

θ̇T g(θ)θ̇dx

θ(x0) = [θ01, θ02, . . . , θ0n] θ(x1) = φ(θ)

(16)

Therefore, in addition to satisfying the Euler-Lagrange equation, now with transversality
conditions, the optimal solution must also satisfy⎡⎢⎢⎢⎢⎣

Kθ̇1
Kθ̇2

...
Kθ̇n

⎤⎥⎥⎥⎥⎦ = α

⎡⎢⎢⎢⎣
φθ1
φθ2

...
φθn

⎤⎥⎥⎥⎦ (17)

In Equation (17), the left-hand side is a vector tangent to the optimal path and the vector
on the right right-hand side is the gradient of the terminal surface, which is orthogonal to
the surface. Considering that the optimal path and the constraint surface intersect at the
terminal distribution, this view of the transversality requirement implies that the tangent
vector to the optimal path and the gradient of the constraint surface be collinear at the
intersecting distribution. The scalar multiple α affects that magnitude of the vector and,
from a geometric perspective, there is no loss of generality by setting α = 1.

4. Results: Transversal Euler-Lagrange Equations for Bivariate Gaussian Distributions

We now turn our attention to various use cases of the transversal boundary conditions
on the Gaussian manifold. We limit our derivations to bivariate Gaussians to make the
calculations tractable and for visualization purposes. However, the same development
is applicable to higher-dimensional Gaussians. It is worth mentioning that even in the
fixed-endpoint scenario, there are no closed-form solutions for the geodesic when manifold
coordinates include μ and Σ, with analytical solutions existing only for special cases such
zero-mean distributions.

Using the Fisher information matrix defined in Equation (14), more specifically for
the bivariate Gaussian distribution discussed in the Appendix, and employing the general
form of the geodesic functional in Equation (4), we can define the integrand of the arc-
length-minimizing function on the space of bivariate Gaussian distribution as

K(θ) =
σ2

2 μ̇1
2

k
+

σ2
1 μ̇2

2

k
+

(σ2
2 )

2(σ̇2
1 )

2

2k2 +
(σ2

1 )
2(σ̇2

2 )
2

2k2 +
σ2

1 σ2
2 σ̇2

12
k2 +

σ2
12σ̇2

12
k2

− 2σ12μ̇1μ̇2

k
+

σ2
12σ̇2

1 σ̇2
2

k2 − 2σ12σ2
2 σ̇2

1 σ̇12

k2 − 2σ12σ2
1 σ̇2

2 σ̇12

k2

(18)

where k = σ2
1 σ2

2 − σ2
12.

We can use Equation (18) to derive the system of second-order differential equations,
solutions to which yield the shortest path between two distributions.

μ̈1 =
μ̇1σ̇2

1 σ2
2 + μ̇2σ2

1 σ̇12 − μ̇2σ̇2
1 σ12 − μ̇1σ12σ̇12

σ2
1 σ2

2 − σ2
12

(19)

μ̈2 =
μ̇2σ2

1 σ̇2
2 + μ̇1σ2

2 σ̇12 − μ̇1σ̇2
2 σ12 − μ̇2σ12σ̇12

σ2
1 σ2

2 − σ2
12

(20)

σ̈2
1 =

μ̇2
1σ2

12 + σ̇2
1 σ2

2 + σ2
1 σ̇2

12 − μ̇2
1σ2

1 σ2
2 − 2σ̇2

1 σ12σ̇12

σ2
1 σ2

2 − σ2
12

(21)
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σ̈2
2 =

μ̇2
2σ2

12 + σ̇2
2 σ2

1 + σ2
2 σ̇2

12 − μ̇2
2σ2

1 σ2
2 − 2σ̇2

2 σ12σ̇12

σ2
1 σ2

2 − σ2
12

(22)

σ̈12 = −σ12σ̇2
12 − μ̇2μ̇2σ2

12 − σ2
1 σ̇2

2 σ̇2
12 − σ̇2

1 σ2
2 σ̇2

12 + σ̇2
1 σ̇2

2 σ2
12 + μ̇2μ̇2σ2

1 σ2
2

σ2
1 σ2

2 − σ2
12

(23)

Along with satisfying this system of equations, the solutions presented here must
satisfy transversality conditions at one or both the terminal and initial boundaries. In what
follows, those conditions will be prescribed accordingly, considering various applications
of interest.

4.1. Isotropic Terminal Distribution

Working with the full parameterization of a multivariate Gaussian distribution can be
computationally expensive, especially when calculating their Fisher information matrix.
For example, the number of parameters grows quadratically with dimension. However,
isotropic Gaussian distributions, defined below in Equation (24) grow only linearly with
the mean vector’s size, orders of magnitude more favorable. In addition to being compu-
tationally efficient, isotropic Gaussian distributions provide a submanifold prescribable
by a tractable transversality condition. Accordingly, we formulate the following variable-
endpoint problem: Given a general multivariate Gaussian distribution, what is the closest
(in a geodesic sense) isotropic distribution?

Let Σi be the covariance matrix of a multivariate Gaussian distribution with n mean
components. This distribution is isotropic if

Σi = σ2 In (24)

where In is the n-dimensional identity matrix.
Formally, let θ capture all the parameters of a multivariate Gaussian distribution

according to Equation (13). The functional to minimize is given be

min F [θ] =
1
2

∫ x1

x0

θ̇T g(θ)θ̇dx

θ0 = [μ0, Σ0] θ1 = φ(μ1, Σ1)

(25)

where μ0 and Σ0 are the known parameters of the starting distribution, but μ1 and Σ1
are identified by solving the Euler-Lagrange equations while satisfying the transversal
condition in Equation (24).

For the bivariate Gaussian distribution, the terminal surface described in Equation (24)
can be defined by

Φ(σ2
1 , σ2

2 ) = σ2
1 − σ2

2 = 0, (26)

with μ1 free and σ12 = 0. Appling Equation (17) to this surface, we obtain the condition

(σ2
2 )

2σ̇1
2 + (σ2

1 )
2σ̇2

2 + σ2
12σ̇2

2 + σ2
12σ̇1

2 − 2σ12σ2
1 ˙σ12 − 2σ12σ2

2 ˙σ12 = 0. (27)

Therefore, in addition to the Euler-Lagrange equations in Equation (19) through
Equation (23), requiring the final distribution to be isotropic implies the geodesic must also
satisfy Equation (27). Additionally, the terminal distribution must satisfy the conditions of
constraint surface in Equation (26).

4.1.1. Constant Mean Vector with Initial Isotropic Covariance

In this use case, we introduce a slight modification of the previous scenario, where
now we set the mean vector of the initial and final distributions to be μ0 = μ1 = [0, 0]. We
are still interested in finding the closed isotropic Gaussian, but now not allowing the curve
evolution to move the distribution’s mode.
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For example, let us assume an initial distribution with

μ0 = [0, 0], Σ0 =

[
7 0
0 2

]
(28)

and the final distribution lie on the surface defined in Equation (26).
Applying the Euler-Lagrange equation with the transversality conditions to the prob-

lem above results in a final isotropic distribution with σ2 = 3.74. Figure 1a shows the
information path (dashed and curved) from the initial distribution to the chosen distri-
bution on the isotropic constraint. A Euclidean path would end with a distribution with
an isotropic variance equivalent to the average of the original variances. The geodesic
path calculated under the Fisher information matrix is an indication of the curvature of
the manifold in this region of the parameter space. It is possible in this special zero-mean
case to analytically calculate the ending variance on the isotropic constraint surface. Given
initial variances of σ2

1 , σ2
2 , it can be shown that the final variance, σ2

f is given by

σ2
f =

√
σ2

1 σ2
2 . (29)

In Figure 1b, we can see the evolution of all the parameters, starting from the initial
distribution to end. Noteworthy is that, even though σ12 is not required to stay at 0, there is
no benefit for it deviating from 0, as seen in Figure 1b. The Fisher information matrix is
independent of the mean vector and, since the values of the mean vector are also not part
of our isotropic constraint on the final distribution, the mean vector is not compelled to
change from the original distribution, justifying the exclusion of the mean vector’s path
in Figure 1.

(a) Path comparison (b) Parameter values

Figure 1. Shown above in (a) is the shortest path (dashed line) from a prescribed initial distribution
with diagonal covariance matrix, σ2

1 = 7, σ2
2 = 2, to the closest isotropic distribution. The final

distribution has σ2
1 = σ2

2 = 3.74. The red solid line above is the transversality constraint σ2
1 = σ2

2 ,
represents the isotropic submanifold. Additionally illustrated, in blue, is the Euclidean path, which is
clearly the straight-line path resulting from an identity metric tensor. In (b) are the paths showing the
value of each element of Σ as the distributions move towards the transversality constraint.

4.1.2. Constant Mean Vector with Initial Full Covariance

In the example above, the distributions move along a 2-dimensional manifold parame-
terized just by the individual variances of the variables. Neither the mean vector, nor the
off-diagonal values of the covariance matrices are considered by the Euler-Lagrange equa-
tion and therefore remain static. However, starting with a full covariance matrix changes
the problem appreciably. For comparison, we will start with same diagonal elements of the
covariance matrix but now incorporate the off-diagonal element.
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The problem formulation is analogous to Equation (25) subject to the isotropic con-
straint in Equation (26). Furthermore, we define the initial distribution as

μ0 = [0, 0], Σ0 =

[
7 −3
−3 2

]
(30)

As seen in Figure 2, including σ12 = −3 alters where the geodesic terminates on the
transversality constraint, with the final covariance matrix having diagonal elements of
σ2

1 = σ2
2 = 2.24. In Figure 2a, the effects of including the off-diagonal value σ12 are clearly

visible on the path of the geodesic causing it to deviate significantly. Figure 2b shows all
values of the parameters along the geodesic. As mentioned before, the mean vector remains
constant at all intermediate values of the distribution. Unlike before, the value for σ12 must
evolve to satisfy the terminal constraint surface, illustrated in Figure 2b and emphasized in
Figure 2c.

