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and János Botzheim

Development of an Adaptive Computer-Aided Soft Sensor Diagnosis System for Assessment of
Executive Functions
Reprinted from: Sensors 2022, 22, 5880, doi:10.3390/s22155880 . . . . . . . . . . . . . . . . . . . . 47

Alejandro Rincón, Fredy E. Hoyos and John E. Candelo-Becerra

A Simplified Algorithm for Setting the Observer Parameters for Second-Order Systems with
Persistent Disturbances Using a Robust Observer
Reprinted from: Sensors 2022, 22, 6988, doi:10.3390/s22186988 . . . . . . . . . . . . . . . . . . . . 63

Gorazd Karer and IgorŠkrjanc
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Editorial

Intelligent Soft Sensors

Simon Tomažič

Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia; simon.tomazic@fe.uni-lj.si;
Tel.:+386-1-4768-760

In this Special Issue, we embark on a journey into the exciting field of intelligent
soft sensors, and take a deep dive into the groundbreaking advances and potential that
these software algorithms have introduced in various fields. Soft sensors, often referred
to as virtual sensors, are fast becoming a cornerstone of the ever-evolving digital age. To
appreciate the capabilities of soft sensors, one must acknowledge their fundamental basis.
These tools are based on sophisticated mathematical models, state-of-the-art computational
techniques, and rigorous algorithmic strategies. Fields as diverse as physics, electrical
engineering, biology, mathematics and even economics have influenced their development,
making them a true example of interdisciplinary excellence.

Because these algorithms process a large number of measurements simultaneously,
insights into online estimation of complex process variables that were previously impossible
have become possible. In areas such as control applications, fault detection or data fusion,
the importance of soft sensors has increased. Essentially, data from numerous sources are
fused to gain insights from the apparent clutter.

The broader socio-economic and environmental context must also be considered. With
rising costs, increasing concerns about sustainability and the overarching need for efficiency,
the importance of soft sensors is clearer than ever. They provide the adaptability necessary
for optimised resources, minimised waste and improved performance, meeting the pressing
needs of the 21st century. In the rapidly digitising world, the ingenuity and breakthrough
capabilities of today’s researchers and engineers are undeniably impressive. It is not just
about finding solutions to current problems, but also about identifying opportunities that
many have not yet recognized. The forward-looking nature of this field becomes even
clearer in the context of soft sensors. With this technological development, it is important
to also recognise the broader impacts and applications.

Among the many interesting contributions in this Special Issue, one deals with the
complexity of setting observer parameters for second-order systems with constant per-
turbations [1]. A novel algorithm that simplifies the inherent complexity in defining the
convergence rate and the range for unknown state errors is the focus of the discussion. By
matching the theory with practical scenarios, its usefulness is highlighted using a microal-
gae bioreactor model, emphasising the effectiveness of the algorithm in ensuring an optimal
convergence rate and precision. The challenges posed by unobservable and nonlinear sys-
tems are addressed in [2], which presents a unique extended Kalman filter framework. An
intelligent projection onto an observable subspace is used to solve previously insurmount-
able instability problems. The brilliance is particularly evident in sensor selection, which
helps stabilise unobservable states and optimise sensor selection without the need for actual
measurements. A deeper understanding is fostered by another valuable contribution [3]
that re-evaluates conventional prediction and health management techniques. In an era
characterised by rapid production cycles and frequent design changes, the urgency of a
more dynamic, self-contained test optimisation methodology is highlighted. By merging
soft sensing, ensemble learning and extreme learning machines (ELMs), a technique is
presented that excels in efficiency and adaptability to the intricacies of modern systems.

However, the applications of soft sensors are not limited to manufacturing or engi-
neering. Their impact on the medical and psychological fields is equally significant. The
research [4] presented on ToLA—a computerised adaptive testing version of the Tower
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of London task—is exemplary. An item response theory was combined with an adaptive
algorithm. The result is a diagnostic tool with increased sensitivity that provides a deeper
understanding of neurodevelopmental disorders. Similarly, a model for measuring hyp-
notic depth during intravenous general anaesthesia is presented [5], pointing to a future
where anaesthetic treatments are perfectly individualised.

Research into electrodermal activity (EDA) for stress detection [6] highlights the
importance of monitoring mental health. The application of frequency spectrum analysis in
this research promises a fast, accurate and efficient assessment of stress in real time, which
is particularly important given the global increase in mental health problems.

In bioprocessing, where the goal is to improve accuracy and efficiency, soft sensors are
becoming increasingly useful, especially when combined with Raman spectroscopy and ma-
chine learning. A study on the automated feeding of Chinese hamster ovary cells (CHO) [7]
is presented, highlighting the importance of integrating Raman spectroscopy and chemo-
metrics to develop models for monitoring and controlling CHO bioprocesses. The profound
implications of the careful preprocessing and wise selection of multivariate analysis meth-
ods to improve accuracy in the monitoring of important process variables are demonstrated.

To further explore the topic of bioprocesses, the fermentation process of Pichia pastoris
is examined and the BDA-IPSO-LSSVM soft sensor modelling method is presented [8].
This model addresses the recurring problem of model errors due to discrepancies in data
distribution. By leveraging the combined strengths of transfer learning, fuzzy set concepts
and advanced optimisation techniques, exceptional predictive accuracy is achieved, even
under changing conditions. While these advances are remarkable, the transformative
impact of soft sensors extends even further in the modern technology landscape.

With the increasing integration of technologies such as artificial intelligence, machine
learning and IoT (Internet of Things), the potential of soft sensors is growing exponentially.
Possibilities that were once considered unattainable are now becoming tangible. It is not
just about the sensors, but also about the ecosystems that enable them. Change is on the
horizon as the industry is ready to adopt a proactive maintenance culture, predictive quality
control and instant adaptive adjustments. In the field of soft sensor research, societal impact
and directions are becoming increasingly important. Educational institutions, companies
and policy makers play a crucial role in shaping this path. Their joint efforts to create an
enabling environment foster innovation and drive progress in this dynamic field.

The following section looks at the versatility and scope of soft sensor applications in
industry. The research on self-acting shape memory coils (SMC) with variable stiffness [9]
is worth highlighting. The proposed method not only improves the performance and cost
efficiency of SMA actuators, but its applicability extends across various fields from robotic
grippers to biomedical devices.

The next paper [10] deals with the merging of data from different sources in sintering
processes and highlights the growing importance of integrating different types of data for
better predictions. By cleverly merging visual data with traditional time series process
data, the method achieves significant improvements in predicting complicated quality
variables such as FeO content. In the area of safety and infrastructure, research on a
highly sensitive fire detection and early-warning system [11] highlights the value of fusing
multiple fire indicators for timely and effective fire detection in buildings. This hybrid
feature-fusion-based strategy represents potential for much safer smart building systems.

The essence of soft sensors lies in the data they interpret. These are not just any data,
but a mixture of signals, inputs and variables that all help to describe the underlying
processes. When these nuances are unravelled, soft sensors reveal the hidden subtleties
of the world. Whether it is the microenvironment of a bioreactor, the status of a compli-
cated machine or the subtle changes in human physiology, these virtual tools enable a
comprehensive understanding.

In addition, much attention is being paid to ethics and transparency in relation to these
technologies. As these sensors play an increasingly central role in determining outcomes,
such as autonomous driving decisions—whether to avoid an obstacle or brake abruptly—
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the need for transparency, accountability and ethical considerations in their algorithms
becomes ever more important. It is our collective responsibility to ensure that the full
potential of these technologies is realised while adhering to ethical principles and practices.

In summary, the articles in this Special Issue not only highlight the advancing frontiers
of soft sensors in various fields, but also emphasise the importance of multidisciplinary
collaboration in these developments. As technologies advance, so will the applications and
opportunities for soft sensors. Challenges and opportunities await researchers and profes-
sionals in this field, as the future promises even more advanced and integrated solutions.
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Abstract: To comply with the increasing complexity of new mechatronic systems and stricter safety
regulations, advanced estimation algorithms are currently undergoing a transformation towards
higher model complexity. However, more complex models often face issues regarding the observabil-
ity and computational effort needed. Moreover, sensor selection is often still conducted pragmatically
based on experience and convenience, whereas a more cost-effective approach would be to evaluate
the sensor performance based on its effective estimation performance. In this work, a novel estima-
tion and sensor selection approach is presented that is able to stabilise the estimator Riccati equation
for unobservable and non-linear system models. This is possible when estimators only target some
specific quantities of interest that do not necessarily depend on all system states. An Extended
Kalman Filter-based estimation framework is proposed where the Riccati equation is projected onto
an observable subspace based on a Singular Value Decomposition (SVD) of the Kalman observability
matrix. Furthermore, a sensor selection methodology is proposed, which ranks the possible sensors
according to their estimation performance, as evaluated by the error covariance of the quantities
of interest. This allows evaluating the performance of a sensor set without the need for costly test
campaigns. Finally, the proposed methods are evaluated on a numerical example, as well as an
automotive experimental validation case.

Keywords: extended Kalman filter; state estimation; sensor selection; observability; non-linear
models

1. Introduction

Nowadays, many new mechatronic systems become available on the market, designed
to perform tasks with increasing complexity while ensuring machine/operator safety. As a
result of this increase in complexity, advanced controller schemes are being developed that
introduce the need for accurate information on the dynamics of these systems. However, in
many applications, this information cannot be directly measured because either no sensor
exists that is capable of measuring the quantity of interest or the available sensors are ex-
pensive or impractical to implement [1]. This has led to the development of various virtual
sensing techniques that aim at obtaining the dynamic information of a mechatronic system
indirectly through estimations based on simple measurements [2]. This methodology has
been investigated for use in a wide range of applications [3–6].

As a result of increased computational power, these virtual sensing schemes have
gained significant traction for the analysis of structural [7] and general mechanical sys-
tems [8,9] in recent years. Driven by the need for more accurate system information,
model complexity has significantly increased up to flexible multibody-related formula-
tions [10–12]. However, this comes at the cost of increased computational effort and
additional issues towards observability and thus estimator stability.

Sensors 2021, 21, 7492. https://doi.org/10.3390/s21227492 https://www.mdpi.com/journal/sensors
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When model complexity is increased, observability requirements can become chal-
lenging as extra model degrees of freedom require additional sensor data to ensure full
observability [13]. For example, in tire force estimation applications, vehicle position states
are typically unobservable when no GPS measurement is present, although these mea-
surements do not contribute significantly to the tire force estimation performance [1,14].
Furthermore, the non-linear governing equations create additional challenges to eval-
uate observability globally and/or locally [15,16]. Additionally, some virtual sensing
applications feature models with lots of states (e.g., for meteorology or oceanography typi-
cally > 106 [6]), of which only a few significantly contribute to the estimator performance.
This indicates that there is a need for an approach to deal with unobservable, and thus
unstable, estimators given the interest in only a few specific quantities.

One of the approaches proposed in the literature to deal with large system models
is to reduce the order of the estimator to decrease its computational efforts and set fewer
constraints towards observability. Two main approaches to reduce the order of an estimator
have been presented in the literature. The first approach involves reducing the model if
this model can be approximated sufficiently well by a subset of modes [17–19]. However,
this approach is highly model specific and is therefore not suited for all applications. The
second approach involves reducing the order of the Kalman filter by transforming the
Riccati equation associated with the filter [1,6]. Yonezawa et al. [20] have presented an
approach for unobservable system states to be asymptotically observable, assuming that a
dynamic link is present between the unobservable and the observable states. This approach
has proven to be very effective when considering unknown parameters or constant bias
errors. However, this approach only works when a dynamic coupling is present between
unobservable and observable states, which is, in a lot of applications, rarely the case for all
system states, especially when dealing with increasing model complexity.

For application cases with decoupled state dynamics, such as unknown accelerometer
biases and unknown parameters, the Schmidt–Kalman filter can be deployed [21]. The
covariances corresponding to the augmented states are not taken into account in the update
steps as these states are typically not measurable and dynamically completely decoupled
from the other states. This makes it impossible to observe these states; hence, they are
simply omitted from the update step. When many of these states are present, this technique
can drastically improve the computational effort as only the observable state covariances
are being evaluated [22]. On the other hand, the Schmidt–Kalman filter approach can only
be defined for completely decoupled augmented states.

Finally, sensor selection is a necessary step when deploying any estimation framework.
A common approach is trial-and-error as sensors typically have to be bought and deployed
before information can be acquired on their performance. However, previous research has
already investigated some more cost-effective approaches that vary widely from equation-
based modeling approaches [23] to machine learning methods [24]. Commonly proposed
objective functions for model-based sensor selection algorithms are the Fisher Information
Matrix (FIM) [25] or the error covariance matrix of the estimator [26], evaluated using the
Riccati Equation (ARE) or the Lyapunov Equation [27]. However, all of these methods still
rely heavily on sensor information being available that contains information on the sensor
performance, which usually requires highly expensive test campaigns for which sensors
have to be acquired.

As an alternative to the above-described schemes, this work presents a novel approach
to stabilise a non-observable, non-linear estimator for both full and partially decoupled
system dynamics given that only specific quantities of interests are targeted and proposes
a new sensor selection strategy that is able to evaluate sensor set performances before
acquiring them. Firstly, an estimator setup is proposed based on a set of non-linear
governing equations for both the system model, measurements and quantities of interest,
described in Section 2. Furthermore, a projection of the estimator covariance equations
on an observable subspace is proposed in Section 3, which makes it possible to stabilise
the estimator covariances during operation. The projection explained in Section 3.2 is
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based on the singular value decomposition of the linear Kalman observability matrix.
Furthermore, the projected Kalman filter equations presented in Section 3.3 can stabilise
the unobservable state covariances although these states remain unobservable. Hence,
their resulting covariances should be interpreted with care. Additionally, a sensor selection
methodology is proposed, which ranks the sensors based on their estimation performance
such that the user can obtain an overview of the best sensors to choose from, as defined in
Section 4. This has the great advantage that a prior analysis of the sensor performance can
be carried out that eliminates the need to acquire sensors beforehand and organise costly
test campaigns. Finally, the work is validated in two different cases, namely an academic
example explained in Section 5.1 where the potential of the method is shown and a full
experimental validation case explained in Section 5.2.

2. Model Definition and Overall Estimator Setup

In this work, a non-linear model will be considered to govern the dynamics of a
physical system, the measurements and some predefined quantities of interest. These
non-linear models are furthermore linearised and discretised in an Extended Kalman
Filter [13] based the estimation framework. This section describes the implementation of
the general estimator equations.

2.1. Definition of Model, Measurement and Quantities of Interest Equations

The non-linear equations considered in this work can be divided into system, mea-
surements and quantities of interest equations and are introduced as:

Model: ẋ = f(x, t) (1)

Measurements: y = h(x, t) (2)

Quantities of Interest: yvs = g(x, t) (3)

where x is the state vector and t is the time. The vector ẋ describes the time derivative
of the states, and the vectors y and yvs are the measurements and quantities of interest,
respectively.

In this work, an estimation framework is set up based on the discrete extended
Kalman Filter for which an explicit relation is necessary. Therefore, these continuous
non-linear equations have to be linearised and discretised. This is discussed in Section 2.2.

2.2. Linearisation and Discretisation of the Governing Equations

To obtain the linear and discrete Jacobian matrices used for the estimator evaluation,
the non-linear equations are linearised and discretised. The Jacobians are obtained by
performing a linearisation around the a priori estimation point (xk|k, tk) by:

Fc,k =
∂f(x, t)

∂x

∣∣∣xk|k ,tk (4)

Furthermore, the rest of the linearised Jacobians are calculated accordingly:

Hk =
∂h(x, t)

∂x

∣∣∣xk|k+1,tk (5)

Gvs,k =
∂g(x, t)

∂x

∣∣∣xk+1|k+1,tk (6)

Important to note is that any linearisation scheme can be deployed, which suits the
application of the estimator. In this work, the linear continuous time Jacobians are obtained
using forward differencing [28]:
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Fc,k =
∂f(x, t)

∂x

∣∣∣
xk|k ,tk

≈ f(xk|k + ε, tk)− f(xk|k, tk)

ε
(7)

The next step is to derive the discrete system Jacobian used for the integration of the
system equations and evaluation of the Kalman filter covariance equations. Again, any
type of discretisation scheme could be employed here, which best suits the application
of the estimator. In this work, we chose to use a different discretisation method for the
integration of the system equations and the derivation of the discretised sytem Jacobian for
the Kalman covariance equations. This is conducted because it is not always practical to
use the same discretisation scheme as this can lead to numerically ill-conditioned systems,
for example, when dealing with a set of stiff equations [29].

For the derivation of the discretised system Jacobian used in the Kalman covariance
equations, the exponential discretisation scheme [30] is used:

Fk = eFc,kΔt (8)

where Fc,k is the continuous time system Jacobian obtained from Equation (7) and Δt is
the timestep. The obtained discrete Jacobian is furthermore used in the EKF covariance
equations.

For the integration of the system equations, a solver that is especially suited for stiff
equations from the Matlab ode-suite is employed [31].

2.3. Overview of the Extended Kalman Filter Framework

In this work, the Extended Kalman Filter [13] is chosen for the estimation of the
dynamic system information. This filter is an extension of the regular Kalman filter, making
it applicable to non-linear equations. Using the previously calculated linearised Jacobians,
the general estimator equations can be defined. In this process, the propagation of the
states is conducted using the earlier defined non-linear equations, but the propagation of
the covariance equations is conducted using the linearised matrices. The EKF-algorithm
consists of three main steps, which are prediction, correction and update.

Prediction:

xk|k+1 = f(xk|k, tk) (9)

yk+1 = h(xk|k+1, tk) (10)

Pk|k+1 = FkPk|kFT
k + Qd (11)

Correction:

Sk = HkPk|k+1HT
k + R (12)

Kk = Pk|k+1HT
k S−1

k (13)

Update:

xk+1|k+1 = xk|k+1 + Kk(ym,k+1 − yk+1) (14)

Pk+1|k+1 = (I− KkHk)Pk|k+1 (15)

As the quantities of interest are governed by non-linear equations such that yvs =
g(x, t) in this work, a first-order Taylor expansion of the quantities of interest is consid-
ered around the previously calculated state configuration (xk+1|k+1, tk) to derive their
covariances:

yvs ≈ g(xk+1|k+1, tk) + Gvs,k(x − xk+1|k+1) + Kvs,k(t − tk) (16)

8
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where Gvs,k = ∂g(x,t)
∂x

∣∣∣
xk+1|k+1

and Kvs,k = ∂g(x,t)
∂t

∣∣∣
tk

are the Jacobians of the quantities of

interest according to Equation (6). When evaluating Equation (16) around the current
configuration point (xk+1|k+1, tk) while assuming that the function g is approximately
affine in this region, it can be stated that, up to a first-order approximation of the Taylor
series, the quantities of interest will be a stochastic variable with the following mean and
covariance [32–34]:

yvs,k+1 = g(xk+1|k+1, tk) (17)

Pvs,k+1 = Gvs,kPk+1|k+1(Gvs,k)
T (18)

Since in most applications only a selected number of quantities of interest are targeted
by the estimator, this works aims at focusing the estimator performance on these specific
quantities of interest while keeping the estimator stable.

In this work, only a few predefined quantities of interest are estimated, which are
evaluated using their error covariance. However, the covariances of the states themselves
are important for the stability of the filter as the estimator is only stable when all states
are at least detectable [23]. This is unwanted when a certain sensor does not improve the
estimation quality of the quantities of interest but is required to make all estimator states
observable, in which case one would like to omit this sensor from the estimator. Therefore,
this work aims at solving the following major difficulties:

1. Stabilisation of the EKF for non-observable system states;
2. Selection of the relevant sensors for the given quantities of interest.

Both of these approaches will be discussed in the next two sections of this work.

3. Stabilisation of the Extended Kalman Filter for Unobservable System States

When employing estimators, it is well known that observability is an important
topic [1,35] as it determines the stability of the filter. Because in this work only some
predefined quantities of interest are considered, it might occur that some sensors do not
have any effect on the estimation performance for these specific quantities of interest.
They can however cause some states to be unobservable, which can lead to stability
issues of the estimator algorithm. In this work, a projection is proposed to stabilise the
unobservable state covariances given that only some predefined quantities of interest are
targeted. Important to note here is that only the stability issues are being tackled. The
targeted states remain unobservable, but the estimator error covariances will be stable. The
derivation of the observable subspace consists of three main steps:

1. Generation of the total observability matrix Otot based on training data;
2. Calculation of the observable subspace basis Vo;
3. Transformation of the Kalman covariance equations.

These steps are discussed in the following subsections.

3.1. Observability Analysis of the Extended Kalman Filter

The observability investigation starts with the computation of an observability crite-
rion. In this work, the linear Kalman observability matrix [36] is used, which is based on
the Jacobians Fk and Hk calculated in Equations (4) and (5):

O =

⎡⎢⎢⎢⎢⎢⎣
Hk

HkFk
HkF2

k
...

HkFn−1
k

⎤⎥⎥⎥⎥⎥⎦ (19)

9
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If this matrix is of full rank, all states are observable. This is a sufficient condition
for the estimator Riccati equation to converge to a stable solution [37]. However, this only
holds for local observability, while for global observability analysis, the Lie derivatives
have to be investigated [36,38]. Due to the non-linear nature of the governing equations,
alternative methods need to be implemented to perform observability analysis, such as the
ones in [15] or [16]. This work proposes to combine the observability matrices of different
timesteps into a large observability matrix. This large observability matrix is a combination
of matrices evaluated at evenly spaced timesteps of the training data:

Otot =

⎡⎢⎢⎢⎢⎢⎣
Ok=1

Ok=1+p
Ok=1+2p

...
Ok=m

⎤⎥⎥⎥⎥⎥⎦ (20)

where k is the timestep of evaluation, m is the total amount of timesteps in the training
data and p is an integer index that defines the amount of observability matrices that are
taken into account in the total observability matrix. The number p can be chosen between
1 and m depending on the wanted global observability coverage. The smaller the number
p, the better global observability is analysed, but the larger the total observability matrix.
Alternatively, when there are no training data available, the total observability matrix can
be calculated for the first timesteps of the simulation based on which the projection can
be defined.

Global observability requires the matrix from Equation (20) to be of full rank. However,
to reduce costs, installing the minimum amount of sensors needed to produce good
and reliable estimation results should always be the aim. Therefore, sensors that do not
contribute significantly to the overall quantities of interest estimation performance but
are necessary to make all system states observable are not wanted. However, they will
cause the estimator to become unstable due to the unboundedness of the unobservable
state covariances. This work therefore aims at tackling the stability issues related to
unobservable system states. A projection of the Kalman filter Riccati equation is proposed
on an observable subspace defined by the singular modes of the complete observability
matrix from Equation (20). This projection will be discussed in the next subsection.

3.2. Calculation of an Observable Projection Basis

It is well known that a singular value decomposition (SVD) can be used to determine
the rank of a matrix [15,39]. Furthermore, an SVD can also indicate which states are
unobservable by looking into the modeset corresponding to the singular values. This
modeset can also be exploited as a basis for an observable projection.

Lets consider the singular value decomposition of the complete observability matrix.
As a result, the full observability matrix (Otot) can be written as a product of three matrices:

Otot = UΣV (21)

where Σ is a square matrix containing the singular values and matrices U and V contain the
corresponding modes that satisfy VVT = I and UUT = I. When the observability matrix
is rank deficient, at least one of the calculated singular values will be close to zero and the
matrix Σ will have the following structure:

10
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Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · σm 0 · · · 0
0 · · · 0 ≈ 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · ≈ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
Σo 0

0 Σu

]
≈
[

Σo 0

0 0

]
(22)

where m is the rank of the total observability matrix Otot. To determine whether singular
values are zero, a threshold value of 10−12 has been set by trial-and-error after investigating
the singular values for the validation examples. Furthermore, the corresponding modes
present in the matrix V can be partitioned according to the corresponding singular values
in Equation (22):

V =

[
Vo
Vu

]
(23)

where Vu are the modes that span the kernel of the observability matrix. At the same time,
Vo is the matrix consisting of the modes corresponding to an observable subspace for this
particular sensor set. Using the VVT = I property of the SVD matrices, the following
expression can be obtained:

VVT =

[
Vo
Vu

][
VT

o VT
u
]
=

[
VoVT

o VoVT
u

VuVT
o VuVT

u

]
=

[
I 0

0 I

]
(24)

where the VoVT
o = I and VoVT

u = VuVT
o = 0 properties can be obtained. In this work, a

projection of the estimator covariance equations is proposed using the matrix Vo containing
an observable modeset:

x = VT
o q (25)

The aim of this transformation is to obtain new, observable estimator covariance
equations such that the estimator runs stable during operation. Applying Equation (25) to
Equations (4) and (5), the new linearised Jacobians can be found as:

F̃k = VoFkVT
o (26)

H̃k = HkVT
o (27)

Due to the transformation, the new estimator observability matrix will have an addi-
tional multiplication by the transformation matrix VT

o . Using the singular value decom-
position formula from Equation (21), Equation (22) and the VuVT

o = 0 and VoVT
o = I

properties, the following expression is obtained:

OtotV
T
o = UΣVVT

o = U

[
Σo 0

0 0

][
Vo
Vu

]
VT

o = U

[
Σo 0

0 0

][
VoVT

o
0

]
= U

[
Σo
0

]
(28)

which proves that the newly obtained observability matrix will be of full rank as all singular
values larger than 0 of the original total observability matrix are present in Σo.

The above proposed projection only works if the targeted quantities of interest, ex-
pressed in the virtual sensor equations through Gvs,k, are independent of the unobservable
states. Mathematically speaking, this means that the linearised Jacobian of the virtual
sensors cannot be spun with any of the observability matrix kernel basis vectors Vu. To
check this, the following criterion has to be evaluated:

Gvs,mVT
u = 0 (29)
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where m indicates that the linearised Jacobian of the quantities of interest equation is taken
at the last timestep of the training data to make sure that initial transient behaviour is no
longer present.

If the criterion of Equation (29) is not met, the estimator cannot be set up such that it
will deliver valuable and trustworthy information on the quantities of interest. If this is the
case, the sensor set connected to the Kalman filter should be changed or extended to a set
that is able to capture all relevant information.

3.3. Transformation of the Estimator Covariance Equations

Now that the projection matrix Vo has been defined and the new Jacobians are derived,
the new projected Kalman filter equations can be deduced. Using the matrices defined
in Equations (9)–(13) and expressing the estimator equations in terms of the linearised
Jacobians deduced from Equations (4) and (5), the following equations can be derived:

Prediction:

xk|k+1 = f(xk, tk) (30)

yk+1 = h(xk, tk) (31)

Pk|k+1 = (VoFkVT
o )Pk|k(VoFkVT

o )
T + VoQdVT

o (32)

Correction:

Sk = (HkVT
o )Pk|k+1(HkVT

o )
T + R (33)

Kk = Pk|k+1(HkVT
o )

TS−1
k (34)

Update:

xk+1|k+1 = xk|k+1 + VT
o Kk(ym,k+1 − yk+1) (35)

Pk+1|k+1 = (I− Kk(HkVT
o ))Pk|k+1 (36)

Finally, the quantities of interest and their corresponding covariances expressed by
Equations (17) and (18) can be projected according to the transformation matrix Vo:

yvs,k+1 = g(xk+1|k+1, tk) (37)

Pvs,k+1 = (Gvs,kVT
o )Pk+1|k+1(Gvs,kVT

o )
T (38)

To acquire the original state covariances, the newly acquired covariances need to
be transformed back to their original values. This can be conducted by pre- and post-
multiplying the covariance matrix Pk+1|k+1 with the observable subspace transformation
matrix Vo:

Pk+1|k+1 = VT
o Pk+1|k+1Vo (39)

As a result of the transformation, the covariance matrix Pk+1|k+1 of Equation (36)
is no longer of its original size any more but is of size m according to Equation (22).
This means that, due to the negligible contribution of the unobservable states to the
transformation matrix Vo, these unobservable states will be omitted from the covariance
equations, ensuring that their covariances will remain stable during the estimator operation.
However, the drawback is that, when transforming the state covariances back to their
original values in Equation (39), the corresponding covariances for the unobservable states
are not interpretable as the transformation matrix Vo does not contain any contributions
towards these states. However, if the defined quantities of interest are independent of the
unobservable states, their corresponding covariances will be interpretable and deliver
reliable results. At the same time, some measurements can be excluded from the estimator,
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which reduces the need to buy more sensors to solve estimator stability issues related
to observability.

4. Sensor Selection Using the Stabilised EKF Estimation Framework

The second aspect that is covered in this work is the selection of the appropriate
sensors. A sensor selection algorithm is proposed that ranks the sensors according to
their contribution to the quantities of interest estimation performance by evaluating the
covariance equations based on the training data. The mean of the covariance profile of the
quantities of interest is used to evaluate the performance of a certain sensor set.

4.1. Generate Training Data by Performing a Forward Simulation

The training data are generated by performing a forward simulation and saving
all relevant matrices. This allows evaluating the sensor performance beforehand, hence
eliminating the need for an initial measurement campaign on a physical system and the
acquisition of sensors.

During the forward simulation, the relevant information needed for further processing
is stored. All sensors to be included in the sensor selection algorithm should be present in
the training data, such that the generated linearised Jacobian for the measurement equation

H
n0

s
k ∈ R(n0

s )×(nst) has the correct dimensions corresponding to the total amount of sensors
in the sensor space n0

s .

4.2. Sensor Selection Algorithm

Very often in state estimation, it is not clear which sensors contribute the most towards
the estimation performance. Therefore, the proposed sensor selection algorithm aims
at ranking the sensors by their estimation performance, which is evaluated using the
quantities of interest covariance matrices Pvs,k for each simulation timestep. During
the sensor selection procedure, no state update is performed, but only the covariance
propagation is evaluated. This allows the algorithm to be sped up significantly. The
linearised Jacobian matrices are reused from the training data generated according to the
previous subsection. The sensor selection algorithm consists of the following steps (where
n0

s is the number of sensors in the entire sensorspace):

1. Given the measurement matrix H
n0

s−i
k for the entire sensor space, and previously

saved matrices Fk from the training data, evaluate the covariance propagation Pvs,k
for all simulation timesteps. The resulting mean of the quantity of interest covariance
profile is the reference covariance p0.

2. Iterate along the entire sensor space and perform during each iteration i:

(a) remove a sensor j from the sensor space obtaining H
n0

s−i−j
k ;

(b) calculate transformation matrix Vo and observability matrix kernel Vu;
(c) check that none of the selected sensors depend on the kernel of the observabil-

ity matrix Gvs,mVu = 0. If any of the selected sensors are part of the kernel,
the algorithm is stopped as the sensors are incapable of accurately estimating
the quantities of interest;

(d) if the previous criterion is fulfilled, propagate Kalman covariance equations
defined by Equations (32)–(38) from Section 3.3 to obtain Pvs,i,k. The resulting
mean of the quantity of interest is the sensor set covariance pi.

3. Find the sensor with the lowest covariance pi, remove it from the sensor space and
restart Step 2.

The result of the algorithm is a set of sensors ranked by their respective performance
contribution to the overall quantity of interest covariance. The algorithm is summarised in
Algorithm 1.
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Algorithm 1 Sensor selection

1: Given H
n0

s−i
k , simulate covariance propagation to obtain reference covariance p0

2: for i = 1 : n0
s do

3: for j = 1 : n0
s − i + 1 do

4: Remove sensor j from sensor space to obtain H
n0

s−i−j
k

5: Calculate transformation matrices Vo and Vu as defined in Section 3.2
6: if Gvs,mVu = 0 then
7: Simulate covariance propagation
8: Evaluate mean of quantity of interest covariance profile:
9: pi = mean(Pvs,k ∀ k)

10: else
11: Quantities of interest lie within the kernel of observability matrix
12: Stop algorithm;
13: Evaluate the sensor f with lowest covariance for the quantity of interest:
14: f = min(pi)

15: Save sensor f and remove f from sensor space to obtain H
n0

s−j−1
k

5. Validation and Discussion

In this work, two validation cases are presented:

1. A simple, numerical example to show the potential of the proposed methods to
stabilise the estimator for unobservable states;

2. An experimental validation case to show the engineering cases.

These validation cases are discussed in the next sections.

5.1. Simple Validation Case

The simple validation case presented in this work is based on a three-mass system
depicted in Figure 1.

Figure 1. A visual representation of the academic validation case used consisting of three masses
connected with springs.

In this case, the quantity of interest is the position of the left mass m1, whereas the
measurement used is the position of mass m2.

5.1.1. Model Setup

For this simple example, the parameters k1 and k2 are chosen to be the same, such that
k1 = k2 = k. The same holds for the masses m1 = m2 = m3 = m. This is conducted to
simplify the system and make the results more intuitive. All system parameters are listed
in Table 1.

Table 1. Parameters of the three-mass academic example system used for validation.

Parameter Value

m1, m2, m3 (kg) 10
k1, k2 (N/m) 1000
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Depending on variables k1, k2 and the masses of the blocks, three eigenmodes can be
computed for this system. For this example, the three eigenfrequencies are 0,

√
k/m and√

3k/m. The system is excited with a sinusoidal force at the exact frequency of the second
eigenmode, being

√
k/m = 100 Hz. Corresponding to this eigenfrequency, the eigenmode is

of the form:

V2 =
[−1 0 1

]T (40)

This is the mode where both outer masses move in opposite directions, and the middle
mass does not move. This means that the middle mass m2 is located in a node of this
eigenmode. Therefore, a position measurement of this mass cannot provide any information
on the states of both other masses, and hence, the estimator will be unobservable. Here,
the proposed projection can be executed to stabilise the Kalman filter covariances.

5.1.2. Estimator Setup

To estimate the quantities of interest, the filter has to be configured with a model noise
matrix Qd and a measurement noise matrix R. For the model noise matrix Qd, a noise
level of (10−2 m2) has been set for the acceleration equations, whereas the noise level for
the velocity equations are being set to 0. This is due to the fact that the velocity equations
are a copy from the previous timestep, and therefore, no error is introduced. This means
that the Qd-matrix is defined as follows:

Qd =

⎡⎢⎢⎣
10−2 0 0 01×3

0 10−2 0 01×3
0 0 10−2 01×3

03×1 03×1 03×1 03×3

⎤⎥⎥⎦ (41)

The measurement noise is uncorrelated with a variance of ( 2 × 10−1 (m/s2)2) for
acceleration measurements and/or (10−1 m2) for position measurements.

5.1.3. Discussion

This academic example allows showing that the projection onto the observable sub-
space can stabilise the state covariances of the Kalman filter. To show this, a special case
is selected where the system is excited on exactly the second eigenmode, and a position
measurement of mass m2 is considered. The quantity of interest is the acceleration of mass
m1. Since the system is excited on an eigenfrequency, a position measurement of mass m2
will not deliver any useful data to track the acceleration of mass m1 as this mass lies within
a node of the second eigenmode of the system. This special case is chosen to show that
the proposed methodology works for any system where the unobservable modes can be
isolated using a singular value decomposition.

The results of the estimation are depicted in Figure 2 and are similar to the results
obtained from other simple, academic example cases [35]. One can observe that the
amplitude of the oscillations raises continuously due to the system excitation on resonance
frequency and the lack of damping in the model. The estimator is able to track the states
of the system well, although larger variations in the position of mass m2 can be observed
where the absolute state values reach 0 m. Because this mass is not moving much, it
becomes harder for the estimator to track.

For this system, a position measurement on mass m2 will cause the states of both
the outer masses m1 and m3 to be unobservable. This is visible in Figure 3 due to the
unboundedness of the covariances of the states corresponding to masses m1 and m3 shown
in grey as they are linked to the kernel of the observability matrix Vu.
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Figure 2. State estimation results for the academic model. The graphs shows the difference between the estimation results
with covariance transformation versus without.

Figure 3. The resulting state covariances for the academic model using a position measurement on the middle mass m2 and
a virtual position measurement of mass m3.
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Using the projection shown in Section 3, these unstable covariances can be stabilised.
When applying the projection, the resulting covariances are bounded, which is indicated
by the red dashed lines in Figure 3. Figure 3 also shows that, since the states of the
middle mass m2 were already fully observable, the projection does not influence these
covariances. However, one has to be careful interpreting the covariances of any quantity of
interest should they be linked to an unobservable modeset Vu, which can be investigated
using Equation (29). Because the unobservable system states remain unobservable when
applying the projection, the estimation results of these states should be interpreted carefully.
This indicates that the transformation introduces a trade-off between the stability of the
Kalman filter and the interpretability of the covariances. When this would be the case
in practise, additional sensors will have to be added to the sensor set in order to comply
with the observability requirements. Nevertheless, the results show that the proposed
methodology is able to stabilise the unobservable covariances, hence ensuring a stable
estimator containing unobservable states.

5.2. Experimental Validation Case

The second validation case for the proposed estimator approach is an experimental
case performed on a vehicle. The experimental validation is conducted on a vehicle using a
10-DOF vehicle model that has been developed and validated at Flanders Make in previous
work [1,40,41] and graciously provided to be used in this work.

5.2.1. Model Setup

The model used in this work is a 10-DOF freedom model is depicted in
Figure 4, which is based on the Flanders Make Range Rover Evoque, visible in the same
figure. The model has 16 states in total, 12 states for the body (2 for each degree of freedom)
and 4 to describe the rotational degree of freedom of the wheels. Geometric parameters
have been measured on the real vehicle, such as the suspension attachment points, centre
of gravity location, wheel centre locations and so on. Table 2 gives an overview of the main
parameters of the Range Rover Evoque, which are used by the 10-DOF vehicle model.

Table 2. Vehicle model parameters for the Range Rover Evoque [1,40].

Vehicle Property Abbreviation Value

Vehicle mass m 2408 kg
Yaw moment of inertia Izz 3231 kgm2

Distance between COG and front axle l f 1.4394 m
Distance between COG and rear axle lr 1.2356 m

Track width of front axle t f 1.625 m
Track width of rear axle tr 1.625 m

Height of COG hCOG 0.65 m
Front axle cornering stiffness C̄y f 88,500 N/rad
Rear axle cornering stiffness C̄yr 118,200 N/rad

Next to these general body definitions, the-10 DOF vehicle models features:

• An exponential suspension spring characteristic;
• A linear suspension damper model;
• A linear tire model using cornering stiffnesses from Table 2.

The measurements were generated during a test campaign at Ford Lommel [40]. Here,
the vehicle has been equipped with various sensors to measure the dynamic quantities
of the system, among which a low-cost Global Navigation Satellite System receiver, an
inertial measurement unit (IMU), a Corrsys Datron optical sensor and Kistler tire force
transducers [1]. The IMU measured the accelerations in three directions of the centre of
gravity and rotational speeds and angles (roll, pitch and yaw), defined around the axes
depicted in Figure 4. The Corrsys Datron optical sensor measured the longitudinal and
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lateral velocity of the car, of which the slip angle could be deduced. The GPS was able to
record the location of the vehicle’s centre of gravity during the measurements, and the tire
force transducers measured the tire forces of both rear tires.

(a) (b)
Figure 4. An overview of the vehicle application case for the validation of this work. (a) The 10-DOF model used for
experimental validation. (b) The Flanders Make Range Rover Evoque represented by the 10 DOF model [1].

For this validation case, several quantities of interest have been investigated. These
considered metrics are listed below:

1. Rear longitudinal tire forces;
2. Rear lateral tire forces;
3. Rear vertical tire forces;
4. Vehicle longitudinal and lateral position;
5. Vehicle side-slip angle.

The tire forces were estimated as this is commonly conducted already since tire force
transducers are very expensive. The side-slip angle is also a subject of current research
as this variable is hard to measure due to its dynamic nature but necessary for advanced
control algorithms such as the ESP. Finally, the vehicle longitudinal and lateral position
states were also included in the quantities of interest to show that the proposed projection
and sensor selection methodology work for independent states.

5.2.2. Estimator Covariance Tuning

A necessary step to set up any estimator is to tune the covariance matrices. The model
covariance matrix Qd used for this validation case has been derived as:

Qd =

⎡⎢⎢⎢⎢⎣
1 × 10−4I3×3 03×3 03×3 03×3 03×4

03×3 1 × 10−3I3×3 03×3 03×3 03×4
03×3 03×3 1 × 10−5I3×3 03×3 03×4
03×3 03×3 03×3 1 × 10−1I3×3 03×4
04×3 04×3 04×3 04×3 1 × 10−5I4×4

⎤⎥⎥⎥⎥⎦ (42)

The matrix defined above has been tuned by trial and error by means of evaluating
the covariance values of the estimator.

The measurement noise matrix R is defined based on data sheets of the sensor manu-
facturer and a set of reference measurements [1]. The used noise levels are listed below:
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Rai = 3.1 × 10−3 (m/s2)2, Rgyr = 2.491 × 10−1 (m/s)2

RGPS = 2 m2, Rvi = 4.856 × 10−2 (m/s)2, Rωij = 2.1 × 10−1 (m/s)2

5.2.3. Discussion

Figure 5 shows the results of the estimator compared to the measurements from
the Range Rover Evoque. The quantities of interest, as listed in the section above, are
compared to the measurement data from the experimental campaign. The sensors used in
the Kalman filter were the IMU accelerations in three directions, a gyroscope for the yaw
rate measurement, the GPS (vehicle x and y) and wheel speed sensors.

Figure 5. Validation of the quantities of interest (QoI) using real measurements from the Flanders Make Range Rover Evoque.

In general, the results match very well. One thing that can be noted is that the lateral
forces are a bit over estimated in the extreme regions. Similar results were observed in [40]
for the accelerations and the yaw rate when a linear tire model was used. This can be
explained by the use of a linear tire model that does not take into account the saturation
of the tire. This causes the forces generated by the tire to be larger than the ones actually
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measured. The use of a more complex, non-linear tire model that can take tire saturation
into account will fix this issue and can be addressed in future work.

This validation case can show the potential of the covariance stabilisation methodology
presented in this work on an engineering case as vehicle absolute position states are
typically dynamically independent from the rest of the vehicle states when the road
is considered flat. Therefore, if the tire forces are targeted by the estimator, the GPS
measurements are less relevant for the estimator performance but will immediately cause
the position states to be unobservable. This is depicted in Figure 6b where the blue
covariance curve is rising continuously throughout the simulation. The green covariance
curve on the same graph shows that the transformation can stabilise the covariance as it
is now bounded, but orders of magnitude lower than for the observable case (red line).
However, Figure 6a shows that the position is not tracked well during the simulation for all
unobservable cases causing the vehicle position results to be poor. This indicates that one
should be careful when interpreting the resulting covariance when using the projection for
unobservable states. The proposed projecion therefore introduces a trade-off between the
stability of the estimator and the interpretability of the results. However, if only interested
in some specific quantities of interest, this approach can significantly reduce the cost of
deploying extra sensors to obtain full observability, especially for applications with lots of
states [6].

(a) (b)
Figure 6. Comparison of the vehicle lateral position state for an observable case, an unobservable case without projection
and an unobservable case with projection. (a) The vehicle lateral position state compared to the measured GPS Signal.
(b) The covariance corresponding to the lateral vehicle position state.

The second part of the validation is to select the appropriate sensors for the estimation
of the different quantities of interest that are considered. This is conducted by ranking the
sensors based on their relative contributions to the covariance of the quantity of interest,
similar to the approaches used in [26,27]. Figure 7 shows the results of the approach
presented in Section 4. Figure 7 shows the contribution of each sensor to the quantities
of interest covariance (p0) relative to a simulation, including the complete sensor set
(indicated by the blue line) at each iteration of Algorithm 1 where the sensor set has been
reduced by exactly one sensor from left to right. Furthermore, the colour of the bars indicate
information on observability. A green bar indicates that the observability is fulfilled during
the entire simulation. A yellow bar indicates that the projection of Section 3 was carried
out that stabilised the unobservable state covariances, and a red bar indicates that it is
impossible to estimate the quantities of interest with this sensor set.
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Figure 7. The sensor selection methodology results. For each quantity of interest, the sensor space has been reduced from
left to right. The observability is indicated with the colour (green is fully observable, yellow is unobservable but stable and
red is unobservable). The normalised metric covariance is indicated by the blue line.

In this validation case, only the last iteration is marked with a red colour, indicating
that, at the least, this sensor is needed to provide the necessary data to comply with the
observability requirements. Additionally, the blue line indicates that, for most quantities of
interest within this validation example, only a few sensors contribute significantly to the
overall quantity of interest covariance. The rest of the sensors have negligible added value
relative to the quantities of interest performance.

Figure 7 shows that for the tire forces, the acceleration measurements in the respective
directions are the most important sensors as they are directly related to the forces in
the equations of motion. Adding these sensors can increase the estimator performance
by a factor of 5, as indicated by the blue line on Figure 7. One can also observe that
GPS measurements are of lesser importance here and are situated on the left side of the
graph. However, omitting these GPS measurements causes the vehicle position states to be
unobservable (as indicated by the yellow bar colour), which can be solved by applying the
transformation proposed in Section 3.

21



Sensors 2021, 21, 7492

On the other hand, when trying to evaluate the position states of the vehicle, the
results depicted in Figure 7 show that not much performance can be gained by adding
additional sensors as these states have no dependency to other states because they are
directly obtained from integration. This means that GPS measurements are absolutely
necessary to be able to track these states. The proposed approach is able to identify the
situations where the estimator cannot be set up using the current sensor set by evaluating
Equation (29).

In addition to the approaches presented in [25–27], the approach proposed in this
work is able give a sensor performance indication for all types of sensors while also being
able to handle the same type of sensors on different mounting locations as well as different
sensor noise levels (cheap versus expensive sensors). Of course, the results of the sensor
selection can be significantly different when considering multiple quantities of interest
at the same time. This has not been investigated in this work and can be addressed in
future work.

6. Conclusions

In this work, an algorithm is proposed to stabilise estimators for unobservable system
states, given that only specific quantities of interest are targeted by the estimator. Through
a projection of the estimator on an observable subspace, the employed Riccati equations
can be stabilised, but care needs to be taken as this does not make the system inherently
observable. To ensure reliable operation, the targeted quantities of interest should not rely
on the non-observable omitted system subspace. This approach has been validated on
a numeric academic mass-spring system, as well as an industrial automotive estimation
problem. Compared to known solutions, this method is shown to consistently handle
cases where decoupled states are present, strongly coupled modes are present, as well as
complex non-linear behaviour.

Next to the estimation stabilisation approach, a sensor selection algorithm was pro-
posed that ranks the sensor performance based on the expected uncertainty on the various
quantities of interest. Starting form an exhaustive potential sensor set, the ranking proce-
dure is performed by gradually removing one sensor at a time, which induces the lowest
covariance rise when omitted from the estimator. On the automotive validation case, the
method automatically detects that for tire forces, the acceleration measurements coming
from the IMU are the most important sensors, whereas for the vehicle position states, the
GPS measurements would be the most effective, which is consistent with engineering
experience. Therefore, compared to known solutions, the approach is able to provide
insight into the sensor set performance with respect to the predefined quantities of interest
without the need for acquiring sensors and setting up costly test campaigns and is able to
detect when a particular sensor set is unable to bring sufficient data in an estimator context.
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Abbreviations

The following abbreviations are used in this manuscript:

GPS Global Positioning System
SVD Singular Value Decomposition
EKF Extended Kalman Filter
FIM Fisher Information Matrix
(D)ARE (Discrete) Algebraic Riccati Equation
DOF Degree(s) Of Freedom
IMU Inertial Measurement Unit
ESP Electronic Stability Program
QoI Quantities of Interest
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Abstract: Resulting from the short production cycle and rapid design technology development,
traditional prognostic and health management (PHM) approaches become impractical and fail to
match the requirement of systems with structural and functional complexity. Among all PHM designs,
testability design and maintainability design face critical difficulties. First, testability design requires
much labor and knowledge preparation, and wastes the sensor recording information. Second,
maintainability design suffers bad influences by improper testability design. We proposed a test
strategy optimization based on soft-sensing and ensemble belief measurements to overcome these
problems. Instead of serial PHM design, the proposed method constructs a closed loop between
testability and maintenance to generate an adaptive fault diagnostic tree with soft-sensor nodes. The
diagnostic tree generated ensures high efficiency and flexibility, taking advantage of extreme learning
machine (ELM) and affinity propagation (AP). The experiment results show that our method receives
the highest performance with state-of-art methods. Additionally, the proposed method enlarges the
diagnostic flexibility and saves much human labor on testability design.

Keywords: prognostic and health management; extreme learning machine; soft sensors

1. Introduction

With the increasing use of electric devices, prognostic and health management engi-
neering (PHM engineering) has played an extremely significant role in product lifetime
management over decades [1]. PHM engineering ensures electric devices’ lifetime healthy
operation and provides appropriate resource assignment for product management [2]. In
recent years, the production cycle has shortened because circuit technology and system de-
sign have rapidly developed [3–6]. The system structures have become more complicated,
more integrated, more intelligent, and highly intensive [7]. Additionally, the potential test
procedures and fault cases grow exponentially. As a result, PHM engineering has received
active demand and new challenges. Practical conditional maintenance (CM) solutions
become difficult to generate on modern system applications. On another hand, CM must
be flexible enough to math structure complexity and system function complexity. Hence,
efficient PHM engineering solutions for modern devices become an urgent problem for
academic researchers and industrial engineers.

Under the CM design, testability design and maintainability design are two essential
projects to determine supportability, enhance reliability, and guarantee safety during life-
time device management [8]. Testability design analyses the system’s internal structures,
selects test projects and arranges test procedures, estimates the system operation condition,
and locates failure modes. The key difficulty for testability design is balancing the system’s
high structural complexity and the solution efficiency properly. Classical testability design
approaches use dynamic programming (DP) to assess optimal solutions [9,10]. However,
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classic methods suffer from high time complexity when either the number of test projects
or failures is larger than 12.

In recent years, the AO* method [11], a sequential testing generation method, balances
the generation complexity of test solutions and detection performance for diagnostic pro-
cedures with heuristic searching and AND/OR graph topology. Thus, the AO* method
became the most popular testability design technique. To match the growing electric system
complexity, AO* has been improved to optimize searching mechanisms with information
theory [12], evolution algorithms [13,14], dynamic design [15], etc. Additionally, advanced
research has simplified searching procedures with rollout strategy [16] and bottom-up
decision tree [17] to achieve practical large-system testability solutions. Despite good
application results, these testability design approaches need to assign logic relationships
between test procedures and failure modes. Hence, all these methods assume that depen-
dent single-signal operations and sequential procedures can make all diagnostic decisions.
However, modern devices contain highly complicated logistic relationships [18] between
test procedures and potential failure modes under many scenarios. Consequently, the testa-
bility design consumes too much human power and affects the testability design efficiency
to prepare prior knowledge, especially under short production cycles. Furthermore, the
testability design wastes the entailed sensor recording information from test procedures as
the existing methods rely on human-selected binary information.

The maintainability estimation model provides real-time operation condition diag-
nosis and realizes system health management along with testability design. In general,
existing maintainability design approaches can be divided into physics-of-failure (PoF)
approaches [19–22] and data-driven (DD) approaches [23–25]. PoF approaches use rules
from physics or chemical dynamics to estimate electric system failure conditions [26]. With
accelerated aging of experimental records and prior modeling knowledge, PoF approaches
generate an accurate dynamic model under specific stress influences such as thermal, elec-
trical, and humidity. However, most PoF approaches are only suitable under one stress
function, and the methods face high limitations with real applications.

Unlike PoF methods, DD approaches rely on historical sensor information and build
maps from sensor recording to failure modes. Hence, DD approaches become more flexible
compared to PoF methods. Classical DD approaches use statistic methods such as stochastic
methods, regression methods, distance estimation, and similarity estimation [27–30]. These
methods require large samples to ensure unbiased estimation and model robustness, and
are constrained in off-line modeling. Therefore, statistical approaches have limitations on
maintainability design with few sampling records and short time constraints. In recent
years, machine learning (ML) methods [31,32] have attracted research attention because
of its high accuracy, strong adaptive ability, powerful robustness, and fast computation
time. As a result, ML methods, such as neural networks (NN) [33], support vector machine
(SVM) [34,35], k-nearest neighbors (KNN) [36], K-means clustering [37], and particle filters
(PF) [38], have been used for maintenance design and tuned to successfully extract hidden
rules from failure mode and recording information [39]. However, these methods require
prior information selection and the preprocessing system degradation features. The perfor-
mance of testability and maintainability may affect the preprocessing model input due to
the complicated system structure and the complex recording information relationships.

We propose a test strategy optimization based on this paper’s soft-sensing and ensem-
ble belief measurement to overcome this weakness described above. We suggest a closed
loop framework for PHM design to replace the sequential framework between testability
and maintenance design. Instead of experienced knowledge, our method uses ensemble
learning based on direct sensor recordings to gain the system state estimation. Additionally,
we connect the testability and maintenance design by the minimal conditional criterion
to optimize the test strategy. Consequently, the proposed method improves the flexibility
of PHM design, saves labor, and enhances diagnostic efficiency. The contributions of our
work follow.
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• Our model builds diagnostic strategies without much prior knowledge and human-
elected features. The diagnostic tree is constructed with ELM-based soft-sensor nodes.
Instead of experienced features, ELM-based soft-sensor nodes provide basic probability
assignment (BPA) directly from the sensor records. Hence, our methods cut the
testability design human labor since the method needs no system mechanisms analysis.

• We build a closed loop between testability design and maintenance design. Thus, the
maintenance design makes full use of testability design information and improves the
testability design efficiency with the advantage of ELM-based construction modules.

• Our model divides the fault set adaptively into several fuzzy sets with affinity propa-
gation and improves the diagnostic efficiency of single test procedures.

The experiment proves that our method has better diagnostic accuracy and lower
false alarm ratios than other state-of-art diagnostic methods. Additionally, our diagnostic
strategies take only a few tests with little test assignment consumption. For each fault
state, the diagnostic procedures provide one efficient test sequence. Thus, the diagnostic
procedure enjoys high efficiency for applications. Finally, affinity propagation enlarges the
diagnostic flexibility and significantly reduces human labor used on testability design.

