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Abstract: Genome editing aims to revolutionise plant breeding and could assist in safeguarding the
global food supply. The inclusion of a 12-40 bp recognition site makes mega nucleases the first tools
utilized for genome editing and first generation gene-editing tools. Zinc finger nucleases (ZFNs) are
the second gene-editing technique, and because they create double-stranded breaks, they are more
dependable and effective. ZFNs were the original designed nuclease-based approach of genome
editing. The Cys2-His2 zinc finger domain’s discovery made this technique possible. Clustered
regularly interspaced short palindromic repeats (CRISPR) are utilized to improve genetics, boost
biomass production, increase nutrient usage efficiency, and develop disease resistance. Plant genomes
can be effectively modified using genome-editing technologies to enhance characteristics without
introducing foreign DNA into the genome. Next-generation plant breeding will soon be defined by
these exact breeding methods. There is abroad promise that genome-edited crops will be essential
in the years to come for improving the sustainability and climate-change resilience of food systems.
This method also has great potential for enhancing crops’ resistance to various abiotic stressors. In
this review paper, we summarize the most recent findings about the mechanism of abiotic stress
response in crop plants and the use of the CRISPR/Cas mediated gene-editing systems to improve
tolerance to stresses including drought, salinity, cold, heat, and heavy metals.

Keywords: abiotic and biotic stress; CRISPR; mega nucleases; TALEN; ZFN

1. Introduction

By the end of the year 2050, the world population is anticipated to reach up to
10 billion [1]. In this situation, increasing food crop production by 60% over the com-
ing decades is necessary to ensure global food security [1,2]. To sustainably increased food
production, additional integration of all developed relevant techniques, such as genomics,
genome editing (GE), artificial intelligence, and deep learning, will be necessary [3,4]. Crop
modification methods have a long history and have been used ever since the first agricul-
tural plants were domesticated. Since then, other new methods have been created and are
being developed to boost crop production and economic value even more. Traditional crop
breeding techniques in the 20th century either relied on naturally occurring mutations or
on mutagenesis that was created artificially [5]. Genetic research has traditionally focused
on the identification and assessment of spontaneous mutations. Scientists were reliant
on each other and showed that radiation or chemical treatment could increase the rate of
mutagenesis [6,7]. Later approaches, suchas radiation and chemical mutagenesis, altered
the genome at random sites by inserting transposon motifs that may be induced in some
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animals. However, a fundamental disadvantage of conventional breeding methods is the
length of time needed to breed new varieties of any crops with the required agronomic
characteristics. The duration of the growing season and the maturity level of the plants
(particularly long-period growers, such as trees), as well as various stages of crossing,
selection, and testing during the breeding process, all have an impact on this [8]. The
plant genome cannot be targeted using conventional techniques for chemical and physical
mutagenesis or natural mutations. Using genetic engineering, better plants and animals
may be developed more quickly [5].

The first genetically modified (GM) crops were released for sale in 1996 [9]. Genera-
tions of GM crops up to now have relied on the genome’s random insertion of new DNA
sequences. The possibility that the inserted gene may affect or impede the activity of other
crucial nearby genes has been raised as a concern regarding this approach. In addition,
public anxiety regarding GM crops is increased when talking about the introduction of
‘alien” genes from distantly related organisms, which is thought to be ‘unnatural” despite
mounting evidence to the contrary [10,11].

The creation and use of DNA-based markers at the turn of the twenty-first century has
made it possible to reduce significantly the time needed to generate new lines and varieties
of agricultural crops [10-13]. All these factors have greatly helped the development of
focused GE methods [14-17]. In yeast and mice, the first targeted genetic alterations were
created in the 1970s and 1980s [6,8]. This gene targeting was based on the homologous
recombination process, which was extremely accurate.

RNA interference (RNAi) was one of the first GE technologies [5,18,19]. Even though
this technology has been successfully used in functional genomics and plant breeding [20-22],
it has several drawbacks, including the unlimited insertion site of an RNAi construction
into the genome and partial gene function suppression [5].

This is a marvelous time for genetics, due to advances in genetic analysis and genetic
manipulation. Genome editing, the most recent crop-enhancement method, allows precise
changes of the plant genome by deleting undesired genes or enabling genes to acquire
new functions [23]. Numerous crops’ genomes have been sequenced, and improvements
in genome-editing techniques have made it possible to breed for desired features. To
sustainably increase food production, additional integration of all developed relevant
techniques, such as genomics, genome editing (GE), artificial intelligence, and deep learning,
is necessary [24].

Advanced biotechnological methods are made possible by genome-editing tools, al-
lowing for precise and effective targeted modification of an organism’s genome. Several
novel tools for genome or gene editing are available to enable researchers to modify ge-
nomic sequences precisely [25]. These techniques facilitate novel insights into the functional
genomics of an organism and enable us to alter the regulation of gene expression patterns
in a pre-determined region. Because of accurate DNA manipulation, genome-editing tech-
nologies, for instance, CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/CRISPR-associated systems), TALENs (transcription activator-like effector nucle-
ases), CRISPR/Cas12a (Cpfl, CRISPR from Prevotella and Francisellal), and Cas9-derived
DNA base editors, provide unprecedented advancements in genome engineering. As a
result, this technology is a powerful tool that can be employed to secure the global food
supply [26].

Genome editing was first proposed by Capecchi [27] in the 1980s. This method allows
for the removal, modification, or addition of genetic material at specified genomic locations.
Even though current GE technologies are substantially more accurate than traditional
mutagenesis [28,29], the biggest barrier here is still the legitimacy of GE crops. Assessing
the biosafety of such crops is a unique difficulty because it is impossible to predict the
effects of single base alterations following the application of ODM and BEs [30,31].

The primary elements that affect plant growth and reduce agricultural productivity
are biotic stressors [32,33] such as disease and insect pests, along with abiotic stressors [13]
including cold, drought, and saline-alkali stress (Figure 1). Many crop plants that can
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withstand abiotic stress have previously been created via traditional marker-assisted breed-
ing. However, due to extensive screening [34,35] and backcrossing procedures, it takes
this tactic about a decade to generate abiotic stress-resilient crops effectively [36]. Al-
though genetically modified, stress-tolerant plants have disclosed encouraging results,
several barriers still stand in the way of their widespread commercialization. In many
ways, crops with genome editing differ from genetically engineered species [37]. Consid-
ering this, genome editing seems to be a sophisticated strategy to create crops that are
resistant to different abiotic stress in the future, because it allows precise manipulation of
different gene loci in comparably less time, which lowers the cost of crop-improvement
programmes [38]. Gene-editing technology based on CRISPR/Cas might successfully target
complex quantitative genes linked either directly or indirectly to abiotic stressors. The use
of CRISPR-Castechnology has been linked in recent years to the establishment of disease
resistance in plants by modifying gene regulation [39—-42]. Currently, CRISPR/Cas-based
genome editing has been efficaciously utilized to investigate tolerance against multiple
abiotic stresses, including heat, drought, salt, and nutritional values in several critical
agricultural plants [43,44]. In this review article, we summarize the most likely uses of the
CRISPR/Cas9-mediated genome editing technique in crop plants for dealing with diverse
abiotic stresses such as heat, drought, salinity, cold, herbicide etc., and we predict the tools
for future advancements in the creation of crop varieties that can withstand stresses.

Abiotic
Stresses
v
Drought = Salinity Cold Heat Herbicide Heavy Metal
\
i Genome Editing

Identification of
targeted stress
responsive genes

Targeted gene

edited through

ZFNs, TALENS,
CRISPR-Cas9

A

Incorporation of
edited gene into
the plant cell
P mediated through
agrobacterium,
PEG, and biolistic
method

Confirmation of Genome
editing in stress tolerant
plant

Figure 1. Applications of genome editing in crop improvement against abiotic stresses.

2. Genome-Editing Strategy

Genome editing is one of the most promising approaches to understand the genome
and to improve crop plants. The fundamental mechanisms involved in genetic modifica-
tion by programmable nucleases (NHE]) are the recognition of target genomic loci and
binding of effector DNA-binding domain (DBD), double-stranded breaks (DSBs) in target
DNA caused by restriction endonucleases (Fokl and Cas), and repair of DSBs through
homology-directed recombination (HDR) or non-homologous end joining [45]. While the
well-organized and error-prone NHE] results in the deletion or insertion of nucleotides, the



Life 2023, 13, 1456

less efficient and more accurate HDR results in the replacement of nucleotides. Genome-
editing methods such as ZFN, TALEN, and CRISPR/Cas are being utilized to add the
desired trait(s) and remove the undesirable ones. Numerous techniques are available for
genome editing using either a site-specific recombinase (SSR) system or a site-specific
nuclease (SSN) system. Both systems must be able to find a known sequence. The SSN
system causes single or double strand DNA breaks and activates endogenous DNA repair
systems. Depending on how the sites (loxP, FLP, etc.) are oriented, SSR technology, such
as Cre/loxP- and Flp/FRT-mediated systems, can knockdown or knock in genes in the
eukaryotic genome around the area of the target [46].

Plant genome-editing techniques have been classified into four major types based on
onsite-specific endonucleases (Table 1). Those are ZFNs, meganucleases, TALENSs, and
CRISPR-Cas9 along with DSB-free genome editing, base editing, prime editing, and mobile
CRISPR. These techniques are all discussed in detail below.

2.1. Zinc-Finger Nucleases

ZFNs are assemblages of DNA recognition modules based on zinc fingers and the
DNA cleavage domain of the Fokl restriction enzyme. With their use, the target genome can
be altered to introduce a variety of genetic changes, such as deletions, insertions, inversions,
translocations, and point mutations [47]. They have two domains, the first of which is a
nuclease domain and the second of which is a DNA-binding domain. The DNA-binding
domain’s 3- to 6-zinc finger repeats may recognize nucleotide sequences that are 9 to
18 bases long. The second domain is made up of the restriction enzyme Flavobacterium
okeanokoites I (FokI), which is necessary for DNA cleavage [48].This method involves
three artificial restriction enzymes, specifically ZFN-1, ZFN-2, and ZFN-3 [49]. ZFN-1:
At this point, ZEN is transferred to the plant genome devoid of taking a repair template.
Once it arrives at the plant genome, it makes double-stranded breaks (DSB) to the host
DNA leading to non-homologous end joining (NHE]) of DNA [50], which either produces
site-specific arbitrary mutations or a small deletion or insertion. ZFN-2: Distinct from
ZFN-I, a homology-directed repair (HDR) alongside a short repair template is delivered to
the crop genome next to the ZFN enzyme [51]. The template DNA is homologous to the
target DNA, which attaches to a specific sequence causing a double-stranded rupture. The
template commences repairing with an endogenous repair mechanism which is directed to
site-specific point mutations throughout homologous recombination (HR). ZEN-3: As soon
as the ZFN transcribing gene is transferred to the plant genome next to the large repair
template, it is called ZFN3 [51,52].

ZFN has been effectively implemented in Arabidopsis, tobacco, soybean, and maize [53-56].
In one example of the use of ZFNs in crop breeding, the insertion of PAT gene cassettes
disrupted the endogenous ZmIPK1 gene in maize, which altered the inositol phosphate
profile of growing maize seeds and improved herbicide resistance [53].ZFNs can be created
utilizing various protein-engineering techniques to target essentially any unique DNA
stretch [57]. ZFNs with enhanced specificity and activity have been developed to produce
knockouts, which disable the gene’s function, as well as gain-of-function alterations [58].

2.2. Meganucleases

Longer DNA sequences (more than 12 bp) can be selectively detected and cut by
meganucleases, which are endonucleases. This approach has been discovered in a wide
variety of organisms, including archaebacteria, bacteria, algae, fungi, yeast, and many
plant species. Meganucleases at the target region can sustain mild polymorphisms [59].
Meganucleases have been divided into five groups based on their sequence and struc-
tural features. These consist of His-Cys box, GIY-YIG, LAGLIDADG, PD-(D/E) XK, and
HNH [60,61].Genome editing has mostly used members of the LAGLIDADG meganuclease
(LMN) family. According to Silvaet al. [60], the name of this protein family is taken from
the sequence of the main motif found in its structure. LMNs are typically expressed in the
chloroplast and mitochondria of unicellular eukaryotes. The bulk of these endonucleases
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are dimeric proteins that have two separate functions: they splice their own introns as
RNA maturases and cleave exon sequences as specialized endonucleases [62]. I-Scel and
I-Crel’s genomes can be edited employing the rRNA gene of the mitochondrial DNA of
Saccharomyces cerevisiae. The 21S contains the I-Scel gene’s location. The chloroplast of
Chlamydomonas reinhardtii, a unicellular alga, was found to contain I-Crel, which is found in
the 23S rRNA gene. However, due to the difficulties in reengineering meganucleases to
target specific DNA areas, their utility in genome editing is limited [63].

2.3. Transcription Activator-like Effector Nucleases (TALENs)

Restriction enzymes called TALENS, or transcription activator-like effector nucleases,
are designed to cleave specific DNA sequences. TALENs are made up of a nuclease that can
cleave DNA in cells and a TALE domain that is intended to mimic the natural transcription
activator-like effector proteins. Currently, a huge number of researchers are studying
transcription activator-like effector nucleases (TALENs), which are composed of a free
designable DNA-binding domain and a nuclease [64], in a variety of organisms. TALENs
have recently emerged as a cutting-edge method for genome editing in a variety of species
and cell types. It was discovered that TALENs may alter the genome in a variety of plants,
including Arabidopsis, Nicotiana, Brachypodium, barley, potatoes, tomatoes, sugarcane,
flax, rapeseed, soybean, rice, maize, and wheat [65,66]. According to a report, rice was
the first crop in which TALENs technology was employed for enhancement. According
to Li et al. [67], the main pathogen of blight disease (Xanthomonas oryzae) significantly
reduces global rice production each year. By disrupting the genes for fatty acid desaturase
(FAD), soybeans with high oleic acid and low linoleic acid levels were produced, improving
the shelf life and heat stability of soybean oil [68,69]. TALENs are naturally occurring
type Il effector proteins created by Xanthomonas species that change the host plant’s gene
expression. The TALENs proteins comprise a nuclear localization signal, a transcriptional
activation domain, and a core DNA-binding domain [70]. The nuclear localization signal
helps TALENS enter the nucleus, whilst the activation domain activates the transcriptional
machinery to start expressing genes [71].

2.4. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-Associated
Protein 9 (Cas9)

Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) are short,
repetitive genetic variations that are present in most bacterial and archaeal species. CRISPR/
Cas9 and its associated proteins produce a very strong defensive system that works as a
safeguard for plants against foreign agents including bacteria, viruses, and other elements.
The first application of CRISPR/Cas9 in an adaptive immune system was documented in a
2007 experiment [72]. The CRISPR/Cas9 gene-editing system has revolutionized research
in animal and plant biology since its usage in genome editing was first demonstrated in
mammalian cells in 2012 [73]. According to Rathore et al. [23] first-generation CRISPR/Cas9
genome editing involves simple manipulationand cloning techniques that can be applied
to a variety of guide RN As to edit different locations in the targeted organism’s genome
(Figure 2). With the use of CRISPR/Cas, crop species can be precisely edited, opening the
door to the generation of favorable germplasm and new, more sustainable agricultural
systems. The genetic modification of crops can now be targeted and precise due to recent
developments in CRISPR/Cas9 technology, hastening the advancement of agriculture [42].
To date, only a few species have been studied using this methodology [74].The yield, quality,
disease resistance, and climatic adaptability of monocots and dicots have all been improved
by the CRISPR/Cas9 system [75]. The genomes of cereal crops including wheat, maize,
rice, and cotton as well as fruits and vegetables such as tomatoes and potatoes have all
been altered using the CRISPR/Cas9 technique [76,77].
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Figure 2. Mechanism of genome editing using CRISPR/Cas9.

According to Makarova et al. [78], the CRISPR/Cas system can be divided into three
types: type I, type II, and type III. Bacteria and archaea both have type I CRISPR/Cas mech-
anisms based on the exact signature of the Cas protein. The Cas3 protein’s endonuclease
activity is used to connect to the DNA sequence [78]. In bacteria, the type Il CRISPR/Cas
system has been developed. The four protein pairs Cas1, Cas2, Cas4/Csn2 proteins, cou-
pled with Cas9, make up the simplest system. The type III CRISPR/Cas system hunts for
DNA and RNA in archaea, as well as infrequently in bacteria. Cas6, Cas10, and repeat asso-
ciated mysterious proteins (RAMP) are markers for its presence. Cas10 protein’s processing
of crRNA ultimately aims to cleave DNA [78]. The Streptococcus pyogenes (SpCas9)-derived
type II CRISPR system mostly targets the negatively regulating genes [79].

The CRISPR/Cas technique is straightforward, stable, and enables effective change
compared withthe first two generations of genome-editing systems. These traits allowed
CRISPR/Cas to quickly replace the traditional genome-editing methods ZFN and TALEN.
The techniquewas adapted from the bacterial defense mechanism. The CRISPR/Cas mech-
anism is used by a variety of bacterial and archaeal species to protect themselves against
invading viruses [80]. Many studies are now being conducted to improve the CRISPR/Cas
system and increase the tool’s ability to target the genome. For instance, non-canonical
NGA and NG PAM sites in plants may be found using xCas9, SpCas9-VRQR, and Cas9-NG
variants [81,82]. SpCas9 orthologues have been recognized from Streptococcus thermophiles
(St1Cas9), Staphylococcus aureus (SaCas9), Streptococcus canis (ScCas9), and Brevibacillus
laterosporus (BlatCas9).They have been demonstrated to amend plant genomic loci with
PAM sequences of NNGRRT, NNG, NNAG AAW, and NNNCND, respectively [83,84].
Additionally, the type V Cas12a and Cas12b extracted from different bacterialsystems have
been demonstrated with AT-rich PAM specifications and employed in genome editing of
selected plants [85,86].
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The CRISPR/Cas9 gene-editing approach has so far been used on more than 20 crop
species to increase yields and reduce biotic and abiotic stress [87]. Genome-editing tech-
niques based on CRISPR/Cas9 have been utilized to enhance agricultural disease resistance
and tolerance to severe abiotic environments including salinity and drought. Three rice
genes involved in regulating responses to various abiotic stress stimuli, including phytoene
desaturase (OsPDS), betaine aldehyde dehydrogenase (OsBADH?2), and mitogen-activated
protein kinase (OsMPK2), have undergone sequence-specific CRISPR/Cas9-mediated ge-
nomic modification. CRISPR/Cas9 technology was successfully used by Shan et al. [88]
to insert the TaMLO gene (mildew resistance locus O) into wheat protoplasts. It was also
discovered that Blumeria graminis f. sp. Tritici, the agent of powdery mildew illness, is resis-
tant to the CRISPR TaMLO knockdown (Btg). Wheat ethylene responsive factor3 (TaERF3)
and wheat dehydration response element binding protein 2 (TaDREB2) are two abiotic
stress-related genes that were targeted by the CRISPR/Cas9 genome-editing technology in
wheat protoplasts, according to Kim et al. [89]. The CRISPR/Cas9 technology can be used
in conjunction with current and upcoming breeding techniques such as speed breeding and
omics-assisted breeding to boost agricultural production and ensure food security (Table 2).

Table 1. Comparison of different types of plant genome-editing techniques.

Feature ZFNs Meganucleases TALENs CRISPR/Cas References
Lsee“qgin(fe t?br g’t 18-36 bp 12-40 bp 2840 bp 20-22 bp [90,91]
Nuclease protein Fokl I-Scel Fokl Cas9 proteins [91-93]
Dimerization Required Not required Not required Not required [90-92]
Double-stranded Direct conversions Double-stranded =~ Double-stranded breaks or
Mode of action breal];iﬁ garget in targeted regions breal](gilil] ;arget single;stranded nicks in [94-96]
arget DNA
Repair events NHE] HDR HDR NHE] [92,93,97]
Mutagenesis High Middle Middle Lower [94]
Cloning Necessary Not necessary Necessary Not necessary [91,98,99]
Creation of
libraries and Challenging Challenging Challenging Possible [91,96,99]
multiplexing
Cost Higher Higher Higher Low [100]
Types One One One Many [101]
Specificity Moderate High High Low [90,91]
Crop improvement Low Low Low High [100]
Future use Medium Medium Medium High [100]
Table 2. List of reported targeted gene(s) via ZFNs, TALEN, and MNs gene-editing tool technologies
in different plant species to develop resistant/tolerant genotypes.
Crop Gene Trait Technique References
OsQQOR Detection of safe harbor loci herbicide ZFNs [102]
OSBADH%SO(:SI?;;)L OsSD1, Fragrance TALEN [103]
Rice Os11N3 Bacterial blight resistance TALEN [67]
OsCSA Photoperiod sensitive male sterility TALEN [104]
OsDERF1 Drought tolerance TALEN [104]
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Table 2. Cont.

Crop Gene Trait Technique References
Wheat TaMLO-A1, TaMLO-B1, TaMLO-D1 Resistance to powdery mildew TALEN [105]
PAT Herbicide resistance ZFNs [106]
7mIPK1 Herbicide tolerant apd phytate reduced ZFNs [53]
maize
Maize ZmTLP Trait stacking ZFNs [107]
ZmPDS, ZmIPK1A, ZmIPK, . . L
ZmMRP4 Biosynthesis of phytic acid TALEN [108]
MS26 Independent lines of male sterile plants MNs [109]
Barley HvPAPhy Phytase reduction and seed development TALEN [110]
DCL Herbicide transmission ZFNs [111]
Soybean
FAD2-1A, FAD2-1B Low polyunsaturated fats TALEN [68,69]
GUS: NPTl Chromosome breaks ZFNs [112]
Tobacco — - —
Endochitinase-50 gene (CHN50) Emergence of resistance to herbicides ZFNs [113]
Tomato L1L4/NF-YB6 Reduced contents f’f th~ex anti-nutrient’s ZFNs [114]
oxalic acid
EPSPS Herbicide tolerance MNs [115]
Cotton
Hppd Herbicide tolerance MNs [115]
Potato Vino Sugar metabolism TALEN [116]

2.5. DSB-Free Genome Editing

A sole histidine residue at site 840 of the HNH domain of SpCas9 cuts the PAM strand,
while the aspartate at site 10 in the RuvC domain cuts the opposite strand3. Mutating both
amino acids to alanines (D10A and H840A) resulted in nuclease-dead Cas9 (dCas9). dCas9
still identifies its target site and frees up the DNA in an R-loop without including DSBs.
The binding of dCas9 to its solitary target site can work as a repressor of transcription and
is called CRISPR interference (CRISPRi). Alternately, dCas9 can be utilized as a tool for
localization of DNA effector proteins to the genome. Examples of this approach are CRISPR-
DNMTS3 fusion proteins and CRISPR activators (CRISPRa) for targeted methylation. DNA-
alteration enzymes are combined with dCas9 to induce genetic variants for overcoming the
limitations linked with DSB initiation in genome engineering [117].

2.6. Base Editing

The first base editor combines dCas9 to the cytidine deaminase apolipoprotein B
mRNA editing catalytic polypeptide-like (rAPOBEC1), which catalyzes the alteration from
cytidine to uracil. The cell mends this uracil into thymidine, resultingin an assembly
(BE1) replacing a CeG by a TeA base pair, entitled a cytosine base editor (CBE) [118].
First-generation CBEs were suppressed by uracil glycosylation. So, second-generation
base editors (BE2) were invented by combining an uracil glycosylase inhibitor (UGI) with
the dCas9-rAPOBEC1 combination [119].For increasing editing efficiency, dCas9 can be
changed into a nickase SpCas9-D10A (BE3). The strand not altered by rAPOBEC1 is cleaved.
The cell identifies this nick and starts DNA repair to solve the damage. The strand withthe
base modification is used as a template for repairing the nick to yield stable integration.
The BE3 architecture was furthermore ameliorated by combining an additional UGI in
fusion with linker optimization to result in a fourth-generation cytosine base editor (BE4).
BE4s have improved editing efficiency by approximately50%, with two-fold decline of
unintended byproduct formation such as point mutations and indels [118]. Subsequent
ancestral reconstitution and codon optimization led to a CBE architecture that enables the
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most powerful base editing in organoids, 2D cell lines, and in vivo by improving nuclear
localization and expression of the proteins [120].

2.7. Prime Editing

The logic behind prime editing is to escort exogenous DNA with the modification of in-
terest close to the Cas9 binding site. Areverse transcription (RT) domain obtained from the
Moloney murine leukaemia virus was combinedwith nickase SpCas9- H840Atodevelopthe
first generation of prime editors (PE1). The RT domain changes RNA into DNA tofind
its template in the 3’ extension of the specially designed sgRNA, entitledthe primeediting
guide RNA (pegRNA).Itguides the Cas9 in PE1 to the target site. After targetrecogination,
the PAM-consistingstrand is nicked by the active HNH domain of Cas9-H840A. Then, the
pegRNA extension combineswiththe nicked strand of the primer-binding site (PBS).Then,
the RT domain of PE1 uses the restpegRNA(RT template) to synthesize a 3'-DNA flap
containingthe edit of interest. This DNAflap is solved by cellular DNA repair procedure
combining the edit of interest [121]. Theprime editing requires optimizing PE3guides
andpegRNA, limiting its implementationin organoids. Threemodifications have been made
forovercoming this issue. First, the utilizationof two pegRNAs in trans alongwith over-
layingRT domains enhancesprime-editing competencein plants [121]. Second, engineered
pegRNAs can have tmpknot or evopreqdomains combinedatthe 3’ end. These domains en-
hancethe stability of the pegRNA [122]. Finally, including the N394Kand R221K amino acid
alterationincreases the nuclease workof SpCas9, resulting in a more efficient PE2Max [123].

2.8. Mobile CRISPR

A breakthrough in the CRISPR tool, “genetic scissors” was announced by scientists
of the Max Planck Institute of Molecular Plant Physiology to edit plant genomes. The
discovery could speed up and simplify development of novel and genetically stable crop
varieties by fusing grafting with a ‘mobile” CRISPR tool. The drawing of the CRISPR/Cas9
gene scissors is transferred as RNA from the rootstock of a genetically modified plant to
the grafted shoot of a normal plant. The gene scissors protein is made with the aid of the
RNA. This gene scissor protein edits specific genes in flowers. Plants carry the desired
gene modification in the next generation. A normal shoot is grafted onto roots containing
a mobile CRISPR/Cas9, which allows the genetic scissor to move from the root into the
shoot. It edits the plant DNA without leaving a trace of itself in the subsequent generations
of plants. This ground-breaking turn can save cost and time and evade current limitations
of plant breeding.

3. Genome Editing Related to Abiotic Stresses

Abiotic stresses that impact plant growth and development, such as salt, drought,
extremely high temperatures, cold, and heavy metals, can reduce agricultural production
by approximately 50% [124].Numerous biochemical, morphological, and physiological
factors important for plant development are influenced by stress. Stresses from the envi-
ronment can modify how plants behave as they develop. Most changes in plant growth
and development caused by different abiotic stresses are associated with poorer yields [13].
By 2050, the rapid growth in the human population is predicted to reach 9.7 billion. The
global temperature is also set to increase significantly. As plant scientists, it is hard for
us to manage the food requirements of the increasing population. However, we own the
capability to develop climate-flexible crop varieties that can flourish under such challenging
circumstances. These varieties must be maintained in ruthless climatic conditions such as
heat, drought, heavy metals, cold, or flood stresses. This requires a continuous search for
newer and diverse germplasm [125,126], which was traditionally performed either entirely
through development of natural variations [127,128] or by selective breeding [129,130].
Another possibility is the construction of mutant populations that are evaluated to hunt for
new resources among variations that might be novel valuable mutations that in turn are
included in breeding programmes. Modern genome-editing system tools such as CRISPR
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facilitate the user to commence desirable genomic modifications accurately, illustrating
great promise as a tool for producing novel climate-resistant plants [131]. In over 20 agro-
nomically important crops, CRISPR/Cas mediated gene editing is widely utilized and
accepted for crop improvement against different abiotic stresses [79].

