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1. Introduction

Emerging technologies such as artificial intelligence (AI), big data analytics, and deep
learning have gained widespread attention in recent years and have demonstrated great
potential for application in many industrial fields. In power systems, AI and other tech-
nologies are also being used as new and powerful tools to replace traditional techniques
for feature modeling, performance control, and fault diagnosis in order to obtain superior
results. This Special Issue, “Application of Artificial Intelligence in Power System Monitor-
ing and Fault Diagnosis”, aims to introduce the latest advances in this field and discusses
the application of AI technology in power system modeling and control, state estimation,
performance diagnosis, and prognosis, among other fields.

The scope of this Special Issue includes, but is not limited to, the following:

• Data-based abnormalities analysis of thermal power systems and nuclear power systems;
• Fault diagnosis and prediction of wind turbines based on SCADA data;
• Modeling, monitoring, and diagnosis of waste-to-energy, biomass power, and tidal

power systems;
• Data-based fault characteristics analysis of power generation equipment;
• Power equipment health monitoring based on vibration signals, sound signals, image

signals, thermal infrared signals, etc.
• Control and performance monitoring of photovoltaic power generation systems;
• Modeling, scheduling, control, and monitoring of microgrid systems;
• SOC estimation, SOH estimation, fault detection, isolation, and localization of lithium

battery systems;
• State estimation and performance evaluation of large-scale energy storage systems.

From a total of 24 submissions, 10 research papers were published in this Special Issue,
with 14 rejected.

2. Highlights of Published Papers

This section provides a summary of this Special Issue of Energies, covering published
articles [1–10] which address several topics related to AI technologies in power system
performance monitoring.

In [1], Barnabei et al. designed a Supervisory Control and Data Acquisition (SCADA)-
based framework for the unsupervised anomaly detection of district heating (DH) network
generating units. The framework relies on a multivariate machine learning regression
model and then uses a sliding threshold approach for the subsequent processing of the
model residuals generated during the testing phase. The system was tested against major
failures occurring in gas-fired generating units at the DH plant in Aosta, Italy, and the
results showed that the framework can detect anomalies successfully.

Energies 2023, 16, 5477. https://doi.org/10.3390/en16145477 https://www.mdpi.com/journal/energies
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In [2], Lin et al. proposed a new method for shunt capacitor monitoring. The method
monitors the shunt capacitor bank via the synchronous voltage and branch current of
the shunt capacitor bank, calculates the capacitance parameters of the ungrounded star-
connected capacitor bank using the parameter symmetry of the capacitor parameter calcu-
lation method, and identifies the abnormal state of the capacitor according to the statistical
method. The simulation established by PSCAD verified that the relay protection device
could effectively monitor the early abnormal condition of the capacitor bank.

In [3], Jawad et al. proposed a fault diagnosis method based on probabilistic generative
models to remedy the shortcomings of existing fault detection methods for high-voltage
direct current (HVDC) transmission systems. The method uses wavelet transform based on
ant colony optimization and artificial neural network to detect different types of faults in
HVDC transmission lines. The experimental results showed that the proposed method has
higher accuracy and stronger robustness in the fault diagnosis of HVDC transmission sys-
tems compared with existing methods, such as support vector machines and decision trees.

In [4], Pujana proposed a hybrid model-based method for developing a digital twin
(DT) model for wind power conversion systems. The method combines the advantages of
physical models with advanced data analysis techniques to obtain knowledge from actual
operational data while preserving physical relationships, thereby generating synthetic
data from non-occurring events to detect and classify faults. Compared with existing
DT methods, the method proposed in this paper has significant advantages in accuracy
and interpretability.

In [5], Xia et al. proposed a multi-model fusion ensemble learning algorithm based
on stacked structures to detect power theft. To solve the problem of existing methods
being unable to further improve the accuracy of electricity theft detection, a heterogeneous
ensemble learning method is used to construct a heterogeneous integrated learning model
for stacked structure electricity theft detection using different powerful individual learning
superposition integration structures to achieve the accurate detection and identification of
electricity theft.

For identifying different types of partial discharges (PDs) in gas-insulated switchgear
(GIS), Zheng et al. proposed an improved feature fusion convolutional neural network
(IFCNN) method in [6], which solves the problem of traditional methods requiring a large
quantity of statistical discharge data. By fusing time-frequency features, the method can
uncover more local features of potential discharge pulses and increase the recognition
accuracy to 95.8%.

In [7], Luo et al. designed an automatic machine learning-based lifetime prediction
model (AutoML) for accurately estimating and predicting the capacity and lifetime of
Li-ion batteries. The features of CC and CV phases are extracted using optimized incre-
mental capacity (IC) curves, and the noise is removed using the Kalman filtering algorithm.
They then built AutoML, which can automatically generate the appropriate processing
flow, addressing the issues of information redundancy and high computational cost. By
validating the NASA dataset, they demonstrated a significant improvement in the model’s
ability to predict battery life on small-scale datasets.

In [8], Bai et al. proposed an HOG-SVM-based power system equipment identification
method. First, wavelet transform is performed on the sound signals of power system
equipment collected from the field to obtain wavelet coefficient-time maps. Then, the
HOG features of the images are selected, and the selected features are classified using an
SVM classifier. Moreover, the method also combines sound signal and image processing to
effectively take advantage of image processing and avoid the limitations of sound signal
processing. Finally, simulation experiments demonstrated that the proposed method can
accurately identify and classify power system equipment.

In [9], Chen et al. proposed a deep-learning-based method for the intelligent modeling
of the incineration process in waste-to-energy plants. The output variables are selected
regarding safety, stability, and economy. The input variables are determined by eliminating
invalid redundant variables using the Lasso (Least absolute shrinkage and selection op-
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erator) algorithm and a multi-input multi-output model based on feature selection, and
CNN-BiLSTM is established. The results showed that the model can fully exploit the data
features under multi-dimensional input feature parameters, and that it has higher accuracy
and applicability than the traditional model.

Finally, in [10], Zhang et al. constructed a short-term wind speed prediction model
based on variable support segments (VSS). At first, the method decomposes the historical
wind speed series into several components using the variational mode decomposition
method. Then, an improved transformer model is used to predict the predicted values
of each element, and these predicted values are summed to obtain the future wind speed
prediction. Experimental results showed that the prediction accuracy of the improved
transformer model is significantly higher than that of other prediction models.

Author Contributions: Investigation, G.W. and J.X.; Writing—original draft, G.W.; Writing—review
and editing, J.X. and S.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
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Abstract: Accurate short-term wind speed forecasting plays an important role in the development
of wind energy. However, the inertia of airflow means that wind speed has the properties of time
variance and inertia, which pose a challenge in the task of wind speed forecasting. We employ the
variable support segment method to describe these two properties. We then propose a variable
support segment-based short-term wind speed forecasting model to improve wind speed forecasting
accuracy. The core idea is to adaptively determine the variable support segment of the future wind
speed by a self-attention mechanism. Historical wind speed series are first decomposed into several
components by variational mode decomposition (VMD). Then, the future values of each component
are forecast using a modified Transformer model. Finally, the forecasting values of these components
are summed to obtain the future wind speed forecasting values. Wind speed data collected from a
wind farm were employed to validate the performance of the proposed model. The mean absolute
error of the proposed model in spring, summer, autumn, and winter is 0.25, 0.33, 0.31, and 0.29,
respectively. Experimental results show that the proposed model achieves significant accuracy and
that the modified Transformer model has good performance.

Keywords: wind speed forecasting; variable support segment; VMD; Transformer; attention mechanism

1. Introduction

Wind energy has become the most promising clean energy due to its large reserves [1]
and good foundation. The Global Wind Energy Council has indicated that the installed
global wind power capacity provide be up to 20% of global electricity by 2030 [2]. The
development and utilization of wind energy are critical to alleviating the pressure generated
by traditional energy sources such as fossil fuels. The conversion and management of wind
energy is closely related to wind speed. Accurate short-term wind speed forecasting, which
estimates the wind speed 30 minutes to 6 hours ahead [3], is essential for optimizing power
grid scheduling, reducing system rotating reserve capacity, and guaranteeing stable grid
operation [4,5]. However, the accuracy and reliability of wind speed forecasting are affected
by the stochastic nature and nonlinear characteristics of wind speed. Various models for
improving wind speed accuracy have been proposed [6–9], which can be divided into the
categories of single models and combined models based on their structure. The most widely
used single models include the backpropagation (BP) neural network [10], extreme learning
machine (ELM), Kalman filtering, the autoregressive moving average (ARMA) [11], and
support vector regression (SVR) [12] models.

A single model is unable to achieve satisfactory forecasting accuracy due to the
intermittency of wind speed. Thus, combined models consisting of multiple single models
are widely applied. Extensive studies have shown that combined models have better
performance [13,14]. There are two sorts of combined models. The first weights the
forecasting values of different models to obtain the final forecasting values. In [15], the
weight coefficients of three different models were determined via modified support vector
regression. In [16], the partial least squares algorithm was used to optimize the weight

Energies 2022, 15, 4067. https://doi.org/10.3390/en15114067 https://www.mdpi.com/journal/energies
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coefficients. Wang et al. [17] proposed a combined model in which the coefficients of four
artificial neural networks’ forecasting results are determined using the multi-objective bat
algorithm (MOBA).

However, the original wind speed series often appears as a broadband signal in the
frequency domain, which is difficult to forecast directly. Therefore, a second sort of com-
bined model has been presented to solve this issue. First, a historical wind speed series
is broken into narrowband components using the signal decomposition method. Then,
each narrowband component’s future values are forecast separately by the forecasting
models. The final forecasting values are the sum of each component’s forecasting val-
ues. The most commonly used signal decomposition methods include wavelet transform
(WT) [18], empirical mode decomposition (EMD) [19] and its variants, and variational
mode decomposition (VMD) [20]. In [21], WT was employed to reduce wind speed fluctu-
ation characteristics. Naik et al. [22] utilized EMD to preprocess wind speed data. In [23],
VMD was used to overcome the intermittency of the wind and eliminate noise signals. WT
requires the wavelet function and the decomposition layers to be selected artificially, which
is non-adaptive. Although EMD and its variants are adaptive, they have limitations such as
mode mixing and endpoint effect. VMD has good noise robustness, which is an adaptive
signal decomposition method. Here, we employ VMD as the signal decomposition method.

Forecasting models are another key component of combined models; research [24,25]
has shown that deep learning models have better performance in extracting and learn-
ing complex quantitative relationships hidden in wind speed data. Altan et al. [26] used
the long short-term memory (LSTM) model for the forecasting of narrowband compo-
nents, which showed good performance. In [27], the bidirectional LSTM model was
utilized to forecast the sub-series. In [28], a combined model which incorporated VMD,
differential evolution (DE), and echo state network (ESN) was proposed. In [29], the
significant spatiotemporal characteristics in wind speed data were extracted by a graph
deep learning model.

The Transformer model [30] is a deep learning model based on the self-attention
mechanism which is good at capturing dependencies in long sequences and is not affected
by distance. The Transformer model outperforms other deep learning models on process se-
quence data, hence, we employ it here as the forecasting model. However, the Transformer
model cannot be employed for time series forecasting tasks directly due to its particular
structure. Therefore, the structure of the Transformer model is modified in this paper.
According to the above analysis, we first use VMD to obtain the narrowband components
decomposed from historical wind speed series, then utilize the modified Transformer model
to obtain each component’s forecasting values. The final forecasting values are the sum of
each component’s forecasting values. The following are this paper’s major contributions:

(1) We employ the variable support segment method to describe the time-varying and
the inertia properties of wind speed;

(2) We modify the Transformer model in order to approximate the variable support
segment and complete the forecasting task of each narrowband component;

(3) We propose a combined model based on the modified Transformer model and VMD.
Two evaluation indicators and thirteen baseline models were used for a compar-
ative experiment; the results indicate that our model has higher accuracy than
comparative models and that the modified Transformer model outperforms other
forecasting models.

The structure of this paper is as follows: Section 2 provides the mathematical descrip-
tion of wind speed forecasting; Section 3 briefly introduces VMD and the Transformer
model; Section 4 presents the modified Transformer model and the proposed model;
Section 5 analyzes the forecasting results of different models; and the final section contains
our conclusions.
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2. Mathematical Description of Wind Speed Forecasting

At present, most wind speed forecasting models assume that the future wind speed in
the short term is only related to the historical wind speed:

xN = f (xM) (1)

where xN = [xi, . . . , xi+N−1] denotes the future wind speed series and xM = [xi−M, . . . , xi−1]
denotes the historical wind speed series (i.e., the support segment of xN); f : RM → R

N

is the function that describes the mapping relationship between xM and xN . Thus, the
wind speed forecasting task can be achieved by constructing a model to approximate the
function f . Wind speed series often appear as broadband signals in the frequency domain,
while narrowband signals are generally assumed to have a stable future trend and are
easier to forecast. As a result, one feasible approach is to forecast the future values based on
the narrowband components of historical wind speed series. The wind speed forecasting
process based on signal decomposition can be formulated as

xN = ∑
k

xk
N = ∑

k
fk(x

k
M) (2)

where xM = ∑k xk
M, xk

M represents the narrowband component of the historical wind speed
series, i.e.,the support segment of xk

N . Therefore, the function fk : RM → R
N describes the

quantitative relationships between xk
M and xk

N .
The inertia of airflow means that the wind speed shows time-varying and inertial

properties, which influences the accuracy of wind speed forecasting. As Equation (2) fails
to describe these two properties of wind speed effectively, there is room for improvement.
Hence, the parameter τ, which is related to delay, can be introduced to the mathematical
description of wind speed forecasting, and the parameter p, which denotes the length of
the support segment, is set as a time variable. As a result, the mathematical description of
wind speed forecasting can be formulated as

xN = ∑
k

xk
N = ∑

k
fk(Sk

pk ,τk
) (3)

where Sk
pk ,τk

= [xk
i−pk−τk

, . . . , xk
i−1−τk

] is the variable support segment of xk
N . In Formula (3),

the parameters τ and p vary with the historical wind speed series; thus, the inertia property
of wind speed is described by the parameter τ, while the time-varying property of wind
speed is described by the parameters τ and p jointly. When N = 1, Equation (3) corresponds
to the one-step wind speed forecasting problem, which can be reformulated as

xi = ∑
k

fk(Sk
pk ,τk

) (4)

Unless otherwise specified, the remainder of this paper concentrates on the issue of
one-step wind speed forecasting.

Figure 1 shows the schematic diagram of the variable support segment; [x1
2, x1

3, x1
4, x1

5],
which contributes to the formation of x1

11, is the variable support segment of x1
11, that is,

p1 = 4 and τ1 = 5. Similarly, the variable support segment of x2
11 is [x2

3, . . . , x2
7]; p2 = 5 and

τ2 = 3.
According to Equation (4), we can forecast the future wind speed via the follow-

ing steps.

(1) Decompose the wind speed series into narrowband components based on the signal
decomposition method;

(2) Complete the forecasting task of each narrowband component by estimating the
variable support segment corresponding to each narrowband component;

(3) Superimpose the forecasting value of each narrowband component to obtain the
future wind speed forecasting value.

7
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Figure 1. Schematic diagram of the variable support segment.

Approximating the variable support segment accurately is the key to reducing the
errors in wind speed forecasting. Existing forecasting models struggle with adaptively
approximating the variable support segment. In our approach, the variable support seg-
ment is approximated using the self-attention mechanism, the specific process of which is
introduced in Section 4.1.

3. VMD and Transformer

For the purposes of this paper, VMD was selected as the signal decomposition method
and the Transformer model was selected as the forecasting model; this section briefly
introduces them.

3.1. VMD

VMD decomposes an input signal into a number of intrinsic mode functions which are
band-limited. It includes two main parts, variational problem construction and variational
problem solving.

VMD uses an input signal, g(t), equal to the sum of all the modes as its premise and
seeks K mode functions, uk(t), to obtain the minimum sum of the estimated bandwidths of
each mode. Thus, the constrained variational problem can be formulated as⎧⎪⎨⎪⎩

min
{uk},{ωk}

{
∑
k
||∂t[(δ(t) +

j
πt ) ∗ uk(t)]e−jωkt||22

}
s.t. ∑

k
uk = g(t)

(5)

where uk is the mode function, ωk is the mode center frequency, K is the number of modes,
δ is the Dirac disturibution, ∗ is convolution, and g(t) is the input signal.

By introducing the quadratic penalty term α and the Lagrangian multiplier λ(t),
the constrained variational problem of Equation (5) becomes an unconstrained varia-
tional problem:

L({uk(t)}, {ωk}, λ(t)) =

α ∑
k
||∂t[(δ(t) +

j
πt

) ∗ uk(t)]e−jωkt||22 + ||g(t)− ∑
k

uk(t)||22 +
〈

λ(t), g(t)− ∑
k

uk(t)

〉
(6)

In order to solve the unconstrained variational problem, VMD alternately updates
un+1

k (t), ωn+1
k , and λn+1

k (t) to find the “saddle point” of the extended Lagrangian expres-
sion. Here, the iterative formula of the Fourier transform of uk(t), ωk and λ(t) can be
expressed as
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ûn+1
k (ω) ←

ĝ(ω)− ∑
i �=k

ûi(ω) + λ̂(ω)
2

1 + 2α(ω − ωk)2 (7)

ωn+1
k (ω) ←

∫ ∞
0 ω|ûk(ω)|2dω∫ ∞

0 |ûk(ω)|2dω
(8)

λ̂n+1(ω) ← λ̂n(ω) + η[ĝ(ω)− ∑
k

ûn+1
k (ω)] (9)

where η is an update factor.

3.2. The Transformer Model

The Transformer [30] model is a model based on an “encoder–decoder” structure,
shown in Figure 2. The model consists of an input layer, encoder stack, decoder stack, and
output layer.

Figure 2. The structure of the Transformer model.

The word embedding module and positional encoding module, which correspond to
“Input Embedding” and “Positional Encoding” in Figure 2, respectively, make up the input
layer. The word embedding module is utilized to convert input words into computable
vectors, as words cannot be directly input into the model. The positional encoding module
embeds positional information into the input sequence, as the Transformer model abandons
the traditional recurrent neural network structure and is therefore unable to directly receive

9
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the position information of the input sequence. The encoder stack which is responsible for
encoding the input information and generating intermediate vectors as the input of the
decoder stack is composed of several encoders. Each encoder contains two modules, the
multi-head attention mechanism module and the feed-forward neural network module,
corresponding to “Multi-Head Attention” and “Feed Forward” in the Figure 2, respectively.
Here, we use relu as the activation function in the feed-forward neural network module.
Residual connections are used between each module and normalization is carried out,
which is indicated by the “Add & Norm” part in the Figure 2.

The multi-head attention mechanism module calculates the attention based on a self-
attention mechanism, which can deeply explore the internal relationship of input sequences,
focus on important information, and filter out unimportant information. The self-attention
mechanism first maps the input matrix X into the query matrix Q, the key matrix K, and
the value matrix V, then calculates the attention distribution by the scale dot production,
and finally performs a weighted summation of the value matrix according to the attention
distribution. Specifically, this is shown in Equations (10)–(13):

Q = WQX (10)

K = WKX (11)

V = WVX (12)

Attention(Q, K, V) = so f tmax(
QKT
√

d
)V (13)

where WQ, WK, and WV are the weight matrix corresponding to Q, K, and V, respectively,
and

√
d is a scale factor.

The information learned by a single self-attention mechanism is relatively simple. In
order to fully mine the correlation information between input sequences, the Transformer
model further adopts the multi-head attention mechanism in order to learn information
from different subspaces, then splices the outputs of different subspaces to obtain the final
output, as shown in detail in Equations (14) and (15):

Mutilhead(Q, K, V) = Concat(Head1, . . . , HeadH)W
O (14)

Headi = Attention(XWQ
i , XWK

i , XWV
i ) (15)

where WQ
i , WK

i , and WV
i are the weight matrices corresponding to Q, K and V, in Headi,

Concat is used to splice the output of each Head, and WO is the projection matrix, which is
used to realize the projection of the stitching result.

The decoder stack, which is responsible for decoding the input information, is com-
posed of several decoders. Compared to the encoder, the decoder includes an additional
mask multi-head attention mechanism module to prevent information leakage. Residual
connections between the modules of the decoder are used and normalized.

The output layer includes the Linear module and the Softmax module, which are used
to convert the vector output by the decoder stack into a probability and then output the
word corresponding to the highest probability.

4. The Wind Speed Forecasting Model

4.1. The Modified Transformer Model

The structure of the original Transformer model is not suitable for time series forecast-
ing tasks; therefore, we conducted several specific modifications:

(1) The word-embedding module was replaced by a fully-connected neural network
(FCNN) to allow the wind speed series to be input directly into the model;

10
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(2) In the decoder, the masked multi-head attention mechanism was replaced by a multi-
head attention mechanism, as only a single data source is fed into the decoder stack
and the information of the subsequent sequence is not subsequently involved;

(3) The original output layer was removed and the output of the encoder stack directly
mapped into the wind speed forecasting result from the FCNN.

For convenience, the modified Transformer model, shown in Figure 3, is called M-
Transformer in this paper.

Figure 3. The structure of the M-Transformer model.

Drawing on the large number of previous experimental results, the Head number was
set as 8 and the input length of the narrowband component as 10. Without loss of generality,
the historical wind speed components were represented as [x1, . . . , x10]. It should be noted
that x1 ∼ x10 were fed into the FCNN. As shown in Figure 4, xi is mapped into a row vector
by the FCNN with the length ds = 512. The matrix X is concatenated from ten row vectors
generated from the narrowband modes of the historical wind speed, which is then fed into
Head1 ∼ Head8 in order to separately calculate the attention distribution.

Using Head1 as an example, the matrix X is multiplied by WQ
1 , WK

1 , WV
1 to generate

Q1, K1, V1. The attention distribution of Head1 (i.e., the weight matrix W1 in Figure 4) is
calculated based on Equation (16):

W1 = so f tmax(
Q1KT

1√
d

) (16)

11
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after which we multiply W1 and value matrix V1 to obtain the output Z1 of Head1:

Z1 = W1V1 (17)

Figure 4. The schematic diagram of the multi-head attention mechanism.

The ith row of Z1 can be considered as the weighted sum of all rows of the matrix
V1, and the weight of each row is the numerical value of the corresponding element on
the ith row of W1. The jth row of V1 is determined by the unique historical wind speed
component sample value xj; thus, the weight matrix, W1, determines which sample values
in the narrowband components of the historical wind speed series contribute to the output
Z1 of Head1. Thus, the weight matrices {W1, . . . , W8} of all Head of the first encoder in
the encoder stack together to determine the variable support segment of the narrowband
modes of the historical wind speed series, which can be expressed as

Sp,τ =
⋃
h

⋃
max(Wj

h)>0

xj (18)

where W
j
h represents the jth column of the weight matrix Wh of the hth Head and max(Wj

h)

denotes the maximum element value of W
j
h.

Figure 5 shows a pseudo-color figure of the weight matrix W1 of the first Head of the
first encoder in the encoder stack. It can be seen that the non-zero elements are concentrated
in certain columns in W1, which is to say that in the component of the historical wind speed
series, the only elements that contribute to the output of Head are [x3, . . . , x8].
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Figure 5. The attention distribution of Head1.

4.2. Proposed Model

According to the wind speed forecasting task steps in Section 2, several narrowband
components decomposed from the historical wind speed series are input into the M-
Transformer model to separately obtain the forecasting value. The wind speed forecasting
result is the sum of the forecasting value of each narrowband component. A flow chart for
the proposed method is shown in Figure 6, abbreviated as VMD-TF for convenience.

Figure 6. The flowchart of the proposed method.
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According to Figure 6, before decomposing the wind speed series based on the VMD,
parameters K (i.e., the number of narrowband components) need to be determined. In our
approach, these are determined by judging whether the center frequencies of the adjacent
components overlap; the specific process is shown in Figure 7. The quadratic penalty factor
influences the decomposition results. When the quadratic penalty factor is 2000, VMD has
certain adaptability and can avoid mode mixing.

Figure 7. Flowchart for determining K.

5. Experiment and Analysis

5.1. Wind Speed Data

The data were obtained from a wind farm in Hebei. The sampling interval used in
collecting the the data was 1 h. Hebei is located in a temperate monsoon climate, and the
characteristics of the data consequently vary from season to season. Figure 8 shows the
statistics related to the wind speed data in different seasons.

As can be seen in Figure 8, the maximum and average wind speed in summer is
higher than in other seasons, indicating abundant wind energy resources. In addition,
the wind speed in summer varies greatly and has strong randomness, with the highest
standard deviation.

Figure 9 shows the decomposition result of the wind speed series from April 14th
to May 18th, that is, in summer, in which C1–C7 are narrowband components. It can be
clearly seen that the trend of each component is more regular than the original wind speed
series. C8 is the residual component. Although it contains noise, it may contain part of the
information of the original wind speed series as well. Therefore, permutation entropy was
utilized to assess the signal’s randomness and determine whether the residual component
could be considered a component of the original wind speed series.
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Figure 8. Statistical data for wind speed in different seasons.
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Figure 9. Wind speed series decomposition results.

5.2. Accuracy Assessment

In this paper, the mean absolute error (MAE) and the root mean square error (RMSE)
were selected as the evaluation indicators

MAE =
1
N

N

∑
i=1

|xa
i − x f

i | (19)
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RMSE =

√√√√ 1
N

N

∑
i=1

(xa
i − x f

i )
2 (20)

where N is the length of the forecasting wind speed series, xa
i denotes the true value, and

x f
i represents the forecasting value.

5.3. Results and Analysis
5.3.1. Forecasting Result

In each quarter, we randomly selected a week of wind speed data as the test set and
used the four weeks of data before the test set as the training set; the specific division is
shown in Table 1.

The parameters used for the M-Transformer were as follows: the encoder stack con-
sisted of four encoders, the decoder stack contained four decoders, the dropout rate was
equal to 0.1, the learning rate was set to 0.002, the batch size was set to 72 and 1 for the
training and testing process, respectively, the optimizer was adma, and the loss function
was the mean square error (MSE). Both the training and testing process were implemented
in the Python 3.7 platform.

Table 1. Division of the training and testing sets.

Season Training Set Testing Set

Spring 25 January–17 February 18 February–23 February
Summer 14 April–11 May 12 May–18 May
Autumn 21 July–17 August 18 August–24 August
Winter 8 September–5 October 6 October–12 October

Figure 10 is a scatter diagram of the forecasting results for each season. The abscissa
and ordinate are the forecasting and the true wind speed, respectively. The closer the data
points are to the 45° line, the better the forecasting results. In Figure 10, the data points are
closely distributed on the 45° line and on both sides, indicating that the proposed model
achieves good performance.
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Figure 10. The forecasting results of the proposed model.
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5.3.2. Comparative Experiments

In this paper, three single models and three combined models were selected as compar-
ison models to further verify the superiority of VMD-TF. The single models were ARIMA,
BP, and LSSVM, and the combined models were EAW [31], WEE [32], and RWA [33]. The
forecasting results of each model were evaluated by MAE and RMSE respectively, and the
specifics are shown in Figure 11.

Equation (21) was utilized as the evaluation indicator to compare the improvement of
VMD-TF to the other models:

Iindex =
Ep − Ec

Ec
× 100% (21)

Here, Iindex denotes the performance improvement index and Ep and Ec are the error
of the VMD-TF and the comparison model, respectively. Table 2 shows the specific results.

Table 2. The performance improvements achieved by the proposed model.

ARIMA BP LSSVM EAW WEE RWA

IMAE

Spring −66% −61% −58% −52% −48% −31%
Summer −65% −61% −58% −48% −39% −30%
Autumn −57% −54% −52% −47% −43% −28%
Winter −65% −63% −60% −45% −36% −6%

IRMSE

Spring −65% −62% −59% −50% −46% −31%
Summer −57% −54% −52% −42% −28% −17%
Autumn −63% −61% −53% −49% −37% −29%
Winter −65% −61% −56% −51% −42% −31%

The results of the comparative experiment show the following.

(1) VMD-TF outperforms the other six models. The performance of VMD-TF greatly
increased compared with the single models. Using spring as an example, the MAE
of VMD-TF fell by 62%, 61%, and 58% compared with ARIMA, BP, and LSSVM,
respectively. The reason for this is that the potential of a single model to extract
complicated characteristics is limited. However, VMD-TF shows better performance
than the three combined models as well. Using autumn as an example, the RMSE
of VMD-TF decreased by 49%, 37%, and 21% compared with EAW, WEE, and RWA,
respectively, meaning that VMD-TF showed better feature extraction ability than the
other combined models.

(2) VMD-TF has the best performance in spring, followed by autumn and winter, and has
relatively poor forecasting results in the summer. The properties of the wind speed
data in each season have a high relation with the aforementioned results. According
to Figure 8, the standard deviation of the summer data are all higher than those in
other seasons, indicating that the wind speed in summer fluctuates greatly and is
difficult to forecast.

(3) The preceding results illustrate that VMD-TF achieves significant performance. The
self-attention mechanism can adjust the attention distribution in a timely fashion
according to the input data and realize adaptive estimation of the variable support
segment, which is essential for improving wind speed forecasting accuracy.
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Figure 11. The MAE and RMSE values of different models.
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5.3.3. Effectiveness of VMD

We employed EMD and EEMD as comparison methods to demonstrate that VMD
could effectively reduce the influence of wind speed non-stationarity. The model com-
bining M-Transformer with EMD is referred to as EMD-TF, while the model combining
M-Transformer with EEMD is referred to as EEMD-TF. We used M-Transformer to forecast
the wind speed directly without decomposition, in which case it is referred to as TF. In
analyzing the capability of these models, the summer testing set was used. Figure 12
exhibits the comparisons between the forecasting values and the true values, while Table 3
shows the forecasting errors for each model.
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Figure 12. Comparison of the forecast and true wind speed for summer testing data.

According to Figure 12, even when the wind speed changes greatly VMD-TF is able to
track and forecast well, while TF, EMD-TF, and EEMD-TF cannot respond as well to such
mutations. According to Table 3, the forecasting result with VMD-TF is the best, while TF
is the worst. Thus, we are able to conclude that signal decomposition methods can greatly
enhance wind speed forecasting accuracy, and that of the methods investigated here, VMD
shows the best performance.

Table 3. The forecasting errors of each model with the summer testing data.

Model MAE RMSE

TF 0.67 0.89
EMD-TF 0.56 0.78
EEMD-TF 0.47 0.65
VMD-TF 0.33 0.44

5.3.4. Effectiveness of M-Transformer

In order to illustrate that the M-Transformer model has good forecasting ability, we
selected ARIMA, BP, the deep belief network (DBN), and LSTM as comparisons. These
models, each composed of VMD and a single model, are referred to as VMD-ARIMA,
VMD-BP, VMD-DBN, and VMD-LSTM, respectively. To assess the performance of these
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combined models, the winter testing set was used. Figure 13 compares the forecasting
values and true values, while Table 4 shows the forecasting errors for each combined model.
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Figure 13. Comparison of forecast and real wind speed with winter testing data.

In Figure 13, all forecasting wind speed curves appear to be relatively close to the
true wind speed curve. According to Table 4, however, the MAE and RMSE of VMD-TF
are the smallest. Taking MAE as an example, the accuracy of VMD-TF decreased by 33%,
17%, 15%, and 9%, respectively, compared with the other four models, which shows that
M-Transformer has superior performance.

Table 4. The forecasting errors of each combined model with the winter testing data.

Model MAE RMSE

VMD-ARIMA 0.43 0.59
VMD-BP 0.35 0.47
VMD-DBN 0.34 0.44
VMD-LSTM 0.32 0.42
VMD-TF 0.29 0.40

6. Conclusions

In this paper, we have proposed a variable support segment-based short-term wind
speed forecasting model. Several conclusions can be drawn based on our experiments
and analysis.

(1) VMD has a better decomposition effect than EMD and EEMD, and can effectively
reduce the effects of wind speed non-stationarity.

(2) The M-Transformer model fully utilizes the characteristics of the self-attention mecha-
nism, which can deeply mine potential information from wind speed series, estimate
the variable support segment, and outperform other models in time series forecasting.

(3) VMD-TF combines the advantages of VMD and the self-attention mechanism, achiev-
ing significantly improved performance.

Although VMD-TF shows significant performance achievements, it neglects the impact
of meteorological factors, which limits its ability to deal with sudden changes in wind
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speed. In future work, we intend to develop a model that is able to take into account both
historical wind speed data and prevailing meteorological factors that influence wind speed.
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Abstract: The incineration process in waste-to-energy plants is characterized by high levels of inertia,
large delays, strong coupling, and nonlinearity, which makes accurate modeling difficult. Therefore,
an intelligent modeling method for the incineration process in waste-to-energy plants based on deep
learning is proposed. First, the output variables were selected from the three aspects of safety, stability
and economy. The initial variables related to the output variables were determined by mechanism
analysis and the input variables were finally determined by removing invalid and redundant variables
through the Lasso algorithm. Secondly, each delay time was calculated, and a multi-input and multi-
output model was established on the basis of deep learning. Finally, the deep learning model was
compared and verified with traditional models, including LSSVM, CNN, and LSTM. The simulation
results show that the intelligent model of the incineration process in the waste-to-energy plant based
on deep learning is more accurate and effective than the traditional LSSVM, CNN and LSTM models.

Keywords: waste-to-energy; deep learning; variable selection; intelligent modeling

1. Introduction

At present, the treatment methods for domestic waste usually include landfill, compost
and incineration [1,2]. According to the statistics and the volume of domestic waste removal
and transportation, the proportion of landfill treatment, compost treatment and incineration
treatment is 58.30%, 2.10% and 36.20% respectively, and the remaining 3.40% are treated by
simple landfill and stacking [3]. However, due to problems such as the large amount of land
required and environmental pollution, the proportion of landfill treatment and compost
treatment is decreasing year by year. The waste incineration process reduces the content
of harmful substances in the waste by pyrolysis and oxidation under high temperature
and high pressure. The volume of waste after incineration is reduced by more than 85%
and the weight is reduced by more than 75%. The waste incineration process greatly
eliminates the germs and harmful components in the waste, thus achieving the efficient
treatment of the waste. Additionally, the energy generated by incineration can be used
to generate electricity to realize a major goal of waste recycling [4]. It has been suggested
that waste incineration power generation technology has the advantages of “reduction,
recycling, and harmlessness”, and that it is currently the best way to deal with domestic
waste [5]. However, due to the complex composition of waste, the large fluctuations in
waste calorific value, and the fact that the incinerator is a multi-input and multi-output
(MIMO) object distinguished by high levels of inertia, large delays, strong coupling, and
nonlinearity, it is difficult to meet the needs of the subsequent combustion optimization.
Therefore, establishing an accurate and reliable intelligent model of the incineration process
of waste-to-energy plants is the key to subsequent incineration optimization [6,7].

Elisa [8] et al. used the mechanism modeling method to model the incineration process
of waste-to-energy power plants, but there were problems related to the complicated
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derivation process and low precision. Therefore, data-driven modeling has been widely
used in combustion process modeling [9,10]. Peng et al. [11] established a multi-input and
single-output model for boiler combustion oxygen content based on big data and a neural
network, and enhanced the neural network through Bayesian arithmetic, which solved
the problem of slow learning speed and the problem of obtaining the optimal value in a
small range of the classical neural network. Based on the operating data for a boiler in a
thermal power plant, Song et al. [12] used a radial basis neural network to establish a model
with the flue gas oxygen content, furnace negative pressure and steam pressure as outputs.
Compared with a back propagation (BP) neural network, a radial basis function (RBF)
neural network has better categorization capability, approximation ability and learning
speed, but it has poor resistance to noise in the sample data. Zhong et al. [13] used the
particle swarm algorithm and support vector machine to establish a boiler exhaust gas
temperature model of a 660 MW unit, which provided guidance for the operation of the
boiler. However, for large amounts of sample data, support vector machines are prone to
overfitting and lack modeling accuracy. Due to the structural limitations of the algorithms
themselves, these algorithms cannot mine the deep information in the sample data [14].

With the rapid development of artificial intelligence, modeling methods based on
deep learning have attracted more and more scholars’ attention. Hu et al. [15] established a
boiler combustion efficiency model using a convolutional neural network for a 600 MW
supercritical unit boiler in Henan. Yu et al. [16] used deep CNN and support vector machine
to extract and analyze the deep features of flame images, and realized the modeling of
the NOx concentration of a 4.2 MW heavy oil combustion boiler. Zhang [17] established
a deep neural network model of a stacking noise reduction autoencoder and LSTM net-
work considering the characteristics of ultra-supercritical units such as high inertia, large
delays and noise in the actual data. However, the existing modeling methods generally
have defects such as too few input and output variables, which are far from the actual
operation of the actual unit, and the inability to express the dynamic characteristics of
the model. Therefore, in the process of model establishment, in addition to selecting the
modeling method, the selection of input variables will also affect the modeling accuracy.
Wang et al. [18] utilized principal component analysis means to lower the dimension of the
multi-dimensional input variables of wind turbines. Although the feature dimension was
reduced, the original data was changed and the interpretability of the model was reduced.

Incinerator incineration process modeling data are characterized as complex large
sample data, nonlinear time series, etc. Compared with the methods described above,
the deep learning network method can use the complexity relationship between data
to automatically model and adjust the model parameters so as to establish the optimal
nonlinear model between input and output. That is, this method is able to use the time
series’ characteristics or other complex relationships between historical data to model
through deep learning networks. In summary, an intelligent model of the incineration
process of waste-to-energy plants based on deep learning is elicited. First, the output
variables are selected from the three aspects of safety, stability and economy. The initial
variables related to the output variables are determined. The input variables were finally
determined by removing the invalid variables and redundant variables through the Lasso
algorithm. Secondly, each delay time is calculated, and a multi-input and multi-output
model based on deep learning is established. Finally, the model proposed in this paper is
compared with the traditional model to verify the improvement in its accuracy.

2. Basic Method Principle

2.1. Waste-to-Energy Treatment Technology

After the garbage is transported to the incineration plant, it is fermented in a garbage
storage tank for 3–5 days to increase the calorific value. The calorific value of the waste
after fermentation is about 1800–2100 kcal/kg. Garbage fermentation mainly relies on the
role of microorganisms in the garbage. At the same time, during the storage of the garbage,
the water in the garbage is continuously leached out. After storage and fermentation, the
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garbage is moved to the feeding hopper by a hanging garbage grab, and is transported to
the incinerator through the feeding grate. The incinerator is composed of a multi-stage
mechanical grate, of which the first and second stages of the incineration grate are the waste
drying area, the third and fourth stages of the incineration grate are the waste gasification
area (main combustion area), and the fifth stage is the burning ember area. At the same
time, each section of the combustion grate includes a fixed grate, sliding grate and turning
grate. The sliding grates slowly push the garbage layer forward on the grate, and the
function of the turning grate is to drive the overturning grate pieces to turn up and down
through the reciprocating rotation of the overturning shaft, so as to support the garbage
bed in a local position, destroy the original garbage bed, cause the previously formed bed
to dislocate, and break the hard-shell surface and molten layer caused by burning. The
primary combustion air is blown into the interior of the garbage bed (like throwing a fire)
so that the garbage can be completely burned. The fan system consists of a primary air
system, secondary air system and furnace-wall-cooling air system, among the first two
wind systems that affect the combustion process. The primary air is extracted from the
garbage storage tank, heated to about 180 ◦C by the air preheater, and sent to the bottom
of the incinerator through the gap between the grate pieces of the incinerator. Then it
penetrates the garbage bed and enters the incinerator chamber, where it is mixed with the
garbage and burns. At the same time, a negative pressure in the garbage pond is established
to prevent the overflow of garbage odor, so as to achieve effective management of odor. The
secondary air mainly adjusts the amount of oxygen to ensure better combustion conditions.
In view of the characteristics of China’s garbage, which has high moisture content, high
non-combustible content and low calorific value, the design of the rear arch of the furnace is
adapted, as shown in Figure 1, to form a good aerodynamic field and help combustion [19].

Figure 1. Incinerator structure diagram.

