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Preface to “Nonlinear Dynamics in Complex Systems

via Fractals and Fractional Calculus”

The use of fractal analysis and fractional-order partial differential equations in real complex

systems is commonly encountered today in the fields of theoretical science and engineering

applications. This means that the productive, efficacious computational tools required for analytical

and numerical estimations of such physical complex models, and our reliance on their development,

have been welcome. This book discusses the use of fractional calculus and novel algorithms to

solve fractional-order derivatives of classic problems, including chaotic instabilities in theories of

mathematical physics, fractal-type spatiotemporal behaviors in field theory and nonlinear dynamic

processes in plasma complex structures. This volume collects some important advances in the fields

of fractal curves, fractal analysis and fractional calculus, as well as new solutions of fractal differential

equations. In addition, it assembles some novel insights and extraordinary perceptions into nonlinear

complex systems theory, proving to be an important and representative book in the field, and a

valuable reference in the specialized literature.

Viorel-Puiu Paun

Editor
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Special Issue: Nonlinear Dynamics in Complex Systems via
Fractals and Fractional Calculus

Viorel-Puiu Paun 1,2

1 Physics Department, Faculty of Applied Sciences, University Politehnica of Bucharest,
060042 Bucharest, Romania; viorel.paun@physics.pub.ro
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Advances in our knowledge of nonlinear dynamical networks, systems and processes
(as well as their unified repercussions) currently allow us to study many typical complex
phenomena taking place in nature, from the nanoscale to the extra-galactic scale, in an com-
prehensive manner. Thus, systems generally deemed dynamical systems, chaotic systems
or fractal systems clearly have something essential in common, and can be considered to
belong to the same class of complex phenomena discussed herein. In other words, the
physical, biological and financial data of complex systems, as well as the technological data
(observed using mechanical or electronic devices), available today can be managed using
same unique conceptual approach; this approach works both analytically and through com-
puter simulations, using effective nonlinear dynamics procedures. The works presented in
this technical publication are those that have appeared in the Fractal and Fractional journal
in a Special Issue of the same name, which included the thirteen individually published
papers plus an Editorial signed by the editor of this book.

In the first work introduced in this volume, the authors affirmed that the accurate
determination of atmospheric temperature using telemetric platforms is an active issue, and
one that can also be tackled with the aid of multifractal theory to observe the fundamental
behaviors of the lower atmosphere. These observations can then be used to facilitate
such determinations [1]. Thereby, within the framework of the scale relativity theory,
PBL dynamics can be analyzed with the aid of a multifractal hydrodynamic scenario.
Considering the PBL as a complex system that is assimilated into mathematical objects
of a multifractal type, its various dynamics exert a multifractal tunnel effect. Such a
treatment allows one to define both a multifractal atmospheric transparency coefficient
and a multifractal atmospheric reflectance coefficient. These products are then used to
create theoretical temperature profiles, which lead to correlations with real results obtained
using radiometer data (RPG-HATPRO radiometer), with favorable results. Such methods
could be further used and refined in future applications to efficiently produce theoretical
atmospheric temperature profiles.

In the reference [2], the authors consider that the study of hidden attractors plays
a very important role in the engineering applications of nonlinear dynamical systems.
Thus, in this paper, a new three-dimensional (3D) chaotic system is proposed, in which
hidden attractors and self-excited attractors appear as the parameters change. Meanwhile,
asymmetric coexisting attractors are also found as a result of the system’s symmetry. The
complex dynamical behaviors of the proposed system were investigated using various
tools, including time series diagrams, Poincaré first return maps, bifurcation diagrams, and
basins of attraction. Moreover, unstable periodic orbits within a topological length of 3 in
the hidden chaotic attractor were calculated systematically using the variational method,
which required six letters to establish suitable symbolic dynamics [2]. Furthermore, the
practicality of the hidden attractor chaotic system was verified using circuit simulations.
Finally, offset boosting control and adaptive synchronization were used to investigate the
utility of the proposed chaotic system in engineering applications.

Fractal Fract. 2023, 7, 412. https://doi.org/10.3390/10.3390/fractalfract7050412 https://www.mdpi.com/journal/fractalfract
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The third selected work refers to the fractal analysis of some nuclear ceramic materials.
SEM micrographs of the fracture surface of UO2 ceramic materials have been analyzed. In
this paper, some algorithms were introduced, and a computer application based on the
non-linear time series method was developed. Utilizing the embedding technique of phase
space, the attractor is reconstructed. In addition, the fractal dimension, lacunarity, and
autocorrelation dimension average value have been calculated [3].

To further understand the dynamical characteristics of chaotic systems with a hidden
attractor and coexisting attractors, we refer readers to the fourth work. Here, the fundamen-
tal dynamics of a novel three-dimensional (3D) chaotic system, derived by adding a simple
constant term to the Yang–Chen system, were investigated under different parameters;
these include the bifurcation diagram, Lyapunov exponents spectrum, and basin of attrac-
tion [4]. Additionally, an offset-boosting control method is presented to the state variable,
and a numerical simulation of the system is also introduced. Furthermore, the unstable
cycles embedded in the hidden chaotic attractors are extracted in detail, which shows
the effectiveness of the variational method and the one-dimensional symbolic dynamics.
Finally, the adaptive synchronization of the novel system is successfully designed, and a
circuit simulation is implemented to illustrate the flexibility and validity of the numeri-
cal results. Theoretical analysis and simulation results indicate that the new system has
complex dynamical properties, and can be used to facilitate engineering applications [4].

The fifth work is dedicated to fuzzy dispersion entropy (FuzzDE), a very recently
proposed non-linear dynamical indicator which combines the advantages of both dispersion
entropy (DE) and fuzzy entropy (FuzzEn) to detect dynamic changes in a time series.
However, FuzzDE only reflects the information of the original signal, and is not very
sensitive to dynamic changes. To address these drawbacks, a fractional order calculation
on the basis of FuzzDE was proposed; it is referred to as FuzzDEα. The calculation may be
used as a tool for signal analysis and the fault diagnosis of bearings [5]. In addition, other
fractional order entropies were introduced, including fractional order DE (DEα), fractional
order permutation entropy (PEα), and fractional order fluctuation-based DE (FDEα); a
mixed-features extraction diagnosis method was also proposed. Both simulated as well
as real-world experimental results demonstrated that the FuzzDEα, at different fractional
orders, is more sensitive to changes in the dynamics of the time series. The proposed
mixed-features bearing fault diagnosis method achieves a 100% recognition rate with only
three features, among which the mixed-feature combinations with the highest recognition
rates all include FuzzDEα. FuzzDEα also appears most frequently [5].

Investigating global bifurcation behaviors, the vibrating structures of micro-electro-
mechanical systems (MEMS) received substantial attention in the sixth work of this col-
lection. This paper considers the vibrating system of a typical bilateral MEMS resonator
containing fractional functions and multiple potential wells. By introducing new variations,
the Melnikov method is applied to derive the critical conditions for global bifurcations.
By engaging in the fractal erosion of the safe basin to intuitively depict the phenomenon
of pull-in instability, the point-mapping approach is used to present numerical simula-
tions that are in close agreement with analytical predictions, showing the validity of the
analysis. It is found that chaos and pull-in instability, two initially sensitive phenomena
of MEMS resonators, may be due to homoclinic bifurcation and heteroclinic bifurcation,
respectively [6]. On this basis, two types of delayed feedback are proposed to control the
complex dynamics successively. Their control mechanisms and effects are then studied.
It follows that under a positive gain coefficient, delayed position feedback and delayed
velocity feedback can both reduce pull-in instability; nevertheless, in suppressing chaos,
only the former is effective. The results may have some potential value in broadening the
application fields of global bifurcation theory, and in improving the performance reliability
of capacitive MEMS devices [6].

In the seventh paper presented in this book, SEM microfractographies of Zircaloy-4
are studied using fractal analysis and the time series method. First, a computer application
that associates a fractal dimension and lacunarity with each SEM micrograph picture was
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developed; the application also produced a nonlinear analysis of the data acquired from
the quantitatively evaluated time series. Utilizing the phase space-embedding technique to
reconstruct the attractor and to compute the autocorrelation dimension, the fracture surface
of the Zircaloy-4 samples was investigated. The fractal analysis method manages to high-
light damage complications, and provides a description of the morphological parameters
of various fractures by calculating the fractal dimension and lacunarity [7].

In the eighth study presented herein, the authors discuss the engineering and construc-
tion of a special sixth-generation (6G) antenna based on the fractal known as Minkowski’s
loop. The antenna has the shape of this known fractal, set at four iterations, to obtain
maximum performance. The frequency bands for which this 6G fractal antenna was de-
signed are 170 GHz to 260 GHz (WR-4) and 110 GHz to 170 GHz (WR-6), respectively.
The three resonant frequencies, optimally used, are equal to 140 GHz (WR-6) for the first,
182 GHz (WR-4) for the second, and 191 GHz (WR-4) for the third. The electromagnetic
behaviors of the fractal antennas and their graphical representations are highlighted at
these frequencies [8].

In the next work, the ninth of the thirteen, it is established that slope entropy (SlEn)
is a time series complexity indicator proposed in recent years that has shown excellent
performance in the fields of medicine and hydroacoustics. In order to improve the ability
of SlEn to distinguish between different types of signals and solve the problem of selecting
two threshold parameters, a new time series complexity indicator is proposed on the basis
of SlEn. This was achieved by introducing fractional calculus and combining particle
swarm optimization (PSO) in an indicator named PSO fractional SlEn (PSO-FrSlEn). Then,
PSO-FrSlEn is applied to the field of fault diagnosis, and a single-feature extraction method
and a double-feature extraction method based on PSO-FrSlEn are proposed for rolling
bearing faults [9]. The experimental results illustrated that only PSO-FrSlEn can classify
ten kinds of bearing signals with 100% classification accuracy (by using double features),
which is at least 4% higher than the classification accuracies of the other four fractional
entropies [9].

In the tenth work, it is shown that the metric of H may be denoted by d when H is
a compact metric space. Then, we can let (H,f1,∞) be a non-autonomous discrete system,
where f1,∞ = {fn}∞n = 1 is a mapping sequence. This paper discusses the infinite sensitivity,
m-sensitivity, and m-cofinite sensitivity of f1,∞. It proves that if fn(n∈N) are feebly open
and uniformly converge to f :H→H, fi◦f = f◦fi for any i∈{1,2, . . . }, and ∑∞i = 1D(fi,f ) < ∞,
then (H,f ) has the above sensitive property if and only if (H,f 1,∞) has the same property,
where D(·,·) is the supremum metric [10].

The investigation of chaotic systems containing hidden and coexisting attractors has
attracted extensive attention. The eleventh paper presents a four-dimensional (4D) novel
hyperchaotic system that is advanced by adding a linear state feedback controller to a three-
dimensional chaotic system with two stable node focus points [11]. The proposed system
has no equilibrium point, or two lines of equilibria, depending on the value of the constant
term. Complex dynamical behaviors, such as hidden chaotic and hyperchaotic attractors
and the five types of coexisting attractors within the simple four-dimensional autonomous
system, are investigated and discussed, and they are numerically verified through the
analysis of phase diagrams, Poincaré maps, the Lyapunov exponent spectrum, and its
bifurcation diagram. The short unstable cycles in the hyperchaotic system are systematically
explored using the variational method, and symbol codings of cycles with four letters are
produced based on the topological properties of the trajectory’s projection onto the two-
dimensional phase space. The bifurcations of the cycles are explored through a homotopy
evolution approach. Finally, the novel four-dimensional system is implemented using
an analog electronic circuit, and is found to be consistent with the numerical simulation
results [11].

In the twelfth manuscript, multifractal theories of motion based on scale relativity
theory are considered in the description of atmospheric dynamics. It is shown that these
theories have the potential to highlight the nondimensional mass conduction laws that
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describe the propagation of atmospheric entities [12]. Then, using special operational
procedures and harmonic mappings, these equations may be rewritten and simplified so
that their plotting and analysis may be performed. The inhomogeneity of these conduction
phenomena was analyzed, and the study found that it can fluctuate and increase at certain
fractal dimensions, leading to the conclusion that certain atmospheric structures and
phenomena of either atmospheric transmission or stability can be explained by atmospheric
fractal dimension inversions. Finally, this hypothesis is verified using the ceilometer data
found throughout the atmospheric profiles [12].

This Special Issue, which is the subject of our editorial, also collates some new insights
into the theory of hidden attractors and multistability phenomena, which have considerable
application prospects in engineering [13]. Thus, in the final work, the thirteenth, by
modifying a simple three-dimensional continuous quadratic dynamical system, a new
autonomous chaotic system with two stable node foci that can generate double-wing hidden
chaotic attractors is reported. The rich dynamics of the proposed system were discussed;
said system has some interesting characteristics in terms of its different parameters and
initial conditions, which were found through the use of dynamic analysis tools such as
the phase portrait, the Lyapunov exponent spectrum, and bifurcation diagrams. The
topological classification of the periodic orbits of the system was investigated using a
recently devised variational method. The symbolic dynamics of four and six letters have
been successfully established under two sets of system parameters, including hidden and
self-excited chaotic attractors [13]. The system was implemented using a corresponding
analog electronic circuit to verify its realizability.

This volume gathers together information on some important advances in the fields
of fractal curves, fractal analysis and fractional calculus [14,15]. Thereby, the Special Issue
which is the subject of our editorial also collates some novel insights into the theory of
complex systems; it is a significant and relevant volume for our field of study, and will be
appreciated as a useful reference within the specialized literature.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The accurate determination of atmospheric temperature with telemetric platforms is an
active issue, one that can also be tackled with the aid of multifractal theory to extract fundamental
behaviors of the lower atmosphere, which can then be used to facilitate such determinations. Thus,
in the framework of the scale relativity theory, PBL dynamics are analyzed through the aid of a
multifractal hydrodynamic scenario. Considering the PBL as a complex system that is assimilated to
mathematical objects of a multifractal type, its various dynamics work as a multifractal tunnel effect.
Such a treatment allows one to define both a multifractal atmospheric transparency coefficient and a
multifractal atmospheric reflectance coefficient. These products are then employed to create theoret-
ical temperature profiles, which lead to correspondences with real results obtained by radiometer
data (RPG-HATPRO radiometer), with favorable results. Such methods could be further used and
refined in future applications to efficiently produce atmospheric temperature theoretical profiles.

Keywords: PBL dynamics; multifractality; scale relativity theory; radiometer data

1. General Considerations: From Differentiability to Non-Differentiability in
Atmospheric Process Dynamics

The PBL (planetary boundary layer) dynamics remain a subject of great interest due to
the many consequences regarding atmospheric behavior on both a local and a global scale.
Because of the effects of buoyancy, tropospheric temperature profiles limits the motion
verticality of atmospheric entities, and therefore the PBL appears as a principal stable factor
in atmospheric dynamics [1]. The PBL is often turbulent, and because turbulence causes
mixing, the bottom part of the standard atmosphere homogenizes, while the area above is
commonly known as the “free atmosphere”. Therefore, the PBL plays a tremendous role in
aerosol and humidity transport and in the stratification and complex dynamic interplay of
the atmosphere; its existence is commonly determined by inversions of various physical
parameters, especially temperature [1]. However, while its common behavior patterns can
be somewhat anticipated from a phenomenological perspective, the exact description of
the atmospheric parameter inversions is not fully known.

Most models employed in the study of PBL dynamics assume, which can be unjustified,
physical variables’ differentiability. The successful applications of such models have to
be understood on a sequential level, which means that differentiability would mostly be
valid for larger domains. Classically, any and all dynamic variables that are dependent
on spatiotemporal coordinates also become dependent on the scale resolution [1–5]. Thus,

Fractal Fract. 2022, 6, 747. https://doi.org/10.3390/10.3390/fractalfract6120747 https://www.mdpi.com/journal/fractalfract
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instead of employing dynamical variables through non-differentiable functions, we must
use certain approximations of that function derived through its averaging at different scale
resolutions. As a consequence, all dynamic variables must then act as the limit of a family
of functions, these being non-differentiable for a null scale resolution and differentiable for
a nonzero scale resolution.

In general, non-differential methods are considered suitable in the field of complex
systems, where real measurements are conducted at a finite scale resolution. The implication
is that a new physical theory for such systems is developed, and in this theory, motion laws,
which are invariant to coordinate transformations, must be integrated with scale laws that
are similarly invariant. The present assumptions lead to a theory that was first developed
in the framework of the scale relativity theory, which defines fractal physical models [4–6].

In the following, the PBL dynamics in the framework of the scale relativity theory are
analyzed, assimilating it with a mathematical object of multifractal type (PBL dynamics
considered through the multifractal tunnel effect). The rationale for this assimilation lies
in the fact that the stratification of the lower atmosphere resembles the structure of a
tunneling barrier scenario. The intent of this development is to continue the theoretical and
practical advances into atmospheric physics using multifractality and to elaborate the basis
of a multifractal theoretical model, which could be used to study the evolution of many
types of parameters, most relevantly temperature. Starting with main theoretical aspects,
the atmosphere is considered from a multifractal perspective, with all the mathematical
consequences that this entails. Then, a multifractal tunnel effect in an external scalar
potential configuration is seen to produce a multifractal barrier object, which plays the
role of the PBL. This barrier entity and its properties are explained, and a variable is
chosen which can function as an iterative parameter in order to implement the resulting
equations as a model of atmospheric temperature. Finally, ceilometer and radiometer
data are employed as experimental data, and theoretical atmospheric temperature data is
contrasted with atmospheric temperature experimental data.

Regarding the usage of the multifractal tunnel effect as a theoretical implement in
atmospheric studies, to the best of our knowledge, this is a novel application; however,
this effect was previously employed in a study explaining the “chameleon effect” of choles-
terol [7]. In terms of merely applying multifractal theories to the atmosphere, a number
of studies have been elaborated, such as one that deals with developing a multifractal
random-walk description of turbulence itself, another study that analyzes the multifractal
long-term characteristics of local temperature fluctuations, and a recent study that seeks to
multifractally characterize atmospheric particular matter pollution [8–10]. It is noteworthy,
however, that given the theoretical complexity of using multifractal techniques, especially
in a scientific field such as atmospheric studies, which is already marked by added difficul-
ties in the form of chaos and scaling issues, there are not many current works that explore
the connections between multifractality and atmospheric fluid dynamics. This is the case
even though the formation of turbulence through strange attractors, which are fractal in
nature, has been both experimentally and theoretically established decades ago [11,12].
Therefore, it is also our hope that this study will not only present a functional application
of theory to practice but will also broaden the field of multifractal atmospheric study.

2. Theoretical Design: Non-Differentiability Calibrated on PBL Dynamics in the Form
of the Multifractal Hydrodynamic Model

Considering the PBL’s complexity, which can be assimilated with a mathematical ob-
ject of multifractal type, in such conjecture, the PBL dynamics can be explained through the
scale relativity theory (the PBL structural units occur on continuous but non-differentiable
multifractal curves), dynamics that can be described through the scale covariance deriva-
tive [5,13–16]:

d̂
dt

= ∂t + V̂l∂l +
1
4
(dt)[

2
f (α) ]−1Dlp∂l∂p (1)

8
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where:
V̂l = Vl

D − iVl
F, (2a)

Dlp = dlp − id̂lp, (2b)

dlp = λl
+λ

p
+ − λl−λ

p
−, (2c)

d̂lp = λl
+λ

p
+ + λl−λ

p
−, (2d)

∂t =
∂

∂t
, ∂l =

∂

∂xl , ∂l∂p =
∂

∂xl
∂

∂xp , i =
√−1, l, p = 1, 2, 3. (2e)

The meanings of the above parameters are explained in greater detail in one of our
previous works [16].

There exist many types of ways to define the notion of fractal dimension: Kolmogorov
fractal dimension, Hausdorff–Besikovitch fractal dimension, and many others [17–20]. For
such studies, it is necessary to select just one of these definitions, and for the meaning of
fractal dimension to be constant, given the fact that the dimension directly dictates whether
or not the process is correlative or not [17–20]. Thus, through the singularity spectrum,
f (α), it is possible to identify not only dynamic spaces in the PBL that are characterized by
just one fractal dimension but also dynamic spaces whose fractal dimensions are situated
in an interval of values, implying multifractality. It is possible to employ the singularity
spectrum in order to identify universality classes in PBL dynamics, even considering the
regularity of the attractors involved.

If the PBL dynamics are described by Markovian stochastic processes [21–23]:

λi
+λl

+ = λi−λl− = 2λδil i, l = 1, 2, 3, (3)

where λ is a specific coefficient of the multifractal–non-multifractal scale transition and δil

is Kronecker’s pseudotensor, the scale covariant derivative in Equation (1) becomes:

d
dt

= ∂t + V̂l∂l − iλ(dt)(
2

f (α) )−1
∂l∂

l . (4)

Thus, if one accepts the principle of the scale covariance, which is by applying
Equation (1) to Equation (2a), without constraints, the PBL’s motion equations of the
structural units dynamics become:

dV̂i

dt
= ∂tV̂i + V̂l∂lV̂i +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kV̂i = 0. (5)

In this manner, acceleration, ∂tV̂i, convection, V̂l∂lV̂i, and dissipation, Dlk∂l∂kV̂i, are
all balanced at every point of any multifractal curve of the PBL structural units dynamics.
Particularly, for Equation (3), the motion Equation (5) becomes:

d̂V̂i

dt
= ∂tV̂i + V̂l∂lV̂i − iλ(dt)[

2
DF

]−1
∂l∂

lV̂i = 0. (6)

Now, through the separation of PBL structural units dynamics on scale resolution
(differentiable and non-differentiable scale resolutions), Equation (5) becomes:

∂tVi
D + Vl

D∂lVi
D − Vl

F∂lVi
F +

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kVi

D = 0, (7a)

∂tVi
F + Vl

F∂lVi
D + Vl

D∂lVi
F −

1
4
(dt)[

2
f (α) ]−1Dlk∂l∂kVi

F = 0, (7b)

while Equation (6) takes the form:

∂tVi
D + Vl

D∂lVi
D −

[
Vl

F + λ(dt)[
2

f (α) ]−1
∂l
]

∂lVi
F = 0, (8a)

9
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∂tVi
F + Vl

D∂lVi
F +

[
Vl

F + λ(dt)[
2

f (α) ]−1
∂l
]

∂lVi
D = 0. (8b)

For the non-rotational motions of the PBL structural units dynamics, the complex
velocity fields in Equation (2a) take the form:

V̂i = −2iλ(dt)[
2

f (α) ]−1
∂i lnΨ, (9)

where Ψ is the states function. From here, for:

Ψ =
√

ρeis, (10)

where
√

ρ is the amplitude and s is the phase, the complex velocity fields in Equation (9)
become explicitly:

V̂i = 2λ(dt)[
2

f (α) ]−1
∂is − iλ(dt)[

2
f (α) ]−1

∂i ln ρ, (11)

which enable the definition of the real velocity fields:

Vi
D = 2λ(dt)[

2
f (α) ]−1

∂is, (12)

Vi
F = iλ(dt)[

2
f (α) ]−1

∂i ln ρ. (13)

Through Equations (12) and (13) and using the mathematical procedures from [21–23],
Equation (8) reduces to the multifractal hydrodynamic equations:

∂tVi
D + Vl

D∂lVi
D = −∂iQ, (14)

∂tρ + ∂l

(
ρVl

D

)
= 0, (15)

with Q, the multifractal specific potential:

Q = −2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ√
ρ

= −Vi
FVi

F −
1
2

λ(dt)[
2

f (α) ]−1
∂lVl

F. (16)

Equation (14) gives the multifractal specific momentum conservation law of the PBL
dynamics, while Equation (15) produces the multifractal state density conservation law
of the same dynamics. The multifractal specific potential in Equation (16) implies the
multifractal specific force:

Fi = −∂iQ = −2λ2(dt)[
4

f (α) ]−2
∂i ∂l∂l

√
ρ√

ρ
, (17)

which shows the multifractality of the motion curves of the PBL dynamics.
We note that for external constraints, for example, the external scalar potential, U, the

multifractal hydrodynamic equations take the form:

∂tVi
D + Vl

D∂lVi
D = −∂i(Q + U), (18)

∂tρ + ∂l

(
ρVl

D

)
= 0. (19)

It is possible to extrapolate the following theoretical results using the equations previ-
ously mentioned:

I. The existence of a multifractal specific force implies that all PBL structure units must
be considered through a multifractal medium;

II. This medium can be considered a multifractal fluid whose dynamics are characterized
by the hydrodynamic model presented previously;

10
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III. Since the velocity field, Vi
F, is absent from the multifractal states density conserva-

tion laws, it induces the possibility of non-manifest PBL dynamics, meaning that it
facilitates the transmission of multifractal specific momentum and multifractal energy;

IV. All potential issues regarding reversibility and existence of the eigenstates are solved
by the conservation of multifractal energy and multifractal momentum;

V. When using the tensor:

τ̂il = 2λ2(dt)[
4

f (α) ]−2
ρ∂i∂l ln ρ, (20)

the multifractal specific potential (Q) equation can be defined as a multifractal equilibrium
equation:

ρ∂iQ = ∂l τ̂
il . (21)

The multifractal tensor τ̂il can now be written in the form:

τ̂il = η
(

∂lVi
F + ∂iVl

F

)
, (22)

with:
η = λ(dt)[

2
f (α) ]−1

ρ. (23)

Then, this is a multifractal linear constitutive equation that must be employed for a
multifractal “viscous fluid”.

3. PBL Dynamics Mimed as a Multifractal Atmospheric Tunnel Effect

Let us describe the PBL dynamics through the following assumptions:

I. The PBL, as a complex system both in a structural and functional perspective, can be
assimilated with a mathematical object of multifractal type;

II. PBL dynamics can be described through the scale relativity theory in the form of
multifractal hydrodynamic equations;

III. The PBL works as a multifractal atmospheric tunnel effect described through the
external scalar potential (see Figure 1):

U(x) =

⎧⎨⎩
0 −∞ < x < 0
U0 0 ≤ x ≤ a
0 a < x < +∞

, (24)

where U0 is the multifractal atmospheric barrier height and a is its width (the characteristics
of PBL).

Figure 1. External scalar potential configuration (multifractal atmospheric barrier—PBL) for the
tunnel effect of the multifractal (atmospheric) type.

11



Fractal Fract. 2022, 6, 747

Then, PBL dynamics are described through the multifractal energy conservation law
of the form:

Q + U = E, (25)

or explicitly:

2λ2(dt)[
4

f (α) ]−2 ∂l∂l
√

ρ√
ρ

+ U = E. (26)

In Equation (26), ρ is the multifractal atmospheric state density, U is the external scalar
potential, λ is the specific coefficient associated with the multifractal–non-multifractal tran-
sition, and E is the multifractal energy constant. We note that the results of Equation (26) are
given by means of the functionality of the first Newton’s principle applied to Equation (18)
on multifractal manifolds.

Considering the one-dimensional case, Equation (26) through the substitution:

√
ρ = θ(x), (27)

becomes:
∂xxθ(x) +

1

2λ2(dt)[
4

f (α) ]−2
(E − U)θ(x) = 0. (28)

In the following, the above equations will be used to mime PBL dynamics through
the multifractal atmospheric tunnel effect (any PBL structural unit with known energy
penetrates a barrier of greater energy than the incident one).

As it is shown in Figure 1, we distinguish three zones denoted by (1), (2), and (3) as:

(1). the multifractal atmospheric incidence zone;
(2). the multifractal atmospheric barrier;
(3). the multifractal atmospheric emergence zone.

In such context, if θ1, θ2, and θ3 are the multifractal functions corresponding to the
above mentioned three zones, we have the following equations:

d2θ1

dx2 + k2θ1 = 0, −∞ < x < 0 (29a)

d2θ2

dx2 − q2θ2 = 0, 0 ≤ x ≤ a (29b)

d2θ3

dx2 + k2θ3 = 0, a < x < +∞ (29c)

where:
k2 =

E

2λ2(dt)(4/ f (α))−2
, q2 =

U0 − E

2λ2(dt)(4/ f (α))−2
(30)

Now, through integration, the following solutions of the above equations are obtained:

θ1(x) = A1eikx + B1e−ikx, −∞ < x < 0 (31a)

θ2(x) = A2eqx + B2e−qx, 0 ≤ x ≤ a (31b)

θ3(x) = A3eikx, a < x < +∞ (31c)

where A1, B1, A2, B2, and A3 are constants. We note the following:

I. eikx corresponds to the multifractal incident atmospheric states density (from −∞) in
the multifractal zone (1) and to the multifractal emergent atmospheric states density
(to +∞) in the multifractal zone (3);

II. e−ikx corresponds to the multifractal reflected atmospheric states density, which
exists only in the multifractal zone (1), passing from x = 0 to x = −∞ since in the
multifractal zone (3), the external scalar potential is uniformly null.

12
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Since the general expression of the multifractal atmospheric current of the states
density in the one-dimensional case has the form [5,24]:

Jx = iλ(dt)(2/ f (α))−1

(
θ

dθ

dx
− θ

dθ

dx

)
(32)

then the following currents can be defined:

• The multifractal atmospheric current density of the multifractal atmospheric incident
states density in zone (1):

Ji = 2λ(dt)(
2

f (α) )−1k|A1|2 (33)

• The multifractal atmospheric current density of the multifractal atmospheric emergent
states density in zone (3):

Je = 2λ(dt)(2/ f (α))−1k|A3|2 (34)

• The multifractal atmospheric current density of the multifractal reflected atmospheric
states density:

Jr = −2λ(dt)(2/ f (α))−1|B1|2 (35)

These results give the possibility of a univocal characterization of the multifractal
atmospheric tunnel effect through the multifractal atmospheric transparency:

T =
Je

Ji
=

∣∣∣∣A3

A1

∣∣∣∣2 (36)

and the multifractal atmospheric reflectance:

R =
Jr

Ji
=

∣∣∣∣ B1

A1

∣∣∣∣2 (37)

Imposing now the coupling conditions (in x = 0 and x = a), both for the functions θi
and their derivates, i.e.,

θ1(0) = θ2(0) (38a)

dθ1

dx
(0) =

dθ2

dx
(0) (38b)

θ2(a) = θ3(a) (38c)

dθ2

dx
(a) =

dθ3

dx
(a) (38d)

the multifractal algebraic system is obtained:

A1 + B1 = A2 + B2 (39a)

ik(A1 − B1) = q(A2 − B2) (39b)

eqa A2 + e−qaB2 = eiqa A3 (39c)

q
(
eqa A2 − e−qaB2

)
= ikeiqa A3 (39d)

Following the same mathematical procedure from [24], the multifractal atmospheric
transparency takes the form:

T =
4q2k2

4q2k2 + (q2 + k2)2sh2(qa)
(40)
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while the multifractal atmospheric reflectance becomes:

R =
(k2 + q2)

2

(q2 − k2)2 + 4q2k2 · cth2(qa)
(41)

Moreover, in the old notations (30), it is obtained:

R =

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}
+ 4E(U0 − E)

(42)

T =
4E(U0 − E)

U2
0sh2

{[
(U0−E)

2λ2(dt)(4/ f (α))−2

]1/2
a

}
+ 4E(U0 − E)

(43)

For graphical dependencies, it is preferable to use the dimensionless coordinate system:

X = ka =

⎡⎣ E

2λ2(dt)(
4

f (α) )−2

⎤⎦
1
2

a (44a)

Y = qa =

[
(U0 − E)

2λ2(dt)(4/ f (α))−2

] 1
2

a (44b)

Then, the multifractal atmospheric transparency and multifractal atmospheric re-
flectance become:

R =
(X2 + Y2)

2

(Y2 − X2)2 + 4X2Y2cth2(Y)
(45)

T =
4X2Y2

4X2Y2 + (X2 + Y2)2sh2(Y)
(46)

The 3D variations of the multifractal atmospheric transparency, T, on the dimension-
less coordinates, X and Y, are depicted in Figure 2a,b:

(a) (b) 

Figure 2. The 3D variations of the multifractal atmospheric transparency, T, of the dimensionless
coordinates, X and Y: (a,b) the dependence T = T (X, Y).
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The 2D variations of the multifractal atmospheric transparency, T, on the dimension-
less coordinates, X and Y, are depicted in Figure 3a,b:

(a) (b) 

Figure 3. The 2D variations of the multifractal atmospheric transparency, T, of the dimension-
less coordinates, X and Y: (a) the dependence T = T (X, Y = constant); (b) the dependence
T = T (X = constant, Y).

In Figure 4a,b, the 3D variations of the multifractal–atmospheric reflectance, R, on the
dimensionless coordinates, X and Y, are given.

(a) (b) 

Figure 4. The variation of the multifractal atmospheric reflectance, R, of the dimensionless coordinates,
X and Y: (a,b) the dependence R = R (X, Y).

The dependence that T manifests with regards to X involves both minimal and asymp-
totic positive variations of the multifractal atmospheric transparency, while the dependence
of T with regards to Y shows only asymptotic positive variations of this transparency.
In the case of R, the behavior is exactly opposite, with the dependence that R manifests
with regards to X involving maximal and asymptotic negative variations of the multifrac-
tal atmospheric reflectance, while the dependence of R with regards to Y involves only
asymptotic negative variations of the multifractal atmospheric reflectance.

In Figure 5a,b, the 2D variations of the multifractal–atmospheric reflectance, R, on the
dimensionless coordinates, X and Y, are given.
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(a) (b) 

Figure 5. The 2D variations of the multifractal atmospheric reflectance, R, of the dimensionless coordi-
nates, X and Y: (a) the dependence R = R (X, Y = constant); (b) the dependence R = R (X = constant, Y).

In such a frame, since X is proportional with a minimal dimension relevant to the
PBL, namely the potential barrier width a, and T has a proportionality relation with the
atmospheric PBL temperature, Figure 3a can be transformed into Figure 6.

Figure 6. Example of a theoretical atmospheric temperature profile.

The theoretical results imply a temperature inversion, thus showing a good accord
with a common understanding of the atmospheric temperature profile. Furthermore, with
the decrease in transparency, a confined multifractal environment is created in the barrier,
which then leads to a greater states density and an increase in temperature, which is in
correspondence with the experimental results.

4. Experimental Design

For the purpose of confirming the reflectance and transparency results obtained so
far, real atmospheric profiles are required. This profiling is justified by the fact that our
analysis considers the PBL, and other atmospheric boundary layers, as multifractal barriers
whose lengths represent their thickness relative to an atmospheric profile perpendicular
to the ground level. Indeed, the fact that the non-dimensional parameters, X and Y, are
proportional to the parameter a points to the fact that vertical atmospheric profiles represent
the transport phenomena of multifractal atmospheric parameters through multifractal
barriers. Ideally, to test the theories of transparency, an atmospheric parameter with a high
degree of predictability and whose profile behaviors are relatively well known must be
chosen, and atmospheric temperature proves itself to be an ideal candidate. When verifying
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the inversion behavior of such a parameter, it is important to note that temperature has a
natural connection to the states density in all non-degenerated-type systems. In addition,
in our context, all multifractal physical measures are, in one way or another, proportional
or inversely proportional to the transparency in the multifractal barrier. However, what
also must be considered is that the equations for transparency and reflectance are non-
dimensional, in which case the proportionality or inverse proportionality can vary in the
way that it must be considered, and instead of perfect proportionality, patterns of behavior
must be identified.

In order for our theoretical results to be compared to real data, theoretical temperature
profiling must be achieved, and thus the transparency equation must be iterated as a model
for the theoretical modeling of the atmospheric temperature, as in Figure 6. The control
parameter of such a model, since we have considered the proportionality of X and Y to a,
is the PBLH, which in this case can be considered synonymous with a itself. To obtain the
PBLH, ceilometer data has been used, and temperature data has been obtained through
radiometer data. The ceilometer platform utilized in this study is a CHM15k ceilometer
operating at a 1064 nm wavelength, and the radiometer platform is an RPG-HATPRO
radiometer platform. Both are positioned in Galat, i, Romania, at the UGAL–REXDAN
facility found at coordinates 45.435125N, 28.036792E, 65 m ASL, which is a part of the
“Dunărea de Jos” University of Galat, i. These instruments have been chosen and set up
to conform to the standards imposed by the ACTRIS community. From a computational
perspective, the necessary calculations are performed through code written and operated
in Python 3.6. Four instances are chosen for this study: all four are time series taken on the
5th, 6th, 7th, and 8th of May 2022 (Figures 7–18). Static profiles are also shown, and all of
them are extracted from the beginning of the time series (Figures 19–22).

Figure 7. Time series of atmospheric RCS profiles; ceilometer data; Galati, Romania, 5 May 2022.

Figure 8. Time series of atmospheric temperature profiles; radiometer data; Galati, Romania,
5 May 2022.
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Figure 9. Time series of atmospheric temperature profiles; theoretical model data; Galati, Romania,
5 May 2022.

Figure 10. Time series of atmospheric RCS profiles; ceilometer data; Galati, Romania, 6 May 2022.

Figure 11. Time series of atmospheric temperature profiles; radiometer data; Galati, Romania,
6 May 2022.

18



Fractal Fract. 2022, 6, 747

Figure 12. Time series of atmospheric temperature profiles; theoretical model data; Galati, Romania,
6 May 2022.

Figure 13. Time series of atmospheric RCS profiles; ceilometer data; Galati, Romania, 7 May 2022.

Figure 14. Time series of atmospheric temperature profiles; radiometer data; Galati, Romania,
7 May 2022.
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Figure 15. Time series of atmospheric temperature profiles; theoretical model data; Galati, Romania,
7 May 2022.

Figure 16. Time series of atmospheric RCS profiles; ceilometer data; Galati, Romania, 8 May 2022.

Figure 17. Time series of atmospheric temperature profiles; radiometer data; Galati, Romania,
8 May 2022.
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Figure 18. Time series of atmospheric temperature profiles; theoretical model data; Galati, Romania,
8 May 2022.

Figure 19. Profile of atmospheric temperature; radiometer data and theoretical model data; Galati,
Romania, 5 May 2022; straight line: radiometer temperature; dotted line: theoretical temperature.

Figure 20. Profile of atmospheric temperature; radiometer data and theoretical model data; Galati,
Romania, 6 May 2022; straight line: radiometer temperature; dotted line: theoretical temperature.
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Figure 21. Profile of atmospheric temperature; radiometer data and theoretical model data; Galati,
Romania, 7 May 2022; straight line: radiometer temperature; dotted line: theoretical temperature.

Figure 22. Profile of atmospheric temperature; radiometer data and theoretical model data; Galati,
Romania, 8 May 2022; straight line: radiometer temperature; dotted line: theoretical temperature.

As can be seen in the timestamps of the time series, they all represent datasets taken for
the entirety of each day, starting from midnight (Figures 7–18). The temporal resolution of
the ceilometer data is one profile every minute, and the spatial resolution is 3.5 m. From the
ceilometer profiles, typical low atmosphere behaviors are readily available, and the diurnal–
nocturnal cycle of the PBL can be observed (Figures 7, 10, 13 and 16). To determine PBLH,
a vertical spatial derivative algorithm was applied to the profiles—this well-established
method, called the “gradient method”, has also been compared in past studies with more
current algorithms [25–27]. This PBLH is then iterated in order to produce the theoretical
temperature time series as previously explained (Figures 9, 12, 14 and 18). It is found
that while the theoretical time series seems to slightly overestimate the inversion and
slightly underestimate the temperature lapse at higher altitudes, they are a close match
to the behavior of the experimental time series (Figures 8, 9, 11–14, 17 and 18). These
results point towards the fact that our multifractal interpretation has merits, meaning that
the model does predict the temperature inversion and subsequent lapse throughout the
atmosphere. Considering the fundamental capability of the model to properly assess the
general behavior and evolution of the experimental data, it can be used in future studies as a
theoretical predictor of atmospheric temperature if further adjustments are performed. For
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a more precise analysis of the order differences between the experimental and theoretical
temperature datasets to be performed, static profiles are shown next.

A discussion regarding the nature of temperature profiles is in order; it is known
that for diurnal profiles, there exists a slightly greater decrease in temperature in the SL,
and for nocturnal profiles, there is an inversion at the SL [1,28–31]. Otherwise, inversions
also mark the occurrence of the PBLH [1]. In this case, solely nocturnal profiles have been
chosen from the beginning of the time series. As can be seen in the temperature profile
figures, the theoretical model predicts the inversion at the boundary layer, although once
again, it does not always accurately predict the altitude at which the inversion takes place
(Figures 19–22). This is because the model has not been adjusted to account for any surface
radiative effects, merely taking into consideration the effects of the boundary layer. That
being said, maximal differences between the theoretical and the experimental temperature
profiles are on the order of degrees throughout the entirety of the profile; thus, it is possible
to state that the model shows success in approximating both the order and the spatial
evolution of the atmospheric temperature profile and iterating it with PBLH data produces
satisfactory results. The slight differences between Figures 19 and 22, Figures 20 and 21
must also be highlighted—even though the order of the differences between the theoretical
and real profiles seems to remain the same, the theoretical profile in Figure 22 might show a
more favorable shape because of the slightly lower temperature gradient that can be found
in the early segment of the dataset represented by Figure 17.

5. Conclusions

In conclusion, by employing a multifractal interpretation of atmospheric dynamics,
wherein the laws that govern atmospheric motions are reliant on the notion of scale resolu-
tion, it is possible to construct the framework for atmospheric parameter behavior inversion.
By considering the atmosphere from a multifractal states density perspective, the PBL, or
any other atmospheric boundary layer, can be stated as a potential barrier with associated
transparencies and reflectance, which directly govern the fluctuations of all multifractal
atmospheric parameters. This is then found, through the use of non-dimensional plotting,
to imply inversions in such parameters, including temperature. Finally, radiometer data of-
fers various examples of atmospheric temperature inversions, wherein theoretical products
made by iterating the model with PBLH data given by a ceilometer platform agree with
experimental data.
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Abstract: The study of hidden attractors plays a very important role in the engineering applications of
nonlinear dynamical systems. In this paper, a new three-dimensional (3D) chaotic system is proposed
in which hidden attractors and self-excited attractors appear as the parameters change. Meanwhile,
asymmetric coexisting attractors are also found as a result of the system symmetry. The complex
dynamical behaviors of the proposed system were investigated using various tools, including time-
series diagrams, Poincaré first return maps, bifurcation diagrams, and basins of attraction. Moreover,
the unstable periodic orbits within a topological length of 3 in the hidden chaotic attractor were
calculated systematically by the variational method, which required six letters to establish suitable
symbolic dynamics. Furthermore, the practicality of the hidden attractor chaotic system was verified
by circuit simulations. Finally, offset boosting control and adaptive synchronization were used to
investigate the utility of the proposed chaotic system in engineering applications.

Keywords: hidden attractor; unstable periodic orbit; circuit simulation; coexisting attractors; offset
boosting; adaptive synchronization

1. Introduction

Chaos theory has grown tremendously in recent decades and holds great promise
for practical applications [1,2]. The study of chaotic systems began with the discovery of
strange attractors by Lorenz in 1963 [3], when he constructed a three-dimensional (3D)
quadratic chaotic system that exhibited the famous butterfly effect. Many other chaotic
systems have since been presented, some of which satisfy the Šhil’nikov theorem [4], such
as the Chen system [5], Qi system [6], Lü system [7], and Rössler system [8]. Recently,
two types of attractors were classified by Leonov and Kuznetsov [9], namely self-excited
attractors and hidden attractors, and the difference between them is reflected in whether
the attractor intersects a neighborhood of any unstable fixed points. The Lorenz system
and the systems mentioned above are all referred to as self-excited attractors, while others
that do not satisfy the Šhil’nikov theorem are referred to as hidden attractors. Owing
to the unique features of hidden attractors, they are difficult to locate and thus play a
vital role in encryption and communication [10–12]. However, hidden attractors also
bring disadvantages and present difficulties in the simulation of drilling systems and
phase-locked loops [13].

Based on this, the study of hidden attractors has become an attractive research di-
rection and has received considerable attention from researchers. There are three main
types of hidden attractors, which are systems with no equilibria [14–17], only stable equi-
libria [18–20], and infinitely many equilibria [21,22]. The types of hidden attractors with
infinite numbers of equilibria can be divided into various systems, including systems with
line equilibria, ellipsoidal equilibria, and circular equilibria. Currently, for hidden attractors
with infinite equilibria, researchers have primarily focused on systems with line equilib-
ria [23–25]. By using a computer search, Jafari et al. discovered nine chaotic flows with line
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equilibria, all of which were hidden attractor chaotic systems [26]. Some new systems with
hidden chaotic attractors were constructed by introducing perturbations or nonlinear terms
into existing hidden attractor chaotic systems [27,28], while many new systems have also
been obtained on the basis of modifying the Sprott system and Jafari system [29,30]. The
existence of multi-stability can be found in hidden attractor chaotic systems, as reflected
by the fact that coexisting attractors have been discovered, and thus, performance flexibil-
ity can be achieved [31,32]. In addition, researchers have also concentrated on studying
hidden chaotic attractors in fractional-order systems [33–36], memristor systems [37–40]
and jerk systems [41,42]. Hyperchaotic systems with planes or surfaces of equilibrium
points that have hidden attractors are of particular interest, as they exhibit more complex
dynamical behaviors than low-dimensional chaotic systems [43,44]. Multiscroll chaotic
systems have exceptional benefits in the areas of digital image encryption and private
communication [45]. The multi-stability in asymmetric systems, conditional symmetric
systems, and self-reproducing systems also have attracted widespread attention [46–48].
In Ref. [49], the complex dynamic behaviors and hidden attractors in delayed impulsive
systems were explored by means of various bifurcation analyses.

In this paper, we constructed a new hidden attractor chaotic system and explored its
dynamical behavior using attraction basins, power spectra, bifurcation diagrams, and other
nonlinear analysis tools. Our motivation was to develop an effective method to devise
a novel chaotic system with hidden and coexisting attractors based on the existing ones,
enabling us to further understand the properties of hidden attractors and multi-stability.
The main difficulties in constructing such a system is that there is no general method
to clarify which form of feedback controller can be added to produce a new variable-
boostable system with both hidden attractors and coexisting attractors. The application of
the proposed design lies in the new system being easy to control and synchronize, and the
variable can be boosted to any level, so it can reduce the number of components required for
signal conditioning. Moreover, offset boosting can be combined with amplitude control to
achieve the full range of linear transformations of the signal. Furthermore, the existence of
coexisting attractors can also make the system more flexible without adjusting parameters,
and it can be used with suitable control strategies to cause switching between various
coexisting states. Therefore, it has potential application prospects in the engineering field.

The main contributions and novelty of this work are summarized as follows. (1) We
proposed a new 3D chaotic system and explored the adaptive synchronization of the new
system. Compared to the above contributions in the literature, the prominent feature of the
new system is that it belongs to the variable-boostable chaotic flow, which indicated that
it is convenient for chaotic applications. (2) We found self-excited attractors and hidden
attractors with two stable equilibrium points in this dissipative system when the parameters
were varied. In addition, we investigated the existence of various coexisting asymmetric
attractors. To the best of our knowledge, this combination of novel characteristics has
rarely been reported. (3) We developed a topological classification method and built
complicated symbolic dynamics with six letters instead of four, encoding the unstable
periodic orbits embedded in the hidden chaotic attractor, which allowed one to perform a
more comprehensive analysis of the periodic orbits.

The rest of the paper is organized as follows. A new hidden attractor chaotic system is
proposed, and its fundamental properties and dynamical characteristics under parameter
variations are explored in Section 2. In Section 3, a numerical method for calculating
periodic orbits, the variational method, is introduced. Section 4 uses the variational method
to systematically calculate the periodic orbits of the new system. In Section 5, a corre-
sponding circuit is designed to verify its practicality. Offset boosting control and adaptive
synchronization of the novel system are investigated in Section 6. Finally, Section 7 presents
the conclusions.
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2. New Hidden Chaotic System with Two Stable Equilibria

In retrospect, Wei and Yang introduced the generalized Sprott C system with three
real parameters [50]:

dx
dt

= a(y − x),

dy
dt

= −cy − xz, (1)

dz
dt

= y2 − b.

When a = 10, b = 100, and c = 0.4, there is a hidden chaotic attractor in system (1),
which is characterized by two stable fixed points.

With the use of the Bendixson theorem, a hidden attractor was found in a complex
variable Lorenz chaotic system [51]. In this work, we discovered the hidden attractor by
adding a disturbance term to the existing chaotic system, which could lead to the generation
of a new system, but there is no universal method. We first found that the construction of
hidden attractor chaotic systems cannot be realized by adding a constant or linear term to
the generalized Sprott C system. Therefore, we attempted to add a nonlinear term to the
system, and it was further confirmed that adding it to the third equation of Equation (1)
could generate hidden chaotic attractors. Inspired by system (1), we propose a new system
by adding the kxy term to the third equation as follows:

dx
dt

= a(y − x),

dy
dt

= −cy − xz, (2)

dz
dt

= y2 − b + kxy,

where x, y, z are the state variables, and a, b, c, k are positive constant parameters. When
we select the parameter values of a = 12, b = 100, c = 10, and k = 4.6, the three Lyapunov
exponents of system (2) can be estimated. To avoid transient chaos, we extended the time,
and the Lyapunov exponents after 20,000 s were L1 = 0.9861, L2 = 0, and L3 = −22.9857.
The largest Lyapunov exponent was greater than 0, which confirmed the existence of chaos,
as shown in Figure 1. Meanwhile, according to the Kaplan–Yorke formula,

DKY = j +
1∣∣Lj+1
∣∣ j

∑
i=1

Li = 2 +
L1 + L2

|L3| = 2.0429, (3)

the fractal dimension also further verifies that the new system is chaotic.

2.1. Basic Properties of New Chaotic System

The basic properties of the new chaotic system are described as follows.
(1) Symmetry about the z-axis: When the coordinates are transformed, (x, y, z) →

(−x,−y, z), the form of system (2) remains unchanged.
(2) Dissipativity:

∇ · V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
= −a − c. (4)

Since a and c are positive constants, the new system (2) is dissipative. Based on
the equation,

dV
dt

= e−a−c, (5)

the system converges to a set of measure zero exponentially as the volume of the phase
space is contracted, V = V0e−a−c. Therefore, the system will end up fixed to an attractor.
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(3) Equilibrium: The new system has two fixed points:

E1 = (

√
b

k + 1
,

√
b

k + 1
,−c),

E2 = (−
√

b
k + 1

,−
√

b
k + 1

,−c). (6)

The Jacobi matrix can be obtained as follows:

J =

⎛⎝ −a a 0
−z −c −x
ky 2y + kx 0

⎞⎠. (7)

The characteristic equation is

f (λ) = λ3 + (a + c)λ2 + (ac + 2xy + kx2 + az)λ + 2axy + akx2 + akxy. (8)

By substituting the coordinates of the two fixed points separately, we obtain the same
characteristic equation:

f (λ) = a3λ3 + a2λ2 + a1λ + a0, (9)

where

a3 = 1,

a2 = a + c,

a1 = b +
b

k + 1
, (10)

a0 = 2ab.

From the Routh–Hurwitz criterion, the two fixed points are stable if the following
conditions are satisfied: ai > 0, (i = 0, 1, 2, 3), a2a1 − a3a0 > 0. The condition that needs
to be satisfied for this system to have hidden attractors is (c − a)k > −2c. For the current
parameters (a, b, c, k) = (12, 100, 10, 4.6), the Routh–Hurwitz stability criterion can be
satisfied. As a result, the two fixed points E1 and E2 are both stable node-focus points. The
new system is a chaotic system in which a strange attractor is hidden.

(4) Power spectrum: The power spectrum of the chaotic state is almost fully covered
with background and broad peaks, as shown in Figure 2.

Figure 1. Lyapunov exponent spectrum of the new system (2) for (a, b, c, k) = (12, 100, 10, 4.6).
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Figure 2. Continuous broadband power spectrum of the new chaotic system for (a, b, c, k) =

(12, 100, 10, 4.6).

(5) Phase portraits: Using the fourth-order Runge–Kutta numerical integration method,
the 2D phase diagrams of the chaotic system for a time-length of 200 s with a = 12, b = 100,
c = 10, and k = 4.6 were obtained from the initial conditions (x0, y0, z0) = (1, 1, 1), as
shown in Figure 3.
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Figure 3. Projection in different two-dimensional (2D) phase spaces of system (2) for (a, b, c, k) =
(12, 100, 10, 4.6): (a) x-y plane, (b) x-z plane, and (c) y-z plane.
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In addition, based on the definition of a hidden attractor, we checked the basins of
attraction to determine whether a chaotic attractor of the new system could be found from
the initial conditions near the equilibrium points. A cross-section at z = −10 was selected,
and the basins of attraction were captured in three regions, as shown in Figure 4a, in which
the blue dots represent the crossing trajectories of the chaotic attractor. The initial values
in the red and yellow regions converged to the fixed points E1 and E2, respectively. The
orange region represents chaos. In simple terms, the initial values in this region result
in a chaotic state. Therefore, it can be clearly observed from the basins of attraction that
system (2) contains a hidden chaotic attractor.

The exact correspondence is illustrated in Figure 4b, where the phase diagram tra-
jectory finally converges to the fixed point E1 for the initial value I1 = (12,−5,−10) in
the red attraction basin and to the fixed point E2 for the initial value I2 = (−12, 5,−10) in
the yellow attraction basin, while the initial value (1, 1,−10) in the orange region finally
evolves to chaos. In Figure 4c, coexisting time series for different initial values are also
shown, which indicates the multi-stability in system (2).