Ordinarily, plants are equipped with numerous defense schemes against abiotic
stresses. Among numerous defense mechanisms of abiotic stresses, the five broad-spectrum
protections are regulated utilized in a complicated managing network consisting of nu-
merous mediators and gene regulatory constituents in response to abiotic stresses [132].
During the procedure, stress hormones, particularly nitrogen oxides (NO), abscisic acid
(ABA), polyamines (PAs), calcium ions (Ca%), hydrogen sulfide (H;S), reactive oxygen
species (ROS), and phytochrome B (PHYB), interact with others, either synergistically or
antagonistically. The transcription factors (TFs) could alter the expression of genes and
enzyme activity in a regulatory way, triggering a suitable reaction. The regulatory con-
stituents open a lot of potential for developing multiple stress tolerance/resistance. Five
main plant defenses to abiotic stresses are ROS scavengers, molecular chaperones, cuticle
as the outer shield, oxylipin precursors, and osmoprotectants, along with unsaturated fatty
acids, and compatible solutes [132].

3.1. Drought Stress

Drought is becoming a challenge to sustainable agriculture due to the consequences of
climate change, including erratic rainfall patterns and rising temperatures in many regions
of the world. The greatest danger to global food security is drought stress, which is the
primary factor in the catastrophic loss of agricultural production and productivity [133].
Drought alone can reduce yield by 50-70% in different crops [134]. For example, 40%
yield losses due to drought stress have been reported in maize [35,135], 50% in rice [136],
21% in wheat [126,135], 27-40% in chickpea [125,137], 68% in cowpea [138] and 42% in
soybean [34,139]. After the discovery of genome editing, efforts are being planned to alter
the genes involved in pathways enabling drought tolerance, in order to increase farmers’
acceptance of crops using these technologies. In recent years, in-depth research has helped
to adapt and overcome drought stress using CRISPR-Cas9 technology (Table 3).

In many crop plants, HyO, and abscisic acid (ABA) are frequently produced in
situations of salinity or drought stress. The discovery was reported of ABA-induced
transcription repressors (AITRs) as a novel transcription factor family that plays a sig-
nificant role as feedback regulators of ABA signaling. Alternation in the expression of
AITR genes resulted in abiotic stress tolerance, including drought and salinity in Arabidop-
sis [140,141]. A CRISPR/Cas9-induced mutation in the Arabidopsis OST2 structural gene ex-
hibited drought resistance [142]. Another study found that knockout of Arabidopsis plants’
genemiR169athrough CRISPR/Cas9 led to significantly improved drought tolerance [143].
Similarly, Arabidopsis” drought tolerance increased after the vacuolar H+-pyrophosphate
(AVP1) regulating gene was expressed using CRISPR/Cas9 [144]. Similar results were
shown when the abscisic acid-responsive element binding gene (AREB1) was activated
in Arabidopsis through CRISPR/Cas9a [145]. Recently, drought tolerance in Arabidopsis
thaliana was demonstrated via the CRISPR/Cas9 gene silencing of the trehalose (TRE1)
gene [146].

Numerous studies have documented how CRISPR confers drought resistance in many
plants. For instance, it has been demonstrated that increasing rice’s ability to withstand
drought can be attained by reducing the expression of the regulatory genes DERF1, PMS3,
MSH1, MYB5, and SPP [147]. In rice plants, drought stress tolerance increased after OsERA1
was modified using CRISPR/Cas9 [148]. CRISPR/Cas9 has been employed to improve
drought resistance in rice by knocking out the SRL1, SRL2, and ERA1 genes [148,149]. A
CRISPR/Cas9-created ospyl9 mutant might increase rice yield and drought tolerance [150].
Indica mega rice cultivar MTU1010 with broader leaves, a decreased stomatal density, and
improved leaf water retention under drought stress was developed using CRISPR/Cas9
to modify the OsDST gene [151]. The OsOREB1, OsRab21, OsRab16b, OsLEA3, OsbZ1P23,
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OsSLAC1, and OsSLAC? genes, which act downstream of SAPK2, were modulated in
expression in the loss-of-function sapk2 mutant of rice plants developed using CRISPR/Cas,
increasing their tolerance to drought stress [131].

Two genes, RVE7 and 4CL, have been found to be associated with drought tolerance
in chickpeas. The first report of CRISPR/Cas9-mediatedediting of the chickpea protoplast
was made by Badhan et al. [152]. They described knockouts of the genes 4CL and RVE?,
which are linked to pathways for drought tolerance. That study established a framework
for potential future chickpea-genome-editing approaches [153]. Another gene, namely
ARGOSS, responding to drought stress has been altered through genome editing. The
expression of the ARGOS8 gene increased as a result of negative regulators of ethylene
signaling pathways, providing drought tolerance [154,155]. To increase the production of
maize under drought stress under field conditions, the GOS2 promoter region was replaced
with an ARGOSS8 promoter sequence using the CRISPR/Cas system [156].

CRISPR/Cas9 altered the GID1 gene in tomato plants, which exhibit high leaf water
content under drought conditions [157]. Additionally, SILBD40 gene mutation caused by
CRISPR/Cas9 significantly improved drought tolerance in tomato [158]. Furthermore, use
of the CRISPR/Cas technique to alter mitogen-activated protein kinases (MAPKs) revealed
SIMAPKS3 to be a drought stress modulator [159]. Knockout of the SINPR1 gene resulted in
increased drought tolerance and down-regulation of drought-related genes [160].

Drought resistance of wheat was improved by CRISPR/Cas editing of wheat TaDREB?2
and TaERF3 [89]. In wheat, a multiplex CRISPR/Cas9 assay was used to alter the SALI gene,
a negative regulator of drought tolerance, to increase drought tolerance at the seedling
stage [161]. CRISPR/Cas genome editing of the HB12 gene can increase cotton’s resistance
to drought [162]. CRISPR/Cas9 was used to modify the BnaA6.RGA gene in oil seed crops,
which significantly improved rapeseed’s ability to withstand drought [163].

3.2. Heat/Temperature Stress

Plants have a preferred temperature, any rise or fall in that temperature can signifi-
cantly impede their development and productivity. The third most important abiotic factor
is heating stress, which may decrease crop production considerably. For instance, every
1 °C augmentation in atmospheric temperature diminishes wheat yield by 6%, rice yield
by 10-20%, and corn yield by 21-31% [164-166]. Significant yield losses were caused by
high heat stress, which is now recognized as a severe problem that will simply become
worse in the future. All phases of plant growth, from germination to harvest, are severely
harmed by heat stress [167,168]. Heat stress not only increases plant mortality rates but
also reduces plant quality [169,170].

In severe cases, a bad alteration in temperature results in plant mortality because
plants are more susceptible to temperature changes. The ideal temperature would normally
be better for crop growth and development; conditions below and above the optimum
temperature have a harmful effect on productivity. For every 10 °C rise, followed by 20 °C
and 30 °C, mostbiochemical and enzymatic procedures double in speed [171]. Abiotic
stressors, predominantly high and low heat, have a harmful effect on the premature stage of
the male gametophyte in a range of agricultural crops, including maize, rice, barley, wheat,
sorghum, and chickpea [172]. Due to temperature stress, the functions of tapetal cells are
diminishedduring the reproductive growth period, and the anther is dysplastic. Pollen
discharge is insufficient and indehiscence happens as a result of increased heat preventing
pollen grains from escalating. Plants have developed precise physiological and chemical
reactions to manage temperature stress [173].

The presence of genes that are responsive to heat stress, signal transduction, and the
synthesis of metabolites are only a few of the complex molecular systems that plants activate
in response to heat stress. Different temperature-stress-related genes have been identified
and characterized to improve plants’ ability to withstand heat as a result of developments
in structural and functional genomics technologies in plants. The heat stress reaction, which
is connected to the accumulation of ROS, is mediated by the heat shock transcription factors
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(HSFs) and the heat shock proteins (HSPs) [174]. Therefore, by enhancing plants” ability to
resist ROS components, temperature stress tolerance can be improved [175]. This indicated
that higher tolerance might increase the antioxidant properties of crops. Plant temperature
tolerance was significantly increased via metabolite production and temperature-induced
gene expression. To explore the molecular processes associated with temperature stress
and improve plant heat tolerance, CRISPR-Cas9 is a cutting-edge technology among all
genome-editing techniques [176] (Table 3).

A cultivable HS-inducible rice mutant was created using CRISPR/Cas9 technol-
ogy [177]. The orthologs of mitogen-activated protein kinase 3 and agamous-like 6 were
modified using CRISPR to increase tomato sensitivity to heat stress, whereas ADP-ribosylation
factor 4 enhanced tomato sensitivity to salinity shocks. According to Bouzroud et al. [178],
these CRISPR-edited mutant plants had improved agronomic characteristics and were
resilient to abiotic stresses. As a component for heat tolerance, BRZ1 positively regu-
lates the formation of ROS in the tomato apoplastic area. This was confirmed by the
CRISPR-Cas9-based bzrl mutants, which showed reduced temperature tolerance and
respiratory burst oxidase homolog 1 (RBOH1) with diminished hydrogen peroxide gen-
eration in the apoplast [179]. In comparison to wild-type crops, the development of
CRISPR/Cas-mediated heat-stress-sensitive albino 1 (HSA1) mutants of tomato showed
greater sensitivity to temperature stress [180].

The thermosensitive genic male sterile gene was altered by CRISPR in maize to
promote thermo susceptible male-sterile plants [181]. In lettuce, knockouts of NCED4, a
crucial regulating enzyme in abscisic acid production, allowed the seeds to germinate at a
higher temperature. As a result, LsNCED4 mutants may have commercial significance in
manufacturing environments with high temperatures [182]. In order to make a plant more
resistant to heat, the hsps gene, which increases osmolyte levels and prevents cell protein
damage, can be overexpressed [183]. The protein kinase SAPK6 and the transcription factor
OsbZIP46CA1 in rice also increase the capacity for responding to heat stress [184].

3.3. Cold Stress

Cold stress, which includes chilling (20 °C) and freezing (0 °C) temperatures, hinders
plant growth and development and severely limits plant geographic expansion and agricul-
tural productivity [185]. Plants are directly inhibited from responding metabolically to low
temperatures, which results in osmotic stress, oxidative stress, and other types of stress.
Due to mechanical damage and metabolic dysfunction caused by extreme cold tempera-
tures, plant growth and development are halted [186]. The physiological, biochemical, and
molecular behavior of plants during their growth and expansion is adversely affected by
cold stressors. The photosynthetic capacity and crop anatomy are brutally impacted by cold
exposure, especially throughout the winter [187,188].Cold stress during the seedling stage
may cause impaired germination and emergence. Long-term exposure impairs source-sink
relationships, growth, nutrient localization, and leaf chlorosis [189]. Membrane formation,
which amplifies other cold-stress-related downstream processes, is the main consequence
of cold stress on crops [190]. In-generic or inter-specific hybridization has been successful
in boosting the cold tolerance of significant crops using conventional breeding methods.
For creating non-transgenic genome-edited crops to combat climate change and ensure
future food security, CRISPR/Cas9 is a clever and practical approach [191,192] (Table 4).

To increase the plant’s resistance to cold, genome editing is employed to target a
few of the depressant regulator transcription factors in rice. A transcription factor called
OsMYB30 attaches to the amylase gene promoter and negatively affects cold tolerance.
According to Lv et al. [193], under conditions of cold stress, OsMYB30 forms a compound
with OsJAZ9 and slows down the expression of the amylase gene, which may contribute
to increasing cold sensitivity by causing maltose buildup and starch breakdown. In order
to determine the specific function of the TIFY1a, TIFY1b, and Ann3 genes in rice’s ability
to withstand cold stress, CRISPR/Cas9 technology has also been applied to these genes.
The mutant outperformed the natural variation in terms of yield, temperature tolerance,
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and amount of germination prior to harvest [194]. Using CRISPR base editing, suppression
of photosynthetic genes in rice plants under cold stress has been shown to cause the
white-striped leaves phenotype in the white stripe leaf 5 (wsl5) mutant line [195,196].

PRPs are proline-rich proteins that not only aid in dealing with low temperatures but
also reduce nutrient loss, boost antioxidant activity, and aid in the production of chlorophyll.
Rice capacity for cold tolerance was improved by the CRISPR/Cas9 deletion of OsPRP1,
which encodes a proline-rich protein [197]. In a recent work using CRISPR/Cas9, three rice
genes, viz., OsPIN5b, GS3, and OsMYB30were altered to increase spike length, grain size,
and resilience to cold stress [198]. The CRISPR/Cas9 technology altered the G-complex-
related genes i.e., OsRGA1, OsGS3, OsDEP1, and OsPXLG4 to make rice more resistant to
chilling stress [199].Because tomato plants are prone to chilling stress, their fruits are more
vulnerable to damage from the cold. C-repeat binding factor 1 (CBF1) was shown using
CRISPR-Cas9-based cbfl mutants to protect the tomato plant next to it from cold/chilling
damage and decrease electrolyte leakage [200]. These plants also demonstrated excellent
addition of hydrogen peroxide and indole acetic acid, resulting in tomato plants tolerant of
chilling stress.

Table 3. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for

development of tolerant genotypes against drought and heat stresses.

Crops Gene Trait Technique References
Rice OsDERF1 Drought CRISPR/Cas9 [147]
Rice SRL1, SRL2 Drought CRISPR/Cas9 [149]
Rice OsAAA-1, OsAAA-2 Drought CRISPR/Cas9 [201]
Rice OsNACO006 (transcription factor) Drought and heat sensitivity CRISPR/Cas9 [202]
Rice OsAOX1a Drought resistance CRISPR/Cas9 [147]
Rice OsDST Drought and salinity CRISPR/Cas9 [151]
Rice OsERA1, OsPYL9 Drought CRISPR/Cas9 [148,150]
Rice SAPK2 Tolerance to salinity and drought CRISPR/Cas9 [131]
Rice OsPMS3 Photoperiod-sensitive male-sterile CRISPR/Cas9 [147]
Rice Csa Photosensitive-genic male-sterile CRISPR/Cas9 [203,204]
Rice TMS5 Thermo-sensitive genic CRISPR/Cas9 [205]

male-sterile
Rice OsNAC14 Drought tolerance CRISPR/Cas9 [206]
Rice OsPUB67 Drought tolerance CRISPR/Cas9 [207]

Wheat TaDREB2, ThERF3 Tolerance to drought CRISPR/Cas9 [89]

Maize ZmARGOS8 Drought CRISPR/Cas9 [156]

Maize 7mTMS5 Creation of thelrirr?;)ssensitive maize CRISPR/Cas9 [181]

Mustard BnaA6.RGA Drought tolerance CRISPR/Cas9 [163]
Soybean Drb2a, Drb2b Tolerance to drought and salinity CRISPR/Cas9 [208]
Soybean GmMYB118 Drought tolerance CRISPR/Cas9 [209]
Chickpea 4CL, RVE7 Drought tolerance CRISPR/Cas9 [152]

Tomato SIMAPKS3 and SINPR1 Drought CRISPR /Cas9 [159,160]

Tomato SIARF4 Drought CRISPR/Cas9 [140]

Tomato SIAGL6 Heat stress CRISPR/Cas9 [210]
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Table 4. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for

development of tolerant genotypes against cold stresses.

Crops Gene Trait Technique References
Rice OsMYB30 Cold tolerance CRISPR/Cas9 [198]
Rice OsAnn3 Cold tolerance CRISPR/Cas9 [211]
Rice OsAnnb5 Cold tolerance CRISPR/Cas9 [211]
Rice OsPRP1 Cold tolerance CRISPR/Cas9 [212]
Tomato SICBF1 Cold tolerance CRISPR/Cas9 [200]
Arabidopsis thaliana ~ AtCBF1, AtCBF2 Cold tolerance CRISPR/Cas9 [213]

3.4. Salinity Stress

Owing to the negative consequences of climate change, salinity stress has recently
become much worse [214]. Salinity stress is the second most severe abiotic danger that
affects fertile lands as well as crop productivity [215]. According to Morton et al. [216]
and Van Zelm et al. [217], severe salts have an impact on about one-fifth of the irrigated
agricultural area. Lack of good irrigation water, a changing climate, and excessive use of
chemicals such as fertilizers and pesticides prolong the process of adding more land to the
salinity stress zone. According to estimates made by Jamil et al. [218], 50% of cultivable
lands will be saline by 2050 due to the overuse of chemicals including fertilizers and
pesticides. One of the most important and harmful factors that has a negative impact on
soil quality and agricultural output is salt stress. When too many soluble salts accumulate
in the crop root zone, it causes salinization of the soil because roots are unable to absorb
water. Thus, osmotic stress and nutritional imbalance in plants have a negative impact on
their morphology, biochemistry, and biomass, which ultimately causes irreparable plant
damage [219-221].

Reactive oxygen species (ROS) are intensified by salt stress, which has a detrimental
effect on crops’ cellular and metabolic processes [222,223]. Lipid peroxidation, which
causes membrane deterioration as well as protein and DNA damage, is a harmful effect
of ROS [224]. By diminishing chlorophyll content and stomatal conductance, salt stress
hinders the development of the photosystem II and the transpiratory apparatus [225].
Additionally, it decreases the water potential of the soil and leaves, which lowers plant
turgor pressure by affecting water relations and causing osmotic stress [226]. Plants suffer
from decreased leaf area, lower photosynthetic rate, poor seed germination, decreased
biomass production, and crop yield as a result [227-229]. Salinity tolerance is the ability of a
plant to maintain the equilibrium of biomass and/or output under conditions of salt stress.
In order to tolerate salt, plants have several molecular and physiological mechanisms [230].

Genome editing has the capacity to improve crops; there are yet few studies on its
effective application in breeding plants that can withstand saline stress (Table 5). In one
such work, rice was modified to impart salt stress tolerance by editing the OsRR22 gene,
which encodes for a transcription factor (TF) involved in the control of signaling and
the metabolism of cytokinins in plants [231,232]. Using CRISPR/Cas9 technology, the
OsRR22 gene was altered, and two homologous T, generations revealed improved salt
tolerance with no discernible difference between the modified and wild-type lines [232].
Using CRISPR/Cas9 technology, the paraquat tolerance-3 mutations (OsPQT3) gave rice
a high level of salt tolerance [233]. The function of OsmiR535 in salt stress tolerance was
investigated using genome-editing techniques, and it was proposed that OsmiR535 might
be knocked out using CRISPR/Cas9 to enhance salinity tolerance in rice. Additionally,
a homozygous 5bp deletion in the OsmiR535 coding region might be a valid target for
raising rice’s salt tolerance [234]. Furthermore, some other genes increase the ability of rice
to tolerate salt, using CRISPR/Cas9 technology by eliminating the OsbHLH024 gene and
increasing the expression of the ion transporter genes including OsHKT1;3, OsHAK7, and
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OsSOS1 [235]. When the rice OsRAV2 gene was altered using CRISPR-Cas, the rice plants
were able to survive under high salt conditions [236].

Table 5. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
developing salinity tolerance.

Crops Gene Trait Technique References
Rice OsbHLHO024 Salinity CRISPR/Cas9 [235]
Rice OsRR22 Salinity CRISPR/Cas9 [232,237]
Rice Osmgjaﬁg?a’“' Salinity CRISPR/Cas9 [234,236,238]
Rice OsRR9, OsRR10 Salinity CRISPR/Cas9 [239]
Rice OsNAC041 Salinity CRISPR/Cas9 [240]
Rice 0OsOTS1 Salinity CRISPR/Cas9 [241,242]
Rice OsDST Drought and salinity CRISPR/Cas9 [151]
Rice SAPK2 Tolerance to salinity CRISPR/Cas9 [131]

Wheat TuHAGI1 Salt tolerance CRISPR /Cas9 [243]

Maize ZmHKTI Tolerance to salinity CRISPR/Cas9 [244]

Soybean GmAITR Salt tolerance CRISPR/Cas9 [245]

Soybean Drb2a, Drb2b T"leras‘;;entifyft‘;:ihta“d CRISPR/Cas9 [208]
Barley HvITPK1 salinity CRISPR/Cas9 [246]
Tomato SIHyPRP1, SIARF4 salinity CRISPR/Cas9 [247,248]

Improvements in salt stress tolerance were seen in tomatoes after changes were made
to the 8CM and PRD domains of the hybrid proline-rich proteinl (HyPRP1) [247]. Addition-
ally, the capability of crops to tolerate salt stress may be significantly increased by employing
CRISPR/Cas9 technology to eliminate the OsDST genes for rice [151], OsNACO041 [238],
and HvITPK1 [246] for barley.

3.5. Heavy Metals Stress

An important issue for sustainable agricultural development is heavy metals, which
seriously impair plant growth and productivity [249]. Heavy metals (HMs) including
Mn, Cu, Ni, Co, Cd, Fe, Zn, and Hg, among others, have accumulated in soils as a
result of various human activities such the application of fertilizer, incorrect disposal
of industrial waste, and unauthorized sewage disposal [250,251], or the hasty disposal of
vehicle waste. They are either collected on the soil surface or leached from the soil into the
groundwater [252,253]. Additionally, heavy metals cause oxidative stress by promoting
the generation of hydroxyl radicals (OH), superoxide radicals, and hydrogen peroxide
(H,0O7) [250,254]. Plant physio-morphological activities are hampered by the accumulation
of HMs, especially in the roots where they are blocked by Casparian strips or trapped by
root cell walls, which eventually reduces crop output [255]. When consumed, heavy metals
accumulated in plants canseriously impair human health [256].

To combat heavy metal stress in plants, CRISPR-Cas9-induced plant mutants may
prove useful (Table 6). In contrast to WT Co10 plants, the oxp1/CRISPR mutant of Ara-
bidopsis plants exhibits resistance to Cd, indicating an increased capacity for heavy metal
detoxification in mutant crops [257]. Accordingly, study showed how indel mutations
using gene-editing techniques could provide tolerance to heavy metals and xenobiotics
in plants [257]. Increased plant tolerance to heavy metals is influenced by a variety of
genes [258]. Several transporter genes in rice, including OsLCT1 and OsNramp5, are
implicated in Cd absorption by the roots [259]. The amount of Cd in rice has been reduced
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by CRISPR/Cas9-enabled gene-expression manipulation. Rice grains with OsNRAMP1
knocked out by CRISPR/Cas9 have decreased levels of Cd and lead (Pb) [260,261]. Elimi-
nating an R2R3 MYB transcription factor called OsARM1 using CRISPR/Cas9 prevents rice
from absorbing and transporting arsenic [262].Cesium (Cs+) absorption and translocation
in rice are regulated by the OsHAK1 gene. Using the CRISPR-Cas9 technique, the cesium
permeable potassium transporter OsHAKI was turned inactive [263].

3.6. Herbicide Stress

In order to increase crop productivity, there is a need to manage weed growth with
application of herbicides. Herbicides destroy non-target plants while also causing stress
to the target plants and weed plants by interfering with or changing their metabolic
processes. They also leave soil residues that are hazardous to the environment [264,265].The
morphological, physiological, and biochemical traits of agricultural plants have been
negatively impacted by the inappropriate application of herbicides. Herbicide toxicity
reduces photosynthetic activity, which has a detrimental impact on the ability of crop
plants to produce yield. One of the main goals for raising agricultural productivity is
the development of herbicide tolerance in crop plants. To improve herbicide resistance
in plants, genome editing including ZFNs, TALENs, and CRISPR/Cas technologies is an
excellent tool (Table 6).

Leucine, isoleucine, and valine are branched amino acids whose biosynthesis is cat-
alyzed by the enzyme acetolactate synthase, which is encoded by the ACETOLACTATE
SYNTHASE (ALS) gene [266,267]. 1t is a potential target of many herbicide improvement
programmes. The recombination of acetolactate synthase using CRISPR/Cas9 produces
herbicide resistance in rice [268] and in watermelons [269]. Additionally, using the same
strategy and emphasizing the ALS1 and ALS2 genes, herbicide-resistant maize plants were
produced [270]. CRISPR-based editing in the OsALS1 gene has been used to introduce her-
bicide tolerance characteristics into rice [271,272]. Glyphosate is one of the most imperative
and quickly adopted herbicides for function in resistant crops such as soybean, maize, sugar
beet, and chili pepper. The advancement of glyphosate-resistant plants requires changes in
the machinery of some genes [203]. 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)
enzyme is implicated in the formation of aromatic compounds in crops with the transfer
of phosphoenolpyruvate (PEP) enzyme for activating the reaction [203,273]. Glyphosate
hinders the act of the EPSPS enzyme by inhibiting the add-on of glyphosate to the PEP
enzyme binding sites, eventually blocking the formation of aromatic products and causing
crop death [203]. The endogenous EPSPS gene of rice was targeted with CRISPR/Cas9 to
produce site-specific gene incorporation and substitution, which were fully transferred to
the next generation with crops 100% resistant to the glyphosate [203]. CRISPR/Cas9 was
also utilized toproduce a mutation in the promoter of the EPSPS gene of chili to state this
gene beneath the action of glyphosate [274]. The resulting crops were reasonably resistant
to glyphosate, and additional studies advised that selecting a diverse promoter may assist
in the development of entirely resistant chili [274]. The modified genotypes of rice and flax
now have enhanced tolerance to glyphosate as a result of the CRISPR/Cas9 change of two
nucleic acid residues in the binding site of glyphosate-EPSPS [91,203]. Recently, herbicide
resistance was developed in tomato plants by CRISPR-Cas9-based targeted mutations in
EPSPS, PDS (phytoene desaturase), and ALS [92].

Table 6. List of reported targeted gene(s) via CRISPR/Cas9 technology in different plant species for
tailoring herbicide and metal stress tolerance.

Crops Gene Trait Technique References
Rice C287T Herbicide resistance CRISPR/Cas9 [274]
Rice BEL Herbicide resistance CRISPR/Cas9 [71]
Rice OsALS1 Herbicide tolerance CRISPR/Cas9 [271]
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Table 6. Cont.

Crops Gene Trait Technique References
Rice EPSPS Herbicide resistance CRISPR/Cas9 [203]
Rice SF3B1 Herbicide resistance CRISPR/Cas9 [72]

Wheat ALS Herbicide resistance CRISPR/Cas9 [275,276]

Maize ALS1 and ALS2 Herbicide resistance CRISPR/Cas9 [270]

Maize MS26 Herbicide resistance CRISPR/Cas9 [270]

Soybean ALS1 Resistant to Chlorsulfuron CRISPR/Cas9 [277]
Tomato ALS Resistant to Chlorsulfuron CRISPR/Cas9 [278]
Tomato SIEPSPS Herbicide resistance CRISPR/Cas9 [92]
Tomato SIALS1, SIALS2 Herbicide resistance CRISPR/Cas9 [92]
Tomato Slpds1 Herbicide resistance CRISPR/Cas9 [92]
Rice OsTubA2 Base editing CRISPR/Cas9 [279]
Rice OsHAK1 Low cesium accumulation CRISPR/Cas9 [263]
Rice OsPRX2 Potassium deficiency tolerance CRISPR/Cas9 [280]
Rice OsARMI I“C“ﬁz;taorlseersice to CRISPR/Cas9 [260]
Rice OsLCT1 Less cadmium accumulation CRISPR/Cas9 [259]

4. Conclusions and Prospects

Plants serve as sources of food, fiber, medicine, biofuels, and other goods. Farmers
need new, superior cultivars in order to increase crop output and feed both the nation and
the world. Plant breeders need a variety of tools for this purpose, including genomics
and marker-assisted molecular breeding. Scientists can now implant desired traits more
precisely and faster than in the past. Meganucleases (MNs), zinc finger nucleases (ZFNs),
transcription activator-like effector nucleases (TALENSs), and the clustered regularly in-
terspaced short palindromic repeats (CRISPR) system are genome-editing tools that have
been used with greater accuracy and efficiency than conventional breeding to enhance the
quality of staple, oilseed, and horticultural crops. Today, there are several successful cases
of “genome editing.” In order to edit genes accurately in the genomes of model and crop
plants as well as a range of other organisms, genome editing employs designed nucleases as
potent tools that target certain DNA sequences. A study of the literature on transcriptomics,
biotechnology, genomics, and phonemics has shown that this novel approach to crop
development is effective. CRISPR/Cas9-based genome editing is a genuinely innovative
strategy. With genome editing, crops can effectively incorporate a variety of genetic traits.
When these precise and powerful methods are applied to expedite plant breeding, they
create certain outcomes. In order to accomplish a second Green Revolution and meet the
escalating food demands of a quickly growing global population under constantly changing
climatic conditions, plant breeding will advance with the help of this multidisciplinary
approach. By overcoming the limitations of current transgenic techniques, genome-editing
technology ushers in a new era of improved plant genetics. This information may be proved
useful to plant breeders and researchers in their thorough evaluation of the use of various
gene-editing tools to improve crops by focusing on the targeted gene. We believe that
CRISPR/Cas9 technology islikely to bridge the GMO and societal divide in upcoming days.
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Abstract: Chickpea production is seriously hampered by drought stress, which could be a great threat
in the future for food security in developing countries. The present investigation aimed to screen the
drought-tolerant response of forty desi chickpea genotypes against drought stress through various
physio-biochemical selection indices and yield-attributing traits. Principle component-based biplot
analysis recognized PG205, JG2016-44, JG63, and JG24 as tolerant genotypes based on physiological
selection indices. These genotypes retained higher relative water content, stomatal conductance,
internal CO, concentration, and photosynthetic rate. ICC4958, JG11, JAKI9218, JG16, JG63, and PG205
were selected as tolerant genotypes based on biochemical selection indices. These genotypes sustained
higher chlorophyll, sugar and proline content with enhanced antioxidant enzyme activities. With
respect to yield trials, JAKI9218, JG11, JG16, and ICC4958 had higher seed yield per plant, numbers
of pods, and biological yield per plant. Finally, JG11, JAKI9218, ICC4958, JG16, JG63, and PG205 were
selected as tolerant genotypes based on cumulative physio-biochemical selection indices and yield
response. These identified drought-tolerant genotypes may be further employed in climate-smart
chickpea breeding programs for sustainable production under a changing climate scenario.