2.2. Lasso Algorithm

Least absolute shrinkage and selection operator (Lasso) is a penalty-based variable
selection method first proposed by the famous statistician Robert Tibshirani in 1996 [20,21].
The specific principle is as follows.
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The following is an example of a typical linear regression model:

yi = β0 +
p

∑
j=1

xijβ j + ei i = 1, 2, · · · , n (1)

There are n sets of observations, and each group of observations consists of an input
variable yi and p-correlated predictor variables xi = (xi1, xi2, · · · , xip)

T .
The traditional method is to minimize the least squares objective function:

minmize
β0,β

n

∑
i=1

(yi − β0 −
p

∑
j=1

xijβ j)
2 (2)

In the general formula, the least squares estimation of β is not 0, and if n < p, there are
countless solutions that make the objective function 0, hence the result of the least squares
estimation is not unique. Therefore, this process needs to introduce a penalty function, that
is, regularization. The Lasso algorithm is based on the least squares estimation to introduce
a penalty factor to constrain the norm of β, as shown in the formula.

RSS(β̂) = argmin︸ ︷︷ ︸
β̂

n
∑

i=1
(yi − β0 −

p
∑

j=1
β jxij)

2 + λ
p
∑

j=1

∣∣β j
∣∣

β̂ = argmin
{
‖y − β0 − xβ‖2

2

}
s.t ‖β‖ ≤ t

(3)

In the formula, λ ≥ 0 is the hyperparameter, λ
p
∑

j=1

∣∣β j
∣∣ is the compression penalty, t is

the adjustment parameter, and the inequality ‖β‖ ≤ t effectively restricts the parameter
space and realizes feature selection.

2.3. Model Building Based on Deep Learning
2.3.1. Convolutional Neural Network

CNN is a feedforward network that was first used in image processing and has
excellent performance [22]. CNN has the characteristics of weight sharing, local connection,
and dimensionality reduction sampling, and can fully mine the local characteristics of the
data itself.

CNN generally contains three basic layers: a convolutional layer, pooling layer and
fully connected layer. The pixels in the local area of the input image are weighted by the
weight coefficient of the convolution kernel, the operation of feature extraction is completed
by the convolution layer, and the activation function introduces nonlinear changes to the
network model. The pooling layer performs dimension reduction sampling on the output
of the convolutional layer, and at the same time, the pooling operation results in translation
invariance in the CNN. The fully connected layer is where each node is linked to all the
nodes in the previous layer, which is used to synthesize the features extracted in the front,
as depicted in Figure 2.
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Figure 2. Construction of CNN.

This paper uses CNN to fully mine the features of the data, and the feature data pro-
cessed by the convolution operation is sent to the Bi-LSTM network for further operations.

2.3.2. Bi-LSTM Model

The cyclic unit construction of LSTM is exhibited in Figure 3.

Figure 3. Cyclic unit construction of the LSTM network.⎡⎢⎢⎣
c̃t
ot
it
ft

⎤⎥⎥⎦ =

⎡⎢⎢⎣
tanh

σ
σ
σ

⎤⎥⎥⎦(P
[

xt
ht−1

]
+ b

)
(4)

it = σ(Pixt + Qiht−1 + bi) (5)

ft = σ
(

Pf xt + Q f ht−1 + b f

)
(6)

ot = σ(POxt + Qoht−1 + b0) (7)

ct = ft ⊗ ct−1 + it ⊗ c̃t (8)

c̃t = tanh(Pcxt + Qcht−1 + bc) (9)

ht = ot ⊗ tanh(ct) (10)

First, use the input xt at the present moment and the external condition ht−1 at the
previous moment to calculate ft, it, ot and c̃t. Secondly, use ft and it to update the memory
unit ct, and finally, pass the internal state information to the external state ht in combination
with ot [23].

LSTM can only extract forward sequence information, while Bi-LSTM (Bidirectional
Long Short-Term Memory) extracts sequence information in both directions to obtain more
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data features [24]. Bi-LSTM consists of two layers of LSTM networks with the same input
and different information transfer directions. The Bi-LSTM structure is shown in Figure 4.

Figure 4. Two-way cyclic neural network expanded by time.

h(1)t = f (U(1)h(1)t−1 + W(1)xt + b(1)) (11)

h(2)t = f (U(2)h(2)t+1 + W(2)xt + b(2)) (12)

ht = h(1)t ⊕ h(2)t (13)

⊕ is the vector concatenation.

2.3.3. Intelligent Model of Incineration Process Based on Deep Learning

The CNN-BiLSTM combined model not only combines the feedforward mechanism of
the CNN with the feedback mechanism of the RNN, but also greatly reduces the computa-
tional cost through feature extraction of the CNN. Furthermore, by combining the models
with BiLSTM, the model accuracy is improved.

Unlike steady-state modeling, dynamic models take into account the effects of time [25].
In the dynamic model of the CNN-BiLSTM incineration process, the output is not only
related to the current data of each auxiliary variable, but also related to the delay time of
the input and output variables [26].

In describing the dynamic characteristics of the waste incinerator combustion process,
due to the existence of the delay time d, the sampling point at time t can be represented
as {x(t − d), y(t)}. By discretizing the dynamic model of the incineration process, the
difference equation form of the dynamic model is obtained as:

y(t) = f [y(t − 1), · · · y(t − n), x(t − d)] (14)

The above formula can be expressed as an intelligent model of the incineration process
of waste-to-energy plants, which is a MIMO model. From the above equation, the output
variable of the model can be obtained and is shown as the relationship of the output values
of n past moments and the input values of d past moments.

3. Intelligent Model of Waste-to-Energy Plant Incineration Process Based on
Deep Learning

3.1. Variable Selection Based on the Lasso Algorithm

Before building an incineration model, the input variables and output variables of
the model should be determined. In this paper, the selection of the output variables of
the intelligent model of waste-to-energy plant incineration process took the three aspects
of safety, stability and economy into consideration. The output variables are the oxygen
content of the boiler flue gas outlet (CO2 ), steam flow (Q), the furnace temperature of the
incinerator (T1), and the temperature of the ember section (T2). The amount of oxygen
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is related to the load, and the amount of oxygen is used as a precursor to load changes.
When the oxygen feedback value is higher than the set value, it means that the air volume
is excessive or the garbage calorific value is insufficient. At this time, the boiler load
decreases. When the oxygen feedback value is lower than the set value, the boiler load will
increase. At this time, the boiler load should be reduced. If the oxygen content is lower
than a certain level, it means that there is an abnormal situation such as an explosion in the
furnace. At this time, the feeding should be stopped to prevent the garbage in the furnace
from deflagrating and causing danger. When the steam flow is stable, this ensures that
the steam turbine and generator work at the rated load and the equipment performance
is good. Ensuring that the furnace flue gas stays above 850 ◦C for 2 s can prevent the
generation of harmful flue gas dioxins. The temperature of the ember section is maintained
within a certain range, which ensures that the garbage is fully burned and improves the
combustion efficiency.

Mechanism analysis was used to select the input variables that have an impact on the
output variables. A total of 19 variables related to the output variables were screened out
from the variables collected by the power plant, namely, primary air flow, the temperature
of primary air, unit 1–5 primary air flow, secondary air flow, the temperature of secondary
air, unit 1–5 material layer thickness, the transmission speed of the sliding grate unit 1, the
transmission speed of the sliding grate unit 2, the transmission speed of the sliding grate
unit 3, the transmission speed of the sliding grate unit 4, and the transmission speed of the
sliding grate unit 5. Since the secondary air temperature basically does not fluctuate, and
there is a coefficient relationship between the transmission speeds of the five units of the
sliding grate, 19 variables were screened and 14 initial variables were obtained.

The 14 initial variables were selected by the Lasso algorithm, and 8 input variables
were finally obtained, namely, primary air flow, unit 1 primary air flow, unit 4 primary air
flow, unit 5 primary air flow, secondary air flow, unit 1 material layer thickness, material
layer thickness of unit 5, and conveying speed of sliding grate unit 1. Then, 25,200 sets of
data were selected from a northern waste power plant from 16:00 on 6 August 2019 to 10:00
on 8 August 2019, and the sampling time was 6 s. The unit and variation range of each
input variable are shown in Table 1. The local trend diagrams of the input variables are
shown in Figure 5.

Figure 5. The local trend diagrams of the input variables.
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Table 1. Unit and variation range of input variables.

Serial Number Variable Name Unit Variation Range

1 primary air flow Nm3/h 13,500–23,069
2 Unit 1 primary air flow Nm3/h 299–5932
3 Unit 4 primary air flow Nm3/h 9721–17,763
4 Unit 5 primary air flow Nm3/h 1423–13,173
5 secondary air flow Nm3/h 4538–4673
6 unit 1 material layer thickness - 11.98–74.25
7 unit 5 material layer thickness - 1.27–5.05
8 unit 1 conveying speed of sliding grate mm/s 0.14–2.80

3.2. Calculation of Delay Time

Waste-to-energy generating units typically have large delays, and there is a time delay
between the various data collected by the power plant. When an input variable changes,
it takes a while for the output variable to react to the change. In order to ensure the
consistency of each input variable and output variable in the time sequence, a time delay
compensation algorithm based on mutual information is proposed. Mutual information
can calculate the correlation between the two groups of samples. By determining the
mutual information numerical value between the input variables and the output variables,
the delay time between the input variables and the output variables can be obtained (the
specific process can be found in [26]). Taking the steam flow as the output as an example,
Table 2 shows the maximum mutual information of each input variable for the steam flow
and the corresponding time delay at this time.

Table 2. Delay time and maximum mutual information of auxiliary variables.

Auxiliary Variable Number 1 2 3 4 5 6 7 8

Delay Time 260 290 240 90 210 280 70 250
Maximum Mutual Information 0.7794 0.6983 0.8434 1.0875 0.9343 0.7260 1.2867 0.7999

3.3. Model Establishment

The steps to build an intelligent model of the incineration process of a waste-to-energy
plant are as follows:

(1) The initial variables are screened by mechanism analysis and the Lasso algorithm,
and invalid variables and redundant variables are removed.

(2) Data preprocessing, including outlier removal, noise reduction, and normalization.
(3) The mutual information method is used to determine each delay time.
(4) The model is established: first, the input variables after feature selection are input into

the CNN layer of the model, and the deep time series features are extracted through
the convolution and pooling layers. Secondly, they are sent to the BiLSTM layer to
further strengthen the connection between the temporal features. The last layer is the
fully connected layer, and the model output is completed.

The CNN-BiLSTM model structure includes: 1 CNN, 1 max pooling layer, 1 dropout
layer, 2 BiLSTM layers, and 1 fully connected layer. The parameters of the final training
model are: the batch size is 128, epochs are 50, and the Adam optimization algorithm
is selected.

In Figure 6, u is the initial variable, x is the input variable after variable selection, dij is

the delay time between the input xi and the output yj, Y is the actual value, and
^
Y is the

model output value.
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Figure 6. Modeling process diagram.

The model building process is shown in Figure 6.

4. Model Establishment and Result Analysis

4.1. Model Evaluation Indicators

The model evaluation indicators used in this paper are MAE, MAPE, and RMSE. The
closer the value is to 0, the more accurate the output of the model. The calculation formula
is as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (15)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (16)

RMSE =

√√√√√ n
∑

i=1
(yi − ŷi)

2

n
(17)

where yi is the actual sample value, ŷi is the model output value, and n is the amount
of data.

MAE reflects the magnitude of the deviation of the measured value from the true value;
MAPE reflects the degree to which the sample output value deviates from the measured
value; and RMSE reflects the sample standard deviation of the bias between the model
output value and the measured value, reflecting the degree of dispersion of the sample.
The combination of the three can better represent the precision of the model.

4.2. Model Establishment Result Analysis

.To test and verify that the output of the model is accurate, the first 90% of the
25,200 sets of data were used as the training set and the last 10% ere used as the test
set in chronological order. Before the data is entered into the model, the data should be
normalized to eliminate the influence of the input variables on the output of the modeling
results due to different magnitudes and speeding up the running time of the model.
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4.2.1. The Influence of Variable Selection on Modeling Results

There were still invalid variables and redundant variables in the variables obtained
after the mechanism analysis. So as to solve the issue of model overfitting and further
simplify the model, the Lasso algorithm was used for variable selection. Experiments
were executed on the 14 initial variables obtained from the mechanism analysis and the
8 input variables selected by the Lasso algorithm to verify that the output of the model was
accurate. The final evaluation indexes are revealed in Table 3.

Table 3. Evaluation index of the influence of variable selection on modeling results.

Before Variable Selection
(MAE/MAPE/RMSE)

After Variable Selection
(MAE/MAPE/RMSE)

T1 (◦C) 3.348/0.293/4.299 3.245/0.284/4.027
Q (t/h) 0.060/0.232/0.075 0.051/0.196/0.064
CO2 (%) 0.101/2.530/0.130 0.100/2.519/0.130
T2 (◦C) 0.274/0.121/0.407 0.240/0.100/0.364

It can be seen from Table 3 that after the selection of the initial variables, the test
set error decreased. This phenomenon shows that since there are invalid variables and
redundant variables in the initial variables, if these variables continue to be retained in
the input variables, the generalization ability of the model will be reduced. Therefore, it is
more efficient to select the variables before building a model as this not only simplifies the
model and reduces the computing time during modeling, but also prevents the model from
overfitting and improves the model accuracy.

4.2.2. The Influence of Different Models on the Modeling Results

Three classic models, LSSVM, CNN, and LSTM were selected for comparison to verify
the effectiveness of the CNN-BiLSTM model. When other conditions were kept the same,
the modeling accuracy is as shown in Table 4, and a comparison of the modeling results of
the CNN-BiLSTM model is presented in Figure 7.

Figure 7. Modeling result diagram. (a) Comparison of output results of steam flow model;
(b) comparison of the output results of the flue gas oxygen content model; (c) comparison of output
results of the furnace temperature model; (d) comparison of the output results of the temperature
model in the ember stage.
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Table 4. Influence of different models on modeling accuracy.

T1 (◦C)
(MAE/MAPE/RMSE)

Q (t/h)
(MAE/MAPE/RMSE)

CO2 (%)
(MAE/MAPE/RMSE)

T2 (◦C)
(MAE/MAPE/RMSE)

LSSVM 4.226/0.423/5.239 0.178/0.654/0.432 0.156/3.106/0.177 1.324/0.849/1.637
CNN 4.540/0.395/6.941 0.292/1.140/0.316 0.133/3.290/0.159 2.198/0.920/2.800
LSTM 3.899/0.350/4.397 0.066/0.258/0.087 0.111/2.637/0.134 0.597/0.262/0.652

CNN-BiLSTM 3.245/0.284/4.027 0.051/0.196/0.064 0.100/2.519/0.130 0.240/0.100/0.364

Table 4 shows that, taking the steam flow as an example, the mean absolute error of
LSSVM is 0.178, the mean absolute error of CNN is 0.292, the mean absolute error of LSTM
is 0.066, and the mean absolute error of CNN-BiLSTM is 0.051. So, the order of model
accuracy from low to high is CNN, LSSVM, LSTM, CNN-BiLSTM. It can be seen that the
intelligent model based on deep learning can effectively improve the utility value of the
traditional model, and it has stronger generalization ability and modeling accuracy.

5. Conclusions

A combined model based on feature selection and CNN-BiLSTM was constructed
in this paper. First, the Lasso algorithm was used to remove invalid and redundant
variables from the initial variables to determine the input variables, and the effective
feature information was extracted through the CNN network. Finally, the BiLSTM network
was used to train the model. Historical operation data from a waste-to-energy plant in the
north was used for simulation analysis. The main conclusions are as follows:

(1) In this paper, based on the historical operation data from waste-to-energy power
plants, multi-dimensional feature sets including waste factors, grate operation factors,
and air volume factors were used, and high-correlation feature parameters through
the effective feature screening of multi-dimensional feature sets by Lasso algorithm
were selected. The comparison of before and after feature selection shows that Lasso
feature screening for multi-dimensional input feature parameters can improve model
accuracy.

(2) Compared with the traditional LSSVM, CNN, and LSTM models, the bidirectional
network model based on feature selection and CNN-BiLSTM selected in this paper,
can fully mine data features under multi-dimensional input feature parameters, and
it has higher accuracy and applicability.
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Abstract: In this paper, a method of power system equipment recognition based on image processing
is proposed. Firstly, we carry out wavelet transform on the sound signal of power system equipment
collected from the site, and obtain the wavelet coefficient–time diagram. Then, the similarity of
wavelet coefficients–time images of different equipment and the same equipment in different periods
is calculated, which is used as the basis of the feasibility of image recognition. Finally, we select
the HOG features of the image, and classify the selected features using SVM classifier. The method
proposed in this paper can accurately identify and classify power system equipment through sound
signals, and is different from the traditional method of classifying sound signals directly. The
advantages of image processing can be effectively utilized through image processing to avoid the
limitations of sound signal processing.

Keywords: electric power equipment; voice recognition; HOG feature extraction; SVM classifier;
image processing

1. Introduction

With the gradual development of large-scale, integrated, highly automated and in-
telligent power system equipment, not only are rapid economic benefits introduced, but
also the risk of great loss caused by sudden equipment failure is increased. Therefore, the
comprehensive, timely and accurate monitoring of the power system equipment health
status ensures the stable operation of equipment, reduces the accidental shutdown rate and
has a high investment–income ratio. To this end, researchers carried out systematic research
on temperature, vibration, image and other aspects of various power system equipment, and
obtained effective information characteristics [1–3]. In addition, artificial intelligence [4], deep
learning [5] and neural network [6] have been used to realize fault monitoring of equipment.

According to Kafeel et al. [7], current, sound and vibration are the most commonly
monitored parameters. In Ribeiro et al. [8] a hydro-generator current-monitoring system
is proposed and the fast Fourier transform (FFT) is applied to the Parker transform of the
current. Song et al. [9] used the bin method, the method based on multivariate normal
distribution and the Copula method to compare three Bayesian diagnosis models on ac-
count of SCADA (Supervisory Control And Data Acquisition). Li et al. [10], aiming at the
problems of high-speed and long-distance transmission and greatly increasing data storage
capacity, proposed a method on account of adjustable q-factor wavelet transform mor-
phologic module analysis, including few and scattered Bayesian iterative arithmetic unite
stepping pulse dictionary. Yu et al. [11] try to build a rough set with feature relationships,
then use a distribution reduction arithmetic to dislodge unnecessary features and send
the remaining features to a flexible naive Bayesian sorter for malfunction diagnoses. In
Herp et al. [12], a method is proposed to establish a fault-diagnosis model by learning fault
samples, assuming that the error features picked up from SCADA (Supervisory Control
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And Data Acquisition) data compliance a Gaussian distribution in the characteristic space.
Wang D. [13] present a method for improving wavelet filtering by combining infographics
and Bayesian inference to confirm the best wavelet argument and apply to malfunction di-
agnoses. In Li et al. [14], in the process of fault feature extraction, the importance of different
signals is optimized by particle swarm optimization. Yu et al. [15] propose an error-feature
collection means based on Mean Multigrain Decision Theory Rough Sets (MMGDTRS)
and Non-Naive Bayes Classifier (NNBC). Li et al. [16] present a new first-rank Bayesian
command method for predicting early failure of gear-shaft systems with locally observable
degradation and random failure. A polybasic Bayesian command strategy on account of
Hidden Semi-Markov Model (HSMM) is proposed. In Liu et al. [17], a state-monitoring
method of rolling bearings based on hybrid generalized HMM is introduced, which uses
interval value features to effectively identify and classify the state in the machine process. In
Gan and Jiao [18], a malfunction diagnoses means of wavelet transform gearbox on account
of ameliorated inheritance arithmetic radio frequency sorter is proposed. Li et al. [19] intro-
duced a malfunction diagnoses means for gearboxes on account of deep radio frequency
integration of aural and oscillation signals. Han and Jiang [20] use VMD to acquire eigen-
vectors and send them to RF for fault diagnosis. Qin [21] welded Ensemble Empirical Mode
Decomposition (EEMD) and RF for malfunction diagnoses. Verellen et al. [22], aiming at the
detection of bearing faults in rotating machinery, propose a non-invasive acoustic signal-
monitoring system based on a sparse microphone array. Traditional vibration analysis uses
accelerometers, which are touch sensors that need to be attached to the component under
investigation. Smieja et al. [23] proposed an interesting non-contact vibration monitoring
method in which image processing is used. Cao et al. [24] proposed a pipeline robot fault
diagnosis system based on sound-signal recognition, which transmits the sound signal
collected by the storage sensor to the upper computer for fault diagnosis, and the test has
achieved good results. Suman et al. [25] proposed an acoustic signal mode-determination
algorithm based on adaptive Kalman filtering and MFCC, which can effectively detect
vehicle health status by using acoustic signals to detect vehicle mechanical faults. Rakesh
Kumar et al. [26] established a rainforest species audio signal-recognition model based on
the combination of long short-term memory (LSTM) and convolutional neural network
(CNN). The models are combined to achieve a high-accuracy, low-loss detection method.
Zhuo et al. [27] proposed a program for on-line diagnosis of steel truss structures using
sound signals, and proposed an improved offline database-guided response power and
phase transformation method. Experiments show that this method can achieve accurate
positioning in strong noise environments, and the amount of computation is smaller.

In this paper, the audio-signal monitoring of power equipment is studied deeply. At
present, most sound-signal-processing technologies are based on the receiving frequency
range of human ear mechanism. The existing technologies lead to many high- and low-
frequency sound signals beyond the range of the human ear not being effectively utilized,
resulting in the loss of a large number of effective signal data. However, even if the
whole-frequency-band signal-extraction method is adopted, the characteristics of signals
are difficult to separate from each other, and the extraction is difficult. The essential reason
for these problems is that the coverage of sound signals is extremely wide, so the difficulty
of recognition is greatly increased [28]. It can be seen that the traditional sound signal-
processing technology has considerable limitations. In order to solve this problem, we
took another analytical way of thinking: no longer the traditional method, but the audio-
processing problem transferred to the field of image processing. As a result, this paper
proposes a power equipment based on wavelet transform voice-fault identification analysis
method, in which the access to the audio signal by DWT abstracts the wavelet coefficient of
sound. The time-frequency diagram and wavelet coefficient diagram of sound signal are
output, and the method of machine learning [29] is applied to analyze sound information
from the perspective of image texture. In this method, the whole frequency band of sound
signal is extracted without any filtering, and then the sound signal is translated into image
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processing, which can effectively avoid the loss of information data and make use of the
advantages of image recognition for classification.

2. Audio Signal Analysis Based on Wavelet Transform

The overall structure of the research idea is shown in Figure 1. This paper studies the
feature extraction method of six kinds of power equipment sounds collected by a 96-channel
handheld audio imager. Firstly, we can analyze the audio pre-processing method based on
Wavelet and Hamming window, and then we can obtain the audio pre-processing device
with different image segmentation coefficients based on Wavelet and Hamming window,
and then we can obtain the audio pre-processing device with different image segmentation
coefficients; finally, based on this result, we use HOG + SVM method to classify and predict
different devices, and find that it has a high recognition rate.

• Preprocessing: the digital strainer is used to preemphasize the audio signal, determine
the frame length and frame shift of each sound signal, and the Hamming window
is used to filter the sound signal by framing and windowing to obtain multi-frame
sound signals;

• Wavelet analysis: by obtaining separate sound signal samples of power equipment
through preprocessing operation, we can analyze the characteristics of the sound
signal, select an appropriate wavelet function to carry out wavelet transform on the
sound signal, and obtain the time wavelet coefficient diagram of each audio signal
sample;

• Image processing: considering that the wavelet coefficient image obtained in the
above steps contains a large number of image features, this study first uses SSIM
(Structural Similarity) image processing method to calculate the similarity between
wavelet coefficient images of sound signals of different devices and the same device,
so as to verify the feasibility of image classification.

• HOG + SVM: extract the hog feature of the obtained wavelet coefficient image, and
substitute the extracted feature into the SVM classifier for multi-classification training,
so as to achieve the purpose of classification and prediction of the existing image.

Figure 1. The overall idea of the experimental process. The figure includes the power equipment
sound-field-acquisition module, the sound signal preprocessing module, the wavelet transform
output image module and the image-processing module.

37



Energies 2022, 15, 4449

2.1. Sound Signal Preprocessing

The voice signals collected by the sound imager may have problems such as aliasing,
high-order harmonic distortion and high frequency. Before analyzing the sound signals of
field equipment, we carry out pre-weighting, framing, windowing and other preprocessing
operations so that the signals procured by pursuant voice processing are more consistent
and smooth as far as possible, allowing us to afford high-quingity parameters for signal
parameter collection and further sound signal processing quality. The specific steps of
sound signal preprocessing are as follows:

• Slice. In order to unify the duration of the sound sample, the sound signal of the
whole section of audio is segmented into 1 s as a sound sample;

• Pre-emphasis. In order to flatten the spectrum of the sound signal, the spectrum
can be calculated with the same structural return loss in the low-frequency to high-
frequency band, and the sound signal of each sample is pre-emphasized. Pre-emphasis
processing means that the sound signal passes through a high clear strainer:

H(z) = 1 − μz−1 (1)

where in 0.9 < μ < 1.0, is taken as 0.97 in this paper.
• Normalization. Normalize the spectrum of the preprocessed sound signal to reduce

the difference in the frequency range of different types of sound:

X =
X − min(X)

max(X)− min(X)
(2)

• Framing and windowing. The sound signal is stable in a short time. The short-time
length is generally 10–30 ms. In order to facilitate feature analysis, the sound signal
needs to be processed in frames. For purpose of ensuring the smooth conversion
between two adjacent frames, the frame signal needs to be superimposed, and then
each frame is multiplied by a window function of a certain length for windowing and
filtering. In this paper, Hamming window is adopted, and the window function is
shown in Formula (3):

0.54 − 0.46 cos
(

2πn
N − 1

)
(0 ≤ n ≤ N − 1) (3)

2.2. Feature Extraction of Audio Signal Based on Wavelet Transform

Wavelet transform is an important time-frequency analysis approach that combines
the time-domain characteristics and frequency-domain characteristics of signals.

2.2.1. Definition of Wavelet Function

The application of wavelet analysis in signal and picture compression is a crucial side
of the application of wavelet analysis. It has the characteristics of high compression ratio
and fast compression speed. After compression, it can not only keep the traits of the signal
and image unvaried, but also resist the interference in transmission. The definition formula
is as follows:

Wf (a, b) =
1√
a ∑+∞

−∞ f (x)φ
(

x − b
a

)
dx (4)

Take the function φ(x) of the basic wavelet as the displacement b, and make the inner
product with the signal f (x) to be analyzed under different scales a, with the transformation
of a, b the wavelet transform has the traits of multi-resolution.

38



Energies 2022, 15, 4449

2.2.2. Wavelet Sequence

ψ(t) ∈ L2(R), ψ(t) is called a basic wavelet and mother wavelet, where L2(R) refers
to the mean square integrable space. Wavelet must meet:

∑∞
−∞ ψ(t)dt = 0 (5)

This is also the meaning of “wavelet”. After scaling and translating the generating
function, the wavelet sequence can be obtained:

ψ(a, b)(t) =
1√
a

ψ

(
t − b

a

)
(6)

(a, b ∈ R, a �= 0) a, b where a, b is the expansion factor and translation factor, respectively.

2.3. SSIM-Based Image Processing Method
2.3.1. Definition

Unartificial images have a sehr hoch configuration, especially in the case of spatial
similarity, there is a high associations between the pixels of the image. Such associations
port crucial information about the configuration of objects in the optical scenario. What we
are talking about is finding a more straight method to contradistinguish the configuration
of a fuzzy image with that of a reference image.

Structural similarity is a measure of how similar two images are. The SSIM value is
between 0 and 1, and the larger its value, the smaller the difference between the images.
The definition of SSIM is as in Equation (1) Structural similarity. From the standpoint of
image formation, configurational information is defined as a reflection scene that is isolated
of brightness and contrast, and the image is modeled by three different factors: brightness,
contrast and structure.

Function definition:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (7)

where α, β, γ > 0.
The measure of similarity can be realized by the SSIM measuring system, which can

be constituted of three comparison elements of brightness, contrast and structure. Next, we
define three contrast functions:

Brightness contrast function:

l(x, y) =
2μxμy + c1

μ2
x + μ2

y + c1
(8)

Contrast function:

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(9)

Structural contrast function:

s(x, y) =
σxy + c3

σxy + c3
(10)

For the above formula, μx, μy, stand for the whole pixels of the picture; σx, σy, stand
for the criterion differences of picture pixel value; σxy stand for the convariance of x, y;
c1, c2, c3 stand for constants. This is for the purpose of eliminating system fault when the
denominator is 0. In practical application, α = β = γ = 1, c3 = 0.5c2.

2.3.2. Application of SSIM

In image mass evaluation, obtaining the SSIM index of a certain part is better than
all. First, the statistical features of images are generally disproportionally distributed i
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then room; second, image deformation varies with the room; third, under standard visual
interval, people can centre around one area of the image, therefore the separate processing
of a certain part is more in line with the scope of human vision; fourth, the local quality
detection can obtain the mapping matrix of image spatial quality changes, and the results
can be used for other applications.

Therefore, in the formula above, μx, σx, σxy both add an 8 × 2 square window and
traverse the whole image by every pixels. At every procedure of the computation, μx,
σx, σxy and SSIM values ground on the pixels in the window. Finally, an SSIM index
mapping matrix is procured, which is composed of certain part SSIM indexes. However,
plain-add window will lead to terrible “blocking” impression of the mapping matrix.
To resolve the conundrum, we use the 11 × 11 meristic Gaussian weighing function
W = {wi|i = 1, 2, · · ·, N } as the weighing window, with a par differences of 1.5, and

∑N
i=1 wi = 1 (11)

Then the approximated value of μx, σx, σxy is voiced as:

μx = ∑N
i=1 wixi (12)

σx =
(
∑N

i=1 wi(xi − μx)
2
) 1

2 (13)

σxy = ∑N
i=1 wi(xi − μx)

(
yi − μy

)
(14)

Using this windowing means, the mapping matrix can show the capabilities of certain
part isotropy, and then use the evenness SSIM index as the evaluation quality of the
entire image:

MSSIM(x, y) =
1

MN ∑M
1 ∑N

1 SSIM(xi, yi) (15)

In the above, x, y are images, xi, yi are the locations of certain part SSIM index in the
mapping, M, N are the number of local windows.

2.4. HOG Feature Extraction Algorithm

Histogram of Oriented Gradient (HOG) feature is a kind of descriptor that uses
computer vision and image processing technology to detect object features. Image features
are extracted by calculating and statistical histogram of directional gradient in a specific
area of the image. The incorporation of Hog feature extraction and SVM classifier has been
diffusely applied in the field of image identification.

Feature Extraction Process

(1) Detection window: Hog cut apart the image through window and block. Math-
ematically process the pixel values of an area in an image in units of cells. Here, we first
introduce the concepts of window, block and cell and the relationship between them.

• Window: divide the image into multiple identical windows according to a certain size
and slide;

• Block: divide each window into several same blocks according to a certain size
and slide;

• Cell: each window is divided into multiple identical cells according to a certain size,
which belong to the feature extraction unit and remain stationary.

(2) Normalized images: Normalization includes gamma and color room normalization.
Normalizing the whole image can effectively reduce the influence of lighting conditions.
Normalization can also avoid the large proportion of certain part external exposure contri-
bution in picture grain intensity. Standard Gamma compression formula:

l(x, y) = l(x, y)γ (16)
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γ takes values based on the effect.
(3) Calculated gradient: Firstly, the gradient value in the horizontal and vertical

coordinate orientation is calculated, and the gradient orientation is calculated according to
the calculated gradient value. The formula is as follows:

Gx(x, y) = H(x + 1, y)− H(x − 1, y) (17)

Gy(x, y) = H(x, y + 1)− H(x, y − 1) (18)

For the two formulas Gx(x, y), Gy(x, y), H(x, y) separately stand for the aclinic gradi-
ent, perpendicular gradient and pixel value at a specific pixel point of the collected image.
The gradient value of amplitude and gradient orientation at pixel (x, y) are:

G(x, y) =
√

Gx(x, y)2+Gy(x, y)2 (19)

α(x, y) = tan−1
(

Gy(x, y)
Gx(x, y)

)
(20)

(4) Constructing gradient column diagram: The orientation division is determined by
bins (number of divisions). Generally, bins takes 9, and the gradient orientation is cut apart
into 9 intervals.

(5) Cell-normalized gradient histogram in the block: the increasing range of gradient
intensity is greatly affected by local illumination and foreground–background contrast, so
normalization is needed.

(6) Generate hog feature vector: finally, combine all blocks to generate feature vector.

2.5. Support Vector Machines (SVM)

The supervised learning model of support vector machine and its related learning
algorithm are widely used in machine learning. It can be used in classification of data
and analysis of regression. When given the condition of a set of training specimens, each
sample is labeled as one of two different varieties, and the SVM drill algorithm set up a
model, deals the new specimens to a certain variety, and constructs an improbability binary
linear classifier. The SVM training model represents all specimens as mappings of points in
space, and divides the specimens with a wide and obvious gap. The new specimens are
then mapped into the same room and their categories predicted.

3. Experimental Result

Firstly, select the working sound of six types of equipment under a fixed working
condition collected from the power plant, the sampling frequency is 16,000 Hz, and the
fixed 1 s is the cycle for segmentation; The sound sample data set information of six types
of equipment is shown in Table 1:

Table 1. sound samples.

Sample Type Number of Samples Total Number of Samples

Oil supply pump 200

1200

Connecting shaft 200
Condensate pump 200

Coal mill 200
Induced draft fan 200

Circulating water pump 200

After segmentation, the 40 s audio signal of one of the six devices is selected for
wavelet transform to obtain the time wavelet coefficient diagram, as shown in the following
figures.

From the above image results in Figure 2, it can be seen that there are great differences
in time wavelet coefficient images between different devices, and the image features are
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obvious. Based on this result, we intercept the other four 40 s sound data of each device
and output their time wavelet coefficient diagrams. According to the obtained images, we
found that the similarity of wavelet coefficient images of a device in different periods is
very high, but the feature distinction between different devices is still obvious. Therefore,
we took out three images of each device for intra-class and inter-class similarity comparison,
and the results are shown below.

Figure 2. Sample image. The abscissa represents time and the ordinate represents wavelet coefficients.

It can be seen from the Figure 3 that the signal similarity of the same equipment in
different periods is generally higher than that between different equipment. Based on the
above similarity-matching results, we divide the time wavelet coefficient graphs obtained
by each equipment into five different time periods into two groups, one group of four
graphs as the training set and the other group of one graph as the test set. In this way, a
total of 24 training samples and 6 test samples of 6 types of samples are obtained. The test
samples are predicted and classified by using hog feature-extraction algorithm and SVM
multi-classification training. The results are shown in Table 2 and Figure 4 below.

Figure 3. Scatter diagram of image similarity. The abscissa represents the number of sample groups,
and the ordinate represents the sample similarity.
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Table 2. Classification accuracy of raw data.

Sample Type Single Class Accuracy Overall Accuracy

Oil supply pump 80%

90%

Connecting shaft 100%
Condensate pump 100%

Coal mill 80%
Induced draft fan 100%

Circulating water pump 80%

Figure 4. Original sound classification of equipment. The abscissa represents time, and the ordinate
represents wavelet coefficients.

In the field of power production, it is difficult to completely eliminate the noise
interference in the extraction process of power equipment sound. Therefore, we add
Gaussian white noise to the original power equipment sound signal as interference to verify
the accuracy and feasibility of this method. Through experiments, we find that when 10 dB
Gaussian white noise is added, the characteristics of the time wavelet coefficient diagram of
each equipment are not obvious, so it is difficult to distinguish the equipment, When 20 dB
Gaussian white noise is added, the characteristics of each equipment in the time wavelet
coefficient diagram appear again. Therefore, we process and classify the sound signal
added with 20 dB Gaussian white noise. The results are shown in Table 3 and Figure 5
below.

Table 3. Add white noise data classification accuracy.

Sample Type Single Class Accuracy Overall Accuracy

Oil supply pump 80%

87%

Connecting shaft 100%
Condensate pump 100%

Coal mill 60%
Induced draft fan 100%

Circulating water pump 80%

It can be seen from the experimental results that when white Gaussian noise is affiliated
to the sound signal of the equipment, the features of the images of some equipment
become more difficult to distinguish, and the recognition accuracy of the image is slightly
decreased, but the overall recognition accuracy is high, and the classification effect is
obvious. By adding white Gaussian noise of different decibels, it is not difficult to find
that noises of different decibels have different degrees of influence on the sound signal
of the equipment, which is intuitively reflected in the wavelet coefficient–time diagram,
making it more difficult to distinguish image features and equipment identification and
classification. Compared with the traditional power equipment sound-recognition method,
the advantages of the image processing-based power equipment sound-recognition method
proposed in this paper lie in the use of the full frequency range of the sound signal and the
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more delicate feature expression. For example, a sound-recognition algorithm for substation
equipment based on harmonic characteristics and vector quantization was proposed by
Dong et al. [30]. The sampled sound signal of power equipment takes the 27th harmonic
within 0–1300 Hz as the feature vector, so there will be a lot of noise. The sound data is not
used, and the sound features are difficult to express in detail and comprehensively, which
will have a certain impact on the accuracy of the results.

Figure 5. Equipment classification after adding 20 dB Gaussian white noise. The abscissa represents
time, and the ordinate represents wavelet coefficients.

4. Conclusions

In this paper, aiming at the sound of six types of thermal power plant power system
equipment collected from the scene, the wavelet coefficient–time map of the equipment
is obtained through wavelet transformation, and the audio signal is translated into image
processing. SSIM algorithm is used to calculate the same at different times and for different
equipment, and the image similarity between them can draw a clear difference in terms
of image characteristics, which can be used in the classification. Based on this judgment,
the obtained images were classified by HOG + SVM fusion method, and 10 dB and 20 dB
Gaussian white noise were added to the audio signal, respectively. It was found that noises
of different decibels had different degrees of influence on the sound signal of the equipment,
and the difficulty of distinguishing the features of the wavelet coefficient–time graph would
be improved. Under the influence of 10 dB noise, the characteristic of the wavelet coefficient–
time diagram of the equipment is not obvious and difficult to distinguish, but under the
influence of 20 dB noise, the difficulty of distinguishing the characteristic of the wavelet
coefficient–time diagram of equipment is increased, but the classification effect is good.
The experimental results show that the recognition method of sound translation image
processing, which is different from the traditional sound-recognition method, has better
practical feasibility. The limitation of this paper is that the number of available audio samples
is limited, and there is not enough data for training samples. Moreover, only the image
obtained by wavelet transform is considered, and whether the image obtained by other
methods has better feature distinguishability has not been studied deeply. In the future, we
can explore more methods to express characteristic images of sound signals, and continue to
study the optimal method of sound signal recognition based on image processing.
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Abstract: Accurate online capacity estimation and life prediction of lithium-ion batteries (LIBs) are
crucial to large-scale commercial use for electric vehicles. The data-driven method lately has drawn
great attention in this field due to efficient machine learning, but it remains an ongoing challenge
in the feature extraction related to battery lifespan. Some studies focus on the features only in the
battery constant current (CC) charging phase, regardless of the joint impact including the constant
voltage (CV) charging phase on the battery aging, which can lead to estimation deviation. In this
study, we analyze the features of the CC and CV phases using the optimized incremental capacity
(IC) curve, showing the strong relevance between the IC curve in the CC phase as well as charging
capacity in the CV phase and battery lifespan. Then, the life prediction model based on automated
machine learning (AutoML) is established, which can automatically generate a suitable pipeline
with less human intervention, overcoming the problem of redundant model information and high
computational cost. The proposed method is verified on NASA’s LIBs cycle life datasets, with the
MAE increased by 52.8% and RMSE increased by 48.3% compared to other methods using the same
datasets and training method, accomplishing an obvious enhancement in online life prediction with
small-scale datasets.