The rest of this paper is organized as follows. We introduce the PHM design problem
and provide the general framework in the next section. Section 3 presents the details of
the algorithms and Section 4 provides the experiment results and discussions. Finally,
conclusions are drawn in Section 5.

2. Problem Formulation and General Framework

PHM engineering estimates the degradation processes and recognizes failure modes
over the product’s full lifetime. Based on experimental research and application surveys,
PHM engineering provides fault analysis and maintenance advice to prevent failure occur-
rence. PHM engineering elements and the corresponding relationships are presented in
Figure 1.

 

Figure 1. Element and the corresponding relationship of PHM engineering.

To study the target systems, engineers analyze potential failure modes and find
unsafe and unreliable features. Thus, the target system’s safety and reliability, reflected
by its failure features, draw attention to system failure physical characteristics. For higher
reliability and safety, the PHM platform provides maintenance procedures and diagnostic
approaches for the system’s supportability. The diagnostic approach depends on testability
and the maintenance procedures that rely on maintainability.
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Testability is the design characteristic that the health condition can be detected accu-
rately and failure modes can be located successfully. Meanwhile, maintainability is the
ability to repair and recover the system under certain conditions within a certain time.
The PHM services can ensure healthy system operation and achieve the PHM engineering
purpose with proper maintenance and testability design. In general, supportability is the
key PHM engineering purpose influenced by testability and maintainability; thus, the
PHM must meet the environmental stability needs. The physical system structure directly
influences safety and reliability while system elements reflect safety and reliability critically.
High testability and maintainability quality improve the system reliability and safety with
good maintenance design procedures and diagnostic approaches. Hence, testability design
and maintenance design are two significant PHM platform parts.

Since testability and maintenance are important, various techniques provide practical
testability design and maintenance design. To our best knowledge, existing methods build
a sequential approach to generate the PHM service. As Figure 2 shows, the traditional
framework arranges the test procedures to assess the sensor recording and create mainte-
nance design with the assigned sensor records. The framework is applicable for many large
systems. However, the testability design uses human experience binary information such as
information flow chart, dependence matrix and AND/OR graph. Therefore, the testability
design suffers from extended time and the financial burden with modern complex systems,
ignores the coupling effects between test procedures, and wastes valuable sensor recording
information. As a result, the maintenance design receives poor performance and low
efficiency because of poor information usage and low knowledge transmission efficiency
from testability design and maintenance design.

 

Figure 2. Traditional framework of testability and maintenance design.

We introduce a closed-loop test strategy optimization method on soft-sensor informa-
tion and ensemble learning to overcome the weakness. Similar to traditional PHM design
approaches, the proposed method aims to generate a fault diagnostic tree and cut the fault
set with testability sensor information and maintenance signal processing. In contrast, our
fault tree grows with direct sensor recording information directly along with the processing
module and extends with basic probability assignments. On the other hand, the PHM
design process contains a cooperative closed loop between testability and maintenance
design to improve information usage and transmission efficiency during fault detection.

The general framework of the proposed method is presented in Figure 3. For mainte-
nance design, the soft sensor integrates the recording information from assigned sensors
and the processing signal, such as statistical method, support machine, and learning ma-
chine to extract suitable test features. Considering the requirement of fast diagnosis and
detection, we use extreme learning machine (ELM) [34], a noniterative single-layer learning
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machine, to generate accurate fast processing modules of soft-sensing nodes. The details
are introduced in the next section.

Figure 3. General framework of test strategy optimization based on soft sensing and ensemble
belief measurement.

Suppose there exists N possible sensors with the PHM system design; therefore, the
potential test procedures set is denoted as Tpotential = {t1, t2, . . . , ti, . . . tN−1, tN}, where ti
means the test procedures with i-th sensors. As each sensor contains a vector of information
xi = {xi,1, xi,2, . . . , xi,K}, i = 1, 2, 3, . . . , N with M existing samples from the targeted system,
the training information is regarded as:

Xtrain =

⎡⎢⎢⎢⎣
x1,1 x1,2 . . . x1,N
x2,1 x2,2 . . . x2,N

...
...

. . .
...

xM,1 xM,2 . . . xM,N

⎤⎥⎥⎥⎦ (1)

where xij is the recording information vector from the j-th sensor for i-th sample, j = 1,2,3,
. . . , N, and i = 1,2,3, . . . , M.

With the sampling information, the potential fault tree soft-sensor node structure is
denoted as following:

Node =
{

S f ather, Sson, Tnode, Xnode, Ynode, ELMnode, mexemplar

}
(2)

where the Tnode is the assigned test procedures from previous selected soft-sensor nodes
and the potential selected test procedure, and Xnode is the training sample sensor recording
information to detect under the node, as follows:

Xnode =
[
x1,Tnode , x2,Tnode , . . . , xMnode ,Tnode

]T (3)

xi,Tnode =
{

xi,j
∣∣tj ∈ Tnode

}
(4)
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where Mmode is the number of the sampling data. Ynode provides the corresponding sample
failure conditions. Suppose the whole set of failure mode is Snode = {s1, s2, . . . , sK}, where K
is the number of fault modes considered, then Ynode is determined with the actual condition
of training samples as follows:

Ynode =
[
y1, y2, . . . , yMnode

]T
(5)

yi = [yi,1, yi,2, . . . , yi,K] (6)

yi,j =

{
1 ssi = sj

0 ssi �= sj
(7)

where ssi is the actual i-th sample fault mode. Additionally, S f ather is the fault mode set of
the soft-sensor node, represented as follows:

S f ather =
{

sj
∣∣∃xi ∈ Xnode and sj ∈ S, ssi = sj

}
(8)

With Xnode and Ynode, the ELM serves as the soft-sensor signal processing part and
aims to provide the fuzzy set of fault states as much as possible. To achieve the goal, ELM
builds a map f : R1×N → R1×K from the training sample signals to estimate the fault states
and provides the training sample prediction Mnode as follows:

Mnode = [ f (x1,Tnode

∣∣ELMnode), f (x2,Tnode

∣∣ELMnode), . . . , f (xMnode ,Tnode

∣∣ELMnode)]
T (9)

With Mnode, ELM estimates the training sample failure modes. To determine the
processing part performance, Ynode is used as the expected output marks for the fault
detection process. From the view of detection process, two indexes, fault detection rate
(FDR) and false alarm rate (FAR), play essential roles in evaluating the accuracy.

FDR is defined as the ratio between the failure mode probability that is successfully
detected with the ELM and the total failure modes probability. Here, we assume the
historical samples are subject to the general failure probability distribution of the real
applications. Thus, the statistic characteristics of training samples reflect the total failure
mode probability and the training sample detection performance depicts the detection
probability. From above, FDR for the node is presented as follows:

FDRnode =
∑Mnode

i=1 ∑K
j=1 P( f j(x1,Tnode |ELMnode) ≥ 1 − ε, yi,j = 1)

∑Mnode
i=1 ∑K

j=1 yi,j
(10)

where ε is the detection margin. From the generation process, f j(x1,Tnode

∣∣ELMnode) and yi,j
are independent of each other. Additionally, since ELM provides a continuous probability
estimation, the loss function with respect to FDRnode is computed as follows:

LFDRnode =
∑Mnode

i=1 ∑K
j=1

(
yi,j − f j

(
x1,Tnode

∣∣ELMnode
))

P
(
yi,j = 1

)
∑Mnode

i=1 ∑K
j=1 yi,j

(11)

Along with FDR, FAR presents the ratio between false-alarm failure mode probability
and the total failure detection probability. Taking consideration of f j(x1,Tnode

∣∣ELMnode) ,
FAR is computed as follows:

FARnode =
∑Mnode

i=1 ∑K
j=1 P

(
f j
(
x1,Tnode

∣∣ELMnode
) ≥ 1 − ε, yi,j = 0

)
∑Mnode

i=1 ∑K
j=1 P

(
f j
(
x1,Tnode

∣∣ELMnode
) ≥ 1 − ε

) (12)

Here, it is assumed that the model has enough accuracy so that the failure estimation and
the total failure conditions have approximate values. Thus, ∑Mnode

i=1 ∑K
j=1 P( f j(x1,Tnode |ELMnode)

30



Sensors 2022, 22, 2138

≥ 1 − ε) is able to be approximately equal to ∑Mnode
i=1 ∑K

j=1 yi,j. Therefore, the loss function of
the FAR is denoted as:

Lnode =
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2
P(yi,j=1)

∑
Mnode
i=1 ∑K

j yi,j

+
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2
P(yi,j=0)

∑
Mnode
i=1 ∑K

j yi,j

=
∑

Mnode
i=1 ∑K

j

(
yi,j− f j

(
x1,Tnode

∣∣∣ELMnode

))2

∑
Mnode
i=1 ∑K

j yi,j

(13)

As ∑Mnode
i=1 ∑K

j yi,j is independent from the soft-sensor construction, the task of ELM is

to minimize ∑Mnode
i=1 ∑K

j
(
yi,j − f j

(
x1,Tnode

∣∣ELMnode
))2, which is the difference between Mnode

and Ynode, expressed as follows:

ELM = argmin
{
∑Mnode

i=1 ||yi − f (x1,Tnode |ELMnode)||2
}

(14)

Since the maintenance design of the proposed method directly relies on the recording
sensor signals, the physical system knowledge is largely preserved and the information
usage is highly enhanced.

Based on soft-sensor node construction, testability design process adds the soft-sensor
node with best performance and builds a fault tree, taking consideration of potential
soft-sensor node under the minimum conditional entropy criterion. Hence, the assigned
soft-sensor nodes decrease the diagnostic uncertainty and improve the detection efficiency.
Besides, affinity propagation (AP) is adapted to separate the fuzzy set of the fault modes
and generate subnodes for the diagnostic model with the exemplar probability estimation
mexampor and basic probability assignment BPAnode. The subnodes are denoted with the
subset of failure modes Sson =

[
Sson,1, Sson,2, . . . , Sson,Knode

]
and satisfies the condition that

∪Knode
i=1 Sson,i = S f ather.

After adding the soft-sensor nodes and extending the subset of fault modes, the
information of assigned nodes Tnode is regarded as prior knowledge, serving as feedback
from testability design to maintenance design, and extending the fault tree until reaching
the minimum fault condition set.

With the cooperation between testability design and maintenance design, a PHM
model based on soft-senor information is generated and the sensors for PHM maintenance
are assigned based on the selected test set of PHM model, as follows.

TPHM = {ti : ∃Tnode, ti ∈ Tnode} (15)

To locate the fault condition when starting with the maximum set of failure modes,
the corresponding sensor recording is collected and used to compute the potential basic
probability assignment. Then, the subset of potential modes is determined based on existing
samples with nearest neighbor strategy and the detection process is continued until finding
the minimum failure sets and obtaining the failure detection. For each test sample denoted
as casei, the PHM detection procedures generate a test sequence corresponding to the
assigned sensor recording and the estimation from the signal processing by a branch of
assigned soft-sensor nodes, as follows:

Snode =
{

Nodej : ∃mexemplar,k ∈ mexemplar,
∣∣∣∣∣∣ f

(
xcasei ,Tnode,j

∣∣∣ELMnodej

)
− mexemplar,k

∣∣∣∣∣∣ = dnode

}
(16)

where dNodej
is the minimum distance from the failure condition estimation vector

f (xcase,Tnode

∣∣∣ELMnodej
) to all exemplars of soft-sensor nodes with the same father node
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of Nodej. The detection process ends when the procedures reach the terminal node of Snode
denoted as Nodeterminal,case. Then, the estimated failure condition vector is computed as:

ŷcase.j =

{
1 sj ∈ Snodeterminal,case , f ather
0 sj /∈ Snodeterminal,case , f ather

(17)

According to the definitions of FDR, FAR, and detection accuracy, the test performance
indexes of the detection procedures are computed as follows:

FDRtest = ∑Xcase ∑K
j=1 P(ŷcase,j = 1|ycasse,j = 1) (18)

FDRtest = ∑Xcase ∑K
j=1 P(ŷcase,j = 0|ycasse,j = 1) (19)

Accuracytest = ∑Xcase ∑K
j=1 P

(
ŷcase,j = 1

∣∣ycasse,j = 1
)
+ P(ŷcase,j = 0|ycasse,j = 0) (20)

From these, the test strategy optimization aims to select TPHM from Tpotential and
generate the diagnostic tree with soft sensors and AP. For each case, AP determines the next
procedure and the corresponding soft sensors with previous estimations. Thus, for each
case, the diagnostic tree provides an adaptive test sequence and leads to the final evaluation
on the terminal node. Similar to Equation (4), the objective function is the combination of
FAR loss and FDR loss, as follows:

Ltree =
∑M

i=1 ∑K
j=1 (yi,j − Fj

(
xi,Tseq ,i

∣∣∣Tseq,i ∈ TPHM, ELMnode ∈ tree))
2

∑M
i=1 ∑K

j=1 yi,j
(21)

where Tseq,i is the required test procedure with respect to the diagnostic tree, and

Fj

(
xi,Tseq ,i

∣∣∣Tseq,i ∈ TPHM, ELMnode ∈ tree) is the state estimation from the terminal node
with respect to the test procedure of the i-th case.

3. Test Strategy Optimization Based on Soft Sensing and Ensemble Belief Measurement

3.1. Construct Soft-Sensor Node with Extreme Learning Machine

As mentioned in the previous section, each soft sensor contains the recording infor-
mation from the assigned sensors, the artificial intelligence signal processing modules,
and probability estimation parameter for the isolation of fault states. During the construct
process, maintenance design produces the soft-sensor node with candidate test procedures
and candidate soft-sensor nodes with high performance, and generates the fault tree. For
each candidate node, the sensor recording input is created as follows:

Xcandidate, node =
{

xsi ,T∗
i

: xi ∈ Xcandidate node

}
(22)

xsi,T∗
i
= {xsi,t|t ∈ T∗

i } (23)

T∗
i =

{
T∗

sequence, t∗
}

where {t∗} ∩ T∗
sequence = ∅ (24)

where T∗
sequence integrates the previous test information of before the candidate node and

makes full use of sensor recording knowledge.
At the same time, we use ELM to generate artificial intelligence signal processing mod-

ules for fast training and high generation ability. Shown in Figure 4, ELM is a noniterative
three-layer neural network and contains parameters of a fully connected hidden layer and
a linear-combined output layer with an activation function, as follows:

ELMcandidate,node = {(Wnode, bnode), βnode, fh(.)} (25)
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Wnode =

⎡⎢⎢⎢⎣
w1,1 . . . w1,NT
w2,1 . . . w2,NT

...
. . .

...
wL,1 . . . wL,NT

⎤⎥⎥⎥⎦ (26)

bnode = [bnode.1, bnode.2, . . . , bnode.L] (27)

βnode =

⎡⎢⎢⎢⎣
β1,1 . . . β1,NT
β2,1 . . . β2,NT

...
. . .

...
βL,1 . . . βL,NT

⎤⎥⎥⎥⎦ (28)

where Wnode is denoted as the weights matrix of the hidden layer while bnode is the hidden
layer bias, and L is the number of hidden nodes. βnode is the output layer weight and fh(.)
determines the activation function from the sensor input and hidden output. Here, the
sigmoid function is taken as the activation functions for all soft-sensor nodes. Relative to
Xcandidate node, the hidden outputs of training samples are produced as follows:

Hnode =

⎡⎢⎢⎢⎣
fh(w1x1,T∗ + bnode,1) . . . fh(wLx1,T∗ + bnode,L)
fh(w1x2,T∗ + bnode,L) . . . fh(wLx2,T∗ + bnode,L)

...
. . .

...
fh
(
w1xMnode ,T∗ + bnode,1

)
. . . fh

(
wLxMnode ,T∗ + bnode,L

)
⎤⎥⎥⎥⎦ (29)

As ELM is a noniterative learning machine, Wnode and bnode can be assigned randomly
with respect to arbitrary probability distribution, and the output of the model is computed
as a linear combination of the hidden output with trained βnode, as follows:

.
Ycandidate node = βnodeHnode (30)

To estimate the failure situation as accurately as possible,
.
Ycandidate node is supposed to

be consistent with actual failure states Ynode defined based on Equations (5)–(7). According
to Equation (14), the loss function of the candidate node is computed as follows:

Losscandidate node =
∣∣∣∣∣∣Ynode −

.
Ycandidate node

∣∣∣∣∣∣2 = ||Ynode − βnodeHnode||2 (31)

Taking differential of Losscandidate node with respect to βnode, the trained output weight
is accessed as follows:

βnode =
(

HnodeH
T
node + λI

)−1
HnodeYnode (32)

Based on the proper assignment of ELM parameters, the soft-sensor nodes gain
knowledge from the training samples and obtain accurate condition estimation with the
test samples.

From above, considering the candidate node with sensor recording inputs Xcandidate, node,
the previous test sequence T∗

sequence, and candidate test point t∗, the procedure to generate the
ELMnode follows:

Step 1: Assign the candidate node with Equation (2), where S f ather = {si|scandidate node
= si, si ∈ S}. Meanwhile, Tnode is generated as Equation (24), Ynode is assigned with
Equations (5)–(7);
Step 2: Initialize ELM parameters (Wnode, bnode) randomly in [−1,1];
Step 3: Calculate the hidden output with respect to Xcandidate, node as in Equation (29);
Step 4: Train the output weights βnode with Equation (32);

Step 5: Obtain the estimation of candidate set
.
Ycandidate node with Equation (30).
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Figure 4. Fault tree of test strategy optimization based on soft sensing and ensemble belief measurement.

3.2. Separate the Fault Set Based on Affinity Propagation

With ELM-based soft-sensor nodes, the condition of trained samples and test samples
can be estimated with high efficiency. Meanwhile, owing to the individual sensor recording
knowledge limitation, the ELM condition evaluation has a vague part with unrelated
failure modes. Thus, the fault set of corresponding nodes S f ather is divided into several
fuzzy sets Sson =

[
Sson,1, Sson,2, . . . , Sson,Knode

]
based on the fault state evaluation value

.
Ycandidate node. When constructing traditional diagnostic tree and fault analysis processes,
the failure mode subset is divided by comparing the fault state evaluation and reference
value of the failure mode or the failure mode calibration value. However, these strategies
are only applicable to systems with small structures or systems with known mechanisms
and a historical sample may ignore the diversity and validity. Hence, in the proposed
method, we introduce a new dividing strategy based on affinity propagation (AP) to cut
the fuzzy set and samples with evaluation similarity measurement between pairs of data
points. With AP, Sson it is constituted based on the similarity between condition estimates
and the fault tree generation flexibility is enhanced.

Instead of assigning engineering-experience reference information, AP generates clus-
ters based on all training set evaluation values

.
Ycandidate node =

{
y1, y2, . . . , yMnode

}
. The

clustering method treats each training sample as one data edge point and transmits two
real-valued messages: the responsibility value r

(
yi, yj

)
and the availability value a

(
yi, yj

)
,

to realize communication between edge nodes until a good set of exemplars and corre-
sponding clusters emerges. The responsibility value r

(
yi, yj

)
indicates the accumulated

evidence for how well suited a historical data point yj is to serve as the exemplar for

the historical data point yi. In addition, the availability value a
(

yi, yj

)
represents how

appropriate it would be for a historical data point yi to choose a historical data point yi
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as its exemplar. For initialization, the similarity between the historical points
(

yi, yj

)
is

calculated based on Euclidean distance, as follows:

d
(

yi, yj

)
= −

∣∣∣∣∣∣yi − yj

∣∣∣∣∣∣2 (33)

where d
(

yi, yj

)
reflects how well the historical data point yj is suited to be the exemplar

for historical data point yi. AP aims to provide a clustering solution that satisfies the
historical data points with larger values of distance estimation, which are more likely to
serve as exemplars. To achieve this purpose, the clustering method recursively conducts
the following updating process, sending the responsibility message from each data point to
the corresponding data point.

First, the responsibility value r
(

yi, yj

)
is computed based on the following data

driven approach:

r
(

yi, yj

)
= d

(
yi, yj

)
− max

k,s.t.k �=j
{a(yi, yk) + d(yi, yk)} (34)

As the availability value a
(

yi, yj

)
is set to 0, the responsibility value r

(
yi, yj

)
is

initialized as the input similarity d
(

yi, yj

)
minus the largest similarity value between yi

and other exemplars. Hence, the updating process does not consider how many other
points favor each candidate exemplar. In later process, if some point is efficient to assign
with other exemplars, the corresponding availability value will drop to less than 0 with
the updating of a

(
yi, yj

)
. Then, negative a

(
yi, yj

)
will decrease the effective value of the

similarities value d
(

yi, yj

)
by Equation (34) and removes the corresponding candidate

exemplars from competition. Especially, the self-responsibility value r
(

yi, yj

)
is set to the

input preference that the training data point yi becomes one of the exemplars of clusters
and reflects accumulated evidence that yi is an exemplar based on its input preference
tempered by how ill-suited it is for assignment to another exemplar.

After calculating the responsibility value, the availability value is updated to gather
evidence from the training data point as to whether each candidate exemplar makes a good
exemplar, as follows:

a
(

yi, yj

)
= min{0, d

(
yi, yj

)
+ max

k,s.t.k �=j
{a(yi, yk) + d(yi, yk)}} (35)

In addition, the self-availability value a
(

yi, yj

)
is updated as follows:

a
(

yi, yj

)
= ∑k,s.t.k �=j,k �=i max{0, r(yi, yk)} (36)

where a
(

yi, yj

)
reflects accumulated evidence that the training data point yi becomes an

exemplar. For data point yi, the data point yi that maximizes a
(

yi, yj

)
+ r

(
yi, yj

)
is chosen

to be the exemplar. Additionally, if i = j, then it is necessary to identify the data point yi
as the exemplar and assign its estimation value yi as the exemplar value mexemplar. The
set of all the mexemplar is denoted as Mexemplar. Based on each exemplar, one subset of
S f ather satisfies.

∀mexemplar ∈ Mexemplar, ∃Sson,k ⊂ Sson,k s.t. Sson,k

=
{

si : ∃xj ∈ Xnode, a
(

yi, mexemplar

)
+ r

(
yi, mexemplar

)
= argmax

{
a
(

yi, yj

)
+ r

(
yi, yj

)}}
.

(37)
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From above, the AP process with respect to the candidate node is conducted as follows:

Step 1: For
.
yi,

.
yj ∈

.
Ycandidate node, initialize the responsibility value r

( .
yi,

.
yj

)
as the Euclidean

distance d
( .

yi,
.
yj

)
with Equation (33), and set the availability value a

( .
yi,

.
yj

)
to zero;

Step 2: Update the responsibility value r
( .

yi,
.
yj

)
with Equation (34);

Step 3: Update the availability value a
( .

yi,
.
yj

)
with Equations (35) and (36);

Step 4: If r
( .

yi,
.
yj

)
and a

( .
yi,

.
yj

)
become stable, conduct Step 5, otherwise return to Step 2;

Step 5: For each sample
.
yi ∈

.
Ycandidate node, assign the sample data corresponding to

a
(

yi, yj

)
+ r

(
yi, yj

)
as exemplar node mexemplar and then generate the exemplar set Mexemplar;

Step 6: Separate S f ather with Equation (37).

3.3. Generate the Fault Diagnostic Tree under Minimum Conditional Criterion

Based on soft-sensor construction and subset division, the fault states of the target
system can be located by cutting the set of potential failure sets with the function of
sequences of soft-sensor nodes. In this section, we introduce how to generate the fault
tree using a potential soft-sensor node under heuristic strategy based on the minimum
conditional criterion. For the assigned failure set S f ather, the contains numbers of potential
sensor nodes corresponding to the candidate procedures. To choose the soft sensor for
fault tree construction, the condition entropy H(Ynode

∣∣∣ .
Ynode, ELMcandidate) is introduced

as follows:

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= −∑y∈Ynode

p
(
y,

.
y
∣∣ELMcandidate

)
log(y| .

y,ELMcandidate) (38)

Since the soft-sensor model is data-driven, the estimation value of the conditional entropy
is computed as follows:

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= ∑y∈Ynode

logp(y| .
y,ELMcandidate) (39)

Assuming the data information
(

Ynode,
.
Ynode

)
is subject to Gaussian distribution, then

.
H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
is simplified as follows:

.
H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
= ∑y∈Ynode

∣∣∣∣∣∣Ynode −
.
Ynode

∣∣∣∣∣∣2 (40)

For all candidate soft-sensor nodes, the node with the lowest conditional entropy is
selected to build the fault diagnostic tree. From above, the process to construct the fault
diagnostic tree follows:

Step 1. Initialize the root node Noderoot of the decision tree. Assign the father fault set
S f ather as the total fault set Stotal and set the data set Xnode as the whole training data
set. Take all the test procedures as the potential test set Tpotential for Noderoot. Set
T∗

sequence to ∅.
Step 2. Generate the potential soft-sensor node Nodecandi,tpotential

for each test procedure
tpotential ∈ Tpotential based on Equations (24), (28) and (31).

Step 3. Evaluate with Equation (39) the condition entropy
.

H
(

Ynode

∣∣∣ .
Ynode, ELMcandidate

)
for the entire potential soft-sensor node. Select the corresponding soft-sensor node
Nodecandi,tpotential

with the lowest condition entropy as the target node to the diag-

nostic tree, and update the T∗
sequence as

{
T∗

sequence, topt

}
. Additionally, remove topt

from Tpotential .

Step 4. Apply AP to separate the fault set S f ather based on
.
Ynode and assign the exemplar

reference Mexemplar with Equation (36).

36



Sensors 2022, 22, 2138

Step 5. For each subset Si in Sson, construct the extending node NodeSi . For each extending
node NodeSi , the father set is assigned as Si and the data set is constructed based on

AP result. T∗
sequence is initialized as

{
T∗

sequence, topt

}
.

Step 6. Generate the subset node by repeating Steps 2 to 5 until reaching the minimal
subset of failure mode. The construction process is completed when all the subnodes
of the failure tree are constructed.

With the minimum conditional criterion, the fault diagnostic tree is generated with
data-driven mechanisms and requires few engineering experiences. Thus, the generating
process is applicable to complex systems with insufficient knowledge about structures,
functions, and mechanisms.

With the diagnostic tree generated, the diagnostic process of the target system is
implemented as follows:

Step 1. Initialize the target node Nodetarget with the root node Noderoot of the diagnostic
tree. Assign the potential fault set Spotential to the total fault set Stotal . Set the target
sensor recording xtarget as ∅ and set the test sequence Tsequence to ∅.

Step 2. Conduct the new test procedure t∗ in the Nodetarget and obtain the sensor recording
xtarget,t∗ . Add t∗ into Tsequence and merge xtarget,t∗ into xtarget. Compute the estimation
of the target system

.
ytarget with ELMnode in Nodetarget by Equations (29) and (30).

Step 3. Find the optimal mexemplar in Mexemplar of Nodetarget with smallest distance. Locate
the subfault set S∗ as the updated Spotential with Equation (37).

Step 4. Search the soft-sensor node in the diagnostic tree with S f ather = Spotential and assign
the corresponding node as the new target node Nodetarget.

Step 5. Continue the diagnostic procedure by steps 2 to 4 until reaching the minimal subset
of the failure set. After the diagnosis is finished, achieve the final estimation by using
Equation (17).

4. Experiment

In this section, we use the analog circuit in [40] to evaluate the detection performance
of the proposed method with state-of-art methods. As Figure 5 shows, the target system
contains four second-order filters and one adding device. The detail of the system is
presented in Table 1. The tolerance of R1, R2, R3, R4, R5, R6, R7, and R8 is ±10% while
the tolerance of R9, R10, and R11 is ±1%. For capacitances, the tolerance is set to ±5%.
Under healthy operation, the transmission gain of Av1, Av2, Av3, and Av4 is within a range
of ±1%.

Here, the failures caused by different changes of amplifiers are taken into failure
detection. The failure modes are defined based on the range of transmission gain for Av1,
Av2, Av3, and Av4, as shown in Table 2. Since 80% of failures in real applications have a
single-failure mode, we only consider failure detection of single failure modes. For example,
the failure condition of Av1 is divided into five phases with different ranges of transmission
gain while the transmission gain of Av2, Av3, and Av4, are collected with four different
frequencies (10 Hz, 100 Hz, 10 kHz, and 100 kHz) of input signals. The details are shown in
Table 3. These voltage outputs from Av1, Av2, Av3, and Av4 are regarded as the potential
test points for failure detection. In total, there are 16 candidate test points and 17 potential
fault states that consider the health state.
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Figure 5. Target analog circuit.

Table 1. Details for the components of the circuit.

Components Nominal Value Tolerance Subsystem

R1 320 kΩ 10%

High-Pass Filter 1 F1 = 10 Hz
R2 320 kΩ 10%
C1 50 nF 5%
C2 50 nF 5%

Av1 1.75 1%
R3 32 Ω 10%

Low-Pass Filter 1 F2 = 100 kHz
R4 32 Ω 10%
C3 50 nF 5%
C4 50 nF 5%

Av2 1.75 1%
R5 320 Ω 10%

High-Pass Filter 2 F3 = 10 kHz
R6 320 Ω 10%
C5 50 nF 5%
C6 50 nF 5%

Av3 1.75 1%
R7 32 kΩ 10%

Low-Pass Filter 2 F4 = 100 Hz
R8 32 kΩ 10%
C7 50 nF 5%
C8 50 nF 5%

Av4 1.75 1%
R9 1 kΩ 1%

AdderR10 1 kΩ 1%
R11 1 kΩ 1%
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Table 2. Denotation of fault states.

Fault Index Av1 Value Range Av2 Value Range Av3 Value Range Av4 Value Range

S0(normal) (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S1 (1.60,1.70) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S2 (1.80,1.90) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S3 (1.50,1.60) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S4 (1.90,2.00) (1.70,1.80) (1.70,1.80) (1.70,1.80)
S5 (1.70,1.80) (1.60,1.70) (1.70,1.80) (1.70,1.80)
S6 (1.70,1.80) (1.80,1.90) (1.70,1.80) (1.70,1.80)
S7 (1.70,1.80) (1.50,1.60) (1.70,1.80) (1.70,1.80)
S8 (1.70,1.80) (1.90,2.00) (1.70,1.80) (1.70,1.80)
S9 (1.70,1.80) (1.70,1.80) (1.60,1.70) (1.70,1.80)
S10 (1.70,1.80) (1.70,1.80) (1.80,1.90) (1.70,1.80)
S11 (1.70,1.80) (1.70,1.80) (1.50,1.60) (1.70,1.80)
S12 (1.70,1.80) (1.70,1.80) (1.90,2.00) (1.70,1.80)
S13 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.60,1.70)
S14 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.80,1.90)
S15 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.50,1.60)
S16 (1.70,1.80) (1.70,1.80) (1.70,1.80) (1.90,2.00)

We apply Monte Carlo simulation to generate 20 samples for each failure mode by
using Pspice software to access data.

According to the traditional PHM framework shown in Figure 3, the optimization
process requires binary fault marks based on human experience and design detection
circuits for each fault state. Since there are four fault states for each second-order filter, the
detection is a large burden on circuit design. Testability design may also fail to relate the
relationship between binary estimations of different test procedures. On the other hand,
the maintenance design suffers low estimation efficiency as the testability does not consider
the detailed information of sensor recordings.

Unlike the sequential framework, the proposed method considers the direct sensor
information under testability and maintenance design. With cooperative procedures in
Figure 4, the proposed method generates the candidate soft-sensor nodes for maintenance.
At the same time, the testability design uses the minimal conditional criterion to generate the
optimized diagnostic strategy. The minimal conditional criterion enhances the flexibility of
testability design by considering the soft-sensor estimation in maintenance phases. On the
other hand, the maintenance performance with full sensor recording increases information
usage efficiency. Instead of human-experience processing, the proposed method saves
many costs during the PHM design. To evaluate diagnostic performance, we compared our
method with the hidden Markov method (HMM), support learning machine (SVM), and
radial basis function (RBF) by using all recordings of 16 test points as input information. To
estimate the feature extraction performance and learning machine function, we also took
HMM and SVM with principal component analysis (PCA) and extreme learning machine
(ELM) into comparison. For each method, we used 70% of the samples in each fault state as
the training samples to construct the model and the other 30% as the sensor information
of target systems. We assigned 100 kernels or hidden nodes for our soft-sensor nodes
for the SVM, RBF, and ELM models. Each method was conducted 30 times to obtain the
average performance.
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Table 3 shows the FAR, FDR, and accuracy of each method. HMM has high diagnostic
accuracy without feature extraction, especially for S0. This is because HMM has a higher
statistical analysis ability than SVM and RBF. However, HMM gives poorer FAR than the
other methods. Unlike HMM and RBF, SVM and ELM have lower FAR and become more
sensitive to false-negative samples by the advantage of the learning machine. Comparing
HMM, SVM, PCA–HMM, and PCA–SVM, PCA improves HMM diagnosis for S5 and S8
and proves that proper feature extractions can benefit from the diagnostic performance.
Our method has the lowest FAR, the highest FDR, and the highest accuracy compared
with the other methods. Based on the same sensor recordings or even less information, the
generated strategy provides an accurate location for all test samples for all 16 fault states.
Hence, with ensemble learning based on soft sensors, the functions of sensor recording are
largely improved.

Figure 6 shows the diagnostic tree of our method. All fault conditions are separated
and recognized with 13 individual testing sequences with the tree structure. Each testing
sequence takes less than 5 test procedures and the whole diagnostic tree contains only
9 testing points out of 16 potential test points. In other words, the fault state of the target
systems is located within 2–5 test procedures instead of collecting all 16 sensor recordings.
From above, the diagnostic tree has higher efficiency and lower cost testing consumptions
than diagnostic strategies that require full-tests built by SVM, HMM, and ELM, as well as
the constrained diagnostic tests strategies that require PCA-based methods. Additionally,
unlike traditional diagnostic trees with binary structures, our method separates the fuzzy
set with the evaluation results from constructing and dividing modules. As a result, our
testability design extends the diagnostic flexibility and improves the diagnostic accuracies
of each fault mode.

Based on soft-sensor construction, the potential test accuracies of the diagnostic tree
root node are compared based on different test procedures. As shown in Figure 7, dif-
ferent test procedures differ on diagnostic accuracies, especially for S0–S5. Therefore, the
minimum conditional criterion-based fault tree constructions can efficiently select proper
soft-sensor nodes into the diagnostic tree and ensure that the diagnostic FAR and FDR and
their accuracies receive high improvement under the constructing process.

The affinity propagation result from the diagnostic-tree-root node is presented in
Figure 8. As the root nodes evaluate all samples, the affinity results are generated with
fault mode evaluations of all 17 fault conditions (from S0 to S16). Here, we depict the
affinity propagation result from three fault states, which occur at the same space, such as
Av1 failures (S0, S1, and S2), Av2 failures (S5, S7, and S14), and Av4 failures (S12, S13, and
S15). Additionally, we present the affinity propagation results with three failure modes in
different places: S2 in Av1, S7 in Av2, and S14 in Av4.

From Figure 8, the soft-sensor nodes provide distinguishable BPA evaluations for each
data point. The affinity propagation generates sample clusters from different dimensions
adaptively with the data point similarity measurements. Most data points are clustered
with topological closer clusters; others may differ on other dimensions. Compared with
traditional clustering strategies for diagnosis, affinity propagation provides practical, auto-
matic fault-state divisions and saves much human labor on engineering applications.

Finally, the sequence testing performance for fault states is shown in Figure 9. Here,
we present the test sequence of S0, S3, S8, and S15. These four test sequences achieve their
best diagnostic accuracy within three to five test procedures, and the test efficiency is much
higher than traditional maintenance methods. Test accuracy grows increasingly for all
test sequences as test nodes are added into the test procedures. Especially for the test
sequence of S0, the diagnostic accuracy is less than 60% in the first test procedures as the
corresponding fuzzy state set contains many members. However, the accuracy grows fast
as more nodes are added into the sequences and the potential states become smaller. Thus,
the ensemble function of soft-sensor nodes improved the diagnostic performance with
high efficiency.
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Figure 6. Analog circuit diagnostic tree.
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Figure 7. Analog circuit diagnostic tree potential ELM model accuracy comparison.

 

 

Figure 8. Potential ELM model accuracy comparison.
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(a) (b) 

 
(c) (d) 

Figure 9. Test sequence accuracy comparison: (a) S0 test sequence, (b) S3 test sequence, (c) S8 test
sequence, and (d) S15 test sequence.

From above, our method has better diagnostic accuracies and lower FARs compared
with other state-of-art diagnostic methods. Additionally, our diagnostic strategies take only
9 out of 16 tests points and save much test assignment consumption. For each fault state, the
diagnostic procedures provide 1 test sequence within 5 test procedures. Thus, the diagnostic
procedure enjoys high efficiency for applications. Finally, the affinity propagation enlarges
the diagnostic flexibility and saves much human labor on testability design.

5. Conclusions

Along with a short production cycle and rapid development of design technology,
existing PHM techniques have become impractical and fail to match the structural and
functional complexity. Prior knowledge preparation costs too much in human labor and
binary decision-making strategies waste the entailed sensor recording, especially for large
complicated systems.

We propose a test strategy optimization based on soft sensing and ensemble belief
measurement to overcome these weaknesses. The proposed method constructs a closed loop
between testability design and maintenance design, generating an efficient fault diagnostic
tree with ELM-based soft-sensor nodes. Unlike traditional diagnostic approaches, our
diagnostic tree adaptively separates the fault sets by affinity propagation, and the soft-
sensor nodes are assigned with the minimum conditional criterion. Thus, our methods can
achieve high efficiency and flexibility for diagnostic processes.

The experiment results prove that our methods have minimum FAR and maximum
accuracies on fault diagnosis among state-of-art methods. Additionally, our methods
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require fewer test procedures and increase the test efficiency compared with other methods.
Because the construction processes are based on ELM and AP, the PHM design saves
much human labor and becomes more flexible compared to traditional PHM approaches.
Hence, the proposed method has good performance on test strategy design. However, the
proposed method uses an offline construction technique for the diagnostic tree. As a result,
the diagnostic performance only depends on the assigned fault set, and the recordings of
online operations do not work on the PHM design. Therefore, the online updating of the
diagnostic strategy should be further investigated.
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Abstract: The main objective of the present study is to highlight the role of technological (soft sensor)
methodologies in the assessment of the neurocognitive dysfunctions specific to neurodevelopmental
disorders (for example, autism spectrum disorder (ASD), attention deficit hyperactivity disorder
(ADHD), and specific learning disorder). In many cases neurocognitive dysfunctions can be detected
in neurodevelopmental disorders, some of them having a well-defined syndrome-specific clinical
pattern. A number of evidence-based neuropsychological batteries are available for identifying these
domain-specific functions. Atypical patterns of cognitive functions such as executive functions are
present in almost all developmental disorders. In this paper, we present a novel adaptation of the
Tower of London Test, a widely used neuropsychological test for assessing executive functions (in
particular planning and problem-solving). Our version, the Tower of London Adaptive Test, is based
on computer adaptive test theory (CAT). Adaptive testing using novel algorithms and parameterized
task banks allows the immediate evaluation of the participant’s response which in turn determines
the next task’s difficulty level. In this manner, the subsequent item is adjusted to the participant’s
estimated capability. The adaptive procedure enhances the original test’s diagnostic power and
sensitivity. By measuring the targeted cognitive capacity and its limitations more precisely, it leads
to more accurate diagnoses. In some developmental disorders (e.g., ADHD, ASD) it could be very
useful in improving the diagnosis, planning the right interventions, and choosing the most suitable
assistive digital technological service.

Keywords: computerized adaptive testing (CAT); soft-sensor based diagnosis; executive functions;
neurodevelopmental disorders

1. Introduction

Technological development from the second half of the 20th century on has contributed
to the development of the sciences of the mind in at least two ways. First, the advent of com-
puters gave rise to a theoretical breakthrough in understanding cognition as fundamentally
information processing. This insight was reinforced, from the very beginning (e.g., [1,2])
by various approaches to computational modeling of cognitive functions. Second, a great
number of tools and applications such as brain imaging, data processing, and other comput-
erized and soft-sensor-based forms of data collection came in to support empirical studies
and hypothesis testing. One part of this development was that of cognitive neuropsychol-
ogy, which has, among other things, led to a deeper understanding of neurodevelopmental
disorders [3,4]. The rapid progression of infocommunication technology has contributed to
the process of fine-tuning psychometric tools based on neuropsychology [5,6]. At present,
traditional paper-and-pencil tests are giving way to their computerized counterparts in
neuropsychological practice, just like they do in many other areas.
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Paper-and-pencil tests are the name given to the various measurement procedures
developed to assess psychological functioning, despite the fact that only some of the tests
currently in use require the use of paper and pencil. The paper-and-pencil tests are designed
to explore objective performances and usually have a fixed formed, linear arrangement, i.e.,
each assessment follows the same strict procedure ([7]).

2. Classical or Technology-Based Testing

Technology-based assessment (TBA) can involve the use of any information and
communication technology (ICT) device, such as a laptop or desktop computer, smartphone,
tablet, and various applications running on these devices. Thus technology-based testing
includes computer-based assessment as well as e-testing (for review see [8]). TBA simplifies
the test assessment and administration and results in more valid and reliable measurement
data. It is also more time- and cost-efficient, provides immediate assessment and feedback,
eliminates data loss, and allows the development of interactive exercises, multimedia
elements, and simulations [7,9,10].

The computer implementation of paper-and-pencil tests can take place at several
levels, exploiting different potentials. On the one hand, existing paper-and-pencil tests can
be converted into digital form without virtually any change [11]. Using the technology
of soft sensors at this level offers a number of benefits, such as immediate scoring and
feedback, and even higher motivational power. On the other hand, traditional tests can also
be implemented in such a way that meanwhile the assessment tool is extended (e.g., by
including multimedia tools, by collecting additional information such as reaction time, eye
movement tracking, etc.), which allows the simultaneous handling of stimuli of multiple
modalities from both the input and the output side. Thirdly, a well-developed task bank can
be created, which can be the basis for automatic item generation. This creates an opportunity
to give participants different tasks of the same difficulty. In assessing individual variations
in cognitive and emotional development, a much more specific and fine-tuned diagnosis can
be made at this level [6,12]. At the highest level, a so-called adaptive testing procedure can
be implemented by introducing novel test algorithms using fully parameterized task banks.
This allows the creation of tasks that match the participants’ abilities so that they receive
tasks with the greatest diagnostic power in their case. All of this would be unachievable in
linear paper-and-pencil testing. So adaptive testing exceeds the functionality of the original
test and significantly increases the diagnostic sensitivity of a given test [10,13–16]. For
example, dimensions of cognitive capacity and their limits can be measured more accurately,
allowing more sensitive testing procedures to be developed. This may help to clarify the
diagnosis of certain disorders (e.g., Parkinson’s disease or developmental disorders such
as ADHD or dyslexia) [5,17–19]. This last level is known in the literature as computerized
adaptive testing (CAT), and it has the greatest potential [14,20,21]. In our interpretation,
CAT and computer-based testing (CBT) are not two dichotomous measurement systems,
but there are different levels of CBT. In our opinion, CAT is the highest form of CBT with
the most potential and diagnostic power. The essence of CAT is to create an individualized
test situation. The software immediately evaluates the person’s answer, which determines
the difficulty of the next task, and the participant is given items from the task bank that
match their estimated ability level. To achieve this, two key components are needed:
(1) a precisely calibrated item bank, and (2) a suitable algorithm that can estimate the
participant’s ability level during testing. For the first, that is, calibrating item difficulty, we
used item response theory (IRT). For the second component we constructed an algorithm
to choose the subsequent item based on the participant’s performance on earlier items
(see below for details) [13,22,23]. In addition to its many advantages, CAT has some
disadvantages as well. It can aggravate unequal opportunities, as the lack of experience
and the unfamiliarity with technology can have a negative impact on results. Using
technology-based assessment care must be taken to avoid the disadvantage of certain
groups. At the same time, it is worth considering whether the lack of experience can be
eliminated by the widespread use of technology [9].
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Another disadvantage is the high start-up costs. Developing a calibrated task bank of
hundreds of items is time-consuming and costly [24]. In the long run, however, the benefits
listed above will offset the significant initial resource inputs, so that significant savings can
be made later.

Technology-based testing also raises a number of psychometric questions: although
technology-based procedures are more and more widespread, before they replace tradi-
tional paper-and-pencil tests, it is necessary to examine whether the two different methods
measure the same construct in psychological terms, i.e., whether they produce equivalent
results to traditional tests. Therefore, similar results are expected for paper-and-pencil
and technology-based tests, unbiased by any medium effect. (The type of the test used in
the study—paper-pencil vs. technology-based procedure—should not result in significant
variance.) However, this also raises the question of whether it is necessary for the results to
be equivalent at all. Future research and impact studies will provide the answers to these
questions [8,11].

3. Technology and Neurodevelopmental Disorders

Using tests for assessing the characteristics of atypical development is common prac-
tice in almost all developed (OECD) countries, but the purpose and method of assessment
and the range of people assessed varies considerably [25,26]. There is a general trend for
digital test developments to appear primarily in the assessment of a wider student popula-
tion for screening and measuring more generalized knowledge (e.g., classroom participant
tests, knowledge level, and academic performance). In the case of children and learners
with special educational needs, digital test development efforts tend to focus on specific,
more delimited functional areas (e.g., attentional and executive skills). Technology-based
measurement and assessment offer a number of opportunities for the identification of
developmental disorders. The technology enables the specialist—educator, teacher, psy-
chologist, doctor—to make a more efficient (e.g., less time-consuming, more valid, more
reliable) diagnostic decision, to determine whether a particular disorder can be diagnosed
in a certain participant, and makes it possible to assess personality, reveal knowledge or
ability profile. For the person concerned, the indirect benefit is that the diagnosis is made
more quickly, the results of the diagnosis or assessment are more precise and reliable, so
the person can have the most suitable support and education adjusted to his/her personal
and ability profile [27].

Overall, the countless possibilities of the digital interface (tablet, smartphone, laptop,
etc.) enable an optimal, cost-effective, and more precise investigation of atypical patterns
in the cognitive architecture [6]. It is also important to stress that digital assessment of
atypical development takes into account well-known standards regarding service and
development [26,28]. One of these standards is not to develop separate assessment tools
for the typical and for the atypical development, but to create “design for all”, so the
main universal concept is to ensure equal access and use [29,30], which of course includes
needs-based design.

4. The assessment of Executive Functions (EF) in Neuropsychology

In many cases, neurocognitive dysfunctions can be detected in neurodevelopmental
disorders (ASD, ADHD, specific learning disorder), some of them having well-defined
syndrome-specific clinical pattern [31,32]. Many evidence-based neuropsychological bat-
teries are available for identifying these domain-specific functions. Some of these atypical
cognitive functions, although in different patterns, are present in all developmental dis-
orders, such as the executive functions [33–35]. Executive functioning is an umbrella
term for the general component of all complex cognitive processes that play a key role in
solving novel, difficult and goal-oriented tasks, and in flexibly adapting to environmental
changes [36,37]. In fact, the function of executive processes is the differential coordination
of mental functioning, the coordination of psychological processes along the lines of per-
ception, emotion, cognition, and execution [37]. It can be defined as a set of capabilities
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that allows you to represent distant goals, develop plans for achieving the goals, orga-
nize and control the cognitive and psychological functioning and behavior, monitor the
environment, and, if it is necessary, do flexible modification on the developed plans [38].
This ensures the regulation of behavior, including self-regulation [39] and, as the authors
of [38] point out, this is what distinguishes humans from the instinctive and reflexive
responses of animals. Although there is no consensus on the precise definition of executive
functions, most authors state the multidimensional nature of EF, differed by the number of
components, processes, and complexity. Among the components of executive function can
be mentioned the inhibitory control or response inhibition, working memory, updating,
and shifting [40,41].

5. Goal of the Present Study

The aim of this paper is to present CAT-based procedures of a well-known and widely
used neuropsychological test assessing executive functions as a soft sensor.

Although most neuropsychological tests of executive functions are already computer
based, our search did not reveal any studies presenting CAT-based versions of these
tools. To understand why, we need to know that the development of psychometric tests
used in the assessment of neurodevelopmental disorders is based mostly on classical test
theory. Classical test theory (CTT) focuses on total test score; it characterizes item difficulty
as the relative frequency of examinees who answer an item correctly and derives item
discriminability from item-total correlations. Item response theory, on the other hand,
focuses on individual items characterizing item difficulty and examinee ability on the same
scale whose units are logits (log odds of the probability of correct response). An important
advantage of IRT over CTT is that the former assures that the joint difficulty–ability scale is
at interval level [13].

In general, most neuropsychological tests are based on classical test theory. At the
same time, the development of item banks at considerable financial cost seems unnecessary,
as the main function of the tests is to help the diagnosis and differential diagnosis, which
can be achieved best by increasing the sensitivity of the items rather than by creating a
large item bank.

Based on adaptive test theory, we developed the Tower of London Adaptive Test and
the Corsi Adaptive Test, measuring different aspects of executive functions, the former
is used for assessing planning and problem-solving ability, while the latter is used for
assessing visual working memory. In this paper, we present the Tower of London Adaptive
Test (ToLA). Our aim was to assess the level of ability as sensitively as possible and do so in
a relatively short time. This helps us, for example, eliminate the effect of attention disorder
(i.e., by abolishing the need to maintain attention for an extended time) from planning
and strategy-making ability, thereby enabling a more accurate differential diagnosis. In
order to achieve this, the focus was not only on creating an item bank but on the analysis of
the characteristics (e.g., solution time, number of steps required to solve a given item) of
initially well-thought-out items and the use of these results.

In addition to the above-mentioned benefits, the synergy of this kind of adaptive
solution with the soft sensor system also has a higher added value, hence a very precise
measurement is enabled this way in terms of the interactions which is often time and effort-
demanding from the specialist’s side during or after the tests. Additionally, the evaluation
phase is made less burdensome for the specialist by only presenting the (often calculated)
measures necessary during a diagnosis. In this respect, this study has a significant added
value and innovative power in the assessment of neurodevelopmental disorders with
soft sensors.

6. Administering the Tower of London Adaptive Test

6.1. Background

The Tower tasks constitute a widely used method for examining planning and strategic
thinking as subcomponents of executive functions. Based on the earlier Hanoi Tower task,

50



Sensors 2022, 22, 5880

the London Tower task was developed by [42], for studying the planning processes of
patients with frontal lesions. Attaining the goal state using the smallest number of moves
often involves a bypass strategy whereby initially the distance from the goal state needs to
increase in order for the key moves to become feasible (according to some metrics at least,
e.g., how many of the discs are currently located in the stack where they should be in the
end state).

In the Tower of Hanoi task, discs of different sizes piled up on a peg from largest at the
bottom to smallest on top have to be transferred to one of two similar pegs in such a way
that only one disc is moved at a time, and bigger discs must never be placed on smaller
ones. The minimum number of moves needed is 2n − 1 for n discs in the initial pile.

In the Tower of London task, there are four discs that are the same size but all are
differently colored; they are located in stacks of different heights—typically one stack can
hold three discs, whereas two others can hold two discs each. The discs are arranged in
a starting configuration, and the required goal configuration is also shown; the task is to
reproduce the goal configuration from the starting one while never placing more discs in a
stack than what it can hold.

The development of the tests in their current form was preceded by a pilot study; the
results of which can be found in [43].

The current study is based on the results of an earlier pilot study. In 2015 we had an
opportunity to develop computer-based tests for education centers involved in special-
needs diagnoses. Since up to that point digital testing had not been applied in Hungary
in any systematic way, in developing tests and their framework we had to build on the
limited available means at the time. (The pilot study was supported by EU funds, in
particular the Social Renewal Operation Programme—project number TÁMOP-3.4.2.B-12-
2012-0001.) In this pilot project, we developed reading and language tests along with a few
digitalized procedures to measure neurocognitive functions. The software was developed
for touch screen tablets and optimized for the Windows 8.1 operation system. The tests
were validated on a large sample of atypically developing children in 2014–2015 (please see
the Results for detail). The American Psychological Association’s (APA) ethical standards
were followed to conduct this study. Written informed consent was obtained from the
parents of all participating children. The participants were informed about their anonymity
protection as well as about the possibility to withdraw from the study at any point during
the process. Every participant was given a code for research purposes. The most important
result of this pilot study was a clinical trial, and the development of corresponding test
norms (see [43] and Appendix of [43]). Within a few years, however, the instruments
and operation system for which these tests were developed became outdated, therefore
their regular use grew more and more difficult, even though the need for their application
persisted. In the present study, we substantially reworked our earlier computerized tests
of executive functions including the Tower of London (TOL) Test. This new version has
not been subjected to clinical trial yet, however, here we offer a reanalysis of the TOL data
collected by the first version and published earlier. Our purpose in the present study is to
create a web-based soft sensor for multiple users which suits the needs of both the users
and clinical experts and can be developed further whenever the need arises.

6.2. The Framework

As a first step toward transforming classical neuropsychological tests into an adaptive
form, we developed a framework that can be applied to several instruments. The framework
comprises three major phases. The first is Familiarization, which allows the participant to
become familiar with the interface and understand the task, followed by the Assessment
level, which aims to assess the capabilities of the participant and is the starting point for the
Testing level. Finally, during the Testing phase, the computer generates tasks of different
difficulty levels based on the score obtained at the Assessment level (this is the adaptive
feature of our algorithm). An overview of the described system can be seen in Figure 1.
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Figure 1. Overview of the system with the three phases described.