Keywords: chickpea; drought stress; selection indices; drought tolerant genotypes

1. Introduction

Legumes play a significant role in human diet because they not only complement the
nutrients in a cereal diet but also improve the taste and texture of staple dishes [1,2]. Chick-
pea is a nutrition-rich grain legume and serves as an inexpensive source of high-quality
daily protein as compared to animal protein, so is vital for nutritional security in developing
countries, especially the vegetarian people of India [3,4]. It also serves as an enhancer of
soil fertility through biological nitrogen fixation and fits in various crop rotation systems
for the improvement of soil fertility [5,6]. It is also known as Bengal Gram or Garbanzo,
and originated from Turkey [7]. It is ranked third after dry beans and peas worldwide [8,9].
Globally, chickpea occupies 14.8 Mha area, spanning over 59 countries, with an annual
production of 15.1 million tons [10]. The major global production of chickpea comes from
Asian countries; India shares 70% of the global chickpea area and 67% global chickpea
production as the largest chickpea-producing country, followed by Pakistan, Turkey, Aus-
tralia and Myanmar [11]. Based on seed morphological traits, chickpea is separated into
two groups, i.e., desi type with microsperma and Kabuli type with macrosperma [12,13].
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Desi type is more important than Kabuli type, as it covers approximately 80-85% of global
chickpea production [14]. Desi chickpea is a potential source of nutritional components,
i.e., high-quality proteins composed of albumins and globulins in large quantities, amino
acids, essential fatty acids, trace elements and minerals [15].

Chickpea is frequently grown as rainfed crop in arid and semiarid regions, where
water requirement is mainly received with either seasonal rainfall or stored moisture under
s0il [16,17]. In the last few years, unpredicted climatic changes resulting in high temperature
(heat stress) and unusual rainfall (floods) and drought stresses are becoming major threats
for crop production [18-22]. Among climatic changes, low moisture and high temperature
stresses are the most important yield-limiting stresses in chickpea [23]. Chickpea is most
sensitive to water stress at pre-flowering and early pod filling stages [1,4]. It is estimated
that terminal drought alone can cause up to 50% of yield losses in chickpea [4,24].

Genetic improvement could be a less expensive and more long-lasting solution for
better drought adaptation in chickpea than agronomic options. However, an understanding
of yield maintenance under low water supplies becomes increasingly difficult because of
several mechanisms employed by plants for maintaining growth and development [25]. To
experience better stability of grain yield under drought, trait-based breeding strategies are
being increasingly emphasized above yield-based breeding because grain yield is greatly
affected by genotype x environment interactions and depicts low heritability [26]. Trait-
based breeding also enhances the probability of crosses, which result in additive gene
action under drought conditions.

For chickpea breeders, the breeding of drought-tolerant cultivars has been a tough task
because of the unavailability of good selection indices. The lack of genetic divergence and a
good source of resistance/tolerance to different abiotic stresses has been a major obstacle in
the development of high-yielding drought-tolerant chickpea cultivars [27]. The screening
and selection of chickpea germplasm line (s) based on diverse morpho-physiological and
biochemical traits becomes a pre-requisite for crop improvement under drought stress [26].
Although similar efforts have been made with a major focus on morpho-physiological and
biochemical traits contributing to drought tolerance in chickpea [4,16,26,28], limited detail
about the terminal stage drought tolerance of the same genetic material are available. Thus,
to fill this gap, the present investigation was conducted to assess the effect of terminal
drought stress in chickpea genotypes by evaluating key drought-tolerant indicator traits
and to select high-yielding drought-tolerant chickpea genotypes, especially those cultivated
in India.

2. Materials and Methods

The experiment was performed in a randomized completely block design (RCBD)
with three replications during the post-rainy seasons of 2020-2021 and 2021-2022 under
a rainout shelter at Biotechnology Centre, Jawaharlal Nehru Krishi Vishwa Vidyalaya
(JNKVV), Jabalpur (23°10" N 79°59" E). To study the effect of normal irrigated and terminal
drought-stressed conditions on the morpho-phenology, physiology, biochemistry, yield
and other traits of desi chickpea at reproductive stage, forty chickpea genotypes, including
drought-resistant types, released varieties and advanced breeding lines, were obtained from
Lead Centre, All India Coordinated Research Project (AICRP) and the Department of Plant
Breeding Genetics, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur, Madhaya Pradesh,
India (Supplementary Material Table S1). The field was prepared with 1 m wide bed flanked
by 0.45 m furrows and fertilized with di-ammonium phosphate (DAP) containing nitrogen
(18.0 kg/ha) and phosphorus (20.0 kg/ha). Seeds were treated with Bavistin (2.0 g per kg
seed weight), Chlorpyriphos 20EC (10.0 mL per kg seed) and Rhizobium (5.0 g per kg seed).
Seeds were sown at a depth of 2-3 cm manually, maintaining a row-to-row distance of
45 cm. For the uniform emergence of seedlings, 20 mm irrigation was applied immediately
after sowing. Thinning was performed after two weeks of seed germination to maintain a
plant-to-plant distance of 10 cm within rows. Subsequently, drought stress was imposed by
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withholding the water supply to the stressed set of plots before the onset of pod initiation
up to the harvesting [29].

2.1. Physiological Traits

Relative water content (RWC) and canopy temperature depression (CTD) were esti-
mated according to Gontia-Mishra et al. [30] and Purushothaman et al. [26], respectively.
The leaf gas exchange parameters, viz., photosynthesis rate (Pn), stomatal conductance (gs),
transpiration rate (Tr) and internal CO, concentration (Ci), were recorded using a portable
infra-red gas analyzer (IRGA) LiCor-6400 (LiCor Instruments, Lincol, NE, USA).

2.2. Biochemical Traits

Chlorophyll content was estimated according to Gontia-Mishra et al. [30], while pro-
tein content was determined using an extraction buffer, as mentioned in the Bradford
assay [31]. To determine the oxidative stress of a cell, hydrogen peroxide (H,O,) content,
lipid peroxidation content (malondialdehyde; MDA) and electrolyte leakage (EL) were mea-
sured as described by Velikova et al. [32], Naservafaeito et al. [33] and Sachdeva et al. [28],
respectively. To estimate the osmolytes accumulation of a cell, free proline content of leaf
using ninhydrin [30] and total soluble sugar content using an anthrone reagent methodol-
ogy [34] were determined.

To determine the enhanced activity of antioxidant enzymes, crude enzyme was ex-
tracted using an enzyme extraction buffer. Superoxide dismutase (SOD) activity was
determined according to Sharma et al. [35], and one unit of enzyme activity was defined as
the amount of enzyme that decreased the absorbance by 50%. The estimation of peroxidase
(POD) activity was performed following Rao et al. [36], and enzyme activity was calcu-
lated as per extinction coefficient of tetra-guaiacol € = 26.6 mM~! cm~!. Catalase (CAT)
activity was estimated according to Aebi et al. [37], and enzyme activity was calculated
as the amount of HyO, decomposed per min. Ascorbate peroxidase (APX) activity was
determined as described by Nakano et al. [38], and enzyme activity was calculated as per
extinction coefficient of ascorbate € =2.8 mM~tem 1.

2.3. Morpho-Phenological Traits, Yield and Yield Attributing Traits

Plant height was recorded from the ground level to the shoot tip. The date when half
of the plants in a replication had at least one flower opened and the date when more than
75% of the pods of a plant turned brownish yellow from the days after sowing (DAS) were
recorded as days to 50% flowering (DTF) and days to maturity (DTM), respectively. At
the time of harvesting, all the seed-filled pods of a plant were counted as numbers of pods
(NOP), and the weight of the plant including the pods was recorded as biological yield per
plant (BYPP). The harvested seeds of a plant were weighed to obtain seed yield per plant
(SYPP). Harvest index (%) was calculated as the ratio between seed yield per plant and
biological yield per plant multiplied by 100.

2.4. Statistical Analysis

From each treatment, three plants were randomly selected to record the various
drought-related morpho-phenological, physio-biochemical, and yield traits in two succes-
sive Rabi seasons (2020-2021 and 2021-2022). The data of both seasons were pooled for all
40 chickpea genotypes under both water conditions. The significance was established by
analysis of variance (ANOVA) and Duncan Multiple Range Test (DMRT) at p < 0.05 using
STAR V2.0.1 and SPSS V20 software, respectively. Principle component analysis (PCA)
and PCA-based biplots were constructed to select reliable chickpea genotype (s) under
drought-stressed conditions using XLSTAT software. Cluster analysis was also constructed,
employing algometric hierarchical clustering for all chickpea genotypes under drought
stress by applying STAR V2.0.1.
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3. Results
3.1. Effect of Terminal Drought Stress on Physiological Traits

Under terminal drought-stressed condition, all studied physiological traits were sig-
nificantly decreased in comparison to normal irrigated conditions in all chickpea genotypes
(Supplementary Materials Tables S2 and S3). A higher RWC was maintained by geno-
type JG63 (77.66%), whereas lower RWC was noted in the genotype JG2016-36 (57.03%)
(Figure 1). Higher CTD was obtained by genotype ICCV19616 (2.18 °C), whereas the
lowest CTD was reported in genotype JG6 (1.08 °C). In terms of Ci, the highest value
was achieved in genotype PG205 (195.9 pmol CO; m~2s~1), whereas the lowest Ci was
recorded in genotype JG2022-75 (123.78 pmol CO, m~2s71) (Figure 2). Figures 2 and 3
show that genotype JG2016-44 exhibited the maximum Pn (18.31 umol CO; m—2s~!) and
gs (0.31 mol H,O m~2s~1), while the minimum Pn (10.31 umol CO, m~2s~!) and gs
(0.17 mol HyO m~2s~!) were found in genotype JG2022-75. Higher Tr was maintained
in genotype JG2016-44 (15.4 mmol H,O m~2s71),and the lowest was seen in genotype
JG2022-75 (8.62 mmol H,O m—2s~1).
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Figure 1. Effect of terminal drought stress on (A) RWC and (B) CTD of studied chickpea genotypes,
where RWC and CTD indicate relative water content and canopy temperature depression, respectively.

3.2. Effect of Terminal Drought Stress on Biochemical Traits

Under terminal drought-stressed conditions, chlorophyll a, b and protein content were
significantly reduced, whilst HyO, content, EL, lipid peroxidation (MDA) and antioxidant
enzyme activities were significantly enhanced as compared to normal irrigated condition in
all investigated chickpea genotypes (Supplementary Tables 54 and S5). Higher Chl ‘a” was
maintained by genotype JG16 (0.41 mg/g FW) (Figure 4), while higher Chl ‘b” by genotype
ICC4958 (0.31 mg/g FW). Higher protein content was upheld by genotype JG2021-6301
(0.47 mg/g FW), whilst the minimum was documented in genotype JG74 (0.34 mg/g FW)
(Figure 5). Minimum H;O, content was recorded in genotype JG6 (3.39 mmol/g FW),
while maximum enrichment in HyO, was found in genotype JG2021-6301 (42.93%). Higher
EL was observed in genotype JG2016-634958 (45.08%), whilst the minimum was found
in genotype JG11 (34.49%) (Figure 6). Minimum MDA content was noticed in genotype
JG2016-1411 (2.05 nmol/g), whereas the maximum was documented in genotype ICC4958
(16.29%). Higher TSS content was maintained by genotype ICC4958 (2.07 mg/g FW),
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whereas the lowest was recorded in genotype JG2016-9605 (1.60 mg/g FW) (Figure 7).
Higher proline content was detected in genotype JG11 (89.18 ug/g FW), while the lowest
was noticed in genotype JG2022-75 (55.83 ug/g FW).
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Figure 3. Effect of terminal drought stress on (A) gs and (B) Tr of studied chickpea genotypes, where
gs and Tr indicate stomatal conductance and transpiration rate, respectively.
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Figure 5. Effect of terminal drought stress on (A) protein content and (B) H,O, content of studied
chickpea genotypes, where H, O, indicates hydrogen peroxide.
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Figure 6. Effect of terminal drought stress on (A) EL (%) and (B) MDA content of studied chickpea
genotypes, where EL and MDA indicate electrolyte leakage and malondialdehyde, respectively.
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Figure 7. Effect of terminal drought stress on (A) TSS content and (B) proline content of studied
chickpea genotypes, where TSS indicates total soluble sugar.
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Higher SOD was maintained by genotype ICC4958 (1.82 U/mg FW), while the min-
imum was recorded for the genotype JG206-9605 (0.49 U/mg FW) (Figure 8). Higher
POD was sustained in genotype ICC4958 (2.57 umol/min/g FW), whilst the minimum
was evidenced in genotype JG6 (0.99 umol/min/g FW). Higher CAT was maintained
by genotype ICC4958 (4.52 umol/min/g FW), whereas the minimum was perceived
in genotype (JG6 2.77 umol/min/g FW) (Figure 9). Higher APX was exhibited by the
genotypePG205 (16.54 umol/min/g FW), whilst the lowest was found in genotype JG6
(8.43 pmol/min/g FW).
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Figure 8. Effect of terminal drought stress on (A) SOD and (B) POD activity of studied chickpea
genotypes, where SOD and POD indicate superoxide dismutase and peroxidise.
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Figure 9. Effect of terminal drought stress on (A) CAT and (B) APX activity of studied chickpea
genotypes, where CAT and APX indicate catalase and ascorbate peroxidise, respectively.
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3.3. Effect of Terminal Drought Stress on Yield and Its Attributing Traits

Under the drought-stressed condition, yield and its accrediting characters were signif-
icantly reduced in all the studied chickpea genotypes compared to the normal irrigated
condition (Supplementary Tables S6 and S7). In terms of genotypic response, the lowest DTF
was documented in genotype JG11 (54.3 DAS), while the maximum was in genotype JG32
(74.91DAS) (Figure 10). Lower DTM was documented in genotype ICC4958 (98.13 DAS),
whilst maximum DTM was investigated in genotype JG74 (119.42 DAS). Higher NOP was
maintained by genotype JG16 (65.25), whereas the minimum was observed in genotype
JG14 (30.25) (Figure 11). Higher SYPP was upheld by genotype JG11 (11.42 g), the while
minimum was observed in genotype JG74 (6.14 g). Higher BYPP was sustained in genotype
PG205 (34.77 g), and the minimum was shown in genotype JG74 (19.33 g) (Figure 12).
Higher HI was exhibited by the genotype JAKI9218 (43.29%), whereas the minimum was
found in genotype JG36 (28.18%).
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Figure 10. Effect of terminal drought stress on (A) DTF and (B) DTM of studied chickpea genotypes,
where DTF and DTM indicate days to 50% flowering and days to maturity, respectively.

3.4. Principle Component Biplot Analysis

For a more reliable identification of genotypes with a maximum value for one or
more traits, genotype by trait biplots were constructed for PC-I and PC-II for all genotypes
and all traits under all treatments (Figure 13, Supplementary Table S8). Biplot analysis
clearly distinguished the drought-associated traits into positively correlated traits (<90°),
independent traits (=90°), and negatively correlated traits (>90°). The RWC, CTD, Pn,
gs, and Ci were identified as positively correlated traits among the studied physiological
traits; chl a, chl b, TSS and proline contents, including antioxidant enzymes activities,
viz., SOD, POD, CAT, and APX, were proved to be positively correlated traits among the
studied biochemical traits. Similarly, SYPP, NOP, and BYPP were also considered positively
correlated traits among the studied yield and its attributes. These cumulative positively
correlated physio-biochemical traits, yield, and its attributing traits contributed more
towards the drought tolerance of chickpea genotypes, and so can be treated as markers for
terminal drought tolerance in chickpea.
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Figure 11. Effect of terminal drought stress on (A) NOP and (B) SYPP of studied chickpea genotypes,

where NOP and SYPP indicate number of pods and seed yield per plant, respectively.
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Figure 12. Effect of terminal drought stress on (A) BYPP and (B) HI (%) of studied chickpea genotypes,

where BYPP and HI indicate biological yield per plant and harvest index, respectively.
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Figure 13. PCA biplots depicting (A) relationships between the traits measured, (B) performance of
chickpea genotypes, and (C) combined (A + B) under terminal drought stressed condition. In the
active variables, RWC, CTD, Ci, Pn, gs, Tr, Chla, Chlb, EL, MDA, H,0,, SOD, POD, APX, DTE, DTM,
NOP, SY, BY, and HI indicate the relative water content, canopy temperature depression, internal
CO; concentration, photosynthesis rate, stomatal conductance, transpiration rate, chlorophyll a,
chlorophyll b, electrolyte leakage, malondialdehyde, hydrogen peroxide, superoxide dismutase,
peroxidase, ascorbate peroxidase, days to 50% flowering, days to maturity, number of pods, seed
yield, biological yield and harvest index, respectively.

In biplots, the genotypic performance can be estimated by the distance of the genotype
from the origin of the biplot. The distant genotypes could have the greatest values for one
or more traits. The PCA biplot distinguishes the ICC4958, JG11, JAKI9218, JG16, and JG63
genotypes as distant genotypes with strong positive correlation with CAT, SOD, proline,
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TSS, POD, and APX selection indices. These genotypes could have the greatest values for
these selection indices. The bilpot also distinguishes JG6 and JG74 genotypes as distant
genotypes with strong negative correlation with these selection indices. These genotypes
could have minimum values for these selection indices. The rest of the genotypes could
have medium values for these selection indices. Further, cluster analysis was performed
using morpho-physiological and biochemical data under the stress condition. The agglom-
erative clustering categorized forty genotypes into two major clusters (Figure 14). Major
cluster I consisted of six genotypes, viz., JG16, ICC4958, JAKI9218, JG11, JG63, and PG205.
Major cluster II consisted of two subclusters. Sub-cluster I also contained six genotypes,
viz., JG74, JG2016-9605, JG6, JG226, and JG-2003-14-16Sub-cluster II contained the rest of
the genotypes.
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Figure 14. Agglomerative clustering of studied chickpea genotypes under terminal drought-stressed
condition.
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4. Discussion

Abiotic stresses are almost interlinked, causing morpho-physiological, biochemical,
and molecular alteration that negatively affects crop growth and development, crop effi-
ciency, and ultimately yield [4,20-22]. The prevalence of inconsistent rainfall and extreme
temperature (drought and heat) is proposed to increase soon owing to climate change [39].
Low moisture and heat affect chickpea growth and may be observed in early morphological
stages that ultimately affect seed yield indirectly. The present findings revealed that under
normal sown conditions, there was a substantial increase in plant growth and development
compared to under drought-stressed conditions.

Plant water status is the primary factor that affects crop yield and quality. The present
investigation reveals that drought stress caused a significantly reduced RWC content in the
leaves of genotypes. RWC decreased in lesser magnitude in drought-tolerant genotypes;
this may be because of their more extended root systems, which could complement water
lost by transpiration. Under drought-stressed conditions, the ability of a plant to maintain
the turgor pressure and related physiological processes has great significance, and it
is related to drought resistance in terms of osmoregulatory activities. Drought stress
leads to the dehydration of plants and a decline in RLWC, which can result in stomatal
closure [40-43]. CTD was also decreased under the stressed conditions compared to
normal conditions. The drought-tolerant chickpea genotypes demonstrated higher CTD
under drought-stressed conditions than other genotypes, showing their extraordinary
ability to maintain a canopy cooler than the rest. CTD has already been utilized as a
selection indicator for tolerance to drought and high-temperature stress in early-generation
selections [44,45]. A positive correlation of CTD with yield was also observed in chickpea
under heat-stressed and drought-stressed conditions [26]. Various other studies have
also described a comparable pattern of decreases in CTD under heat- and water-stressed
conditions in chickpea genotypes [26,39].

Under terminal drought-stressed condition, the gas-exchange parameters were also
decreased in all studied chickpea genotypes. The most negligible reduction was evidenced
in tolerant genotypes compared to other genotypes. The decrease in internal CO, con-
centration and leaf photosynthetic rate under drought-stressed conditions appears to be
mediated by stomatal closure, as demonstrated by the reduced stomatal conductance and
transpiration rate [46,47]. In this investigation, pigment and protein content were also
reduced under stress conditions, and less reduction was documented in tolerant genotypes
compared to other genotypes. Chl ‘a’, Chl ‘b” and total chlorophyll content in chickpea
leaves was shown to be degraded with increasing days of irrigation intervals compared
with unstressed plants. The water deficit condition decreased chickpea growth, chlorophyll
content and photosynthetic efficiency when plants were exposed to irrigation levels of
100, 60, 40 and 20% of the field capacity [48]. Protein molecules play a crucial role in the
proper functioning of the cell. In this study, protein content decreased in all genotypes
under drought stress, and the most negligible reduction was detected in tolerant genotypes
compared to other genotypes [49]. Reduced photosynthesis under drought stress reduces
or even stops protein synthesis. Abiotic stresses caused a reduction in protein production,
possibly due to various factors involved [50].

Water stress enhances the production of ROS such as alkoxy radicals, singlet oxygen,
0,°~, OH®, H,O,, etc. Increased H,O, content induces oxidative stress with several
adverse effects, including electrolyte leakage, associated membrane damage, and lipid
peroxidation. In this research, tolerant genotypes showed a lesser increase in HyO», EL and
MDA contents than other genotypes. Under drought stress, similar findings of increased
leaf HyO, [44], EL and MDA content [39,41] were also reported in chickpea. Under terminal
drought-stressed conditions, the chickpea genotypes accumulated osmolytes. Drought-
tolerant genotypes accumulated higher osmolyte levels, suggesting that osmolytes might
be proved an appropriate indicator for evaluating drought tolerance in chickpea. In the
shoots of the chickpea plants, proline content was significantly increased under moderate
and severe drought-stressed conditions compared with untreated plants [50]. Although
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water stress induced a significant increase in leaf proline content of the sensitive cultivar
(Azad), leaf proline content in the tolerant cultivar (Arman) strongly increased [48]. Owing
to unpredicted changes in climate, pulses become more sensitive to oxidative damage by
the overproduction of ROS such as HyO,, hydroxyl, and superoxide radicals. Specialized
enzymatic antioxidants, i.e., POD, SOD, APX and CAT, are activated and act as the first
line of defense for detoxification of the effects of ROS [51]. In the present study, increased
activity of SOD, POD, CAT, and APX was investigated in all genotypes under drought-
stressed conditions over the normal condition. A higher activity level was evidenced in
tolerant genotypes compared to other genotypes. Several earlier researchers also reported
a similar increased level of antioxidant enzyme activities under water stress conditions
in chickpea. SOD, POX and catalase activities were significantly enhanced in moderate
(50% FC) and severe (25% FC) conditions under drought stress [47]. CAT, SOD, POX, APX
and GR activities were markedly increased in chickpea shoots under moderate and severe
drought-stressed conditions [46]. CAT, SOD, POX, APX and GR activities were markedly
enhanced in chickpea plants under drought stress [4,48,50] circumstances as well.

Under the normal irrigated condition, the maximum grain yield per plant was doc-
umented by genotype JG6, tracked by the genotypes JG16, JAKI9218, and JG11. The
maximum yield per plant was yielded by genotype JG11, tailed by genotypes JAKI9218,
JG16, and ICC4958 under terminal drought stress. In this investigation, the tolerance of
genotypes JG11, JAKI9218, JG16, and ICC4958 against drought stress was perhaps due
to the higher number of pods per plant, the better accumulation of osmolytes, i.e., sugar
and proline, and the greater activities of antioxidant enzymes, viz., SOD, POD, CAT, and
APX. Similarly reduced yield attributes including the numbers of pods and numbers of
seeds per plant, and hundred-seed weight under moderate and severe drought-stressed
conditions have also been observed in chickpea, allowing us to conclude that the synthesis
of enzymatic and non-enzymatic antioxidants and proline content in stressed plants helped
in the protection of plants under drought-stressed conditions [50]. A significant difference
was investigated among the genotypes based on different biochemical, morphological,
and physiological parameters. The chickpea genotypes, viz., GGP-1260, PGP-1426, and
PB-1, were considered drought-tolerant genotypes based on their higher plant biomass
production, pod yield, harvest index, and having the highest activities of POD, CAT, and
SOD. Under drought stress, the drought-tolerant genotypes retained higher plant yield
with lower reductions in CI, RWC, MSI, numbers of secondary branches, and biomass [28].
An integrated approach involving physio-biochemical traits and multi-environmental yield
trials was performed for screening and selecting drought-tolerant chickpea genotypes and
allowed us to conclude that higher RWC, CMS, glycine betaine, and proline content con-
ferred a more significant capability for drought stress tolerance in chickpea [16]. In another
investigation, the reduction in growth and yield of the tolerant cultivar was less compared
to the susceptible cultivar DUSHT, probably due to the accumulation of higher antioxidant
enzyme activities, suggesting the protective role of enhanced antioxidant enzyme activities
of plants under water-stressed conditions [51].

PCA biplot is the most effective multivariate analysis for evaluating the genotypic
performance and traits interaction. It is being extensively utilized to dissect the traits
correlation in different crop plants by several researchers [16]. PCA biplots provided a new
understanding of drought-tolerance mechanisms and plant responses under drought-stress
conditions [28]. Under the stressed condition, biplot analysis based on principal component
and correlation analysis established a strong positive association of SYPP with POD, NOP,
proline, SOD, CAT, APX, and sugar content, signifying their greater utilization in selecting
high-yielding drought-tolerant genotypes. Genotypes ICC4958, JAKI9218, JG11, JG16, and
JG63 performed better under the stressed condition, with a smaller reduction in NOP and
BYPP, including a higher accumulation of osmolytes (proline and sugar) and enhanced
antioxidant enzyme (POD, SOD, APX, and CAT) activity. Further, the agglomerative clus-
tering also supported the result obtained from biplot analysis and grouped tolerant and
susceptible genotypes in separate clusters. Major cluster I contained tolerant genotypes,
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while sub-cluster I consisted of susceptible genotypes. Our findings follow the results of
Sachdeva et al. [28], who also observed a strong positive association with RWC, chloro-
phyll index (CI), membrane stability index (MSI), numbers of secondary branches (SB)
and yield traits and negative associations with drought-susceptibility index (DSI), 100-SW
and days to maturity under drought-stressed conditions through principal component
analysis based on biplot and correlation analysis. Genotypes ICC4958, Pusal103, BGD72,
CSG8962, ICCVI97309, ICCV10, ICCV03311, ICCV05308, ICCV3403, and ICCV10313 were
identified as the most drought-tolerant genotypes, with higher values of lower DSI and
DTM and high RWC and MSI values under drought-stressed conditions at both vegeta-
tive and reproductive stages based on PCA-biplot analysis. Similarly, Shah et al. [16] also
utilized biplot analysis to select superior chickpea genotypes under drought stress and
concluded that genotypes D0091-10, D0085-10, K010-10, K005-10, 08AG016, D0078-10,
08AG004, 09AG002, D0080-10, K002-10 and D0099-10 proved superior in yield as well as
physio-biochemical performances under drought-stressed multiple environmental condi-
tions. Furthermore, genotype by-trait (GT) biplots were constructed for a more reliable
identification of genotype with maximum value for multiple traits in chickpea for all
genotype under stress conditions [4].