Keywords: lithium-ion battery; incremental capacity; automated machine learning; life prediction

1. Introduction

With the increasing reduction of fossil energy reserves and severe air pollution, con-
siderable attention has been paid to electric vehicles (EVs) in recent years, which can be
energy-saving and environmental-friendly solutions, whereas the traditional automobile
industry is a big energy consumer, causing serious exhaust emission [1,2].

Lithium-ion batteries (LIBs) are the ideal energy storage device for EVs, and their
safe and feasible application as a power source can contribute to their value in their entire
lifespan, which can promote secondary utilization and material recycling, conducting the
carbon footprint in the battery production and recycling stages [3]. Hence, the safety and
reliability of LIBs in EVs have been spotlighted. However, unlike in the laboratory cycle,
the battery performance and the available capacity degrades erratically due to random
operation during driving, which could cause underuse or overuse of battery cells, leading
to resource waste as well as some potential disasters without accurate remaining useful life
(RUL) prediction. Consequently, life prediction and capacity estimation of LIBs are facing
challenges, and it is worthwhile devoting much effort to elucidate the battery degradation
evolution trend in lifespan, thus, avoiding premature replacement and excessive use.

The typical method of LIBs RUL prediction is usually divided into two categories:
model-driven and data-driven methods. The model-driven method exploits the intrinsic
aging mechanism and induces complex equations to reflect the reactions process. These
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models are often established in the theoretical derivation process using mechanism knowl-
edge. Additionally, model parameters are identified through empirical assumptions and
mathematical algorithms, such as extended Kalman filter (EKF) [4], expectation maxi-
mization (EM) [5], unscented particle filter (UPF) [6], and autoregressive moving average
(ARMA) [7]. Nonetheless, it is difficult to predict precisely because of the complex nonlinear
process and discrepancy between data distribution and model hypothesis.

The data-driven method has recently received significant attention in LIB’s RUL
prediction because of easy access to data and the development of machine learning. The raw
measured data during operation can serve as the learning model and bridge the implicit
gap between the input and output data. More importantly, the successful application
of some advanced learning algorithms in machine translation, speech recognition, and
computer vision provides a remarkable applying reference for state estimation and RUL
prediction in LIBs.

Data-driven methods for RUL prediction are cataloged as machine learning (ML),
artificial neural network (ANN), and deep learning (DL). ML: Richardson et al. [8] proposed
a regression of the Gaussian process (GP) algorithm for LIBs RUL prediction, with a good
performance in long-term forecasting. Yun et al. [9] explored a hybrid prognosis approach
for RUL estimation, combining the variational mode decomposition (VMD), autoregressive
integrated moving average (ARIMA), and gray model (GM) models for RUL prediction.
ANN: Zhang et al. [10] suggested a novel method based on ANN with four layers for
state of health (SOH) estimation and RUL prediction using the incremental capacity curve
during the constant current discharge phase. Sun et al. [11] proposed a cloud-edge collab-
orative strategy with state of health (SOH) for capacity estimation and back propagation
neural network (BPNN) optimized by a genetic algorithm for capacity prediction. DL:
Dong et al. [12] applied the long short-term memory (LSTM) for the RUL prediction, which
can solve the gradient exploding problem during iterating. Zraibi et al. [13] pointed out
a CNN-LSTM-DNN algorithm for RUL prediction, in which the three hybrid methods
respectively play a critical role. Wang et al. [14] proposed a hybrid method combined with a
BiLSTM-AM model and a support vector regression (SVR) model for online life prediction,
and the collected initial data are updated by SVR, and BiLSTM-AM is used to predict
cycle life. Tang et al. [15] decomposed the original data into high- and low-frequency parts
precisely through an ensemble empirical mode decomposition, and the parts separately are
predicted by DNN and a self-designed LSTM network, named IRes2Net-BiGRU-FC, which
showed a high robustness of RUL prediction in both the CC and CV stages.

Currently, most of the research in RUL prediction currently focuses on the application
of deep learning and their variant with an intricate network, which can overcome the
vanishing and exploding gradient, over-fitting in training, and distortion in long-term
dependence through architecture optimization and hyperparameters tuning, which has
made outstanding accomplishments. However, some problems also occur, for example,
it is difficult to achieve a good training speed and effect for small-scale data in short
order due to unmatched model structure and human experts must be deeply involved
in every segment of the designing model because of its knowledge- and labor-intensive
characteristic. A model with less human intervention and adjustable structure can broaden
the exploration of RUL prediction based on the data-driven method.

In recent years, automated machine learning (AutoML) has emerged as a new sub-
area in machine learning, aiming at tailoring every segment of the machine learning
model as a pipeline automatically without requiring human assistance, a combination
of automation and ML as defined in Ref. [16]. This model has applied in predicting
COVID-19 pandemic [17], Computer Vision [18], Natural Language Process [19], Video
Analytics [20], etc. However, existing AutoML research on RUL prediction is just beginning
and challenges do emerge, as dealing with the long multivariate time-series problem
requires extensive data pre-processing and feasible feature extraction, to ensure that useful
information can be accumulated and transmitted. All the three published articles [21–23]
proposed RUL prediction of aircraft engines based on AutoML using a simulated turbofan
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engine degradation open-source dataset from NASA PCoE [24]. Kefalas et al. [21] used a
mature architecture TPOT [25] in automatic modeling to develop and optimize machine
learning pipelines in an automatic manner, introducing expanding windows to extract
statistical features to evaluate the degradation accumulated in the early life of the system.
Tornede et al. [22] pointed out a cooperative coevolutionary algorithm, which enlarges
the number of pipelines that are explored in a single run, through coevolving the two
populations, which are in sub-spaces partitioned by search space into feature extraction and
regression methods. Tornede et al. [23] proposed an adaptation of the AutoML tool ML-
Plan to automated RUL prediction, integrated an automated feature engineering process
transforming time-series data into a standard feature representation, which can deal with
a prediction as a standard process. RUL prediction of battery is more challenging since
equipment as above runs attaching many sensors to monitor the real-time state, generating
more input data of model than battery.

This study aims to develop a life prediction approach based on AutoML using the
incremental capacity (IC) curve. The main contributions of this study are summarized
as follows:

1. The time-series characteristics in battery constant-current (CC) charging phrase are
retained and gathered respectively in curve size by IC analysis as a feature extraction
method, which incorporates two healthy indexes (HIs) from inflection point height.
Moreover, an IC curve smoothing method based on the Kalman filter (KF) algorithm
is also employed to eliminate noise caused by different sampling intervals.

2. The charging capacity of the battery constant-voltage (CV) charging phrase is extracted
as another HI directly instead of conversion by the IC method, which ensures the
characteristic undistorted transmission in practice. Based on the investigation of
the aging mechanism and judgment of correlation analyses, it is proved that the
selected features in this study are accurate and typical, which can characterize the
aging phenomenon in the entire charging process including the CC and CV phases.

3. The prediction model is established based on AutoML, where an automated pipeline
runs in Auto-sklearn architecture with data pre-processing, feature engineering, and
automatic modeling. To our knowledge, the model is firstly applied in the RUL
prediction of LIBs.

4. The proposed method is verified on an open-source database from NASA PCoE [26],
and the results achieve higher accuracy compared with those of other methods. It
demonstrates that it can accomplish an obvious performance improvement in online
capacity prediction with the small-scale dataset.

The remainder of this paper is prepared as follows: Section 2 introduces the IC analysis
and HI extraction. In Section 3, the model based on AutoML is proposed to predict battery
RUL. Section 4 presents the experimental results of the proposed method and the valid
comparison with other methods. Finally, a conclusion is given in Section 5.

2. IC Analysis and HIs Extraction

2.1. Experimental Dataset

The experimental dataset in this paper is obtained from the NASA Ames Prognostics
Center of Excellence, which consists of aging data for 18650 LIBs [26]. The four LIBs
B05, B06, B07, and B18 are tested in standard charging and discharging processes under
25 Celsius. The experimental steps of a cycle are as follows and are shown in Figure 1a:

1. Charging process: first, the voltage was raised to 4.2 V under a 1.5 A constant current
(CC phase), and then kept charging at 4.2 V constant voltage until the charge current
dropped to 20 mA (CV phase).

2. Discharge process: the battery was discharged at a constant current of 2 A until the
voltage of B05, B06, B07, and B18 dropped to the cutoff voltage of 2.7 V, 2.5 V, 2.2 V,
and 2.5 V, respectively.
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(a) (b) 

Figure 1. The experimental steps and capacity degradation profiles: (a) The voltage and current in a
test cycle; (b) Capacity aging trends of the four batteries.

The experiments were halted when the battery capacity decayed to 70%. The tested
charge life cycle number of B05, B06, B07, and B18 batteries are 168, 168, 168, and 132 cycles,
respectively. The degradation tendencies of battery capacity under different cycle numbers
are described in Figure 1b. In this paper, the charging process is selected to study the aging
law of LIBs. Figure 2 illustrates the variations of voltage and current of B05 in the CC-CV
charging as battery aging. In the CC charging phase, the duration shortens, and the voltage
curve moves leftward as battery cycling, which shows the charging capacity in this phase is
decreasing. In the CV charging phase, it presents an increasing duration, and the charging
capacity showed an opposite trend as in the CC phase.

 

(a) (b) 

Figure 2. The variations of voltage and current of B05 in the CC-CV charging: (a) Charge voltage;
(b) Charge current.

2.2. IC Curve and Smoothing Method

The IC curve indicates the change rate of capacity over the voltage evolution during
the charging process as an efficient tool to study the variation in the electrochemical
properties of LIBs. It has been proved that the batteries with different aging levels have
a slight shift in charging voltage or current curve due to the big voltage plateaus during
the low-rate cycle [27]. By calculating the derivative of the charging capacity to battery
voltage, the IC curve analysis can convert the voltage plateaus into the intuitive and
recognizable fluctuation on the IC curve, to detect a gentle change accurately during battery
aging [28,29].

The intensity of reactions between electrodes is affected by battery aging during the
charging process, where the difference is implicit in the voltage curve but can be reflected
in the IC curve as inflection points or even peaks [30]. We can track the battery state and
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even predict the battery aging trajectory from the inflection points vanishing, decreasing,
and shifting, since the slight capacity aging caused by battery degradation can be identified
quantitatively by the IC curve [31].

Because the charging capacity is divided by the terminal voltage change within an
equal time interval (ETI) and equal voltage interval (EVI) [32], the IC curve can be obtained
as shown in Equations (1) and (2).

ICETI =
dQC
dVC

≈ ΔQC
ΔVC

=
iCΔt

VC,2 − VC,1
(1)

ICEVI =
dQC
dVC

≈ ΔQC
ΔVC

=
QC,2 − QC,1

ΔVC
(2)

where QC and VC are the battery charging capacity and battery terminal voltage, respec-
tively. iC and t are the current and the time in the CC charging phase, which can calculate
the charging capacity in the ETI method. QC,2 − QC,1 is the charging capacity in the CV
charging phase.

As shown in the green line in Figure 3, the curve calculated by Equation (1) as the
sample is polluted by measurement noise owing to impact by the selected interval. If the
interval is small, the IC curve will be noisy, and if the interval is large, the IC curve features
will become indistinct [32]. It is challenging to catch useful shape features as the peak
characteristic is not transparent. In this study, the Kalman filter (KF) is applied as a proper
filtering algorithm to improve the curve smoothing.

Figure 3. Smoothing results of IC curve.

Firstly, the evolution of x = ΔQ/ΔV can be modeled as a random walk with additive
Gaussian process noise ω and measurement noise υ, then the state equation and observation
equation are as follows: {

xk = Akxk−1 + Bkuk + ωk
yk = Ckxk + Dkuk + υk

(3)

where yk represents the noise-polluted measurement of xk, uk is the external input of the
system, ωk represents the measurement noise, and υk represents the process noise. Q and R
are defined as the covariance of process noise and measurement noise, Kk is the Kalman
gain, and Pk is the covariance of estimate value. Then, the filtering algorithm based on the
nominal model of Equation (3) can be formulated as:

State and error covariance,{
x̂+0 = E(x0)

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

(4)
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Process and measurement noise,{
Q = E(ωkωT

k )
R = E(υkυT

k )
(5)

State and error covariance time update,{
x̂−k = Akx̂+k−1 + Bkuk
P−

k = AkP+
k−1 AT

k + Q
(6)

Kalman gain,

Kk = P−
k CT

k (CkP−
k CT

k + R)
−1

(7)

State and error covariance measurement update,{
x̂+k = x̂−k−1 + Kk(yk − Ckx̂−k − Dkuk)

P+
k = (I − KkCk)P−

k
(8)

where uk is defined as zero due to no external input of the system, and the system state and
system output are xk = (dQ/dV)k and yk =

∫
icdt. We set x0 = 0 and P0 = 1. The red curve

in Figure 3 is the filtered IC curve and the inflection points can be clearly identified. The
smoothing method provides a basis for the further development of the HIs extraction.

2.3. HIs Extraction and Correlation Analysis
2.3.1. Aging Mechanism Based on IC Analysis

Battery aging is a certainty with corrosion and consumption in the internal material
structure of the battery due to electrochemical as well as side reactions in the battery during
cycling and storage [33]. According to the research of Ref. [34], the aging mechanisms for
LIBs can be categorized into the two main degradation phases: linear degradation phase
and accelerated degradation phase. In the linear degradation phase, the battery capacity
declines under a linear trend, which is mainly caused by the loss of lithium inventory (LLI),
including the formation of SEI film on the surface of the negative electrode, the dilution
of electrolyte derived from the side reactions, lithium deposition, and other typical aging
mechanisms [35]. In the accelerated degradation phase, the battery capacity is aggravated
to decline, where the loss of active material (LAM) emerges as a major factor. The active
material is physically damaged and decomposed by the chemical reaction, which affects
the intensity of the electrochemical reaction and the transportation of lithium ions between
electrodes. Moreover, the products generated by the LLI aging mode, and the polymer
decomposed by the electrolyte and lithium deposition can accumulate and be attached to
the active material, causing isolation between lithium ions and material as well as material
breaking [36,37].

These aging modes are also distinguished in the IC curve. As depicted in Figure 4a,
the IC curve in different charging cycles, B05 as the sample, displayed a clear rightward
and lower trend along with two obvious inflection points (IP) on the curve, named IP A
and IP B. Owe to discrepancy in LIBs internal characteristics, the intensity of inflection is
variable. The IC curves of some batteries show slight inflection, and others are inflected
into a peak. According to the previous research [32,38] on the degradation mode based on
the IC curve feature, it is clear that in terms of LLI and LAM, the intensity of IP A and B
will decrease and move toward the higher voltage section during battery cycling, just as
Figure 4a. Conversely, IP A and B evolve in opposite trends, and the intensity of IP A is
more influenced by LAM mode than LLI mode, and the intensity of IP B mainly depends
on LLI mode. Furthermore, for the scenario of EV driving, the battery works in a linear
degradation phase as the EOL is most defined as the range from 70% to 80%, so IP B can be
more recommended to be the indicator containing aging information than IP A.
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(a) (b) 

Figure 4. IC curve and HIs of B05 in different charging cycles: (a) IC curve; (b) Height and position
of IP B as two HIs.

2.3.2. Extraction of HIs

In the driving scenario, the battery cannot be discharged under constant current
conditions as in the laboratory, which depends on the unpredictable load demand during
driving. It is hard to calculate the capacity through the Ampere hour integral method
and capture characteristic aging parameters by the discharging curves. Conversely, the
charging process is constant due to the regular charging strategy, where the slight shift
can be identified. In this study, the IC curve is calculated through the ETI method for the
CC charging process as Section 2.2, using charging voltage and CC charging current data.
The height of IP B as shape feature characteristic of IC curve and corresponding voltage
standing for inflection point position are selected as two HIs for battery RUL prediction,
named F1 and F2. The evolution trends of the two HIs with different cycles, B05 still as a
sample, are illustrated in Figure 4b.

Compared to laboratory conditions, the charging process is usually incomplete with
commercial chargers due to the driver’s habit, but the charging curve still retains the shape
characteristics of the CC-CV phase, especially the complete curve shape in the CV charging
phase, although the different depth of discharge (DOD) in the different cycle may influence
battery charging. Owe to the above-mentioned reasons, the HIs of the CV phase can be
extracted directly instead of conversion by the IC method, which ensures the characteristic
undistorted transmission in practice.

Similar to the CC phase, there are also some regular shifts like indicators for battery
aging in the CV phase as Figure 2 depicted. According to voltage balance Equation (5),
because of the increase of polarization voltage UP and ohmic internal resistance during
degradation, UT reaches a cut-off voltage earlier, and the charging process switches to the
CV phase in a shorter time, which can lead to different charging time and charging capacity
in every cycle as shown in Figure 5.

UT = UOCV + UP + UR (9)

where UT is terminal voltage, UOCV is open-circuit voltage, UP is polarization voltage, and
UR is ohmic internal resistance voltage.
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Figure 5. The charging time and capacity profiles of B05 in the CV phase in every cycle.

Hence, the charging capacity of the CV charging phase is chosen as another HI F3
to characterize the capacity degradation, and it can be formulated by the Ampere hour
integral method as:

Qcv =
∫ t2

t1
Icvdt (10)

where ICV is the current in the CV charging phase, t1 and t2 are the start-stop time of the
CV charging phase.

In conclusion, the height of IP B in the IC curve and corresponding voltage standing
for the position of inflection point as F1 and F2 in the CC charging phase and the charging
capacity of the CV charging phase as F3 are selected as HIs for battery RUL prediction. F1
and F2 can highlight the slight shifts in the voltage plateau phase in the charging process,
and F3 represents the charging condition and polarization of the battery. All the HIs reflect
the characteristics of the entire battery charging process.

2.3.3. Correlation Analysis of HIs

To further explore the relationship among the three HIs and probe whether all of them
can express the change in the battery capacity, the interaction between the HIs and capacity
is analyzed by the Pearson correlation and the Spearman correlation. The analysis results
are displayed in Table 1 and Figure 6. As the correlation coefficient of F1 (Height of IP B),
F3 (Charging capacity of CV phase) is close to 1, and the absolute value of F2 (Position of
IP B) also exceeds 0.94, the correlation of model input parameters is quite significant.

Table 1. Results of correlation analysis of three HIs.

HIs Pearson Correlation Spearman Correlation

F1 0.9953 0.9889
F2 −0.9506 −0.9455
F3 −0.9895 −0.9737

 

Figure 6. Relationship of HIs and the reference capacity of B05.
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3. Online Estimation Based on AutoML

3.1. Description of AutoML Model

We established a novel model based on AutoML, automatically customizing the fore-
casting pipeline, which consists of data pre-processing, feature engineering, and automatic
modeling with less human intervention and trial error manually, covering the complete
actions from processing the input data to the deployment of the model.

Each step of data pre-processing, including data cleaning, data augmentation, and data
coding, can search the configuration space automatically by some optimization algorithm,
such as reinforcement learning and grid search. The pre-processing contributes to input
data without polluted noise, avoiding over-fitting of model training and enhancing model
robustness. Data pre-processing also involves normalizing, through which the available
data can eliminate the effect caused by the different ranges of value in the learning phase.
We use the Min-max normalization to map the range of feature S into [a, b] as follows:

x′ = a +
(x − min(S))(b − a)

max(S)− min(S)
(11)

where x and x’ are the value and the transformed value of the feature S.
Feature engineering is to automatically construct features from the data so that subse-

quent learning models can have good performance, with the segment of feature extraction,
feature selection, and feature enhancement. It ensures that the features can exclude the
redundant variable and be extracted in an appropriate dimensionality for the feature space.

AutoML aims to solve the so-called CASH problem, the short for combined algorithm
selection and hyperparameters optimization [39]. This is essentially the task of selecting
or combining the appropriate model for the dataset at hand automatically, along with the
various hyperparameters tuned properly in every segment of the pipeline.

The model performance mostly depends on a set of hyperparameters that make up the
algorithm. Hyperparameters are tuned specifically to that dataset, with some techniques
like Regression Trees, and Gaussian Processes [40]. Bayesian optimization has been applied
as a successful candidate for hyperparameter tuning, which fits a probabilistic model to
capture the relationship between hyperparameters’ setting and their measured performance.
Then, the most promising hyperparameter setting is selected and evaluated, as well as
updated in the model with the result, finishing an entire iteration [41].

The meta-learning approach is complementary to Bayesian optimization for opti-
mizing a model architecture, which is employed to obtain promising configurations to
warmstart Bayesian Optimization. Each model trained on data contributes to the configura-
tion space of hyperparameters cross datasets, even if a model performed poorly. The area of
meta-learning [42] follows this common strategy that human experts screen known models
by reasoning about the performance of learning algorithms and searching with configura-
tion space. Therefore, meta-learning is applied to select instantiations of the given model
frameworks, which tend to perform well on a new dataset, from the knowledge of previous
tasks [43]. To characterize explicitly discrepancy in dataset repositories, meta-features are
introduced as the searching targets and data depiction, denoting some dimensions, such as
Statistical meta-features, PCA meta-features, information-theoretic meta-feature, etc. [43].
They comprise the attributes of each dataset and the parameters of the computing model,
such as neural network training weights. More precisely, the meta-learning approach works
as follows:

Step 1 For each machine learning dataset in a dataset repository, we evaluated a set of
meta-features and used Bayesian optimization to determine and store an instantiation of
the given ML framework with strong empirical performance for that dataset.

Step 2 Then, for the given new dataset, we compute its meta-features, sort out all
datasets by distance metric among them in meta-feature space and select the stored ML
architecture instantiations for the limited nearest datasets for evaluation before starting
Bayesian optimization with their results.
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In this study, we used Auto-sklearn architecture combined with a meta-learning
approach and Bayesian optimization, which is a robust new AutoML system based on scikit-
learn, comprising 15 classifiers, 14 feature preprocessing methods, and 4 data preprocessing
methods, giving rise to a structured hypothesis space with 110 hyperparameters. The
architecture improves the existing AutoML methods by automatically taking into account
past performance on similar datasets, and by constructing ensembles from the models
evaluated during the optimization [44]. EarlyStopping is used as callbacks to prevent
overfitting, which can stop training when the loss did not decrease anymore in each epoch.
The network training weights in the current epoch are the final training results.

The flow chart for pipelined-based AutoML is show in Figure 7. Configuration space
Λ is built up based on the algorithm repository A in Auto-sklearn architecture, which
comprises the hyperparameters controlling each algorithm. Meta-learning searches the
existing dataset Di similar to the new dataset Dnew in the dataset repository, in which
similarity is defined by a distance between two datasets based on meta-features, and
initializes a search with the meta-feature FDi. For each dataset, meta-features are only
computed on the training set. In contrast to human domain experts, Bayesian Optimization
does not use knowledge from previous runs on different datasets and uses the matched
FDi to obtain promising configurations λ, in which the model is evaluated with the new
meta-feature FDnew based. The Bayesian Optimization with meta-learning finishes the
pipeline including data pre-processing, feature engineering, and classifier selection.

Figure 7. Flow chart for pipeline-based AutoML combined with meta-learning and Bayesian
optimization.

3.2. Framework of RUL Prediction Method

The integrated framework for the life prediction approach is described in Figure 8
and divided into offline training and online prediction. In the offline stage, first, the IC
curve is calculated in the CC charging phase, in which the two HIs that inflection point
height and position are extracted, with the curve smoothing method derived from the KF
algorithm. Combined with the charging capacity in the CV phase of every cycle, all three
HIs effectively characterize the battery aging of the entire charging process. Then, a novel
AutoML model is established with Auto-sklearn architecture, to realize the automatic
design of the pipeline. The model hyperparameters are tuned and the search is optimized
in the training stage. In the online stage, the extracted three features are directly applied to
predict the battery RUL based on the trained AutoML model.
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Figure 8. Framework of RUL prediction based AutoML.

4. Results and Discussion

4.1. Evaluation Criteria

In this study, root mean square error (RMSE) and mean absolute error (MAE) indexes
are applied to evaluate the performance of the prediction method. The formulae for
calculating are as follows:

RMSE =

√
∑n

i=1 (Creal(n)− Cprd(n))2

n
(12)

MAE =
1
n∑n

i=1

∣∣∣Creal(n)− Cprd(n)
∣∣∣ (13)

where n is the number of cycles, Creal is the real capacity, and Cprd is the predicted capacity.
In most experiment settings in data-driven methods, the training set and validation set

are usually divided on the same single battery, which can implement the online prediction.
In the driving scenario, unlike in the bench test, the BMS cannot predict online capacity
without the first 60% to 80% battery running data, so the goal of online prediction for
the entire battery aging cycle is hard to achieve. To tackle this, we use the leave-one-out
evaluation as Chen et al. [45] applied to evaluate their model: one battery is sampled for
validation, and the other three batteries are used for training. A total of four trials are
conducted and hyperparameters of the model as well as the average evaluating index over
all batteries are determined.

4.2. Prediction Results and Analysis

As the framework showed in Figure 8, the HIs F1, F2, and F3 calculated by raw voltage
and current data are used as input of the AutoML model, and the training set and validation
set are divided by leave-one-out evaluation.

By means of searching and evaluating, the three methods, poly, rbf, and sigmoid, are
used for feature preprocessing, and the five classifiers are selected in the AutoML model,
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and the classifiers’ type and ensembled weight are listed in Table 2. In Table 3 we show the
hyperparameters used in this study.

Table 2. The classifiers type and ensembled weight in the AutoML model.

Rank Classifier Type Ensembled Weight

1 Gaussian_process 0.50
2 K_nearest_neighbors 0.32
3 Gradient_boosting 0.08
4 Ard_regression 0.08
5 Liblinear_svr 0.02

Table 3. Hyperparameters used in verification.

Hyperparameters Data Type Value Range

Initial configurations via
meta-learning int 25

Ensemble size int 50
Max reserved models int 50

batch size of training data int 64
Number of training epochs int 200

Resampling strategy cat Holdout
Model training optimizer cat SGD

The capacity prediction and relative error of B05, B06, B07, and B18 are depicted in
Figure 9. The red predicted capacity curve approximates the yellow real capacity curve with
most prediction errors controlled within 7% in the validation of four batteries, indicating
high accuracy and robustness.

 
(a) (b) 

 

(c) (d) 

Figure 9. Capacity prediction results and errors of (a) B05, (b) B06, (c) B07, and (d) B18.
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Compared to the RMSE value in Table 4, the lowest prediction accuracy among the
four batteries is B18. Although it is not as good as other batteries, the MAE of B18 is 0.0479,
indicating the test accuracy rate reached more than 95%. According to the development
requirements of batteries in EVs, the fault threshold is set to 80% of initial capacity, and
the life value can also be predicted. The predicted error is 1 and 8 cycles for B06 and B18
respectively. All of the above illustrates that the proposed online prediction method has
high accuracy and reliability.

Table 4. Prediction results of four batteries.

B05 B06 B07 B18

MAE 0.0283 0.0221 0.0361 0.0479
RMSE 0.0337 0.0340 0.0407 0.0573

We conducted the same training and validation for NASA’s data and average eval-
uation index as in Ref. [45], so we can perform a valid benchmark comparison. Table 5
summarizes the RUL prediction results from various methods, and it is obvious that the
proposed method achieves a better performance than other methods, which is presented
in Ref. [45]. It is obvious that the prediction based on AutoML is more accurate using the
same data set and training method, with the MAE increased by 52.8% and RMSE increased
by 48.3% than DeTransformer.

Table 5. Comparison of prediction results of AutoML with other ML methods.

MLP RNN LSTM GRU Daul-LSTM DeTransformer AutoML

MAE 0.1379 0.0749 0.0829 0.0806 0.0815 0.0713 0.0336
RMSE 0.1541 0.0848 0.0905 0.0921 0.0879 0.0802 0.0414

5. Conclusions

In this study, according to our knowledge, we are the first to propose the AutoML
model applied in the RUL prediction of LIBs, with the HIs extracted by IC analysis.
A smoothing IC curve based on the KF algorithm is employed for HIs extraction and
three HIs have been verified to characterize the aging phenomenon in the entire charging
process including the CC and CV phases. We proposed a prediction method based on
AutoML running in the Auto-sklearn architecture, which can customize the pipeline for
specific datasets automatically, overcoming the problem of redundant model information
and high computational cost. Then the experiment on NASA’s LIBs cycle life dataset
verifies the accuracy and robustness. As a next step, we plan to keep on further studies
on neural networks in the AutoML model, using neural architecture search to improve
pipeline, as well as investigating effective dimensionality optimization techniques for the
HIs extraction by IC analysis.

Author Contributions: Conceptualization, C.L. and Z.Z.; methodology, C.L. and D.Q.; software, C.L.
and Y.L.; validation, C.L. and Y.L.; formal analysis, C.L. and D.Q.; investigation, C.L.; resources,
C.L.; data curation, C.L. and D.Q.; writing—original draft preparation, C.L.; writing—review and
editing, C.L.; visualization, C.L.; supervision, Z.Z. and X.L.; project administration, C.L. and S.W.;
funding acquisition, Z.Z. and X.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 51977131.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

59



Energies 2022, 15, 4594

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Liu, K. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019,
113, 109254. [CrossRef]

2. Tian, H.; Qin, P.; Li, K.; Zhao, Z. A review of the state of health for lithium-ion batteries: Research status and suggestions. J. Clean.
Prod. 2020, 261, 120813. [CrossRef]

3. Lai, X.; Chen, Q.; Tang, X.; Zhou, Y.; Gao, F.; Guo, Y.; Bhagat, R.; Zheng, Y. Critical review of life cycle assessment of lithium-ion
batteries for electric vehicles: A lifespan perspective. eTransportation 2022, 12, 100169. [CrossRef]

4. Liao, Z.; Gai, N.; Stansby, P.K.; Li, G. Linear non-causal optimal control of an attenuator type wave energy converter M4. IEEE
Trans. Sustain. Energy 2020, 11, 1278–1286. [CrossRef]

5. Xu, X.; Chen, N. A state-space-based prognostics model for lithium-ion battery degradation. Reliab. Eng. Syst. Saf. 2017, 159,
47–57. [CrossRef]

6. Miao, Q.; Xie, L.; Cui, H.; Liang, W.; Pecht, M.G. Remaining useful life prediction of lithium-ion battery with unscented particle
filter technique. Microelectron. Reliab. 2013, 53, 805–810. [CrossRef]

7. Jin, X.; Lian, X.; Su, T.; Shi, Y.; Miao, B. Closed-loop estimation for randomly sampled measurements in target tracking system.
Math. Probl. Eng. 2014, 2014, 315908.

8. Richardson, R.R.; Osborne, M.A.; Howey, D.A. Gaussian process regression for forecasting battery state of health. J. Power Sources
2017, 357, 209–219. [CrossRef]

9. Yun, Z.; Qin, W.; Shi, W.; Ping, P. State-of-health prediction for lithium-ion batteries based on a novel hybrid approach. Energies
2020, 13, 4858. [CrossRef]

10. Zhang, S.; Zhai, B.; Guo, X.; Wang, K.; Peng, N.; Zhang, X. Synchronous estimation of state of health and remaining useful lifetime
for lithium-ion battery using the incremental capacity and artificial neural networks. J. Energy Storage 2019, 26, 100951.1–100951.12.
[CrossRef]

11. Sun, T.; Wang, S.; Jiang, S.; Xu, B.; Han, X.; Lai, X.K.; Zheng, Y. A cloud-edge collaborative strategy for capacity prognostic of
lithium-ion batteries based on dynamic weight allocation and machine learning. Energy 2022, 239, 122185. [CrossRef]

12. Dong, D.; Li, X.Y.; Sun, F.Q. Life prediction of jet engines based on LSTM-recurrent neural networks. In Proceedings of the 2017
Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017.

13. Zraibi, B.; Okar, C.; Chaoui, H.; Mansouri, M. Remaining useful life assessment for lithium-ion batteries using CNN-LSTM-DNN
hybrid method. IEEE Trans. Veh. Technol. 2021, 70, 4252–4261. [CrossRef]

14. Wang, F.; Zemenu, E.A.; Tseng, C.; Chou, J. A hybrid method for online cycle life prediction of lithium-ion batteries. Int. J. Energy
Res. 2022, 46, 9080–9096. [CrossRef]

15. Tang, T.; Yuan, H. A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction
of lithium-ion battery. Reliab. Eng. Syst. Saf. 2022, 217, 108082. [CrossRef]

16. Yao, Q.; Wang, M.; Escalante, H.J.; Guyon, I.; Hu, Y.; Li, Y.; Tu, W.; Yang, Q.; Yu, Y. Taking human out of learning applications: A
survey on automated machine learning. arXiv 2018, arXiv:1810.13306.

17. Gomathi, S.; Kohli, R.; Soni, M.; Dhiman, G.; Nair, R. Pattern analysis: Predicting COVID-19 pandemic in India using AutoML.
World J. Eng. 2022, 19, 21–28. [CrossRef]

18. Zeng, Y.; Zhang, J. A machine learning model for detecting invasive ductal carcinoma with google cloud AutoML vision. Comput.
Biol. Med. 2020, 122, 103861. [CrossRef]

19. Drori, I.; Liu, L.; Nian, Y.; Koorathota, S.C.; Li, J.; Moretti, A.K.; Freire, J.; Udell, M. AutoML using metadata language embeddings.
arXiv 2019, arXiv:1910.03698.

20. Galanopoulos, A.; Ayala-Romero, J.A.; Leith, D.J.; Iosifidis, G. AutoML for video analytics with edge computing. In Proceedings
of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021.

21. Kefalas, M.; Baratchi, M.; Apostolidis, A.; Herik, D.V.; Bäck, T. Automated machine learning for remaining useful life estimation
of aircraft engines. In Proceedings of the 2021 IEEE International Conference on Prognostics and Health Management (ICPHM),
Detroit, MI, USA, 7–9 June 2021.

22. Tornede, T.; Tornede, A.; Wever, M.; Hüllermeier, E. Coevolution of remaining useful lifetime estimation pipelines for automated
predictive maintenance. In Proceedings of the Genetic and Evolutionary Computation Conference, Lille, France, 10–14 July 2021.

23. Tornede, T.; Tornede, A.; Wever, M.; Mohr, F.; Hüllermeier, E. AutoML for predictive maintenance: One tool to RUL them all.
In Proceedings of the IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine
Learning, Ghent, Belgium, 14–18 September 2020.

24. Chao, M.A.; Kulkarni, C.S.; Goebel, K.F.; Fink, O. Aircraft engine run-to-failure dataset under real flight conditions for prognostics
and diagnostics. Data 2021, 6, 5. [CrossRef]

25. Le, T.T.; Fu, W.; Moore, J. Scaling tree-based automated machine learning to biomedical big data with a feature set selector.
Bioinformatics 2020, 36, 250–256. [CrossRef]

60



Energies 2022, 15, 4594

26. Goebel, K.; Saha, B.; Saxena, A.; Celaya, J.R.; Christophersen, J. Prognostics in battery health management. IEEE Instrum. Meas.
Mag. 2008, 11, 33–40. [CrossRef]

27. Qiao, D.; Wei, X.; Fan, W.; Jiang, B.; Lai, X.; Zheng, Y.; Tang, X.; Dai, H. Toward safe carbon–neutral transportation: Battery
internal short circuit diagnosis based on cloud data for electric vehicles. Appl. Energy 2022, 317, 119168. [CrossRef]

28. Feng, X.; Li, J.; Ouyang, M.; Lu, L.; Li, J.; He, X. Using probability density function to evaluate the state of health of lithium-ion
batteries. J. Power Sources 2013, 232, 209–218. [CrossRef]

29. Weng, C.; Jing, S.; Peng, H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and
state-of-health monitoring. J. Power Sources 2014, 258, 228–237. [CrossRef]

30. Xue, N.; Sun, B.; Bai, K.; Han, Z.; Li, N. Different state of charge range cycle degradation mechanism of composite material
lithium-ion batteries based on incremental capacity analysis. Trans. China Electrotech. Soc. 2017, 32, 145–152.

31. Han, X.B. Study on Li-Ion Battery Mechanism Model and State Estimation for Electric Vehicles. Ph.D. Dissertation, Tsinghua
University, Beijing, China, 2014.

32. Qiao, D.; Wang, X.; Lai, X.; Zheng, Y.; Wei, X.; Dai, H. Online quantitative diagnosis of internal short circuit for lithium-ion
batteries using incremental capacity method. Energy 2022, 243, 123082. [CrossRef]

33. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005,
147, 269–281. [CrossRef]

34. Dubarry, M.; Berecibar, M.; Devie, A.; Anseán, D.; Omar, N.; Villarreal, I. State of health battery estimator enabling degradation
diagnosis: Model and algorithm description. J. Power Sources 2017, 360, 59–69. [CrossRef]

35. Bloom, I.D.; Cole, B.W.; Sohn, J.; Jones, S.A.; Polzin, E.G.; Battaglia, V.S.; Henriksen, G.L.; Motloch, C.G.; Richardson, R.A.;
Unkelhaeuser, T.; et al. An accelerated calendar and cycle life study of Li-ion cells. J. Power Sources 2001, 101, 238–247. [CrossRef]

36. Dubarry, M.; Truchot, C.; Liaw, B.Y. Synthesize battery degradation modes via a diagnostic and prognostic model. J. Power Sources
2012, 219, 204–216. [CrossRef]

37. Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B.Y.; Garcia, V.; Viera, J.C.; González, M. Fast charging technique for high power
LiFePO4 batteries: A mechanistic analysis of aging. J. Power Sources 2016, 321, 201–209. [CrossRef]

38. Han, X.; Ouyang, M.; Lu, L.; Li, J.; Zheng, Y.; Li, Z. A comparative study of commercial lithium ion battery cycle life in electrical
vehicle: Aging mechanism identification. J. Power Sources 2014, 251, 38–54. [CrossRef]

39. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-weka: Combined selection and hyperparameter optimization of
classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD ‘13), Chicago, IL, USA, 11–14 August 2013.

40. Nagarajah, T.; Poravi, G. A review on automated machine learning (AutoML) Systems. In Proceedings of the 2019 IEEE 5th
International Conference for Convergence in Technology (I2CT), Bombay, India, 29–31 March 2019.

41. Brochu, E.; Cora, V.M.; Freitas, N.D. A tutorial on Bayesian optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599.

42. Hodgson, J. Metalearning: Applications to data mining. Comput. Rev. 2010, 51, 217–218.
43. Feurer, M.; Springenberg, J.T.; Hutter, F. Initializing Bayesian hyperparameter optimization via meta-learning. In Proceedings of

the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), Austin, TX, USA, 25–30 January 2015.
44. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Hutter, F. Automated Machine Learning, 1st ed.; Springer: Cham,

Switzerland, 2019; pp. 113–134.
45. Chen, D.; Hong, W.; Zhou, X. Transformer network for remaining useful life prediction of lithium-ion batteries. IEEE Access 2022,

10, 19621–19628. [CrossRef]

61





Citation: Zheng, J.; Chen, Z.; Wang, Q.;

Qian, H.; Xu, W. GIS Partial Discharge

Pattern Recognition Based on

Time-Frequency Features and

Improved Convolutional Neural

Network. Energies 2022, 15, 7372.

https://doi.org/10.3390/en15197372

Academic Editors: Guang Wang, Jiale

Xie and Shunli Wang

Received: 24 August 2022

Accepted: 4 October 2022

Published: 7 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

GIS Partial Discharge Pattern Recognition Based on
Time-Frequency Features and Improved Convolutional
Neural Network

Jianfeng Zheng 1,2, Zhichao Chen 1, Qun Wang 1, Hao Qiang 1,2 and Weiyue Xu 1,2,*

1 School of Mechanical Engineering and Rail Transit, Changzhou University, Changzhou 213164, China
2 Jiangsu Province Engineering Research Center of High-Level Energy and Power Equipment,

Changzhou University, Changzhou 213164, China
* Correspondence: wyxu@cczu.edu.cn

Abstract: Different types of partial discharge (PD) in gas-insulated switchgear (GIS) cause different
damage to GIS insulation, correctly identifying the PD type is very important for evaluating the
insulation status of GIS. This paper proposes a PD pattern recognition method based on an improved
feature fusion convolutional neural network (IFCNN) to fully use the time-frequency features of PD
pulses to realize PD pattern recognition. Firstly, the one-dimensional time-domain feature sequence of
the PD pulse and the corresponding wavelet time-frequency diagram are applied as inputs. Secondly,
the convolutional neural network (CNN) with two parallel channels is used for feature extraction, the
extracted fault information is fused, and the shallow features of the wavelet time-frequency diagram
are fused to prevent feature loss caused by pooling operation. Finally, the extracted features are sent
to the classifier to recognize different types of PD. The discharge data of different types of PD are
obtained for testing by experiments and simulation. Compared with 1-D CNN and 2-D CNN under
the same specification, the proposed method can mine more potential local features of discharge
pulses by fusing the time-frequency features of PD pulses in different dimensions, and improves the
recognition accuracy to 95.8%.