This framework provides an opportunity for the participants to familiarize themselves
with the test situation before the actual testing, and to train themselves in the way of
responding. All of these stages are supported by multimedia elements (including sound
files and animation). In the so-called verification phase belonging to the Familiarization
phase, the participant receives corrective feedback on the solution of the task, while the
examiners can verify the correct understanding of the task. The standardized structure of
the test helps the participant in adapting to the tasks. The evaluation is also automated; the
different test parameters and scores are displayed in an output file.

6.3. Software

The developed software application was optimized for web-based usage for Chromium-
based browsers. This ensures great flexibility and the test is not restricted to running on
personal computers, it also has the ability to be used with smartphones or tablets, merely
an internet connection and a browser are needed.

During the development, an important factor was that the system needs to be designed
for usage by professionals as they can properly interpret the test results. Therefore, a Laravel
8 framework-based portal was created around the test that handles the access to the test
and its results. When choosing the framework of the portal, it was considered that it should
be a stable technology that is widely used this way during further development it is not
tied to a specific developer in the future, and due to its widespread use, fewer bugs or
vulnerabilities can be expected.

Registered professionals can enroll participants for testing. Participants must be
of sufficient age to be allowed by the framework to complete the test. The data of the
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professionals and the participants can both be modified anytime. The participants are in
1-N relation to the tests that can be completed. The usage of this relation was necessary
in order to enable the tracking of the participant’s development. Sensitive data are stored
through a cryptographic hash function, which prevents them from being extracted from
the database in an event of unauthorized access.

The test itself is a JavaScript-based game with a logger of events. Its framework is
based on Phaser 3, which greatly facilitates easy implementation. The essentially open
source HTML5 framework, as a built-in functionality, handles various web browsers, while
providing sufficient flexibility and not limiting the development. In Phaser, the test’s levels
of difficulty are built upon so-called “Scenes” in Phaser. These scenes are accessed by the
test via the system’s automation according to the predefined conditions (i.e., whether the
participant gave a good or bad answer). At the end of a test, the data is sent to the server at
the touch of a specific button by the specialist.

According to the current implementation, the test consists of the following three
phases as mentioned in Section 6.2:

• During the Familiarization phase, an animated tutorial is performed, which is designed
to get high attention from the participants’ age group (see Figure 2). At the end of
the Familiarization, there are two test cases with feedback. There is no measurement
during the Familiarization phase test cases.

• The Assessment phase has a maximum of four test cases. The four assessment phase
tests have different levels of difficulty. Here the predefined stopping condition is a
bad answer, the assessment phase ends and the Testing phase begins.

• Finally, according to the participant’s results, the Testing phase is started at a level
defined by the results from the Assessment phase. The number of all test cases is
10 × 3, there are 3 test cases per level.

Figure 2. Tutorial with animation during the Familiarization phase.

During the game, it is considered a wrong solution if the participant does not reach
the specified layout or the allowed time expires or the participant runs out of the allowed
number of moves. In this case, the program sets an error flag but lets the participant keep
on working, does not advance the tests, and does not indicate the failure despite that the
test’s answer is already recorded as an incorrect one.

If the participant has solved all the assessment tests then he/she starts the Testing
phase from level 7. Otherwise, he/she has to start the level prior to the unsolved level.
There must be at least two correctly completed test cases from the three for the participant
to pass a level.

Only discs under the inscription “GameSpace” and discs on the top of the stack can be
moved. They are moved by dragging them and dropping them to the desired place. The
game saves the number of the given level and the flags of the errors. From the start of the
test case, all the events are logged in milliseconds (i.e., when a disc is grabbed or is dropped,
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and when the participant pressed the “Done” button). The program then determines, based
on the disc coordinates, whether the layout of the discs is the same as the target layout. The
system checks whether there were any error flags. After the evaluation, the system chooses
the new level of difficulty according to the algorithm and the participant automatically
enters the next test case or the testing is stopped.

The saved data is stored on a server categorized by participant ID. By clicking on the
participant’s data sheet, the system returns the results of the completed tests ordered by
date and in tabular form. In this case, it is checked whether the requester has the right to
access the given data or not: so the participant belongs to the given user, otherwise, the
request is refused and data is not sent from the server to the client.

6.4. Test Administration

The development of the Tower of London Adaptive Test required the determination of
difficulty levels, the assignment of the optimal duration, and the number of steps required
to solve the problems, as well as the development of the algorithm. Difficulty levels
were determined by the number of steps needed to solve certain tasks. For selecting the
most appropriate items for each difficulty level we used computer simulation. Based on
simulation it became clear that upwards of the eight-step task, the three-disc space is no
longer sufficient. Therefore, from level 1 onwards, we introduced not only the three-disc
but also the four-disc task, so that children could get familiarized with both arrangements
(see Figure 3).

During the task, the participant had to arrange the discs according to the configuration
shown on the top of the screen. Only one disc was allowed to be moved at a time, and
the number of discs piled up in a stack could not exceed stack height (see Figure 3). There
were ten difficulty levels in total (corresponding to the number of moves necessary to
reach the goal configuration) with three different tasks at each level. If the participant
successfully solved two out of the three tasks, he/she passed the level and proceeded to the
next difficulty level. If the level was not passed, a task from a lower difficulty level followed.
Figure 4 summarizes the adaptive testing algorithm that was used for data collection in our
earlier study [43].

The duration and number of steps for solving a given problem were limited, and both
of them could be monitored on the screen. The test was interrupted if two consecutive
levels were not passed.

Figure 3. Screenshot of the gamespace during the Tower of London Test.
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Figure 4. The algorithm of Tower of London Adaptive Test. Blue arrows represent the step if a test
level is done, and red arrows the failing of a test. D3 and D4 represent the number of discs in the test
case (three discs and four discs respectively). MA denotes the allowed maximum moves, and TA
stands for the allowed maximum time.

However, in the original study, we set high limits for both time and number of steps. In
particular, at each difficulty level the number of allowed moves was twice that of minimally
necessary moves (e.g., 20 for problems that can be solved in ten moves). Evaluating the
collected data using these high limits resulted in a ceiling effect (that is, high success
probabilities for even the most difficult items). Therefore, in the current reanalysis we
set lower maxima on the moves allowed, at each difficulty level. That is, some responses
that were eventually successful, but used many more moves than necessary were now not
accepted as correct. Put another way, if the required strategic planning was diluted by
too much trial and error on the part of the participant, we did not score the performance.
Figure 4 shows the new parameter values (see the upper values in the small red rectangles
attached to ovals representing difficulty levels).

6.5. Analysis and Results

As mentioned above, the development of our present test was preceded by a pilot
study [43]. In this study, the data were collected by our adaptive algorithm, and the results
were analyzed by classical test theory. In what follows we reassess these data, and analyze
them using item response theory.

The original sample consisted of 302 children of whom 214 were typically developing,
and 84 had a learning disorder (dyslexia and/or attention deficit). All children were
native Hungarians from different settlement types in Hungary. Although the sample was
not representative (i.e., not compiled with the assistance of the Central Statistical Office),
care was taken for the sample to approximate the characteristics of the population of
same-aged children in Hungary, as well as possible. Type of residence, parents’ level of
education, and gender ratios were taken into account to this end. The mean age was
9.1 years (sd: 1.0 yr); the youngest participant was 7 years old, whereas the oldest one
was 12 years. There were 102 second graders, 91 third graders, and 105 fourth graders
in the sample; two participants were in grade 5, and two were in grade 6. Exclusion
criteria for the neurotypical sample were premature birth; sensory impairment; any extant
neurological syndrome (e.g., epilepsy); taking any medicine affecting the nervous system;
non-promotion (repeating a school year); diagnosed need for special education (dyslexia,
dyscalculia, ADHD, intellectual disability). Inclusion criteria for the clinical sample were a
diagnosed disorder of reading, writing/orthography, or arithmetic ability; a diagnosis of
ADHD; taking corresponding medications was not a reason for exclusion. Diagnosis took
place according to the Hungarian psychological and special education protocol: assessment
was conducted in psychodiagnostic centers based on teamwork.

Data used in this study was collected from 214 typically developing children (age
range: from 7.08 years to 11.92 years; mean: 9.00 years, sd: 1 year; 99 females, 115 males).
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Each participant completed an adaptive testing procedure involving 30 TOL problems
as items. The items were divided into ten broader levels of difficulty according to the
minimal number of moves necessary to reach the solution (1 to 10; three items at each level).
The probability of a correct response was readjusted by lowering limits on the maximum
number of moves at each level; the new limits are summarized in Table 1.

Table 1. Difficulty adjustment by setting maxima on the number of moves allowed in the Tower of
London Test. Exceeding the number of allowed moves for an item resulted in a score of 0 for that
item regardless of whether the participant eventually reached the required configuration or not. As a
result of this adjustment, the probability of correct response to the easiest item was 0.991, whereas
that to the most difficult one was 0.271.

Level (number of minimally necessary moves) 1 2 3 4 5 6 7 8 9 10
Moves allowed 1 3 4 5 7 8 10 11 12 14

Theoretically, there is no guarantee that two problems with the same number of mini-
mally necessary moves are equally difficult from a psychological point of view. Therefore
there is no reason to expect batches of three items to have identical (or nearly identical)
difficulty indices (theta values in item response theory used below), and for this reason,
initially, each item was entered in the analysis. However, five of the items were so easy as
to produce extreme, and in one case, obviously incorrect difficulty estimates. (The item
with a grossly incorrect theta estimate was one with 100% correct responses. This item was
subsequently omitted from the analysis along with four others which resulted in 212 or 213
correct responses out of 214).

Note also that the guessing parameter can be reasonably ignored in our case as there
is a vanishingly small chance for a participant to come up with the correct solution to a
TOL problem by randomly moving discs. (In fact, for the simplest problems that require
only one move, the probability of a random correct response may be up to 1/3, but as
the number of necessary moves increases, the probability of correct guessing rapidly
falls off. Thus there is no stable level for the probability of correct guessing. Moreover,
due to the adaptive procedure used, most correct responses to the simplest problems
were granted to participants without actually administering the items to them, so correct
guessing did not seem to have played an important role in these cases. In further studies,
however, an option is to omit extremely simple problems altogether from the analysis.)
Therefore a 2PL, dichotomous items model was suitable for our purposes. We used the
Latent Trait Models (ltm) package in R to conduct the analysis [23,44]. (Latent trait models
assume that all test items measure the same underlying ability relying on largely the same
mental processes. Given that the TOL test comprises tasks of one type, this assumption
is reasonable in the present case. Each such model uses at least one parameter, namely
item difficulty, which is calculated from the probability of correct response for an item
using the sigmoid—or logistic—function. 1PL—that is, one-parameter logistic—models
are built on the difficulty parameter alone, 2PL models introduce, in addition, an item
discriminability parameter, whereas 3PL models include a third parameter which is the
probability of correct guessing [45]). Table 2 shows the model summary.
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Table 2. Summary of the 2PL model parameters.

Difficulty Discrimination
Value std.err z.vals Value std.err z.vals

Item_1_2 −4.8904 1.9344 −2.5281 0.9907 0.4987 1.9866
Item_3_1 −4.9173 2.006 −2.4513 1.1036 0.6024 1.8318
Item_3_2 −4.3959 1.4469 −3.0382 1.0487 0.4528 2.316
Item_3_3 −2.957 0.8585 −3.4443 0.6356 0.1981 3.2088
Item_4_1 −2.5104 0.5025 −4.9956 1.0311 0.2511 4.1064
Item_4_2 −2.0959 0.3384 −6.1936 1.3667 0.294 4.649
Item_4_3 −2.1625 0.3542 −6.1046 1.3482 0.2946 4.5768
Item_5_1 −1.4868 0.2948 −5.0429 1.0414 0.2134 4.8809
Item_5_2 −1.1268 0.347 −3.2473 0.6743 0.1731 3.8946
Item_5_3 −0.7598 0.2605 −2.9172 0.7722 0.1812 4.2625
Item_6_1 −0.6452 0.1684 −3.8325 1.3412 0.2423 5.5359
Item_6_2 −0.8772 0.1888 −4.6455 1.3214 0.2396 5.5148
Item_6_3 −0.504 0.1139 −4.4251 2.7899 0.491 5.6826
Item_7_1 0.1914 0.2075 0.9228 0.7322 1855 3.9468
Item_7_2 −0.7521 0.1988 −3.7842 1.0973 0.2121 5.1743
Item_7_3 −0.1788 0.1442 −1.2404 1.2702 0.237 5.3586
Item_8_1 0.2875 0.126 2.2826 1.4433 0.2802 5.1509
Item_8_2 0.2639 0.0895 2.9476 2.9337 0.5436 5.397
Item_8_3 0.1208 0.0788 1.5325 5.3265 1.434 3.7145
Item_9_1 0.5437 0.1192 4.5604 1.7809 0.3563 4.9981
Item_9_2 0.9257 0.1589 5.824 1.7362 0.3887 4.4662
Item_9_3 0.7767 0.1279 6.0739 1.9745 0.4043 4.8842

Item_10_1 0.7677 0.1262 6.0855 1.9243 0.397 4.8475
Item_10_2 0.6361 0.0872 7.2932 3.4896 0.8635 4.0411
Item_10_3 0.8017 0.12 6.6781 2.1448 0.4535 4.7295

Item difficulty ranges from −4.89 (Item_1_2) to 0.8017 (Item_10_3), which is not
symmetrical around 0, therefore further, more difficult items should be introduced later.
Item discrimination is generally good, as 21 out of 25 items have discrimination parameters
above or very close to 1; four items are at the margin of acceptability (Item_3_3; Item_5_2;
Item_5_3; Item_7_1), and none are very poor. Figure 5 shows the test information function
which again indicates that the introduction of further, more difficult items are needed—as
the curve is asymmetrical; the present set of items gives us somewhat less information
about participants with high ability, although it is good in the range from moderately low
through average to moderately high range.

Figure 5. Test information function for the 25 Tower of London items.

Item fit is also acceptable; 9 out of 25 items had significant Chi-square values (Table 3).
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Table 3. Item fit for the 25 Tower of London tasks. Significant p-values are marked with bold.

χ2 sig.

Item_1_2 8.4019 0.3952
Item_3_1 14.8232 0.0627
Item_3_2 7.9789 0.4355
Item_3_3 13.322 0.1012
Item_4_1 4.9713 0.7606
Item_4_2 3.9275 0.8636
Item_4_3 7.2758 0.5072
Item_5_1 9.1146 0.3327
Item_5_2 23.0207 0.0033
Item_5_3 29.703 0.0002
Item_6_1 18.1583 0.0201
Item_6_2 17.2215 0.0279
Item_6_3 10.4865 0.2325
Item_7_1 26.7456 0.0008
Item_7_2 19.8636 0.0109
Item_7_3 24.3304 0.002
Item_8_1 16.5941 0.0346
Item_8_2 3.5923 0.8919
Item_8_3 7.1894 0.5163
Item_9_1 9.9894 0.2658
Item_9_2 17.9461 0.0216
Item_9_3 8.5134 0.385
Item_10_1 11.2503 0.1879
Item_10_2 7.5525 0.4784
Item_10_3 9.3497 0.3137

Next, we compared this 2PL model with the 3PL alternative including a guessing
parameter expressing the probability that a low-ability participant solves the item correctly.
The highest value of the guessing parameter was 0.0024 (Item_3_2), and the lowest one was
10−301 (Item_10_3), that is, introducing this parameter indeed made no difference. This is
also confirmed by the summary of the ANOVA comparing the two models (Table 4). In
Table 4, three indicators are reported to compare the two models in terms of how well they
fit to the data. Aikake’s information criterion (AIC), and the Bayesian information criterion
(BIC) can generally be interpreted only via using pairs of their values; of two models the
one with better fit is the one with a smaller AIC or BIC. As can be seen in Table 4, the 3PL
model actually exhibits a poorer fit than the 2PL one, however, the difference between them
is not significant. The log-likelihood statistic is more stable in this case, corresponding to
the absence of a significant difference between these two models.

Table 4. Model comparison: 2PL and 3PL.

Model AIC BIC log.Lik LRT df sig.

2PL 4766.76 4935.06 −2333.38
3PL 4816.76 5069.21 −2333.38 0 25 1

Although the variability of the item discrimination values (Table 2) indicates that
a one-parameter Rasch (or 1PL) model would introduce an undesirable constraint, the
comparison between the Rasch model and the 2PL model was also made (Table 5). As the
results show these two models do differ substantially, to the advantage of the 2PL model.
AIC, BIC, and log-likelihood are all higher for the one-parameter model, indicating poorer
fit, and the difference in the goodness of fit between the two models is highly significant.
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Table 5. Model comparison: Rasch and 2PL.

Model AIC BIC log.Lik LRT df p Value

Rasch 4890.91 4975.06 −2420.46
2PL 4766.76 4935.06 −2333.38 174.15 25 <0.001

7. Summary

Present technological development can be harnessed to assess the individual needs of
children in different areas, including developmental diagnosis and support [46]. To this end,
we need up-to-date instruments based on soft sensors to measure individual differences
and pair them with suitable interventions when necessary. In the diagnosis of persons with
disability, the involvement of technological innovations has become a subject of systematic
study. Digital testing is a key component of this process whereby individualized training
regimes, as well as population-level monitoring of performance, can be implemented. The
soft sensor we developed serves the purpose of educational diagnosis, that is, it helps
pedagogues, special education experts, psychologists, and doctors to establish faster and
more efficiently whether a certain developmental status obtains for an individual being
examined. As part of this, our system measures certain aspects of personality, ability profile,
and knowledge. For the examined individual the benefit is that they can have a diagnosis
faster, and the results are more reliable than with traditional testing procedures. As a result,
the ensuing support and education will be better tailored to personal needs [27]. We need
to emphasize, however, that involving technology in diagnosis, and tailoring it to special
needs support is a preliminary stage to application in learning environments [6,47]. In
maximizing the benefit of using technology we need also to pay attention to minimizing
possible risks. Limitations—and future perspectives—of our study are the following. First,
with the present version of our test software, we have not collected data yet—this is a task
for a future study. Instead, we reanalyzed data collected by an earlier version of our TOL
test program. Our results showed that TOL data are amenable to IRT analysis, and the
results obtained are satisfactory, indeed, promising. In this respect, our expectations are
fulfilled. A second limitation is that so far we have used a fixed adaptive algorithm that
did not include a machine learning component. Another objective for further research
is to include machine learning in our adaptive algorithm, with the aim of measuring
participants’ potential for relatively short-term improvement, not just performance at a
given point in time. What a participant can achieve with modest support, as opposed
to completely autonomously, is called the zone of proximal development [48]. Using
machine learning, it becomes possible to conduct dynamic measurement which, unlike
static measurement, supplies information about changes in individual learning strategies,
or individual learning potential [49,50]. This information can in turn be utilized in adjusting
education to individual needs. This information can be fed back into improving educational
effectiveness adapted to the needs. A third limitation, or plan, is to extend our item bank,
especially by constructing more difficult items (with more than 10 moves necessary to
succeed) as this would tap better into the high ability range of planning and executive
functions. Taking the present line of research further, we plan to conduct a systematic
comparison of non-adaptive paper-and-pencil tests with their CAT versions to contribute
to such benefit-and-risk analyses. We think that info-communication technology-based
procedures need to be supplemented by empirical studies of application and effectiveness
to become reliable and trustworthy methodologies.
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Abstract: The properties of the convergence region of the estimation error of a robust observer for
second-order systems are determined, and a new algorithm is proposed for setting the observer
parameters, considering persistent but bounded disturbances in the two observation error dynamics.
The main contributions over closely related studies of the stability of state observers are: (i) the
width of the convergence region of the observer error for the unknown state is expressed in terms
of the interaction between the observer parameters and the disturbance terms of the observer error
dynamics; (ii) it was found that this width has a minimum point and a vertical asymptote with
respect to one of the observer parameters, and their coordinates were determined. In addition, the
main advantages of the proposed algorithm over closely related algorithms are: (i) the definition of
observer parameters is significantly simpler, as the fulfillment of Riccati equation conditions, solution
of LMI constraints, and fulfillment of eigenvalue conditions are not required; (ii) unknown bounded
terms are considered in the dynamics of the observer error for the known state. Finally, the algorithm
is applied to a model of microalgae culture in a photobioreactor for the estimation of biomass growth
rate and substrate uptake rate based on known concentrations of biomass and substrate.

Keywords: state estimation; robust observer; bioprocess monitoring; nonlinear systems

1. Introduction

In the monitoring and control of biological and biochemical processes, it is crucial to
have real-time knowledge of variables such as the concentrations of biomass, products or
reactants; the growth rate of microorganisms; and the substrate consumption rate [1–4].
Online knowledge of the substrate uptake rate is needed for the application of automatic
control [4], whereas online knowledge of the specific growth rate (μ) is usually required in
the following cases: (i) in automatic control with the biomass concentration as the output [5];
(ii) in automatic control with μ as the output (see [6,7]); (iii) in the maximization of growth
rate via an extremum seeking controller [8]; (iv) in the maximization of the gaseous outflow
rate via an extremum seeking controller [9]. The concentrations and reaction rates can be
estimated by using state observers combined with the measurement of some state variables,
and a known mass balance model for the measured states [1,10–12]. Control design for
multi-agent systems is another active area of observer design. In these systems, observers
are designed to estimate the unmeasured states of adjacent agents [13–15].

Robust observer designs have been developed for tackling uncertainty in the dynamics
of observation errors. Common designs consider: (i) a lack of knowledge in the dynamics
of the observation error for the unknown state; (ii) an unknown term of the unknown state
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in the dynamics of the observation error for the known state [10,16–22]. In the case that
the dynamics of the observation error for the known state involves an additional additive
uncertain term and it is persistent but bounded, the steady state estimation involves error,
even if a discontinuous observer is used. However, the estimation error depends on the
observer parameters, so it can be reduced to a certain extent, provided that the known
limits of the uncertainty [23,24].

In [25], a tuning procedure is proposed for setting the parameters of an extended
state observer (ESO) for a closed loop second-order system with measurement noise and
bounded external disturbance. The used observer is a Luenberger-like extended state,
which is intended to estimate the external disturbance. The stability of the resulting
estimation error dynamics is determined based on the state matrix, and two choices are
proposed for setting the observer gains that lead to the real negative eigenvalues of the state
matrix. Furthermore, the time-dependent bound of the transient behavior of the observation
errors is determined, which gives the exponential convergence rate and the width of the
convergence region in terms of observer parameters and some disturbances of the dynamics
of the observation errors. However, the time derivative of the external disturbance is
required to be bounded, and the input gain is required to be locally Lipschitz continuous.

In [21], an observer is designed to estimate the parameters of the tunneling current
in a Scanning Tunneling Microscope (STM). The measurement of the tunneling current
(it) is described by additive noise and first-order sensor dynamics, with the current it as
its input. The observer is used for estimating the tunneling current it. The estimate is
expressed in terms of Laplace transforms of the actual current and additive noise. The
observer parameters must be chosen to have poles with strictly negative real parts in the
transfer functions. A simple choice is proposed, which yields a second-order character-
istic polynomial with a damping coefficient of one. However, no external disturbance is
considered in the first-order sensor dynamics.

In [10], a filtered high gain observer is designed for a class of non-uniformly observable
systems, and then it is applied to a phytoplanktonic growth model. Bounded disturbances
and noisy measurements are considered, although bounded disturbances are not considered
in the dynamics of the known state. The observation errors exponentially converge to
a compact set whose width is a function of the observer parameters and bounds of the
disturbances and measurement noise. Thus, the boundary of the transient behavior of the
observation errors is determined. Furthermore, an improved observer is formulated for the
case of sampled outputs, and the transient boundary of the observation errors is determined.
Finally, the observer is applied to a model of continuous culture of phytoplankton, with an
estimation of the substrate and cell quota concentrations based on biomass concentration
measurements. The main limitations of the observer design are: (i) bounded disturbances
are not considered in the dynamics of the observation error for the known state; (ii) some
conditions of a Riccati differential equation must be satisfied.

In [23], a super-twisting observer is designed for a two-dimensional system, consid-
ering disturbances in the two observation error dynamics. Two disturbance types are
considered in the observation error dynamics: in the first, the upper bound is the function
of the observation error for the known state (known observation error); in the second, the
upper bound is constant. The observation errors converge to zero in finite time for the first
disturbance type. Thus, the convergence is proved, and the convergence time is determined.
The observation errors converge to a compact set for the second disturbance type. Thus, the
convergence region is determined, but the time-dependent bound of the transient behavior
of the observation errors and the convergence times are not determined. In addition, the
observer design algorithm is proposed, which involves the selection of design parameters.
Finally, the observer and the algorithm are applied to a model of microalgae culture in a
photobioreactor, performing an estimation of biomass growth rate, substrate uptake rate,
and internal quota. However, the observer algorithm involves an iterative solution of LMIs,
and the observer involves a discontinuous signal.
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In this work, a new algorithm is proposed for setting the parameters of a robust
observer for second-order systems, considering persistent but bounded disturbances in the
two observation error dynamics. The algorithm is applied to a model of microalgae culture
in a photobioreactor for the estimation of biomass growth rate and substrate uptake rate
based on known concentrations of biomass and substrate. The main contributions over
closely related studies of the stability of state observers (for instance [10,21,23,25]) are:

• Ci. The width of the convergence region of the observer error for the unknown state
is expressed in terms of the interaction between the observer parameters and the
disturbance in terms of the observer error dynamics. Thus, the desired estimation
accuracy can be defined by the user by setting the observer parameters in accordance
with this relationship. In contrast:

− In [21], the dependence of the width of the convergence region on the observer
parameters and disturbance terms is not determined.

− In [10], the width of the convergence region is expressed in terms of the bounds
of the disturbances and measurement noise, but bounded disturbances are not
considered in the dynamics of the estimation error of the known state, so the
effect of these disturbances is not considered in the convergence region.

− In [23], the width of the convergence region is expressed in terms of the bounds
of the disturbances of the dynamics of the estimation error of the known state,
but the effect of observer parameters and bounded disturbance of the dynamics
of the estimation error of the unknown state are not considered.

• Cii. The properties and limits of this width are determined. It was found that this width
has a minimum point and a vertical asymptote with respect to one of the observer
parameters, and their coordinates were determined. Then, the highest accuracy of the
state estimation can be obtained by setting the observer parameters equal or similar
to the coordinates of the minimum. In contrast, in [21,23,25]: (i) the properties, limits,
and minimum of the width of the convergence region of the estimation error for the
unknown state are not determined; (ii) the observer parameter values that lead to the
lowest width of the convergence region are not determined.

• Ciii. The algorithm considers the combined effect of disturbance terms and observer
parameters on the width of the convergence region.

In addition, the advantages of the proposed algorithm over closely related algorithms are:

(i) Advantage A1. It involves a significantly simpler definition of observer parameters:
the fulfillment of Riccati equation conditions, solution of LMI constraints, and ful-
fillment of eigenvalue conditions are not required, thus, reducing the trial-and-error
effort. In contrast, the fulfillment of these conditions is commonly required in closely
related observer strategies, for instance [10,23,26].

(ii) Advantage A2. Different from [10,16–22], unknown bounded terms are considered in
the dynamics of the observer error for the known state.

(iii) Advantage A3. The time derivatives of the disturbance terms of the plant model are
not required to be bounded, whereas this condition is required in [25,27–30].

(iv) Advantage A4. Different from [23,31], discontinuous signals are not used in the
observer, thus, avoiding problematic numerical solutions.

The work is organized as follows. The bioreactor model is presented in Section 2. The
preliminaries in Section 3 include the observer equations and the bound of the transient and
asymptotic behavior of the observer error. The main results presented in Section 4 include
the formulation of the algorithm for setting the observer parameters and the determination
of the width of the convergence region of the observer error in terms of the observer
parameters. An application to a microalgae bioreactor is shown in Section 5, and the
discussion and conclusions are drawn in Section 6.
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2. Bioreactor Model

Consider the system
dx1

dt
= h1 + bx2 + δ1, (1)

dx2

dt
= h2 + δ2, (2)

where x1 and x2 are the states; h1 and h2 are model functions; δ1 and δ2 are disturbance terms;
and b is the x2 gain in the dynamics of x1. The model terms fulfill the following assumptions:

Assumption 1. The functions h1 and h2 are known; the state x1 is measured, and the coefficient b
is known; the state x2 and the terms δ1 and δ2 are unknown.

Assumption 2. The coefficient b is bounded away from zero:

|b| ≥ bmin > 0

where bminis an unknown positive constant.

Assumption 3. The disturbance terms δ1 and δ2are bounded.

3. Preliminaries: Observer and Bounds for the Transient and Steady Behavior of the
Observer Error

In this section, the observer equations and the bounds for the transient and asymptotic
behavior of the observer error for the unknown state (x2) are recalled from [24]. The
detailed mathematical procedure of the Lyapunov-based formulation of the observer is
provided in [24].

3.1. Observer

The observer equations are [24]:

dx̂1

dt
= bx̂2 − |b|

(
ωx1 +

(
k +

1
4ω

)
ψx1 + satx1 θ̂

)
+ h1, (3)

dx̂2

dt
= −bω

((
k +

1
4ω

)
ψx1 + satx1 θ̂

)
+ h2, (4)

dθ̂

dt
= γ|b||ψx1 |. (5)

where
x1 = x̂1 − x1, (6)

ψx1 =

⎧⎨⎩
x1 − ε f or x1 ≥ ε
0 f or x1 ε [−ε, ε]

x1 + ε f or x1 ≤ −ε
(7)

satx1 =

⎧⎨⎩
1 f or x1 ≥ ε
1
ε x1 f or x1 ∈

−1 f or x1 ≤ −ε

[−ε, ε] (8)

σ = sign(b)

where x̂1 is the estimate of x1, x̂2 is the estimate of x2, θ̂ is the updated parameter,
and: (i) γ, k, ω are user-defined positive constants; (ii) the width of the convergence
region of x1, that is, ε, is user-defined, positive, and constant.

3.2. Mathematical Definitions

The main mathematical definitions are given as follows. b, h1, h2, δ1 and δ2 are terms
of the model (1) and (2) described after Equations (1) and (2), satisfying Assumptions 1, 2,
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and 3. In addition, x1 = x̂1 − x1 is the observer error for the known state, x2 = x̂2 − x2 is
the observer error for the unknown state; x1 is the known state, x2 is the unknown state,
and z = x2 − σωx1.

Mathematical definitions related to the function Vz:

Vz =
1
2

ψ2
z

ψz =

⎧⎨⎩
z + δmin f or z ≥ −δmin ≥ 0
0 f or z ∈ (−δmax,−δmin)

z + δmax f or z ≤ −δmax ≤ 0

where δmin and δmax are constants that satisfy

δ ≥ δmin, δmin ∈ (−∞ , 0]; δ ≤ δmax, δmax ∈ [0, ∞),

where δ is defined as

δ =
1
b

(
δ2

σω
− δ1

)
,

and ψzo is the value of ψz at the initial time.
Mathematical definitions related to the overall Lyapunov function:

Vzθx1 = Vz + Vx1 + Vθ ,

Vx1 =
1
2

ψ2
x1; Vθ =

1
2

γ−1θ̃2; θ̃ = θ̂ − θ

where θ is a positive constant fulfilling:

|−δzt − δ1/b| ≤ θ; δzt = ψz − z.

Mathematical definitions of convergence regions:

Ωx1 = {x1 : −ε ≤ x1 ≤ ε}

Ωx2 = {x2 : |x2| ≤ max{−δmin, δmax}+ ωε}
3.3. Convergence of the Observer Error for the Known State

The combined state z is defined as:

z = x2 − σωx1, (9)

The Lyapunov function for z is defined as

Vz =
1
2

ψ2
z , (10)

ψz =

⎧⎨⎩
z + δmin f or z ≥ −δmin ≥ 0
0 f or z ∈ (−δmax,−δmin)

z + δmax f or z ≤ −δmax ≤ 0
.

where δmin and δmax are constant limits for the disturbance term

δ =
1
b

(
δ2

σω
− δ1

)
,

that satisfy
δ ≥ δmin, δmin ∈ (−∞ , 0],
δ ≤ δmax, δmax ∈ [0, ∞).

67



Sensors 2022, 22, 6988

Differentiating Vz with respect to time, yields

dVz

dt
≤ −2ω|b|Vz ≤ 0.

The overall Lyapunov function is:

Vzθx1 = Vz + Vx1 + Vθ ,

Vx1 =
1
2

ψ2
x1; Vθ =

1
2

γ−1θ̃2; θ̃ = θ̂ − θ

where Vz is given by Equation (10), γ is a user-defined positive constant, θ̂ is provided by
Equation (5) and θ is a positive constant fulfilling

|−δzt − δ1/b| ≤ θ; δzt = ψz − z.

The time derivative of Vzθx1 leads to

dVzθx1

dt
=

d
dt
(Vz + Vx1 + Vθ) ≤ −kbminψ2

x1 ≤ 0. (11)

This indicates the asymptotic convergence of the observer error x1 to the compact set
Ωx1 = {x1 : −ε ≤ x1 ≤ ε}.

Remark 1. The ψz definition given after Equation (10) indicates that ψz, ψ2
z and dψ2

z /dz exist
and are continuous. The ψx1 definition (7) indicates that ψx1 , ψ2

x1, and dψ2
x1/dx1 exist and

are continuous. Consequently, Vz, Vx1 and the overall Lyapunov function Vzθx1 exist and are
continuous. A detailed determination of dVzθx1/dt, dVz/dt, dVx1/dt, dVθ/dt is given in [24].

Remark 2. The term ‘overall Lyapunov function’ is used for the Lyapunov function that results
from the addition of several quadratic or positive forms and whose time derivative indicates the
convergence result of some state. This term is also used in [32,33]. Notice that this condition is only
fulfilled by Vzθx1, as follows from Equation (11).

3.4. Bounds for the Transient and Steady Behavior of the Observer Error for the Unknown State

From the definition of z (9), it follows that the observer error x2 can be rewritten in
terms of z and x1:

x2 = z + σωx1.

This leads to
|x2| ≤ |z|+ ω|x1|.

Combining the dynamics of z and x1, yields

|x2| ≤ |ψzo|e−ωbmin(t−to) + max{−δmin, δmax}+ ω|x1| (12)

where ψzo is the value of ψz at the initial time, and δmin and δmax are constant limits for the
disturbance term

δ =
1
b

(
δ2

σω
− δ1

)
, (13)

that satisfy
δ ≥ δmin, δmin ∈ (−∞ , 0],
δ ≤ δmax, δmax ∈ [0, ∞).

(14)

bmin is a constant limit for b that satisfies Assumption 2.
Despite the fact that the convergence of x1 to Ωx1 = {x1 : −ε ≤ x1 ≤ ε} is asymptotic,

one can consider that x1 ∈ Ωx1 for some t ≥ T1, that is, |x1| ≤ ε. Combining with
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Equation (12) yields the time-dependent bound for the transient behavior of the observer
error x2:

|x2| ≤ |ψzo|e−ωbmin(t−to) + max{−δmin, δmax}+ ωε f or t ≥ T1 (15)

Hence, x2 converges asymptotically to the compact set

Ωx2 = {x2 : |x2| ≤ max{−δmin, δmax}+ ωε} (16)

so that the limits of the convergence region Ωx2 are max{−δmin, δmax} + ωε and
−max{−δmin, δmax} − ωε.

4. Formulation of the Algorithm for Setting the Observer Parameters and
Determination of the Width of the Convergence Region of the Observer Error in Terms
of the Observer Parameters

In this section: (i) the width of the convergence region Ωx2 (16) is expressed in terms
of the interaction between the parameters of the observer (3)–(5) and δ1, δ2, the disturbance
terms of the observer error dynamics; (ii) an algorithm is formulated for setting the observer
parameters ω, ε, γ, k.

4.1. Determination of the Width of the Convergence Region of the Observer Error

From the definition of δ in Equation (13), it follows that

|δ| ≤ 1
ω

d2 + d1 (17)

where d1 and d2 are positive constants that satisfy∣∣∣∣ δ2

b

∣∣∣∣ ≤ d2;
∣∣∣∣ δ1

b

∣∣∣∣ ≤ d1 (18)

From Equation (17) and the conditions on δmin and δmax (14), it follows that the δmin
and δmax values can be chosen to be:

δmax =
1
ω

d2 + d1; δmin = −δmax

so that the terms in Equation (14) are fulfilled. Then, the convergence set Ωx2 (16) becomes

Ωx2 = {x2 : |x2| ≤ fw } (19)

fw =
1
ω

d2 + d1 + ωε (20)

so that the width of the convergence set Ωx2 is fw and the limits of Ωx2 are − fw and + fw.
The main features of the fw function are:

fw > 0; fwhas a vertical asymptote, at ω = 0
lim

ω→∞
fw = ∞; fw > d1 ≥ sup

t≥to

|δ1/b|; lim
ω→0+

fw = ∞ (21)

From these properties, it follows that fw has a minimum point with respect to ω.
Its coordinates are determined by differentiating fw expression (20) with respect to ω,
which yields:

ω∗ =
√

d2
1√

ε
; f ∗w = 2

√
d2
√

ε + d1 (22)

Therefore, the relationship between f ∗w and ω∗ is given by

f ∗w = 2d2
1

ω∗ + d1 (23)
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Remark 3. The properties (21) of the fw function and its minimum (22) indicate that ω = ω∗and
a low ε value leads to low fw, which implies a low width of the convergence region Ωx2, and
consequently, a high quality of x2 estimation, as follows from Equations (19) and (20).

Remark 4. An overlarge ω value fulfilling ω � ω∗ leads to: (i) fast convergence of the upper
bound of x2, as follows from Equation (15); (ii) a large fw value, which implies a low quality of
x2 estimation, as follows from Equations (19) and (20). Therefore, the choice of ω must take into
account both the convergence rate and the width of the convergence region of x2.

Remark 5. A low ε value leads to low f ∗w, since f ∗w increases with respect to ε, as follows from
Equation (22). However, overly small ε values lead to steeper slopes in the shape of the satx1 signal
(8) of the observer, which implies that the numerical solution of the differential equation must use a
smaller step size.

Remark 6. The f ∗w function (23) increases with d1, whereas ω∗ is independent of d1, as follows
from Equation (22).

In the case that δ1 = 0 in Equation (1), we have

|δ| ≤ 1
ω

d2

and one can use
δmax =

1
ω

d2; δmin = −δmax

Then, Equation (19) becomes

Ωx2 = {x2 : |x2| ≤ fw} (24)

fw =
1
ω

d2 + ωε (25)

The resulting features of fw for δ1 = 0 are:

fw > 0; fwhas a vertical asymptote, at ω = 0;

lim
ω→∞

fw = ∞; lim
ω→0+

fw = ∞

From these properties, it follows that fw has a minimum point with respect to ω. The
coordinates of this minimum are determined by differentiating fw expression (22) with
respect to ω, which yields:

ω∗ =
√

d2
1√

ε
; f ∗w = 2

√
d2
√

ε (26)

4.2. Formulation of the Algorithm for Setting the Observer Parameters

The algorithm presented in Algorithm 1 allows us to set the observer parameters ω, ε,
γ, and k, so as to define: (i) the convergence rate of x2; (ii) the value of fw = 1

ω d2 + d1 + ωε,
which is the width of the x2 convergence set Ωx2 = {x2 : |x2| ≤ fw }.
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Algorithm 1: Algorithm for setting the parameters of the observer (3)–(5).

Step Description

1
Cast the system model in the form (1)–(2) and identify the known state x1, the unknown
state x2, and the terms b, h1, h2, δ1, δ2.

2

Obtain the values of bmin that satisfy Assumption 2 and the values of d2, d1, satisfying
Equation (18). To this end, the values of d2, d1 can be obtained by the simulation of
δ2/b, δ1/b, based on the x1, x2 model, with model parameter values obtained from either
closely related studies or offline fitting.

3

Set the values of ω, ε to define:

− The time-dependent bound for the transient evolution of x2, given by Equation
(15):|x2| ≤ |ψzo|e−ωbmin(t−to) + max{−δmin, δmax}+ ωε; f or t ≥ T1

− The limit of the convergence region of x2, given by Equations (19) and (20):

Ωx2 = {x2 : |x2| ≤ fw }; fw = 1
ω d2 + d1 + ωε

where fw > d1 ≥ sup
t≥to

|δ1/b| and the minimum point of fw is given by Equation (22):

ω∗ =
√

d2
1√

ε
; f ∗w = 2

√
d2
√

ε + d1

4
Set a high value of γ to define the update rate of θ̂, according to Equation (5).
Set a high value of k to define the convergence rate of x1, according to Equation (11).

Remark 7. The proposed algorithm and the observer (3)–(5) lead to a more practical and simpler
real-time state estimation in either laboratory or industrial applications, according to the advantages
A1 to A4, which are due to the observer of [24]. They can be applied to systems whose model can be
cast in the second-order form (1) and (2), which includes a wide range of mechanical and physical
systems. Some examples are:

− Microalgae reactor represented by the Droop model: (i) estimation of specific bio-mass growth
rate based on known biomass concentration; (ii) estimation of specific substrate uptake rate
based on known substrate concentration—see [8,23].

− Anaerobic bioreactor for hydrogen production via the dark fermentation of glucose: estimation
of influent glucose concentration based on known reactor glucose con-centration—see [3].

− Fed-batch bioreactor for ethanol production: (i) estimation of the rate of enzymatic hydrolysis
based on known substrate (starch) concentration; (ii) estimation of the glucose consumption
rate based on known glucose concentration—see [4].

− Membrane fuel cell: estimation of stack temperature based on known oxygen pres-sure—
see [34].

− Photovoltaic system: estimation of the power gradient based on known generated electric
power—see [35].

− DC-DC buck converter: estimation of the time derivative of the output tracking er-ror based
on the known average output voltage—see [36].

− Second-order underactuated mechanical system: estimation of the time derivative of the pole
angle—see [20].

Remark 8. The convergence rate and the width of the x2 convergence set ( fw) can be properly
defined by setting the observer parameters ω, ε, γ, k in accordance with the proposed procedure,
with ω, ε values corresponding to the minimum point of fw, that is, ω∗, f ∗w.

Remark 9. The proposed observer algorithm deals with the combined effect of disturbance terms and
observer parameters on the width of the convergence region for the estimation error of the unknown
state, as follows:

(a) The convergence region is expressed as a function of the combined effect of observer parameters
and disturbance terms—see Equations (19) and (20). Then, the desired estimation accuracy
can be defined by the user by properly setting the observer parameters in accordance with
this relationship.

(b) The properties of this expression are determined in terms of the observer parameters, including
the limits and the coordinates of the minimum—see Equations (21)–(23). In turn, these
properties allow choosing ω, ε values to avoid an undesired overlarge fw value, and the lowest
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fw value is obtained by using the coordinates of the minimum, that is, ω=ω∗, according to
Equation (22). Thus, the highest accuracy of the state estimation is obtained by setting the
observer parameters equal or similar to the coordinates of the minimum.

5. Application to Microalgae Bioreactor

The developed algorithm for setting parameters of the observer (3)–(5) is used to
estimate the substrate uptake rate ρ and specific growth rate μ in a continuous microalgae
bioreactor. The concentrations of substrate and biomass are considered to be known, and
the system is described by the Droop model [23,37]:

dx
dt

= μx − Dx (27)

ds
dt

= −ρx + D(si − s) (28)

dq
dt

= ρ − μq (29)

where x is the biomass concentration, s is the substrate concentration, and q is the cell quota
of assimilated nutrient; D = Fi/v is the dilution rate, Fi is the feeding flow rate, v is the
broth volume, si is the fed substrate concentration, μ is the specific growth rate, and ρ is the
specific substrate uptake rate. The expressions for μ, ρ, and the model parameters are [23]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ(q) = max
{

0, μm

(
1 − QO

q

)}
; ρ = ρm

(
s

s+Ks

)
ρm = 0.03 mgN

mgC·d ; Ks = 0.0010 mgN
L ; μm = 0.5 d−1;

QO = 0.045 mgN/mgC;
xto = 0.1 mgC/L; sto = 0.01 mgN/L; qto = 0.06 mgN/mgC;

D =

{
0.25

(
1 + sin

(
2π
τD

t
))

0 f or t ≥ 6 d
d−1 for t < 6 d;

τD = 8 d; si = 0.05 mgN/L;

(30)

The model details, including parameters and specific growth rate expression, are
given in [23].

The fw curve as a function of ω and ε is computed using Equation (20), the curves of
f ∗w and ω∗ as a function of ε are computed using Equation (22), and the f ∗w vs. ω∗ curve is
computed using Equation (23).

The simulation of the model (27)–(29) and the observer (3)–(5) was performed using
Matlab software (The Math Works Inc., Natick, MA, USA): the differential equations were
numerically integrated using the ode45 routine.

Although model (27)–(29) comprises three states, it leads to the following second-
order subsystems:

A)
ds
dt

= −ρx + D(si − s)

dρ

dt
= δ2

for the first example, so that x1 = s; x2 = ρ.
B)

dx
dt

= μx − Dx

dμ

dt
= δ2

for the second example, so that x1 = x; x2 = μ.
This approach is also considered in [23].
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5.1. First Example: Estimation of Substrate Uptake Rate

The specific substrate uptake rate ρ is estimated using the substrate mass balance
model (28) and the knowledge of substrate and biomass concentrations. The fed substrate
concentration si is inaccurately known: si = si + δsin, where si is the known value of
si, and δsin is the uncertainty; si = 0.05 mg N/L; δsin = 0.1si × sin

(
2πt
τsi

)
; τsi = 3. The

substrate concentration (s) is the known state, and the specific substrate uptake rate (ρ) is
the unknown state, so that substrate model (28) can be cast in the form (1), (2) with

x1 = s; x2 = ρ; b = −x; h1 = (si − s)D; h2 = 0; δ1 = Dδsi; δ2 =
dρ

dt
(31)

Additionally, the observer (3)–(5) provides the estimate of ρ, that is, x̂2 = ρ̂. The
observer structure is given in Figure 1. x is the biomass concentration, s is the substrate
concentration, ρ is the specific substrate uptake rate, D = Fi/v is the dilution rate, Fi is
the feeding flow rate, v is the broth volume, and si is the fed substrate concentration. In
addition, x1 is the known state, x2 is the unknown state, and x̂2 is the estimate of x2.

Figure 1. Structure of the observer application to microalgae bioreactor for estimating the specific
substrate uptake rate ρ.

To examine the fw function (20), the d1, d2 bounds of the disturbance terms δ1/b, δ2/b
are obtained by simulation based on the x1, x2 model, yielding d1 = 0.04, d2 = 0.11. The
curves of fw, f ∗w, ω∗ for different ε, ω values are shown in Figure 2.

Low fw values are obtained for ω = ω∗ and low ε value (see Figure 2b,d), which is in
accordance with remark 4.1. A minimum of the fw function is characterized by ω∗ = 8.564,
f ∗w = 0.0657 for ε = 0.0015, as follows from Equation (22). The observer parameters are
chosen to be:

ε = 0.0015; ω = 8.56; k = 40; γ = 100; x̂1|to = 0.1; x̂2|to = 0 d−1; θ̂to = 0 (32)

So that fw ≈ f ∗w. The bioreactor is simulated using model (27)–(29) with plant model
terms and parameters (30), whereas the observer (3)–(5) is simulated using the definition
of the terms of the system model given by Equation (31), and the values of observer
parameters given by Equation (32), and it is observed that (Figure 3):

− The observer error x1 converges faster than x2.
− The observer error x1 = x̂1 − x1 converges asymptotically to the compact set

Ωx1 = {x1 : −ε ≤ x1 ≤ ε } and remains inside for t ≥ 2.6 d approx. (Figure 3a,b).
− The observer error x2 = x̂2 − x2 converges to the computed compact set Ωx2 and

remains inside for t ≥ 4.4 d approx. (Figure 3c,d). The limits (− fw,+ fw) of the Ωx2
convergence set are indicated through dashed horizontal lines in Figure 3d.

− The low width of Ωx2 is owed to the small values of δ1/b and ε.
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Figure 2. Effect of the observer parameters ε, ω on the fw function (20) for estimation of the specific
substrate uptake rate ρ: (a) fw as a function of ω for several ε values, indicating the minimum point;
(b) detail of fw as a function of ω for several ε values, indicating the minimum point; (c) values of ω∗

as a function of ε, indicating the points for the ε values considered in subfigure a; (d) values of f ∗w as a
function of ε, indicating the points for the ε values considered in subfigure a.

Figure 3. Performance of the observer (3)–(5) for estimation of specific substrate uptake rate ρ, using
the observer parameters obtained through the proposed algorithm: (a) trajectory of state x1 and
estimate x̂1; (b) trajectory of the observer error for the known state, x1; (c) trajectory of state x2 and
estimate x̂2; (d) trajectory of the observer error for the unknown state, x2, with the limits (− fw,+ fw)

of the Ωx2 convergence set indicated through dashed horizontal lines; (e) trajectory of the updated
parameter θ̂.
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The performed simulations confirm the adequacy of the parameter recommendations
provided in the observer algorithm to achieve proper convergence speed and the width of
the convergence region of x2.

5.2. Second Example: Estimation of Biomass Growth Rate

The specific growth rate μ is estimated using the biomass mass balance model (27)
and the knowledge of biomass concentration. The biomass concentration (x) is the known
state, and the specific growth rate μ is the unknown state, so the biomass model (27) can be
cast in the form (1), (2) with

x1 = x; x2 = μ; b = x; h1 = −Dx; h2 = 0; δ1 = 0; δ2 =
dμ

dt
(33)

Additionally, the observer (3)–(5) provides the estimate of μ, that is, x̂2 = μ̂. The
observer structure is given in Figure 4. x is the biomass concentration, s is the substrate
concentration, μ is the specific growth rate, ρ is the specific substrate uptake rate, D = Fi/v
is the dilution rate, Fi is the feeding flow rate, v is the broth volume, and si is the fed
substrate concentration. In addition, x1 is the known state, x2 is the unknown state, and x̂2
is the estimate of x2.

Figure 4. Structure of the observer application to microalgae bioreactor for estimation of the specific
growth rate μ.

To examine the fw function, the d1, d2 bounds of the disturbance terms δ1/b, δ2/b are
obtained by simulation based on the x1, x2 model, yielding d1 = 0, d2 = 0.125. The curves
of fw, f ∗w, ω∗ for different ε, ω values are shown in Figure 5.

Low fw values are obtained for ω = ω∗ and low ε value (see Figure 5b,d), which is in
accordance with remark 4.1. A minimum of the fw function is characterized by ω∗ = 9.129,
f ∗w = 0.0097 for ε = 0.0015. The observer parameters are chosen to be:

ε = 0.0015; ω = 9.12; k = 40; γ = 100; x̂1|to = 0.1mgC/L; x̂2|to = 0 d−1; θ̂to = 0 (34)

So that fw ≈ f ∗w. The bioreactor is simulated using model (27)–(29) with plant model
terms and parameters (30), whereas the observer (3)–(5) is simulated using the plant model
terms and parameters given by Equation (33), and the values of observer parameters given
by Equation (34), and it is observed that (Figure 6):

− The observer error x1 converges faster than x2.
− The observer error x1 = x̂1 − x1 enters to the compact set Ωx1 at 4.92 days and remains

inside afterward (Figure 6a,b).
− The observer error x2 = x̂2 − x2 remains inside its compact set for t ≥ 15.3 d approx.

(Figure 6c,d). The limits (− fw,+ fw) of the Ωx2 convergence set are indicated through
dashed horizontal lines in Figure 6d.

− A low width of Ωx2 is achieved by choosing ε, ω values on the basis of the proposed
algorithm.
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Figure 5. Effect of the observer parameters ε, ω on the fw function (19) for estimation of the specific
growth rate μ: (a) fw as a function of ω for several ε values; (b) detail of fw as a function of ω for
several ε values, indicating the minimum point; (c) values of ω∗ as a function of ε, indicating the
points for the ε values considered in subfigure a; (d) values of f ∗w as a function of ε, indicating the
points for the ε values considered in subfigure a.

Figure 6. Performance of the observer (3)–(5) for estimation of specific growth rate μ, using the
observer parameters obtained through the proposed algorithm: (a) trajectory of state x1 and estimate
x̂1; (b) trajectory of the observer error for the known state, x1; (c) trajectory of state x2 and estimate x̂2;
(d) trajectory of the observer error for the unknown state, x2, with the limits (− fw,+ fw) of the Ωx2

convergence set indicated through dashed horizontal lines; (e) trajectory of the updated parameter θ̂.
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6. Discussion and Conclusions

6.1. Discussion

− The main contributions over closely related studies of the stability of state observers are:
− Ci. The width of the convergence region of the observer error for the unknown

state is expressed in terms of the interaction between the observer parameters and
the disturbance in terms of the observer error dynamics. Then, the user defines the
desired estimation accuracy by properly setting the observer parameters in accordance
with the aforementioned relationship.

− Cii. The properties and limits of this width are determined; it was found that this width
has a minimum point and a vertical asymptote with respect to one of the observer
parameters, and their coordinates were determined. Thus, the highest accuracy of the
state estimation is obtained by setting the observer parameters equal or similar to the
coordinates of the minimum.

− The main challenges encountered in this research work are:
− Choosing the idea of contributions Ci and Cii as the core topics of the paper required

identifying contributions and limitations of high-quality works addressing observer
design and stability analysis, mainly [23,25]. This implied a deep understanding of
all the mathematical developments involved in the stability analysis, and also the
advantages, disadvantages, and limitations of the observer and its stability properties.

The statement of the procedure for determining the constants that satisfy Equation (18).
Based on several literature studies, we finally concluded that they could be obtained by the
simulation of δ2/b, δ1/b, based on the x1, x2 model, with model parameter values obtained
from either closely related studies or offline fitting, as stated in Algorithm 1.

6.2. Conclusions

In this work, a new algorithm is proposed for setting parameters of a robust observer
for second-order systems, considering persistent but bounded disturbances in the two
observation error dynamics. As the main contribution over closely related studies of the
stability of state observers, the width of the convergence region of the observer error for the
unknown state is expressed in terms of the interaction between the observer parameters
and the disturbance terms of the observer error dynamics. Moreover, the properties and
the minimum of this relationship were determined.