5. Conclusions

The identification of new genetic resources that are tolerant to drought-stressed condi-
tions is crucial. However, simultaneously, attention has been given to identifying suitable
physiological and biochemical markers that can be employed to distinguish the tolerant and
susceptible genotypes. The PCA biplots revealed that POD, NOP, proline, SOD, APX, CAT
and sugar content showing strong positive association with SYPP could be used as selection
indices to distinguish between tolerant and sensitive genotypes. ICC4958, JAKI9218, JG11,
JG16, JG63, and PG205 performed better in the terminal drought-stressed condition with
higher accumulation of proline and sugar, enhanced activity of POD, SOD, APX, and CAT
enzyme activities and smaller reduction in NOP. Due to the unavailability of quantitative
real-time polymerase chain reaction (qRT PCR), expression analysis of drought-associated
genes could not be performed. So, further analysis of gene expression and the nutritional
profiling of drought-tolerant chickpea genotypes may be performed to further explore the
genetic traits of the selected drought-tolerant genotypes.
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responses of various chickpea genotypes under normal irrigated condition. Table S7. Yield and yield
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Abstract: The prominence of arbuscular mycorrhizal fungi (AMF) in sustainable rice production
has long been recognized. However, there is little information about AMF response in aerobic rice
cultivation under phosphorus (P)-deficient conditions. The aim of this experiment was to compare
and determine the preeminent AMF effects on rice mycorrhizal colonization, responsiveness, P
utilization, and different growth-promoting traits under P-deficient conditions. Different AMF genera
viz. (Funneliformis sp., Rhizophagus sp., Glomus sp., Acaulospora sp., and Claroideoglomus sp.) in four
different aerobic rice varieties developed by ICAR-NRRI, India (CR Dhan 201, CR Dhan 204, CR
Dhan 205, and CR Dhan 207) were investigated using the check P-susceptible variety (IR 36) and
the P-tolerant variety (Kasalath IC459373). Data analyzed through linear modeling approaches
and bivariate associations found that AMF colonization was highly correlated with soil enzymes,
particularly fluorescein diacetate (FDA) and plant P uptake. The microbial biomass carbon (MBC)
and FDA content were significantly changed among rice varieties treated with AMF compared to
uninoculated control. Out of four different rice varieties, CR Dhan 207 inoculated with AMF showed
higher plant P uptake compared to other varieties. In all the rice varieties, AMF colonization had
higher correlation coefficients with soil enzymes (FDA), MBC, and plant P uptake than uninoculated
control. The present study indicates that AMF intervention in aerobic rice cultivation under P-
deficient conditions significantly increased plant P uptake, soil enzymes activities and plant growth
promotion. Thus, the information gathered from this study will help us to develop a viable AMF
package for sustainable aerobic rice cultivation.

Keywords: arbuscular mycorrhizal fungi; aerobic rice; soil enzymes; phosphorus utilization; P-deficient;
plant growth promotion

1. Introduction

Rice (Oryza sativa L.) is a major agricultural crop and staple food that feeds more
than half of the world’s population, is grown in >100 countries with 90% of the total
global production coming from Asia [1]. In Indjia, rice is cultivated in an area of 45 million
hectares and contributes to a great extent to national food security. Additionally, Asia
alone consumes 90% of the freshwater diverted to agriculture in the entire world [2,3].
This will soon be a burden on the ecological balance in many areas, leading to water
scarcity. In this case, aerobic rice cultivation is a modern practice for cultivating rice crops
with durable water soil and suited, high-yielding varieties that are sown directly dry [4].
This approach saves water significantly; in China, the aerobic rice system of cultivation
used 55-56% less water as compared to the traditional transplanted system of cultivation
with water productivity that is 1.6-1.9 times higher [5]. To keep pace with the changing
scenario, an estimated 22 varieties and 2 hybrids have been released for aerobic conditions
in India [4]. According to Ghasal et al. [6], dry and aerobic soil can reduce the natural
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supply of phosphorus (P), making the application of P fertilizer more crucial for rice grown
aerobically. P is necessary for all living organisms, and is a crucial nutrient for the expansion
and development of the plants [7-9]. Phosphorus makes up about 0.2% of a plant’s dry
biomass and is mostly present in tissue components such as phospholipids, nucleic acids,
and adenosine triphosphate (ATP) [10]. P is the second most limiting nutrient after nitrogen
(N) [11]. It may decrease agricultural productivity and slow down plant growth and
development. P exists in three different forms in the soil: organic P, soluble inorganic P, and
insoluble inorganic P [7]. The amount of total soil phosphorus varies between 30 and 65%
in organic forms, which are unavailable to plants, and 35 to 70% in inorganic forms [12].
Organic P can be found in soil microorganisms and dead plants and animals. P becomes
unavailable in the soil because of fixation and immobilization, and 70-90% of phosphate
fertilizers become fixed in the ground [13,14]. Soil microorganisms, mainly arbuscular
mycorrhizal fungi (AMF), play a key role in mobilizing phosphorus from the soil into
plant-available forms [15-18]. In the root cortical cells of their host plants, AMF create
highly branching fungal structures called arbuscules, with which they exchange inorganic
minerals, particularly phosphorus, and carbon molecules. AMF are one of the most
prevalent organisms in the mycorrhizosphere [19,20] and have interactions and colonization
with more than 200,000 different species of host plants with more than 240 different AMF
morphotypes [21]. The exploration of mycorrhizal symbiosis is one of the most promising
methods for creating resource-efficient and resilient agricultural systems [20,22]. Several
studies have reported AMF diversities in rice [23-25], but very limited information is
available on their performance in aerobics under P-deficient conditions [26]. Additionally,
some studies indicated that AMF have a host preference [27] and their performance will
vary depending on different agroecosystems [28]. In aerobic rice cultivation, soil P fixation is
one of the major problems which causes P deficiency in the soil resulting in yield reduction.
The main idea of this study is whether the intervention of suitable AMF will resolve the
issue of soil P deficiency in aerobic rice cultivation. Hence, the present study was conducted
to evaluate the effect of AMF on P uptake and growth promotion in popular aerobic rice
varieties under P-deficient conditions.

2. Materials and Methods
2.1. Low P Soil Sampling, Site Description, and AMF Inoculum and Propagation of AMF

Low-phosphorus (P) soil was collected from Krishi Vigyan Kendra (KVK), Santhpur,
ICAR—NRRI, Cuttack, Odisha (20°27/45.08"” N; 85°52/58.76" E) for the experiment and
analysis. The initial properties of the experimental soil were analyzed (Table 1). The
sterilized soil was used for a pot experiment. The soil-based single AMF inoculum viz.
Funneliformis sp., Rhizophagus sp., Glomus sp., Acaulospora sp. and Claroideoglomus sp.
received from Microbiology, ICAR—the National Rice Research Institute ICAR-NRRI),
India, were used in this experiment together with inoculum containing 115-120 AMF
spores/g of soil, which was multiplied using finger millet (Eleusine coracana) as the host
plant in sterile soil using a trap culturing method (Figure 1) [27,29].

Table 1. Initial soil properties of the experimental soil sample.

pH Electrical Available Available Available
(1:2.5, Soil: Water Conductivity Phosphorus Nitrogen Potassium
Suspension) (dS/m) (kg/ha) (kg/ha) (kg/ha)
6.53 £ 0.06 0.48 £+ 0.03 6.003 + 0.59 236.75 £ 3.65 136.86 & 3.97
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Trap culturing

Finger Millet

Figure 1. Monospecific AMF spore propagation using trap cultures and finger millet as host plant.

2.2. Experimental Site and Pot Experiment

The experiment was conducted during the 2020-2021 Rabi season (the Indian cropping
season starting from the onset of winter from October-November until spring in March-
April) in a controlled net house condition at Microbiology, the ICAR-National Rice Research
Institute (NRRI), Cuttack, Odisha (latitude—20°25" N, longitude—85°55’ E with an altitude
of 24 m above mean sea level). The pot (5 kg) experiment was conducted with five different
species of AMF and six rice varieties with three replications. The treatment details are
as follows, T0: Control, T1: Funneliformis sp., T2: Rhizophagus sp., T3: Glomus sp., T4:
Acaulospora sp. and T5: Claroideoglomus sp. In this experiment, four aerobic rice varieties viz.
V1: CR Dhan 201, V2: CR Dhan 204, V3: CR Dhan 205, V4: CR Dhan 207 (CR Dhan 201, 204,
205, and 207 developed by ICAR-NRRI, Cuttack), and two check varieties viz. V5: IR 36
(P-susceptible) and V6: Kasalath IC459373 (P-tolerant) were used, and were collected from
the Crop Improvement Division, ICAR-NRRI, Cuttack, India. After germination, three
plants per pot were maintained. Soil (completely homogenized and transported to the
laboratory in a cool pack) and all the plant samples from each pot were collected from all
treatment after 60 days in order to estimate the AMF colonization, growth parameters (root
length, shoot length, leaf area, chlorophyll, fresh and dry biomass), P uptake, soil chemical,
microbial and enzymatic activities analysis [30].

2.3. Assessment of AMF Colonization and Spore Count

The method developed by Phillip and Hayman [31] was used to evaluate the rice root
colonization of AMF [32]. Freshly collected root samples were gently washed to remove
soil that was attached to the root surfaces, submerged in 10% potassium hydroxide (KOH)
solution, and autoclaved for 15 min at 121 °C. The KOH solution was decanted, and the
treated roots were rinsed with tap water three times until no brown colour appeared in
the rinsed water. The treated root samples were further immersed in 2% hydrochloric
acid (HCI) solution for 5 min. Without being rinsed with water, HCI was decanted, and
the root samples were stained with 0.05% trypan blue (HiMedia, Maharashtra, India) in
lacto-glycerol (400 mL lactic acid + 400 mL glycerol + 100 mL water) and autoclaved for
15 min at 121 °C. After autoclaving, the stained solution was decanted, and the roots were
de-stained with lacto-glycerol solution to remove the excess stains and used for microscopic
observations. The slide was prepared by keeping 10 segments of the stained root on a clean
glass slide and observed under a compound microscope (Zeiss Stemi 508, Oberkochen,
Germany). The method described by McGonigle et al. [33] was used to calculate the
percentage of root colonization.
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AMEF root colonization was calculated using the formula:
% of colonization = no. of root segments colonized < total no. of root segments x 100

2.4. Phosphorus Estimation in Plant Sample

Collected plant samples were dried in a hot air oven maintained at 60 °C for up to
5 days in order to attain a constant weight. The determination of P concentration in the
plant sample was carried out using the vanadomolybdophosphoric acid method with
a spectrophotometer [30,34]. A quantity of 1 gm of the dried plant sample and 10 mL
of the concentrate HNO;3; were added and kept overnight, following which 10 mL of tri-
acid (HNOs;, HySO4, HCLOy in a ratio of 9:4:1), was added and mixed properly. The
mixture was kept in a hot plate at 100 °C for 1 h under a temperature rise up to 200 °C
until the content reduced to 2-3 mL and turned colourless. The content was cooled and
10 mL of diluted HCL was added and filtered through Whatman No. 42. The filtrate
volume was made up to 100 mL with distilled water. A quantity of 5 mL of the digested
sample was taken and 10 mL of vanadomolybdate reagent was added (Merck, Darmstadt,
Germany) and kept for 30 min. The absorption of the sample was measured at 420 nm
with a spectrophotometer (Analytikjena specord-200, Jena, Germany). A standard curve
was prepared with a phosphate solution (0.2195 gm of KH,POy in 500 mL of distilled
water + 25 mL of 7N HySO4 and made up to 1 L) and the P content of the plant sample was
calculated from the standard curve.

2.5. Estimation of Soil Chemical, Enzymatic and Microbial Properties

The activity of the acid (AcP) and alkaline (AkP) phosphatase of soil samples was
estimated by the method of Tabatabai and Bremner [35], using p-nitrophenyl as a substrate
and expressed in | g of p-nitrophenyl phosphate (vINP) released per gram of soil per hour.
Soil fluorescein diacetate activity (FDA) measurement was carried out by using Scherer
and Ross [36] as modified by Adam and Duncan [37]. The concentration of fluorescein
released during the assay was calculated using the calibrating graph produced from the
0-5 pg fluorescein mL~! standard and expressed as g fluorescein h~'g~! soil [27]. De-
hydrogenase activity (DHA) was estimated by the method of Casida et al. [38]), using
triphenyltetrazolium chloride (TTC) as a substrate. Microbial biomass carbon (MBC) was
determined using the chloroform fumigation extraction (CFE) method [39].

2.6. Statistical Analysis

The R version 4.2.2 [40] was used for statistical computing. For the identification of
important variables related to AMF colonization in plants, a stepwise regression model
was constructed using the “stepAIC” function available in the MASS package [41]. The
Pearson correlation was constructed using the “ggpairs” function available in the GGally
package [42].

3. Results and Discussion

Rice crops are very sensitive to water stress and reduction in water inputs with a con-
sequent decline in yield [43]. Approximately 75% of the rice is produced by a conventional
flooding method, and 3000-5000 L of water is needed to produce 1 kg of grains [4,44].
Researchers have developed several technologies to reduce water inputs in rice such as
alternate wetting and drying, raised bed rice cultivation, saturated soil culture, a system
of rice intensification, ground cover systems, and raised bed systems [45]. Some of the
modern technologies additionally require puddling and ponded water during crop growth.
In rice cultivation, the aerobic rice has been introduced to minimize the use of water, which
is one of the promising water-saving technologies in rice production [46,47]. Aerobic rice
reduces water use by 27-51% by limiting water loss due to seepage, percolation, and evap-
oration and increases water productivity by 32-88% [48]. It has been well documented that
microorganisms enhance plant growth under abiotic stress [49].
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3.1. Seed Germination of Rice Varieties

The seed germination percentages of four different aerobic rice varieties (CR Dhan 201,
CR Dhan 204, CR Dhan 205, and CR Dhan 207), as well as another P-susceptible variety
(IR 36) and P-tolerant variety (Kasalath IC459373) are given in Figure 2. CR Dhan 204 and
207 rice varieties showed the highest germination percentages. However, all the rice types
had germination rates of >90%.

% of seed germination

CR Dhan CRDhan CR Dhan CRDhan IR36 Kasalth
201 204 205 207

Figure 2. Percentage of seed germination of six rice varieties.

3.2. AMF Root Colonization in Different Aerobic Rice Varieties

AMF symbiosis increases nutrient and water uptake in plants by external hyphae,
regulation of stomatal conductance and the increased activity of antioxidant enzymes.
Under aerobic conditions, rice plants readily form mycorrhizal associations as compared
to submerged conditions where the anoxic environment limits the mycorrhizal infection
process [50,51]. Rice can also be grown with alternate irrigation to reduce the water input
and to create aerobic conditions for better AMF fungi colonization in rice roots. Therefore,
an investigation was undertaken to understand the benefits of AMF association for rice
plant growth and development under aerobic conditions. Narwal et al. [44] found a 20%
increase in the plant biomass and 58% higher colonization of Glomus intraradices and
G. mosseae (currently Funneliformis mosseae) in upland rice varieties (Pyari, Satyabhama,
CR Dhan 205 and CR Dhan 202) compared to lowland rice varieties (Pusa Basmati (PB)
1509, PB 1121, Pusa Sugandha 5 and PB 1612) in pot experiments with sterile soil. The
AM plants enhanced the activities of glutamine synthetase and nitrate reductase; the rice
genotypes with higher nitrate reductase and glutamine synthetase (Pyari and Satyabhama)
also exhibited more (20%) biomass production and plant N content by 36% [44]. In our
study, the results of the different AMF-inoculated rice varieties and its root colonization,
presented in Figure 3, indicated that Funneliformis sp., Rhizophagus sp. and Glomus sp.
showed higher colonization in CR Dhan 207 (91.75, 91.72 and 87.97%, respectively) and CR
Dhan 204 (85.43, 83.19, and 75.37%, respectively), while the other genera of AMF recorded
a root colonization in the range of 54.38-74.98%.

3.3. Effect of AMF Inoculation on Physiological and Agronomic Properties

Inoculation of AMF played an important role in the improvement of the biomass
chlorophyll contents and physiological and agronomic parameters of the plant. It is widely
believed that the inoculation of AMF provides the highest efficiency to host plants for
plant growth. As shown in Figure 4, our results demonstrated that AMF inoculation in
different rice varieties significantly increased the agronomic parameters, including root
length (cm), shoot length (cm), leaf area (m?), chlorophyll (SPAD), fresh biomass (gm),
and dry biomass (gm) compared to the control. The highest shoot and root lengths were
found in IR36 (53.40 cm) and CR Dhan 207 (23.973 cm) with the treatment of Rhizophagus
sp. (Figure 4a,b). In the rice variety CR Dhan 207 (34.127 m?), treatment with Glomus sp.
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showed the best improvements for the leaf area (Figure 4c). Chlorophyll (SPAD) levels
were highest in CR Dhan 204 (32.73) with Rhizophagus sp.; CR Dhan 204 (32.53) with
Claroideoglomus sp.; Kasalath 1C459373 (32.43) and CR Dhan 207 (32.40) with Acaulospora
sp. treatment (Figure 4d). The Funneliformis sp. treated with CR Dhan 207 (4.32 gm) and
Rhizophagus sp. treated with Kasalath 1C459373 (2.466 gm) had the maximum performance
in terms of plant fresh biomass and dried biomass, respectively (Figure 4e,f). However, the
plant growth parameters viz. root length, leaf area, chlorophyll and plant biomass showed
themselves to be significantly higher in CR Dhan 207 and CR Dhan 204 inoculated with
Rhizophagus sp., Glomus sp., Funneliformis sp., and Acaulospora sp.

B

RAOQQORXQ QOQLQLIL QR Q>R

Treatment

Figure 3. Percentage of AMF colonization (AMFc) in different rice varieties. Abbreviation: percentage
of AMF colonization (AMFc).

3.4. Effects of AMF on Uptake of Plant P

AMEF both in aerobic and anaerobic rice cultivation increases nutrient concentration
in the rice plant tissue; the bioavailability of nutrients increased in the soil solution due
to mycorrhizae inoculation [52]. As shown in Figure 5, the P concentration in plants was
higher in the rice variety CR Dhan 207 (14.796 mg. pot~!), followed by Kasalath IC459373
(14.186 mg. pot 1) and CR Dhan 204 (14.156 mg. pot~!). Additionally, all the rice varieties
inoculated with Rhizophagus sp., showed maximum P uptake, followed by Funneliformis
sp., and Glomus sp. inoculation. The results deciphered 16.60-28.50% higher P uptake with
AMF inoculation in all the rice varieties, compared to the uninoculated control.

3.5. Responses of AMF on Soil Enzyme and Microbial Properties

Among the several AMF treatments, Rhizophagus sp. (56.59 g p-nitrophenol released
h~! g1 soil) and Funneliformis sp. (31.99 g p-nitrophenol released h~—! g~! soil) showed
the highest levels of both acid (Figure 6a) and alkaline (Figure 6b) phosphatase activity in
CR Dhan 207. Irrespective of the treatments, all rice varieties showed significantly higher
acid and alkaline phosphatase activity in AMF-inoculated treatments as compared to the
uninoculated control.
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Figure 4. Enhancement of plant growth parameters due to AMF inoculation in different aerobic rice
varieties. Abbreviations: (a) root length in cm. (RL); (b) shoot length in cm. (SL); (c) leaf area m? (LA);
(d) chlorophyll SPAD (Chl); (e) fresh biomass in gm. (fBioM); (f) dry biomass in gm. (dBioM).
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Figure 5. AMF inoculation on uptake of plant P in different aerobic rice varieties.
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Figure 6. Enhancement of acid and alkaline phosphatase activities in different aerobic rice varieties.
Abbreviations: (a) acid phosphatase (AcP) [pg p-nitrophenol released h-! g*1 soil]; (b) alkaline
phosphatase (AkP) [pg p-nitrophenol released h-! gfl soil].

In terms of microbial properties, Funneliformis sp., Rhizophagus sp., Glomus sp.,
Acaulospora sp. and Claroideoglomus sp. treatments significantly increased MBC in CR
Dhan 204 and CR Dhan 207 (706.8 and 688.4 ug g’1 soil) (Figure 7a). A similar trend was
also noticed in DHA (29.43 and 31.82 ugTPF h! g’1 soil) (Figure 7b) and FDA (15.37 and
16.13 g fluorescein h! g_1 soil) (Figure 7c).
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Figure 7. AMF and its influence on enhancement of microbial properties in different aerobic rice varieties.

Abbreviations: (a) microbial biomass carbon (MBC) [ug g*1 soil]; (b) dehydrogenase activity (DHA)
[ugTPE h! g*1 soil]; (c) fluorescein diacetate assay (FDA) [ug fluorescein h! g*1 soil].

Through increasing microbial activity in the soil or by the exudation of enzymes by
plants, AMF can also have an impact on soil enzyme activity as well as plant growth
promotion [53-55]. Several studies have described how AMF intervention could stimulate
soil enzyme activity through soil microorganisms [20,27,56,57]. Generally, soil enzymes
are primarily produced by microorganisms; others, such as phosphatase [58], urease,
and peroxidases, are also secreted by plant roots. Reports [59-61] have shown that the
effects of AMF on various soil enzyme activities and growth-promoting compounds, which
release the more biologically accessible nutrients from complex materials, were positively
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correlated with increasing ratios of soil-available P and plant biomass as well as strongly
abiotic context-dependent factors, with beneficial implications for plant growth. All of
the aforementioned data made it very evident that AMF will increase soil enzyme activity,
which could improve nutrient cycling.

3.6. Assessing the Mycorrhizal Responsiveness in Different Aerobic Rice Varieties

Out of the selected rice varieties, mycorrhizal responsiveness was found highest in
CR Dhan 207 followed by CR Dhan 204, CR Dhan 205 and Kasalath IC459373 with the
application of Funneliformis sp. and Rhizophagus sp. under P-deficient conditions (Figure 8);
however, the AMF responsiveness varies with different rice varieties.
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Figure 8. Mycorrhizal responsiveness in six aerobic rice varieties with five AMF inoculum effects.

3.7. Correlation of AMF Colonization with Soil and Plant Properties Using Linear Models

The linear model was used to select the important parameters linked to AMF coloniza-
tion and to calculate the correlation of the important variables (Table 2).

Table 2. Identification of important parameters using step regression model.

Step Variable R-Square  Adj. R-Square C(p) AIC RMSE
1 FDA 0.8292 0.8275 22.3958 844.7126 11.862
2 MBC 0.8459 0.8429 12.0246 835.5882 11.320
3 RL 0.8532 0.8490 8.5771 832.3012 11.0993
4 Plant P 0.8608 0.8554 5.0000 828.6062 10.8628

C(p): Mallows’ Cp constant; AIC: Akaike information criterion; RMSE: root mean square error.

The correlation analysis (Figure 9) showed that AMF colonization had a significant
(p < 0.001) positive correlation with FDA (R? =0.911), MBC (R? = 0.707) and plant-available
P (R? = 0.743). The correlation between AMF colonization and FDA, the Claroideoglomus
sp. (R? = 0.797) and Acaulospora sp. (R* = 0.700) treatments, showed a higher coefficient
than other treatments. Similarly, with AMF colonization and MBC correlation, the higher
coefficients were recorded in the treatment Funneliformis sp. (R? = 0.880) followed by
Glomus sp. (R? = 0.850), Acaulospora sp. (R? = 0.845), —Rhizophagus sp. (R? = 0.804) and
Claroideoglomus sp. (R? = 0.744) at p < 0.011 levels of significance. The correlation coefficient
between AMF colonization and plant P was significantly (p < 0.01) at par for microbial treat-
ments Acaulospora sp. (R% = 0.919), Glomus sp. (RZ=0.919), Funneliformis sp. (RZ = 0.908),
Rhizophagus sp. (R* = 0.705), and Claroideoglomus sp. (R* = 0.632). Similarly, many scientific
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reports have well documented that AMF plays a crucial role in soils for improving microbial
activity, nutrient cycling, soil structure and plant—soil microbe interactions [62—-66].
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Figure 9. Correlation of AMF treatments in different aerobic rice varieties on plant P uptake and soil
microbial properties. * p < 0.05, ** p < 0.01, *** p < 0.001.

Further correlation studies among varieties given in Figure 10 show that CR Dhan
207 (R? = 0.972), CR Dhan 204 (R? = 0.969), and Kasalath IC459373 (R? = 0.969) had
the maximum coefficients between AMF colonization and FDA (R? = 0.911) among the
different aerobic varieties. However, the correlation between AMF colonization and MBC
(R? = 0.707) indicated that, among the varieties, IR 36 (R*> = 0.884) and CR Dhan 201
(R? = 0.856) had the highest coefficient values, whereas CR Dhan 207 (R? = 0.560) and
Kasalath 1C459373 (R? = 0.653) registered the lowest coefficient among other varieties.
Regarding the correlation between varieties and plant P uptake (R? = 0.743), the highest
coefficient was found in CR Dhan 207 (R? = 0.927), at p < 0.001 significance. This finding
clearly indicates that the response of AMF differs based on the type of variety. Thus, the
selection of the right type of AMEF is essential for exploring the maximum benefit from AMF
symbiosis. Das et al. [67] reported that the application of Glomus spp. inoculation improved
rice crop yields with better P availability in the rhizosphere under alternate wetting and
drying irrigation.
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Figure 10. Response of aerobic rice varieties in AMF colonization correlation with plant P and soil
microbial properties using Pearson correlation. * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Conclusions

Soil phosphorus deficiency is one of the major problems in aerobic rice cultivation. The
fixation of this element in the soil makes it unavailable for plant uptake. The present study
revealed that AMF intervention could significantly increase the plant growth and enhance
P uptake by 16.60-28.50% compared to the control. Among the four different aerobic
rice varieties, the mycorrhizal responsiveness was found to be superior in CR Dhan 207,
followed by CR Dhan 204, CR Dhan 205, and CR Dhan 201. The linear modelling approach
found that the AMF colonization in all the rice varieties had significant (p < 0.001) positive
correlation with FDA, MBC, and P uptake, deciphering the importance of AMF association
in rice for the improvement of phosphate availability to plants. The present findings require
further field validation. However, results suggest that the external application of suitable
AMF is essential for improving the plant growth and enhancing the uptake of P in aerobic
rice in P-deficient soil.
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Abstract: The challenging alterations in climate in the last decades have had direct and indirect
influences on biotic and abiotic stresses that have led to devastating implications on agricultural
crop production and food security. Extreme environmental conditions, such as abiotic stresses, offer
great opportunities to study the influence of different microorganisms in plant development and
agricultural productivity. The focus of this review is to highlight the mechanisms of plant growth-
promoting microorganisms (especially bacteria and fungi) adapted to environmental induced stresses
such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light. The present
state of knowledge focuses on the potential, prospective, and biotechnological approaches of plant
growth-promoting bacteria and fungi to improve plant nutrition, physio-biochemical attributes, and
the fitness of plants under environmental stresses. The current review focuses on the importance of the

microbial community in improving sustainable crop production under changing climatic scenarios.