(a) path comparison (b) parameter values

(c) σ12 path

Figure 2. In (a) is the shortest path (blue line) from a prescribed initial distribution with an off-
diagonal covariance element of σ12 = −3. Additionally, the path from (a) (dashed black) is shown
to illustrate differences in the variances of the terminal distribution. The final distribution, when
starting with a full covariance, has σ2

1 = σ2
2 = 2.24. The red line above is the transversality constraint

σ2
1 = σ2

2 , and represents the isotropic submanifold. Figure (b) captures the path of all parameters
from the initial to the final distribution. Figure (c) highlights the values of σ12 for each distribution in
the geodesic on the manifold.

4.1.3. Starting on the Constraint Surface

When searching for the isotropic boundary condition, interesting paths occur if we
start with an initial isotropic distribution, but require the mean vector to change. That is, if
the initial distribution already resides on the terminal constraint surface, it would seem
counter-intuitive if the geodesic is compelled to leave this constraint. However, as seen in
Figure 3, this is exactly what happens.
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Employing the same modeling equations as the previous example, we define the initial
distribution as

μ0 = [−3, 3], Σ0 =

[
1 0
0 1

]
(31)

which is already isotropic. We search for the closest final distribution that is isotropic but
with a mean vector μ1 = [3,−4]. If we track evolution of just the mean vector, it starts
in Quadrant II and moves to a distribution in Quadrant IV. Qualitatively, the initial and
final distributions are geometrically symmetric. However, the isotropic uncertainty is
considerably different.

The insights gleaned from this example shed new light into information evolution.
Naively, one would think the shortest path would be one that maintains its current shape
and just moves along the constraint surface to reach the desired μ. However, as shown in
Figure 3, this is not the case. In fact, intermediate distributions obtain covariance matrices
with σ12 < 0, as demonstrated in Figure 3c. Instead of just staying on the constraint surface,
the distributions stretch in the direction of the desired mean, which explains negative
values of the covariance between the variables. This elongation of the covariance in the
direction of final mean vector suggests that the information metric prefers uncertainty
reduction in regions with few plausible solutions. Instead, the distributions along the
geodesic “reach” for their destination, i.e., the initial mean vector in Quadrant II and final
in Quadrant IV. This behavior is illustrated by the intermediate (red) ellipse in Figure 4.

(a) parameter values (b) σ12

(c) σ2
i paths

Figure 3. Above are evolutions of the geodesic from an initial isotropic distribution to a final isotropic
distribution with a different mean vector. In (a), the values of all five parameters are shown at each
iteration. Figure (b) highlights the values of σ12 showing that it leaves the constraint surface and
acquires negative values. The individual variances of the variables also temporarily abandon their
required isotropicity as seen in (c). In (c), the dotted line shows the path of the σ2

1 and σ2
2 and the

solid line shows the isotropic constraint surface.
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Figure 4. The ellipses above illustrate uncertainty contour for three different density functions along
the geodesic. The initial distribution shown in the top left and final distribution in the bottom right
are isotropic. The uncertainty evolution is clearly visible in the intermediate distribution which
acquires negative covariance values as it “reaches” towards the final distribution.

To reiterate this insightful behavior of information flow, a second example was con-
ducted with a mean vector that starts in Quadrant III, μ0 = [−3,−3], and seeks out a final
mean vector in Quadrant I, μ1 = [3, 4], as shown in Figure 5. The initial distribution is still
isotropic and the requirement to end isotropic remains. However, as seen in Figure 6, the
values of σ12 acquire positive values along the geodesic. The path of the main diagonal
variances remains unchanged.

Figure 5. Similar to Figure 4, uncertainty level curves of three densities along the geodesic are shown.
This time, the intermediate distribution acquires σ12 > 0 along the geodesic as the distributions move
from Quadrant III to Quadrant I along the dotted path.

(a) parameter values (b) σ12

Figure 6. Cont.
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(c) σ2
i paths

Figure 6. Illustration of geodesic paths from an initial isotropic distribution with a mean vector in
Quadrant III and a final isotropic distribution with a mean vector Quadrant I. In (a), the evolutions
of all five parameters are shown. Figure (b) highlights the values of σ12 showing that it leaves the
constraint surface and acquires positive values in contrast to the previous example. The individual
variances of the variables also temporarily abandon their required isotropicity as seen in Figure 3c.
In (c), the dotted line shows the path of the σ2

1 and σ2
2 , with the solid red line representing the isotropic

constraint surface.

4.2. Initial and Terminal Variable-Endpoint Conditions

It is possible to place transversality conditions on both the initial and final boundaries,
with each being entirely independent of the other. Essentially, we are searching for a
geodesic between two almost unknown distributions, with only minimal knowledge about
the constraint set characterizing the initial and final hypersurfaces.

We consider the example where the final distribution is prescribed to be isotropic as
before, but now the initial distribution must have a mean vector with equal components.
This enforcement has the practical benefit of reducing the parameter dimensionality of
allowable distributions. The problem is formulated as

min F [θ] =
1
2

∫ x1

x0

θ̇T g(θ)θ̇dx

θ0 = φ0(μ0, Σ0), θ1 = φ1(μ1, Σ1)

(32)

where φ0 and φ1 represent the initial and final transversality constraint surfaces, such that

φ0(μ01, μ02) = μ01 − μ02 = 0 and φ1(σ
2
1 , σ2

2 ) = σ2
1 − σ2

2 = 0. (33)

To demonstrate this concretely, the initial distribution with unknown mean vector is
prescribed with the following covariance matrix

Σ0 =

[
10 0
0 2

]
. (34)

Similarly, the unknown isotropic terminal distribution is given the mean vector μ1 =
[−3, 13].

Using Equation (17), the constraint requiring the initial distribution to reside on φ0
imposes that the geodesic satisfy

(σ2
2 − σ12)μ̇1 + (σ2

1 − σ12)μ̇2 = 0. (35)

As shown in Figure 7, the unknown initial mean vector satisfying the φ1 is μ0 = [7.4, 7.4]
and the final isotropic distribution has σ2

1 = σ2
2 = 26.4. The behavior of the geodesic under

these variable-endpoint conditions is shown in Figure 8.
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Figure 7. Alternate visualization of the resulting geodesic when both endpoints are allowed to vary.
The uncertainty contour ellipses of the initial, intermediate and final distribution are also shown. The
initial distribution represented by the bottom right ellipse, has components of the mean vector that
are equal. The final distribution, at the top left of the path, isotropic.

(a) parameter values (b) path of μ

(c) σ2
i paths

Figure 8. Illustration of geodesics resulting from initial and terminal variable-endpoint boundary
conditions. Figure (a) shows the behavior of all parameters along the geodesic. Figure (b) shows
how the geodesic (dashed) evolves the initial distribution to reach the constraint (solid) surface
defined by the means. Similarly, Figure (c) shows the evolution of final distribution to the isotropic
covariance constraint.
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5. Conclusions

In this work, we have explored new formulations for working on information geo-
metric manifolds. Previous and contemporary work using the Riemannian geometry of
statistical manifolds has focused on establishing geodesics between two fixed-endpoint
distributions. Here, by employing techniques from the calculus of variations, we have
developed constructions that allow variable endpoints that are prescribed by a constraint
set rather than fixed points.

These transversality conditions on initial and final distributions, enable new insights
into how information evolves under different constraint use cases. Though this present
effort focused on just a small variety of constraints on Gaussian manifolds, this approach
can be readily extended to other statistical families. This novel approach of relaxing
fixed endpoints and moving constraint sets has the potential to impact several application
domains that employ information geometric models. In future research, we plan to recast
the problem of optimal distribution discovery, in areas such as model selection and domain
adaptation, using the presented framework, which allows for greater expressive power. We
also plan to investigate observational data scenarios where parameters must be estimated
and impacts uncertainty modeling of the manifold parameters.
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Appendix A. Fisher Information for Multivariate Gaussian

Here, we consider the structure of the Fisher information matrix for n-dimensional
multivariate Gaussian with density given by

f (xn : μn, Σ) = 2π− n
2 det(Σ)−

1
2 exp− (X − μ)TΣ−1(X − μ)

2
(A1)

where X is a data vector, μ = [μ1, μ2, ..., μn] is the n-dimensional mean vector of the
distribution and Σ is the n × n covariance matrix.

These define an n-dimensional multivariate Gaussian. This distribution has (n+3)n
2

unique parameters, which we will capture as a single vector θ such that

θ = {μ1, μ2, ...μn
θ1,θ2,...,θn

, σ2
1,1, σ2

1,2, ..., σ2
n,n}

θn+1,...θ (n+3)n
2

. (A2)

The log-likelihood associated with Equation (A1) is

log f = L(θ) =
n
2

ln 2π − 1
2

ln det Σ − 1
2
(x − μ)TΣ−1(x − μ). (A3)

As stated, we will find an equation that will yield each element of the Fisher information
matrix using the following definition

gij(θ) = E

[
∂

∂θi
log f (x; θ)

∂

∂θj
log f (x; θ)

]
. (A4)
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Equation (A4) requires the partial derivative of each parameter in the log-likelihood
defined in Equation (A3).

∂L
∂θi

= −1
2

tr
[

Σ−1 ∂Σ
∂θi

]
A

+
1
2
(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1(x − μ)

B

+
∂μ

∂θi

T
Σ−1(x − μ)

C

(A5)

Similarly, we can take the partial derivative with respect to a different parameter, θj
and obtain the same result, indexed with j instead of i. The below equation labels A.B, C
will provide clarity in the proof.