The proposed observer algorithm leads to a more practical and simpler state estimation
in either laboratory or industrial applications. It can be used for systems whose model can
be cast in second-order form, for instance, mechanical, chemical, and biochemical systems.
Moreover, it can be used for multiple state estimation, in cases of several second-order
systems. The choice of the observer parameters must consider both the convergence rate
and width of the convergence region of the estimation error of the unknown state. Choosing
the observer parameter values to be similar or equal to the values for the minimum leads
to a high quality of state estimation.

The performed simulations confirm the adequacy of the parameter recommendations
provided in the observer algorithm to achieve the proper convergence speed and width of
the convergence region of the observer error for the unknown state.

Future work will include: (i) extending the observer and the algorithm to system
models of third order; (ii) extending the observer and the algorithm to system models of
general nth order; (iii) considering noise in the measurement of the known state.
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Abstract: Total intravenous anesthesia is an anesthesiologic technique where all substances are
injected intravenously. The main task of the anesthesiologist is to assess the depth of anesthesia,
or, more specifically, the depth of hypnosis (DoH), and accordingly adjust the dose of intravenous
anesthetic agents. However, it is not possible to directly measure the anesthetic agent concentrations
or the DoH, so the anesthesiologist must rely on various vital signs and EEG-based measurements,
such as the bispectral (BIS) index. The ability to better measure DoH is directly applicable in clinical
practice—it improves the anesthesiologist’s assessment of the patient state regarding anesthetic agent
concentrations and, consequently, the effects, as well as provides the basis for closed-loop control
algorithms. This article introduces a novel structure for modeling DoH, which employs a residual
dynamic model. The improved model can take into account the patient’s individual sensitivity to
the anesthetic agent, which is not the case when using the available population-data-based models.
The improved model was tested using real clinical data. The results show that the predictions of the
BIS-index trajectory were improved considerably. The proposed model thus seems to provide a good
basis for a more patient-oriented individualized assessment of DoH, which should lead to better
administration methods that will relieve the anesthesiologist’s workload and will benefit the patient
by providing improved safety, individualized treatment, and, thus, alleviation of possible adverse
effects during and after surgery.

Keywords: general anesthesia; total intravenous anesthesia; target-controlled infusion; propofol; BIS
index; depth of hypnosis; improved mathematical model; population-data-based model; residual
model

1. Introduction

Adequate general anesthesia (GA) is a prerequisite in surgeries as well as in various
other medical procedures. The anesthesiologist must take care of three main aspects of the
patient state during the procedure: besides considering the vital signs, they must administer
substances that keep the patient deeply unconscious, prevent the patient from feeling pain,
and keep the patient’s muscles adequately relaxed. Furthermore, the patient must not be
aware of, or even remember, what was happening during GA. Therefore, it is essential to
properly administer the needed substances during the medical procedure.

GA and the dynamic response of the patient’s body to anesthetic substances can be
regarded as quite complex dynamic systems. Various pharmacokinetic (PK) and pharmaco-
dynamic (PD) mechanisms take place inside the patient’s body; however, it is unfortunately
generally not yet possible to claim that these PK and PD systems have been completely
studied or adequately modeled. Furthermore, the anesthetic depth is a controversial
concept, which involves the three main aspects of hypnosis, analgesia, and muscle relax-
ation. In addition, amnesia must also be ensured. However, anesthetic depth cannot be
directly measured.

The main job of the anesthesiologist is to monitor the patient’s vital functions and
properly maintain the functions of the patient’s organs. Anesthetic agents are administered
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in various ways into the patient’s body so as to achieve adequate GA: the two most com-
monly used methods in clinical practice are the intravenous administration induction of
the anesthetic agent, i.e., injection of the anesthetic agent into a patient’s vein, or the inhala-
tory administration of anesthetic agent, in which the substance is induced by the patient
inhaling a prepared breathing mixture. If the anesthetic agents are injected intravenously,
the anesthesiologic technique is known as total intravenous anesthesia (TIVA) [1,2]. In this
article, we focus on TIVA administration exclusively.

During the medical procedure, the anesthesiologist aims to maintain the appropriate
depth of hypnosis (DoH) by adjusting the dosage of the anesthetic agent. Clearly, the PK
and PD of the anesthetic agent and the type of procedure must be taken into account, e.g.,
long-term sedation in an intensive care unit requires deeper DoH than GA during surgery.
Too-deep anesthesia is manifested as a drop in blood pressure level and heart rate frequency
as well as slow post-operative awakening of the patient from GA [3]. On the other hand, the
opposite is also true. Moreover, inadequate depth of anesthesia results in the activation of
sympathetic nerves, or, in the most unlikely event, with the patient awakening, which must
be avoided at all costs [4]. In modern clinical practice, DoH is determined by assessing
the relevant clinical signs (iris, sweating, movements), by interpreting hemodynamic
measurements [5] and by estimating the DoH from EEG signals [6]. The latter is made
possible by several established measurement systems, such as BIS index, NeuroSense,
Narcotrend, Entropy (Scale and Response), WAVCNS, and Patient State Index.

BIS index is a noninvasive measurement method. A BIS monitor is connected to
electrodes on the patient’s head and the bispectral index is calculated from the measured
EEG signals. The BIS monitor provides a single dimensionless number, which ranges from
0 (equivalent to EEG silence) to 100. A BIS value between 40 and 60 indicates an appropriate
level for GA, whereas a value below 40 is appropriate for long-term sedation due to head
injuries. The reference can thus be set to the applicable value; the manner and speed of
approaching the reference value depend on the specific characteristics of the procedure
and the pharmacokinetics and pharmacodynamics of the substance in the patient’s body.
The BIS value can, therefore, be considered as a representation of the DoH, although some
papers question the relevance of BIS measurement for representing hypnosis as a graded
state during surgery [7,8]. The authors in [7] pointed out the poor correlation between
BIS and serum concentrations of propofol, which calls into question the relevance of the
BIS measurement in representing hypnosis as a graded state during surgery. When they
included all values during anesthesia, there was a significant correlation between BIS and
serum propofol, but the correlation was poor and disappeared when the outliers were
removed. Their results do not seem to support the idea that BIS represents a continuous
measure of DoH, assuming that elevated serum concentrations of propofol correspond
to deeper hypnotic levels. However, because they have too few data points to test the
correlation between serum concentration and BIS in individual patients, the reason could
be that there are interindividual differences in sensitivity to propofol. They noted that a
correlation could exist in a single patient but is not evident in data from many subjects.

In the literature, there are several approaches to modeling the effect of propofol, which
is a hypnotic anesthetic agent. For this purpose, a number of PK and PD models have been
developed, e.g., [9–12]. The models of propofol response define the general structure of
the dynamic system, whereas the particular parameters depend on the individual patient’s
characteristics, such as gender, age, height, weight, etc., as well as the particular patient’s
individual sensitivity to the effects of propofol and their ability to have propofol eliminated
from the body. Certain infusion pumps employ the PK models to enable target controlled
infusion (TCI), where the pump sets the proper flow of the medication with regard to the
model [13].

In the last years, an emerging paradigm in medicine seems to have grasped the idea
of personalized medicine [14]. In the field of drug delivery systems, this includes mod-
eling, control, analysis, and pharmacological studies, as well as development of novel
medical devices and conducting of targeted clinical trials. In this regard, the systematic
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employment of dynamic-system analysis along with control theory offers a wide range
of application opportunities in the medical domain [15–20]. Despite the fact that for TCI
various PK models can be implemented, all having their own advantages and drawbacks,
the Marsh [21] and Schnieder [22,23] models are mainly used in clinical practice. However,
these models often do not reflect the actual dynamic properties that depend on individual
sensitivity to the substance of the particular patient, which is generally not considered. For
instance, the authors in [24] found that titration of propofol based on BIS monitoring allows
a reduction in drug consumption that is associated with a similar decrease in propofol
plasma concentrations compared with TCI. An inverse relationship between cardiac output
and plasma propofol concentration was reported in [25]. In addition, the authors in [26]
showed that remifentanil plasma concentrations during remifentanil and propofol anesthe-
sia are influenced by cardiac output in a similar manner to propofol, although the metabolic
sites are different. Because cardiac output is known not to be constant during anesthesia,
this also significantly affects plasma concentrations and, thus, the effects of propofol and
remifentanil. The authors concluded that actual blood concentrations of remifentanil and
propofol may differ significantly from expected concentrations, especially when cardiac
output is low. Cardiac output is therefore an important factor whose influence should be
investigated in PK and PD models. This again supports the idea that individualized PK
and PD modeling could improve anesthetic delivery methods. Therefore, approaches using
population-based-data models often cannot ensure optimal performance, especially when
treating a patient with a particularly considerable discrepancy from the population-data-
based models. A population-data-based approach cannot yield universally usable models,
even if a very large number of patients would be taken into account and despite the fact
that only relatively healthy patients are considered.

The dynamic mathematical models can be directly used in clinical practice for assess-
ing DoH-related variables by implementing them in soft sensors [27] or state observers [28],
which would improve the anesthesiologist’s assessment of the patient state regarding
anesthetic agent concentrations and, consequently, the effects, hence benefiting the patients
in the long run. In addition, the models can enable in silico testing of various potentially
clinically implementable closed-loop control algorithms, e.g., PID-controller-based ap-
proaches [29–31]. Furthermore, they represent the basis for a number of advanced control
approaches, such asrobust control [32–34], model-predictive control [35,36], fuzzy-rule-
based decision system [37], event-based control [38], etc. Despite difficulties in objective
pain measurement [18,39], a number of articles also consider the inherent MIMO (or MISO)
nature of the controlled system, which is due to drug interactions, especially when anal-
gesics (such as remeifentanil) are considered [40–42].

The article introduces a novel structure for modeling DoH. The modeling framework
results in an improved individualized assessment of DoH, which is reflected in better
predictions of the related anesthetic agent concentrations as well as the measured BIS signal.
The article is structured as follows. First, we introduce the basic three-compartmental
model and the upgraded population-data-based model, namely, the PK and PD parts.
Next, we introduce the improved model structure and present the residual dynamic model
add-on. In Section 4, the identification procedure is presented, including the identification
signals, filtering, and parameter estimation. This is further extended to online recursive
parameter estimation. Next, we validate the improved model by comparing the simulated
data for the particular patient to real clinically acquired data, which were logged during a
surgery in a real clinical setting. We end the article with some concluding remarks.

2. Propofol Pharmacokinetic and Pharmacodynamic Modeling

The pharmacokinetics of the basic population-data-based model is described by the
Schnider model [22,23]. A well-established three-compartmental model structure is used as
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the basis for dynamic relations. For details, see [43,44]. The internal dynamics of the model
can be formulated using Equations (1)–(3).

dx1

dt
= φ − k12x1 − k13x1 − k10x1 + k21x2 + k31x3 (1)

dx2

dt
= −k21x2 + k12x1 (2)

dx3

dt
= −k31x3 + k13x1 (3)

In Equations (1)–(3), the variables x1, x2, and x3 represent the amount of the drug
in compartments V1, V2, and V3, respectively. The infusion flow rate is denoted as φ. As
noted above, the parameters k12, k21, k13, and k31 represent the partition coefficients that
determine the speed at which the drug moves from one particular compartment to another.
Finally, k10 is the rate of elimination of the drug from the patient’s body. Note that the
concentration in the central compartment is often referred to as plasmatic concentration.

The effect site for the drug propofol is basically the central nervous system. The effect
site is thus part of the central compartment, but the effect of the drug is subject to some
dynamics with regard to the (theoretical) concentration in the central compartment [44].
Therefore, a first-order model was used to describe the effect-site concentration dynamics,
as given in Equation (4).

dxe

dt
= −ke0xe + ke0x1 (4)

The effect-site concentration of propofol is considered as the main influence on the
DoH. Despite acknowledging that DoH is a multivariable and a not very easy to grasp
concept, involving deep unconsciousness, analgesia, amnesia, and muscle relaxation, we
want to keep the model as simple as possible, yet not too simple for our requirements.
Therefore, we first assume that BIS index is an adequate measure for DoH, despite the
fact that the assumption might be debatable [8,45,46]. Furthermore, we consider an SISO
model, where the input represents propofol inflow, and the output represents the value of
the BIS index.

Despite the fact that the PD effect mechanism has not been fully studied yet, in
the literature, a sigmoid Emax model based on the general Hill equation [47] is usually
considered, as given in Equation (5).

yBIS = yBIS(xe)

yBIS = BIS0 − (BIS0 − BISmin)
xγ

e

xγ
e50 + xγ

e

(5)

In Equation (5), BIS0 denotes the characteristic value for a fully awake patient, BISmin
stands for the minimum value of BIS index, and γ is the parameter that defines the nonlinear
shape of the response curve.

Therefore, the combined model can be regarded structurally as a Wiener nonlin-
ear model.

The parameters of the phamacokinetic model are taken from [22,23,48]. The values
are given in Table 1.
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Table 1. Parameter values.

Parameter Value

Vc 4.27l

k10
0.443 + 0.0107·(weight/kg − 77) −

− 0.0159·(LBM/kg − 59) +

+ 0.0062·(height/cm − 177) / min

k12 0.302 − 0.0056·(age/years − 53) / min

k13 0.196 /min

k21
[1.29 − 0.024·(age/years − 53)] ·
·[18.9 − 0.391·(age − 53)]−1 / min

k31 0.0035 / min

ke0 0.456 / min

Note that the values of model parameters depend on the patient’s age, weight, height,
and gender. Parameter LBM is calculated as given in Equation (6).

LBM =⎧⎪⎨⎪⎩
1.1 · weight/kg − 128(weight/kg

height/cm )2 ; male

1.07 · weight/kg − 148(weight/kg
height/cm )2 ; female

(6)

The parameters of the BIS-index-effect output submodel (see Equation (5)) are set as
suggested in [49] and are given in Table 2.

Table 2. Parameter values.

Parameter Value

BIS0 95.6

BISmin 8.9

xe50 2.23

γ 1.58

3. Residual Model Introduction—Improvement of the Population-Data-Based Model

Population-data-based mathematical models, such as the one described in the previous
section, are regularly used in clinical practice, namely, for TCI propofol infusion, which
has become a standard approach in administration of the anesthetic agent. In spite of this,
we need to consider the fact that the available models are derived from population-based
measurements, both regarding the pharmacokinetic and the pharmacodynamic part.

Prior to a medical procedure, the implemented mathematical model is always tuned
to the particular patient’s properties (e.g., age, weight, height, and gender). Despite this,
the model is still based on a broader population sample that was involved in the measured-
data gathering. Hence, it is impossible for such a model to take into account specific
interpatient variabilities. Therefore, the basic population-data-based model can broadly
predict DoH, but it can exhibit severe discrepancies from the actual BIS-indicated DoH of
a particular patient, especially when the particular patient’s sensitivity to the anesthetic
agent is considerably different from the dynamics assumed in the mathematical model.
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In order to improve the population-data-based model accuracy by taking into ac-
count the specific patient’s individual dynamic properties, we propose an extension to
the basic model structure. The whole model is then structured as follows: besides the
population-data-based model, we introduce an additional residual model, which is in-
tended to mathematically describe the dynamic discrepancy of the patient’s particular
sensitivity to anesthetic-agent infusion. The discrepancy signal represents the ideal residual
model output. The improved model structure, with the additional residual dynamic add-
on, is shown in Figure 1. The output of the improved model BISsim is, therefore, calculated
as given in Equation (7).

PDB model

Residual model

Φpropofol

BISsim
BISPDB

yres

-

Figure 1. The improved model structure consisting of the population-data-based (PBD) model, and
the residual dynamic model.

BISsim = BISPDB − yres (7)

Here, BISPDB denotes the basic population-data-based model output, and yres is the
residual model output.

The goal of introducing the residual model is thus to improve the combined model
output. This means that the combined model includes the population-data-based model as
the basis for modeling the patient dynamic response to propofol. In addition, the residual
model considers the particular patient’s individual dynamic response to propofol, namely,
the individual patient discrepancies from the population-data-based model, thus enabling
a more accurate assessment of DoH expressed by BIS index. Note that the following
conditions prevent a patient from being included in the study: patients with poor general
condition (ASA > 3), patients with BMI > 35, drug addicts, patients taking psychotropic
medicines or opioid analgesics (including tramadol), patients with a severe psychiatric
disease or central nervous system disease (except the reason for surgery), patients with
arrhythmia affecting or preventing the measurements (e.g., chronic atrial fibrillation), and
patients that received benzodiazepines.

4. Identification of the Residual Dynamic Model

4.1. Identification Signals

The residual dynamic model is identified based on the data measured during a medical
procedure treating an individual patient. The input of the residual dynamic model is the
actual propofol inflow φpropo f ol , whereas its output is obtained by subtracting the actual
measured BIS signal BISdata from the population-data-based model output BISPDB, as
shown in Equation (8). The latter is calculated according to the predefined population-data-
based PK and PD model, taking into account the individual patient’s properties.
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Both signals are sampled using Ts = 1 s sampling rate. The whole experiment is
therefore represented by two discrete-time signals in Equations (8) and (9).

yres,id(z) = BISPDB(z)− BISdata(z) (8)

ures,id(z) = φpropo f ol(z) (9)

4.2. Residual Dynamic Model Structure

The structure of the residual dynamic model should be as simple as possible, but at
the same time complex enough to be able to adequately model the patient’s discrepancy
from the population-data-based model. Despite that higher complexity of the models and
possibly evolving identification could yield favorable approximations [50–52], especially if
the identification data are noise-free, we established that an appropriate structure for our
case is a second-order model, which is structured as an affine autoregressive model with
exogenous inputs. Its discrete-time formulation is given in Equation (10).

yres(t + Ts) = a1yres(t) + a2yres(t − Ts) + b1ures(t) + c (10)

Here, a1, a2, b1, and c represent the parameters to be estimated. Note that t represents
a particular time-instant of the model. A single step of the model Ts is not necessarily equal
to the data-sampling rate Ts,data. In our case, it is Ts = 5 · Ts,data = 5 s.

The model parameters can be gathered in the parameter vector Θ as given in Equation (11).

ΘT = [a1, a2, b1, c] (11)

The regressor is defined in Equation (12).

Ψ(t)T = [yres(t), yres(t − Ts), ures(t), 1] (12)

In this way, Equation (10) can be rewritten in Equation (13).

yres(t + Ts) = ΘTΨ(t) (13)

4.3. Parameter Estimation

The parameters of the residual dynamic model a1, a2, b1, and c are estimated from the
measured data concerning the particular patient.

As the measured BISdata signal is prone to significant noise, the first step is to apply
a suitable filter, which should ensure better identification results. We established that a
simple first-order filter (with a filtering time-constant τf ) is adequate. The filter can be
represented by the transfer function in Equation (14). Its discrete-time equivalent is given
in Equation (15).

τf = 20 s

Hf (s) =
1

τf s + 1
=

1
20s + 1

(14)

Hf (z) =
0.04877

z − 0.9512
(15)

Finally, the filtered identification signals are given in Equations (16) and (17).

yres,id, f (z) = Hf (z)yres,id(z) (16)

ures,id, f (z) = Hf (z)ures,id(z) (17)
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The filtered signals yres,id, f and ures,id, f are used for estimating the parameters of the
residual dynamic model Θ.

The output data vector Y contains the output variable as given in Equation (18).

Y =

⎡⎢⎣ yres,id, f (t1)
...

yres,id, f (tP)

⎤⎥⎦ (18)

The regression matrix Ψ is obtained by using the whole set of measured data, as given
in Equations (19) and (20).

Ψ =

⎡⎢⎢⎣
ΨT

f (t1)
...

ΨT
f (tP)

⎤⎥⎥⎦ (19)

Ψ(ti)
T
f =

[
yres,id, f (ti), yres,id, f (ti − Ts), ures,id, f (ti), 1

]
(20)

Here, ti represents a time instant concerning a particular identification data pair
(i = 1, . . . , P).

According to Equations (18)–(20) and (13), the parameters of the residual dynamic
model Θ can be obtained using the least-squares identification method, as given in Equation (21).

Θ = (ΨTΨ)−1ΨTY (21)

5. Online Recursive Parameter Estimation

In order to implement the proposed modeling framework as an intelligent soft sensor
for assessing DoH, we must be able to acquire the improved combined model for DoH
during surgery. The population-data-based submodel is based on patient data and can be
derived prior to surgery. On the other hand, the particular patient’s individual dynamic
response to propofol, namely, the individual patient discrepancies from the population-
data-based model, can only be assessed after the measured data becomes available, i.e.,
either after finishing the medical procedure, as proposed in Section 4.3, which can rarely be
used, or during the medical procedure as soon as new data become available. The latter
approach enables the use of the improved model during the medical procedure.

The recursive parameter estimation is carried out as described below. The residual
model in Equations (10) and (13) is linear in the parameters, therefore it is possible to
analytically derive a least-squares estimate of the parameters. Furthermore, if the identified
system parametersare expected to be time-varying, the online estimation algorithm can
place more emphasis on newly acquired data and gradually discard older data. Therefore,
the proposed approach implements a recursive least-squares identification with exponential
forgetting [53]. The algorithm can consider a least-squares loss function for exponentially
discarding older data as time passes. The model parameters are, therefore, estimated using
Equations (22)–(24).

Θ̂(t) = Θ̂(t − Ts) + K(t)
(

yres,id, f (t)− ΨT
f (t)Θ̂(t − Ts)

)
(22)

K(t) = P(t − Ts)Ψ f (t)
(

λ + ΨT
f (t)P(t − Ts)Ψ f (t)

)−1
(23)

P(t) =
(

I − K(t)ΨT
f (t)

)
P(t − Ts)/λ (24)

In Equations (22)–(24), P(t) denotes the covariance matrix (P(t) ∈ Rn×n), where n
represents the length of the regressor. Θ̂(t) denotes the vector of the identified or estimated
process parameters, λ denotes the forgetting factor, and I is the unity matrix, where
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I ∈ Rn×n. The recursive parameter estimation is carried out online—in every time step
t—and returns the calculated parameters of the model Θ̂(t).

The forgetting factor λ is defined in Equation (25), where tλ stands for the time constant
for the exponential forgetting and Ts is the sampling time.

λ = e−
Ts
tλ (25)

The regressive parameter estimation method can consider time-varying dynamics of
the identified process; therefore, exponential forgetting can be employed. The forgetting
factor has to be set between 0 < λ ≤ 1. In this manner, the data used for parameter
estimation are pondered, so that the last data are pondered by factor 1, whereas the data
that are ks · Ts time steps old are pondered only by a factor of λks .

The initial covariance matrix P(0) has to be positive-definite and properly sized. If the
regressive parameter estimation method is interpreted as a Kalman filter, it can be regarded
as ensuring that the parameters are distributed with an initial covariance P(0) and initial
mean-values Θ̂(0) [53].

In each time step t, a new estimation is calculated. The new parameter estimations Θ̂(t)
are recursively based on the estimations from the previous time step t − Ts and the online
newly measured data. Therefore, the resulting model adapts to the new measurements as
soon as they are available.

6. Model Validation Based on Real Clinical Data

In order to validate the proposed modeling approach, we gathered real data during
a TIVA medical procedure. In our case, the treated patient was a 46-year-old male who
weighed 59 kg and was 175 cm tall.

6.1. Recorded Signals

The signal denoting the inflow of propofol φpropo f ol was parsed from the clinically
recorded data and is shown in Figure 2. One can see that, firstly, a bolus dose is introduced
in order to rapidly increase the concentration of propofol in the body. This phase is called
the induction of anesthesia and results in the patient losing consciousness. Later, a suitable
dose of propofol is continuously administered in order to keep the proper anesthetic depth.

The recorded BISdata signal for the particular treated patient is shown in Figure 3.
The plasmatic concentration of propofol cp and effect-site concentration of propofol ce
are obtained by simulating the dynamic model defined in Equations (1)–(4) based on
the measured inflow signal of propofol φpropo f ol . Next, the population-data-based BIS
trajectory BISPDB is obtained according to Equation (5). Finally, it is possible to obtain the
identification signals for the residual dynamic model yres,id, f and ures,id, f using Equations (8),
(9), and (15)–(17). The identification signals are shown in Figure 4. Note that only the
relevant interval of the measured data is considered.
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Figure 2. The inflow of propofol φpropo f ol .

Figure 3. The measured BIS trajectory BISdata.
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Figure 4. The identification signals for the residual dynamic model yres,id, f and ures,id, f .

6.2. Identification Results

The final resulting parameters of the residual dynamic model are given in Equation (26).

ΘT = [1.7376,−0.7469,−0.0053, 0.1638] (26)

When conducting online recursive parameter estimation, the parameters converge to
the values in Equation (26). Before starting, the initial values for the algorithm are set as
given in Equations (27)–(29).

P(0) = 100 · I =

⎡⎢⎢⎣
100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100

⎤⎥⎥⎦ (27)

Θ̂T(0) = [1.7242,−0.7356,−0.0040, 0.1729] (28)

λ = 1 (29)

As the recursive parameter estimation is carried out, the parameters a1, a2, b1, and c
change their values along the trajectories shown in Figure 5.
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Figure 5. Online recursive parameter estimation.

6.3. Model Validation

In order to validate the obtained model, we employ a quantitative measure for predic-
tive quality assessment, which is often used in the literature, namely, the prediction mean
square error (PMSE). It is calculated according to Equation (30).

PMSEx =
1
N

N

∑
i=1

(xi,sim − xi,data)
2 (30)

Furthermore, there are two more quantitative measures that are often used in the liter-
ature to compare the simulated and the measured signal, such as the BIS-index trajectory:
the median performance error (MDPE), which is calculated according to Equation (31), and
median absolute performance error (MDAPE), which is calculated according to Equation (32).

MDPEx = median{ xi,data − xi,sim

xi,sim
· 100%}i=1,...,N (31)

MDAPEx = median{| xi,data − xi,sim

xi,sim
| · 100%}i=1,...,N (32)

In Equations (30)–(32), xsim and xdata denote the simulated and the measured data,
respectively, whereas N stands for the number of data points in the dataset.

Figure 6 shows the output of the residual dynamic model yres compared to the
measurements-based trajectory yres,id, f .
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Figure 6. Residual dynamic model validation: yres and yres,id, f .

Finally, the output of the improved model is calculated according to Equation (7). The
relevant BIS trajectories are shown in Figure 7.

Figure 7. Improved model validation: BISsim, BISPBM, and BISdata.
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For the case of the particular patient and medical procedure, the calculated criteria for
yres and BIS are given in Table 3 and Table 4, respectively.

Table 3. Predictive quality measures for yres.

yres PMSE MDPE MDAPE

Without residual
model 166.0 N/A N/A

With residual model 50.8 −4.88 101.4

Improvement 3.27 N/A N/A

The presented residual dynamic model reduces the PMSE of the difference between
yres and yres,id, f from 166.0 to 50.8; therefore, the improvement factor is 3.27.

Table 4. Predictive quality measures for BIS.

BIS PMSE MDPE MDAPE

Without residual
model 179.8 −10.85% 22.56%

With residual model 63.3 −0.605% 16.92%

Improvement 2.84 10.24% 5.64%

The implementation of the improved model reduces the PMSE from 179.8 (BISBMS
and BISdata) to 63.3 (for BISsim and BISdata). In this case, the improvement factor is 2.84.
Furthermore, the MDPE criterion improved by 10.24%, and MDAPE by 5.64%.

The main limitation of the proposed model is that it cannot be rigorously validated for
a specific patient before its implementation because of its dependence on online measure-
ments collected during the medical procedure. Moreover, no two anesthetic applications
are alike, even if the same patient undergoes the same type of surgery several times, for
example. Since the dynamic characteristics of the patient may change over time, it is not
possible to compare the performance in two different interventions even if the same patient
is treated. Because we cannot claim that the individualized dynamic model in question is
time-invariant in the long run, it cannot be validated by using a special validation dataset
that is strictly separate from the dataset used for identification. Furthermore, as the goal of
the additional residual model is to consider the individual patient’s discrepancy from the
population-data-based model, it is not sensible to cross-validate it using another patient’s
measurements.

On the other hand, the results suggest that a significant improvement can be achieved,
compared with the approach based only on the population-data-based model. In the future,
the modeling framework will be further verified with several more datasets on different
individuals treated with TIVA.

7. Conclusions

The article introduces a novel structure for modeling DoH, resulting in an improved
individualized assessment of DoH, which is reflected in better predictions of the measured
BIS signal. The presented model structure for modeling DoH dynamics employs the resid-
ual dynamic model add-on, which is used to model a particular treated patient’s individual
dynamic discrepancies from the population-data-based model. In such a manner, the model
can take into account the patient’s individual sensitivity to the anesthetic agent, which is
not the case when using the population-data-based model exclusively, e.g., when using
TCI, as is often the case in clinical practice. Therefore, the proposed modeling framework
provides an improved mechanism for predicting DoH measured by the BIS index.
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The improved model was verified using real clinical data logged during a medical
treatment of a particular patient that lasted a little more than one hour. The results show
that the predictions of the BIS-index trajectory were, indeed, considerably improved. Hence,
the improved model seems to provide a solid foundation for better simulations as well
as for the implementation in closed-loop model-based predictive control of DoH. The
modeling framework will be further verified with several more datasets concerning various
individuals that have been treated with TIVA.

To sum up, the presented framework provides a basis for a more patient-oriented
individualized model for assessing DoH. The model seems to provide a deeper insight
into DoH dynamics, which should lead to better administration methods that will relieve
the anesthesiologist’s workload and will benefit the patient by providing improved safety,
individualized treatment, and, thus, alleviation of possible adverse effects during and
after surgery.
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Abstract: High-sensitivity early fire detection is an essential prerequisite to intelligent building safety.
However, due to the small changes and erratic fluctuations in environmental parameters in the initial
combustion phase, it is always a challenging task. To address this challenge, this paper proposes a
hybrid feature fusion-based high-sensitivity early fire detection and warning method for in-building
environments. More specifically, the temperature, smoke concentration, and carbon monoxide
concentration were first selected as the main distinguishing attributes to indicate an in-building fire.
Secondly, the propagation neural network (BPNN) and the least squares support vector machine
(LSSVM) were employed to achieve the hybrid feature fusion. In addition, the genetic algorithm
(GA) and particle swarm optimization (PSO) were also introduced to optimize the BPNN and the
LSSVM, respectively. After that, the outputs of the GA-BPNN and the PSO-LSSVM were fused to
make a final decision by means of the D-S evidence theory, achieving a highly sensitive and reliable
early fire detection and warning system. Finally, an early fire warning system was developed, and
the experimental results show that the proposed method can effectively detect an early fire with an
accuracy of more than 96% for different types and regions of fire, including polyurethane foam fire,
alcohol fire, beech wood smolder, and cotton woven fabric smolder.

Keywords: early fire warning; hybrid feature fusion; intelligent building system; D-S evidence theory

1. Introduction

Over the past few years, building fires have been one of the most common and frequent
types of fire, causing severe property losses and fatalities [1–3]. Thus, it has become
extremely important and imperative to effectively decrease and control the risk of fire in
buildings. One of the most critical technologies is early fire warning, and both academia
and industry are exploring approaches that enable the prompt detection and accurate
determination of scene conditions in the early stages of building fires [4]. Furthermore,
with the development of intelligent buildings, an effective early fire detection and warning
system is also an essential prerequisite to provide safe, healthy, and comfortable residential
or working conditions.

For achieving early fire detection and warning inside building environments, many
algorithms have been presented, which can be mainly divided into three categories, namely
optical, smoke, and carbon-monoxide sensors. Li et al. [5,6] conducted a fire detection
algorithm performance evaluation based on image complexity, which could accurately
determine the detection level of the detection algorithm under different image complexity
conditions. Li et al. [7] proposed a new hybrid model for fire prediction based on the
visual information of RGB images. The model achieves promising performance, which
also shows the potential to monitor the constant changes in a building fire through the
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continuous processing of images of flames. Xie et al. [8] employed an early fire detection
method for shielded indoor environments based on fire light reflection characteristics and
established a multi-expert system by extracting the change characteristics of the fire area
with light reflection. They then verified the method based on a large data evaluation system.
However, in the above methods, they ignored the early stages of the fire that may not
involve the open flame but cannot determine the correct scene conditions in time. The
temperature, another major feature of fire, has also attracted significant attention. Ji et al. [9]
proposed a machine-learning-based real-time prediction method for monitoring physical
parameters for early fire warnings based on temperatures. The results show that the trained
intelligences improve the accuracy and reliability of building fire warnings. Sun et al. [10]
verified a bio-inspired artificial intelligence algorithm driven by temperature data to detect
fire in 3D spaces. Yusuf et al. [3] presented a linearly regressive artificial-neural-network-
based technique to predict temperature increases caused by building fire environments.
This method predicts temperature ranges in a burning compartment based on the historic
fire behavior data modelled via a neural network algorithm. Garrity et al. [11] exploited a
compact embedded artificial neural network (ANN) with a second-stage classifier, reading
temperature data from the in-built thermocouple, to produce the output of predicted
temperatures. However, this technical approach, namely its ability to judge temperature
fluctuations in special environments, still requires further improvement. To compensate
for the deficiencies of the feature parameter, Zhang et al. [12] proposed DBN-R-LSTM-
NN to classify and predict fire smoke and other features based on data collected from
IoT sensors. Pincoot et al. [13] designed a vision-based indoor fire and smoke detection
system with small training and test datasets, whereby different pixel density images, high-
density smoke environments, and flame density scenes were recognized. Qiu et al. [14]
developed a distributed feedback carbon monoxide (CO) sensor based on lasers used for
the early warning detection of fire and verified the reliability of this sensor via different
experiments. Li et al. [15] studied and proposed an early fire detection method based
on a gas turbulent diffusion (GTD) model and particle swarm optimization (PSO). The
experimental results verify that the sensor system has good fire detection and location
performance. Chen et al. [16] proposed a fast and cost-effective indoor fire alarm system,
which is used to find the fire, carbon monoxide, smoke, temperature, and humidity data in
real time and conduct effective data analysis and classification. For smoke detection, the
influence of smoke and dust in the environment represents a challenge.

Although vision-based sensing systems have shown good performance, massive
and complex datasets often delay the time in the decision-making process [17]. Thus,
visual-based sensing systems are not appropriate for early fire detection where decision
making needs to be conducted in limited time. Additionally, vision-based sensing systems
are inappropriate inside buildings because of the size and cost of devices, as well as
privacy concerns that make them unsuitable for installation in multiple rooms and private
homes. Meanwhile, single chemical sensor fire detectors are susceptible to interference
from environmental conditions such as electromagnetic waves, water vapor, dust, cigarette
smoke, and cooking smoke [18], which means that most smoke detectors will have false
alarms when they detect these interfering conditions. Similarly, single temperature sensor
devices still suffer from the misjudgment of environmental temperature fluctuations. They
cannot effectively distinguish between early fire signals and environmental interference
signals and cannot properly send early fire warning signals.

Due to the rapid development of machine learning, many intelligent algorithms have
been presented to fuse several fire feature parameters [19–22]. This method overcomes
the singularity and instability of the traditional threshold judgment method, which can
significantly improve the accuracy of fire detection. Therefore, this paper proposes a hybrid
feature fusion-based early fire detection method. First, by means of the distributed wireless
sensing network, a hybrid feature collection system is developed to collect the smoke
concentration, temperature, and CO concentration. On this account, a hybrid feature fusion
algorithm, combining an error back propagation (BP) neural network with a least square
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support vector machine (LSSVM), is proposed. Then, the genetic algorithm (GA) and
particle swarm optimization (PSO) are applied to obtain the optimal parameters in the
data fusion process of the two algorithms, in order to achieve the optimized feature-level
fusion results. Furthermore, the two algorithms are treated as subevidence bodies and the
output results are adopted as the basic probability assignment of the D-S evidence theory
for decision-level fusion to realize highly sensitive and reliable early fire warnings.

2. Suggestions and Methodology

The process of the hybrid feature data fusion algorithm is shown in Figure 1. The
smoke concentration, temperature, and carbon monoxide concentration are obtained after
collecting nodes and they are then transmitted to the data processing center via LoRa as
inputs of the genetic algorithm–back propagation neural network (GA-BPNN) and the
particle swarm optimization–least squares support vector machine (PSO-LSSVM). The two
models both obtain three outputs: fire, smolder, and no fire. Then, the results of the feature
layer fusion are integrated by the D-S evidence theory to output the final decision.

Figure 1. Overall design of the early fire detection and warning system.

2.1. Genetic Algorithm–Back Propagation Neural Network Fire Warning Model

The BPNN algorithm optimized by GA is a continuous and iterative process used for
searching the best weight and threshold [19]. The process of the BPNN algorithm optimized
by GA is shown in Figure 2.

The BPNN is a multi-layer forward feedback network for error correction, which
includes the forward propagation of the signal and backward propagation of the error. The
error excitation function is a sigmoid function, as shown in Equation (1).

Yi =
1

1 + exp
[
−
(

n
∑

i=1
wijxi + wj0

)]
Yk =

N
∑

k=1
wkjYj + wk0

(1)
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where Yk is the kth variable of the output layer, Yj is the jth variable of the hidden layer,
xi is the ith input variable, N is the number of output neurons, n is the number of hidden
neurons, wkj is the weight between the output layer and the hidden layer, and wji is the
weight between the input layer and the hidden layer.

Figure 2. The BPNN process with GA optimization.

The gradient descent method is often used to optimize the parameters of neural
networks. However, BPNN is difficult to converge and may fall into local extremes. Since
the GA [23] can reduce the solution space of the neural network, the global optimal solution
can be obtained more quickly and stably by the GA-BPNN [24]. The GA uses selection,
crossover, and mutation to generate several initial populations of defined encoding lengths
in a random number [25].

In the GA optimization strategy, the best realized individuals of the new generation
will be considered as a result of the execution and GA setups shown in Table 1. The optimal
parameters obtained by GA are then brought into the BPNN for training.

Table 1. The GA setups.

Types Symbols Interval

The coding length N 20~200
The crossover probability Pc 0.4~0.99
The mutation probability \ 0.005~0.1

The number of terminated
evolutionary generations \ 100~1000

2.2. Particle Swarm Optimization–Least Squares Support Vector Machine Fire Warning Model

The inputs to the LSSVM are the smoke concentration, temperature, and carbon
monoxide concentration. The penalty factor C and the kernel parameter σ of the LSSVM
are optimized by PSO. The simulation outputs are compared with the expected outputs to
verify the feasibility of the algorithm, and the design is shown in Figure 3.
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Figure 3. The PSO-LSSVM fire warning algorithm model.

In support vector machines (SVMs), the dot product algorithm in the high-level feature
is replaced by the kernel function [26].

SuykensJ and Vandewalle [27] further proposed the least squares support vector
machine (LSSVM) for solving pattern classification and regression prediction problems [28].
A nonlinear function ϕ(xi) is used to map the input to the feature space, and the nonlinear
function estimation modeling is shown in Equation (2).

f (x) = b + (∅(x), w) (2)

where w is the weight vector and b is the bias term.
The evaluation problem is described as the optimization problem based on the princi-

ple of structured risk minimization and the Lagrange function is constructed, as shown in
Equation (3), to solve the optimization problem.

LLSSVM =
1
2

w2 +
1
2

γ
N

∑
i=1

e2
i −

N

∑
i=1

αi[(w,∅(xi)) + b + ei − yi] (3)

where ai is the Lagrange multiplier.
The linear problems can be simplified by eliminating w and ei, as described in Equation (4).[

0 ET

E + 1
γ E

][
b
a

]
=

[
0
y

]
x (4)

where y = [y1, . . . , yN]T, a = [a1, . . . , aN]T, E = [1, . . . , 1]T, and is a symmetric matrix
equation for the N × N as shown in Equation (5).

Ωij = K(xi, xj) = ∅(xi)
T
∅(xj)i, j = 1, 2, . . . , N (5)

where K(xi, yj) is the kernel function that satisfies the Meser condition [29].
Finally, the LSSVM can be described, as shown in Equation (6).

y(x) = (w,∅(x)) + b =
n

∑
i=1

αi∅(xi) ·∅(x) + b =
n

∑
i=1

αiK(xi, x) + b (6)

The four main forms of the LSSVM kernel function are shown in Table 2.

Table 2. The forms of the kernel function.

Kernel Function Forms

The polynomial kernel function K(x, xi) = (x·xi + c)N

The radial basis kernel function K(x, xi) = exp
( ‖x−xi‖2

2σ2

)
The sigmoid kernel function K(x, xi) = tanh(τ·(x, xi) + t), (τ > 0, t > 0)

The linear kernel function k(x, xi) = x∗xi
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The PSO algorithm simulates a bird in a flock by designing a massless particle with
position and velocity attributes [30]. The individual extremes are matched with the cur-
rent global optimal solution shared by other particles in the global to adjust the speed
and position [31].

The PSO will initialize to a group of random particles and find the optimal solution by
iteration [21]. The particle update is tracked (pbest, gbest) in iteration by Equations (7) and (8).

vi = vi + c1 × rand()× (pbesti − xi) + c2 × rand()× (gbesti − xi) (7)

xi = xi + vi (8)

where i = 1, 2, . . . , N, and N is the total number of particles. Vi is the speed of the particle.
Rand ( ) is a random number between 0 and 1. Xi is the current position of the particle.
C1 and c2 are the learning factors of c1 = c2 = 2. The maximum value of vi is Vmax (>0);
if vi > Vmax, then vi = Vmax.

According to the update of the velocity v, c1 is aimed towards the local optimal
solution and c2 is aimed towards the global optimal solution. The representation is shown
in Figure 4.

Figure 4. Schematic diagram of particle search for optimization.

The design steps of the PSO are shown in Figure 5.

Figure 5. Particle swarm optimization process.

The initialization of the PSO algorithm is shown in Table 3. The fire detection uses
the smoke concentration, temperature, and carbon monoxide concentration as inputs for
training and testing samples. Then, the samples are trained by the LSSVM. The optimal
penalty factor c and the optimal kernel function width factor σ of the LSSVM are obtained
by the PSO optimization search. The partial fusion results of another group of samples can
be obtained as the original fusion results for adjustment.
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Table 3. The PSO algorithm initialization parameters.

Types Symbols Interval

The acceleration factor
c1 1.5
c2 1.7

The maximum number of population evolution \ 300
The population size \ 30

The penalty factor range \ 0.1~1000
The kernel function width factor range σ 0.01~1000

To assess the performance of the BPNN, the GA-BPNN, and the PSO-LSVM model,
three evaluation indicators, i.e., the mean square error (MSE), the root mean square error
(RMSE), and the mean absolute error (MAE), are adopted [20]. The MSE, RMSE, and MAE
are calculated, as shown in Equations (9)–(11). The smaller the MSE, RMSE, and MAE, the
smaller the error.

RSE =
1
N

Nd

∑
m=1

(ŷm − ym)
2 (9)

RMSE =

√√√√ 1
Nd

Nd

∑
m=1

(ŷm − ym)
2 (10)

MAE =
1

Nd

Nd

∑
m=1

|(ŷm − ym)| (11)

where Nd is the amount of data, ym is the actual value of data, and ŷm is the simulation
output of the model.

2.3. Decision-Level Feature Data Fusion

The D-S evidence theory [32,33] is specialized in solving uncertainty problems [34,35].
It fuses confidence functions obtained by different algorithms to make decisions using the
combination rules of the evidence theory. The system will make a final decision based on
new evidence according to the decision rules.

Suppose U is an identification frame, the function m: 2Θ → [0, 1] satisfies Equation (12).

m(φ) = 0, ∑
A⊆Θ

m(A) = 1 (12)

m is the basic probability assignment function based on 2Θ and m(A) is the basic
probability assignment of proposition A, indicating the degree of confidence in the proba-
bility assignment.

The confidence function indicates the total degree to which the obtained evidence
supports the information grading. The function Bal is defined by ∀A ⊆ Θ and Bal(A) =

∑
B⊆A

m(B). 2Θ → [0, 1] is the reliability function on Θ. For ∀A ⊆ Θ if m(A) > 0, A is the focal

element of the reliability function Bel and the union of all the focal elements in the frame Θ
is the kernel.

The likelihood function describes the degree to which the obtained evidence cannot
reject the score. A pl: 2Θ → [0, 1] is defined in Equation (13):

pl(A) = 1 − Bel(A) = ∑
B∩A �=φ

M(B) (13)

The confidence functions of Bel1 and Bel2 are demonstrated. M1 and m2 are the
corresponding basic probability assignment functions. The focal elements are A1, A2, . . . ,
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An and B1, B2, . . . , Bn. The new probability M can be obtained according to the D-S
evidence theory shown in Equation (14):

M =

⎧⎨⎩
0, C = φ

1
1−K ∑

Ai∩Bj=C
m1(Ai)m2(Bj), C �= Φ (14)

The calculation of K is shown in Equation (15).

K = ∑
A∩B=φ

m1(A)m2(B) (15)

On the one hand, if K �= 1, the two are compatible, and basic probability assignment
can be conducted. On the other hand, if K = 1, then m1 and m2 are contradictory or
cannot combine.

The decision of the D-S evidence theory followed the rules shown below, assuming
that A1 ⊂ Θ, A2 ⊂ Θ satisfies Equations (16) and (17).

m(A1) = max[m(Ai), A ⊂ Θ] (16)

m(A2) = max[m(Ai), Ai ⊂ Θ], Ai �= A1 (17)

If Equations (18) and (20) are satisfied as below:

m(A1)− m(A2) > ε1 (18)

m(Θ) < ε2 (19)

m(A1) > m(Θ) (20)

where ε1 and ε2 are the preset thresholds, then A1 is the determined result by the D-S
evidence theory.

The training error e of the GA-BPNN and the PSO-LSSVM is calculated as part of the
basic probability assignment shown in Equation (21).

e =
1
2∑ (ti − yi)

2 (21)

where ti and yi are the expected and simulated outputs in the GA-BP and the PSO-LSSVM.
The identification framework of the evidence theory Θ = {A1, A2, A3}, A1, A2, A3

represents the fire, smolder, and no fire. In the portfolio of evidence E = {E1, E2}, E1 and
E2 denote the outputs of the GA-BP and the PSO-LSSVM, respectively. m1(A1), m1(A2),
and m1(A3) represent the basic probability assignments of the GA-BP for the three outputs
of fire, smolder, and no fire, respectively. m2(A1), m2(A2), and m2(A3) represent the basic
probability assignments of the PSO-LSSVM for the three outputs of fire, smolder, and no
fire, respectively.

The final basic probability assignment of each element obtained from Equation (21) is
shown in Equation (22) below:

mj(Ai) =
y(Ai)

3
∑

i=1
y(Ai) + e

(j = 1, 2) (22)

Then, the D-S evidence theory fusion rule is described in Equation (23).

m(Az) = m1(Ai)⊕ m2(Aj) =

⎧⎨⎩
1

1−K ∑
Ai∩Aj=Az

m1(Ai)m2(Aj), ∀AZ ⊆ Θ, Az �= φ

0, AZ = φ
(23)
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Equation (24) is then used to calculate K:

K = ∑
Ai∩Aj=φ

m1(Ai)m2(Aj) (24)

3. Results and Discussions

3.1. Experimental Setup

Firstly, the fire dynamics simulator (FDS) [36,37] was employed to simulate in-building
fires, as shown in Figure 6a. The large eddy simulation (LES) in the FDS was used by
the Smagorinsky subgrid model to solve the Navier–Stokes equations for the turbulence
with a low Mach number caused by the fire phenomenon. The simulated setting was a
no-wind scenario. In this figure, the burning duration was set to 40 s, and the combustion
products in the space are presented in Figure 6b–d. We can see that the temperature, smoke
concentration, and CO concentration changed slowly in the first five seconds, and then
they began to rise significantly. At the end of the 40 s burn time, the temperature achieved
the maximum, while the smoke variation stabilized, and the CO concentration continued
to increase. Therefore, according to the results of the building fire simulation, these three
feature parameters were selected as the monitoring parameters of the fire warning system.

Figure 6. The simulation analysis of in-building fire features: (a) fire model; (b) temperature change;
(c) smoke concentration change; and (d) carbon monoxide concentration.

Three key parameters, i.e., temperature, smoke concentration, and carbon monoxide
concentration, were extracted from the experimental data to form the basic datasets. Then,
we divided the outputs of the hybrid feature fusion model into three classes (open fire,
smolder, and no fire). On this basis, (1,0,0), (0,1,0), and (0,0,1) were modeled as the ideal
representations of open fire, smolder, and no fire, respectively. Subsequently, we developed
a combustion product collection system, including the combustion product collection node
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and gateway node, as shown in Figure 7, to obtain the real experimental data generated
by small simulated in-building fires, where 800 sets of data were collected. The feature
data in the datasets were derived from combustion products of different materials, while
each dataset included the temperature (Temp), smoke concentration (Smoke), and carbon
monoxide concentration (CO). After that, these data were further divided into 600 sets of
training data and 200 groups of test data. The training data were utilized to train the model
and the optimal network training model could be obtained after consecutive iterations with
learning rates of 0.001. The test data were employed to demonstrate the effectiveness.

Figure 7. The fire detection and warning system: (a) collection node design; (b) gateway node design;
(c) hardware.

3.2. Results of Open Fire

The fire test data were substituted into the already trained BPNN, and the results
are shown in Figure 8a. The comparison reveals that the simulation output of the BPNN
differed significantly from the expected output of fire. However, the network model
optimized by the GA could obtain the optimal weights and thresholds, which we inputted
into the BPNN for training. The outputs are shown in Figure 8b. It can be seen that the
difference between the simulated and expected outputs was reduced.

Figure 8. The output results of fire with (a) the BPNN and (b) the GA-BPNN.

The PSO-LSSVM fire warning model adopted four kernel functions: (1) the radial basis
kernel function; (2) the sigmoid kernel function; (3) the polypolynomial kernel function;
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(4) and the linear kernel function. The simulation results of fire based on the four types
of kernel functions were compared and analyzed with the expected outputs, as shown in
Figure 9a–d. It is clear that the radial basis kernel function could perform better than the
other three kernel functions. Thereby, it delivered the best data fusion effects.

Figure 9. The output results of fire with the LSSVM for different kernel functions: (a) the radial basis
kernel function; (b) the sigmoid kernel function; (c) the polypolynomial kernel function; (d) the linear
kernel function.

3.3. Results of the Smolder

Figure 10 shows that the simulation results of the BPNN optimized by GA had better
stability. Compared with the original model, the difference between the simulation results
and the expected results was significantly reduced.

Figure 10. The output results of smolder with (a) the BPNN and (b) the GA-BPNN.
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Figure 11 illustrates the different output results of smolder with the LSSVM. It can
be seen that the radial basis kernel function also obtained the most stable output results,
representing the highest reliability and the best data fusion effects.

Figure 11. The output results of smolder with the LSSVM for different kernel functions: (a) radial
basis kernel function; (b) sigmoid kernel function; (c) polypolynomial kernel function; (d) linear
kernel function.

3.4. Model Performance Analysis

Table 4 shows the error MSE, RMSE, and MAE of the BPNN and the GA-BPNN to
quantify the model performance. Table 4 also shows that the GA-BPNN had the smallest
MSE, RMSE, and MAE, which indicates that the simulation output of the GA-BPNN was
more suited to the expected output. The GA-BPNN also performed better than the original
BPNN. Therefore, the GA-BPNN could also fuse the fire feature data in the feature layer.

Table 4. The output error analysis.

Algorithm Model
Fire Smolder

MSE RMSE MAE MSE RMSE MAE

BP 0.0185 0.1361 0.0412 0.0083 0.0910 0.0362
GA-BP 0.0037 0.0612 0.0164 0.0025 0.0498 0.0140

Table 5 illustrates the calculation analysis of the MSE, RMSE, and MAE for different
kernel functions. As shown in Tables 4 and 5, the algorithm based on the RBF had the
smallest MSE, RMSE, and MAE, indicating that the simulation output was closer to the
expected output and the model performance was better than the others. Therefore, the
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PSO-LSSVM model based on the RBF was selected to fuse the feature layer data for the
fire feature.

Table 5. The output error analysis.

Kernel Function
Fire Smolder

MSE RMSE MAE MSE RMSE MAE

RBF 0.0028 0.0529 0.0293 0.000984 0.0314 0.0152
Sigmoid 0.0188 0.1370 0.0639 0.0155 0.1247 0.0603

Poly 0.0172 0.1310 0.0640 0.0146 0.1209 0.0619
Linear 0.0192 0.1386 0.0694 0.0169 0.1300 0.0681

3.5. Results of the Proposed Method

According to the empirical definition ε1 = 0.5, the simulation outputs of five groups
of test sample data were selected for comparison and analysis with the expected outputs
using Equation (24). Table 6 shows three uncertainty data outputs from the GA-BPNN and
one uncertainty output from the PSO-LSSVM. These results are ambiguous. So, these five
groups of results were then assigned and calculated by the probability of the D-S evidence
theory, and the results are shown in Table 7. The evidence indicates that the results of
the fusion based on the D-S evidence theory were consistent with the expected outputs.
Thus, the results of the D-S evidence theory fusing the two model treatments effectively
addressed the ambiguity of the evidence and improved the reliability of the fused data.

Table 6. Neural network simulation output results and expected output results.

Algorithm Model Simulation Output Expected Output Results

The GA-BP neural network

0.62745 0.00138 0.37117 1 0 0 Uncertainty
0.68278 0.01471 0.30251 1 0 0 Uncertainty
0.9969 0.0025 0.0006 1 0 0 Fire
0.5986 0.3927 0.0087 1 0 0 Uncertainty
0.99792 0.002 0.00008 1 0 0 Fire

The PSO-LSSVM network

0.86354 0.07689 0.07941 1 0 0 Fire
0.87026 0.04597 0.0794 1 0 0 Fire
0.64114 0.29953 0.05933 1 0 0 Uncertainty
0.87451 0.11074 0.07941 1 0 0 Fire
0.97166 0.00114 0.02283 1 0 0 Fire

Table 7. The results of the D-S evidence theory fusion approach.