Keywords: partial discharge; time-frequency features; wavelet transform; convolutional neural
network; pattern recognition

1. Introduction

The insulation state of gas-insulated switchgear (GIS) is closely related to the security
of the power grid, and partial discharge (PD) is one of the critical indicators reflecting
the internal insulation state of GIS [1,2]. The damage degree of insulation caused by
different types of PD is quite different, so it is necessary to identify the PD signal in GIS
to ensure GIS’s safe and stable operation [3–5]. The feature extraction of PD is the key
to affecting the recognition effect [6,7]. Currently, PD diagnosis methods mostly rely on
statistics of characteristic parameters (e.g., phase, amplitude, and capacity of the discharge
signal), and ignore the characteristic information of the discharge pulse itself. Therefore,
the requirements for the statistical quantity of PD signal are relatively high, and discharge
data of multiple power frequency cycles need to be counted [8]. The PD pulse itself carries
rich feature information, and the features of different defects are different. Effective use of
these features is of great significance to PD detection.

In recent years, scholars have conducted a lot of research on the feature extraction of
PD pulse. In [9], PD time-domain waveform images were collected and converted into
one-dimensional for pattern recognition. In [10], a feature extraction method combining
wavelet packet analysis and singular value decomposition was adopted to extract features
from frequency information. However, the pulse of PD is transient and unstable. Dis-
charge occurs instantaneously, and the time and number of discharge pulses are random.
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The time-varying information of PD signal is difficult to be represented by simple time-
domain or frequency-domain analysis, and the performace of time-frequency joint analysis
method is better than the conventional single domain analysis in diagnosing discharge
characteristics [11]. As a time-frequency analysis method, wavelet transform can extract
features from both time and frequency. By using its aspects of multi-resolution analysis,
wavelet transform can characterize the local features of signals and provide more feature
information for pattern recognition [12].

With the rapid development of deep learning, the convolutional neural network (CNN)
has achieved good results in PD pattern recognition due to its powerful feature extraction
ability. Compared with artificial neural networks and support vector machine, the training
parameters are greatly reduced, and the recognition accuracy is improved [13–17]. In [18], a
light-scale CNN was used to identify the simulated GIS PD data, which solved the problem
of insufficient feature utilization. In [19], CNN and long and short-term memory networks
were combined to improve the recognition accuracy by fusing the temporal and spatial
features of PD signals. Considering the effect of CNN on PD recognition, this paper selects
CNN to extract the features of the PD pulse. However, when the one-dimensional signal
or the processed two-dimensional time-frequency diagram is used as the input alone, the
local features of the PD pulse are seriously lost. A PD pattern recognition method based on
dual-channel CNN is proposed to solve this problem, which fully utilizes the advantages
of 1-D CNN and 2-D CNN.

This paper proposes an improved feature fusion convolutional neural network (IFCNN)
model for PD pattern recognition. The time-domain features of the PD pulse are character-
ized by the feature sequence composed of discrete data points. The signal is subjected to
wavelet transform, and the corresponding wavelet time-frequency diagram supplements
the local features of the discharge transient signal. The CNN model with two parallel
channels is used to extract the features of the time-domain feature sequence and wavelet
time-frequency diagram. The local features of the discharge pulse in the time domain and
frequency domain are mined through feature fusion. The dual-channel model is improved
to avoid the loss of features in the training process. Specifically, a one-dimensional CNN
is used to process the PD time-domain feature sequence, and a 1 × 1 convolutional layer
is added after the convolutional layer to increase the nonlinearity of the one-dimensional
model. A two-dimensional CNN is used to extract the features of the wavelet time-
frequency diagram, and the shallow features are reduced in dimension and fused with
the deep features. The improved dual-channel CNN model can automatically extract the
time-frequency features of PD pulses in different dimensions. The main contributions of
this paper are as follows:

(1) An IFCNN model is proposed for PD pattern recognition by extracting the features
of PD pulses, which avoids counting a large number of discharge characteristic
parameters. The improved model combines the advantages of 1-D CNN and 2-D
CNN. It can automatically extract and fuse the features of the time-domain feature
sequence and wavelet time-frequency diagram and obtain more feature information.

(2) The PD pulse signal is collected by experiment. At the same time, the mathematical
model is used to simulate the PD source to obtain data to ensure the randomness of the
signal and reflect the characteristics of the discharge pulse, avoiding the collection of
a large amount of experimental data. The improved model is used to extract features
automatically for training. The lightweight structure of the model makes it possible
to apply in the field environment conveniently.

(3) The feasibility of the model is verified by experiments and compared with 1-D CNN and
2-D CNN of the same specification. The results show that the improved model has higher
recognition accuracy by fusing the time-frequency features of different dimensions.

64



Energies 2022, 15, 7372

2. Proposed Method

2.1. Convolutional Neural Network

CNN is a feedforward neural network that can directly input the original image and
avoid complex processing of the original signal. In recent years, it has been widely used
in the field of pattern recognition [20–22]. CNN can extract the features of input data
layer by layer and get the essential abstract representation of features. Figure 1 shows
typical convolutional neural networks usually include an input layer, convolution layer,
pooling layer, fully connected layer, and output layer. The convolution layer uses multiple
convolution kernels to perform convolution calculations on the input data, extracts the
corresponding data features, and then connects to the next layer through bias calculation
and activation function. A mathematical formula can express the process:

Xi = σ(Xi−1 × Wi + bi), (1)

where Xi represents the output feature map of the ith layer, Xi−1 represents the input
feature map of the ith layer, Wi is the weight matrix of the ith convolution kernel, bi is
the offset vector of the ith layer, and sigma is the activation function. The main activation
functions are Tanh, Sigmoid, and ReLU.

The pooling layer is generally divided into maximum pooling, mean pooling, and
random pooling, which are used to reduce the output parameters of the convolution layer.
The fully connected layer connects the features of the previous layer, and extracts and
reduces the dimension of the features again. Finally, the output layer calculates the one-
dimensional output sequence and obtains the probability value of each class to which the
classification target belongs.

Figure 1. The structure of typical convolutional neural networks.

2.2. Improved Feature Fusion Convolutional Neural Network

In this paper, the IFCNN is used to extract the features of PD pulse to realize PD
pattern recognition. The PD pulse waveform is a curve that changes the discharge intensity
with time. The 1-D CNN can better express one-dimensional information of the PD pulse
voltage, which is suitable for feature extraction of the time-domain waveform [9]. Therefore,
the time-domain waveform features of PD pulse are transformed into one dimension, and
1-D CNN is used to extract the features. At the same time, the wavelet transform is applied
to the signal, and the wavelet time-frequency diagram supplements the frequency-domain
features of the PD signal extracted by the 2-D CNN. The specific model structure of IFCNN
is shown in Figure 2. The model is composed of two parallel channels. The 1D-CNN
inputs the one-dimensional time-domain feature sequence of the PD pulse, and the 2D-
CNN inputs the two-dimensional wavelet time-frequency diagram. Both channels use
convolutional and pooling layers alternately to extract features.

The 1D-CNN uses one-dimensional convolution and pooling kernels to adapt to
the input one-dimensional time-domain feature sequence. It adds a 1 × 1 convolution
layer after the ordinary convolution layer to access more activation functions and improve
the nonlinear fitting ability of the one-dimensional network. The 2D-CNN uses a large
convolution kernel in the first convolutional layer to increase the receptive field and obtain
more features. In the feature extraction process, the shallow features pass through fewer
convolution layers, the feature resolution is high, and the features contain more feature
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information, but the deep features have better semantics. To avoid the loss of features,
the deep layer and shallow layer features are fused [23]. The traditional feature fusion
directly characterizes the features of the two layers as feature vectors. It sends them to
the fully connected layer, leading to too many parameters in the fully connected layer,
resulting in a bloated model. Here, the output of the features by the first pooling layer
of the network is passed through a 1 × 1 × 1 convolution layer to compress the feature
channel to reduce the dimension of the data and retain the significant features, to realize the
fusion of cross-channel features. The fully connected layer stretches the features of 1D-CNN
and deep and shallow layers of 2D-CNN into feature vectors, and the feature vectors are
spliced in the fusion layer to achieve feature fusion. The fully connected layer is used to
continue the feature extraction and dimension reduction of the fused features. Finally, the
Softmax classifier is used to to calculate the discharge type probability to achieve the PD
classification.

In the IFCNN model, ReLU is selected as the activation function. To avoid gradient
disappearance and explosion, the BN layer is used after the convolution layer to normalize
the data and enhance the model’s generalization ability. The pooling layer selects the
maximum pooling to obtain the maximum value of the local area of the data to reduce the
dimension. A fully connected layer is used after the fusion layer to prevent overfitting. The
Dropout operation is used to randomly remove some neurons to solve the problem that the
dimension of the feature vector increases after feature fusion.

Figure 2. The structure of IFCNN.

3. PD Pattern Recognition

3.1. Data Acquisition
3.1.1. Experimental Data

Four typical PD defect models, including point discharge, surface discharge, air gap
discharge and suspended discharge were selected for pattern recognition according to the
possible defect types in field GIS. The experiment circuit is shown in Figure 3.
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Figure 3. Partial discharge experiment circuit.

The power frequency high voltage control platform was used to apply high voltage
to the PD defect model to generate PD signals. Figure 4 shows the experiment platform
(Figure 4a) and the side view installation location (Figure 4b) of the defect. Four typical PD
defect models are shown in Figure 5. The point discharge model simulated the presence
of protrusions on the conductor surface in GIS. The surface discharge model simulated
the existence of insulation defects on the surface of solid insulating materials in GIS. The
air gap discharge model simulated the air gap inside the solid insulating material in GIS.
The suspended discharge model simulated the poor contact of the conductor parts of GIS.
When the conductor parts are energized, the potential difference between the potential
suspension of the conductor parts and the surrounding parts will produce discharge.

The experiment adopted the method of stepwise pressurization, and the discharge
pulse data were recorded and stored [24]. The sensor was a microwave antenna. A front RF
amplifier was designed internally. Before signal transmission, it was amplified to improve
the signal-to-noise ratio. The gain of the amplifier was 10 dB. A high pass filter was built in
the channel to filter out interference signals. The detection frequency band of the sensor was
300 MHz to 1500 MHz, and the mean effective height was 9 mm. An oscilloscope was used
to collect signals. The oscilloscope model was Tektronix7104 (bandwidth 1 GHz, maximum
sampling rate 20 GSa/s). The oscilloscope sampling frequency was set to 10 MSa/s, and
discrete data points were used to represent the waveform. The pulse waveforms of four
kinds of PD signals are shown in Figure 6.

(a) (b)
Figure 4. PD experiment platform and inside the experiment platform: (a) PD experiment platform;
(b) inside the experiment platform.
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(a) (b)

(c) (d)
Figure 5. Typical PD defect models: (a) point discharge; (b) surface discharge; (c) air gap discharge;
(d) suspended discharge.

(a) (b)

(c) (d)
Figure 6. PD pulse waveforms: (a) point discharge; (b) surface discharge; (c) air gap discharge;
(d) suspended discharge.

68



Energies 2022, 15, 7372

3.1.2. Simulation Data

To obtain as many PD fault samples as possible to reflect the characteristics of PD
pulses and improve the accuracy of pattern recognition in this scheme, mathematical
discharge models were used to simulate the PD source of typical PD defects to obtain
the discharge data. Two mathematical models of single exponential decay oscillation
pulse (SDOP) and double exponential decay oscillation pulse (DDOP) were used for
simulation [25]. The expression can be expressed as:{

f1(t) = Ae−t/τ sin(2π f t)

f2(t) = A(e−1.3t/τ − e−2.2t/τ) sin(2π f t),
(2)

where A is the signal amplitude, f is the signal oscillation frequency, and τ is the signal
attenuation constant.

Both discharge models are established based on the IEC60270 measurement method,
which is close to the actual PD signal obtained by the pulse current method, and can
represent the signal collected in the project. The pulse waveforms of the two discharge
mathematical models are shown in Figure 7.

(a)

(b)
Figure 7. Pulse waveforms of discharge mathematical models: (a) SDOP; (b) DDOP.

The point , air gap, and suspended discharge were all superimposed by SDOP. The
frequency of point discharge and air gap discharge is relatively low, the amplitude of
the suspended discharge pulse is larger and the attenuation is more intense. DDOP
superimposed the surface discharge. Referring to the PD simulation parameters in [26] and
fitting the waveforms collected in the experiment, the statistical parameters were obtained
to establish the PD source model. The specific parameters are shown in Table 1.

Table 1. PD simulation parameters.

Type A/mV τ/μs f /KHz

Point discharge 0.3 0.5 120
Surface discharge 0.13 0.3 600
Air gap discharge 0.4 0.8 200

Suspended discharge 0.7 1.7 400

The simulated PD signals were collected in the simulated actual noise environment,
and the simulated PD time-domain signals are shown in Figure 8.
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(a)

(b)

(c)

(d)
Figure 8. The simulated PD signals: (a) point discharge; (b) surface discharge; (c) air gap discharge;
(d) suspended discharge.

3.2. Feature Extraction
3.2.1. Wavelet Transform

Wavelet transform is a local transform in the time domain and frequency domain.
Wavelet transform performs multi-scale refinement analysis on the signal through scaling
and translation operations, which can effectively extract the local features of the signal,
and has a good effect on processing transient and non-stationary signals. In recent years,
wavelet transform has often been used for de-noising PD signals [27,28], and has some
applications in PD pattern recognition. For f (t) ∈ L2(R) , its continuous wavelet transform
can be expressed as:

WT(a, b) =
1√
a

∫ +∞

−∞
f (t)× ψ∗( t − b

a
)dt. (3)

The basis function of wavelet transform is:

ψa,b(t) =
1√
a

ψ(
t − b

a
), (4)

where ψ(t) is the wavelet function. a is the scale factor, which is related to the frequency and
controls the expansion and contraction of the wavelet function. b is the translation factor,
which is related to time and controls the translation of the wavelet function. ψa,b(t) is the
result of scaling and shifting the wavelet function, and 1√

a is introduced for normalization.
Moving the wavelet in the time domain and taking the inner product with f (t), the

obtained wavelet coefficient reflects the similarity between the corresponding period signal
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and the current scale wavelet. The wavelet coefficients at different frequencies can be
obtained by changing the frequency of the wavelet and stretching the length of the wavelet.
Wavelet transform provides a window that changes with frequency. When dealing with
high frequency, the time window is compressed and the time resolution is higher. Wavelet
transform can adapt to the requirements of time-frequency analysis and select the resolution
according to the characteristics of the signal. It can extract the local features of the PD signal.
Compared with short-time Fourier transform, wavelet transform overcomes the problem
that the window does not change with frequency. As long as the wavelet transform chooses
a proper wavelet basis function, the time-frequency spectrum have a good focus and is
more realistic than other transforms such as Hilbert-Huang.

3.2.2. Time-Frequency Analysis

For the PD pulses collected in the experiment, their time-domain features were rep-
resented by feature sequences composed of 2500 discrete sampling points. The complex
Morlet wavelet was selected as the wavelet function. The PD pulse signals were subjected
to wavelet transform, and the obtained wavelet time-frequency diagrams are shown in
Figure 9.

(a) (b)

(c) (d)
Figure 9. PD wavelet time-frequency diagrams: (a) point discharge; (b) surface discharge; (c) air gap
discharge; (d) suspended discharge.

For the simulated PD time-domain signals, the wavelet threshold de-noising method
was used for processing [29]. The signals were decomposed to the fifth layer using Sym3
wavelet function, and the signals were processed with a soft threshold to eliminate noise.
The pulses of various simulated PD signals were effectively intercepted to facilitate the
extraction of features for subsequent PD pattern recognition. The time-domain feature
sequences were also used to describe the discharge pulse waveforms. Wavelet transform
was performed on the intercepted PD pulse signals to obtain time-frequency features.
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A complex Morlet wavelet was used for the wavelet transform to obtain wavelet time-
frequency diagrams of various simulated PD pulses.

3.3. Model Training

Taking the time-domain feature sequence of PD pulse and the corresponding wavelet
time-frequency diagram as a set of samples, 500 samples were selected for each of the four
types of PD, including 200 experimental data and 300 simulated data. All samples were
divided into a training set and validation set according to the ratio of 8:2. The data set
was preprocessed, the discharge amplitudes of the time-domain feature sequences were
normalized, the diagrams were grayed, and the corresponding labels were marked on the
data set. The processed data set was input into the IFCNN model for supervised learning.
The gradient descent algorithm was used in the training process, and the cross-entropy
function was used as the loss function, which can be generally expressed as:

Loss = −
n

∑
i=1

yi · log y′i, (5)

where yi is the tag value, and y′i is the predicted value.
Through iterative training, the weights between each layer were updated until the

error reached the set expected value, the training was ended, and the trained model was
saved. Finally, PD test data of unknown type was input into the trained model to verify the
recognition effect of the model.

4. Results and Analysis

4.1. Training Process

The Pytorch framework based on Python3.6 was used to write the IFCNN model in
this paper. The experimental hardware environment was an i7-6700HQ processor and 8G
memory, and the software environment was the Windows10 operating system. The specific
parameters of each layer of the IFCNN model built are shown in Table 2.

Table 2. The parameters of each layer of the IFCNN model.

Layer Number Kernel Size Step Size Kernel Number

1D-CNN

Conv1d-1 1 × 5 1 6
Conv1d-2 1 × 1 1 6
Pooling1-1 1 × 3 3 6
Conv1d-3 1 × 5 1 16
Conv1d-4 1 × 1 1 16
Pooling1-2 1 × 3 3 16

2D-CNN

Conv2d-1 5 × 5 1 6
Pooling2-1 2 × 2 2 6
Conv2d-2 3 × 3 1 16
Pooling2-2 2 × 2 2 16
Conv2d-3 3 × 3 1 32
Pooling2-3 2 × 2 2 32
Conv2d-4 1 × 1 1 1

The learning rate was set to 0.005, the number of iterations was set to 100, and the
Batchsize was set to 64. The accuracy and loss curves of the training set and validation set
in the training process are shown in Figure 10. As the number of iterations increases, the
accuracy gradually increases and tends to be stable. The structure of the improved model is
lightweight, and the training speed is fast. The model is suitable for PD pattern recognition.
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(a) (b)
Figure 10. The accuracy and loss curves of IFCNN: (a) accuracy curve; (b) loss curve.

4.2. Accuracy Analysis of Pattern Recognition

The PD test data were inputted into the trained model for recognition, and the recognition
accuracy Pr was used to evaluate the ability of PD recognition. The calculation Pr is:

Pr =
Nr

Nsum
, (6)

where Nr is the number of samples whose identification type is consistent with the actual
type, and Nsum is the total number of samples.

The confusion matrix of IFCNN pattern recognition results is shown in Figure 11,
where 0, 1, 2 and 3 represent point discharge, surface discharge, air gap discharge and
suspended discharge, respectively. It can be seen from the data in the figure that the IFCNN
model has a high recognition accuracy, and the recognition accuracy of surface discharge
reaches 98.3%. In order to ensure the stability of the model, the model was trained ten
times, and the standard deviation of the overall recognition accuracy was 1.95.

Figure 11. Confusion matrix of IFCNN.

In this paper, the experimental data and simulation data were combined with ex-
panding the data set. In order to verify its impact on the experimental results, the ex-
perimental data and simulation data were separately used for testing. The identification
results are shown in Table 3. The results show that the improved models have a good
recognition effect.
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Table 3. PD recognition results for different data sets.

Pr Point Discharge Surface Discharge Air Gap Discharge Suspended Discharge

Experimental data 95.8% 98.3% 95% 96.7%
Simulation data 99.2% 96.7% 97.5% 97.5%

Mixed data 96.7% 98.3% 93.3% 95%

The quality of wavelet transform feature extraction depends on the similarity between
the wavelet waveform and the measured signal waveform. Different wavelet functions
were used to verify the influence of different wavelet functions on pattern recognition
accuracy. The appropriate center frequency was selected to perform wavelet transform on
PD signals. The wavelet functions commonly used for signal processing include Bior, Sym,
Db, and Morlet. The processed data sets were respectively input into the IFCNN model for
testing. The pattern recognition results are shown in Table 4.

Table 4. PD recognition results in different wavelet functions.

Pr Bior Sym Db Morlet

Overall accuracy 91.7% 89.6% 93.3% 95.8%

The results in Table 4 show that the recognition accuracy is higher using the complex
Morlet wavelet. The complex Morlet wavelet function is a complex-valued function mul-
tiplied by a Gaussian function and a complex trigonometric function, and its waveform
characteristics are more similar to the PD pulse waveform. The complex Morlet wavelet
function can reflect the time-domain and frequency-domain features of the discharge signal
and obtain the distribution of signal energy with time and frequency.

4.3. Comparison of Different Methods

To verify the effect of the proposed method on the feature extraction and classification
of PD pulses, the time-domain feature sequences, and wavelet time-frequency diagrams
were input into the 1D-CNN and 2D-CNN of the same specification for comparative
experiments. The recognition accuracy was compared using the same data set. The pattern
recognition results of different methods are shown in Table 5.

Table 5. PD recognition results from different methods.

Pr Feature Sequence + 1D-CNN Wavelet Diagram + 2D-CNN IFCNN

Point discharge 78.3% 88.3% 96.7%
Surface discharge 81.7% 90% 98.3%
Air gap discharge 75% 91.7% 93.3%

Suspended discharge 78.3% 86.7% 95%
Overall accuracy 78.3% 89.2% 95.8%

It can be seen from the data in Table 5 that the recognition accuracy of the IFCNN has
reached 95.8%, and the recognition accuracy is much higher than that of the single-channel
CNN. Due to the similarity of the pulse waveforms of air gap discharge and suspended
discharge, the accuracy of pattern recognition is low when only the time-domain feature
sequences are used to extract the time-domain features of PD pulses. The wavelet time-
frequency diagrams extract features from both the time and frequency domains, improving
recognition accuracy. The improved algorithm in this paper fuses the two features and
avoids the problem of insufficient feature utilization through structural improvement,
which further improves the recognition accuracy. During the training process, the improved
model converges faster under the same number of iterations.
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5. Conclusions

In this paper, an IFCNN model is constructed to extract the features of PD pulses,
and PD pattern recognition is realized by using the features of the pulse signal in the
time domain and frequency domain, which solves the problem that traditional detection
methods need a large amount of statistical discharge data. The improved model takes the
one-dimensional time-domain feature sequence of PD pulse and wavelet time-frequency
diagram as input signals, uses the two-channel CNN to extract the features, fuses the
extracted fault information, and finally uses the Softmax layer to realize the classification
of PD. The method combines the advantages of 1D-CNN and 2D-CNN, fuses the time-
frequency features of different dimensions, and mines more feature information.

The data set was established to train and test the models by establishing four typical PD
defect models and using mathematical models to obtain the discharge pulse data of different
PD types. Compared to the pattern recognition effect of the improved model with 1D-CNN
and 2D-CNN, the overall recognition rate of the IFCNN model reaches 95.8%, followed by
2D-CNN (89.2%) and 1D-CNN (78.3%). The recognition effect of IFCNN is higher than the
traditional single-channel model, due to the reason that can fully extract the time-frequency
features of the discharge pulse and further retain the feature information through structural
optimization. In the actual field environment, different sensors and measuring circuits may
affect the features of the collected discharge pulses. In order to ensure the recognition accuracy
of the improved algorithm, the algorithm can be trained by re-collecting the discharge pulse
data, then use the features of the extracted discharge pulse to realize PD recognition. The
improved algorithm extracts the features of the attenuation period of the single pulse. It is
unnecessary for the collector to collect the discharge data of multiple power frequency cycles,
leading the little storage space for hardware devices. The structure of the improved algorithm
is lightweight, the number of convolution layers and the requirements for the operating system
are small are small, the model can be recognized when it is transplanted to the embedded
system, and also be easily applied to the field environment.
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Abstract: Nowadays, electricity theft has been a major problem worldwide. Although many single-
classification algorithms or an ensemble of single learners (i.e., homogeneous ensemble learning)
have proven able to automatically identify suspicious customers in recent years, after the accuracy of
these methods reaches a certain level, it still cannot be improved even if it continues to be optimized.
To break through this bottleneck, a heterogeneous ensemble learning method with stacking integrated
structure of different strong individual learners for detection of electricity theft is presented in this
paper. Firstly, we use the grey relation analysis (GRA) method to select the heterogeneous strong
classifier combination of LG + LSTM + KNN as the base model layer of stacking structure based
on the principle of the highest comprehensive evaluation index value. Secondly, the support vector
machine (SVM) model with relatively good results of the stacking overall structure experiment is
selected as the model of the meta-model layer. In this way, a heterogeneous integrated learning model
for electricity theft detection of the stacking structure is constructed. Finally, the experiments of this
model are conducted on electricity consumption data from State Grid Corporation of China, and the
results show that the detection performance of the proposed method is better than that of the existing
state-of-the-art detection method (where the area under receiver operating characteristic curve (AUC)
value is 0.98675).

Keywords: electricity theft; stacking structure; analytic hierarchy process; entropy weight method;
grey relation analysis

1. Introduction

Electricity theft in the power system refers to malicious users tampering with electricity
meters or attacking smart grids through a specific technology or devices in order to reduce
or not pay electricity bills. Electricity theft seriously damages the economic interests
of power companies, and the direct economic loss of State Grid Corporation of China
due to electricity theft exceeds 1 billion yuan each year [1]. In January 2017, a research
report released by the Northeast Group, a power grid consulting firm, said that the annual
economic losses caused by non-technical losses in the 50 developing countries surveyed
by it totaled $64.7 billion [2]. The worst of them is in India. India’s annual revenue loss
caused by electricity theft amounts to $17 billion US dollars [3]. Neither is this solely an
issue in developing countries: relatively large revenue losses caused by electricity theft
occur in developed countries as well, e.g., the revenue losses from electricity theft in the
United Kingdom and the United States are as high as $6 billion per year [4]. At the same
time, theft of electricity poses a huge threat to the order of market electricity consumption
and the stable operation of the power grid. In areas where electricity theft is common (such
as India), the power consumption side encounters irregular voltage dips and intermittent
power interruptions, especially during peak loads, which can cause fires and threaten
community safety in severe cases [5]. Therefore, it is necessary to accurately detect the
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behavior of electricity theft and provide technical support for the grid company to further
identify the users suspected of electricity theft.

The existing electricity stealing methods mainly include the undervoltage method,
the undercurrent method, the phase shift method, the differential expansion method, and
the no-table method in terms of physical means. The above physical methods can be
roughly divided into three categories, as shown in Figure 1 for the three categories of
methods [1], respectively.
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Figure 1. Three types of physical electricity theft methods. (a) Voltage reduction type wiring
diagram. (b) Current reducing type wiring diagram. (c.1) Power factor reduction type wiring
diagram. (c.2) Power factor reduction type phase diagram.

Figure 1a is a voltage reduction type. The unlawful user disconnects the zero line
terminal and then connects it to the neighbor’s zero line through the large resistance R.
The electric energy meter is connected in series with the large resistance R to divide the
voltage, and the electric energy meter measures the voltage U’ = R1/(R1 + R) × U, where
R1 is the resistance of the electric energy meter, U is the actual voltage, and the electric
energy meter only measures the voltage obtained by its partial pressure, which reduces
the measured electricity consumption. This is supposed to make the electric energy meter
lose voltage or the measured voltage to be lower than the actual voltage by operating the
voltage measurement loop, which indirectly causes the electricity consumption measured
by the electric energy meter to decrease or be zero, thereby realizing electricity stealing.

Figure 1b is the current reducing type, where Rn is the zero line impedance, Rd is the
grounding impedance, and I is the load current. The unlawful user will ground the neutral
line after swapping the neutral line and the live line, and shunt Rn and Rd in parallel, so
that the flow through the current of the electric energy meter I0 = Rd/(Rn + Rd) × I. The
electric energy meter only measures the current divided by Rn, which reduces the measured
electricity consumption. The current measured by the electric energy meter is zero or lower
than the actual current by operating the current measurement loop. The electric current
indirectly causes the electricity consumption measured by the electric energy meter to be
reduced or zero, thereby realizing electricity theft.

Figure 1c.1 is the type that reduces the power factor. The unscrupulous user connects
the modified specific converter to the circuit in parallel, so that the current flowing through
the energy meter is the vector sum of the load current I1 and the converter current I2.
The current flowing into the electric meter in the same phase as the voltage is I1cosθ − I2
makes the electric energy meter rotate slowly, stop, or reverse with the change of the size
and nature of the load. By increasing the phase difference between the current and the
voltage, the power factor measured by the electric energy meter decreases or becomes
negative, which indirectly causes the electricity consumption measured by the electric
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energy meter to be reduced, zero, or negative, thereby realizing electricity stealing. The
phase representation is shown in Figure 1c.2.

With the intelligent development of science and technology, many high-tech power
stealing methods continue to emerge. For example, some unscrupulous users install remote
control devices inside and outside the electric energy meter, and then intelligently control
the on-off of the circuit and the size of the series-inserted resistance equipment. The timer
outputs the neutral point intermittently. With the popularization of time-of-use electricity
prices, some lawbreakers achieve the purpose of stealing electricity by reversing the timing
of electricity consumption.

The traditional electricity stealing detection method requires manual on-site inves-
tigation, which is labor-intensive and has low detection efficiency and high blindness.
At present, some experts and scholars have developed anti-theft devices based on the
mechanism of electricity theft, which can effectively prevent the occurrence of certain
electricity theft behaviors [6,7]. However, since it is only designed for some traditional
electricity stealing means or some new types of electricity stealing means, the universality
of the anti-electricity stealing device is low, and at the same time, the hardware cost and
the possibility of hardware failure are increased. With the continuous improvement of
power grid intelligence, power companies have obtained massive power consumption data
to provide strong support for data mining methods. Based on data mining methods, the
implicit information behind the data can be obtained. How to effectively use power big
data to achieve efficient and accurate anti-theft malicious user identification has become
particularly important.

1.1. Literature Review

Electricity theft detection methods based on data mining can be mainly divided
into three categories. The first category is to realize electricity theft detection by building
statistical models to analyze network status information such as grid voltage, current, power
and network topology [8–11]. The electricity theft detection method based on the statistical
model needs to obtain the grid network topology, network parameters, and the correct
household change relationship. Due to the complex and dynamic change of the power grid
network structure, this method has great limitations in practical engineering applications.

The second category is the game theory detection method. From the perspective of
economics, this method builds a game theory model between power supply enterprises and
electricity malicious users to quantify the benefits of electricity theft and governance [12–14].
For example, in [12], a Stackelberg game theory model was established to analyze the
strategic interaction between a power company and multiple electricity malicious users,
and the sampling rate and threshold were tested for likelihood ratios according to the
Stackelberg equilibrium. Another example is the intrusion defense model based on game
theory in [14], which combines honeypot technology with game theory, and obtains the
optimal strategy for both sides of the attack through the game tree. Although the above
game theory method has well described the interest relationship between power supply
enterprises and electricity malicious users, the current research on the detection method of
electricity theft based on game theory mainly stays at the level of theoretical derivation and
simulation, which is temporarily difficult to apply to engineering practice.

The third category is the construction of electricity theft detection model based on data-
driven method mining of electricity data information. Data-driven methods can be divided
into unsupervised learning, semi-supervised learning and supervised learning according
to the amount of prior knowledge required. Among them, unsupervised learning can
automatically extract the typical characteristics of users’ electricity consumption by learning
the inherent similar correlation attributes of user electricity consumption data, cluster
normal users, and find outliers as abnormal users [15]. In [16], the authors proposed an
electricity stealing detection model based on cluster point algorithm, but because there is no
feature extraction process and the algorithm is simple, the detection accuracy is low. In [17],
the authors proposed feature extraction based on time-scale load sequence and constructed
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a sequential ensemble detector based on a deep auto-encoder with attention (AEA), gated
recurrent units (GRUs), and feed forward neural networks to detect electricity theft behavior,
but the feature extraction process is complex and computationally expensive. Reference [18]
proposes a generative adversarial network to generate realistic electricity stealing samples,
enhance the diversity of electricity stealing samples, and simplify the modelling process.
However, the unsupervised learning method relies heavily on parameters and is not
suitable for complex power grid environments and the detection of various types of
electricity theft methods.

The semi-supervised learning method uses a small amount of label data obtained to
train the initial learner, test and classify the unknown category data, and add the samples
with high confidence coefficient in the classification results to the training set to train the
model again, and repeat this process until all samples are the most excellent classification.
Reference [19] uses a correlation denoising autoencoder to achieve feature extraction and
feature association of electricity data. In [20], the authors propose a semi-supervised
learning-based SSAE generation model and design an adversarial module to enhance the
model’s anti-noise ability. In [21], the authors adopted a semi-supervised learning method
based on consistency loss to solve the problem of less label data in electricity stealing
detection. There is a serious data imbalance problem in electricity stealing detection. There
are fewer known labels in a small number of electricity stealing samples, which is easy to
cause overfitting of the semi-supervised model and cannot effectively identify other types
of anomalies. The method requires part of the label information, so the quality of the initial
label data is high, and semi-supervised learning needs to solve the problems of overfitting
and high-quality labels. Therefore, in the actual power grid situation, the applicability of
this type of method is not high.

In order to overcome the shortcomings of unsupervised learning methods and semi-
supervised learning methods for electricity theft detection, supervised learning methods
can be used to detect electricity theft. The supervised learning method requires part of the
label data confirming the user steals electricity as a training set, and uses the trained model
to test and classify the unknown category data. Supervised learning learns the implicit
information in the feature quantity according to the label information, finds the relationship
between the feature quantity and the label information, and detects the unknown category
data according to it. When using SVM or decision tree method, if the power consumption
data set contains noise, such as missing data, the detection performance is poor [22,23].
For the high-dimensional data of user power consumption, the detection model of shallow
structure cannot effectively process it. In order to further improve the detection accuracy,
ensemble learning methods such as XGboost are applied in the field of electricity stealing
detection [24,25]. However, the above methods do not perform feature extraction on the
data, cannot find the time series features of electricity consumption data, and cannot achieve
accurate prediction and classification when dealing with massive electricity consumption
data. To solve the feature extraction problem, a new feature-engineering framework
for theft detection in smart grids is introduced, however this method is complex and
computationally intensive [26]. For this purpose, neural networks [27] and LSTM [28]
can be used for feature extraction and classification prediction. However, because neural
networks or their variants are prone to overfitting due to excessive network training times
and long model training time, in addition, it is difficult to optimally set the hyperparameters,
which leads to the detection accuracy reaching a certain level, which cannot be improved
even if the optimization is continued.

1.2. Motivation

In order to break through the bottleneck of the existing single-classification algorithm
or fusion algorithm, when the accuracy of electricity theft behavior detection reaches a
certain level, even if it continues to optimize, it still cannot be improved [29,30]. For their
optimization algorithms, such as the stacking strong model ensemble learning method,
the selection of base classifiers does not have a good selection strategy, resulting in poor
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detection results or unable to explain the rationality of its selection. Moreover, these
optimization methods do not take into account the complexity of the model [31]. In this
paper, we use a multi-model fusion integrated learning algorithm based on the stacking
structure to address the above problems.

The main contributions of this paper are summarized as follows:

1. This paper considers that while improving the accuracy and generalization ability of
stacking structure algorithm and reducing the complexity of the model, the combined
weight method of subjective weight and objective weight based on grey relation
analysis (GRA) [32] is used to determine the weight of a single performance index of
the classifier.

2. We extract the user’s effective features of electricity consumption through a statistical-
based method and reduce the dimensionality of the extracted features using the
principal component analysis (PCA) method to reduce the redundancy of the data.

3. For the stacking structure, the choice of the base model is a difficult problem for
all researchers. We conducted a large number of experiments and compared and
analyzed the combination experiments of different models, and obtained the base
model combination with excellent detection results and model complexity. In addition,
for our chosen meta-model, SVM, we use particle swarm optimization (PSO) to
optimize its parameters to get a better detection result.

The remainder of the paper is structured as follows. Data preparation is introduced
in Section 2, which includes the recovery of missing values in the original dataset and the
repair of outliers, as well as feature extraction and dimensionality reduction of the dataset.
The stacking integrated structure is described in Section 3. Numerical experiments are
conducted, and the analysis of experiments results is shown in Section 4. Final remarks are
then presented in Section 5.

2. Data Preparation

In this section, the preprocessing process method based on the original dataset, includ-
ing the interpolation of missing values and the repair of outliers, is introduced in detail.
The feature extraction of electricity consumption dataset is then described.

2.1. Dataset

The dataset is gathered from smart meters of electricity consumption and was obtained
from a province of the State Grid Corporation of China. The dataset is a sequence of daily
electricity consumption, which is characterized as a time series, and records the daily
electricity consumption of 9956 users from 1 January 2015 to 31 December 2015. The data
are divided into thieves and normal electrical consumers, where the thieving consumers
compose 14% of the total. The dataset description is shown in Table 1 [27].

Table 1. The Description of Dataset.

Timeline
Number of Normal

Customers
Number of Theft

Customers
The Total Number

of Customers

2015/01/01–2015/12/31 8562 (86%) 1394 (14%) 9956 (100%)

2.2. Data Preprocess

In the process of collecting electricity load data, due to software and hardware failures,
special events, and other factors, the data may contain missing or some erroneous values,
which will affect the continuity of electricity consumption records, so it is necessary to
process the original dataset.
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This paper uses the method named “three-sigma rule of thumb” to recover the missing
values [27], and the formula is as follows:

f (xi) =

⎧⎨⎩
xi−1+xi+1

2 if xi > 3 · σ(xi) and xi−1, xi+1 /∈ NaN
0 xi ∈ NaN, xi−1 or xi+1 /∈ NaN
xi xi /∈ NaN

, (1)

where xi represents the power consumption value of a user in a day, σ(xi) represents the
standard deviation of vector xi, denote NaN as if xi is not a number value.

In addition, for the outliers in the dataset, the following formula is used to recover [27]:

f (xi)

{
mean(xi) if xi ∈ NaN
xi others

, (2)

where mean(xi) represents the average of vector xi.
The power consumption habits of each power user are different. If the load data is not

standardized, some users with high power consumption levels will have a greater impact on
the detection model, which will increase the burden of the algorithm and is not conducive
to model training. Extreme cases may lead to the model struggling to converge. Data
standardization can be performed using some mathematical transformation processing to
convert the original data to a fixed value range. The power load includes base load and
variable load. The use of min-max standardization can remove the base load and highlight
the trend of the variable load, while avoiding the impact of large differences in orders of
magnitude. The daily load can be normalized to reduce the abnormal number of days
and seasonal effects with critical peaks or false data injection. The min-max standardized
calculation formula [25] is:

xk
i,j =

xk
i,j − xk

imin

xk
imax − xk

imin
, (3)

where xk
imin is the minimum value of the kth day load for the ith user, and xk

imax is the
maximum value of the kth day load for the ith user.

2.3. Feature Extraction

Through the full understanding and comprehensive analysis of the user electricity
dataset, it can be seen that there are certain differences in the fluctuations and trends of
the electricity load between normal users and electricity users [33], and after extracting
valuable information about the user electricity consumption data, the established model
can be made to more accurately reflect the difference between the data and obtain better
training results. Statistics are extracted from the after-preparation electricity consumption
sequence as time series features, which are characterized by D1–D49, and the statistics-based
features are shown in Table 2.