To find each gij in the Fisher information matrix, we need to find the expectation of
the product of every combination two partial derivatives which will result in nine terms.
However, upon taking the expectation, some of these terms will vanish to 0, because the
expectation of data vector x approaches the mean vector μ. Specifically, let us denote
Ai, Bi, Ci to be the terms of ∂L

∂θi
and Aj, Bj, Cj to be the terms of ∂L

∂θj
. Upon taking the

expectation of the product, AiCj = Ci Aj = BiCj = BjCi = 0. Ignoring these, we will look
individually at each of the remaining terms. Starting with Ai Aj

Ai Aj =

(
−1

2
tr
[

Σ−1 ∂Σ
∂θi

])(
−1

2
tr

[
Σ−1 ∂Σ

∂θj

])

=
1
4

tr
[

Σ−1 ∂Σ
∂θi

]
tr

[
Σ−1 ∂Σ

∂θj

] (A6)

Next, calculating BiBj,

BiBj =

[
1
2
(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1(x − μ)

][
1
2
(x − μ)TΣ−1 ∂Σ

∂θj
Σ−1(x − μ)

]

=
1
4

[
(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1(x − μ)(x − μ)TΣ−1 ∂Σ

∂θj
Σ−1(x − μ)

] (A7)

We are required to take the expectation of this, which is a fourth moment of the multivariable
normal distribution. The result of this is

BiBj =
1
4

[
tr
(

Σ−1 ∂Σ
∂θi

)
tr

(
Σ−1 ∂Σ

∂θj

)]
+ 2tr

[(
Σ−1 ∂Σ

∂θi

)(
Σ−1 ∂Σ

∂θj

)]
. (A8)

Turning attention to CiCj,

CiCj =
∂μ

∂θi

T
Σ−1(x − μ)(x − μ)TΣ−1 ∂μ

∂θj

=
∂μ

∂θi

T
Σ−1ΣΣ−1 ∂μ

∂θj

=
∂μ

∂θi

T
Σ−1 ∂μ

∂θj
.

(A9)

The final set of non-vanishing terms, AiBj + Bi Aj are considered simultaneously.
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AiBj + Bi Aj =

(
−1

2
tr
[

Σ−1 ∂Σ
∂θi

])(
1
2
(x − μ)TΣ−1 ∂Σ

∂θj
Σ−1(x − μ)

)

+

(
1
2
(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1(x − μ)

)(
−1

2
tr

[
Σ−1 ∂Σ

∂θj

])

=− 1
4

{(
tr
[

Σ−1 ∂Σ
∂θi

])(
(x − μ)TΣ−1 ∂Σ

∂θj
Σ−1(x − μ)

)

+

(
(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1(x − μ)

)(
tr

[
Σ−1 ∂Σ

∂θj

])}
(A10)

Now, we use the identity
bT Ab = tr(bbT A) (A11)

on all terms of Equation (A10) that do not yet involve the trace of a matrix. Doing so,
Equation (A10) becomes

AiBj + Bi Aj =− 1
4

{(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
(x − μ)(x − μ)TΣ−1 ∂Σ

∂θj
Σ−1

])

+

(
tr
[
(x − μ)(x − μ)TΣ−1 ∂Σ

∂θi
Σ−1

])(
tr

[
Σ−1 ∂Σ

∂θj

])}

=− 1
4

{(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
ΣΣ−1 ∂Σ

∂θj
Σ−1

])

+

(
tr
[

ΣΣ−1 ∂Σ
∂θi

Σ−1
])(

tr

[
Σ−1 ∂Σ

∂θj

])}

=− 1
4

{(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
∂Σ
∂θj

Σ−1

])

+

(
tr
[

∂Σ
∂θi

Σ−1
])(

tr

[
Σ−1 ∂Σ

∂θj

])}
.

(A12)

Once again, we took the expectation as required to find the Fisher information. Finally, we
use the commutative property of trace to clean up the expression in Equation (A12)

AiBj + Bi Aj = −1
4

{(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
Σ−1 ∂Σ

∂θj

])
+

(
tr
[

Σ−1[
∂Σ
∂θi

])(
tr

[
Σ−1 ∂Σ

∂θj

])}

= −1
2

(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
Σ−1 ∂Σ

∂θj

])
.

(A13)
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Combining Equations (A6), (A7, (A9 and (A13) into Equation (A5), we obtain

gi,j(θ) =
1
4

tr
[

Σ−1 ∂Σ
∂θi

]
tr

[
Σ−1 ∂Σ

∂θj

]

+
1
4

[
tr
(

Σ−1 ∂Σ
∂θi

)
tr

(
Σ−1 ∂Σ

∂θj

)]
+ 2tr

[(
Σ−1 ∂Σ

∂θi

)(
Σ−1 ∂Σ

∂θj

)]

+
∂μ

∂θi

T
Σ−1 ∂μ

∂θj

+−1
2

(
tr
[

Σ−1 ∂Σ
∂θi

])(
tr

[
Σ−1 ∂Σ

∂θj

])

=
1
2

tr

[(
Σ−1 ∂Σ

∂θi

)(
Σ−1 ∂Σ

∂θj

)]
+

∂μ

∂θi

T
Σ−1 ∂μ

∂θj
.

(A14)

Appendix B. Fisher Information of a 2-Dimensional Gaussian

The usefulness of Equation (A14) lies in the ability of calculating the individual terms
in the equation. Here, the inverse of a covariance matrix is extremely illusive for a high-
dimensional Gaussian distribution, even after leveraging its symmetric properties.

Considering just a 2 × 2 covariance matrix, Equation (A14) is tractable, since its
inverse is known exactly and is reasonably manageable. Furthermore, we will collect all the
parameters of a general bivariate Gaussian into a single vector, to facilitate the calculation
of each element of the Fisher information matrix.

θ = [θ1, θ1, θ1, θ1, θ1]

=
[
μ1, μ2, σ2

1 , σ2
2 , σ12

] (A15)

Starting with the diagonal elements, g11 and g22 share similar structures. Focusing
just on g11, and consider a 2-dimensional Gaussian with mean vector μT = [μ1, μ2] and
covariance matrix

Σ =

(
σ2

1 σ12
σ12 σ2

2

)
which will be indexed according to Equation (A15). We now have, using the standard
definition of the inverse

Σ−1 =
1

σ2
1 σ2

2 − σ2
12

(
σ2

2 −σ12
−σ12 σ2

1

)
.

For succinctness, we will let k = 1
σ2

1 σ2
2−σ2

12
.

Conveniently, the means are not involved in the covariance matrix, so the first term of
Equation (A14) vanishes. To find g11 we need

g11 =
1
k

[
∂μ

∂μ1

T( σ2
2 −σ12

−σ12 σ2
1

)
∂μ

∂μ1

]

=
1
k

[(
1 0

)( σ2
2 −σ12

−σ12 σ2
1

)(
1
0

)]
=

σ2
2
k

=
σ2

2
σ2

1 σ2
2 − σ2

12
.

(A16)
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Finding g22 easily follows the above, resulting in

g22 =
σ2

1
σ2

1 σ2
2 − σ2

12
. (A17)

Finding the remaining diagonal elements involve the just the first term of Equation (A14).
For the variance of the first variable, we will need to find

g33 =
1
2

⎛⎝tr

[
Σ−1 ∂Σ

∂σ2
1

]2
⎞⎠

=
1
2

(
tr
[

1
k

(
σ2

2 −σ12
−σ12 σ2

1

)(
1 0
0 0

)]2
)

=
1

2k2

(
tr
[(

σ2
2 0

−σ12 0

)]2
)

=
1

2k2

(
tr
[(

(σ2
2 )

2 0
(σ12σ2

2 )
2 0

)])
=

1
2k2 (σ

2
2 )

2

=
1
2

(
σ2

2
σ2

1 σ2
2 − σ2

12

)2

.

(A18)

Once again, the element of the Fisher information matrix for the variance of the second
variable mirrors the above exactly.

g44 =
1
2

(
σ2

1
σ2

1 σ2
2 − σ2

12

)2

. (A19)

The covariance component will complete the diagonal elements of the Fisher informa-
tion matrix.

g55 =
1
2

(
tr
[

Σ−1 ∂Σ
∂σ12

]2
)

=
1
2

(
tr
[

1
k

(
σ2

2 −σ12
−σ12 σ2

1

)(
0 1
1 0

)]2
)

=
1

2k2

(
tr
[(−σ12 σ2

2
σ2

1 −σ12

)]2
)

=
1

2k2

(
tr
[(

σ2
1 σ2

2 + σ2
12 2σ2

2 σ12
2σ2

1 σ12 σ2
1 σ2

2 + σ2
12

)])
=

1
2k2 2(σ2

1 σ2
2 + σ2

12)

=
σ2

1 σ2
2 + σ2

12(
σ2

1 σ2
2 − σ2

12
)2 .

(A20)

The off-diagonal elements are only slightly more involved. However, because the
terms in Equation (A14) involve the partial derivatives, and because the mean vector and
the covariance matrix have no overlapping terms, many of the off-diagonal elements vanish,
specifically the ones that involve both a mean component and a variance component, i.e.,
gij = 0 for i ∈ (1, 2) and j ∈ (3, 4, 5). For the other off-diagonal components, we will
employ all the conveniences of symmetry to complete the Fisher information matrix.
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Turning our attention to the g12, the element concerning the two means:

g12 =
∂μ

∂θ1

T
Σ−1 ∂μ

∂θ2

=
1
k
(
1 0

)( σ2
2 −σ12

−σ12 σ2
1

)(
0
1

)
= −1

k
σ12

= − σ12

σ2
1 σ2

2 − σ2
12

= g21.