(a) (b)
x

y

-80

-60

20

-40

-50

-20z

0

20

40

0 0
-20 50

E
1 E

2

I
3

I
2

I
1

(c)
0 20 40 60 80 100

t

-20

-15

-10

-5

0

5

10

15

x

Figure 4. (a) Three colored basins of attraction at z = −10 on (x, y) plane. (b) Three-dimensional
(3D) views of the chaotic attractor and two fixed point attractors. (c) Coexisting time-series diagram
of x(t).

2.2. Observation of Chaotic and Complex Dynamics

The system parameters change to enrich the dynamical behaviors of the new system (2).
In order to completely explore the diverse dynamical behaviors, we investigated the
bifurcations under parameter variations and verified the complicated dynamical behaviors
with the aid of bifurcation diagrams, largest Lyapunov exponent spectra, and division
diagrams of two parameters.
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2.2.1. Fix b = 100, c = 10, and k = 4.6 and Vary a

We fixed the parameters as b = 100, c = 10, and k = 4.6 while letting a vary in the
region [0, 30]. A summary of the results of the bifurcation diagram and the corresponding
largest Lyapunov exponent spectrum are shown in Figure 5. When a increased, the new
system converged to a fixed point and then transitioned to chaos, after which the solution
became periodic through an inverse period-doubling bifurcation, then evolved to chaos,
and finally degenerated to periodic solutions again.

Different types of coexisting attractors can also be found in system (2), which shows
that the multi-stability of the new system is very rich. As the 2D phase portraits show
in Figure 6a,b, system (2) included two coexisting chaotic attractors for the parameter
a = 27.35 when different initial values (x0, y0, z0) = (1, 1, 1) and (x0, y0, z0) = (−1,−1, 1)
were selected. Moreover, when the parameter was set at a = 29, the system entered a
periodic state, and due to the symmetry of the system, the coexistence of two periodic
attractors appeared, as depicted in Figure 6c,d. A periodic attractor whose tip faced right
or left was obtained depending on the initial values.
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Figure 5. (a) Bifurcation diagram and (b) largest Lyapunov exponent spectrum versus a, where
b = 100, c = 10, and k = 4.6.

2.2.2. Fix a = 12, c = 10, and k = 4.6 and Vary b

Keeping the parameters a = 12, c = 10, and k = 4.6 constant, we let b vary from 40
to 140. Figure 7 shows the bifurcation diagram and the maximum Lyapunov exponent
diagram versus b. The system went through a process of period-doubling bifurcations to
chaos, transitioning from a periodic to a chaotic solution. The solution was chaotic over
a large range, from 68 to 140, which was accompanied by periodic windows. In Figure 8,
we present the exact details of the various periodic solutions that occur when b varies. It
is worth noting that asymmetric periodic attractors coexist when b = 47 with the initial
values of (x0, y0, z0) = (1, 1, 1) and (x0, y0, z0) = (−1,−1, 1).

2.2.3. Fix a = 12, b = 100, and k = 4.6 and Vary c

We varied c from −10 to 20 while keeping a = 12, b = 100, and k = 4.6. The bifurcation
diagram and largest Lyapunov exponent spectrum are shown in Figure 9. The system
exhibited intriguing dynamical behaviors in this case, undergoing a pitchfork bifurcation
followed by a period-doubling bifurcation route to chaos, interspersed with several periodic
windows, and finally, it converged to the equilibrium point. Rich dynamical behaviors can
also be observed from the phase diagrams with different parameter values, as displayed in
Figure 10. The complexity of the chaos varied when parameter c was changed, and there
was a significant difference, which can also be reflected by the size of the largest Lyapunov
exponent. Compared with the strange attractor when c = 8 (see Figure 10c), we conclude
that the chaotic behavior of the system was more complex when c = −2 (see Figure 10b).
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Figure 6. Two-dimensional views of coexisting chaotic attractors and periodic attractors in system (2)
with parameters b = 100, c = 10, and k = 4.6 : (a) a = 27.35, (x0, y0, z0) = (1, 1, 1), (b) a = 27.35,
(x0, y0, z0) = (−1,−1, 1), (c) a = 29, (x0, y0, z0) = (1, 1, 1), and (d) a = 29, (x0, y0, z0) = (−1,−1, 1).
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Figure 7. (a) Bifurcation diagram of |y| with b as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, c = 10, and k = 4.6.
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Figure 8. Three-dimensional views of various limit cycles with parameters a = 12, c = 10,
and k = 4.6: (a) b = 45, (x0, y0, z0) = (1, 1, 1), (b) b = 47, (x0, y0, z0) = (1, 1, 1), (c) b = 47,
(x0, y0, z0) = (−1,−1, 1), and (d) b = 65, (x0, y0, z0) = (1, 1, 1).
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Figure 9. (a) Bifurcation diagram of |y| with c as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, b = 100, and k = 4.6.
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Figure 10. Three-dimensional views of rich dynamical behaviors with parameters a = 12, b = 100,
and k = 4.6: (a) c = −10, (b) c = −2, (c) c = 8, and (d) c = 15. The initial values of
(x0, y0, z0) = (1, 1, 1) were selected.

2.2.4. Fix a = 12, b = 100, and c = 10 and Vary k

We varied k from 0 to 20, again keeping the other parameters constant at a = 12,
b = 100, and c = 10. From the results in Figure 11, it is evident that the system transitioned
from convergence to a fixed point into chaos, which was accompanied by periodic windows
in between. Table 1 lists the Lyapunov exponents and Kaplan–Yorke dimensions for the
different parameter values, demonstrating the diverse dynamical behaviors with the change
of the k value.
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Figure 11. (a) Bifurcation diagram of |y| with k as the varied parameter and (b) the largest Lyapunov
exponent spectrum, where a = 12, b = 100, and c = 10.
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Table 1. Lyapunov exponents and Kaplan–Yorke dimension of system (2): (a, b, c) = (12, 100, 10) and
(x0, y0, z0) = (1, 1, 1).

k L1 L2 L3 DKY Dynamics

1 −0.794149 −0.795286 −20.4107 0 Equilibrium
3 0.961912 0 −22.9613 2.0419 Chaos

4.225 0 −0.0340439 −21.9686 1.0 Period
5 0.920123 0 −22.9146 2.0399 Chaos

5.54 0 −0.0956672 −21.9091 1.0 Period
13 0.742037 0 −22.7375 2.0324 Chaos

2.2.5. Division of Different Parameters

The division diagram for the parameters c and k is shown to investigate the character-
istics of the dynamical behaviors of the new system when the other parameters remained
constant at a = 12 and b = 100. The parameter c was set to vary between −10 and 30,
whereas the parameter k was altered between 0 and 25. Figure 12a shows the division
of this region by a pseudo-colored map, which was obtained by computing the largest
Lyapunov exponents. There are a variety of colors in the division diagram, corresponding
to rich variations. The different colors represent different dynamical behaviors. Red, orange,
yellow, and green represent chaotic states, cyan corresponds to a periodic state, and blue
indicates an equilibrium state. The complexity of the chaos increased as the color became
redder. The division diagram of the parameters c and k coincides well with the different
dynamical behaviors for the individual parameters shown in Figures 9 and 11. Similarly,
we fixed c = 10 and k = 4.6, and the division diagram for parameters a and b was obtained,
as shown in Figure 12b, in which most regions are periodic. The division diagrams in
Figure 12 indicate that the dynamical behaviors of the new system were very rich.

(a) (b)

Figure 12. Diagram of largest Lyapunov exponents with different parameters: (a) division for
parameters c and k (a = 12 and b = 100) and (b) division for parameters a and b (c = 10 and k = 4.6).

3. Variational Method

Chaotic motion consists of multiple unstable periodic orbits embedded in the strange
attractor [52]. The study of periodic orbits gives us a better understanding of the chaotic
properties of dynamical systems. If the system is high-dimensional or strongly chaotic,
many existing methods for finding unstable periodic orbits will become inefficient or even
fail. Here, we use the new method proposed by Lan and Cvitanović, namely the variational
method [53]. This method is robust and converges at a fast rate. The variational method
employs the logical limit of the multi-point shooting method. First, we have to make an
initial loop guess for the overall topology of the unstable periodic orbit and then drive it
toward the evolution of the real periodic orbit. The following partial differential equation
dominates the loop evolution toward the cycle:
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∂2∼x
∂s∂τ

− λA
∂
∼
x

∂τ
− v

∂λ

∂τ
= λv − ∼

v. (11)

In Equation (11), λ is used to control the period, the deformation of the loop is
described by the fictitious time τ, the intrinsic coordinate used to parameterize the loop
is s ∈ [0, 2π], Aij =

∂vi
∂xj

denotes the gradient matrix of the velocity field, v is the dynamic

flow vector field, defined by the derivative of x, and
∼
v represents the tangential velocity of

the loop.
The stability of the numerical method can be achieved using the Newton descent

method. At this point, the cost function obtained by the evolution of the loop toward the
cycle is monotonically decreasing:

F2[(
∼
x)] =

1
2π

∮
L(τ)

d
∼
x[

∼
v(

∼
x)− λv(

∼
x)]2. (12)

Through iteration, the tangential velocity direction of the loop is continuously brought
closer to the velocity direction of the dynamical flow. When τ → ∞, the two directions
become consistent, and thus, the loop converges to the true periodic orbit defined by the
dynamical system flow. Consequently, the period of the periodic orbit can be calculated
from the following equation:

Tp =
∫ 2π

0
λ(

∼
x(s, ∞))ds. (13)

Discretization of the loop derivatives is required to ensure numerical stability:

∼
vn ≡ ∂

∼
x

∂s
|∼
x=

∼
x(sn)

≈ (
∧
D

∼
x)n. (14)

A five-point approximation is used for the numerical calculations, and the matrix is

∧
D =

N
24π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Thus, Equation (11) can be changed to the following form with a fictitious time Euler
step δτ: ⎛⎝∧

A −∧
v

∧
a 0

⎞⎠(δ
∼
x

δλ

)
= δτ

(
λ
∧
v −

∧∼
v

0

)
, (16)

where
∧
A =

∧
D − λdiag[A1, A2, ..., AN ],

∧
v = (v1, v2, ..., vN)

t,
∧∼
v = (

∼
v1,

∼
v2, ...

∼
, vN)

t, and
∧
a is an

Nd-dimensional row vector, which restricts the change of the coordinates. By inverting the
matrix on the left of Equation (16), we can solve for δ

∼
x and δλ to acquire the deformation

of the loop coordinates and period. The banded lower–upper decomposition method can
be used to accelerate the computation, and the Woodbury formula can be employed to deal
with periodic and boundary terms [54]. The variational method can be effectively used to
calculate the unstable periodic orbits of various chaotic systems [55–57]. In the next section,
we utilize the variational method to locate the unstable periodic orbits in the hidden chaotic
attractor of system (2).
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4. Symbolic Encoding of Unstable Periodic Orbits in the Hidden Chaotic Attractor
with Six Letters

Periodic orbit theory can be used to calculate many physical quantities, such as the
fractal dimension and topological entropy [58,59]. In most cases, the theory is acquired by
performing calculations for the required unstable short-period orbits. Here, we explore
the unstable periodic orbits in the hidden chaotic attractor of system (2) for the parameter
values of (a, b, c, k) = (12, 100, 10, 4.6). When the Poincaré section z = −10 is chosen, the
first return map can be plotted, which contains a large number of dense points with a
certain hierarchical structure, as shown in Figure 13. There were five branches, and thus,
it was necessary to build complex symbolic dynamics to encode the periodic orbits of
the new system (2) for the current parameters [60]. Taking this into account, we used
the variational method to locate the cycles of the new system, and six cycles with simple
topological structures were found, as shown in Figure 14. The symbolic encoding rules of
these periodic orbits are as follows:

Figure 13. Poincaré first return map with a section z = −10 for (a, b, c, k) = (12, 100, 10, 4.6).

(1) For a cycle with a smooth ellipse shape around a fixed point, the symbol 0 is used
to denote the cycle around the left and the symbol 1 is used to denote the cycle around
the right.

(2) For an irregular cycle around a fixed point with a smaller extension on the z-axis
around 100, which has a blunt fold, in the shape of a raised wing, the symbol 2 is used
to denote the cycle around the left and the symbol 3 is used to denote the cycle around
the right.

(3) For an irregular cycle around a fixed point with a larger extension on the z-axis
around 140, which has a very sharp fold, forming the shape of a ginkgo leaf, the symbol 4
is used to denote the cycle around the left and the symbol 5 is used to denote the cycle
around the right.
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Figure 14. Six building block cycles for system (2), (a, b, c, k) = (12, 100, 10, 4.6): (a) cycle 0, (b) cycle 1,
(c) cycle 2, (d) cycle 3, (e) cycle 4, and (f) cycle 5.

The six cycles presented above are the building blocks that make up the orbits of the
new system, and the other complex long-period orbits are composed of them. Thus, we
can calculate the cycles systematically by utilizing the six-letter symbolic dynamics. It can
be clearly seen that cycles 0 and 1 were symmetric to each other, as were cycles 2 and 3
and cycles 4 and 5. They were cycles with a topological length of 1, while cycles had a
topological length of 2 when they rotated once around each of the left and right fixed points
or twice around a fixed point. Since there was z-axis symmetry in the system, we could
likewise find symmetric and asymmetric cycles with a topological length of 2, as shown in
Figure 15.

The cycles could be classified into two types: self-conjugated and mutually conjugated.
The periods of the cycles that were conjugated to themselves were not equal to those of
the other cycles, such as cycles 01, 23, and 45. Two mutually conjugated cycles had equal
periods and symmetry, e.g., cycles 03 and 12. We discovered that several cycles with
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topological length 2 were pruned, which means that they did not exist, such as cycles 02, 13,
and 04. We also found that building blocks with symbols 0 or 1 could not be combined with
the building blocks with symbols 4 or 5 to form a periodic orbit. Therefore, for example,
for the cycles of topological length 3, there would not be cycles 045 and 124. After some
attempts, we found that cycles 012, 123, 002, and 022 were also pruned. To obtain a clear
picture of the periodic orbits of the new system, we show the 2D phase diagrams of nine
cycles with topological length 3 in Figure 16. All the cycles and their periods Tp within a
topological length 3 are tabulated in Table 2.
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Figure 15. Unstable periodic orbits with topological length of 2 in the new system: (a) cycle 01, (b) 23,
(c) 45, (d) 03, (e) 24, and (f) 25.

Figure 13 shows that the multi-branch structure of the first return map created some
difficulties for the analysis of the unstable periodic orbits. The establishment of the symbolic
encoding approach based on the topological structure of the trajectory and its circuiting
property with respect to different equilibrium points showed the effectiveness of the
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analysis of the cycles in the hidden chaotic attractors. It is hoped that this method can also
be used to encode periodic orbits embedded in hidden hyperchaotic attractors.
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Figure 16. Unstable periodic orbits with a topological length of 3 in the new system, where the two
stable equilibria are marked with “+”: (a) cycle 001, (b) 013, (c) 023, (d) 033, (e) 003, (f) 243, (g) 245,
(h) 253, and (i) 345.

Table 2. Unstable cycles in the new system within a topological length of 3.

Length Itineraries Periods Length Itineraries Periods Length Itineraries Periods

1 0 0.645509 3 223 3.552630 3 001 2.324411
1 0.645509 233 3.552630 011 2.324411
2 1.186404 033 2.981070 123 —
3 1.186404 122 2.981070 032 —

2 01 1.559290 021 2.653639 003 2.401931
23 2.366105 013 2.653639 112 2.401931
12 1.792160 031 — 113 —
03 1.792160 012 — 002 —
02 — 132 2.962501 022 —
13 — 023 2.962501 133 —

1 4 1.515729 3 445 4.815813 3 354 4.221816
5 1.515729 455 4.815813 234 3.878345

2 24 2.695403 344 4.221765 325 3.878345
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Table 2. Cont.

Length Itineraries Periods Length Itineraries Periods Length Itineraries Periods

35 2.695403 255 4.221765 225 3.892262
25 2.706161 335 3.881997 334 3.892262
34 2.706161 224 3.881997 254 4.211233
45 3.031718 244 4.211320 345 4.211233

3 235 3.889210 355 4.211320
324 3.889210 245 4.221816

5. Circuitry of Proposed System

Multi-scroll chaotic systems often use current–feedback operational amplifiers (CFOAs)
to implement the circuit, which helps to enhance the frequency bandwidth [61]. FPGA
implementation has strong universality and is less limited by hardware resources [62],
while circuit simulation has the characteristics of simple debugging and a low cost. To
verify the correctness and feasibility of the new proposed system, circuit simulations were
performed in this study, and we selected the NI Multisim 14 software (accessed on 1 May
2015 and website address https://www.ni.com/zh-cn/suppot/downloads) to simulate
the circuit. The state variables x, y, and z were reduced by a factor of 10 to avoid the state
variables being out of the dynamic range of the device. Therefore, system (2) is rewritten as

·
X = a(Y − X),
·
Y = −cY − 10XZ, (17)
·
Z = 10Y2 − 0.1b + 10kXY,

where X = 0.1x, Y = 0.1y, and Z = 0.1z.
By performing a time-scale transformation of Equation (17), in which the time-scale

factor is set to τ0 = 1
R0C0

= 1000 and t = τ0τ, we obtain

·
X = 1000a(Y − X),
·
Y = −1000cY − 10, 000XZ, (18)
·
Z = 10, 000Y2 − 100b + 10, 000kXY.

Based on Kirchhoff’s law, the following equation can be obtained from the circuit
diagram in Figure 17:

·
X =

R3

R2R4C1
Y − R3

R1R4C1
X,

·
Y = − R9

R7R10C2
Y − R9

R8R10C2
0.1XZ, (19)

·
Z =

R16

R13R17C3
0.1Y2 +

R16

R15R17C3
V1 +

R16

R14R17C3
0.1XY.

The circuit consisted of three functional modules: addition, integration, and inversion,
and the three channels corresponded to the three variables of the system. As shown in
Figure 17, the circuit included nineteen resistors, three capacitors, nine TL082CP operational
amplifiers, and three analog multipliers (the output gain was 0.1). The power supply
voltage was ±17 V. The coefficients of system (2) were a = 12, b = 100, c = 10, and k = 4.6,
and the values of the circuit components were C1 = C2 = C3 = 100 nF, R1 = R2 = 8.333 kΩ,
R3 = R9 = R16 = 100 kΩ, R4 = R5 = R6 = R7 = R10 = R11 = R12 = R15 = R17 = R18 =
R19 = 10 kΩ, R8 = R13 = 1 kΩ, R14 = 0.217 kΩ, and V1 = −1 V.
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The designed circuit was successfully implemented in Multisim, and the results are
reported in Figure 18. The results of the circuit implementation agreed with the numerical
simulation results, which validated the realizability of the proposed new system (2).

Figure 17. Circuit diagram of the new hidden attractor chaotic system.
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(a) (b)

Figure 18. Phase portraits of the circuit from Multisim: (a) X-Z plane and (b) X-Y plane.

6. Offset Boosting Control and Adaptive Synchronization of New System

Engineering applications for variable-boostable systems show considerable promise,
and they are simple to control once offsets are added [63,64]. As the offset changes, bipolar
or unipolar signals may be produced. We select z as the state variable, since it only occurs
once in system (2). The control parameter w has the ability to boost the state variable z. As
a result, the offset-boosted system can be written as

dx
dt

= a(y − x),

dy
dt

= −cy − x(z + w), (20)

dz
dt

= y2 − b + kxy,

where the control parameter w is a constant.
We select parameter values of a = 12, b = 100, c = 10, and k = 4.6, and the initial

values of the variables were all set to 1. As shown in Figure 19, it is evident from the
attractors with various offsets into the y-z phase space and the time sequence diagram that
a chaotic signal could change from being a bipolar signal to a unipolar signal. As the value
of the control parameter w changed, the attractor moved up and down along the z-axis. For
example, when w was taken as 0, a bipolar signal existed. When the value of w was taken
as −75, a positive unipolar signal appeared, while a negative unipolar signal appeared
when w was taken as 40.
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Figure 19. (a) Chaotic attractors with different offsets w in the y-z plane; (b) State z with different
values of the offset boosting controller w.
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It can be seen from the above discussion that our new proposed system has an easy-
to-control nature, and the adjustment of the overall signal can be achieved simply by
changing a single parameter, i.e., adding an offset w to the variable z to achieve a shift in
the z-direction, which has potential in engineering applications.

Chaotic synchronization is the key to achieving chaotic and confidential communica-
tion. There are various schemes for synchronization [65], and in this section, we take an
adaptive synchronization approach to realize the chaotic synchronization of two identical
systems with unknown parameters due to its robustness and simple implementation.

The following master system is the new hidden attractor chaotic system we introduced:

·
xm = a(ym − xm),
·

ym = −cym − xmzm, (21)
·

zm = y2
m − b + kxmym,

and the slave system adopts the following form by adding adaptive controls ux, uy, and uz
for each of the three directions:

·
xs = a(ys − xs) + ux,
·

ys = −cys − xszs + uy, (22)
·

zs = y2
s − b + kxsys + uz.

The synchronization error is set to

ex = xs − xm,

ey = ys − ym, (23)

ez = zs − zm.

Then, the error dynamics of the slave system (22) and master system (21) can be
written as

·
ex = a(ey − ex) + ux,
·

ey = −cey − xszs + xmzm + uy, (24)
·

ez = y2
s − y2

m + kxsys − kxmym + uz.

The examination of the stability of the error system is based on the transformation of
the synchronization issue between the master and slave systems. The adaptive controller
selected in this scheme is

ux = −â(t)(ey − ex)− k1ex,

uy = ĉ(t)ey + xszs − xmzm − k2ey, (25)

uz = −y2
s + y2

m − k̂(t)xsys + k̂(t)xmym − k3ez,

in which k1, k2, and k3 are positive gain constants and â(t), b̂(t), ĉ(t), and k̂(t) are parameter
estimates. Therefore, substituting Equation (25) into Equation (24) and simplifying it yields

·
ex = (a − â(t))(ey − ex)− k1ex,
·

ey = −(c − ĉ(t))ey − k2ey, (26)
·

ez = (k − k̂(t))xsys − (k − k̂(t))xmym − k3ez.
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The parameter estimation error is set to

ea(t) = a − â(t),

eb(t) = b − b̂(t), (27)

ec(t) = c − ĉ(t),

ek(t) = k − k̂(t).

Then, we obtain

·
ea = −·

â,
·

eb = −
·
b̂, (28)

·
ec = −·

ĉ,
·

ek = −
·
k̂.

The error dynamics can be rewritten as follows:

·
ex = ea(ey − ex)− k1ex,
·

ey = −ecey − k2ey, (29)
·

ez = ekxsys − ekxmym − k3ez.

The quadratic Lyapunov function can be constructed as follows:

V =
1
2
(e2

x + e2
y + e2

z + e2
a + e2

b + e2
c + e2

k). (30)

Differentiating V along the trajectories of the system yields

·
V = −k1e2

x − k2e2
y − k3e2

z − ea(
·
â − ex(ey − ex))− eb

·
b̂ − ec(

·
ĉ + e2

y)− ek(
·
k̂ + ezxmym − ezxsys). (31)

Thus, the parameter estimates can be set as

·
â = ex(ey − ex) + k4ea,
·
b̂ = k5eb, (32)
·
ĉ = −e2

y + k6ec,
·
k̂ = ezxsys − ezxmym + k7ek,

where k4, k5, k6, and k7 are positive gain constants.
We obtained a negative definite Lyapunov function:

·
V = −k1e2

x − k2e2
y − k3e2

z − k4e2
a − k5e2

b − k6e2
c − k7e2

k . (33)

According to Lyapunov stability theory, under the adaptive controller, all the syn-
chronization errors ex, ey, and ez and parameter estimation errors ea, eb, ec, and ek globally
and exponentially converge to 0 when the initial values are chosen at random. Therefore,
through the above theoretical analysis, it is known that the master system and the slave
system can be fully synchronized.

The effectiveness of the proposed approach was verified by numerical simulations,
which are described as follows. The parameters were set as (a, b, c, k) = (12, 100, 10, 4.6),
which resulted in a hidden chaotic attractor. The gain constants were selected as
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ki = 3 (i = 1, 2, 3, 4, 5, 6, 7). The initial values of the master system, slave system, and
parameter estimates were taken as

(xm(0), ym(0), zm(0)) = (−1, 2.5,−4), (xs(0), ys(0), zs(0)) = (−0.5,−0.5,−5), (â(0), b̂(0), ĉ(0), k̂(0)) = (2, 113, 15, 10) (34)

Figure 20 displays the full synchronization of the respective states of the master and
slave systems. It can be seen that after a short time, the state trajectories of the master
system xm, ym and zm gradually overlapped with the slave system xs, ys and zs. The time-
histories of the synchronization errors and parameter estimation errors are also shown in
Figure 21, which indicate that all the errors asymptotically converged to zero with time.
In summary, the simulation results of this new hidden chaotic system demonstrated the
operability of the chaotic circuit and adaptive synchronization control.
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Figure 20. Time evolution diagrams of the master and slave systems showing results of the complete
synchronization of the respective states: (a) x variable, (b) y variable, and (c) z variable.
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Figure 21. Time evolution of (a) synchronization errors ex, ey, and ez, and (b) parameter estimation
errors ea, eb, ec, and ek.
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7. Conclusions

On the basis of the generalized Sprott C system, we added a nonlinear cross-term to
the third equation to construct a new hidden attractor chaotic system that has two stable
equilibria. To quantitatively examine its chaotic properties, several tools, including the
Lyapunov exponent spectrum, power spectrum, and the Poincaré first return map, were
applied. The influences of four parameters on the dynamical behaviors of the system were
explored by means of bifurcation diagrams, maximum Lyapunov exponent spectra, and
division diagrams of two parameters, and the rich and complex dynamical behaviors of
the system were also presented in combination with the phase portraits. Meanwhile, the
existence of various coexisting attractors was discovered, which indicated a multi-stability
phenomenon. Furthermore, we calculated the unstable periodic orbits embedded in the
hidden chaotic attractor with the help of the variational method, and we encoded and
classified the cycles using six-letter symbolic dynamics. Finally, a circuit simulation, offset
boosting control, and adaptive synchronization linked this hidden attractor chaotic system
to physical experiments and verified the practicality of the system.

We believe that the periodic orbit coding method used in this paper can provide a
reference for analyzing periodic orbits in other hidden attractor chaotic systems. More
results from studies on the applications of the proposed hidden attractor chaotic system
will be revealed in future research. Moreover, the hidden attractors in fractional-order
systems have also attracted extensive attention in recent years. When a single parameter
changes, self-excited, hidden, or nonhyperbolic chaotic attractors will appear in a new
fractional-order chaotic system with different families of hidden and self-excited attrac-
tors [66]. In a new fractional-order chaotic system without any equilibrium points based
on a fracmemristor, the hidden chaotic attractors are propagated infinitely using a trigono-
metric function [67]. We can investigate the fractional-order system corresponding to this
hidden attractor chaotic system to gain a better grasp of the complexity of chaotic systems
and their variety of practical applications. To present the multi-stability of coexisting attrac-
tors, memristor chaotic systems can also be introduced. Attention should also be paid to the
FPGA implementation of chaotic systems, which will be the focus of our subsequent work.
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Abstract: SEM micrographs of the fracture surface for UO2 ceramic materials have been analysed.
In this paper, we introduce some algorithms and develop a computer application based on the
time-series method. Utilizing the embedding technique of phase space, the attractor is reconstructed.
The fractal dimension, lacunarity, and autocorrelation dimension average value have been calculated.

Keywords: ceramics; SEM micrographs; fractal analysis; time series; fractal dimension; lacunarity;
autocorrelation dimension

1. Introduction

The uranium chemical element has the capital letter U as its symbol, and its atomic
number is 92. Statistically speaking, it constitutes three important isotopes that may
definitely be found in nature: 238U (99.28% abundance), 235U (0.71% abundance), and 234U
(0.0054% abundance). Classified in the periodic table as an actinide, uranium is generally a
solid body at room temperature [1]. Uranium is a naturally radioactive element, from the
physics viewpoint. It powers nuclear reactors in the form of nuclear fuel and helps to make
atomic bombs (still improperly called), but more precisely, named nuclear bombs, because
fission is a nuclear process.

Uranium-235 is an isotope of uranium that makes up about 0.71% of naturally existing
uranium in nature. Unlike the predominant isotope uranium-238 (fertile material), uranium-
235 is a fissile material; that is, they can support a nuclear chain reaction and a nuclear
fission, respectively. Moreover, uranium-235 is the only fissile isotope that exists in nature
as a primordial nuclide.

At first sight, real ceramic materials may be interpreted as inorganic and non-metallic
materials. They are typically crystalline in nature (but may also contain a combination of
glassy and crystalline phases) and are compounds formed among metallic and non-metallic
elements. Chemically speaking, they are materials with atomic and ionic bonds, of which
the complex hyaline structure is obtained by sintering. This is basically responsible for
many of the properties of ceramics [2–4]. The word ceramic comes from the Greek word
keramicos, which in direct translation, means burnt clay. In conclusion, being typically a
crystalline construction, it can be considered traditionally as a mixed compound mostly
made of metallic and non-metallic elements, so a composite material.

Ceramic materials are usually fabricated by the application of heat (at high temper-
atures) upon processed clays and other natural crude materials (especially in powder
form) to shape a rigid solid product. Ceramic final products that reasonably utilize rocks
and minerals as a starting point must endure certain processing in order to command the
particle size; potion purity; particle size repartition; and finally, the heterogeneity of the
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mixture. These important characteristics play a major role in the total properties of the
completed ceramics. From a chemical point of view, ceramic materials are mainly metallic
and non-metallic oxides. In conclusion, the clays from which they are obtained are part
of the large category of alumino-silicates, substances present in a high percentage in the
Earth’s crust [2]. Combustion results in a crystalline internal structure, with covalent and
electrovalent (ionic) chemical bonds between the constituent atoms and molecules, but we
do not wish to go into such details here.

Worth knowing is also the fact that, when uranium dioxide (UO2), recognized as
nuclear fuel, is stuffed with supplementary ions of oxygen in the meshes of the network,
it can form nonstoichiometric compounds (e.g., UO2+x,), of which the composition may
change with the function of exterior environmental conditions, among which we enu-
merate temperature itself and the partial pressure of oxygen. The fracture comportment
of a sintered ceramic UO2 substance has been studied in light of microstructural (micro
porosity, grain size, etc.) parameters, with everything being in the function of the most
adequate composition delivered and the final architecture. Utilizing SEM images as an
investigation method, the fracture properties have been evaluated and compared for differ-
ent microstructural conditions present in the same sample of solid ceramic materials and in
a sintered UO2 pellet specimen. As a general conclusion, we can consider that the fracture
strength in the low-density area was superior in contrast to the that of the high-density
area. Among other things, this was assigned to fissure-type deflection and bifurcation at
the grain boundary, expected as owed to the porosity presence. This paper realizes an
investigation of the uranium dioxide SEM pictures by utilizing the time series evaluation
procedures and fractal analysis, a natural prolongation of a usual research executed before
but on ductile materials [5–8].

Being justified by recent developments in inferential statistical analysis procedures
for chaotic modular processes and by the new concept of spatial chaos, we introduce
a continuation of deterministic boarding of the structural microscopic study of ceramic
integral materials.

The work in this paper is highlighted in four sections. The first section introduces the
background of the use of uranium dioxide (UO2) as nuclear fuel and ceramic materials in
general. The second section focuses on providing theoretical support regarding the fractal
dimension, lacunarity, and time (spatial) series. The third section introduces the results
obtained and elaborates on them in a discussion. Finally, the paper concludes in the fourth
and last section devoted to the conclusions.

2. Theoretical Background in Brief

2.1. Fractal Dimension and Lacunarity

The fractal-image-specific feature highlighted here is the fractal dimension, condi-
tioned by the following formula:

D = lim
ε→0

(
lnN
lnε

)
(1)

where N is the cell number and ε is the cell size [9,10].
The lacunarity numerical value is computed in accordance with the following formula:

Λ =

(
σ

μ

)2
(2)

when σ is the standard deviation of the mass and μ is also the mass average value out
of the total picture [11,12]. To estimate the fractal dimension, it is necessary to compose
a graphic and afresh; to calculate the lacunarity, the graphical algorithm of least squares
must be utilized [13,14].
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2.2. Time (Spatial) Series

Let T be a dynamic system in the classical sense. More precisely, T is said to be such a
mathematical object (in fact a system) if there exists a map f : X → X, such that

T : N × X → X, T(n, x) = ( f ◦ f ◦ . . . ◦ f )(x) = f n(x) (3)

Let F: X→ R be a map with real determinations, which can be considered a mathe-
matical measure of physical state space in Lagrange sense. If the variables t, τ ∈ S can be
appreciated as being fixed (τ is named time delay) and x ∈ X is a stationary state, then a
repeated measurement succession

F(x), F(T(t + τ, x)), F(T(t + 2τ, x)), F(T(t + 3τ, x)), . . . , F(T(t + (d − 1)τ, x)) (4)

can be named as a time series (beginning with (t, x)) correlated to T [15,16].
For the determined state x ∈ X, a correlated time (spatial) series with the discrete

dynamical system (see definition above) is written as

F(x), F( f (x)), . . . , F
(

f n−1(x)
)

(5)

By definition, we call being an attractor (or attraction group) for the system T a
mathematical object that has the following qualities:

(1) K ⊂ X is a nonempty set;
(2) K is closed;
(3) K is invariant, i.e., T(x) ⊂ X, for all x ∈ K.

Moreover, it is stated that there is a vicinity such that

lim
t→∞

d(T(t, x), K) = 0, for all x ∈ U (6)

Takens Embedding Theorem [17] is the principal outcome that theoretically permits
attractor reconstruction for a physical dynamical system, which begins from the numerical
data of one algebraic time series. Thus, if K is a dense invariant set of T and if b is the
box-counting fractal dimension of K, then the map

H : K → R2b+1 (7)

is described by

H(x) = F(T(t, x)), F(T(t − τ, x)), . . . , F(T(t − 2bτ, x)) (8)

The function defined above is generically injective. Analytically speaking, a property
is called generic if the mentioned quality on a set that comprises a countable intersection
of open dense sets is true [18,19]. A spatial series is, by definition, a suite of observations
made on an orderly variable with regard to two structural coordinates. However, in such
data, usually, the necessary statistical independence is absent. Regarding spatial series in
statistics, we must think about random spatial series and how such a data series works
mathematically. A spatial series, but mostly a random spatial series, is an assembly of
casual variables F(x1, x2, . . . , xn), called random variables, a set of functions depending on
certain spatial coordinates (x1, x2, . . . , xn).

We try to construct a statistical series of the second order, in other words, a series
for which (x1, x2, . . . , xn) argument fluctuates only on an ordinary Cartesian grid/lattice.
Utilizing the appropriations of the linear (Hilbert) space connected to the series of data, the
notions of novelty and a complete nondeterministic series are highlighted [15].

Regarding the comportment of a time (spatial) series (in other words, the quality of
randomness), this one can be investigated by calculating the autocorrelation function value,
which is an estimate of the influence of past states on the future state [16,17]. As far as
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that goes, a discrete dynamical system T interpreted by the map f : X→X, the autocor-
relation function formula associated with the spatial series F(x), F( f (x)), . . . , F( f p(x)) is
determined as follows:

C(n) =
∑

p−n
i=0

(
F ◦ f i − m

)
(x) · (F ◦ f i+n − m

)
(x)

∑
p−n
i=0

(
F ◦ f i

)2
(x)

(9)

where m is the time-average function:

m =
∑

p
i=0

(
F ◦ f i)(x)

p + 1
(10)

2.3. SEM Picture Exploration

Chaotic statistical comportment has been proven in numerous physical, chemical, eco-
nomic, and biological natural processes. Today, just two statistical chaos physics concepts
are unanimously accepted. The primal conception is the temporal chaos for which any
function of variables in phase space are time-dependent. The second conception, the spatial
statistical chaos concept, indicates a chaos state of these data with respect to spatial coor-
dinates. This philosophical vision opens the way for accession to nonlinear deterministic
procedures/technics of spatiotemporal phenomena [16].

Even though fundamental elements of ceramic thermo-mechanical comportment
are recognized, the nature, interplay, and multitude of physical, chemical, and ambient
variables implicated in the engendering of a true microstructure cannot be exactly defined.
Therefore, it seems legitimate to adopt a viable viewpoint and to consider the micro
fractures as various textures, in fact veritable ‘black boxes’, which have been caused by
two independent processes, respectively, a stochastic process (in a large sense) or another
process related to matter manifestation in the format of deterministic spatial chaos [20]. As
a primary check, if the studied sample could be an expression of deterministic chaos, we
can be mastering methods of classical time series analysis found at disposition, which refer
to an estimation of the power spectrum and autocorrelation function, in principle. To come
into possession of particular characteristics of the system, it is necessary for the attractor
reconstruction techniques to be applied, which allows for estimations of the Lyapunov
exponent and of the correlation dimension.

For the study of UO2 SEM pictures, we used computer programming initially created
for metallic or alloy materials but subsequently excellently adapted to ceramic materials,
a software application that generates a time series associated with the image, then recon-
structs the associated attractor, and finally computes its autocorrelation dimension [21].
The procedure for investigating a SEM picture (micrograph) is debuted by loading an
image bitmap version in the computer software application used. The first step in our
consideration is to generate the weighted fractal dimensions map (WFDM) through which
the potential modified structures themselves are revealed (conformable to a precedent arti-
cle [15]). The second step to follow is to produce a real spatial series for a picture-selected
zone, as follows: the initial picture is cut into slices that are approximatively 12–16 pixels
deep; by placing all these fragments/pieces together, we procure an entire tape/strip. The
spatial series s(t) is acquired by calculating the mean value of the grey level for every pixel
column within the tape. The investigation of these nonlinear data suites starts with the
attractor reconstruction by embedding the spatial series in an upper dimensional phase
space. We establish a reasonable time delay τ > 0 from the beginning and then, continuing,
for a determined embedding dimension d, we take into account the collection/set

s(t), s(t + τ), s(t + 2τ), . . . , s(t + (d − 1)τ) (11)

which is assimilated to a formal point in a pseudo phase space and immediately constructed
(the series sampling procedure).
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In the end, we obtain the attractor by connecting these points that are conformable to
their succession. The attractor integral correlation C(r), as a distance function, is the expec-
tation that any two points from a phase space is separated by a Euclidian interval/distance
less than or equal to r. It can now be assumed that C(r) is a power-type function of r, of
which the exponent designated by D is mostly assimilated with the autocorrelation dimen-
sion. The value of D is close to the regression line slope related to autocorrelation function
C(r). This method of calculation is reiterated for different embedding dimension values.
We close this routine action with the autocorrelation dimension plot; with a function of the
embedding dimension value; and finally, by calculating its regression line slope [22–27].

3. Results and Discussion

Further on, we offer an example of the procedure to investigate the SEM pictures of
a UO2 ceramic material [23]. We emphasise/mention that the sorting of the micrographs
with the referenced areas was executed as stated by the WFDM method [15]. Conforming
to the mentioned procedure, three sets of characteristic images are studied as much as
possible [25,26].

Step 1. Study of the entire picture.
We study the images enclosed in a yellow rectangle, practically the entire picture.

In Figure 1, the original SEM image and an entire selected area are presented, while in
Figure 2, the graphical attractor reconstruction, in two and three dimensions, is shown.

 

Figure 1. Original image and a selected area.

Figure 2 shows the attractor reconstruction [20] for the rectangle with yellow sides
of normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 1. Both attractor reconstructions are presented. In embedding
dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].

First, we survey the spatial series generated by the entire picture (Figure 3).
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Figure 2. Attractor reconstruction.

Figure 3. The time series generated by the selected area in Figure 1.

In Figure 3, the continuous green line placed horizontally represents the series average
value over the entire time considered.

According to the algorithm, further on, we will study a modified area (Figure 4) and
gravity poles are determined (Figure 5).

 

Figure 4. The selection of the modified area (according to WFDM).
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Figure 5. The gravity poles of the modified area.

From Figure 6, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area.

Figure 6. The autocorrelation dimension versus the embedding dimension for the modified area.

The graphic of the entire area autocorrelation, in Figure 6, representing the correlation
dimension versus the embedding dimension, shows the slope computation. The correlation
dimension versus the embedding dimension slope is 0.1022.

In Figure 7, the primary processing of the selected image 1 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.

In Figure 8, the secondary processing of the selected image 1, including the binarized
version and the application of the mask, are presented.
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(a) (b) (c) 

Figure 7. Primary processing of the selected image 1: (a) original image (the portion in the yellow
border); (b) the grayscale version; and (c) the grayscale version without luminance.

  
(a) (b) 

Figure 8. Secondary processing of the selected image 1: (a) binarized version; (b) application of the
mask. A threshold of 25 was used for binarization.

Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.8220, standard deviation s = ±

√
σ2 = ±0.3440,

and lacunarity Λ = 0.0357 were obtained, as in Table 1.

Table 1. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 1 1.8220 ±0.3440 0.0357

Figure 9 (see below) represents the three-dimensional graph of the voxel representation
for image 1.
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Figure 9. Voxels representation for image 1.

Step 2. The study of the selected zones images from the entire picture (according to
Figure 10).

 

Figure 10. The first distinct zone selection.

In Figure 10, we selected one distinct zone, the yellow rectangular frame zone, consid-
ered with different structures from a first visual analysis.

Figure 11 shows the attractor reconstruction [20] for the rectangle with yellow sides
of normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 10. Both attractor reconstructions are presented. In embedding
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dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].

Figure 11. Attractor reconstruction.

Further on, in Figure 12, the selection of the modified area with the application of
WFDM for Figure 10 is presented. Staying on the same subject, the gravity poles of the
modified area for Figure 10 are showcased in Figure 13.

 

Figure 12. The selection of the modified area (WFDM) for Figure 10.
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Figure 13. The gravity poles of the modified area for Figure 10.

Second, we study the time series generated by the picture associated with the selected
modified area in Figure 14.

 
Figure 14. The time series generated by the selected modified area for Figure 10.

In Figure 14, the continuous green line placed horizontally represents the series average
value over the entire time considered.

From Figure 15, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area (WFDM for Figure 10).

Figure 15. The autocorrelation dimension versus the embedding dimension for the modified area.
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The graphic of the modified area (WFDM for Figure 10) autocorrelation, in Figure 15,
representing the correlation dimension versus the embedding dimension, shows the slope
computation. The correlation dimension versus the embedding dimension slope is 0.1455.

In Figure 16, the primary processing of the selected image 2 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.

   
(a) (b) (c) 

Figure 16. Primary processing of the selected image 2: (a) original image (the portion in the yellow
border); (b) the grayscale version; and (c) the grayscale version without luminance.

In Figure 17, the secondary processing of the selected image 2, including the binarized
version and the application of the mask, are presented.

 
 

(a) (b) 

Figure 17. Secondary processing of the selected image 2: (a) binarized version; (b) application of the
mask. A threshold of 25 was used for binarization.

Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.7751, standard deviation s = ±

√
σ2 = ±0.3363,

and lacunarity Λ = 0.0359 were obtained, as in Table 2.
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Table 2. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 2 1.7751 ±0.3363 0.0359

Figure 18 (see below) represents the three-dimensional graph of the voxel representa-
tion for image 2.

Figure 18. Voxels representation for image 2.

Step 3. The study of the second chosen zone image according to Figure 19.

 

Figure 19. Image and a selected area for the second distinct zone.
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Figure 20 shows the attractor reconstruction [20] for the rectangle with yellow sides of
a normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 19. Both attractor reconstructions are presented. In embedding
dimension 2, some points are observed, and in embedding dimension 3, some broken lines
are noticed [16,17].

Figure 20. Attractor reconstruction.

Further on, in Figure 21, the selection of the modified area with the application of
WFDM for Figure 19 is presented. Staying on the same subject, the gravity poles of the
modified area for Figure 19 are showcased in Figure 22.

Second, we study the time series generated by the picture associated with the selected
modified area in Figure 23.

From Figure 23, we can determine the slope of the autocorrelation dimension versus
the embedding dimension for the modified area (WFDM for Figure 19).

 

Figure 21. The selection of the modified area (WFDM) for Figure 19.
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Figure 22. The gravity poles of the modified area for Figure 19.

 
Figure 23. The time series generated by the selected modified area for Figure 19.

In Figure 23, the continuous green line placed horizontally represents the series average
value over the entire time considered.

The graphic of the modified area (WFDM for Figure 19) autocorrelation, in Figure 24,
representing the correlation dimension versus the embedding dimension, shows the slope
computation. The correlation dimension versus the embedding dimension slope is 0.1304.

Figure 24. The autocorrelation dimension versus the embedding dimension for the modified area.
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In Figure 25, the primary processing of the selected image 3 is depicted. This suite
contains a set of three images, more specifically, from left to right, the original image
(the portion in the yellow border), the grayscale version, as well as the grayscale version
without luminance.

   
(a) (b) (c) 

Figure 25. Primary processing of the selected image 3: (a) original image (the portion in the yellow
border); (b) the grayscale version; and (c) the grayscale version without luminance.

In Figure 26, the secondary processing of the selected image 3, including the binarized
version and the application of the mask, is presented.

  
(a) (b) 

Figure 26. Secondary processing of the selected image 3: (a) binarized version; (b) application of the
mask. A threshold of 25 was used for binarization.

Following the numerical evaluations with the appropriate software of the selected
image, the values of fractal dimension D = 1.8103, standard deviation s = ±

√
σ2 = ±0.3508,

and lacunarity Λ = 0.0375 were obtained, as in Table 3.

Table 3. Calculation of fractal parameters.

Name Fractal Dimension Standard Deviation Lacunarity

Image 3 1.8103 ±0.3508 0.0375
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Figure 27 (see below) represents the three-dimensional graph of the voxel representa-
tion for image 3.

Figure 27. Voxels representation for image 3.

Final Discussions

The substance of the work refers to the fact that the deformation of ceramics is different
from that of metals and alloys, being small compared to that of metals, which means
that they are fragile substances, unlike metals and alloys, which are ductile substances,
characterized by consistent deformation at the same stress. In addition, the break develops
at different levels of the loading load (tension); that is, the break in ceramics is made at
a high level of stress, with an order of magnitude higher than the break in metals and
alloys. We will continue to detail the differences in deformation and fracturing behaviour
for ceramics and their connection with the fractal dimension of the image and its lacunarity.

We will present a mini explanation of the writing of this study below. The paper
proposes a quantitative analysis of the SEM images of the fracture surface of UO2, using
the fractal dimension of the image and its lacunarity. This information, obtained through
the fractal analysis, is closely related to highlighting the type of fracture (brittle in our case)
and the microcracks produced in the material. As can be seen, there is a direct connection
with the microdeformations present on the image in the area without significant tearing
of the material and a directly proportional increase in the lacunarity in the area with the
rupture produced.

The method was explained above, but we also want to make a presentation of the
things performed to put the method into operation. We have examined the fracture surfaces
of two distinct areas with different microstructures to test for fractal behaviour. The zones
are also differentiated by a simple visual observation, as they have distinct aspects due to
the fact that one of the zones is unaffected by the breaking process, while the second zone
is distinct due to the fact that it is a specific breaking zone.

A slit island analysis was used to determine the fractal dimension, D, of successively
sectioned fracture surfaces. We found a correlation between increasing the fractional
part of the fractal dimension and increasing toughness. In other words, as the toughness
increases, the fracture surface increases in roughness. However, more than just a measure
of roughness, the applicability of fractal geometry to a fracture implies a mechanism for
generation of the fracture surface. The results presented here imply that brittle fracture is a
fractal process; this means that we should be able to determine processes on the atomic
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scale by observing the macroscopic scale by finding the generator shape and the scheme
for generation inherent in the fractal process. In addition, we attempt to relate the fractal
dimension to fracture toughness. We also show that, in general, the fractal dimension
increases with increasing fracture toughness.

4. Conclusions

The SEM micrographs of the fracture surface for a ceramic UO2 material, using the
fractal analysis technique and time (spatial) series, have been investigated.

For the SEM picture analysis, a software application that generates a time series asso-
ciated with the image, and then reconstructs the attractor and computes its autocorrelation
dimension was developed.

The present study was carried out on a statistically sufficient number of SEM micro-
graphs, treated according to the procedure of modified areas. To avoid augmentation in
the article size, only one integral SEM picture has been presented from which one normal
area (first zone) and another one corresponding to a modified area (second zone) have been
selected.

The fractal dimension of the entire picture is D = 1.8220 ± 0.3440 and lacunarity is
Λ = 0.0357, and for the first zone (normal area), fractal dimension is D = 1.7751 ± 0.3363
and lacunarity is Λ = 0.0359. For the second zone (modified area), the fractal dimension
D = 1.8103 ± 0.3508 and lacunarity Λ = 0.0375 were obtained.

The average of the autocorrelation dimension for entire picture is 0.1023. The average
of the autocorrelation dimension for the normal area of the first zone is 0.1455. The average
of the autocorrelation dimension for the modified area of the second zone is 0.1304.
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Dynamic Analysis of a Novel 3D Chaotic System with Hidden
and Coexisting Attractors: Offset Boosting, Synchronization,
and Circuit Realization
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Abstract: To further understand the dynamical characteristics of chaotic systems with a hidden
attractor and coexisting attractors, we investigated the fundamental dynamics of a novel three-
dimensional (3D) chaotic system derived by adding a simple constant term to the Yang–Chen system,
which includes the bifurcation diagram, Lyapunov exponents spectrum, and basin of attraction,
under different parameters. In addition, an offset boosting control method is presented to the state
variable, and a numerical simulation of the system is also presented. Furthermore, the unstable cycles
embedded in the hidden chaotic attractors are extracted in detail, which shows the effectiveness of
the variational method and 1D symbolic dynamics. Finally, the adaptive synchronization of the novel
system is successfully designed, and a circuit simulation is implemented to illustrate the flexibility
and validity of the numerical results. Theoretical analysis and simulation results indicate that the
new system has complex dynamical properties and can be used to facilitate engineering applications.

Keywords: hidden attractor; coexisting attractors; offset boosting; symbolic dynamics; circuit
simulation; adaptive synchronization

1. Introduction

Since the meteorologist Lorenz discovered chaos phenomena in 1963 [1], chaos has
been widely and deeply studied. As such, with the development of computer science
and technology, several continuous chaotic systems have been discovered, including the
Chua, Sprott, and Jerk systems [2–6]. The shapes of chaotic attractors are various, and
the two representative shapes are the wing shape and scroll shape. Chaos widely exists
in three-dimensional (3D) or high-dimensional continuous nonlinear dynamical systems.
It is considerably important to produce new chaotic systems based on existing chaotic
attractors when studying chaos. A wide range of engineering problems can be investigated
by applying the complexity of chaotic systems [7], including image encryption, secure
communication, and control and synchronization. Thus, it is of significance to analyze the
dynamics of new chaotic systems.

Recent research involves classifying periodic and chaotic attractors as self-excited at-
tractors or hidden attractors [8]. The self-excited attractor has an attraction basin associated
with the unstable equilibrium, while the attraction basin of a hidden attractor does not
intersect with the small neighborhood of any equilibria. It has been found that attractors in
a dynamical system with stable equilibria [9–11], an infinite number of equilibria [12–17],
or no equilibrium points [18–21] are hidden attractors. Owing to the unique dynamic
characteristics of the hidden attractor, it has become a research hotspot in recent years.
Self-excited and hidden chaotic attractors can be separately observed in Matouk’s hyper-
chaotic systems [22]. In Ref. [23], hidden attractors are put forward from an existing chaotic
saddle through a boundary crisis. New 3D autonomous chaotic systems without linear
terms, which have an infinite number of equilibrium points that display complex dynamics,
have also been proposed [24,25]. In Ref. [26], a new inductor-free two-memristor-based
chaotic circuit with three line equilibrium points was found. Synchronization and control of
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a chaotic system with a hidden attractor has been implemented by numerical simulation [27].
Zeng et al. investigated a special memristor-based Jerk system in which self-excited and
hidden attractors can be introduced [28]. Based on the Jerk chaotic system, a multi-scroll
hyperchaotic system with hidden attractors that can produce any number of scrolls was
also devised [29].

Many nonlinear dynamical systems often exhibit coexisting attractors in their re-
spective attraction basins [30,31], and it is thus of great significance to discuss coexisting
attractors. In Ref. [32], a new 4D chaotic system with coexisting and hidden attractors was
generated. A novel 5D system with extreme multi-stability and hidden chaotic attractors
has been presented [33]. Coexisting hidden attractors were also constructed in a 4D seg-
mented disc dynamo [34]. In Ref. [35], coexisting hidden attractors with complex transient
transition behaviors were explored in a simple 4D system with only one control parameter.
The dynamics of a novel 4D multistable chaotic system having a plane as the equilibria has
been introduced [36], and several interesting dynamic characteristics, such as antimonotone
bifurcations and offset boosting, are also revealed via common nonlinear analysis tools. In
Ref. [37], a new 5D chaotic system with a hidden attractor and coexisting attractors was
derived and its dynamical behavior analyzed numerically. Pham et al. also discovered
coexisting attractors in a novel 3D system without equilibria [38].