Table 2. The characteristic indicators of user electricity consumption time series statistical.

Characteristic Indicators Dimension

Standard deviation and discrete coefficient of annual electricity consumption D1, D2

Standard deviation and discrete coefficient of quarterly electricity consumption D3~D6, D7~D10

Standard deviation and discrete coefficient of monthly electricity consumption D11~D21, D22~D32

Average monthly electricity consumption rising and falling trends D33~D41

The maximum and minimum value of the difference and the ratio of the average electricity
consumption in the adjacent two months D42~D43, D44~D45

The maximum and minimum value of the difference and the ratio of the average electricity
consumption in the adjacent two quarters D46~D47, D48~D49
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Note the user electricity data set X = (xn, n = 1, 2, . . . , N) after preprocessing,
where N is the number of users. The user’s daily electricity consumption sequence is
xn = {xnd, d = 1, 2, . . . , D}, the monthly electricity consumption sequence is
yn = {ynm, m = 1, 2, . . . , M}, the quarter power consumption sequence is
zn = {znq, q = 1, 2, . . . , Q}, where the user’s electricity consumption time is collected
is D days, M months, Q quarters. The standard deviation of electricity consumption is std,
which indicates the fluctuating characteristics of electricity consumption data [33]:

std =

√√√√√ k
∑
i
(xni − μ)2

k
, 1 ≤ i ≤ k ≤ D, (4)

where μ represents the average electricity consumption over time. The dissipation coeffi-
cient of electricity consumption is recorded as dc, which indicates the degree of dispersion
of the electricity consumption data, and its formula [33] is:

dc =
std
μ

. (5)

The difference between the mean values of electricity consumption in adjacent time
intervals is avgra [33], which is:

avgdi =

∣∣∣∣∣∣∣∣∣
k
∑

i=1
yn(m+1)

k
−

k
∑

i=1
yn(m−i+1)

k

∣∣∣∣∣∣∣∣∣
. (6)

The ratio between the mean values of electricity consumption in adjacent time intervals
is avgra, which is:

avgra =

k
∑

i=1
yn(m+1)

k
÷

k
∑

i=1
yn(m−i+1)

k
. (7)

The trend of electricity consumption rise and fall is obtained by comparing the actual
value of electricity consumption xnt at a certain time t with the predicted electricity con-
sumption Ft at this time. Among them, the predicted value at a certain time is shifted item
by item according to the time series through the simple moving average method, and its
predicted value is the average value of the last fixed item number k. The Ft formula [33] is:

Ft =
(xn(t−1) + xn(t−2) + · · ·+ xn(t−k))

k
. (8)

The rising and falling trend tr of a certain time t is:

tr = xnt − Ft, (9)

if tr > 0, it is an uptrend; if tr < 0, it is a downtrend.
Since the feature dimension of the above-mentioned extracted power consumption

time series data is large, the features are redundant, and the feature matching is too
complicated. Therefore, the extracted feature data needs to be dimensionally reduced.
In this paper, principal component analysis (PCA) [34] is used to reduce the dimension
of high-dimensional feature data, that is, a small number of new attributes are used to
ensure that a large amount of original information is not lost. Suppose that the extracted
power-time series data features are: Yn×f , where n is the number of samples and f is
the feature dimension. The eigenvalues obtained by the PCA method are arranged from
largest to smallest as follows: λ = [λ1, λ2, λ3, . . . , λf−1, λf], and the matrix obtained by the
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eigenvectors corresponding to the previous l eigenvalues is Af×k. The new feature data
obtained after calculating the dimensionality reduction of principal component analysis
method are: Y′

n×k = Yn×f × Af×k, and the principal component contribution rate r is
defined as the value criterion for l. The contribution rate r represents the proportion of the
eigenvalues corresponding to the principal components in the data after dimensionality
reduction, which reflects the reliability of the new features. In this paper, we choose
r ≥ 95% [34], that is:

r =

l
∑

i=1
λi

f
∑

i=1
λi

≥ 0.95, (10)

where l ≤ f.

3. Proposed Methods

This section details the paper’s proposed design for the stacking integrated struc-
ture, followed by the electricity theft detection method based upon it, including the se-
lection of the base-classifier model and the meta-classifier model, and the flow of the
detection method.

3.1. Principles of Ensemble Learning

Ensemble learning accomplishes learning tasks through the construction and com-
bination of multiple learners and can also be labeled a multi-classifier system. Figure 2
shows the usual architecture of ensemble learning. In essence, a set of single learners is first
created, and these are then combined using a particular strategy. The single learners are usu-
ally derived from training data by a pre-designed learning algorithm. Ensemble learning,
with its multiple combined learners, can often obtain significantly superior generalization
performance and estimation accuracy than the single learner method.

Data 

Single 
learner 1

Combining 
modules

Single 
learner 2

Single 
learner T

Output

 
Figure 2. The usual structure of ensemble learning.

The most common ensemble methods include bagging, boosting, and stacking. Bag-
ging trains homogeneous weak estimation models in parallel and averages the results
from each one to achieve the final output. Boosting works similarly to bagging, but the
weak models are given a variety of weights, so that the final output is given as weighted
average values. In contrast, stacking creates its models through the use of different learning
algorithms, which results in a unified methodology that can blend multiple estimation
models into a single, unique metamodel. Stacking learning also has better generalization
performance than other ensemble learning methods, as is corroborated in [35].

3.2. Stacking Integrated Structure

Stacking (sometimes called stacked generalization) was first introduced by David
Wolpert in [35]. Its main purpose is to reduce generalization errors. According to Wolpert,
stacked generalization can be understood as a “more complex version of cross-validation”
that integrates models through a winner-takes-all approach.
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The stacking integrated structure is composed of three parts. Firstly, the training data
is evenly divided into k non-intersecting pieces as the data set for the classifiers’ “leave- one-
out” method training; secondly, the base classifiers are chosen from a number of classifiers,
and their prediction results are obtained. Finally, the prediction results are used as the
next stage feature input, a classifier is selected as a meta-classifier for training, and the
prediction results are output. The integrated structure of stacking is depicted in Figure 3.

Training Dataset Sn

Training Fold Validation Fold

k-fold

F1 F2 F3 F4 Fk

Repeat k times

Train

M1 M2 MP

Y1 Y2 YP

Predict

Test Dataset 
Tq

T1 T2 TP

M

Y

Meta-
regression

Final 
prediction

Train

Predict

Predict

Base-
classifier

Meta-
classifier

Tmeta Ymeta

Preprocessed Dataset 
X

Yes/No  fraudulent users  
Figure 3. Structure of stacking integrated model.

For the first layer, the k-fold layer, the preprocessed dataset X is split between a training
dataset and a test dataset, where the training dataset Sn = {(xn, yn), n = 1, 2, . . . , N} is divided
into k-folds (i.e., F1, F2, . . . , Fk), and the test dataset is Tq = {(xq), q = 1, 2, . . . , Q}. In Sn, x is
the feature vector, and y is the classification attribute. The second layer, the base-classifier
layer, contains P base models Mp (i.e., M1, M2, . . . , MP). For each base model M1, M2, . . . ,
MP, k training is performed separately, and 1/k samples are reserved for every training to
be used as a test to make predictions. All prediction results are spliced, and M1, M2, . . . ,
MP respectively get the meta training dataset Ymeta = (Y1, Y2, . . . , YP), while the result YP
obtained by a single model is YP = {(yP1, yP2, . . . , yPk)}. Here, Ymeta actually refers to the
meta-features of the training dataset [35].

Ymeta =

⎡⎢⎢⎢⎣
(y11) (y21) · · · (yP1)
(y12) (y22) · · · (yP2)

...
...

...
(y1k) (y2k) · · · (yPk)

⎤⎥⎥⎥⎦, (11)

Moreover, the base models M1, M2, . . . , MP are trained k times each. The model
obtained in each training is predicted on the test dataset, and the k prediction results of each
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model are averaged to obtain the meta test dataset Tmeta = T1, T2, . . . , TP, where TP = ((TP1),
(TP2), . . . , (TPq)). As before, Tmeta is the meta-features of the test dataset here [35].

Tmeta =

⎡⎢⎢⎣
T11T21 · · · TP1
T12T22 · · · TP2

T1qT2q · · · TPq

⎤⎥⎥⎦, (12)

The last layer is the meta-classifier layer. A simple model is trained through the meta
training dataset Ymeta, and then the meta test dataset Tmeta is predicted to get the final
output. Since the base-classifier layer uses strong models to prevent over-fitting of the
overall model, a simple one is generally chosen for the meta-classifier layer model. The
linear regression model is a very common choice. In fact, a new simple model is used
to train the super-features of the training dataset to train a model from meta-features to
ground truth. Then, the meta-features of the test dataset are input into this model to obtain
the final result. The pseudo-codes of the stacking integrated structure approach are given
in Algorithm 1.

Algorithm 1: The stacking integrated structure

Input  Trainning Dataset Sn  = {(x1,y1) , (x2,y2), ···, (xN,yN)

Ymeta = ∅ 

1
2
3
4
5
6
7

 Base-classify Algorithm M1, M2, ···, MP

#Data processing
for p = 1, 2, 3, ···, P   do

hp = Mp (Sn  )
end for

for p = 1, 2, 3, ···, P   do
Yp = Mp(k) (xn)

8
9
10
11

Meta-classify Algorithm M

for n = 1, 2, 3, ···, N   do

end for
Ymeta = Ymeta (Y1, Y2,···,  YP)

end for
h' = M(Ymeta)

Output: Y =  h'(Tmeta)  

3.3. Flow of the Detection Method

The specific steps of the electricity theft detection process based on the stacking
integrated structure experimental flow chart are shown in Figure 4. First, data are collected
from smart meters, which form a historical electricity consumption dataset. The collected
data are then preprocessed, including filling missing values and outlier removal (see
Section 2.2 for details). Meanwhile, the pre-processed electricity consumption data is
extracted for feature extraction in order to obtain better detection results. Finally, the data
training and user prediction are carried out by establishing the stacking structure of the
electricity theft detection model, including the selection and analysis of the base model,
the selection and analysis of the metamodel, the selection of the super parameters in the
classification model, and the optimization of the parameters of the metamodel through the
algorithm to achieve the best detection effect.
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Figure 4. Structure of stacking integrated model experimental flow chart.

3.4. Selection of Stacking Structural Base Model and Meta Model

According to the previous introduction, this paper uses the combined weight method
of subjective weight and objective weight based on GRA to determine the weight of a single
performance index of the classifier and takes the final result of the weighted sum of each
index as the base model evaluation criterion for selecting stacking structure.

Among them, common subjective methods of assigning weights include: expert sur-
vey method (Delphi method), analytic hierarchy method (AHP) [36], binomial coefficient
method, chain comparison scoring method, least squares method, etc. Common methods
of objectively assigning weights include: the entropy weight method (EWM) [37], principal
component analysis method, factor analysis method, etc. According to the characteris-
tics of the classifier evaluation index, the subjective assignment and weighting method
selects a decision-making method with simple quantitative relationship and simple logic,
namely analytic hierarchy process (AHP). The entropy weight method (EWM) is a more
accurate method of objectively determining weights, which can supplement the subjective
assignment and weighting method that is too subjective and insufficient, and the method
can modify the determined weights, so its adaptability is stronger than other objective
weighting and weighting methods.

Based on the GRA, the method of combining and assigning weights is based on
the principle of the maximum gray correlation between subjective preference values and
objective preference values and decision values, which has the characteristics of clear
thinking, being concise and practical, and easy to implement on the computer.

First, the subjective weight value of the classifier performance index is determined
by the AHP. In the field of electricity theft detection, the number of negative samples (i.e.,
samples of users who steal electricity) is much smaller than that of positive samples (i.e.,
normal user samples), so considering data redundancy, four relatively important evaluation
criteria are selected as reference indicators, namely: Recall rate (Recall), MAP@100, F1-score
and AUC. In order to better introduce the above 4 indicators, we need to introduce a
confusion matrix as shown in Table 3. The dataset provided in this paper is divided into
normal users and thieving users and contains labels. The essence of theft detection is a
binary classification problem.

Table 3. Confusion Matrix in the Detection of Electricity Theft.

Users Detected as a Theft User Detected as a Normal User

Theft users TP (true positive) FN (false negative)

Normal users FP (false positive) TN (true negative)
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Recall rate (Recall) and F1-score are defined using the confusion matrix in Table 3,
corresponding to (13) and (14) [27]. F1-score is the harmonic average of precision and
Recall, which is able to comprehensively evaluate the performance of a classifier.

Recall =
TP

TP + FN
, (13)

F1-score =
2TP

2TP + FN + FP
, (14)

A ROC (receiver operating characteristic) curve is used to express the relative rela-
tionship between FPR (FPR = FP/(TN + FP)) and TPR (TPR = TP/(TP + FN)) growth rates
in the confusion matrix. In the ROC space, the closer coordinates are to the ROC curve
on the upper left, the lower the FPR caused by the same detection rate, and the better the
detection performance. AUC (area under ROC curve) is the sum of the areas under the
ROC curve. For the purpose of comparing each classifier’s performance, the larger the
AUC value, the better, and when AUC = 1, the classifier is ideal. The calculation formula of
AUC is as follows [27]:

AUC =
∑i∈positive Ranki − H(1+H)

2

H × F
, (15)

where Ranki signifies the ranking value of sample i, H signifies the number of positive
samples, and F signifies the number of negative samples.

Mean average precision (MAP) is used to evaluate the performance of model detection.
MAP@F is defined as the average accuracy of the detection model correctly identified as
thieving users among the top F users with the highest suspicion. MAP@F is as follows [27]:

MAP@F =
∑r

i=1 P@ki

r
, (16)

where r represents the number of users who steal electricity among the top F users with the
highest suspicion; P@ki is defined as [27]:

P@ki =
Yki
ki

, (17)

where Yki represents the number of users who are correctly identified electricity thieves
among the first k users with the highest suspicion, and ki (i = 1, 2, 3, . . . , r) represents the
position of k. In this paper, we use MAP@100 as evaluation metrics.

The higher the Recall, the lower the number of users who steal electricity and are
misidentified as normal, so this metric has a greater impact on the model. MAP@100 is in
the first 100 users with the highest suspicion, the detection model is correctly identified as
the average accuracy of the electricity theft user, if the prediction result of the classifier is all
judged to be the electricity theft user, then the Recall is very high and the accuracy rate is
very low, this result is not conducive to distinguishing between normal users and electricity
theft users, and MAP@100 is an important supplement to Recall, so its importance is higher
than Recall. F1-score is the harmonic mean of Recall and accuracy, and the higher the value,
the more credible the classification result, so its importance is higher than MAP@100. AUC
can be obtained by summing the areas of the parts under the ROC curve, the larger the
AUC value, the better, and the ideal classifier is obtained when AUC = 1. Therefore, AUC is
the most important in the pursuit of the accuracy of electricity theft detection. The weight
values of Recall, MAP@100, F1-score, and AUC obtained according to the AHP are shown
in Table 4.
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Table 4. The AHP method determines the classifier performance metric weight value.

Metrics Recall F1-Score MAP@100 AUC

Recall 1 1/5 1/4 1/6

F1-score 5 1 2 1/2

MAP@100 4 1/2 1 1/3

AUC 5 2 3 1

Next, the objective weight value of the classifier performance index is determined by
the EWM. The EWM mainly determines the weight according to the amount of informa-
tion transmitted to the decision-maker by each evaluation index, and is a mathematical
method for calculating comprehensive indicators. Assuming that the base model is m clas-
sifiers or a combination of classifiers, the evaluation index reflecting its model is n. Let
X = {x1, x2, . . . , xm} represent the set of schemes for multi-attribute decision problems,
G = {G1, G2, . . . , Gn} represents its corresponding set of properties, and w = (w1, w2, . . . , wn)T

represents its corresponding property weight vector. Remember the decision matrix
R = (ri,j)m×n, where ri,j is the decision value of the ith classifier on the j indicator. Cal-
culate the information entropy of the j indicator Hj [36]:

Hj = − 1
ln(m)

m

∑
i=1

pi,jln(pi,j), (18)

where pi,j =
ri,j

m
∑

i=1
ri,j

represents the proportion of each metric for a classifier to the total

statistical value of that metric, 0 < Hj < 1. According to the entropy value Hj of each
indicator, the entropy weight wj of the corresponding indicator can be determined [36]:

wj =
1 − Hj

∑ (1 − Hj)
. (19)

It can be seen from the entropy weight wj that when the value of each classifier differs
on the indicator, the smaller the information entropy and the greater its entropy weight,
which means that the indicator can provide more useful information to the decision maker.

Finally, the subjective weight values determined by the above hierarchical analysis
and the objective weight values determined by the entropy method are combined by the
combined empowerment method based on the grey correlation degree analysis method.
The specific calculation steps are:

In the first step, according to the decision matrix R, the relationship between the
comprehensive attribute value Zi and the attribute weight of the scheme xi is [32]:

Zi =
n

∑
j=1

ri,jwj, i ∈ M. (20)

In the second step, the weight vector w′ of the attribute is obtained by using the AHP,
and the weight vector w” of the attribute is obtained by using the EWM. Formula (20)
is used to obtain the subjective preference value Z′ and the objective preference value
Z” of each scheme. Before calculating the grey correlation coefficient, the parent and
sub-indicators need to be determined. The parent indicator is X0 = (x1,0, x2,0, . . . , xm,0)T.
Other factor indicators, i.e., sub-indicators, are denoted as Xj = (x1,j, x2,j, . . . , xm,j)T, where
j = 1, 2, . . . , n. Calculate the gray correlation coefficient δi,j for X0 and Xj [32]:
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δi,j =

min
1≤j≤n

min
1≤i≤m

∣∣∣∣Δi,j

∣∣∣∣+ρ max
1≤j≤n

max
1≤i≤m

∣∣∣∣Δi,j

∣∣∣∣∣∣∣∣Δi,j

∣∣∣∣+ρ max
1≤j≤n

max
1≤i≤m

∣∣∣∣Δi,j

∣∣∣∣ , (21)

where Δi,j = xi,0 − xi,j, ρ represents the resolution coefficient, the value of which is ρ ∈ [0, 1],
which is generally ρ = 0.5. According to Equation (20), the gray correlation coefficient δi,j
between the subjective preference value Z′ and the objective preference value Z” and the
decision value ri,j (where the former is δ′i,j, and the latter is δ”i,j). The grey correlation coef-
ficient δi,j reflects the similarity between the objective preference and subjective preference
of the decision maker for indicator j and the decision value, and the larger the value of δi,j
indicates that the subjective preference and objective preference of the decision maker for
indicator j are more similar to the decision value.

In the final step, since the various schemes are fairly competitive, that is, no preference
for any of them, the following objective optimization model can be established [37]:⎧⎪⎪⎨⎪⎪⎩

maxδi,j =
n
∑

j=1

m
∑

i=1
(δ′i,j + δ′′i,j)Wj

s.t.Wj ∈ w, Wj > 0,
n
∑

j=1
Wj = 1

. (22)

According to the above optimization model, the combined weight vector Wj can
be solved.

For the final result of the weight vector Wj weighted sum of m classifiers or classifiers
obtained by the analysis of GRA, η used as the base model evaluation criterion for selecting
stacking structure, in which a classifier or combination of classifiers with relatively large
comprehensive evaluation index values is selected as the base model. In the process of
feature extraction, due to the use of complex nonlinear transformations, complex classifiers
are not required at the metamodel layer, but a simpler model is selected to prevent overfit-
ting of the overall model. The model selection principle is a classifier that is simple and has
good classification prediction results [35].

4. Evaluations

In order to authenticate the effectiveness and accuracy of the algorithm given in this
paper, it should be noted that the experimental hardware is a 64-bit, 6-core Intel Core
i7-8750H CPU@2.20 GHz, and the deep learning framework uses TensorFlow and Keras.
The programming accomplished using PyCharm 2020 (The software version number is:
Pycharm2020.3.2, developed by JetBrains, headquartered in Prague, Czech Republic). The
experimental data used in this paper are based on a dataset from a province of the State
Grid Corporation of China (refer to Section 2.1 of this paper).

4.1. Construction of Base Model Layer in Stacking Structure

According to the experimental flow of the electricity theft detection model based on
stacking structure in Figure 4, the data preprocessing, including missing value comple-
ment and outlier value repair, has been described in detail in Section 2 of the article, and
the principle of feature extraction (i.e., load sequence feature extraction) for electricity
consumption data has been described in detail in Section 2.3 of the article, where the
load sequence feature extraction is performed on the SGCC dataset to obtain time series
features [D1, . . . , D49]. The newly dimensionality-reducing features of the extracted high-
dimensional time series [D1, . . . , D49] were then treated by the PCA method described
above to obtain the new dimensionality-reducing feature values from largest to smallest:
λ = [λ1, λ2, λ3, . . . , λ48, λ49]. Calculate the value of l when the principal component contri-
bution rate r ≥ 95% is calculated by Formula (10), and l = 6 is obtained after calculation,
that is, the first six principal component eigenvalues are selected as the new feature set Y.
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The selection of the base model layer and the metamodel layer in Figure 3 is the most
important part of building the stacking structure, and the principle of the selection of the
base model layer and the metamodel layer has been described in detail in Section 3.3,
where the base model layer is more complex than the metamodel because of the large
number of classifiers in this layer. The base model layer determines the weight values
of a single performance index of the classifier by using a combined weight method of
subjective weights and objective weights based on GRA, of which the subjective weight
method obtains the weights of Recall, MAP@100, F1-score and AUC through the AHP
as shown in Table 4, and the weights of the four indicators are further calculated to be:
w′ = (0.0598, 0.2933, 0.1786, 0.4683).

In order to obtain the objective weight w” obtained by the EWM, the decision matrix
R = (ri,j)m×n of each classifier or a combination of classifiers (that is, each scheme) is first
required, that is, the different classifications in the stacking structure are selected. The
combined base model has four performance indicators: Recall, MAP@100, F1-score, and
AUC under the new feature set Y after preprocessing, feature extraction and dimensionality
reduction of the SGCC dataset, at this time, the meta-model of the stacking structure
chooses a relatively simple linear regression (LR) model [38]. According to the classifier,
selection of the base model layer, as in Section 3.3, should be strong and numerous, so the
performance index values of eight existing classifiers commonly used for electricity theft
detection under the new feature set Y are compared, and the eight classifiers are: random
forest (RF) [39], eXtreme gradient boosting (XGBoost) [25], light gradient boosting machine
(LightGBM) [40], support vector machine (SVM) [22], CART decision tree (DT) [23], deep
forest (DF) [41], long short-term memory (LSTM) [28], and K-nearest neighbor (KNN) [42].

The hyperparameters of the above eight classifier algorithms are set to: In the RF
model, the number of decision trees and the maximum depth of the tree are set to 101 and
15, respectively. The XGBoost model sets the learning rate to 0.5, the random sampling ratio
to 0.08, and the maximum depth and optimal number of iterations to 3 and 10, respectively.
The LightGBM model sets the number of leaf nodes to 10, the learning rate to 0.05, the
feature selection scale and sample sampling ratio of the tree to 0.8, and the number of
iterations required to perform bagging is 5. The SVM model sets the kernel function as a
radial basis function, and the penalty coefficient C = 15. The DT model sets the confidence
parameter θ = 0.25, the minimum number of instances on the leaf node ρ = 2. The number
of decision trees required for the DF model to set up multi-granular scanning is K = 30,
and the slicing window size is 15. The LSTM model sets the number of neurons to 32, the
number of hidden layers to 2, the learning rate to 0.1, and the number of trees to 300. The
KNN model sets the initial K value to 3.

The new feature set Y data samples are divided, and 50% of the data is randomly selected
as the training sample (corresponding to 50% of the data as the test sample), and Table 5 is
the experimental results of the above eight classifiers, that is, the decision matrix R. Therefore,
the objective weight method obtains call, MAP@100, F1-score, and AUC through the EWM,
and the four performance index weights are: w” = (0.25899, 0.24321, 0.24851, 0.24929).

The combined weight vectors of each index of the combined weighting method can
be obtained in three steps based on GRA: Wj = [0.0598, 0.2432, 0.2287, 0.4683]. Accord-
ing to the combined weight vector Wj, the comprehensive evaluation index values of the
above eight classifiers are calculated: η1 = [0.8273, 08107, 0.7991, 0.7318, 0.6863, 0.7962,
0.8110, 0.6848]T, from which the comprehensive evaluation index of the above 8 classi-
fiers is sorted as: RF > LSTM > XG > LG > DF > SVM > DT > KNN. The classifiers of the
base model layer are combined according to the above eight classifiers, and the classi-
fier combinations are combined from 2 to 8, where the number of combination types is:
C2

8+C3
8+C4

8+C5
8+C6

8+C7
8+C8

8 = 247, due to the many combinations, as shown in Table 6.
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Table 5. The experimental results of 8 classifiers under feature set Y.

Classifier
Metrics

Recall F1-Score MAP@100 AUC

RF 0.87831 0.85061 0.86121 0.79187

XG 0.87483 0.84731 0.81756 0.78112

LG 0.86815 0.84441 0.81261 0.76108

SVM 0.86743 0.82417 0.76136 0.64407

DT 0.85911 0.79401 0.63899 0.63625

DF 0.72667 0.84617 0.82528 0.76551

LSTM 0.85928 0.83304 0.85928 0.76909

KNN 0.86001 0.79529 0.61371 0.64538

Table 6. The experimental results of each classifier combination under feature set Y.

Number of Classifiers The Combination of Classifiers
Metrics

Recall F1-Score MAP@100 AUC

2

(DF + LSTM) i 0.89598 0.88095 0.92766 0.84267

(XG + LSTM) ii 0.90143 0.88937 0.94245 0.84268

(LG + LSTM) iii 0.90341 0.89259 0.95528 0.85764

3

(DF + LSTM + KNN) iv 0.98431 0.91358 0.99378 0.94881

(XG + LSTM + KNN) v 0.98642 0.98637 0.99872 0.95149

(LG + LSTM + KNN) vi 0.98712 0.99872 0.99969 0.97401

4

(DF + LSTM + KNN + SVM) vii 0.98599 0.91531 0.99667 0.95691

(XG + LSTM + KNN + SVM) viii 0.98945 0.98431 0.99378 0.95841

(LG + LSTM + KNN + SVM) ix 0.98761 0.99898 0.99979 0.97659

5 (DF + LSTM + KNN + SVM + XG) x 0.97185 0.90857 0.98011 0.93027

6 (DF + LSTM + KNN + SVM + XG + LG) xi 0.96493 0.91571 0.97401 0.92857

7 (DF + LSTM + KNN + SVM + XG + LG + RF) xii 0.95944 0.91385 0.96815 0.92779

8 (DF + LSTM + KNN + SVM + XG + LG + RF + DT) xiii 0.94521 0.91706 0.96529 0.92262

The experimental results only list some valuable classifier combinations (each quantity
combination classifier selects relatively good displays according to the performance index
values) and its corresponding Recall, MAP@100, F1-score, and AUC of the four performance
index values. At this point, the meta-model of the stacking structure selects a linear
regression model, and the k-fold setting k = 5.

The comprehensive evaluation index values of stacking structure integration learn-
ing method of each of the above classifier combinations were calculated by the com-
bined weight vector Wj based on gray correlation degree analysis, and the results were:
η2 = [0.8746, 0.8804, 0.8912, 0.9526, 0.9729, 0.9867, 0.9576, 0.9746, 0.9879, 0.9389, 0.9380,
0.9355, 0.9324]T. The η2 corresponds to the comprehensive evaluation index values of each
of the above classifier combinations, from which the comprehensive evaluation indexes of
the above 13 classifier combinations can be sorted as follows: ix > vi > viii > v > vii > iv > x >
xi > xii > xiii > iii > ii > i, that is, the top three combinations of the comprehensive evaluation
index values of the 13 classifier combinations are: LG + LSTM + KNN + SVM, LG + LSTM +
KNN and XG + LSTM + KNN + SVM, the corresponding comprehensive evaluation index
values are 0.9879, 0.9867 and 0.9746, respectively. So, the stacking structure integration
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learning method of the three classifiers combination base model layers has a better effect
on the detection and classification of electricity theft behavior.

Through the above method, three classifier combinations with relatively good compre-
hensive evaluation index values were selected, but the comprehensive evaluation index
values were relatively close (the difference was about 0.001). In order to select the optimal
classifier combination, the training time of the model is also an important reference index
for the real-time detection of electricity theft, so the training time of the stacking structure
integration learning model under different classifier combinations is considered (at this
time, the metamodel still uses a linear regression model). As shown in Figure 5, given the
training time of the stacking structure integration learning model under different classi-
fier combinations, it can be clearly concluded that when the base model layer adopts the
LG + LSTM + KNN combination, the model training time of the stacking structure is the
least, only 13.078 s. The longest model training time is the XG + LSTM + KNN + SVM
combination, and the training time is 17.154 s.

Figure 5. Training time of stacking structure integration learning model under different classifier
combinations.

Taking into account the accuracy of the model and the training time of the model, the base
model layer of the stacking structure ensemble learning model selects LG + LSTM + KNN.
The comprehensive evaluation index value of stacking structure ensemble learning model
detection based on this base model layer is only 0.0012 different from the comprehensive
evaluation index value of stacking structure ensemble learning model detection based on
the combination of LG + LSTM + KNN + SVM. The training time difference is 2.027 s.
Therefore, considering the above factors, the combination of LG + LSTM + KNN is selected
as the base model of the stacking structure ensemble learning model.

The above experiments set k = 5 in the k-fold layer, and different k values will greatly
affect the detection effect of the stacking structure. According to the above experiments, the
combination of LG + LSTM + KNN is selected as the base model of the stacking structure
ensemble learning model, and the linear regression model is selected for the meta-model
layer, and the k values are set to 2, 3, 4, 5, 10, 15, and 20 pairs of models respectively. After
training, Figure 6 shows the experimental results under different k values, in which the
experimental results are the four performance index values of Recall, MAP@100, F1-score,
and AUC. As can be seen from Figure 6, as the value of k increases, the values of the four
performance indicators also increase. When the value of k is 5, each indicator value reaches
the maximum value. On the other hand, the experimental results with k-fold cross-training
are better than those without k-fold cross-training, so k-fold cross-training significantly
improves the detection performance of the model. Therefore, when the combination of
LG + LSTM + KNN constitutes a stacking structure, five-fold cross-training is selected, that
is, k = 5 is set as the best parameter in the k-fold layer.
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Figure 6. Experimental results of stacking structure with different k values.

The stacking structure integration learning method integrates a variety of detection
algorithms, which can make full use of each algorithm to observe data from different data
spaces and structures. Therefore, the classifier of the base model layer should try to choose
an algorithm with excellent performance and should also add different types or properties
of classification algorithms as much as possible. In order to further verify and analyze
the optimal base model combination selected, each base learner separately compares the
classification prediction of the new feature set Y, and the Pearson correlation coefficient
matrix is used to analyze the correlation of the classification prediction index values (AUC),
and its calculation formula is as follows [33]:

r =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2(yi − y)2

, (23)

where x, y is the sample mean. The larger value of |r|, the more correlated it is. Figure 7
shows the correlation coefficient matrix between each classifier.

 
Figure 7. Matrix of correlation coefficients for the value of the classification prediction indicator
between classifiers.
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It can be seen from Figure 7 that the correlation degree of the value of the classification
prediction index of each algorithm is generally high, which is due to the strong learning
ability of each algorithm, and the inherent laws learned in the data during training are
similar to the data observation angles. Among them, the classification prediction index
values of RF, XG, LG, DF, and DT algorithms have the highest correlation, which is due to
the fact that although the principles of the five types of algorithms are slightly different, they
still belong to the integrated algorithms of the tree, and there are strong similarities in their
data observation methods. The training mechanisms of LSTM, SVM, and KNN have a large
gap, so the correlation of classification prediction index values is also low. Therefore, the
effectiveness of the base model layer in choosing LG + LSTM + KNN algorithm combination
as the base model in stacking integration learning is further verified.

4.2. Construction of Meta Model Layer in Stacking Structure

As described in Section 3.2, the meta-model layer usually chooses a relatively simple
model to prevent the overfitting problem of the collation model, so this section selects
several relatively simple models at the meta-classifier layer to compare the experimental
results of the stacking structural integration learning method, including the SVM, DT, KNN,
and LR. The ROC curves of the experimental results of the stacking structure under the
above four different meta-models are shown in Figure 8.

Figure 8. The ROC curve of stacking structures under different meta-models.

It can be clearly seen from Figure 8 that when SVM is selected for the meta-model layer,
the overall detection effect of Stacking ensemble learning is the best, and its AUC value is
0.98013. When the meta-model layer adopts decision tree, the sorting and detection effect of
the stacking ensemble learning is slightly worse than the other three. Therefore, considering
the detection effect, this paper adopts SVM as the model of the stacking integrated learning
meta-model layer.

Since the recognition accuracy of the SVM algorithm is limited to a large extent by the
selection of parameters, and the parameter optimization algorithm generally has problems,
such as slow convergence speed and a tendency to fall into local extremums, the particle
swarm optimization (PSO) algorithm [43] with strong optimization ability, fast convergence
speed, and short calculation time is selected in this experiment to optimize the penalty
coefficient C and kernel function (i.e., radial basis function) parameter σ values in the
stacking integrated learning model metaclassifier SVM hyperparameter. Figure 9 shows
the particle swarm optimization metaclassifier SVM hyperparameter flowchart, which is
implemented as follows:
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Figure 9. Flowchart of PSO to optimize meta-classifier (SVM) hyperparameters.

First of all, the initialization stage of the PSO parameter sets the step size and upper
and lower boundaries of the search parameters, and the local optimal solution of the
particles, the global optimal solution of the particle swarm, and its corresponding position
are obtained by calculating the fitness function, and the fitness function adopts the cross-
validation scores (CVS) method, which is calculated as follows [43]:

CVS =
1
k

k

∑
i=1

yi
y

, (24)

where k is the number of cross-validations, y represents the number of training samples, yi
is the number of training samples that are correctly divided, and the higher the CVS value,
the higher the accuracy of the model.

Second, the velocity and position of the individual particle swarm are iteratively
updated according to the local optimal and global optimal solutions, and the cycle is
reached until the maximum number of iterations is reached.

Finally, the parameters corresponding to the global optimal particle swarm individuals
obtained above are trained as the initial parameters of the SVM, and the fitness value of each
particle is calculated by the k-fold cross-validation value method again. If the adaptability
of the new position is better than that of the local optimal particle, the local optimal particle
is replaced with the new particle. If the optimal particle in the population is superior to
the global optimal particle, the global optimal particle is replaced by the best particle in
the population. The global optimal parameter C and σ values are returned after the above
is completed.

The above particle swarm algorithm optimizes the stacking ensemble learning model
meta-classifier SVM hyperparameter, and the basic parameters of PSO setting are: accelera-
tion factor c1 and c2 are both 2, inertia factor ω = 1, the number of particle swarms is 20, and
the maximum number of iterations is 50. Figure 10 shows an evolutionary iteration plot
that represents the resulting change in fitness values over different evolutionary algebras.
As can be seen from Figure 10, PSO optimizes the SVM process, the fitness value remains
unchanged after 26 iterations, and the final optimal fitness value is 0.976013, at which time
the optimal parameter combination of the trained SVM is C = 21.375 and σ = 1.43.
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Figure 10. Diagram of evolutionary iterations.

When the PSO optimization SVM obtains the best adaptability value, the AUC value is
compared with the different effects before and after the optimization of the SVM parameters,
as shown in Figure 11, which is the ROC curve of the stacking integration learning model
before and after optimization.

Figure 11. ROC curve before and after optimization.

It can be clearly seen from the ROC curve that the AUC value before optimization is
0.98013, while that after optimization is 0. 98675, and the AUC value is increased by about
0.007, because the detection effect of the stacking integrated learning model is relatively
satisfactory, and the room for improvement is effective. So, SVM can relatively effectively
improve the overall performance of the algorithm.

4.3. Comparison with Existing Methods

In order to verify the effectiveness of the detection method of stealing behavior based
on the stacking ensemble learning model proposed in this paper, the experimental results
are compared by using CNN [44], wide and deep CNN [27], hybrid deep neural networks
(HDNNs) [45], CNN-RF [39] and the methods adopted in this paper. The dataset used in
the above method is described in Section 3.1. Figure 12 shows the ROC curve of the above
five methods, and the experimental results of the above five methods are shown in Table 7.
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Figure 12. The ROC curves of the method proposed in this paper and the other four methods.

Table 7. The methods proposed in this article compare the results with other methods.

Methods
Metrics

Recall F1-Score MAP@100 AUC

CNN 0.82613 0.75625 0.86015 0.83447

wide and deep CNN 0.85862 0.86331 0.87329 0.84273

Hybrid Deep Neural Networks(HDNNs) 0.84228 0.86085 0.86265 0.83718

CNN-RF 0.87637 0.89628 0.91358 0.84729

The proposed method 0.98948 0.99913 0.99975 0.98675

We can see from Table 7 that the evaluation indicators of the method proposed in
this paper under the actual power grid data are better than the other four existing detec-
tion methods, of which the AUC value is 0.98675, which is much higher than the other
four methods.

In addition, for Recall and F1-score, the method in this paper is one order of magnitude
higher than other methods. For example, the Recall of this method reaches 0.98948, while
the highest Recall value of the other four methods is CNN-RF, which is 0.87637. In addition,
we found that the other four methods are all deep learning methods, three of which are
variants of CNNs, that is, optimization on CNNs. Compared with the automatic extraction
process of CNN, the purpose of manual feature extraction and selection of the proposed
method is more clear and more efficient. Moreover, the stacking structure is a combination
of multiple strong models that can learn from different angles of the data, and the learning
ability of this method is stronger.

In summary, the evaluation indicators of CNN and its optimization methods have
been improved to a certain extent, but they still cannot reach a very high level. It is worth
noting that the method proposed in this paper can break through the bottleneck where
other methods cannot improve after the accuracy reaches a certain level and achieve the
purpose of improving the accuracy rate.

5. Conclusions

In this paper, we propose a multi-model fusion ensemble learning algorithm based on
the stacking structure to detect electricity theft behaviors. The feature of this paper based
on the stacking structure detection algorithm is that the PCA method is used to reduce the
dimensionality of the user time series statistical feature indicators in the extracted dataset.
That is, only the new properties of the first six principal component eigenvalues are used
to ensure that a large amount of original information is not lost. The subjective weight
values determined by the AHP method and the objective weight values determined by
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the EWM are combined and weighted by GRA method. The classifier combination of
LG + LSTM + KNN with a relatively high comprehensive evaluation value (0.9867) and
a relatively low model training time (13.078 s) is selected as the base model layer of the
stacking structure by comprehensive evaluation index values through a large number
of experiments.