(A21)

Next, we consider the elements of the Fisher information matrix involving both
variances, g34

g34 =
1
2

(
tr

[
Σ−1 ∂Σ

∂σ2
1

Σ−1 ∂Σ
∂σ2

2

])

=
1

2k2

(
tr
[(

σ2
2 −σ12

−σ12 σ2
1

)(
1 0
0 0

)(
σ2

2 −σ12
−σ12 σ2

1

)(
0 0
0 1

)])
=

1
2k2

(
tr
[(

σ2
2 0

−σ12 0

)(
0 −σ12
0 σ2

1

)])
=

1
2k2

(
tr
[(

0 −σ2
2 σ12

0 σ2
12

)])

=
1
2

(
σ12

σ2
1 σ2

2 − σ2
12

)2

= g43.

(A22)

The variance/covariance elements of the Fisher information matrix will all have
similar structures. We calculate one of them below

g35 =
1
2

(
tr

[
Σ−1 ∂Σ

∂σ2
1

Σ−1 ∂Σ
∂σ12

])

=
1

2k2

(
tr
[(

σ2
2 −σ12

−σ12 σ2
1

)(
1 0
0 0

)(
σ2

2 −σ12
−σ12 σ2

1

)(
0 1
1 0

)])
=

1
2k2

(
tr
[(

σ2
2 0

−σ12 0

)(−σ12 σ2
2

σ12 −σ12

)])
=

1
2k2

(
tr
[(−σ12σ2

2 σ2
12

σ2
12 −σ12σ2

2

)])
= − σ12σ2

2(
σ2

1 σ2
2 − σ2

12
)2 = g53.

(A23)

Similarly, the element involving the second variance with the covariance is

g45 = g54 = − σ12σ2
1(

σ2
1 σ2

2 − σ2
12
)2 . (A24)
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Abstract: In the present paper, we introduce a class of robust Z-estimators for moment condition models.
These new estimators can be seen as robust alternatives for the minimum empirical divergence estimators.
By using the multidimensional Huber function, we first define robust estimators of the element that
realizes the supremum in the dual form of the divergence. A linear relationship between the influence
function of a minimum empirical divergence estimator and the influence function of the estimator of
the element that realizes the supremum in the dual form of the divergence led to the idea of defining
new Z-estimators for the parameter of the model, by using robust estimators in the dual form of the
divergence. The asymptotic properties of the proposed estimators were proven, including here the
consistency and their asymptotic normality. Then, the influence functions of the estimators were derived,
and their robustness is demonstrated.

Keywords: moment condition models; divergences; robustness

1. Introduction

A moment condition model is a family M1 of probability measures, all defined on the
same measurable space (Rm,B(Rm)), such that∫

g(x, θ)dQ(x) = 0, for all Q ∈ M1. (1)

The parameter θ belongs to Θ ⊂ Rd; the function g := (g1, . . . , gl)
� is defined on Rm × Θ,

each of the gi’s being real-valued, l ≥ d, and the functions g1, . . . , gl and 1X are supposed to be
linearly independent. Denote by M1 the set of all probability measures on (Rm,B(Rm)) and

M1
θ := {Q ∈ M1 :

∫
g(x, θ)dQ(x) = 0}, (2)

such that
M1 =

⋃
θ∈Θ

M1
θ . (3)

Let X1, . . . , Xn be an i.i.d. sample on the random vector X with unknown probability
distribution P0. We considered the problem of the estimation of the parameter θ0 for which
the constraints of the model are satisfied:∫

g(x, θ0)dP0(x) = 0. (4)

We supposed that θ0 is the unique solution of Equation (4). Thus, we assumed that
information about θ0 and P0 is available in the form of l ≥ d functionally independent
unbiased estimating functions, and we used this information to estimate θ0.

Among the best-known estimation methods for moment condition models, we mention
the generalized method of moments (GMM) [1], the continuous updating (CU) estimator [2],
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the empirical likelihood (EL) estimator [3,4], the exponential tilting (ET) estimator [5], and the
generalized empirical likelihood (GEL) estimators [6]. Although the EL estimator is superior
to other estimators in terms of higher-order asymptotic properties, these properties hold only
under the correct specification of the moment conditions. In [7] was proposed the exponen-
tially tilted empirical likelihood (ETEL) estimator, which has the same higher-order property
as the EL estimator under the correct specification, while maintaining the usual asymptotic
properties such as the consistency and asymptotic normality under misspecification. The
so-called information and entropy econometric techniques have been proposed to improve
the finite sample performance of the GMM-estimators and tests (see, e.g., [4,5]).

Some recent methods for the estimation and testing of moment condition models are
based on using divergences. Divergences between probability measures are widely used in
statistics and data science in order to perform inference in models of various kinds, para-
metric or semiparametric. Statistical methods based on divergence minimization extend
the likelihood paradigm and often have the advantage of providing a trade-off between
efficiency and robustness [8–11]. A general methodology for the estimation and testing of
moment condition models was developed in [12]. This approach is based on minimizing
divergences in their dual form and allows the asymptotic study of the estimators, called
minimum empirical divergence estimators, and of the associated test statistics, both under
the model and under misspecification of the model. The approach based on minimizing
dual forms of divergences was initially used in the case of parametric models, the results
being published in a series of articles [13–16]. The broad class of minimum empirical diver-
gence estimators contains in particular the EL estimator, the CU estimator, as well as the
ET estimator mentioned above. Using the influence function as the robustness measure, it
has been shown that the minimum empirical divergence estimators are not robust, because
the corresponding influence functions are generally not bounded [17]. On the other hand,
the minimum empirical divergence estimators have the same efficiency of first order, and
moreover, the EL estimator, which belong to this class, is superior in higher-order efficiency.
Therefore, proposing robust versions of the minimum empirical divergence estimators
would bring a trade-off between robustness and efficiency. These aspects motivated our
studies in the present paper.

Some robust estimation methods for moment condition models have been proposed
in the literature, for example in [18–22]. In the present paper, we introduce a class of
robust Z-estimators for moment condition models. These new estimators can be seen
as robust alternatives for the minimum empirical divergence estimators. By using the
multidimensional Huber function, we first define robust estimators of the element that
realizes the supremum in the dual form of the divergence. A linear relationship between
the influence function of a minimum empirical divergence estimator and the influence
function of the estimator of the element that realizes the supremum in the dual form
of the divergence led to the idea of defining new Z-estimators for the parameter of the
model, by using robust estimators in the dual form of the divergence. The asymptotic
properties of the proposed estimators were proven, including here the consistency and
their asymptotic normality. Then, the influence functions of the estimators were derived,
and their robustness is demonstrated.

The paper is organized as follows. In Section 2, we briefly recall the context and the
definitions of the minimum empirical divergence estimators, these being necessary for
defining the new estimators. In Section 3, the new Z-estimators for moment condition
models are defined. The asymptotic properties of these estimators were proven, including
here the consistency and their asymptotic normality. Then, the influence functions of the
estimators were derived, and their robustness is demonstrated. The proofs of the theoretical
results are deferred in Appendix A.
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2. Minimum Empirical Divergence Estimators

2.1. Statistical Divergences

Let ϕ be a convex function defined on R and [0, ∞]-valued, such that ϕ(1) = 0, and
let P ∈ M1 be some probability measure. For any signed finite measure Q defined on the
same measurable space (Rm,B(Rm)), absolutely continuous (a.c.) with respect to P, the ϕ
divergence between Q and P is defined by

Dϕ(Q, P) :=
∫

ϕ

(
dQ
dP

(x)
)

dP(x). (5)

When Q is not a.c. with respect to P, we set Dϕ(Q, P) = ∞. This extension, for the case
when Q is not absolutely continuous with respect to P, was considered in order to have a
unique definition of divergences, appropriate for both cases—that of continuous probability
laws and that of discrete probability laws.

This definition extends the one of divergences between probability measures [23], and
the necessity of working with signed finite measures will be explained in Section 2.2.

Largely used in information theory, the Kullback–Leibler divergence is associated with
the real convex function ϕ(x) := x log x − x + 1 and is defined by

KL(Q, P) :=
∫

log
(

dQ
dP

)
dQ.

The modified Kullback–Leibler divergence is associated with the convex function
ϕ(x) := − log x + x − 1 and is defined through

KLm(Q, P) :=
∫

− log
(

dQ
dP

)
dP.

Other divergences, largely used in inferential statistics, are the χ2 and the modified χ2

divergences, namely

χ2(Q, P) :=
1
2

∫ (dQ
dP

− 1
)2

dP,

χ2
m(Q, P) :=

1
2

∫ (
dQ
dP − 1

)2

dQ
dP

dP,

these being associated with the convex functions ϕ(x) := 1
2 (x − 1)2 and ϕ(x) := 1

2 (x −
1)2/x, respectively. The Hellinger distance and the L1 distance are also ϕ divergences.
They are associated with the convex functions ϕ(x) := 2(

√
x − 1)2 and ϕ(x) := |x − 1|,

respectively.
All the preceding examples, except the L1 distance, belong to the class of power

divergences introduced by Cressie and Read [24] and defined by the convex functions:

x ∈ R
∗
+  → ϕγ(x) :=

xγ − γx + γ − 1
γ(γ − 1)

, (6)

for γ ∈ R \ {0, 1} and ϕ0(x) := − log x + x − 1, ϕ1(x) := x log x − x + 1. The Kullback–
Leibler divergence is associated with ϕ1, the modified Kullback–Leibler with ϕ0, the χ2

divergence with ϕ2, the modified χ2 divergence with ϕ−1, and the Hellinger distance with
ϕ1/2. When ϕγ is not defined on (−∞, 0) or when ϕγ is not convex, the definition of the
corresponding power divergence function Q ∈ M1  → Dϕγ(Q, P) can be extended to the
whole set of signed finite measures by taking the following extension of ϕγ:

ϕγ : x ∈ R  → ϕγ(x)1[0,∞)(x) + (+∞)1(−∞,0)(x).
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The ϕ divergence between some set Ω of signed finite measures and a probability
measure P is defined by

Dϕ(Ω, P) = inf
Q∈Ω

Dϕ(Q, P). (7)

Assuming that Dϕ(Ω, P) is finite, a measure Q∗ ∈ Ω is called a ϕ-projection of P on Ω if

Dϕ(Q∗, P) ≤ Dϕ(Q, P), for all Q ∈ Ω.