In this work, we constructed a novel 3D system with a double-wing chaotic attractor
and two stable equilibrium points. The prominent feature of the new system is that it
belongs to the category of hidden attractors. We also illustrated that the system is variable-
boostable and has various coexisting attractors for a determined range of parameters.
To the best of our knowledge, this combination of novel characteristics has not yet been
reported in such a hidden attractor chaotic system with stable equilibrium points. Fi-
nally, we established an electronic analog circuit of the new double-wing chaotic system
through MultiSIM, demonstrating that the mathematical model has practical feasibility for
circuit realization.

This rest of this paper is organized as follows. Section 2 presents the mathematical
model of the system and its dynamic characteristics. In Section 3, the complex dynamical
behaviors of the new double-wing chaotic system are analyzed numerically, and basins of
attraction of various coexisting attractors are shown. To systematically locate the unstable
cycles embedded in the hidden chaotic attractor, 1D symbolic dynamics is introduced in
Section 4, which can be reliably utilized in calculations. Section 5 presents the MultiSIM
electronic circuit simulation study. To stimulate interest in such systems and realize robust
technological applications, Section 6 introduces adaptive synchronization with unknown
parameters. Finally, several concluding remarks are given in Section 7.

2. Mathematical Model and Its Properties

Yang and Chen proposed a new 3D chaotic system with one saddle and two stable
node-focus points [39] that connects the Lorenz and Chen systems and denotes a transition
from one to the other. The form of the Yang–Chen system is given in Equation (1), and the
complex dynamics and compound structure of the system were investigated and discussed
with careful numerical simulations [39]:

dx
dt

= a(y − x),

dy
dt

= cx − xz, (1)

dz
dt

= xy − bz.
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Based on this system, we added a simple constant term to the third equation and
obtained a novel 3D chaotic system,

dx
dt

= a(y − x),

dy
dt

= cx − xz, (2)

dz
dt

= xy − bz − d,

where a, b, c, and d are real parameters. Because Equation (2) is modified from Equation (1),
and because Equation (1) is obtained from the classical Lorenz model without one dissi-
pative term −y, the meanings of the parameters a, b, and c in Equation (2) should be the
same as those in the classical Lorenz system, which are the Prandtl number, aspect ratio of
the rolls, and Rayleigh number, respectively. d is chosen as a control parameter in order to
observe the production of a hidden attractor in the system. When a = c = 35, b = 3, and
d = 0, the system is the original Yang–Chen system. We take the values of parameters a,
b, and c from the literature [39], and randomly take the newly introduced parameter d as
10. When (a, b, c, d) = (35, 3, 35, 10) and the initial values are (x0, y0, z0) = (1, 1, 1), system
(2) presents a strange attractor in the shape of a double wing, as shown in Figure 1. To
further verify that system (2) is chaotic, the three Lyapunov exponents calculated by the
Wolf algorithm [40] are expressed as follows:

LE1 = 1.100, LE2 = 0, LE3 = −39.098.

The fractional dimension of the system can also be calculated, which indicates the
complexity of the attractor. The Kaplan–Yorke dimension of system (2) is defined as follows:

DKY = j +
1∣∣LEj+1

∣∣ j

∑
i=1

LEi,

where j denotes the largest integer satisfying ∑
j
i=1 LEi ≥ 0 and ∑

j+1
i=1 LEi < 0. Therefore,

the Kaplan–Yorke dimension for the parameters (a, b, c, d) = (35, 3, 35, 10) is found to be

DKY = 2 + (LE1 + LE2)/|LE3| = 2.0281.

When the coordinates are transformed as (x, y, z) → (−x,−y, z), the form of system (2)
remains unchanged, which implies that system (2) is rotationally symmetric about the
z axis.

The fixed points of system (2) are determined by solving the following equation:

a(y − x) = 0,

cx − xz = 0, (3)

xy − bz − d = 0,

and the two fixed points are then

E1 : (−√
bc + d,−√

bc + d, c),

E2 : (
√

bc + d,
√

bc + d, c). (4)

To analyze the stability of the two fixed points E1 and E2, we undertake the calculations
for the Jacobian matrix of system (2):

J =

⎛⎝ −a a 0
c − z 0 −x

y x −b

⎞⎠.
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Figure 1. Two-dimensional projections of chaotic attractor onto various planes at time t = 150:
(a) x − z, (b) y − z, and (c) x − y planes.

We apply spectral stability theory to investigate the stabilities [41]. When the pa-
rameters are taken (a, b, c, d) = (35, 3, 35, 10), the matrices J(E1) and J(E2) have the same
spectral values λ1 = −37.812, λ2,3 = −0.094 ± 14.591i. Thus, the two fixed points are
both stable node-focus points. System (2) possessing a chaotic attractor under current
parameters means that the chaotic attractor is hidden.

The critical value of the Rayleigh parameter for a subcritical Hopf bifurcation that oc-
curs in system (2) can also be obtained by using Routh–Hurwitz criterion. The characteristic
equation is

f (λ) = λ3 + (a + b)λ2 + (ab − ac + x2 + az)λ + ax2 − abc + abz + axy.

By substituting the coordinates of the two fixed points in Equation (4) separately, we
have the same characteristic equation:

f (λ) = a3λ3 + a2λ2 + a1λ + a0,

where

a3 = 1,

a2 = a + b,

a1 = ab + bc + d,

a0 = 2a(bc + d).

From the Routh–Hurwitz criterion, the two fixed points E1 and E2 are stable if the
following conditions are satisfied: ai > 0(i = 0, 1, 2, 3) and a2a1 − a3a0 > 0. For the
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parameters (a, b, d) = (35, 3, 10), system (2) yields a critical value of 38.229 for the Rayleigh
parameter c for a subcritical Hopf bifurcation.

The dissipativity of system (2) can be examined by calculating ∇ · V, which gives

∇ · V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
= −a − b.

Therefore, system (2) exhibits dissipativity when −a − b < 0, and volumes in phase
space will shrink to 0 exponentially fast as t → ∞.

For clarity, we compare the new system (2) and the chaotic system proposed previously
by Dong [10], as listed in Table 1. Moreover, we also summarize the similarities and
differences in analysis methods used in the two chaotic systems and tabulate them in
Table 2, from which it can be seen that an implementation of a circuit will be applied in
both studies.

Table 1. Comparison with two chaotic systems with initial values (1, 1, 1).

Systems Equations Parameters Equilibria Eigenvalues
Lyapunov
Exponents

Fractional
Dimensions

Attractor
Type

This work ·
x = a(y − x) a = 35 (−10.7238,−10.7238, 35) −37.812 1.100 2.0281 Hidden
·
y = cx − xz b = 3 (10.7238, 10.7238, 35) −0.094 ± 14.591i 0

·
z = xy − bz − d c = 35 −39.098

d = 10

Dong [10] ·
x = a(y− x) + kxz a = 10 (−11.0634,−9.0387,−9.1503) −18.7413 0.7457 2.0276 Hidden

·
y = −cy − xz b = 100 (11.0634, 9.0387,−9.1503) −0.314 ± 11.424i −0.0057
·
z = −b + xy c = 11.2 −26.8144

k = −0.2

a = 10 (−8,−8, 0) −12.8068 1.4456 2.1264 Self-excited
b = 64 (8, 8, 0) 1.4034 ± 9.8983i 0.001
c = 0 −11.4473
k = 0

Table 2. Analysis methods used in investigating the two chaotic systems.

This Work Dong [10]

Establishment of mathematical model Adding a simple constant term −d to
Yang-Chen system

Adding a nonlinear term of cross-product kxz
to generalized Lorenz-type system

Dynamics Yes Yes
Coexisting attractors Yes No

Offset boosting control Yes No
Symbolic dynamics of unstable cycles Two letters Four letters for hidden attractor

Six letters for self-excited attractor
Circuit implementation Yes Yes

Synchronization Yes No

3. Dynamics of Novel Double-Wing Chaotic System

3.1. Bifurcation Diagram and Lyapunov Exponents

We investigated the dynamics of system (2) under different parameters by means of
the bifurcation diagram with the Lyapunov exponents spectrum. The parameter region of
interest is specified as a ∈ [10, 60] and b ∈ [0, 5], and the initial values are chosen as (1, 1, 1).
Taking the parameters a and b as variables, the remaining parameters of the system were
fixed. By changing the parameters a and b, various states of system (2) can be observed.

The bifurcation diagram and corresponding Lyapunov exponents spectrum of sys-
tem (2) by altering a are obtained in Figure 2a,b, respectively. It can be seen that system (2)
exhibits chaotic and stable state behaviors versus different a values. Explicitly, system (2)
exhibits chaotic behavior when a < 40.5, where one of the three Lyapunov exponents is
greater than zero, one is equal to zero, and one is less than zero, whereas system (2) con-
verges to a stable equilibrium point when a ≥ 40.5, where the three Lyapunov exponents
are all less than zero. In Figure 2c,d, the 3D projections of the phase portraits of system (2)
in different states are also presented.
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Figure 2. (a) Bifurcation diagram and (b) Lyapunov exponents spectrum of system (2) vs. a, where
b = 3, c = 35, and d = 10. 3D view of phase portraits with (c) a = 30 and (d) a = 50.

Taking the parameter b ∈ [0, 5], and letting a = c = 35 and d = 10, the bifurcation
diagram and corresponding Lyapunov exponents spectrum are depicted in Figure 3. It is
found that the system changes from periodic to chaotic through period-doubling bifurca-
tions, and eventually becomes a stable state, indicating that the system has complicated
dynamical characteristics. We note that diverse periodic attractors of the system appear
with different parameters b, as shown in Figure 4.
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Figure 3. Parameter values (a, c, d) = (35, 35, 10), (a) bifurcation diagram, and (b) Lyapunov expo-
nents spectrum of system (2) for b ∈ [0, 5].
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Figure 4. Two-dimensional view of different periodic attractors of system (2), a = c = 35 and d = 10:
(a) b = 0.3; (b) b = 1; (c) b = 1.8.

3.2. Two-Parameter Lyapunov Exponents Analysis

We now explore the global dynamical behaviors by combining two-parameter Lya-
punov exponents analysis. To better understand the intricate dynamics, we investigated
the effects of two parameters c and d, for which a division diagram can be used to study
different kinds of dynamical modes of system (2). Varying c and d within the interval
of c ∈ [0, 80], d ∈ [−40, 40], and the other parameters are unchanged (a = 35, b = 3),
a pseudo-colored map on a 100 × 100 grid of parameters (c, d) was obtained by calculating
the largest Lyapunov exponents; the initial conditions are set (1, 1, 1), as shown in Figure 5.
It can be observed in the figure that the magnitudes of the largest Lyapunov exponent
values change with color. In particular, the red regions represent chaos, orange domains
the periodic attractor, and the rest of the domains are related to stable equilibrium states.
At the corresponding values of c and d, system (2) has distinct maximum Lyapunov expo-
nents under different conditions, which further demonstrates that the rich dynamics of the
proposed system is complex.
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Figure 5. Two-parameter Lyapunov exponents diagram in (c, d) plane with initial values (1, 1, 1).

3.3. Coexisting Attractors and Basins of Attraction

In this subsection, we discuss in detail an investigation into discovering multifarious
coexisting attractors in system (2). In the following calculations, we take the parameter
values (a, c, d) = (35, 35, 10), and randomly choose various parameters b of the system. As
system (2) remains invariant under the transformation (x, y, z) → (−x,−y, z), which means
that any projection of the attractor has rotational symmetry about the z axis, consequently
the proposed system may exhibit various coexisting attractors.

First, we explored the coexisting hidden chaotic attractor and stable equilibrium attrac-
tors of system (2); the 3D phase portraits are displayed in Figure 6a. Taking the parameters
(a, b, c, d) = (35, 3, 35, 10), for initial conditions (x0, y0, z0) = (1, 1, 1), a hidden chaotic
attractor can be revealed (yellow color). For initial conditions (x0, y0, z0) = (−8,−8, 35),
the trajectory of the system in the phase space converges to the stable equilibrium point
E1 (blue color). For initial conditions (x0, y0, z0) = (8, 8, 35), asymptotically converging
behaviors toward another stable equilibrium point E2 (red color) result.
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Figure 6. Coexisting hidden chaotic attractor and stable equilibrium state attractors of system (2);
(a, b, c, d) = (35, 3, 35, 10) : (a) 3D phase portraits; (b) basins of attraction.

The basin of attraction, which is usually defined as the set of initial points to which
the orbits converge for the specified attractor, can exhibit more information about the
coexistence of attractions. Thus, the basins of attraction in the x(0) − y(0) plane for
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z(0) = 35 of the coexisting chaotic attractor and stable equilibrium attractors are displayed
in Figure 6b. Three types of basins of attraction are shown in yellow, blue, and red,
respectively. Yellow denotes a basin of a chaotic attractor, and blue and red basins represent
attractors of two stable node-focus points E1 and E2, respectively. It can be observed from
Figure 6b that the basins of attraction have the expected symmetry and a smooth boundary.
In addition, according to the topological structure of the basin, the attraction basin of the
chaotic attractor does not intersect with the small neighborhoods of the stable node-foci E1
and E2, which also indicates that the chaotic attractor is hidden.

Moreover, the parameters are set as (a, b, c, d) = (35, 0.5, 35, 10), and two asymmetrical
coexisting periodic attractors are illustrated in Figure 7a,b. We also plot the basins of
attraction in the x(0)− y(0) plane for z(0) = 35 of the two coexisting periodic attractors, as
shown in Figure 7c, in which the yellow areas denote the attraction basin of the periodic
attractor in Figure 7a and the blue areas the attraction basin of the periodic attractor in
Figure 7b. Riddled basins of attraction are observed [42], which illustrates that the state of
the system is very sensitive to the initial values. Coexisting periodic attractors of system (2)
can also be observed under other parameters, as shown in Figure 8. Taking the parameters
(a, b, c, d) = (35, 0.42, 35, 10), there exists in system (2) a green limit cycle for initial values
(−1,−1, 1); system (2) also has a limit cycle (shown in purple) for initial values (1, 1, 1).
While taking parameters (a, b, c, d) = (35, 1.5, 35, 10), system (2), a limit cycle (shown in
blue) exists for initial values (−1,−1, 1), and another limit cycle (shown in red) exists for
initial values (1, 1, 1). That system (2) has assorted coexisting periodic attractors proves
that rich asymmetric multi-steady states exist in the new system.
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Figure 7. Two coexisting periodic attractors of system (2); (a, b, c, d) = (35, 0.5, 35, 10) : (a) periodic
attractor with initial values (−1,−1, 1); (b) another periodic attractor with initial values (1, 1, 1);
(c) basins of attraction.

Finally, we investigate coexisting chaotic attractors of system (2), and two asym-
metrical chaotic attractors are illustrated in Figure 9. Fixing the parameters (a, b, c, d) =
(35, 0.53, 35, 10), if we choose initial conditions (x0, y0, z0) = (−1,−1, 1), system (2) has an
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asymmetrical chaotic attractor with projection onto the x − z plane depicted in Figure 9a.
The other asymmetrical chaotic attractor can also be revealed for initial values (1, 1, 1) due
to the symmetry about the z axis [see Figure 9b]; thus, the two chaotic attractors have the
same Lyapunov exponents and fractal dimension.
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Figure 8. Coexisting periodic attractors of system (2) in (x, z) plane: (a) (a, b, c, d) = (35, 0.42, 35, 10)
and (b) (a, b, c, d) = (35, 1.5, 35, 10).
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Figure 9. Coexisting chaotic attractors of system (2) in (x, z) plane; (a, b, c, d) = (35, 0.53, 35, 10):
(a) chaotic attractor with initial values (−1,−1, 1) and (b) another chaotic attractor with initial
values (1, 1, 1).

3.4. Impact of Constant Term d

We now discuss the impact of the constant term d on the system’s stability, including
the disappearance of the saddle point at the origin. As the origin (0, 0, 0) is no longer a
fixed point when d �= 0, system (2) may possess only two stable equilibria by introducing
an additional constant term d. According to the Routh–Hurwitz criterion, it can be seen that
the two equilibria are both stable under the conditions −abc − ad + a2b + ab2 + b2c + bd > 0
and 2a(bc + d) > 0. For the parameters (a, b, c) = (35, 3, 35), it yields −105 < d < 19.6875.
We further found that, when d is negative, system (2) converges to the stable equilibrium
point under different initial conditions, and there is no chaotic state. Hence, when we take
the parameters (a, b, c) = (35, 3, 35) and 0 < d < 19.6875, system (2) is able to produce
a hidden chaotic attractor. When the parameter d ≥ 19.6875, the two equilibrium points
lose stability and become two saddle-focus points, and the chaotic attractor in system (2)
is self-excited.

We also thoroughly examined the impact of the inclusion of the constant term d in the
rest of Equation (1) (e.g., dx/dt or dy/dt), which may produce a similar or different impact.
When the constant term d is added to the second equation of system (1), the new system no
longer has rotational symmetry. By fixing the parameter values (a, b, c) = (35, 3, 35) and
changing the control parameter d, we find that three fixed points exist in the system, one of
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which is a stable node-focus point and two are saddle-focus points. Regardless of the value
of d, the trajectory of the system eventually converges to the stable node-focus point under
different initial values, so there is no hidden attractor in the system.

We now investigate the impact when the constant term d is added to the first equation
of system (1). Taking the parameters (a, b, c, d) = (35, 3, 35, 10), we found that the system
has two stable node-foci coexisting with a chaotic attractor; thus, a hidden attractor also
appears in this case. Figure 10 shows the basins of attraction for different initial conditions
under current parameter values, in which yellow represents a basin of a chaotic attractor,
and blue and red denote basins of stable equilibrium points E1 and E2, respectively. It
can be seen that riddled basins of attraction arise here and that the basin of attraction no
longer has symmetric similarity or a smooth boundary. Furthermore, when the parameter b
changes, we also find that other types of coexisting attractors no longer exist. This is because
the system has no z-axis rotational symmetry, which is the main difference between it and
system (2). Therefore, we conclude that the new system obtained by adding the constant
term d to the third equation of Equation (1) has both hidden attractors and coexisting
attractors, and that its dynamic behaviors are more complex.

Figure 10. Riddled basins of attraction in x(0)− y(0) initial plane with z(0) = 35.

3.5. Offset Boosting Control

Recently, a new category of chaotic systems called variable-boostable systems was
proposed. In such a system, the variable can be boosted to any level and switched between
a bipolar and unipolar signal, which is convenient for chaotic applications, as it can be
used for amplitude control and reducing the number of components required for signal
conditioning [43–46]. The state variable y appears twice in system (2), and thus it can be
easily controlled. We offset-boost the state variable y by the transformation y → y + w,
where w denotes a constant. System (2) can be rewritten accordingly as

dx
dt

= a(y + w − x),

dy
dt

= cx − xz, (5)

dz
dt

= x(y + w)− bz − d.

To better illustrate this phenomenon, the offset-boosting of the chaotic attractor is
shown in Figure 11 when the control parameter w is altered. The 2D projection of the
attractor onto y − z phase space is shown in Figure 11a and the corresponding time-
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sequence diagram given in Figure 11b. It can be observed that a bipolar signal is obtained
for w = 0 (blue), a positive unipolar signal for w = −35 (green), and a negative unipolar
signal for w = 35 (red). Therefore, we can transform the chaotic signal y from bipolarity
to unipolarity when varying the control parameter w. Meanwhile, we also calculated the
Lyapunov exponents spectrum versus w and found that the three Lyapunov exponents
remain invariant, indicating that the state of system (5) does not undergo changes with the
offset w.
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Figure 11. Offset boosting of chaotic attractor when varying control parameter w for
(a, b, c, d) = (35, 3, 35, 10): (a) in y − z plane and (b) state y with different values of the offset boosting
controller w. All computed for initial values (1, 1, 1).

Through the above discussion, it is deduced that the new system (2) with a hidden
double-wing chaotic attractor has potential chaos-based applications by selecting offset
boosting control. In summary, the introduction of the offset w can flexibly shift the position
of the chaotic attractor in the y direction in phase space, which has great application value
in engineering.

4. One-Dimensional Symbolic Dynamics for Unstable Cycles Embedded in Hidden
Chaotic Attractor

To systematically calculate all unstable cycles embedded in the hidden chaotic at-
tractors, we must encode the orbits by means of symbolic dynamics [47]. By selecting an
appropriate Poincaré cross-section, the continuous flow can be transformed into a discrete
map. Figure 12 shows the first return map of system (2) for (a, b, c, d) = (35, 3, 35, 10).
When we choose a special Poincaré section z = 35, the initial values are (1, 1, 1), where
a dense point with a unimodal structure is presented, which implies that all cycles extracted
can be encoded with two letters by 1D symbolic dynamics. Because only one critical point
xc for which f (xc) reaches the extremum value exists within the interval, a simple division
of the phase space is whether a given orbit falls to the left or right of the critical point. If
xi < xc, it is marked as symbol 0; if xi > xc, then it is marked as symbol 1. In the second
iteration, we redefine each partition according to the two-step iteration of the points to
obtain four partitions. In this way, we can partition the phase space into different regions,
and mark each region with its own unique symbol.

In this work, the variational method [48] was adopted to perform the calculations.
Two simplest periodic orbits, marked with symbols 0 and 1 (see Figure 13), can be consid-
ered as basic building blocks with which to construct the initial loop guess of more complex
periodic orbits. Through 1D symbolic dynamics, we constructed the initial loop guess
corresponding to each symbol sequence within the topological length of 5, and calculated
the real periodic orbits. Their symbol sequences, periods, and coordinates of a point on the
periodic orbits are tabulated in Table 3, from which the symmetry of the system can also be
reflected. We also draw the cycles with different topological lengths in 3D phase space in
Figure 14.
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Figure 12. First return map of system (2) under parameters (a, b, c, d) = (35, 3, 35, 10); the Poincaré
section is taken as z = 35.
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Figure 13. Two simplest periodic orbits as basic building blocks in system (2) for parameters
(a, b, c, d) = (35, 3, 35, 10): (a) cycle 0 and (b) cycle 1.

Table 3. Unstable cycles embedded in hidden chaotic attractor of system (2) up to topological length
5 for (a, b, c, d) = (35, 3, 35, 10).

Length Itineraries Periods x y z

1 0 0.468918 −10.393417 −7.216587 43.634264
1 0.468918 10.393417 7.216587 43.634264

2 01 1.190901 −15.856545 −21.285817 21.799902

3 001 1.768396 −1.142202 0.192829 40.538631
011 1.768396 1.142202 −0.192829 40.538631

4 0001 2.338366 −5.390366 −2.042326 44.498047
0011 2.364638 8.016602 2.946163 47.893544
0111 2.338366 5.390366 2.042326 44.498047

5 00001 2.975663 −0.259779 0.021441 36.277845
00011 2.939762 −2.797000 −3.617918 20.432365
00101 2.962243 −15.163685 −7.655255 52.919827
00111 2.939762 2.797000 3.617918 20.432365
01011 2.962243 15.163685 7.655255 52.919827
01111 2.975663 0.259779 −0.021441 36.277845

When the parameters of the system change, the first return map of the system will
also be altered accordingly, which may no longer be a 1D unimodal map, but have multiple

83



Fractal Fract. 2022, 6, 547

branches, thus requiring more symbols to encode periodic orbits. In this case, it is more
convenient and effective to establish symbolic dynamics based on the topological structure
of orbits [49–51], such as the number of rotations between periodic orbits and equilibrium
points. Furthermore, continuous deformation of the cycles with the change of parameters
can also be explored by the variational method, which can help us judge the parameter
values when the number of cycles or stability changes, and thus confirm the corresponding
bifurcation phenomenon [52–54].
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Figure 14. Unstable cycles in system (2) under parameters (a, b, c, d) = (35, 3, 35, 10): Cycles (a) 01;
(b) 011; (c) 0011; (d) 0111; (e) 00101; (f) 00111.

5. Circuit Implementation

To confirm the engineering feasibility of the new system, we designed an electronic
circuit to verify the chaotic behaviors of the mathematical model. In Ref. [55], the circuit
realization of a fractional chaotic system regarding capacitors and resistors was proposed
to validate the theoretical results obtained via the numerical scheme. Here, the analog
circuit of the new double-wing chaotic system (2) was executed in MultiSIM software. The
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circuit involves resistors, capacitors, operational amplifiers, and analog multiplier chips. A
schematic of a circuit consisting of analog circuit components is illustrated in Figure 15,
in which AD811AN units were selected as operational amplifiers. All the multipliers are
chosen with an output coefficient of 0.1. When the circuit is executed, we fix the resistors
R3 = R9 = R16 = 350 kΩ, input the input signal −X to the resistor R1, and adjust the value
of R1; the linear dissipative term −ax in the system equation can then be implemented
in the circuit. We input the input signal X to the resistor R7 and adjust the value of R7;
the linear forcing term cx can then be implemented. We adjust the values of V1 and R15,
implementing the constant term −d in the system equation.

Figure 15. Circuit diagram of system (2).

Because the common power supply voltage is ±15 V, the linear dynamic range of the
operational amplifier is ±13.5 V. As can be seen from the simulation results in Figure 1,
all the values of state variables (x, y, z) in system (2) are out of the dynamic range, so they
require scaling down. The state variables (x, y, z) of system (2) are re-scaled as X = 1

10 x,
Y = 1

10 y, and Z = 1
10 z. We set the timescale factor τ0 = 1

R0C0
= 2500 to better match the

system, a new time variable τ is defined instead of t, and t = τ0τ. As a result, system (2)
after scale transformation is described as

R0C0
·

X = a(Y − X),

R0C0
·
Y = cX − 10XZ, (6)

R0C0
·
Z = 10XY − bZ − d

10
,

where a = c = 35, b = 3, and d = 10.
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By introducing Kirchhoff’s circuit laws into the circuit in Figure 15, the relationship
between the circuit variables is expressed as

·
X =

R3

R2R4C1
Y − R3

R1R4C1
X,

·
Y =

R9

R7R10C2
X − R9

R8R10C2
0.1XZ, (7)

·
Z =

R16

R13R17C3
0.1XY − R16

R14R17C3
Z +

R16

R15R17C3
V1.

In Equation (7), X, Y, and Z correspond to the voltages on the integrators U2, U5,
and U8, respectively, whereas the power supply is ±15 V. Comparing Equation (6) with
Equation (7), we selected R14 = 116.7 kΩ, R8 = R13 = 3.5 kΩ, Ri = 350 kΩ (i = 3, 9, 15, 16),
Rj = 10 kΩ (j = 1, 2, 4, 5, 6, 7, 10, 11, 12, 17, 18, 19), C1 = C2 = C3 = 40 nF, V1 = −1 V.

The oscilloscope outputs showing 2D phase portraits of the circuit simulation are
presented in Figure 16, which is very consistent with the numerical results plotted in
Figure 1. Thus, the circuit experiment validated the feasibility of the proposed system.

(a) (b)

(c)

Figure 16. Chaotic behaviors of implemented electronic circuit with initial conditions
(X(0), Y(0), Z(0)) = (1V, 1V, 1V) in (a) X − Z, (b) Y − Z, and (c) X − Y planes.

6. Adaptive Synchronization of Novel Three-Dimensional Chaotic System

To benefit from the rich dynamic characteristics provided by system (2) in chaos-
based secure communication, the synchronization problem must be further explored.
Hammouch et al. investigated numerical solutions and the identical synchronization of
a variable-order fractional chaotic system [56]. Various synchronization methods have been
put forward in the literature, including linear and nonlinear feedback, impulse control, and
adaptive control. Among these synchronization schemes, adaptive control seems to be the
most interesting due to its robustness and simple implementation [57,58]. Here, we employ
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the adaptive control method to achieve chaotic synchronization of two identical systems
with unknown parameters.

The novel 3D system is considered the master system:

·
xm = a(ym − xm),
·

ym = cxm − xmzm, (8)
·

zm = xmym − bzm − d,

and the slave system is described as follows:

·
xs = a(ys − xs) + ux,
·

ys = cxs − xszs + uy, (9)
·

zs = xsys − bzs − d + uz,

in which a, b, c, and d are unknown system parameters, and ux, uy, and uz are adaptive
controls. We define the synchronization errors as follows:

ex = xs − xm,

ey = ys − ym, (10)

ez = zs − zm.

The error dynamics are easily calculated as

·
ex = a(ey − ex) + ux,
·

ey = cex − xszs + xmzm + uy, (11)
·

ez = xsys − xmym − bez + uz.

The designed adaptive controller is

ux = −â(t)(ey − ex)− k1ex,

uy = −ĉ(t)ex + xszs − xmzm − k2ey, (12)

uz = −xsys + xmym + b̂(t)ez − k3ez,

where k1, k2, and k3 are positive gain constants and â(t), b̂(t), ĉ(t), and d̂(t) are parameter
estimates. By substituting the expression of Equation (12) into Equation (11), we have

·
ex = (a − â(t))(ey − ex)− k1ex,
·

ey = (c − ĉ(t))ex − k2ey, (13)
·

ez = (b̂(t)− b)ez − k3ez.

The dynamic errors described by Equation (13) can be simplified by taking the param-
eter estimation errors as

ea(t) = a − â(t),

eb(t) = b − b̂(t), (14)

ec(t) = c − ĉ(t),

ed(t) = d − d̂(t).
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It follows that

·
ea = −·

â,
·

eb = −
·
b̂, (15)

·
ec = −·

ĉ,
·

ed = −
·
d̂.

Therefore, Equation (13) can be re-expressed as

·
ex = ea(ey − ex)− k1ex,
·

ey = ecex − k2ey, (16)
·

ez = −ebez − k3ez.

The synchronization condition can be established based on the Lyapunov criterion of
stability. We consider the quadratic Lyapunov function defined by

V =
1
2
(e2

x + e2
y + e2

z + e2
a + e2

b + e2
c + e2

d).

Differentiating V along the trajectories of the system gives

·
V = −k1e2

x − k2e2
y − k3e2

z − ea(
·
â − ex(ey − ex))− eb(

·
b̂ + e2

z)− ec(
·
ĉ − exey)− ed

·
d̂. (17)

In view of Equation (17), we take the parameter update laws as

·
â = ex(ey − ex) + k4ea,
·
b̂ = −e2

z + k5eb, (18)
·
ĉ = exey + k6ec,
·
d̂ = k7ed,

where k4, k5, k6, and k7 are positive gain constants. By substituting Equation (18) into
Equation (17), we obtain

·
V = −k1e2

x − k2e2
y − k3e2

z − k4e2
a − k5e2

b − k6e2
c − k7e2

d, (19)

which is a definite negative Lyapunov function. According to Lyapunov stability theory, all
the synchronization errors ex, ey, and ez and parameter estimation errors ea, eb, ec, and ed
globally and exponentially converge to 0 for random initial values over time.

The effectiveness of the proposed scheme is verified by numerical simulation. The
master system is defined as in Equation (8) with parameters (a, b, c, d) = (35, 3, 35, 10) to
ensure the chaotic behavior. The gain constants are selected as ki = 3 for i = 1, 2, 3, 4, 5, 6, 7.
The initial values of the master system, slave system, and parameter estimates are taken as

(xm(0), ym(0), zm(0)) = (1, 0,−1), (xs(0), ys(0), zs(0)) = (2,−0.5,−2), (â(0), b̂(0), ĉ(0), d̂(0)) = (3, 1, 0.5, 12). (20)

Thus, the initial values of the errors system (16) are ex(0) = 1, ey(0) = −0.5, and
ez(0) = −1. Figure 17 describes the complete synchronization of the respective states of the
master and slave systems, and Figure 18 illustrates the time-history of the synchronization
errors and parameter estimation errors. It can be seen that all errors asymptotically converge
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to zero with time, indicating that the master and slave systems finally show the same
dynamical behavior.
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Figure 17. Time evolution sequence diagram of master and slave systems showing results of occur-
rence of adaptive synchronization. (a) x variable; (b) y variable; (c) z variable.
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Figure 18. Time evolution of (a) synchronization errors ex, ey, and ez, and (b) parameter estimation
errors ea, eb, ec, and ed.

7. Conclusions

In this study, a new 3D double-wing chaotic system with two stable equilibrium
points was constructed and explored. As the proposed system had only stable equilibria, it
was a member of the family of hidden chaotic attractors. Dynamical characteristics, such
as bifurcation diagram, basin of attractor, and offset boosting control, were investigated
numerically. It was shown that the novel system with hidden attractors had very complex
dynamical behaviors. One feature was that various attractors existed in the system, includ-
ing equilibrium points and periodic and chaotic attractors. The other notable feature was
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that the system possessed a variety of different types of coexisting attractors. Unstable
cycles embedded in the hidden chaotic attractors were systematically calculated by 1D
symbolic dynamics, and circuit simulation for the novel double-wing chaotic system (2)
was implemented to demonstrate its flexibility. A scheme for adaptive synchronization
of the novel chaotic system with unknown parameters was also investigated. The new
hidden attractor chaotic system has potential application prospects in the fields of secure
communication, image encryption, and pseudo-random number generators.

As such, how to effectively construct the new system with multi-scroll hidden chaotic
attractors is still an open problem; thus, a piecewise-linear or multi-saturated function must
be employed to replace continuous functions. The mechanism of generating multi-scroll
chaotic attractors is worth exploring. In this respect, the hidden bifurcation routes are
considered good candidates. Furthermore, the symmetry of hidden bifurcation routes also
warrants further study. The analysis method adopted in this work could promote further
research of 3D autonomous chaotic systems and deepen the understanding of both hidden
and coexisting attractors.
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Abstract: Fuzzy dispersion entropy (FuzzDE) is a very recently proposed non-linear dynamical
indicator, which combines the advantages of both dispersion entropy (DE) and fuzzy entropy (FuzzEn)
to detect dynamic changes in a time series. However, FuzzDE only reflects the information of the
original signal and is not very sensitive to dynamic changes. To address these drawbacks, we
introduce fractional order calculation on the basis of FuzzDE, propose FuzzDEα, and use it as a
feature for the signal analysis and fault diagnosis of bearings. In addition, we also introduce other
fractional order entropies, including fractional order DE (DEα), fractional order permutation entropy
(PEα) and fractional order fluctuation-based DE (FDEα), and propose a mixed features extraction
diagnosis method. Both simulated as well as real-world experimental results demonstrate that the
FuzzDEα at different fractional orders is more sensitive to changes in the dynamics of the time series,
and the proposed mixed features bearing fault diagnosis method achieves 100% recognition rate at
just triple features, among which, the mixed feature combinations with the highest recognition rates
all have FuzzDEα, and FuzzDEα also appears most frequently.

Keywords: fuzzy dispersion entropy; fractional order; feature extraction; bearing fault diagnosis

1. Introduction

Entropy, as a measure of time series disorder and predictability, can evaluate the
complexity of the signal [1,2]. The greater the entropy value, the higher the complexity
of signal [3,4]. In recently years, entropy has been widely applied in mechanical fault
diagnosis and has shown excellent performance [5–7].

Dispersion entropy (DE) divides time series into integer series by introducing different
mapping criteria for the first time [8], which enables it to capture more amplitude information
than permutation entropy (PE) and sample entropy (SE) [9,10]. Some scholars have made
every attempt to study the improved version of DE to further enhance its performance as a
complexity index. Fluctuation-based DE (FDE) and reverse DE (RDE) have also been proposed
by introducing fluctuation information and distance information between time series and
white noise [11–13]. In 2021, by combining the fluctuation information of FDE and the distance
information of RDE [14], the reverse DE (FRDE) based on fluctuation is proposed, which has
better stability and discrimination ability for different types of time series.

Fuzzy dispersion entropy (FuzzDE) is a new method proposed in 2021 [15], which
combines the advantages of fuzzy entropy (FuzzEn) as well as DE by replacing the round
mapping function of DE with fuzzy membership function in FuzzEn, by which the dynamic
changes of time series can be retained to a greater extent and the problem of missing useful
information brought about by round mapping function can be alleviated. Nevertheless, the
FuzzDE still suffers from the same problem of single feature as common entropies, which
cannot characterize the time series from multiple fractional orders.

To address the problem of single fractional order, in recent years, many scholars have
conducted research on the application of fractional order calculation to entropy [16–18]. In
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2019, the fractional fuzzy entropy algorithm was proposed and used for physiological and
biomedical analysis of EEG signals [19]. In 2020, generalized refined composite multiscale
fluctuation-based fractional dispersion entropy (GRCMFDEα) combined refined composite
multiscale dispersion entropy (RCMDE) as well as fractional order calculation and was
applied for bearing signal fault diagnosis with good results [20]. In 2022, fractional order
calculation was introduced to slope entropy to effectively diagnose the location and severity
of faults in rolling bearings [21].

Inspired by these works, we introduce fractional order calculation into FuzzDE in
this paper, and fractional order FuzzDE (FuzzDEα) is proposed. Compared with FuzzDE,
FuzzDEα further considers fractional order information and measures the dynamic changes
of time series from multiple fractional orders. In addition, we combine FuzzDEα with other
fractional order entropies and propose a mixed feature bearing fault diagnosis method.
Simulated as well as real-world experiments demonstrate the sensitivity of FuzzDEα to the
dynamic changes of time series and the excellent performance on bearing fault diagnosis.

The rest of this paper is organized as follows: Section 2 presents the theoretical steps of
FuzzDEα and discusses the parameter settings; Section 3 experiments on the effectiveness of
fractional order on FuzzDE through simulated signals; Section 4 validates the bearing fault
diagnosis capability of FuzzDEα through real-world bearing signals; Section 5 concludes
the whole paper.

2. Fractional Order Fuzzy Dispersion Entropy

2.1. FuzzDEα

FuzzDEα is the introduction of the concept of fractional order calculation on the basis
of FuzzDE, for a given time series X = {x1, x2, · · · , xN} of length N, the specific steps for
FuzzDEα can be expressed as follows:

Step 1: By applying the normal cumulative distribution function (NCDF) to the original
time series X, Y = {y1, y2, · · · , yN} can be derived with the interval [−1, 1], where the
NCDF can be expressed as follows:

yi =
1

σ
√

2π

∫ xi

−∞
e
−(t−γ)2

2σ2 dt (i = 1, 2, · · · , N)

where σ and γ represent the standard deviation and mean of X, respectively.
Step 2: Normalize the sequence Y by converting each element in Y to the interval [0, 1]:

si =
yi

Max − Min
(i = 1, 2, · · · , N)

in which S = {s1, s2, · · · , sN} is the normalized sequence, Max and Min are the maximum
and minimum values of the sequence Y, respectively.

Step 3: Introduce the class number c to convert the sequence S into a new sequence
Zc [15]:

zc
i = cyi + 0.5 (i = 1, 2, · · · , N)

where each element zc
i (i = 1, 2, · · · , N) in Zc is in the interval [0.5, c + 0.5].

Step 4: Introduce the embedding dimension m and time delay τ, reconstruct the
sequence Zc of Step 3 into N − (m + 1)τ subsequences Zm,c

j :

Zm,c
j =

{
zc

j , zc
j+(1)τ , · · · , zc

j+(m−1)τ

}
(j = 1, 2, · · · , N − (m + 1)τ) (1)

where m determines the number of elements contained in each subsequence Zm,c
j , and τ

determines the interval between two adjacent elements in the sequence Zc.
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Step 5: Introduce the fuzzy membership function on the sequence Zc as follows:

μM1(z
c
i ) =

⎧⎨⎩
0 zc

i > 2
2 − zc

i 1 ≤ zc
i ≤ 2

1 zc
i < 1

μMk

(
zc

i
)
=

⎧⎪⎪⎨⎪⎪⎩
0 zc

i > k + 1
k + 1 − zc

i k ≤ zc
i ≤ k + 1

zc
i − k + 1 k − 1 ≤ zc

i ≤ k
0 zc

i < k − 1

(k = 2, 3, · · · , c − 1 )

μMc(z
c
i ) =

⎧⎨⎩
1 zc

i > c
zc

i − c + 1 c − 1 ≤ zc
i ≤ c

0 zc
i < c − 1

where k stands for the kth class, and Mk is the fuzzy membership function, μMk

(
zc

i
)

represents the degree of membership of zc
i for the kth class. By the fuzzy membership

function, each zc
i will have 1 or 2 different degrees, and the value range is an integer

between [1, c], which is the same as the rounding function in the DE [8], but reduces the
information loss in the rounding function. Figure 1 shows the fuzzy membership function.

Figure 1. Fuzzy membership function.

Step 6: After the processing of the sequence Zc in Step 5, each subsequence Zm,c
j can

be mapped into a number of new sequences consisting of integers, and these sequences can
be represented by the dispersion patterns πv0v1···vm−1 , where v0, v1, vm−1 correspond to the
integer values of zc

j , zc
j+(1)τ, and zc

j+(m−1)τ in Equation (1) after fuzzy processing, respectively.

Step 7: Calculate the degree of membership of each Zm,c
j with respect to the dispersion

patterns πv0v1···vm−1 and denote as μπv0v1 ···vm−1
:

μπv0v1 ···vm−1
(zm,c

j ) =
m−1

∏
i=0

μMvi
(zc

j+(i)τ)

in this manner, each subsequence Zm,c
j will correspond to multiple dispersion patterns

accompanied by different membership degrees. For an example, given a subsequence
Z2,3

1 = [1.149, 2.306], all the member ship degrees can be organized as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
μM1

(
z3

1
)
= 0.851

μM2

(
z3

1
)
= 0.149

μM2

(
z3

2
)
= 0.694

μM3

(
z3

2
)
= 0.306

→

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μπ12(Z2,3

1 ) = μM1(z
3
1)× μM2(z

3
2) = 0.5906

μπ13(Z2,3
1 ) = μM1(z

3
1)× μM3(z

3
2) = 0.2604

μπ22(Z2,3
1 ) = μM2(z

3
1)× μM2(z

3
2) = 0.1034

μπ23(Z2,3
1 ) = μM2(z

3
1)× μM3(z

3
2) = 0.0456
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Step 8: The frequency of each dispersion pattern p
(
πv0,v1,...,vm−1

)
can be calculated:

p
(
πv0,v1,...,vm−1

)
=

∑
N−(m−1)d
j=1 μπv0v1 ···vm−1

(zm,c
j )

N − (m − 1)τ

Step 9: For writing convenience, we define p
(
πv0,v1,...,vm−1

)
as Pj.Then the fractional

order calculation is applied, and the FuzzDEα can be expressed as [20]:

FuzzDEα(X, m, c, τ) = ∑
j

Pj

{
−

P−α
j

Γ(α + 1)
[
ln Pj + ψ(1)− ψ(1 − α)

]}

where α is the order of fractional derivative. Γ(·) and ψ(·) denote the gamma function and
digamma function respectively.

Step 10: The normalized form NFuzzDEα of FuzzDEα can be computed as:

NFuzzDEα(X, m, c, τ) =
FuzzDEα(X, m, c, τ)

ln(cm)

2.2. Parameter Selection

In this subsection, we mainly focus on the discussion of the parameter selection for
FuzzDEα. For the parameter comparison experiments, 50 separate groups of pink noises,
white noises and blue noises are selected [20], each with 2048 sample points. Where white
noise consists of a homogeneous mixture of signals of different frequencies, with a variety
of frequencies in a haphazard manner. Pink noise enhances the sound intensity of low
frequency signals and weakens the intensity of high frequency signals compared to white
noise, while blue noise, in contrast, enhances the sound intensity of the high frequency
signal on top of the white noise. Using the control variables method, the effects of three
FuzzDEα parameters, namely the number of classes c, the embedding dimension m and
the mapping method, on the mean as well as the standard deviation of the selected noise
signals are explored as shown in Figures 2–4, respectively.

To begin with, we conduct comparative experiments on the effects of c, and the interval
is set to an integer between 2 and 5 (m = 3, mapping as NCDF), Figure 2 shows the means
and standard deviations of different class number c at different fractional orders.

Comparing the four images, it can be seen that for the average of the entropy values of
the three noises, the trend when m equals 3 and c equals 2 is different from the other three
in that it has a slope from large to small, while the others are from small to large. However,
the general trend is that it increases with the increase of α. For the standard deviation of the
entropy values of the three noise entropy values, the standard deviation of the pink noise is
larger, and the others are smaller, and as α increases, the value of the standard deviation also
increases, which is especially evident in the pink noise. In summary, changes in c have an
impact on the magnitude of entropy value, but the overall trend in entropy value and the
ability to discriminate between different noises does not change as the fractional order changes.

We next discuss the effect of m, with the interval set to an integer between 3 and 6 (c = 3,
mapping as NCDF), Figure 3 is means and standard deviations of different embedding
dimensions m at different fractional orders.

Observing the four subplots, for the average of the FuzzDEα values of the three noises,
all four cases of taking values show a similar upward trend. For the standard deviation of
the entropy values of the three noises, there is only a difference between the exact values
and the overall trend is almost the same. Thus, it is clear that the effect of m has a greater
impact on the magnitude of the entropy value compared to c, but the overall trend and the
ability to distinguish between different noises does not change.
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Figure 2. Means and standard deviations of different class number c at different fractional orders.
(a) c = 2; (b) c = 3; (c) c = 4; (d) c = 5.

Figure 3. Means and standard deviations of different embedding dimensions m at different fractional
orders. (a) m = 3; (b) m = 4; (c) m = 5; (d) m = 6.
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Figure 4. Means and standard deviations of different mapping approaches at different fractional
orders. (a) LM; (b) NCDF; (c) LOGISG; (d) TANSIG; (e) SORT.

Finally, we discuss the effect of the mapping method, which is also an important
influencing factor, so we choose different mapping methods for comparison. Figure 4
shows the means and standard deviations of different mapping approaches at different
fractional orders, among which the mapping methods include linear mapping (LM), normal
cumulative distribution function (NCDF), tangent sigmoid (TANSIG), logarithm sigmoid
(LOGSIG), and sorting method (SORT) respectively (c = 3, m = 3) [8–11].

According to Figure 4, the overall trends of the five mapping methods are very similar,
but when using the LM mapping method, the standard deviation of the various noise
entropy values is significantly larger, accompanied by the condition that the various noise
entropy values overlap each other, which indicates that when the selected mapping method
is LM, the stability of FuzzDEα after mapping is relatively weak, and it is difficult to
distinguish the three types of noise. While the standard deviation of other mapping
methods is relatively small. Therefore, it is concluded that NCDF, LOGISG, TANSIG or
SORT are the recommended mapping approaches.
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In conclusion, m and c have little effect on the experiment, but a large m is more likely
to lead to an increase in FuzzDEα values compared to c. Among all mapping methods, only
LM is not stable. Therefore, we recommend that m be set to 3–6, c to 2–5 and the mapping
method be NCDF, LOGISG, TANSIG or SORT. In the later simulations and the real-world
signal experiments, we choose m = 3, c = 4 and the mapping method to be NCDF.

3. Experiments on Simulated Signals

In this section, we focus on demonstrating the usefulness of fractional order calcula-
tions on FuzzDE by simulated signals, mainly including noise signals, chirp signal and
MIX signal.

3.1. Noise Signals Experiment

In order to verify the effectiveness of fractional order calculation on FuzzDE, pink noise,
white noise and blue noise are selected for comparative experiments, and the fractional
orders change from −0.5 to 0.5 with interval 0.1. 100 independent pink noises, white noises
and blue noises are created to prove the discrimination ability of fractional order. The
means and standard deviations of these 100 FuzzDEα. values are calculated respectively as
displayed in Figure 5.

Figure 5. Means and standard deviations of different fractional order entropies under noise signals.

As shown in Figure 5, the FuzzDEα value of the three kinds of noise signals has a
similar upward trend with the increase of fractional order; when the fractional order is less
than −0.1, the mean characteristics of the three noise signals are mixed together; when the
fractional order is greater than −0.1, the difference of mean characteristics of the three noise
signals gradually increases, and the FuzzDEα value of white noise is the largest, with the
smallest standard deviation and the most stable FuzzDEα value. Experiments show that as
the fractional order increases (when the fractional order is greater than −0.1), FuzzDEα has
a better distinguishing effect on pink noise, white noise and blue noise.

3.2. Chirp Signal Experiment

Chirp signal is a typical unstable signal, and frequency of chirp signal will change over
time [22,23]. In order to better show the feature extraction effect of FuzzDEα at different
fractional orders, chirp signal is used for simulated experiments. Chirp signal can be
expressed as:

x(t) = e(j2π( f0t+ 1
2 kt2))

where f0 is the initiation frequency and is taken as 20 Hz, k is the modulation frequency
and is taken as 3, we can understand that the frequency increases from 20 Hz to 80 Hz. The
chirp signal lasts 20 s with a sampling frequency of 1000 Hz (20,000 sampling points).

99



Fractal Fract. 2022, 6, 544

We take the length of the sliding window as 1000 sampling points, and slide backward
from the first sampling point with 90% overlap to obtain 190 samples. FuzzDEα for chirp
signal of each sample are calculated. Chirp signal (top) and the corresponding different
entropy curves (bottom) are shown in Figure 6.

Figure 6. Chirp signal (top) and the corresponding different entropy curves (bottom).

It can be observed from Figure 6 that the waveform of the chirp signal gradually
becomes denser as the number of sampling points increases, and the higher the fractional
order, the larger the FuzzDEα value as well as the rate of increase of the curve. In a word,
the experimental results show that the higher the fractional order of FuzzDEα, the better
performance of FuzzDEα in chirp signal feature extraction.

3.3. MIX Signal Experiment

In order to study the influence for fractional order of FuzzDEα on the effect of fea-
ture extraction, we select MIX signal for simulated experiments. MIX signal describes a
stochastic sequence that progressively turns into a periodic time series [24,25], which can
be expressed as: {

MIX(t) = (1 − Z)× X(t) + Z × Y(t)
X(t) =

√
2sin 2πt

12

where X(t) is a periodic signal, the value of Y(t) is uniformly distributed from −√
3 to

√
3,

and Z is a random number taking 1 or 0 with probabilities P and 1 − P, respectively, and
decreasing linearly from 0.99 at the beginning to 0.01 at the end. The sampling frequency
of mix signal is 1000 Hz, with a total of 20 s. We take the length of sliding window as
1000 sampling points, and slide backward from the first sampling point with 90% overlap
to obtain 190 samples. MIX signal (top) and the corresponding different entropy curves
(bottom) are shown in Figure 7.

As can be seen from Figure 7, the MIX signal changes from dense to sparse as the
number of sampling points increases; the value of FuzzDEα decreases as the number of
sampling points increases; the higher the fractional order, the larger the FuzzDEα value and
the rate of decline of the curve also increases. Therefore, we can conclude that an increase
in fractional order can better reflect the complexity of the MIX signal.
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Figure 7. MIX signal (top) and the corresponding different entropy curves (bottom).

4. Experiments on Bearing Fault Diagnosis

In this section, we focus on the bearing fault diagnosis, and achieve early prevention
in order to avoid economic losses and even personal safety due to different bearing faults.
Since entropy can be used to detect changes in the dynamics of weak time series, the higher
the entropy value, the more unstable the time series and vice versa. At the same fault
size, different faults have similar amplitude-frequency features, but their bearing fault
complexity and dynamics changes are different, and these changes can be reflected in
successive subsequences, for which entropy features can be extracted for fault diagnosis of
the bearing signals. The experiments in this section are mainly to verify the effectiveness
of FuzzDEα for bearing fault diagnosis, and the proposed mixed features bearing fault
diagnosis method experimental flow chart is shown in Figure 8, with the following steps:

Step 1: Input the real-world bearing signals of ten different classes.
Step 2: Segment the input signals into M samples, each with N sample points, by

which way, we receive a total of M samples for each class of signal.
Step 3: For each sample, calculate their FuzzDEα values at different fractional orders.

For the purpose of contrast, we also introduce fractional order DE (DEα), fractional order
PE (PEα) and fractional order FDE (FDEα) for comparison, with fractional orders of −0.2,
−0.1, 0, 0.1, and 0.2 respectively.

Step 4: Mix the 20 features obtained in Step 3 and set the number of selected features
to K (initialized to 2), by which way we can acquire a total of CK

20 combinations.
Step 5: Calculate the recognition rate of all CK

20 combinations and select the combination
with the highest recognition rate.

Step 6: Determine the direction of the process by the number of features selected, and
if K < 5, skip to Step 7; otherwise, output the combination of 5 features with the highest
recognition rate and the corresponding recognition rate, as a way to avoid the increased
computational consumption when the recognition rate has reached the threshold.

Step 7: Determine the direction of the process by the highest recognition rate among
K feature combinations. If the recognition rate reaches 100%, then output these feature
combinations; otherwise, let K = K + 1 and back to Step 5.
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Figure 8. Flow chart of the proposed mixed features bearing fault diagnosis method.

4.1. Analysis of Experiment Data

This section employs the bearing signal obtained from Case Western Reserve Univer-
sity (CWRU) [26] to verify the effectiveness of the proposed FuzzDEα. The bearing under
test is a deep groove ball bearing type SKF6205 (CWRU, Cleveland, America) with a motor
speed set to 1730 r/min and a load of 3 hp. The original bearing signal is acquired by
collecting the acceleration sensor installed at the driving end, and the sampling frequency
is 12 kHz. Depending on the states of the bearing and the diameters of the failure, there
are 10 different types of bearing signals marked NORM, IR1, BE1, OR1, IR2, BE2, OR2, IR3,
BE3 and OR3, all damage is caused by electro discharge machining as a single point of
damage. The details of the selected bearing signals are shown in Table 1. For each class of
bearing signal, the length of sample points is 120,000, and Figure 9 shows the time domain
distribution of ten classes of bearing signals.

Table 1. Details of the selected bearing signals.