Keywords: PGPBs; abiotic stresses; growth-promoting fungi; crop productivity; plant tolerance

1. Introduction

The severe impacts of transmutation with intense episodes of extreme weather can
have significant consequences on agricultural outputs that should cause widespread food
insecurity and affect survival of populations [1,2]. The severity, frequency, magnitude,
and duration of extreme climatic events will become more highlighted and noticeable
in the future [3]. The alterations in climate extremes have a direct or indirect influence
on biotic and abiotic stresses with devastating impacts on agricultural crop production
and food security [4]. Biotic stresses comprising phytopathogens and pests [5], as well as
abiotic stresses including drought [6], soil salinity [6,7], heavy metals [8,9], flooding [10],
high irradiance [11], low temperature [12] and high temperature [13], can cause intensified
impacts on plant growth, physiology, metabolism, nutrient acquisition, and ecological
desertification. The diverse effects of abiotic stresses on different mechanisms of plants are
summarized in Figure 1.

In changing climate scenarios, intervention with microbes is considered a new sus-
tainable strategy in agricultural production and mitigation of the resilient impacts of
stresses [14]. The beneficial microbes and endophytes exhibit real-time amplifications to
alleviate the devastating climatic impacts on plant health, physiology and biochemical
aspects [14,15]. These microbial communities have several adaptations to abiotic stresses
under different ecological processes, including facilitation of organic matter decomposition
and nutrient acquisition in the rhizosphere of several plants [16]. Beneficial microbes, in-
cluding plant growth-promoting rhizobacteria (PGPR), may have a controversial influence
or no influence at all on plant growth and fitness under stressful environments, whereas
other strains of PGPR have beneficial effects under climate-induced stressful extremes [17].
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The PGPR engineered for agricultural practices boost plant growth, pathogen control, and
microbial ecosystems by alleviating abiotic resiliencies [18,19].
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Figure 1. An overview of the effects of abiotic stresses on the different mechanisms of plants.

Plant growth-promoting rhizobacteria tackle abiotic stresses by boosting several phys-
iological and biochemical processes (nutrient uptake, photosynthesis, and source-sink
relationships), metabolism and the regulation of homeostasis, osmotic potential, protein
function, phytohormone production (indole-3-acetic acid and 1-aminocyclopropane-1-
carboxylic acid deaminase), enzymatic activity, and nutrient solubilization [20-22]. To
combat the punitive impact of abiotic stresses, numerous PGPR strains (including Bradyrhi-
zobium sp. SUTNa-2 [23], Pantoea dispersa IAC-BECa-132, Pseudomonas sp., Enterobacter
sp. [24], Bacillus amyloliquefaciens EPP90, Bacillus subtilis, Bacillus pumilus [25], Curtobac-
terium sp. SAK 1 [26], Burkholderia phytofirmans PsJNT [27], Pseudomonas putida KT2440 [28],
Enterobacter sp. [29], Serratia marcescens, Microbacterium arborescens, Enterobacter sp. [30],
Bacillus cereus PK6-15, Bacillus subtilis PK5-26 and Bacillus circulans PK3-109 [31], Azospiril-
lum lipoferum FK1 [32], and Azospirillum brasilense Sp7 and Azospirillum brasilense Sp245 [33]
have been used to facilitate the management mechanisms of different cereal and legume
crops under stressful environments. Plant growth-promoting rhizobacteria employ various
strategies to endure harsh weather conditions (Table 1).

Table 1. Summary of the positive effects of microbial agents in mitigating unfavorable drought and
salt stress conditions in plants (2012-2020).

Microorganism Stress Plant Species References
Bacteria
Azospirillum brasilense Drought Marandu grass (Urochloa brizantha) [34]
PGPRs strain IG 3, Enter.obacter ludwigii, and Drought Wheat (Triticum aestioum) [35]
Flavobacterium sp.
Bacillus sp. Drought Sugarcane (Saccharum spp.) [36]
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Table 1. Cont.

Microorganism Stress Plant Species References
Bacillus megaterzum,. B. .subilezs, and Bacillus Drought Wheat (Trztzcum aestzzfuiﬁ L.) and chickpea [37]
thuringiensis (CicerArietinum)
Bacillus sp. (12D6) and Enterobacter sp. (16i) Drought ~ Wheat (Triticum aestivum) and maize (Zea mays) [38]
Actinobacterium Drought Maize (Zea mays L.) [39]
Proteobacteria, Actinobacteria, Gemmatimonadetes, . .
Chloroflexi, Cyanobacteria, and Acidobacteria Drought Cotton (Gossypium hirsutim) [40]
Bradyrhizobium japonicum and Azospirillum brasilense ~ Drought Soybean (Glycine max) [41]
Acinetobacter calcoaceticus EU- LRNA-72 and a L
Penicillium sp. EU-FTF-6 Drought Foxtail millet (Setaria italica L.) [42]
Pseudomonas lini, Bacillus, and Serratia plymuthica Drought Jujube (Ziziphus jujuba) [43]
Rhizobium tropici and Azospirillum brasilense Drought Common bean (Phaseolus vulgaris) [44]
Azotobacter chroococcum Salt Tomato (Solanum lycopersicunt) [45]
Microbacterium oleivorans, Brevibacterium iodinum, and Salt Pepper (Capsicum annuuim) [46]
Rhizobium massiliae PP P
Bacillus spp. Salt Pepper (Capsicum annuum) [47]
Pseudomonas sp. and Hartmannibacter diazotrophicus Salt Alfalfa (Medicago sativa) [48]
Pantoea agglomerans Salt Rice (Oryza sativa) [49]
Arthrobacter aurescens, A. woluwensis, Microbacterium .
oxydans, Bacillus megaterium, and B. aryabhattai Salt Soybean (Glycine max) [501
Bacillus aryabhattai and B. mesonae Salt Tomato (Solanum lycopersicum) [51]
Pseudomonas sp. Salt Arabidopsis thaliana [52]
Pseudomonas fluorescens Salt Barley (Hordeum vulgare) [53]
Arthrobacter nitroguajacolicus Salt Wheat (Triticum aestivum) [54]
Bacillus cereus and B. aerius Salt Safflower (Carthamus tinctorius) [55]
Pseudomonas and Azospirillum brasilense Salt Rapeseed (Brassica napus) [56]
Pseudomonas geniculate Salt Maize (Zea mays) [57]
Bacillus halotolerans and Lelliottia amnigena, Salt Wheat (Triticum aestivum) [58]
Fungi
Glomus mosseae and Glomus intraradices Drought Rose geranium (Pelargonium graveolens L.) [59]
Trichoderma atroviride strain (TaID20G) Drought Maize (Zea mays L.) [60]
Gaeumannomyces cylindrosporus Drought Maize (Zea mays) [61]
Arbuscular mycorhizal fungi (AMF) Drought Sweet potato (Ipomoea batatas (L.) Lam.) [62]
AM fungus Funneliformis mosseae Drought Trifoliate orange [Poncirus trifoliata (L.) Raf.] [63]
Trichoderma harzianum Drought Tomato (Solanum lycopersicum) [64]
Rhizophagus intraradices, Funneliformis mosseae, Drought Wheat (Triticum aestioum [65]
F. geosporum
. ) Chinese lyme grass (Leymus chinensis) and
Arbuscular mycorrhizal fungi Drought limpograss (Hemarthria altissima) [66]
Trichoderma harzinum 1, Trichoderma harzianum 2, . .
Chaetomium globosum, and Talaromyces flavus Drought Rice (Oryza sativa L.) [671
Funneliformis mosseae, Glomug mosseae, G. intraradices, Salt Desert grass (Panicum turgidum) [68]
and G. etunicatum
Trichoderma harzianum Salt Indian mustard (Brassica juncen) [69]
Trichoderma harzianum Salt Tomato (Solanum lycopersicumnt) [70]
Trichoderma harzianum Salt Rice (Oryza sativa) and maize (Zea mays) [71]
Klebsiella sp. Salt Oat (Avena sativa) [72]
Glomus etunicatum, G. intraradices, and G. mosseae Salt Cucumber (Cucumis sativus) [73]
Colobanthus quitensis and Deschampsia antarctica Salt Lettuce (Lactuca sativa) z‘md tomato (Solanum [74]
Lycopersicum)
Bacteria + Fungi
Bacillus thuring fensis Arbuscular Drought French lavender (Lavandula dentata) [75]
mycorrhizal fungus
Pseudomonas putida + Rhizophagus irregularis Drought Calotrope (Calotropis procera Ait.) [76]
Micrococcus yunnanensis + Claroideoglomus etunicatum ~— Drought ~ Moldavian balm (Dracocephalum moldavica L.) [77]
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Table 1. Cont.

Microorganism Stress Plant Species References

Pseudomonas fl uorescens + hazop hagus irregularis or Drought Arizona cypress (Cupressus arizonica Green) [78]
Funneliformis mosseae
Pseudomonas fluorescence + Glomus mosseae Salt Bean (Phaseolus vulgaris) [79]
Methylobacterium oryzae + Glomus etunicatum Salt Rice (Oryza sativa) [80]
Bacillus subitilis + Glomus. etunicatum, G. intraradices, Salt Acacia (Acacia gerrardii) [81]
and G. mosseae

Bradyrhizobium sp. + Trichoderma asperelloides Salt Cowpea (Vigna unguiculate) [82]

In addition, root-associated microbes such as fungi can potentially influence different
ecological processes to optimize plant health and growth, resulting in a great impact on
plant physiology, nutrition, and survival ability that improves plant tolerance against
environment-induced stresses [83]. These endophytic fungi confer abiotic stresses through
the synthesis of various plant beneficial substances (ACC-deaminase, auxins, gibberellins,
abscisic acid, siderophores) and solubilize nutrients for healthy plant growth [84,85]. The fu-
gal endophytes form a mutualistic association with plants to promote photosystem activity,
protein accumulation, primary metabolism that leads to higher growth, and tolerance under
abiotic stresses [65,86]. Plants develop mutualistic relationships with several plant growth-
promoting endophytic fungi, including Piriformospora indica [86], arbuscular Mycorrhizal
fungi [65], Trichoderma albolutescens, Trichoderma asperelloides, Trichoderma orientale, Tricho-
derma spirale, and Trichoderma tomentosum [87], Penicillium aurantiogriseum 581PDA3, Al-
ternaria alternate 581PDAS, Trichoderma harzianum 582PDA7 [88], and Porostereum spadiceum
AGHY786 [89], which can increase tolerance against abiotic stresses by improving the bio-
chemical and physiological processes of different plants, as summarized in Figure 2.
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Figure 2. Mechanisms against abiotic stresses adapted from microorganisms.
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The focus of this review is to highlight the mechanisms of plant growth-promoting mi-
croorganisms (especially bacteria and fungi) adapted to environmentally induced stresses
such as drought, salinity, heavy metals, flooding, extreme temperatures, and intense light.
The present state of knowledge focuses on the potential, prospective, and biotechnological
approaches of plant growth-promoting bacteria and fungi to improve physiological and
biochemical attributes and the fitness of plants under environmental stresses. Additionally,
emphasis is placed on the significance of the role of microbial communities in promoting
sustainable crop production amidst changing climatic scenarios.

2. Drought Stress

Disruption in the water cycle has become a serious challenge to overcome that is an
alarming worry to farmers, horticulturists, and the world’s population as it threatens the
food needs of humans and animals. In this context, farmers have increased the amount of
irrigation to improve the quantity and quality of agricultural crops; however, this strategy
could increase the cost of production [90]. Drought can be described as an unfavourable
environmental condition with an insufficient level of moisture that can affect normal
development and growth cycle of plants [91]. It has been highlighted that drought can
reduce yield and cultivation potential (ideal yield) of soybean by up to 70% [92].

Severe climatic variations with unstable precipitation can result in prolonged drought
in certain crops depending on the duration and intensity of drought [93], which ultimately
affects crop development and productivity [94]. The effect of drought on yield is a highly
complex mechanism that could adversely influence fertilization, embryogenesis, seed
development, and the physiological, biochemical, and molecular processes of plants [95],
which includes cell dehydration, reduced leaf size, stem elongation, root proliferation,
nutrient uptake, and their use efficiency [96,97]. Drought also alters the signal activity of
nitrogen and carbon metabolism enzymes, as well as the level of antioxidants in plants [98].
Plant signal genes are responsible for the accumulation of abscisic acid (ABA) via distinct
regulatory pathways under drought stress conditions [99]. Modulation of gene expression
related to drought stress is achieved by critical signaling pathways such as strigolactone,
reactive oxygen species (ROS), and lipid-derived signaling [100,101]. Moreover, soluble
sugar, programed cell death [99], and qualitative trait loci (QTL) [102] are gene expression
adjustments in response to drought stress.

Alterations in the time and duration of precipitation generate long-term drought,
which prominently affects the activities of microbial communities. The availability of
water in the changing climate scenario is one of the most important factors that influences
soil microbial activity [103]. Microbes adapt different strategies to deal with short- and
long-term drought in response to changing climatic patterns [104]. Beneficial engineering
of microorganisms within the root rhizosphere and root endosperm is a strategic approach
to attaining healthy and productive crops under drought stress conditions [105]. Microbial
communities under changing climatic conditions improve crop production efficiency [106].
Inoculation with microbes such as plant growth-promoting bacteria, fungi, and algae, either
alone or in combination [107] is considered as one of the best alternatives to fertilizers that
can enhance plant growth [108], root growth, and nutrient availability via mobilization
and mineralization [109] and can help in the alleviation of drought stress [35]. These endo-
phytic and epiphytic plant growth-promoting microbial diversities have adapted several
mechanisms, such as synthesis of exopolysaccharide, 1-aminocyclopropane-1-carboxylate
deaminase, volatile compounds, osmolytes, and antioxidants that can up- or downregulate
stress-responsive genes, change root morphology, and improve nutrient uptake against
drought stress in different cereal crops under changing climatic conditions [42,110]. Several
plant growth-promoting microbes improve phosphorous and zinc solubilization, nitro-
gen fixation, and siderophore production and act as antimicrobial agents against harmful
microbes that could reduce tolerance in food crops against drought stress and extreme
climatic conditions [111,112].
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Some beneficial fungi (arbuscular mycorrhizal fungi—AMF) and algae (Amphora
ovals) adapt several biochemical, physiological, and molecular strategies to overcome
drought conditions and improve crop growth and productivity under changing climate
scenarios [113,114]. Plant growth-promoting fungi such AMEF, Trichoderma spp., and
certain algae promote antioxidant enzymes, nutrient uptake, chlorophyll, proline content,
and phytohormone production, which can promote growth and tolerance against drought
stress in host plants [113,115]. Over the last decade, many studies have demonstrated the
use of plant growth-promoting bacteria and fungi that can mitigate the unfavourable effects
of drought stress in host plants as summarized in Table 1.

3. Salt Stress

Salinity is one of the major global and environmental concerns that limits agricultural
productivity and is attributed to extreme episodes of climatic changes [116]. Water quality
and irrigation management irrespective of source, such as dams, ponds, rivers, artesian
wells, or high-depth aquifers, contains salt complexes [117]. These salt complexes include
some of the important cationic species, such as calcium (Ca?"), magnesium (Mg2+), sodium
(Na?*), and potassium (K*), and among the anionic complexes are chloride (C1™), carbonate
(CO327), bicarbonate (HCO; ™), sulfate (S0427), and boron (B) that all can have deleterious
effects on agriculture ecosystems and plant productivity. Thus, the increased accumulation
of these salts in low-quality irrigation water on arable land converts the land into non-
usable and non-productive soil [118]. Soils irrigated with saturated water extract with an
EC of 4.0 dSm™~! (40 mmol L~! of NaCl) are considered to be saline and can cause osmotic
pressure of 0.2 MPa that leads to a reduction in vegetable yields [119].

The expansion of salinity into formerly unaffected areas due to drastic climate changes
can have adverse effects on plant growth through osmotic inhibition and phytotoxic effects
on certain ions in the rhizosphere that trigger secondary oxidative stress in plants [116,120].
Salinity generates low water potential in the soil, thus restricting water availability for
plants [121]. Plants with low osmotic potential under saline conditions often suffer from
physiological drought that restricts nutrient mobilization to the aerial parts of plants. An
excessive concentration of salt in the soil solution negatively affects plant physiology,
photosynthesis, metabolism, protein and ATP synthesis, growth, and the productivity of
crops [122]. The toxic effects of sodium (Na*) and chlorine (C1™) ions are prevalent in
saline soils, which disturbs enzymes and other macromolecules, thus damaging cellular
organelles, disrupting photosynthesis and respiration, inhibiting protein synthesis, and
causing ion-induced deficiencies [123].

Salinity negatively affects the photosynthetic rate of plants, which can impair crop
productivity and cell membrane activity. Salinity also affects osmotic potential, which
can reduce water availability, and further impacts CO, permeability and deactivates the
transport of photosynthetic electrons via shrinking intracellular spaces [124]. Stomatal
closure can decrease carbon fixation and the production of reactive oxygen species (ROS)
such as superoxide and single oxygen, which disrupt cellular processes by damaging lipids,
proteins, and nucleic acids [125]. The unbalanced concentration of salt within the cell
causes ionic toxicity and inhibits cell metabolism and other functional processes. Na*
can disrupt plant nutrition by inhibiting potassium ion (K*) uptake, which leads to the
disturbance of enzymatic activity (K* regulates more than 50 enzymes) within the cell [126].
The salt stress also triggers hormonal activity and alters assimilation and partition between
sources and tissues [127]. Salinization alters phytohormones (abscisic acid, cytokinin, trans-
Zeatin, indole-3-acetic acid, and carboxylic acid) in the tissues and nodules of the plant
that cause leaf senescence and early tissue death [128]. It was demonstrated that carboxylic
acid is the precursor of ethylene, which plays a vital role in the initiation of salt-induced
senescence [129].

Plants adapt several strategies and evolutionary, physiological, and ecological pro-
cesses to mitigate or tolerate salinity stress and improve productivity. The application of
plant growth-promoting bacteria (PGPBs) is the most viable and effective alternative that
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can mitigate toxicity and the adverse effects of salinity while improving crop health and
productivity [130]. These microorganisms mainly act as producers of phytohormones such
as auxins, cytokinins, and gibberellins, which contribute to the growth of root systems, stim-
ulate water absorption, and inhibit the effects of salinity [131,132]. Plant growth-promoting
bacteria of different Pseudomonas sp. can improve peroxidase enzymes, total polyphenol
and proline content, which are being indicated to increase relative water content in the
leaves of Coriandrum sativum under salinity stress [133]. Plant prolines are the most adapt-
able and sensitive amino acids to stress conditions and can act as protectors of enzymes
and defend plant tissues against osmotic stress [47].

The association of PGPBs with beneficial fungi has synergistic effects on plant growth
through induced tolerance against saline conditions [134]. Arbuscular mycorrhizal fungi
can improve crop performance and tolerance to salinization by reducing Na* absorption
while enhancing nutrient and water uptake and the antioxidant mechanisms of several
plants [121,135]. Different species of ectomycorrhiza fungi (ECM), such as Hebeloma, Lac-
caria, Paxillus, Pisolithus, and Rhizopogon, can restrict Na+ transportation within plant
tissues, thus improving mineral nutrition and water uptake and alleviating the effects
of salination in host plants [136]. Trichoderma species are widely used as a biocontrol
and plant growth-promoting agent in agriculture and can colonize in diverse substrates
under different environmental conditions, therefore inducing tolerance against abiotic
stresses [137].

Beneficial microorganisms are associated with increased water absorption, better use
efficiency and uptake of nutrient, and improved soil fertility and structure, thus helping
plants under salt stress conditions [138]. These microorganisms utilize nitrogen (N) for
biological nitrogen fixation, nitrate reductase activity, and N use efficiency [139] while
increasing phosphorous availability through phosphate solubilization [140]. In addition,
these microorganisms can also increase the fertilizer use efficiency of NPK by 50% while
alleviating the negative effects of salt stress in plants [141].

Over the past decade, numerous studies have highlighted the role of plant growth-
promoting bacteria and fungi in mitigating the harmful effects of salt stress in plants
(Table 1).

4. Heavy Metals

Heavy metals (HMs) are a serious threat to agriculture that can significantly harm
different environmental, ecological, and nutritional factors of plants. The rising population
has led to increased fertilizer use for higher food production, which can consequently lead
to contamination of the environment and food chains [142]. The anthropogenic activities of
humans, including mining, various industries, metallurgy, the use of chemical fertilizers
containing HMs, and transportation, have led to a dramatic increase in HM accumulation
in the ecosystem [143,144]. Heavy metals released into the air, environment, and soil can
be absorbed by plants through roots and leaves, which can disrupt plant metabolism and
cause several health risks to humans [143,145]. Edible plants are the major source of food
in the human diet, and their contamination with toxic metals may result in catastrophic
health hazards [143].

The term HMs refers to any metallic element that has a relatively high density and is
either toxic or poisonous even at low concentration [142,143]. Heavy metals are generally
categorized to belong to the group of metals and metalloids with high atomic density
(density greater than 4 g cm %) and mass [142]. Heavy metals include non-essential plant
elements such as lead (Pb), cadmium (Cd), aluminum (Al), chromium (Cr), mercury (Hg),
arsenic (As), silver (Ag), and platinum group elements [143,146]. Some heavy metals, such
as copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), nickel (Ni), and molybdenum (Mo),
are essential micronutrients and are required for many of the biochemical functions of
plants, including plant growth, oxidation and reduction reactions, electron transport, and
many other metabolic processes; however, their high concentration can cause phytotoxic-
ity [143,147].
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Heavy metal toxicity in plants can cause leaf chlorosis, alter chlorophyll a and b ratios,
decrease photosynthesis, inhibit root elongation, increase ROS production and membrane
leakage, and change lipid composition through changing inter-cellular concentrations of
nutrients [148,149].

Soils are a major sink for metal contamination in terrestrial ecosystems [131]. A
diverse range of plants is used for the phytoremediation of toxic heavy metals and met-
alloids [150]. In addition, microorganisms such as PGPBs and PGPFs can enhance the
effectiveness of phytoremediation [9,146,150] by producing organic acids, siderophores,
bio-surfactants, bio-methylation, and redox processes that could transform heavy metals
into soluble and bioavailable forms [9,150]. These microorganisms help the host plants by
increasing biomass and phytoremediation attributes through synthesis of phytohormones
such as indole-3-acetic acid (IAA) and enzyme like 1-aminocyclopropance-1-carboxylic
acid deaminase (ACC), as well as through nitrogen fixation, P solubilization, and Fe se-
questration [131,150]. These multiple traits improve the metabolic activity of microbes
(Firmicutes, Proteobacteria, and Actinobacteria and most represented genera belong to
Bacillus, Pseudomonas, and Arthrobacter) in heavy metal-contaminated sites [131,151].

Microbes play a key role in the remediation of HMs through phyto-stabilization,
phyto-extraction, and phyto-volatilization [131,146]. Several studies have demonstrated
the beneficial aspects of microbes in reducing HM toxicity in plant species over the past
few decades (Table 2).

Table 2. Summary of the positive influence of microbes in mitigating heavy metal toxicity in contami-
nated sites (2010-2020).

Microorganism Heavy Metal Reference
Bacteria
Azotobacter chroococum and Rhizobium leguminosarum Pb [152]
Pseudomonas sp. SRI2, Psychrobacter sp. SRS8, and Bacillus sp. SN9 Ni [153]
Sporosarcina ginsengisoli As (III) [154]
Bacillus cereus Cr (VI) [154]
P. macerans NBRFTS, B. endophyticus NBRFT4, B. pumilus NBRFT9 Cu, Ni, and Zn [155]
Bacillus thuringiensis GDB-1 As [156]
Bacillus cereus strain XMCr-6 Cr (VI) [157]
Bacillus subtilis Cr (VI) [158]
Pseudomonas putida Cr (VI) [158]
Pseudomonas sp. LK9 Cd, Cu, and Zn [159]
Enterobacter sp. And Klebsiella sp. Cd, Pb, and Zn [160]
Kocuria flava Cu [154]
Pseudomonas veronii Cd, Cu, and Zn [154]
Bacillus pumilus E2S2 and Bacillus sp. E1S2 Cd and Zn [161]
Enterobacter cloacae B2-DHA Cr (VI) [162]
Planomicrobium chinense, B. cereus, P. fluorescens Co, Mn, Ni, and Pb [163]
B. cereus, P. moraviensis Mn and Cd [164]
B. safensis FO-036b (T) and P. fluorescens Pb and Zn [165]
Fungi
Pleurotus platypus Ag [166]
Rhizopus oryzae (MPRO) Cr (VI) [167]
Aspergillus versicolor Cu and Ni [154]
Aspergillus fumigatus Pb [168]
Rhizopus oryzae Cu [169]
Algae
Spirogyra spp. and Cladophora spp. Cu (II) and Pb (II) [154]
Spirogyra spp. and Spirullina spp. Cr Cu, Fe, Mn, and Zn [154,170]
Cystoseira barbata Cd, Ni, and Pb [171]
Hydrodictylon, Oedogonium, and Rhizoclonium spp. As [172]
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5. High Temperature

High temperature is one the major abiotic stress in extreme climates that has deleteri-
ous impacts on crop yield, global production, human health, and socio-economic damage
and wildfires [173,174]. The exposure of plants to unsuitable temperatures during crop
cycles results in reduced growth and biochemical aspects. Prolonged heat stress has severe
implications on different metabolic processes, including water relations, heat shock proteins,
carbohydrate metabolism, and physiological disruptions that lead to cell death [91,175].
High temperature stress crucially affects the grain filling stage [176], grain quality [177],
grain protein content [178], biomass, phenology, leaf senescence, grain yield [179], and the
plant canopy in wheat [180]. High temperature stress also has drastic influences on several
crops, including rice [181], sorghum [182], pearl millet [183], maize [184], and wheat [185].

High temperature stress induces the production of reactive oxygen species (ROS),
which damage the cell membranes of plants and trigger stress responses [186]. The ROS
molecules encompass free radicals from oxygen (O,) metabolism, including superoxide
radicals (O, ™), hydroxyl radicals (OH ™), hydrogen peroxide (H,0O,), and singlet oxygen
(107) [187]. Reactive oxygen species are produced via aerobic metabolism through the
interaction of O, and escaped electrons from electron transport chains in the chloroplast and
mitochondria under normal conditions [188]. However, under stress conditions, accumula-
tion of ROS affects cellular components and causes damage to membranes through lipid
peroxidation [186,189]. Plants adapt several mechanisms, including the induction of antiox-
idants and signaling processes to overlap ROS damage [190] and the use of metabolites,
proteins, and membrane lipids to cope with temperature stress [191].

Plant-microbial association (bacteria and fungi) is an alternative and climate resilient
strategy that promotes plant growth and improves tolerance against abiotic stress [192],
especially high levels of temperature stress [193]. These microorganisms fight against
induced climatic changes (abiotic factors) that impair the general performance of plants
by improving phytohormone synthesis, the availability of nutrients, water absorption,
and structure, therefore contributing to the successful adaptation of plants under stressful
conditions [138]. Beneficial microorganisms are involved in various mechanisms, such
as the stimulation of phytohormones (indole-3-acetic acid (IAA), ethylene, cytokinins,
gibberellins) [194], polyamines (speridine, spermine, cadaverine) [195], and solubilization
of phosphate [196-198], and zinc [199-201], as well as production of secondary metabolites
that can improve the stability of leaf cell membranes and leaf abscission, and plant tolerance
to abiotic stresses [44,202].

In addition, these microorganisms may induce plant oxidative stress, reducing the
deleterious effects of ROS [203]. Beneficial microorganisms such as bacteria, actinomycetes,
and fungi provide shelter to host plants against extreme climatic events and unfavorable
environmental alterations [204]. Several studies have highlighted the ameliorative effect of
PGPBs [205,206] and PGPFs [65,115,207], which can increase tolerance against the negative
impacts of high temperature stress in different crop plants. Furthermore, PGPBs and PGPFs
can compensate and mitigate the adverse impact of high temperature, as is evident from
the past twelve years of study (Table 3).

Table 3. Summary of the positive effects of microbes in mitigating unfavorable high and cold
temperature and flooding stress conditions in plants (2012-2020).