2.2. Minimum Empirical Divergence Estimators

Let X1, . . . , Xn be an i.i.d. sample on the random vector X with the probability dis-
tribution P0. The “plug-in” estimator of the ϕ divergence Dϕ(M1

θ , P0) between the set
M1

θ and the probability measure P0 is defined by replacing P0 with the empirical measure
associated with the sample. More precisely,

D̂ϕ(M1
θ , P0) = inf

Q∈M1
θ

Dϕ(Q, Pn) = inf
Q∈M1

θ

∫
ϕ

(
dQ
dPn

(x)
)

dPn(x), (8)

where Pn := 1
n ∑n

i=1 δXi is the empirical measure associated with the sample, δx being the
Dirac measure putting all mass at x. If the projection of the measure Pn on M1

θ exists, it is a
law a.c. with respect to Pn. Then, it is natural to consider

M(n)
θ = {Q ∈ M1 : Q a.c. with respect to Pn and

n

∑
i=1

g(Xi, θ)Q(Xi) = 0}, (9)

and then, the plug-in estimator (8) can be written as

D̂ϕ(M1
θ , P0) = inf

Q∈M(n)
θ

1
n

n

∑
i=1

ϕ(nQ(Xi)). (10)

The infimum in the above expression (10) may be achieved at a point situated on the
frontier of the set M(n)

θ , a case in which the Lagrange method for characterizing the infimum
and computing D̂ϕ(M1

θ , P0) cannot be applied. In order to avoid this difficulty, Broniatowski
and Keziou [12,25] proposed to work on sets of signed finite measures and defined

Mθ := {Q ∈ M :
∫

dQ = 1 and
∫

g(x, θ)dQ(x) = 0}, (11)

where M denotes the set of all signed finite measures on the measurable space (Rm,B(Rm)), and

M :=
⋃

θ∈Θ

Mθ . (12)

They showed that, if Q∗
1 the projection of Pn on M1

θ is an interior point of M1
θ and Q∗ the

projection of Pn on Mθ is an interior point of Mθ , then both approaches based on signed
finite measures, respectively on probability measures, for defining minimum divergence
estimators coincide. On the other hand, in the case when Q∗

1 is a frontier point of M1
θ , the

estimator of the parameter θ0 defined using the context of signed finite measures converges
to θ0. These aspects justify the substitution of M1

θ by Mθ .
In the following, we briefly recall the definitions of the estimators for the moment

condition proposed in [12] in the context of signed finite measure sets.
Denote by g the function defined on Rm × Θ and Rl+1-valued:

g(x, θ) := (1X (x), g1(x, θ), . . . , gl(x, θ))�. (13)
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Given a ϕ divergence, when the function ϕ is strictly convex on its domain, denote

ϕ∗(u) := uϕ′−1(u)− ϕ(ϕ′−1(u)),

the convex conjugate of the function ϕ. For a given probability measure P ∈ M1 and a fixed
θ ∈ Θ, define

Λθ(P) := {t ∈ R
l+1 :

∫
|ϕ∗(t0 +

l

∑
j=1

tjgj(x, θ))|dP(x) < ∞}. (14)

We also use the notations Λθ for Λθ(P0) and Λ(n)
θ for Λθ(Pn).

Supposing that P0 admits a projection Q∗
θ on Mθ with the same support as P0 and that

the function ϕ is strictly convex on its domain, then the ϕ divergence Dϕ(Mθ , P0) admits
the dual representation:

Dϕ(Mθ , P0) = sup
t∈Λθ

∫
m(x, θ, t)dP0(x), (15)

where m(x, θ, t) := t0 − ϕ∗(t�g(x, θ)).
The supremum in (15) is unique and is reached at a point that we denote as tθ = tθ(P0):

tθ := arg sup
t∈Λθ

∫
m(x, θ, t)dP0(x). (16)

Then, Dϕ(Mθ , P0), tθ , Dϕ(M, P0) and θ0 can be estimated respectively by

D̂ϕ(Mθ , P0) := sup
t∈Λ(n)

θ

∫
m(x, θ, t)dPn(x), (17)

t̂θ := arg sup
t∈Λ(n)

θ

∫
m(x, θ, t)dPn(x), (18)

D̂ϕ(M, P0) := inf
θ∈Θ

sup
t∈Λ(n)

θ

∫
m(x, θ, t)dPn(x), (19)

θ̂ϕ := arg inf
θ∈Θ

sup
t∈Λ(n)

θ

∫
m(x, θ, t)dPn(x). (20)

The estimators defined in (20) are called minimum empirical divergence estimators. We
refer to [12] for the complete study of the existence and of the asymptotic properties of the
above estimators.

The influence functions of these estimators and corresponding robustness properties
were studied in [17]. According to those results, for θ ∈ Θ fixed, the influence function of
the estimator t̂θ is given by

IF(x; tθ , P0) = −
[∫

∂2

∂2t
m(y, θ, tθ(P0))dP0(y)

]−1
∂

∂t
m(x, θ, tθ(P0)), (21)

where
∂

∂t
m(x, θ, t) = (1, 0l)

� − ϕ′−1(t�g(x, θ))g(x, θ), (22)

∂2

∂2t
m(x, θ, t) = − 1

ϕ′′(ϕ′−1(t�g(x, θ)))
g(x, θ)g(x, θ)�, (23)
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with the particular case θ = θ0:

IF(x; tθ0 , P0) = −ϕ′′(1)
[∫

g(y, θ0)g(y, θ0)
�dP0(y)

]−1
(0, g(x, θ0)

�)�. (24)

On the other hand, the influence function of the estimator θ̂ϕ is given by

IF(x; Tϕ, P0) = −
{[∫

∂
∂θ g(y, θ0)dP0(y)

]�[∫
g(y, θ0)g(y, θ0)

�dP0(y)
]−1 ∫ ∂

∂θ g(y, θ0)dP0(y)
}−1

·
[∫

∂
∂θ g(y, θ0) dP0(y)

]�[∫
g(y, θ0)g(y, θ0)

�dP0(y)
]−1g(x, θ0).

(25)

Since the function x  → g(x, θ) is usually not bounded, for example, when we have linear
constraints, the influence function IF(x; Tϕ, P0) is not bounded; therefore, the minimum
empirical divergence estimators θ̂ϕ defined in (20) are generally not robust.

Through the calculations, it can be seen that there is a connection between the influence
functions IF(x; tθ0 , P0) and IF(x; Tϕ, P0), namely the relation[∫

∂

∂θ
g(y, θ0)dP0(y)

]�
·
{

∂

∂θ
t(θ0, P0)IF(x; Tϕ, P0) + IF(x; tθ0 , P0)

}
= 0.

Since IF(x; Tϕ, P0) is linearly related to IF(x; tθ0 , P0), using a robust estimator of tθ = tθ(P0)
in the original duality Formula (15) would lead to a new robust estimator of θ0. This is the
idea at the basis of our proposal in this paper, for constructing new robust estimators for
moment condition models.

3. Robust Estimators for Moment Condition Models

3.1. Definitions of New Estimators

In this section, we define robust versions of the estimators t̂θ from (18) and robust
versions of minimum empirical divergence estimators θ̂ϕ from (20). First, we define robust
estimators of tθ , by using a truncated version of the function x  → ∂

∂t m(x, θ, t), and then, we
insert such a robust estimator in the estimating equation corresponding to the minimum
empirical divergence estimator. The truncated function is based on the multidimensional
Huber function and contains a shift vector τθ and a scale matrix Aθ to calibrate tθ and, thus,
tθ , which realizes the supremum in the duality formula, will also be the solution of a new
equation based on the new truncated function.

For simplicity, for fixed θ ∈ Θ, we also use the notation mθ(x, t) := m(x, θ, t). With
this notation, tθ = tθ(P0) defined in (16) is the unique solution of the equation:∫

∂

∂t
mθ(x, tθ(P0))dP0(x) = 0. (26)

Consider the system∫
∂

∂t
mθ(y, t)dP0(y) = 0 (27)∫

Hc(A[
∂

∂t
mθ(y, t)− τ])dP0(y) = 0 (28)∫

Hc(A[
∂

∂t
mθ(y, t)− τ])Hc(A[

∂

∂t
mθ(y, t)− τ])�dP0(y) = I�+1 (29)

where

Hc(y) :=

{
y · min

(
1, c

‖y‖

)
if y �= 0

0 if y = 0
(30)
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is the multidimensional Huber function, with c > 0, I�+1 the identity matrix, A is a
(l + 1)× (l + 1) matrix, and τ ∈ Rl+1. For fixed θ, this system admits a unique solution
(t, A, τ) = (tθ(P0), Aθ(P0), τθ(P0)) (according to [18], p. 17).

The multidimensional Huber function is useful to define robust estimators; it trans-
forms each point outside a hypersphere of c radius to the nearest point of it and leaves
those inside unchanged (see [26], p. 239, [27]). By applying the multidimensional Huber
function to the function y  → ∂

∂t mθ(y, t), together with considering the scale matrix Aθ and
the shift vector τθ , a modification is produced there, where the norm exceeds the bound
c, and in the meantime, the original tθ remains the solution of the equation based on the
new truncated function. For parametric models, the multidimensional Huber function was
also used in other contexts, for example to define optimal Bs-robust estimators or optimal
Bi-robust estimators (see [26], p. 244).