Class Label Fault Size (mm) Selected Data

Normal NORM 0 100_normal_3
Inner race fault IR1 0.1778 108_IR007_3

Balling element fault BE1 0.1778 121_B007_3
Outer race fault OR1 0.1778 133_OR007@6_3
Inner race fault IR2 0.3556 172_IR014_3

Balling element fault BE2 0.3556 188_B014_3
Outer race fault OR2 0.3556 200_OR014@6_3
Inner race fault IR3 0.5334 212_IR021_3

Balling element fault BE3 0.5334 225_B021_3
Outer race fault OR3 0.5334 237_OR021@6_3
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Figure 9. Time domain distribution of ten classes of bearing signals.

4.2. Single Feature Extraction and Classification

The ten classes of bearing signals are used as the object of the experiment for single
feature extraction. There are 50 samples for each type of bearing signal, and each sample
contains 2048 sample points. While calculating the FuzzDEα of the bearing signal, the
DEα, PEα, and FDEα are calculated respectively as comparative analysis. The parameter
settings are as follows: embedding dimension m is 3, class number c is 4, and the range
of fractal order α is from −0.2 to 0.2 with interval 0.1. For other fractional entropies, the
parameter settings are the same as FuzzDEα. The Distribution of fractional entropy features
of different classes of bearing signals are exhibited in Figure 10.

From Figure 10, for the four types of fractional entropies, it is difficult to completely
distinguish all ten types of bearing signals under different fractional order; for FuzzDEα,
DEα,, and FDEα, there is always some standard deviation of fractional entropy values close
to each other for bearing signals; in addition, the standard deviation of fractional entropy
values are significantly higher than that of PEα under different fractional order, for PEα, the
standard deviations of fractional entropy values for ten classes of bearing signals are all very
close, which is difficult to distinguish. Furthermore, we employ KNN to classify the ten
classes of bearing signals, in which there are 50 samples for each type of bearing signal, the
first 25 samples are training samples, and the rest samples are test samples. Table 2 illustrates
the classification recognition rate of different entropies at various fractional orders.

Table 2. Classification recognition rate of different entropies at various fractional orders.

Entropy
Recognition Rates (%)

α=−0.2 α=−0.1 α=0 α=0.1 α=0.2

FuzzDEα 82.8 81.6 74 68.4 67.6
DEα 76.4 79.6 76.4 71.2 66.0
PEα 59.6 56.8 58.4 56.8 54.0

FDEα 79.2 82.8 78.4 77.6 80.4
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Figure 10. Distribution of fractional entropy features of different classes of bearing signals.
(a) α = −0.2; (b) α = −0.1; (c) α = 0; (d) α = 0.1; (e) α = 0.2.

It can be seen from Table 2, for four classes of fractional entropies, the recognition
rates of bearing signals are all lower than 85% under different fractional orders, and the
recognition effect is poor. Therefore, it is difficult to distinguish ten classes of signals with
one feature.

4.3. Double Features Extraction and Classification

In order to improve recognition performance and demonstrate the effectiveness of the
mixed feature extraction method proposed in this paper, we choose different entropy-based
feature extraction methods, extract any two fractional orders with the same entropy and
choose the best combinations of fractional orders. Since fractional order α has 5 values, a
total of C2

5 combinations can be obtained by each entropy-based feature extraction method.
In addition, we use the mixed feature extraction method proposed in this paper to calculate
the highest recognition rate, with a total of C2

20 combinations. Table 3 demonstrate the
highest classification recognition rates for each feature extraction method when double
features are selected.
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Table 3. Highest classification recognition rates for each feature extraction method (double features).

Feature Extraction Methods Combinations Recognition Rate (%)

FuzzDEα-based FuzzDEα=0 & FuzzDEα=0.2 91.6
DEα-based DEα=0 & DEα=0.2 88.4
PEα-based PEα=−0.2 & PEα=0.1 58.4

FDEα-based FDEα=−0.1 & FDEα=0 90.0

Proposed method FuzzDEα=0.1 & FDEα=0.1
(1 of 3) 99.6

In Table 3, FuzzDEα=0 & FuzzDEα=0.2 represents FuzzDEα when fractional order
α is 0 and 0.2 respectively, other combinations of entropy are the same for FuzzDEα=0 &
FuzzDEα=0.2. As can be observed in Table 3, FuzzDEα-based feature extraction method has
the best classification effect among the four entropy-based feature extraction methods, but
the highest recognition rate is only 91.6%, which cannot fully recognize the bearing signals.
Nevertheless, the mixed feature extraction method proposed in this paper can reach a
maximum classification rate of 99.6%, significantly higher than the 91.6% of FuzzDEα-based
feature extraction method, and there are three combinations in total, namely FuzzDEα=0.1 &
FDEα=0.1, FuzzDEα=−0.1 & FDEα=0.1 and FuzzDEα=0.1 & FDEα=−0.1. It is noteworthy that
when reaching the highest recognition rate, the three combinations all contain FuzzDEα,
which further proves the importance of FuzzDEα in bearing fault diagnosis recognition.
Figure 11 shows the distribution of the highest classification recognition rate of mixed
double features.

Figure 11. Distribution of the highest classification recognition rate of mixed double features. (a)
FuzzDEα=0.1. & FDEα=0.1; (b) FuzzDEα=−0.1 & FDEα=0.1; (c) FuzzDEα=0.1 & FDEα=−0.1.

As can be seen from Figure 11, under the mixed double features, the distribution of
each type of bearing signal is relatively concentrated, and the overlapping part is very
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small. However, there are few samples that are not completely distinguishable, for example,
a small percentage of IR1 and IR2 samples are mixed. In summary, compared with the
entropy-based feature extraction methods, the mixed feature extraction method proposed in
this paper further improves the recognition rate and can better distinguish the ten classes of
bearing signals. To sum up, mixed double features extraction method can well distinguish
the ten classes of bearing signals.

4.4. Triple Features Extraction and Classification

In order to further improve the recognition rate of bearing fault diagnosis, we set the
number of selected features H to 3. The rest of the steps are the same as Section 4.3, and
Table 4 shows the highest classification recognition rates for each feature extraction method
when triple features are selected.

Table 4. Highest classification recognition rates for each feature extraction method (triple features).

Feature Extraction
Methods

Combinations
Recognition Rate

(%)

FuzzDEα-based FuzzDEα=−0.1 & FuzzDEα=0 & FuzzDEα=0.2 92
DEα-based DEα=−0.1 & DEα=0 & DEα=0.2 92
PEα-based PEα=−0.2 & PEα=0 & PEα=0.1 58

FDEα-based FDEα=−0.2 & FDEα=−0.1 & FDEα=0 91.6

Proposed method FuzzDEα=−0.1 & PEα=−0.2 & FuzzDEα=0.1
(1 of 15) 100

From Table 4, it can be seen that as the number of features increases, the recognition
rates of the feature extraction methods based on FuzzDEα, DEα and FDEα all improved,
but the fault diagnosis performance is still much less than that of the mixed double features
in Table 3, which indicates that different fractional order features with the same entropy
still have certain limitations. Furthermore, we can also observe from Table 4 that the
mixed feature extraction method proposed in this paper achieves a recognition rate of
100% for 15 combinations when triple features are selected, further demonstrating the
excellent performance of the mixed feature extraction method for bearing fault diagnosis.
To visualize the specific details of these 15 combinations, Table 5 shows the number of
occurrences of each feature in the combinations with 100% recognition rate.

Table 5. Number of occurrences of each feature in the combination of the mixed triple features with
100% recognition rate.

Feature Appear Times

FuzzDEα=−0.1 11
FuzzDEα=−0.2 4

PEα=−0.2 2
PEα=−0.1 3

PEα=0 3
PEα=0.1 4
PEα=0.2 3

FDEα=−0.1 6
FDEα=0 5

FDEα=0.1 4

It is clear from Table 5 that FuzzDEα=−0.1 has the highest number of occurrences at
11, far more than any other features, which proves the efficiency of FuzzDEα in bearing
fault diagnosis. In addition, among the feature combinations with 100% recognition rate,
only DEα is absent, which is due to the fact that FuzzDE is an improvement on DE, further
validating the conclusion that FuzzDE is more differentiable than DE. We can also find that
although the PEα has a low recognition rate on bearing fault diagnosis, it can accurately
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classify some samples that cannot be correctly classified by other entropies. Hence, we
can also conclude that different entropies can distinguish different signal classes, and
following the mixed feature extraction method proposed in this paper, while selecting
mixed fractional order entropies simultaneously can effectively improve the performance
of bearing fault diagnosis.

Figure 12 depicts the distribution of the triple features at 100% recognition rate with
the combination of FuzzDEα=−0.1, PEα=−0.2 and FDEα=0.1. Compared to Figure 11, we can
intuitively find that Figure 12 can perfectly distinguish between IR1 as well as IR2, which
are two different sizes of the same fault class, and it is obvious that the mixed double
features distribution cannot achieve such results.

Figure 12. Distribution of the mixed triple features at 100% recognition rate (FuzzDEα=−0.1 , PEα=−0.2,
FDEα=0.1).

5. Conclusions

In this paper, a new non-linear dynamic parameter is proposed, and a mixed features
extraction method is put forward based on this new parameter. The main conclusions are
as follows.

1. Fractional order calculation is introduced on the basis of fuzzy dispersion entropy
(FuzzDE), and a new entropy called fractional order FDE (FuzzDEα) is proposed. Sim-
ulated experiments have shown that compared with FuzzDE, FuzzDEα can provide
more features of greater sensitivity to changes in the dynamics of the time series.

2. FuzzDEα is combined with DEα, PEα as well as FDEα to present a mixed features
extraction method. For ten classes of bearing signals, the proposed mixed features
fault diagnosis method achieves 100% recognition rate at only triple features.

3. Regardless of how many features are selected, the FuzzDEα proposed in this paper
is the most effective in fault diagnosis compared to the other three fractional order
entropies, where FuzzDEα=−0.1 appears a total of 11 times in the combination of the
triple features with the recognition rate of 100%
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Nomenclature

FuzzDE Fuzzy Dispersion Entropy
FuzzDEα Fractional order fuzzy dispersion entropy
PE Permutation entropy
PEα Fractional order permutation entropy
DE Dispersion entropy
DEα Fractional order dispersion entropy
FDE Fluctuation-based dispersion entropy
FDEα Fractional order fluctuation-based dispersion entropy
NCDF Normal cumulative distribution function
SE Sample entropy
FRDE Fluctuation-based reverse dispersion entropy
RDE Reverse dispersion entropy
FuzzEn Fuzzy entropy
RCMDE Refined composite multiscale dispersion entropy
GRCMFDEα Generalized refined composite multiscale fluctuation-

based fractional dispersion entropy
LM Linear mapping
TANSIG Tangent sigmoid
LOGSIG Logarithm sigmoid
SORT Sorting method
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Abstract: The investigation of global bifurcation behaviors the vibrating structures of micro-
electromechanical systems (MEMS) has received substantial attention. This paper considers the
vibrating system of a typical bilateral MEMS resonator containing fractional functions and multiple
potential wells. By introducing new variations, the Melnikov method is applied to derive the critical
conditions for global bifurcations. By engaging in the fractal erosion of safe basin to depict the
phenomenon pull-in instability intuitively, the point-mapping approach is used to present numerical
simulations which are in close agreement with the analytical prediction, showing the validity of the
analysis. It is found that chaos and pull-in instability, two initial-sensitive phenomena of MEMS
resonators, can be due to homoclinic bifurcation and heteroclinic bifurcation, respectively. On this
basis, two types of delayed feedback are proposed to control the complex dynamics successively.
Their control mechanisms and effect are then studied. It follows that under a positive gain coefficient,
delayed position feedback and delayed velocity feedback can both reduce pull-in instability; neverthe-
less, to suppress chaos, only the former can be effective. The results may have some potential value
in broadening the application fields of global bifurcation theory and improving the performance
reliability of capacitive MEMS devices.

Keywords: global bifurcation; MEMS resonator; homoclinic orbit; heteroclinic orbit; chaos; fractal;
safe basin; pull-in instability; delayed feedback

1. Introduction

Electrostatic microresonators have attracted significant attention thanks to their wide
applications in micro-electromechanical systems (MEMS) such as micro sensors [1], micro
filters [2], and energy harvesters [3]. To maintain their normal work performance, har-
monic vibration is desirable. However, due to nonlinearities in the driven force, stiffness,
damping [4] and structural geometry [5], the vibrating structures of MEMS resonators do
not necessarily undergo periodic responses. During these decades, sufficient works have
studied the conditions for achieving stable periodic responses. Hajjaj et al. [6] investigated
different types of internal resonances of an electrostatic MEMS arch resonator via the theory
of local bifurcation and experiments. Ali and Ardeshir [7] modeled a dielectric elastomer
resonator as a sandwiched Euler-Bernoulli microbeam and presented multiple periodic re-
sponses induced by subcritical bifurcations. Zhu and Shang [8] discussed the phenomenon
jump among coexisting multiple periodic attractors in an electrostatic bilateral microres-
onator. It has been realized that even if MEMS resonators finally vibrate periodically, the
phenomenon jump among coexisting multiple periodic attractors is unwanted as it leads to
unreliability of work performance of the micro devices.

Apart from multistability, there are some other initial-sensitive dynamic behaviors of
micro resonators, for instance, chaos and pull-in instability. The former is well-known in
nonlinear dynamic systems [9–11], whereas the latter is a unique phenomenon of electric-
actuated capacitive micro devices. The phenomenon pull-in instability is related to but
different from the behavior pull in. The latter describes a movable electrode collapsing
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to a rigid one [12] thus implying an unbounded or escape solution of the corresponding
dynamic systems [13]. It is unfavorable in MEMS resonators for causing the failure of their
performance. Pull-in instability means that a subtle disturbance of initial state causes a
sudden change of dynamic behavior from bounded dynamic responses to pull in. It is
similar to the phenomenon of frequency jump. It is also an unwanted dynamic behavior
since it implies the loss of global integrity and performance reliability of the concerned
MEMS devices [14,15].

For chaos and its control of MEMS resonators, there have been significant works in
recent years. Fu and Xu [16] considered the application of a single-side MEMS resonator in
pressure detecting and numerically studied critical conditions for multi-field parameters
for inducing chaos. For a single-side arch micro/nano resonator, Liu et al. [17] introduced
delayed velocity feedback to restrain frequency jump as well as chaos and discussed the
control effect numerically. For double-side micromechanical resonators, as there are mul-
tiple potential wells in their vibrating systems, chaos is easily triggered by homoclinic
bifurcations [18–20]. Luo et al. [18] studied the observer-based adaptive stabilization issue
of the fractional-order chaotic MEMS resonator with uncertain functions via numerical
simulations. Haghighi and Markazi [19] predicted the transient chaos of another type of
bilateral MEMS resonator by the approximately analytical criterion of homoclinic bifurca-
tion and then proposed a robust adaptive fuzzy control algorithm to suppress it. Siewe
and Hegazy [20] found that chaos could be induced by both homoclinic and heteroclinic
bifurcation which was confirmed by numerical simulations of basins of attraction and bifur-
cation diagrams. Due to the electrostatic-driven forces of MEMS resonators, the dynamic
systems of these MEMS resonators contain fractional functions, which cause the difficulty
of analyzing homoclinic bifurcation by classical bifurcation theory. In most studies, homo-
clinic bifurcation is discussed by expanding the fractal functions approximately in Taylor’s
series as third-order [19] or fifth-order [20] polynomials, thus it has some limitations in the
values of system parameters such as DC voltage. When it comes to heteroclinic bifurcation,
this theoretical method cannot work.

The phenomenon pull-in instability is still relatively little considered in the literature.
For the vibrating system of a single-side MEMS resonator, Alsaleem et al. [21] applied the
erosion of safe basin to depict pull-in instability numerically, proposed delayed feedback to
suppress this phenomenon, and studied the control effect experimentally and numerically.
On this basis, Shang [22] studied the mechanism of pull-in instability and its control
in this system and found that it is induced by homoclinic bifurcation, and that the two
types of delayed controllers were both useful for a positive coefficient of the gain and
a short delay. For the MEMS resonator actuated by two-sided electrodes, Gusso et al.
numerically illustrated its rich nonlinear dynamics such as multistability, pull-in instability
and chaos [23].

As shown in the above research, chaos and pull-in instability are both global bifur-
cation behaviors. Two questions are raised: Is there any relationship between chaos and
pull-in instability? Can a control strategy reduce both of them? To answer these questions,
we considered a typical bilateral MEMS resonator containing multiple potential wells [8,19],
and investigated the mechanisms behind chaos and pull-in instability of MEMS resonators
as well as the mechanisms of control strategies on reducing them. The rest of the paper
is arranged as follows. In Section 2, the dynamic model of the MEMS resonator and its
static bifurcation is discussed. In Section 3, global bifurcation and induced behaviors
are analyzed. In Section 4, two control strategies, namely, delay position feedback and
delay velocity feedback, are applied to the original system respectively; and their control
mechanisms and effect on the global bifurcation behavior are studied in detail. Section 5
contains the discussion.

2. Mathematical Model and Unperturbed Dynamics

The schematic diagram of a typical bilateral MEMS resonator is depicted in Figure 1.
The MEMS resonator consists of the movable electrode and nonlinear electrostatic forces
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on each side [8,19]. In this system, an external driving force on the resonator is applied
by means of electrical driving voltages. According to the Second Law of Newton, the
governing differential equation of motion for this MEMS resonator can be expressed as

m
d2z
dt2 + c

dz
dt

+ k1z + k3z3 = Fu
e + Fl

e , (1)

where Fu
e and Fl

e are the electrostatic forces from the upper and the lower capacitor in
Figure 1, respectively. As they are driven by the combined voltage, which is made up of a
DC bias voltage and an AC voltage, they can be described as [12,19]

Fu
e =

A0

2(d − z)2 (Vb + VAC sin Ωt)2, Fl
e = − A0V2

b

2(d + z)2 . (2)

Figure 1. Simplified diagram of a bilateral electrostatic micro resonator.

The nomenclatures of the system parameters in Equations (1) and (2) are presented in
Table 1.

Table 1. Parameters of systems (1) and (5).

Parameter Symbol

Equivalent mass of the proof mass (kg) m
Viscous damping coefficient in the high vacuum environment (N·s/m) c
Linear stiffness coefficient (N/m) k1
Cubic stiffness term (N/m3) k3
Capacitance of each parallel plate at rest (Fm) A0
Initial gap width between the two neighboring parallel plates (m) d
DC bias voltage (V) Vb
Frequency of AC voltage (HZ) Ω
Amplitude of AC voltage (V) VAC
Time t
Displacement of the proof mass at time t z

By introducing the dimensionless time T = ω0t where ω0 =
√

k1
m , and the variable

x(T) = z
d , the dimensionless form of Equation (1) can be expressed by

x′′ (T) + μx′(T) + x + αx3 =
β

(1 − x)2 (1 + γ sin(ωT))2 − β

(1 + x)2 . (3)

where

ω =
Ω
ω0

, μ =
c

mω0
, α =

k3d2

mω2
0

, β =
A0V2

b
2k1d3 , γ =

VAC
Vb

(4)
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Denoting x(T) � x, x′(T) � .
x, x′′ (T) � ..

x in Equation (3) yields the following
dimensionless system

..
x + μ

.
x + x + αx3 =

β

(1 − x)2 (1 + γ sin(ωT))2 − β

(1 + x)2 . (5)

The variable x in Equation (5) should satisfy |x| ≤ 1. Note that |x| = 1 shows the
gap width between the movable electrode and one of its neighboring fixed electrodes being
zero, thus creating the phenomenon pull in. Since the viscous-damping coefficient c is tiny,
and VAC << Vb, the parameters μ and β in Equation (5) are both small, the concerned terms
can be considered as the perturbed ones. Thus, the unperturbed system of Equation (5) is

.
x = y,

.
y = −x − αx3 +

β

(1 − x)2 − β

(1 + x)2 (6)

which is a Hamiltonian system with the Hamiltonian [19]

H(x, y) =
1
2

x2 +
1
2

y2 +
α

4
x4 − β

1 − x
− β

1 + x
+ 2β. (7)

According to Equations (6) and (7), the existence, shapes and positions of potential
wells as well as the number of equilibrium points are determined by the parameters α and β.

Theorem 1. If α and β satisfyβ > 1
4 andβ > (α+1)3

27α2 , then the trivial O(0, 0) will be the only
equilibrium and the saddle point of the system (6).

Proof of Theorem 1. Setting

F(u) = −u − αu3 +
β

(1 − u)2 − β

(1 + u)2 , G(u) =
F(u)

u
= −1 − αu2 +

4β

(1 − u2)2 . (8)

If β > 1
4 , then G(0) > 0, and lim

u→±1
G(u) = +∞. If β > 1

4 and α < 2, there will

be no equilibria in the equation G′(u) = 0; and G′(u) > 0 when u ∈ (−1, 1). Due to
the monotony of the function G(u), there will be no non-trivial solutions in the equation

G(u) = 0. When β > (α+1)3

27α2 and α ≥ 2, one may have β > 1
4 . Then there will be only one

equilibrium of the equation G′(u) = 0 satisfying u ∈ (0, 1), i.e., up =

√
1 − 2 3

√
β
α . Since

G(up) = −(1 + α) + 3 3
√

α2β > 0 (9)

G(u) will always be more than 0 when u ∈ (−1, 1), which shows that there are no non-
trivial equilibria in the equation G(u) = 0. When β > 1

4 , the eigenvalues of the equilibrium
O(0, 0) of the system (6) are λ = ±√4β − 1, showing that one eigenvalue is positive and
the other negative. Thus, the trivial equilibrium is a saddle point of the system (6). �

Theorem 2. When β < 1
4 , there will be three equilibria in the system (6) where the trivial O(0, 0)

is a center, and the other two are saddle points.

Proof of Theorem 2. If β < 1
4 , then G(0) < 0 and G(±1) > 0. Due to the symmetry and

continuity of the function G(u), there must be a pair of solutions ±xs for G(u) = 0 as well
as F(u) = 0 in the ranges (0, 1) and (−1, 0). According to Equation (10), when β < 1

4 , there
is a pair of pure imaginary eigenvalues for the system (6), i.e., λ = ±√1 − 4βi, showing
that O(0, 0) is a center. For the two nontrivial equilibriums of the system (6), i.e., S±(±xs, 0),
the corresponding characteristic equation is
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λ2 +
2x2

s (α − 2 − 3αx2
s )

1 − x2
s

= 0 (10)

It follows from Equation (10) that α − 2 − 3αx2
s < 0 if β < 1

4 and α ≤ 2. If β < 1
4 and

α > 2, then β < (α+1)3

27α2 ; setting u0 =
√

α−2
3α , we can derive that 0 < u0 < 1, and

G(u0) =
−1 − α

3
+

9α2β

(α + 1)2 <
−1 − α

3
+

α + 1
3

= 0 (11)

showing the positive root of the equation G(u) = 0, i.e., xs will surely be within the range
(u0,1). We also have

α − 2 − 3αx2
s < α − 2 − 3αu0

2 = 0 (12)

implying that S±(±xs, 0) are saddle points as there will be a positive and a negative
eigenvalue for them that can be solved from Equation (10). Therefore, when β < 1

4 , the
equilibria S±(±xs, 0) are saddle points. �

Theorem 3. When the parameters α and β satisfy 1
4 < β < (α+1)3

27α2 and α > 2, there will be five
equilibria in the system (6) where three equilibriums are saddle points, and the other two are centers.

Proof of Theorem 3. Since F(0) = 0, the origin (0, 0) will be an equilibrium and a saddle
point of the system (6) if β > 1

4 . In this case, we also have

G(0) > 0, G(1) > 0 (13)

If 1
4 < β < (α+1)3

27α2 and α > 2, we can get

1 > 1 − 3

√
8β

α
>

α − 2
3α

> 0 (14)

Considering u0 =
√

α−2
3α , we will obtain

G(u0) =
27α2β − (α + 1)3

3(α + 1)2 < 0 (15)

According to Equations (13) and (15) as well as the continuity of the function
G(u) when u ∈ (−1, 1), there will be two pairs of real solutions ±xc and ±xs for
G(u) = 0 satisfying

0 < xc <

√
α − 2

3α
< xs < 1. (16)

Therefore, there will be five equilibria of the system (6), i.e., O(0, 0), C1(xc, 0),

C2(−xc, 0), S1(xs, 0) and S2(−xs, 0) when 1
4 < β < (α+1)3

27α2 and α > 2. For each non-
trivial equilibrium, the eigenvalues at these equilibria can be solved from the
characteristic equation

λ2 =
2ũ2

3α(1 − ũ2)
(ũ2 − α − 2

3α
) (17)

where ũ represents the horizontal coordinate of each equilibrium. Due to the condition

(16), when β < (α+1)3

27α2 , we have λ2 > 0 at S1(xs, 0) and S2(−xs, 0), implying that the two
equilibria are saddle points; similarly we get λ2 < 0 at C1(xc, 0) and C2(−xc, 0), showing
that they are centers. �
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According to Theorems 1–3, the parameter plane α-β can be separated into three
regions I, II and III, respectively, as depicted in Figure 2. With the help of the Hamilton
function (7), the trajectories under different values of the parameters α and β are also
classified, as shown in the following three cases.

Figure 2. Orbits of the unperturbed system (6) under different values of α and β.

Case 1: the values of α and β chosen in the region I. There will be one equilibrium and
no potential well in the unperturbed system (6), meaning that each orbit will be unbounded
for different values of the Hamiltonian H(x, y) = E. In this case, the phenomenon of pull
in, namely static pull-in, will be unavoidable. Returning the conditions of the parameters α
and β in Theorem 1 to the original system parameters, we can get the threshold of DC bias
voltage for static pull-in

Vb > Vb
Pull–in = max

⎧⎨⎩
√

k1d3

2A0
,
(k3d2 + mω2

0)
3
2

3ω0k3

√
2k1

3mA0d

⎫⎬⎭, (18)

illustrating that the increase in DC bias voltage Vb may lead to static pull-in [12]. Compara-
tively, the orbits in the other two regions are unnecessary to be unbounded, showing that
for the parameter values in the regions II and III, pull in may be led by initial conditions
rather than the system parameters. It is a so-called dynamic pull in [14,21].

Case 2: the values of the parameters α and β in the region II. There will be two saddle
points crossing which there are heteroclinic orbits to surround a single potential well. Here
the heteroclinic orbits are determined by H(x, y) = H(xs, 0).

Case 3: the values of the parameters α and β in the region III. There will be two potential
well centers C1(xc , 0) and C2(−xc, 0) surrounded by homoclinic orbits H(x, y) = 0; outside
of the homoclinic orbits, there are heteroclinic orbits determined by H(x, y) = H(xs, 0) and
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crossing two saddle points S1(xs, 0) and S2(−xs, 0). Hence, the unperturbed system (6)
contains homoclinic and heteroclinic orbits as well as multiple potential wells.

To discuss homoclinic bifurcation and heteroclinic bifurcation in the system, we focus
on Case 3. Based on the same physical properties of the bilateral MEMS resonator in
Refs. [8,19], in the following parts, some invariable parameters of the dimensionless system
(5) can be calculated as:

α= 12, β = 0.338, μ = 0.01, ω = 0.5. (19)

The dimensionless AC-voltage amplitude γ in the dimensionless system (5) will be
changed to study the influence mechanism of dynamic response characteristics.

3. Global Bifurcations and Complex Dynamics

Since the dimensionless system (5) is a time-periodic perturbation of a Hamiltonian sys-
tem, we may use the Melnikov method [19,20] to describe how the heteroclinic/homoclinic
orbits break up in the presence of the perturbation. To begin with, homoclinic and hetero-
clinic orbits should be expressed as explicit functions of the time variable T. Note that the
unperturbed system (6) contains fractional functions. Thus, these orbits cannot be written
as the explicit functions of T. To tackle this problem, we will introduce new variables to
express both the orbits and the time variable T explicitly. Then by substituting the explicit
functions of new variables into the Melnikov functions, we can employ the Melnikov
method smoothly.

3.1. Homoclinic Bifurcation Behavior

According to the Hamiltonian H(x, y) = 0, the coordinates xhomo and yhomo of homo-
clinic orbits of the system (6) satisfy

yhomo = xhomo

√
4β

1 − x2
homo

− 1 − α

2
x2

homo (20)

The intersection points between the orbits and the x axis are expressed as T1(xe , 0)
and T2(−xe , 0) (see Figure 2), thus satisfying

xe =

√
α − 2 − η1

2α
(21)

where η1 =
√
(α + 2)2 − 32αβ. By introducing a new time transformation ϕ(T) of the

form [24]
dϕ(T)

dT
= Φ(ϕ) = Φ(ϕ + 2π), (22)

we assume at the saddle point O(0, 0) that

ϕ(∞) = π, ϕ(−∞) = 0. (23)

It follows from Equations (20)–(23), the homoclinic orbits can be expressed by ϕ as

xhomo(ϕ) = xe sin ϕ, yhomo = x2
e sin ϕ cos ϕ

√
η1 − αx2

e sin2 ϕ

2(1 − x2
e sin2 ϕ)

. (24)

As shown in Figure 3, homoclinic orbits expressed by Equation (20) and the explicit
functions of ϕ are in complete agreement with each other, which shows the validity of the
explicit functions. Also, we have

T =

√
2sign(cos ϕ)√

αxe2x0
(E1(φ1,

η1

αx0
) + E3(

x0η1

αxe2 , φ1,
η1

αx0
)) (25)
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in which x0 =
√

1 − x2
e and φ1 = −arcsinh( αxe

4|cos ϕ|√
2(4+αxe2)

); the functions E1 and E3 are the

elliptic integrals of the first kind and the third kind, respectively.

Figure 3. Comparison of homoclinic orbits of the system (6) where the solid curve represents the
exact model based on Hamiltonian and the sign + shows the orbits in explicit functions of ϕ.

As well known, the Melnikov function [25–28] is a signed measure of the distance
between the stable and un-stable manifolds for a perturbed system. If there are simple zeros
in it, there will be intersection of homoclinic/heteroclinic orbits, corresponding to homo-
clinic/heteroclinic bifurcation. Assuming small parameters μ and γ of the dimensionless
system (5) as μ = εμ̃, γ = εγ̃, and neglecting second-order terms of ε in Equation (5) yield

..
x + x + αx3 +

β

(1 + x)2 − β

(1 − x)2 = −εμ̃
.
x +

2εβγ̃ sin(ωT)

(1 − x)2 . (26)

By substituting Equations (24) and (25) into the corresponding Melnikov function of
the system (26), and returning the parameters into μ̃ and γ̃ to μ and γ, respectively, we have

Mhomo(T0) = −μI1 + 2βγxe cos(ωT0)I2 + 2βγxe sin(ωT0)I3. (27)

where

I1 =
√

αx3
e
∫ 1
−1x2

√
(3η1−α+2)+(α−2−η1)x2

(α+2+η1)+(α−2−η1)x2 dx

= (
(2+αxe

2)x0
√

2η1
24α − 4

xe4 )E2(arccsch( x0
xe
),− αx0

2

η1
)− 4x0

xe3
√

1−2xe2
+ 4

xe2 E1(arccsch( x0
xe
),− αx0

2

η1
) > 0,

I2 =
∫ π

0
cos ϕ sin(ωT(ϕ))

(1−xe sin ϕ)2 dϕ, I3 =
∫ π

0
cos ϕ cos(ωT(ϕ))

(1−xe sin ϕ)2 dϕ;

(28)

the functions E1 and E2 are the elliptic integrals of the first kind and the second kind,
respectively. In Equation (28), the integrals I2 and I3 can be evaluated numerically [29]. If
2βγxe

√
I22 + I32 > μI1, namely,

VAC > Vhomo0
AC =

μVb I1

2βxe
√

I22 + I32
. (29)

there will be a real number of T0 satisfying Mhomo(T0) = 0 and Mhomo
′(T0) �= 0. It indicates

that the equilibria of Equation Mhomo(T0) = 0 are simple, enabling the existence of the
transverse homoclinic orbits, i.e., homoclinic bifurcation. As homoclinic bifurcation usually
triggers transient chaos [18–20], it follows from Equation (29) that the increase in AC voltage
amplitude may induce transient chaos. Here, it can be calculated that Vhomo0

AC = 0.15 V.
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In order to verify the accuracy of the theoretical prediction, we numerically simu-
late the solutions of Equation (5). In this paper, we utilize the fourth-order Runge-Kutta
approach via MATLAB. For the ordinary differential Equation (5), the software package
ODE45 is applied. Poincaré map [30], a commonly used method for investigating con-
tinuous time nonlinear systems, is employed to display the bifurcation process and rich
dynamic behaviors. By setting ω = 0.5 and initial conditions x(0) = 0 and

.
x(0) = 0, the

bifurcation diagram for the system (5) with the increase in AC voltage amplitude VAC is
shown in Figure 4. Here, the points on the Poincaré map are collected from a cross-section at
y = 0 in the sufficiently long time interval 5000 ≤ T ≤ 7000. As can be observed in Figure 4,
there are periodic doubling windows and chaotic windows, implying that the MEMS
resonator will undergo complex dynamics as VAC grows. Note that when VAC is higher
than the threshold Vhomo0

AC = 0.15 V (see the red dashing line in Figure 4), chaos occurs. For
instance, when VAC = 0.16 V, the phase portrait and the Poincaré map in Figure 5 depict
the chaotic motion clearly. The numerical results closely match the analytical prediction of
Equation (29), showing the validity of the analysis. It follows that the increase in VAC can
induce homoclinic bifurcation, thus triggering chaos of the bilateral MEMS resonator.

Figure 4. Bifurcation diagram of the dimensionless system (5) when ω = 0.5.

Figure 5. Dynamic behavior of the system (5) for VAC = 0.16 V, Vb = 3.8 V, ω = 0.5: (a) phase
portrait; (b) Poincáre map.

3.2. Heteroclinic Bifurcation Behavior

Similarly, we introduce a new variable ψ to express the heteroclinic orbits of the
unperturbed system (6) that satisfies

dψ

dT
= Ψ(ψ) = Ψ(ψ + 2π). (30)
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The heteroclinic orbits crossing the saddle points S1(xs, 0) and S2(−xs, 0) can be set
as x0(ψ) = ±xs cos ψ [24]. Here xs as the horizontal coordinate of a saddle point of the
unperturbed system (6) can be solved from the following equation

4β = (1 + αx2
s )(1 − x2

s )
2
. (31)

Based on Equations (7) and (31), the coordinates xhetero and yhetero of the heteroclinic
orbits can be expressed as

xhetero(ψ) = ±xs cos ψ, yhetero(ψ) = ∓x2
s sin2 ψ

√
η2 + αxs2 cos2 ψ

2(1 − xs2 cos2 ψ)
. (32)

where η2 = 2αx2
s − α + 2. And the time variable T can be expressed by ψ as

T = −
√

2
η2

sign(cos ψ)(E1(ψ1,
α

η2
) +

1 − x2
s

x2
s

E3(
1

xs2 , ψ1,
α

η2
)) (33)

where ψ1 = arcsin(xs|cos ψ|). The comparison of the orbits in both implicit functions
H(x, y) = H(xs, 0) and the explicit form (32) are presented in Figure 6. The complete agree-
ment between them shows that the expression of heteroclinic orbits expressed by explicit
functions of ψ is accurate. Then, substituting heteroclinic orbits (32) and Equation (32) into
the Melnikov function of the approximate system (26) yields

Mhetero(t0) = −2μJ1 ∓ 2βγxs sin(ωT0)J2 ∓ 2βγxs cos(ωT0)J3, (34)

where

J1 =
∫ π

2
0 sin3 ϕ

√
2β(2x2

s−1+xs2 cos2 ϕ)

(1−xs2)
2
(1−xs2 cos2 ϕ)

+ 1
2 dϕ

= xs
3

√
(η2+αx2

s )(1−x2
s )

2 − 2+α(1−x2
s )

2

6α(1−x2
s )

2

√
2η2E2

(
arcsinxs, α

η2

)
+ (1+αx2

s )(1−x2
s )

3αxs2

√
2η2E1

(
arcsinxs, α

η2

)
> 0,

J2 =
∫ π

0
sin ψ cos(ωT(ψ))
(1−xs cos ψ)2 dψ, J3 =

∫ π
0

sin ψ sin(ωT(ψ))
(1−xs cos ψ)2 dψ.

(35)

Figure 6. Comparison of heteroclinic orbits of the system (6) where the solid curve represents the
exact model based on Hamiltonian and the sign + shows the orbits in explicit functions of ψ.

When βγxs

√
J2
2 + J2

3 ≥ μJ1, i.e.,

VAC > VHetero0
AC =

μVb J1

βxs
√

J22 + J32
. (36)
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there will be a simple equilibrium of the Melnikov function (34), enabling the existence
of the transverse heteroclinic orbits, and the dimensionless system (5) may undergo a
type of initial-sensitive motion. Here, it can be calculated that Vhetero0

AC = 0.25 V, much
higher than the threshold for homoclinic-bifurcation chaos Vhomo0

AC = 0.15 V (see last
section), indicating that complex dynamic behavior induced by heteroclinic bifurcation
will be different from chaos. Since heteroclinic bifurcation in nonlinear systems is usually
the mechanism responsible for triggering fractal erosion of safe basin [13,21,31], for VAC
higher than the threshold Vhetero0

AC , erosion of safe basin of the dimensionless system (5)
will be expected. In Equation (5), the escape solution x = 1 or −1 means pull in to the
upper electrode or the lower one, respectively. All the initial conditions leading to pull in
construct the basin of attraction of pull-in attractors, which can be considered as dangerous
basin [21]. In contrast, for bounded solutions satisfying |x(T)| < 1, the union of their
basins of attraction is defined as safe basin. The intermingle of safe basin and dangerous
basin implies that a subtle disturbance of initial conditions may change the dynamics of
the system (5), for instance, from a bounded motion to pull in. it can intuitively depict the
phenomenon pull-in instability.

In order to verify the criterion obtained in this section, numerical simulations are
carried out. The 4th Runge-Kutta approach and the point-mapping method [22,23] are
employed to describe safe basin. In this paper, safe basin is drawn in the sufficiently large
space region defined as −1.2 ≤ x(0) ≤ 1.2, −1.0 ≤ y(0) ≤ 1.0 by generating a 200 × 200 array
of initial conditions for each of those starting points. The escaping set for infinite time
is approximated with good accuracy by a study of 1000 excited circles. The time step is
taken as 0.01. The white region represents the numerical approximation to basin of pull-in
attractors, and the black region is safe basin.

The variation of safe basin with the increase in VAC is given in Figure 7. It can
be noticed that when there is no AC voltage in the vibrating system (see Figure 7a),
the boundary of safe basin is nearly the same as the region surrounded by heteroclinic
orbits. When VAC increases to 0.15 V (see Figure 7b), namely the threshold for homoclinic
bifurcation, safe basin becomes smaller, but its boundary is still smooth. When VAC reaches
0.3 V (see Figure 7c), higher than the threshold Vhetero0

AC , the fractal fingers occur on the
basin boundary, which is in agreement with our theoretical prediction. As VAC continue
to increase, the fractality of safe basin becomes more and more visible (see Figure 7d,e).
Finally, when VAC grows to 1.05 V, the whole initial-condition plane is eroded to be white
(see Figure 7f), meaning that pull in of the MEMS resonator is unavoidable, i.e., static
pull-in. It shows that in the dynamic system of the bilateral MEMS resonator, heteroclinic
bifurcation induces pull-in instability.

Figure 7. Safe basins of the system (5) under different values of AC voltage amplitude: (a) VAC = 0 V;
(b) VAC = 0.15 V; (c) VAC = 0.30 V; (d) VAC = 0.50 V; (e) VAC = 0.70 V; (f) VAC = 1.05 V.
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4. Control of Complex Dynamics via Delayed Feedback

In this section, two types of linear-delayed feedback controllers, i.e., delayed-position
feedback and delayed-velocity feedback, are applied on the DC voltage source to stabilize
the micro resonator. The corresponding control diagram is schemed in Figure 8 where w
represents the position z(t) or the velocity dz

dt . The governing controlled system can be
expressed as

m
d2z
dt2 + c

dz
dt

+ k1z+ k3z3 =
A0

2(d − z)2 (Vb + G(w(t − τ̃)− w) + VAC sin Ωt)2 − A0

2(d + z)2 (Vb + G(w(t − τ̃)− w))2, (37)

where τ̃ is time delay, and G the gain of the feedback controller. G and τ̃ are independent
parameters. When τ̃ = 0, the controlled term becomes that G(w(t − τ)− w(t)) = 0, and
then the controlled system becomes the original system (1). Setting

gp =
Gd
Vb

, gv =
ω0Gd

Vb
, τ = ω0τ̃, (38)

and substituting Equation (4) into the controlled system (37), we will have

..
x + μ

.
x + x + αx3 =

β

(1 − x)2 (1 + gp(x(T − τ)− x) + γ sin ωT)2 − β

(1 + x)2 (1 + gp(x(T − τ)− x))2, (39)

for w(t) = x(t), and

..
x + μ

.
x + x + αx3 =

β

(1 − x)2 (1 + gv(
.
x(T − τ)− .

x) + γ sin ωT)2 − β

(1 + x)2 (1 + gv(
.
x(T − τ)− .

x))2, (40)

for w(t) = dx(t)
dt . Considering the engineering application, we do not discuss the periodic

characteristics of the dimensionless time delay τ but restrict that 0 ≤ τ < 2π. Since there is
no signal that can be returned to the delayed-feedback control system (37) before t = 0, the
initial conditions for the controlled system can be supposed as x(t) = 0 and x′(t) = 0 for
−τ ≤ t < 0 [23,32]. Then the initial-condition space of the delayed system can be projected
onto the initial-phase plane x(0)− x′(0). It means that we can set x(T) = y(T) = 0 for
−τ ≤ t < 0 in the dimensionless controlled systems (39) and (40), and still depict safe basin
in the initial-state plane x(0)− y(0), the same as the original system (5). To be different from
Section 3, the software package applied in this section is DDE23, as the controlled systems
(39) and (40) are delayed differential equations rather than ordinary differential ones.

Figure 8. Schematic diagram of the delayed-feedback-control bilateral MEMS resonator.

4.1. Delayed Position Feedback

To study the control mechanism of chaos and pull-in instability in the delayed sys-
tem via the Melnikov method conveniently, the precondition is that the delayed-position
feedback gp(x(T − τ)− x) can be treated as a perturbed term of the controlled system (39).
In other words, we should ensure that the value of time delay τ will not exceed the first
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stability switch of equilibria in a linearized system [23,32]. In this situation, we can expand
the delayed feedback of the system (39) into Taylor’s series so as to obtain an approximately
ordinary different equation. On this basis, similar to the last section, the Melnikov method
can be applied to discuss critical conditions for chaos and pull-in instability.

Since μ > 0 and α − 2− 3αxc
2 > 0, in the linearized system of the uncontrolled system

(5), the two equilibria C1(xc , 0) and C2(−xc , 0) are stable. Thus, we should present the
linear-stability analysis in the vicinity of the two equilibria. The position x is set as

x = ±xc + εu + O(ε2), (41)

where u = O(1). Substituting (41) into the delayed system (39), expanding the terms β

(1−x)2

and β

(1+x)2 in Taylor’s series and neglecting ε terms and higher-order terms of ε yield, the

following delayed-linear system

..
u + μ

.
u =

2xc
2(2 − α + 3αxc

2)

1 − xc2 u + 2(1 + αxc
2)xcgp(u(T − τ)− u) (42)

Its characteristic equation can be written by

λ2 + μλ + ρ − 2xc(1 + αxc
2)gp(e−λτ − 1) = 0 (43)

where ρ = 2xc
2(α−2−3αxc

2)
1−xc2 > 0. Substituting λ = iv into Equation (43), separating the

imaginary and real parts, and eliminating the triangular functions yield

v4 + v2(−2ρ − 4xc(1 + αxc
2)gp + μ2) + ρ(ρ + 4xc(1 + αxc

2)gp) = 0 (44)

According to Equation (44), if the gain gp satisfies

4xc(1 + αxc
2)gp > μ2 + 2μ

√
ρ, (45)

there will be two different positive solutions of Equation (44) expressed as v+ and v−. And
the critical value of time delay for the stability switch of the two equilibria C1(xc , 0) and
C2(−xc , 0) can be expressed as

τ+(0) =
1

v+
(2π − arccos(1 +

ρ − v+2

2xc(1 + αxc2)gp
)) (46)

Thus, the delayed position feedback can be considered as the perturbed term when
0 < τ < τ+(0). Fixing gp = 0.2, it can be calculated from Equation (46) that τ+(0) ≈ 1.53.
When applying the delayed position feedback suppressing global bifurcation behaviors, it
is better to ensure the delay τ less than τ+(0).

4.1.1. Control of Chaos

In the delayed-position-feedback controlled system (39), for 0 < τ < τ+(0), rescaling
that τ = ετ̂, expanding the delayed feedback gp(x(T − τ)− x in Taylor’s series, neglecting
ε2 terms and higher-order terms of ε, and then returning to the non-dimensional variables,
we can approximate Equation (39) as the following ordinary differential equation

..
x + x + αx3 +

β

(1 + x)2 − β

(1 − x)2 = −μ
.
x +

2βγ sin ωT

(1 − x)2 − 8βgpτx
.
x

(1 − x2)2 (47)

The similar as the uncontrolled system (5), based on homoclinic orbits (24) and
Equation (25), the Melnikov function of the system (47) can be written as

Mhomo−P(t0) = −μI1 ± 2βγ(I2 cos(ωT0) + I3 sin(ωT0)− βgpτ Ip (48)
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where

Ip =
(α − 2 − η1)

2√η1

2
√

2α2

∫ π

0
sin2 2ϕ

√√√√√ 1 − α−2−η1
2η1

sin2 ϕ

(1 − α−2−η1
2α sin2 ϕ)

5 dϕ > 0 (49)

The integral Ip in the above equation can be evaluated numerically.
When 2βγ

√
I22 + I32 > μI1 + βgpτ Ip, namely

VAC > VHomo−P
AC = VHomo0

AC +
gpτVb Ip

2
√

I22 + I32
. (50)

there will be a simple zero in the Melnikov function. Accordingly, the threshold of VAC
for homoclinic bifurcation of the system is VHomo−P

AC of the above equation. It follows
from Equation (50) that for gp > 0, the threshold of VAC for homoclinic bifurcation in the
delayed-position-feedback controlled system will become higher than in the uncontrolled
system. It illustrates the mechanism of delayed-position feedback on controlling chaos.

Given gp = 0.2, the change of VAC threshold with the increase in the delay τ is
depicted in Figure 9. Here τ ranges from 0 to 0.25, satisfying τ<<τ+(0). The numerical
results of VHomo−P

AC are obtained under which the transient chaos occurs. Each numerical
value of VHomo−P

AC has two decimal places. In Figure 9, the numerical results for VHomo−P
AC

are in substantial agreement with the analytical ones. It demonstrates that the threshold
of AC voltage amplitude for transient chaos increases monotonically with the delay τ
for a positive gain and a small τ. For example, setting VAC = 0.16 V, one can observe the
evolution of dynamics with time delay in Figure 10. As shown in the bifurcation diagram
of Figure 10a, with the increase in time delay, the transient chaos is reduced effectively. For
example, when τ = 0.13, it becomes a periodic attractor (see Figure 10b). It shows that the
delayed position feedback can be used to suppress chaos of the micro resonator effectively.

Figure 9. Variation of VAC threshold for homoclinic bifurcation with τ when gp = 0.2.

Figure 10. Dynamic behavior of the delayed system (39) when gp = 0.2 and VAC = 0.16 V (a)
Bifurcation with τ in Poincáre map (b) Phase map when τ = 0.12.
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4.1.2. Control of Pull-In Instability

Similar to last section, we can also employ the Melnikov method to obtain the critical
condition for heteroclinic bifurcation of the controlled system (47). Substituting heteroclinic
orbits (31) and Equation (32) into the Melnikov function of Equation (47) yields

Mhetero−P(T0) = −2μxs
2 J1 ∓ 2βγxs(J2 sin(ωT0) + J3 cos(ωT0))− 8

√
2βxsτgp Jp, (51)

where

Jp =

√
αx2

s + η2(x2
s + 3xs

2β + β − 1)−√
η2(x2

s + 3xs
2β + 3β − 1)

3(1 − x2
s )

3
2

+
√

αβ(arcsinh
2
√

αxs√
1 + αx2

s
− arcsinh

√
2αxs√

1 + αx2
s
) > 0. (52)

For βγ
√

J2
2 + J2

3 > μxs J1 + 4
√

2βgpτ Jp, namely

VAC > VHetero−P
AC = VHetero0

AC +
4
√

2gpτVb Jp√
β(J2

2 + J2
3 )

(53)

according to the global bifurcation theory [25–28], there will be a simple equilibrium of
the above Melnikov function, implying heteroclinic bifurcation. It shows in Equation (53)
that the increase in VAC in the delayed-position-feedback controlled system can also trig-
ger heteroclinic bifurcation, similar as in the uncontrolled system. For gp > 0, one has
VHetero−P

AC > VHetero0
AC , showing that for a positive gain, heteroclinic bifurcation will occur

under a higher AC voltage amplitude in the controlled system than in the uncontrolled
system. It shows the control mechanism of heteroclinic-bifurcation behavior.

In light of the theoretical predictions, we present numerical examples to verify their
validity. As shown in Figure 11, the theoretical results for VHetero−P

AC increase monopoly
with the dimensionless delay τ for gp = 0.2. The numerical values of VHetero−P

AC are obtained
at the point which the boundary of safe basin begins to be unsmooth. In other words, if
VAC is less than the numerical results of VHetero−P

AC , the boundary of safe basin will still be
smooth. It can be seen in Figure 11 that the numerical results match the theoretical ones
well, which illustrates that under a positive gain, the delayed position feedback can be used
to control pull-in instability.

Figure 11. Variation of VAC threshold for heteroclinic bifurcation with τ for gp = 0.2.

To depict the effect of delayed position feedback on controlling pull-in instability in
details, the evolution of safe basin with the increase in τ is presented in Figure 12 where the
delay is short, satisfying τ << τ+(0). When τ = 0 (see Figure 12a,d,g), safe basins mean
those of the uncontrolled system, which contain fractal boundaries, illustrating pull-in
instability. With the increase in the delay τ, the fractal extent, namely the probability of
pull-in instability, is obviously lessened, and the basin area enlarged, which can be observed
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in each line of Figure 12. When τ = 0.55, the basin boundary under VAC = 0.46 V becomes
smooth (see Figure 12b), and the other two basins are enlarged whose boundaries are still
fractal (see Figure 12e,h). When τ = 0.81, the basin boundary under VAC = 0.52 V becomes
smooth too (see Figure 12f). Even though safe basin in Figure 12i still has a fractal boundary,
the situation is much better than in the uncontrolled system: at least the vicinity of the
origin is black, showing that dynamic pull-in will not occur in the initial-condition region.

Figure 12. Safe basins of the controlled system (39) under different values of VAC and τ:
(a) VAC = 0.46 V, τ = 0; (b) VAC = 0.46 V, τ = 0.55; (c) VAC = 0.46 V, τ = 0.75;
(d) VAC = 0.52 V, τ = 0; (e) VAC = 0.52 V, τ = 0.55; (f) VAC = 0.52 V, τ = 0.75;
(g) VAC = 0.81 V, τ = 0; (h) VAC = 0.81 V, τ = 0.55; (i) VAC = 0.81 V, τ = 0.75.

4.2. Delayed Velocity Feedback

Similar to delayed-position feedback, we also expect to treat the delayed velocity
feedback as a perturbed term so as conveniently to discuss the global bifurcation of the
controlled system. Thus, the value of time delay τ should be kept less than the first stability
switch of equilibria in the linearized system. Based on the linearized system in the vicinity
of the stable equilibria of the uncontrolled system (5) and the corresponding characteristic
equation, the critical condition for the stability switch is that there exists a purely imaginary
eigenvalue λ = iv satisfying

− v + (
1 + 3x2

c α

v
− 4β(1 + 3x2

c )

v(1 − x2
c )

2 ) =
8βgvxc

(1 − x2
c )

2 sin vτ, μ +
8βxcgv

(1 − x2
c )

2 =
8βgvxc

(1 − x2
c )

2 cos vτ (54)

For a positive gain gv, since μ > 0, it is easy to conclude that there is no real root of v
in Equation (54). It implies that the stability of the two equilibria will not be changed by
the delayed velocity feedback under a positive gv.

4.2.1. Suppression of Chaos

Now expressing a short time delay τ as ετ̃, expanding gv(
.
x(T − τ) − .

x) in Tay-
lor’s series, neglecting higher-order terms of ε, and returning the parameters to the
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non-dimensional parameters, we approximate the delayed-velocity-feedback controlled
system as

..
x + x + αx3 +

β

(1 + x)2 − β

(1 − x)2 = −μ
.
x +

2βγ sin ωT

(1 − x)2 − 8βgvτx
..
x

(1 − x2)2 (55)

Substituting homoclinic orbits (24) and Equation (25) into the Melnikov function of
the above ordinary differential-equation yields

Mhomo−V(T0) = −μI1 ± 2βγ(I2 cos(ωT0) + I3 sin(ωT0)− 2gvτβ
∫ +∞

−∞
(

1

(1 − xhomo)
2 − 1

(1 + xhomo)
2 )yhomodyhomo(ϕ) (56)

Since
∫ +∞
−∞( 1

(1−xhomo)
2 − 1

(1+xhomo)
2 )yhomodyhomo(ϕ) = 0, one has Mhomo−V(T0) = Mhomo(T0). Accord-

ingly, VHomo−V
AC = VHomo0

AC . It indicates that the delayed velocity feedback cannot work
for reducing transient chaos. It can also be verified by the numerical bifurcation diagram
in Figure 13 for gv = 0.2. As depicted in Figure 13, with the variation of the delay τ, the
dynamic behavior is still complex.