Sample m(A1) m(A2) m(A3) Results

1 0.9997 0.0001 0.0002 Fire
2 0.9983 0.0011 0.0006 Fire
3 1 0 0 Fire
4 1 0 0 Fire
5 1 0 0 Fire

A comparison of the simulated and expected outputs of the D-S evidence theory incor-
porating the GA-BP fire warning algorithm and the PSO-LSSVM fire warning algorithm is
shown in Figure 12. The expected output and the fused output were basically the same.
Additionally, the inferred results of the D-S evidence theory enabled the accurate determi-
nation of fire hazards. The combined prediction method, used to fuse the information from
the above two networks after identification, provided results with higher accuracy than
each single model.
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Figure 12. Comparative results of the D-S evidence theory fusion approach: (a) expected fire output
and simulation outputs; (b) desired smolder output and simulation outputs.

4. Early Fire Warning Experiments

To verify the real-time performance of the presented early fire detection and warning
system, we conducted four early fire warning experiments with different fire classes, i.e.,
polyurethane foam fire, alcohol fire, beech wood smolder, and cotton woven fabric smolder.
A combustion experiment box was then placed inside the building and the fire detector
was installed at 2.0 m above the combustion box.

4.1. Results of the Warning Time

Figure 13a shows the combustion process of polyurethane foam, and Figure 13b shows
the fire scene. The polyurethane burned slowly at the beginning. However, a period later,
the flame became larger, with a gradually increasing temperature and producing much
smoke. The PC alarmed after 16 s.

Figure 13. The polyurethane fire test: (a) the process of polyurethane combustion; (b) the fire scene.

Figure 14a shows the process of alcohol burns, and Figure 14b shows the scene of
alcohol fire. The alcohol immediately burned when ignited. The flame became large and
released a lot of heat, resulting in the temperature rising rapidly. However, there was no
visible smoke. The PC alarmed after 18 s.
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Figure 14. The alcohol fire test: (a) the process of alcohol combustion; (b) the fire scene.

Figure 15a shows the burn process of beech wood and Figure 15b shows the beech
wood experiment with smolder. The smolder had no obvious fire but produced smoke
particles with a slow rise in temperature. The PC alarmed after 22 s.

Figure 15. The beech wood smolder test: (a) the process of beech wood combustion; (b) the smol-
der scene.

Figure 16a shows the process when the cotton rope is ignited and smoldered, and
Figure 16b shows the overall state of the cotton rope smolder. The smolder process pro-
duced a large amount of smoke, but the temperature did not rise significantly with a few
sparks. The PC alarmed after 20 s.

Figure 16. The cotton rope smolder test: (a) the process of cotton rope combustion; (b) the smol-
der scene.
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4.2. Accuracy Verification of Alarm System

Fifty experiments were conducted on the above scenarios to verify the accuracy of
the fire warning system. The data were collected using a single acquisition node for the
features information generated from each burn experiment to verify whether the results
in the PC match the real situation. A comparison between the realistic case and the fire
warning system is shown in Table 8. The alarm accuracy of each type of experiment was
shown to exceed 96%. The results show that the early fire warning model can ensure the
detection and warning of different types of fire hazards.

Table 8. A comparison of the real situation and system recognition.

Fire Types Experiments/n Alarms/n Missed Alarms/n Accuracy/%

Polyurethane fire 50 49 1 98%
Alcohol fire 50 48 2 96%

Beech wood smolder 50 48 2 96%
Cotton rope smolder 50 49 1 98%

4.3. Distributed Network Fire Response

The main purpose of the distributed network fire warning experiment is to verify
whether the early fire warning system consisting of three data collection nodes can achieve
the simultaneous detection of fires in multiple regions. Three fire feature data collection
nodes were used to detect fires in three different regions (see Figure 17). Each collection
node was connected to a gateway node via LoRa wireless spread spectrum technology,
and the gateway node collected the environmental feature data acquired by each collection
node. The fusion results of the GA-BP algorithm are shown in Table 9, the fusion results of
the PSO-LSSVM algorithm are shown in Table 10, and the fusion results of the D-S evidence
theory are shown in Table 11.

Figure 17. Distributed networking experiments: (a) Node 1; (b) Node 2; (c) Node 3.
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Table 9. The GA-BP algorithm fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.6949 0.0532 0.2519
31.6 3.68 26 0.7247 0.0513 0.2239
35.9 2.56 17 0.9296 0.0011 0.0692

Node 2
26.3 1.84 2 0.6762 0.1522 0.1716
33.7 2.28 14 0.8124 0.0524 0.1350
36.9 2.44 7 0.9456 0.0325 0.0219

Node 3
25.3 2.6 6 0.7025 0.2305 0.0670
32.4 1.95 23 0.7952 0.1248 0.0800
37 1.6 9 0.9033 0.0362 0.0605

Table 10. The PSO-LSSVM algorithm fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.6314 0.1250 0.2436
31.6 3.68 26 0.7615 0.0215 0.2171
35.9 2.56 17 0.8703 0.0460 0.0838

Node 2
26.3 1.84 2 0.7043 0.1453 0.1504
33.7 2.28 14 0.8021 0.1320 0.0659
36.9 2.44 7 0.9382 0.0044 0.0573

Node 3
25.3 2.6 6 0.6125 0.2310 0.1566
32.4 1.95 23 0.7493 0.0816 0.1691
37 1.6 9 0.8853 0.0333 0.0814

Table 11. The D-S evidence theory fusion results.

Temperature/◦C Smoke/103 ppm CO/ppm Fire Output Smolder Output No Fire Output

Node 1
25.6 2.36 6 0.8658 0.0131 0.1211
31.6 3.68 26 0.9174 0.0018 0.0808
35.9 2.56 17 0.9928 0.0001 0.0071

Node 2
26.3 1.84 2 0.9086 0.0422 0.0492
33.7 2.28 14 0.9763 0.0104 0.0133
36.9 2.44 7 0.9984 0.0002 0.0014

Node 3
25.3 2.6 6 0.8710 0.1078 0.0212
32.4 1.95 23 0.9617 0.0164 0.0218
37 1.6 9 0.9924 0.0015 0.0061

It is evident that the data obtained from different sensor nodes collected by the GA-BP
and PSO-LSSVM algorithms were also ambiguous after calculation. However, the fusion
of different results using the D-S evidence theory was shown to improve the reliability of
the evidence.

5. Conclusions

This paper proposes a data fusion method with multiple features to achieve an in-
building fire detection and early warning system. Firstly, the GA-BPNN and the PSO-
LSSVM were employed to translate the smoke concentration, temperature, and CO con-
centration into probabilities of fire, smolder, and no fire. Subsequently, the feature data
of the GA-BPNN and the PSO-LSSVM were fused by the D-S evidence theory to further
improve the accuracy and the reliability of the fire warning algorithm. Finally, an early fire
detection and warning system was developed. Small-scale in-building fire experiments
have confirmed the effectiveness of the method, and the combined algorithm of the D-S
evidence theory could significantly improve early fire detection. Additionally, the early fire
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warning system could accurately identify the fire signals from different types and regions.
The early fire detection accuracy also exceeded 96%. However, the proposed method can
only achieve fire recognition. It cannot be utilized to indicate the severity of fire. In addition,
in this paper, limited kinds of experimental materials were employed for fire combustion.
As a result, in future work, we plan to develop an end-to-end approach that can not only
achieve fire detection but also predict the fire levels based on the featured data, and more
kinds of experimental materials will be presented to demonstrate the effectiveness. More-
over, another valuable research interest is to identify the smoking behavior for avoiding
false fire alarm by utilizing the hybrid feature fusion-based method.
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Abstract: The article deals with the detection of stress using the electrodermal activity (EDA) signal
measured at the wrist. We present an approach for feature extraction from EDA. The approach
uses frequency spectrum analysis in multiple frequency bands. We evaluate the proposed approach
using the 4 Hz EDA signal measured at the wrist in the publicly available Wearable Stress and
Affect Detection (WESAD) dataset. Seven existing approaches to stress detection using EDA signals
measured by wrist-worn sensors are analysed and the reported results are compared with ours.
The proposed approach represents an improvement in accuracy over the other techniques studied.
Moreover, we focus on time to detection (TTD) and show that our approach is able to outperform
competing techniques, with fewer data points. The proposed feature extraction is computationally
inexpensive, thus the presented approach is suitable for use in real-world wearable applications
where both short response times and high detection performance are important. We report both
binary (stress vs. no stress) as well as three-class (baseline/stress/amusement) results.

Keywords: affective computing; EDA; stress detection; physiological signals; frequency analysis

1. Introduction

Affect recognition is an interdisciplinary field that touches on signal processing, ma-
chine learning, psychology and physiology. Affective state recognition is useful in a number
of scenarios. One affective state that has received a lot of attention recently is stress [1–6],
especially since it has been demonstrated that frequent and prolonged stress has negative
effects on mental and physical well-being, immune system, lower employee efficiency,
lower employee engagement, more sick days, etc. [1,7,8].

The field of affect recognition aims to identify and label different affective states. Since
the affective state of a subject is a psychological state inherent to the observed subject, it is
not directly observable. Therefore, affect recognition uses several other observable variables
to achieve its goal. These include (1) physiological signals such as electrocardiogram
(ECG), EDA, electromyography (EMG), respiratory rate and subject temperature [5,9–11];
(2) subject context data such as accelerometer data, behaviour patterns, GPS data and
smartphone usage [12]; (3) alternative subject data such as video or audio recordings [11];
(4) environmental contexts such as ambient temperature and humidity [13]

Recent advances in wearable technology [6,14] have led to increased research interest
in wearables-focused affect recognition, e.g., [4–6,12,15,16]. With the increasing popularity
of wearable electronics, algorithms that aim to detect affect using wearable sensors have a
greater chance of being used in practice.

In real-world applications, two aspects of any proposed solution are important: (1) de-
tection performance and (2) algorithm responsiveness—the time from onset of the affec-
tive state to detection (time to detection—TTD). Our goal is to present an approach to
stress detection that provides competitive performance while improving responsiveness.

Sensors 2023, 23, 963. https://doi.org/10.3390/s23020963 https://www.mdpi.com/journal/sensors
119



Sensors 2023, 23, 963

In Sections 1.1–1.4, we provide background information on affective state detection with
wearable sensors. In Section 2, we first show some recent results on stress detection using
wearable EDA sensors and then present and explain our proposed method. Results and
discussion can be found in Section 3.

1.1. WESAD

Several datasets on affect recognition are publicly available, for example, DEAP [9],
NonEEG [10], WESAD [5] and MAHNOB-HCI [11]. While some datasets work in valence-
arousal space (Russel’s circumplex model [17]), WESAD works with the categorical model.
It is more focused on stress than some of the other datasets; the main purpose of the dataset
is stress detection. WESAD also focuses on wearable sensors, making it perfect for our
needs. The multimodal dataset includes both chest and wrist-based measurements of
acceleration, ECG, BVP, EDA, EMG, respiration and temperature. The dataset includes
fifteen subjects and three major affective states: baseline, stress and amusement.

Some advantages of the WESAD dataset are:

1. Chest and wrist measurement: the same type of physiological signals are measured at
two sites, allowing comparison and validation

2. Real-world tasks: The tasks that the subjects performed are likely to occur in real
life, such as public speaking or job interviews. Although WESAD was recorded in a
laboratory environment, the dataset is comparable in this respect to data generated in
the field.

3. High sampling frequency: data collected with a chest-worn device were sampled at
700 Hz; data from the wrist-worn Empatica E4 (http://www.empatica.com/research/
e4/, accessed on: 20 November 2022) were sampled at lower frequencies, up to 64 Hz.

4. The authors present a reference classification approach and give a baseline accuracy
and F1 scores.

A number of stress detection methods have been evaluated using WESAD. Their
results are given in Section 2.1.

1.2. EDA

EDA broadly refers to any change in the electrical properties of the skin’ Greco et al. [18],
skin conductance (SC) is a commonly used measure of EDA. Activation of the sweat glands
by the autonomic nervous system (ANS) is reflected in SC.

Skin conductance is usually interpreted as an aggregation of two components: the
slower ‘tonic’ (SCL—skin conductance level, EDL—electrodermal level) and the faster
‘phasic’ (SCR—skin conductance response, EDR—electrodermal response). The latter is
interpreted as a short-term reaction to stimuli and is, therefore, of particular interest in affect
recognition. In [18], the disaggregation problem is formulated as a convex optimization
problem and a solution is provided.

In [15], the drawbacks of using EDA in wearable stress detection research are pointed
out. The basis of the critique is that EDA was not supported in the most widely used
wearable operating systems at the time. For example, in [5] the EDA signal is measured
at the wrist with the Empatica E4, which is not actually a consumer-oriented product.
However, since the article was published, new smartwatches have hit the market, some of
which include an EDA sensor (Fitbit Charge 5, Fitbit Sense). Furthermore, a patent filed
by Apple [14] indicates the possible future inclusion of EDA sensors in the smartwatch
product range in the future. Therefore, we believe that the use of EDA for stress detection
in wearables should be explored and appropriate methods developed.
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1.3. EDA Feature Extraction

In [19], three EDA-based features for stress detection are presented. The features are
also used in [5,15]. The three features are:

μSCL =
1
N

N

∑
i=1

X̂SCL(t − i) (1)

ρSCL =ρ(t, X̂SCL) (2)

σSCR =
( 1

N

N

∑
i=1

X̂2
SCR(t − i)

)1/2 (3)

μSCL is the average SCL trend over the last N samples, ρSCL captures the degree of linearity
of SCL and σSCR captures the standard deviation in SCR.

Four skin conductance features are defined in [20]. The four features are calculated
from the absolute value of skin conductance by determining and analysing the local minima
and maxima of the measurements. The four features are calculated for a sliding window
and give the number of peaks, the sum of the peak values, the sum of the minima values
and the estimated area under the response of the skin conductance. The features are also
used in [5,15].

The FLIRT toolkit [21] is an open-source Python package for data processing and
feature extraction for wearable sensor data. According to the authors, the contribution
of the package lies in its holistic approach—the package includes methods for loading
datasets, preprocessing, segmentation and feature extraction. The package focuses on four
signals: ECG, IBI (inter-beat interval), EDA and ACC (accelerometer).

The EDA features included in FLIRT are statistical, entropy-based, time domain,
frequency domain, time-frequency domain and SCR peak-based features:

• time domain: 29 SCR and 21 SCL features are calculated, including statistical (mean,
standard deviation, minimum, maximum, percentile values, interquartile range),
energy, entropy, number of peaks, SCR peak properties, etc.

• frequency domain: 10 SCR and 10 SCL features including energy, interquartile range,
variance and spectral powers at specific frequencies.

• time-frequency domain: 6 statistical features for each EDA component, 12 in total.

Another Python toolkit for EDA feature extraction is available—pyEDA [22]. The
authors propose statistical features based on peak detection and raw RDA signal. The
authors also propose the use of an autoencoder for feature extraction. The autoencoder is
an unsupervised artificial neural network. A total of 64 features are obtained by the authors
in this way.

The EDA signal, like any other measured physical signal, is continuous. Most data
processing pipelines and algorithms work with data vectors of limited length, often of a
fixed length. Therefore, the continuous EDA signal must be segmented and converted
into fixed-length segments. The commonly used approach is the sliding window. In
sliding window segmentation, the window length and the segmentation step are the
two parameters. Many researchers do not give much thought to these, in EDA analysis,
60 s windows are the most commonly used. In [15], different window lengths are analysed
for feature extraction. It is reported that longer windows lead to better stress detection,
with the longest window studied, 120 s, performing better than the others.

1.4. Evaluation of Stress Detection

The goal of affect recognition and stress detection is to develop algorithms for use in
the real world. The generalization property of an algorithm refers to its ability to perform
well on unseen data. In the case of affect recognition, unseen can mean a new user who
was not present during training. To evaluate an algorithm for this scenario, the leave one
subject out (LOSO) cross-validation approach is used.
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LOSO requires that the training dataset comes from a set of subjects. The dataset must
also be appropriately labelled. For J subjects, J models M are trained: Mj, 1 ≤ j ≤ J. The
j-th model is trained on training data without the data of subject j. Subject j’s data are only
used for model validation. In this way, J models are trained and scored to produce J scores.
The scores are then averaged to determine the total score of the algorithm.

The most common score for classifiers is the accuracy score (4). It is calculated based
on the number of true positives (TP), false positives (FP), true negatives (TN) and false
negatives (FN).

However, for unbalanced datasets, the F1 score (5) is usually used in such scenarios.
WESAD is unbalanced.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

F1 =
2TP

2TP + FP + FN
(5)

2. Materials and Methods

In the following sections, we give an overview of the state of the art in EDA-based
stress detection with wearable sensors (Section 2.1), describe segmentation and frequency
analysis (Section 2.2), and then present our approach in Sections 2.3–2.6.

2.1. Stress Detection Using EDA from Wearable Sensors

Several authors have used WESAD to evaluate their stress detection algorithms. This
section lists the results obtained by these authors.

2.1.1. Reference WESAD Classification Results

In WESAD [5], the authors provide reference classification results. Binary (stress vs. no
stress) and three-class classification results (stress vs. baseline vs. amusement) are provided.
As this is a multimodal dataset (10 sensors), each sensor is used both independently and in
groups (all wrist-based, all chest-based, etc.). Five classifiers are evaluated (decision tree,
random forest, AdaBoost with decision tree, linear discriminant analysis and K-nearest
neighbours). For each, both the F1 score and the accuracy are reported.

The best results for three-class classification were obtained with chest-based ECG,
EDA, EMG, respiratory rate and temperature data. The best classifiers for three-class
classification were AdaBoost and linear discriminant analysis for accuracy (80.34%) and F1
score (74.43%), respectively.

The best binary classification was obtained using chest-based ECG, EDA, EMG, respi-
ratory and temperature data from the chest. The best classifier for both accuracy and F1
score was linear discriminant analysis, achieving 93.12% and 91.47%, respectively.

The best results of the WESAD authors focusing only on the wrist EDA signal are
shown in Table 1. All other approaches aim to outperform this reference.

Table 1. Reference WESAD classification scores [5] for stress detection from wrist-based EDA
measurements. AB: AdaBoost with decision trees; LDA: linear discriminant analysis.

Best F1-Score (%) Best Accuracy (%)
(Classifier) (Classifier)

binary 75.34 ± 0.57 (AB) 79.71 ± 0.43 (AB)
three-class 49.06 ± 0.59 (AB) 62.32 (LDA)

2.1.2. Analysis by Siirtola

In [15], the same features are used as in [5]. The aim of the study is to investigate the
effect of window size in the calculation of the features. The conclusion is that longer window
sizes lead to better stress detection. The longest window size studied, 120 s, performs better
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than the other options (15 s and above). Three classifiers are used—LDA, QDA (linear and
quadratic discriminant analysis, respectively) and RF (random forest). The best (binary)
classification results (for WESAD) are obtained by LDA using skin temperature, BVP and
HR signals—87.4%. F1 scores are not reported. The author uses the LOSO approach. Using
EDA only, the author reports the best accuracy of 78.3% with the random forest classifier.
No other hyperparameters are reported. All results were obtained using a 120 s window,
which the authors consider optimal for their feature calculation and choice of classifier.

The reported accuracies are consistent with those of the WESAD authors.

2.1.3. Deep Fusion Network

In [16], an explainable deep neural network approach to affect recognition is presented.
The authors demonstrate their approach using the WESAD dataset. The model used is the
‘Multimodal-Multisensory Sequential Fusion’ (MMSF) model. The results show that the
approach performs better than the benchmark dataset [5] in terms of both accuracy and F1
scores. The authors use a very short window—only one second. The authors use both chest
and wrist modalities. Since they are dealing with a multimodal problem, signal fusion is
required. After experimenting with early and late fusion, they decide to use late fusion,
i.e., each modality trains its own model (neural network) and the results of all modalities
are fused with an additional model (random forest). The reported results are an accuracy
of 83% and an F1 score of 81% (in the three-class problem, using all chest modalities of
WESAD). On further analysis, the authors found that EDA measured at the chest was
the most important modality. In contrast, EDA measured at the wrist was found to be
insignificant. This stark difference can be attributed to the different sampling rates. The
EDA measured at the chest in WESAD is sampled at 700 Hz, whereas the Empatica E4,
which is used to measure EDA at the wrist, samples at a much lower frequency. This results
in too few measurements in the one-second window and thus poorer performance.

2.1.4. StressNAS

In [3], deep neural networks (DNNs) are applied to the WESAD dataset. The proposed
StressNAS is a data-driven approach for deep neural network design. The authors report
a significant improvement in performance over the reference implementation in [5] and
manual DNN design approaches. The results are presented in Table 2. The experiments
were performed with a sliding window of 60 s width and 0.25 s step size.

Table 2. StressNAS: Accuracy of stress detection (WESAD). All wrist signals: BVP, EDA and tempera-
ture. (Δ [5]): an improvement over reference implementation.

All Wrist Signals
(Accuracy %)

EDA (Δ [5]) (Accuracy %)

Stress vs. No stress 93.14 79.24 (−0.47)
Three-class 83.43 66.89 (+4.57)

The three-class classification accuracy obtained using StressNAS-designed DNNs
(using the EDA signal) is 4.57% higher than the reference results.

2.1.5. FLIRT Toolkit

FLIRT is a feature generation toolkit for wearable sensor data. The authors provide
WESAD results [21]. They use 60 s windows with a step of 0.25 s, just as in [5]. The authors
use LOSO cross-validation and the same classifiers as in [5] (LDA, RF, AB, DT). F1 scores
for three class classifications are reported.

The three-class classification F1 score by the authors of FLIRT using EDA is reported
as 51.96% (compared to 49.06% in [5]). Other values (binary, accuracy) are not given.
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2.1.6. XGBoost

The contributions of [23] to EDA stress detection are the use of the XGBoost classifier,
an alternative segmentation approach, the use of a high number of features (almost 200)
and the use of feature selection algorithms. The results related to improved segmentation
are of interest as the authors found an improvement of about 15% over the reference (binary
classification, F1 score, chest and wrist EDA, independently) just by using an alternative
segmentation strategy. In [3,5,21], the authors used a 60 s sliding window with 0.25 s steps.
In [23], the authors also used a 60 s sliding window but a 30 s step. (The authors report that
they obtained only 1041 segments using this approach. Our calculations show that about
8000–9000 segments should be extracted).

In addition, the authors obtain relatively small improvements (a few percentage
points) by using the XGBoost classifier and using (almost 200) additional features. The
authors also propose a feature selection approach to reduce the number of features and
thus improve the efficiency of the classification task without significantly degrading the
performance.

The final result is 89.92% F1 score of the binary classification task when using the
wrist-based EDA signal and 92.38% with the chest-based EDA.

2.1.7. pyEDA

The authors of pyEDA [22], a Python library for EDA manipulation, also provide
stress detection results for WESAD. However, the results reported by the authors cannot
be compared with those of [3,5,15,16,21,23] because the authors do not use LOSO cross-
validation and, more importantly, they define the binary classification problem as
follows: ‘Baseline section labels as “not stressed” (0), and EDA data in the Stress
section labeled as “stressed” (1)’, in this approach all data labelled as ‘Amusement’ are
seemingly ignored.

The authors report an accuracy of 88–90% when only statistical characteristics are
used. The accuracy increases to 95–97% when the autoencoder-generated features are used.

2.1.8. Summary

The results of seven papers were listed. Of the seven, only the authors of the WESAD
dataset gave F1 scores and accuracy for the binary and three-class problems (see Table 3).
Most of the results were obtained without giving much importance to the choice of window
size in the segmentation. The exception is [15], where an increase in accuracy is reported
when the window size is increased. In our work, we focus on using the EDA signal
measured at the wrist. Therefore, we only compare our results with EDA-based results
from other authors. Deep fusion network results obtained using only EDA are not reported
and, therefore, cannot be directly compared with our results.

Among the reported results, the deep fusion network, XGBoost and pyEDA stand
out for their reported values. (1) For the deep fusion network, this improvement can be
attributed to the use of more signals (all chest measurements). (2) pyEDA’s performance
results are not directly comparable to the other results because they define the binary case
differently than other authors. They do not report three-class classification. (3) The authors
of XGBoost report the largest performance gain when using a thirty-second step in the
segmentation. This result is surprising, but unfortunately, we could not replicate their
results by combining their segmentation and our feature extraction.
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Table 3. WESAD results as reported by other authors. ACC: accuracy. * The authors use a 30 s step
with the sliding window, this results in prolonged time from stress onset to detection (60 s window +
up to 30 s waiting period, in total up to 90 s). ** The results are with chest-measured signals (results
using only wrist-measured EDA were not reported).

Approach
2 Class

ACC (%)
2 Class
F1 (%)

3 Class
ACC (%)

3 Class
F1 (%)

Window [s]

Siirtola [15] 78.3 - - - 120
DFN [16] ** - - 83 81 1

StressNAS [3] 79.24 - 66.89 - 60
FLIRT [21] - - - 51.96 60

XGBoost [23] - 89.92 - - 60 *

2.2. Segmentation and Frequency Analysis

The original dataset contains continuous, non-segmented measurements. The dataset
is segmented using the sliding window approach, just as in [5]. It is ensured that each
segment contains only measurements related to a single affective state. The window width
and step are configurable parameters whose choice we discuss later. Figure 1 shows
examples of segments for each of the affective states in WESAD.
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Figure 1. Examples of the three WESAD classes.

Much of the research focuses on temporal features, but we are exploring the use of
frequency-based features. To obtain a frequency spectrum of a signal, the Fourier transform
is performed. The transformation of the signal x(t) in the time domain to X( f ) in the
frequency domain is given in (6). For the discrete signal x(k), k ∈ N, the discrete Fourier
transform (DFT) is used as given in (7).

X( f ) =
∫ ∞

−∞
x(t)e−2πi f dt (6)

X( f ) =
N−1

∑
k=0

x(k)e−i2π f k/N (7)

For a non-periodic discrete signal x(k) of finite length 0 ≤ k ≤ N − 1, the DFT is
discrete and periodic. For the analysis, we can restrict ourselves to the first period only and
ignore the rest. Since the resulting DFT is an even function, the values at negative f may be
ignored. We are left with X = {X1, ..., X N

2
}. The frequency resolution of X is 1

ts N (ts is the
sampling interval of x, N is the number of samples).

The Fourier transform generally results in a complex signal. The signal consists of the
absolute value (absolute spectra |X( f )|) and the phase (phase spectra ∠X( f )).

We are interested in the DFT of the three affective states contained in WESAD. Each seg-
ment of the normalized dataset is labelled (stress, amusement, baseline). For each segment,
DFT can be run and the absolute spectra computed. Figure 2 shows the power-normalized
absolute spectra of the three classes. The mean and standard deviation envelopes are
shown. It can be seen that the three classes differ in their amplitude spectra.
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Figure 2. Normalized amplitude spectra of three classes from WESAD: mean and standard deviation.

2.3. Feature Extraction

Following the time series analysis pipeline of (1) segmentation, (2) feature extraction
and (3) classification, appropriate features should be extracted. Figure 2 suggests that
the absolute spectra could be used to obtain features relevant to affect recognition. In the
following sections, the features are introduced and explained.

2.3.1. Frequency Band Selection

In Figure 2 the distinction between stress and the other two classes can be seen. A
subset of the spectra (a frequency band) could be used to extract useful features. |Xb|
denotes the spectra X with amplitudes above and below the cut-off frequencies ( flow and
fhigh) set to 0. We propose to divide the amplitude spectra into several frequency bands and
calculate features for each band. Since the EDA signal measured at the wrist is sampled at
4 Hz, we propose two frequency bands: (1) flow = 0.0 Hz, fhigh = 1.0 Hz, (2) flow = 1.0 Hz,
fhigh = 2.0 Hz. In this way, one set of features describes the low frequencies and a second
set of features describes the higher frequencies.

|Xb|( f ) =

⎧⎪⎨⎪⎩
0, if f < flow

0, if f > fhigh

|X|( f ), otherwise

(8)

2.3.2. Mean and Standard Deviation

For each amplitude spectrum |Xb
i,j,k|( f ) (class i, person j, exemplar k) the mean |Xb|i,j,k

and the standard deviation σi,j,k(|Xb|) of the selected frequency band are calculated:

Nb = ( fhigh − flow) fs (9)

|Xb|i,j,k =
1

Nb
∑

f
|Xb

i,j,k|( f ) (10)

σi,j,k(|Xb|) =
√

1
Nb − 1 ∑

f

∣∣∣|Xb
i,j,k|( f )− |Xb

i,j,k|
∣∣∣2 (11)
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2.3.3. Max Amplitude Spectra

In addition to the mean and the standard deviation, other features can also be obtained.
Figure 2 shows that the maximum value in highlighted frequency band can be used.
(12) defines αb

i,j,k as the maximum value of |Xi,j,k( f )| in the selected frequency band.

αb
i,j,k = max

f
|Xb

i,j,k( f )| (12)

2.3.4. Half-Energy Frequency

The amplitude spectra in Figure 2 show that higher frequencies are less present in
the class ‘stress’ than in the other classes. This observation is exploited to obtain an
additional feature.

According to the laws of signal processing, the square of the amplitude spectrum of
a signal corresponds to the energy density spectrum of the signal—a description of the
energy distribution of the signal over different frequencies [24]. The law is presented in (13).
In (14) the normalized cumulative energy sum Psi∫ ( f ) is introduced.

Ψ( f ) = |X( f )|2 → Ψi,j,k( f ) = |Xi,j,k( f )|2 (13)

Ψ∫ ( f ) =
1∫ ∞

0 Ψ(ω)dω

∫ f

0
Ψ(ω)dω (14)

The frequency fP/2 that satisfies the Equation (15) is calculated and used as a new
feature. ∫ fP/2

0
Ψ( f )d f =

∫ ∞

fP/2

Ψ( f )d f → Ψ∫ ( fP/2) = 0.5 (15)

This feature is calculated using the full amplitude spectrum and does not depend on
the frequency band in (8).

2.4. Feature Space

The exemplars from Figure 1 can be represented in the feature space. Figure 3 shows
the features calculated for flow = 1.0 Hz, fhigh = 2.0 Hz. As expected, the stress samples
(yellow) are partially separable from the other two classes.
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Figure 3. Seven exemplars from Figure 1 in feature space. Colours are analogous to Figure 2. The
frequency band is set to flow = 1.0 Hz, fhigh = 2.0 Hz.

2.5. Sequence Analysis

Figure 4 shows 30 randomly selected examples from each of the WESAD classes in the
feature space. It shows that although the samples of baseline, stress and amusement may
overlap in the feature space, the samples of stress have lower variance. In this section, we
exploit this observation to obtain additional features.
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Figure 4. Thirty samples of each class from WESAD in feature space. Stress samples exhibit lower
variance.

To calculate the variance, an observation window w is defined. Then w successive
samples are evaluated and mean and variance are calculated for each feature. This increases
the number of features from 4 to 12 for each frequency band. Equations (16) and (17) show
the calculations for feature ai,j,m, where ai,j,m is one of |Xb|i,j,k, σi,j,k(|Xb|), αb

i,j,k, fP/2.

Mw(ai,j,k) =
1
w

k

∑
m=k−w

ai,j,m (16)

Vw(ai,j,k) =
1
w

k

∑
m=k−w

(
ai,j,m − Mw(ai,j,k)

)2
(17)

2.6. Multiple Bands

The features derived in (10)–(12) are calculated for a single frequency band. However,
multiple frequency bands can also be defined. For m frequency bands, a total of 3 ∗ m + 1
features are derived, since (8) is independent of frequency bands.

Applying (16) and (17) results in 3 ∗ (3 ∗ m + 1) total features.

3. Results and Discussion

3.1. Evaluation

In Sections 2.1–2.5, we presented our approach to segmentation, analysis and feature
extraction for stress detection using the EDA signal measured at the wrist. In this section,
the results are presented, followed by a discussion of their relevance.
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3.1.1. Classifiers

The contribution of this work is the processing pipeline suitable for WESAD and the
features derived in Sections 2.3 and 2.5. To evaluate our contribution, a classification task is
used. Different classifiers are used for classification, similar to [5,15,21–23].

Usually, classifiers are subjected to intensive hyperparameter tuning, but this is
beyond the scope of this paper. Our goal is to show how the proposed pipeline and
features can be used to achieve good performance in stress detection, rather than our
ability to fine-tune a classifier. Therefore, our classifiers were not fine-tuned with respect
to their hyperparameters. Moreover, we compare the results of the different classifiers
used with the best performing classifier of the reference implementation in [5]. Therefore,
an improvement in accuracy and F1 score would indicate that one of the classifiers
using the presented pipeline and features presented, outperformed all classifiers used by
Schmidt et al.

The following classifiers were selected for evaluation in our work:

• Decision tree, with a maximum depth of 10;
• 1-NN;
• kNN, where k (the number of neighbours) is set to 10;
• Random forest, where the number of trees is set to either 10 or 100, the maximum

depth is 10 in both cases, and the class weights are balanced;
• Support vector machine (SVM) with radial kernel and balanced class weights;
• Bagged SVM;
• AdaBoost with random forest, with 10 estimators and each random forest consisting

of 100 trees of depth 10 and balanced class weights.

For all the above classifiers, their implementations in Scikit-learn [25] (version 1.1.2)
are used.

3.1.2. Time to Detection

For practical stress detection, time to detection (TTD) is crucial. We define TTD as
the difference between the timestamps of the first and the last sample used for classifi-
cation. The time series used for training and evaluation were obtained using a sliding
window approach with step tstep and window width tlength. TTD is calculated as shown in
Equation (18).

TTD = tlength + (w − 1) ∗ tstep (18)

3.2. Classification Results

Table 1 shows the results of the reference classification of Schmidt et al. [5]. The
results were obtained using a LOSO approach and are presented for both the three-class
and binary cases.

Table 4 shows the classification results obtained using the approach described in this
paper. Segment length and overlap were set to tlength = 48 ∗ ts, toverlap = 20 ∗ ts (ts is the
sampling time ts = 1

4 Hz = 0.25 s). To achieve a TTD of less than one minute, a window
with w = 7 segments was chosen. This results in a TTD of 54 s. A summary of the results:

1. For the binary case, every tested classifier, using the approach proposed by us, outper-
forms, in terms of both accuracy and F1 score, the best performing wrist-measured EDA
classifier as reported by Schmidt et al.

2. For the three-class case, only the decision tree and the nearest neighbour classifiers lead
to lower accuracy than the best-performing wrist-measured EDA classifier using the
established EDA features. In all other cases tested, the proposed approach performs
better than the established features.
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Table 4. Classification results of our proposed approach, and comparison to best results achieved by
Schmidt et al. [5]. Δ is the absolute difference in accuracy or F1 score. Positive values of Δ indicate
better performance by our approach. NNL nearest neighbour; RF: random forest; SVM: support
vector machine.

Binary Case
Accuracy (%) F1 (%)

Score Δ [5] Score Δ [5]

Decision Tree 84.15 4.44 81.58 6.24
1NN 81.95 2.24 78.58 3.24
10NN 83.82 4.11 80.54 5.20
RF 10 84.87 5.16 82.13 6.79
RF 100 84.84 5.13 81.82 6.48
SVM 82.69 2.98 80.08 4.74

Bagged SVM 82.12 2.41 79.93 4.59
AdaBoost RF 100 83.86 4.15 80.29 4.95

Three-Class Case
Accuracy (%) F1 (%)

Score Δ [5] Score Δ [5]

Decision Tree 58.53 −3.79 52.68 4.62
1NN 62.21 −0.11 53.74 4.68
10NN 69.89 7.57 54.34 5.28
RF 10 65.75 3.43 56.08 7.02
RF 100 66.86 4.54 56.36 7.30
SVM 67.08 4.76 56.78 7.14

Bagged SVM 67.56 5.24 56.20 7.14
AdaBoost RF100 67.00 4.68 54.67 5.61

3.3. Constant TTD

In Section 3.2, a single tlength, tstep, w combination was evaluated. We are interested
in a more comprehensive evaluation of the method as well as a comparison of a range of
possible values.

tlength, toverlap, w and TTD are linked in Equation (18). For a fixed TTD, w can be
determined for each tlength and toverlap. In this section, the TTD was set to either 30 s
(Figure 5a) or 60 s (Figure 5b). tlength and toverlap were iterated in a grid search (requiring
toverlap < tlength). At each combination, w was calculated (which requires w ∈ N). Once w,
tlength and toverlap are known, a dataset can be created and a classifier trained and evaluated.
Figure 5a,b show the comparison of the classifiers with the best results of Schmidt et al.

A comparison of Figure 5a,b shows a significant drop in performance when the TTD
is lowered. This is understandable as the classifier works with data that spans a shorter
period of time (30 s versus 60 s).

3.4. Effect of Window Size

Figures 5a,b show the importance of choosing the correct window size. The effect
of window size in stress detection has been studied before, for example in [15]. In this
section, we investigate the effect of window size on classification results using our proposed
features.

In Figure 6, tlength = 48, toverlap = 20 are used and different window sizes are evaluated.
For each calculated TTD, the accuracy and F1 scores are calculated for both the binary
and three-class cases. The aim of this experiment is to show how changes in TTD affect
detection performance. In this experiment, only one classifier was used, the simple kNN
(k = 10) classifier. The classifier was chosen because of its high three-class accuracy in
Table 4.
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Figure 5. Improvement over Schmidt et al. (green = better), F1 score, three classes (baseline, stress,
amusement).
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Figure 6. Effect of window size. tlength = 48, toverlap = 20. Blue crosses: our results at various times
to detection (x-axis (s)), using kNN classifier (k = 10). Orange, green, red, purple and brown crosses:
results by other authors. Siirtola uses 120 s segments, while others authors use 60 s. See Table 3 for
further details on results from other authors.

Figure 6 shows a positive trend with increasing TTD. Therefore, a balance between
performance and short TTD must be found when choosing the window size. The figures
also show the results of Schmidt et al., Siirtola, StressNAS, FLIRT and XGBoost. The figure
shows that the results of the other authors were obtained with window sizes of 60 s or
more. The approach we present outperforms the other approaches, even when it provides
faster stress detection (shown as lower TTD in Figure 6)! Moreover, we use the simple kNN
classifier, while some of the other authors use much more complex classifiers.

3.5. Discussion of Results

In Sections 3.2–3.4, we have demonstrated considerable improvements over the results
of other authors. We focused only on the EDA signal measured at the wrist. The results
show that the features defined in Section 2.3 provide improved classification performance.

Most other authors have used a 60 s window to obtain their features, Siirtola uses
a 120 s window. We have investigated other window widths and have shown that our
method performs well with shorter windows reducing the time from the onset of stress to
first detection (TTD). As the window increases, the performance improves.

It is worth noting that for all other authors, we used their best results with the wrist-
measured EDA in WESAD, even so, the proposed method clearly outperformed them on
many occasions.

4. Conclusions

Affective state recognition is an active area of research, and with advances in wearable
technology, recognition using wearable sensors is becoming increasingly important. Among
affective states, stress has been extensively researched, in part because of its impact on
productivity and well-being.

This paper explores the use of frequency analysis of EDA signals obtained from
wearable sensors for stress detection.
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The main contribution of this paper is the proposed method for extracting features in
the frequency domain. Throughout the article, the idea is explored and validated several
times. The approach is validated using data from the publicly available WESAD dataset for
stress detection by wearable sensors. Our results are compared with existing techniques and
those published by several other authors. The proposed approach improves the accuracy
and F1 scores of some existing techniques for stress detection from (wearable measured)
EDA signals.

For any detection algorithm (fault, stress, etc.), the time from onset to detection is
an important performance metric in addition to the accuracy of detection. The proposed
approach allows for a customizable window length and thus a large number of possible
values for time to detection (TTD). A trade-off between a short detection time and accuracy
has been demonstrated. The proposed method has been shown to provide higher detection
accuracy with a lower TTD than other comparable methods.

The work presented in our paper is an improvement over some of the commonly used
methods and can be used in practical applications for stress detection.
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Abstract: Self-sensing actuation of shape memory alloy (SMA) means to sense both mechanical
and thermal properties/variables through the measurement of any internally changing electrical
property such as resistance/inductance/capacitance/phase/frequency of an actuating material under
actuation. The main contribution of this paper is to obtain the stiffness from the measurement of
electrical resistance of a shape memory coil during variable stiffness actuation thereby, simulating its
self-sensing characteristics by developing a Support Vector Machine (SVM) regression and nonlinear
regression model. Experimental evaluation of the stiffness of a passive biased shape memory coil
(SMC) in antagonistic connection, for different electrical (like activation current, excitation frequency,
and duty cycle) and mechanical input conditions (for example, the operating condition pre-stress) is
done in terms of change in electrical resistance through the measurement of the instantaneous value.
The stiffness is then calculated from force and displacement, while by this scheme it is sensed from
the electrical resistance. To fulfill the deficiency of a dedicated physical stiffness sensor, self-sensing
stiffness by a Soft Sensor (equivalently SVM) is a boon for variable stiffness actuation. A simple
and well-proven voltage division method is used for indirect stiffness sensing; wherein, voltages
across the shape memory coil and series resistance provide the electrical resistance. The predicted
stiffness of SVM matches well with the experimental stiffness and this is validated by evaluating the
performances such as root mean squared error (RMSE), the goodness of fit and correlation coefficient.
This self-sensing variable stiffness actuation (SSVSA) provides several advantages in applications of
SMA: sensor-less systems, miniaturized systems, simplified control systems and possible stiffness
feedback control.

Keywords: shape memory coil; joule heating effect; self-sensing actuation; variable stiffness actuation;
electrical resistance; support vector machine regression model; nonlinear regression model

1. Introduction

The shape memory coil (SMC) has a larger change in force and controllable stiffness
to introduce the structural elastic deformation and to be in tune with a structural load. It
provides the actuation to a mechanical structure; actuation with variable load can be sensed
by self-sensing the stiffness in the structure via the Shape Memory Alloy (SMA) coil’s
resistance. This is because of the shape memory effect phenomenon, which is an inherent
property present in the nickel-titanium alloy. This inherent property is due to phase
transformation from martensite to austenite and vice-versa when subjected to temperature
or current. Though the SMA has same chemical composition, atomic weight and mass
number, but it is different structure in the austenite and martensite phase.

Until now, none is dedicated to physical sensor or analytical models to sense the
stiffness of shape memory alloy or SMA with mechanical structure. Nowadays, the sensing
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function of SMA becomes more important because the high technology for the humanoid
robot, industrial automation and medical field is being progressed a lot. It has been found
30 years ago that the electrical resistance of SMA changes during phase transformation of
its material [1]. The modelling of SMA resistance to stiffness as compared to the models
of temperature to stiffness is very rare in literature. A linear equation only is suggested
between stiffness and normalized resistance. Thus, as a need of sensing/measurement and
control of stiffness accurately, it must go into details of the topic. In this case, to attenuate
the surrounding environmental effect, a robust and simple adaptive control is adopted.
The experimental result proved that the stiffness as well as position could be controlled to
achieve the desired displacement. The stiffness of the alloy varies depending on its phase.
The phase of the alloy can be estimated by measuring its electrical resistance. Electrical
resistance is relatively higher in martensite and lower in the austenite phase. Furthermore,
a new scheme of stiffness is implemented by considering two feedback inputs- electrical
resistance and position [1].

This electrical property is useful for sensing of thermal and mechanical properties
like temperature, force and strain of SMA. Since then, many research papers have proved
that resistance change is sufficiently linear to measure and control displacement and
strain [2]. These works intuitively explained about the relationship between displacements
in the SMA wire and its resistance. Another important point is that the SMA actuator
exhibits highly nonlinear behavior. Therefore, a neural network is employed to estimate
the value of displacement in the SMA from its resistance change. The estimated value of
displacement from resistance is used as feedback to control it [2]. The estimation of the state
(contraction/displacement) of the SMA wire actuator is done with the help of its resistance.
The state of the SMA wire model has been developed by using the concept of unscented
Kalman filter (UKF) which uses the measured resistance. The results are compared with
the work of the extended Kalman filter and show good accuracy [3]. Accurate self-sensing
concept to control the flexures by controlling the SMA wire has been also developed. Then
the polynomial model is used to estimate the strain value from measurement of resistance.
In addition, the inaccuracies due to the presence of the hysteresis has been overcome by
pretension force. By considering standard test signals such as step and sinusoidal signals,
performance of the control system has been also tested [4].

The polynomial model accurately enables estimation of the SMA actuator strain by
applying an electrical potential across it. The experimental results have shown that the self-
sensing model can achieves a small transient error and works effectively. The self-sensing
helps to develop to miniaturized devices to perform effectively and efficiently [5] in which
a self-sensing concept for control has been well described by adopting an antagonistic
SMA wire drive. This drive is tested under different conditions such as pre-strain and
duty cycles. Then, the modeling of strain and resistance is derived with the help of a
curve-fitted polynomial. It has been also realized that the accurate control of an actuator
wire by self-sensing feedback with a hysteresis compensator can be done [6].

From the results of this work, it has been realized that the use of neural networks to
characterize the relation between the resistance of SMA wire and its strain is very effective.
The great advantage of this concept is that the single SMA wire performs dual tasks as
both an actuator and a sensor. This has got great importance when the prime objectives are
to reduce the overall weight, size and the cost of the actuator system [7]. Artificial neural
network (ANN) is applicable to accurately establish model to develop the relationship
between the electrical resistance and manipulator positions. Thus, ANN can estimate the
rotary manipulator position accurately. It can be controlled by the variable structure control
technique under different conditions. The effect of surrounding temperature on the ability
of ANN to predict the manipulator position is thoroughly investigated [8].

It exhibits robust performance with a small tolerance and can operate without being
affected by ambient temperature. In the investigation, the authors have suggested an
innovative way to calculate the resistance to determine the change in length of a SMA wire.
By doing this, it is possible to measure both the voltage across the entire NiTi wire and that
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of the fixed-length segment. These two voltages provide direct change in length of the SMA
wire. This kind of sensing is used in the feedback control in unknown ambient and loading
conditions. This technique is called dual measurement for self-sensing of displacement by
resistance change [9]. A self-sensing technique to measure the induced force in SMA wire
is developed to control the length. Therefore, it can replace the traditional load cell by the
SMA wire which can work for dual purposes as actuator and sensor. A modeling technic of
the SMA wire actuator is also investigated for the control of mechanical structures. While
designing a controller for the motion of a mechanical structure, a dynamic model of SMA
actuator may be needed. So, the relationship between resistance and displacement of SMA
that is derived to determine the feasibility of self-sensing in actuator control is investigated
in [10]. The stiffness is related to force and displacement linearly as well as nonlinearly
according to Hooke’s law. This web portal provides information about the basics of
stiffness [11]. The physical, mechanical, electrical, and chemical properties are available on
the web portal of Dynalloy Inc., and the portal is very helpful for calculations [12].

The sensing of displacement and stiffness without an external sensor is well described
in [13]. The works [13] showed little resistance, martensite fraction, and stiffness, but
not in depth like the effect of current, frequency, and pre-stress on self-sensing of the
stiffness of SMA spring actuator. This enables the sensing of force without a force sensor.
The direct stiffness control of the SMA actuator and sensor-less force sensing experiment
is conducted successfully. Besides, several benefits of this method include simplicity of
mechanism, cleanliness, silent operation, and distributed actuation system i.e., remotability,
sensing ability and low driving voltage. The polynomial model of sensing the stiffness
of SMA is implemented to see the influence of different activation currents and excita-
tion/switching frequencies. It has been also shown that different activation current and
excitation/switching frequencies of power transistors affected to the stiffness resistance
characteristics. These experimental modeling and analyses have proved that stiffness and
resistance have a sufficiently linear relation which can be easily utilized to control stiffness
in a SMA spring actuator and in mechanical structures [14]. The work [14] studied the
stiffness and resistance relationship with only two effects: different activation currents
and switching frequencies but not the duty cycle and pre-stress. The work presented
by [15,16] did not explain about the self-sensing phenomenon/concept of SMA but de-
scribed modeling of stiffness-temperature and displacement with other parameters like
current, temperature, resistance, and force.

A new mathematical function/model of stiffness that shows the hysteresis charac-
teristics between the stiffness and temperature has been developed and its hysteresis
characteristics between the stiffness and temperature is verified by experimental data [15].
It has been found that the hysteresis characteristics are affected by different electrical and
mechanical parameters such as current, frequency, and pre-stress, respectively. The relation
between stiffness and temperature in SMA spring hysteresis is experimentally verified.
The hysteresis characteristics’ width and height can be controlled by current, frequency
and pre-stress.

As the SMA is a highly nonlinear element, its displacement/contraction changes
nonlinearly with temperature. It is affected by many electrical and mechanical parameters.
Hence, the modeling of the displacement in SMA spring actuator is important. The neural
network is the best tool that can easily map one property with others. Therefore, the
displacement of the SMA spring can be modeled by ANN and successfully verified by
experimental data [16]. In this work, a systematic approach for the implementation of curve
fitting models and methods is suggested to achieve an equation that precisely describes the
sensor function [17].

It is known that the Support Vector Regression (SVR) technique is normally applied
to forecast the tangential displacement of cement concrete dam. Thus, in general, it is
tested and verified using Pearson correlation coefficient, mean absolute error (MAE) and
mean squared error (MSE) with experimental data [18]. The implementation of SVR is a
practical and user-friendly method for creating soft sensors for nonlinear systems. The
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development of a dynamic non-linear-Auto Regressive (ARX) model-based soft sensor
employing SVR is suggested as a heuristic method, in which the ideal delay and order
are determined automatically using the input-output data. It is noted here that an Online
Support Vector Regressor (OSVR) model is effective to estimate chemical process variable.
As mentioned earlier, many works investigated the self-sensing technique to relate po-
sition/length/displacement with resistance and its control. The soft sensor developed
using SVR in [18–20] achieved excellent performance checked by statistical performance
parameters such as MAE, MSE and correlation coefficient. The research work [21] gives
the idea about the stiffness of shape memory coil in terms of resistivity and modulus of
elasticity. It suggests the resistivity and shear modulus is the best alternative to existing
self-sensing methods.

In research article [22], the overall stiffness is adjusted by modifying the shape of the
leaf springs. Hence, the geometrical nonlinearity can be used to change global stiffness.
The paper [23] method suggested in adapting stiffness in variable stiffness actuator by con-
figuring the fluid circuits, while the humanoid robot is investigated in [24]. It has various
interesting features and is a difficult mechatronics structure. Due to the close interdepen-
dence of the technological factors, it is challenging to conduct research in a specific direction.
A parallel type SMA wire variable stiffness actuator with a synergistically constructed
configuration that offers a small size and a wide range of stiffness adjustments in compliant
structures is also studied [25]. Additionally, it provides sufficient displacement and force,
making it appropriate for applications requiring peculiar soft robotic requirements. The
research work [26] proposes a new type of pneumatic variable stiffness actuator (PVSA). It
provides expected actuation performance with effective remote stiffness adjustment capa-
bility. A novel variable stiffness mechanism is also designed by using specially designed
SMA S-spring with different thickness [27]. The actuator stiffness is discretely adjusted
by changing the state combination of SMA S-spring with different thickness. The [28]
work is self- sensing unique design of sandwich structure comprising active graphene
coated glass fabric piezoresistive face sheets bonded to a Nomex™ honeycomb core. The
research article [29] explains the design of SMA spring and how to improve the frequency
of actuation. The research [30] demonstrates the ability to significantly improve the way a
gripper interacts with things that are being handled and offers a path toward developing
anthropomorphic grippers. The soft finger’s built-in sensor may convey passive proprio-
ceptive feelings of stiffness and curvature. While not altering the mechanics of the robotic
movement, it also served as an active jamming element to adjust finger stiffness.

As evident from the literature survey, the self-sensing during actuation of SMA spring
is very useful to understand the relationship between the stiffness change and force, dis-
placement, and strain corresponding change in the electrical resistance during the phase
transformation. However, so far, a comprehensive study considering several effects such
as actuation current, excitation frequencies and duty cycles has not been reported yet.
Consequently, the technical novelties of this study are summarized as follows: (a) achieve-
ment of the self-sensing behaviour of SMA spring during variable stiffness actuation by
experimentation, (b) development of a data driven model of self-sensing variable stiffness
actuation based on Support Vector Machine (SVM) regression and nonlinear regression
methods, by availing the experimental data, (c) investigation the effect of different excita-
tion/activation currents, switching/excitation frequencies and duty cycle, (d) evaluation
of the cycles and pre-stresses on the stiffness-resistance characteristics during the heating
cycle of SMA spring by employing SVM algorithm as a soft sensor. From the aspects of the
technical novelties, several new characteristics which are significant for the development of
self-sensing are found. Some of new findings are given as follows: (i) it is identified that
the characteristics of the self-sensing actuation (SSA) are influenced by activation currents,
switching/excitation frequencies, duty cycles and pre-stresses, (ii) both SVM regression
and nonlinear regression models are acceptable to measure the self-sensing stiffness in
SMC actuator during variable stiffness actuation which is experimentally validated with its
significance, (iii) it is found that the electrical resistance for all factors is almost in linear
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relation with the stiffness of SMC during the heating cycle with a meagre hysteresis, (iv) the
resistance of SMC is low under the austenite and high under the martensite phases. It
is noted here that compact design of a self-sensing SMA spring/wire actuator device is
feasible with the aid of the results achieved in this work.