Microorganism Stress Plant Species Reference
Bacteria
Azospirillum brasilense and Bacillus amyloliquefaciens High temperature Wheat (Triticum aestivum) [175]
Bacillus amyloliquefaciens High temperature Rice (Oryza sativa) [205]
Bacillus amyloliquefaciens High temperature Wheat (Triticum aestivum) [208]
Pseudomonas syringae High temperature Arabidopsis thaliana [209]
Enterobacter sp. High temperature Arabidopsis thaliana [210]
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Table 3. Cont.

Microorganism Stress Plant Species Reference
Bacillus velezensis High temperature Wheat (Triticum aestivum) [211]
Bacillus cereus High temperature ~ Tomato (Solanum lycopersicum) [212]
Bacillus cereus High temperature ~ Tomato (Solanum lycopersicum) [213]
Pseudomonas, Bacillus, Stenotrophomonas, Methylobacterium,
Arthrobacter, Pantoea, Achromobacter, Acinetobacter,
Exiguobacterium and Staphylococcus, Enterobacter, Providencia, — Cold temperature Wheat (Triticum aestivum) [214]
Klebsiella and Leclercia, Brevundimonas, Flavobacterium,
Kocuria, Kluyvera, and Planococcus
Arthrobacter, Flavimonas, Flavobacterium, Massilia, Pedobacter, Cold temperature  Tomato (Solanum lycopersicium) [215]
and Pseudomonas
Rhizobacterial isolates of Bacillus genera, Gu2 and 127b Cold temperature Wheat (Triticum aestivum) [216]
Pseudomonas fragi, P. ch.loropaphzs, P.. ﬂuqrescens, P. proteolytica, Cold temperature Bean (Phaseolus vulgaris L.) [217]
and Brevibacterium frigoritolerans
Bradyrhizobium japonicum Flooding Soybean (Glycine max) [218]
Achromobacter xylosoxidans, Serratia ureilytica, Herbaspirillum . . .
seropedicae, and Ochrobactrum rhizosphaerae Flooding Tulsi (Ocimum sanctium) 219]
Pseudomonas putida Flooding Cucumber (Cucumis sativus) [220]
Azospira oryzae, Pelomonas saccharophila, and Methylosinus sp. Flooding Rice (Oryza sativa) [221]
Pseudomonas putida Flooding Rumex palustris [222]
Fungi
Glomus deserticola and Glomus constrictum High temperature ~ Tomato (Solanum lycopersicum) [223]
o . . Soybean (Glycine max) and
Aspergillus japonicas High temperature sunflower (Helianthus annuus) [224]
Thermomyces sp. High temperature Cucumber (Cucumis sativus) [225]
Thermomyces lanuginosus High temperature Cullen plicata [226]
Glomus mosseae Cold Elymus nutans Griseb [227]
Trichoderma harzianum Cold Tomato . [115]
(Solanum lycopersicum L.)
Glomus versiforme and Rhizophagus irregularis Cold Barley (Hordeum vulgare L.) [228]
Rhizophagus irreqularis Cold Cucumber (Cucumis sativus L.) [15]
Rhizophagus irregularis Flooding Tomato (Solanum lycopersicum) [229]
Glomus intraradices, G. versiforme, and G. etunicatum Flooding Cattaﬂ. (Typha orienta lis) and [230]
rice (Oryza sativa)
Trichoderma Flooding Rice (Oryza sativa) [231]
Aspergillus fumigatus Flooding Arabidopsis sp. [232]
Bacteria and fungi
Bradyrhizobium + arbuscular mycorrhizal fungi High temperature Soybean (Glycine max L.) [233]
Proteobacteria, Actinobacteria, Chloroflexi, and Nitrospirae ~ High temperature Sorghum (Sorghum.bzcolor L)
. . and foxtail millet [234]
+ Dothideomycetes, Sordariomycetes, and Ascomycota and drought L
(Setaria italica L.)
Bacillus and Pseudomonas + Penicillium Cold temperature Potato (Solanum tuberosum) [235]
Paraburkholderia graminis C4D1M and Funneliformis mosseae ~ Cold temperature Tomato [236]

(Solanum lycopersicum L.)

6. Low Temperature

Low temperature is also one of the most devastating environmental factors that affects
plant growth and productivity. Occasional drops in the temperature of agricultural soils
can affect the activity of terrestrial biota and plant growth. Low temperature corresponds to
chilling (0-15 °C) that usually occurs in temperate regions and decreases plant productivity.
These conditions stimulate the growth of saprophytic fungi that may disrupt soil nutrient
cycling and compromise plant health [215]. Low temperatures disturb cellular homeostasis
and some ROS, including hydrogen peroxide (H,O;), singlet oxygen (O, ™), and HO', and
also disrupt some cellular functions related to proteins, lipids, carbohydrates, and DNA
that may cause cell death in plants [217,227].
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Several beneficial microorganisms have been reported to mitigate and alleviate the
harsh impacts of abiotic stress, as indicated in Table 3. Different bacterial species, such as
Pseudomonas fragi, P. chloropaphis, P. fluorescens, P. proteolytica, and Brevibacterium frigoritol-
erans, have been observed reducing freezing injuries and the content of lipid peroxides
and ROS while stimulating some enzymatic activity (superoxide dismutase, catalase, per-
oxidase, and glutathione reductase) that could improve tolerance against cold stress in
common bean seedlings [217]. Plant growth-promoting fungi such as Trichoderma harzianum
and AMF (Glomus mosseae) are some of the most studied fungi in relation to improving
resistance against cold stress conditions. These fungi could activate different enzymatic
activity, discourage ROS production, and limit lipid peroxidation levels, which could de-
crease the damage caused by cold stress in tomato (Solanum lycopersicum L.) and Elymus
nutans Griseb plants.

7. Flood Stress and Oxygen Deficit

Global agriculture is severely affected by climate change. Flooding is one of the
most drastic conditions of climate extremes and has detrimental impacts on soil fertility
and nutrients, causing disruption to the crucial processes of plants [237]. The intensity
and frequency of flooding is increasing due to climate extremes that could be a serious
threat to the stability and productivity of ecosystems [238]. Plants frequently experience
stresses that are typically caused by insufficient water or a lack of oxygen in flooding
conditions. Flooding leads to localized depletion of oxygen due to stagnant water and
sediment deposition on the soil surface [239]. The inhibition of cellular respiration and the
submersion of non-photosynthetic plant tissues or roots under flooding are some of the
most serious plant stresses [240].

Plants under flood stress undergo several physiological and molecular changes that
might be due to the lack of oxygen availability affecting roots. Plants demonstrate certain
symptoms under oxygen deficiency, such as the closing of stomata and a reduction in the
water conductivity and growth of roots. Plants develop different morphological functions
to cope with oxygen/flood stress, such as increases in gas diffusion in the roots, the
accumulation of lignin and suberin at the cellular level, and the promotion of aerenchyma
and adventitious roots [229]. Aerenchyma are specialized tissues that transport gases (O;)
from aerial parts of the plant to the roots under oxygen deficit environments [240]. The
aerenchyma are well developed in plants of aquatic and humid environments. Aerenchyma
are developed in species of high economic importance, including plants such as sugarcane
(Saccharum spp.), rice (Oryza sativa), barley (Hordeum vulgare), corn (Zea mays), wheat
(Triticum aestivum), and soybeans (Glycine max) [240-244].

Plants undergo several metabolic alterations under flood stress, such as increased
ethylene production and the signaling of stress hormones, which negatively interferes with
plant morphology [222]. Flood stress causes anaerobic conditions that could reduce the
microbial activity and enzymatic activity of plants in the rhizosphere [245]. Flood stress
causes alterations in the structure of microbiota [246], which thus has consequences on the
terrestrial biota and can enhance the role of bacteria and fungi in the decomposition of
residues and nutrient cycling for the better performance of plants [247]. Understanding the
behavior of potential soil microbiota in relation to flooding is one of the crucial discoveries
that may confer stress tolerance in plants [240]. Several bacteria modulate the production of
ethylene by plants through 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which
is the immediate precursor for ethylene synthesis. Plant growth-promoting bacteria reduce
ethylene production, which can lead to the reduction of plant damage [248], as shown
by Grichko and Glick [249] who reported that the inoculation of tomato (Lycopersicon
esculentum) seeds with different bacterial strains (Enterobacter cloacae UW4, E. cloacae CAL2,
and Pseudomonas putida ATCC17399/pRKACC or P. putida ATCC17399/pRK415) produced
ACC deaminase. Plants at the vegetative growth stage were exposed to flooding stress
for nine consecutive days, which produced AAC, chlorophyll a and b, and adventitious
roots, as well as develop stem aerenchyma of the host plants to withstand under flood
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stress. Barnawal et al. [219] and Ravanbakhsh et al. [222] indicated that the inoculation
of different plants with ACC deaminase-producing bacteria under flooded conditions
increased plant growth by reducing ethylene production. The inoculation of Cucumis
sativus with Pseudomonas putida UW4 under low available oxygen altered protein synthesis,
nutritional metabolism, and antioxidant activity and promoted plant growth and defenses
against stresses [220].

Beneficial microbes such as fungi prominently increase the tolerance of host plants
under different environmental stresses [229]. Arbuscular mycorrhizal fungi applied to
the roots of tomato plants under flooded and non-flooded conditions increased water
relation and conductivity. It was also reported that indole-3-acetic acid (IAA) is one of
the major phytohormones involved in the water conductivity of roots under low oxygen
availability [229].

Several PGPBs and transgenic plants were studied under multiple stresses in field
conditions. Farwell et al. [250] inoculated canola with Pseudomonas putida UW4 under nickel
and flood stress and reported that Pseudomonas putida UW4 increased canola growth and
biomass under flooding and heavy metal stresses. Cao et al. [239] indicated that flooding
increased enzymatic activity in copper (Cu)-contaminated soil. In addition, the presence
of Cu is inversely proportional to soil microbiota (bacteria and fungi), which could affect
microbial communities and cause the immobilization of microelements under flooded and
non-flooded conditions. The influence of beneficial microorganisms in improving tolerance
to abiotic stresses (high and cold temperature and flooding) and regulating sustainable
agricultural productivity under climatic extremes is summarized in Table 3.

8. Light Stress

Sunlight is one the major factors of photosynthesis that provides the necessary energy
for plant growth and development. Despite this, intense light, especially its ultraviolet
(UV) part, causes serious damage to DNA, proteins, and other cellular components of
plants [251]. Sunlight damages photosynthetic machinery, primarily photosystem II (PSII),
increases ROS production, and causes photo-inhibition that can hinder plant photosynthetic
activity, growth, and productivity [252]. Excess light accelerates ROS production in PSI
and PSII of chloroplasts, which may balance photo-inhibition and the repair of plant
cells [252]. Light-triggered plant responses depend on the fluency, exposure time, and
acclimation of plants before light exposure [251]. Reductions in the quantity and quality of
light could signal plants to activate defensive systems by enhancing adaptive alterations in
stem morphology [252]. The signaling pathways of light can balance the constructive and
destructive impact of light on plant defense and growth mechanisms.

Microbes are less studied in the mitigation of light stress compared to other abiotic
conditions. Some PGPBs have shown great potential by enhancing photosynthesis, chloro-
phyll content, and photosynthetic pigments that can reduce light damage [253]. The impact
of light on the composition of rhizosphere communities, such as prokaryotes and fungi, can
be increased or decreased under climatic extremes. There are several bacterial species, in-
cluding Pseudomonas sp., Massilia sp., Burkholderia sp., and Acidobacteria, that are classified
as beneficial microorganisms in the context of high light intensity. In addition, some fungal
species, including Geminibasidium sp. and Oidiodendron sp., were also described as the most
abundant species under intense light. The microorganism communities derived from soil
under the influence of high light intensity are different in taxonomy and physiological
characterizations. The impact of light on the soil rhizosphere includes the detection of
Pseudomonas sp. that could consequently increase photosynthesis and carbon and nutrient
assimilation [254]. Stefan et al. [255] verified that seed inoculation with Bacillus pumilus and
Bacillus mycoides increased photosynthetic activity, water use efficiency, and chlorophyll
content in runner bean (Phaseolus coccineus L.). Suzuki et al. [256] reported that Acinetobacter
calcoaceticus could increase the chlorophyll content of lettuce (Lactuca sativa L.).
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9. Conclusions

This review elaborated the importance of plant growth-promoting microorganisms
(especially bacteria and fungi) that can mitigate the damage caused by environmentally
induced stresses (drought, salinity, heavy metals, flooding, extreme temperatures, and
intense light). This review determined the potential, prospective, and biotechnological
approaches of plant growth-promoting bacteria and fungi for the alleviation of plants
in response to environmental stresses. Some bacteria and fungi under abiotic stress con-
ditions can improve physiological and biochemical processes, such as nutrient uptake,
photosynthesis, source—sink relationships, metabolism and the regulation of homeostasis,
osmotic potential, protein function, phytohormone production (indole-3-acetic acid and
1-aminocyclopropane-1-carboxylic acid deaminase), enzymatic activity, nutrient solubiliza-
tion, and plant nutrition. Therefore, the use of plant growth-promoting bacteria (PGPBs)
and fungi contributes positively to agricultural production in abiotic stress conditions.

Despite several studies demonstrating the benefits of beneficial microorganisms, there
are still research gaps and restrictions on the molecular mechanisms of crops. A mechanistic
understanding of the interactions of plants and microorganisms under abiotic stress should
be developed to address agricultural difficulties and resolve the nutritional and production
concerns that are brought by climatic extremes. Therefore, further studies involving mi-
croorganisms are recommended to enhance sustainable crop production and food security
in the light of potentially unstable climatic conditions.
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Abstract: During drought stress, many enzymes are inactivated in plants due to Zn deficiency.
Zn application and arbuscular mycorrhiza fungi (AMF)-wheat symbiosis reportedly improve the
tolerance of plants to drought stress. This study was done to investigate the effect of Zn and AMF
on plant growth, yield attributes, relative water content (RWC), harvest index (HI), photosynthetic
activity, solute accumulation, glycine betaine (GB) accumulation, antioxidant activities [(catalase
(CAT) and superoxide dismutase (SOD)], and ionic attributes in a bread wheat cultivar (5ST806)
under drought-stress in plants grown under greenhouse conditions. Zn application and AMF
inoculation, separately and combined, enhanced all plant growth parameters and yield. Root dry
weight (RDW) was increased by 25, 30, and 46% for these three treatments, respectively, under
drought conditions compared to the control treatment. Overall, Zn application, AMF inoculation,
and their combination increased protein content, RWC, and harvest index (HI) under drought stress.
However, AMF inoculation improved proline content more than Zn application under the same
conditions. Regarding GB accumulation, AMEF, Zn, and the combination of Zn and AMF increased
GB under drought compared to well-watered conditions by 31.71, 10.36, and 70.70%, respectively.
For the antioxidant defense, AMF inoculation and Zn application improved SOD and CAT activity
by 58 and 56%, respectively. This study showed that Zn and/or AMF increased antioxidant levels
and ionic attributes under abiotic stress.

Keywords: bread wheat; AMF; zinc; drought; growth parameters; osmolyte; osmoprotector; ionic
attributes

1. Introduction

Abiotic stresses negatively affect crop production [1]. Water deficit is known to
decrease plant growth, significantly reducing yield [2]. Less water is considered a key
climatic problem that directly decreases crop production, such as cereals, globally [3].
Drought stress causes severe losses in wheat yield in different growing regions worldwide.
As the largest contributor to total consumed calories by humans, wheat represents the
principal dietary staple in the world [4]. Yield and its attributes are highly affected by
drought in the different stages of the growing cycle of plants [5]. Drought stress decreased
wheat yield by as much as 60% [6]. As a strategy for drought tolerance improvement,
crops escape water deficit, especially in the climate change conditions currently being
experienced [7]. Several physiological and biochemical alterations are induced by drought,
causing plants to have many adaptation strategies as defensive survival mechanisms
against drought stress. It was reported that different strategies could be followed to
reduce food production decreases due to drought in the future [8,9]. The development
of drought tolerance mechanisms in food crops is one such strategy. Plants have many
options to escape drought stress effects, such as water uptake and flow in plant tissues,
production of osmolytes and antioxidant activities, and photosynthesis mechanisms [10].
Moreover, plants were found to produce more osmolyte and soluble sugars and have
increased antioxidant defense mechanisms (such as SOD and CAT) to combat the toxic
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effects of the overproduction of reactive oxygen species (ROS) [11]. Due to the water deficit,
genes encoding antioxidant enzymes were activated in tolerant genotypes. The wheat
genome was known for some modification in terms of genes to control drought-stress
conditions [12].

Zn fertilizer and AMF inoculation can contribute to plant survival and tolerance of
water deficit conditions in many crops, such as wheat [13]. Zn application maintained
nutrient balance and stomata reaction in different crops to reduce the effects of drought
stress [14]. As an antioxidant reaction, SOD and CAT enzymes were enhanced due to Zn
fertilization in response to water deficit.

Zn is classified as a necessary micronutrient for plant growth due to its involvement
in carbon metabolism [15]. Zn plays an important role in plant nucleic acid metabolism.
Several biomolecules as lipids and proteins, contain Zn as an essential component; also,
it is a cofactor for many enzymes [15,16]. Many studies showed the plant responses to
Zn application [17]. Physiological and biochemical processes such as plasma membrane
functions and oxidative stress tolerance depend on Zn content [18].

Zn application also reduced the alteration of membrane permeability and the damage
caused by oxidative and peroxidative reactions [19,20]. An adequate supply of Zn can
reduce the effects of drought on different crops, such as wheat [21].

Many reports confirmed that Zn plays an important role as a strategic component for
the root and shoot system and a cofactor of many enzymes [22]. Yield attributes of wheat
were increased due to Zn application [23,24]. Soil Zn application increased grain yield by
29%, whole-grain Zn concentration by 95%, and whole-grain estimated Zn bioavailability
by 74% [25].

Arbuscular mycorrhizal fungi (AMF) belong to the phylum Glomeromycota, are soil
inhabitants, and can colonize 80% of the roots. Mycorrhizal characteristics are mutually
beneficial. AMF provide the host plant with essential nutrients (especially P) and water, and
photosynthates are transported into endosymbiotic AMF for its development. Mycorrhizal
mycelium feeds plants with several secondary metabolites and carbohydrates. It also
improves plants to fix nitrogen and increase osmotic adjustments during water deficit.

The effect of AMF colonization depends on the host-plant interaction [26]. To tolerate
drought stress, for example, in wheat, symbiosis with AMF can increase plant tolerance
against this stress [27,28]. Antioxidant reaction, osmotic adjustments, and root hydraulic
conductivity are better regulated in AM-plant association [29]. Zn uptake by the plant
increased in the presence of AMF; however, the assimilation depends on the crop—AMF
symbiosis. Mycorrhizal association contributed to Zn uptake of up to 24.3% of the total
aboveground Zn in wheat and up to 12% in barley. At low Zn application, the highest
contribution by the mycorrhizal pathway was observed in barley. Besides this, the grain
yield of bread wheat was increased by AMF [30]. The use of Zn and AMF as fertilizer is
one of the most effective strategies that can reduce the effect of drought stress and improve
yield and plant growth. In addition, the use of biocontrol and chemical fertilizers was
increased to reduce the impact of stress factors on crops. Moreover, AMF colonization could
improve the nutrient uptake of a crop such as wheat in different types of soil by enhancing
the root surface absorption area [31]. In the case of soil containing heavy metals, it was
reported that mycorrhizal colonization could reduce the uptake of these metals [32]. Many
studies investigated the role of AMF under drought stress to improve plant nutrient uptake.
The synergistic interaction of AMF and Zn could improve concentrations of different
micronutrients. It was reported that AMF with extraradical mycelium in the soil improved
immobile nutrient (such as P and Zn) uptake by the host plant [33], causing an increase in
the exchange of photosynthesis products from the plant to the fungus.

Glycine betaine accumulation works as an osmolyte in protecting organisms against
abiotic stresses via osmoregulation or osmoprotection. As an osmoregulator, GB enhances
root water assimilation, reduces the damage caused by oxidative reactions, and increases
drought tolerance [34]. Due to the Zn application, compatible solutes were increased under
drought stress [35]. GB maintains water retention in plants owing to Zn application that
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increases chlorophyll content and plant dry weight [36,37]. GB accumulation helpsplants
to overcome drought and saline stress conditions. For example, in transgenic apples
expressing the stress regulator gene, Osmyb4, accumulation of GB was linked to increased
tolerance under drought and cold stress [38]. In chloroplast stroma, GB is produced
by betaine aldehyde dehydrogenase (BADH). Under abiotic stress such as salinity, the
enzyme choline monooxygenase (CMO) converts choline into betaine aldehyde and then
an NAD+-dependent enzyme to improve tolerance against this stress [39].

To determine the effects of Zn application and/or AMF inoculation on bread wheat
under drought stress, the regulation of various antioxidants, metabolites, and morphologi-
cal traits was studied. It was hypothesized that Zn and AMF could improve bread wheat
production under water deficit conditions.

2. Materials and Methods
2.1. Biological Materials and Growth Conditions

Seeds of one commercial South African wheat cultivar (SST806, official standard
for spring wheat quality) were planted in plastic pots containing 2 kg of soil collected
from 1.5 m deep subsoil (Table 1). They were grown under glasshouse conditions at the
University of Free State, Bloemfontein, South Africa, from May 2019, with day/night
temperatures of 18 °C at night and 22-24 °C during the day. The relative humidity during
the day and night was 78%. A soil meter (Efekto Ltd., Caledon, South Africa) was used
in this study. A completely randomized block designwas replicated three times for each
treatment;control (T0), Zn (T1) = 40 kg ha~!, Arbuscular mycorrhizal fungi = AMF (T2),
drought stress (T3), Zn+AM (T4), and Zn+AM-+drought (T5).

Table 1. Soil, Zn, and AMF characteristics used in the trial.

AMF Characteristics and Zinc Application

pH
Sand

Silt
Clay

Phosphorus (P)
Potassium(K)

Calcium(Ca)
Magnesium (Mg)

560'30 - 150 g per 150 kg of seed was applied
10% - It is a commercial inoculum in powder form, registered and produced by Biocult (Pty)
40% Ltd. 005333 /07, Somerset West, South Africa
75mgkg! - Active ingredient was mycorrhizae subspecies, 400 spores per gram (as indicated by
231.4 mg kg ! the manufacturer.
1 - The subspecies included Glomus mosseae, Glomus intraradices, Glomus etunicatum, and
564 mg kg

Scutellospora dipurpurescens.

147.6 mg kg~ ! - Zn was applied at sowing at a depth of 5 cm (40 kg ha=')

2.2. Growing Conditions

Drought stress was applied at the three-leaf stage. When soil water content reached
25% field capacity, plants were allowed to receive water again; however, the well-watered
conditions represented 100% field capacity. Before rewatering plants, a soil meter was used
to measure soil water content.

2.3. Plant Biomass

Different plant samples (roots, shoots, and seeds) were dried until they attained a
constant weight following the method previously described [40]. Plants were separated
at 80 days after sowing (DAS) in root and shoots for various physiological and biochemi-
cal analyses.

2.4. Chlorophyll Content

Chlorophyll extraction was carried out from leaf discs of plants following the method
previously described [41], and chlorophyll a, b, and total chlorophyll were computed from
the extinction values following the equation of [42].
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2.5. Total Protein, Relative Water Content, and Harvest Index

Total protein was estimated following the method previously described by Bates et al. [43].
Leaf relative water content (RWC) was calculated by the method described by Grieve &
Grattan [44]. For chlorophyll a and b extraction, leaf discs of plants were mixed with 5 mL
of 80% acetone overnight. After centrifugation, the supernatant was used for absorbance
reading at 645 nm (chl a) and 663 nm (chl b) using a spectrophotometer (Hitachi-U2001,
Tokyo, Japan). Relative water content (RWC) was measured following Cavell [45], where
selected leaves were rehydrated by soaking in deionized water for 24 h. Fully turgid leaves
were weighed and, subsequently, oven-dried for 48 h at 80 °C. Here, FW is fresh weight,
DW is dry weight, and TW is turgid weight. Plant yield efficiency in terms of the harvest
index (HI) was computed according to Mehraban et al. [46]. The amount of aboveground
biomass production invested into harvestable organs was calculated as follows:

HI = (Seed dry weight/Aboveground plant biomass at harvest) x 100

2.6. Proline and Glycine Betaine Content

Proline content was analyzed following absorbance of toluene soluble brick-red col-
ored complex at 520 nm [47]. The concentration of proline was estimated by referring to a
standard curve drawn from known concentrations of proline. GB was determined follow-
ing the absorbance of the betaine—peridotite complex with iodide in an acidic medium at
360 nm as per the method of Dubois et al. [48]. Reference standards of GB were prepared
as 50-200 ug mL~! for sample estimation.

2.7. Catalase and Superoxide Dismutase Estimation

CAT and SOD were measured using 0.2 g fresh leaf samples. The obtained mixture
(0.05 M Tris—HCl buffer (pH = 7.5) and samples) was centrifuged at 13,000 rpm for 20 min
at4°C.

After centrifugation, the supernatant was used to estimate CAT according to a modi-
fied method of Kar and Mishra [49], and SOD was assayed by the method described by
Beauchamp and Fridovich [50].

2.8. Nutrient Analysis and Zinc Content

Nutrient extraction was done according to Carvalho et al. ([51], modified). Two g
of flour for each sample was placed in labeled crucibles and ashed for 3 h in a furnace
at 550 °C. Samples were digested with 2-2.5 mL of concentrated HNOj3,then placed into
the furnace at 550 °C for 1h. After that, 10 mL of diluted HNO3; (HNO3:H,O 1:2 dilution
ratio) was added to the sample and placed for 5 min in a sand bath. The mixture was
filtered through Whatman paper for purification. The atomic absorption spectroscopy
(AAS) (Varian AAS FS 240 Model, Varian Inc., Palo Alto, CA, USA) method was used to
analyze the mineral concentration. Five replicates were done per sample.

2.9. Statistical Analysis

Each parameter was investigated in its separate independent experiment. Analysis
using variance (ANOVA) was performed, and subsequent comparison of the means was
done using Duncan’s multiple range test at p = 0.05. Treatment mean =+ SE (n = 12) are for
growth and yield attributes and (1 = 4) for the other tested characteristics.

3. Results
3.1. Plant Growth, Yield, and Yield-Related Traits

Drought stress significantly affected (p < 0.05) growth parameters, yield, and yield
components (Table 2). Zn application and AMF inoculation significantly enhanced plant
growth and yield components under well-watered conditions and drought stress. Zn
application and/or AMF inoculation enhanced all growth parameters and yield attributes.
For example, RDW increased by 25, 30, and 46%, respectively, for these three treatments,
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compared to the control treatment. For 1000-grain weight, the increase was 9, 0.4, and
3% for the same three treatments (Table 2). Drought stress significantly decreased plant
growth and grain yield attributes. The combination of Zn application and AMF inoculation
alleviated the adverse effect of drought stress on all parameters except for grain weight
per spike, which decreased by 45.9%. The decrease in 1000-grain weight was noticeably
smaller after the application of Zn and AMF compared to drought stress only (Table 2).
Under this constraint, Zn significantly enhanced 1000-grain weight. However, AMF or Zn
did not affect grain number and grain weight per spike under drought stress (Table 2).

Table 2. Application effect of Zinc fertilizer and mycorrhizal inoculation on yield attributes of
bread wheat.