Figure 13. Bifurcation of the delayed-velocity-feedback controlled system (40) with τ in Poincaré
map for gv = 0.2 and VAC = 0.16 V.

4.2.2. Suppression of Pull-In Instability

Similarly, by substituting heteroclinic orbits (31) and Equation (32) into the Melnikov
function of Equation (55), we can the Melnikov function as follows

Mhetero−V(T0) = −2μJ1 ∓ 2βγxs sin(ωT0)J2 ∓ 2βγxs cos(ωT0)J3 − 8βgvτ Jv (57)

where

Jv =
3
x3

s
− β

(
72 − 51x2

s − 8x4
s + 3x6

s
)

6x3
s (1 − x2

s )
3
2

+

(
4 + β − 6α + 6αx2

s
)

2x2
s

arctanh(xs) > 0 (58)

According to the theory of global bifurcation, the critical condition for heteroclinic

bifurcation is βγxs

√
J2
2 + J2

3 > μJ1 + 4βgvτ Jv. Expressing it by the original parameters VAC

and Vb yields

VAC > VHetero−V
AC = VHetero0

AC +
4gvτVb Jv

xs
√

J22 + J32
. (59)

In Equation (59), VHetero−V
AC means the threshold of AC voltage amplitude for pull-in

instability in the delayed-velocity-feedback controlled system. It follows that VHetero−V
AC >
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VHetero0
AC for gv > 0, demonstrating that under a positive gain, the delayed velocity feedback

can be useful to control heteroclinic bifurcation behavior.
The effectiveness of the delayed-velocity feedback control can be verified by the

comparison of the theoretical thresholds and the numerical ones for pull-in instability in
Figure 14 for gv = 0.2. Furthermore, the sequences of safe basin with the increase in time
delay are depicted in detail (see Figure 15). It follows from the comparison of safe basins
under the same values of VAC and different values of τ that under a positive gain gv, the
delayed-velocity feedback can restrict the extent of pull-in instability and dynamic pull
in successfully (see each row of Figure 15). When τ = 0, the delayed system becomes the
uncontrolled one; thus, for VAC higher than 0.25 V (VHetero0

AC ), safe basin is fractal (see the
first column of Figure 15), showing the occurrence of pull-in instability. With the increase
in time delay τ, the fractal extent of safe basin will be reduced. When τ = 1.6, the basin
boundary under VAC = 0.46 V turns smooth (see Figure 15b). When τ reaches 2.0, the basin
boundary under VAC = 0.52 V also becomes smooth, as shown in Figure 15f. Comparing
with the uncontrolled safe basin in Figure 15g, although safe basin in Figure 15i is still
fractal, the vicinity of the point O(0, 0) and C1(xc , 0) becomes black, showing that in this
region, the MEMS resonator under the delayed velocity feedback will not undergo pull-in,
thus having a more stable performance.

Figure 14. Variation of AC voltage threshold for heteroclinic bifurcation with τ when gv = 0.2.

Figure 15. Safe basins of velocity-feedback-controlled system (40) under different VAC and τ:
(a) VAC = 0.46 V, τ = 0; (b) VAC = 0.46 V, τ = 1.6; (c) VAC = 0.46 V, τ = 2; (d) VAC = 0.52 V,
τ = 0; (e) VAC = 0.52 V, τ = 1.6; (f) VAC = 0.52 V, τ = 2; (g) VAC = 0.81 V, τ = 0;
(h) VAC = 0.81 V, τ = 1.6; (i) VAC = 0.81V, τ = 2.0.
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5. Discussion

In the dynamic systems of MEMS resonators, initial-sensitive dynamic behaviors
such as chaos and pull-in instability are unfavorable for causing the loss-of-performance
reliability of these devices. It is known that initial-sensitive dynamic behaviors are usually
attributed to global bifurcations. To understand their mechanisms adequately and to
propose effective control strategies, we consider a typical bilateral MEMS resonator and
discuss its global bifurcation behaviors analytically and numerically.

First, the ordinary differential equation governing the vibrating system of the MEMS
resonator is made dimensionless. The static bifurcation of equilibria is investigated for
the unperturbed system. The bifurcation sets of the equilibria in parameter space are
constructed to demonstrate that the number and shapes of potential wells depend on DC
bias voltage. The increase in DC bias voltage may lead to static pull-in of the micro resonator.
In a certain range of DC bias voltage, the unperturbed system contains both homoclinic
orbits and heteroclinic orbits, implying the possibility of rich complex dynamics.

Next, by fixing the physical parameters of the micro resonator and varying the AC
voltage amplitude, the case of coexisting homoclinic orbits and heteroclinic ones is dis-
cussed in detail. The Melnikov method is employed to provide analytical critical conditions
for global bifurcations. It is worth mentioning that this vibrating system contains frac-
tional terms which constitute an obstacle for expressing the unperturbed orbits in explicit
functions of time variable. Thus, the Melnikov method cannot be applied conveniently.
To tackle this problem, new variables are introduced to express both the orbits and the
time variable explicitly so as to detect the analytical criteria for global bifurcations via the
Melnikov method.

Furthermore, the analytical results are verified by the numerical simulations in the
form of phase maps, safe basins, bifurcation diagrams and Poincaré maps. Fractal erosion
of safe basin is induced to depict pull-in instability intuitively. It is found that chaos and
pull-in instability are different initial-sensitive phenomena attributed to homoclinic and
heteroclinic bifurcation, respectively. The increase in AC voltage amplitude may trigger
chaos and pull-in instability of this MEMS resonator successively.

Consequently, delayed-position feedback and delayed-velocity feedback are applied
to the DC-voltage source to stabilize the micro resonator, respectively. To study the control
mechanisms for chaos and pull-in instability in the delayed system conveniently, we treat
the two types of delayed feedback as perturbed terms by expanding them in Taylor’s series
so as to transform these delayed systems to ODEs. To this end, we discuss the first stability
switch of equilibria in linearized controlled systems to make sure the delay is much less
than the original system, thus it will not change the original stability of equilibria. On this
basis, the similar as the original system, critical conditions for global bifurcation under
control are discussed and confirmed by the numerical simulations. It shows that the two
types of delayed feedback applied on DC bias voltage can both reduce pull-in instability
effectively. The control mechanism behind is that under a positive gain coefficient, the
AC voltage amplitude threshold of heteroclinic bifurcation increases with time delay. For
suppressing chaos, only delayed-position feedback under a positive gain can be effective.

This work presents a detailed analysis of pull-in instability and chaos of a typically
MEMS resonator as well as their control, which may provide some potential applications
for the design and control of relevant MEMS devices. It should be pointed out that the
results are limited to the fixed physical properties of this MEMS resonator. We have not
yet discussed the effect of physical properties on triggering complex responses. For a
better performance reliability of MEMS resonators, these should be taken into account in
theoretical study as well as experiment, which will be included in our future work.

129



Fractal Fract. 2022, 6, 538

Author Contributions: Conceptualization, H.S.; methodology, H.S.; software, Y.Z.; validation,
H.S.; formal analysis, H.S.; investigation, Y.Z. and H.S.; resources, H.S.; data curation, Y.Z.;
writing—original draft preparation, Y.Z. and H.S.; writing—review and editing, H.S.; visualiza-
tion, Y.Z.; supervision, H.S.; project administration, H.S.; funding acquisition, H.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 11472176.

Data Availability Statement: The datasets generated during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: The authors acknowledge the support of the National Natural Science Founda-
tion of China under grant number 11472176. The authors are grateful for the valuable comments of
the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amer, T.S.; Galal, A.A.; Abady, I.M.; Elkafly, H.F. The dynamical motion of a gyrostat for the irrational frequency case. Appl. Math.
Modeling 2021, 89, 1235–1267. [CrossRef]

2. Ilyas, S.; Jaber, N.; Younis, M.I. A MEMS coupled resonator for frequency filtering in air. Mechatronics 2018, 56, 261–267. [CrossRef]
3. Zorlu, Ö.; Külah, H. A MEMS-based energy harvester for generating energy from non-resonant environmental vibration. Sens.

Actuators A Phys. 2013, 202, 124–134. [CrossRef]
4. Zaitsev, S.; Shtempluck, O.; Buks, E.; Gottlie, O. Nonlinear damping in a micromechanical oscillator. Nonlinear Dyn. 2012, 67,

859–883. [CrossRef]
5. Gusso, A. Nonlinear damping in double clamped beam resonators due to the attachment loss induced by the geometric

nonlinearity. J. Sound Vib. 2016, 372, 255–265. [CrossRef]
6. Hajjaj, A.Z.; Jaber, N.; Hafiz, M.A.A.; IIyas, S.; Younis, M.I. Mulitple internal resonances in MEMS arch resonators. Phys. Lett. A

2018, 382, 3393–3398. [CrossRef]
7. Ali, A.; Ardeshir, K.M. Nonlinear dynamics and bifurcation behavior of a sandwiched micro-beam resonator consist of hyper-

elastic dielectric film. Sens. Actuators A Phys. 2020, 312, 112113.
8. Zhu, Y.; Shang, H. Multistability of the vibrating system of a micro resonator. Fractal Fract. 2022, 6, 141. [CrossRef]
9. Barceló, J.; Rosselló, J.L.; Bota, S.; Segura, J.; Verd, J. Electrostatically actuated microbeam resonators as chaotic signal generators:

A practical perspective. Commun. Nonlinear Sci. Numer. Simulat. 2016, 30, 316–327. [CrossRef]
10. Alemansour, H.; Miandoab, E.M.; Pishkenari, H.N. Effect of size on the chaotic behavior of nano resonators. Commun. Nonlinear

Sci. Numer. Simulat. 2017, 44, 495–505. [CrossRef]
11. Dantas, W.G.; Gusso, A. Analysis of the chaotic dynamics of MEMS/NEMS double clamped beam resonators with two-sided

electrodes. Int. J. Bifurc. Chaos 2018, 28, 1850122. [CrossRef]
12. Zhang, S.; Zhang, J. Fatigue-induced dynamic pull-in instability in electrically actuated microbeam resonators. Int. J. Mech. Sci.

2021, 195, 106261. [CrossRef]
13. Rega, G.; Settimi, V. Dynamical integrity and control of nonlinear mechanical oscillators. J. Vib. Control 2008, 14, 159–179.

[CrossRef]
14. Xi, W.; Elsinawi, A.; Guha, K.; Karumuri, S.R.; Shaikh-Ahmad, J. A study of the effect of transient stresses on the fatigue life of RF

MEMS switches. Int. J. Numer. Model. 2019, 32, 2570. [CrossRef]
15. Zhang, W.M.; Yan, H.; Peng, Z.K.; Meng, G. Electrostatic pull-in instability in MEMS/NEMS: A review. Sens. Actuators A Phys.

2014, 214, 187–218. [CrossRef]
16. Fu, X.; Xu, L. Multi-field coupled chaotic vibration for a micro resonant pressure sensor. Appl. Math. Model. 2019, 72, 470–485.

[CrossRef]
17. Liu, C.; Yan, Y.; Wang, W. Resonances and chaos of electrostatically actuated arch micro/nano resonators with time delay velocity

feedback. Chaos Solitons Fractals 2020, 131, 109512. [CrossRef]
18. Luo, S.; Li, S.; Tajaddodianfar, E.; Hu, J. Observer-based adaptive stabilization of the fractional-order chaotic MEMS resonator.

Nonlinear Dyn. 2018, 92, 1079–1089. [CrossRef]
19. Haghighi, S.H.; Markazi, H.D.A. Chaos prediction and chaos in MEMS resonators. Commun. Nonlinear Sci. Numer. Simulat. 2010,

15, 3091–3099. [CrossRef]
20. Siewe, S.M.; Hegazy, H.U. Homoclinic bifurcation and chaos control in MMES resonators. Appl. Math. Modeling 2011, 35,

5533–5552. [CrossRef]
21. Alsaleem, F.M.; Younis, M.I. Stabilization of electrostatic MEMS resonators using a delayed feedback controller. Smart Mater.

Struct. 2010, 19, 035016. [CrossRef]
22. Shang, H. Pull-in instability of a typical electrostatic MEMS resonator and its control by delayed feedback. Nonlinear Dyn. 2017,

90, 171–183. [CrossRef]

130



Fractal Fract. 2022, 6, 538

23. Gusso, A.; Viana, L.R.; Mathias, C.A.; Caldas, L.I. Nonlinear dynamics and chaos in micro/nanoelectromechanical beam
resonators actuated by two-sided electrodes. Chaos Solitons Fractals 2019, 122, 6–16. [CrossRef]

24. Cao, Y.Y.; Chung, K.W.; Xu, J. A novel construction of homoclinic and heteroclinic orbits in nonlinear oscillators by a perturbation-
incremental method. Nonlinear Dyn. 2011, 64, 221–236. [CrossRef]

25. Zhang, D.; Li, F. Chaotic Dynamics of Non-Autonomous Nonlinear System for a Sandwich Plate with Truss Core. Mathematics
2022, 10, 1889. [CrossRef]

26. Litak, G.; Borowiec, M.; Da̧bek, K. The Transition to Chaos of Pendulum Systems. Appl. Sci. 2022, 12, 8876. [CrossRef]
27. Zhou, B.; Jin, Y.; Xu, H. Global dynamics for a class of tristable system with negative stiffness. Chaos Solitons Fractals 2022, 162,

112509. [CrossRef]
28. Zheng, H.; Xia, Y.; Pinto, M. Chaotic motion and control of the driven-damped Double Sine-Gordon equation. Discret. Contin.

Dyn. Syst. -Ser. B 2022, 27, 7151–7167. [CrossRef]
29. Tékam, G.T.O.; Kuimy, C.K.; Woafo, P. Analysis of tristable energy harvesting system having fractional order viscoelastic material.

Chaos 2015, 25, 191–206.
30. Stephen, W.; David, M. Introduction to applied nonlinear dynamical systems and chaos. Comput. Phys. 1990, 4, 563.
31. Qin, B.; Shang, H.; Jiang, H. Initial-Sensitive Dynamical Behaviors of a Class of Geometrically Nonlinear Oscillators. Shock Vib.

2022, 10, 6472678. [CrossRef]
32. Mondal, J.; Chatterjee, S. Controlling self-excited vibration of a nonlinear beam by nonlinear resonant velocity feedback with time

delay. Int. J. Non-Linear Mech. 2021, 131, 103684. [CrossRef]

131





Citation: Paun, M.-A.; Paun, V.-A.;

Paun, V.-P. Fractal Analysis and Time

Series Application in ZY-4 SEM

Micro Fractographies Evaluation.

Fractal Fract. 2022, 6, 458. https://

doi.org/10.3390/fractalfract6080458

Academic Editor: António Lopes

Received: 29 July 2022

Accepted: 19 August 2022

Published: 21 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

Fractal Analysis and Time Series Application in ZY-4 SEM
Micro Fractographies Evaluation

Maria-Alexandra Paun 1,2, Vladimir-Alexandru Paun 3 and Viorel-Puiu Paun 4,5,*

1 School of Engineering, Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
2 Division Radio Monitoring and Equipment, Section Market Access and Conformity, Federal Office of

Communications OFCOM, 2501 Bienne, Switzerland
3 Five Rescue Research Laboratory, 75004 Paris, France
4 Department of Physics, Faculty of Applied Sciences, University Politehnica of Bucharest,

060042 Bucharest, Romania
5 Academy of Romanian Scientists, 050094 Bucharest, Romania
* Correspondence: viorel.paun@physics.pub.ro or viorel_paun2006@yahoo.com

Abstract: SEM microfractographies of Zircaloy-4 are studied by fractal analysis and the time-series
method. We first develop a computer application that associates the fractal dimension and lacunarity
to each SEM micrograph picture, and produce a nonlinear analysis of the data acquired from the
quantitatively evaluated time series. Utilizing the phase space-embedding technique to reconstruct
the attractor and to compute the autocorrelation dimension, the fracture surface of the Zircaloy-4
samples is investigated. The fractal analysis method manages to highlight damage complications
and provide a description of morphological parameters of various fractures by calculating the fractal
dimension and lacunarity.

Keywords: fractal dimension; lacunarity; time series; phase space; attractor; correlation dimension;
Zircaloy-4

1. Introduction

Zirconium, the chemical element with atomic number 40, is an interesting material in
the nuclear domain especially because it is crystallized in the cubic lattice with the densest
packing and due to the good neutron absorption properties proven.

The best known of its alloys, Zircaloy-2 and Zircaloy-4, are used for reactor compo-
nents such as cladding, spacers, and shroud or guide tubes. The effects of alloy composition,
grain size, and cold work on the terminal solubility and thermodynamic activity of hydro-
gen in the alpha phase of zirconium, Zircaloy-2, and Zircaloy-4 are well appreciated in
nuclear power.

Nowadays, Canadian and all Romanian power reactor fuels in activity/operation
utilize Zircaloy-4 (in short Zy-4) [1–3]. Of large importance are the thin-walled Zy-4 pipes,
which are occasionally subjected to cyclic loadings that can start/produce and transmit
meaningful fatigue cracks. The cracks are usually initiated at flaws or stress concentrations.
Metal alloy fatigue cracks are initiated commonly from the surface area of a component
structure, when the fatigue damage commences as scissors cracks on crystallographic slip
planes. The surface of the deteriorated object, in particular the slip planes, is highlighted in
the first place as packed intrusions and extrusions.

One major direction of mechanical comportment study of structural materials is
fracture surface analysis and intrinsic cracking. As such, entire fracture surface and crack
localization can ensure important indications regarding the legitimate source and damage
advancement in time.

Based on the latest progress in statistical inference techniques for continuous chaotic
systems and with the conceptualization of spatio-temporal chaos, we present a deterministic
approach to the microscopic study of Zy-4 sample fracture surface [4].
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This paper produces an assessment of Zy-4 scanning electron microscope (SEM) micro-
graphs by application of fractal analysis and non-linear time series, a natural development
of a preceding study [5]. It also performs a fractal analysis of morphological parameters.

Considering the microstructural behavior of solid materials, the fractal analysis
method makes it possible to solve the problems of recognizing and highlighting the mor-
phological characteristics of various phases, not only in metal and metal alloys, but also in
complex metallic compound structures and classes of nano-composites. Thus, this method
can be used both for realizing a complete analysis of the image and for determining param-
eters such as the configuration and repartition of separate constitutional components and
phases, which is unfeasible by classical methods.

However, apart from the many proven advantages of the method, it also touches on
some justified inconveniences, among which is also the fact that the fractal analysis results
heavily depend both on the outside action on the investigated objects and on the pictures’
inner “content,” which was analyzed. Therefore, an important direction of development
of the fractal analysis method of material structures pictures is advised. This involves
taking into account not only the fractal dimension and lacunarity, but also alternative
non-fractal-specific features together with the associated fractal type (still) in a perfect
complete analysis.

The paper is structured in four parts. Besides the introduction, which sets up the back-
ground and state of the art regarding the use of zirconium in the nuclear domain, the work
continues with a presentation of the theoretical considerations, including mathematical
notions about the fractal dimension, lacunarity, time series, phase-space reconstruction,
and SEM image evaluation. The third part of the present work is devoted to highlighting
the results obtained and to discussing them. Finally, the paper concludes in the fourth part,
which is devoted to the conclusions.

2. Theoretical Part

2.1. Fractal Dimension

The technical grid-type algorithm has more scanning schemes, through which it sets
the mode on how the data will be aggregated, or in other words, how the grid will be
displaced during the time that the image has been scanned. A classical scheme is a fixed
survey, based on a multiple grip-position, where the grid cells are not overlapped and are
not superimposed on the position occupied ahead [6,7]. Much more, the activity carried
out is reiterated until the entire image zone is scanned. The most easy and normal type of
fractal analysis of pictures is the box-counting method, also known as the network method
or grid method. This method consists of collected data analysis and splitting a picture in a
cell network of successively changing size. Data collection or exploring occurs in several
phases, and the cell size increase is evaluated in various stages. The image fractal specific
feature highlighted here is the fractal dimension, conditioned by the following formula:

D = lim
ε→0

(
lnN
lnε

)
(1)

where N is the cell number and ε is the cell size.

2.2. Lacunarity

The microfractures and free space distribution in the structure of the material, in the
total quantity of Zy-4 metal alloy matrix, is globally signaled by lacunarity, measured as a
modified value density of the integral image. The lower the gap value (named lacunarity)
is, the more lacunae there are, or the more numerous the interstices are in the picture, it
can be assumed that the alloy distribution is even more unequal, too. To specify the fractal
dimension of a picture, it is sufficient to examine the inclusion partitions/segregations in
time, which is a necessary step to estimate the lacunae distribution, which is essential to
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produce a complete analysis of the entire picture [8]. The numerical lacunarity value is
computed in accordance with the formula:

Λ =

(
σ

μ

)2
(2)

when σ is the standard deviation of the mass and μ is also the average value of the mass of
the total picture. To estimate the fractal dimension, it is necessary to compose a graphic,
and to calculate the lacunarity afresh, the graphical algorithm of least squares must be
utilized. Now, it must be said that the tendency line inclination (mathematical slope) is
determined through a special formula other than the one presented above:

Λ =

(
σ

μ

)2
+ 1 (3)

The latter expression/relationship is utilized to determine the tendency direction
slope and to avoid “unsafe” calculations due to some homogeneous images. An ordinary
picture is taken into account as being homogeneous only when the pixel number in the
brick/aggregate is not modified during distinct scanning stages. In other words, if σ = 0,
then (and) therefore, Λ = 0.

2.3. Time Series

A sui-generis definition of time series refers to an important aspect that is an obser-
vation selection/collection of well-ascertained elements realized by frequent amplitude
measurements (regardless of the measured object), made into time. For a simple under-
standing, we provide below some classic examples such as measuring the retail sales value
every day or month in a whole year, ocean tide elevations, sunspot counts on a given sur-
face, and electrocardiograms (ECGs)—heart-activity monitoring, each being a conclusive
example of time series. This is because the size of these events/categories is quantitatively
defined and consequently measured to evenly distanced time intervals. Instead, the in-
termittently collected facts or highlighted ones cannot be considered representative time
series, under any circumstances.

The common definition of time series may be as follows: “A well-ordered sequence, es-
tablished from diverse values of a variable scale, measured at evenly spaced time interludes”.

Stationary and non-stationary time series happen when we focus attention on in-
dustrial, economical, biological, and scientific experimental data. At present, one more
significant practice of this technique, developed in the article, is quantitative Zy-4 SEM
microfractography evaluation. As for analyzing the time series, this refers to the statistical
procedure aimed at investigating/assessing the time series facts and pulling the important
statistics and parameters regarding the data in discussion.

To achieve the aim of the study, we further present a brief mathematical appreciation
for the time series in discussion. Let us consider (S, +) as a semigroup together with X, a
nonempty set of states (we shall suppose that X is a metric space dotted with a function
d, called the “metric function”, otherwise considered a “distance function”). Lastly, a
dynamical system, in the area of mathematics, is considered as a possible constitutive map
T: S × X → X, so

(i) T(0, x) = x, for every x ∈ X (ii) T(t, T(s, x)) = T(t + s, x), for every t, s ∈ S and x ∈ X (4)

In this context, a map with real values F: X → R is understood as a state space measure-
ment. If t, τ ∈ S are fixed (τ is the time delay and x ∈ X), then a measurement sequence

F(x), F(T(t + τ, x)), F(T(t + 2τ, x)), F(T(t + 3τ, x)), . . . , F(T(t + (d − 1)τ, x)) (5)

can be denominated as a time series directly related to T, which takes starts from the bipoint (t,x).
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Time series behavior (meaning of the series randomness) can be examined by calculat-
ing the autocorrelation function, which is a measure of the effect/influence of past situations
in suite, concerning the present/current state of the series member [9]. To one discrete
dynamical system T, introduced by an isomorphism map f : M → M, the autocorrelation
function related to the time series

F(x), F( f (x)), . . . , F( f p(x)) (6)

is calculated with

C(n) =
∑

p−n
i=0

(
ZF ◦ f i − mt

)
(x) · (F ◦ f i+n − mt

)
(x)

∑
p−n
i=0

(
F ◦ f i

)2
(x)

(7)

where mt, called the time average, is determined by

mt =
∑

p
i=0

(
F ◦ f i)(x)

p + 1
(8)

The autocorrelation function graphic is significant only within a certain time range
n ∈ [0, m], wherein m � p (much smaller).

The range of values C(n) of the correlation function is between 0 and 1; thus, C(n) = 1
indicates a strong correlation (maximum) and a value of C(n) = 0 suggests no kind of
correlation. To be able to compare two time series suitable/calculated for two distinct initial
values

{
F
(

f i(x)
)}

and
{

F
(

f i(y)
)}

, the correlation function may be utilized, represented by

K(n) =
∑

p−n
i=0

(
F ◦ f i − m

)
(x) · (F ◦ f i+n − m

)
(y)√

∑
p−n
i=0

(
F ◦ f i(x)− mx

)2
∑

p−n
i=0

(
F ◦ f i(y)− my

)2
(9)

wherein mx signifies a time mean of
{

F
(

f i(x)
)}

and my signifies the time mean of
{

F
(

f i(y)
)}

.
The correlation function graphic is important only within a certain time range, wherein

m � p (much smaller).

2.4. Phase Space Reconstruction

A large number of mathematic notional studies attempt to give response to a major
question as regards the time series theory. The demand put, however, is as simple as
possible. It is about, in experimental scrutiny, how we know which physical quantities, and
how many of them, need to be determined to correctly comprehend the system asymptotic
behavior. The amazing response to this question is that it is more than sufficient to measure
one physical quantity (only one). In other words, the infinite time series corresponding to
the measurement of one right suitable physical quantity for only one initial state must be
known. In substance, Takens’ embedding theorem presumes total information concerning
an infinite time series and about the attractor box dimension [10,11]. Nearly all retardation
times τ are hypothetically good, but it turns out that this undertaking does not always work
in real practice (true world). More than likely, experimental data arrive still in the format of
finite time series. Since the box dimension and correlation dimension are numerically close
to each other, the latter could be utilized successfully for embedding dimension evaluation,
because it is again acceptable to calculate in this manner [12].

2.5. SEM Image Evaluation

Chaotic behavior or generally disordered behavior has been proven in numerous chem-
ical, physical, economical, and biological complex systems. As philosophical foundations,
two notions/attitudes about systemic chaos are today unanimously accepted. The first
concept refers to the temporal chaos definition, for which the functions defined in phase
space are considered only time dependent. The second concept, called the spatial chaos
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conceptualization, denotes a veritable disorder situation in relation to spatial coordinates.
These speculative theoretical clarifications open/start the successful accession of nonlinear
deterministic techniques to spatio-temporal virtual phenomena [6,7].

In spite of the fact that the cardinal principles of thermo-mechanical behavior of
various materials (especially our metal alloys) are familiar to us, the nature, number,
and interaction of chemical, physical, and geometric variables implicated in an effective
microstructure engendering cannot be accurately expressed. In addition, however, it seems
legitimate to adopt a functional viewpoint and believe that the image textures are like
“black boxes,” being caused either by a stochastic process (in an extensive sense) or by a
deterministic chaos process [6–8].

The study of Zy-4 SEM pictures was realized by a original software implementation
that creates a time series associated with the image, and afterwards restores the attractor
and calculates its autocorrelation dimension. The procedure to analyze the SEM images
begins by loading a bitmap version of the micrographs in our computational application.
The chosen path in our investigation was to generate the weighted fractal dimensions map
(WFDM), which emphasizes the potential modified formations (conforming to preceding
articles [4,5,13,14]). To generate a time series (in reality, a spatial series) starting from an
selected image area, we did the following: The initial picture was sectioned into pieces
of about 12–16 pixels in altitude; by placing together all these pieces, we procured an
entire strip. The spatial series, noted with s(t), was acquired by calculating the gray-level
mean value for each of the pixels’ procession from within the formed strip. The nonlinear
analysis of these data series started with the attractor reconstruction by first embedding
the spatial series in a higher dimensional phase space, repeating the procedures until the
appropriate dimension was obtained. We did not forget to introduce a certain time delay
τ > 0, compared to the measured standard time.

For an established embedding dimension d, the next mathematical set was considered

s(t), s(t + τ), . . . , s(t + 2τ), . . . , s(t + (d − 1)τ) (10)

which can be assimilated to a point in pseudo-phase space. Ultimately, the desired attractor
can be obtained by linking these items accordingly to the evidence of their succession.

Note. In the general situation of finite data embedding, a difference needs to be
made among the dynamical system dimension that generates input data and provides a
suitable embedding dimension for this and of the restored mathematical object that the
data depicts [12].

Technically speaking, the autocorrelation integral of the attractor, C(r), is the presump-
tion of the likelihood that two points of the phase space may be separated (isolated) by a
Euclidian distance less or equal to a standard distance r. In consequence, this means that
C(r) is a power function of r, with the exponent D, which is also the actual autocorrelation
dimension. The regression line slope in direct correlation to C®estimates D [13,14]). The
methodology is reproduced again for diverse values of the embedding dimension d, each
time at a difference equal to one unit. Finally, it is recommended to draw the graph (figure)
of the autocorrelation dimension that is a function of the embedding dimension, from
which the regression line slope is calculated [15].

3. Results and Discussion

The microstructure influence study of the mechanical properties of Zy-4 claddings is
of crucial relevance in CANDU fuel behavior prevision during nuclear reactor operation.
In this paragraph we put into application a new technique and suitable algorithms to detect
major failure in a number of Zy-4 specimens, which were tested until the final stage of
rupture. Alpha-crystallized Zy-4 high-temperature deformation textures are not explained
here, and the classical system of mechanical deformation suffered by nuclear fuel shells
(exterior cladding) [3] during normal operation in the reactor is not discussed on this
occasion. The only analyses performed were related to the microcracks suffered and the
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careful observation of the break produced in the structure of the sealing material: the tubes
of Zy-4.

We will highlight one method of SEM micro-fractography investigation of the Zy-4
specimens, deteriorated and altered by the rupture process [16–18]. We will also say from
the beginning that we selected only the micrographs of the modified areas, which were
subsequently prepared and produced separately by a new method of the weighted fractal
dimensions map, (WFDM) [4]. Let us start now with the image analysis from the SEM
micro-fractographs obtained on the samples from Zy-4 by studying the time series (space
series) produced [19] by the entire image contained in Figure 1, the area delimited with a
yellow contour.

 

Figure 1. Original image and a selected area.

Figure 2 shows the attractor reconstruction [20] for the rectangle with yellow sides of
the normal area along with a considerable area with microcracks and prominent breakage,
conformable to Figure 1. Both attractor reconstructions are presented. In embedding
dimension 2 some points were observed, and in embedding dimension 3 some broken
lines were noticed. Suitable to Figure 1, we exhibit in Figure 3 the time series (spatial
series) produced by the entire area, contained in the yellow frame. Thus, the selected area
exhibited every surface morphological modification, due to the presence both of the intact,
unaffected areas and of the material zones assailed by fracture.

A slow, slightly steep slope at the time series start, sprinkled with uniform matched
values of the entire period, followed by a tendency of mediation in the sawtooth (see solid
blue line), is observed in Figure 3. The horizontal green line represents the average value of
the series over the entire period considered.

For the second pitch we will investigate the image part that contains the modified
area with obvious cracks, selected from the entire available image. Thus, we can say that
Figure 4 contains the modified area in total agreement with the WFDM procedure. The
choice made was limited to the area with yellow edges and was due to the visual aspect,
which was different from the unaffected parts of the material, with the rest remaining in
the whole picture.
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Figure 2. Attractor reconstruction from Figure 1.

Figure 3. The time series generated by the selected area.

 

Figure 4. The selection of the modified area.
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Figure 5 shows the attractor reconstruction for the rectangle with yellow sides of
the normal area, conformable to Figure 4. Both attractor reconstructions are presented.
In embedding dimension 2, some points were observed and in embedding dimension 3
some broken lines were noticed [11]. Suitable to Figure 4, we exhibit in Figure 6 the time
series (spatial series) produced by the modified area, a material zone attacked/assailed by
fracture. In Figure 6 is presented the time series associated with the selected modified area.
A steep slope at the time series beginning with the highest value of entire period, followed
by a tendency of mediation in sawtooth (see solid blue line), was observed. The horizontal
green line represents the average value of the series over the entire period considered.

Figure 5. Attractor reconstruction from Figure 4.

Figure 6. The time series associated with the selected modified area.

The graphic of the modified area autocorrelation in Figure 7, representing the correla-
tion dimension (CorDim) versus the embedding dimension (EmbDim), shows the slope
computation. The (CorDim) versus (EmbDim) slope was 0.2213. The equation of the
regression line is y = 0.2213x + 0.4525. R2 (R-Squared or coefficient of determination) was
equal to 0.9994, representing that the very good data fit the regression model used.

Figure 8 introduces the original image of the affected/modified area in the yellow
border. Figure 9 introduces the binary version of the image in the yellow box. Figure 10
introduces the process of applying the mask to the image, for lacunarity calculation. The
blue box represents the area of interest.
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Figure 7. The slope of the autocorrelation dimension versus the embedding dimension for the
modified area.

 
Figure 8. The original image of the affected/modified area in the yellow border.

 
Figure 9. The binary version of the image in the yellow box.
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Figure 10. Applying the mask for lacunarity calculation.

Following the numerical evaluations with the appropriate software of the image to
affected/modified area, the values of fractal dimension D = 1.7411, standard deviation
s = ±

√
σ2 = ±0.4568, and lacunarity Λ = 0.0688 were obtained.

Figure 11 shows the verification of the image in the affected/modified area with the
Harmonic and Fractal Image Analyzer Demo software version 5.5.30 [21] of the fractal
dimension of the area for various ruler scales r.

 

Figure 11. Graphic of the fractal dimension for the affected/modified area.

Figure 12 represents the three-dimensional graph of the voxel representation of the
image in the affected/modified area.

The last studied area of the SEM image of Zy-4, in fact the third zone, is the one that
refers to the area considered normal—more precisely, the area that remained undeformed
and was prepared according to the WFDM protocol. Figure 13, which consists of a sector
framed in the yellow rectangle, represents the structure that was considered/remained
normal by comparison with the parts affected by microcracks.
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Figure 12. Voxel representation of the image in the affected/modified area.

 
Figure 13. The selection of a normal area.

Figure 14 shows the attractor reconstruction for the rectangle with yellow sides of the
normal area, conformable to Figure 13. Both attractor reconstructions are presented. In
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embedding dimension 2 some points were observed, and in embedding dimension 3 some
broken lines were noticed. Suitable to Figure 13, we exhibit in Figure 15 the time series
(spatial series) produced by the normal (unaffected) area, a material zone considered intact.

Figure 14. Attractor reconstruction from Figure 13.

Figure 15. Time series associated with a normal area.

A steep slope at the time series throughout the entire period accompanied by the
tendency to average the peaks and a mediation propensity in sawtooth (see solid blue line)
was observed. The horizontal green line represents the average value of the series over the
entire period considered.

The graphic of the normal area autocorrelation in Figure 16, representing the correla-
tion dimension (CorDim) versus the embedding dimension (EmbDim), shows the slope
computation. The CorDim versus EmbDim slope was 0.1479. The equation of the regression
line is y = 0.148x + 0.815. R2 (R-Squared or coefficient of determination) was equal to 0.9842,
representing that the very good data fit the regression model used.

Figure 17 introduces the original image of the unaffected area in the yellow border.
Figure 18 introduces the binary version of the image in the yellow box. Figure 19 introduces
the process of applying the mask to the image, for lacunarity calculation. The blue box
represents the area of interest.
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Figure 16. The slope of the autocorrelation dimension versus the embedding dimension for the
normal area.

 
Figure 17. The original image of the unaffected area in the yellow border.

 
Figure 18. The binary version of the image in the yellow box.
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Figure 19. Applying the mask for lacunarity calculation.

Following the numerical evaluations with the appropriate software of the image to unaffected
area, the values of fractal dimension D = 1.8422, standard deviation s = ±

√
σ2 = ±0.3278, and

lacunarity Λ = 0.0317 were obtained.
Figure 20 represents the three-dimensional graph of the voxel representation for the

image in the unaffected area [19,22].

Figure 20. Voxels representation of the image in the unaffected area.

Figure 21 shows the verification of the image in the unaffected area with the Harmonic
and Fractal Image Analyzer Demo software version 5.5.30 of the fractal dimension of the
area for various ruler scales r.

The carefully conducted research was carried out on 20 SEM images, microfrac-
tographs of some samples that presented either the original unmodified area or the modified
area. Two distinct areas were selected from each picture, one with a distinct portion that
included an area with a normal original structure (unaffected) and another zone with a
modified structure affected by microfractures [23].

The conclusive results obtained are presented in the format of a histogram in Figure 22.
We thus drew a histogram graphic (a bar data representation) for the correlation dimension
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function versus the embedding dimension slopes [24,25], with the slopes of the calculated
regression lines in the domain between the values/range [0.08, 0.32].

 

Figure 21. Graphic of the fractal dimension for the unaffected area.

 

Figure 22. The histogram of the CorDim vs. EmbDim slopes.

4. Conclusions

This work pursues and completes the complex research initiated in preceding papers,
where pictures of the fracture surface of SEM Zy-4 samples are considered by employment
of the fractal analysis method and the time-series technique. The fractal analysis method
manages to resolve the damage complications and finally to ascertain the morphological
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parameters of various fractures, documented in SEM images in metal alloys and in Zy-4
SEM pictures. For the Zy-4 SEM picture investigation, we developed a computer software
practice that generates a time series (spatial series) associated with the picture, then restores
the attractor and calculates its autocorrelation dimension.

Considering the analyzed Figure 1, Figure 4, and Figure 13, we proved that obtaining
fractal compositions (organizations) in Zy-4 SEM images (microfractographies) is a rea-
sonable and pragmatic assumption. In addition, the application of fractal analysis to the
SEM images of Zy-4 samples and the calculation of fractal dimension and lacunarity was a
success of this study.

The fractal numerical valuations of the affected/modified area image of Zy-4 samples
were achieved, and the values of fractal dimension D = 1.7411 ± 0.4568 and lacunarity
Λ = 0.0688 were obtained. In the same conditions, regarding the Zy-4 image for the
unaffected area, values of fractal dimension D = 1.8422 ± 0.3278 and lacunarity Λ = 0.0317
were achieved.

The results performance, acquired from the topical investigation provided, lead to
the conclusions listed below. Thus, the attractors in embedding dimensions 2 and 3 of the
entire picture had three connected components, one corresponding to the entire picture,
another to the normal (unaffected) area, and the last to the modified (affected) area. The
role of these graphic representations is to provide the researcher with notable clues about
the anomalies contained in each investigated image.

The CorDim versus EmbDim slope was 0.1479 for the graphic of the normal area
autocorrelation and 0.2213 for the modified area autocorrelation. The autocorrelation
dimension average for the normal areas was 0.1587, following a normal distribution on the
interval [0.11, 0.24] determined on the abscissa. There are no obvious conclusions on the
autocorrelation dimension for the modified (affected) areas. As one can see in the histograms
diagram, it covered a rather broad interval with two peaks, one between [0.08, 0.18] and
the other between [0.19, 0.32], with both intervals being determined on the abscissa. The
correlation dimension function versus the embedding dimension slopes had slopes of the
calculated regression lines in the domain between the values/range [0.08, 0.32].
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Abstract: In this study, we will discuss the engineering construction of a special sixth generation (6G)
antenna, based on the fractal called Minkowski’s loop. The antenna has the shape of this known
fractal, set at four iterations, to obtain maximum performance. The frequency bands for which this
6G fractal antenna was designed in the current paper are 170 GHz to 260 GHz (WR-4) and 110 GHz to
170 GHz (WR-6), respectively. The three resonant frequencies, optimally used, are equal to 140 GHz
(WR-6) for the first, 182 GHz (WR-4) for the second and 191 GHz (WR-4) for the third. For these
frequencies the electromagnetic behaviors of fractal antennas and their graphical representations
are highlighted.
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1. Introduction

The commencement history of the 6G activity is quite recent in time. In the USA,
the Federal Communications Commission (FCC) has thus begun to provide tentative 6G
frequency band licenses, starting with the year 2019. By its statute, the FCC organization
will offer innovative engineers a minimum ten-year authorization to test the established
frequency spectrum of new sixth generation industrial objects and utilities. As for the
appointment with the appellative 6G, this is the abbreviation of the new generation, in fact
the sixth era of wireless networks, declared as the descendant of 5G technics. Ultimately,
as a successor to previous generations, the new 6G generation is expected to amplify the
existing qualities of the 5G generation.

This study of the subject in question is ready to host excellent information, such as 6G
radio-frequency domain, and frequency bands and ultimately expose 6G technics [1–3]. In
short, the frequency spectral range, falling in the 95 GHz (gigahertz) to 3 THz (terahertz)
domain, will be experimentally initiated for utilization to allow technicians reverie of the
next radio-wireless descendent and outset new activity. However, it is self-evident that
the frequency band being considered superfluous to the original purpose could deliver an
extra rapid Internet exploitation for ascensive data practice, such as extra determination
computer imaging and sensing signal appliances.

First, we talk about what 6G is, how it is possible to achieve 6G communications
(about frequencies, especially) and how current this requirement is. One of the potential
purposes of it is to substitute or operate together with those known as 5G networks and
be superior to them [4]! Moreover, as the first major advantage, it can be stated that it
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can afford meaningfully more dynamic propagation, at a signal velocity of approximately
95 Gbit/s, taken as the reference speed in our case. Thus, in the distributed communications
area, the so-called 6G is evidently the sixth engendering standard for wireless transmission
technics in radio natural networks (see frequency bands used).

The present paper is organized by comprising the six following chapters/sections. In
Section 1, the first work section, a brief general introduction is presented. After the introduc-
tory remarks, in Section 2, the essential notions about fractal geometry are mentioned, with
the specification of some Minkowski fractal characteristics. In Section 3, a review of the
Minkowski fractal antenna designs inspired by mutual fractal patterns is made. In Section 4,
the impact of performances in the utilization of fractal antenna are reported. At this point,
important results such as the charge and current distribution of fractal island antenna,
electric and magnetic fields 3D distribution, Minkowski fractal antenna pattern radiation
and overlay, signal magnitude versus frequency for Minkowski fractal antenna, impedance
versus frequency as well as signal magnitude versus frequency for VSWR are obtained and
discussed. In Section 5, a comparison of Horn antenna versus Minkowski fractal antenna,
mostly among operating parameters, is highlighted. At the end, in Section 6, the last work
section, the conclusions of this study are drawn.

2. Fractal Antennas, Fractals Geometry, Minkowski Fractal Characteristics

2.1. About the Fractal Antennas

From the beginning, we can say that the fractals idea has motivated the electrical
engineering collectivity to do a thorough investigation about the fact that the fractal
geometries could serve in employment at the special antennas design, subsequently named
fractal antennas. Thus, in this sense, our work is intending now to highlight the involvement
of fractals in fractal antenna technology. The novel research pursuit has as a result obtained
extremely spectacular miniature devices, of great perspective, considered basic bricks in
the development of professional antennas.

The fractal type antenna has applications in the military area, in particular, as well as
the economical-commercial zone, wherein by projecting the device, it controls its advisable
ownerships, such as:

• Compact/short dimension;
• Reduced perimeter;
• Multi-band frequency;
• Conformal typology.

Some fractal type antenna shortcomings are the following:

• Antenna gain losing;
• Complicated composition;
• Smaller benefits in dimension according to early recurrence.

Fractal antennas are welcome to be studied as being able to support frequencies in the
6G spectrum, obviously after determining the corresponding fractal geometric shape and
the iteration required for the established frequency.

The 6G Radio Frequency

The frequency bands for which this 6G antenna was designed are presented in Table 1 [5].

Table 1. 6G radio frequency.

Band Frequency WR-Size

D 110 GHz to 170 GHz WR-6
G 140 GHz to 220 GHz WR-5
G 170 GHz to 260 GHz WR-4
G 220 GHz to 325 GHz WR-3
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Among the bidder fractal objects, the most popular are fractal curves such as the
fractal curve type, for example, the Koch Curve (1.2618), Sierpinski Triangle (1.5848),
Sierpinski Carpet (1.8928), Koch Snowflake (1.2618) and Minkowski Curve (1.465), with
fractal dimensions written in parentheses. For this study, we found that the Minkowski
Curve meets our requirements [6], more precisely Minkowski’s loop, which is justified to
do this research.

2.2. About the Fractal Character: Minkowski’s Loop

This section introduces a few considerations about the fractal character of the Minkowski’s
loop and Minkowski fractal antenna. Let us briefly discuss the effects of using the
Minkowski fractal figure on each side of the square area antenna in certain recurrences,
through which to find its ideal shape, to be used in the design of the corresponding fractal
antenna. First of all, we are interested in how the fractal shape is realized from a geo-
metric point of view and the iterative process that is necessary to obtain the fractal figure
considered ideal for the proposed purpose [7].

Currently, by employing the Minkowski procedure, this can be resumed, and the
n-th reiteration is accomplished by sharing a linear section an−1 into five subsections
rn − cn − bn − cn − rn and repeating it over and over again. Between the values of the
five segments is the following constitutive relation an−1 = 2rn + bn, in which cn is the
fractal deep of the generator in the n-th Minkowski recurrent relation (we start from a
straight line, and we obtain the step generator, height/indentation equal to rn), Figure 1,
baseline. Another indicator used, named δn, is the iteration factor in the respective iteration
and is noted as δn = Cn/Bn. Both values of equality, respectively Cn and δn at the n-th
iteration, are adaptable and will be optimized based on the design performances of the
developed antenna.

Figure 1. A drawing with the four iterations made (a–d), starting from the Minkowski initiator.
(a) the initial start (square ring); (b) the 1st iteration; (c) the 2nd iteration; (d) the initial start (square
ring) plus the first three iterations.

The measure D of fractal characteristics can be decided by a logarithmic rapport. The
general equation is s = pD, a power type law, as in the calculus formula for D

s = pD, logs = logpD = Dlogp, D =
logs
logp

=
lns
lnp

(1)

where s is the number of self-similar segments obtained from one portion after every
repetition and p is the number of parts obtained from one segment of every repetition [7,8].
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Conformable to Formula (1), the computed fractal measure, named fractal dimension,
is equal to 1.465 [7]. The fractal dimension D of a fractal curve is an indication of superior
achievement of space-addition (or filling) for the fractal in cause [9]. Yet, some fractal
curves cannot be utilized in the fractal antenna design practice. However, several fractal
geometries have been successfully employed in the projection of different antennas.

In Figure 1a–c, the steps of growth of the modified Minkowski fractal structure are
shown, respectively, as (a) the square ring, (b) the 1st iteration and (c) the 2nd iteration. In
Figure 1d, the first three iterations of Minkowski’s loop are introduced, together with the
linear generator consisting of five segments. More precisely, in the outline above, we start
from the initial appearance (one single figure), named the Minkowski initiator and arrive
through three iterations to the fourth complex figure (last figure). This is the fractal figure
used in making the fractal antenna in our study.

Suitable to Falconer [10], the amended variant of the Minkowski fractal geometry is
called multi-fractal or fractal geometry with above one ratio in the generator, such as a1
and a2. In this situation, the fractal dimension, D, can be achieved, as in the solution of the
next equation:

2
(

1 − a1

2

)D
+ 2a2

D + a1
D = 1 (2)

where a1 = L1/Lo, respectively, a2 = L2/Lo, Figure 1b.
In Figure 2, the variation of the fractal dimensions D of the modified Minkowski

fractal, with the a1 = x (on ox axis) and a2 = y (on oy axis) functioning as independent
variables is presented. The value of D is greater than 1 and less than 2 (in our chart less
than 1.99, to be exact).

Figure 2. The 3D graphical representation of the fractal dimension D, depending on the variables
a1 and a2.

3. Minkowski Fractal Antenna

The fractal island object named the Minkowski’s loop geometric figure was used
to develop a fractal type antenna, more precisely to make a professional antenna. As is
known, the fractal antenna is the profitable beneficiary of a self-similarity project able
to increase to the maximum lengthiness, to grow the contour of a physical entity, which
emits electromagnetic waves in space, or to be in receipt of electromagnetic waves within a
circumscribed area, or rather into a surface, respectively volume restricted [11]. The chosen
fractal antenna has the shape of a “Minkowski’s loop”, with four iterations placed above a
ground plane antenna (electrical conductance area) [12].

For printed circuit boards, a ground plane is a large area of copper foil on the board,
which is connected to the ground terminal of the power supply and serves as a return
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path for the current from various components on the board; therefore, it seems the most
appropriate definition [13].

In Figure 3, the antenna corresponding to the drawn fractal is graphically described.
The power supply/current alimentation to the antennas is normal [9]. For the template in
the figure above, there have been set in the simulation environment titled Antenna Designer
offered by MATLAB R2021a, the following values:

• Length = 0.03 m; Width = 0.028 m; StripLineWidth = 0.0008 m; SlotLength = 0.004 m;
• SlotWidth = 0.00585 m; Height = 0.001 m; GroundPlaneLength = 0.05 m;
• GroundPlaneWidth = 0.03 m; FractalCenterOffset (m) = [0 0]; Tilt (deg) = 0;

TiltAxis = [1 0 0].

Figure 3. Fractal island antenna element (for third iteration).

The dielectric used is air, with a value of relative dielectric permittivity εr (air) =1 and
which is present in a layer of 0.00004 m. The absolute dielectric permittivity of the classical
vacuum is ε0 = 8.8541 × 10−12 F·m−1.

The favorable frequency bands for which this 6G Minkowski fractal antenna (four
iterations) was here designed, are 110 GHz to 170 GHz (WR-6), respectively, 170 GHz to
260 GHz (WR-4) [5]. The strips were chosen according to the indications on the website
https://www.miwv.com/what-is-6g (accessed on 11 June 2022).

The Revised Minkowski Geometry Figure of Fractal

The particular standard used in the fractal figure choice, as far as that goes in the
radiation circuit of minimum measure, is without question its size. With the increase in
the fractal size, the fractal figure replenishes the suitable domain much better than usual.
To achieve the antenna able to work in the planned frequency range, we benefit from the
Minkowski type fractal decomposition scheme to the quadratic area, first of all for the
enlargement of lengthiness of the actual effluent route and thereby diminution of the device
physical dimension. The fundamental Minkowski type fractal item, presented in detail in
Figure 3, is utilized for the enhancement of the actual running lengthiness, named to be the
depth of the fractal. The Minkowski type fractal item can be included into the composition
as a structure one after the other, added to every part developed of the Minkowski fractal
process, at a precedent recurrence step. In this way, it is the obtained/realized enlargement
of actual route lengthiness, and it minimized the antenna dimension for a certain frequency
of resonance.

4. Results and Discussion

Antenna sketch and project are generally easy to accomplish, but all component parts,
which are incorporated in the final project, are frequently the more exciting ones.

By definition, the so-called antennas as parts of a circuit deal with the reception or
transmission of electromagnetic waves in the environment. In this context, project managers
are concerned with priority in obtaining appropriate performances, especially for the gain,
and in the directivity of the designed antennas.
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Thus, we will continue to speak about the radiation patterns, power gain and power
dissipation of a fractal Minkowski antenna, completed on this occasion. The charge
distribution simulation (Figure 4), and respectively the current distribution simulation
(Figure 5) of fractal island antenna, are made only for the resonance frequency equal to
140 GHz, (WR-6). In Figures 6 and 7, the antennas corresponding to the drawn fractal are
graphically described. The power supply/current alimentation to the antennas is normal
(Figures 3 and 4), and in Figures 6 and 7, is lateral.

Figure 4. Charge distribution of fractal island antenna.

Figure 5. Current distribution of fractal island antenna (normal alimentation).

 

Figure 6. Fractal island antenna element (for fourth iteration).
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Figure 7. Current distribution of fractal island antenna (lateral alimentation).

Two more interesting frequencies are discovered where the Minkowski fractal antenna
resonates (182 GHz and 191 GHz), (WR-4).

In Figures 8 and 9, current distribution simulations of fractal island antenna are made
only for the resonance frequencies equal to 182 GHz and 191 GHz, respectively. Power
supply/current bias to the antennas is normally made in the figure on the left, and in the
figure on the right, is laterally made!

 

Figure 8. Fractal island normal antenna at 191 GHz.

Figure 9. Fractal island lateral antenna at 182 GHz.
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In Figure 10, the Azimuth pattern of the Minkowski fractal antenna, respectively
signal directivity, at 140 GHz resonance frequency, is presented. In Figure 11 are graphically
represented the Electric (blue) and Magnetic (red) Fields 3D Distribution, for normally
powered antenna [14]. It is a sphere uniformly distributed with the vectors of the two fields,
E and H, but with a higher density in the area of the two geographical poles. In the left
corner of the sketch is the Minkowski flat fractal antenna, designed for the fourth iteration.

Figure 10. Azimuth pattern of Minkowski fractal antenna.

Figure 11. Electric and Magnetic Fields 3D Distribution.