The above arguments can be used for each probability measure P from the moment
condition model M1. This context allows defining the truncated version of the function
y  → ∂

∂t mθ(y, t), which we denote by ψθ(y, t), such that the original tθ(P0), the solution of
Equation (26), is also the solution of the equation

∫
ψθ(y, tθ(P0))dP0(y) = 0.

For θ fixed and P a probability measure, the equation
∫

∂
∂t mθ(y, t)dP(y) = 0 has

a unique solution t = tθ(P) ∈ Λθ(P) assuring the supremum in the dual form of the
divergence Dϕ(Mθ , P) (see [12]). For each t, we define the Aθ(t) and τθ(t) solutions of the
system: ∫

Hc(Aθ(t)[
∂

∂t
mθ(y, t)− τθ(t)])dP(y) = 0 (31)∫

Hc(Aθ(t)[
∂

∂t
mθ(y, t)− τθ(t)])Hc(Aθ(t)[

∂

∂t
mθ(y, t)− τθ(t)])�dP(y) = I�+1. (32)

We define a new estimator t̂c
θ of tθ = tθ(P0), as a Z-estimator corresponding to the ψ-

function:
ψθ(x, t) := Hc(Aθ(t)[

∂

∂t
mθ(x, t)− τθ(t)]); (33)

more precisely, t̂c
θ is defined by

∫
ψθ(y, t̂c

θ)dPn(y) = 0 or
n

∑
i=1

Hc(Aθ(t̂c
θ)[

∂

∂t
mθ(Xi, t̂c

θ)− τθ(t̂c
θ)]) = 0, (34)

the theoretical counterpart of this estimating equation being∫
ψθ(y, tθ(P0))dP0(y) = 0. (35)

For a given probability measure P, the statistical functional tc
θ(P) associated with the

estimator t̂c
θ , whenever it exists, is defined by∫

ψθ(y, tc
θ(P))dP(y) =

∫
Hc(Aθ(tc

θ(P))[
∂

∂t
mθ(y, tc

θ(P))− τθ(tc
θ(P))])dP(y) = 0. (36)

Note that
tc
θ(P0) = tθ(P0), (37)

by construction.

Remark 1. We notice a similarity between the Z-estimator defined in (34) and the classical optimal
Bs-robust estimator for parametric models from [26]. In the case of the parametric models, the
M-estimator corresponding to the ψ-function (33), but defined for the classical score function
∂
∂t (ln ft(x)) =

∂
∂t ft(x)
ft(x) instead of the function ∂

∂t mθ(x, t) (inclusively in the system (31) and (32)
defining Aθ(t) and τθ(t)), is the classical optimal Bs-robust estimator ( ft(x) denotes the density
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corresponding to a parametric model indexed by the parameter t). The classical optimal Bs-robust
estimator for parametric models has the optimal property that minimizes a measure of the asymptotic
mean-squared error, among all the Fisher-consistent estimators with a self-standardized sensitivity
smaller than the positive constant c.

In the following, for a given divergence, using the estimators t̂c
θ for tθ(P0), we con-

structed new estimators of the parameter θ0 of the model. In Section 3.3, we prove that all
the estimators t̂c

θ are robust, and this property will be transferred to the new estimators that
we define for the parameter θ0.

To define new estimators for θ0, we used the dual representation (15) of the divergence
Dϕ(Mθ , P0). Since

θ0 = arg inf
θ∈Θ

Dϕ(Mθ , P0) = arg inf
θ∈Θ

sup
t∈Λθ

∫
mθ(y, t)dP0(y) (38)

= arg inf
θ∈Θ

∫
mθ(y, tθ(P0))dP0(y), (39)

θ = θ0 is the solution of the equation:∫
∂

∂θ
[m(y, θ, t(θ, P0))]dP0(y) = 0, (40)

where we used the notation t(θ, P) := tθ(P). Equation (40) may be written as∫
∂

∂θ
m(y, θ0, t(θ0, P0))dP0(y) +

∂

∂θ
t(θ0, P0)

�
∫

∂

∂t
m(y, θ0, t(θ0, P0))dP0(y) = 0. (41)

On the basis of the definition of tθ(P0) = t(θ, P0), for θ = θ0, we have∫
∂

∂t
m(y, θ0, t(θ0, P0))dP0(y) = 0; (42)

therefore, we deduce that θ = θ0 is the solution of equation:∫
∂

∂θ
m(y, θ, t(θ, P0))dP0(y) = 0. (43)

Using (37), namely tc(θ, P0) = t(θ, P0), we obtain that θ = θ0 is in fact the solution of equation:∫
∂

∂θ
m(y, θ, tc(θ, P0))dP0(y) = 0. (44)

Then, we define a new estimator θ̂c
ϕ of θ0, as a plug-in estimator solution of the

equation: ∫
∂

∂θ
m(y, θ̂c

ϕ, tc(θ̂c
ϕ, Pn))dPn(y) = 0. (45)

For a probability measure P, the statistical functional Tc corresponding to the estimator
θ̂c

ϕ, whenever it exists, is defined by

∫
∂

∂θ
m(y, Tc(P), tc(Tc(P), P))dP(y) = 0. (46)

The functional Tc is Fisher-consistent, because

Tc(P0) = θ0. (47)

This equality is obtained by using (46) for P = P0, the fact that tc(Tc(P0), P0) = t(Tc(P0), P0),
and the definition of tθ(P0) = t(θ, P0) for θ = Tc(P0), all these leading to
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∫
∂

∂θ
m(y, Tc(P0), t(Tc(P0), P0))dP0(y) +

∂

∂θ
t(Tc(P0), P0)

�
∫

∂

∂t
m(y, Tc(P0), t(Tc(P0), P0))dP0(y) = 0. (48)

Since θ0 is the unique solution of Equation (41) and, according to (48), Tc(P0) would be
another solution to the same equation, we deduce (47).

From (34) and (45), we have∫
ψ

θ̂c
ϕ
(y, tc(θ̂c

ϕ, Pn))dPn(y) = 0,∫
∂
∂θ m(y, θ̂c

ϕ, tc(θ̂c
ϕ, Pn))dPn(y) = 0,

and then, ∫
ψ(y, θ̂c

ϕ, t̂c
θ̂c

ϕ
)dPn(y) = 0,∫

∂
∂θ m(y, θ̂c

ϕ, t̂c
θ̂c

ϕ
)dPn(y) = 0,

with ψ(y, θ, t) := ψθ(y, t). The couple of estimators θ̂c
ϕ, t̂c

θ̂c
ϕ

can be viewed as a Z-estimator

solution of the above system. Denoting

Ψ(y, θ, t) := (ψ(y, θ, t)�, (
∂

∂θ
m(y, θ, t))�)�, (49)

the Z-estimators θ̂c
ϕ, t̂c

θ̂c
ϕ

are the solutions of the system:

∫
Ψ(y, θ̂c

ϕ, t̂c
θ̂c

ϕ
)dPn(y) = 0, (50)

and the theoretical counterpart is given by∫
Ψ(y, θ0, tθ0)dP0(y) = 0. (51)

3.2. Asymptotic Properties

In this section, we establish the consistency and the asymptotic distributions for the
estimators θ̂c

ϕ and t̂c
θ̂c

ϕ
. In order to prove the consistency of the estimators, we adopted the

results from the general theory of Z-estimators as presented for example in [28]. Then,
using the consistency of the estimators, as well as supplementary conditions, we proved
that the asymptotic distributions of the estimators are multivariate normal:

Assumption 1.

(a) There exist compact neighbourhoods Vθ0 of θ0 and Vtθ0
of tθ0 such that

∫
sup

θ∈Vθ0
,t∈Vtθ0

‖Ψ(y, θ, t)‖dP0(y) < ∞.

(b) For any positive ε, the following condition holds

inf
(θ,t)∈M

‖
∫

Ψ(y, θ, t)‖dP0(y) > 0 = ‖
∫

Ψ(y, θ0, tθ0)dP0(y)‖,

where M := {(θ, t) s.t. ‖(θ, t)− (θ0, tθ0)‖ > ε}.

Proposition 1. Under Assumption 1, θ̂c
ϕ converges in probability to θ0 and t̂c

θ̂c
ϕ

converges in

probability to tθ0 :
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Assumption 2.

(a) Both estimators θ̂c
ϕ and t̂c

θ̂c
ϕ

converge in probability to θ0 and tθ0 , respectively.

(b) The function (θ, t)  → ψ(x, θ, t) is C2 on some neighbourhood V(θ0, tθ0) for all x (P0 a.s.), and
the partial derivatives of order two of the functions {(θ, t)  → ψ(x, θ, t); (θ, t) ∈ V(θ0, tθ0)}
are dominated by some P0-integrable function H1(x).

(c) The function (θ, t)  → m(x, θ, t) is C3 on some neighbourhood U(θ0, tθ0) for all x (P0 a.s.), and
the partial derivatives of order three of the functions {(θ, t)  → m(x, θ, t); (θ, t) ∈ U(θ0, tθ0)}
are dominated by some P0-integrable function H2(x).

(d)
∫
‖ ∂

∂θ m(y, θ0, tθ0)‖2dP0(y) is finite, and the matrix:

S :=
(

S11 S12
S21 S22

)
, (52)

with S11 := (
∫

∂
∂t ψ(y, θ0, tθ0)dP0(y))�, S12 := (

∫
∂
∂θ ψ(y, θ0, tθ0)dP0(y))�,

S21 := (
∫

∂2

∂θ∂t m(y, θ0, tθ0)dP0(y))� and S22 :=
∫

∂2

∂2θ
m(y, θ0, tθ0)dP0(y), exists and is

invertible.