In the meta-model layer, several relatively simple models are selected for comparative
experiments. The SVM model with relatively good overall structure experimental results
(the AUC value is 0.98013) of stacking is selected as the meta-model. The PSO algorithm
is used to optimize the hyperparameters of the SVM model and improve the AUC value
of the model from 0.98013 to 0.98675. By comparing the stacking structural model with
the existing methods under the SGCC dataset, the effectiveness of the proposed methods
is further verified. For example, the AUC value of the method proposed in this paper
is 0.98675, which is an order of magnitude higher than the CNN-RF method with the
highest AUC value of 0.84729 among other methods. Therefore, the stacking structure
integrated learning method can effectively realize the accurate detection and identification
of electricity theft behavior.
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Nomenclature

AEA Auto-encoder with attention
AHP Analytic hierarchy process
AUC Area under ROC curve
CNN Convolutional Neural Network
CVS Cross validation scores
DF Deep forest
DT Decision tree
EWM Entropy weight method
F1-score The harmonic average of precision and Recall, which is able to comprehensively

evaluate the performance of a classifier
FN False negative
FP False positive
FPR False positive rate
GRA Grey relation analysis
GRUs Gated recurrent units
KNN K-Nearest Neighbor
LG Light gradient boosting machine, LightGBM
LR Linear regression
LSTM Long Short-Term Memory
MAP Mean average precision
PCA Principal component analysis
PSO Particle swarm optimization
RF Random forest
ROC Receiver operating characteristic
Ranki The ranking value of sample i
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SGCC State Grid Corporation of China
SSAE Semi-Supervised AutoEncoder
SVM Support vector machine
TN True negative
TP True positive
TPR True positive rate
XGBoost eXtreme gradient boosting
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Abstract: Computer modelling and digitalization are integral to the wind energy sector since they
provide tools with which to improve the design and performance of wind turbines, and thus reduce
both capital and operational costs. The massive sensor rollout and increase in big data processing
capacity over the last decade has made data collection and analysis more efficient, allowing for
the development and use of digital twins. This paper presents a methodology for developing
a hybrid-model-based digital twin (DT) of a power conversion system of wind turbines. This
DT allows knowledge to be acquired from real operation data while preserving physical design
relationships, can generate synthetic data from events that never happened, and helps in the detection
and classification of different failure conditions. Starting from an initial physics-based model of a
wind turbine drivetrain, which is trained with real data, the proposed methodology has two major
innovative outcomes. The first innovation aspect is the application of generative stochastic models
coupled with a hybrid-model-based digital twin (DT) for the creation of synthetic failure data based
on real anomalies observed in SCADA data. The second innovation aspect is the classification of
failures based on machine learning techniques, that allows anomaly conditions to be identified in the
operation of the wind turbine. Firstly, technique and methodology were contrasted and validated
with operation data of a real wind farm owned by Engie, including labelled failure conditions.
Although the selected use case technology is based on a double-fed induction generator (DFIG) and
its corresponding partial-scale power converter, the methodology could be applied to other wind
conversion technologies.

Keywords: wind turbine; digital twin; hybrid model; failure diagnosis; synthetic data generation;
predictive maintenance

1. Introduction

In modern times, wind energy conversion is one of the most promising and reliable
energy technologies. Europe already has 220 GW of wind capacity installed and there
are plans to install an additional power of 105 GW over the next five years [1]. Actors
involved in this energy source are continuously researching this technology with the aim
of achieving the best levelized cost of energy (LCOE). According to WindEurope, operation
and maintenance (O&M) expenses account for 25–35% of LCOE of wind turbines [2], where
corrective maintenance is responsible for 30–60% of O&M costs [3]. The current potential
of digitalization and artificial intelligence (AI) can greatly contribute to the increase in the
energy production of wind farms, reducing unplanned interruptions, optimizing O&M,
and extending the lifetime of the components.

Wind turbines systems can be classified depending on the type of generator, gearbox
and power converter used. A double-fed induction generator (DFIG) with a multiple
stage gearbox and a partial scale converter is a widely used technology [4]. In the DFIG
topology [5], there is a direct connection between the stator windings and the constant
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frequency grid while the rotor winding connection to the grid is made through a pulse
width modulation (PWM) power converter, using a set of slip rings. The power converters
can control the rotor circuit current, frequency, and phase angle shifts [6]. This kind of
induction generator can operate in a range of ±30% of synchronous speed, achieving a
high energy yield, a power fluctuation reduction and the capability of controlling reactive
power. A drawback of the DFIG is the inevitable need for slip rings.

A wind turbine is also equipped with a control system, which is responsible for
assuring the correct operation of the wind turbine along its entire power curve and keeping
the wind turbine within its normal operating range. Wind turbines contain electrical,
mechanical, hydraulic, or pneumatic systems, and require sensors to monitor the variables
that determine the required control action. The most common variables sensed in a control
system are wind speed, rotor speed, active and reactive power, voltage, and the frequency
of the wind turbine’s connection point. Moreover, the control system is responsible for
stopping the wind turbine if necessary. One control strategy is the pitch angle control [7],
which is a good option for variable-speed operations in wind turbines generating more
than 1 MW. Using this control, the blades can be correctly oriented with respect to the
wind direction in order to avoid extremal values (too high or too low) of the power output.
The pitch system is based on a hydraulic system, which requires a computer system or an
electronically controlled electric motor.

There are several studies that analyse the critical failure modes of the wind turbine drive-
train system, specifically the electric generator and power conversion system [8–10]. While
identifying the sources of failure in the electric generator [11], the typologies of failures
can be of different kind. Thermal failures can occur due to the effect that currents and
overcurrents circulating through the windings have on the insulation and considering that
a maximum temperature is withstood depending on the type of insulation and operating
conditions. Electrical failures can also occur due to the peaks of voltage that can be applied
to the conductor under normal operating conditions and in anomalous situations, such as
surges coming from the converter. Environmental failures can be caused by environmental
conditions that could degrade insulating material or create corrosion phenomena. Me-
chanical failures are mainly caused by vibrations. Finally, thermo-mechanical failures are
caused by cyclic operating conditions with sudden or continuous variations in temperature,
which have different effects depending on the cable material and its accessories (insulation,
screens, etc.). The electric generator and the power converter have a greater impact on the
reliability, failure rate, and unavailability of the wind turbine. Their failure rate is 15% per
year for the electric generator and 6.8% for power converters of offshore wind farms [12,13].
These components are equipped with sensors (temperature, vibrations, electric parameters
and others) and connected to the wind turbine supervisory control and data acquisition
(SCADA) and condition-based monitoring (CBM) systems. Thus, a long historical real
operation dataset exists for each turbine of a wind farm. Sometimes, this dataset includes
recorded anomalies or failure in the operation of the turbine.

Data-driven models extract knowledge from real measurements that apply AI (artificial
intelligence) techniques, which analyse large amounts of data to identify meaningful
patterns in them. In the field of wind energy generation, there are several approaches for this
type of model. For instance, the spectral analysis of current signals has been used for health
monitoring of stator and rotor windings, as well as the main bearing of wind turbines [14].
In [15], a data-driven model is directly constructed with the objective of detecting and
isolating sensor and actuator failures in wind turbines, while the study of [16] develops a
hierarchical bank of negative selection algorithms (NSAs) to detect and isolate common
failures in wind turbines. The study of [17] uses a data-driven failure diagnosis and isolation
(FDI) method for wind turbines. It consists of the implementation of long short-term
memory (LSTM) networks for residual generators. The decision-making process is made by
applying a random forest algorithm. These FDI methods are designed using experimental
and historical data generated both under normal and failure conditions; therefore, the
availability of well-developed databases that include labelled anomaly/failure data is
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mandatory. The accuracy of data-driven methods is generally poor for cases not included
in a training dataset. In addition, black box models (e.g., deep learning models) show a
low explainability, making it difficult for domain experts to interpret results and gain the
required trust to make decisions based on the output of the models.

As a solution to this main drawback of data-driven models, DTs that use physics-
based models are developed to make the DT self-explanatory. The term “digital twin”
can be defined as “a virtual representation of a real-life system or asset with the same
behaviour”. It allows system states to be calculated using integrated models and data,
aiding the decision-making process over its life cycle from design to decommissioning.
The concept of DT was first described in David Gelernter’s 1991 book Mirror Worlds [18],
and the term “digital twin” was first mentioned in a roadmap report developed by John
Vickers (NASA) in 2010. The DT concept consists of two distinct parts: (1) the physics-based
model representing the asset and (2) the connection of the model with the real asset. This
connection refers to the information transferred (automatically or manually) from the asset
to the DT and the information that could be transferred from the DT to the asset and the
operator. In this way, a DT can accurately estimate an asset’s condition.

A DT is based on mathematic models that represent physical phenomena, making it
possible to understand the behaviour of the real asset in each moment. In addition, using
this physics-based model, it is possible to create synthetic data for events that have never
happened before, acquiring knowledge of the behaviour in some conditions that in other
cases would not be possible. Data-driven models can identify and prevent events that were
measured in the past. However, the training process of the data-driven algorithms, either
non supervised or supervised, always relies on historical data. DTs, on the contrary, provide
two new information sources: firstly, physics-based models can allow us to understand their
real behaviour, and secondly, physical simulation enables the generation of synthetic data
for potential new scenarios, such as potential anomalies or failure conditions. Moreover,
hybrid models, considered to be a combination of physics-based models and data analytics,
provide a powerful tool for diagnosis and prognosis [19]. Hybrid models developed with
this purpose are a good basis for DT creation.

The main advantage of a DT design for a specific industrial setting is the potential to
simulate realistic scenarios that are difficult or costly to create in the real system. These
scenarios might be used for the prescriptive analysis of new operating conditions, or for
testing extreme conditions and responses to anomalies or failures. The main challenge is
to develop a simulation method that can be parametrized to output scenarios that differ
from normal operation and, in some cases, to simulate conditions that have never been
seen before in the real system. The authors of [20] describe four main approaches for the
generation of simulated scenarios based on: (1) a simplified physical model; (2) a more
complex DT design to model the specific properties of the real scenario; (3) a parametrized
statistical generative model built upon prior knowledge of the relationships between
variables; and (4) generative models trained with existing real data distribution.

The methodology proposed in this paper brings together approaches 2 and 4 to
develop a hybrid digital twin that combines physics-based models and data-driven models
to match a specific operation context, both in normal and extreme or failure conditions.
In addition, the DT preserves the constrains, significance and explainability of a physical
model, overcoming some of the main limitations of a purely statistical generative model
(i.e., generative adversarial networks). The physics-based model for the drivetrain of a
wind turbine is developed using MATLAB Simulink R2020b.

The paper is organized as follows: Section 1 describes the developed technical ap-
proaches and the literature review related to such technical approaches, as well the problems
of using data-driven approaches in comparison with hybrid models. Section 2 explains
the proposed methodology for developing a hybrid-model-based digital twin and the
advantages of combining both physics-based and data-driven models. Moreover, this
section describes the principles of synthetic data generation and how such principles can
be applied to failure data generation. In Section 3, this methodology is concretely applied
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to a use case: the drivetrain of a 1.5 MW wind turbine with DFIG technology. Section 4
contains the conclusions and perspectives of future research.

2. Methodology for a Hybrid Model Creation, Synthetic Failure Data Generation and
Failure Classification Applied to a Digital Twin

DT development involves several technical tasks combining domain-specific knowl-
edge and data analytics skills. First, the equipment or system deterministic model in
normality conditions (so-called normality model) must be generated (e.g., by simulation
model). This process includes the representative modelling of underlying physical phe-
nomena and the rigorous selection of design parameters. Then, the constructed model
must be validated using real data in non-failure conditions and optimizing certain model
parameters values to increase the model accuracy and representativeness against the real
equipment behaviour.

In addition, a DT conceived for failure conditions diagnosis includes a suite of physics-
based models able to simulate different anomaly or failure scenarios. These failure models
might be used for a cause–effect analysis and to establish condition indicators (CI) and
they constitute an excellent basis for real failure conditions synthetic data generation [21].
Finally, machine learning (ML) classification techniques (supervised or non-supervised)
might be applied for the diagnosis or early detection of failures. The implementation of all
these models and algorithms in a digital platform and their online use constitute a complete
DT for anomaly/failure diagnosis.

This chapter describes and analyses the methodology for the development and use of
an equipment or system DT based on hybrid models for failure classification, making use
of a normality hybrid model and a synthetic data generation process. Figure 1 summarizes
the whole methodology, and each key component is explained in the following chapters.

Figure 1. Methodology illustration for the creation of a hybrid-model-based DT.

2.1. Normality Hybrid Model

The normality hybrid model of the DT is composed of a physics-based model trained
with real operation SCADA data in normality conditions.

The paper considers the drivetrain of a wind turbine with DFIG technology as a
reference use case in which the proposed DT development methodology is illustrated and
applied. Figure 2 shows how the physics-based model is divided in two modules that
could be used either coupled together or separately, depending on the available operational
data. The first module represents the conversion from kinetic energy from the wind to
mechanical power, taking the real values of the wind speed measured at the turbine and the
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pitch angle of the blades as inputs. The second module represents the electro-mechanical
conversion. It takes the mechanical torque in the shaft of the DFIG as the input and the
generated electric power and its related signals, such as phase currents and voltages or
electromagnetic torque, are the outputs. Moreover, this second module includes a power
converter and control system that enables the optimal operation of the drivetrain.

Figure 2. Physics-based model of the power conversion drivetrain of a wind turbine.

The physics-based model is constructed considering the system design parameters.
Depending on the nature of the equipment it may be difficult to obtain the complete set
of design parameters. In this case, estimations are required, which may impact model
performance. Finally, the physics-based model is trained using real operation SCADA
data (Figure 3). Training consists of optimizing the values of certain independent design
parameters whose exact values are estimated between given realistic intervals.

Figure 3. Training of the physics-based model and obtention of the normality hybrid model.

The objective function of the training process is the minimization of “residue” defined
as the difference between the physics-based model output (prediction) and the SCADA real
operation data (e.g., output power) for the given real inputs (e.g., wind speed or torque).
The resulting calibrated physical model is known as the normality hybrid model.

2.2. Failure Hybrid Model

Once the normality hybrid model is constructed, it can be extended or adapted to
include anomaly or failure situations. This new model is called a failure model. Following
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the same process used in the normality hybrid model, this model is trained using the
operation real SCADA data. Similarly, calibration consists of optimizing the values of
certain independent design parameters that represent failure, whose exact values are
estimated between given realistic intervals.

This resulting new model is also trained with historical and actual operational data
of both normal and failure operation. This is achieved using real failure operation data
inputs, which are fed to the failure models. In other words, when the normality hybrid
model is adapted to represent a failure and trained with failure data (data representing
failure operation), the normality hybrid model becomes a failure hybrid model. Feeding
the failure models with failure data enables the values of the failure model parameters
that define the failure models to be calibrated. The selected values of these failure model
parameters are obtained by minimizing the difference between the prediction obtained by
the failure model using failure operation data inputs and their corresponding well-known
real operation data failure outputs. As a result, the so-called failure hybrid model of the
power conversion system (drivetrain) of a wind turbine is obtained, which considers both
data of the drivetrain in normal operation and in failure operation.

In this case, the overheating of the DFIG stator winding is studied. For this scenario, a
thermal model is added to the normality hybrid model (Figure 4).

Figure 4. Failure hybrid model with a specific thermal failure model.

This thermal model takes as input the real values of the nacelle temperature and
the stator phase currents. These values of these stator currents can be estimated by the
normality hybrid model or any other value that can be useful for testing the thermal
behaviour of DFIG stator windings. The obtained predicted output corresponds to the
temperature of the DFIG stator winding.

2.3. Failure Synthetic Data Generation

The methodology analysed in the article has a fundamental contribution in the gener-
ation of synthetic data. The generation of synthetic data is a key point because it allows
immediate availability of operation data (either normality or failure data), that are difficult
to obtain from simple observation of the reality. In addition, the training of classification
models for failure prognosis is much enriching using a broad and balanced dataset that
represents a variability of behaviour.

Ref. [22] proposes GANs for the generation of synthetic data for wind turbine failure
diagnosis research. This article proposes a method to generate synthetic data using the
hybrid model and a statistical process. The statistical process characterizes the probability
distributions of the occurrence of normal and failure operating scenarios.

The generation of synthetic scenarios in a DT is often deterministic; therefore, the
given input data (i.e., wind speed, nacelle temperature and blade pitch angle) always
calculate the same output data (i.e., active power, winding temperature, etc.). This process
does not consider the variance present in the real data due to factors not modelled by the
DT. Hence, the DT does not have the ability to interpolate within the space of the training
data and cannot generate truly new scenarios, nor can it include the full extent of the
variability observed in the data. In the case of the generation of normal condition scenarios,
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this determinism is compensated by the amount of training data in such conditions. It is
reasonable to assume that these data include a comprehensive range of conditions that
represent the entire feature space.

However, this might not be the case for the generation of failure conditions. Although
the failure hybrid model has been calibrated to simulate the instances belonging to this
type of conditions present in the training SCADA data, this does not guarantee that these
instances are a representation of the entire anomalous feature space. In fact, the frequency
of anomalous conditions and failures is relatively low in SCADA data, and often these
instances are not annotated (labelled). Hence, relaying merely on a deterministic model
to generate synthetic failure scenarios would provide a narrow data sample constrain to
patterns already seen before.

To resolve this limitation, the DT can incorporate stochastic failure models for the
generation of failure scenarios. Each of these models can generate an unlimited number
of synthetic failure scenarios for a particular failure type based on real observations in
SCADA data.

The corresponding models are trained to approximate the distributions of the variables
that define a failure. In addition, some failures cannot be considered instantaneous, but
as a pattern in time that leads to a malfunction, a safety stop or a break. This is especially
important if synthetic generated failures are to be used to train models that can produce
early warnings before a failure is likely to occur.

Both the join probability distribution of the operating variables prior to and during
a failure and their physical constrains are initially defined by domain knowledge and
can then be updated with observations from real SCADA data. The generation of new
failure scenarios is based on random sampling of these probability distribution. Hence,
the synthetic scenarios generated by the model are based on real SCADA observations but
are not identical to any of those. The process for the synthetic failure data generation of
Figure 1 is detailed in Figure 5. It consists of two steps: an observation step and a synthetic
data generation step. The observation step aims to identify the probability density function
(PDF) that characterizes the failure scenario occurrence. For this, SCADA data are filtered
to identify scenarios that correspond to a failure type fk, where k is part of a set of failures K
modelled by the DT, such that k ∈ K. A failure scenario is defined by a set of fixed physical
constrains defined by domain knowledge and a set of parameters (condition indicators) to
be tuned in function of the observed features in failure scenarios from SCADA data.

Figure 5. Observation process for failures.

The PDFs of the parameters are learnt from the observed instances in the SCADA
data. These instances might be exclusively sourced from a single turbine or, in case of an
insufficient number, they can be sourced from different turbines that share some design
and operations characteristics. The decision to include instances from more than one
turbine should be made on the basis of turbine similarity and the variability of failure
parameters, which depends on operation and design characteristics. The distribution of
most parameters might be approximated by a normal PDF with the required precision.
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However, other distributions might need to be considered for certain parameters. In the
case of having access to SCADA data with several instances of a given failure for more than
one turbine, a hierarchical parameter modelling might provide a better balance between
accuracy and generalization. The learnt PDFs of the parameters are used to update the
prior parameter distributions of the corresponding failure model. The data generation
process step consists of generating data sets for normality and failure scenarios. As shown
in Figure 6, the normality scenario data sets are generated either by running the normality
hybrid model or selecting those SCADA data labelled as normal data.

Figure 6. DT generative failure models.

The failure scenario data sets are stochastically generated following the observed and
identified PDF, then running and obtaining the results from the failure hybrid model.

2.4. Potential Application of the Hybrid Models Conforming the Digital Twin

The development of data-driven algorithms for diagnosing normality or failure condi-
tions is a complex task that involves: (i) defining the condition indicators (CIs), (ii) labelling
normality and failure operation data, (iii) conceptualization of the classification model, (iv)
validation of the model (e.g., number of false positives and negatives), and (v) evaluation
of the generalization capacity of the model analysing whether it is representative for a set
of machines. The DT can add value to this endeavour by providing additional synthetic
data to strengthen the dataset.

Figure 7 shows a proposed schema of a supervised classifier training process for failure
diagnosis where the explained models in the previous sections are leveraged. The classifier
is trained with a labelled dataset composed of real SCADA data, augmented with synthetic
data generated via the process described in the previous section.

Figure 7. Supervised classifier training scheme.

In addition, the normality hybrid model is used as a baseline to create new CIs that may
improve the accuracy of the classifier. These CIs are calculated by comparing real operation
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SCADA data with respect to synthetic failure data and/or normality data generated by the
normality hybrid model.

Finally, Figure 8 shows the execution phase, where CIs are created by comparing real
SCADA data with the data simulated by the normality hybrid model. When the values of
these CIs meet certain criteria detected by the classifier, an early alarm is generated.

Figure 8. Execution phase of the developed classifier for anomaly diagnosis.

3. Results of Application of the Methodology to a Use Case: 1.5 MW DFIG
Wind Turbine

The methodology described in previous section was applied and validated with real
SCADA data from a wind turbine in operation owned by Engie. The drivetrain of this wind
turbine comprises a 1.5 MW DFIG and its corresponding back-to-back power converter.

Three years of real operational data were organized and preprocessed before use.
During the data exploration and pre-processing of SCADA data, relationships between
physic parameters were analysed, in order to detect possible outliers, which were removed.

Once the initial data analysis was carried out, the physical model of the power con-
version was developed in Simulink-Matlab R2020b (Figure 9). Information on the design
parameters of both the generator and power converter was used as a basis for constructing
the model. However, some other values were calculated or estimated due to the lack of
information. Wind speed and pitch angle are the input parameters needed to operate the
model. The result is the generated electric power, currents, and voltages, among others.

Figure 9. Wind turbine drivetrain physics-based model representation in Matlab-Simulink.

The DFIG block implements a three-phase wound rotor asynchronous machine, op-
erating in the generator mode. It uses a fourth-order state-space model to represent the
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electrical part of the machine, whereas the mechanical part is represented by a second-order
system. As can be seen in the equations contained in Table 1, all the electrical parameters
are referred to in the stator. All the rotor and stator parameters are expressed in the arbitrary
two-axis reference dq frame.

Table 1. Equivalent circuits and equations involved in a DFIG conversion.

Electrical System

Vqs = Rsiqs +
dϕqs

dt + ωϕqs (1) ϕqs = Lsiqs+Lmi′qr (6)

Vds = Rsids +
dϕds

dt + ωϕds (2) ϕds = Lsids+Lmi′dr (7)

V′
qr = R′

ri′qr +
dϕ′

qr
dt + (ω − ωr) ϕ′

dr
(3) ϕ′

qr = L′
ri′qr+Lmiqs (8)

V′
dr = R′

ri′dr +
dϕ′

dr
dt + (ω − ωr) ϕ′

qr (4) ϕ′
dr = L′

ri′dr+Lmids (9)
Te = 1.5p

(
ϕdsiqs − ϕqsids

)
(5) Ls = Lls + Lm (10)

L′
r = L′

lr + Lm (11)

Mechanical System

d
dt ωm = 1

2H (Te − F ωr − Tm) (12)
d
dt Θm = ωm (13)

The parameters involved in the resolution of DFIG conversion equations are those
indicated in Table 2.

Table 2. Parameters involved in the DFIG operation.

Parameters Definition

Rs, Lls Stator resistance and leakage inductance
Lm Magnetizing inductance
Ls Total stator inductance

Vqs, iqs q axis stator voltage and current
Vds, ids d axis stator voltage and current
φqs, φds Stator q and d axis fluxes

p Number of pole pairs
ω Reference frame angular velocity
ωm Mechanical angular velocity
ωr Electrical angular velocity (ωm × p)
Θm Mechanical rotor angular position (Θm × p)
Θr Electrical rotor angular position (Θm × p)
Te Electromagnetic torque
Tm Shaft mechanical torque

J Combined rotor and load inertia coefficient (set to infinite to
simulate locked rotor)

H Combined rotor and load inertia constant (set to infinite to
simulate locked rotor)

F Combined rotor and load viscous friction coefficient
L′

r Total rotor inductance
R′

r, L′
lr Rotor resistance and leakage inductance

V′
qr, i′qr q axis rotor voltage and current

V′
dr, I wouldr d axis rotor voltage and current
φ′

qr, φ′
dr Rotor q and d axis fluxes
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3.1. Normality Hybrid Model of the Use Case

The initial parameters of the physics-based model are an assumption of the true
parameters controlling the operation of a given turbine. Nevertheless, the true value of
these parameters can be estimated using an optimization algorithm. The algorithm aims to
find the combination of parameter values that minimize the difference between the output
of the physics-based model and the measured SCADA data. In this case, the parameters
are tuned (or calibrated) using a surrogated optimization algorithm (surrogateopt) in
Matlab [23]. This optimization algorithm is a global solver specially indicated for cases
where the objective function is computationally expensive. The algorithm searches for a
global minimum of a cost function min

x
f (x) with multivariate input variable x subject to

linear and non-linear constrains, and some finite bounds. The resulting objective function
can be non-convex and non-smooth. The algorithm starts by learning a surrogate model
of the function considered as objective, using the interpolation of radial basis function
through random evaluations of the objective function within the given bounds. In the next
phase, a merit function is minimized by approximating the minimization of the objective
function. This merit function fm is based on a weighted combination of the evaluation of
the surrogate model calculated in the previous phase, and the distance between the points
sampled from the objective function.

fm(x) = wS(x) + (1 − w)D(x) (14)

S(x) =
s(x)− smin
smax − smin

(15)

D(x) =
dmax − d(x)
dmax − dmin

(16)

where S(x) is a scaled surrogated output and D(x) is a scale distance between points
evaluated by the objective function. This distance reflects the uncertainty in the estimations
of the surrogate model. The minimization of the merit function, min

x
fm(x), is performed

using a random search. The obtained global minimum is then evaluated by the objective
function and the result used to update the surrogate model. Now the minimization of the
merit function is calculated using the updated model. This process continues for a given
number of iterations or until a point is found for which the objective function is below
a threshold.

In the case of the drivetrain of the wind turbine, the objective function is defined as
the mean absolute percentage error (MAPE) between the active power estimated by the
physics-based model and the active power measured by the SCADA system.

MAPE =
100%

n ∑n
i=1

∣∣∣∣∣PkWsim
i − PkWreal

i

PkWreal
i

∣∣∣∣∣ (17)

Thirteen parameters are involved in the optimization process: four parameters asso-
ciated with electro-mechanic conversion (electric generator, power converter and wind
turbine control), three parameters related to aero-dynamical conversion, three parame-
ters of the control strategy, and finally, three parameters associated with the mechanical
drivetrain (Table 3).

The calibration was made in two steps: in the first step, six variables were considered,
while in the second step, five more variables were added. Table 4 shows both the initial
values defined for each parameter (design value), as well as the values adopted after second
calibration (calibrated value).
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Table 3. Parameters involved in the optimization process.

Electric Generator Power Converter Control Mechanical Drivetrain

Stator winding resistance Power converter grid-side
coupling resistance

DC bus voltage
regulator gains Wind turbine inertia constant

Rotor winding resistance Power converter grid-side
coupling inductance Speed regulator gains Shaft mutual damping

Generator inertia constant Converter line filter capacitor Wind speed at nominal speed
and at Cp max Shaft spring constant

Generator friction factor

Table 4. Design and calibrated values of parameters involved in the optimization process.

Parameters to Be Calibrated Design Values Calibrated Value

Stator winding resistance (pu) 0.016 0.0036
Rotor winding resistance (pu) 0.023 0.001

Generator inertia constant 0.685 0.1
Generator friction factor 0.01 0.01

Power converter grid-side coupling resistance (pu) 0.03 0.0232
Power converter grid-side coupling inductance (pu) 0.3 0.4811

Converter line filter capacitor (VAr) 120,000 89,200
DC bus voltage regulator gains 400, 8 323, 6.36

Speed regulator gains 0.6, 3 0.69, 2.67
Wind speed at nominal speed and at Cp max (m/s) 11 10

Wind turbine inertia constant (s) 4.32 2
Shaft mutual damping 1 1
Shaft spring constant 1.5 0.5

The new values of the calibrated parameters are established, always keeping their
physical sense. In fact, an interval with a lower and upper threshold was established for
each parameter during the optimization process.

As a result, the mean absolute percentage error (MAPE) between the real active power
measured in the SCADA and the value obtained in the simulation using the calibrated
models improved from 15% to 2.4% (Figure 10).

Figure 10. Generated active power vs. wind speed.

3.2. Failure Hybrid Model of the Use Case

Once the physic model was calibrated, it was used to simulate the failure conditions.
In this use case, the overtemperature in the stator winding was analysed. A thermal circuit
was added to the already developed normality hybrid model in Simulink to estimate
the temperatures in each phase of the stator winding. It must be considered that the
isolation class of the stator winding is a Class F, meaning that it is designed to withstand
temperatures of up to 155 ◦C. As shown in Figure 11, this thermal circuit takes into account
heat transference generated by the stator currents considering the conduction (between the

114



Energies 2023, 16, 861

winding of each one of the three stator phases) and convection (between the winding of
each one of the three stator phases, between each stator winding and the environment and
between each stator winding and the rotor). The values of radiation were neglected.

Figure 11. Thermal circuit of stator winding.

Conductive heat transfer blocks model heat transfer in the thermal network by con-
duction through a layer of material. The rate of heat transfer is governed by Fourier’s law
(18) and is proportional to the temperature difference, material thermal conductivity, area
normal to the heat flow direction, and inversely proportional to the layer thickness.

Qcond =
k
s

A dT (18)

Convective heat transfer blocks model heat transfer in a thermal network by convection
due to fluid motion (in this case, the air). The rate of heat transfer (19) is proportional to the
temperature difference, heat transfer coefficient and surface area in contact with the fluid.

Qconv = hc A dT (19)

The inputs that feed the thermal model are the stator currents and the room tempera-
ture where the electric generator is installed (in this case the temperature of the nacelle),
while the outputs are the temperatures of each phase of the stator winding.
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In the real data made available during this study, there are five anomaly cases labelled
as overtemperature in the stator winding (Figure 12).

Figure 12. Five labelled anomaly cases of overcurrent during real operation (wind speed and active
power signals).

The failure modelling was validated using data during these five anomaly cases,
obtaining results for the estimated stator winding temperatures, as shown in Figure 13,
compared with the real SCADA winding temperature.
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Figure 13. Temperature values during overtemperature failure-labelled cases.

The MAPE between the real stator winding temperature measured in the SCADA and
the value obtained in the simulation using the calibrated model has a value of 11%, with
a maximum percentage error of 16% in the worst scenario. This value still has room for
improvement if more accurate design data become available for the thermal model.

3.3. Synthetic Failure Data Generation in the Use Case

A failure model for stator winding overheating was trained with real data from five
labelled failures. For this failure mode, four parameters (CIs) were identified: failure or
anomaly duration, ambient temperature, nacelle temperature, and wind speed.

The failure duration and ambient temperature are assumed to be uniform during
the whole duration of the failure. The distribution of these values in the training data is
approximated with a kernel density function (KDE) with a Gaussian kernel (Figure 14).
Continuous line represents the probability density functions of the duration and ambient
temperature observed in the failure/anomaly instances from the real SCADA, while cross
symbols represent real observations This technique, compared with density estimation by
histogram, creates a smooth PDF that does not depend on the choice of binning. Instead,
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a Gaussian component is fitted to each data point. The Gaussian kernel is defined by
the function:

K(x; h) ∝ exp
(
− x2

2h2

)
(20)

where the density function estimated at point x of a univariate distribution is:

f̂ (x; h) = n−1
n

∑
i=1

K(x − xi; h) (21)

where (x1, x2, . . . , xn) are independent and identically distributed random samples from
such distribution. The bandwidth h is a smoothing parameter that controls the balance
between variance and bias in the resulting density function. The resulting Gaussian
mixture is a non-parametric estimator of the probability density function able to represent
the uncertainty present in a small data sample. In addition, a domain expert can intuitively
control the estimator with a bandwidth parameter based on a descriptive analysis of
SCADA data and physical properties of the system.

Figure 14. Probability density functions (continuous line) of the duration and ambient tempera-
ture observed in the failure/anomaly instances from the real SCADA. Cross symbol represents
real observations.

The PDF of the wind speed and nacelle temperature variables are dependent on the
relative time within a given failure or anomaly. Hence, a generative model aims to learn a
PDF from which to sample a time series of a given variable, not simply a single value. Such
a function can be approximated by recursively fitting an ordinary least squares (OLS) model
to the transition between each time point. In this case, the resulting marginal probability
distribution at a given point in time is conditional to the value at the previous time point.
The statistical model of the predicted value is:

Xt1 = Xt0β + ε (22)

Additionally, the estimation error ε is assumed to have a normal distribution such that:

ε|Xt0 ∼ N
(

0, σ2 I
)

(23)

where σ2 is a positive common variance for the elements of the error vector (assuming
homoscedasticity) and I is the identity matrix.

The generation of random samples starts by the sampling an unconditional seed at
time 0. This seed is randomly sampled from a distribution learnt from the training values
at time 0. The distribution is approximated by KDE as seen above for the case of ambient
temperature. The next data point in the time series, Xt1, is sampled from the distribution
of ε around the prediction mean value Xt0β. This process iterates for each data point the
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requested time. Finally, synthetic failure patterns are randomly generated using the learnt
statistical distributions (Figure 15) and are fed as inputs into the developed DT.

Figure 15. Generation of random patterns (in grey) of wind speed based on real SCADA data (in red).

The DT generates the rest of failure synthetic measurements (e.g., stator winding tem-
perature, and generator output current,) creating a multivariate synthetic failure scenario
(Figure 16).

Figure 16. Multivariate synthetic failure pattern formed by the output of the data-driven stochastic
model and the deterministic functions of the DT.

Figure 17 shows both the synthetically generated stator winding temperature values
(in grey), and the stator winding real values measured by the SCADA system (in red). It
can be noted that most of the synthetically generated data are similar to the real SCADA
data. However, few of the synthetically generated data significantly differ from real data
due to the starting seed value.

Figure 17. Stator winding temperature calculated by the DT thermal model from synthetic input
variables (in grey). Stator winding temperature as measured by the SCADA system (in red).
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4. Conclusions and Next Steps

This paper proposes an approach for creating a hybrid model-based digital twin that
combines the benefits of physics-based models with advanced data analytics techniques.

This study has two main innovation outcomes. On the one hand, a process is estab-
lished to generate synthetic failure data based on real data leveraging different statistical
techniques. On the other hand, the process of failure classification based on machine
learning techniques, allows anomaly conditions to be identified in the operation of the
wind turbine. These two innovations can provide solutions for the main limitations of
current digital twin approaches regarding accuracy, explainability, and the lack of sufficient
training data.

The synthetic failure data generation process was validated using real operational
data from a 1.5 MW power double-fed induction generator wind farm owned by Engie. In
more detail, this has been applied to a specific failure (or anomaly) mode, namely the stator
winding overtemperature. The obtained results are satisfactory, although further research
is necessary. One of the limitations found in current research is the difficulty in achieving
detailed labelled failure information.

In future studies, the authors foresee the following research lines. It is envisaged that
a developed methodology for failure diagnosis, leveraging non-supervised and supervised
machine learning algorithms, could be applied, as explained in Section 2.4. The results of
this research could form the basis for future publications, which will likely be derived from
the methodology of this article. These algorithms will be trained using real operational data
augmented with synthetic failure data generated using this methodology. Furthermore, the
authors plan to assess the generalization capacity of the proposed approach, validating it
with additional failure modes and other drivetrain technologies (i.e., permanent magnets).
Equally, the developed hybrid models might be further improved by applying state-of-the-
art deep learning techniques. Finally, the scalability of the proposed solution should be
assessed by implementing and validating it in an online real-time scenario.

5. Patents

The work reported in this manuscript is associated with a patent with application
number EP22382724.7.
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Glossary

AI Artificial Intelligence
CBM Condition-Based Monitoring
CI Condition Indicator
DFIG Double Fed Induction Generator
DT Digital Twin
FDI failure diagnosis and isolation
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GAN Generative Adversarial Networks
KDE Kernel Density Function
LCOE Levelized Cost of Energy
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
ML Machine Learning
NSA Negative Selection Algorithm
OLS Ordinary Least Squares
O&M Operation and Maintenance
PDF Probability Density Function
PWM Pulse Width Modulation
SCADA Supervisory Control Additionally, Data Acquisition
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Abstract: Unlike the more prevalent alternating current transmission systems, the high voltage
direct current (HVDC) electric power transmission system transmits electric power using direct
current. In order to investigate the precise remedy for fault detection of HVDC, this research proposes
a method for the HVDC fault diagnostic methodologies with their limits and feature selection-
based probabilistic generative model. The main contribution of this study is using the wavelet
transform based on ant colony optimization and ANN to detect the different types of faults in HVDC
transmission lines. In the proposed method, ANN uses optimum features obtained from the voltage,
current, and their derivative signals. These features cannot be accurate to use in ANN because
they cannot give reliable accuracy results. For this reason, first, the wavelet transform applies to
the fault and non-fault signals to remove the noise. Then the ACO reduces unimportant features
from the feature vector. Finally, the optimum features are used in the training of ANN as faulty and
non-faulty signals. The multi-layer perceptron used in the suggested method consists of many layers,
enabling the creation of a probability reconstruction over the inputs by the model. A supervised
learning method is used to train each layer based on the selected features obtained from the ant
colony optimization-discrete wavelet transform metaheuristic method. The artificial neural network
technique is used to fine-tune the model to reduce the difference between true and anticipated classes’
error. The input signal and sampling frequencies are changed to examine the suggested strategy’s
effectiveness. The obtained results demonstrate that the suggested fault detection and classification
model can accurately diagnose HVDC faults. A comparison of the Support vector machine, Decision
Tree, K-nearest neighbor algorithm (K-NN), and Ensemble classifier Machine techniques is made to
verify the suggested method’s unquestionably higher performance.

Keywords: HVDC fault detection; artificial neural network; ACO-DWT; optimization method

1. Introduction

Due to its lower cost across long distances and capacity to transmit more power, high
voltage direct current (HVDC) transmission systems have been widely used for power
transmission projects with overhead transmission lines, bulk power, and asynchronous
connections. The length of the lines, the surroundings of the transmission lines, and un-
favorable weather conditions have all contributed to an increased error rate in HVDC
transmission lines [1]. For HVDC transmission lines, current differential protection and di-
rect current (DC) voltage reduction are commonly utilized as backup protection in addition
to primary protection systems based on voltage derivatives and traveling waves. Protec-
tions based on traveling waves and voltage derivatives are vulnerable to fault resistance
because they rely on the pace of the voltage change to identify problems. They frequently
misdiagnose high impedance failures [2,3].

When determining a specific fault class, the neural network approaches are growing in
popularity among fault prognosis techniques [4,5]. These algorithms require fault features
derived from the line data (current and voltage). Even though the fault information was
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generated from transmission line current or voltage waveforms, a fault class cannot be
determined only based on the raw signal data. Then, it was investigated how to use signal
processing methods such the wavelet transforms [6], S-transform [7], or Hilbert-Huang
transform [8] to separate the important properties that control the behavior of the line faults
from the transmission line waveforms. As a result, increasing the neural network-based
defect detection and classification model’s accuracy has become one of the key study areas.

In [9], a decision tree (DT) based fault detection and classification technique for the
microgrid was introduced. The discrete Fourier transform was used to extract the infor-
mation. To identify the HVDC faults, DT and wavelet transformations were coupled [10].
In grid-tied DG systems, the wavelet transform (WT) and the S-transform can also be
used to detect disturbances [11]. To identify the different types of faults, a learning model
that combines the naive classifier, support vector machine (SVM), and Extreme Learning
Machine (ELM) based on the traits returned by the Hilbert–Huang transform has been
utilized [12]. ELM and discrete wavelet transform (DWT) were combined in [13] to de-
tect, classify, and identify a microgrid’s sections. For the microgrid’s flaw identification
and classification, Reference [14] presented a semi-supervised model; first demonstrated
in [15], a Taguchi-based artificial neural network (ANN) using DWT. The shallow design
constrains these neural networks- and machine learning-based techniques. They employ
the ability of the complicated non-linear properties of the HVDC to learn. These methods
cannot combine the advantages of numerous aspects with perfection since there are no
hidden layers.

Raad Salih et al. [1] used the gray wolf optimization method based on ANN to detect
the fault in the HVDC system. They used the gray wolf optimization algorithm to select
the best features extracted from the voltage and current signals.

The metaheuristic methods are used in [16,17], and deep learning methods are imple-
mented in [18,19]. The improved power quality and fault detection are presented in [20].
The economic dispatch in the HVDC system is presented in [21]. The protection in sensitive
load is investigated in [22,23].

In all approaches mentioned in the literature, feature selection has not been used.
Moreover, the wavelet transform cannot give accurate results because some features cannot
be reliable for fault detection. It is a significant disadvantage of the previously used
methods in the literature. In this study, by combining the WT-ACO, the problem is solved.