Figures 12 and 13 are figures with 3D (spatial) representation. These are made to indi-
cate the behavior of the Minkowski fractal antenna pattern radiation, having a colored band
on the right, graded in dBi. Unlike the known units named dB (decibels), the dBi (isotropic
decibels) units, they are also decibels, but in relation to an isotropic radiator device.
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Figure 12. Minkowski fractal antenna pattern radiation.

Figure 13. Fractal antenna pattern radiation overlay.

Figure 14 presents impedance versus frequency, in two distinct curves. The first curve
is resistance (blue) and the second is reactance (red). These are almost horizontal variations
curves, except for the end-of-scale effects [15].

Figure 14. Impedance versus frequency.

Figure 15 shows the signal magnitude (dB) versus frequency (GHz) (blue line) for the
Minkowski fractal antenna, where the last listed refers to the Voltage Standing Wave Ratio
(VSWR) [16].
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Figure 15. Signal magnitude versus frequency for VSWR.

Such that a radio device (which emits or receives electromagnetic waves) must be
able to provide energy to its antenna, the radio total impedance and emission circuits
line impedance must be well tuned according to the antenna’s effective resistance. The
impedance is thus the actual resistance of an integral electric circuit or the constituent
in an alternative current, which results from both ohmic resistance and reactance mixed
effects [16,17]. The parameter Voltage Standing Wave Ratio (VSWR) is the physical degree
that numerically depicts how well the antenna is coupled to the impedance provided of the
radio line or emission line to which it is related. The VSWR is a service of the numerical
reflection factor, which describes the energy reflected from the device used to transmit or
receive electromagnetic signals.

In Figures 16–18 of the Minkowski fractal antenna for two, three, and respectively,
four iterations, the self-reflection coefficient S11 and return loss graphics are presented.

 
(a) (b) 

Figure 16. Minkowski fractal antenna for 2 iterations: (a) Self-reflection coefficient S11, (b) Return loss.

Figures 16–18 show the graphs for (a) the self-reflection coefficient (S11), and respectively,
the return loss for (b), of the Minkowski type fractal antennas for two, three and four iterations.

Now, it can be said that S-parameters sometimes get used interchangeably with the
return loss, insertion loss and reflection coefficient, and often without discernment. In
particular, there seems to be the casual strong confusion around the dissimilarity between
the return loss versus the reflection coefficient, as well as because these associate to (S11).
These mistaking overlaps do occur, however, from the fact that these quantities defined
above all describe the reflection of a wave propagating from a reference pack, either that it
is a terminal transmission line or that it is a grid of preset circuits, ultimately.
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(a) (b)

Figure 17. Minkowski fractal antenna for 3 iterations: (a) Self-reflection coefficient S11, (b) Return loss.

 

(a) (b) 

Figure 18. Minkowski fractal antenna for 4 iterations: (a) Self-reflection coefficient S11, (b) Return loss.

Fractal Antenna Measurements

According to a number of relevant simulations and measurements on Minkowski’s
loop-based fractal configurations, the optimum one is presented in the following figure. In
such an iterative procedure, an initial structure is replicated countless times at different
scales, positions and directions, to obtain the final fractal structure. In Figure 19, the
photography of a fabricated antenna from a fractal curve scheme of the Minkowski’s loop
third iteration can be noted.

The modeling and design process of the antenna are completed in MATLAB with
the help of the AntennaDesigner toolbox: (https://www.mathworks.com/help/antenna/
ref/antennadesigner-app.html (accessed on 11 June 2022)). The toolbox first asks for
the frequency for which one wants to design the antenna. Once this value is entered, a
prototype is made which can then be adjusted until the simulations suit the designer. We
modify certain dimensions of the fractal until we obtain the desired values for impedance,
VSWR, etc. All graphs are obtained with this program. The iterative process is performed
up to the third iteration. The Rogers 4350 0.8 mm thick material is used for the dielectric
having the relative permittivity of εr = 4.4. The fractal antenna is fed from the normal
position by coaxial cable having the inner and outer diameters of the SMA connector. The
scale factor of antennas is 1/3 and the stage of iteration is n = 3. The size of the substrate
and the patch are the same. At the end of the modeling, the Gerber files are generated,
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useful for printing the antenna wiring on the dielectric material (the PCB design has to
be completed with a specialized device to strictly observe the fractal dimensions). In the
measurements effectuated with the fractal antenna obtained, the VDI - Erickson Power
Meters (PM5B) were used. This power meter, covering both analog and digital carriers,
is a calibrated calorimeter-style power meter for 75 GHz to >3 THz applications. It offers
power measurement ranges from 1 μW up to 200 mW. The PM5B is the de facto standard
for frequency > 100 GHz power measurement and can be used in measurements such as
VSWR for antenna and cable, antenna return loss and cable return loss to measure forward
power and measure reflected power.

 
Figure 19. Fabricated antenna photography from a Minkowski fractal curve scheme.

From the investigation of the graph representations, a good match of the experimental
results with the simulated ones is observed. An excellent overlap, between simulated and
measured impedance, is presented in Figure 20. The graph in Figure 21 shows that we have
low, reduced VSWR values. This is gratifying, because the lower the VSWR, the better the
antenna is impedance-matched to the transmission line and the higher the power delivered
to the antenna. Furthermore, a small VSWR reduces reflections from the antenna.

 
Figure 20. Graphical representation of simulated and measured impedance.
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Figure 21. Graphical representation of simulated and measured VSWR.

5. Horn Antenna versus Minkowski Fractal Antenna

The Minkowski fractal antenna and the classic Horn antenna were discussed, for
example [14]. In both representations, the constituent elements of the antennas in the plates
present in the perpendicular plane y0z (black drawing on an olive background) are passed,
generically called the anisotropic fractal meta-surface and, respectively, the dual-band
printed Horn antenna.

Figure 22 shows two distinct antennas operating in the same frequency band specific
to the 6G communications frame, in order to make a direct comparison of the quality of
the emission factors. From our assumptions, this concept is among primal designs for a
meta-surface applied to a dual-band antenna with contrary beams. In a positive vision, the
proposed meta-surface-based fractal antenna concept may present novel opportunities in
the projection of multi-functional antennas [18].

Figure 22. Direct comparison between Minkowski fractal antenna and Horn antenna.

As can be seen from the graphical representations, the Minkowski’s loop fractal
antenna is better in terms of pattern radiation overlay, having the signal strength close to
10 dBi (after the dark red color that appears in the figure on the left), being present on a
larger surface such as emissivity [15].

163



Fractal Fract. 2022, 6, 402

Regarding the directivity and gain of the two compared types of antennas, we present
two graphs in Figures 23 and 24, both at the resonant frequency of 140 GHz. The gains are
different from each other, with values of 14.63 dB for the Horn antenna and 3.133 dB for the
Minkowski fractal antenna, the fourth iteration. Figures 23 and 24 highlight the directivity
qualities and the gain associated to the individual antenna, graphically represented in 2D,
each separately [16]. Thus, we have the main directivity θ = 295◦ at a gain G = 3.13 dB for
the fractal Minkowski antenna, and a main directivity θ = 270◦ at a gain G = 14.6 dB for the
Horn antenna.

 

Figure 23. Azimuth pattern (directivity) of Minkowski fractal antenna.

 

Figure 24. Azimuth pattern (directivity) of Horn antenna.

Finally, we mention that in the graphical representations proposed in this paper we
used the software programs initiated in Image Clustering Algorithms to Identify Complicated
Cerebral Diseases, in a medical article [19].

6. Conclusions

In this paper, the engineering construction of a special Sixth Generation (6G) antenna
has been presented, based on the fractal geometry called Minkowski’s loop. The antenna
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has the shape of this known fractal, set finally at four iterations, to obtain a maximum
electromagnetic performance.

The frequency bands for which this 6G fractal antenna was projected in the article
are 170 GHz to 260 GHz (WR-4), and 110 GHz to 170 GHz (WR-6), respectively. The
three resonant frequencies, optimally used, are equal to 140 GHz (WR-6) for the first,
182 GHz (WR-4) for the second and 191 GHz (WR-4) for the third. For these frequencies,
the electromagnetic behaviors of fractal antennas are well shown.

Our review highlighted qualities of fractal geometry in the antenna’s design, made
a classical analysis of the Minkowski fractal antenna, and calculated and graphically
represented the electric and magnetic parameters such as charge and current distribution,
electric and magnetic fields 3D distribution, impedance, radiation efficiency, Azimuth
pattern and directivity, radiation pattern and VSWR.

It is immediately noticeable that, as with most fractal antennae, the radiation pattern,
and consequently, the detection efficiency and quality of the emission factors, do not
fluctuate umpteen with respect to frequency, mathematically speaking.

The antenna gain is reasonable compared to other fractal antennas, namely, we have a
gain equal to G = 3.13 dB at an angle of main directivity equal to θ = 295◦, for the fractal
Minkowski’s loop antenna (the three iterations). A good match of the experimental results
with the simulated ones is observed.
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Abstract: Slope entropy (SlEn) is a time series complexity indicator proposed in recent years, which
has shown excellent performance in the fields of medical and hydroacoustics. In order to improve
the ability of SlEn to distinguish different types of signals and solve the problem of two threshold
parameters selection, a new time series complexity indicator on the basis of SlEn is proposed by
introducing fractional calculus and combining particle swarm optimization (PSO), named PSO
fractional SlEn (PSO-FrSlEn). Then we apply PSO-FrSlEn to the field of fault diagnosis and propose
a single feature extraction method and a double feature extraction method for rolling bearing fault
based on PSO-FrSlEn. The experimental results illustrated that only PSO-FrSlEn can classify 10 kinds
of bearing signals with 100% classification accuracy by using double features, which is at least 4%
higher than the classification accuracies of the other four fractional entropies.

Keywords: fractional order; slope entropy; time series complexity; permutation entropy; dispersion
entropy

1. Introduction

Entropy is a measure of the complexity of time series [1–5], among which the entropies
based on Shannon entropy [6] are the most widely used, including permutation entropy
(PE) [7], dispersion entropy (DE) [8], etc. The definition of PE is based on the sequential
relationship among the time series. Moreover, the concept of PE is simple, and its calculation
speed is fast [9], but its stability is not very good. Therefore, as an improved algorithm
of PE, dispersion entropy (DE) is proposed, which has the advantages of little influence
by burst signals and good stability [10]. These two kinds of entropies and their improved
entropies have shown good results in various fields [11–13].

PE is one of the most commonly used time series complexity estimators. PE has clearly
proved its usefulness in mechanical engineering, mainly in the field of fault diagnosis.
Taking the research on fault diagnosis for rolling bearing as an example, the advantage of
PE is that it is not limited by the bearing signals and the length of permutation samples [14].
However, PE does not take the difference between the amplitude values. In order to
consider the amplitude information of time series, the complexity of time series is analyzed
by weighted permutation entropy (WPE) [15]. It is concluded that WPE not only has
the same advantages as PE, but also can detect the complexity of dynamic mutation by
quantifying amplitude information. Concurrently, other application fields of PE and WPE
have also received great attention [16–19].

As an improved algorithm of PE, DE also introduces amplitude information, and
has the advantage of distinguishing different types of signals easily and calculating fast.
Regarding the applications of DE, it has been used widely in bearing signals classification.
In the feature extraction experiment of bearing fault diagnosis, DE can classify bearing faults
through short data, and has high recognition accuracy in the case of small samples [20].
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However, DE is impossible to evaluate the fluctuation of time series. Thus, the fluctuation
information is combined with DE to obtain fluctuating dispersion entropy (FDE) [21]. FDE
takes into account the fluctuation of time series, which can discriminate deterministic from
stochastic time series. And relative to DE, FDE reduces all possible dispersion modes
to speed up the calculation of entropy. After that, DE and FDE have also made great
achievements in the fields of medicine and underwater acoustics [22,23]. In order to make
the feature of DE more significant, fractional calculus is proposed to combine with DE [24],
where fractional calculus can introduce fractional information into entropy [25]. Similarly,
there is the existence of fractional fuzzy entropy (FE), which is the combination of fractional
calculus and FE [26].

Slope entropy (SlEn) is a new time series complexity estimator proposed in recent years.
Its concept is simple, which is only based on the amplitude of time series and five modules.
Since it was proposed, it has been used in the fields of medical, hydroacoustics, and fault
diagnosis. In 2019, SlEn was first proposed by David Cuesta-Frau, and successively applied
it to the classification of electroencephalographic (EEG) records and electromyogram (EMG)
records [27], classify the activity records of patients with bipolar disorder [28], and the
features extraction of fever time series [29]. Then SlEn is also used to extract the features of
ship radiated noise signals [30] and bearing fault signals [31].

SlEn has proven to have strong superiority as features. However, SlEn has not received
the attention it deserves. A big factor that leads to this situation is the influence of the two
threshold parameter settings on its effect. Therefore, in order to solve this problem, we
introduce particle swarm optimization (PSO) algorithm to optimize these two threshold
parameters. Another factor is that there is still room for improvement in the basic SlEn.
Therefore, in order to improve the significance of features, we combine fractional calculus
with SlEn. Finally, a new algorithm named PSO fractional SlEn (PSO-FrSlEn) is proposed
in this paper, which is an improved time series complexity indicator of SlEn.

The structure of this paper is divided as follows. Section 2 introduces the algorithm
steps of the proposed method in detail. Section 3 exhibits the experimental process of this
paper briefly. Sections 4 and 5 demonstrate the experiment and analysis of single feature
extraction and double feature extraction separately. Finally, the innovations of this paper
and the conclusions of the experiments are drawn in Section 6.

2. Algorithms

2.1. Slope Entropy Algorithm

For a given time series S = {si, i = 1, 2, 3, . . . , n}, SlEn is calculated according to
the following steps.

Step 1: set an embedding dimension m, which can divide the time series into k = n − m + 1
subsequences, where m is greater than two and much less than n. The disintegrate
form is as follows:

Sk = {sk, sk+1, . . . , sn} (1)

Here, all subsequences S1, S2, . . . , Sk contain m elements, such as S1 = {s1, s2, . . . , sm}.

Step 2: subtract the latter of the two adjacent elements in all the subsequences obtained
in Step 1 from the former to obtain k new sequences. The new form is as follows:

Tk = {tk, tk+1, . . . , tn−1} (2)

Here, the element tk = sk+1 − sk, and all sequences T1, T2, . . . , Tk contain m − 1
elements, such as T1 = {t1, t2, . . . , tm−1}.

Step 3: lead into the two threshold parameters η and ε of SlEn, where 0 < ε < η, and
compare all elements in the sequences obtained from Step 2 with the positive and
negative values of these two threshold parameters. The positive and negative
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values of these two threshold parameters −η,−ε, ε and η serve as the dividing
lines, they divide the number field into five modules −2,−1, 0, 1, and 2. If
tk < −η, the module is −2; if −η < tk < −ε, the module is −1; if −ε < tk < ε,
the module is 0; if ε < tk < η, the module is 1; if −ε < tk < ε, the module is 0; if
tk > η, the module is 2. The intuitive module division principle is shown by the
coordinate axis in Figure 1 below:

1

2

1

2

Figure 1. Module division principle.

The form of the sequences is below:

Ek = {ek, ek+1, . . . , en−1} (3)

Here, each element in Ek is −2, −1, 0, 1, or 2, and there will be the exactly the same
sequence.

Step 4: the number of modules is 5, so all types of the sequences Ek are counted as
j = 5m−1. Such as when m is 3, there will be at most 25 types of Ek, which
are {−2,−2}, {−2,−1}, . . . , {0, 0}, {0, 1}, . . . , {2, 1}, {2, 2}. The number of
each type records as r1, r2, . . . , rj, and the frequency of each type is calculated
as follows:

Rj =
rj

k
(4)

Step 5: based on the classical Shannon entropy, the formula of SlEn is defined as follows:

SlopeEn(m, η, ε) = −∑j Rj ln Rj (5)

2.2. Fractional Slope Entropy Algorithm

In this paper, the concept of fractional order is introduced into SlEn for the first time,
and the calculation formula of the improved algorithm of SlEn (FrSlEn) is obtained through
the following steps.

Step 1: Shannon entropy is the first entropy to consider fractional calculus, and its gener-
alized expression is as follows:
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ShannonEnα = ∑j pi

{
− p−α

i
Γ(α + 1)

[ln pi + ψ(1)− ψ(1 − α)]

}
(6)

Here, α is the order of fractional derivative, Γ (·) and ψ (·) are the gamma and
digamma functions.

Step 2: extract the fractional order information of order α from Equation (6):

Iα = − p−α
i

Γ(α + 1)
[ln pi + ψ(1)− ψ(1 − α)] (7)

Step 3: combine the fractional order with SlEn, which is to replace − ln Rj with Equation
(7). Therefore, the formula of FrSlEn is defined as follows:

SlopeEnα(m, η, ε) = ∑j Rj

{
−

R−α
j

Γ(α + 1)
[
ln Rj + ψ(1)− ψ(1 − α)

]}
(8)

2.3. Particle Swarm Optimization and Algorithm Process

In order to get a better effect of FrSlEn, we use particle swarm optimization (PSO)
algorithm to optimize the two threshold parameters η and ε of SlEn. Considering all the
above algorithm steps and conditions, the algorithm flowchart of SlEn and three kinds of
improved SlEn is as follows in Figure 2:

(a) (b)

Time series

Obtain subsequences
according to

Obtain sequences ac
cording to and

Calculate the frequency

Define the formula

Obtain subsequences
according to

Obtain sequences ac
cording to and

Calculate the frequency

Define the formula

Time series

Optimize and

Figure 2. Cont.
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(c) (d)

Time series

Obtain subsequences
according to

Obtain sequences ac
cording to and

Calculate the frequency

Define the formula

Extract the fractional
order information

Obtain subsequences
according to

Obtain sequences ac
cording to and

Calculate the frequency

Define the formula

Time series

Extract the fractional
order information

Optimize and

Figure 2. Algorithm flowchart: (a) SlEn; (b) PSO-SlEn; (c) FrSlEn; (d) PSO-FrSlEn.

3. Proposed Feature Extraction Methods

The experiment of this paper is divided into two parts: single feature extraction and
double feature extraction. The specific experimental process of single feature extraction is
as follows.

Step 1: the 10 kinds of bearing signals are normalized, which can make the signals neat
and regular, the threshold parameters η and ε less than 1, where ε is less than
0.2 in most cases.

Step 2: the five kinds of single features of these 10 kinds of normalized bearing signals
are extracted separately under seven different fractional orders.

Step 3: the distribution of the features is obtained and the hybrid degrees between the
feature points are observed.

Step 4: these features are classified into one of the 10 bearing signals by K-Nearest Neigh-
bor (KNN).

Step 5: the classification accuracies of the features are calculated.

The experimental process of double feature extraction is roughly the same as that
of single feature extraction. In the Step 2 of double feature extraction, combine any two
different fractional orders of the seven fractional orders as double features, which can
obtain 21 double feature combinations. The experimental process flowchart is as follows in
Figure 3:
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Normalize signals

Extract features under
one fractional order

Extract features under two
different fractional orders

Obtain the distribution
of the features

Classify the features by KNN

Calculate the accuracy
of the classification

Figure 3. The flowchart of the proposed feature extraction methods.

4. Single Feature Extraction

4.1. Bearing Signals

The object of this paper is bearing signal. Ten kinds of bearing signals with different
faults and fault diameter sizes under the same working state are randomly selected and
downloaded for this paper, and the 10 kinds of bearing signals come from the same
website [32].

The signal data are measured when the motor load is three horsepower. First of all, it is
essential to have a normal bearing signal, which is coded as N-100. Then, the bearing fault
signals are divided into three types: inner race fault signals, ball fault signals and outer
race fault signals, where for the outer race fault signals, the relative position coincidence
area of the outer race is the central direction (six o’clock direction). Finally, there are three
kinds of fault diameter sizes, which are 0.007 in, 0.014 in, and 0.021 in. According to the
three different types of faults and the three different sizes of fault diameter, the fault signals
are divided into nine categories, and they are coded as IR-108, B-121, OR-133, IR-172, B-188,
OR-200, IR-212, B-225, and OR-237.

The data files are in MATLAB format, and each file contains the acceleration time
series data of drive end, fan end and base. The drive end acceleration time series data are
chosen as the experimental data in this paper. The signals data are normalized, and the
normalized signals are shown in Figure 4.

 
(a) (b) 

Figure 4. Cont.
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(c) (d) 

 
(e) (f) 

 
(g) (h) 

 
(i) (j) 

Figure 4. The normalized 10 bearing signals: (a) N-100; (b) IR-108; (c) B-121; (d) OR-133; (e) IR-172;
(f) B-188; (g) OR-200; (h) IR-212; (i) B-225; (j) OR-237.
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4.2. Feature Distribution

In this paper, five kinds of entropies based on Shannon entropy are selected as the
features of the above 10 bearing signals for feature extraction. The five kinds of entropies
are PE, WPE, DE, FDE, and SlEn, which are renamed FrPE, FrWPE, FrDE, FrFDE, and
FrSlEn after combining with the fractional orders.

The parameters shared by different entropies are necessary to be set to the same
value. There are three parameters of FrPE and FrWPE, five parameters of FrDE and FrFDE,
and four parameters of FrSlEn, where the two same parameters of them are embedding
dimension (m) and fractional order (α). So set all the m as 4, and take all the α from −0.3 to
0.3, where α = 0 is the case without fractional order. The same parameter of FrPE, FrWPE,
FrDE, and FrFDE is time lag (τ), and all the τ are set as 1. The two proprietary parameters
of FrDE and FrFDE are number of classes (c) and mapping approach, we set the c of them
as 3 and the mapping approach of them is normal cumulative distribution function (NCDF).
There are two threshold parameters of FrSlEn are proprietary, which are large threshold
(η) and small threshold (ε). They are non-negative and optimized by PSO in this paper, so
FrSlEn is renamed as PSO-FrSlEn.

According to the sampling point lengths of the above signals, most of which are
just more than 1.2 × 105, every 4000 sample points are taken as one sample, so there are
30 samples for each kind of bearing signals. Combined with all the parameter settings
mentioned above, the single features of the 30 samples of each kind of signals are extracted.
PSO-FrSlEn under different α is taken as an example, the feature distribution of PSO-FrSlEn
is shown in Figure 5 below:

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

(g)

Figure 5. Single feature distribution of PSO-FrSlEn: (a) α = −0.3; (b) α = 0.3; (c) α = −0.2; (d) α = 0.2;
(e) α = −0.1; (f) α = 0.1; (g) α = 0.

As can be seen from Figure 5, the feature points of B-121, B-225, and OR-237 are
obviously mixed under α = −0.3; under α = 0.1, α = 0.2, and α = 0.3, the feature points
of N-100, B-121, IR-212, B-225, and OR-237 are mixed with each other; all feature points
except those of OR-200 are mixed to varying degrees under α = −0.2 and α = 0; under
α = −0.1, no kind of feature points is isolated. According to the distribution and confusion
degree of these kinds of feature points, we can judge whether each entropy under different
α is a notable feature of the signals. In order to intuitively show whether the features are
distinguishing, we also undertake classification experiments.

4.3. Classification Effect Verification

KNN is selected as a classifier for the features, which can classify all the features
into the corresponding positions of the signals after being trained. The number of nearest
samples k is set as 3, and 15 samples are taken as training samples and 15 as test samples
from the 30 samples of each type of the signals. Also take PSO-FrSlEn as an example. The
final classification results and distribution of PSO-FrSlEn are shown in Figure 6 below:
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Cont.
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(g)

Figure 6. Classification results and distribution of PSO-FrSlEn: (a) α = −0.3; (b) α = 0.3; (c) α = −0.2;
(d) α = 0.2; (e) α = −0.1; (f) α = 0.1; (g) α = 0.

It can be seen from the distribution of sample points in Figure 6, for N-100, IR-108,
OR-133, OR-200, IR-212, and B-225, at most five sample points are misclassified; for B-
121, more than half of the sample points are misclassified when α = 0, but at most only
four sample points are misclassified when the α is another value, and the classification is
completely correct when α = 0.2; for IR-172, most of the sample points are misclassified
when α = −0.2 and α = 0.1, but the classification is basically correct when the α is another
value; for B-188, the classification effect of sample points is very poor no matter what value
α takes except when α = −0.2; for OR-237, all sample points can be classified correctly
when α = 0.1. It can be concluded that the classification ability of the same entropy is
different under different values of α.

The classification accuracies of each entropy under different fractional orders are
obtained after calculation. All the accuracies obtained are recorded in the Table 1 below,
and a line graph is drawn in Figure 7 for comparison.

Table 1. The classification accuracy of each entropy under different fractional orders.

Figure
FrPE

Accuracy (%)
FrWPE

Accuracy (%)
FrDE

Accuracy (%)
FrFDE

Accuracy (%)
PSO-FrSlEn

Accuracy (%)

−0.3 64.67 46.67 82.67 77.33 88
−0.2 78.67 60.67 81.33 73.33 84
−0.1 76.67 66.67 80.67 79.33 83.33

0 76.67 69.33 69.33 79.33 81.33
0.1 75.33 69.33 80 79.33 86
0.2 75.33 69.33 82 80.67 85.33
0.3 66 72.76 82.67 80 83.33

The following information can be obtained from Table 1 and Figure 7, all the classifi-
cation accuracies are less than 90%; the classification accuracies of PSO-FrSlEn under any
fractional orders are greater than those of other arbitrary entropies, and are greater than
80%; the classification accuracies of DE and SlEn with fractional orders are higher than
those without fractional orders, which proves that fractional order can make entropy have
higher classification accuracy. In order to further improve the classification accuracy and
prove the superiority of PSO-FrSlEn, we add a double feature extraction experiment.
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Figure 7. The classification accuracies under different fractional orders.

5. Double Feature Extraction

5.1. Feature Distribution

There are 7 values of α, and the classification accuracies of the sample points vary
greatly under different α. Therefore, combine any two different α of the same entropy
as a fractional order combination. Each entropy can get 21 groups of fractional order
combinations. Define the 21 groups of fractional order combinations as 21 double feature
combinations, which are −0.3& − 0.2,−0.3& − 0.1,−0.3&0, . . . , 0.1&0.3, 0.2&0.3. There
are also 30 samples for each signal in the double feature extraction experiment. Each
entropy has 21 double feature combinations, so there are 105 double feature combinations
in total. Double feature distribution of the nine highest classification accuracies is shown in
Figure 8, in which there is only one highest classification accuracy for FrPE, FrWPE, FrDE,
and FrFDE, while there are five highest classification accuracy for PSO-FrSlEn.

We can obtain the following information from Figure 8, for FrPE, most feature points
of IR-108, OR-133, IR-172, B-188, B-225, and OR-237 are mixed together; for FrWPE, the
feature points of each signal are mixed with each other expect those of N-100, OR-200,
and IR-212; for FrDE, only a few feature points of IR-108, IR-172, and B-188 have mixed
phenomenon, most feature points of the other signals are connected into lines and parallel
to each other; for FrFDE, only the feature points of B-121, IR-172, and B-188 are mixed,
but the degree of the mixing is great; for PSO-FrSlEn, only one or two feature points of
IR-172 are mixed into the feature points range of B-188, and those of other signals are in
their respective own piles and not mixed into the others’ range.

The mixing degree and the kind number of the feature points determine whether these
features are significant. The greater the mixing degree of feature points or the more kinds
of mixed feature points, the less significant the features are. Therefore, it can be concluded
from the above information, the features of FrWPE are the least significant, and those of
PSO-FrSlEn are the most significant. In order to confirm this conclusion, we carried out
feature classification experiment to verify.
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(e) (f) 

  
(g) (h) 

Figure 8. Cont.
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(i)

Figure 8. Double feature distribution of the nine highest classification accuracies: (a) FrPE,
α = −0.3&0; (b) FrWPE, α = −0.3&0.3; (c) FrDE, α = 0.1&0.3; (d) FrFDE, α = −0.3& − 0.1; (e) PSO-
FrSlEn, α = −0.3&0.2; (f) PSO-FrSlEn, α = −0.2&0.2; (g) PSO-FrSlEn, α = −0.1&0.1; (h) PSO-FrSlEn,
α = −0.1&0.2; (i) PSO-FrSlEn, α = 0&0.1.

5.2. Classification Effect Verification

KNN is used as a classifier to classify these double features, and the parameter settings
are the same as those in the single feature experiment. The highest classification accuracy
of each entropy calculated by the program is shown in Table 2 below. A line graph is drawn
in Figure 9 for comparison, where 1 to 21 on the abscissa axis represent the double feature
combinations from −0.3 & 0.2 to 0.2 & 0.3 respectively.

Table 2. The highest accuracy of each entropy under different double feature combinations.

Entropy Fractional Order Combinations Accuracy (%)

FrPE −0.3&0 78.67
FrWPE −0.3&0.3 72.67
FrDE 0.1&0.3 96

FrFDE −0.3& − 0.1 89.33

PSO-FrSlEn

−0.3&0.2 100
−0.2&0.2 100
−0.1&0.1 100
−0.1&0.2 100

0&0.1 100

As can be seen from the data in Table 2, there are five double feature combinations
of PSO-FrSlEn, which can make the feature classification accuracy up to be the highest,
and the highest accuracy is 100%; the highest classification accuracy of the other four
kinds of entropies is only 96% of FrDE, and the lowest one is 72.67% of FrWPE. The line
graph in Figure 9 shows that most double feature combinations of PSO-FrSlEn has higher
classification accuracy than the other kinds of entropies. These conclusions are sufficient to
prove that the features of PSO-FrSlEn are the most significant to distinguish the 10 kinds of
bearing signals.
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Figure 9. The classification accuracies under different double feature combinations.

6. Conclusions

In this paper, the fractional order is combined with the five kinds of entropies, which
are PE, WPE, DE, FDE and SlEn, and the features of these five kinds of entropies are
extracted for the 10 kinds of bearing signals. Single feature experiment and double feature
experiment are carried out respectively. KNN is used to classify these features to verify the
significant degree of various features. The main innovations and experimental comparison
results are as follows:

(1) As an algorithm proposed in 2019, SlEn has not been proposed any improved algo-
rithm. It is proposed for the first time to combine the concept of fractional information
with SlEn, and get an improved algorithm of SlEn named FrSlEn.

(2) In order to solve the influence of the two threshold parameters of SlEn on feature
significance, PSO is selected to optimize the two threshold parameters, which assists
FrSlEn to make the extracted features more significant.

(3) In the experiment of single feature extraction, under any values of α, the classification
accuracies of PSO-FrSlEn are the highest. The classification accuracies of PSO-FrSlEn
are higher than that of PSO-SlEn, where 88% is the highest classification accuracy of
PSO-FrSlEn under α = −0.3. The highest classification accuracy of PSO-FrSlEn is at
least 5.33% higher than FrPE, FrWPE, FrDE, and FrFDE.

(4) In the experiment of double feature extraction, the classification accuracies of PSO-
FrSlEn under five double feature combinations are 100%. The highest classification
accuracies of FrPE, FrWPE, FrDE, and FrFDE are at least 4% less than PSO-FrSlEn,
where the highest classification accuracy of FrWPE is 27.33% less than PSO-FrSlEn.
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Nomenclature

PE Permutation entropy
WPE Weighted permutation entropy
DE Dispersion entropy
FDE Fluctuation dispersion entropy
SlEn Slope entropy
PSO-SlEn Particle swarm optimization slope entropy
FrPE Fractional permutation entropy
FrWPE Fractional weighted permutation entropy
FrDE Fractional dispersion entropy
FrFDE Fractional fluctuation dispersion entropy
FrSlEn Fractional slope entropy
PSO-FrSlEn Particle swarm optimization fractional slope entropy
α Fractional order
m Embedding dimension
τ Time lag
c Number of classes
NCDF Normal cumulative distribution function
η Large threshold
ε Small threshold
N-100 Normal signals
IR-108 Inner race fault signals (fault diameter size: 0.007 inch)
B-121 Ball fault signals (fault diameter size: 0.007 inch)
OR-133 Outer race fault signals (fault diameter size: 0.007 inch)
IR-172 Inner race fault signals (fault diameter size: 0.014 inch)
B-188 Ball fault signals (fault diameter size: 0.014 inch)
OR-200 Outer race fault signals (fault diameter size: 0.014 inch)
IR-212 Inner race fault signals (fault diameter size: 0.021 inch)
B-225 Ball fault signals (fault diameter size: 0.021 inch)
OR-237 Outer race fault signals (fault diameter size: 0.021 inch)
KNN K-Nearest Neighbor
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Abstract: Let H be a compact metric space. The metric of H is denoted by d. And let (H, f1,∞) be a
non-autonomous discrete system where f1,∞ = { fn}∞

n=1 is a mapping sequence. This paper discusses
infinite sensitivity, m-sensitivity, and m-cofinitely sensitivity of f1,∞. It is proved that, if fn(n ∈ N)

are feebly open and uniformly converge to f : H → H, fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and
∑∞

i=1 D( fi, f ) < ∞, then (H, f ) has the above sensitive property if and only if (H, f1,∞) has the same
property where D(·, ·) is the supremum metric.

Keywords: sensitivity; uniformly converge; non-autonomous discrete systems

MSC: 54H20; 37B45

1. Introduction

Chaos, as a universal motion form of topological dynamical systems, is one of the
core contents of the research for dynamical systems. At present, fruitful results of chaos
theory have been obtained in autonomous discrete dynamical systems. However, many
complex systems in real life, such as medicine, biology, and physics, are difficult to describe
by autonomous systems. Therefore, it is necessary to use other models (for example, non-
autonomous discrete systems). Since 1996, chaos of non-autonomous discrete dynamical
systems (for convenience, we abbreviate it to NDDS) has began to be studied [1]. In recent
years, the discussion about the chaotic properties in NDDS has been active. Si [2] gives some
sufficient conditions for NDDS to have asymptotically stable sets. Lan and Peris [3] showed
the relation between the weak stability of an NDDS and its induced set-valued system.
Li, Zhao, and Wang [4] studied stronger forms of sensitivity and transitivity for NDDS
by using the Furstenberg family. Meanwhile, under the condition lim

n→∞
d∞(gm

m, gm) = 0, a

necessary and sufficient condition for g to be F -mixing is established in [5]. Vasisht and
Das [6] discussed the difference between F -sensitivity and some other stronger forms of
sensitivity by some examples. Salman and Das [7] proved that on a compact metric space,
every finitely generated NDDS which is topologically transitive and has a dense set of
periodic points is thickly syndetically sensitive. Vasisht and Das [8] proved that if the rate
of convergence at which ( fn) converges to f is “sufficiently fast”, then various forms of
sensitivity for the autonomous system (X, f ) and the NDDS (X, f1,∞) coincide. For the
chaoticity of other maps in NDDS, see [9–12] and other literature.

This paper further studies the chaotic properties in the sense of sensitivity. The basic
definitions of chaos are given in Section 2. In Section 3, under the conditions of that,
fn : H → H(n ∈ N) are feebly open and uniformly converge to f : H → H, fi ◦ f = f ◦ fi
for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞. This paper proves that (H, f ) is Q-sensitive
if and only if (H, f1,∞) is Q-sensitive where, D(·, ·) is the supremum metric (see Section 3),
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Q-sensitive denotes one of the four properties: accessible, infinitely sensitive, m-sensitive,
and m-cofinitely sensitive.

2. Preliminaries

For any initial value x0 ∈ H, the orbit of x under f1,∞ is denoted by { fn ◦ fn−1 ◦ · · · ◦
f1(x0) : n ∈ N}.

A subset K of N is cofinite [4,5] if there exists a N ∈ N such that [N,+∞] ⊂ K.
A system (H, f1,∞) (or maps sequence { fn}n∈N) is called “feebly open” [4,5] if for any

nonempty open subset V of H, int( fn(V)) �= φ for any n ∈ N. Where intA denotes the
interior of set A.

A pair (x, y) is proximal [13] for (H, f1,∞) if for any x ∈ H, lim inf
n �→∞

d( f n
1 (x), f n

1 (y)) = 0.

Definition 1 ([14]). A system (H, f1,∞) is "spatio-temporal chaotic" if for any x ∈ H and each
neighborhood V of x, there is a y ∈ V such that lim sup

n �→∞
d( f n

1 (a), f n
1 (b)) > 0 but lim inf

n �→∞
d( f n

1 (a),

f n
1 (b)) = 0.

Definition 2 ([4,5]). A system (H, f1,∞) is called "sensitive dependent on initial condition" if
there exists an η > 0 such that for any x ∈ H and ε > 0, there exists a y ∈ B(x, ε) and an n ∈ N

such that d( f n
1 (x), f n

1 (y)) > η.

Definition 3 ([7,8]). A system (H, f1,∞) is called "infinitely sensitive" if there exists an η > 0
such that, for any x ∈ H and ε > 0, one can find a y ∈ B(x, ε) and an n ∈ N such that
lim sup

n→∞
d( f n

1 (x), f n
1 (y)) ≥ η.

Definition 4 ([15]). A system (H, f1,∞) is called "accessible" if for any ε > 0 and any two
nonempty open subsets U1, U2 ⊂ H, there are two points x ∈ U1 and y ∈ U2 such that
d( f n

1 (x), f n
1 (y))) < ε for some integer n > 0.

For convenience, write

A(U, m, n) = min{d( f n
1 (xi), f n

1 (yj)) : xi, yj ∈ U, i, j ∈ {1, 2, . . . , m}, i �= j}

and
S f1,∞ ,m(U, λ) = {n ∈ N: there is xi, yj ∈ U (i, j ∈ {1, 2, . . . , m}, i �= j) such that

A(U, m, n) ≥ λ},
where m, n ∈ N, U is an arbitrary nonempty open subset in X.

Definition 5 ([16]). Given an integer m with m ≥ 2. The system (H, f1,∞) is called "m-sensitive",
if there is a real number λ > 0 such that for any nonempty open subset U of H, there are 2m points
x1, x2, . . . , xm; y1, y2, . . . , ym ∈ U such that S f1,∞ ,m(U, λ) is nonempty.

Definition 6 ([16]). Given an integer m with m ≥ 2. The system (H, f1,∞) is called "m-cofinitely
sensitive", if there is a real number λ > 0 such that for any nonempty open subset U of H, there are
2m points x1, x2, . . . , xm; y1, y2, . . . , ym ∈ U such that S f1,∞ ,m(U, λ) is a cofinite set.

3. The Relation of Chaoticity between f1,∞ and Its Limit Map f

Let C(H) be the set of all continuous self-maps on (H, d). For any f , g ∈ C(H), the
supremum metric (see [4]) is defined by D( f , g) = sup

x∈H
d( f (x), g(x)). This section will give

equivalence of chaotic properties between (H, f1,∞) and (H, f ).
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Lemma 1 ([5]). Let (H, f1,∞) be an NDDS on a nontrivial compact metric space (H, d) and
f ∈ C(H). If fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, then for any x ∈ H, any integer q ≥ 1 and
any integer p ≥ 1 one has

d( f q+p
1 (x), f q( f p

1 (x))) ≤
q+p

∑
j=p+1

D( f j, f ).

Theorem 1. If fn(n ∈ N) are a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is accessible if and only
if (H, f1,∞) is accessible.

Proof. Suppose that (H, f ) is accessible. Given ε > 0, let U, V are two nonempty open
subsets in H. Because fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, by Lemma 1, for the above ε > 0,

d( f p0+q
1 (x), f q( f p0

1 (x))) < ∑
q+p0
j=p0+1 D( f j, f ) for any x ∈ H and any integer p0, q ≥ 1. More-

over, because ∑∞
i=1 D( fi, f ) < ∞, then there is an integer S0 ≥ 1 such that ∑∞

j=s D( f j, f ) < 1
3 ε

for any s ≥ s0. Combine with the arbitrariness of p0, q, one can get that d( f p0+q
1 (x), f q( f p0

1 (x)))

< ε
3 . Because fi(i ∈ {1, 2, . . . }) are feebly open, the interiors of f p0

1 (U) and f p0

1 (V) are

nonempty sets. Let U′, V′ be the interiors of f p0

1 (U) and f p0

1 (V), respectively.
Because (H, f ) is accessible, for the above ε > 0, there are x ∈ U′ and y ∈ V′ such that

d( f q(x), f q(y)) < ε
3 for some q > 0. Then, there exist x′ ∈ U, y′ ∈ V satisfying x = f p0

1 (x′),
y = f p0

1 (y′). Thus, d( f q( f p0

1 (x′)), f q( f p0

1 (y′))) < ε
3 . Noting that d( f q+p0

1 (x), f q( f p0

1 (x))) <
ε
3 for x ∈ H, by triangle inequality, one has that

d( f p0+q
1 (x′), f p0+q

1 (y′)) ≤ d( f p0+q
1 (x′), f q( f p0

1 )(x′)) + d( f q( f p0

1 )(x′), f q( f p0

1 )(y′))

+d( f p0+q
1 (y′), f q( f p0

1 )(y′))

≤ ε

3
+

ε

3
+

ε

3
= ε.

Hence, (H, f1,∞) is accessible.
Now, suppose that (H, f1,∞) is accessible. For a given ε > 0, let U, V ⊂ H be nonempty

and open. Because ∑∞
i=1 D( fi, f ) < ∞, by Lemma 1, there is an integer p0 ≥ 1 such that

for the above ε > 0, x ∈ H, d( f p0+q
1 (x), f q( f p0

1 (x))) < ε
3 for any integer q ≥ 1. Because

fi(i ∈ {1, 2, . . . }) are feebly open, then the interiors of f p0

1 (U) and f p0

1 (V) are nonempty

sets. Let U′, V′ be the interiors of f p0

1 (U) and f p0

1 (V), respectively.
Because (H, f1,∞) is accessible for the above ε > 0, there are x ∈ U and y ∈ V such

that d( f q+p0

1 (x), f q+p0

1 (y)) < ε
3 for some q > 0. Then, there exist x′ ∈ U′, y′ ∈ V′ satisfying

x′ = f p0

1 (x), y′ = f p0

1 (y). Noted that d( f q+p0

1 (x), f q(x′) < ε
3 , by triangle inequality,

d( f q(x′), f q(y′))

≤ d( f q(x′), f q+p0
(x)) + d( f q+p0

(x), f q+p0
(y)) + d( f q(y′), f q+p0

(y)) < ε.

Hence, (H, f ) is accessible.

Theorem 2. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is infinitely sensitive if
and only if (H, f1,∞) is infinitely sensitive.

Proof. Suppose that (H, f ) is infinitely sensitive with λ > 0 as an infinitely sensitive
constant. Let ε > 0, U ⊂ H is a nonempty open set. Because ∑∞

i=1 D( fi, f ) < ∞, by Lemma
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1, there is an integer p ≥ 1 such that d( f p+q
1 (x), f q( f p

1 (x))) < ε for any integer q ≥ 1, x ∈ H
and the above ε > 0. Taking an integer k ∈ {1, 2, . . . } satisfying k > 4

λ . Then, there is

an integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open (i ∈ {1, 2, . . . }), then the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f ) is infinitely sensitive with infinitely sensitive constant
λ > 0, then there is a y ∈ U′ such that lim sup

q→∞
d( f q(x), f q(y)) > λ. Because

x = f p0

1 (x′), y = f p0

1 (y′), lim sup
q→∞

d( f q( f p0

1 (x′)), f q( f p0

1 (y′))) > λ,

and because

d( f p0+q
1 (x′), f q( f p0

1 (x′))) < 1
k and d( f p0+q

1 (y′), f q( f p0

1 (y′))) < 1
k

for any integer q ≥ 1. By triangle inequality,

d( f p0+q
1 (x′), f p0+q

1 (y′)) > λ − 2
k
>

1
2

λ.

Taking the upper limit of both sides of the inequality, one has that

lim sup
q→∞

d( f q+p0
(x′), f q+p0

(y′)) > 1
2 λ.

Therefore, (H, f1,∞) is infinitely sensitive.
Conversely, let (H, f1,∞) be infinitely sensitive with λ > 0 as an infinitely sensitive

constant. Let ε > 0, U ⊂ H be a nonempty open set. Because ∑∞
i=1 D( fi, f ) < ∞, by Lemma

1, there is an integer p ≥ 1 such that d( f p+q
1 (x), f q( f p

1 (x))) < ε for any integer q ≥ 1, x ∈ H,
and the above ε > 0. Taking an integer k ∈ {1, 2, . . . } satisfying k > 4

λ . Then, there is

an integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open (i ∈ {1, 2, . . . }), the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f1,∞) is infinitely sensitive with λ > 0 as a sensitive

constant, then there is a y ∈ U′ such that lim sup
q→∞

d( f q+p0

1 (x)), f q+p0

1 (y))) > λ. So, there

exist x′, y′ ∈ U such that x′ = f p0

1 (x), y′ = f p0

1 (y). Noted that

d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
k and d( f p0+q

1 (y), f q( f p0

1 (y))) < 1
k

for any integer q ≥ 1, then

d( f p0+q
1 (x), f q(x′)) < 1

k and d( f p0+q
1 (y), f q(y′)) < 1

k

for any integer q ≥ 1. By triangle inequality, one has that

d( f q(x′), f q(y′)) > λ − 2
k > 1

2 λ.

Taking the upper limit of both sides of the inequality, one has that lim sup
q→∞

d( f q(x′)),

f q(y′))) > 1
2 λ. Consequently, (H, f ) is infinitely sensitive.
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Theorem 3. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converges to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is m-sensitive if and
only if (H, f1,∞) is m-sensitive.

Proof. Suppose that (H, f ) is m-sensitive with m-sensitive constant λ > 0. Let ε > 0
and a open set U ⊂ H : U �= φ. Because ∑∞

i=1 D( fi, f ) < ∞, by Lemma 1, there is an
integer p ≥ 1 such that d( f p+q

1 (x), f q( f p
1 (x))) < ε for any integer q ≥ 1, x ∈ H, and the

above ε > 0. Taking m ∈ {1, 2, . . . } with m > 4
λ . Then, there is an integer p0 ≥ 1 such

that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
m for any integer q ≥ 1 and x ∈ H. Because fi is feebly

open for all i ∈ {1, 2, . . . }, the interior of f p0

1 (U) is nonempty. Let U′ be the interior of

f p0

1 (U). Because (H, f ) is m-sensitive with m-sensitive constant λ > 0, there are m points
x1, x2, . . . , xm ∈ U′ and a q ∈ N such that

min{d( f q(xi), f q(xj)) : i, j ∈ {1, 2, . . . , m}i �= j} ≥ λ.

Because x1, x2, . . . , xm ∈ f p0

1 (U), there are x′1, x′2, . . . , x′m ∈ U satisfying x1 = f p0

1 (x′1),
x2 = f p0

1 (x′2), . . . , xm = f p0

1 (x′m) and

min{d( f q( f p0

1 (x′i)), f q( f p0

1 (x′j))) : i, j ∈ {1, 2, . . . , m}i �= j} ≥ λ.

And because d( f p0+q
1 (x′i), f q( f p0

1 (x′i))) <
1
m for any i = 1, 2, . . . , m. By triangle inequality,

min{d( f p0+q
1 (x′i), f p0+q

1 (x′j)) : i, j ∈ {1, 2, . . . , m}i �= j} ≥ λ − 2
m > 1

2 λ.

This implies (H, f1,∞) is m-sensitive.
Conversely, let ε > 0 and U ⊂ H : U �= φ be an open set. Because ∑∞

i=1 D( fi, f ) < ∞,
by Lemma 1, there is an integer p ≥ 1 such that d( f p+q

1 (x), f q( f p
1 (x))) < ε for any integer

q ≥ 1 x ∈ H, and the above ε > 0. Taking m ∈ {1, 2, . . . } with m > 4
λ . Then, there is an

integer p0 ≥ 1 such that d( f p0+q
1 (x), f q( f p0

1 (x))) < 1
m for any integer q ≥ 1 and x ∈ H.

Because fi is feebly open for all i ∈ {1, 2, . . . }, the interior of f p0

1 (U) is nonempty. Let U′ be

the interior of f p0

1 (U). Because (H, f1,∞) is m-sensitive with λ > 0 as a sensitive constant,
there are m points x1, x2, . . . , xm ∈ U′ and p0 > 0 such that min{d( f q

1 (xi), f q
1 (xj)) : i �=

j ∈ {1, 2, . . . , m}} > λ for any integer q > 0. Because x1, x2, . . . , xm ∈ U′, then there are

x′1, x′2, . . . , x′m ∈ U satisfying x1 = f p0

1 (x′1), x2 = f p0

1 (x′2), . . . , xm = f p0

1 (x′m). And because

d( f p0+q
1 (x′i), f q( f p0

1 (x′i))) <
1
m for any i ∈ {1, 2, . . . , m}, then d( f p0+q

1 (x′i), f q(xi)) <
1
m for

any i ∈ {1, 2, . . . , m}. By triangle inequality, one has that

min{d( f q(x′i), f q(x′j)) : i �= j ∈ {1, 2, . . . , m}} > λ − 2
m > 1

2 λ.

Hence, (H, f ) is m-sensitive with 1
2 λ as an m-sensitive constant.

Theorem 4. If fn(n ∈ N) is a feebly open mapping sequence which uniformly converge to f ,
fi ◦ f = f ◦ fi for any i ∈ {1, 2, . . . }, and ∑∞

i=1 D( fi, f ) < ∞, then (H, f ) is m-cofinitely
sensitive if and only if (H, f1,∞) is m-cofinitely sensitive.

Proof. This proof is similar to that of Theorem 1, and hence is omitted.

Example 1. Let H be the compact interval [0,1] and g, h be defined by g(x) = x for any
x ∈ [0, 1] and
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h(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2x +

1
3

f or x ∈ [0,
1
3
]

−3x + 2 f or x ∈ [
1
3

,
2
3
]

x − 2
3

f or x ∈ [
2
3

, 1]

.

In fact, for any nonempty open subset V of H, int(h(V)) �= φ. Then h(x) is feeble open.
It is easy to know that, for any x1, x2 ∈ [0, 1] : x1 �= x2 (without loss of generality, x1 < x2),
the following conclusions are held.

If x1, x2 ∈ [0, 1
3 ] or x1, x2 ∈ [ 1

3 , 2
3 ] or x1, x2 ∈ [ 2

3 , 1], one can get that

| h(x1)− h(x2) |≥| x1 − x2 | .

If x1 ∈ [0, 1
3 ], x2 ∈ [ 1

3 , 2
3 ], one has

| h(x1)− h(x2) |=| 2x1 +
1
3
− (−3x2 + 2) |=| 2x1 + 3x2 − 5

3
|>| x1 +

3
2

x2 − 5
6
| .

If x1 ∈ [ 1
3 , 2

3 ], x2 ∈ [ 2
3 , 1], one has

| h(x1)− h(x2) |=| −3x1 + 2 − (x2 − 2
3
) |=| 3x1 + x2 − 8

3
|>| x1 +

1
3

x2 − 8
9
| .

If x1 ∈ [0, 1
3 ], x2 ∈ [ 2

3 , 1], one has

| h(x1)− h(x2) |=| 2x1 +
1
3
− (x2 − 2

3
) |=| 2x1 − x2 + 1 |>| x1 − 1

2
x2 +

1
2
| .

Write

Δ1 = {| x1 − x2 |: x1, x2 ∈ [0,
1
3
]}; Δ2 = {| x1 − x2 |: x1, x2 ∈ [

1
3

,
2
3
]};

Δ3 = {| x1 − x2 |: x1, x2 ∈ [
2
3

, 1]}; Δ4 = {| x1 +
3
2

x2 − 5
6
|: x1 ∈ [0,

1
3
], x2 ∈ [

1
3

,
2
3
]}

Δ5 = {| x1 +
1
3

x2 − 8
9
|: x1 ∈ [

1
3

,
2
3
], x2 ∈ [

2
3

, 1]};

Δ6 = {| x1 − 1
2

x2 +
1
2
|: x1 ∈ [0,

1
3
], x2 ∈ [

2
3

, 1]}.

Taking δ = in f (
⋃6

i=1 Δi). Then, for any n ∈ N, | hn(x1)− hn(x2) |≥ δ. This implies
that the map h : [0, 1] → [0, 1] is sensitive-dependent on initial condition. The computer
simulation with explanation of chaotic behavior is provided in Figure 1. The red dots
and the green dots represent the trajectories of initial value x1 = 0.3556 and x2 = 0.3557
iterate for 3000 times, respectively. It can be seen that, after iteration, the orbit of x1 (or x2)
is ergodic and disorder (see red dots or green dots). And with little difference between
initial values x1 and x2, there is a big gap between the iterative values after 1995 times
(see h1995(x1) = 0.0803, h1995(x2) = 0.9032). This means that h is sensitive-dependent on
initial condition.
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Figure 1. Chaotic behaviors of h in Example 1 with the initial data x1 = 0.3556, x2 = 0.3557 and
n = 3000.

Then, it can be proved that the system (H, h) is infinitely sensitive, m-sensitive, and
m-cofinitely sensitive.

Now, let fn(x) = g(x)(n = 2k + 1, k ∈ N) and fn(x) = h(x)(n = 2k, k ∈ N). Then
the family ( fn) consists of feebly open mappings converging uniformly to h. Obviously,
(H, f1,∞) is also infinitely sensitive, m-sensitive, and m-cofinitely sensitive. Thus, the system
(H, f1,∞) is conform to the assumption of Theorems 1–4.

Example 2. Defining

p(x) = 25saw(x) + cos(x2(1 − x)), x ∈ H = R,

where, saw(x) is the sawtooth function defined by

saw(x) = (−1)m(x − 2m), 2m − 1 ≤ x ≤ 2m + 1, m ∈ Z.