This paper is organized as follows. After clearly describing the research motivation,
literature survey and the technical contributions of this study, an experimental facility
and measurement method are presented in Section 2. Section 3 provides the information
about SVM regression and nonlinear regression models focusing on the usability, and the
basic mathematical relations used to find the resistance and stiffness which are undertaken
at various different conditions of activation/excitation current, switching/excitation fre-
quency, duty cycle and pre-stress are given in Section 4. The detailed characteristics on
the results regarding to the stiffness response, resistance response and stiffness-resistance
characteristic is fully discussed in Section 5 with the brief information about application of
nonlinear regression modeling, followed by conclusion in Section 6 where some of benefits
achieved form this work such as robust model, cost effectiveness and reliability for compact
design of self-sensing actuator.

2. Experimental Set Up

2.1. Facility

The study to self-sense the stiffness of the SMA spring during variable stiffness
actuation from resistance measurement is highly significant with respect to the quality
of device (in terms of accuracy, precision, sensitivity and linearity etc., compactness and
cost effectiveness). This experimental study is used to validate Support Vector Machine
Regression and Nonlinear Regression model and realized by MATLAB 2020b software.
A set-up to run the tests is designed and fabricated and shown in Figure 1 with the help
of the photograph. It has following sections: (a) Mechanical Actuation System—It has
two guide rods, with two linear bearings on them to actuate the SMA spring biased with
an antagonistic tensile passive steel spring. This helps obstacle free movement which
is measured with the help of a flap placed between two springs and Keyence—made
contactless laser displacement sensor. A force sensor is also connected between the fixed
frame and the SMA spring. The complete assembly is fixed in an acrylic frame. (b) Electronic
Actuation System—This system consists of on Metal-Oxide-Semiconductor Field-Effect
Transistor (MOSFET, TIP-122 ST Microelectronics) with gate resistance (1.5 kΩ and 1⁄4 watt)
to limit the base current; a source with a rheostat (4 Ω and 8.5 A) and drain is connected
to the ground. The SMA spring is connected between the rheostat and the source of
power transistor. The current sensor is connected between the ammeter and the rheostat
so that it can display the current flowing through the SMA spring. (c) Power Supply—
Different power supply systems are required for working of different auxiliary devices
and the complete actuation systems. (i) DC regulated power supply—this is required for
relay circuit, excitations for current sensor, transistor circuit, and as an input signal to op
amp circuits. (ii) Dual Power Supply—Dual power supply provides +/− 15 V and 0.5 A
current. This is important for op amp-based amplification circuits to boost physical signals
like temperature signal and displacement signal. (iii) AC Power supply is required for
bigger auxiliary devices. (d) Instrumentation and Data Acquisition (DAQ) System—These
includes current sensor, temperature sensor, miniature force sensor, laser displacement
sensor, voltages across SMA spring and rheostat.

Voltage signals from different sensors are converted into proper level (0 to 10 V)
through signal conditioning, so that it is compatible with the data acquisition system and
stored in the personal computer’s memory. Figure 1 also shows the DAQ card used for data
acquisition and forwarding it to the computer memory. (e) Shape memory alloy spring and
passive steel spring—The SMA spring is manufactured by Dynalloy Inc. (1562 Reynolds
Avenue (949) 502-8548 office, Irvine, CA 92614 USA) and their technical specifications are
given in Table 1. Other details of the passive steel spring are shown in Table 2. During
activation/heating of the SMA spring, the biased tensile spring expands and stores the
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mechanical energy. During deactivation/cooling, the bias spring will use the stored energy
to pull the SMA spring back to its pre-stress/deform state.

Figure 1. Experimental setup.

Table 1. Technical specifications of the passive steel spring.

Physical Properties Value

Hardness (max.) 220 HV
Yield stress (min.) 290 MN/m2

Tensile strength 640 MN/m2

Spring rate (Stiffness constant) 130 N/m

2.2. Experimentation

The experimental modeling and analysis of self-sensing of the stiffness in the Shape
Memory Coil during variable stiffness actuation is performed in the following ways. In
the first set of experiments, activation currents (0.8 A, 1.0 A and 1.2 A) are varied by D.C.
regulated power supply and by keeping voltage constant. Then different sensor voltages,
the voltage across rheostat and voltage across the Shape Memory Coil are recorded in
the memory of personal computer via DAQ card through repetitive cycle of switching of
the power transistor. This procedure is repeated for aforementioned activation currents
by keeping the switching frequency, duty cycle and pre-stress constant. The recorded
information is used to predict stiffness by nonlinear regression modeling and validation. It
is presented in detail in Section 4.

The recorded instantaneous value is used to determine the resistance and stiffness
properties of SMC by use of Equations (6) and (7) for the aforementioned activation currents.
In the second set of experiments, the switching frequency of the power transistor is changed
e.g., 10 mHz, 20 mHz and 30 mHz by ensuring that all other parameters such as activation
current, pre-stress on the SMC and duty cycle of the switching frequency are constant. The
instantaneous values of the SMA spring’s properties in terms of voltages is continuously
recorded in the memory of personal computer via DAQ card. These recorded voltages
are converted into proper units of the properties of SMC such as force, displacement,
temperature, resistance, and stiffness.

Also, the experimental modeling and validations are explained in detail in Section 4.
In the third set of experiments, the pre-stress (100 g, 150 g and 200 g) on SMC is varied by
applying more tension with the help of a tensile passive steel spring. All other parameters
are kept constant mentioned in the earlier set of experimentation. Similarly, the properties
of SMC in terms of voltages are recorded by different sensors and described in detail in
Section 4. Some of the properties of SMC e.g., stiffness and resistance are derived with
help of Equations (6) and (7), respectively. In the fourth set of experiments, the duty
cycle (40%, 50%, and 60%) of switching frequency is varied by adjusting the knob of the
function generator such that activation and deactivation of SMC occur smoothly with
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help of passive bias tensile spring and explained in detail in Section 4. Basically, SMA
works in three different modes of operations as actuators: (i) Free recovery mode means
a constant force and variable contraction of SMC. (ii) Constraint recovery mode means
a variable force and fixed contraction of SMC. (iii) Work production mode means both
force and contraction of SMC changing. The work production mode is the most popular
and applicable to practical engineering applications. It is a controllable actuator where
both force and displacement vary. The first mode of operation is free recovery where
force is constant, and stiffness is a function of displacement and varies. In the second
mode, displacement is constant in which stiffness is a function of force and varies [15]. The
inferior vena cava filter and eyeglass frame are designed in the free recovery mode of SMA
operation. Fasteners, connectors, and hydraulic coupling uses constrained recovery mode
in the SMA operation. Circuit breakers, heat engine and actuators are a few applications
of the work production mode in the SMA operation [15]. In the experiment, the variable
stiffness actuation of the SMA coil is controlled by using currents of 0.8 A, 1.0 A, and 1.2 A,
and the corresponding forces, displacements, currents, and voltages are monitored. The
data are displayed to investigate the system characteristics after preprocessing.

Table 2. Specifications of the SMC.

Physical Properties Range/Value

Melting point 1310 ◦C

Electrical resistivity 76 × 10−5 Ω m

Modulus of elasticity 28–41 GPa

Latent heat of transformation 5.78 kCal/kg

Thermal conductivity 18.0 W/m ◦C

Thermal expansion coefficient Martensite 6.6 × 10−6/◦C Austenite 11.0 × 10−6/◦C

Poisson ratio 0.33

Electrical resistivity Martensite 80 × 10−8 Ω cm
Austenite 100 × 10−8 Ω cm

Specific heat, Cp 1.84 J or 0.44 kCal/kg ◦C

Convective heat transfer coefficient, h 54.50

Transformation temperatures:

Ingot austenite finish (Af) 75 ◦C to 110 ◦C

Finished product Af 50 ◦C to 80 ◦C

Mechanical properties

Ultimate tensile strength ≥1070 MPa

Total elongation ≥10%

Loading plateau stress @ 3% ≥100 MPa

Shape memory strain ≤8.0%

Geometrical parameters

Wire diameter 5.0 × 10−4 m

No. of coils 45

Coil diameter 3.0 × 10−3 m
Volume 81.67 × 10−8 m2
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3. Facility and Experimentation

3.1. Principle of Self Sensing of Variable Stiffness Actuation by Support Vector Machine Regression

The regression is statistical tool to model and analyze the relation between one or
more than one independent variable and a dependent variable to produce a particular
outcome. In other words, the basic idea is to approximate the functional relation between
set of independent variable and dependent variable by minimizing risk function which
will use prediction error. Kernel: A lower dimensional data set is mapped into a higher
dimensional data set using the Kernel function. In essence, a hyperplane is a line that will
enable us to estimate a continuous value or aim. Boundary Line: In SVM, a margin is
created by two lines other than the hyperplane. The Support Vectors may be on or outside
the boundary lines. The experimental data recorded for resistance and stiffness of shape
memory coil are denoted as Xi and Yi.

{ (X1, Y1), (X2, Y2), (X3, Y3), . . . . . . . . . (Xn, Yn)} ∈ RN × R (1)

where, i is varying from 0 to n and n is number of training data points. The goal is to find
the function which map the relation between Xi and Yi. The Support Vector Regressor
algorithm approximate the function as,

f (x) = < w, ϕ(x) >+ b and w ∈ RN , b ∈ R (2)

The one dimensional and multidimensional SVR problem is defined as

f (x) =
M

∑
j=1

wj ∗ xj + b and w ∈ RM, b ∈ R (3)

f (x) =
(

w
b

)(
x
1

)
= wT x + b; x,w∈ RM+1 (4)

where, w is weight vector, b is bias and ϕ(x) is high dimensional data space. The weight
vector and bias can be determined from risk function and as,

R(C) =
1
2
| w | 2 + C

1
2

n

∑
i=1

Lε( f (Xi), Yi) (5)

The 1
2 | w |2 control the function capacity and C 1

2 ∑n
i=1 Lε( f (Xi), Yi) is the error. C is

regularization constant. The insensitive loss function is defined as,

Lε( f (Xi), Yi) =

{ | f (Xi),−Yi | −ε. when | f (Xi),−Yi |≥ ε
0 , and otherwise

(6)

where, ε is the boundary line [18].

f (Xi),=ϕ(xi)
Tw + b (7)

ϕ(x) is high dimensional data space.

3.2. Principle of Self-Sensing of Variable Stiffness Actuation by Nonlinear Regression

Most self-sensing actuation model literature have related SMA in terms of the dis-
placement/strain with self-sensed electrical resistance. To represent the stiffness of SMA
in terms of its electrical resistance, there is a need to establish an appropriate and reliable
stiffness-resistance model. To find the appropriate mathematical model that expresses the
relationship between dependent variable (stiffness) and the independent variable (resis-
tance), a data driven model is used; it is a parallel to mathematical model with self-sensing
characteristics i.e., sensing under actuation. So, the data driven model is a function of
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the independent variable involving one or more coefficients. The nonlinear regression
model with continuous one-to-one mapping is efficient to describe the relation between
the dependent variable (stiffness) and independent variable (resistance). The Nonlinear
Regression model is preferred as the modeling of the self-sensing actuation phenomenon
(the relation of change in electrical resistance to the change in stiffness during the nonlinear
thermo-mechanical phase transformation) is not as complex as that of modeling the basic
phenomenon of SMA, the thermo-mechanical phase transformation. Also, the Nonlinear
Regression model can be used to approximate complex nonlinear phenomena and then the
relationship is curvilinear. The jth order polynomial model in one variable is given by,

k = β0 + β1Rsma + β2Rsma
2 + . . . + β jRsma

j + ε (8)

where, Rsma is resistance of SMA spring, β0, β1, β2,..., βi, and Rsma Rsma2 Rsma3 . . . Rsma . . .
Rsmai, i = 1, 2, 3, . . . , j are the effect parameters and ε an error.

The nonlinear regression of sufficiently high degree can always be found that pro-
vides a good fit for data. A good strategy should be used to choose the order of an
approximate polynomial; keep the order increasing until t-test for the highest order term is
non-significant. It is called the forward selection procedure to fit the model with experi-
mental data. Also, goodness of fit statistics is used to find the best polynomial. MATLAB
function “polyfit” is used to obtain coefficients of the polynomials [3]. Data from the
measurement of the force, displacement and voltage sensors is saved in an Excel.csv file
and used whenever required for training and testing the model. In the first step, charac-
teristics must be represented as predicted data, response data, and weights. In the second
step, nature i.e., shape and specificity of the self-sensing characteristic of the appropriate
parameter polynomial model is selected. After fitting the data into a model, its goodness of
fit is determined by adopting any of the following two ways: (i) Graphical (ii) Numerical.
The plotting residuals and prediction bound aid visual interpretation. Graphical measures
allow viewing the entire data set at once, and they easily display a wide range of rela-
tionships between the model and data. Numerical measures are more narrowly focused
on a particular aspect of the data and often try to compress that information into a single
number. In practice, to find the best fit of the sensor’s characteristics, the above-mentioned
methods are used on extensive experimental data and analyzed [17]. Figure 2 shows the
trial-and-error procedure to find the correct polynomial model in comparison with the
experimental sensor’s characteristics; it can be seen that the third-order and above models
match the experimental data.

Figure 2. Polynomial model and experimental self-sensing variable stiffness actuation characteristics.

4. Result and Discussion of Self-Sensing Variable Stiffness Actuation

The influence of different factors such as activation current, excitation frequency, duty
cycle, and pre-stress on self-sensing characteristics are observed and presented in this
section. The influence of different factors such as activation current, excitation frequency,
duty cycle, and pre-stress on self-sensing characteristics are observed and presented in
this section. The SMA’s electrical resistance is sensitive to compositions, transformation
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path and heat treatment [1]. During phase transformation, the crystallographic structure of
SMA changes due to heating and cooling. As a result, SMA’s electrical resistance changes.
This resistance change is useful to measure SMA’s stiffness without any physical sensor.
Furthermore, it is possible to measure stiffness of the SMA based structure. Table 3 has
useful information about SMA material. It is provided by the manufacturer and that the
resistance of the SMA wire depends on its length and diameter. It also says that resistance
per meter decreases with an increase in wire diameter. The basic relation used to calculate
resistance [3,5] and stiffness of the SMC actuator are as follows.

RSMA =
VSMA

Vs − VSMA
∗ R (9)

k =
d4G

8 n D3 (10)

where, RSMA is the resistance of the SMA spring (Ω), VSMA is the voltage of the SMA spring
(V), R is the known resistance (Ω), VS is the bias voltage of the MOSFET (V),

k is the instantaneous stiffness of the SMA spring (N/m), G is the instantaneous
shear modulus of the SMC (N/m2), d is the wire diameter of the SMC (m), and D is the
coil diameter of the SMC (m). The instantaneous value of G is calculated from force and
displacement measurements using transducers.

The first step in the design process is to choose the smallest wire diameter, or “d”.
The force-displacement relationship and cooling performance associated to the actuation
frequency are most sensitively influenced by the wire diameter “d”, which is a dominant
design parameter of the SMA coil spring actuator. The SMA coil spring actuator has the
smallest material mass and the quickest cooling time when the wire diameter is the smallest.

Iterative calculations are used to determine the coil diameter “D”. When the shear
strain reaches the predetermined value, which is adjusted to be slightly greater than the
wire diameter “d”, the force is calculated. If “D” is tiny, the shear stain does not reach
its maximum value before the force surpasses the intended value. If so, the calculation
is redone with a larger “D” The iteration ends and the “D” value at the last step is the
maximum coil diameter if the force reaches the required value at the maximum shear strain
while “D” is growing. With the desired stroke and the single coil stroke at the necessary
loading condition, the coil number “n” is calculated. The displacement gap between the
martensite and austenite models is used to determine the single coil stroke. The desired
actuation stroke value divided by the single coil stroke yields the coil number “n”.

Table 3. General properties of SMA [1].

Wire Diameter (μm) 100 125 200
Linear Resistance (Ω/m) 126 75 29
Maximum allowable force (N) 4.601 7.220 18.247
Nominal force (N) 0.275 0.422 1.079

So, the initial value of displacement of SMC is assumed to be zero and it is set to
zero in the transducers and recorded in the personal computer. This modeling is aimed
at the self-sensing phenomenon when the SMA is under variable stiffness actuation i.e.,
not particularly on the modeling of the basic actuation or shape memory effect or phase
transformation of SMA. Moreover, the study is based on the SMA being activated by
joule heating, whereby it is controlled by different electrical parameters such as current,
frequency and duty cycle and, pre-stress. The change in resistance corresponding to the
change in stiffness is determined during the heating phase, and the relation is extracted as
a nonlinear regression model and validated by different metrics through experimentation.
The model is valid for the joule heating current of 0.7 A to 1.2 A. Figure 3 shows the stiffness
characteristics at 0.8 A, 1.0 A and 1.2 A which is when the phase change starts before which
the SMA does not display any linear response. But then after 1.5 A, the response is more
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linear in characteristic as seen in Figure 3 and also at a current 1.0 A and 1.2 A, respectively.
The model and experimental response are compared in the heating cycle when work is
completed, specifically between 0.7 A and 1.2 A also, wherein a large change in stiffness
and resistance is revealed.

Figure 3. Comparison of models of stiffness sensing characteristics at different currents.

4.1. The Effect of Different Activation Currents

In the first set of experiments, the SMA spring is electrically heated by a 1/100 Hz
square wave signal with a constant duty cycle and constant pre-stress. The current of the
heating signal is varied, and the data recorded. The current/electrical power affects both
the stiffness and resistance of the SMA spring actuator. The effect of changing current is
clearly seen in Figure 3. Stiffness-resistance heating characteristics are modeled by the
SVR and Nonlinear regression. Figure 3 reveal, that as electrical current increases, the
slope of the curve increases, and the experimental characteristics overlap the modeled
characteristics. The implementation of both models is done in MATLAB by “polyfit”,
“polyval” and other built-in functions.

The mathematical Nonlinear regression model between stiffness and resistance during
the austenite phase is estimated from the experimental data.

k = −1.6446 ∗ RSMA
3 + 2.7072 ∗ RSMA

2 − 2.0349 ∗ RSMA + 0.9655 (11)

k = −0.5627 ∗ RSMA
3 − 0.0684 ∗ RSMA

2 − 0.3944 ∗ RSMA + 1.0032 (12)

k = 1.1301 ∗ RSMA
3 − 0.0543 ∗ RSMA

2 − 1.9872 ∗ RSMA + 1.0067 (13)

where, k is the instantaneous stiffness in N/m and “RSMA” is the resistance in ohm
of the SMA spring actuator. Three cases are considered to present the data uniformly
corresponding to each effect in parameter variations like current, frequency, duty cycle
and pre-stress. The Nonlinear Regression model is used to represent self-sensing actuation
in particular to relate stiffness with electrical resistance. The big and unusual coefficient
of the nonlinear regression model can be reduced by normalizing stiffness and resistance
data. The modeled and experimental self-sensing of stiffness of the Shape Memory Coil
during variable stiffness actuation agree in terms of quality as Figure 3 has performance
metrics such as goodness factor, mean squared error, correlation matrix and root mean
square error within the specified range. The root mean square error (RMSE) should be less
than 0.80. The goodness factor is out of range in Figure 3 as nonlinearity is present for the
phase conversion which has not yet started.
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The values of metrics of the model comparison for Figure 3 is mentioned in Table 4;
there is large difference in stiffness for the three (maximum values are 75, 145 and 1500 N/m)
cases. Table 5 gives the Correlation matrix which displays the correlation coefficients for
matching the stiffness (model and experimental) at different independent variables, and
the activation current. The matrix depicts the correlation between the possible pairs of
values in the table; this tool helps to summarize the dataset, to identify and visualize the
match of patterns in the data. From the matrix tables it is observed that, the characteris-
tics at 0.8 A do not match as they are more non-linear than that for the other two higher
activation currents.

Table 4. Metrics of inferential models at different currents.

Metrics
Current (A) Type of Inferential

Model
0.8 A 1.0 A 1.2A

MSE

Polynomial Model

8.8421 × 10−5 1.5728 × 10−4 0.0043

RMSE 0.0094 0.0125 0.0657

Goodness of Fit
(R-squared) (%) 99.8991 99.8731 94.9956

MSE

Support Vector
Regression

0.0025 0.0012 0.0051

RMSE 0.0500 0.0345 0.0717

Goodness of Fit
(R-squared) (%) 97.1421 99.0424 94.0439

Table 5. Correlation Coefficient between observed and predicted stiffness at different currents.

Activation Current (A) 0.8 1.0 1.2

Correlation Coefficient of
Polynomial Model

1.0000 0.9995 1.0000 0.9994 1.0000 0.9747

0.9995 1.0000 0.9994 1.0000 0.9747 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9865 1.0000 0.9961 1.0000 0.9731

0.9865 1.0000 0.9961 1.0000 0.9731 1.0000

4.2. The Effect of Different Excitation Frequencies

In the second set of experiments, the Shape Memory Coil is electrically heated over a
fixed current of 1.2 A of different frequencies (10 mHz, 20 mHz, and 30 mHz) of square
wave signal with fixed duty cycle and pre-stress (pre-tension). The self-sensing of stiffness
is modeled during the heating cycle only. Both the curves almost agree with each other
(modeled and experimental). Figure 4 show the characteristics modeled and experimental
plots at different frequencies. The effect of frequencies on stiffness is inversely proportional
i.e., stiffness decreases when resistance increase with an increase in frequency. The quadratic
mathematical models of stiffness at different frequencies are as follows:

k = 1.1074 ∗ RSMA
2 − 1.9230 ∗ RSMA + 0.8835 (14)

k = 1.5465 ∗ RSMA
2 − 2.4596 ∗ RSMA + 0.9701 (15)

k = −0.5693 ∗ RSMA
2 − 0.2908 ∗ RSMA + 0.9574 (16)

The experimental results validated the self-sensing of stiffness of the SMC actuator by
measurement of resistance during the heating cycle (austenite phase). Figure 4 reveals the
linear relationship between these two properties of the SMA. Also, the resistance change of
the SMA spring actuator is higher at a lower frequency and lower at higher frequency over
0 to 1.2 A of electrical power.
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Figure 4. Comparison of models of self-sensing stiffness characteristics with experimental result at
different excitation frequencies.

The modeled and experimental self-sensing of stiffness of the SMC during variable
stiffness actuation agree in terms of quality because Figure 4 has the performance metrics
such as goodness factor, standard deviation, correlation matrix and root mean square error
within the specified range, as seen from Table 6. Also, Table 7 provides the correlation
matrix which validates the match for the range of frequency (10 mHz to 30 mHz) though
the study is conducted until 0.6 Hz.

Table 6. Metrics of inferential models at different frequencies.

Metrics
Frequency (mHz) Type of

Inferential Model
10 mHz 20 mHz 30 mHz

MSE

Polynomial Model

0.0012 5.2667 × 10−4 0.0026

RMSE 0.0340 0.0229 0.0508

Goodness of Fit
(R-squared) (%) 98.6401 99.3929 96.9936

MSE

Support Vector
Regression

0.0025 0.0022 0.0033

RMSE 0.0496 0.0471 0.9699

Goodness of Fit
(R-squared) (%) 97.1139 97.4384 96.1031

Table 7. Correlation Coefficient between observed and predicted stiffness at different frequencies.

Frequency (mHz) 10 20 30

Correlation Coefficient of
Polynomial Model

1.0000 0.9932 1.0000 0.9970 1.0000 0.9849

0.9932 1.0000 0.9970 1.0000 0.9849 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9868 1.0000 0.9894 1.0000 0.9818

0.9868 1.0000 0.9894 1.0000 0.9818 1.0000

4.3. The Effect of Different Duty Cycles

An SVR and Nonlinear regression model is developed to understand the effect of
duty cycle on stiffness-resistance characteristics. The comparison of experimental and
curve-fitted model is simulated by the MATLAB® program, the characteristics for different
duty cycles (40%, 50% and 60%), at a constant current of 1.5 A and constant frequency of
20 mHz showed that they almost agree with each other. The nonlinear regression model
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of stiffness at different duty cycles with resistance change as independent variable are
as follows:

k = 0.5778 ∗ RSMA
2 − 1.5332 ∗ RSMA + 0.9982 (17)

k = 0.3808 ∗ RSMA
2 − 1.3471 ∗ RSMA + 1.0264 (18)

k = −0.2699 ∗ RSMA
2 − 0.7399 ∗ RSMA + 1.0239 (19)

The effect of duty cycle on stiffness-resistance characteristics are linear and useful in
controlling stiffness effectively. The comparison between the experimental and modeled
characteristics at different duty cycles are presented in Figure 5 and mathematically repre-
sented by quadratic (second-order polynomial) Equations (17)–(19). The modeled and the
experimental self-sensing of stiffness of the SMC during variable stiffness actuation agree
in terms of quality as Figure 5 contains performance metrics such as goodness factor, mean
squared error, correlation matrix and root mean square error within the specified range, as
seen in Table 8. Table 9 also gives the correlation matrix which validates the match for a
range of duty cycle (40% to 60%), though the study is conducted from 20% to 80%.

Figure 5. Comparison of models of self-sensing stiffness characteristics with experimental results at
different duty cycles.

Table 8. Metrics of Inferential models at different duty cycles.

Metrics
Duty Cycle (%) Type of

Inferential Model
40 (%) 50 (%) 60 (%)

MSE

Polynomial Model

0.0052 0.0066 1.5130 × 10−4

RMSE 0.0722 0.0811 0.0123

Goodness of Fit
(R-squared) (%) 94.4167 92.4220 99.8835

MSE

Support Vector Regression

0.0053 0.0067 0.0016

RMSE 0.0731 0.0067 0.0396

Goodness of Fit
(R-squared) (%) 94.2709 92.2769 98.7947
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Table 9. Correlation coefficient at different duty cycles.

Duty Cycle (%) 40 50 60

Correlation Coefficient of
Polynomial Model

1.0000 0.9717 1.0000 0.9614 1.0000 0.9994

0.9717 1.0000 0.9614 1.0000 0.9994 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9718 1.0000 0.9632 1.0000 0.9980

0.9718 1.0000 0.9632 1.0000 0.9980 1.0000

4.4. The Effect of Different Pre-Stresses (Pre-Tension)

The effect of pre-stress on stiffness-resistance characteristics is developed as mathe-
matical models for different pre-stresses (100 g, 150 g and 200 g) at a constant current of
1.2 A and constant frequency of 10 mHz. The nonlinear regression model of stiffness at
different duty cycles with resistance change as independent variable are as follows:

k = −2.9194 ∗ RSMA
3 + 5.3974 ∗ RSMA

2 − 3.3947 ∗ RSMA + 0.8517 (20)

k = −2.4860 ∗ RSMA
3 + 4.6766 ∗ RSMA

2 − 3.0950 ∗ RSMA + 0.8585 (21)

k = −0.9385 ∗ RSMA
3 + 1.5918 ∗ RSMA

2 − 1.5918 ∗ RSMA + 1.0084 (22)

The comparison between experimental and modeled characteristics at different pre-
stresses found in Figure 6 and mathematically represented by third order polynomial
Equations (20)–(22). The effect of pre-stress on stiffness-resistance characteristics is highly
nonlinear and difficult to model in comparison with those on the effect of current, frequency
and duty cycle. Figure 6 reveals this and it is found from the correlation matrix that
stiffness and resistance of the SMA spring at different stresses do not have strong statistical
correlation. Table 10 validates the two models, compares the two models with each other
and gives the information about the accuracy of prediction by using experimental and
predicted data with the help of different metrics. There is a perfect correlation of each
variable with itself as seen from Table 11.

Figure 6. Comparison of Models of Self-sensing Stiffness characteristics with experimental results at
different pre-stresses.
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Table 10. Metrics of inferential models at different pre-stresses.

Metrics
Pre-Stress (g) Type of

Inferential Model
100 g 150 g 200 g

MSE

Polynomial Model

0.0022 0.0018 0.0025

RMSE 0.0464 0.0421 0.0501

Goodness of Fit
(R-squared) (%) 97.4866 97.9452 97.0727

MSE

Support Vector
Regression

0.0100 0.0093 0.0040

RMSE 0.0998 0.0966 0.0634

Goodness of Fit
(R-squared) (%) 88.3812 89.1636 95.3135

Table 11. Correlation coefficient at different pre-stresses.

Pre-Stress 100 g 150 g 200 g

Correlation Coefficient of
Polynomial Model

1.0000 0.9874 1.0000 0.9897 1.0000 0.9583

0.9874 1.0000 0.9897 1.0000 0.9583 1.0000

Correlation Coefficient of
Support Vector Regression

1.0000 0.9532 1.0000 0.9583 1.0000 0.9791

0.9532 1.0000 0.9583 1.0000 0.9791 1.0000

5. Investigation of Stiffness Characteristics of the SMC Actuator

5.1. Effect of Current on Stiffness-Resistance Characteristics

With the help of four sets of experiments, the stiffness-resistance characteristics of the
SMC actuator are analyzed to explore its self-sensing capability. Data recorded from the
first set of experiments are used to plot and analyze. Resistance response to the heating
cycle is plotted for 50 s; it found that as activation current increased, resistance decreased
and that the change of resistance decreased over a period of time as shown in Figure 7.
Stiffness response to different activation currents found that at 1.2 A, stiffness increased
very rapidly in comparison to the other two activation currents. Excitation frequency
is chosen as 10 mHz, as enough time is available to relax/deform the SMA spring and
avoid residual strain. As excitation frequency increased, the time to complete the cycle
is reduced e.g., two heating-cooling cycles occurred at 10 mHz and 6 cycles at 50 mHz.
Data of force, displacement, the voltage across fixed resistance and the SMA spring are
recorded for 3 min and are also saved in computer memory via 1408FS plus DAQ card
with a sampling frequency of 2 Hz. At 0.8 A stiffness is less in value, compared to the other
two activation currents (1.0 A and 1.2 A) as the SMA spring does not completely transform
from martensite phase to the austenite phase. Corresponding resistance (Ω) is recorded in
terms of its voltage and plotted in Figure 7; at 0.8 A. It is observed that resistance change is
larger than that at 1.2 A. Responses for the three different currents are plotted and shown
in Figures 8 and 9. Figure 8 shows stiffness variations at different currents (0.8 A, 1.0 A and
1.2 A). Figure 9 shows a linear relation between stiffness and resistance. The minimum and
maximum values of resistance at these activation currents and their respective stiffness
values are shown in Table 12.
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Figure 7. Resistance of SMA spring actuator at different current.

 

Figure 8. Stiffness of the SMA spring actuator at different currents.

 

Figure 9. Stiffness − Resistance characteristics of the SMA spring actuator at different currents.

Table 12. Resistance and Stiffness at different currents.

Current
(A)

Resistance Change (Ω)
Stiffness Change

(N/m) Number
of Cycles

Min. Max. Min. Max.

0.8 2.4426 2.5461 21.7310 62.8684 02
1.0 2.1310 2.2530 21.7521 156.2679 02
1.2 1.9454 2.0446 23.4013 2130.4059 02

5.2. Effect of Frequency on Stiffness—Resistance Characteristics

Data recorded from the second set of experiments are used to plot and analyze.
Self-sensing actuation characteristics of the SMA spring actuator is obtained for varied
frequencies from 10 mHz to 30 mHz keeping activation current constant at 1.2 A; Stiffness is
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determined and plotted as shown in Figures 10–12. When the excitation frequency of PWM
signal is increased beyond 50 mHz, the number of cycles is reduced to less than one, also
the heating and cooling cycle frequency (mechanical cycle) did not match the excitation
frequency (electrical cycle), subsequently, the SMA spring would not completely contract
or deform. Some significant observations are arrived at from these plots: (i) The excitation
frequency has a significant effect on stiffness and resistance of Shape memory Spring: At
a higher frequency, resistance change is higher and at a lower frequency, the resistance
change is lower. (ii) The effect of frequency on stiffness change of the SMA spring actuator
is converse to resistance change. (iii) Overall linear relationship exists between resistance
and stiffness. (iv) The Resistance and Stiffness change from minimum to maximum values
at different frequencies is in Table 13.

 
Figure 10. Effect of frequency on Resistance of the Shape memory Spring.

Figure 11. Effect of frequency on Stiffness of the Shape memory spring.

 

Figure 12. Effect of different frequency on Stiffness − Resistance Characteristics of the Shape Memory
spring actuator.
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Table 13. Stiffness and resistance at different frequencies.

Frequency
(mHz)

Resistance Change in (Ω) Stiffness Change in (N/m) Number of
CyclesMin. Max. Min. Max.

10 1.94 2.04 23.25 2130.90 02
20 1.83 2.12 22.12 144.44 04
30 1.89 2.11 21.91 79.45 06

5.3. Effect of Pre-Stress on Stiffness—Resistance Characteristics

At a constant current (1.2 A) passing through the SMA spring and constant frequency
(10 mHz) of excitation current, stiffness is determined for pre-stress which is varied from
100 g to 200 g. An increase in pre-stress beyond 200 g would not allow complete contraction
(bias force is higher) and would not completely deform below 100 g for the requirement of
restraining/pulling force [15]. It is learnt from Figures 13 and 14 that stiffness increased,
and resistance decreased with an increase in pre-stress. Figure 15 provides information
about the stiffness sensing characteristics at different pre-stresses, which reveal a large
change in stiffness at a lower value of resistance of the SMA spring actuator.

Figure 13. Resistance response at different Pre-Stresses.

Figure 14. Stiffness response at different Pre−Stress.
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Figure 15. Stiffness-Resistance characteristics at different Pre-Stresses.

5.4. Effect of Duty Cycle on Stiffness—Resistance Characteristics

Similarly, for different duty cycles (40%, 50%, and 60%) at 1.5 A and 20 mHz, the
resistance response, stiffness response and stiffness—Resistance characteristics of the SMA
spring actuator are obtained and presented in Figures 16–18 respectively. Resistance values
are smaller in comparison to the effect of current, frequency and pre-stress. The change
in resistance is higher for higher duty cycles and lower for lower-duty cycles. Change in
stiffness is also higher for a higher duty cycle and lower for a lower duty cycle; stiffness
is higher in comparison with a lower duty cycle due to the availability of minimal time
to completely heat the SMA spring. Figure 16 presents the resistance variation due to
changes in duty cycles and Figure 17 corresponds to the stiffness variations. As the duty
cycle increased, stiffness also increased some extent. Figure 18 shows the characteristics
at different duty cycles, indicating a large change in stiffness with a large change in the
resistance of the SMA spring actuator at a higher duty cycle. It also, proved that at higher
stiffness, resistance is also higher but within the specified limit of duty cycle. Table 14
summarizes stiffness and resistances at different pre-stresses and their effect. Table 15
depicts the effect of duty cycle on stiffness and resistance, which is more on stiffness and
less on resistance.

 

Figure 16. Resistance response at different duty cycles.
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Figure 17. Stiffness response at different duty cycles.

 

Figure 18. Effect of duty cycles on the Stiffness—Resistance characteristics.

Table 14. Resistance and Stiffness Values at different Pre−Stresses.

Pre-Stress (g)
Resistance (Ω)

Stiffness
(N/m) Number of

Cycles
Min. Max. Min. Max.

100 2.80 3.15 24.24 2248.97 02
150 2.76 3.12 31.66 2912.84 02
200 2.70 3.05 30.79 3251.99 02

Table 15. Resistance and Stiffness at different Duty Cycles.

Duty Cycle (%)
Resistance (Ω) Stiffness (N/m) Number of

CyclesMin. Max. Min. Max.

40 0.55 0.56 16.90 423.99 03
50 0.55 0.57 19.71 574.25 03
60 0.55 0.57 16.79 495.21 03

Experimental data is collected for repeated cycles (3 consecutive cycles), and the
responses are similar/not with much deviation. One set of data is used for the plotting and
analysis of the stiffness-resistance characteristics, the usable form of the data is through
the use of an average function and normalization; the other set of data are used for the
validation. The highest change in resistance corresponding to the change of stiffness with
regard to the effect of the influencing factors like activation current, excitation frequency,
pre-stress and duty cycle are presented in Table 16. It is observed that a change in resistance
of the SMA spring in the configuration switches is the highest (0.3516 Ω) during the change
in pre-stress and stayed the lowest (0.0160 Ω) during the change in duty cycle. The purpose
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of this study is to use the suggested technique during control of actuation in the SMA
spring by using an appropriate controller. The polynomial models are appropriate to the
relevance to the factor of consideration and are able to accurately predict the stiffness
equivalent to that obtained through experimentation by the measurement of change in
electrical resistance. The level of predictability is high for the factor’s activation current,
excitation frequency and duty cycle but low for pre-stress and low value of current (0.8 A)
due to nonlinear characteristics of self-sensing of the SMA spring; the statistical analysis is
presented in Tables 4–11. Table 17 attests that the polynomial model, predicted accurately
at different activation currents, excitation frequencies and duty cycle but at the pre-stress.

Table 16. Resistance and stiffness values at different Influencing factors.

Parameters
Properties Shape Memory Coil Resistance

Change (Ω)
Shape Memory Coil Stiffness

Change (N/m)
Activation Current (A) 0.12 134.51
Excitation Frequency (Hz) 0.29 122.32
Pre-stress (g) 0.35 3220.20
Duty Cycle (%) 0.01 478.42

Table 17. Performance of SVR and nonlinear regression model prediction.

Parameter
Metrics Average Goodness of Fit (SVM

Regression)
Average Goodness of Fit
(Nonlinear Regression)

Different Activation Currents 96.74 98.25
Different Excitation Frequencies 96.88 98.34
Different Duty Cycles 95.11 95.57
Different Pre-stress 90.95 97.50

6. Conclusions

In this work, an experimental facility is developed to determine the electrical resistance
of the Shape Memory Coil (SMC) actuator that is biased by a tensile steel spring under
self-sensing variable stiffness actuation. The SVM regression model is constructed based
on experimental data (Expert Knowledge) and provided excellent performances. The
performance of the SVM regressor model is verified by a correlation coefficient, mean
square error (MSE), root mean square error (RMSE) and goodness of fit (R2). The developed
SVM model showed an excellent result of prediction in comparison with the nonlinear
regression model and experimental data. The experimental analysis has proved that the
stiffness of the SMA is sensed from its resistance change. While the stiffness is changed
due to different activation currents/joule heating, excitation frequencies, pre-stresses and
duty cycles, the stiffness of the SMC is successfully determined as the variable stiffness
actuator. Among many new findings from this work, the most interesting result is that
the stiffness of the SMA spring can be measured without knowing the activation current
and initial geometry or configurations of the SMC. This is possible from the realization of
both SVR and nonlinear regression models of the stiffness using the electrical resistance
of the SMC during austenite phase transformation. The responses achieved from two
models are compared to the experimental response showing both models would harness
the self-sensing capability of the SMC actuator. In addition, it has found from this work
that the effect of frequency and duty cycle is more linear when compared to the other two
parameters of current and pre-stresses. It has been concluded from this work that from
the practical view of point, the self-sensing of stiffness of SMC can reduce the number
of sensors for making application systems associated with shape memory alloys. For
example, one stiffness sensor can use for two sensors of force and displacement. Therefore,
it is self-explanatory justifying that the self-sensing technique gives birth to sensor-less
control systems which are relatively cost effective, and hence the overall system becomes
compact in comparison with traditional control systems having dedicated many sensors.
Therefore, it is expected that the proposed self-sensing variable stiffness actuation method
can be applicable to many control systems including the grasping force of robot grippers,
surgical SMA wire of biomedical sciences, vibration and dynamic motion control of flexible
structures in aeronautical fields such as morphing control and health monitoring control
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system using SMA wires Associated magnetic coils. It is finally remarked that some benefits
achieved from this work will be demonstrated by applying to robot gripper systems in
near future.

Author Contributions: B.B.S. and D.K. contributed equally to carry out the research work under the
title “Self-Sensing of variable stiffness actuation of Shape Memory Coil by an Inferential Soft Sensor”.
They conceived and designed the analysis of self-sensing variable stiffness actuation by support vector
regression and nonlinear regression method. S.-B.C. contributed to clearly addressing the technical
novelty of this work, and he carefully checked and revised all equations and figures to improve the
article quality. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also form part of an ongoing study. In the future, however, the raw
data required to reproduce these findings will be available from the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest. The authors also declare that they
have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

1. Ikuta, K. Micro/Miniature Shape Memory Alloy Actuator. In Proceedings of the IEEE International Conference on Robotics and
Automation, Cincinnati, OH, USA, 13–18 May 1990; pp. 2156–2161.

2. Ma, N.; Song, G.; Lee, H.-J. Position control of shape memory alloy actuators with internal electrical resistance feedback using
neural networks. Smart Mater. Struct. 2004, 13, 777–783. [CrossRef]

3. Gurang, H.; Banerjee, A. Self-sensing shape memory alloy wire actuator based on unscented Kalman filter. Sens. Actuators A Phys.
2016, 251, 258–265. [CrossRef]

4. Lan, C.-C.; Fan, C.-H. An accurate self-sensing method for the control of shape memory alloy actuated flexures. Sens. Actuators A
Phys. 2010, 163, 323–332. [CrossRef]

5. Liu, S.-H.; Huang, T.-S.; Yen, J.-Y. Tracking Control of shape-memory-alloy actuators based on self-sensing feedback and inverse
hysteresis compensation. Sensors 2009, 10, 112–127, ISSN 1424-8220. [CrossRef] [PubMed]

6. Wang, T.-M.; Shi, Z.-Y.; Liu, D.; Ma, C.; Zhang, Z.-H. An accurately controlled Antagonistic shape memory alloy actuators with
self-sensing. Sensors 2012, 12, 7682–7700, ISSN 1424-8220. [CrossRef]

7. Asua, E.; Feutchwanger, J.; García-Arribas, A.; Etxebarria, V. Sensorless control of SMA-based actuators using. J. Intell. Mater.
Syst. Struct. 2010, 21, 1809–1818. [CrossRef]

8. Narayanan, P.; Elahinia, M. Control of a shape memory alloy-actuated rotary manipulator using an artificial neural network-based
self-sensing technique. J. Intell. Mater. Syst. Struct. 2016, 27, 1885–1894. [CrossRef]

9. Gurley, A.; Lambert, T.R.; Beale, D.; Broughton, R. Dual measurement Self–sensing Technique of NiTi Actuators for use in Robust
Control. Smart Mater. Struct. 2017, 26, 105050. [CrossRef]

10. Suzuki, Y.; Kagawa, Y. Dynamic tracking control of an SMA wire actuator based on model matching. Smart Mater. Struct. 2019,
292, 129–136. [CrossRef]

11. Finio, B. Available online: www.sciencebuddies.com (accessed on 7 August 2018).
12. Available online: www.dynalloy.com (accessed on 30 June 2017).
13. Kumon, M.; Mizumoto, I.; Iwai, Z. Shape Memory Alloy Actuator with Simple Adaptive Control. In Proceedings of the 2nd

International Conference on Innovative Computing, Information and Control, Kumamoto, Japan, 5–7 September 2007.
14. Sul, B.B.; Dhanalakshmi, K. Self-sensing characteristics and analysis of the stiffness of the SMA spring actuator. In Proceedings of

the 8th IEEE India International Conference on Power Electronics (IICPE), Jaipur, India, 13–15 December 2018.
15. Sul, B.B.; Dhanalakshmi, K. Modified sigmoid based model and experimental analysis of SMA spring as variable stiffness actuator.

Smart Struct. Syst. 2019, 24, 361–377.
16. Sul, B.B.; Subudhi, C.S.; Dhanalakshmi, K. Neural Network based Displacement Modeling of Shape Memory Alloy Spring

Actuator. In Proceedings of the IEEE Sensors International Conference, New Delhi, India, 29–31 October 2018.
17. Marinova, B.; Nikol, G.T.; Todorov, M.H. Curve Fitting of Sensor’s Characteristics. J. Electron. 2009, 188–191. Available on-

line: http://ecad.tu-sofia.bg/et/2009/ET_2009/AEM2009_1/Electronic%20Systems%20in%20Measurement%20and%20Control/
188-Paper-B_Nikolova2.pdf (accessed on 30 June 2017).
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Abstract: In complex industrial processes such as sintering, key quality variables are difficult to
measure online and it takes a long time to obtain quality variables through offline testing. Moreover,
due to the limitations of testing frequency, quality variable data are too scarce. To solve this problem,
this paper proposes a sintering quality prediction model based on multi-source data fusion and
introduces video data collected by industrial cameras. Firstly, video information of the end of
the sintering machine is obtained via the keyframe extraction method based on the feature height.
Secondly, using the shallow layer feature construction method based on sinter stratification and
the deep layer feature extraction method based on ResNet, the feature information of the image is
extracted at multi-scale of the deep layer and the shallow layer. Then, combining industrial time
series data, a sintering quality soft sensor model based on multi-source data fusion is proposed,
which makes full use of multi-source data from various sources. The experimental results show that
the method effectively improves the accuracy of the sinter quality prediction model.

Keywords: multi-source data fusion; sintering quality prediction; image feature extraction; keyframe
extraction

1. Introduction

In the process industry such as the sintering process, process monitoring is mainly
based on conventional sensors which measure the temperature, pressure, flow and other
data of the process. The measurement of quality indicators is generally offline testing and
it is difficult to achieve online analysis. At present, some online sensors that meet the
needs have been developed and applied to some processes with relatively simple reaction
mechanisms.

The most important quality index of the sinter is the FeO content of the sinter, which
can reflect the reducibility and strength of the sinter. The reducibility of iron ore raw
material is an important index for the later blast furnace ironmaking, which determines the
furnace conditions and the adjustment of various parameters.

With the increase in FeO content, the output of molten iron in the blast furnace will
decrease. However, we cannot simply pursue low FeO content, because FeO content also
determines the strength of the sinter. The low content will reduce the strength of the sinter,
damage the morphology and increase the proportion of powder. This will hinder the rise
of gas flow in the furnace body of the blast furnace, affect the permeability of the material
column, make it difficult for the furnace to run smoothly and reduce the output [1].

The common detection method is offline laboratory tests. The operator takes the
sintered sample on the conveyor belt and sends it to the chemical composition analysis
room. Potassium dichromate titration is often used for offline laboratories and the operation
is cumbersome. This method necessitates grinding the sample. If the sample is difficult
to dissolve, the analysis results will be poor. However, in general, the method has high
accuracy and is the common chemical analysis method for FeO of sinter in iron and steel
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enterprises [2]. Another test method is X-ray diffraction, which is still an offline detection
method. The ore sample to be measured and the supporting internal standard reagents
need to be dried in an oven at 105 ◦C for 2 h and cooled to room temperature before they
can be taken. The powder must then be carefully ground to a uniform and consistent level;
otherwise, errors may be introduced [3].

The above offline tests are relatively accurate; however, they are time-consuming,
often taking three or four hours to produce a result, and the labor and material costs of the
tests are high. Whereas the process of sintering ore from batching to completion of sintering
takes about one hour, the test results obtained after three or four hours have a significant
lag. If the test results do not meet the process requirements, only the current working
condition parameter settings can be adjusted to compensate. This is a great challenge for
line operators who want to obtain the control objective of consistently good sinter quality.

Therefore, it is urgent to develop online measurement means of sintering quality
indicators. Moreover, sophisticated online measurement means are the basis for building
an automatic control system for sinter production. At present, online measurement means
mainly include magnetic analyzers and online measurement devices. Shougang Group
introduced the magnetic analyzer of the Belgium company to detect via cutting the mag-
netic induction line when the iron ore passes and causing the change of magnetic field
current [4]. However, this method has strict requirements for samples and it also needs
regular calibration and calibration by the instrument side. Shougang Group reported that
the measurement accuracy of the magnetic induction coil was poor because the particles of
the measured sinter samples were too small and there were many powder particles and the
problem could not be solved by the equipment manufacturer’s personnel again.

As more and more industrial data can be recorded with the use of automated systems
in factories, data-driven soft measurement methods are emerging as viable solutions for
industrial measurements. Li et al. used LSTM neural networks with self-encoders to
construct a prediction model for FeO content [5,6]. Yan et al. proposed a denoised self-
encoder framework for predicting sintering endpoints [7]. Yang et al. used a hidden
variable model to model sinter quality index [8].

With the development of industrial cameras and image algorithms in recent years,
image-based online soft sensors in the field of industrial inspection have gradually gained
the attention of academia and industry [9]. Usantiaga proposed a temperature measurement
system for the sinter cooling process based on infrared thermal imaging technology [10].
Jiang combined the mechanism with the image characteristics acquired via the infrared
imager and proposed a method for measuring the polymorph of FeO content in sinter based
on the heterogeneous characteristics of infrared thermal images [11]. However, this method
uses the fuzzy classification labels obtained via mechanism analysis and the label accuracy
required via regression analysis is insufficient. In addition, the above study used BP neural
networks as regressors, which made it difficult to obtain time-series information. And the
shallow feature extractor used in this study, cannot obtain deep feature information of the
image. In recent years, deep learning methods have been increasingly applied in the image
field, such as deep convolutional network models such as ResNet [12,13], achieving better
results than shallow networks. This is also one of the motivations for the research in this
paper.

This paper combines the low-resolution images of a thermal imaging camera with the
high-resolution images of an industrial camera to achieve more accurate access to critical
information. Because there are too few assay labels, it is difficult to detect in real time,
and more quality variable labels need to be predicted. The work in this paper relies on
experts to calibrate a batch of label data and obtains a better database. On this basis, a
sintering quality prediction model based on multi-source data fusion is proposed and
video data collected via industrial cameras and thermal imagers are introduced. Firstly,
the keyframe information of the tail video of the sintering machine is obtained via the
keyframe extraction method based on the feature height. Secondly, using the shallow layer
feature construction method based on sinter layering and the deep layer feature extraction
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method based on ResNet, the feature information of the image is extracted from both the
deep layer and the shallow layer. Then, the industrial time series data information is fused
and the sintering quality prediction model based on multi-source data fusion is designed,
which fully extracts the heterogeneous data information from multiple sources. Finally, the
method is applied in a practical industrial case. The experimental results show that the
model can effectively improve the accuracy of the sinter quality prediction model.

The main contributions of this paper are as follows:

1. Obtaining shallow features based on industrial mechanics with thermal and visi-
ble images.

2. Extracting deep features based on the ResNet model and constructing a multi-scale
feature extraction model.

3. Fusing time series data to construct a novel soft measurement model based on multi-
source data fusion for FeO content of sintered ore.

The remainder of this paper is organized as follows. In Section 2, the characteristics of
the sintering process and quality variables are analyzed. The method and model proposed
in this paper are introduced in Section 3. Then, the proposed method is verified via the
actual production process data in Section 4. Section 5 summarizes the full text and puts
forward the new prospect and future work direction.

2. Characteristics of Multi-Source Data in Sintering

2.1. Description of the Sintering Process and Test Data

A sintering process is shown in Figure 1. Before the sintered ore is fed into the blast
furnace, it is divided into several processes: proportioning, mixing, sintering, crushing,
screening and cooling. There are many different types of raw materials used for sinter
production. There are more than 10 different bins, consisting mainly of iron ore fines, fuels,
fluxes and some additional raw materials. A reasonable material ratio should be developed
based on the different compositions of the raw materials, the quality requirements of the
sinter ore and the quality requirements of the blast furnace ironmaking. The sintering
ore mixing process requires full mixing of the components to obtain a mixture with a
uniform and stable chemical composition, while adding water to obtain a good granularity
and the necessary material temperature and to improve permeability. The mixture is
fed into the belt sintering machine for production and after the sintering is completed,
crushing, screening and cooling are required. The finished sintered ore obtained is sent
to the ironmaking plant as raw material for blast furnace ironmaking. The sintering data
collected contain operational variables, condition variables and quality variables. The
quality variables depend on manual testing.

Figure 1. Schematic diagram of image acquisition system of sintering process.

2.2. Sintering Image Data Acquisition

Due to the scarcity of laboratory data, the sintering process information is not perfect.
To better obtain information on the sintering process, an industrial camera and a thermal

161



Sensors 2023, 23, 4954

camera were set up at the observation port at the end of the sintering machine. A schematic
diagram of the sintering machine image acquisition is shown in Figure 1. The industrial
visible light camera has a resolution of 1920 × 1080 and the captured images are shown
in Figure 2. The thermal imager has a resolution of 640 × 480 and the captured image is
shown in Figure 3.

The captured information is uploaded to the database for storage via the industrial
fieldbus. Live video information is displayed on a display screen in the central control room
for the controller to view or can be downloaded to a cloud server via a remote connection.

Figure 2. The visible light image acquired via the sintering system.

Figure 3. Thermal image acquired via the sintering system.

2.3. Analysis of Sintering Image Data

At present, most of the quality indexes of sinter are obtained via laboratory analysis.
In the process of sinter production, due to the lag of laboratory analysis, the actual working
conditions often depend on expert experience to judge. During the sintering process, the
internal state of the sinter is not visible and only the topmost surface is exposed. However,

162



Sensors 2023, 23, 4954

the topmost part is the part that is ignited and sintered first. Therefore, on the sintering
machine with a length of 90 m, most of the length is in a sintered and finished state. Only
the flatness information about the ore laying can be observed from the top and the key
sintering state information cannot be obtained. Fortunately, once sintering is complete, the
sintered ore reaches the end of the trolley and falls naturally into the collection bin. After
the last piece of sintered ore has fallen and before the next piece of sintered ore falls, we
can observe the flame information in the sinter section. There is a flame viewing port at
the end of the sintering machine. Experts with rich production experience can analyze the
range of the FeO quality index of the sinter at the moment by observing the flame red layer
data at the end of the sintering machine. Through such manual judgment, it is possible to
rely on expert experience to help judge and control the process in the absence of sufficient
test indicators. However, there are still significant limitations to this method, with the
subjective errors of manual judgement being high and subject to the harsh conditions of the
industrial site. In harsh conditions such as high temperatures, loud noises, vibrations and
dust, it is difficult for workers to carry out observations for long periods of time, making
it difficult to replace conventional observation with fire observation as an aid. Therefore,
in the actual production process, it is necessary to develop stable measurement means
to replace expert manual observation. Experts can make judgements by observing flame
images. Therefore, in this experiment a camera is set up to capture the images and learn
information and it is feasible to gauge experts’ levels of experience and knowledge through
soft measurements.

