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about diseases (and therapies) by leveraging data science approaches with electronic health records

(e.g., in connection with COVID). Mura’s most recent interests focus on deep learning strategies for

exploratory analyses of the protein universe, particularly in light of a new ‘Urfold’ model of protein

structure.

Lei Xie

Dr. Lei Xie is currently a professor in Computer Science at Hunter College, and Ph.D. program

at Computer Science, Biochemistry, and Biology at the Graduate Center, The City University of

New York. He is also an Adjunct Professor in Neuroscience at Weill Cornell Medicine, Cornell

University. His research focuses on developing new methods in machine learning, systems biology,

and biophysics for multi-scale modeling of drug actions and causal genotype-phenotype associations,

and applying them to drug discovery and precision medicine. From 2001 to 2011, he was a principle

scientist at San Diego Supercomputer Center (SDSC), research scientist in pharmaceutical company

Hoffmann-La Roche and biotechnology start-up Eidogen. He was trained in Computational Biology

and Biophysics as a postdoctoral fellow at Columbia University and Howard Hughes Medical

Institute from 2000 to 2001. He obtained his Ph.D. in Medicinal Chemistry and M.S. in Computer

Science from Rutgers University, and B.S. in Polymer Physics from University of Science and

Technology of China.

vii





Citation: Mura, C.; Candelier, E.; Xie,

L. A Tribute to Phil Bourne—Scientist

and Human. Biomolecules 2023, 13,

181. https://doi.org/10.3390/

biom13010181

Received: 7 December 2022

Accepted: 5 January 2023

Published: 16 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Editorial

A Tribute to Phil Bourne—Scientist and Human

Cameron Mura 1,* , Emma Candelier 1 and Lei Xie 2

1 School of Data Science, University of Virginia, Charlottesville, VA 22903, USA
2 Department of Computer Science, Hunter College, The City University of New York,

New York, NY 10065, USA
* Correspondence: cmura@virginia.edu; Tel.: +1-434-249-3035

This Special Issue of Biomolecules, commissioned in honor of Dr. Philip E. Bourne,
focuses on a new field of biomolecular data science. In this brief retrospective paper, we
consider the arc of Phil’s 40-year scientific and professional career, particularly as it relates
to the origins of this new field.

Phil, as he is known to all—from students to university presidents and beyond—is
the founding Dean of the School of Data Science (SDS) at the University of Virginia (UVA).
He previously served as the first Associate Director for Data Science at the U.S. National
Institutes of Health (NIH), where he led a novel Big Data to Knowledge initiative [1]. Prior
to the NIH, Phil had a highly productive and impactful 20-year career at the University
of California, San Diego (UCSD), with close ties to the San Diego Supercomputer Center
and the Protein Data Bank (which he co-directed). At UCSD, Phil was also a Professor of
Pharmacology, and ultimately an Associate Vice Chancellor.

This tribute, which accompanies an interview in this Special Issue, does not seek
to delineate Phil’s curriculum vitae or detail his many honors and achievements—e.g.,
serving as an early President of the International Society for Computational Biology and
as the first Editor-in-Chief of PLoS Computational Biology—but rather to highlight the
several ways in which Phil’s contributions and leadership in multiple, disparate fields have
coalesced as part of a new field of biomolecular data science. For details, note that a brief
autobiographical account of Phil is available [2], as are his Wikipedia profile [3], his Ph.D.
dissertation [4], and a list of the many scientists [5] whom Phil has trained, mentored and
advised over the past four decades (this information is also available as a taxonomic tree [6],
fittingly enough). Also, we would be remiss were we not to mention that one can learn
what Phil, Monty Python, X-ray crystallography, and the county of Yorkshire, England all
have in common by visiting ref [7]. Here, we intentionally intertwine the personal and the
professional—as one can gather from even just brief interactions with him, Phil-the-human
and Phil-the-scientist are refreshingly one and the same (Figure 1).

Currently a Professor of Biomedical Engineering and the Stephenson Dean of the
School of Data Science at UVA, Phil spent much of his career exploring and helping
define the intersection of biomolecules and computation—as a practicing scientist and as
a leader [8] in academia, in open-access academic publishing [9], in the broader open-
science movement [10,11], and in conjunction with government and industry (Phil’s role
as an associate vice chancellor at UCSD concerned “innovation and industrial alliances”).
Over the span of Phil’s four-decade career, our knowledge of biomolecular structures,
dynamics, functions and evolution (in both health and disease) has rapidly advanced,
often exponentially. What enabled this? The staggering advances were enabled, in no
small part, by Phil’s highly collaborative and foundational work, where three pervasive
themes have been: (i) a structural approach to biological systems, including knowing
when to be reductionist and when not to be; (ii) the development and application of core
computational methodologies; and (iii) multidisciplinarity, to an extreme.
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Figure 1. Phil’s life in science started (a) very hands on, progressed to (b) mentoring, and then
he finally (c) took off for the (d) White House with his family. While he’s been a scientist for over
40 years, Phil’s been an avid cyclist for even longer; at UVA, he’s a founding member of the Hells
Administrators (https://www.youtube.com/watch?v=ZgtNp1ditzE (accessed on 5 January 2023)).