One can prove that the map p(x) satisfies the definitions of chaos in Section 2. The
computer simulation with explanation of chaotic behavior is provided in Figure 2. The
red dots and the green dots represent the trajectories of initial value x1 = 0.3556 and
x2 = 0.3557 iterate for 6000 times, respectively. And with little difference between initial
values x1 and x2, there is a big gap between the iterative values after 4123 times (see
pn(x1) = 18.3449, pn(x2) = −24.1185).

Now, let fn(x) = p(x)(n ∈ N). Then fn(n ∈ N) are feebly open mappings which
uniformly converge to p. Similar to Example 1, (H, f1,∞) is infinitely sensitive, m-sensitive,
and m-cofinitely sensitive.

Remark 1. The above discussion tells us that under some conditions, studying the effect of a series
of disturbances on the system can be simplified to studying the effect of a single map (i.e., the limit
map) on the system.

191



Fractal Fract. 2022, 6, 319

0 1000 2000 3000 4000 5000 6000
-25

-20

-15

-10

-5

0

5

10

15

20

25

Figure 2. Chaotic behaviors of p in Example 2 with the initial data x1 = 0.3556, x2 = 0.3557 and
n = 6000.

4. Some Supplements

In NDDS, is there any connection between the chaos in the sense of proximity and
sensitivity? The following theorem answers this question in part.

Theorem 5. Let H be a compact metric space and (H, f1,∞) be a proximal non-autonomous system,
then (H, f1,∞) is spatio-temporal chaotic if and only if (H, f1,∞) is sensitive.

Proof. (Sufficiency) (H, f1,∞) be a proximal system, i.e., for any x, y ∈ H, lim inf
n→∞

d( f n
1 (x),

f n
1 (y)) = 0. Because (H, f1,∞) is sensitive with sensitive constant δ > 0, then for any

x ∈ H and any neighborhood U of x, there exist a y ∈ U and an n ∈ N such that
d( f n

1 (x), f n
1 (y)) > δ.

First, we prove that (H, f1,∞) is infinitely sensitive. This is similar to the proof of
Theorem 2.1 in Ref. [17].

Given any N ∈ N, set DN = {(x, y) : ρ( f n
1 (x), f n

1 (y)) ≤ η
4 } for an η > 0. It is clear

that DN is a closed set. And we can claim that intDN = φ for any N ∈ N. In fact, if there
are some N ∈ N such that intDN �= φ, then there exist nonempty open sets U, V ∈ H such
that U × V ⊂ DN . Thus, for any pair (x, y) ∈ U × V, ρ( f n

1 (x), f n
1 (y)) ≤ η

4 holds for any
n > N. So for arbitrary two points x1, x2 ∈ U and any n > N,

ρ( f n
1 (x1), f n

1 (x2)) ≤ ρ( f n
1 (x1), f n

1 (y)) + ρ( f n
1 (y), f n

1 (x2)) ≤ η

2
.

It is easy to prove that, there exists a nonempty open set U∗ ⊂ U such that for any
points pair x1, x2 ∈ U∗ and any 0 ≤ m ≤ N, ρ( f m

1 (x1), f m
1 (x2)) ≤ η

2 . Hence, for any points
pair x1, x2 ∈ U∗ and any n ∈ N, ρ( f m

1 (x1), f m
1 (x2)) ≤ η

2 , which contradicts the sensitivity of
(H, f1,∞). So intDN = φ for any N ∈ N. It follows that set D = ∪N∈NDN is a first category
set in H × H. Then, the set

(H × H) \ D = {(x, y) : ∀N ∈ N, ∃n > N such that ρ( f n
1 (x), f n

1 (y)) >
η
4 }

is residual in X × X.
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Assume that (H, f1,∞) is not infinitely sensitive, then there exist an x0 ∈ H and a
ξ > 0 such that lim sup

n→∞
ρ( f n

1 (x0), f n
1 (y)) ≤ η

16 for any y ∈ B(x0, ξ). Noting the fact that

(H × H) \ D is residual in H × H, it follows that there exists a pair (y1, y2) ∈ [B(x0, ξ)×
B(x0, ξ)] ∩ [(H × H) \ D]. Then for any n ∈ N,

ρ( f n
1 (y1), f n

1 (y2)) ≤ ρ( f n
1 (y1), f n

1 (x0)) + ρ( f n
1 (x0), f n

1 (y2)) ≤ η
8 .

So,
lim sup

n→∞
ρ( f n

1 (y1), f n
1 (y2)) ≤ η

8 ,

which contradicts to (y1, y2) ∈ H × H \ D.
Hence, (H, f1,∞) is infinitely sensitive. That is to say, there exists an η∗ > 0 such that

lim sup
n→∞

ρ( f n
1 (x), f n

1 (y)) ≥ η∗. Then, it is easy to get that (H, f ) is spatio-temporal chaotic.

(Necessity) It is clearly held, and hence is omitted.
The proof is completed.

Corollary 1. Let H be a compact metric space and (H, f ) be a proximal system, then (H, f ) is
spatio-temporal chaotic if and only if (H, f ) is sensitive.

Remark 2. In fact, there are some other relationships among chaotic properties in non-autonomous
discrete systems. For example, topologically weak mixing implies sensitive, dense δ-chaos implies
sensitive, generic δ-chaos implies sensitive, and Li-Yorke sensitive is equivalent to sensitive under the
condition that

⋂∞
k=1

⋃∞
n=1 f−n

1 ({y ∈ H : d( f n
1 (x), y) < 1

k}) = H. These results are in [18–21].

5. Conclusions

For a mapping sequence f1,∞ = ( fn)∞
n=1, this paper gives four hypotheses. That is,

(1) fn(n ∈ N) are feebly open; (2) fn(n ∈ N) uniformly converge to f ; (3) fi ◦ f = f ◦ fi
for any i ∈ {1, 2, . . . }; and (4) ∑∞

i=1 D( fi, f ) < ∞. It is proved that, under the conditions
of (1)–(4), accessible or sensitivity between f1,∞ and its limit map f is coincide. Then, the
natural problems rise. Can the above (1)–(4) be reduced? Do other chaotic properties, such
as transitive, mixing, or distributional chaos, have similar conclusions? These are topics
worth studying in the future.
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Abstract: The investigation of chaotic systems containing hidden and coexisting attractors has
attracted extensive attention. This paper presents a four-dimensional (4D) novel hyperchaotic system,
evolved by adding a linear state feedback controller to a 3D chaotic system with two stable node-
focus points. The proposed system has no equilibrium point or two lines of equilibria, depending
on the value of the constant term. Complex dynamical behaviors such as hidden chaotic and
hyperchaotic attractors and five types of coexisting attractors of the simple 4D autonomous system
are investigated and discussed, and are numerically verified by analyzing phase diagrams, Poincaré
maps, the Lyapunov exponent spectrum, and its bifurcation diagram. The short unstable cycles in the
hyperchaotic system are systematically explored via the variational method, and symbol codings of
the cycles with four letters are realized based on the topological properties of the trajectory projection
on the 2D phase space. The bifurcations of the cycles are explored through a homotopy evolution
approach. Finally, the novel 4D system is implemented by an analog electronic circuit and is found to
be consistent with the numerical simulation results.

Keywords: hyperchaos; hidden attractor; coexisting attractors; bifurcation; circuit implementation

1. Introduction

The research of chaotic systems has been a topic of interest due to their many engi-
neering applications [1,2]. In 1979, Rössler put forward the concept of hyperchaos and
proposed the hyperchaotic Rössler system [3]. As we know, for an autonomous dynamical
system, the minimum dimension of the phase space to produce hyperchaos should be at
least four. Hyperchaotic systems have two or more positive Lyapunov exponents; thus,
they have extensive application values and more complex dynamic behaviors than ordinary
chaotic systems [4]. The investigation of hyperchaotic systems has attracted much attention
and achieved fruitful results [5,6]. A 4D hyperchaotic system was proposed by adding a
nonlinear controller to the first equation of the Lorenz chaotic system [7], and hyperchaos
can also be generated from the generalized Lorenz Equation [8]. A hyperchaotic system
constructed from the Lü system was found to produce many kinds of scroll chaotic attrac-
tors [9]. A 5D hyperchaotic system based on a modified generalized Lorenz system with
three positive Lyapunov exponents was reported [10]. An effective method to construct
hyperchaotic systems with multiple positive Lyapunov exponents was formulated [11]. A
7D hyperchaotic system with five positive Lyapunov exponents was constructed, which
can exhibit complex dynamical behaviors [12].

Recent research has involved categorizing periodic and chaotic attractors as either
self-excited or hidden [13]. Most famous chaotic and hyperchaotic systems, such as the
classical Lorenz, Chen, Lü, and Sprott systems [14–17], have more than one equilibrium
point, and their chaotic attractors with typical parameter values are self-excited. The basin
of attraction of a self-excited attractor is known to intersect with small neighborhoods of un-
stable equilibria, whereas that of a hidden attractor intersects with no open neighborhoods
of equilibria. Chaotic systems without equilibrium points [18–22], with only stable equilib-
ria [23,24], and with an infinite number of equilibria [25–27] have hidden chaotic attractors.
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The first hidden chaotic attractor with stable equilibria was investigated in a generalized
Chua system [28]. Since then, different types of chaotic and hyperchaotic systems with
hidden attractors have been reported on extensively. A quadratic hyperjerk system with
no equilibrium was introduced, which can produce hidden chaotic attractors [29]. Hidden
hyperchaotic attractors with three positive Lyapunov exponents were generated in a 5D
hyperchaotic Burke–Shaw system with only one stable fixed point [30]. A 5D system with
self-excited attractors and two types of hidden attractors with the variation of parameters
was proposed [31]. A 6D coupled hidden attractor system was introduced, and the basins
of attraction were analyzed [32].

Many complex dynamical systems have complicated characteristics of coexisting
attractors, which is referred to as multistability. A nonlinear dynamical system with such
behaviors can produce two or more attractors at the same time according to the initial
values of the system. Recent research indicates that the multistability of a dynamical system
is related to the existence of hidden attractors. Coexisting attractors and multistability have
been widely studied in the literature. A 3D chaotic system with multiple attractors was
found, the complex dynamical behaviors of the system were derived, and the circuit to
realize the chaotic attractor of the system was given [33]. Furthermore, a 4D chaotic system
with a plane as the equilibrium and coexisting attractors was analyzed [34]. A 4D system
including chaotic or hyperchaotic attractors with no equilibrium point, a line of equilibrium
points, and unstable equilibrium points, was constructed [35] and was found to exhibit
multistability between different attractors. Multistability and coexisting attractors was
discovered in a 4D chaotic system with only one unstable equilibrium [36] and multiple
unstable equilibrium points [37]. An extended Lü system containing coexisting chaotic,
periodic, and point attractors for different initial values was introduced [38]. Complex
coexisting attractors can also be generated in a 4D chaotic laser system [39], a cyclic
symmetry chaotic system [40], and a 4D memristor chaotic system [41].

As mentioned in the above literature, there are few examples of hyperchaotic systems
which have both hidden and coexisting attractors. This paper proposes a 4D system
which can generate a hidden hyperchaotic attractor when it has no equilibrium point
and five types of coexisting attractors for different initial values. The short unstable
periodic orbits embedded in the hidden hyperchaotic attractor are encoded and calculated
systematically, and the cycles whose period changes with the parameter values are explored
through the homotopy evolution approach. The proposed system is implemented by an
analog electronic circuit, and the results are in good agreement with the phase portraits
from the numerical simulation, which testifies to its feasibility. It should be noted that,
compared to previous hyperchaotic systems with no equilibria, the proposed 4D system has
richer and more complex dynamic characteristics; the most salient features are its multiple
coexisting attractors and multistability. It is obvious that our proposed hyperchaotic system
with coexisting hidden attractors and riddled basins exhibits some behaviors previously
unobserved, which satisfies the relevant criteria put forward by Sprott for the publication
of a new chaotic system [42].

The rest of this paper is organized as follows. Section 2 describes the mathematical
model of the new 4D hyperchaotic system and shows some of its basic dynamical properties.
In Section 3, the complex dynamical structure of the proposed hyperchaotic system is
further revealed by common nonlinear analysis tools, and various types of coexisting
attractors are discussed. A periodic orbit analysis for the new system using the variational
method is presented in Section 4. A corresponding analog circuit for the implementation
of the novel 4D system is designed in Section 5. Section 6 presents the conclusions and
recommendations for future work.
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2. The Novel 4D Hyperchaotic System

Consider a 3D chaotic system [24],

dx
dt

= a(y − x) + kxz

dy
dt

= −cy − xz (1)

dz
dt

= −b + xy,

where a, b, c, and k are parameters. When (a, b, c, k) = (10, 100, 11.2,−0.2), the system
has a hidden chaotic attractor with two stable equilibrium points. The dynamical prop-
erties, periodic orbit analysis, and circuit realization of the 3D chaotic system have been
investigated [24].

Based on the method for constructing new 4D hyperchaotic systems proposed by
Li et al. [43], we can make the original 3D system become 4D by adding a linear state
feedback controller to the first equation of system (1) so as to meet the minimal dimension
required for generating hyperchaos. This creates the opportunity to possess two positive
Lyapunov exponents along with one zero and one negative Lyapunov exponent. Thus, we
obtain a 4D autonomous system,

dx
dt

= a(y − x) + kxz + w

dy
dt

= −cy − xz (2)

dz
dt

= −b + xy

dw
dt

= −my,

where x, y, z, and w are state variables, and a, b, c, k, and m are the real parameters. Setting
the right side of each equation of system (2) to zero, the equilibrium points can be easily
calculated. Obviously, when b �= 0, system (2) has no equilibrium point, and Hopf,
pitchfork, or homoclinic bifurcations that usually take place in dynamical systems with
equilibrium points will not occur. When b = 0, system (2) has two lines of equilibria,
(0, 0, z, 0) and (w

a , 0, 0, w). System (2) has no equilibrium point when b �= 0, and the basin
of attraction of the hyperchaotic attractor does not intersect with small neighborhoods of
equilibria. However, system (2) has infinite equilibria when b = 0, although the basin of
attraction of the chaotic attractor may intersect with the equilibrium points in some regions
in this situation, and an infinite number of the other equilibrium points are located outside
the basin of attraction. Thus, system (2) belongs to the new category of hidden attractors,
which is unique because of the existence of two different types of hidden attractors. We
discuss the new system with no equilibrium point.

When the parameters of system (2) are taken as (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1)
and the initial conditions (x0, y0, z0, w0) are set as (1, 1, 1, 1), the system has a hidden
hyperchaotic attractor, with phase portraits as depicted in Figure 1. The corresponding four
Lyapunov exponents can be calculated using the method of Ramasubramanian et al. [44]:
L1 = 0.7796, L2 = 0.1058, L3 = 0, L4 = −12.7177, as shown in Figure 2. The Kaplan–Yorke
dimension is characterized by its Lyapunov exponents, DKY = 3 + (L1 + L2 + L3)/|L4| =
3.0696, which indicate that the hidden hyperchaotic attractor has a fractal dimension.
Figure 3 also displays different sections of 2D Poincaré maps for system (2) under the
current parameters.
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Figure 1. Three-dimensional projections of the hyperchaotic attractor of system (2): (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1). (a) x-y-z phase space; (b) x-z-w phase space; (c) x-y-w phase space; (d) y-z-w
phase space.
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Figure 2. Four Lyapunov exponents of system (2) for (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1).
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Figure 3. Two-dimensional Poincaré maps of the hyperchaotic attractor of system (2); (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) on section z = 0; (b) on section x = 0.

The dynamical properties of system (2) can be examined as follows:
(1) Symmetry and invariance. System (2) is invariant under the coordinate transforma-

tion (x, y, z, w) → (−x,−y, z,−w), i.e., it has rotational symmetry around the z-axis, which
means that any orbit that is not itself invariant under the transformation must have its
conjugate orbit;

(2) Since the divergence of system (2) is defined as

∇ · V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
+

∂
·

w
∂w

= −a + kz − c, (3)

the system is dissipative under the condition −a + kz − c < 0. Consequently, each volume
containing the trajectory of the system eventually converges to zero at an exponential rate
−a + kz − c;

(3) A well-known prominent characteristic of hyperchaotic dynamics is its sensitive
dependence on initial values. When the parameters of system (2) are fixed at (a, b, c, k, m) =
(10, 100, 2.7,−0.2, 1) and the initial values change slightly, the time-series diagram of the
system generated from two very close initial values within the simulation time t = 200 is
as plotted in Figure 4.

(a)
0 50 100 150 200

t

-40

-30

-20

-10

0

10

20

30

x

(b)
0 50 100 150 200

t

-40

-30

-20

-10

0

10

20

30

40

x

Figure 4. Cont.

199



Fractal Fract. 2022, 6, 306

(c)
0 50 100 150 200

t

-40

-30

-20

-10

0

10

20

30

40

x

Figure 4. Time-sequence diagrams of system (2); (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1):
(a) (x0, y0, z0, w0) = (1, 1, 1, 1); (b) (x0, y0, z0, w0) = (1.001, 1, 1, 1); (c) green and brown represent
initial values of (a,b), respectively.

3. Complex Dynamical Structure of the Proposed Hyperchaotic System

The new system (2) exhibits abundant complicated dynamical characteristics in a wide
range of parameters, which can be explored by numerical analysis. We fixed parameters
a, c, k, and m while varying b. Using nonlinear analysis tools such as phase diagrams,
Lyapunov exponents, and bifurcation diagrams, the system can show periodic solutions,
quasi-periodic solutions, chaos, and hyperchaos for different parameters. Coexisting attrac-
tors refer to the multistability phenomena for certain parameter values, where different
attractors exist depending on different initial conditions. Interestingly, compared with
similar chaotic systems, when taking different parameters and initial values, system (2) can
display various types of coexisting attractors.

3.1. Lyapunov Exponents, Bifurcation Diagram, and C0 Complexity Analysis

To explore the influence of b on the dynamics of the new 4D system, we fixed param-
eters (a, c, k, m) = (10, 2.7,−0.2, 1), and varied b in the interval [0, 120]. As we know,
the main dynamical properties of system (2) can be analyzed by its Lyapunov expo-
nent spectrum and bifurcation diagram. We took the initial values as (x0, y0, z0, w0) =
(1.67610,−0.37856, 3.69140, 1.45851). Figure 5a,b show the changes of four Lyapunov expo-
nents with the increase of b, and Figure 5c gives the corresponding bifurcation diagram
with respect to b. It can be observed that the Lyapunov exponent spectrum well coincides
with the bifurcation diagram. It can be clearly seen from Figure 5 that system (2) indeed
produces hyperchaotic attractors with two positive Lyapunov exponents for a wide range
of b. Three-dimensional projections of attractors for some typical values of b, are shown
in Figure 6, and the corresponding Lyapunov exponents and fractal dimensions are tabu-
lated in Table 1, from which the intricate topological structure and abundant hyperchaotic
dynamic properties of system (2) can be seen.

Table 1. Lyapunov exponents and Kaplan–Yorke dimension of system (2) with a = 10, c = 2.7,
k = −0.2, and m = 1.

b L1 L2 L3 L4 DKY Dynamics

10 0 −0.0377 −0.4173 −11.6842 1.0 Periodic
20 0.0483 0 −0.2258 −11.9110 2.24 Chaos
38 0 −0.0227 −0.0243 −12.0242 1.0 Periodic
42 0 0 −0.1340 −11.9278 2.0 Quasi-periodic
50 0.0182 0 −0.2922 −11.7656 2.06 Chaos

120 0.9302 0.0850 0 −12.8638 3.08 Hyperchaos
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Figure 5. Dynamics of system (2) versus parameter b ∈ [0, 120] with (a, c, k, m) = (10, 2.7,−0.2, 1):
(a,b) Lyapunov exponent spectrum; (c) bifurcation diagram.

The C0 complexity analysis relating to different parameters in new system (2) was
also investigated, as shown in Figure 7. Compared with Figure 5, we can see that when
the system is in a periodic state, the value of the C0 complexity is small, whereas when the
system is in a chaotic state or hyperchaotic state, the value of C0 fluctuates between 0.1
and 0.4, which is significantly larger than that of the periodic state. Therefore, there is a
positive correlation between the C0 complexity measure and Lyapunov exponents, which
can reflect the dynamic characteristics and complexity of the system.
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Figure 6. Some representative dynamical behaviors of system (2) with parameters (a, c, k, m) =

(10, 2.7,−0.2, 1) and different values of b: (a) b = 10; (b) b = 20; (c) b = 42; (d) b = 120.
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Figure 7. C0 complexity curve of the new system (2). (a) Versus b for a = 10, c = 2.7, k = −0.2, m = 1;
(b) versus k for a = 10, b = 100, c = 2.7, m = 1; (c) versus m for a = 10, b = 100, c = 2.7, k = −0.2.
The initial values were set as (1.67610,−0.37856, 3.69140, 1.45851).

3.2. Coexisting Attractors

As discussed above, system (2) shows many complex dynamics, such as hyperchaos,
chaos, and quasi-periodic and periodic motions. Several coexisting attractors of system (2)
will be present under some appropriate parameters, indicating that hidden multistability
emerges. A system with coexisting attractors is very sensitive to the initial values, noise,
and system parameters. Importantly, under sudden disturbance, the state of the system
can easily change and switch from an ideal state to another state that may be undesirable.
However, multistability can make systems more flexible without adjusting parameters,
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and can be used with the correct control strategy to induce switching between various
coexistence states. The coexisting attractors of system (2) satisfying different initial values
may exhibit various dynamical behaviors.

3.2.1. Coexistence of Chaotic and Periodic Attractors

When we take the parameters (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1), the dynamic behav-
ior of system (2) may change greatly in the long run:

(a) For initial values (x0, y0, z0, w0) = (1, 1, 1, 1), the Lyapunov exponents can be
calculated as L1 = 0.037, L2 = 0, L3 = −0.2098, and L4 = −11.9386, and the fractal
dimension of the system is estimated to be 2.1765. A hidden chaotic attractor with no
equilibrium point can be revealed, whose 2D phase portrait is shown in Figure 8a;

(b) For initial values (x0, y0, z0, w0) = (−0.9,−1,−8,−1.7), the trajectory of the system
converges to a stable periodic orbit, as shown in Figure 8b. The Lyapunov exponents of the
system are found to be L1 = 0, L2 = −0.0144, L3 = −0.6047, and L4 = −11.5121, and the
Kaplan–Yorke dimension is 1.0.

Hence, for parameters (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1), system (2) has intricate
dynamics with coexisting chaotic and periodic attractors, as shown in Figure 8c.
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Figure 8. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 12, 2.7,−0.2, 1);
(a) chaotic attractor; (b) periodic attractor; (c) coexisting attractors. The yellow line represents
chaotic attractor and the black line represents periodic attractor.

3.2.2. Coexistence of Quasi-Periodic and Periodic Attractors

When we take the parameters (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1) and change the initial
values, the dynamic behavior of system (2) may produce different coexisting attractors:

(a) For initial values (x0, y0, z0, w0) = (0.885798, 0.890960,−7.338199, 1.357681), the
Lyapunov exponents of system (2) are calculated as L1 = 0, L2 = 0, L3 = −0.7809, and
L4 = −11.3183, and the Kaplan–Yorke dimension of the system can be estimated as 2.0.
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Because there are two zeros and two negative Lyapunov exponents, system (2) experiences
dynamical motion, which is called a quasi-periodic attractor, as depicted in Figure 9a;

(b) For initial values (x0, y0, z0, w0) = (−0.8,−0.8,−6.8,−1.8), the trajectory of the
system converges to a periodic orbit, as shown in Figure 9b. The Lyapunov exponents are
found to be L1 = 0, L2 = −0.004, L3 = −0.5976, and L4 = −11.4953, and the Kaplan–Yorke
dimension is 1.0.

Hence, for parameters (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1), quasi-periodic and periodic
attractors of system (2) coexist, as shown in Figure 9c.
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Figure 9. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 24, 2.7,−0.2, 1); (a) quasi-
periodic attractor; (b) periodic attractor; (c) coexisting attractors. The red line represents quasi-
periodic attractor and the blue line represents periodic attractor.

3.2.3. Coexistence of Chaotic and Quasi-Periodic Attractors

Let the parameters (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2) and choose initial values (1, 2, 5.2, 1).
The corresponding Lyapunov exponents are L1 = 0.0177, L2 = 0, L3 = −0.1730, and
L4 = −11.9126, which means the attractor is chaotic. The corresponding fractal dimen-
sion is 2.0876. The projection of this chaotic attractor onto the 2D phase space is presented in
Figure 10a.

Choosing the same parameter values and taking initial values (1, 1, 1, 1), the four
Lyapunov exponents are L1 = 0, L2 = 0, L3 = −0.1686, and L4 = −11.9045, which implies
that system (2) has a quasi-periodic attractor, whose projection onto the 2D phase space is
presented in Figure 10b.

Thus, for parameters (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2), system (2) has complex
dynamics with coexisting chaotic and quasi-periodic attractors, as illustrated in Figure 10c.
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Figure 10. Two coexisting hidden attractors of system (2); (a, b, c, k, m) = (10, 40, 2.7,−0.2, 2);
(a) chaotic attractor; (b) quasi-periodic attractor; (c) coexisting attractors. The purple line repre-
sents chaotic attractor and the yellow line represents quasi-periodic attractor.

3.2.4. Coexistence of Hidden Periodic Attractors

Fixing the parameters (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2) and choosing initial val-
ues (−0.05, 0.15,−0.04,−3.77), system (2) has a periodic attractor with projection onto
the x–z plane, as presented in Figure 11a. The four Lyapunov exponents are L1 = 0,
L2 = −0.0688, L3 = −0.0699, and L4 = −12.0132.

Choosing initial values (−0.61,−0.38,−1.33,−0.79), one obtains the corresponding
Lyapunov exponents L1 = 0, L2 = −0.0234, L3 = −0.0245, and L4 = −12.1119, which also
implies a periodic attractor. The projection of the periodic attractor onto the 2D phase space is
displayed in Figure 11b and has a different topology from the periodic attractor in Figure 11a.

Thus, we can conclude that two periodic attractors in system (2) coexist with parame-
ters (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2), as depicted in Figure 11c.
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Figure 11. Two coexisting hidden periodic attractors of system (2); (a, b, c, k, m) = (10, 10, 2.7,−0.2, 2);
(a) periodic attractor; (b) another periodic attractor; (c) coexisting periodic attractors. The black line
and the green line correspond to the periodic attractor shown in (a,b), respectively.

3.2.5. Coexistence of Hidden Hyperchaotic Attractors

Fixing the parameters (a, b, c, k, m) = (10, 70, 2.7,−0.2, 5) and taking the initial values
(1,−1, 1, 4), system (2) has an asymmetrical hidden hyperchaotic attractor with projection
onto the x–z plane, as shown in Figure 12a. The four Lyapunov exponents are L1 = 0.2069,
L2 = 0.1033, L3 = −0.1665, and L4 = −12.0257. The corresponding fractal dimension
is 3.0119.

Based on the symmetry about the z-axis of system (2), if we choose initial values
(−1, 1, 1,−4), the other asymmetrical hidden hyperchaotic attractor can be obtained, whose
2D phase portrait is shown in Figure 12b. The two attractors have the same Lyapunov
exponents and fractal dimension.

Choosing the same parameters and taking initial values (1, 1, 1, 1), the four Lyapunov
exponents are L1 = 0.4159, L2 = 0.2456, L3 = 0, and L4 = −12.6681, and the Kaplan–Yorke
dimension is 3.0521. A symmetrical hidden hyperchaotic attractor can be found, whose
projection onto the 2D phase space is presented in Figure 12c.

Through the above analysis, we can observe that system (2) simultaneously has three co-
existing hidden hyperchaotic attractors under parameters (a, b, c, k, m) = (10, 70, 2.7,−0.2, 5),
as shown in Figure 12d. The basins of attraction of three coexisting hidden hyperchaotic
attractors can also be calculated, as shown in Figure 13, where the yellow area denotes the
basin of attraction of a symmetrical hyperchaotic attractor, while the red and blue areas
represent the basin of attraction of an asymmetrical hyperchaotic attractor presented in
Figure 12a,b, respectively. Riddled basins can be observed in Figure 13, which means that the
dynamical behaviors of the proposed 4D system are extremely sensitive to the initial values.
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Figure 12. Three coexisting hidden hyperchaotic attractors of system (2); (a, b, c, k, m) =

(10, 70, 2.7,−0.2, 5); (a) asymmetrical hyperchaotic attractor; (b) the other asymmetrical hyperchaotic
attractor; (c) symmetrical hyperchaotic attractor; (d) coexisting hyperchaotic attractors. The green line,
the red line and the blue line correspond to the hyperchaotic attractor shown in (a–c), respectively.

Figure 13. Basins of attraction in the x(0)–y(0) initial plane with z(0) = w(0) = 0.
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4. Analysis of Unstable Cycles for New 4D Hyperchaotic System via
Variational Approach

In this section, we employ the variational calculation approach for the unstable peri-
odic orbit search and establish an appropriate symbolic encoding for the found cycles. We
also analyze the continuous deformations of cycles by the homotopy evolution method,
which shows applicable flexibility under different circumstances. We aim to accurately find
the encircling way of the orbit in the new 4D hyperchaotic system and develop an effective
way to classify periodic orbits. Several short periodic orbits in system (2) are located, and
the evolution law of the period of cycle alteration with parameters is discussed, which
indicates that the proposed method is effective at analyzing unstable periodic orbits.

4.1. Variational Method for Calculations

Strange attractors in hyperchaotic systems are densely covered by countless unstable
periodic orbits. Therefore, extracting unstable cycles usually has an important influence
on understanding their properties. Many numerical methods are employed to extract the
periodic orbits of various systems [45]. We utilized the variational method in this paper,
which has shown its reliability and efficiency [46]. The basic physical idea is to make an
initial loop guess about the shape of the periodic orbit, and then gradually evolve it into a
real periodic orbit. Initialization is important in the variational calculations, as it determines
whether the calculated periodic orbit is the one of interest, and it can be implemented by
various means [47].

Using the variational method to locate periodic orbits, a discretization equation,

⎛⎝∧
A −∧

v
∧
a 0

⎞⎠(δ
∼
x

δλ

)
= δτ

(
λ
∧
v −

∧∼
v

0

)
, (4)

can be derived to solve for δ
∼
x and δλ, so as to achieve the location of the cycle and

period [46]. Compared to other numerical methods, as a result of the use of a continuum of
points, the variational method has the advantage of numerical stability. Furthermore, we
do not need to choose a Poincaré section beforehand. The variational method can be used
to calculate the stable or unstable periodic orbits of various systems [48–50]. In addition,
the continuous deformation of cycles with the variation of parameters can be studied based
on the variational method, and the bifurcation phenomenon can be observed by analyzing
whether the number or stability of cycles has changed. Next, we use the variational method
to extract the unstable cycles in system (2).

4.2. Extracting Unstable Cycles in a Hidden Hyperchaotic Attractor

We calculated the unstable cycles embedded in a hidden hyperchaotic attractor with
parameters (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1) by the variational method. Symbols were
used to encode them for cycles with different topological structures, so that all of the cycles
could be located without duplication or being missing based on symbolic dynamics [51].
When utilizing the variational method for initialization, the segments of trajectories with
similar shapes were obtained through numerical integration, and they were manually
connected to close, so as to become a loop. By this approach, several cycles with different
complexity were found. Figure 14 shows two periodic orbits with the simplest topology;
they have certain symmetry with each other and the shortest periods of the same size.
Figure 15 shows four more intricate periodic orbits, which are composed of two building
blocks of periodic orbits with different topologies.

Motivated by this observation, we marked the cycles in Figure 15a,b as 03 and 12,
respectively; thus, the cycle in Figure 14a is cycle 2, and that in Figure 14b is cycle 3. We did
not find cycle 0 or 1, which means that they were pruned. With the help of four basic orbital
segments, longer periodic orbits can also be encoded and calculated. Figure 16 shows six
cycles with topological length 3. In total, we found 18 periodic orbits within topological
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length 3, which are listed in Table 2. It is worth noting that the symmetry of system (2) can
also be seen from Table 2. The two cycles of commutative symbols 0 and 1, or 2 and 3, are
conjugate to each other, and they have the same periods.
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Figure 14. Two shortest periodic orbits in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 2; (b) cycle 3.
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Figure 15. Four periodic orbits with topological length 2 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 03; (b) 12; (c) 01; (d) 23.

According to the above encoding rules, other complex long periodic orbits can also be
calculated as follows. We generated the initial loop guess based on the symbol sequence
corresponding to the cycle, and employed the variational method to verify whether the
cycle existed. Figure 17 shows an unstable cycle with a topological length of 8, with
corresponding symbol encoding 02130101. The successful search of such complex periodic
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orbits also shows the effectiveness of our encoding method in calculating various periodic
orbits embedded in a hidden hyperchaotic attractor.
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Figure 16. Unstable cycles with topological length 3 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1); (a) cycle 001; (b) 003; (c) 023; (d) 021; (e) 223; (f) 012.
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Figure 17. Cycle 02130101 with topological length 8 in system (2) for parameters (a, b, c, k, m) =

(10, 100, 2.7,−0.2, 1).

Table 2. Eighteen unstable periodic orbits embedded in the hidden hyperchaotic attractor of system
(2) for (a, b, c, k, m) = (10, 100, 2.7,−0.2, 1); listed are the topological length, itinerary p, period Tp,
and four coordinates of a point on the cycle.

Length p Tp x y z w

1 2 0.858233 0.851259 3.599482 −8.032931 −39.656931
3 0.858233 −0.851259 −3.599482 −8.032931 39.656931

2 03 1.362034 −4.076805 −1.813737 1.109695 −14.135359
12 1.362034 4.076805 1.813737 1.109695 14.135359
01 1.194275 5.206540 7.525051 −17.639962 1.385740
23 1.830597 0.626331 −0.321247 −4.302274 1.490707

3 001 1.732553 −5.282481 3.245260 0.268165 −34.418329
011 1.732553 5.282481 −3.245260 0.268165 34.418329
003 1.821191 −4.653735 2.777113 −2.962048 −38.837657
112 1.821191 4.653735 −2.777113 −2.962048 38.837657
132 2.211630 11.320228 14.639216 −16.413004 25.186818
023 2.211630 −11.320228 −14.639216 −16.413004 −25.186818
021 1.968277 −6.298304 3.295041 5.572765 −20.401797
013 1.968277 6.298304 −3.295041 5.572765 20.401797
223 2.766255 1.453074 −0.422130 2.547336 1.463103
233 2.766255 −1.453074 0.422130 2.547336 −1.463103
012 2.207939 4.137109 5.676602 −5.643553 −9.306008
031 2.207939 −4.137109 −5.676602 −5.643553 9.306008

4.3. Homotopy Evolution of Cycle Variation with Different Parameters

With the change of different parameters, the number of periodic orbits and their
stability can undergo changes, which means that bifurcations may occur [52]; the variational
approach is convenient to study various bifurcation behaviors. We studied the evolution of
unstable cycles of system (2) when parameters were altered, and the homotopy evolution
method could be conveniently used for the initialization [53]. For a dynamical system, when
the parameters alter little, most short cycles experience slight deformation unless bifurcation
occurs. Therefore, the periodic orbits previously calculated with given parameters could
be taken as the initial loop guess for the next calculations. Initializing in this way, the
calculations of cycles were very efficient.

First, the bifurcations of periodic orbits were investigated by varying a while fixing
b = 100, c = 2.7, k = −0.2, and m = 1. We used the previously calculated cycle 2 as
the initial loop guess to calculate cycle 2 for the next a value. Figure 18a illustrates the
homotopy evolution cases. We found that when a < 5 or a > 20, the calculation of cycle 2
by the variational method was no longer convergent. Thus, we can conclude that the
system experiences periodic orbit bifurcations at a = 5 and a = 20.
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Figure 18. Homotopy evolution of cycle 2 with respect to different parameters: (a) four a values;
(b) b values; (c) c values; (d) k values; (e) m values.

Then, we studied the continuous deformation of cycle 2 with respect to the b value
in the same way, fixing a = 10, c = 2.7, k = −0.2, and m = 1. Figure 18b shows the
deformation of cycle 2 with the b value. We also found that the periodic orbit bifurcations
occurred when b = 52. Similarly, we changed c, k, and m, respectively, and fixed the
remaining parameters to study the continuous deformation of cycle 2; the homotopy
evolution processes are shown in Figure 18c–e. Table 3 lists the periods Tp of cycle 2 at
different parameter values. By symmetry, it is obvious that cycle 3 has a similar deformation
as the variation of parameters. The above discussion demonstrates that if we take a new
set of parameters, new periodic orbits corresponding to the new period will appear, and
some of the periodic orbits in Table 2 will no longer exist due to periodic orbit bifurcations.

Finally, we explored the evolution rule between the orbital period and different
parameters. From Table 3, it can be concluded that the larger the parameters a, b, c, and m,
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the smaller the periods, and as k increases, the period becomes larger. We confirm that this
conclusion is applicable to all of the other short cycles calculated in system (2).

Table 3. Periods Tp of cycle 2 for different parameters.

a Tp b Tp c Tp k Tp m Tp

5 1.082797 60 0.953492 −2 0.880703 −0.5 0.705715 −40 0.996271
10 0.858233 80 0.911549 0 0.873372 −0.3 0.821457 −20 0.968155
15 0.729400 120 0.811395 2 0.864607 0.1 0.964986 10 0.799075
20 0.610639 140 0.771540 4 0.833397 0.5 1.140899 30 0.611363

5. Circuit Design and Realization of New System

The circuit implementation can verify the feasibility and validity of a new chaotic
system. The electronic synthesis of a novel antimonotic hyperjerk system was proposed
based on an analog computing approach [54]. We employed Multisim simulation software
to build a circuit. We selected four channels, corresponding to four state variables of the
new system, to observe whether the results of the phase diagrams were consistent with the
output of the actual circuit. The main task was to design and implement the hyperchaotic
system and verify the circuit that realized the coexistence of chaotic and periodic attractors.
Since the state variables of system (2) were beyond the dynamic range of the device, a
proportional transformation was required to set the amplitude scaling factor to 10, where
X = 1

10 x, Y = 1
10 y, Z = 1

10 z, and W = 1
10 w. Therefore, system (2) was rewritten as

·
X = a(Y − X) + 10kXZ + W
·
Y = −cY − 10XZ (5)
·
Z = −0.1b + 10XY
·

W = −mY.

We implemented a time-scale transformation of Equation (5), with the time scale factor
set to τ0 = 1

R0C0
= 1000. A new time variable τ was used instead of t, and t = τ0τ. As

shown in Figure 1, a hyperchaotic attractor exists under the parameters (a, b, c, k, m) =
(10, 100, 2.7,−0.2, 1). The proposed circuit design is depicted in Figure 19, in which three
analog multipliers (the output gain was 0.1) were used to realize 3 nonlinear terms, 12
AD712AH operational amplifiers, 4 capacitors, and 25 resistances to realize the addition,
integration, and inversion operations. The power supply voltage was ±18 V. Based on
Kirchhoff’s law, the corresponding circuit equations can be derived as

·
X =

R5

R2R6C1
Y − R5

R1R6C1
X − R5

R3R6C1
0.1XZ +

R5

R4R6C1
W

·
Y = − R11

R9R12C2
Y − R11

R10R12C2
0.1XZ (6)

·
Z =

R17

R16R18C3
V1 +

R17

R15R18C3
0.1XY

·
W = − R22

R21R23C4
Y.

The values of each device in the circuit can be obtained by comparing Equations (5) and
(6); we set V1 = −1 V, R3 = 5 kΩ, R9 = 37.037 kΩ, Ci = 100 nF (i =1,2,3,4), Ri = 10 kΩ
(i = 1, 2, 6, 7, 8, 12, 13, 14, 16, 18, 19, 20, 23, 24, 25), Rj = 100 kΩ (j = 4, 5, 11, 17, 21, 22), and
Rk = 1 kΩ (k = 10, 15). The results obtained by Multisim 14.0 with initial conditions
(X(0), Y(0), Z(0), W(0)) = (1 V, 1 V, 1 V, 1 V) are shown in Figure 20, and it can be clearly
seen that the results are consistent with the phase diagrams from the numerical simulation.
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When the system parameters change to a = 10, b = 12, c = 2.7, k = −0.2, and
m = 1, system (2) has coexisting chaotic and periodic attractors. We implemented a scale
transformation of z, reducing it by a factor of 5, to obtain

·
X = a(Y − X) + 5kXZ + W
·
Y = −cY − 5XZ (7)
·
Z = −0.2b + 0.2XY
·

W = −mY.

Figure 19. Circuit diagram of the implementation of system (2).
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(a) (b)

(c)

Figure 20. Two-dimensional phase portraits of the new system in Multisim of the circuit with
a = 10, b = 100, c = 2.7, k = −0.2, and m = 1: (a) X–Z plane; (b) X–Y plane; (c) Y–W plane.

We modified the values of several resistors, R3 = 10 kΩ, R10 = 2 kΩ, R15 = 60 kΩ,
R16 = 50 kΩ, and R17 = 120 kΩ, while keeping the other devices in the circuit unchanged;
two coexisting attractors can now be observed with initial conditions
(X(0), Y(0), Z(0), W(0)) = (1 V, 1 V, 1 V, 1 V) and (X(0), Y(0), Z(0), W(0)) = (−0.9 V,
−1 V, −8 V, −1.7 V), as illustrated in Figure 21. Obviously, the circuit modeling findings
are in good agreement with Figure 8, which shows the validity and practicability of the
proposed system.

(a) (b)

Figure 21. Phase portraits of coexisting attractors in Multisim of the circuit with a = 10, b = 12,
c = 2.7, k = −0.2, and m = 1: (a) hidden chaotic attractor; (b) hidden periodic attractor. Scales of
horizontal and vertical axes are 5 and 2 V/div, respectively.
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6. Conclusions

In this study, we constructed a novel 4D hyperchaotic system by linearly adding a
new state variable to a new hidden chaotic system with two stable equilibrium points. The
proposed system could generate hidden hyperchaotic attractors and various types of coex-
isting attractors, depending on the choice of parameters and initial values; this showed the
diversity and complexity of the dynamical behavior of the system. The numerical analyses
of phase diagrams, time-sequence diagrams, basins of attraction, Lyapunov exponents, and
bifurcation diagrams were also been discussed, further confirming the coexistence of these
attractors and riddled basins. The C0 complexity analysis related to the main parameters
of the new system was also explored, which identified the dynamic characteristics and
complexity of the system. In addition, by using the variational method, the unstable cycles
embedded in the hidden hyperchaotic attractor were calculated and encoded accordingly.
The periodic orbit bifurcations were analyzed based on the continuous deformation of cycles.
The feasibility of the novel 4D hyperchaotic model was verified by an analog circuit, which
was in good qualitative agreement with the results obtained by numerical simulations.

Although the four-letter encoding of unstable periodic orbits embedded in the hidden
hyperchaotic attractor was presented in this paper, the symmetric reduction of a given
dynamical system is still an interesting problem to investigate, and may reduce the number
of letters used to encode periodic orbits. In addition, the analysis of the dynamics and
various attractors of the newly proposed 4D system with two lines of equilibria is also
worthy of further research. More mathematical investigations, including other types of
bifurcations and periodic orbits of the new system, will be carried out in our future work.
We believe that this kind of autonomous 4D system with hidden hyperchaotic attractors
and many coexisting attractors have potential application in physics and engineering, such
as in lasers, robotics, secure communications, control systems, random signal generation,
and information encryption. The research in this paper could provide some enlightenment
for the more systematic study of 4D hyperchaotic systems.
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Abstract: In this manuscript, multifractal theories of motion based on scale relativity theory are
considered in the description of atmospheric dynamics. It is shown that these theories have the
potential to highlight nondimensional mass conduction laws that describe the propagation of
atmospheric entities. Then, using special operational procedures and harmonic mappings, these
equations can be rewritten and simplified for their plotting and analysis to be performed. The
inhomogeneity of these conduction phenomena is analyzed, and it is found that it can fluctuate and
increase at certain fractal dimensions, leading to the conclusion that certain atmospheric structures
and phenomena of either atmospheric transmission or stability can be explained by atmospheric
fractal dimension inversions. Finally, this hypothesis is verified using ceilometer data throughout the
atmospheric profiles.

Keywords: atmosphere; multifractal; conductivity; ceilometer

1. Introduction

Often, to describe atmospheric dynamics, models must be constructed with combi-
nations of physical theories and computer simulation [1–5]. If such descriptions imply
simulations based on specific algorithms, this development in relation to physical theories
relies on two classes of models [4–7]:

(i) Based on typical conservation laws developed on integer-dimensional spaces, also
known as differentiable models [1–3];

(ii) Based on conservation laws developed on non-integer-dimensional spaces, or non-
differentiable models (fractal or multifractal) [6,7].

It is a recent development that new models based on Scale Relativity Theory have
appeared, either using monofractal dynamics or multifractal dynamics, as with the Multi-
fractal Theory of Motion [8–10]. In both situations, presupposing that the atmosphere is
both structurally and functionally assimilated to multifractal objects, atmospheric dynamics
can be described through the motions of such multifractal structural units on continuous
and non-differentiable curves, also known as multifractal curves. Because, for a large
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219



Fractal Fract. 2022, 6, 250

temporal scale resolution, with respect to the inverse of the highest Lyapunov exponent
trajectories, these structural units can be replaced with collections of potential trajectories;
it is then possible to replace the notion of “deterministic definite trajectory” with that of a
probability density [11,12].

2. Hydrodynamic Multifractal Scenario Conservation Laws

In the description of complex system dynamics through a hydrodynamic multifrac-
tal scenario, it is possible to find the involvement of the specific multifractal impulse
conservation law [13,14]:

∂tvi + vl∂lv
i = −∂iQ, i = 1, 2, 3 (1)

and that of the conservation law of the multifractal states density:

∂tρ+ ∂l
(
ρvl
)
= 0 (2)

where:
∂t =

∂
∂t , ∂l =

∂
∂xl

ρ = ψψ, ψ =
√
ρeis

Q = 2λ2(dt)[
4

f(α)
]−2 ∂l∂

l√ρ√
ρ

= uiui

2 + λ(dt)[
2

f(α)
]−1

∂lul

∂tρ+ ∂x(ρv) = 0

(3)

In the above relations, the given measures have the following physical meanings:

- t is nonmultifractal time, an affine parameter of movement curves of the entities found
in the complex system;

- xl is the multifractal spatial coordinate;
- vi is the velocity field at a differentiable scale resolution;
- ui is the velocity field at a non-differentiable scale resolution;
- dt is the scale resolution;
- λ is a constant coefficient associated with the multifractal-nonmultifractal scale transition;
- ρ is the state density;
- ψ is the state function with the amplitude

√
ρ and phase s;

- Q is the scalar specific multifractal potential which quantifies the multifractalization
degree of the movement curves in the complex system;

- f(α) is the singularity spectrum of order α = α(DF) where DF is the fractal dimen-
sion of movement curves of the complex system entities. This spectrum allows the
identification of universality classes in the complex system dynamics, even when
attractors have different aspects, and it also allows the identification of areas in which
the dynamics can be characterized by a specific fractal dimension.

Because of its nonlinearity, Equations (1) and (2) admit analytical solutions only in
special, particular cases. Such a case is dictated by the one-dimensional dynamics of the
complex system entities through the following:

∂tv + v∂xv = 2λ2(dt)[
4

f(α)
]−2 ∂xx

√
ρ√

ρ

∂tρ+ ∂x(ρv) = 0
(4)

with the initial and boundary constraints:

v(x, t = 0) = v0, ρ(x, t = 0) = ρ0e−( x
a )

2

v(x = ct, t) = v0, ρ(x = −∞, t) = ρ(x = +∞, t) = 0
(5)
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The following solution is found:

v0a2 +

[
λ(dt)

[ 2
f(α)

]−1

a

]2

xt

a2 +

[
λ(dt)

[ 2
f(α)

]−1

a t

]2 (6)

and:

ρ =
π− 1

2⎧⎨⎩a2 +

[
λ(dt)

[ 2
f(α)

]−1

a t

]2
⎫⎬⎭

1
2
·e

⎧⎪⎪⎨⎪⎪⎩− (x−v0t)2

a2+[
λ(dt)

[ 2
f(α)

]−1

a t]

2

⎫⎪⎪⎬⎪⎪⎭
(7)

This solution, through the nondimensional variables is:

v
v0

= v, ρ
√
πa = ρ,

x
v0τ

= ξ,
t
τ
= η (8)

and through the nondimensional parameters,

θ =
λ(dt)[

2
f(α)

]−1
τ

a2 , μ =
v0τ

a
(9)

can be rewritten as:

v =
1 + θ2ξη

1 + θ2η2
(10)

and:

ρ =
1√

1 + θ2η2
·e
[
−μ2 (ξ−η)2

1+θ2η2

]
(11)

Through Equation (3), the solutions in Equations (6) and (7) allow us to construct the
following set of variables:

- The velocity field at a non-differentiable scale:

u = 2λ(dt)[
2

f(α)
]−1· (x − v0t)

a2 +

[
λ(dt)

[ 2
f(α)

]−1

a t

]2 (12)

- The specific multifractal force field:

f = −∂xQ = 2λ(dt)
[

4
f(α)

]
−2· (x − v0t)⎧⎨⎩a2 +

[
λ(dt)

[ 2
f(α)

]−1

a t

]2
⎫⎬⎭

2 (13)

This set of variables employs the notations:

u
2v0

= u,
fτ

2v0
= f (14)

Considering Equations (8) and (9) they become:

u = θ
ξ− η

1 + θ2η2
(15)
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respectively:

f = θ2 ξ− η(
1 + θ2η2

)2 (16)

Then, let us assume the functionality, in nondimensional coordinates, of a relation of
the form:

j = σf (17)

where j is a mass current density, f is the nondimensional specific multifractal force field, and
σ is a mass conductivity, which then allows us to define the following conductivity types:

- Conductivity at differentiable scale resolutions:

σD =
ρv
f

=

√
1 + θ2η2 1 + θ2ξη

θ2(ξ− η)
e
[
−μ2 (ξ−η)2

1+θ2η2

]
(18)

- Conductivity at non-differentiable scale resolutions:

σF =
ρu
f

=

√
1 + θ2η2

(μ
θ

)2
e
[
−μ2 (ξ−η)2

1+θ2η2

]
(19)

- Conductivity at global scale resolutions:

σ =
ρ(v + iu)

f
= σD + iσF =

√
1 + θ2η2

[
1 + θ2ξη

θ2(ξ− η)
+ i
(μ
θ

)2
]

e
[
−μ2 (ξ−η)2

1+θ2η2

]
(20)

In this context, since the θ parameter is a measure of the multifractality degree, then
ε = 1

θ will function as a measure of an ordering degree. Then, the conductivity species in
Equations (18)–(20) change as:

- Conductivity at differentiable scale resolutions:

σD =
√

ε2 + η2 ε2 + ξη

ε(ξ− η)
e
[
−(με)2 (ξ−η)2

ε2+η2

]
(21)

- Conductivity at non-differentiable scale resolutions:

σF =
√

ε2 + η2εμ2e
[
−(με)2 (ξ−η)2

ε2+η2

]
(22)

- Conductivity at global scale resolutions:

σ =
√

ε2 + η2
[
ε2 + ξη

ε(ξ− η)
+ iεμ2

]
e
[
−(με)2 (ξ−η)2

ε2+η2

]
(23)

From the dependencies of these conductions, the following is found:

- Conduction in complex systems is performed through specific mechanisms dependent
on the scale resolution. As a consequence, we make the distinction between differen-
tiable conduction σD, non-differentiable conduction σF and global conduction σ;

- Conduction mechanisms at the two types of scale resolutions are simultaneous and
reciprocally conditional. Thus, the values of σD and σF increase along with the increase
of the ordering degree (synchronous type conductions) and with the increase of the
multifractalization degree σD values increase and σF values decrease (asynchronous
type conductions).
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3. Non-Manifest Dynamic States through Harmonic Mappings

Taking into consideration Equation (3), in what follows, it will be seen that non-
manifest dynamic states through these complex systems can be generated through metrics
of the Lobachevsky plane. Indeed, we admit the functionality of:

x2 + y2 = 1 (24)

where:
Ψ = A + iB, x =

A√
ρ

, y =
B√
ρ

(25)

Here, the Lobachevski plane metric can be produced in the form of a Cayleyan metric
of a Euclidean plane, whose absoluteness is a circle of unit radius, as seen in Equation (24).
In this manner, the Lobachevski plane is placed in a bi-univocal correspondence with the
given circle’s interior. This general procedure of metrization of a Cayleyan space starts
with the definition of the metric as an anharmonic ratio [15,16]. Thus, we suppose that
the absoluteness is given by the quadratic form Ω(X, Y) where X denotes any vector. The
Cayleyan metric is then given by the differential quadratic form:

−ds2

k2 =
Ω(dX, dX)

Ω(X, X)
− Ω2(X, dX)

Ω2(X, X)
(26)

In Equation (26), Ω(X, Y) is in fact the duplication of Ω(X, X) and k is a constant that
is connected to the given space curvature.