This research offers an ANN with numerous layers of hidden units to address the
issues and provide a method for learning the intricate non-linear feature of the HVDC in
order to increase classification accuracy. ANN was initially used to identify aircraft engine
problems. After that, research into diagnosing faults in gearboxes, rolling bearings, and
reciprocating compressor valves expanded quickly [24–27]. ANN is a stack of ACO-DWT
that deepens the network and makes it possible for the model to extract features in an
adaptive manner. ANN can work with non-linear data [28–30]; therefore, it can more
precisely classify faults in the microgrid domain.

The proposed network performs fault diagnostics on the HVDC system with phase-to-
phase and phase-to-ground fault breaker systems using voltage and current waveform data
as input. The features are extracted from the raw signal samples using a discrete wavelet
transform tool. This research also suggests an extension of ant colony optimization to
select the best features created by DWT with the dropout approach to improve the accuracy
performance of fault detection. The dropout approach considerably improves the fault
detection accuracy performance against a traditional method. The following are the article’s
primary conclusions:

• Based on ANN and the DWT [31,32], we develop a model for fault detection and
classification of HVDC that effectively extracts the pertinent short circuit fault attribute
from the faulted line signals;

• Using a supervised pre-trained method, the trained model was created with multi-
layers of the network that prevents overfitting of the training data;
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• To evaluate the efficacy of the suggested approach, we examine both islanded and grid-
connected/tied operating modes as well as the two HVDC (radial and loop) typologies;

• The dropout method is incorporated with the suggested network to ensure that the
generated ANN model performs well in noisy environments.

The protection block begins with the fault detection unit as its first component. There-
fore, a quick and dependable solution is required to detect flaws in HVDC protection
systems. In this study, an ANN-based on Ant Colony Optimization and wavelet trans-
form is employed to react quickly to detect faults. ANN algorithm requires some time to
learn, but after it has completed the learning step, the trained network can move on to
the fault detection stage. ANNs may detect faults much faster during the testing phase
than traditional logic techniques. The importance of developing fault detection techniques
is that they increase accuracy, sensitivity, and reliability, and that is what the transmis-
sion authority needs to decrease time and cost for finding and repairing the faults in the
HVDC system.

The order of the paper is as follows. The material and method are presented in
Section 2. The design of the suggested approach for categorizing HVDC faults and the
necessary materials, is also described in Section 2. The performance analysis of the sug-
gested system is shown in Section 3. Section 4 will finalize this paper with a conclusion and
future work.

2. Material and Method

Shunt faults and series faults are the two basic categories under which HVDC power
line faults fall [33]. A series fault, also known as a simple break in one or more conductors,
occurs when there is an imbalance in the series impedance on the line. Power transmission
from one location to another is not directly related to this kind of failure. In contrast, the
three-phase power network regularly experiences shunt faults during power transmission,
which are subsequently categorized as phase-to-phase (PP), phase-to-ground (PG), and
two PG faults (2PG).

A single line-to-ground fault can occur on any phase line of a three-phase power line
if it meets the neutral line or hits the ground. The problem brought on by strong winds or
trees falling on power lines is also known as a short circuit fault [34]. Figure 1A–C depicts
three HVDC system stages and shows three forms of single line-to-ground faults [34].

 
(A) (B) (C) (D) (E) (F) 

       
(G) (H) (I) (J) (K) 

Figure 1. HVDC system fault classes (A) a-g, (B) b-g, (C) c-g, (D) ab-g, (E) bc-g, (F) ac-g, (G) a-b,
(H) b-c, (I) a-c, (J) a-b-c-g, (K) DC fault [34].

A two-PG fault occurs when two lines of a power line fall to the ground. This fault
has more asymmetry and a higher fault current amplitude than the line-to-line fault. If this
issue is not fixed right away, it could develop into a three-line to-the-ground fault, which is
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much more dangerous than other fault types. The ab-g, b-g, and a-g faults are depicted in
Figure 1D–F, where Rf is the fault resistance [34].

A short circuit between any two lines in a three-phase system causes this kind of failure.
One of the significant aspects of this asymmetrical fault is the difficulty in predicting the
upper and lower boundaries of the fault impedance due to its magnitude varying over
a large range. Three distinct PP fault types are displayed in Figure 1G–I. in contrast,
three phases to ground fault appear in Figure 1G. Figure 1K illustrates the DC line to the
ground fault. This paper studies the DC faults that may happen in the HVDC system’s DC
line and AC faults that occur in the AC side of one of two terminal LCC HVDC systems
under study.

2.1. System Modelling

This research proposes a probabilistic, generative network-based framework for de-
tecting and classifying HVDC system faults. The sound or healthy condition was utilized
to create a type of fault that provided 11 fault types for the unhealthy or fault detection
plan. This sort of fault encompassed all short circuit fault scenarios and the good state
of the phase. It was assumed that the classifier’s nature would be sound or error-free
under typical conditions. A bad or fault event was detected when the classifier output was
changed to a particular fault class. Extraction of the fault features from the raw signals was
required for the suggested method’s training. Each fault signal’s energy was unique and
determined by the system parameters, such as the fault distance and resistance. The DWT
was used to independently assess the variation in each phase’s raw signals. After that,
each signal’s energy was estimated in order to create the necessary dataset. Figure 2 shows
the HVDC system under test, and Table 1 includes the parameters of the system Voltage
Source Converters (VSC) that are used in modern HVDC; nevertheless, the model used in
this study makes use of thyristors. The literature contains well-known and cutting-edge
protection techniques for thyristor-based two-terminal HVDC systems [35–37]. VSC-based
systems, particularly multi-terminal DC systems, are currently facing protection issues.
The GWO approach, the study’s main topic, is used to assess the features and choose the
appropriate voltage and current signal format.

Figure 2. LCC-HVDC system under study.

Table 1. Parameters of the HVDC system under study.

Parameter Value

AC system one voltage 500 kV

AC system two voltage 345 kV

AC system one frequency 60 Hz

AC system two frequency 50 Hz

DC line length 300 km

DC line voltage 500 kV

DC power transmitted 1000 MVA
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Table 1. Cont.

Parameter Value

DC current 2000 A

Smoothing reactor at the rectifier 0.5 H

Smoothing reactor at the inverter 0.5 H

2.2. Effect of Fault Distance on Signal Energy

A defective occurrence could happen anywhere along the HVDC systems. The pro-
posed ANN’s training method, which varied the network, could inspect the signal across
the entire HVDC system thanks to the fault distance. In order to create the sample data,
the fault event’s position was changed from the current and voltage waveforms, and the
distance measurements ranged from 1 to 19 km with a 0.5 increment. The change in the
original signal produced different signal energy lengths, which ultimately represented
different features.

2.3. Wavelet Transform for the Generation of Fault Feature

In this work, the qualities of a particular section of a signal during a quick change in
the signal were examined using the DWT. The WT works by breaking down a signal into a
sequence of temporal components. A time series waveform receives significant guidance
from the time series faulty sections, which shield a specific frequency range. Here is an
example of how the WT approach represents, during a fault event, the fault attribute of a
particular piece of the faulty signal. a group of low-pass (LPF) and high-pass (HPF) filters
are used in DWT to process signals (LPF). The signal is broken up into detail (Det) and
approximation (App) coefficients as a result of the LPF’s analysis of the examination of the
high-frequency domain signal by the HPF and the low-frequency domain signal. The fault
signal’s large- and small-scale frequency components are represented utilizing the App
coefficient. Therefore, the fault signal is represented by its small- and large-scale frequency
components by the Det coefficient. The subsequent App replicates this decomposition
procedure, dividing a fault signal into several lesser-resolution pieces.

2.4. Model for Proposed Hierarchical Generative Faults

This section introduces the ANN framework for HVDC fault detection and classifica-
tion. An arrangement of constrained machine learning makes up the proposed ACO-DWT.
Using the ACO-DWT, the features are extracted and selected accurately.

2.5. Wavelet Analysis

A wavelet transform function is the display of lower-frequency signals larger and high-
frequency signals narrower when wavelet detection is present. Despite similarities, there
are a few significant differences between the Fourier transform and the wavelet transform.
The signal is divided into sines and cosines via the Fourier transform. On the other hand,
the wavelet transform can be used with elements in both Fourier and real spaces. The
temporal widths of the wavelet transform can be changed to match the frequency. This
attribute of frequency width auto-tune is most helpful when assessing electromagnetic
transients that have superimposed on the frequency power components are high-frequency
components [38]. Typically, the wavelet transform looks like this:

WT( f , a, b) =
1√
2

∫ ∞

−∞
f (x)ψ∗

(
t − b

a

)
(1)

where a and b are the function constants, which are also known as the scaling and translation
parameters, and (*) is the complex conjugate of the wavelet function ψ. Continuous
wavelet transforms (CWT), and discrete wavelet transform are the two subcategories of the
wavelet transform (DWT). The wavelet transform is derived into the correlated wavelet

127



Energies 2023, 16, 1064

transform (CWT), which uses redundant wavelets and arbitrary scales. By breaking down
the signal into orthogonal sets using a discrete set of wavelet scales, the discrete wavelet
transform (DWT) is produced. The discrete wavelet transform is obtained using the
following expression (DWT).

DWT( f , m, m) =
1√
a∑

k
f (k)ψ∗

(
n − kam

0
am

0

)
(2)

The parameters “a” and “b” are swapped out for am
0 and kam

0 , where k and m are
integers compared to the term 2.17. The DWT functions as a bank of low-pass and high-
pass filters that provide low-pass and high-pass subbands for the signal. The low-pass
subband is subjected to the same procedure to create narrower low-pass and high-pass
sub-bands. Wavelet transforms, either continuous or discrete, can be used to assess the
estimated distance to the fault. In order to define a mother wavelet from a voltage transient
waveform, a continuous wavelet transform is utilized in the research of fault location in
power networks [39]. However, the analysis of this study can give good results with just
the discrete wavelet transform (DWT). Figure 3 shows the wavelet family featuring the
daubechies3 (db3) wavelet mother, which is utilized to decompose voltage waveforms
registered by DFRs into its five coefficients (WTCs). Due to their abundance of high-
frequency content, the WTCs at level 1 (D1) are subsequently analyzed to identify the times
of arrival (ToAs). These signals are finally squared to create WTC2, as was conducted
in [38], to reduce noise in WTCs.

Figure 3. Wavelet Daubechies’ family.

The signals with and without faults were constructed to investigate the HVDC fault
detection in this work. Multiple signals with various AC and DC fault types were devised
for this purpose. These signals are used to extract the 12 properties that depend on the
voltage, current, and their individual components. Some of these features are inappropriate
for ANN training [18,19], and employing them will lead to mistakes and lower detection
accuracy. The best and most precise characteristics ought to be chosen for this purpose.
Thus, the feature selection uses the ACO approach, which was first introduced in [40].
Figure 4 depicts a summary of the suggested technique.
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Figure 4. Summary of the suggested technique for finding HVDC faults.

As shown in Figure 4, Simulink-MATLAB manually generates the 11 faulted signals,
including the AC and DC faulted signals. Next, the output signals are obtained for each
fault. The neural network may occasionally make errors in fault identification because
these signals contain many characteristics, the majority of which are unsuitable for training.
Therefore, the best and most practical characteristics must be chosen to train the network.
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The best features are selected using the ACO approach, and the neural network is trained
using these features. On the right side of the flowchart is the ACO method scenario.

The main objective of this study is to use the optimum features of the fault and non-
fault signals by using the Wavelet transform based on the ACO algorithm. The wavelet
transform removes the noisy signal from the current and voltage signals obtained from the
system. Furthermore, ACO uses to find the optimum features that affect the training of
ANN to recognize the fault and non-fault signals.

First, a visual representation of every feature in the S dataset is presented. All nodes are
connected to one another and are referred to as nodes. The number of ants and the number
of repetitions should then be determined [41]. The value is known as the pheromone trail,
and all of its values are initially set to a fixed value of one at the beginning of the algorithm.
also known as the value of heuristic information, is equal to the reciprocal distance between
the qualities [42], which will be determined in this article using the two approaches, FC
and FF.

The algorithm is usable after establishing the initial values. The ant is initially placed
on a node at random in each iteration. The rule of transfer is applied to derive the following
ninety, as indicated in Equations (3) and (4):

Pk
i (t) =

|τi(t)|α ∗ ×|ηi(t)|β
∑u∈jk |τi(t)|α × |ηi(t)|β

i f (q > q0) (3)

j = max
u∈jk

(τi(i)α × ηi(i)β) i f (q < q0) (4)

The α and β values are chosen in order to increase the efficacy of τ and η. The ant has
not yet encountered the attributes in jk, and the only trait they have is zero. The parameter
q0, whose value is a random number between 0 and 1, is crucial in selecting whether to use
the greedy or probabilistic approach.

The amount of pheromone collected from the scan should be updated in accordance
with Equation (5) when the n ant has finished the node scan:

τi(t + 1) = (1 − ρ)τi(t) + ∑n
i=1 Δτk

i (t) (5)

To lessen the effect, the value of the average number of nodes chosen for the Filter
technique is equal to Δτk

i is determined, which is the reverse of the error achieved using
the Wrapper technique [41,42].

2.6. Criteria for Distance or Similarity of Features

Two types of relationships exist between two random variables: linear and non-linear.
The correlation coefficient formula is the most well-known formula for calculating linear
variables. To compute non-linear variables, they employ information theory and the entropy
approach. The correlation coefficient technique has the drawback of being ineffective with
batch and non-numerical data, but the entropy method performs well [43].

A discrete or continuous random variable’s uncertainty is measured using entropy or
irregularity criteria. The discrete random variable X = (x1, x2, . . . , xn) has an entropy of
H(X) that is determined using Equation (6).

H(X) = −∑n
i=1 p(xi) log(p(xi)) (6)

where p(xi) is the probability value of xi happening on the entire set.
In accordance with Equation (7), the two discrete random variables’ entropies should

be calculated X and Y.

H(X, Y) = −∑n
i=1 ∑n

j=1 p(xi, yi) log(p(xi, yi)) (7)
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The conditional entropy of X to condition Y is determined using Equation (8).

H(X|Y) = −∑n
i=1 ∑n

j=1 p(xi, yi) log(p(xi

∣∣∣yi)) (8)

The aforementioned formulas’ goal is to determine the information factor (IF). The IF
criterion, which is in agreement with Equation (9), is utilized to analyze how dependent
the two variables are:

I(X, Y) = H(X)− H(X|Y) (9)

The two variables are independent if the value of IF is zero, and the larger this value,
the more dependent X and Y are [44]. The correlation between the information coefficient
and entropy is depicted in Figure 5.

Figure 5. Relationship between information coefficient and entropy.

The symmetrical uncertainty (SU), or normalized form of IG, used in this work is
compatible with Equation (10). This formula’s benefit is the normalcy of the two variables’
dependence between 0 and 1. The two variables are dependent if the value of SU is close to
one and independent if the value of SU is close to zero.

SU(X, Y) =
2 ∗ I(X, Y)

H(X) + H(Y)
(10)

Two criteria SUFC and SUFF are employed in this paper to calculate the η [43].
The reliance of each attribute on the class is the definition of the SUFC criterion. The

more vital and desirable that characteristic will be, the closer this number is to one.

ηi =
1

1 − SUFC
(11)

The term SUFF refers to the interdependence of two qualities. If its value is very
near to one, it indicates that the two traits are quite comparable, and we might consider
eliminating one of the features.

ηi =
1

SUFF
(12)

When choosing attributes, we try to keep class-related attributes and remove redun-
dant or unnecessary attributes. The objective is to select features that have SUFC higher
and SUFF lower values [45].

In the first step of this research study, the voltage and current signals are generated.
Then these signals are analyzed to determine the characteristics of the voltage and current
signals. The ACO-DWT approach is utilized to choose the best and most effective character-
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istics. In order to identify the most useful features with which to train ANN, the proposed
method based on the ACO algorithm is used.

3. Results and Discussion

This section uses various parameter adjustments to show how well the suggested fault
detection and classification technique performs. Different magnitudes were disclosed by
the fault current and voltage signals in grid-connected and islanded modes. As a result,
creating a uniform fault classification scheme was challenging. As a result, the effectiveness
of the suggested strategy was examined individually under different operating modes
and system topologies. Three factors were taken into consideration when determining
the accuracy:

(a) How well the system performed, whether only using the current waveform, voltage
waveform, or both waveforms together, depending on the type of input signal;

(b) The sampling resolution, or how well the system performed when using different
data acquisition rates;

(c) The fault signal with noise present, or how well the system performed when noise was
present in the sampled signal. The suggested and existing FDC techniques’ accuracy
were compared to show that the suggested classifier has superior short circuit fault
classification capabilities.

In machine learning, a list of data samples is used to test the model’s performance
and should be different from the training data in order to determine how effective a
learning model is. The current and voltage waveforms for each dataset were divided into
1716 samples, which were then combined and shuffled before being randomly selected
to assess the effectiveness of the suggested strategy. When the 11 distinct fault classifiers
were entered into the 11 × 11 matrix’s x- and y-axis, the confusion matrix (CM) was used
to simulate the performance of ANN for Lines 1–3 under various system configurations
and HVDC operating modes. The vertical levels represent the projected fault class, while
the horizontal levels indicate the actual class. The true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) counts are also reported in the confusion matrix
and are defined as:

TP: The classifier correctly predicted a label and is a member of the original class;
TN: The classifier successfully predicts a label even when it does not fall under the

initial category;
FP: The classifier predicts a label to be positive even when it does not belong to the

original category;
FN: The label that the classifier predicts would be negative but belongs to the

original class.
First and foremost, according to the CM, most of each system configuration’s fault

classes were assigned correctly. The classification accuracy of the average confusion matrix
(Acc) was used as the first accuracy measurement criterion Equation (13).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
=

NTD
NCC

(13)

Here, NTD displays the total number of data used to create the model. NCC denotes the
number of correctly categorized data. The remainder of the HVDC system might function
similarly to the proposed work.

According to the findings, the proposed classifier’s grid-connected radial mode opera-
tion had the best accuracy, which was 99.70%. The classifier performed better than 99.5%
for the other system settings, which was as expected. The Confusion matrix for different
classifiers, SVM, Decision Tree, K-NN, and Ensemble method, is shown in Figure 6.

The average accuracy for various system setups is shown in Figure 7.
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Figure 6. Confusion matrix for different classifiers (A) SVM, (B) Decision Tree, (C) K-NN, and
(D) Ensemble.

The average accuracy, however, was unable to provide a complete analysis of the
model’s performance. The sensitivity, specificity, and accuracy were then used to assess the
classification performance in order to determine how the classifier handled different fault
types. The mentioned criteria are regarded as ideal when it equals one and worst when
it equals zero. The sensitivity, also referred to as the positive predictive value, is defined
as follows:

Sensitivity =
TP

(TP + FN)
(14)

A good classifier should have a precision value of one. From Equation (14), the preci-
sion value declines as the FP rises, which is unexpected for a strong classifier. Specificity,
another statistic that is also referred to as the true positive rate or the classifier’s sensitivity,
is defined as follows

Specificity =
TN

(TN + FP)
(15)

The best classifier’s sensitivity value should be 1, just like the precision. For this
metric, the recall value fell as the FN grew, which was also contrary to expectation. As

133



Energies 2023, 16, 1064

a result, accuracy, which considers both true positive and true negative, was used as
another performance evaluation indicator. Given that Table 2 shows the voltage and
current signals, the recommended classifier’s greater accuracy demonstrated that it had
fewer false positives and negatives. Additionally, each fault class’s categorization accuracy
(user accuracy) made it clear that the classifier had a high degree of accuracy in its capacity
to categorize the problems.
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Figure 7. Average accuracy for various system setups.

Table 2. Accuracy, sensitivity, and specificity of the proposed classifier.

Fault Class Accuracy (%) Sensitivity (%) Specificity (%)

a-g 98.95 98.83 99.05

b-g 98.58 98.31 98.86

c-g 99.36 98.87 99.86

ab-g 98.88 99.58 98.16

bc-g 98.60 98.40 98.80

ac-g 99.10 99.25 98.93

a-b 98.77 98.76 98.79

b-c 98.38 98.45 98.29

a-c 98.59 98.42 98.74

abc-g 99.48 98.95 100.00

DC 98.91 99.56 98.29

Figure 8 is a graphical depiction of these findings.
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Figure 8. Graphical chart illustration.

Due to the lack of both signals at the same time, the system must perform the cat-
egorization tasks using voltage or current waveforms. Different input signal types and
sampling rates were employed to examine the fault classification performance of the pro-
posed classifier. The input signal types used in this inquiry were the voltage waveform, the
current waveform, and the combined current and voltage waveform. The SF used were 2, 5,
10, 15, and 20 kHz. Five times through the classification process, the findings for an SF and
a certain signal type were determined. To obtain the final findings presented in Figure 9,
the mean value of the accuracies was calculated.

The improvement in classification accuracy was anticipated since a short circuit fault
class with a greater SF carries more specific fault information. The three-phase current
waveform performed better for classification at lower sample rates than the three-phase
voltage waveform. This scenario was anticipated in part because, for a given fault class,
compared to the current waveform, the voltage waveform contained less information about
low-frequency faults.

On the other hand, the voltage waveform had a few spare incorrect transients that
could be used to examine the short circuit fault’s specifics more thoroughly. The afore-
mentioned analysis suggests that relying just on current or voltage waveforms would
not produce the requisite precision. Given that both the three-phase current and voltage
intentions utilized specific short circuit fault information, if both waveforms were taken
into account simultaneously, the designated frequency level may be obtained with a higher
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fault categorization performance. The study’s results showed that using only the current
or voltage waveforms to classify data yielded poor results; however, their fusion pro-
duced a classification accuracy of more than 99% at the high-frequency range level taken
into account, validating the efficacy of the proposed FDC model. The remaining HVDC
system under evaluation can show similar categorization results. Table 3 compares the
accuracy, sensitivity, and specificity of the entire fault classification system for the HVDC
fault classification with the suggested technique and alternative methods.

Figure 9. Accuracy of the classification for the proposed classifier.

Table 3. The proposed method’s accuracy, sensitivity, and specificity.

ANN-Machine Techniques Accuracy (%) Sensitivity (%) Specificity (%) TP TN FP FN

MLP 98.86 98.39 99.35 98.28 98.23 0.64 1.61

RBF 98.65 98.45 98.86 97.93 97.35 1.13 1.54

LVQ 98.78 98.17 99.39 98.57 98.49 0.60 1.83

SOM 98.30 98.23 98.38 97.88 97.56 1.61 1.76

ANN-DWT-ACO-SVM 99.49 99.05 99.94 98.16 98.28 0.06 0.94

ANN-DWT-ACO-DT 99.60 99.25 99.96 99.62 98.14 0.04 0.75

ANN-DWT-ACO-KNN 99.48 99.69 99.27 98.88 99.65 0.72 0.31

ANN-DWT-ACO-Ensemble 99.45 99.13 99.77 97.79 97.40 0.22 0.86

The best aspects of voltage, current, and derivatives are utilized in the suggested
strategy. It is contrasted with the multi-layer perceptron (MLP), radial basis function (RBF),
learning vector quantization (LVQ), and self-organizing map (SOM) neural networks.
Results from the studies showed that the advised approach, ANN, RBF, LVQ, and SOM had
accuracy values of 98.86, 98.65, 98.78, 98.30, 99.49, 99.60, 99.48, and 99.45, respectively. The
proposed method had the highest accuracy because when the feature selection component
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of the ACO-DWT algorithm, which is based on the Decision tree classifier, was utilized, the
accuracy rose to 99.60%.

The graphical illustration of the results is shown in Figures 10 and 11.
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Figure 10. Graphical illustration of the accuracy, sensitivity, and specificity.
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4. Conclusions

In order to identify the optimum characteristics of the voltage and current signal to
utilize in ANN to train the system, this paper suggested the ACO for feature selection.
For the grid-connected and island modes of the HVDC, the ACO approach is robust in
identifying the best aspects of the signals to detect and classify the faults. The suggested
approach ensured that the model automatically recognized and analyzed abnormal signals
pertaining to various HVDC failures. This was accomplished by measuring the voltage
and current waveforms separately and utilizing feature extraction to compare them to
variations in the line characteristics. The proposed method’s usefulness as a generalized
model that worked at different sampling frequencies was confirmed by using both the
current and voltage parts for fault diagnosis and classification. The suggested technique’s
efficiency was assessed using various experiments, such as those examining the influence of
signal type. The results demonstrated that the suggested fault detection and classification
model correctly recognized and categorized short circuit faults for all fault categories with
an accuracy close to 99.60%. The best scenario was obtained from the ANN-DWT-ACO-
DT method, with 99.60, 99.25, 99.96, 99.62, 98.14, 0.04, and 0.75 for accuracy, sensitivity,
specificity, TP, TN, FP, and FN, respectively. Using both the voltage and current waveforms
within the tested frequency range showed the model’s impressive performance. The
authors advise employing the Fourier transform for feature extraction of the current and
voltage signals and various metaheuristic techniques to identify the accuracy rates for
defect detection situations.
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Abstract: In modern power systems, the installation of a shunt capacitor bank is one of the cheapest
and most widely used methods for improving the voltage profile. One shunt capacitor bank is
composed of mass capacitor units and have ground, ungrounded, delta, wye connections that make
configuration of capacitor banks is various. In the case of long-term operation, the failure of a single
capacitor unit of a capacitor bank is likely to cause uneven voltage, which will lead to the breakdown
and burning of the whole group, resulting in huge losses. The relay protection device can detect the
simultaneous voltage and current of the capacitor. By utilizing these data from the relay, the abnormal
state of the shunt capacitor banks at the initial stage of the fault can be found through monitoring the
slight change in capacitance. Timely and early maintenance and repair would avoid capacitor bank
faults and potentially greater economic losses. Capacitor banks have different connection modes. For
ungrounded wye-connected capacitor banks with an unknown neutral point voltage, the capacitance
parameters of each branch cannot be calculated. A parameter symmetry based on the calculation
method for capacitor parameters is proposed. For long-term monitoring and observation of the
capacitor capacitance value, the fault state and abnormal state of the capacitor are identified based on
statistical methods. The simulation established by PSCAD verified that a relay protection device can
realized an effective monitoring of the early abnormal state of the capacitor bank.

Keywords: shunt capacitor fault; equivalent balance equation; capacitance value calculation;
capacitor monitoring

1. Introduction

In the modern power system, capacitors are widely used in energy storage, voltage
regulation, filtering and other scenarios due to their simple structure and limited manufac-
turing and maintenance costs [1]. As a reactive power supply, shunt capacitors can adjust
the system voltage, improve the power quality and reduce the line loss [2]. As their imple-
mentation has increased, shunt capacitor banks have become one of the power devices with
the highest failure rate. Faults in capacitor banks have caused group explosions and group
damage many times [3,4], resulting in significant fluctuations in grid voltage, increasing
active and reactive power losses, reducing the service life of capacitors and compromising
the safety of the power grid.

The literature includes a great deal of in-depth research on the use of protection and
monitoring technology of shunt capacitors to improve reliability and reduce losses. The
most common means of protecting capacitors is to use different connection and voltage
levels, with an emphasis on configuration protection [5–12] References [5,6] at the 500 kV
voltage level, parallel compensation of substations and lines and series compensation
capacitors. In addition, the protection of these capacitors is analyzed in detail, and the
optimal protection configurations and scheme setting principles are given for each type
of capacitor. Reference [7] calculates and analyzes the sensitivity and settings of relay
protection under the various modes of the shunt capacitor banks in the 1000 kV ultra-high
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voltage (UHV) power system in China. Reference [8] introduces the setting principle
for unbalanced protection of the H-bridge high-voltage capacitor banks. These methods
provide excellent protection, but the specialized protection design and settings need to
be based on different voltage levels and wiring forms, which are more complicated and
costly; these need to be studied separately according to the actual working conditions of
the system. Another research method relies on the development of smart substations to
realize the monitoring function of shunt capacitors [13–16]. The capacitor fault monitoring
system in [13] extracts synchronous voltage and current signals through specialized devices
to monitor shunt capacitor banks in real time, which requires more space and is more
costly. Reference [14] uses compensated negative sequence and neutral currents to locate
internal faults and can locate faults that occur simultaneously in either of the two branches
of a double-wye parallel capacitor bank. Reference [15] proposes a new scheme based
on the unbalanced current at the neutral point. By calculating the unbalanced current
distribution under all possible operating conditions, the fault severity and fault location
can be identified. Reference [16] designs a very sensitive real-time capacitor-monitoring
device based on calculating capacitance through the variation of LC oscillation frequency
for early internal component failures of capacitor banks. This type of method mostly aims
to design a dedicated monitoring device in an intelligent substation system that effectively
reduce the high failure rate of capacitors and be highly universal.

Because the second method mentioned above is more economical and practical, this
paper proposes a new monitoring method for shunt capacitors. The relay protection device
installed on the bus can easily obtain the simultaneous voltage and branch current of the
shunt capacitor bank (the voltage is equal to the bus voltage, and the branch current of the
capacitor can be obtained from different CT taps). It will be very economical and convenient
to only use this information to monitor the shunt capacitor banks. However, it has difficulty
calculating the ungrounded wye configuration when there is no additional device to obtain
the neutral voltage. In this case, the equations are solved by using the additional conditions
of symmetric parameters of two branches and setting alarms according to guidelines
and statistical methods that prevent capacitor faults and potential losses. An on-line
monitoring method for shunt capacitor banks that is not affected by the connection method
is constructed. The simulation verifies the effectiveness and feasibility of this method.

2. Principles of Shunt Capacitor Bank Monitoring

There are many types of shunt capacitor bank faults. When the internal capacitor fault
is caused by overvoltage, harmonics, product defects, etc., the capacitance change value
mostly occurs during the initial stage [17]. Factors such as overvoltage and harmonics cause
abnormalities and failure of the individual capacitor unit in the internal series-parallel
components. Damage to a single component compromises the operating state of other
components; this situation gradually evolves and ultimately leads to the failure of the
high-voltage shunt capacitors.

In the initial stage of capacitor fault, the abnormality of an individual unit of the
shunt capacitor bank can be identified via variation in capacitance. The on-line monitoring
method of the shunt capacitor bank can be realized based on the simultaneous voltage and
current obtained by the relay protection device at the bus of the shunt capacitor [18].

The most common internal capacitor fault is the breakdown of internal capacitor units.
There are three kinds of breakdown faults: electric breakdown, thermal breakdown and
partial discharge breakdown. Electric breakdown is mainly due to the rapid breakdown
of defective capacitors due to high voltage, high harmonics and other factors. Electric
breakdown occurs over a short period of time, the relationship with environmental factors
is small, maintenance cannot be performed in a timely manner and monitoring is of little
significance. The other two kinds of breakdown develop gradually, which will produce
a dielectric change before the breakdown fault. The fault can be found by measuring the
capacitance.
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According to the guide for the protection of shunt capacitor banks, there are three
kinds of fuse protection: internal fuses, external fuses and fuseless. Internal fuses offer very
effective protection. When a unit fails, the overcurrent causes the fuse to blow. If a single
faulty unit is isolated, the shunt capacitor can continue to operate. However, if an internal
fuse exhibits the failures shown in Figure 1b, the group capacitors with the faulty unit will
be short-circuited, and the remaining capacitor groups will operate in overvoltage mode.
Over a long period of time, a more serious fault would occur. Timely detection of changes
can effectively avoid potential losses. If the faulty unit of an internal fuse is isolated as
shown in Figure 1c, the shunt capacitor bank with a single faulty unit can still operate
normally; the capacitance value changes, however, resulting in uneven voltage across the
group. Long-term operation may also cause other unit faults, even serious failures. Timely
detection and replacement of faulty parts can also effectively prevent the expansion of
a fault.

Figure 1. Shunt capacitor bank with internal fuses.

To sum up, most internal capacitor faults undergo a long process of capacitance value
change. This process is affected by environment, voltage level and other factors, and it
is impossible to formulate unified rules for monitoring. However, the capacitor has been
comprehensively inspected at the initial stage of installation and the failure rate is low; this
will be taken as the normal state at this time. By storing the data at this time and comparing
real-time data with statistical methods, it can be determined whether there is a significant
change. If there is a significant change, the capacitor is considered abnormal. The statistical
method is general, and the reference sample is its own normal state sample; it can therefore
be applied to most of the shunt capacitor banks that operate for a long time (data support).

The connections in shunt capacitor banks are wye, delta and double-wye connections.
The relay protection has the following types: Zero-sequence voltage protection performs
well for shunt capacitor grounding faults. Differential protection applies to all capacitor
external faults. Overcurrent protection is the basic protection for all types of capacitors [19].
Double-wye connection has extra overcurrent protection at the neutral point. This con-
nection is also divided into two cases: ungrounded and grounded [20]. The voltage at
both ends of the grounding capacitor is equal to the bus voltage. The capacitance value
of each phase can then be calculated by obtaining the branch current [21]. However, an
ungrounded capacitor cannot calculate the capacitance value in this way, as it requires
additional equipment to extract the neutral point voltage. In this paper, no additional equip-
ment is required for calculating the ungrounded shunt capacitor bank. The simultaneous
voltage and current data from the bus are the only data used to calculate the capacitance
value as the monitoring criterion for the capacitor bank.
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2.1. The Method of Calculating Capacitance Value

The four most common configurations of a wye-connected capacitor bank are shown
in Figure 2. The CT/PT of the relay protection is built on the bus. The grounded-connected
line parameters can be can easily calculated based on three-phase voltage and current, after
which the capacitance change can be observed via the change in the line parameters. The
calculation of ungrounded-connected line parameters is needed to obtain the voltage of the
neutral point. However, increase of PT circuits means more cost and lower reliability.

Figure 2. Most common capacitor bank configurations.

Ungrounded capacitor banks mainly consist of the wye and double-wye connections.
Both wye and double-wye connections can be simplified as shown in Figure 1 [4]. We look
at each phase capacitor as an impedance and we monitor its change. The change in the
phase capacitance reflects the operating state of the capacitor. The advantage of monitoring
the capacitance of the capacitor is that, compared with the unbalanced protection of the
capacitor, the monitoring amount is the capacitance value, which is more intuitive and can
better reflect the status of the capacitor. Compared with regular maintenance, monitoring
is simpler and requires less time [22]. The capacitor circuit is equivalent to that shown in
Figure 3, and the solution process is as follows:

Figure 3. Capacitor equivalent circuit.

An ungrounded double-wye connection can be simplified as shown in Figure 2.
The ungrounded wye and delta connections can be simplified as shown in Figure 2c.
.

Uk (k = A, B, C) and
.
Ik (k = A, B, C) are the bus voltages and branch currents of the capac-

itors.
.
ZA,

.
ZB and

.
ZC are the equivalent three-phase-impedance values, including parallel
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capacitors, line impedances and series reactors. The two-branch-current equation is shown
in the following [23]. { .

UA − .
IA

.
ZA =

.
UB − .

IB
.
ZB.

UB − .
IB

.
ZB =

.
UC − .

IC
.
ZB

(1)

.
ZA,

.
ZB and

.
ZC are unknown quantities. Because there are only two equations in

Equation (1), it cannot be solved. An additional equation is therefore required to solve
the equations.

In the normal state, the three-phase parameters are equal. In the case of a single-phase
fault or abnormal state, the equivalent impedance of the two other normal phases are the
same. In the case of a two-unit fault in a different phase, the same working condition, model
and operating conditions are assumed, so that the changes of the two-phase faults are
similar. In the case of a three-phase capacitor fault, the parameters remain approximately
equal for the same reason. To sum up, the operating characteristic of capacitors is that
at least two-phase have the same impedances. The shunt capacitor bank must have the
same three-phase capacitance when installed. Depending on the operating characteristics
of the capacitor, two-phase parameters are set equal in turn, i.e.,

.
ZA =

.
ZB,

.
ZA =

.
ZC and

.
ZB =

.
ZC; these are then combined with Equation (1) to obtain Equation (2) as follows:⎧⎪⎨⎪⎩

.
UA − .

IA
.
ZA =

.
UB − .

IB
.
ZB.

UB − .
IB

.
ZB =

.
UC − .

IC
.
ZB.

ZA =
.
ZB or

.
ZB =

.
ZC or

.
ZB =

.
ZC

(2)

When
.
ZA =

.
ZB, we obtain the solution

⎧⎪⎨⎪⎩
.
ZA1.
ZB1.
ZC1

.

When
.
ZB =

.
ZC, we obtain the solution

⎧⎪⎨⎪⎩
.
ZA2.
ZB2.
ZC2

.

When
.
ZB =

.
ZC, we obtain the solution

⎧⎪⎨⎪⎩
.
ZA3.
ZB3.
ZC3

.

In order to simplify the calculation, three-phase voltages are set symmetrically and
the three-phase voltages are

.
UA,

.
UB and

.
UC. Under normal working conditions, three-

phase line parameters are also symmetrical.
.

UA,
.

UB,
.

UC,
.
IA,

.
IB and

.
IC therefore have the

following relationship:

.
UB =

.
UA∠− 120◦,

.
UC =

.
UA∠120◦ (3)

.
IB =

.
IA∠− 120◦,

.
IC =

.
IA∠120◦ (4)

when the assumption condition is consistent with the actual situation, the solution resulting
from the state equation is correct, and when the assumption condition is not consistent
with the actual situation, the solution resulting from the state equation is incorrect.

Assuming that phase A fails, then analysis proceeds via the variable method. When
the capacitance value of phase A decreases, the three-phase currents become

.
IA +

.
λa,

.
IB

and
.
IC, where

.
IA,

.
IB and

.
IC are still three-phase symmetrical, and

.
λa and

.
IA are in the

same direction.
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1© When it is assumed that phase B and phase C impedances are same (that is, the actual
condition), the results are⎧⎪⎨⎪⎩

.
ZA1 = 1.

IA+
.
λa
(

.
UA − .

UB +
.
IB

.
UB−

.
UC.

IB−
.
IC

)
.
ZB1 =

.
ZC1 =

.
UB−

.
UC.

IB−
.
IC

(5)

It is known that, in this case, the calculation result is correct, the capacitance value
change of phase B and phase C is 0, the impedance of phase A declines most—that is, the
change amount is the largest—and

.
ZA1 is used for comparison.

2© When it is assumed that the parameters of phases A and B are equal (not the actual
condition), the results are⎧⎪⎨⎪⎩

.
ZA2 =

.
ZB2 =

.
UA−

.
UB.

IA+
.
λa−

.
IB.

ZC2 = 1.
IC
(

.
UC − .

UB +
.
IB

.
UA−

.
UB.

IA+
.
λa−

.
IB
)

(6)

Equations (3) and (4) can be substituted into (5) and (6), and the three-phase impedance
values are compared in 1© and 2©, respectively. In this case,

.
ZA1 is similar to

.
ZC2, and all

vectors in
.
ZC2 are rotated 120 degrees clockwise; the molecular part is enlarged several

times, yielding the following:

∣∣∣∣ 1.
IA+

.
λa

(
.

UA−
.

UB+
.
IB

.
UB− .

UC.
IB− .

IC
)

∣∣∣∣∣∣∣∣ 1.
IA

(
.

UA−
.

UC+
.
IC

.
UB− .

UC.
IB+

.
λa−

.
IC

)

∣∣∣∣ <

∣∣∣ .
IA+

√
3

3

.
λa

∣∣∣∣∣∣ .
IA+

.
λa

∣∣∣ < 1. That means

.
ZA1 <

.
ZC2. The group with the largest impedance variation is thus the actual condition

solution. The ratio amplitude of
.
ZA1 and

.
ZA2 is

∣∣∣∣ .
IA+

.
λa∠−30◦√

3

∣∣∣∣∣∣∣ .
IA+

.
λa

∣∣∣ <
IA+

√
3

3 λa
IA+λa

< 1, which means

that
.
ZA1 <

.
ZA2; in other words, the change of phase A in 1© is greater than that of phase A

in 2©. Similarly, the change of phase A in 1© is greater than that of phase B in 2©.
It can be concluded from the above that the group of results with the largest variation

is the correct solution when single-phase parameters change. In the case of two-phase
change, the two parameters are the same, and the normal phase also can be seen as a
change phase. It follows that the group of results with the largest variation is also the
correct solution. In the case of the normal state or a three-phase fault, the three groups
of results are the same, and all are correct solutions. As a result, the correct assumption
conditions can be determined by finding the maximum change in the capacitance value,
and then the correct solution of the three-phase capacitance value can be calculated.