Due to the different sintering states of raw materials in different directions and different
temperatures, the flame colors presented by them are also different. The surface of the black
part is sintered and the temperature is reduced to below 300 ◦C, resulting in dim color
and unclear observation. The red fire layer is the burning part of the sinter. It is generally
located in the lower part of the sinter, mainly in red, and the temperature is about 600 ◦C.
The stomatal layer is the brightest part of the image. Because the temperature exceeds
800 ◦C, it appears yellow and white in the image. The sinter will fall periodically at the tail
of the sintering machine. When a batch of sintered ore reaches the last wind box at the end
of the sintering machine, it will break and fall with the rest of the ore still on the trolley due
to the loss of the support of the trolley. At the moment of falling, the flame information
of the fault is very clear. After a short time, the falling of ore will raise a large amount
of dust and cause vibration at the same time, making the image captured via the camera
blurred and accompanied by shaking. It is difficult to obtain accurate flame information
from the image at this time. Therefore, the system needs to screen out the clear images at
the moment of falling as the analysis sample set. Experienced workers can judge the FeO
content of the sinter at this time by observing the section.

3. The Soft Sensor Model Based on Multi-Source Data Fusion

3.1. Keyframe Extraction from Video Image of Sintering Machine Tail

In this experiment, the monitoring video is obtained from the sintering monitoring
system for preprocessing. Since the original color image is three-channel RGB data with a
data dimension of 16.77 million, the processing is relatively complicated and the calculation
pressure is relatively large, so it is grayed first. The grayscale calculation formula is
as follows:

Gray = Blue × 0.114 + Green × 0.587 + Red × 0.299 (1)

where red, green and blue, respectively, represent the values of red, green and blue channels
and gray is the gray value.

According to the monitoring video, the falling of sinter is a periodic process. When a
batch of ore arrives at the tail, the front part breaks and falls, exposing the red fire layer of
the section. The image at this time is the keyframe required for the experiment. After that,
this batch of ore will continue to fall and its shape will change in the air and at the same time
it will raise smoke and dust, which is unfavorable for observing its sintering characteristics.
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Therefore, we need to obtain these keyframes in the video as our input. The inter-frame
difference method is often used for the algorithm of acquiring the keyframe of the target
motion when video monitoring the moving target [14]. The algorithm performs differential
processing on continuous images in continuous time. The difference in the grayscale is
calculated by subtracting the pixel values of different frames. Then, the threshold value
of the gray difference is set. When the value exceeds the threshold value, this frame is
selected as the keyframe, indicating that the monitoring target has changed greatly from
the previous time at this frame time. When the inter-frame difference method is used to
monitor the red layer at the tail of the sintering machine, the brightness difference between
different frames can be used as the threshold control to select the keyframe. Since the falling
of sinter is a periodic process, when the current ore falls to the bottom and the new batch of
ore has not yet broken down, the brightness of the image is the lowest. After a new batch
of ore appears, the image information will increase rapidly. Through this characteristic,
the sinter keyframe extracted based on the inter-frame difference intensity is the required
cross-sectional image. For each frame, the difference is made with the previous frame to
obtain the different strengths between the frames and the drawing is as shown in Figure 4.
After smoothing, each extreme point can be extracted as our keyframe and the result is
shown in Figure 5.

However, the accuracy of the inter-frame differencing algorithm depends on the choice
of threshold values. In addition, there are some abnormal states during the falling process
of the sinter. The sinter disintegrates in the air due to collision and other reasons, resulting
in sudden changes in image intensity. As shown in Figure 6, abnormal frames are extracted
and need to be manually removed during calculation.

Figure 4. Graph of raw inter-frame difference intensity.
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Figure 5. Graph of smmoothed inter-frame difference intensity.

Figure 6. Abnormal frames extracted via the inter-frame difference algorithm.

Because of the limitation of the algorithm based on inter-frame difference, a more intu-
itive keyframe extraction algorithm based on feature height is proposed in this experiment.

First, mask segmentation based on the gray threshold is performed on the image that
has been converted to gray level by mask and the segmented image is the red fire layer area
to be monitored. Next, the contour of the red fire layer is obtained by using the findcontours
algorithm. According to the contour, the circumscribed rectangle is fitted to represent the
current sintering red layer. The center of gravity of this rectangle is the feature height.
The feature height of the video collected in this experiment is shown in Figure 7 and the
periodic feature height fluctuation diagram obtained after smoothing is shown in Figure 8.
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Figure 7. Plot of feature height.

Figure 8. Plot of smoothing feature height.

Because the sinter falls periodically, the characteristic height of the red layer of the
sinter section is at the highest point when the red fire layer we need has just appeared.
Therefore, according to the peaks extremum algorithm, the maximum value of the feature
height is obtained and its abscissa is the index of the required keyframe, that is, the image
keyframes when the red fire layer has just appeared. The keyframe is extracted via the
algorithm based on the characteristic height of the red layer of the sinter and then saved,
as shown in Figure 9. The inter-frame intensity difference method of keyframe extraction
is disturbed by anomalous image intensity variations, as shown in Figure 6. The feature
height method, designed in this paper, is a combination of specific processes where the
intensity changes abruptly, but the feature height does not change abruptly, so keyframes
are extracted more accurately.
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Figure 9. Keyframes extracted via the characteristic height algorithm.

3.2. Construction and Extraction of Image Shallow Features

Using the video keyframe extraction algorithm for the red layer at the end of the sinter
in the previous section, several image keyframes were obtained for this experiment. For
each keyframe image, the sintered red layer appears at the same position at the top. This
location is our region of interest (ROI). First, we fix the region and calculate the area of
the region as a fixed observation window. Again, the keyframe is segmented by using
a mask based on a grey threshold. Based on practical industrial experience and mecha-
nisms, sintered ore has different sintering states and corresponding temperatures. Assisted
by an infrared thermal imager for temperature measurement, the layered temperature
is converted into an image threshold. Four different thresholds are chosen, as shown
in Table 1.

Table 1. Image threshold selection table.

Threshold Meaning Temperature (◦C)

100 Gas hole layer 800
40 Red fire layer 600
20 Dark fire layer 400
10 Sintering finished layer 200

According to the threshold segmentation, four regions are obtained and then their
contours are obtained respectively and the area around each contour is calculated as a
feature. To better extract the feature information of the image, the area ratio of the area
surrounded by each contour to the ROI is further calculated. The proportion information
represents the information of the red fire layer and reflects the distribution characteristics
and temperature characteristics of the sintering fault, to calculate the shallow layer charac-
teristic information of the ROI area. The shallow layer features and time series data features
of the red layer image at the tail of the sintering machine are extracted and the correlation
is shown in Figure 10. Features 0, 1, 2 and 3 in the figure are shallow features, while the
remaining features are features of industrial time series data. The shallow features are
concatenated with the time series data features for fusion.

167



Sensors 2023, 23, 4954

Figure 10. Correlation between shallow features of sintering machine tail image and time series data
features.

3.3. Deep Feature Extraction Based on ResNet

Convolutional neural network (CNN) is a neural network modeled on human visual
mechanisms. When humans first saw an image, they could not judge the whole image.
Instead, different nerve cell receptive fields transformed the image into different features
for recognition. Similar to the receptive field in human visual cortex cells, CNN extracts
the features of images through convolution kernels. The convolution kernel successively
crosses the picture with the set convolution step in order and calculates the convolution
results of the elements of the picture in the receptive field. As a computer, the ability
to recognize images is not as good as human beings. After an image is simply rotated,
the matrix information stored in the computer is completely different. Therefore, the
convolution kernel is designed to extract features for computer image recognition by
imitating the human visual perception field. After convolution, multi-level features such as
color and contour can be extracted from the original image to help identify the image [15].
For images that cannot be recognized via single-layer convolution, multi-layer convolution
needs to be stacked to extract deep features. However, after convolution, the dimension
of the original image will be increased. Simply stacking convolution layers will cause
the dimension to be too high and it is difficult to train the depth network. Therefore, it
is necessary to perform a pooling operation after convolution. The structure is shown in
Figure 11. By calculating the mean value or the maximum value of the rectangular window
of the specified size to replace the original rectangle, dimension reduction can be completed
and the function of nonlinear mapping can be achieved. The stacking of convolution and
pooling layers has a good effect within 20 layers. However, after increasing the number of
layers of the network, the performance of the model does not improve, but will decline.
when the network depth is increased, the network performance will neither improve nor
even deteriorate [16].

December 9, 2021  02:19:08

Figure 11. Schematic diagram of CNN structure for identifying numbers.

To solve this problem, He et al. proposed a deep residual network (ResNet), which
sets a residual connection between every two layers [12]. Similar to the circuit short-circuit
mechanism, the residual connection method constructs an identity map, which enables the
network to have the ability of layer hopping transmission. When the number of stacked
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layers is too deep, the weight of training can select layer hopping connection, as shown in
Figure 12. The original function mapping is expressed as H(x). Here, we build another
map F (x) = H(x) − x that is used to fit stacked networks. At this time, the original
mapping is transformed into H(x) = F (x) + x, which can be achieved by a short circuit
connection. Such processing does not increase the number of additional parameters, nor
does it increase the computational complexity, and it is still easy to train.

weight layer

weight layer

relu

relu

identity

Figure 12. Schematic diagram of residual connection structure.

The network achieved good results in Imagenet image recognition. For the deep
stacked network, the residual connection block set between every two layers can be ex-
pressed as:

y = F (x, {Wi}) + x. (2)

x,y are the input vector and output vector of the residual layer, respectively. F (x, {Wi})
is a representation of the residual map that needs to be learned.

The trained network classifier ResNet-50 is used in this experiment and the 1000 output
of its classification is used as the deep feature fixed extractor of the experiment. A total of
1000 deep-seated features were obtained through the ResNet model and their correlation
was analyzed, as shown in Figure 13. The features were selected with the correlation
coefficient greater than 0.25 as the deep features of the red layer image at the tail of the
sintering machine, as shown in Figure 14.

Figure 13. Schematic diagram of deep feature correlation extracted via ResNet model.
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Figure 14. Schematic diagram of selected deep feature correlation.

3.4. Prediction Method of Sintering Multi-Source Data Fusion

Because the data information from many different sources can not be directly extracted
and utilized, we propose a prediction method of the sintering process based on multi-
source data fusion. The shallow features obtained via keyframe extraction, threshold
segmentation, edge detection and feature construction and the deep features obtained via
ResNet model are connected to obtain our deep and shallow fused image features. The time
series data information from the process is processed using the encoder–decoder dynamic
time features expanding and extracting method (DTFEE) based on the LSTM network [5,6].
The characteristics of the image, together with the characteristics obtained from the time
series data information of the process, are used as the input of the encoder–decoder model
to train the predicted output of the quality variable. The block diagram of the multi-source
data fusion prediction method combined with deep and shallow image features is shown
in Figure 15.

…
…

…

Figure 15. Diagram of Sintering prediction model based on multi-source data fusion.

4. Case Study on Sintering Process

4.1. Introduction to the Multi-Source Dataset of Sintering Process and Settings

The images used for the soft sensor of the sinter are collected via the thermal imager
and industrial camera, respectively. Video data were collected from 8 December 2021 to 10
December 2021. The acquisition resolution of the industrial camera is 1920 × 1080 and that
of the thermal imager is 640 × 480. Using the feature height method, the keyframes are
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obtained from the video for expert calibration. The extracted deep and shallow features
and process time series data features jointly construct a dataset, with a total of 1319 samples.
Each sample has 35 features, including 17 time-series features, 4 shallow features and 14
deep features. There are 1100 sets of samples in the training set and 219 sets of samples in
the test set. The model consists of two layers of LSTM, with 50 hidden layer units and an
input length of 50. The optimizer uses Adam and the early stop step is set to 20.

4.2. Comparison of Results and Analysis

The effect of shallow feature extraction is shown in Figure 16. The online acquisition
of characteristic height, the thickness of the red flame layer, the distribution area and the
proportion of four flame layers are presented.

Figure 16. Video feature extraction diagram of the red layer at the end of the sintering machine.

In this experiment, the accuracy of the prediction model was evaluated by mean
square error (MSE), mean absolute error (MAE) and hit rate (HR), where y and ŷ are the
real value and prediction, respectively, and n is the number of test samples. See Table 2 for
the average evaluation indexes of the model obtained from the 10 experiments.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4)

Hi =

{
1, |yi − ŷi|/yi <= 1.5%
0, |yi − ŷi|/yi > 1.5%

(5)

HR =
1
n

n

∑
i=1

Hi (6)

As a control group, the model used only time series data from the industrial process
and did not use image information fusion. The prediction results are shown in Figure 17 and
the decline in the loss function during network training is shown in Figure 18. The second
model added shallow image information fused with time series data. The prediction results
are shown in Figure 19 and the loss function decline diagram during network training is
shown in Figure 20. The prediction results of the model fused with the deep and shallow
image information are shown in Figure 21 and the decline in the loss function when training
the network is shown in Figure 22.

It can be seen from Table 2 that the prediction model of multi-source data fusion
proposed in this paper achieved good results and fast convergence speed. Compared with
the method using only time series data and shallow features, the model fusing time series
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data, deep and shallow features obtains more process information and rich features at
different scales, and the prediction effect is improved to some extent.

Figures 10 and 14 show that the correlation of the extracted deep and shallow features
is similar to that of the time series data, which has some significance for the prediction
model.

Compared with the industrial process time series data model without introducing
images, the MSE of the deep and shallow image information model proposed in this paper
decreases by about 29% and the hit rate increases from 86.5% to 93.1%. Compared with
the temporal data fusion shallow feature model, the MSE of the fusion deep and shallow
image information model proposed in this paper decreases by about 24% and the hit rate
increases from 89.8% to 93.1%. The actual industrial application verifies the effectiveness of
the multi-source data fusion method proposed in this paper.

Table 2. Evaluation index of prediction value of different methods.

Methods MSE MAE HR

Time series data 0.0082 0.072 0.865
Time series data + shallow feature fusion 0.0076 0.069 0.898

Time series data + Deep and shallow feature fusion (ours) 0.0058 0.061 0.931

Figure 17. Plot of prediction results using time series data for industrial processes only.

Figure 18. Plot of the loss function of the time series data model during network training.
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Figure 19. Plot of prediction results using time series data and shallow feature fusion model for
industrial processes.

Figure 20. Plot of the loss function of time series data and shallow feature fusion model during
network training.

Figure 21. Plot of prediction results using time series data, shallow feature and deep feature fusion
model for industrial processes.
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Figure 22. Plot of the loss function of time series data, shallow feature and deep feature fusion model
during network training.

5. Conclusions

This paper presents a method to detect FeO content in sinter based on multi-source
information fusion. The method first collects video data of the red layer at the end of
the sintering machine through an industrial camera. Secondly, the keyframe extraction
algorithm based on feature height and the shallow feature construction method based on
sinter layering are designed according to the actual process. Then, deep features of sinter
tail red layer images are extracted from keyframes by ResNet model. Finally, combined
with the process parameters of the production process, an online real-time prediction model
of FeO content in sinter is established through the LSTM network.

The model solves the problems of poor time efficiency and high cost of existing
technologies by extracting multi-scale information from industrial camera video data and
integrating the process parameters. It has practical significance for the guidance of the
sinter production process and provides technical support for energy conservation, emission
reduction, and quality and efficiency improvement of iron and steel enterprises. There are
also quality variables in the sintering process that are relevant to the images of the faults,
such as the total iron content, tumbler index, etc. This method can be extended to other
variable predictions as long as suitable image labeled data are available. However, the
new system requires labeled data before deployment, high quality image labeled data have
a direct impact on system accuracy. To reduce manual effort and improve deployment
efficiency, a future direction that could be considered is self-supervised learning of images,
thus reducing the workload of expert labeling.
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Abstract: This paper introduces a novel soft sensor modeling method based on BDA-IPSO-LSSVM
designed to address the issue of model failure caused by varying fermentation data distributions resulting
from different operating conditions during the fermentation of different batches of Pichia pastoris.
First, the problem of significant differences in data distribution among different batches of the
fermentation process is addressed by adopting the balanced distribution adaptation (BDA) method
from transfer learning. This method reduces the data distribution differences among batches of
the fermentation process, while the fuzzy set concept is employed to improve the BDA method by
transforming the classification problem into a regression prediction problem for the fermentation
process. Second, the soft sensor model for the fermentation process is developed using the least
squares support vector machine (LSSVM). The model parameters are optimized by an improved
particle swarm optimization (IPSO) algorithm based on individual differences. Finally, the data
obtained from the Pichia pastoris fermentation experiment are used for simulation, and the developed
soft sensor model is applied to predict the cell concentration and product concentration during the
fermentation process of Pichia pastoris. Simulation results demonstrate that the IPSO algorithm has
good convergence performance and optimization performance compared with other algorithms. The
improved BDA algorithm can make the soft sensor model adapt to different operating conditions,
and the proposed soft sensor method outperforms existing methods, exhibiting higher prediction
accuracy and the ability to accurately predict the fermentation process of Pichia pastoris under different
operating conditions.

Keywords: soft sensor; improved particle swarm algorithm; least squares support vector machine;
transfer learning; Pichia pastoris

1. Introduction

The Pichia pastoris expression system is a eukaryotic expression system that has de-
veloped in the past decade and is one of the most successful foreign protein expression
systems [1]. Compared with other expression systems, Pichia pastoris has significant ad-
vantages in processing, secretion, post-translational modifications, and glycosylation of
expressed products, and has been widely applied [2]. Over 1,000 proteins have been effi-
ciently expressed using the Pichia pastoris expression system. High-density fermentation is
an important strategy for improving foreign protein expression levels in Pichia pastoris [3].
To effectively increase the expression level of secreted foreign proteins in Pichia pastoris,
the fermentation process needs to be dynamically regulated and optimized in real-time
by changing the fermentation environment and cultivation conditions to find the opti-
mal environmental parameters for improving the secretion effect of foreign proteins [4].
However, Pichia pastoris fermentation is a complex, nonlinear, and uncertain process with
multiple variables and time-varying properties [5,6]. Due to the actual process technology
and cost reasons, key biochemical parameters that directly reflect fermentation process
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quality, such as cell concentration and product concentration, cannot be directly measured
online and can only be estimated roughly through offline sampling and analysis [7]. This
not only causes lagging information acquisition but also affects the correct judgment and
decision-making of operators on real-time reaction status, while also limiting the imple-
mentation of optimization and control strategies. Therefore, there is an urgent need to
find a method to achieve optimal estimation and prediction of key biochemical parameters
during Pichia pastoris fermentation processes.

The soft sensor method is an effective solution to the problem of difficult online
measurement of key biochemical parameters in biological fermentation processes. Many
scholars worldwide have conducted in-depth research on soft sensor technology and
achieved a series of results. Shao et al. [8] proposed a semisupervised Gaussian regres-
sion for the ammonia synthesis process, which achieved accurate real-time prediction of
ammonia production concentration with fewer labeled samples. However, the accuracy
parameter in Bayesian regularization needs to be manually predefined, which greatly re-
duces the accuracy of the model. Yuan et al. [9] used a supervised long short-term memory
network to achieve soft sensor modeling of the penicillin fermentation process, which
fully utilized the quality variables in the long short-term memory network and realized
nonlinear dynamic modeling of the penicillin fermentation process with a good prediction
effect. The limitation of this method is that the amount of computation and training time
of the model are greatly increased due to adding the quality variable to each LSTM cell.
Zheng et al. [10] proposed a real-time semisupervised extreme learning machine, which
integrated semisupervised learning and just-in-time learning strategies into the modeling
framework to establish a local prediction model, and fully utilized a large amount of unla-
beled data information to achieve fast and accurate measurement of Mooney viscosity in
the rubber mixing process. Chang et al. [11] proposed a consistent contrastive network to
realize the time awareness and robustness of the soft sensor model, which overcame the
limitations of manifold regularization and fully utilized abnormal data and unlabeled data
information. The effectiveness of the consistent contrastive network was verified in the soft
sensor modeling of ammonia and sulfur removal industrial processes. Fan et al. [12] pro-
posed a soft sensor regression model based on the long short-term memory recurrent neural
network in deep learning using the data obtained by the sensor, by designing the relative
error loss and the normalized L1 loss function using the time step of the sensor to predict
the measured value, to realize the detection of the wafer manufacturing process to reduce
the recall rate of the wafer. The experimental results show that the proposed soft sensor
model can realize various types of inspection and prediction in complex manufacturing
processes. However, the generalization ability of this model is poor, and it can only be used
in the manufacturing process of one working condition. Zhang et al. [13] deeply analyzed
the relevant factors affecting the formation of glutamate, and proposed a soft sensor model
based on fuzzy reasoning based on a support vector machine using the soft sensor method,
and used the particle swarm optimization algorithm to optimize the key parameters to
realize the control of glutamate concentration. The precise prediction of the model is opti-
mized by using the fuzzy reasoning mechanism and the fuzzy basis function to optimize
the kernel function of the support vector machine, which improves the anti-interference
ability and adaptability of the model, whose prediction ability is good. However, the
generalization ability of the model is insufficient, and the calculation process is relatively
complicated, increasing the time cost. Han et al. [14], inspired by the adversarial network,
used the adversarial domain adaptation method to improve the performance of the deep
migration learning model and realize the accurate diagnosis of mechanical failures with
small data volumes in industrial processes. However, this method must have sufficient
target domain data. After the migration is completed, the target domain data in the actual
industrial process are extremely limited, which affects the predictive performance of the
model. Although the soft sensor models established in the above literature achieve accurate
online prediction of key biological parameters, they do not consider the problem of model
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failure and performance degradation caused by the mismatch between modeling data and
real-time data under different operating conditions in biological fermentation processes.

Regarding the abovementioned issue, [15] utilized deep transfer learning strategies
to reduce the differences in data distribution between the source and target domains,
effectively solving the problems of missing data and deterioration of soft sensor model
performance in complex industrial processes. However, this method is only suitable for
transferring from one working condition to another, which will reduce the ability of the
model to fit. Ref. [16] proposed an online transfer learning technique based on slow feature
analysis and variational Bayesian inference to improve the predictive performance of the
target process, solving the problem of online measurement of water content in crude oil
emulsions using steam-assisted gravity drainage technology and greatly improving pro-
duction efficiency. Two weighting functions related to the transformation and emission
equations are introduced and dynamically updated to quantify the transferability from the
source domain to the target domain at each moment. Ref. [17] aims at the problem of online
detection of key variables in industrial processes, proposes a soft sensor model based on
variational mode decomposition, stacked enhanced autoencoder and transfer learning to
achieve high-precision regression prediction, and introduces a transfer learning algorithm
based on the maximum mean deviation in transfer learning to solve the domain under
different operating conditions of the adaptation problem. However, the hyperparameters
of the built model need to be manually selected, which greatly increases the prediction
error of the model. Ref. [18] implements transfer learning by fine-tuning the weights of
the network, freezing inner layers and updating outer layers. The method of transfer
learning proposed in the literature realizes the prediction of complex industrial processes
with small amounts of data. However, the prediction accuracy of this method is poor,
and multiple parameters need to be manually set. Therefore, the application of transfer
learning can effectively solve the dilemma of model failure and performance deterioration
under different operating conditions. In summary, this paper proposes a multioperating
condition transfer learning-based soft sensor modeling method for Pichia pastoris fermenta-
tion. First, to address the issue of significant data distribution differences between batches
in the fermentation process, the BDA method in transfer learning is adopted to reduce
the differences [19], and the fuzzy set concept is introduced to improve the BDA method,
effectively converting the classification problem into a regression prediction problem of
the fermentation process. Then, considering the nonlinearity and small sample character-
istics of the Pichia pastoris fermentation process, the LSSVM is used as the basic model of
the soft sensor process, and the adapted data are used to train the LSSVM model. The
model is then optimized using an IPSO based on psychological mechanisms. Finally, the
adapted target domain data are used to predict the Pichia pastoris cell concentration and
product concentration through the constructed soft sensor model. The experimental results
demonstrate that this soft sensor method is significantly superior to existing methods, has
high prediction accuracy, and can accurately predict the Pichia pastoris fermentation process
under different operating conditions. This paper makes significant contributions to current
research on soft sensors. First, an IPSO algorithm is proposed to optimize the parameters
of LSSVM, which greatly improves prediction accuracy. Compared with GWO and ABC
optimization algorithms, the proposed IPSO algorithm has good dynamic performance
and optimization performance. Second, this paper proposes to use the improved BDA
algorithm in transfer learning to adapt the source domain and target domain to reduce
the differences between different domains, so that the soft sensor model achieves good
performance under multiworking conditions.

2. Methods

2.1. Principle and Solution of Balanced Distribution Adaptation

During the fermentation process of Pichia pastoris, the real-time data and modeling data
distributions between different fermentation batches do not match due to varying operating
conditions [20]. Soft sensor models established based on historical operational data may
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not be applicable to new batches, leading to model degradation and misalignment issues.
Considering that transfer learning can learn useful information from other fermentation
batches to assist in completing tasks for the target fermentation batch and does not require
training and prediction data to conform to the requirement of independent and identically
distributed data [21], it is an effective way to solve the problem of soft sensor modeling
for the fermentation process with multiple operating conditions across different batches.
Transfer learning has been widely used in medical images, industrial processes, and so
on [22,23]. Transfer learning aims to improve the performance of target learners on target
domains by transferring knowledge contained in different but related source domains [24].
Therefore, this article introduces a transfer learning strategy to construct a soft sensor
model for the fermentation process of Pichia pastoris.

Data distribution adaptation is one of the most commonly used feature-based transfer
learning methods [25]. The main idea behind this method is to use some transformations
to bring the distance between data distributions of different domains closer together [26].
Currently, the most commonly used algorithm for this purpose is BDA, which reduces the
joint probability distribution distance between the source and target domains to achieve
transfer learning and improve the applicability and predictive accuracy of traditional soft
sensor models. However, since the traditional BDA method is only suitable for solving
classification problems [27], and soft sensor modeling for the fermentation process of
Pichia pastoris is a regression problem, this article introduces the concept of fuzzy sets [28]
into the BDA method to transform the classification problem into a regression problem and
to achieve soft sensor modeling for the fermentation process of Pichia pastoris.

For a given labeled source domain data Qs = {xsi , ysi}n
i=1 and unlabeled target do-

main data Qt =
{

xtj , ytj

}m

j=1
of the Pichia pastoris fermentation process, assuming the

feature spaces are χs and χt, respectively, and χs = χt, the label spaces are Ys and Yt,
respectively, and Ys = Yt, the marginal distributions are Ps(xs) and Pt(xt), respectively, and
Ps(xs) �= Pt(xt), and the conditional distributions are Ps(ys|xs) and Ps(yt|xt), respectively,
and Ps(ys|xs) �= Ps(yt|xt). The goal of BDA is to complete transfer learning by minimizing
the marginal and conditional distributions between the source and target domains, which
is minimizing the following equation.

DIS(Qs, Qt) ≈ (1 − μ)DIS(P(xs), P(xt)) + μDIS(P(ys|xs), P(yt|xt)) (1)

where μ is the balance factor to adjust the distance between the two distributions, μ ∈ [0, 1].
When μ → 1 , it indicates that data sets are similar, and the conditional distribution has
a greater proportion. When μ → 0 , it indicates that the data sets are dissimilar, and the
marginal distribution has a greater proportion.

Since there are no labels in the target domain Qt, it is impossible to calculate the
conditional probability distribution. Therefore, further training of a preclassifier is necessary
to obtain soft labels ytj .

Let Qc
s = {xi|xi ∈ Qs ∧ yi = c} be the sample set of class c in the source domain s, and

Qc
t = {xi|xi ∈ Qt ∧ yi = c} be the sample set of class c in the target domain t.

Using Maximum Mean Discrepancy (MMD) [29] to measure the distance between
two neighboring domains, Equation (1) can be expressed as:

DIS(Qs, Qt) ≈ (1 − μ)| | 1
n

n

∑
i=1

xsi −
1
m

m

∑
j=1

xtj | |2H + μ
C

∑
c=1

| | 1
nc

∑
xsi∈Qsc

xsi −
1

mc
∑

xtj∈Qtc
xtj | |2H (2)

where H is the Reproducing Kernel Hilbert Space [30], c denotes different class labels,
and c ∈ {1, 2, · · · , C}, n and m represent the number of samples in the source and target
domains, respectively. Qs

c and Qt
c refer to class c samples in the source and target domains,

respectively. nc and mc, respectively, represent the number of samples in Qs
c and Qt

c.
The first term in Equation (2) computes the distance between the marginal probability
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distributions of the source and target domains, and the second term calculates the distance
between the conditional probability distributions.

Considering that the soft sensor problem of Pichia pastoris fermentation process stud-
ied in this paper is a regression problem, while the BDA method is only applicable to
classification problems, this paper introduces the fuzzy set method to improve the BDA
method and make it applicable to regression problems.

In traditional classification problems, a sample can only belong to one class, while
using the fuzzy set method allows a sample to belong to multiple classes to varying
degrees, therefore, for the output

{
yz

i
}

i=1,··· ,n of the z-th source domain, the 5th, 50th, and
95th percentile values are found and denoted as pz

5, pz
50, pz

95. Three fuzzy sets denoted as
smallz, mediumz, largez are defined based on these percentiles, as shown in Figure 1.

  

(a) (b) 

Figure 1. Percentage based fuzzy set division (a) Fuzzy sets in the source domain; (b) Fuzzy sets in
the target domain.

Let the membership degree of yz
i in class p in the source domain be denoted as αz

ip,
and the membership degree of yt

i in class q in the target domain be denoted as αt
iq, and

normalize αz
ip and αt

iq, as shown in Equations (3) and (4):

αz
ip =

αz
ip

n
∑

i=1
αz

ip

p = 1, 2, 3;i = 1, 2, · · · , n (3)

αt
iq =

αt
iq

n
∑

i=1
αt

iq

q = 1, 2, 3;i = 1, 2, · · · , n (4)

Based on Equations (3) and (4), Equation (2) can be represented as:

DIS(Qs, Qt) ≈ (1 − μ)| | 1
n

n

∑
i=1

xsi −
1
m

m

∑
j=1

xtj | |2H + μ
3

∑
c=1

| | ∑
xsi∈Ds(c)

αz
icxsi − ∑

xtj∈Dt(c)

αt
icxtj | |2H (5)

Using matrix techniques, Equation (5) can be written in the following form:

DIS(Qs, Qt) ≈ ATX(1 − μ)M0XT A + ATXμ
3
∑

c=1
McXT A

= ATX[(1 − μ)M0 + μMR]XT A
(6)
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where MR = M1 + M2 + M3, M1, M2 and M3 are matrices for maximum mean discrepancy,
defined as follows:

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

αz
icαz

jc xi, xj ∈ Qc
s

αt
icαt

jc xi, xj ∈ Qc
t

−αz
icαz

jc xi ∈ Qc
s, xj ∈ Qc

t

−αt
icαt

jc xi ∈ Qc
s, xj ∈ Qc

t

0 other

(7)

The calculation formula of M0 is as follows:

(M0)ij =

⎧⎪⎨⎪⎩
1

n2 xi, xj ∈ Qs
1

m2 xi, xj ∈ Qt
−1
mn other

(8)

The objective function Equation (2) can be represented as:

min tr(ATX[(1 − μ)M0 + μMR]XT A) + λ| |A| |2F
s.t. ATXHXT A = I, 0 ≤ μ ≤ 1

(9)

where λ is the regularization parameter, A is the transformation matrix, X is the input
matrix composed of xsi and xtj , ||•||2F is the Hilbert-Schmidt norm, I is the identity matrix,

I ∈ R(n+m)∗(n+m), and H = I − (1/n)E, E is the identity matrix. By using the Lagrange
multiplier method, the Lagrange function for Equation (9) is:

L = tr(ATX[(1 − μ)M0 + μMR]XT A) + λ| |A| |2F + tr([I − ATXHXT A]φ) (10)

where the Lagrange multiplier φ = (φ1, φ2, · · · , φd), set derivative ∂L/∂A = 0, then the
optimization problem can be transformed into a generalized eigenvalue decomposition
problem, which can be expressed as:

(X[(1 − μ)M0 + μMR]XT + λI)A = XHXT Aφ (11)

The optimal transformation matrix A can be obtained by solving Equation (11).
By using the optimal transformation matrix A, the distributions of the source domain

data and the target domain data can be adapted, thereby improving the applicability and
prediction accuracy of the soft sensor model.

2.2. Improving Particle Swarm—Least Squares Support Vector Machine Algorithm
2.2.1. Least Squares Support Vector Machine

The key biochemical parameters reflecting the real-time fermentation status and
fermentation quality of Pichia pastoris (such as cell concentration and product concentration)
are currently mainly obtained through offline sampling and laboratory analysis methods.
However, this method is cumbersome and leads to long intervals between data collection
for the same batch of fermentation, resulting in a limited number of actual collected data
samples. In addition, the fermentation process has strong nonlinear characteristics. In
light of the favorable performance of LSSVM in solving small sample, nonlinear, and
high-dimensional regression tasks [31] and its fast solution speed and robust fitting ability,
this paper applied LSSVM to soft sensor modeling of Pichia pastoris fermentation.

Suykens et al. [32] proposed the least LSSVM as a variant of the support vector machine
(SVM). This method greatly reduces the complexity of the algorithm by using the sum of
squared errors as the loss function. Given a dataset {xi, yi}l

i=1 with the input data xi ∈ Rn

182



Sensors 2023, 23, 6014

and the output data yi ∈ Rn, the optimization objective of LSSVM can be represented
as follows:

min
ω,e

J(ω, e) =
1
2

ωTω +
γ

2

l

∑
i=1

e2
i (12)

Subject to:
yi[ω

T ϕ(xi) + b] = 1 − ei i = 1, 2, · · · , l (13)

where ω represents the weight vector, ϕ(i) is a nonlinear function that maps the data to
a high-dimensional space, γ is the regularization parameter, ei is the error introduced by
the samples, and b is the constant bias. The optimization objective can be converted into a
dual variable optimization problem using the Lagrange duality, which can be expressed
as follows:

L(ω, b, e, α) = J(ω, e)− l
∑

i=1
αi(ω

T ϕ(xi) + b + ei − yi)

= 1
2 ωTω + γ

2

l
∑

i=1
e2

i −
l

∑
i=1

αi
{
[ωT ϕ(xi) + b] + ei − yi

} (14)

where αi is the Lagrange multiplier for the i-th constraint, according to the Karush–Kuhn–
Tucker (KKT) conditions:

∂L
∂ω = 0 → l

∑
i=1

αi ϕ(xi) = ω

∂L
∂b = 0 → − l

∑
i=1

αiyi = 0

∂L
∂ei

= 0 → αi = γei
∂L
∂αi

= 0 → ωT ϕ(xi) + b + ei − yi = 0

(15)

After eliminating ω, e, Equation (16) is obtained as follows:[
0 ET

E Ω + γ−1 Il

][
b
α

]
=

[
0
y

]
(16)

where E = [1, . . . , 1]T , Il is an l × l identity matrix, α = [α1, . . . , αl ]
T , and Ω is the kernel

matrix, Ω ∈ RN×N , and Ωij = ϕ(xi)
T ϕ(xj) = K(xi, xj) for a given RBF kernel function:

K(xi, xj) = exp(
−∥∥(xi − xj)

∥∥2

2σ2 ) (17)

Thus, the objective function can be derived as follows:

f (x) =
l

∑
i=1

αiK(x, xi) + b (18)

where α, b are the solutions to Equation (16).
The predictive performance of LSSVM mainly depends on the regularization parame-

ter γ and the kernel width σ, where γ balances the trade-off between fitting accuracy and
model generalization ability, and σ affects the complexity of the distribution of the sample
data in the mapped space. Traditional methods for parameter selection are often based
on experience and trial, which may not guarantee regression accuracy and computational
efficiency. To improve the LSSVM model, the IPSO algorithm is used to optimize the
parameters (σ, γ) of LSSVM.

2.2.2. Improved Particle Swarm Optimization

Particle swarm optimization (PSO) is an evolutionary algorithm used to solve global
optimization problems [33]. However, PSO has certain limitations such as a lack of dynamic
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adaptability, which can result in local optima trapping and slow convergence speed [34].
Researchers have proposed improved PSO algorithms to address these limitations, includ-
ing dynamic PSO and adaptive PSO [35]. These algorithms have shown promising results
in enhancing PSO’s performance.

Yang Ge et al. [36] introduced a psychological model into PSO and proposed Emotional
PSO (EPSO) to enhance the search ability of particles and accelerate the convergence speed
of PSO. However, the algorithm lacks dynamic adaptability and is prone to getting trapped
in local optima [37]. Therefore, this paper proposes an improved PSO algorithm based
on EPSO to optimize the regularization parameter and kernel width of the LSSVM. The
improved PSO algorithm is expected to overcome the limitations of EPSO and enhance the
performance of PSO in solving optimization problems.

Assuming that each particle possesses emotional states and perception abilities, the
Weber–Fechner law [38] has been utilized to enhance the performance of PSO. Specifically,
particles utilize their emotional states to determine their next actions, and they can perceive
stimuli by evaluating the difference between their current position and the historical best
position. When the stimulus exceeds the perception threshold, the particle’s emotional state
changes, resulting in a stronger response to the stimulus. Three emotional states have been
defined for the particles, namely happy, normal, and sad, which correspond to different
particle reactions. The emotional state of each particle is updated in each iteration. If the
particle’s fitness is higher than that of the previous iteration, its emotional state increases;
otherwise, its emotional state decreases. The emotional state of the i-th particle in the t-th
iteration is represented by eXt

i , and its initial emotional state is a random number. The
formula for eX0

i can be expressed as:

eX0
i = rand[−0.1, 0.1] (19)

The emotional state of the particle is adjusted according to its fitness. If the particle’s
fitness is better than the previous iteration, its emotional state increases; otherwise, its emo-
tional state decreases. The increase and decrease of emotional state can be represented as:

Δ+ =
( f (Xt−1

i )− f (Xt
i )) · ( f (Xt

i )− f (gbt))

( f (gωt)− f (gbt))2 (20)

Δ− =
( f (Xt

i )− f (Xt−1
i )) · ( f (gωt)− f (Xt

i ))

( f (gωt)− f (gbt))2 (21)

where Xt
i represents the position of the i-th particle during the t-th iteration, gbt represents

the global best position at the t-th iteration, and gωt represents the global worst position at
the t-th iteration.

Regarding particle swarm pX = {pXi; i = 1, 2, · · · , n}, its emotional state is sorted,
and all particles are divided into three different emotional states based on the average value
of their emotional state, as shown in Figure 2.

Figure 2. Particle swarm emotional state eX sorting.
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Subsequently, the particle’s behavior is determined based on its emotional state. The
Weber–Fechner law is employed to describe the particle’s perception ability, which can be
expressed as:

rg = −k ln
S( f (gBest)− f (pXi))

S0
(22)

rh = −k ln
S( f (pBesti)− f (pXi))

S0
(23)

where rg represents global perception, rh represents historical perception, k is a constant
factor, S(·) is the stimulus function, S0 is the stimulus threshold, gBest is the historical
best position of the particle swarm, and pBesti is the historical position of the i-th particle.
According to the paper [35], the velocity and position update formulas for a particle in a
normal emotional state are:

Vt+1
i = ξ · Vt

i + c1 · r1 · (pBestt
i − pXt

i ) + c2 · r2 · (gBestt − pXt
i ) (24)

pXt
i = pXt−1

i + Vt
i (25)

When the particle is in the happy state, it will be more energetic in the current position.
The update formula of the particle speed and position in the happy state is:

Vt+1
i = ξ · Vt

i + c1 · r1 · rg · (pBestt
i − Xt

i ) + c2 · r2 · rh · (gBestt − Xt
i ) (26)

pXt
i = pXt−1

i + Vt
i (27)

When a particle is in a sad emotional state, it primarily focuses on its historical best
position and contracts towards it from its current position. However, due to the decreasing
fitness over iterations, the particle may become trapped in a local optimum. Based on the
psychological model, a particle in a sad emotional state is on the verge of collapse and
requires assistance from particles with better emotional states in the swarm to improve its
condition. To address this issue, this paper proposes a restart strategy for updating the
velocity of sad particles. The restart strategy is as follows:

Vt
i = c1 · (u − l) · rand[−1, 1] (28)

where c1 is a constant, u represents the upper limit of the particle search range, l represents
the lower limit of the particle search range, and rand [−1, 1] denotes a random number
within the range of [−1, 1]. To maintain both convergence performance and diversity in
the particle swarm, a combination of random initialization and the global best position is
employed for updating the position of sad particles, which can be expressed as follows:

pXt
i =

{
gbt−1 r < 0.5
l + (u − l) · rand[−1, 1] r ≥ 0.5

(29)

The IPSO algorithm workflow is illustrated in Figure 3.
According to the analysis presented above, the improved PSO algorithm that utilizes

the psychological mechanism demonstrates desirable dynamic and convergence perfor-
mance, as well as enhanced search ability of particles when compared to traditional PSO
algorithms. As a result, this study employed the improved PSO algorithm based on the
psychological mechanism to optimize the key parameters (γ, σ) of the LSSVM.
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Figure 3. The framework of the IPSO algorithm.

2.3. Soft Sensor Modeling Based on BDA-IPSO-LSSVM

In this study, a soft sensor modeling strategy based on BDA-IPSO-LSSVM is proposed
to address the issue of soft sensor model failure caused by the mismatch between training
data and actual operating condition data in the fermentation process of Pichia pastoris.
The proposed strategy utilizes the idea of transfer learning and employs the improved
BDA method to match the training data and operating condition data, thereby enhancing
the generalization ability and prediction accuracy of the established soft sensor model.
Additionally, an improved PSO algorithm is proposed to optimize the established LSSVM-
based soft sensor model and overcome the problem of arbitrary local optima in the PSO
algorithm. To illustrate the proposed soft sensor modeling strategy based on BDA-IPSO-
LSSVM, Figure 4 is provided, which presents a graphical representation of the strategy.

2.4. Introduction of the Pichia pastoris Experimental Work

The focus of this study is on Pichia pastoris, and Pichia pastoris GS115, MutsHis+
strain was selected as the strain. The RTY-C-100L fermenter was used as the fermentation
equipment. The input variables for the soft sensor model were chosen based on the analysis
of the fermentation process of Pichia pastoris using the absolute relation degree method. The
stirring speed v, temperature T, airflow q, pH of the fermentation liquid, dissolved oxygen
Do, and fermenter pressure p were selected as input variables, and the concentrations of
production P and cell concentration C were selected as output variables. The fermentation
process is shown in Figure 5.
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Figure 5. Structure of Pichia pastoris fermentation process.

The specific steps for modeling the Pichia pastoris fermentation soft sensor model based
on BDA method are as follows, where the source domain data and the target domain data
are represented by Qs = {xsi , ysi}n

i=1 and Qt =
{

xtl , ytl

}m
l=1, respectively:

Step 1: Carry out Pichia pastoris fermentation experiments, build the datasets, and nor-
malize the dataset.
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Step 2: Establish the IPSO-LSSVM model: the first step is to determine the parameters
of the LSSVM model, including regularization parameter γ and kernel width σ.
IPSO-LSSVM is an optimization method based on the improved particle swarm
algorithm, which automatically selects the optimal model parameters. The IPSO-
LSSVM uses the IPSO algorithm proposed in this paper to automatically obtain
regularization parameter γ and kernel width σ.

Step 3: Train the IPSO-LSSVM model using labeled source domain data Qs = {xsi , ysi}n
i=1:

labeled source domain data can be used to train the initial IPSO-LSSVM model,
which can serve as the starting point for the iterative process, helping to improve
the subsequent optimization results.

Step 4: Obtain soft label y f for target domain data xt by iteratively inputting unlabeled
data into the IPSO-LSSVM model: Since the target domain data are unlabeled, the
unlabeled target domain data xt are input into the IPSO-LSSVM model obtained
in step 3 to generate predicted values yt, which are then used as soft labels. The
soft labels y f are then combined with the target domain data xt.

Step 5: Compute the transformation matrix A using the source domain data, target do-
main data, and soft labels as inputs for the improved BDA algorithm: the im-
proved BDA algorithm utilizes the source domain data Qs, target domain data
xt, and target domain data soft labels y f to compute a transformation matrix A
that matches the source domain data and the target domain data, facilitating the
transfer of knowledge from the source domain to the target domain.

Step 6: Input the matched source domain
{

ATxs, ys
}

and target domain
{

ATxt
}

into
the IPSO-LSSVM model to obtain the actual predicted key parameters yt in the
fermentation process of Pichia pastoris.

The specific steps of the Pichia pastoris fermentation experiment are as follows:

1. The fermentation system was sterilized and the bacterial strain was cultured according
to the requirements of the Pichia pastoris fermentation process. The medium was
sterilized at 130 ◦C for 30 min, and the bacterial strain was inoculated by flame when
the temperature dropped to 30 ◦C. The initial fermentation conditions were set: initial
tank pressure control at 0.02~0.05 MPa; pH control at 5.0; temperature control at 28 ◦C;
speed set at 300~400 rpm; and airflow velocity control at 150~300 L/M.

2. We selected the stirring speed v, temperature T, airflow q, pH of the fermentation
liquid, dissolved oxygen Do, and fermenter pressure P as auxiliary variables by the
absolute relation degree method. All auxiliary variables were transmitted to the
database through the distributed control system. The auxiliary variables in this
experiment were sampled every 0.5 h.

3. We selected different batches of Pichia pastoris fermentation data as data samples. Since
the fermentation cycle of Pichia pastoris is 90 h, each batch contained 180 data samples.
We used auxiliary variables as input variables, cell density and product concentration
as output variables, and input the data into the established Pichia pastoris fermentation
soft sensor model to complete the establishment of the soft sensor model of the
Pichia pastoris fermentation process and realize real-time prediction of key biological
parameters. The root mean square error (RMSE), coefficient of determination (R2),
and mean absolute error (MAE) and floating point operations (GFLOPs) were used as
performance evaluation indicators for the soft sensor model. The calculation formulas
are as follows:

RMSE =

√
1
n

n

∑
i=1

(y(i)pre − ŷ(i)real)
2

(30)

R2 = 1 −

n
∑

i=1
(y(i)pre − y(i)real)

2

n
∑

i=1
(y(i)real − ŷreal)

2 (31)
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MAE =
1
n

n

∑
i=0

|y(i)pre − y(i)real | (32)

3. Result and Discussion

3.1. Result

To better demonstrate the effectiveness of the proposed method in this article, simula-
tions were conducted for the LSSVM soft sensor model, the PSO-LSSVM soft sensor model,
the IPSO-LSSVM soft sensor model, and the BDA-IPSO-LSSVM soft sensor model, respec-
tively, to achieve real-time prediction of cell concentration C and product concentration
P of Pichia pastoris. The simulation results for cell concentration C are shown in Figure 6,
where Figure 6a represents the simulation result for LSSVM, using the RBF function as the
kernel function, the regularization parameter set to 125, and the RBF kernel width set to
10. PSO and IPSO were introduced to optimize the LSSVM model, with the regularization
parameter lower bound set to zero, the upper bound set to 300, the initialization set to
100, the kernel width lower bound set to zero, the upper bound set to 50, the particle
swarm size set to 100, and c1 set to 0.35, when the number of iterations reaches 200 or
the global optimal position is less than 110, it is used as the termination condition of the
IPSO algorithm. Finally, the IPSO algorithm was used to obtain the optimized LSSVM
regularization parameter of 132.4 and kernel width of 16.4, resulting in the simulation
results shown in Figure 6b,c, respectively. The “actual value” in the figures represents
the real value measured during the fermentation experiment of Pichia pastoris. In order
to further illustrate the effectiveness of the proposed IPSO algorithm, Figure 7 shows the
fitness curves of the PSO algorithm and the IPSO algorithm. It can be seen that the fitness
of the IPSO algorithm is significantly better than that of the PSO algorithm. To further
demonstrate the favorable convergence performance and optimization capability of the
IPSO algorithm, a comparative analysis was conducted by the IPSO with two classical
optimization algorithms, namely Grey Wolf Optimization [39] (GWO) and Artificial Bee
Colony [40] (ABC), under identical input conditions. Figure 7 presents the fitness curves
of the IPSO, PSO, GWO, and ABC optimization algorithms. It is evident that the IPSO
algorithm exhibits a significantly accelerated optimization speed in comparison to the other
algorithms. Concerning the prediction results for the cell concentration of Pichia pastoris,
Figure 8 shows the prediction result of the IPSO-LSSVM, WOLF-LSSVM and ABC-LSSVM.
The figure distinctly illustrates that IPSO-LSSVM produces markedly smaller prediction er-
rors compared to the other two algorithms. The results provide substantial evidence that the
IPSO algorithm demonstrates pronounced superiority in terms of parameter optimization
effectiveness, surpassing both GWO and ABC algorithms.

The improved BDA algorithm was used to further improve the prediction accuracy
by adapting the source domain data and target domain data. In the BDA algorithm, the
balancing factor μ approaches one as the conditional probability distribution becomes
more important and approaches zero as the marginal probability distribution becomes
more important. In this simulation, the balancing factor was set to 0.62 to achieve optimal
prediction performance. The final simulation result for the BDA-IPSO-LSSVM soft sensor
model is shown in Figure 6d.

By comparing Figure 6a,b, it can be observed that the PSO algorithm can enhance the
prediction accuracy of the LSSVM model. However, the prediction effect of the LSSVM
model is not ideal and cannot meet the needs of the fermentation industry, significant errors
remain present in the model by comparing the predicted value with the actual value. A
further comparison of Figure 6b,c indicates that the IPSO algorithm can effectively enhance
the prediction accuracy of the model by improving the dynamic performance of the PSO
algorithm, and the IPSO algorithm reduces the prediction error of the model. The result
presented in Figure 6d demonstrates that the proposed IBDA algorithm is effective in
reducing the distribution distance between the source domain and the target domain and
makes the predicted value of the model meet the actual fermentation production needs.
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It can be seen that the proposed BDA-IPSO-LSSVM model has good prediction accuracy
in Figure 6e.

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 6. Prediction results of different models for cell concentration: (a) LSSVM; (b) PSO-LSSVM;
(c) IPSO-LSSVM; (d) BDA-IPSO-LSSVM; (e) Combination of the four models.
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Figure 7. The fitness curve of the IPSO, PSO, WOLF and ABC optimization algorithms.

Figure 8. The prediction result of the IPSO-LSSVM, WOLF-LSSVM and ABC-LSSVM.

Figure 9 shows the residuals of the different soft sensor models in predicting the cell
concentration of Pichia pastoris. The prediction performance of the soft sensor models is
shown in Table 1. It can be intuitively seen in Figure 8 and Table 1 that the BDA-IPSO-
LSSVM residual is relatively small compared to other models, and it performs well in the
RMSE, R2, and MAE performance metrics. GFLOPs reflects the complexity of the model.
From the value of GFLOPs of each model in Table 1, it can be seen that the proposed hybrid
model does not increase the complexity of the model.

Figure 9. The residuals of the different soft sensor models in predicting the cell concentration of
Pichia pastoris.

To further illustrate the effectiveness of the proposed BDA-IPSO-LSSVM model, sim-
ilar to Figure 6, Figure 10 illustrates the predicted values of the Pichia pastoris product
concentration. Specifically, Figure 10 presents the results of the four different soft sensor
models, while Figure 10a–d show the prediction results of the LSSVM model, PSO-LSSVM
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model, IPSO-LSSVM model, and BDA-IPSO-LSSVM model for product concentration
during the fermentation process of Pichia pastoris. As evidenced by Figure 10e, the BDA-
IPSO-LSSVM model proposed in this paper exhibits strong predictive performance in
regard to the key parameters during the fermentation process of Pichia pastoris. Figure 11
displays the residuals of the different soft sensor models, and Table 2 presents the perfor-
mance metrics of the prediction results. By means of comparison, it can be concluded that
the proposed BDA-IPSO-LSSVM soft sensor model exhibits superior prediction accuracy
compared to the other models.

Table 1. Prediction performance indexes of different soft sensor models in predicting cell concentration.

RMSE R2 MAE GFLOPs

LSSVM 2.3356 0.9425 2.1929 0.0014
PSO-LSSVM 2.1830 0.9572 1.9425 0.0016
IPSO-LSSVM 1.5902 0.9779 1.4154 0.0016

BDA-IPSO-LSSVM 1.0485 0.9912 0.8554 0.0016

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 10. Prediction results of different models for product concentration: (a) LSSVM; (b) PSO-
LSSVM; (c) IPSO-LSSVM; (d) BDA-IPSO-LSSVM; (e) Combination of the four models.
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Figure 11. The residuals of the different soft sensor models in predicting the product concentration of
Pichia pastoris.

Table 2. Prediction performance indexes of different soft sensor models in predicting product
concentration.

RMSE R2 MAE FLOPs

LSSVM 0.1397 0.9773 0.1046 0.0013
PSO-LSSVM 0.0973 0.9890 0.0887 0.0015
IPSO-LSSVM 0.0569 0.9962 0.0508 0.0015

BDA-IPSO-LSSVM 0.0368 0.9984 0.0322 0.0015

3.2. Discussion

This paper proposes a soft sensor model of Pichia pastoris based on LSSVM. Through
Figures 6 and 10, it can be seen that the proposed soft sensor model has good predictive
performance and can better realize the real-time monitoring of the fermentation process
of Pichia pastoris. This paper first proposes an IPSO algorithm to optimize the parameters
of LLSVM to achieve good prediction performance of LSSVM. Figures 7 and 8 show that
compared with the GWO and ABC optimization algorithms, the IPSO algorithm proposed
in this paper has good dynamic performance and convergence performance: it better solves
the optimization problem of LSSVM parameters and realizes an accurate prediction of the
LSSVM model. Second, this paper uses the BDA method in transfer learning to match the
source domain data and target domain data, and realizes the accurate prediction of the
Pichia pastoris soft sensor model under different working conditions. In Figures 9 and 11, it
can be seen that, compared with the model without transfer, the proposed hybrid model
reduces the prediction error of the model to a large extent and solves the problem of model
failure under different working conditions. It can be seen from Tables 1 and 2 that the
hybrid model proposed in this paper has good performance in various evaluation indicators.
Moreover, the simulation results show that the hybrid model proposed in this paper has
good predictive performance and can realize the real-time and accurate prediction of the
cell concentration and product concentration in the fermentation process of Pichia pastoris,
which greatly improves the production efficiency of Pichia pastoris fermentation products.