In the case of the Lobachevsky plane, the following is found:

Ω(X, X) = 1 − x2 − y2

Ω(X, dX) = −xdx − ydy

Ω(dX, dX) = −dx2 − dy2
(27)

which produces:

−ds2

k2 =

(
1 − y2)dx2 + 2xydxdy +

(
1 − x2)dy2

(1 − x2 − y2)
2 (28)

By performing the coordinate transformation:

x =
hh − 1
hh + 1

, y =
h + h

hh + 1
(29)

The metric found in Equation (28) becomes the Lobachevsky metric:

−ds2

k2 = −4
dhdh(
h − h

)2 (30)

Then, one can observe that the absoluteness 1 − x2 − y2 = 0 tends to the straight line
Im(h) = 0. In this case, the straight lines of the Euclidean plane tend to be circles with
centers located on the real axis of the complex plane (h). Now, let it be considered that these
complex system dynamics are described by the variables

(
Yj
)

, for which the following
multifractal metric is found:

hijdYidYj (31)

In an ambient space of multifractal metrics, the previous equation can be rewritten as:

γαβdXαdXβ (32)
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In this situation, the field equations of the complex system dynamics are derived from
a variational principle connected to the multifractal Lagrangian:

L = γαβhij
dYidYj

∂Xα∂Xβ
(33)

In the current case, Equation (31) is given by Equation (30), the field multifractal
variables being h and h or, equivalently, the real and imaginary part of h. Therefore, if the
variational principle:

δ

∫
L
√
γd3x (34)

is accepted as a starting point where γ =
∣∣γαβ

∣∣, the main purpose of the complex system
dynamics research would be to produce multifractal metrics of the multifractal Lobachevsky
plane (or relate to them) [17]. In such a context, the multifractal Euler equations correspond-
ing to the variational principle in Equation (34) are:(

h − h
)
∇(∇h) = 2(∇h)2(

h − h
)
∇
(
∇h

)
= 2

(
∇h

)2 (35)

which admits the solution:

h =

[
cosh

(χ
2
)− sinh

(χ
2
)]

e−iα[
cosh

(χ
2
)
+ sinh

(χ
2
)]

e−iα , α ∈ R (36)

where α is real and arbitrary, and for a
(χ

2
)

the solution is a Laplace-type equation for the
free space, so that ∇2(χ

2
)
= 0. For a choice of the form α = 2ωt, in which case, a temporal

dependency was introduced in the complex system dynamics, Equation (36) becomes:

h =
i
[
e2χ sin(2ωt)− sin(2ωt)− 2i eχ

]
e2χ[cos(2ωt) + 1]− cos(2ωt) + 1

(37)

Now, Equation (37) can be rewritten as:

h =
1 + ie2χ tan(ωt)
eχ + i tan(ωt)

(38)

In order to actually perform any analysis and plot of this function, the parameters
found here must be elucidated. We shall see that a concrete connection between the states’
function and h exists, which implies that h is a function of t and x; given the fact that
∇2(χ

2
)
= 0, it is more than fair to assume that χ = x, which not only easily satisfies the

condition but creates a spatial connection to h, as imposed. For ω, it can be considered a
given constant for each specific simulation.

The following plots show the behavior and spatio-temporal dependencies of h, in
which x, ω and t are dimensionless parameters (Figures 1 and 2).

These plots show that oscillatory components can exist in the complex systems at all
scales; interestingly, h manifests ordered predictable peaks whose intensity tends to slightly
increase in time, but only if ω is an odd integer (Figures 1 and 2). Otherwise, other plotting
instances show relatively disordered and unpredictable distributions of these peaks. It
can be interpreted that an undulatory-corpuscular duality can be observed through this
behavior, with odd integer ω representing the damping oscillatory behavior and all other
cases producing corpuscular behavior (Figures 1 and 2). We note that in the behavior
manifested in Figures 1 and 2, discontinuities are induced by the interactions between
the complex system entities (more precisely, through the interaction strength between the
complex system entities).
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Figure 1. Example plot of h(x,t); ω constant.

Figure 2. Example plot of h(x,t); ω constant odd integer.

Now, for in-phase coherences of the complex system entities, for example: eis = 1
which implies s = 2πn, n ∈ Z, ψ becomes:

ψ =
√

ρ
hh − 1
hh + 1

(39)

The produced plots show instances of the states function manifesting in a sporadic
and periodic manner, with varying spatial dimensions (Figures 3 and 4). Given the fact
that, at this point, the only control parameter of ψ is ω, no other constant will affect the
behavior of the function of the state; furthermore, even the choice of this parameter does
not seem to fundamentally affect the dynamical regime of ψ, which manifests multifractal
states of varying length fluctuating in time (Figures 3 and 4). These fluctuations show the
spontaneous and periodical occurrence of multifractal structures in the given multifractal
flow. Worth noting, however, is the fact that the areas of the plot that manifest no color at all
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are in fact not areas where the states function is zero, but are areas where the ψ calculation
yields cases of non-determination, and thus these are regions where it is absolutely impos-
sible for states to exist. Moreover, a completely different fine structure exists at small scales
compared to large scales, wherein vanishing states are manifested, and the appearance of
these intense negative fluctuations manifests absolutely no periodicity (Figures 3 and 4).

Figure 3. Example plot of ψ(x,t); ω constant.

Figure 4. Example plot of ψ(x,t); ω constant odd integer.

In performing the first step of our analysis, the inhomogeneity map of the multifrac-
tal non-differentiable mass conduction needs to be performed. By definition, the total
inhomogeneity of any parameter in a given volume V of atmospheric fluid is [18]:

G =
1
2

∫
〈ϑ′2〉dV (40)
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Given a non-strict dependency on spatial conditions, and the non-dimensionality
entailed throughout much of the previous analysis, it will suffice to perform 〈|σF|

′2〉.
Through a Reynolds decomposition, the following is obtained [18,19]:

〈|σF|
′2〉 = 〈(|σF| − 〈|σF|〉 )2〉 (41)

This can then be iterated across the fractal dimension in a bifurcation map, where we
have noted x ≡ θ, t ≡ η (Figures 5–12).

Figure 5. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 0.5; μ = 1.

Figure 6. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 3; μ = 1.
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Figure 7. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 6; μ = 1.

Figure 8. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 9; μ = 1.

It seems that ξ plays the role of a spatial limiting factor, dictating the conduction band
intensity, and it is to be expected that a constant inversely proportional to the initial value
of the differentiable velocity field would play an important role here (Figures 5–8).
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Figure 9. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 3; μ = 0.5.

Figure 10. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 3; μ = 3.

Modifying the multifractal-nonmultifractal scale transition constant μ appears to have
relatively similar effects to the inhomogeneity map; however, it affects not only the intensity
but also the relative shape of the conduction bands (Figures 9–12). All cases exhibit what
are practically two peak-like structures; one of them found at low values of θ, which shows
a very high value variability and unpredictability. Otherwise, the exact value of τ does not
seem to affect the dynamic regime of the modeled behavior.
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Figure 11. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 3; μ = 6.

Figure 12. 〈|σF|
′2〉 example plot with θ as control parameter; ξ = 3; μ = 9.

4. Results

In any case, it seems that the inhomogeneity analysis points to very dynamic behavior,
however, a constant aspect is that indifferent to the values being chosen, one or more
inhomogeneity peaks always appear at certain values of θ, and thus, at certain fractal
dimensions. While this peak can apparently be shifted or modified, it almost always exists,
pointing to the existence of certain dimensions, at certain atmospheric parameters, that
entail high unpredictability and values of conduction. This then means that, if certain
conditions are fulfilled, inversions of fractal dimensions might lead to unpredictability
and high values of multifractal non-differentiable mass conduction. The exact values of
the fractal dimension would not be important here, however, jumps or inversions of the
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atmospheric fractal dimension would imply special behaviors of atmospheric conduction,
which would then either create stability or instability as a function of the fractal dimension.

For parallels to be drawn between theory and experimental data, experimental ceilome-
ter data must be produced. This data shall be used to calculate the initial and final turbulent
scales in order for the atmospheric fractal dimension profile to be obtained, and for this,
the structure coefficient of the refraction index profile C2

N(L) is obtained by [18,20]:

σ2
I (L) = 1.23 C2

N(L)k
7
6 L

11
6 (42)

in which we have named σ2
I the scintillation of a source of light observed from a distance

represented by the optical path L. In this case, the source of light itself is the point in
the optical path at which ceilometer light is being backscattered. Meanwhile, I refers
to the intensity of the backscattered range-corrected lidar signal at a particular point in
the optical path, or the RCS (range-corrected signal) intensity, which will be used to find
σ2

I [13,14,18,20]. In past studies, it has been deemed and proved sufficient to employ three
RCS profiles in the averaging process. After the C2

N profile has been determined, it is now
possible to calculate the length scales with various approximations. The inner scale profile
is linked to scintillation:

σ2
I (L) ∼= 0.615 C2

N(L)L
3ld(L)

−7
3 (43)

and the outer scale can be connected to the C2
N profile:

C2
N(z) = L0(z)

4
3 (∇〈n(z)〉)2 (44)

For atmospheric turbulent eddies in the inertial subrange, the following approximation
is possible:

n(z) ∼= n0 −
√

C2
N(z)z

2
3 (45)

which can then be used to extract the outer scale profile. This method is well-referenced in
our studies and has been already used successfully multiple times.

When introducing the ceilometer data plots, technical details must be presented; the
platform used to produce this data is described in the following segment. The platform uti-
lized in this study is a CHM15k ceilometer operating at a 1064 nm wavelength, positioned
in Galat, i, Romania, at the UGAL–REXDAN facility found at the coordinates 45.435125N,
28.036792E, 65 m ASL, which is a part of the “Dunărea de Jos” University of Galat, i. The
instrument itself has been chosen so as to conform to the standards imposed by the ACTRIS
community. From a computational perspective, the necessary calculations are performed
through code written and operated in Python 3.6.

These sets of ceilometer data were profiled on the 22nd and 23nd of December 2021,
starting right before noon. Many typical features of the atmosphere, including aerosol
plumes, clouds and the PBL, along with its variation, can be observed in the RCS data
(Figures 13–16). Despite the presence of many cloud-type structures, the lower part of the
time series is generally unaffected and can be analyzed. The start of the time series shows a
convective mixed layer typical of noon conditions, and in the latter stages of the time series,
the stratified structure of the stable boundary layer (SBL) and the residual layer (RL)—the
gap between them, which we shall name “the double layer”—is delineated by the region of
low RCS intensity [21,22] (Figures 13–16).

The C2
N profile can be commonly used as an indicator of atmospheric turbulence

strength; it can be also used to more accurately quantify the PBL altitude, and to identify
regions of atmospheric calm or extreme turbulence (Figures 17–20) [13,14]. The region of
delineation between the SBL and the RL can also be seen, and while the RCS indicated a
region of lower intensity and thus of a lower concentration of atmospheric components,
C2

N time series shows higher activities, especially at the limits of the SBL and RL itself
(Figures 17–20). Higher C2

N implies higher degrees of turbulence, which implies greater
mixing. However, C2

N reduces abruptly beyond the boundary between the SBL and the
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RL, which indicates that this increased mixing, which is limited only to the interior of the
apparent boundary layer, implies that the atmospheric matter found in the boundary layer
is being shifted upwards and downwards into the SBL and the RL. This, then explains why
fewer backscatterings of atmospheric matter can be found, and why the RCS intensity is
lower in that region (Figures 17–20).

Figure 13. RCS time series, λ = 1064 nm, Galat, i, Romania, 23 December 2021.

Figure 14. Zoomed-in (region of interest) RCS time series, λ = 1064 nm, Galat, i, Romania, 23
December 2021.
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Figure 15. RCS. time series, λ = 1064 nm, Galat, i, Romania, 22 December 2021.

Figure 16. Zoomed-in (region of interest) RCS time series, λ = 1064 nm, Galat, i, Romania, 22
December 2021.
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Figure 17. C2
N time series, λ = 1064 nm, Galat, i, Romania, 23 December 2021.

Figure 18. Zoomed-in (region of interest) C2
N time series, λ = 1064 nm, Galat, i, Romania, 23

December 2021.
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Figure 19. C2
N time series, λ = 1064 nm, Galat, i, Romania, 22 December 2021.

Figure 20. Zoomed-in (region of interest) C2
N time series, λ = 1064 nm, Galat, i, Romania, 22

December 2021.

Since the minimal fractal dimension of atmospheric turbulent vortices, in general, is
logically 2 since vortices are by definition at least two-dimensional, and the maximal fractal
dimension of atmospheric turbulent vortices is 3, it can be entirely expected for the average
of these vortices, as plotted in Figures 21–24, to be quite close to 3 because such dimensions
rapidly increase asymptotically towards 3 in the turbulent cascade [14]. In any case, lower
fractal dimensions, especially sudden spatial decreases of fractal dimensions, point towards
ordering and autostructuring—this is partially confirmed by the fact that the atmospheric
cloud structure present in the time series manifests sudden and markedly-lower transitions
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of fractal dimensions, as expected for relatively orderly atmospheric structures, such as
clouds (Figures 21–24). This autostructuring then also entails the existence of the boundaries
between the SBL and the RL, because, for the boundary to exist, it must be stable—however,
this seems to be a type of “dynamic stability”, one marked by higher turbulence and mass
transfer from the boundary area to the SBL and the RL. Furthermore, we have previously
determined that inversions of fractal dimensions might lead to unpredictability and high
values of multifractal non-differentiable mass conduction, and these inversions are exactly
what we see at the boundary edges between the SBL and the RL, thus confirming the
conduction theory presented in this study.

Figure 21. Df time series, λ = 1064 nm, Galat, i, Romania, 23 December 2021.

Figure 22. Zoomed-in (region of interest) Df time series, λ = 1064 nm, Galat, i, Romania, 23
December 2021.
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Figure 23. Df time series, λ = 1064 nm, Galat, i, Romania, 22 December 2021.

Figure 24. Zoomed-in (region of interest) Df time series, λ = 1064 nm, Galat, i, Romania, 22
December 2021.

5. Conclusions

Applying the multifractal theory of motion to atmospheric entities through a hydrody-
namic multifractal scenario, a multifractal conservation law that leads to differentiable and
non-differentiable velocity fields is found; this then implies, through various nondimension-
alizations, the existence of a specific multifractal force field that drives non-differentiable
interactions between the atmospheric multifractal entities. Supposing then, that there exists
a mass current density-type relation regarding these entities, then multifractal atmospheric
mass conduction is found at differentiable, non-differentiable and global resolutions. In
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order for the exact form of this conduction to be found, a Lobachevsky plane metric is em-
ployed to find a component of the state function described by the multifractal conservation
law. The inhomogeneity of the non-differentiable conduction is then analyzed regarding
the fractal dimension variation, and it is found that there exist certain fractal dimensions
where the non-differentiable conduction can present large fluctuations and values.

This then implies that, at fractal dimension inversions, intense non-differentiable
conduction phenomena can occur, leading to vertical mass conduction and the formation
of certain stable atmospheric features. Finally, ceilometer data is introduced, and this
data is used in order to construct various time series profiles, including time series of the
atmospheric fractal dimension. Fractal dimension inversions are observed in connection
to the SBL and RL boundaries, which then validates that such inversions can lead to
phenomena of mass conduction and atmospheric structure stability. There are possible
limitations to the employed method, mainly regarding rapid aerosol intrusions—generally
speaking, the associated multifractal and ceilometer theory works best only in relatively
calm conditions, without the appearance of unexpected cloud or aerosol concentrations.
Further studies could include further theoretical and practical validation that employs
climatic models, such as ALARO or WRF, and such studies could also utilize larger batches
of ceilometer data.
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Abstract: Hidden attractors are associated with multistability phenomena, which have considerable
application prospects in engineering. By modifying a simple three-dimensional continuous quadratic
dynamical system, this paper reports a new autonomous chaotic system with two stable node-
foci that can generate double-wing hidden chaotic attractors. We discuss the rich dynamics of the
proposed system, which have some interesting characteristics for different parameters and initial
conditions, through the use of dynamic analysis tools such as the phase portrait, Lyapunov exponent
spectrum, and bifurcation diagram. The topological classification of the periodic orbits of the system
is investigated by a recently devised variational method. Symbolic dynamics of four and six letters
are successfully established under two sets of system parameters, including hidden and self-excited
chaotic attractors. The system is implemented by a corresponding analog electronic circuit to verify
its realizability.

Keywords: hidden attractor; unstable periodic orbit; symbolic dynamics; electronic circuit

1. Introduction

Chaos theory, which is regarded as the third scientific theory revolution in the 20th
century, has been extensively and intensively studied since the meteorologist Lorenz
discovered chaotic phenomena for three-dimensional (3D) autonomous quadratic systems
in 1963 [1]. As chaotic states in nonlinear dynamic systems are extremely sensitive to initial
values, a large amount of research work shows that chaos is closely related to engineering
technology, with wide application in fields such as circuit control [2], image encryption [3],
secure communications [4], and neural networks [5].

Many chaotic systems have been constructed [6–9] that include both self-excited
and hidden attractors [10]. Self-excited attractors have a basin of attraction related to
the unstable equilibrium, whereas those of hidden attractors do not intersect with small
neighborhoods of any equilibria [11,12]. Most well-known dynamical systems have self-
excited chaotic attractors [13–15]. As hidden attractors cannot be calculated from the
initial conditions in the neighborhood of the equilibrium point, they were not introduced
until recently, and there are some new studies on how to locate them [16,17]. Hidden
attractors have attracted great interest in recent years due to their considerable importance
in both theory and engineering, because they allow unexpected and potentially catastrophic
responses to structural disturbances such as to bridges or aircraft wings. It has been shown
that attractors in a dynamical system with stable equilibria [18–20], an infinite number of
equilibria [21–23], or no equilibrium points [24–29] are hidden attractors. These are also
represented in a 3D continuous dynamical system with only one unstable node as the
equilibrium point [30].

Hidden attractors have been broadly investigated in the literature. Wang and Chen
constructed a chaotic system with only one stable equilibrium via a constant control
parameter added to the Sprott E system [31]. Wei found a new chaotic system with no
equilibrium by adding a simple constant to the Sprott D system [32]. Two modified
Sprott systems that have only stable node-focus points with hidden chaotic attractors were
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analyzed [33]. The generalized Sprott C system with two stable equilibrium points was
proposed [34], and its chaotic and complex dynamic behaviors in the parametric space were
investigated. Hidden chaos and hyperchaos have been found in the jerk system [35–37],
meminductor-based chaotic system [38], extended Rikitake system [39], 4D Rabinovich
system [40], 4D modified Lorenz-Stenflo system [41], and 5D homopolar disc dynamo [42].
Self-excited and hidden attractors can also be generated in a modified Chua’s circuit and in
a 3D memristive Hindmarsh–Rose neuron model [43,44]. Moreover, some 3D dynamical
systems with three different families of hidden attractors have been discovered [45–47].
A 4D autonomous chaotic system that has two types of hidden attractors with a line
of equilibria or no equilibria was derived [48]. A 5D chaotic system with both hidden
attractors and extreme multistability was introduced [49], and coexisting self-excited and
hidden attractors in a Lorenz-like system with two equilibria were found [50].

This paper proposes a hidden chaotic attractor system with two stable fixed points.
With the change of parameters, its complex dynamical behaviors are analyzed using multi-
ple dynamical tools, such as phase portraits, time sequence, power spectrum, and Lyapunov
exponents. We establish two symbolic dynamics in the system, and classify the unstable
periodic orbits embedded in hidden and self-excited chaotic attractors topologically for
two sets of parameters. The electronic circuit of the system is designed and simulated by
Multisim software, which proves the existence of chaos. Compared to the above contribu-
tions in the literature, the novelty of the work lies in the unstable periodic orbits of the new
system showing a complexity of significant differences with different parameter values.
For the system with hidden chaotic attractors, which is determined by four parameters, the
complexity is relatively simple; however, the system with self-excited chaotic attractors,
which contains only two parameters, unexpectedly has more complex dynamics.

The rest of this paper is arranged as follows. Section 2 introduces the mathematical
model of the system, and its nonlinear dynamic characteristics are investigated. In Section 3,
observation of chaotic and complex dynamics in the system is implemented by varying
different parameters. To locate the unstable cycles in the system, we review the variational
method in Section 4, which can be effectively utilized in calculations. We systematically
calculate all short unstable cycles of the new system under two parameters. To establish
appropriate symbolic dynamics, one needs four letters, and the other needs six. Section 5
presents a circuit implementation of the system to validate its feasibility. Section 6 discusses
our conclusions.

2. The New System and Its Dynamic Characteristics

Inspired by the chaotic system proposed by [51], a new system can be easily con-
structed by adding a nonlinear term of cross-product kxz to the first equation,

dx
dt

= a(y − x) + kxz

dy
dt

= −cy − xz (1)

dz
dt

= −b + xy,

where x, y, and z are state variables, and a, b, c, and k are the control parameters. Note that
adding a cross-product nonlinear term is not a general method to realize chaos in a 3D
quadratic system. In addition, the proposed system (1) has three nonlinear terms, where
notably each equation has one single cross-product term, so it certainly does not belong to
algebraic simple chaotic flows, but is suitable for practical implementation as an electronic
circuit. When the parameters of system (1) are assigned as (a, b, c, k) = (10, 100, 11.2,−0.2),
and the initial values (x0, y0, z0) are set as (1, 1, 1), a fourth-order Runge–Kutta method is
adopted in the numerical integration, which reveals the chaotic behaviors characterized
by strange attractors, as shown in Figure 1a–c, and the power spectrum with continuous
broadband characteristics (Figure 1d) verifies the emergence of chaos. Correspondingly,
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the Lyapunov exponents are calculated based on the Wolf algorithm [52], which gives
LE1 = 0.7457, LE2 = −0.0057, LE3 = −26.8144 (see Figure 2). The positive Lyapunov
exponent indicates that the phase volume of the system is expanding and folding in a
certain direction, which means that the system is in a chaotic state. The Kaplan–Yorke
dimension is DKY = 2 + (LE1 + LE2)/|LE3| = 2.0276, which also verifies the chaoticity of
system (1).
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Figure 1. Projections of chaotic attractor onto various planes at time t = 200: (a) x–z phase space;
(b) y–z phase space; (c) x–y phase space; (d) continuous broadband frequency spectrum.
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Figure 2. Lyapunov exponent spectrum of system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2).
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The new system has the following fundamental dynamic properties:
(1) System (1) is rotationally symmetric versus the z-axis, which is invariant under the

coordinate transformation (x, y, z) → (−x,−y, z). Any attractors are either a symmetric
pair or symmetric under a 180-degree rotation around the z-axis;

(2) Since the divergence of system (1) is

∇ · V =
∂
·
x

∂x
+

∂
·
y

∂y
+

∂
·
z

∂z
= −a + kz − c, (2)

under the condition −a + kz − c < 0, it is dissipative and can converge to a set of zero
measure in exponential form,

dV
dt

= e−a+kz−c; (3)

(3) System (1) possesses two equilibrium points:

E1 : (−
√

ab − bck
a

,− b√
ab−bck

a

,
ac

ck − a
),

E2 : (

√
ab − bck

a
,

b√
ab−bck

a

,
ac

ck − a
). (4)

Linearizing the system gives the Jacobian matrix

A =

⎛⎝−a + kz a kx
−z −c −x
y x 0

⎞⎠. (5)

For the parameters (a, b, c, k) = (10, 100, 11.2,−0.2), the Jacobian eigenvalues at E1
and E2 can be calculated by solving the corresponding characteristic equations, and they
have the same values: λ1 = −18.7413, λ2,3 = −0.314 ± 11.424i. From the eigenvalues, we
can see that E1 and E2 are both stable node-focus points.

Since the new system can generate strange attractors, it is implied that system (1)
under current parameters has hidden chaotic attractors. Figure 3a displays the coexistence
of chaotic motion and stable node-foci in 3D phase space. We can see clearly that the
trajectory starting from initial conditions I1 = (1, 1, 1) becomes a disordered state; however,
orbits starting from initial conditions I2 = (−20,−10,−10) and I3 = (20, 10,−10) spirally
converge to E1 and E2, respectively. Figure 3b displays the time-domain waveform diagram
for initial conditions I1, I2, and I3; an apparently chaotic waveform of x(t) illustrates that
hidden chaotic attractors exist in system (1). To avoid transient chaos, we also confirmed
the existence of a hidden chaotic attractor, since the orbit remains on it for t = 106.

The graphics of the basin of attraction, which is defined as the initial condition set that
the orbits converge to a given attractor, can clearly exhibit the initial point distributions of
different attractors. To further check whether the chaotic attractor in Figure 3 is hidden, a
section z = −9.1503, including E1 and E2, is selected, and the initial condition regions of
coexisting attractors are explored, as shown in Figure 4. Three types of basins of attraction
on the cross section are colored yellow, blue, and red. Yellow areas with black stripes
represent the basin of attraction of a chaotic attractor and the Poincaré section concerning
the chaotic attractor with two wings, while blue and red areas denote that the movement
from these initial conditions will converge to equilibria E1 and E2, respectively. From
Figure 4, we find that the basin of attraction has the expected symmetric similarity and
a smooth boundary. Moreover, in view of the topology of basins in Figure 4, the basins
of attraction of chaotic attractors do not intersect with small neighborhoods of stable
equilibrium points E1 and E2, which also illustrates that there is a hidden chaotic attractor
in system (1).
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Figure 3. (a) 3D phase portrait of system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2). Initial conditions
I1 lead to hidden chaotic attractor, and initial conditions I2, I3 lead to asymptotically converging
behaviors to equilibrium point E1 and E2, respectively; (b) coexisting time series diagram of x(t).

Figure 4. Basins of attraction for system (1) at z = −9.1503. Blue and red basins represent attractors
of two stable node-focus points E1 and E2, yellow region denotes basin of chaotic attractor, and black
stripes denote crossing trajectories of chaotic attractor.

3. Chaotic and Complex Dynamics in New System

The system parameters can significantly influence the dynamics, and the qualitative or
topological variety in the behavior of dynamic systems means that a bifurcation occurs [53].
We discuss the chaotic and complex dynamics of the proposed system (1) through varying
the parameters, taking the initial values as (x0, y0, z0) = (1, 1, 1). The bifurcation diagram,
largest Lyapunov exponent, and division diagram are adopted as tools to observe the
impacts of parameters.
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3.1. Fix a = 10, c = 11.2, k = −0.2 and Vary b

To investigate the effect of the parameters on the dynamics of system (1), we first take
parameters (a, c, k) = (10, 11.2,−0.2) and vary b ∈ [10, 140]. When altering b, the system
shows many complex dynamic behaviors that can be explored in the parameter space.
The typical Benettin method is employed to calculate the maximum Lyapunov exponent
spectrum, and the corresponding bifurcation diagram versus parameter b is displayed in
Figure 5. Obviously, a positive maximum Lyapunov exponent implies that the system is
chaotic over a wide range of parameters. It is clear that the bifurcation diagram with the
variation of parameter b matches well with the largest Lyapunov exponent spectrum. We
can see that the state of system (1) becomes chaotic through pitchfork and period-doubling
bifurcations, then periodic, and chaotic again. The bifurcation diagram in Figure 5b
demonstrates that the system evolves smoothly from a periodic solution to a chaotic region
through a typical period-doubling route; hence, no clear boundary exists between a periodic
phase portrait and chaos. When b is in the interval [125, 140], the largest Lyapunov exponent
quickly becomes negative, and the corresponding bifurcation diagram suddenly changes
to no cutoff points, which both mean that the trajectory of system (1) finally converges to
a fixed point. More details are presented through the 3D projections of phase portraits of
system (1) at different b values, as shown in Figure 6.
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Figure 5. Largest Lyapunov exponent spectrum (a) and bifurcation diagram (b) of system (1) versus
b, where a = 10, c = 11.2, k = −0.2.
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Figure 6. 3D view of phase portraits of system (1), where a = 10, c = 11.2, k = −0.2: (a) b = 20,
(b) b = 80, (c) b = 130.

3.2. Fix b = 100, c = 11.2, k = −0.2 and Vary a

Now, we fix (b, c, k) = (100, 11.2,−0.2) and vary a ∈ [6, 20] and explore the dynamical
evolution of system (1). Figure 7a shows the largest Lyapunov exponent spectrum with
respect to a, and Figure 7b displays the bifurcation diagram of the whole evolution process.
As can be seen from Figure 7, these results are consistent with each other and demonstrate
that the dynamical behaviors vary when a undergoes change. Obviously, when a is in the
interval [6, 9.7], the system converges to one stable equilibrium, as shown in Figure 8a,
where a = 7. When a ∈ (9.7, 12.1], the system has a chaotic status. Near a = 12.2, the
largest Lyapunov exponent is about zero, which implies that system (1) is periodic in a
small parameter range, as demonstrated in Figure 8b, where a = 12.2. However, the system
becomes chaotic again when a is in the interval [12.6, 13.7] (see Figure 8c). Then, when
a > 13.7, the system experiences an inverse period-doubling bifurcation process with the
increase of a, and eventually becomes periodic again. Figure 8d displays the 3D phase
diagram for a = 20.
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Figure 7. Parameter values (b, c, k) = (100, 11.2,−0.2), largest Lyapunov exponent spectrum (a), and
bifurcation diagram (b) of system (1) for a ∈ [6, 20].
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Figure 8. 3D view of phase portraits of system (1), b = 100, c = 11.2, k = −0.2: (a) a = 7; (b) a = 12.2;
(c) a = 13; (d) a = 20.

3.3. Fix a = 10, b = 100, k = −0.2 and Vary c

Here, we fix the parameters a = 10, b = 100, k = −0.2, and vary c. The Lyapunov
exponent spectrum and bifurcation diagram presented in Figure 9 reveal that the limit
cycle, chaos, and equilibrium point appear alternately as c increases from −30 to 20. We
can see that the system shows complex dynamic behavior in this region, and generates
chaos via period-doubling bifurcation. Moreover, periodic windows exist in such a pa-
rameter region. An attractor of system (1) becomes a limit cycle from chaos through a
process of reverse period-doubling bifurcations, then becomes chaotic again through period-
doubling bifurcations, and finally converges to a stable equilibrium point. With initial
values (x0, y0, z0) = (−1,−1, 1), the system will undergo the same bifurcation process, and
the orbits in the phase space will eventually converge toward another stable fixed point.

When the parameters a = 10, b = 100, k = −0.2, the emergence of a hidden chaotic
attractor is dependent on the value of c > 0. When we take c ∈ [−10.7, 0], the system
generates a self-excited chaotic attractor. It is worth noting that the periodic regions do
not share the same dynamical characteristics; diverse limit cycles appear in four periodic
regions, as shown in Figure 10.
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Figure 9. Parameter values (a, b, k) = (10, 100,−0.2), largest Lyapunov exponent spectrum (a) and
bifurcation diagram (b) of system (1) for c ∈ [−30, 20].
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Figure 10. 2D view of different limit cycles of system (1), a = 10, b = 100, k = −0.2: (a) c = −12;
(b) c = −7.74; (c) c = −7.2; and (d) c = 3.

3.4. Fix a = 10, b = 100, c = 11.2 and Vary k

The Lyapunov exponent spectrum and bifurcation diagram shown in Figure 11 reveal
that equilibrium point and chaotic orbit appear alternately with k increasing gradually
from −2 to 0.9. When we take parameters (a, b, c, k) = (10, 100, 11.2, 0), system (1) becomes
the system with a hidden chaotic attractor in Ref. [51]. As shown in Figure 11, when k
becomes slightly positive or negative, chaotic attractors can still be generated. However,
the type of chaotic attractors will depend on the positive or negative value of k; these
are the new structures that have emerged. As required by the Routh–Hurwitz stability
criterion, when we take parameters (a, b, c) = (10, 100, 11.2), hidden chaotic attractors can
exist if the following inequalities are satisfied: a + c − ack

ck−a > 0, which requires k < 0 or
k > 1.69. Hence, when k is slightly positive, the chaotic attractor is self-excited, while when
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k is slightly negative, it generates a hidden chaotic attractor with two stable node-foci. It is
noteworthy that, with k increasing in the range k > 0.9, the orbit finally leads to infinity.
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Figure 11. Largest Lyapunov exponent spectrum (a) and bifurcation diagram (b) of system (1) versus
k, where a = 10, b = 100, c = 11.2.

3.5. Fix a = 10, b = 100 and Vary k and c

We draw a division diagram to capture different kinds of dynamical modes of system
(1) with respect to parameters k–c. Varying k and c within the region of k ∈ [−4, 0],
c ∈ [0, 25], by calculating the largest Lyapunov exponents, we obtain a pseudo-colored map
on a 300× 250 grid of parameters (k, c) (see Figure 12a). Colors correspond to magnitudes of
the largest Lyapunov exponents, where green and blue imply equilibrium, yellow indicates
a limit cycle, and red represents a state of chaos. It can be observed from Figure 12a
that the dynamical mode of system (1) evolves as k and c change. To more clearly show
the evolution of chaos, we fix k = −0.2, take c ∈ [5, 15], and plot a vertical line A–B–C,
presented in Figure 12a for A = 5, B = 10, C = 15. The rich dynamics of the evolution
process in the division diagram are shown in Figure 9. Starting with the periodic region
A, as c increases, the chaos degenerates through period-doubling bifurcations in line A–B,
and the system abruptly changes to one equilibrium through the chaotic status in line B–C.
Similarly, we plot a horizontal line, D–E, fix c at 11.2, and take k ∈ [−2,−1]. The system
changes from one stable equilibrium to a chaotic state at k = −1.5.

-4 -3 -2 -1 0
k

0

5

10

15

20

25

c

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

C

B

A

D E

-4 -3 -2 -1 0
k

0

5

10

15

20

25

c

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

(a) (b)

Figure 12. Division of parameters k and c with different initial conditions: (a) (x0, y0, z0) = (1, 1, 1);
(b) (x0, y0, z0) = (1, 10, 1).

Taking initial conditions (x0, y0, z0) = (1, 10, 1), the numerical results in Figure 12b
illustrate that the other initial conditions have an impact on the division diagram, leading
to expansion of the regions of stable equilibrium. The original chaotic state regions become
an equilibrium state, indicating the existence of a hidden attractor in the corresponding
parameters. If the regions remain in a chaotic state, a self-excited attractor might exist
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under the corresponding parameters, as the regions may become one equilibrium at other
initial values.

Inspired by the k–c division diagram, it is clear that the parameter values k = 0 and
c = 0 at the lower-right corner are dark red, which means the chaos is most complex. As
will be discussed shortly, system (1) has a self-excited chaotic attractor at parameter values
(a, b, c, k) = (10, 64, 0, 0).

4. Diverse Symbolic Dynamics for Unstable Periodic Orbits

We employ the variational method for the cycle search in system (1) and establish
appropriate symbolic dynamics for the found periodic orbits. We first introduce the
variational method, which can be effectively used in the calculations. After that, we aim to
accurately find the surrounding mode of the orbit in system (1), and develop a universal
approach for the symbolic encodings of cycles. We select two sets of parameters, one
corresponding to the hidden chaotic attractor, and the other to the self-excited chaotic
attractor. The symbolic encoding method based on orbit topology will enable us to analyze
periodic orbits by establishing diverse symbolic dynamics.

As shown in Figure 1, the strange attractor of system (1) is composed of numerous
unstable periodic orbits. The 3D continuous flow can be transformed to a 2D discrete
mapping by an appropriate Poincaré section. The idea is to select a section properly in a
high-dimensional phase space, on which a pair of conjugate variables are fixed; then, the
information about the motion characteristics can be obtained by observing the intersection
points of the motion trajectory and cross section. Figure 13a shows the first return map of
system (1) for (a, b, c, k) = (10, 100, 11.2,−0.2). When we choose a special Poincaré section
z = −9.1503, the initial values are [1, 1, 1], where a dense point with a four-branch structure
is presented under these parameters, which indicates the necessity to encode all short cycles
by symbolic dynamics with four letters. For the parameters (a, b, c, k) = (10, 64, 0, 0), which
also correspond to a chaotic state, the first return map with a Poincaré section z = 0 with
the same initial values is shown in Figure 13b. We can see more branches in this case, which
means that more symbols are needed to encode the periodic orbits, and demonstrates better
complexity in the topological structure of periodic orbits. To the best of our knowledge,
investigations of such complex unstable cycles in the chaotic attractor have rarely been
reported. The Lyapunov exponents under the parameters (a, b, c, k) = (10, 64, 0, 0) are also
calculated, which gives LE1 = 1.4456, LE2 = 0.0017, and LE3 = −11.4473 (see Figure 14).
Correspondingly, the Kaplan–Yorke dimension is DKY = 2.1264. Compared with the largest
Lyapunov exponent, i.e., 0.7457, under the parameters (a, b, c, k) = (10, 100, 11.2,−0.2), the
largest Lyapunov exponent becomes larger, which indicates that the chaotic characteristics
of the system are more complex for the parameters (a, b, c, k) = (10, 64, 0, 0).

(a) (b)

Figure 13. First return map of system (1) under different parameters: (a) Poincaré section z = −9.1503,
(a, b, c, k) = (10, 100, 11.2,−0.2); (b) Poincaré section z = 0, (a, b, c, k) = (10, 64, 0, 0).
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Figure 14. Lyapunov exponent spectrum of system (1) for (a, b, c, k) = (10, 64, 0, 0).

4.1. Variational Method

Periodic orbits play important roles in physical and engineering applications. It is rela-
tively easy to locate the unstable cycles in low-dimensional chaotic systems in general [54].
When we locate them in a high-dimensional state space, because the topological structure
of the dynamical system is difficult to perceive, even if points on the cycle are guessed, the
shooting method may fail. This problem can be solved by initializing a complete orbit with
similar topology, and making it gradually evolve into a real cycle. This is also the basic idea
for the variational method to calculate unstable periodic orbits of dynamical systems. For
the calculations of unstable cycles, a discretization equation was derived as [55]

⎛⎝∧
A −∧

v
∧
a 0

⎞⎠(δ
∼
x

δλ

)
= δτ

(
λ
∧
v −

∧∼
v

0

)
, (6)

where τ is the virtual time related to iteration times. We use λ to adjust the period, which
has the relationship with the period T = 2πλ when the periodic orbit converges. We

want to match the vector fields
∧
v = (v1, v2, . . . , vN)

t,
∧∼
v = (

∼
v1,

∼
v2, . . .

∼
vN)

t everywhere
along the loop, and v and

∼
v represent the flow velocity and loop velocity vector, re-

spectively.
∧
a is an Nd-dimensional row vector that restricts coordinate alterations.

∧
A =

∧
D − λdiag[A1, A2, . . . , AN ], where Aij =

∂vi
∂xj

, is the gradient matrix of the velocity field,
and the five-point approximation matrix is

∧
D =

N
24π

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 8 −1 1 −8
−8 0 8 −1 1
1 −8 0 8 −1

· · ·
1 −8 0 8 −1

−1 1 −8 0 8
8 −1 1 −8 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (7)

where each matrix element is d × d dimensional, and blanks are filled with zeros. The
[(Nd + 1)× (Nd + 1)] matrix on the left side of Equation (6) must be inverted to solve for
δ
∼
x and δλ, and the banded lower-upper decomposition method for accelerated computing

and the Woodbury formula are adopted. In addition, because the virtual time steps are
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sometimes not significant, we may choose larger time steps for numerical integration, so as
to effectively search the real periodic orbit.

To utilize the variational method, as a first step, a loop guess which is fit to the cycle
calculations is a prerequisite, and the loop guess can be initialized in many ways in the
numerical calculations [55]. For example, we can use a fast Fourier transform of a nearly
closed orbital fragment obtained from the numerical integration, keep only the lowest-
frequency components, and use a reverse fast Fourier transform back to the phase space,
in which emerges a glossy loop guess that can be used to initialize. We can also easily
construct the initial loop guess by utilizing the homotopy evolution method [56]. We
mention other initialization methods below.

The flexibility of the variational method for cycle searching has been verified by many
examples [57–59], including conservative systems and low- or high-dimensional dissipative
systems. The method can also locate other invariant sets in dynamical systems with proper
modification [60,61]. The method cannot only find cycles with fixed parameters, but can
be used to study the deformations of cycles when changing some parameters, i.e., to
investigate the bifurcation behaviors of a dynamical system [62,63]. Hence, this approach
can be used to study the generation or disappearance of periodic orbits and the change of
cycle stability.

4.2. Unstable Cycles Embedded in Hidden Chaotic Attractor for (a, b, c, k) = (10, 100, 11.2,−0.2)

The unstable periodic orbits in system (1) when (a, b, c, k) = (10, 100, 11.2,−0.2) are
investigated based on the variational method. In the process, establishing appropriate
symbolic dynamics is important for locating all short cycles without missing any [64]. To
obtain the topological shape of the periodic orbit to be calculated, we perform numerical
simulations, intercepting part of the simple orbital fragment to construct the initial loop
guess. Several short periodic orbits with uncomplicated topological structures are found,
as shown in Figure 15. Figure 15a shows a periodic orbit that revolves one turn around the
left equilibrium E1 with an elliptical shape, which has a relatively small extension in the
z-axis with shortest period T = 0.635920. We mark it as cycle 0. Figure 15b shows a cycle
that rotates once around the right equilibrium E2 with an elliptical shape, and mark it as
cycle 1. It can be seen that the two periodic orbits are symmetric to each other. Similarly,
we mark the cycle with a wing shape rotating around the fixed point on the left once as
cycle 2, as shown in Figure 15c, and its symmetric cycle with reasonably large extension
in the z orientation is denoted as cycle 3 (see Figure 15d). The above four cycles can be
regarded as the building blocks, and other periodic orbits can be calculated systematically
by the symbolic dynamics of four letters.

There are four situations in which an orbit revolves one turn both around the left and
right fixed points, and they are the cycles with topological length 2, as listed in Figure 16a–d.
The rotationally symmetric property of system (1) implies the exchange symmetry 0 and 1
or 2 and 3 of the symbol sequence. Consequently, it is shown that the symmetry partner
of cycle 12 is 03, and they have the same period. Cycles 01 or 23 are conjugated with
themselves, so that no other orbit has the same period. Figure 16e–h display four cycles
with topological length 3. Utilizing symbolic dynamics, we can calculate the cycles up to
any topological length, i.e., we first construct the loop guess of the corresponding symbol
sequence, and use the variational technique to verify its existence. Altogether, we found 20
periodic orbits with topological length 3, as listed in Table 1.
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Figure 15. Four basic building blocks in system (1) for parameters (a, b, c, k) = (10, 100, 11.2,−0.2):
(a) cycle 0; (b) cycle 1; (c) cycle 2; and (d) cycle 3.

Table 1. Twenty unstable periodic orbits embedded in hidden chaotic attractor of system (1) for
(a, b, c, k) = (10, 100, 11.2,−0.2), showing topological length, itinerary p, period Tp, and three coordi-
nates of a point on the periodic orbit.

Length p Tp x y z

1 0 0.635920 −7.028076 0.430355 1.092913
1 0.635920 7.028076 −0.430355 1.092913
2 1.192933 2.544434 12.123766 20.650672
3 1.192933 −2.544434 −12.123766 20.650672

2 12 1.752388 2.807407 6.313538 12.146665
03 1.752388 −2.807407 −6.313538 12.146665
01 1.467965 0.100280 1.271667 −7.073590
23 2.383824 −14.090307 17.922194 33.086632

3 001 2.174153 −7.214950 4.081725 7.082844
011 2.174153 7.214950 −4.081725 7.082844
003 2.361334 −1.162938 −0.669254 −14.983886
112 2.361334 1.162938 0.669254 −14.983886
132 2.940945 −2.570910 −0.291669 11.591391
023 2.940945 2.570910 0.291669 11.591391
021 2.554559 −0.016908 −0.016629 −31.681837
013 2.554559 0.016908 0.016629 −31.681837
033 2.946229 0.291076 0.540818 −60.155264
122 2.946229 −0.291076 −0.540818 −60.155264
223 3.954898 −5.509519 −11.111451076 −71.906347
233 3.954898 5.509519 11.111451076 −71.906347
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Figure 16. Unstable cycles in system (1) under parameters (a, b, c, k) = (10, 100, 11.2,−0.2): (a) cycle
12; (b) 03; (c) 01; (d) 23; (e) 001; (f) 112; (g) 023; and (h) 233.
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4.3. Unstable Periodic Orbits Embedded in Self-Excited Chaotic Attractor for
(a, b, c, k) = (10, 64, 0, 0)

If we make the third and fourth parameters in the chosen set (a, b, c, k) zero, according
to the Routh–Hurwitz stability criterion, a2b2 < 0 must be satisfied, so there is no solution,
which means that there will be no hidden chaotic attractors in the system. Only when c and
k are not zero is it possible to satisfy the Routh–Hurwitz stability criterion and a hidden
chaotic attractor with stable equilibrium points can exist. When we take another set of
parameters, (a, b, c, k) = (10, 64, 0, 0), system (1) becomes a dynamical system with only
five terms and also exhibits the existence of a chaotic state. As with some simple chaotic
flows, namely the Sprott system, listed in Ref. [15], system (1) is simpler, but it has more
complex dynamics, which is worthy of further research. For these parameter values, the two
equilibrium points yield E1 = (−√

b,−√
b, 0) and E2 = (

√
b,
√

b, 0), and three eigenvalues
of the fixed points E1,2 are λ1,2 = 1.4034 ± 9.8983i and λ3 = −12.8068. Since E1,2 are two
saddle-foci, system (1) has a self-excited chaotic attractor under current parameters.

We locate the unstable periodic orbits via the variational method, which brings great
convenience. Here, we numerically integrate Equation (1) and extract approximate closed
trajectories with different shapes, then artificially connect them so as to initialize the search.
Figure 17 displays our calculated results for some short periodic orbits. We can also record
the cycle swirling around the left fixed point E1 once with a wing shape in Figure 17a by
cycle 2, and its symmetric partner in Figure 17b with cycle 3. However, we did not find
cycle 0 and cycle 1 to exist. The cycles in Figure 17c,d both have a knot, which indicates that
they have a self-linking number of 1, which can conveniently be calculated [65]. We mark
them as cycle 4 and cycle 5, respectively. Noting that they are symmetric to each other, the
commutative symmetry 4 and 5 of the symbol sequence is satisfied.
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Figure 17. Four building blocks in system (1) for parameters (a, b, c, k) = (10, 64, 0, 0): (a) cycle 2;
(b) cycle 3; (c) cycle 4; (d) cycle 5.

We can use the above cycles as building blocks to find more complicated cycles, and
the symbolic dynamics is established successfully. Figure 18 shows part of the found
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cycles together with equilibria E1 and E2. According to the symbolic dynamics, we find
41 unstable cycles with topological lengths up to 3, and sort them in Table 2. A total of
14 cycles are pruned, e.g., cycles 02, 002, and 123. Compared with the two sets of parameters,
for the same periodic orbits, the cycles embedded in the hidden chaotic attractor have
longer periods than those embedded in the self-excited chaotic attractor. The unstable cycles
of system (1), as discussed under current parameters, must invoke symbolic dynamics for
six letters, which is usually complicated. The topological classification approach used here
indicates its flexibility. Additionally, although the symbolic dynamics of six letters can
produce many symbol sequences within the topological length of 3, it is found that the
2 and 3 building blocks can be combined with all the other building blocks, while the 0 and
1 building blocks cannot be combined with the 4 or 5 building blocks. These behaviors are
surely unusual. Therefore, the number of cycles actually allowed by the symbol sequence
is greatly reduced. Whether this empirical pruning rule is applicable to longer periodic
orbits is an open problem worthy of further investigation.
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Figure 18. Cont.
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Figure 18. Unstable periodic orbits in system (1) for parameters (a, b, c, k) = (10, 64, 0, 0). Two
equilibria are marked with “+". (a) cycle 24; (b) cycle 25; (c) cycle 45; (d) cycle 033; (e) cycle 021;
(f) cycle 132; (g) cycle 324; (h) cycle 255; (i) cycle 335; (j) cycle 325; (k) cycle 225; (l) cycle 254.

Table 2. Forty-one unstable periodic orbits embedded in self-excited chaotic attractor of system (1)
for (a, b, c, k) = (10, 64, 0, 0).

Length p Tp Self-Linking Length p Tp Self-Linking p Tp Self-Linking

1 2 1.016946 0 3 223 2.994130 0 031 2.447450 2
3 1.016946 0 233 2.994130 0 012 2.447450 2

2 01 1.358438 1 033 2.609712 2 132 2.505368 0
23 1.965825 1 122 2.609712 2 023 2.505368 0
12 1.587528 1 021 2.323226 0
03 1.587528 1 013 2.323226 0

1 4 1.312552 1 445 4.235720 3 354 3.955079 2
5 1.312552 1 455 4.235720 3 234 3.263831 1

2 24 2.289914 2 344 3.667897 1 325 3.263831 1
25 2.354458 0 255 3.667897 1 225 3.367249 1
34 2.354458 0 335 3.312270 1 334 3.367249 1
35 2.289914 2 224 3.312270 1 254 3.606269 3
45 2.642183 1 244 3.600833 3 345 3.606269 3

3 235 3.349139 1 355 3.600833 3
324 3.349139 1 245 3.955079 2

Regarding the system’s overall dynamical complexity from the two sets of parameters
chosen in the study, we can draw the following conclusions:

(1) The proposed system (1) with two parameters has more complex dynamics than
the system with four parameters.

(2) The system with a self-excited attractor has more complex dynamics than the
system with a hidden attractor.

(3) The system with periodic orbits containing building blocks of self-linking number 1
has more complex dynamics than that containing building blocks of self-linking number 0.

5. Circuit Simulation

We discuss the circuit implementation of system (1) to confirm the realizability of the
mathematical model. Because all the values of state variables (x, y, z) in system (1) are out
of the dynamic range, they should be scaled down to avoid problems during simulation.
We set the amplitude scaling factor to 10, where X = 1

10 x, Y = 1
10 y, and Z = 1

10 z. The time
scale factor is set to τ0 = 1

R0C0
= 2500 to better match the system, a new time variable τ

is defined instead of t, and t = τ0τ. As a result, system (1) after scale transformation is
described as

R0C0
·

X = a(Y − X) + 10kXZ

R0C0
·
Y = −cY − 10XZ (8)

R0C0
·
Z = − b

10
+ 10XY,
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where a = 10, b = 100, c = 11.2, and k = −0.2.
The proposed circuit design is depicted in Figure 19, in which X, Y, and Z are the

voltages at the outputs of operational amplifiers U2, U5, and U8, respectively. The circuit
consists of nine AD811AN operational amplifiers, whose supply voltage is ±18 V; three
multipliers with an output coefficient of 0.1; three capacitors; and 19 resistors. Based on
Kirchhoff’s law, we can get

·
X =

R4

R2R5C1
Y − R4

R1R5C1
X − R4

R3R5C1
0.1XZ

·
Y = − R10

R8R11C2
Y − R10

R9R11C2
0.1XZ (9)

·
Z =

R16

R15R17C3
V1 +

R16

R14R17C3
0.1XY.

Comparing Equation (8) with Equation (9), we select all the capacitors Ci = 40 nF
(i = 1, 2, 3) and V1 = −1 V. The resistors R9 = R14 = 1 kΩ, R3 = 5 kΩ, R8 = 8.93 kΩ,
Ri = 10 kΩ (i = 1, 2, 5, 6, 7, 11, 12, 13, 15, 17, 18, 19), and Ri = 100 kΩ (i = 4, 10, 16). We
used NI Multisim 14.0 to simulate the circuit, as shown in Figure 20. It can be seen
that the circuit well emulates the proposed system, which is in good agreement with the
numerical results in Figure 1. Therefore, we can conclude that system (1) can be realized in
physical experiments.

Figure 19. Schematic of circuit.
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(a) (b)

Figure 20. Phase portraits in Multisim of circuit: (a) X–Z plane; (b) X–Y plane.

6. Conclusions and Discussion

We constructed a new 3D autonomous chaotic system with coexisting self-excited and
hidden attractors, in which the generation of different types of attractors depends on its
parameters. The complex dynamics of the system were analyzed by different tools, and it
was proved to be chaotic in the sense of having a fractional Kaplan–Yorke dimension, a
phase portrait of a strange attractor, and a period-doubling route to chaos. Moreover, an
applicable generic procedure for topological classification of unstable cycles in the proposed
system was addressed. Guessing an entire orbit, we utilized the variational method for the
calculation of cycles, and the initial conjecture loop could be gradually evolved into a real
cycle. Diverse symbolic dynamics based on orbital topology was successfully established
in the phase space, including four and six letters, corresponding to hidden and self-excited
chaotic attractors. Periodic orbits up to certain topological lengths were found accordingly,
which indicates the utility of the topological classification approach in the periodic orbit
taxonomy. A Multisim circuit simulation of the system was implemented to further verify
the mathematical model.

The symbolic encoding method employed here could also be applied to discrete
dynamical systems, such as the memristive Rulkov neuron model [66], discrete memristor
hyperchaotic maps [67], 2D memristive hyperchaotic maps [68], and 2D sine map [69].
Quotienting symmetries of a given dynamical system prior to the symbolic dynamics
analysis is an attractive research direction. Symmetry reduction could not only reduce the
multiple-letter symbolic encodings of periodic orbits to a single letter, but could visualize
self-linking in the symmetry-reduced state space, which requires further investigation. The
new system still contains rich and complex dynamic behavior, and its topology requires
comprehensive and deep exploration. Moreover, as the system proposed in Ref. [51], the
newly proposed system (1) is a mathematical model at present and does not correspond to
any physical phenomena. It is hoped that more detailed theoretical analysis and application
investigations will be carried out in the future.
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