Proposition 2. Let P0 belong to the model M1, and suppose that Assumption 2 holds. Then, both√
n(θ̂c

ϕ − θ0) and
√

n(t̂c
θ̂c

ϕ
− tθ0) converge in distribution to a centred multivariate normal variable

with covariance matrices given by

[[S21S−1
11 S12]

−1S21S−1
11 ]× [[S21S−1

11 S12]
−1S21S−1

11 ]�, (53)

and

[S−1
11 − S−1

11 S12[S21S−1
11 S12]

−1S21S−1
11 ]× [S−1

11 − S−1
11 S12[S21S−1

11 S12]
−1S21S−1

11 ]�. (54)

The condition of Type (a) from Assumption 1 is usually considered to apply the
uniform law of large numbers. For many choices of divergence (for example, those from the
Cressie–Read family), the function Ψ is continuous in (θ, t), and consequently, this condition
is verified. The second condition from Assumption 1 is imposed for the uniqueness of
(θ0, tθ0) as a solution of the equation and is verified, for example, whenever Ψ is continuous
and the parameter space is compact ([28], p. 46). Furthermore, the conditions of Type
(b)–(d), included in Assumption 2, are often imposed in order to apply the law of large
numbers or the central limit theorem and can be verified for the functions appearing in the
definitions of estimators proposed in the present paper.

3.3. Influence Functions and Robustness

In this section, we derive the influence functions of the estimators t̂c
θ and θ̂c

ϕ and prove
their B-robustness. The corresponding statistical functionals are defined by (36) and (46), re-
spectively.

Recall that, a map T, defined on a set of probability measures and parameter-space-
valued, is a statistical functional corresponding to an estimator θ̂ of the parameter θ0 from
the model P0, if θ̂ = T(Pn), Pn being the empirical measure corresponding to the sample.
The influence function of T at P0 is defined by

IF(x; T, P0) :=
∂T(P̃εx)

∂ε

∣∣∣∣∣
ε=0

,

where P̃εx := (1 − ε) P0 + ε δx, δx being the Dirac measure. An unbounded influence func-
tion implies an unbounded asymptotic bias of a statistic under single-point contamination
of the model. Therefore, a natural robustness requirement on a statistical functional is the
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boundedness of its influence function. Whenever the influence function is bounded with
respect to x, the corresponding estimator is called B-robust [26].

Proposition 3. For fixed θ, the influence function of the functional tc
θ is given by

IF(x; tc
θ , P0) = −

{∫
∂

∂t
ψθ(y, tθ(P0))dP0(y)

}−1
· ψθ(x, tθ(P0)). (55)

Proposition 4. The influence function of the functional Tc is given by

IF(x; Tc, P0)=

{[
∂
∂θ g(y, θ0)dP0(y)

]�[∫
g(y, θ0)g(y, θ0)

�dP0(y)
]−1

[
∂
∂θ g(y, θ0)dP0(y)

]}−1

·
[

∂
∂θ g(y, θ0)dP0(y)

]� 1
ϕ′′(1) IF(x; tc

θ0
, P0).

(56)

On the basis of Propositions 3 and 4, since x  → ψθ(x, tθ(P0)) is bounded, all the
estimators θ̂c

ϕ are B-robust.

4. Conclusions

We introduced a class of robust Z-estimators for moment condition models. These new
estimators can be seen as robust alternatives for the minimum empirical divergence estimators.
By using truncated functions based on the multidimensional Huber function, we defined
robust estimators of the element that realizes the supremum in the dual form of the divergence,
as well as new robust estimators for the parameter of the model. The asymptotic properties
were proven, including the consistency and the limit laws. The influence functions for all
the proposed estimators are bounded; therefore, these estimators are B-robust. The truncated
function that we used to define the new robust Z-estimators contains functions implicitly
defined, for which analytic forms are not available. The implementation of the estimation
method will be addressed in a future research study. The idea of using the multidimensional
Huber function, together with a scale matrix and a shift vector, to create a bounded version of
the function corresponding to the estimating equation for the parameter of interest, could be
considered in other contexts as well and would lead to new robust Z-estimators. As one of
the Referees suggested, some other bounded functions could be used to define new robust
Z-estimators for moment condition models. For example, the Tukey biweight function used
together with a norm inside, in order to be appropriate to be applied to functions with vector
values, could also be considered. Again, the original parameter of interest should remain
the solution of the estimating equation based on the new bounded function. Such an idea
is interesting to be analysed in future studies, in order to provide new robust versions of
minimum empirical divergence estimators or robust Z-estimators in other contexts.
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Abbreviations

The following abbreviations are used in this manuscript:

i.i.d. independent and identically distributed
a.c. absolutely continuous
GMM generalized method of moments
CU continuous updating
EL empirical likelihood
ET exponential tilting
GEL generalized empirical likelihood
ETEL exponentially tilted empirical likelihood

Appendix A

Proof of Proposition 1. Since (θ, t)  → Ψ(y, θ, t) is continuous, by the uniform law of large
numbers, Assumption 1 (a) implies

sup
θ∈Vθ0,t∈Vtθ0

‖
∫

Ψ(y, θ, t)dPn(y)−
∫

Ψ(y, θ, t)dP0(y)‖ → 0, (A1)

in probability. This result together with Assumption 1 (b) ensures the convergence in
probability of the estimators θ̂c

ϕ and t̂c
θ̂c

ϕ
toward θ0 and tθ0 , respectively. The proof is the

same as the one for Theorem 5.9 from [28], p. 46.

Proof of Proposition 2. By the definitions of θ̂c
ϕ and t̂c

θ̂c
ϕ
, they both satisfy∫

ψ(y, θ̂c
ϕ, t̂c

θ̂c
ϕ
)dPn(y) = 0 (E1)

∫
∂

∂θ
m(y, θ̂c

ϕ, t̂c
θ̂c

ϕ
)dPn(y) = 0 (E2)

Using a Taylor expansion in (E1), there exists (θ̃c
ϕ, t̃c

ϕ) inside the segment that links
(θ̂c

ϕ, t̂c
θ̂c

ϕ
) and (θ0, tθ0) such that

0 =
∫

ψ(y, θ0, tθ0)dPn(y) +
[
(
∫

∂
∂t ψ(y, θ0, tθ0)dPn(y))�,

(
∫

∂
∂θ ψ(y, θ0, tθ0)dPn(y))�

]
· an +

1
2 a�n Anan,

(A2)

where
an := ((t̂c

θ̂c
ϕ
− tθ0)

�, (θ̂c
ϕ − θ0)

�)�, (A3)

and

An :=

( ∫
∂2

∂2t ψ(y, θ̃c
ϕ, t̃c

ϕ)dPn(y)
∫

∂2

∂θ∂t ψ(y, θ̃c
ϕ, t̃c

ϕ)dPn(y)∫
∂2

∂t∂θ ψ(y, θ̃c
ϕ, t̃c

ϕ)dPn(y)
∫

∂2

∂2θ
ψ(y, θ̃c

ϕ, t̃c
ϕ)dPn(y)

)
. (A4)

By Assumption 2 (b), the law of large numbers implies that An = OP(1). Then, using
Assumption 2 (a), the last term in (A2) can be written oP(1)an. On the other hand, by
Assumption 2 (d), using the law of large numbers, we can write[

(
∫

∂
∂t ψ(y, θ0, tθ0)dPn(y))�, (

∫
∂
∂θ ψ(y, θ0, tθ0)dPn(y))�

]
=
[
(
∫

∂
∂t ψ(y, θ0, tθ0)dP0(y))�, (

∫
∂
∂θ ψ(y, θ0, tθ0)dP0(y))�

]
+ oP(1).

Consequently, (A2) becomes

−
∫

ψ(y, θ0, tθ0)dPn(y)
=
[
(
∫

∂
∂t ψ(y, θ0, tθ0)dP0(y))� + oP(1), (

∫
∂
∂θ ψ(y, θ0, tθ0)dP0(y))� + oP(1)

]
· an.

(A5)
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In the same way, using a Taylor expansion in (E2), there exists (θ
c
ϕ, tc

ϕ) inside the
segment that links (θ̂c

ϕ, t̂c
θ̂c

ϕ
) and (θ0, tθ0) such that

0 =
∫

∂
∂θ m(y, θ0, tθ0)dPn(y) +

[
(
∫

∂2

∂θ∂t m(y, θ0, tθ0)dPn(y))�,

(
∫

∂2

∂2θ
m(y, θ0, tθ0)dPn(y))�

]
· an +

1
2 a�n Bnan,

(A6)

where

Bn :=

( ∫
∂3

∂θ∂2t m(y, θ
c
ϕ, tc

ϕ)dPn(y)
∫

∂3

∂2θ∂t m(y, θ
c
ϕ, tc

ϕ)dPn(y)∫
∂3

∂θ∂t∂θ m(y, θ
c
ϕ, t̃c

ϕ)dPn(y)
∫

∂3

∂3θ
m(y, θ

c
ϕ, tc

ϕ)dPn(y)

)
. (A7)

Similarly, as in (A5), we obtain

−
∫

∂
∂θ m(y, θ0, tθ0)dPn(y)

=
[
(
∫

∂2

∂θ∂t m(y, θ0, tθ0)dP0(y))� + oP(1),
∫

∂2

∂2θ
m(y, θ0, tθ0)dP0(y) + oP(1)

]
· an.