Spike Grain . . 1000 Grain
SP;N (cSnI;) R(D)W (?nl;) Numl;)er per Number Gra;:SW iell(iht Weight
8 8 Plant per Spike persp (g)

Control 0.30 +0.01 36.48 £1.05° 0.29 +2.13 ¢ 30.65 +0.35 ¢ 1.75 4 0.03° 35.43 +0.76 © 1.78 +£0.08 2 46.19 £0.32°
Zn 043+ 020" 38.09 + 0.54 20 0.39 + 0.09 b¢ 32.48 +0.08 ¢ 1.50 4 1.25 b¢ 3452 +£0.01¢ 1.59 +0.54° 51.07 + 1.65°
AMF 0.48 +0.20 39.64 4 0.32 2 0.42 + 050" 3852 +1.76 1.75 +0.87° 35.19 £ 0.90 P 0.34 +0.014 46.38 +£1.20°
AMF+Zn 054+ 0452 4271 +£0.752 054 +1652 42.06 +£2.00? 2.00 +£0.09 2 36.10 + 0.87 1.77 £0.702 47.68 +2.87
Drought 0.26 +0.434 31.99 +1.43¢ 0.26 + 0.07 € 29.05 + 0.98 1.00 £ 0.06 © 38.83 +£0.39? 1.83 +£0.90° 33.86 +£1.33°¢
Zn+Drought 0.28 + 0.97 32.15 4+ 0.98 0.28 4+ 0.01 29.99 + 1.09 1.23 £ 0.09 36.90 £ 0.01 1.85 +0.99 44.65 £0.13
AMF+Drougt 0.37 +1.45 35.09 + 0.09 0.33 +0.12 35.08 +0.23 144 +£1.34 37.21+1.23 0.98 + 1.06 43.17 £ 0.05
AMF+Zn+Drought 0.39 £ 0.04 ¢ 33.10£03°¢ 0.37 4 2.54 b¢ 36.95 + 1.00 © 1.75 +0.12° 38.78 +£0.56 2 099 £1.03¢ 40.62 +1.05 ¢

Grown under water-stress conditions, SDW = Shoot dry weight, SL = shoot length, RDW = root dry weight,
RL = root length. Values in columns followed by different letters are significantly different at p < 0.05.
Means =+ standard deviation.

3.2. Chlorophyll Content

There was significant variability of chlorophyll content due to Zn fertilization and
AMF inoculation. Chlorophyll compounds were increased by Zn and AMF inoculation
and their combination under both control and drought conditions. Chl a content increased
by 69, 68, and 75%, Chl b content by 84, 87, and 90%, and Chl a+b content by 73, 74, and
80%, respectively, after the application of Zn and AMF inoculation and their combination
compared with the control. However, there were nonsignificant effects on Chl a/b content
under drought stress after Zn and AMF treatments. Overall, the highest chlorophyll content
was observed in the plants treated with combined Zn and AMF under both control and
drought-stress conditions (Figure 1).

OChla O Chlb ETChl

Chlorophyll content
N

Control

Well watered Drought Stress

Figure 1. Individual and combined application of Zn and/or AMF effects on chlorophyll a, chloro-
phyll b, and chlorophyll (a+b) of a bread wheat cultivar under control (well-watered) and drought-
stress conditions. Bars with different letters are significantly different at p < 0.05.

3.3. Protein, Relative Water Content, and Harvest Index

Protein, relative water content, and HI were significantly(p < 0.05) affected by drought
stress. However, AMF inoculation and/or Zn and their combination improved protein
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content by about 15%. The highest level was 15.35% in plants that received combined
Zn and AMF treatment under drought stress (Figure 2). Under well-watered conditions,
Zn application, AMF inoculation, and their combination enhanced RWC by 14.10, 16.23,
and 23.90%, respectively (Figure 2), although it decreased by 20.35, 20.15 and 21.66%,
respectively, under drought stress. Under drought stress, Zn application and/or AMF
inoculation enhanced HI by 45.91, 84.80 and 28.82%, respectively, compared to control
conditions (Figure 2).
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Figure 2. Zn application and /or AMF inoculation effect on protein content, relative water content
(RWCQ), and harvest index (HI) of bread wheat cultivar under control (well-watered) and drought-
stress conditions. Bars with different letters are significantly different at (p < 0.05).

3.4. Accumulation of Glycine Betaine and Proline Content under Drought Stress

Treatment effects were significant for GB and proline. Under drought stress, the
application of Zn and/or AMF inoculation increased GB compared to control conditions
by 31.71, 10.36, and 70.70%, respectively. However, the level of GB was higher in the
control under the same conditions (1.69 pmol g~ !). Regarding proline content, results
showed significant variability (p < 0.05) under both control and drought conditions. AMF
inoculation improved proline content more than Zn application. Generally, drought stress
decreased proline content compared to control conditions (Figure 3).
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Figure 3. Zn application and/or AMF inoculation effect on glycine betaine and proline content in the
bread wheat under control (well-watered) and drought-stress conditions. Bars with different letters
are significantly different at p < 0.05.

3.5. Activities of Antioxidant Enzymes

The antioxidant defense was enhanced significantly (p < 0.05) under drought stress
mostly for peroxide dismutase activity, and the increase was outworn by 50% for all the
treatments compared to the well-watered conditions. AMF inoculation and Zn application
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improved SOD and CAT activity by 58 and 56%, respectively, under drought stress (Figure 4).
Under well-watered conditions, Zn and/or AMF did not significantly a meliorate the
enzymatic reaction (Figure 4).
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Figure 4. Zn application and/or AMF inoculation effects on catalase (CAT) and peroxide dismutase
(SOD) in the bread wheat under control (well-watered) and drought-stress conditions. Bars with
different letters are significantly different at p < 0.05.

3.6. Nutrient Composition of Wheat Flour

Macro and/or microelements in wheat flour showed significant variability due to
the combination of Zn application and AMF inoculation under drought stress (Figure 5).
However, treatment effects were nonsignificant under control conditions for micronutrients.
Drought stress significantly increased Na and Cu, compared to the control, by 21.68 and
36.13%, respectively. The microelements Fe, Mn, Zn, and Cu in the flour had very low
concentrations (0.003-0.089%). On the contrary, macro elements were significantly affected
by drought stress. Zn and /or AMF inoculation improved K, Ca, and P. For example, Zn
combined with AMF increased K and P by 51.61 and 75%, respectively, under drought
stress (Figure 5).
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Control Zn AMF AMF+Zn Drought AMF+Zn+Drought

Figure 5. Zn application and /or AMF inoculation effect on macronutrient and micronutrient content
in bread wheat cultivar under control (well-watered) and drought-stress conditions. Bars with
different letters are significantly different at p < 0.05.
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4. Discussion

The main objective of this study was to analyze the potential of Zn fertilizer and
AMF for improving wheat performance under drought stress. Drought significantly affects
wheat yield worldwide [52,53]. AMF improved water assimilation in many plants under
drought stress as fungus mycelia can penetrate the soil and increase water absorption
and transportation from roots to other plant parts as a tolerance mechanism to drought
stress [54]. Fertilization using several nutrient sources increased plant vigor against envi-
ronmental stress [55]. Zn fertilization and its co-application with AMF were evaluated by
studying variability in different physiochemical mechanisms as described in a previous
study [30]. AM fungus and/or Zn application positively affected morphological traits,
increasing plant growth and yield attributes, as was reported previously [3]. Therefore, the
efficiency of Zn and AMF application is confirmed in this study. Drought stress decreased
plant dry weight and length. This was confirmed in another study [56]. Osmotic variability
due to variations in osmotic potential caused a significant decrease in the fresh weight
of plants due to a decrease in cellular division, consequently causing a decrease in total
plant weight [57]. Zn combined with AMF treatment effectively improved plant growth
under drought stress by sustaining higher water content in cells, thus ameliorating drought
stress. All parameters were alleviated by Zn application and AMF inoculation, except for
grain weight per spike, which decreased by 45.9% under drought stress. Zn improved
chlorophyll synthesis, as it acts as a catalyst and cofactor of various enzymes [58]. This
finding was confirmed in this study. Cell membranes, which cause improvement in the
photosynthetic process, were protected by the application of Zn and AMF [59]. Similar
findings were observed in rice and wheat plants. Zn increased all studied photosynthetic
pigments [60].

Protein content was significantly enhanced only under stress conditions, and the effect
was increased with Zn treatment. The potential effect of Zn on soluble protein in wheat
under drought stress was previously reported [61]. Also, amino acid synthesis, which
helps in protecting plants from drought stress, is related to Zn application [62]. Faced with
drought stress, plant tolerance can be improved via drought escape by early flowering time
in drier environments, avoidance by transpiration regulation, development of extensive
root systems, trait flexibility, maintenance of water management in tissues, antioxidant
scavenging, and secretion of plant growth substances by plant growth regulators and
osmotic regulation [63]. Under drought stress, plants used stomatal closure to reduce the
transpiration rate, causing an increase in leaf temperature. However, compared to the
control, under the same conditions, Zn and/or AMF increased RWC and HI. These findings
confirmed that Zn, at an optimum dose, maintained water status, stomatal conductance, and
osmotic adjustment in many plants, such as chickpea, under drought stress [64]. For osmotic
homeostasis regulation under stress conditions, proline as an osmolyte played an important
role in protecting plants against drought [65]. The compatible solute accumulation leads
to improved turgor potential and water content of plants, which contributes to enhanced
plant growth performance under stress conditions. AMF was also reported to stimulate
compatible solute and protein content under stress conditions [66]. The results of this study
confirmed previous findings [67], mentioning that Zn and AMF acted synergistically to
enhance proline and total protein content.

Drought stress reduces the assimilation of nutrients and inhibits the activities of
important enzymes that are involved in the synthetic processes of energy for plant growth.
For that, plants have an antioxidant defense against stress conditions, having different
antioxidant reactions protecting plants under water deficit [68].This defense reaction was
expressed by different enzymes which convert these harmful oxygen species to reduce
their negative effect on plant growth [69]. In our study, drought stress increased levels of
CAT and SOD compared to the control (well-watered). AMF inoculation or Zn application
enhanced the activity of these antioxidant enzymes under drought-stress conditions, being
more pronounced when applied together. This finding was confirmed by many reports
mentioning enhancement in the enzymatic antioxidant defense system due to AMF and/or
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Zn application in wheat under drought stress [70]. Zn reduced oxidative damage under
stress conditions, which confers stress tolerance to plants [71]. The increase in antioxidant
enzyme activity is assessed through decreased malondialdehyde content and H,O, content
as noted in many crops, for example, in sunflower (Helianthus annuus), chickpea (Cicer
arietinum) [72], lentil (Lens culinaris) [73], and wheat leaves.

Moreover, nonenzymatic molecules, such as the accumulation of GB in wheat leaves,
decreased the impact of drought stress as an antioxidant defense. Zn and AMF increased
the activity of GB under drought stress, being more pronounced when applied together
(Figure 3). It was reported [74] that enzymatic antioxidant defense systems were enhanced
in wheat due to Zn application under drought-stress conditions.

In addition, as a strategy to tolerate stress, plants balance the concentrations of macro
and micro elements. The results showed that drought stress significantly increased Na and
Cu. However, Fe, Mn, Zn, and Cu were present in the flour at very low concentrations
(0.003-0.089%). Many reports confirmed this finding explaining that a different nutrient
supply as Zn and biofertilizer (AMF) can increase plant growth under water stress, depend-
ing on the severity of the drought, the concentration of the elements in the soil, and other
conditions [75]. Application of Zn, AMF inoculation, and their combination increased K,
Ca, Mg, and P. For example, Zn combined with AMF increased K and P by 51.61 and 75%,
respectively, under drought stress.

5. Conclusions

This study investigated the effect of Zn application and AM fertilization. Wheat
growth, yield, the antioxidant mechanism (enzymes, osmoprotectors, and osmolytes), and
nutrient balance were improved. Root proliferation was significantly enhanced due to Zn
and AMEF fertilization under stress conditions. Zn fertilizer combined with AMF had larger
impacts on measured traits. As a work perspective, deep research is needed to be done
under field conditions to confirm these results on the effects of Zn and AMF and to be
recommended to improve wheat production under drought stress. Moreover, extensive
work on molecular studies as the contribution of differentially expressing endogenous
genes encoding antioxidant enzymes should be established.

Author Contributions: N.A.—writing manuscript, methodology, data analysis; A.V.B. methodology
and assistance; C.S.—methodology; M.L.—data analysis, writing-review, visualization, and editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was financially supported by the National Research Foundation through the
South African Research Chairs Initiative (UID 84647).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy and ethical reasons.

Acknowledgments: This research was funded by the National Research Foundation through the
South African Research Chairs Initiative.

Conflicts of Interest: The authors declare no conflict of interest.

1.  Hassan, M.U,; Chattha, M.U.; Khan, I.; Chattha, M.B.; Barbanti, L. Heat stress in cultivated plants: Nature, impact, mechanism
and mitigation strategies—A review. Plant Biol. 2020, 155, 211-234. [CrossRef]
2. Qados, AM.S.A. Effect of salt stress on plant growth and metabolism of bean plant Vicia faba. |. Saudi Soc. Agric. Sci. 2011,

10, 7-15.

3. Ma, X,; Zheng, J.; Zhang, X.; Hu, Q.; Qian, R. Salicylic acid alleviates the adverse effects of salt stress on Dianthus superbus
(Caryophyllaceae) by activating photosynthesis, protecting morphological structure, and enhancing the antioxidant system. Front.
Plant Sci. 2017, 8, 600. [CrossRef]

93



Life 2023, 13,1078

10.

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

Phakela, K.; Van Biljon, A.; Wentzel, B.; Guzman, C.; Labuschagne, M.T. Gluten protein response to heat and drought stress in
durum wheat as measured by reverse phase- High performance liquid chromatography. J. Cereal Sci. 2021, 100, 103267. [CrossRef]
Belay, J.A.; Zhang, Z.; Xu, P. Physio-morphological and biochemical trait-based evaluation of Ethiopian and Chinese wheat
germplasm for drought tolerance at the seedling stage. Sustainability 2021, 13, 4605. [CrossRef]

Jafari-Shabestari, J.; Corke, H.; Qualset, C.O. Field evaluatiuon to salinity stress in Iranian hexaploid wheat landrace accessions.
Genet. Res. Crop Evol. 1995, 42, 147-156. [CrossRef]

Sheikh, S.B.; Anjuman, H.; Sofi Javed, H.; Owais, A.W.; Sheikh, Z.N.; Niyaz, A.D.; Faheem, S.B.; Sheikh, M. Plant drought stress
tolerance: Understanding its physiological, biochemical and molecular mechanisms. Biotech. Biotech. Equip. 2021, 35, 1912-1925.
Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M.T. Salicylic Acid Improves Growth and Physiological Attributes and Salt
Tolerance Differentially in Two Bread Wheat Cultivars. Plants 2022, 11, 1853. [CrossRef]

Elliott, J.; Deryng, D.; Miiller, C.; Frieler, K.; Konzmann, M.; Gerten, D. Constraints and potentials of future irrigation water
availability on agricultural production under climate change. Proc. Nat. Acad. Sci. USA 2014, 111, 3239-3244. [CrossRef]
Amjad, S.F; Mansoora, N.; Ud Din, I; Igbal, R K.; Jatoi, G.H.; Murtaza, G.; Yaseen, S.; Naz, M.; Danish, S.; Fahad, S.; et al.
Application of zinc fertilizer and mycorrhizal inoculation on physio-biochemical parameters of wheat grown under water-stressed
environment. Sustainability 2021, 13, 11007. [CrossRef]

Mehla, N.; Sindhi, V.; Josula, D.; Bisht, P.; Wani, S.H. An introduction to antioxidants and their roles in plant stress tolerance.
In Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress; Springer: Singapore, 2017;
pp- 1-23.

Sallam, A.; Alqudah, A.M.; Dawood, M.E; Baenziger, P.S.; Borner, A. Drought Stress Tolerance in Wheat and Barley: Advances in
Physiology, Breeding and Genetics Research. Int. . Mol. Sci. 2019, 20, 3137. [CrossRef] [PubMed]

Tsonev, T.; Lidon, EJ.C. Zinc in plants—An overview. Emir. ]. Food Agric. 2012, 24, 322-333.

Mengel, K.; Kosegarten, H.; Kirkby, E.A.; Appel, T. Principles of Plant Nutrition; Springer: Berlin, Germany, 2001.

Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: New York, NY, USA, 1995.

Alloway, B.J. Zinc in Soils and Crop Nutrition; International Zinc Association: Brussels, Belgium, 2004.

Kochian, L.V. Zinc absorption from hydroponic solution by plant roots. In Zinc in Soils and Plants; Robson, A.D., Ed.; Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1993; pp. 45-57.

Aravind, P; Prasad, M.N.V. Zinc alleviates cadmium induced toxicity in Ceratophyllum demersum, a fresh water macrophyte. Plant
Physiol. Bioch. 2003, 41, 391-397. [CrossRef]

Chattha, M.U.; Hassan, M.U.; Khan, I.; Chattha, M.B.; Mahmood, A.; Chattha, M.U.; Nawaz, M.; Subhani, M.N.; Kharal, M.;
Khan, S. Bio-fortification of Wheat Cultivars to Combat Zinc Deficiency. Front. Plant Sci. 2017, 8, 281. [CrossRef] [PubMed]
Eslami, M.; Dehghanzadeh, H. The effect of zinc on yield and yield components of sunflower (Helianthus annuus L.) under
drought stress. Sci. J. Crop Sci. 2014, 3, 61-65.

Ibrahim, S.A.; Desoky, E.; Elrys, A.S. Influencing of water stress and micronutrients on physio-chemical attributes, yield and
anatomical features of Common Bean plants (Phaseolus vulgaris L.). Eqypt. ]. Agron. 2017, 39, 251-265. [CrossRef]

Hera, M.H.R.; Hossain, M.; Paul, A.K. Effect of foliar zinc spray on growth and yield of heat tolerant wheat under water stress.
Int. ]. Biol. Environ. Eng. 2018, 1, 10-16.

Dietz, K.J.; Foyer, C. The relationship between phosphate and photosynthesis in leaves, Reversibility of the effects of phosphate
deficiency on photosynthesis. Planta 1986, 167, 376-381. [CrossRef]

Gholamhoseini, M.; Ghalavand, A.; Dolatabadian, A.; Jamshidi, E.; Joghan, A K. Effects of arbuscular mycorrhizal inoculation on
growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress. Agric. Water Manag.
2013, 117, 106-114. [CrossRef]

Chitarra, W.; Pagliarani, C.; Maserti, B.; Lumini, E.; Siciliano, I.; Cascone, P. Insights on the impact of arbuscular mycorrhizal
symbiosis on tomato tolerance to water stress. Plant Physiol. 2016, 171, 1009-1023. [CrossRef]

Al-Karaki, G.N.; Al-Raddad, A. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two
wheat genotypes differing in drought resistance. Mycorrhiza 1997, 7, 83-88. [CrossRef]

Bhantana, P.; Rana, M.S.; Sun, X.; Moussa, M.G.; Saleem, M.H.; Syaifudin, M.; Shah, A.; Poudel, A.; Pun, A.B.; Bhat, M.A.
Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation.
Symbiosis 2021, 84, 19-37. [CrossRef]

Wu, S.; Hu, C.; Tan, Q.; Nie, Z.; Sun, X. Effects of molybdenum on water utilization, antioxidative defense system and osmotic
adjustment ability in winter wheat (Triticum aestivum) under drought stress. Plant Physiol. Biochem. 2014, 83, 365-374. [CrossRef]
[PubMed]

Saboor, A.; Ali, M.A.; Hussain, S.; El Enshasy, H.A.; Hussain, S.; Ahmed, N.; Gafur, A.; Sayyed, R.Z.; Fahad, S.; Danish, S.; et al.
Zinc nutrition and arbuscular mycorrhizal symbiosis effects on maize (Zea mays L.) growth and productivity. Saudi J. Biol. Sci.
2021, 28, 6339-6351. [CrossRef] [PubMed]

Samreen, T.; Humaira; Shah, H.U.; Ullah, S.; Javid, M. Zinc effect on growth rate, chlorophyll, protein and mineral contents of
hydroponically grown mungbeans plant (Vigna radiata). Arab. J. Chem. 2017, 10, S1802-51807. [CrossRef]

Bagci, S.A.; Ekiz, H.; Yilmaz, A.; Cakmak, I. Effect of zinc deficiency and drought on grain yield of field-grown wheat cultivars in
Central Anatolia. J. Agron. Crop Sci. 2007, 193, 198-206. [CrossRef]

94



Life 2023, 13,1078

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Wu, S.;; Hu, C; Tan, Q; Li, L.; Shi, K.; Zheng, Y.; Sun, X. Drought stress tolerance mediated by zinc-induced antioxidative defense
and osmotic adjustment in cotton (Gossypium hirsutumy). Acta Physiol. Plant. 2015, 37, 167. [CrossRef]

Yu, B.G.; Che, X.X,; Cao, W.Q.; Liu, Y.M.; Zou, C.Q. Responses in zin uptake of different mycorrhizal and non-mycorhizal crops to
varied levels of phosphorus and zinc applications. Front. Plant Sci. 2020, 11, 606472. [CrossRef]

Dehnavi, M.M.; Misagh, M.; Yadavi, A.; Merajipoor, M. Physiological responses of sesame (Sesamum indicum L.) to foliar
application of boron and zincunder drought stress. . Plant Process Funct. 2017, 6, 27-36.

Shao, H.B.; Chu, L.Y,; Jaleel, C.A.; Zhao, C.X. Water-deficit stress-induced anatomical changes in higher plants. Comptes Rendus
Biol. 2008, 331, 215-225. [CrossRef]

Pasquali, G.; Biricolti, S.; Locatelli, F.; Baldoni, E.; Mattana, M. Osmyb4 expression improves adaptive responses to drought and
cold stress in transgenic apples. Plant Cell Rep. 2008, 27, 1677-1686. [CrossRef] [PubMed]

Giri, J. Glycine betaine and abiotic stress tolerance in plants. Plant Signal Behav. 2011, 6, 1746-1751. [CrossRef] [PubMed]
Hiscox, ].D.; Israelstam, G.F. A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 1979, 57,
1332-1334. [CrossRef]

Abdi, N.; Van Biljon, A.; Steyn, C.; Labuschagne, M.T. Bread Wheat (Triticum aestivum) Responses to Arbuscular Mycorrhizae
Inoculation under Drought Stress Conditions. Plants 2021, 10, 1756. [CrossRef] [PubMed]

Weatherley, PE. Studies in the water relations of the cotton plant. I. The field measurement of water deficits in leaves. New Phytol.
1950, 49, 81-87. [CrossRef]

Coombs, J.; Hall, D.O.; Long, S.P,; Scurlock, ]. M.O. Techniques in Bio-Productivity and Photosynthesis, 2nd ed.; Elsevier: Amsterdam,
The Netherlands, 1987.

Leport, L.; Turner, N.; Davies, S.L.; Siddique, K. Variation in pod production and abortion among chickpea cultivars under
terminal drought. Eur. J. Agron. 2006, 24, 236-246. [CrossRef]

Bates, L.S.; Waldren, R.P; Teare, I.D. Rapid determination of free proline for water-stress studies. Plant Soil 1973, 39, 205-207.
[CrossRef]

Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water soluble quarter- nary ammonium compounds. Plant Soil 1983,
70, 303-307. [CrossRef]

Cavell, A.J. The colorimetric determination of phosphorus in plant materials. J. Sci. Food Agric. 1955, 6, 479-480. [CrossRef]
Mehraban, A.; Tobe, A.; Gholipouri, A.; Amiri, E.; Ghafari, A.; Rostaii, M. The effects of drought stress on yield, yield components,
and yield stability at different growth stages in bread wheat cultivar (Triticum aestivum L.). Pol. ]. Environ. Stud. 2019, 28, 739-746.
[CrossRef]

Zhu, Y,; Luo, X,; Nawaz, G.; Yin, J.; Yang, J. Physiological and Biochemical Responses of four cassava cultivars to drought stress.
Sci. Rep. 2020, 10, 6968. [CrossRef] [PubMed]

Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related
substances. Anal. Chem. 1956, 28, 350-356. [CrossRef]

Carvalho, T.L.G.; Ballesteros, H.G.E,; Thiebaut, E,; Ferreira, P.C.G.; Hemerly, A.S. Nice to meet you: Genetic, epigenetic and
metabolic controls of plant perception of beneficial associative and endophytic diazotrophic bacteria in non-leguminous plants.
Plant Mol. Biol. 2016, 90, 561-574. [CrossRef] [PubMed]

Kar, M.; Mishra, D. Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiol. 1976, 57,
315-319. [CrossRef]| [PubMed]

Beauchamp, C.; Fridovich, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem.
1971, 44, 276-287. [CrossRef] [PubMed]

Rafeeq, H.; Arshad, M.A.; Amjad, S.F,; Ullah, M.H.; Imran, H.M.; Khalid, R.; Yaseen, M.; Ajmal, H. Effect of nickel on different
physiological parameters of Raphanus sativus. Int. ]. Sci. Res. Public 2020, 10, 9702. [CrossRef]

Sedghi, M.; Hadi, M.; Toluie, S.G. Effect of nano zinc oxide on the germination parameters of soybean seeds under drought stress.
Ann. West Univ. Timisoara. Ser. Biol. 2013, 16, 73.

Moucheshi, A.; Heidari, B.; Assad, M.T. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis.
Int. J. Agri. Sci. 2012, 2, 35-47.

Paul, S.; Aggarwal, C.; Manjunatha, B.S.; Rathi, M.S. Characterization of osmotolerant rhizobacteria for plant growth promoting
activities in vitro and during plant-microbe association under osmotic stress. Indian J. Exp. Biol. 2018, 56, 582-589.

Qiao, X.; He, Y.; Wang, Z.; Li, X; Zhang, K.; Zeng, H. Effect of foliar spray of zinc on chloroplast (3-carbonic anhydrase expression
and enzyme activity in rice (Oryza sativa L.) leaves. Acta Physiol. Plant. 2014, 36, 263-272. [CrossRef]

Sattar, A.; Wang, X.; Abbas, T.; Sher, A.; ljaz, M.; Ul-Allah, S.; Irfan, M.; Butt, M.; Wahid, M.A.; Cheema, M.; et al. Combined
application of zinc and silicon alleviates terminal drought stress in wheat by triggering morpho-physiological and antioxidants
defense mechanisms. PLoS ONE 2021, 16, €0256984. [CrossRef] [PubMed]

Bharti, K.; Pandey, N.; Shankhdhar, D.; Srivastava, P.C.; Shankhdhar, S.C. Improving nutritional quality of wheat through soil
and foliar zinc application. Plant Soil Environ. 2013, 59, 348-352. [CrossRef]

Turyagyenda, L.F,; Kizito, E.B.; Ferguson, M.; Baguma, Y.; Agaba, M.; Harvey, ].].W.; Osiru, D.S.0O. Physiological and molecular
characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants 2013, 5, plt007.
[CrossRef] [PubMed]

95



Life 2023, 13,1078

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

72.

73.

74.

75.

Danish, S.; Zafar-ul-Hye, M.; Hussain, M.; Shaaban, M.; Nu "fiez-Delgado, A.; Hussain, S. Rhizobacteria with ACC-deaminase
activity improve nutrient uptake, chlorophyll contents and early seedling growth of wheat under PEG-induced osmotic stress.
Int. J. Agric. Biol. 2019, 21, 1212-1220.

Khan, H.R.; McDonald, G.K.; Rengel, Z. Zinc fertilization and water stress affects plant water relations, stomatal conductance and
osmotic adjustment in chickpea (Cicer arientinum L.). Plant Soil 2004, 267, 271-284. [CrossRef]

Zushi, K.; Matuszoe, N.; Yoshida, S.; Chikoshi, J]. Comparison of chemical composition contents of tomato fruit grown under
water and salinity stresses. J. SHITA 2005, 17, 128-136. [CrossRef]

Crusciol, C.A.C.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P.P. Effects of silicon and drought stress on tuber yield and leaf
biochemical characteristics in potato. Crop Sci. 2009, 49, 949-954. [CrossRef]

Kheirizadeh Arough, Y.; Seyed Sharifi, R.; Seyed Sharifi, R. Bio fertilizers and zinc effects on some physiological parameters of
triticale under water-limitation condition. J. Plant Interact. 2016, 11, 167-177. [CrossRef]

Khan, M.A.; Igbal, M.; Jameel, M.; Nazeer, W.; Shakir, S.; Aslam, M.T.; Igbal, B. Potentials of molecular based breeding to enhance
drought tolerance in wheat (Triticum aestivum L.). Afr. ]. Biotechnol. 2011, 10, 11340-11344.