It could calculate max
i = A, B, C
j = 1, 2, 3

(
.
Zij −

.
Z0), where

.
Z0 is the initial value of single-phase

impedance, and find the max impedance change. Then, this group (
.
ZAj,

.
ZBj

.
ZCj) is

determined as correct calculation. If the parameters of the series reactor are defined as L,
and the system frequency is f, then the results of the three-phase capacitance values CA,CB
and CC are as follows: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

CA = 1
4π2 f 2L−2π f Im(

.
ZAj)

CB = 1
4π2 f 2L−2π f Im(

.
ZBj)

CC = 1
4π2 f 2L−2π f Im(

.
ZCj)

(7)

2.2. Monitoring Criteria

After solving for the capacitance value, taking into account the normal fluctuations and
calculation errors, and in accordance with IEEE Guide for the Protection of Shunt Capacitor
Banks [24], the shunt capacitor is considered faulty when the calculated capacitance value
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Ck and the rated value CN do not meet |Ck − CN | × 100% > 5%. Repair is required. Cst
is the statistical data based on the stored capacitance from the protection device. When
there is a significant difference between the current capacitance value and the past sample
(CA /∈ Cst), an alarm is issued. Because relay protection is sensitive to capacitor external
fault, and a bus fault would make the voltage zero, the shunt capacitor bank monitor
should not trigger an alarm due to an external fault or bus fault. Hence, in order to avoid a
monitoring malfunction, a low voltage criterion is added. When a capacitor external fault
or bus fault occurs, the voltage will drop significantly. As a result, when any voltage of the
three-phase bus is Uk < 0.85UN , this phase is determined to be a short-circuit fault, the
protection will trip and capacitor monitoring does not need an alarm. Considering the need
to prevent disturbance, a certain delay is added. The monitoring logic is shown in Figure 4.

Figure 4. Monitoring logic.

Considering that capacitor values are affected by environmental factors such as oper-
ating temperature, air pressure, dust, etc., adding a year-on-year comparison of capacitance
values can reduce the influence of operating conditions on measured values and indicate
whether the capacitor has changed significantly after long-term operation; doing so can
improve the sensitivity and accuracy of monitoring.

The normal state data for the current and previous years are stored, two sets of capaci-
tance values from the same month are sampled and a paired-sample t test is performed to
check for significant differences; if there is a significant difference, the operating state is
considered abnormal and an alarm is issued.

First, this assumes that the mean capacitance values of the two months are the same,
i.e., there is no significant difference.

Second, the formula for calculating t is given below. X1/X2 are the sample data from
the previous and current year for the same month. X1/X2 are the averages of the two
samples. δX1 /δX2 are the variances of the two samples. γ is the correlation coefficient of
the two samples.

t =
X1 − X2√

δ2
X1

+δ2
X2

−2γδX1 δX2
n−1

(8)

Third, we assume a confidence level of 95% and t(29)0.05 = 2.045 according to the T value
table. If t ≤ 2.045, no significant difference is found, and the capacitor is operating normally.
If t > 2.045, a significant difference is found, and the capacitor is operating abnormally.

3. Analysis of Test Results

To verify the practicability of the monitoring method in this paper, the system is
simulated and analyzed by PSCAD/EMTDC simulation software. Figure 5 shows the
simulated circuit diagram.
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Figure 5. Shunt capacitor bank at 10 kV bus.

The simulation system is a shunt capacitor bank built on a 10 kV bus. C0 is the initial
capacitance and CX is the variable capacitance, i.e., the simulated capacitance change in the
abnormal state. The capacitor branch resistance is 10 Ω, the capacitance value is 9.76 μF
and the series reactor is 63.94 mH, given 5% of capacitance.

3.1. Capacitor Internal Fault

Figure 6 shows the calculation results when phase A capacitance declined by 10% of
the standard value. The bus voltage remained unchanged. Phase A RMS current varied
from 20.26 A to 18.96 A. Phase B/C RMS current varied from 20.26 A to 19.94 A. As can
be seen from the figure, the capacitance changes slightly, the power system still operates
normally and the voltage and current do not change significantly. It is correctly identified
that the variability of phase A capacitance is out of specification and a phase A alarm is
issued. The calculation result of the capacitance is 8.7919 μF; the actual capacitance is 8.784
μF (with less than 0.1% relative error).

Figure 6. Phase A internal fault.

Figure 7 shows the simulation when the phase A and B capacitances declined by 10%
of the standard capacitance value. The bus voltage remained unchanged. Phase A/B RMS
current varied from 20.26 A to 18.55 A. Phase B/C RMS current varied from 20.26 A to
19.54 A. As can be seen from the figure, this method can correctly detect that the capacitance
changes of phase A and phase B are out of specification and issue an alarm. The calculated
capacitance value for phase A/B is 8.7972 μF; the actual capacitance is 8.784 μF (with only
0.15% relative error).
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Figure 7. Phase A and B internal fault.

Figure 8 shows the simulation when the capacitances of three phases change at the
same time. (A, B and C declined 2%, 4% and 8%, respectively, compared with the standard
value). The bus voltage remained unchanged. The phase A RMS current varied from
20.26 A to 19.57 A. The phase B RMS current varied from 20.26 A to 19.37 A. The phase
C RMS current varied 20.26 A to 18.97 A. It can be seen from the figure that when there
is a deviation in the initial parameters, capacitor monitoring can correctly detect that the
phase C capacitance change exceeds specified values and a phase C alarm is triggered. The
calculated result of the capacitances of phase A and B are 9.4608 μF (the actual capacitance
values are 9.5648 μF and 9.3696 μF, the relative error is 1.09% and 0.97%). The calculated
result of phase C capacitance is 8.9873 μF, the actual capacitance is 8.9792 μF and the relative
error is 0.09%. There is a certain error in the calculated results of the normal phases A and
B due to the initial deviation, but within the acceptable range, the capacitance value of the
faulty phase C is still accurately calculated, the abnormality is correctly identified, and an
alarm is issued.

Figure 8. Phase C internal fault.
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The above results show that when some capacitor units are faulty, the slight change of
capacitance value can be accurately detected. When the capacitance value changes beyond
the shunt capacitor guidelines, or a statistical data comparison flags the value as abnormal,
an alarm will be issued, which is convenient for maintenance.

3.2. External Fault

External faults occur when the fault accrues on a bus or line. The relay protections
operate in these cases. The bus voltage almost drops to zero, and the capacitance value
calculation is meaningless in this situation. In addition, capacitor monitoring should not
trigger an alarm at external fault. Figure 9 shows the normal operation of the bus in the
case of a single-phase ground fault. It can be seen from the figure that the capacitance value
before and after the fault has a bump, because when calculating the current and voltage, a
short circuit in one cycle causes a sudden change during the fault. The capacitance value
is stable, and its calculated value is 208.23 μF, because when an external fault occurs, the
measured impedance is the impedance from the measuring point to the short circuit point.
The external fault should be tripped by the relay protection, and the capacitor monitoring
should not trigger an alarm. Adding a low-voltage block make the alarm would not
malfunction during the external fault.

Figure 9. Phase A ground fault simulation results.

Figure 10 shows the normal operation of the bus in the case of phase A and B grounding
faults. During the fault, the calculated phase A and phase B capacitance values are both
208.23 μF; A, B two-phase low-voltage criteria are activated; two-phase capacitor failure
monitoring is no longer active; and no malfunction occurred.
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Figure 10. A and B grounded external fault.

The above results show that the capacitor fault alarm does not malfunction, and the
fault is removed by the protection mechanism.

Summarizing various faults of capacitors as shown in Appendix A, it can be seen that
this method can correctly detect the internal faults and locate the abnormal phase. This is
convenient for maintenance and repair work.

4. Conclusions

The on-line monitoring method for shunt capacitors proposed in this paper has the
following characteristics:

(1) This monitoring method is applicable to shunt capacitor banks of all connection
types. It can be realized only by using a relay protection device, with no additional device
to measure the state quantity. The method is economical and convenient.

(2) In the event of a slight capacitor failure or abnormality, the abnormal phase can be
detected to maintain safe operation.
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Appendix A

Table A1. Alarm results in each capacitor fault.

Fault Conditions
Fault Phase Impedance Alarm

Result Analysis
A B C A B C

A-phase capacitor failure abnormal normal normal Yes No No Capacitor failure, faulty
phase correct alarm

Bphase C capacitor failure normal abnormal abnormal No Yes Yes Capacitor failure, faulty
phase correct alarm

Three-phase capacitor failure abnormal abnormal abnormal Yes Yes Yes Capacitor failure, faulty
phase correct alarm

A-phase short circuit abnormal normal normal No No No External fault does not
alarm, the signal is correct

Bphase C short circuit normal abnormal abnormal No No No External fault does not
alarm, the signal is correct

Three-phase short circuit abnormal abnormal abnormal No No No External fault does not
alarm, the signal is correct
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Abstract: Increasing interest in natural gas-fired gensets is motivated by District Heating (DH) net-
work applications, especially in urban areas. Even if they represent customary solutions, when used
in DH, duty regimes are driven by network thermal energy demands resulting in discontinuous
operation, which affects their remaining useful life. As such, the attention on effective condition-based
maintenance has gained momentum. In this paper, a novel unsupervised anomaly detection frame-
work is proposed for gensets in DH networks based on Supervisory Control And Data Acquisition
(SCADA) data. The framework relies on multivariate Machine-Learning (ML) regression models
trained with a Leave-One-Out Cross-Validation method. Model residuals generated during the
testing phase are then post-processed with a sliding threshold approach based on a rolling average.
This methodology is tested against nine major failures that occurred on the gas genset installed in
the Aosta DH plant in Italy. The results show that the proposed framework successfully detects
anomalies and anticipates SCADA alarms related to unscheduled downtime.

Keywords: multivariate time series; early fault detection; condition based maintenance; multi-MW
gensets SCADA data

1. Introduction

District Heating, also known as heat networks or teleheating, provides a platform
for heat supply based on the integration of low-carbon technologies, including renewable
energy sources and thermal storage, to improve overall efficiency and minimize greenhouse
gas emissions. In operation since the end of the XIX century, DH represents an efficient
way to provide heat to a large number of users in densely populated urban areas [1–5].
According to IEA’s 2021 report [6], DH systems are important solutions to describe the
heating sector in any NZE 2050 scenario [7].

DH systems are composed of thermal plants and a distribution network of insulated
pipes that deliver heat to the end users. The thermal plant is based on technology to
generate heat from fossil fuels or renewable energy sources or to valorize waste heat [8].
In 2020, nearly 90% of heat was produced from fossil fuels, and one of the most common
technologies in DH thermal power plants involves the use of generator sets, also known as
gensets, with internal combustion engines (ICEs) either in combined heat and power (CHP)
configurations or directly coupled with heat pumps [9].

Wang et al. [10] reported that, in 2012, in China, more than 36% of the total building
energy demand was consumed for residential heating purposes, and about 62.9% of district
heat was produced by CHP systems. As another example, in Finland, DH accounts for
about 50% of the total heating market, and the city of Helsinki has around 20% of their
district heat produced by genset with the use of wastewater as a low-grade heat source [11].
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Gensets can suffer from intermittent operation caused by the variability and seasonal-
ity of the network heat demand, especially when directly coupled with heat pumps. These
operation modes often lead the engine off-design and can be interpreted as the root cause
of genset anomalies and failures. Therefore, the research on automatic Fault Detection (FD)
of gensets based on proper Condition-Based Maintenance (CBM) strategies is of paramount
importance to monitor the operation, reduce downtime and ensure the reliability and
productivity of the overall heat supply process [12–14].

Rooted in condition-monitoring systems, CBM aims to establish frameworks for
the diagnosis of equipment under supervision indicating incipient failures using sensor
networks. CBM defines and monitors health indicators capable of signaling an anomaly in
the case of deviation from reference values. Based on the evaluation of the current state
of the equipment, it is possible to identify faults and malfunctions at an early stage, thus,
allowing the timely planning of maintenance interventions. Despite the fact that scheduled
maintenance and CBM are complementary, CBM is, by far, the most cost-effective approach
and the one that enhances the life expectancy of the equipment [15,16].

A recent review on ICE diagnostics [17] suggested that a limited number of papers
dealt with analytical models specifically designed for the CBM of gensets operating in
DH networks. Most of the literature is dedicated to load prediction and the analysis of
optimal network design with few contributions focusing on the operation and maintenance
of networks and distribution pipelines [18].

As reported in [19], Machine-Learning (ML) algorithms have also been established as a
viable solution in the DH scenario because they are easily adaptable to changing conditions,
capable of modeling non-linear phenomena and can benefit from the historical data readily
available in modern control systems (e.g., SCADA data). While ML approaches based on
classification algorithms, such as Bayesian Classifiers (BCs) or Support Vector Machines
(SVMs), have been widely used for FD of ICEs [20–25], regression algorithms seem to
represent the most suitable option to perform an effective CBM.

In fact, on the one hand, BCs and SVMs are supervised ML tools that enable effective
FD, but they rely on events that already occurred in the past to label the training dataset.
On the other hand, unsupervised models based on regression approaches, classified in [26]
as Normal Behavior Models (NBM), are able to detect anomalies in real-time conditions, as
they can signal upcoming fault events in advance.

As a general outline, NBM approaches for CBM consist of training a reference model
that represents the normal operation of the system and evaluating the deviation, or residual,
between the predicted and actually measured values in real-time conditions to detect
anomaly occurrence. Note that training a regression model to create an NBM may appear
to be a supervised approach because it is trained on examples in which the expected values
of the target variable are also provided; however, due to the absence of labels classifying the
operational state in the training phase, NBM models fall into the category of unsupervised
fault-detection methods [27].

The scope of this work is to propose an unsupervised NBM model designed for gensets
operating in DH networks that introduces a series of advantages with respect to the state
of art as detailed in the following section.

2. Unsupervised CBM of ICEs: State of the Art

To date, most applications of data-driven unsupervised fault detection in ICE fall in
the automotive, aviation and marine sectors. To name a few, Liu et al. [28] used a linear
regression based on thermal and electrical parameters for detecting the valve clearance of
diesel engines. Bryght et al. [29] predicted failure in aircraft engines by combining lead func-
tion and logistic regression applied to aircraft engine takeoff data. Singh et al. [30] tested
the performance of several Machine-Learning algorithms for predicting the health of an air-
craft engine on historical data retrieved from the NASA data repository. Maraini et al. [31]
developed a data-driven framework based on a Multi-Layer Perceptron (MLP) for marine
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gas turbine engine health monitoring. Chen et al. [32] proposed a deep autoencoder with a
Dimension Fusion Function method (DFF-DAE) to detect aero-engine faults.

Focusing on the specific applications of ICEs in power plants, Mendonça et al. [12]
proposed a methodology for the detection of incipient failures in the components of internal
combustion engine-driven generators based on Electrical Signature Analysis (ESA), while
Deon et al. [33] introduced a predictive maintenance module within a digital twin based on
the definition of independent subsystems, each one supported by an ad hoc trained model
(Air Intake Subsystem, Exhaust Subsystem, Fuel Subsystem, Water Cooling Subsystem,
Lubrication Subsystem and Mechanical Subsystem).

Based on the above, it can be concluded that a large part of the literature envisages the
development of different Machine-Learning models applied to data sampled from sensor
networks specifically designed for condition-monitoring systems (e.g., accelerometers
and vibration sensors). On the other hand, as an interesting perspective, in recent years,
there has been an increasing focus on NBM approaches for CBM based on SCADA data,
especially in the context of wind turbines (see [26] for a comprehensive review).

However, NBM approaches can present a number of critical issues when applied to
multivariate SCADA data. In this sense, a number of challenges were identified in [27]. As
a first example, the high data dimensionality heavily affects the response times of NBM
models, making them frequently unsuitable for near real-time applications typical of CBM.
A second concern is represented by the challenge in isolating the size of the time window to
train the reference model: the seasonal nature of the operating conditions, coupled with the
possible presence of undesired anomalies in the dataset, makes it difficult to identify the
standard dynamics of the system using, for example, standard approaches for clustering or
outlier isolation.

Finally, a further issue is represented by the appropriate handling of residuals for
alarm activation. Since residuals are evaluated as the difference between the value of a
signal predicted by the regression model (trained under reference conditions) and the
actual value of the same signal logged by the SCADA sensor, they can present a high level
of noise and typical signal variability, which makes it very challenging to trigger alarms
using standard control charts.

As an attempt to face the aforementioned issues and challenges, a general framework
for SCADA-based CBM using a NBM approach is proposed, and the method is applied to
the technology of natural gas (NG) gensets in DH networks. Specifically, the framework
proposes a series of solutions to manage the entire data-mining process, starting from the
reduction of dimensionality in the pre-processing phase with a feature-selection algorithm,
passing through the training methods of the reference models with a Leave-One-Out
Cross-Validation approach [34], up to the post-processing of residuals by means of the
introduction of a two-stage sliding threshold metric to provide nowcasting of the alarms.
For the ML module, two different regression algorithms, namely, XGB and MLP, are trained
and compared.

The framework is tested on SCADA data sampled on a 7.5 MW NG genset installed
in the District Heating plant of the city of Aosta, Italy. The considered dataset includes
45 parameters with 5 min sampling during 16 months of engine operation (from September
2019 to December 2020). The paper is organized as follows. Section 3 presents the discussion
of the building blocks of the proposed ML framework for CBM. Then, Section 4 describes
the case study and the obtained results. Finally, Section 5 summarizes the present work
and presents our conclusions.

3. Anomaly Detection Framework, Overview

The first operation proposed in the framework is the pre-processing and cleaning of
SCADA event logs and signals, filtering out minor events from the logs and removing
constant signals (see Section 3.1).

Subsequently, we process all SCADA signals with a feature-selection method based on
a variable importance approach to select the best predictors for the nowcasting of a specific
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target variable (see Section 3.2). These preliminary operations optimize the performance of
the ML models both in terms of accuracy and computational costs for CBM purposes.

In the next step, we apply two completely different models (namely, XGB and MLP)
independently for the construction of the reference model, training both of them with
a Leave-One-Out Cross-Validation approach (see Section 3.3). This avoids any risk of
overfitting and guarantees greater robustness and flexibility of the results by simulating
unsupervised real-time applications.We recommend having at least one year of data for
the training phase, to guarantee the effective learning of the recurring relational dynamics
between signals while still taking into account the seasonal operational variations typical
of the analyzed users.

At the testing stage, we adopt a warning rule for anomaly detection based on a
sliding threshold metric approach, applied to the Local Residual Indicators (LRIs) of each
parameter. Specifically, we filter the noise of LRIs and subsequently define a control chart
based on their intensity and time persistence to trigger alarms only related to significant
anomalies and to reduce the occurrence of false positives (see Section 3.5).

Finally, we evaluate the anomaly detection results with respect to the ability to identify
precursors from the SCADA event logs and early detect major faults. Concerning the
SCADA event logs, after a preliminary filtering of minor events, the framework integrates
the evaluation of the Mean Time Between Alarms (MTBA) indicator and the quantification
of the total downtime in a prognostic perspective.

The entire framework is implemented using Python 3.9 Scikit-Learn open-source
library [35]. A step-by-step framework description is given in the following Figure 1.

Figure 1. ML framework for CBM and schematics.

3.1. SCADA Event Log and Signal Pre-Processing

The pre-processing of the SCADA event logs filters all minor alarms unrelated to
specific faults or anomalies, along with events recorded during the engine downtime. The
remaining logs are then used to estimate operation metrics, such as the MTBA and the
total duration of the outage events until correct operations are recorded. Those indicators
represent key parameters for the training setup of the ML model (as explained in more
detail in Section 3.4). Additionally, we evaluated the information content of each signal
time series using the Shannon Entropy (H) metric [36], which allows for the interpretation
of parameters with H close to zero as irrelevant or derived and to remove them from
the training dataset, together with constant signals. Finally, a sigma rule was adopted to
identify and remove extreme outliers related to measurement errors and to finally filter the
signals with respect to the active power of the ICE.
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3.2. Feature Selection

The framework adopts a feature-selection method based on variable importance
through exploiting the Predictive Power Score (PPS) [37] algorithm. The output of the PPS
analysis is an asymmetric, data-type independent index that identifies the relationships
among the features in a dataset. Specifically, PPS quantifies how much a single input
variable affects the prediction of the target variable. PPS assigns an index on each single
input feature (xi) at a time used to predict the target variable (yi) via a Decision Tree
algorithm. The index is expressed as:

PPS = 1 − MAExi ,yi
model

MAEyi
naive

(1)

where MAExi ,yi
model is the Mean Absolute Error of the chosen regression model that predicts

yi from a candidate xi, while MAEyi
naive is obtained with a naive model that always predicts

the median of yi. The index ranges from 0 (no predictive power) to 1 (perfect predictive
power). On this basis, as suggested by the authors of the algorithm [37], the minimum PPS
acceptability limit is consistently set at 0.2. For each specific target variable (yi), a vector of
best predictors Bi is defined, selecting from the set of all possible input features (xi), the
ones with a PPS score above the set threshold. For example, as highlighted in Figure 2, for
the specific target variable (yi) the vector of best predictors Bi includes the subset of input
features ranging from x1 to x8.

Figure 2. Example of criteria used to select best predictors based on the PPS score. Bars represent the
score value, while the red dashed line represent the minimum acceptability limity for the score.

3.3. Machine-Learning Model

Two different regression algorithms, namely, XGB and MLP, are selected as candidates
for the ML module. Both the regression algorithms saw an optimization process using a
grid search approach [38] to select the best combination of hyper-parameters. In spite of
the fact that both models identify within the training dataset one parameter at a time as the
target variable (yi) and exploit all the others to predict it, some core differences between
the models still represent a challenge for comparability.

Notably, since XGB belongs to the category of ensemble algorithms and since its
structure is composed of several decision trees, the results are independent from feature
normalization [39]. In contrast, Artificial Neural Networks rely on statistical analysis and,
thus, are strongly influenced by the distribution and quality of the data and are highly
dependent on the order of magnitude of their input values. As a consequence, MLP may
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neglect or overestimate the influence of certain features according to their values [40]. To
avoid this, input signals are initially normalized for the MLP model using a Standard
Scaler and then the predicted features are scaled back to their original size.This ensures the
comparability of results between the two ML models in terms of prediction scores.

3.4. Training Setup

As previously stated, the training strategy relies on a Leave-One-Out Cross-Validation
method [34] as a proposed solution to isolate reference operating conditions with standard
unsupervised approaches in highly discontinuous duty periods combined with the strong
seasonality of the signals. In the specific DH application presented in the paper, the
genset workload presented strong discontinuities in the summer period as well as a higher
environmental temperature operating condition, while having a more continuous workload
in winter with lower external temperatures.

In detail, as shown in Figure 3, one month m is cyclically isolated as the testing
dataset Dtest, and a model is trained on the remaining months split between training Dtrain
and validation Dval datasets. This approach is meant to avoid possible overfitting and
presume that most of the operational data over a long period of time refers to normal engine
operation. To further reduce the possible presence of failure precursors in the reference
model, Dtrain does not include any downtime period, considering an additional safety time
range equal to the value of the MTBA index obtained at the pre-processing stage.

Figure 3. Representation of the Leave-One-Out Cross-Validation method as implemented in the
present study.

As a result of this training process, a specific regression model (ML modeli) for each tar-
get variable (yi) is obtained and defined as a function of best predictors Bi previously identi-
fied. The accuracy of the two models during the training phase on the reference period was
evaluated with customary scores, i.e., the Mean Absolute Error (MAE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MDAPE).

3.5. Residual Indicator Definition

The aim of the proposed CBM framework is the definition of anomaly detection rules
to trigger early warnings of incipient failures. To this end, an LRI is defined for each
monitored variable [41] as the absolute value of the difference between the actual values
( f ) and those predicted by the models trained on the reference period ( fp):

LRI = | f − fp| (2)

Additionally, the LRI is enhanced with a sliding threshold metric based on an average
obtained with a rolling-window algorithm. This is done to trigger early warnings while
limiting the occurrence of false alarms due to LRI spikes. In particular, as shown in Figure 4,
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an alarm is triggered for a signal when the following condition is satisfied for P consecutive
time steps:

LRIi ≥ 0.5 · 1
W

Σi
j=i−W LRIj (3)

where LRIi is the LRI of the signal at time i and W is the length of the sliding window. The
value of W should be selected according to the periodicity of the observed phenomena and,
in this specific case, corresponds to 24 h. Thus, as the averaged LRI experiences a deviation
≥50% compared to the last 24 h that persists for at least P time steps, an alarm is triggered
for the specific sensor of that LRI. We set the persistence threshold P to 6 h, which resulted
in effectively removing residual noise.

Figure 4. Example of the anomaly detection rule to trigger early alarms on specific sensors.

This approach proved to be particularly suitable for this type of dataset, in which a
standard control chart with a fixed threshold for LRIs could be ineffective due to the extreme
data variability in some periods and seasons. Moreover, it guarantees high robustness in
handling the noise of the residuals of the models.

Based on such a warning rule, model performances were evaluated in terms of anomaly
detection capability on each cross-validation datasets cyclically isolated. This assessment
aims to quantify the ability of each warning to anticipate the major failure events included
in the SCADA log.

4. Results

4.1. Dataset Description

Data were collected from a natural gas genset installed in the Aosta District Heating
plant, which is equipped with a 16-cylinders turbocharged ICE. The engine has a nominal
electric power output of 7.5 MWe, and it is directly coupled to a 17.5 MWt heat pump. ICE
technical specifications are given in Table 1.

A SCADA system monitors different operating parameters collected by the main
components of the genset together with environmental measurements. In detail, the initial
dataset included 45 parameters sampled every 5 min from September 2019 to December
2020, for a total of 15 months. After the application of the signal preprocessing described in
the Section 3.1, the feature number was reduced to 33 significant parameters as listed in
Table 2.
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Table 1. Technical specifications of the engine.

Quantity Value Unit

N. of cylinders 16 [–]
Engine speed 720 [r/min]

Electrical power output 7235 [kW]
Thermal power air cooler HT 1305 [kW]
Thermal power air cooler LT 490 [kW]

Thermal power lube oil cooler 730 [kW]
Thermal power jacket

water cooler 925 [kW]

Exh. mass flow rate 39600 [kg/h]
Exh. gas temp. 355 [°C]

Table 2. List of SCADA signals.

Signal ID Description

P01–P19, P23, P25–P26 Cylinder, exhaust and intake temperatures
P20–P22, P24 Cylinder and fuel subsystem pressures

P27–P31 Generator phase and bearing temperatures
P32 Active power
P33 Ambient temperature

In addition to the SCADA signals, the framework’s anomaly detection capability was
evaluated by looking at the alerts logged by the SCADA system from October to December
2020, a period when numerous major failures occurred. As described in Section 3.1, only
major events were considered, including scheduled (i.e., normal stop) and unscheduled
downtime (i.e., emergency stop or outages after engine deratings). Table 3 lists the filtered
major SCADA events in the reference period.

Table 3. Event log for major events in the observation period. Event types are abbreviated as follows:
D—Derating, NS—Normal Stop and UD—Unscheduled Downtime.

Event ID SCADA Event Log Event Type Start Duration (hh)

DS_05_10 Exh Temp Deviation Cylinder D & UD 5 October 2020 11
S_07_10 Emergency Stop Activated UD 7 October 2020 123

DS_15_10 Exh Temp Deviation Cylinder D & UD 15 October 2020 11
S_20_10 Emergency Stop Activated UD 20 October 2020 5

DS_26_10 Exh Temp Deviation Cylinder D & UD 26 October 2020 11
S_13_11 Emergency Stop Activated UD 13 November 2020 4
D_16_11 Charge Air Temp After Cooler High D 16 November 2020 1
S_19_11 Emergency Stop Activated UD 19 November 2020 48
S_13_12 Shutdown from Main Control NS 13 December 2020 1

DS_16_12 Generator Stator Temp Windings D & UD 16 December 2020 1
S_21_12 Emergency stop Activated UD 21 December 2020 12

4.2. ML Settings and Prediction Errors

Both ML approaches experienced identical training, cross-validation and testing
phases. At the training stage, the dataset was split into training and validation sets,
respectively, named Dtrain and Dval, corresponding to 70% and 30% of the total set. Finally,
the testing set Dtest consisted of a single month cyclically isolated from the available data
and included the time periods of failure occurrences.

The XGB model learning task was set to linear regression with hyperparameters
optimization according to grid search algorithm, while the MLP setup included early
stopping to avoid overfitting. Tables 4 and 5 lists the two subsets of hyperparameters.
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Table 4. XGB regressor hyperparameters.

Hyperparameter Value

Subsampling of columns 0.20
Learning rate 0.10

Max depth 50
Nr. of trees 150

Nr. of parallel trees 20
Alpha 0

Lambda 1

Table 5. MLP regressor hyperparameters.

Hyperparameter Value

Nr. of Neurons 22
Nr. of hidden layer 1

Nr. of training epochs 150
Activation function relu
Initial learning rate 1 × 10−5

Optimizer ADAM
Batch size 1/50th

The ML model predictions are evaluated in terms of the reconstruction errors of all
SCADA signals (during the training phase the predicted values are compared with the ac-
tual ones). As can be seen from Table 6, XGB outperforms MLP in terms of customary scores.

Table 6. Reconstruction errors for the proposed ML models.

XGB MLP

MAE 0.04 0.11
MSE 0.10 0.14

RMSE 0.21 0.31
MDAPE 0.01 0.13

4.3. Anomaly Detection Results

For the evaluation of the anomaly detection capabilities, the results of the testing
phase refers to the period of October to December 2020. Specifically, ML model results are
discussed by plotting the LRIs against the relative warnings activated on the individual
parameters after the application of the sliding threshold metrics (Equation (3)). Furthermore,
as a reference to identify engine derating and shutdown, the results are presented in terms
of the active power together with the details of the main alarms recorded by the SCADA
system in the same time interval.

Figures 5–7 illustrate the results in October 2020. Figure 5 shows the active power,
with the detail of SCADA event logs recorded in that period (event IDs refer to Table 3).
Figures 6 and 7 show the LRI together with the warnings triggered by the framework
(highlighted in dashed red lines).

By analyzing October 2020 SCADA logs, five significant events were isolated. Those
events include three anomalies that resulted in a preliminary power output derating
followed by engine shutdown, along with two emergency stops linked to unscheduled
downtimes. Regarding the first event category, it is worth noting that all the shutdowns
were anticipated by cylinder temperature anomalies and that the application of the pro-
posed framework allows for the early detection of such precursors. In particular, for the
events detected on 5 October 2020 (event ID: DS_05_10) and 15 October 2020 (event ID:
DS_15_10), respectively, a significant deviation of the LRI associated with cylinder tem-
perature parameter (P16) can be seen in Figures 6 and 7, resulting in early warnings with
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respect to the actual SCADA log (additional details on the advance times relative to the
two ML models are in Table 7).

Figure 5. Active power in the reference period of October 2020 with details on the SCADA events
recorded in that period (black dashed line).

Figure 6. LRIs related to the parameters that caused a warning (red dashed line) after the application
of the sliding threshold metric for the MLP model in October 2020.

Figure 7. LRIs related to the parameters that caused a warning (red dashed line) after the application
of the sliding threshold metric for the XGB model in October 2020.

Furthermore, while the warning on the S_15_10 event was triggered by the two models
at the same time, the MLP model detected the anomaly related to event DS_05_10 about
ten hours earlier than XGB. The third derating event followed by an engine shutdown was
recorded on 26 October 2020 (event ID: DS_26_10) and concerned a high-temperature alarm
on cylinder 5B (P13) detected on the same day. Furthermore, for this event, Figures 6 and 7
present a significant variation of the LRI for the parameter P13, constituting a specific
precursor that results in a warning both for the MLP and XGB models on 23 October 2020,
about three days in advance compared to the SCADA alarm.
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Table 7. Comparison of detection performance of unscheduled downtime events (October–
December 2020).

Event ID XGB Results MLP Results
Detection Anticipation Precursors Detection Anticipation Precursors

(dd/mm/yy;
hh/mm)

(hh) ID
(dd/mm/yy;

hh/mm)
(hh) ID

DS_05_10 4 October 2020;
23:30 4 P16 4 October 2020;

13:45 14 P16

S_07_10 3 October 2020;
20:25 84 P08 4 October 2020;

17:20 62 P08

6 October 2020;
13:15 18 P13, P16 6 October 2020;

14:05 17 P13, P16

DS_15_10 14 October 2020;
06:40 37 P16 14 October 2020;

08:10 34 P16

S_20_10 16 October 2020;
06:00 101 P08 16 October 2020;

07:05 100 P08

DS_26_10 23 October 2020;
09:30 67 P13 23 October 2020;

10:45 65 P13

S_13_11 10 November
2020; 12:55 69 P08 10 November

2020; 14:15 68 P08

S_19_11 14 November
2020; 00:25 123 P04, P08 14 November

2020; 01:05 122 P04, P08

DS_16_12 4 December
2020; 00:10 299 P28, P29, P30 4 December

2020; 01:25 298 P29, P31

4 December
2020; 00:20 299 P04, P31, P32 - - -

S_21_12 16 December
2020; 12:05 114 P04, P08 16 December

2020; 13:00 113 P31, P32

The advances found before the emergency stops on 7 October 2020 (event ID: S_07_10)
and 20 October 2020 (event ID: S_20_10) are of particular interest since they are not as-
sociated with a specific SCADA anomaly alarm on a component of the gas genset. In
correspondence to these unscheduled downtimes, both ML models showed an anomaly on
the LRI of cylinder temperature (P08), which caused a warning three days in advance of the
first event (84 h for XGBoost and 62 h for MLP). Subsequently, the indicator of parameter
P08 returned to normal values after the maintenance intervention, as visible in the active
power plot in Figure 5), and then deviated again from 16 October 2020 (see Figures 6 and 7)
until the emergency stop on 20 October 2020.

In a similar fashion, Figures 8–10 compare the results of the CBM method during
November and December 2020, during which four significant unscheduled downtimes
were reported by the SCADA system. Details on the event log can be found in Table 3.

Those events include three emergency stop alarms recorded, respectively, on 13
November 2020 (event ID: S_13_11), 19 November 2020 (event ID: S_19_11) and 21 Decem-
ber 2020 (event ID: S_21_12) as well as a shutdown transient due to an anomaly found
on the generator temperature on 16 December 2020 (event ID: DS_16_12). From a global
analysis of the LRI trends, shown in Figures 9 and 10, different anomalies were detected
during the observed period in the engine cylinders and generator. In particular, previously
found anomalies on the cylinder exhaust temperature, correlated with two long outages in
October 2020, recurred from 13 November 2020, when a warning on the involved parameter
was triggered by both MLP (Figure 9) and XGBoost (Figure 10). This significant deviation
of the P08 parameter indicator persisted for about three days until an emergency stop was
recorded on 13 November 2020.

Immediately after this 4-h engine outage, both models detected a new significant
anomaly on P08, also involving other cylinders’ temperatures and anticipating the failure
detected by SCADA on 19 November 2020 (event ID: S_19_11). Of particular interest are the
results related to the remaining two significant events recorded by the SCADA in December
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2020, namely, DS_16_12 and S_21_12. In fact, the warnings detected so far by XGBoost
and MLP were always triggered by the same parameters (with some differences only in
the advance times with respect to the SCADA events), while in these two cases, different
precursors emerged from the models.

Figure 8. Active power for the period of November and December 2020, with details on the SCADA
events recorded in that period (black dashed line).

Figure 9. LRIs related to the parameters that generated a warning (red dashed line) after the
application of the sliding threshold metric for the MLP model in November and December 2020.

Figure 10. LRIs related to the parameters that generated a warning (red dashed line) after the
application of the sliding threshold metric for the XGB model in November and December 2020.

In particular, XGBoost LRIs (Figure 9) highlighted, on 4 December 2020, a variation
in the three temperatures of the generator-related variables, phases and bearings (P27-
P31). This resulted in a warning that anticipates the SCADA log DS_16_12 by about
twelve days. Comparing these results with those of the MLP model (Figure 10), the same
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significant deviation was not noticed on the generator stator winding but only on the two
generator bearings.

As for the unscheduled downtime of 21 December 2020, it was detected about 5 days in
advance by both models, with different precursors: exhaust cylinder temperatures (P01-P19)
for the XGB model and generator bearing temperatures (P27-P31) for the MLP model.

Finally, Table 7 summarizes the results discussed so far. In particular, the ability of
each of the two ML models was assessed to identify specific precursors for major faults
included in the SCADA log and then quantified the time of advance warning of the model
relative to the occurrence of the reference SCADA alarm.

5. Conclusions

In this paper, an anomaly detection framework for the CBM of natural gas engines
used in DH applications was presented. The framework exploited the use of signals
collected by the SCADA system. The peculiarities of the framework reside in the PPS-
inspired feature selection to reduce dataset dimensionality, the indifference to training
dataset clustering to discriminate faults and normal operations and the management of
time-series high-frequency information content directly filtering local residuals.

Two different models were tested to represent two different algorithm families: XGB
in the symbolist family of decision trees and MLP in the connectivist family of neural
networks. These models were trained to learn the regular behavior of the system based on
a Leave-One-Out Cross-Validation approach and, based on the model reconstruction errors,
a Local Residual Indicator (LRI) was defined for each monitored variable. Therefore, with
the aim of triggering an early warning before the occurrence of faults, while limiting false
alarms associated with instantaneous peaks in LRIs, a sliding threshold metric based on a
moving average was adopted. In this way, a warning was triggered for the signals with the
highest reconstruction error, to isolate the parameters mostly involved in the anomaly for
troubleshooting purposes.

The proposed method was validated on 5 min SCADA data collected from a 7.5 MWe
natural gas engine installed in the District Heating plant of Aosta city. The model was
tested on anomalous periods selected using the SCADA event log. The results show that
the proposed multivariate nowcasting approach allows the unveiling of hidden precursor
dynamics that anticipate all the main fault events that occurred in the observed period. It is
interesting to note that these anomalies were not detected by single-variable operational
control approaches typical of SCADA systems.

In addition, even if both ML models anticipated the same faults with similar advance
times, the better performance of XGB compared to MLP was evident in terms of the training
customary scores for the nowcasting of single parameters (see Table 6). In particular, XGB
paired with the two-stage threshold tuned with a persistence time of 6 h and time window
size of 24 h provided fault anticipations ranging from 4 to 299 h. The framework proved to
be fault agnostic because it detected ICE and generator anomalies.

In conclusion, the proposed solution presents a number of benefits due to its nature,
which includes the ability to early detect anomalies in NG genset in DH networks, enabling
the timely planning of corrective measures before major failures occur. This feature aligns
with a CBM approach, where predictive maintenance strategies are adopted to ensure
equipment performance and prevent unexpected downtime. Moreover, the proposed
solution is cost-effective, as it works directly on the data sampled from the integrated
SCADA systems. Unlike other systems that require additional intervention costs, the
proposed solution operates directly on the available data and can be seamlessly integrated
into the existing system.

The proposed solution employs a non-supervised approach that does not require
labels to classify operational states during the training phase, which can be challenging
to obtain. This feature makes the proposed solution highly versatile and adaptable to
a wide range of systems and contexts. The methodological framework also introduces
innovative solutions compared to the state of the art, including a feature selection phase
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based on CPSS that optimizes the response times of the algorithm to obtain near real-time
responses. Additionally, the training approach does not require a preliminary isolation of
faulty conditions for the identification of the reference normal behavior model.

Finally, a post-processing of residuals is introduced through the use of a two-stage
sliding threshold metric that provides nowcasting of alarms. Overall, the proposed solution
offers a highly effective, efficient and cost-saving approach compared to the other systems
and methods currently used in the industry. Future research could explore the potential of
scaling up the solution for larger DH networks and testing its application in other domains.
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