4. Conclusions

This study has proposed a novel soft sensor modeling strategy based on BDA-IPSO-
LSSVM to address the issue of data distribution differences resulting from different operat-
ing conditions during the fermentation process of Pichia pastoris. The proposed strategy
employs the BDA method and a fuzzy set-based improvement to reduce the distribution
differences and improve the generalization ability of the traditional soft sensor model.
Additionally, an improved PSO algorithm is proposed to optimize the established LSSVM-
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based soft sensor model, which addresses the issue of PSO algorithms becoming trapped
in local optima and results in a significant improvement in the prediction accuracy of the
soft sensor model. The experimental results demonstrate that the proposed BDA-IPSO-
LSSVM soft sensor model exhibits strong performance in terms of the RMSE, R2, and MAE
prediction performance indicators. The soft sensor model can effectively predict the key
parameters of Pichia pastoris fermentation in real-time, including cell concentration and
product concentration. The proposed strategy offers a promising solution to the issue of soft
sensor model failure caused by the mismatch between training data and actual operating
condition data and has potential applications in the fermentation industry. Future studies
may explore the generalization of the proposed strategy to other fermentation processes
or even other fields. The main limitation at present is that only one source domain and
one target domain can be adapted, and the IPSO can be optimized for a single objective.
In the future, we aim to research the transfer learning from the data of multiple historical
operating conditions to further reduce the difference between data, and generalization of
IPSO to multiobjective optimization problems.
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Abbreviations

BDA balanced distribution adaptation
LSSVM least squares support vector machine
IPSO improved particle swarm optimization
LSTM Long Short Term Memory
GWO Grey Wolf Optimization
ABC Artificial Bee Colony
MMD Maximum Mean Discrepancy
H Reproducing Kernel Hilbert Space
KKT Karush–Kuhn–Tucker
PSO Particle Swarm Optimization
EPSO Emotional Particle Swarm Optimization
RMSE Root Mean Square Error
R2 R-Square
FLOPs Floating Point Operations
MAE Mean Absolute Error

Nomenclature

Qs the source domain data
xsi i-th input source domain data
ysi i-th output source domain data
n the amount of data in the source domain
Qt target domain data
xtj j-th input source domain data
ytj j-th output source domain data
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m the amount of data in the target domain
χs the source domain future space
χt the target domain future space
γs the source domain label space
γt the target domain label space
Ps(xs) the source domain marginal distribution
Pt(xt) the target domain marginal distribution
Ps(ys|xs) the source domain conditional distribution
Pt(yt|xt) the target domain conditional distribution
μ the balance factor
Qc

s the sample set of class c in the source domain
Qc

t the sample set of class c in the target domain
C the number of classes
c the c-th classes
nc the number of samples in Qs

c

mc the number of samples in Qt
c

yz
i the z-th source domain i-th data

Pz
5 the z-th source domain 5-th percentile values

Pz
50 the z-th source domain 50-th percentile values

Pz
95 the z-th source domain 95-th percentile values

αz
ip the membership degree of yz

i in class p in the source domain
αt

iq the membership degree of yt
i in class q in the target domain

Mc the matrices for maximum mean discrepancy
λ the regularization parameter
A the transformation matrix
X the input matrix composed of xsi and xtj

||•||2F the Hilbert–Schmidt norm
E the identity matrix
φ the Lagrange multiplier
ω the weight vector
ϕ(i) a nonlinear function that maps the data to a high-dimensional space
γ the regularization parameter
ei the error introduced by the samples
b the constant bias
L(ω, b, e, α) the LSSVM optimization objective
αi the Lagrange multiplier for the i-th constraint
Il an l∗l identity matrix
Ω the kernel matrix
σ the kernel width
K(xi, xj) the RBF kernel
eXt

i The emotional state of the i-th particle in the t-th iteration
Δ+ the increase of emotional state
Δ− the increase of emotional state
Xt

i the position of the i-th particle during the t-th iteration
gbt the global best position at the t-th iteration
gωt the lobal worst position at the t-th iteration
pX the particle swarm
pXi the i-th particle position
rg the global perception
rh The historical perception
k a constant factor
S(·) the stimulus function
S0 the stimulus threshold
gBest the historical best position of the particle swarm
pBesti the historical position of the i-th particle
μ the upper limit of the particle search range
l the lower limit of the particle search range
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v The stirring speed
T temperature
q airflow
Do dissolved oxygen
C cell concentration
p fermenter pressure
P the concentrations of production

y(i)pre the model i-th prediction data

y(i)real
i-th real data
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Abstract: This paper presents a comprehensive study on the development of models and soft sensors
required for the implementation of the automated bioreactor feeding of Chinese hamster ovary (CHO)
cells using Raman spectroscopy and chemometric methods. This study integrates various methods,
such as partial least squares regression and variable importance in projection and competitive
adaptive reweighted sampling, and highlights their effectiveness in overcoming challenges such as
high dimensionality, multicollinearity and outlier detection in Raman spectra. This paper emphasizes
the importance of data preprocessing and the relationship between independent and dependent
variables in model construction. It also describes the development of a simulation environment
whose core is a model of CHO cell kinetics. The latter allows the development of advanced control
algorithms for nutrient dosing and the observation of the effects of different parameters on the growth
and productivity of CHO cells. All developed models were validated and demonstrated to have a
high robustness and predictive accuracy, which were reflected in a 40% reduction in the root mean
square error compared to established methods. The results of this study provide valuable insights
into the practical application of these methods in the field of monitoring and automated cell feeding
and make an important contribution to the further development of process analytical technology in
the bioprocess industry.

Keywords: spectroscopy; Raman; modelling; soft sensor; variable selection; outliers; simulator;
kinetic model

1. Introduction

Chemometrics, which deals with the application of various mathematical and statisti-
cal methods, could be described by a broad definition in which the most important part
is the application of a multivariate data analysis to data relevant to chemistry [1]. The
multivariate statistical data analysis is a powerful tool for analysing and structuring data
sets obtained from different measurement systems and for building empirical mathematical
models that can predict, for example, the values of important properties that cannot be
measured directly [2,3]. Multivariate calibration is often used in the industry for the rapid
online determination of important process parameters and critical quality characteristics
and enables non-destructive measurements, online monitoring and process control.

In analytical chemistry, molecular spectroscopic methods, including infrared, near-
infrared and Raman spectroscopy, are widely used to determine the molecular structure of
various substances [4–6]. These methods work by assessing the radiant energy that is either
absorbed or scattered when excited by a high intensity monochromatic beam that induces
a transient energy state in the molecule. The process of Raman scattering occurs when the
material under investigation is exposed to monochromatic light, causing a tiny percentage
of the light to be inelastically scattered at wavelengths other than the incident light.

Raman spectroscopy is an optical method that enables the non-destructive investiga-
tion of molecular structures and chemical compositions. However, due to its low intensity,
the study of Raman scattering requires the use of sophisticated instruments [7]. The data
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obtained from spectroscopy contain thousands of wavenumbers (variables) and measure-
ments (observations), which requires multivariate analysis to determine the relationship
between these variables [8,9]. Modern Raman instruments usually use a laser as the illu-
mination source because of its high-intensity monochromatic properties. The wavelength
of this laser can range from the UV (λ = 200 nm) to the near-infrared (λ = 1064 nm),
but for pharmaceutical or biological applications, near-infrared wavelengths (λ = 785 or
λ = 830 nm) are usually preferred to minimise fluorescence interference.

In bioprocess literature, spectroscopic sensors are sometimes referred to as soft sen-
sors [10] because the spectroscopic data are modelled in software programmes that provide
information analogous to that of hardware sensors. It is critical that data analysis models
are used to extract the optimal amount of information from Raman spectra, an area that has
received much attention in research [11]. The complexity and difficulties associated with
interpreting results from Raman and IR spectroscopy can be mitigated by applying various
data mining methods required for a more comprehensive understanding. These methods
must be able to manage large multidimensional data sets while exploring the totality of
spectral information [12].

Chemometric techniques, including the commonly used Partial Least Squares
(PLS) [13,14] method, exploit the transformation capabilities of the principal component
analysis (PCA). In this technique, the attributes of a data set are transformed into uncorre-
lated principal components, which allows a reduction in data dimensions with minimal
loss of information. PCA-based techniques complemented by machine learning methods
such as decision trees [15], Support Vector Machine (SVM) [16] and artificial neural net-
works (ANN) [17,18] allow for an even finer analysis. Additional preprocessing steps can
be implemented, including normalisation and smoothing via k-th order Savitzky–Golay
derivative [19], while model accuracy can be assessed by the standard error of calibration,
factors used and coefficient of determination (R2).

The inherent complexity of spectral data derived from vibrational spectroscopic tech-
niques, including IR, NIR and Raman, has sparked debates on the topic of variable selection
in PLS regression models [20,21]. This complexity arises from the interference caused by
the scattering of diffuse light, instrumental noise and overlapping absorption bands. Given
this complexity, variable selection strategies focus either on single wavelengths (e.g., vari-
able importance in projection [22]) or on informative spectral intervals (such as interval
PLS [23]). These methods help to eliminate superfluous information, a concept intro-
duced by Spiegelman et al. [24]. More recently, the technique of the Competitive Adaptive
Reweighted Sampling (CARS) has proven its effectiveness in processing NIR and RAMAN
spectra [25,26].

Certain Raman spectra obtained from the same sample may differ from the group
due to factors such as instrumental artefacts and variations in the sample. These spectra
are often referred to as unwanted spectra or outliers. Omitting these spectra is considered
crucial before applying multivariate techniques to obtain the desired results.

Raman spectroscopy, known for its precise spectral features that correlate with the
molecular structure of a sample, has demonstrated its strengths in a non-destructive
analysis and its ability to work with aqueous systems. These properties make it particularly
suitable for the study of cell cultures and tissues [27]. It is widely used for the study of
polysaccharides, amino acids, alcohols and metabolites and has secured its position as
an important process analytical technology (PAT) in the bioprocess industry [18,28,29].
The ability of inline Raman spectroscopy to monitor and adjust critical parameters in real
time ensures consistent drug production.

Although mammalian cell cultures are widely used in the pharmaceutical industry
to produce biological products such as antibodies and growth factors, the full potential of
advances in process monitoring and control has not yet been realised [10,27]. Conventional
methods, often based on offline sampling and manual calculations, are still widely used.
In particular, mammalian cells are mainly used for the production of protein therapeutics,
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which account for 60–70% of biopharmaceuticals. These processes usually involve the
delivery of glucose to CHO cells [30–33].

By using non-invasive real-time measurements PAT in conjunction with closed-loop
feedback control, feeding strategies can be optimised to improve yield [29,34,35]. Raman
spectroscopy plays an important role in this, as it enables in-situ measurements and pro-
cess control in real time. In situ Raman measurements, first presented by [36], allow the
simultaneous measurement of total cell density (TCD), viable cell density (VCD) and con-
centrations of glucose, glutamate, lactate and ammonia. This method has proven successful
in monitoring mammalian cell cultures in bioreactors. Several successful examples can be
found in recent literature [18,34,36]. Subsequent studies have extended this application
from developmental scales of 3 to 15 L [27,34] to clinical production scales of 2000 L [37],
demonstrating the scaling potential of this approach.

This manuscript represents a significant advance in the field of bioprocess technology
by providing a comprehensive PLS model construction procedure for Raman spectroscopy
that incorporates data preprocessing and outlier removal, thereby improving the under-
standing and control of bioprocess behaviour. In addition, the development of a simulator
that incorporates CHO cell kinetics is an important contribution to the field. It paves
the way for the development of a model predictive control system for the automated
feeding of CHO cells, revolutionising the way we approach the automation and control
of bioprocesses.

The paper is organized as follows. Sections 2 and 2.1 describe the process of data
acquisition and introduce the process of spectra processing, which is the initial step of data
analysis. Section 2.2 explains the development of the PLS models for soft sensor design
and different methods for variable selection in spectroscopic multivariate calibration. This
subsection also discusses the process of identifying and removing outlier spectra to improve
the robustness and accuracy of the PLS model. Section 3 discusses the CHO cell kinetics
model required to develop an advanced simulation environment. Section 4 presents the
results of the model construction and simulator implementation. Sections 5 and 6 provide
the discussion and concluding remarks.

2. Materials and Methods

2.1. Spectra Processing

The extensive research began with the systematic compilation of measurements and
data obtained from the cultivation of CHO cells in a stainless steel bioreactor. The local
pharmaceutical company, which was in charge of designing the experiment, played an
important role. Our task, on the other hand, was to analyse the collected data, create the
necessary models and establish a suitable simulation environment, which is described in
this paper.

The cultivation of the CHO cells took place in a bioreactor with a volume of 10 L.
To collect measurements (Raman spectra), the probe of a Kaiser RamanRXN2 spectrometer
was inserted into the bioreactor. The RamanRXN2 spectrometer is a sophisticated analytical
device that uses laser light with a wavelength of 532 nm. The resulting Raman spectrum
is collected over a period of at least 30 min, a measure that improves the signal-to-noise
ratio. It is important to note that Raman scattering, which is essentially inelastic photon
scattering, is a rather small fraction compared to its elastic counterpart.

For data storage, a desktop computer with a Windows operating system was used,
which was directly connected to the Raman spectrometer. Four different experiments
were performed to grow the cells in the bioreactor, with each batch lasting about two
weeks. The bioreactor contained CHO-S cell lines. This cell line is a sub-line of the original
CHO-K1, with adaptations for suspension culture. CHO-S cells are commonly used in the
industrial production of therapeutic proteins.

To maintain the optimal environment of the bioreactor, the pH and temperature were
strictly controlled and nutrient dosing (glucose and glutamine) was conducted manually
on a daily basis using reference measurements. A Roche Cedex Bio Analyzer, known
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for its reliability and precision, was used to record these reference measurements daily.
This allowed for the accurate monitoring of parameters such as glucose and glutamine
concentration, viable cell count and others.

The development of useful models depends on appropriate methods, but even more
important is the selection of appropriate data. In our case, the raw data consist of the
Raman spectra shown in Figure 1. For a first experiment, the choice between regression
methods such as principal component regression, partial least squares or an artificial
neural network may not be so important [27]. However, it is important that the selected
independent variables (x-data) have a strong relationship with the dependent variables
(y-data) to be modelled [38]. The choice of method then depends on the type and amount
of data available.

Raman Shift (cm−1)

Figure 1. Spectra obtained with Raman spectroscopy (from four different batches where only spectra,
which are used for training and validation, are shown).

In cases where the x-data for objects represent time series or digitised data from a
continuous spectrum (e.g., Raman spectra, see Figure 1), possible pre-processing strate-
gies could include smoothing or a transition to a first or second derivative. Smoothing
attempts to reduce random noise by eliminating sharp peaks in the spectrum, while dif-
ferencing brings relevant data to light despite noise amplification. The first derivative
achieves alignment of spectra with different absorbance values that are shifted in parallel
by cancelling out an additive baseline. A second derivative removes a constant and linear
baseline. Each object vector, referred to as xi, undergoes separate processes of smoothing
and differentiation.

For both differentiation and smoothing, the Savitzky–Golay method is used. This is
a method widely used in chemistry. This technique, a local polynomial regression using
the method of least linear squares, requires x-values that are both exact and uniformly
distributed. For each point, symbolised as j with value xj, a linear combination is used
to calculate the weighted sum of the neighbouring values. These weights determine
whether smoothing or a derivative calculation is performed. Factors such as the number of
neighbours and the polynomial order determine the strength of the smoothing. Choosing
the right polynomial order is crucial, as incorrectly chosen higher order polynomials could
misinterpret significant Raman bands as mere background. In the Savitzky–Golay method,
a vector component xj is transformed by

x∗j =
1
N

k

∑
h=−k

chxj+h, (1)

where x∗j is the new value (of a smoothed curve or a derivative), N is the normalisation
constant, k is the number of neighbouring values (determining the size of the moving
window) on each side of j and ch are the coefficients, which depend on the degree of the
polynomial used and the objective (smoothing, first or second derivative). For example, if a
second order polynomial is fitted through a window of five points (k = 2), the following
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coefficients c−2, c−1, c0, c1, c2 can be used for smoothing: −3, 12, 17, 12, −3, the first
derivative: −2, −1, 0, 1, 2, and the second derivative: 2, −1, −2, −1, 2 [19]. Figure 2 shows
the Raman spectra to which the Savitzky–Golay filtering was applied.

Raman Shift (cm−1)

Figure 2. Raman spectra to which Savitzky–Golay filtering has been applied.

The process of pre-processing includes both filtering and normalisation, with the
latter playing an important role. The reason for this is that even spectra recorded for the
same material may demonstrate differences due to different recording times or unequal
instrument conditions such as laser power and alignment. These variations can lead to
different intensity values for spectra of the same material.

To compensate for these intensity differences, normalisation comes into play. This
process ensures a maximum similarity of the intensity of a given Raman band of a given
material when the spectra were taken under the same experimental parameters; however,
some conditions are slightly different. Various normalisation methods are explored in the
literature, including min-max normalisation, vector normalisation and Standard Normal
Variate (SNV) normalisation. Of these methods, SNV normalisation is the most commonly
used [39,40]. SNV normalisation works on the basis of the Equation (2), which can be
outlined as follows:

x̂∗j =
x∗j − x̄∗

σ
where σ =

√√√√ 1
N

N

∑
j=1

(x∗j − x̄∗)2 and j = 1, 2, ..., N. (2)

Figure 3 shows the Raman spectra for which SNV normalisation was performed in
addition to Savitzky–Golay filtering.

Raman Shift (cm−1)

Figure 3. Raman spectra to which Savitzky–Golay filtering and SNV normalization are applied.
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2.2. Model Construction

The construction of predictive models for bioprocesses, particularly for the cultivation
of CHO cells in bioreactors, has made significant progress through the application of
chemometric methods to Raman spectroscopic data [38]. These models can predict several
key variables such as the concentrations of glucose, glutamine, lactate and other biochemical
parameters, as well as cell growth metrics such as total cell count (TCC) and viable cell
count (VCC). Raman spectroscopy, a non-invasive, label-free technique, provides detailed
chemical information about the bioprocess by recording the molecular vibrations of the
components. The resulting Raman spectra serve as input data for the prediction model and
provide a comprehensive, high-dimensional data set.

Model construction begins with a calibration phase in which known samples are
analysed using Raman spectroscopy and appropriate laboratory tests. This process gener-
ates a set of reference data that includes Raman spectra and associated concentrations of
glucose, glutamine, lactate and cell counts. Another way to collect reference measurements
is to use a device such as Roche’s Cedex Analyzer. Once the reference data are prepared,
multivariate analysis techniques such as Partial Least Squares Regression (PLSR) are used
to build the predictive model. These methods work by identifying correlation patterns
within the Raman spectra and relating them to the biochemical parameters of interest.

For more complex data sets or non-linear relationships, machine learning techniques
such as Random Forest or SVM can be used. Advanced deep learning techniques such
as Convolutional Neural Networks (CNN) are particularly effective for processing high-
dimensional spectral data, as they can automatically extract meaningful features and
improve prediction accuracy [18]. However, one must be aware that such a method of
creating a model requires a large database, which is not always available.

This approach not only improves our understanding of the bioprocess, but also our
control over it. The real-time predictive capability of the model leads to optimised and
consistent bioproduction outcomes by enabling rapid, data-driven decision-making and
process adjustments, thereby increasing bioprocess performance, reducing costs and im-
proving product quality. The model is continuously refined as more data become available,
improving its predictive power over time.

2.2.1. Partial Least Squares

Partial Least Squares (PLS) is a statistical method that finds a linear regression model
by projecting the predicted variables and the observable variables onto a new space.
The method was first developed by Swedish statistician Herman Wold and has since
been widely used in fields such as chemometrics, neuroimaging, bioinformatics and social
sciences [41,42].

PLS simultaneously accounts for the covariance of both the independent variables
(predictors) and the dependent variables (responses). This approach is advantageous when
dealing with complex, multivariate data sets where the predictors are highly collinear or
where there are more predictors than observations. The method can handle noisy and
missing data, which makes it robust and flexible.

Partial Least Squares (PLS) regression is a multivariate technique that combines fea-
tures of principal component analysis (PCA) and multiple linear regression. Although PCA
is not explicitly used in the PLS method, the concept of extracting principal components or
latent variables is central to both methods. In PCA, the goal is to find a small number of
uncorrelated variables, called principal components, that explain most of the variation in
the data. Each principal component is a linear combination of the original variables and is
orthogonal to all other components. PLS works in a similar way, but instead of trying to
explain as much of the variance in the predictor variables as possible, PLS tries to extract
components that explain as much of the covariance between the predictor and response
variables as possible. Essentially, PLS looks for directions in which the predictors not only
explain a large part of their own variance (as in PCA), but are also highly correlated with
the response. PLS regression can be summarised in the following steps:
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• Standardisation of data: The first step in PLS regression is to standardise the predictor
and response matrices. This ensures that the model is not overly influenced by
variables that have large values or a large range of values.

• Extraction of PLS components: PLS decomposes the predictor and response matrices
into a set of orthogonal components. These are linear combinations of the original
variables that explain the maximum covariance between the predictors and the re-
sponses. The number of PLS components is chosen to optimise the predictive power
of the model.

• Estimation of the PLS model: The PLS regression coefficients are estimated by relating
the PLS components to the responses. These coefficients show the relationship between
the changes in the predictor variables and the changes in the response variables.

• Prediction and validation: The PLS model can then be used to predict responses for
new data. Cross-validation is often used to assess the predictive performance of the
model and to determine the optimal number of PLS components.

In terms of its statistical properties, PLS is a form of regularised regression. Like other
forms of regularisation, it can prevent overfitting by introducing some bias into the model,
but it reduces the variance of the model and thus improves its predictive performance.

PLS has been extended to handle different types of data and different modelling sce-
narios. The most popular versions of PLS include PLS-DA (PLS Discriminant Analysis) [43]
for classification problems and PLS-PM (PLS Path Modelling) [44] for structural equation
modelling. These extensions have made PLS a versatile and powerful tool for multivariate
analysis. When considering the use of PLS, it is important to understand its assumptions
and limitations. Although PLS does not assume that predictors are independent or nor-
mally distributed, it does assume a linear relationship between predictors and responses.
In addition, PLS may not work well with unrelated predictors because it attempts to use
all predictors in the model, which can lead to overfitting. It is recommended to evaluate
the performance of PLS against other multivariate methods such as principal component
regression (PCR) or ridge regression to ensure that it is appropriate for a particular data set
and research question.

The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm is a common method
for calculating PLS components. The goal is to find a set of components (also called latent
vectors) that capture the covariance between the predictors and the responses. The algo-
rithm of the simplified NIPALS method can be summarised in the following five points:

• Initialization:
X ∈ R

n×m, Y ∈ R
n×p, (3)

where X is a predictor matrix and Y is a response matrix.
• Selection of an initial column vector. Typically, the first column of the Y matrix

represents the vector u:
u = Y[:, 1] (4)

• Iteratively compute the weights w and t until convergence:

w =
XTu

uTu
(5)

Normalize the weights:

w =
w

‖w‖ (6)

Compute the score vector:

t = Xw (7)
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Reassign u as:

u = YTt/tTt (8)

The iteration continues until the difference between the new and old score vectors
falls below a certain threshold, indicating convergence.

• Deflate X and Y:
Calculate the outer product of t and p (the loading vector for the X), then subtract it
from X. Do the same for Y with t and q (the loading vector for the Y):

p =
XTt

tTt
, q =

YTt

tTt
(9)

X = X − tpT , Y = Y − tqT (10)

The iterations end when X (or Y) can no longer be deflated or when the number of
extracted latent variables is enough to describe the data according to some criterion.

• Calculate the regression coefficients. Once all the latent vectors are extracted, the
regression coefficients B can be calculated as:

B = W(PTW)−1QT , (11)

where W is the matrix of weight vectors, P is the loading matrix of X.

The Root Mean Square Error of Cross-Validation (RMSECV), which is calculated
during the creation of the PLS model, can be used as a criterion to find the right number of
latent variables and prevent overfitting. For example, Figure 4 shows that in the case of a
PLS model for glucose concentration, the most appropriate number of latent variables is
four, as the RMSECV does not drop drastically after that.

Figure 4. Finding the most appropriate number of latent variables in a PLS model.

2.2.2. Selection of Key Variables

To further improve the PLS models and reduce the possibility of overfitting, the
Variable Importance in Projection (VIP) and Competitive Adaptive Reweighted Sampling—
Partial Least Squares (CARS-PLS) methods were used.

Variable Importance in the Projection is a popular method for assessing the importance
of variables in a Partial Least Squares (PLS) regression model. PLS is a statistical approach
used in predictive modelling where the prediction of a set of dependent variables from a
set of independent variables is conducted through latent variable regression.

The VIP score for a variable is a measure of that variable’s contribution to the model,
taking into account both its contribution to explaining the dependent variable and its
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contribution to explaining the independent variable. A high VIP score indicates that the
variable is highly significant in the model (Figure 5 shows an example of selecting key
variables in a PLS model of glucose concentration). However, the VIP method also has
some disadvantages:

• Overemphasis on highly collinear variables: If variables are highly collinear, the VIP
score can overestimate the importance of those variables and result in a model that
may not be as accurate as possible. This can be problematic in areas where variables
may be highly correlated, such as genomics or metabolomics.

• Unreliable with small data sets: The VIP method can be unreliable with small data
sets because it depends on having enough data to estimate the PLS model accurately.

On the other hand, Competitive Adaptive Reweighted Sampling—Partial Least Squares
is a more recent technique used for variable selection in spectroscopic multivariate cal-
ibration. It has gained considerable attention in the field of chemometrics. CARS-PLS
was developed to overcome two major challenges in the analysis of spectroscopic data:
high dimensionality and multicollinearity. These problems can lead to overfitting of the
model, poor generalisation ability and difficulties in interpretation. The method CARS-PLS
consists of two main stages:

• Competitive Adaptive Reweighted Sampling: This is a Monte Carlo-based sampling
technique that helps identify relevant variables (wavelengths) for building the model.
Initially, CARS assigns equal weights to all variables. Then, a set of subsets of variables
is generated, each subset containing each variable with a probability proportional to
its weight. A PLS model is created for each subset and its performance is evaluated.
Based on the evaluation, the weights of the variables are updated—variables that
frequently contribute to good models are given higher weights, while those that
contribute to poor models are given lower weights. This process is repeated many
times (usually thousands of iterations) until the best subset of variables is found.

• Partial Least Squares (PLS): After identifying the best subset of variables with CARS, a
PLS model is built using only these selected variables (Figure 5). This model is simpler
and less prone to overfitting than a model built with all variables. Moreover, because
only relevant variables are included, the model is often easier to interpret.

0 500 1000 1500 2000 2500 3000 3500

Raman shift (cm )

VIP
CARS

Figure 5. Key variables determined with the methods VIP and CARS for the PLS model of glucose
concentration.

The CARS-PLS method has been used successfully in many areas where spectroscopic
data are used, such as pharmaceutical analysis, food quality control and environmental
monitoring. However, like all methods, it has its limitations and assumptions. It assumes
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that there is a linear relationship between predictors and responses, and it may not work
well if this assumption is not met. In addition, the performance of CARS-PLS may depend
on the initial weights of the variables and the number of Monte Carlo iterations. Therefore,
it is often advisable to make several runs of CARS-PLS with different initial settings and
determine the consensus of the results.

Compared to VIP, CARS offers the following advantages:

• Better handling of collinearity: In contrast to the method VIP, CARS can better handle
the problem of collinearity between variables.

• Simplicity and interpretability: CARS tends to lead to simpler and more interpretable
models, which is of great importance in practical applications.

• Better performance on small data sets: CARS is not as reliant on large data sets as VIP
and is therefore a more reliable method for variable selection on small data sets.

• More robustness: CARS is less prone to overfitting because it focuses on a subset of
particularly relevant variables instead of considering all variables in the model.

• Adaptive: CARS is an adaptive method, able to adjust its selection as more data
becomes available or the nature of the data changes.

2.2.3. Removal of Outlier Spectra

The PLS model can be further improved by searching for spectra representing outliers.
Therefore, a resampling method commonly used in statistics and machine learning was
used, which can also be referred to as Monte Carlo cross-validation or repeated random
sub-sampling validation. The outlier detection method consists of the following five steps:

• Partitioning: first, the original training dataset is randomly partitioned into a training
dataset and a test dataset. For example, the partitioning could be 4:1, i.e., 80% of the
data are used for training and 20% for testing. This partitioning is conducted many
times, which is characteristic of a Monte Carlo approach.

• PLS modelling and prediction: A Partial Least Squares (PLS) regression model is built
using the training data. This model is then used to make predictions for the test subset.

• Error calculation: The prediction errors for each spectrum in the test set are then
calculated. Each spectrum will occur multiple times in different test sets; thus, an
average error and standard deviation can be calculated for each spectrum across
all iterations.

• Identification of outliers: Spectra that consistently produce high prediction errors
(based on their average error or a combination of average error and standard deviation)
can be considered outliers. These outliers represent spectra that are not well modelled
by the PLS and thus affect the accuracy of the model. In Figure 6, for example, it can
quickly be observed that the 25th and 58th spectra are outliers.

• Removal of outliers: The identified outlier spectra are removed from the original
dataset, hopefully improving the robustness and accuracy of the model.

• Iterating: This entire process can be repeated as needed, each time recalculating the
errors for each spectrum and identifying and removing outliers.

The advantage of this method is that it can help to increase the robustness of the PLS
models by removing outliers that would otherwise distort the model parameters. It is a
relatively simple and intuitive approach that combines the robustness of resampling with
the ability to identify and remove problematic data points. This method helps to further
reduce the Root Mean Square Error of Prediction (RMSEP) and thus improve the overall
performance of the model.

However, as with any method, it should be used judiciously. Removing outliers too
aggressively can lead to over-fitting, where the model becomes over-fitted to the “typical”
data points and performs poorly on new, unknown data. This method is most useful if
you have a large enough dataset so that removing some data points does not significantly
reduce the overall size of the dataset.
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Figure 6. The mean error and standard deviation for all spectra.

3. Simulator Construction

In order to develop a predictive control algorithm for automated nutrient feeding
in a bioreactor, a simulation environment based on a dynamic model was implemented.
The latter describes the kinetics of the growth of a CHO cell culture in a fed-batch bioreactor.
It is well known that the process parameters (temperature, pH, feeding, ammonia removal,
etc.) have a significant impact on cell growth and especially on the quality of the monoclonal
antibodies (mAbs) produced [45]. Therefore, the model is important not only for the
development of management algorithms, but also for the observation and identification
of the key factors (variables and parameters) that have the greatest influence on cell
productivity. This is particularly important from the point of view of optimising protein
production in a mammalian cell line.

3.1. Modelling CHO Cell Culture Kinetics

Chinese Hamster Ovary cells are the most commonly used mammalian hosts for the
industrial production of therapeutic proteins, due to their capacity to perform human-like
post-translational modifications. The growth kinetics of CHO cells can be studied using a
mechanistic model [32]. A mechanistic model is a type of model used to describe biological
processes based on underlying physiological mechanisms. These models allow us to
interpret, predict and simulate biological phenomena by using mathematical equations
to represent the interactions and transformations that occur in a system. In the context
of CHO cell growth kinetics, a mechanistic model would include at least the following
components. One of the most important mechanisms determining the growth kinetics of
CHO cells is cell division. The rate at which cells grow and divide depends on various
influencing factors such as the availability of nutrients, the accumulation of waste products
and the passage of time. Mathematical models such as the Gompertz model or the logistic
growth model are often used to represent these complicated dynamics of cell growth.
Another crucial determinant of cell growth is the assimilation and utilisation of nutrients
such as glucose and glutamine. The rate at which these nutrients are consumed can have
a significant impact on cell growth and is usually modelled using Monod or Michaelis–
Menten kinetics, which provides essential insights into cell metabolism and growth patterns.
As cells grow and metabolise nutrients, they inevitably generate waste products such as
lactate or ammonia. The accumulation of these waste products can have a suppressive
effect on cell growth. To quantify this inhibitory effect, mathematical models are used to
provide detailed insight into the relationship between the accumulation of waste products
and cell proliferation. The loss of cells through mechanisms such as apoptosis, nutrient
deprivation or the toxic effect of accumulated by-products is an inevitable aspect of cell
culture. Mathematical models are used to express the rate of cell death as a function of
various parameters, providing valuable insights into the factors that influence cell viability
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over time. Finally, the growth kinetics of CHO cells are significantly influenced by external
environmental factors such as temperature, pH and osmolality. These factors must be
carefully incorporated into the mechanistic model to ensure its relevance and accuracy.
These environmental influences represent an additional layer of complexity and require a
comprehensive understanding of their effects on cell growth and survival. Each of these
components is interconnected and forms a complex network of interactions that determine
the growth kinetics of CHO cells. Together, they form a robust mechanistic model that
allows the prediction, interpretation and simulation of the behaviour of CHO cells under
different conditions. A mechanistic model of CHO cell growth kinetics would typically be
a system of differential equations, where each equation represents a particular biological
process (such as cell growth, nutrient consumption, production of waste products, etc.).
These models can be quite complex and usually require a large amount of experimental
data for their parameterisation.

However, despite their complexity, mechanistic models can provide valuable insights
into the cell growth process and can be helpful in optimising cell culture conditions for
maximum productivity. Many authors [45–48] who have worked on modelling the kinetics
of CHO cell cultures have set up various dynamic models in the form of differential
equations based on steady-state analysis. In most cases, these simple models only describe
the variation of extracellular metabolite concentrations and the number of live/dead cells
during the cell cycle. The models differ in the number of factors considered (number
of variables and parameters), which are more or less relevant to describe what actually
happens in a mammalian cell line (in a bioreactor). However, in order to have a practical and
universally applicable simulator, a model was needed that took all the important variables
into account. An example of such a model was also developed by M. Ivarsson [48] in her
PhD thesis, as it takes into account the four phases of the cell cycle, temperature, glutamine
concentration, number of dead cells, etc., in addition to the number of living cells and
the concentrations of glucose, lactate and ammonia. For the development of a predictive
controller for automated feeding, only a model prediction of glucose concentration would
be required at this stage. However, as glucose concentration variations are also highly
dependent on other variables, these should also be considered in the model. As mentioned
above, the chosen dynamic model [48] describes four phases of the cell cycle: G0, G1, S and
G2/M and the number of cells per phase: XG0, XG1, XS and XG2/M:
G1 phase:

d(XG1V)

dt
= 2kG2/M−G1XG2/MV − kG1−SXG1V − kG1−G0XG1V − kdXG1V − FOUTXG1 (12)

S phase:

d(XSV)

dt
= kG1−SmstressXG1V − kS−G2/MXSV − kdXSV − FOUTXS (13)

G2/M phase:

d(XG2/MV)

dt
= kS−G2/MXSV − kG2/M−G1XG2/MV − kdXG2/MV − FOUTXG2/M (14)

G0 phase:

d(XG0V)

dt
= kG1−S(1 − mstress)XG1V + kG1−G0XG1V − kdXG0V − FOUTXG0 (15)

The equations include transition factors k, where, e.g., kG1−S represents the transition
from the G1 phase to the S phase. The transition factors between subpopulations depend
mainly on the growth rate, which in turn is determined by the times (tG1, ts and tG2/M)
required for the completion of each cellular phase:

μ =
ln(2)

tG1 + tS + tG2/M
(16)
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The transition from the G1 to the G0 phase is determined by the transition factor
kG1−G0, which represents the temperature stress. However, the transition to phase G0 may
also cause metabolic stress mstress. The number of viable cells is calculated as the sum of the
cells from each phase, where V represents the current volume of material in the bioreactor:

d(XVV)

dt
=

d(XG0V)

dt
+

d(XG1V)

dt
+

d(XSV)

dt
+

d(XG2/MV)

dt
(17)

The volume varies depending on the nutrient dosage (FGlc and FGln) and the potential
sampling FOUT :

dV
dt

= FGlc + FGln − FOUT (18)

Glutamine concentration varies according to consumption factor QGln and degrada-
tion to ammonia Kdeg and potential dose FGln. Glutamine consumption depends on the cell
growth factor, the specific yield YGln and the limiting function fupt:

d(GlnV)

dt
= −QGlnXVV − KdegGlnV + FGlnGlnFeed − FOUTGln (19)

The ammonia concentration depends largely on changes in the glutamine concentra-
tion, since the ammonia concentration increases with glutamine consumption (factors YAmn
and Kdeg):

d(AmnV)

dt
= QGlnYAmn XVV + KdegGlnV − FOUT Amn (20)

The glucose concentration varies according to the consumption factor QGlc and the
minimum consumption to keep the cells alive mGlc, and the amount of glucose added FGlc.
The consumption factor QGlc is influenced by temperature and lactate as an inhibitor:

d(GlcV)

dt
= −QGlcXV(1 − fG0)V − mGlcXV fG0V + FGlcGlcFeed − FOUTGlc (21)

The lactate concentration depends on the glucose consumption (QGlc and mGlc):

d(LacV)

dt
= YLacQGlcXV(1 − fG0)V − YLacmGlcXV fG0V − FOUT Lac (22)

The change in monoclonal antibody concentration is determined by factors represent-
ing the productivity level (qG1/G0, qS and qG2/M) per cell phase:

d(mAbV)

dt
= μ[q G1

G0
(XG1 + XG0) + qSXS + q G2

M
X G2

M
]− FOUTmAb (23)

4. Results

In order to be able to monitor the process in the bioreactor in detail during the entire
batch, which usually takes about 14 days, seven PLS models were developed in the Matlab
environment. The latter models, which represent soft sensors, allow the monitoring of the
most important process variables in CHO cell cultivation. These variables are: Glucose
concentration, viable cell concentration (VCC), total cell count (TCC), glutamine, glutamate,
lactate and ammonium.

Data from four different batches were available to us for the development of PLS
models. Raman spectra were collected every half hour and reference measurements (offline)
were performed once or twice a day with Cedex Analyzer. Thus, the first step was to find
the pairs of spectra and reference measurements that matched best in terms of acquisition
time. The Raman measurement takes about half an hour to obtain a good signal-to-noise
ratio and to remove fluorescence interference.

As described in Section 2.1, two key initial steps in the development of PLS models are
the preprocessing of the Raman spectra with the Savitzky–Golay filter and the normalisation
with the Standard Normal Variate method (see Figures 2 and 3). Savitzky–Golay low-
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pass filtering was performed for all independent variables (Raman shift (cm−1)) of each
spectrum, with a quadratic function chosen for smoothing with the Savitzky–Golay filter
and the window length (smoothing) set to 15 samples. In addition, a normalisation or
Standard Normal Variate function is applied to the independent variables for all spectra,
resulting in spectra with a mean of zero and a standard deviation of one.

As described in Section 2.2 and illustrated in Figure 2, careful consideration is also
required in the selection of the parameter that determines the number of latent variables.
For each PLS model, the optimal number of latent variables is determined based on cross-
validation, aiming for the smallest RMSECV error. In general, it is preferred to keep the
number of latent variables as small as possible.

Characteristic independent variables of the spectrum (i.e., energy shifts) at which a
spike occurs can be extracted from the literature for individual observed variables. Taking
these characteristic energy shifts into account when calculating PLS models is therefore
considered useful as it further weighs the individual independent variables of the spectrum
and improves the model in this way. If these characteristic energy shifts are not known,
various methods are available to identify the more important independent variables and
take them into account to a greater extent.

The Variable Importance in the Projection method, described in Section 2.2.2, was
tested first. However, the prediction results were not improved by this simple method;
thus, alternative approaches to selecting key variables were investigated. Attempts to select
"key" intervals or several independent variables of the spectrum together also did not lead
to better results.

It turned out that the Competitive Adaptive Reweighted Sampling method, which
is also discussed in Section 2.2.2, gave the best results for selecting key variables when
building PLS models. As can be observed in Figure 5, the method CARS identifies fewer
key variables than the method VIP. Nevertheless, the validation results of the PLS model
(using glucose concentration as an example) were better when the method CARS was used,
as evidenced by the smaller Root Mean Square Error (see Figure 7 and Table 1).

Figure 7. Validation of the PLS glucose model using VIP, CARS and outlier removal methods.

Table 1. Root Mean Square Error of glucose concentration prediction and the coefficient of determi-
nation (R2).

RMSE (g/L) R2

PLS 1.25 0.92
VIP 1.26 0.92

CARS 0.84 0.96
No outliers 0.75 0.97
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The reference values in Figure 7 represent offline measurements performed with the
Cedex Analyzer. In some cases of glucose measurement, the VIP method even leads to
worse results than not using a method, as shown in Table 1 (see RMSE).

Assuming that Cedex’s offline measurements are reliable, the training set was exam-
ined for spectra representing outliers that could affect the parameters of the PLS model
during the learning phase and consequently affect the prediction accuracy. Applying the
Monte Carlo sampling method and calculating the mean error and standard deviation
for each PLS model led to the identification of spectra within the dataset that represent
outliers, as shown in Figure 6 and discussed in Section 2.2.3. This process allowed a further
increase in the accuracy and robustness of the PLS models, as can be observed in Figure 7
and Table 1. In this case, the coefficient of determination for the PLS model for glucose is
R2 = 0.97, which means that the PLS model has been further improved compared to the
method CARS (where R2 = 0.96). An accurate prediction of glucose concentration can also
be observed in Figure 8, which shows a comparison of experimental and predicted values
using CARS and methods to remove outliers. Ideally, all points should lie on a straight line.

Figure 8. Validation of the PLS glucose model: comparison of experimental and predicted values
using CARS and outlier removal methods.

Table 2 shows the RMSE and coefficient of determination (R2) for the following
constructed PLS models in addition to the glucose PLS model: VCC, TCC, glutamine,
glutamate, lactate and ammonium. The results demonstrate that all PLS models developed
provide an accurate prediction of the main process variables (R2 > 0.8), and only the PLS
model for glutamine has a slightly worse prediction (R2 = 0.33). The reason for this lies in
the following fact. In Raman spectroscopy, glutamine and glutamate are related because
they have a similar molecular structure and similar active Raman vibrational modes that
produce similar spectral features. Glutamine and glutamate are structurally similar amino
acids, both containing a carboxyl group (-COOH) and an amine group (-NH2). The main
structural difference between them is that glutamate has an additional carboxyl group,
while glutamine has an amide group (-CONH2) instead. It is important to note that while
Raman spectroscopy is a powerful technique for identifying molecules, its resolution is
often insufficient to distinguish between similar molecules in a mixture. In such cases,
additional techniques, such as chromatographic separation or more sophisticated spectral
analysis methods, are required.
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Table 2. Root Mean Square Error and the coefficient of determination (R2) for all other constructed
PLS models.

RMSE R2

VCC 0.86 (106 cells/mL) 0.93
TCC 1.06 (106 cells/mL) 0.91

Glutamine 1.60 (g/L) 0.33
Glutamate 0.26 (g/L) 0.95

Lactate 0.10 (g/L) 0.99
Ammonium 1.16 (mmol/L) 0.83

Table 3 shows the best RMSE results for PLS models according to the existing liter-
ature [11,37]. A comparison with the data in Tables 1 and 2 shows that our method for
building PLS models excels at accurately predicting key variables from Raman spectra.
This comparison essentially underlines the effectiveness of our approach. It is particularly
noteworthy that our PLS models have an RMSE that is on average three times smaller than
the RMSE published in recent research [11,37].

Table 3. The best RMSE results for PLS models found in the literature [11,37].

RMSE

VCC 4.87 (106 cells/mL)
TCC 3.68 (106 cells/mL)

Glucose 1.13 (g/L)
Glutamate 1.18 (g/L)

Lactate 0.19 (g/L)
Ammonium 1.21 (mmol/L)

The learning process for the PLS models depended on a single offline measurement
(Cedex) of each variable (e.g., glucose) per day. Therefore, only the Raman spectroscopy
spectra that matched the offline measurements in time could be used. However, once
the PLS models were built, all spectra collected every half hour could be used, giving an
informative representation of the time course of each variable (see Figure 9). These data are
then used in the optimisation to determine the parameters of the dynamic model for the
CHO cell kinetics, as described in the Section 3.1. Careful examination of the time series
signal for glucose and glutamine concentrations in Figure 9 reveals a sawtooth pattern
due to the daily manual dosing of nutrients. This pattern is not conducive to the optimal
growth of the CHO cells.

The problem can be solved by implementing an automated feeding system that con-
tinuously doses the nutrients according to a predefined reference signal. However, such
a system requires not only the application of the previously developed soft sensors (PLS
models), but also a simulation environment. In this environment, a control algorithm can
be developed and different scenarios such as different feeding regimes, the removal of
inhibitors and the observation of important process variables can be investigated. The heart
of the simulator, represented by the Simulink schema in Figure 10, is a dynamic model
of CHO cell kinetics, which is explained in the Section 3.1. Figure 10 also shows the con-
troller and optimisation blocks, the details of which will be explained in more detail in
forthcoming scientific publications.

Based on known process parameters (temperature and pH) and time series signals
of the main process variables (VCC, glucose, glutamine, etc.), it is possible to perform the
optimisation of the parameters of the dynamic model of CHO cell kinetics (presented in
the Section 3.1). This optimisation aims at aligning the model results as much as possible
with the measurements of previous batches.
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Figure 9. Signal reconstruction of key process variables via PLS models.

Figure 10. Implementation of a simulator within the Simulink environment based on the CHO cell
kinetics model.

For the parameter optimisation, the particle swarm optimisation (PSO) method was
used, which makes it possible to find the global minimum of the chosen criterion function
while optimising a large number of parameters. In this case, the criterion function was
given as RMSE, with the final values presented in the Table 4.

Table 4. Root Mean Square Error and the coefficient of determination (R2) in the case of predicting all
important process variables using the CHO cell kinetics model.

RMSE R2

VCC 0.15 (106 cells/mL) 0.99
Glucose 0.18 (g/L) 0.99

Glutamine 0.20 (g/L) 0.98
Lactate 0.14 (g/L) 0.99

Ammonium 0.10 (mmol/L) 0.99

A comparison of glucose concentration measurements from one of the batches with a
glucose concentration prediction derived from a mechanistic model of CHO cell kinetics is
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shown in Figure 11. The results of the agreement were excellent in this case, with an RMSE
of 0.18 g/L and R2 = 0.99.
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Figure 11. Validation of the CHO cell kinetics model in the case of glucose concentration prediction
for the entire batch run.

Furthermore, Figure 12 shows the remarkable matching between the measurements
and the predicted values; ideally, all points should lie on a straight line. However, it is
important to note that the available data were limited to only four batches. If a larger
number of batches are included in the optimisation process, a slight deviation between the
individual batches and the process variables is to be expected. In the future, it would be
beneficial to combine the data from the individual batches based on the criterion of mutual
similarity and then determine the model parameters for the individual clusters.

The predictions for the other process variables, as shown in Table 4, prove satisfactory
when the CHO cell kinetics model is used. Only in the case of glutamine concentration
does a somewhat larger error occur, which has already been pointed out. The reason for
this is that when the PLS model predicts the time series signal for glutamine with less
accuracy, the variance of the “measurements” (derived from the soft sensor) increases.
Consequently, the time series signal of glutamine is predicted with lower accuracy by the
mechanistic model.
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Figure 12. Validation of the CHO cell kinetics model: comparison of experimental and predicted
glucose concentrations.
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5. Discussion

In developing models that allow the use of soft sensors to monitor key process vari-
ables (VCC, TCC, glucose, glutamine, glutamate, lactate and ammonium) in the bioreactor,
it was found that using the PLS method alone did not provide the required accuracy and
robustness of the models. In particular, with a limited data set (a few batches), the model
can be overfitted, leading to a sharp drop in predictive performance compared to what the
validation with limited data promises.

Since in our work only about 100 spectra with reference measurements were available
during the learning phase and Raman spectra contain more than 3000 components, the
phase of selecting key variables became crucial for model construction. By using the CARS
method, better handling of collinearity between variables was observed, as well as better
performance on small data sets and higher robustness compared to the VIP method. As a
result, the RMSE was reduced by up to 30%.

It was found that the VIP method further impaired the predictive ability of the models
in certain cases, indicating an overfitting problem, as the number of key variables selected
was significantly larger than required by the CARS method. The VIP method also had
stability problems, as the results may have become unstable with small samples. Minor
variations in the data can lead to significant shifts in the scores, making it difficult to
extrapolate the results to other data sets. When calculating the VIP scores based on the
weighted sum of squares of the PLS loadings, high variability was found in small data sets.

In Raman spectroscopy, it is important to understand that outlier spectra can occur,
influenced by various factors. For example, if the sample in the bioreactor is not evenly
mixed, this can lead to deviations in the spectra obtained. Raman spectroscopy derives its
readings from the average properties of the area illuminated by the laser. Therefore, a lack
of homogeneity in the sample can lead to inconsistent measurements.

Moreover, the components of the sample can play an important role. If components
fluoresce under the laser light of the Raman spectrometer, the resulting fluorescence could
overshadow the Raman signal and distort the spectra. Additionally, bubbles or parti-
cles in the bioreactor can cause scattering or absorption of the laser light, resulting in
unpredictable spectra.

Given these potential sources of error, it is important to carefully identify and remove
outlier spectra during the modelling phase, as described in Section 2.2.3. This step re-
duced the root mean square error (RMSE) by 10% (in addition to 30% reduction with the
method CARS).

The efficient growth and production of desired products by CHO cells requires specific,
strictly controlled conditions in the bioreactor. These conditions include the regulation
of pH and temperature, which affect cell metabolic rate, protein folding and expression
levels. Equally important is the careful control of nutrient content, especially glucose and
glutamine, according to a predetermined profile for the duration of the batch.

Another critical factor is the control of inhibitor concentrations. Metabolic by-products
such as ammonia and lactate can potentially inhibit cell growth and protein production
if they reach high concentrations. Since glucose is the primary source of energy, its con-
centration directly affects cell metabolism. Too little glucose can starve cells and inhibit
growth, while too much glucose can cause osmotic stress or trigger overproduction of
waste products such as lactate.

Given these complexities, the use of an automated bioreactor control system is essential
for CHO cell cultivation. Such a system offers several advantages, including maintaining
consistent conditions, real-time monitoring, reducing human error and improving efficiency
and scalability. Given the significant costs associated with realistic bioreactor experiments,
the development of a simulation environment is essential. This environment enables the
creation of control algorithms and the evaluation of the effects of different parameters on
cell growth and productivity.

The main reason for the lack of advanced automated control techniques in cell cul-
ture bioprocesses and bioreactor operations is that these techniques require robust and
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reliable measurement methods that are available on site. Concentrations of nutrients and
metabolites, cell densities and viability are not measured and are uncontrolled or are only
controlled manually with long sampling times (12–24 h, as shown in Figure 9). As a result,
possible process disturbances may only be detected after long delays, making it difficult to
take corrective action and increasing the risk of batch losses.

For the development of an advanced simulation environment, the choice of a CHO
kinetic model is also crucial. The chosen model should represent the complex kinetics of
CHO cells in sufficient detail. Simpler models based on the Monod equation, for example,
are often inadequate in this respect. More complex models, however, pose the challenge of
determining numerous parameters that can only be accurately determined with a suitable
optimisation method and sufficiently heterogeneous data. In our study, the parameters of a
dynamic model of CHO cell kinetics were successfully determined using the PSO method.

To enable the development of a predictive control algorithm, the complex kinetics
model will be simplified and linearised, and online adjustment of the (adaptive) model
parameters will be facilitated. This adjustment is made possible by an optimisation method
that uses the measurements of the current batch to facilitate the online parameterisation.

Future efforts include the development of a model predictive control algorithm based
on the simplified model of CHO cell kinetics. Subsequently, the monitoring and control
system will be integrated into a real bioreactor. Finally, a practical test of the implemented
system will be carried out.

6. Conclusions

This study demonstrates the significant advances in fully automated feeding of CHO
cells achieved through the development of advanced models, soft sensors and a novel
simulation environment. The research has required a thorough understanding of various
chemometric methods and demonstrated their context-specific application in combination
with Raman spectroscopy. It has demonstrated the effectiveness of CARS-PLS and an
outlier removal method in overcoming difficult challenges such as high dimensionality,
multicollinearity and outlier detection. The models created are versatile and scalable and
can be applied to a wide range of products, media and cell lines based on CHO host
cells. They can be conveniently scaled up for use in large pilot studies and extensive
manufacturing processes. However, the success of these methods depends not only on the
right choice of techniques, but also crucially on the quality of the input data. Therefore,
the preprocessing of the data to remove interfering signals is of the utmost importance.
Raman spectra have no inherent value, but when integrated with the appropriate models,
they allow for the creation of a sophisticated measurement system. This system, which
consists of soft sensors, is used for real-time monitoring and control of important process
variables. The measurements reconstructed with these soft sensors play a crucial role in
the design of the simulation environment, which significantly speeds up and cheapens
the development of control algorithms and thus the automated nutrient dosing system.
In essence, this study provides essential insights into the pragmatic application of Raman
spectroscopy and innovative methods that form a solid foundation for further research and
development in the field of automated cell feeding.
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