Yavas, I.; Unay, A. Effects of zinc and salicylic acid on wheat under drought stress. J. Anim. Plant Sci. 2016, 26, 1012-1018.
Abbas, T.; Sattar, A.; [jaz, M.; Aatif, M.; Khalid, S.; Sher, A. Exogenous silicon application alleviates salt stress in okra. Hortic.
Environ. Biotechnol. 2017, 58, 3423-3449. [CrossRef]

Sultana, S.; Naser, H.M.; Shil, N.C.; Akhter, S.; Begum, R.A. Effect of foliar application of zinc on yield of wheat grown by
avoiding irrigation at different growth stages. Bang. J. Agric. Res. 2016, 41, 323-334.

Haider, M.U.; Hussain, M.; Farooq, M.; Ul-Allah, S.; Ansari, M.]J.; Alwahibi, M.S.; Farooq, S. Zinc biofortification potential of
diverse mungbean [Vigna radiata (L.) Wilczek] genotypes under field conditions. PLoS ONE 2021, 16, e0253085. [CrossRef]

Pohl, M.; Sprenger, G.A.; Miiller, M. A new perspective on thiamine catalysis. Curr. Opin. Biotechnol. 2004, 15, 335-342. [CrossRef]
[PubMed]

Hajiboland, R.; Cheraghvareh, L.; Poschenrieder, C. Improvement of drought tolerance in tobacco (Nicotiana rustica L.) plants by
silicon. J. Plant Nutr. 2017, 40, 1661-1676. [CrossRef]

Gunes, A,; Pilbeam, D.J.; Inal, A.; Coban, S. Influence of silicon on sunflower cultivars under drought stress, I: Growth, antioxidant
mechanisms, and lipid peroxidation. Comm. Soil Sci. Plant Anal. 2008, 39, 1885-1903. [CrossRef]

Biju, S.; Fuentes, S.; Gupta, D. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating
osmolytes, hydrolytic enzymes and antioxidant defence system. Plant Physiol. Biochem. 2017, 119, 250-264. [CrossRef]

Noreen, S.; Sultan, M.; Akhter, M.S.; Shah, K.H.; Ummara, U.; Manzoor, H.; Ulfat, M.; Alyemeni, M.N.; Ahmad, P. Foliar
fertigation of ascorbic acid and zinc improves growth, antioxidant enzyme activity and harvest index in barley (Hordeum vulgare
L.) grown under salt stress. Plant Physiol. Biochem. 2021, 158, 244-254. [CrossRef]

Hu, Y.; Schmidhalter, U. Drought and salinity: A comparison of their effects on the mineral nutrition of plants. J. Plant Nutr. Soil
Sci. 2005, 168, 541-549. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

96



Review

Breeding and Genomic Approaches towards Development of
Fusarium Wilt Resistance in Chickpea

Rakesh Kumar Yadav !, Manoj Kumar Tripathi 1.2,* Sushma Tiwari 112, Niraj Tripathi 3% Ruchi Asati !,
Vinod Patel !, R. S. Sikarwar ! and Devendra K. Payasi *

Citation: Yadav, R K.; Tripathi, M.K.;
Tiwari, S.; Tripathi, N.; Asati, R.;
Patel, V,; Sikarwar, R.S.; Payasi, D.K.
Breeding and Genomic Approaches
towards Development of Fusarium
Wilt Resistance in Chickpea. Life 2023,
13,988. https:/ /doi.org/10.3390/
life13040988

Academic Editors: Hakim Manghwar
and Wajid Zaman

Received: 7 March 2023
Revised: 27 March 2023
Accepted: 29 March 2023
Published: 11 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa
Vidyalaya, Gwalior 474002, India

Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia
Krishi Vishwa Vidyalaya, Gwalior 474002, India

Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
Regional Agricultural Research Station, Sagar 470001, India

*  Correspondence: biotechnology@rvskvv.net (M.K.T.); nirajtripathi@jnkvv.org (N.T.)

Abstract: Chickpea is an important leguminous crop with potential to provide dietary proteins to
both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation.
The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a
major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is
responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and
1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different
conventional breeding methods is very time consuming and depends upon the environment. Modern
technologies can improve conventional methods to solve these major constraints. Understanding the
molecular response of chickpea to Fusarium wilt can help to provide effective management strategies.
The identification of molecular markers closely linked to genes/QTLs has provided great poten-
tial for chickpea improvement programs. Moreover, omics approaches, including transcriptomics,
metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review,
we will discuss the integration of all available strategies and provide comprehensive knowledge
about chickpea plant defense against Fusarium wilt.

Keywords: Fusarium wilt; conventional breeding; molecular makers; QTLs; genomics; transcriptomics;
metabolomics and proteomics

1. Introduction

Chickpea (Cicer arietinum L.) is a self-pollinating, annual diploid (2n = 2x = 16) species
with a genome size of 738 Mb [1]. It is also referred to as gram, Bengal gram, Egyptian pea,
garbanzo, or garbanzo bean [2]. It encourages biological nitrogen fixation, which boosts
soil fertility. The family Fabaceae (Leguminosae), subfamily Faboideae (Papilionaceae),
and tribe Cicereae make up the taxonomic hierarchy of chickpeas. There are nine annual
species and roughly 34 perennial wild species [3]. The only annual species that is grown
commercially is Cicer arietinum [4,5].

There are two varieties of grown chickpea: Kabuli and Desi. The Desi (microsperma)
varieties of plant contain thick seed coats, pink blooms, and stems that are anthocyanin-
pigmented [6], while the Kabuli (macrosperma) varieties of plant have white blooms, white-
or beige- colored seeds with a ram’s head shape, a smooth seed surface with a thin seed coat
and an absence of anthocyanin coloration on the stem [5]. Every year, more than 2.3 million
tons of chickpeas are imported to supplement the needs of many nations of the world that
are unable to produce a large enough quantity to satisfy their domestic demand [7]. The top
exporters are Australia, Argentina, and Canada. The Kabuli variety of chickpea is grown
extensively in West Asia, North Africa, North America, and Europe [7].
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Chickpea seeds are nutrient-dense foods that have a high protein content and include
dietary elements such as calcium, iron, and phosphorus [8]. The seeds include modest
amounts of thiamin, vitamin B¢, magnesium, and zinc, as well. They are beneficial in the
management of various serious human diseases such as diabetes, cardiovascular disease,
and digestive disorders [9,10]. Excluding sulfur-containing amino acids, chickpea seeds
contain several important amino acids. On the surface, chickpea grains contain: 17.1%
protein, 60.9% carbs, 5.3% fats, 3% minerals, and 3.9% crude fiber [11]. The measurement
of free proline levels is a helpful indicator for assessing plant physiological condition and
stress [12]. Despite having just trace levels of lipids, chickpea contains unsaturated fatty
acids such as linoleic and oleic acids [13]. Essential sterols, viz., stigmasterol, campesterol,
and sitosterol, are also found in chickpea oil [14]. Despite these benefits, numerous biotic
factors, such as Fusarium wilt and Ascochyta blight diseases and the insect pest known
as the pod borer, along with abiotic challenges, such as drought, salinity, and heat, have a
significant influence on yields of chickpea [15]. By alleviating these challenges, chickpea
productivity can be increased. While efforts have been made using an array of conventional
methods [16-18], there is significant potential for advancement when they are combined
with molecular methods, such as genomics-assisted breeding [19,20]. Chickpea breeding
aims to increase production by pyramiding genes for drought, cold, salinity, fungal, and
pod borer resistance / tolerance into superior chickpea genotypes [21].

Since chickpeas are self-pollinated, the target feature, i.e., wilt resistance, may be
easily incorporated in the desired genotype after successful introgression [22]. Backcross,
recombination breeding, and other traditional approaches are equally effective in devel-
oping cultivars with wilt resistance [23]. Several Fusarium wilt (FW) resistant donors and
cultivars have been identified and released in chickpea as a result of straightforward field
screening and selection under wilt-diseased plots [24]. Numerous crosses may be generated
to develop segregating populations, which is a crucial prerequisite for undertaking a suc-
cessful crop improvement program [25]. However, the mapping of populations in chickpea
for the purpose of identifying targeted genes and constructing linkage maps is challenging
due to the requirement of large numbers of plants in the mapping population [26,27].
To overcome these challenges, researchers are using advanced breeding technologies to
identify targeted genes and the mechanisms of their interaction with each other or with
environmental conditions [28]. The combination of modern approaches with traditional
breeding technology is useful in the analysis of the mechanism of Fusarium wilt resistance,
as well. The prime goal of traditional breeding in legumes is to increase yield.

As a result, modern breeding techniques can be employed to enhance crop yields [29].
However, this notion has begun to change in the last decade due to improved novel
techniques and the associated decreasing cost [24]. As a result of the crop’s economic
importance, research on chickpea genomics has recently surged, and a wealth of genomic
materials, including molecular markers and linkage maps, ESTs, and NGS-based transcrip-
tomes, have become readily available [28].

Among advanced technologies, marker-assisted selection (MAS) has helped in tar-
geting desirable genes [30]. Markers have demonstrated their role in enhancing selection
efficiency and creating novel cultivars [31,32]. Recently, the integration of several “omics”
methods has been developed into effective solutions for plant systems with the develop-
ment of superior cultivars [33,34]. In order to address a variety of biological concerns,
second-generation sequencing [35-37] is currently extensively employed. The genetic
resources for chickpeas have, however, significantly enhanced in recent years with the
applications of next-generation sequencing initiatives and their application in genomics
research [38—40]. The current review aims to summarize all the advancements made, obsta-
cles encountered thus far, and prospects for future advancements in chickpea Fusarium
wilt resistance.
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2. Fusarium Wilt

Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri, is important due to its
severe effects on the yield of chickpea [41,42]. It is most common in hot, dry regions and
can result in annual output losses of up to 10% to 15%, with epidemics leading to yield
losses of up to 100% [43,44]. According to Verma et al. [23], it has eight different types
of pathogenic races and pathotypes, which may be a reason for its pathogenic diversity.
Based on their ability to produce unusual symptoms, the races are categorized. Major plant
symptoms associated with Fusarium wilt disease infection (Figure 1) include yellowing
and wilting [45]. The ability of the races to evoke separate reactions that result in two
different sorts of symptoms—yellowing and wilting—sets them apart from one another.
More dangerous than yellowing syndrome is with erring syndrome [46].

Figure 1. Fusarium wilt-infected chickpea plants.

In six continents, 32 countries are affected by chickpea wilt [47]. Butler originally
described this disease in India in 1918, but it was not until Padwick accurately identified
its cause in 1940 that it was fully understood [48]. Different levels of yield losses have
been documented in chickpea due to FW (40% [49] and 77-94% [50]). In the case of “late
wilt”, dropping petioles and leaf yellowing symptoms appear during the podding stage,
resulting in yield losses of 24-65 percent. The yellowing pathotype of F. oxysporum £. sp.
ciceris causes a disease condition in chickpeas that is comparable to that of F. redolens (FOC).
Because it is challenging to distinguish between Fusarium redolens and F. oxysporum using
morphology-based diagnosis, and because the two species affect chickpea in ways that are
similar, the use of molecular techniques may be required in the efficient identification of
the Fusarium pathotype in chickpea [50,51].

The amount of yield loss due to wilt disease in chickpea depends on the agro-climatic
conditions of the region. Sometimes, the wilt disease becomes more dangerous, resulting
in severe damage (Figure 2) and yield failure [52]. Fusarium wilt is a disease that spreads
through the soil. It has an array of mechanisms of transmission, such as through contam-
inated plant wastes (leaf, root, and stem), soil and seeds, macroconidia, mycelium, and
most frequently, chlamydospores [50,53].

The Indian subcontinent and areas where crops are cultivated in the spring and more
regularly manifest under warm, dry growing circumstances are more troubled by Fusarium
wilt [27]. Fungicidal seed coats provide protection against infection transmitted by seeds,
but because the pathogen is persistent in soil, the best way to eradicate the infection is
through host resistance. The pathogen gains access to the vascular bundles of the chickpea
plants and blocks or lowers water intake to the foliage. The infected plants eventually wilt
and die [28]. The causes include a buildup of fungus mycelium in the xylem and/or the
production of toxins, host defense mechanisms such as the production of gels, gums, and
tyloses, and vessel crushing brought on by the expansion of nearby parenchyma cells [54].
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. infected plant sirg yellowing and

wilt symptoms

D-final plant death due to severe C. infected stem dissection showing vascular
Foc infection discolouration and xylem damage

Figure 2. Sequence of Fusarium wilt infection in chickpea plants.

3. Genetics of Resistance to Fusarium Wilt

The Fusarium oxysporum f. sp. ciceris (FOC) pathogenies known to possess great
pathogenic diversity that is classified into different pathogenic races, including races 0
and 1A, 1B/C, 2, 3, 4, 5, and 6. Additionally, two categories of FW symptoms have been
identified: early yellowing and late wilting [55,56]. Additionally, researchers have also
looked at the genetics of races 14, 2, 3, 4, and 5 [57]. The symptomatic wilting pathotype
induces quick and severe chlorosis, flaccidity, vascular discoloration, and early plant death,
mostly in races 1A, 2, 3, 4, 5, and 6 [55], whereas the symptomatic yellowing pathotype
instigates slow foliar yellowing, vascular discoloration, and late plant death in races 0
and1B/C [56,57].

It has been documented that chickpea resistance to Fusarium wilt can be either mono-
genic or oligogenic (Table 1) depending on the source or race of the resistance [57]. Three
distinct genes (hy, hy, and H3) independently govern resistance to race 1A, according to
early investigations on FOC [58]. Late wilting resistance can be conferred by any one of
these three genes, but total resistance can be conferred by any two of these genes (hihy,
hyHs, or hyH3) [59]. While resistance to race 3 has been proven to be monogenic, resistance
to race 2 is controlled by a single recessive gene [60,61]. As stated in earlier studies, race 4
resistance is recessive and digenic, but race 5 resistance is governed by a single gene [62].
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Geographical classifications of the pathogenic races of FOC have been made. Indian,
Mediterranean, and American populations of race 1A have been documented [63]. In
addition, race 4 has been documented in Ethiopia, India, and Iraq [64,65]. Races 0,1B/C,5,
and 6 are most common in the Mediterranean Basin and California (USA) [66], while races
2 and 3 have been observed in Ethiopia, India, and Turkey [50].

Table 1. Genetics of resistance to races of the chickpea wilt Fusarium oxysporum f. sp. ciceris.

Fusarium Race Name of Number and Nature of  Effect of Resistance Svmptoms References
Resistance Gene Wilt Resistance Gene Gene on Wilting ymp
FOC-01/FOC-01 . - . .
0 FOC-02/FOC-02 Monogenic or digenic ~ Complete resistance Yellowing [26]
h1 (syn FOC-1) Late wilting
1A h2 Trigenic Late wilting Wilting [57]
H3 Late wilting
1B/C - - - Yellowing [63]
2 FOC-2 Monogenic Complete resistance Wilting [27]
3 FOC-3/FOC-3 Monogenic Complete resistance Wilting [62]
4 FOC-4 Monogenic recessive Complete resistance Wilting [27]
5 FOC-5/FOC-5 Monogenic Complete resistance Wilting [67]
6 - - - Wilting [63]

4. Breeding Methods Employed for Fusarium Wilt Resistance in Chickpea

Higher and more consistent yields are the main objectives of chickpea breeding pro-
grams [15]. According to an investigation conducted by Srivastava et al. [68], chickpea
resistance to Fusarium wilt may be either monogenic or oligogenic, depending on the
resistance source or race. The selection of plants for characteristics and disease resistance is
the second most important step in a breeding program involving evaluation of the plant
for commercial production.

Breeding programs are dependent upon the magnitude of genetic variation present in
the population. The type and degree of diversity influence a breeding strategy’s efficacy.
Even though the disease is soil-borne, chemical control is ineffective and impractical to
use [69]. Utilizing host plant resistance is the most reliable strategy for solving the problem.
Several sources of chickpea resistance to Fusarium wilt have been found in the past. These
resistance sources have been identified using different methods, including a wilt-diseased
plot in the field and hot spot location screening, as well as greenhouse and laboratory
procedures [70-72]. The majority of these methods were employed in resistance breeding
programs at the National Agricultural Research System (NARS) and International Crops
Research Institute for the Semi-Arid Tropics (ICRISAT), which significantly increased
chickpea productivity in semi-arid parts of Africa and Asia [73,74]. However, in these
areas, substantial genetic diversity in the pathogen and GxE interaction have an impact on
resistance durability. A variety of strategies, including the GGE billet technique, have been
utilized in different studies to investigate the GxE interaction [75]. Utilizing biplot analysis
of GxE data, it is now possible to graphically address many important aspects to develop
a better understanding, including genotype stability, mean performance, discriminating
ability, mega-environmental investigation, representativeness of the environment, and
who-resistant-where pattern [76-78].

The process of using plants as a strategy involves gathering and analyzing genotypes
from different sources in order to find suitable genotypes that are adapted to the local
environment and have high productivity or any other desired specialized attribute [79].
As a result, the type of material introduced determines whether plant introductions are
successful. Genes must be fixed in breeding lines in order to create pure-line cultivars. The
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initial selection process that uses landraces is the simplest and is known as mass or pure-line
selection. Crossover programs and several iterations of pedigree and bulk approaches
were employed to manage segregating generations [79,80]. Through pure-line selection,
the JG315 chickpea cultivar evolved resistance to Fusarium wilt in Madhya Pradesh, India.
The JG 62 cultivar, in addition to race 0, is a variety that is very vulnerable to FW, whereas
ICCV 05530 is a cultivar that is highly resistant to FW [81].

Most breeding operations for chickpeas use single-cross hybridization. Hybridization
almost occurs within the same species of the genetically distinct Desi and Kabuli vari-
eties [82]. To promote genetic diversity and introduce beneficial genes from wild Cicer
spp. into cultivated species, interspecific crosses have been attempted. FOC race resistance
has largely been found in the Desi germplasm and in wild Cicer spp. In fact, accessions
of C. bijiqum, C. cuneatum, and C. judaicum showed combined resistance against races 0
and 5, but accessions C. canariense and C. chorassanicum were found to be resistant to race 0
whenever vulnerable to race 5. Additionally, the C. pinnatifidum accessions evaluated were
found to be vulnerable to race 5, whereas some were resistant to race 0 [83].

Various chickpea breeders have used traditional methodologies and breeding tech-
niques, and the population has improved in terms of increased output, different resistance,
and desired plant types. Regarding FW response, genetic heterogeneity in chickpea geno-
types has been recorded [84]. In accordance with the earlier findings, resistant sources were
identified against FW in both Kabuli (ICCV 2 and UC 15) and Desi types (FLIP 85-20C,
FLIP 85-29C, and FLIP 85-30C). Numerous chickpea Fusarium wilt-resistant genotypes,
including ICCV 98505, ICCV 07105, ICCV 07111, and ICCV 07305, were identified by
Sharma et al [85] using GGE biplot analysis. Four Kabuli chickpea genotypes resistant to
FW, including ICCV 2, ICCV 3, ICCV 4, and ICCV 5 (Table 2), were previously generated
using the pedigree method. Crop breeders now have a range of more effective tools for
resistance breeding owing to recent developments in legume genomic technologies. As a
result, legume crops can now be improved using genomics to better withstand different
biotic and abiotic challenges [86,87].

Table 2. Important cultivars/donors (genetic resource) contributing to Fusarium wilt resistance.

Important Varieties/Donors Country Reference
ST S —
BG-312, ICCVs 98505, 07105, 07111, 07305, 08113, and 93706, ICCVg 08123, 08125, 96858, 07118, India [85]
08124, 04514, 08323, and08117(moderately resistant)
WR 315, JG 315, CPS 1, JG 74, Avrodhi, and Phule G India [84]
ICCV 2,3,4,5 and ICC 11322, 14424, and 14433 (against race I) India [88]
Digvijay India [89]
ICC 14194, ICC 17109, and WR 315 India [90]
Three lines derived from MABC-based C 214 and WR 315 cross India [91]
ICCV 09118, ICCV 09113, ICCV 09115, ICCV 09308, ICCV 09314, India 73]
ICCV 05527, ICCV 05528, and ICCV 96818
Super Annigeri and improved JG74 (resistant against FOC4) India [92]
ICC 7537 resistant to all races (except race 4) Ethiopia [27]
FLIP 84—43C.(against race 0), ILC—541.1, FLIP 85-20C (against race 5), FLIP 85-29C, FL.IP 85-30C, ) Santaella, . 93]
ILC-127 (against race 0), ILC-219 (against race 0), ILC-237, ILC-267, and ILC-513 (against race 0)  Cérdoba, Spain
Annigeri India [27]
1CC-7520 Iran [27]
Andoml and Ayala - [63]
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Pande et al. [70] found twenty-one accessions free from FW disease and twenty-five
that were resistant during their study on the screening of chickpea genotypes against FW.
In a separate study, genotypes JG 315, Avrodhi, DCP 92-3, JG 74, BG 372, and KWR 108
were found to be resistant to Fusarium wilt [87], while ICCV 05530 maintained its resistance
against two FW races, viz., 1 and 3. Among these genotypes, JG 62 showed 89-100% wilt
incidence against both FW races.

The use of nested association mapping (NAM) and multi-parent advanced generation
intercross (MAGIC) populations is being developed in chickpea to make inter-crosses
between multiple (4, 8, or 16) parental lines that originate from diverse regions. The creation
of these crosses is possible through the balanced funnel crossing method, which recombines
mosaics of founder parents, resulting in novel genotype and haplotype combinations [89].
At ICRISAT, a MAGIC population was created by mating cultivars and elite breeding lines,
including ICC 4958, ICCV 10, JAKI 9218, JG 11, JG 130, JG 16, ICCV 97105, and ICCV 00108,
with eight varied founder parents [73,85,88].

5. Screening Strategies to Identify Wilt-Resistant Genotypes

The utilization of host plant resistance (HPR) begins with the development of trustwor-
thy and reproducible disease screening techniques to assess many germplasm accessions
and breeding materials. It has been claimed that screening in the field and under controlled
conditions (such as in greenhouse and lab settings) may help to identify resistant genotypes
against FW [94]. However, there are some problems associated with maintaining uniform
conditions for each plant during the screening of genotypes. So, it is important to develop
a simple and efficient technique to screen chickpea genotypes for the identification of
FW-resistant cultivars for future breeding programs. Generally, the following methods are
applied for the screening of Fusarium wilt-resistant chickpea genotypes.

5.1. Field Screening

The most frequent and recurrently applied technique for identifying FW-resistant
genotypes is the wilt-diseased plot (WDP) strategy. The primary advantage of the WDP
technique is that it makes it possible to screen a vast array of genetic materials under field
conditions [95]. Effective wilt-diseased plots for field and hot spot location screening, as
well as greenhouse and laboratory methodologies and successful breeding programs, have
all been created [96]. Assessing inoculum homogeneity in a plot involves planting test
genotypes next to susceptible cultivars as an indicator line or checking susceptibility after
every 2—4 test entries. The widely applied susceptibility checks for races 1 to 4 in India
include “JG 627, a twin-podded chickpea type that is extremely susceptible to all FOC
races except race 0. The cultivar “JG 74” and the germplasm line “WR 315” (ICC 11322) of
chickpeas are the two main sources of resistance. While the latter is resistant to all races but
race 2, the prior is resistant to all FOC races except for race 3. The stepwise identification of
host plant resistance to diseases has recently been revised by Pande et al. [89]. In order to
screen many germplasm lines against FW, WDPs have been created at the International
Center for Agricultural Research in the Dry Areas (ICARDA), ICRISAT, and NARS of
countries that cultivate these crops.

Chickpea wilt has been investigated globally since the last decade of the 20th cen-
tury using several methods. These efforts have involved the creation of multiple disease
grading scales to calculate disease incidence and prevalence when evaluating new chick-
pea germplasm lines. Disease reactions are categorized based on the proportion of dead
plants, whereas physiological maturity represents the reaction score of each genotype. To
determine phenotypic resistance and susceptibility for race identification, different disease
scoring scales are applied.

The six-point scale makes scoring simple (Table 3). Interpretation of the scale is
as follows:
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Table 3. Details of scoring scale to calculate Fusarium wilt disease incidence in chickpea.

Rating  Wilt/Mortality (%) Field Observation
1 0% No lesions visible
2 <10% Few scattered lesions, usually seen after careful examination
3 11-20% Lesions and defoliation on some plants; little damage
4 21-50% Lesions very common and damaging; 25% plants killed
5 51-80% All plants with extensive lesions, causing d.efoliation and
drying of branches; 50% plants killed
6 ~81% Lesions extensive on all plants; defoliation and drying of

branches; more than 75% plants killed

5.2. Screening under Controlled Conditions
5.2.1. Greenhouse Screening

Conducting screening under controlled conditions using a greenhouse can be a useful
technique to verify the outcomes of evaluating wilt-diseased plots (WDP). This is crucial
for researching the molecular mapping and tagging of a specific disease race, as well as the
inheritance of pathogens [85]. Furthermore, pathogenic diversity studies can be carried out
under controlled circumstances to learn the disease’s genotypic information [89]. To screen
the chickpea germplasm in greenhouses, the pot culture method has been standardized [97].
Another method that is frequently used for growing chickpea is root dip inoculation
under greenhouse screens [94]. The identification of ninety percent of wilt in susceptible
lines is guaranteed using the pot screening technique, although soil compaction from
repeated irrigation may impair the association between pot and field performance. The
chickpea seedlings are raised in autoclaved soil, dipped in inoculum at the roots, and
then, transplanted into pots containing autoclaved soil, and the disease incidence is then
measured [97]. There are some limitations to the greenhouse screening method, as well. It
is very difficult to maintain uniform density of the inoculums in each diseased plot. So, it is
not possible to differentiate the wilted plants in to early, late, and resistant categories.

5.2.2. Laboratory Screening

Laboratory screening methods include various technologies, such as polymerase chain
reaction (PCR), loop-mediated isothermal amplification (LAMP), quantitative PCR (qPCR),
etc., for the accurate detection of FOC. In chickpea, artificial screening methods have
been created by ensuring uniform inoculum load at the same vegetative stage of each test
plant. This method guarantees that all inoculated plants have a roughly equal chance of
infection by injuring the roots prior to inoculation [98]. Using this method, 25 resistant
genotypes and 21 asymptomatic genotypes were identified. The method was applied
to 211 genotypes from a core collection that included more than 16,000 unique chickpea
germplasm accessions [70]. It has been suggested that pollen bioassays be employed as a
quick and effective screening method to distinguish between resistant, late wilting, and
susceptible genotypes [99]. One of the poisons produced by the fungus, fusaric acid (FA),
is used as a selection agent to examine the genotypes of chickpeas.

6. Management of Fusarium Wilt in Chickpea

Management techniques to treat the disease are always adopted after a thorough
disease evaluation. The management of Fusarium wilt in chickpea cannot be fully accom-
plished using a single control measure [100]. Elimination of the pathogen, as well as a
reduction in the quantity and/or effectiveness of the main inoculums, are necessary for
disease management [101]. The ideal control measure for such a goal should include the
efficient application of one or a combination of the following management strategies:
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6.1. Utilization of Pathogen-Free Planting Material

Fusarium wilt can be spread by infected seeds and plant waste [102]. Using infected
propagation material, the pathogen is transferred into productive areas or soils that are
pathogen-free. Therefore, the significance of monitoring the health of the item through
certification programs under quarantine legislation and phytosanitary inspection should
be taken in to consideration. The right choice of planting site is aided using F. oxysporum
spp.-free planting material in non-infested soils [102].

6.2. Chemical Control

Chemical control is one of the finest disease management strategies for diseases that
are spread through soil. FW can be controlled using organic chemical methyl bromide,
which is a very effective fumigant. This chemical was used by Animisha et al. [100] to
control FW. In addition to this, some popular fumigants, including dazomet, chloropicrin,
carbendazim, and 1,3-dichloropropene, wer