(A8)

Using (A5) and (A8), we obtain

√
nan =

√
n

(
(
∫

∂
∂t ψ(y, θ0, tθ0)dP0(y))� (

∫
∂
∂θ ψ(y, θ0, tθ0)dP0(y))�

(
∫

∂2

∂θ∂t m(y, θ0, tθ0)dPn(y))�
∫

∂2

∂2θ
m(y, θ0, tθ0)dPn(y)

)−1

×
( −

∫
ψ(y, θ0, tθ0)dPn(y)

−
∫

∂
∂θ m(y, θ0, tθ0)dPn(y)

)
+ oP(1).

(A9)

Consider S the (l + 1 + d)× (l + 1 + d) matrix:

S :=
(

S11 S12
S21 S22

)
, (A10)

with S11 := (
∫

∂
∂t ψ(y, θ0, tθ0)dP0(y))�, S12 := (

∫
∂
∂θ ψ(y, θ0, tθ0)dP0(y))�,

S21 := (
∫

∂2

∂θ∂t m(y, θ0, tθ0)dP0(y))�, and S22 :=
∫

∂2

∂2θ
m(y, θ0, tθ0)dP0(y). Through calcu-

lations, we have

S21 = −[0d,
∫

∂

∂θ
g(y, θ0)dP0(y)], (A11)

S22 = [0d, . . . , 0d]. (A12)

From (A9), we deduce that

√
n

(
t̂c
θ̂c

ϕ
− tθ0

θ̂c
ϕ − θ0

)
= S−1√n

(− ∫
ψ(y, θ0, tθ0)dPn(y)

0d

)
+ oP(1). (A13)

On the other hand, under assumption Assumption 2 (d), using the central limit
theorem,

√
n
(− ∫

ψ(y, θ0, tθ0)dPn(y)
0d

)
(A14)

converges in distribution to a centred multivariate normal variable with covariance matrix:

M :=
(

M11 M12
M21 M22

)
, (A15)

267



Entropy 2023, 25, 1013

with

M11 := cov[ψ(X, θ0, tθ0)], M12 :=

⎛⎜⎝0�d
...

0�d

⎞⎟⎠, M21 :=

⎛⎜⎝0
...
0

0�l
...

0�l

⎞⎟⎠, M22 :=

⎛⎜⎝0�d
...

0�d

⎞⎟⎠.

Since E[ψ(X, θ0, tθ0)] = 0 by the construction of ψ, we obtain

M11 = cov[ψ(X, θ0, tθ0)] =
∫

ψ(y, θ0, tθ0)ψ(y, θ0, tθ0)
�dP0(y) = Il+1, (A16)

on the basis of (29) for θ = θ0.
Using then (A13) and the Slutsky theorem, we obtain that

√
n

(
t̂c
θ̂c

ϕ
− tθ0

θ̂c
ϕ − θ0

)
(A17)

converges in distribution to a centred multivariate normal variable with the covariance
matrix given by

C = S−1M[S−1]�. (A18)

If we denote

C :=
(

C11 C12
C21 C22

)
, (A19)

through calculation, we obtain

C11 = [S−1
11 − S−1

11 S12[S21S−1
11 S12]

−1S21S−1
11 ]× [S−1

11 − S−1
11 S12[S21S−1

11 S12]
−1S21S−1

11 ]�, (A20)

C12 = [S−1
11 − S−1

11 S12[S21S−1
11 S12]

−1S21S−1
11 ]× [[S21S−1

11 S12]
−1S21S−1

11 ]�, (A21)

C21 = [[S21S−1
11 S12]

−1S21S−1
11 ]× [S−1

11 − S−1
11 S12[S21S−1

11 S12]
−1S21S−1

11 ]�, (A22)

C22 = [[S21S−1
11 S12]

−1S21S−1
11 ]× [[S21S−1

11 S12]
−1S21S−1

11 ]�. (A23)

Proof of Proposition 3. For the contaminated model P̃εx = (1 − ε)P0 + εδx, whenever it
exists, tc

θ(P̃εx) is defined as the solution of equation:∫
Hc(Aθ(tc

θ(P̃εx))[
∂

∂t
mθ(y, tc

θ(P̃εx))− τθ(tc
θ(P̃εx))])dP̃εx(y) = 0. (A24)

It follows that

(1 − ε)
∫

Hc(Aθ(tc
θ(P̃εx))[

∂
∂t mθ(y, tc

θ(P̃εx))− τθ(tc
θ(P̃εx))])dP0(y)

+εHc(Aθ(tc
θ(P̃εx))[

∂
∂t mθ(x, tc

θ(P̃εx))− τθ(tc
θ(P̃εx))]) = 0.

(A25)

Derivation with respect to ε in (A25) yields

−
∫

Hc(Aθ(tθ(P0))[
∂
∂t mθ(y, tθ(P0))− τθ(tθ(P0))])dP0(y)

+
∫

∂
∂t [Hc(Aθ(t)[ ∂

∂t mθ(y, t)− τθ(t)])]t=tθ(P0)
dP0(y)IF(x; tc

θ , P0)

+Hc(Aθ(tθ(P0))[
∂
∂t mθ(x, tθ(P0))− τθ(tθ(P0))]).

(A26)

Since the first integral in (A26) equals zero, we obtain

IF(x; tc
θ , P0) = −

{∫
∂
∂t [Hc(Aθ(t)[ ∂

∂t mθ(y, t)− τθ(t)])]t=tθ(P0)
dP0(y)

}−1

·Hc(Aθ(tθ(P0))[
∂
∂t mθ(x, tθ(P0))− τθ(tθ(P0))])

= −
{∫

∂
∂t ψθ(y, tθ(P0))dP0(y)

}−1
· ψθ(x, tθ(P0)).

(A27)
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For each θ, the influence function (55) is bounded with respect to x; therefore, the
estimators t̂c

θ are B-robust.

Proof of Proposition 4. For the contaminated model P̃εx = (1 − ε)P0 + εδx, Tc(P̃εx) is
defined as the solution of equation:∫

∂

∂θ
m(y, Tc(P̃εx), tc(Tc(P̃εx), P̃εx))dP̃εx(y) = 0, (A28)

whenever this solution exists. Then,

(1 − ε)
∫

∂

∂θ
m(y, Tc(P̃εx), tc(Tc(P̃εx), P̃εx))dP0(y) + ε

∂

∂θ
m(x, Tc(P̃εx), tc(Tc(P̃εx), P̃εx)) = 0. (A29)

Derivation with respect to ε in (A29) yields

−
∫

∂
∂θ m(y, θ0, tc(θ0, P0))dP0(y) +

∫
∂2

∂2θ
m[y, θ, t]θ=θ0,t=tθ0

(P0)
dP0(y)IF(x; Tc, P0)+

+
∫

∂2

∂θ∂t m[y, θ, t]θ=θ0,t=tθ0
(P0)

dP0(y) ·
{

∂
∂θ tc(θ0, P0)IF(x; Tc, P0)+

+IF(x; tc
θ0

, P0)
}
+ ∂

∂θ [m(x, θ, t)]θ=θ0,t=tθ0
(P0)

= 0.

(A30)

Some calculations show that

∂

∂θ
[m(x, θ, t)]θ=θ0,t=tθ0

(P0)
= 0 and

∂2

∂2θ
[m(x, θ, t)]θ=θ0,t=tθ0

(P0)
= 0, (A31)

for any x; therefore, (A30) reduces to

∫
∂2

∂θ∂t
m[y, θ, t]θ=θ0,t=tθ0

(P0)
dP0(y) ·

{
∂

∂θ
tc(θ0, P0)IF(x; Tc, P0) + IF(x; tc

θ0
, P0)

}
= 0. (A32)

On the other hand,∫
∂2

∂θ∂t m[y, θ, t]θ=θ0,t=tθ0
(P0)

dP0(y) = −ψ′(ϕ′(1))
∫

∂
∂θ g(y, θ0)dP0(y)

= −
∫

∂
∂θ g(y, θ0)dP0(y),

since ψ′(u) = ϕ′−1(u).
Taking into account that tc(θ, P0) = t(θ, P0) and t(θ, P0) verifies∫

∂

∂t
m(y, θ, t(θ, P0))dP0(y) = 0, (A33)

and the derivation with respect to θ yields

∫
∂2

∂t∂θ
m(y, θ, t(θ, P0))dP0(y) +

∫
∂2

∂2t
m(y, θ, t(θ, P0))dP0(y) ·

∂

∂θ
t(θ, P0) = 0, (A34)

which implies

∂
∂θ tc(θ0, P0) =

∂
∂θ t(θ0, P0) = −

{∫
∂2

∂2t m(y, θ0, t(θ0, P0))dP0(y)
}−1 ∫

∂2

∂t∂θ m(y, θ0, t(θ0, P0))dP0(y)

= −ϕ′′(1)
{∫

g(y, θ0)g(y, θ0)
�dP0(y)

}−1 ∫ ∂
∂θ g(y, θ0)dP0(y),

because ∫
∂2

∂2t
m(y, θ0, t(θ0, P0))dP0(y) = − 1

ϕ′′(1)

∫
g(y, θ0)g(y, θ0)

�dP0(y). (A35)

Then, (A32) becomes
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[∫
∂
∂θ g(y, θ0)dP0(y)

]�[
−ϕ′′(1)

{∫
g(y, θ0)g(y, θ0)

�dP0(y)
}−1 ∫ ∂

∂θ g(y, θ0)dP0(y)IF(x; Tc, P0)

+IF(x; tc
θ0

, P0)
]
= 0,

and consequently,

IF(x; Tc, P0)=

{[
∂
∂θ g(y, θ0)dP0(y)

]�[∫
g(y, θ0)g(y, θ0)

�dP0(y)
]−1

[
∂
∂θ g(y, θ0)dP0(y)

]}−1

·
[

∂
∂θ g(y, θ0)dP0(y)

]� 1
ϕ′′(1) IF(x; tc

θ0
, P0).

(A36)
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