To elaborate these three points—structure, computation, multidisciplinarity—we
note that from the start of his career, first in small-molecule crystallography [12] and
then in (very) large-molecule structural biology [13], Phil embraced the key role of three-
dimensional structure [2] as an information-rich bridge between a biomolecule’s sequence
and its function. (Phil’s Structural Bioinformatics text is a mainstay on many researchers’
bookshelves [14].) As regards point (ii), a hallmark of Phil’s research programs over
the years has been the development and application of computational methodologies & re-
sources, including state-of-the-art databases (most notably the Protein Data Bank [15])
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and associated data standardization, dictionary and exchange approaches, such as the
macromolecular crystallographic information file (mmCIF) [16]. Along the way, Phil and
his teams created data standards and interoperable tools that were freely disseminated,
before this was appreciated and accepted as scientific best practice, and they developed
algorithms and software, such as the widely used combinatorial extension (CE) method for
3D structure alignment [17] and a novel approach to using “sequence order-independent
profile–profile alignment” to examine protein functional sites across vast evolutionary
distances [18]. Finally, as regards point (iii), computational biology and related areas are
well-understood to be highly interdisciplinary [19], and here we simply reiterate that Phil
was a pioneer in these fields from their inception (before they were ‘a thing’). As an ex-
treme example that is specific to Phil, not many scientists have both published research on
“ancient shifts in trace metal geochemistry” [20] and written a book on Unix [21]!

In addition to foundational ‘basic research’ advances, Phil’s work and its applications
have had significant impact across a vast array of biological and biomedical domains,
including early-stage drug discovery [22], molecular evolution [23], immunology [24],
and more—resulting in over 350 papers, several books, and nearly 75,000 citations of his
work [25]. In recent years, Phil’s attention has turned to considering what is possible
at the junction of data science and structural biology [26,27]; notably, Phil’s receipt of
Microsoft’s Jim Gray Award for eScience (2010) foretold his move into this area, as this
award cited his “groundbreaking accomplishments in data–intensive science”. All throughout
these career milestones, Phil has been unwavering in his support of public service in
government and academia, in open scholarship, in research best practices [28], and in
the professional development of all who have crossed his path, from students to peers to
colleagues. Indeed, as regards professional development, many readers are likely familiar
with the Ten Simple Rules (TSR) series that Phil conceived of and initiated 20 years ago. There
are now well over 1000 rules [29], covering everything from strategically forging one’s
career path in academia, government and industry [30,31], to winning a Nobel Prize [32],
to focused guides on leveraging Git/GitHub [33], to avoiding and resolving conflicts with
your colleagues [34]. The full collection of TSRs, which is freely available at ref. [35] and
organized by topical areas/categories (Career development, Education & mentoring, etc.), is
a testament to how Phil empowers scientists to more effectively navigate the world of
very-human scientific activities (papers, talks, careers) that begin where the data-collection
and number-crunching end.

Those who have worked with Phil have likely noticed that a pronounced trait in
his approach to biosciences, and now data science, is that it is expansive and forward-
looking, with a healthy dose of irreverence and provocation [36]—in a word, visionary.
Phil’s interests in recent years have converged upon “biomedical data sciences”, which
can be viewed as a natural evolution (and synthesis) of bioinformatics, computational
biology, structural biology, biophysics, systems biology, and other allied fields [36]. In a
real sense, the intense multidisciplinarity of Phil’s career foreshadowed a field such as
biomedical data science. This Special Issue honors Phil by trying to capture his vision as it
relates to biomolecules—how this vision arose and what it can encompass, as expressed in
a collection of original research papers, perspectives and reviews. We hope that the breadth
and depth of the contributions in this Special Issue convey the spirit of Phil’s vision.

Finally, as we honor Phil in this Special Issue, recognizing his role today as the Dean of
the UVA School of Data Science—the first of its kind in the nation—we close by noting that
Phil’s vision of biomedical data science can be mapped to four core elements of data science:
Systems, Analysis, Design and Value. For example, Systems, in our context of biomolecular
data science, relates to the underlying infrastructure, such as data structures, ontologies,
software libraries and tools, that enables discovery. With respect to biomolecules, Analysis
has been largely dominated by machine learning approaches such as deep learning, for
which robust systems and frameworks to access and efficiently utilize training data are
critical (e.g., [37]). Design, which can refer to human–computer interaction, visualization
and so on, has played a vital role throughout the history of structural and computational
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biology, and now biomolecular data science. Finally, the Value element seeks to optimize
the benefit of research for those it serves, from society at large to local communities; here,
clear links exist between drug and therapeutic development, health disparities research,
and other realms at the heart of biomolecular and biomedical data sciences.

The papers in this Special Issue exemplify what a field of biomolecular data sciences
can represent, as a fitting tribute to someone who has moved the field forward via his
own work and by his steadfast support of many research communities, biomolecular and
beyond. In keeping with Phil’s mantra, ‘Onwards!’ . . .
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Article

Using GPT-3 to Build a Lexicon of Drugs of Abuse Synonyms
for Social Media Pharmacovigilance

Kristy A. Carpenter 1 and Russ B. Altman 1,2,*

1 Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
2 Departments of Bioengineering, Genetics, and Medicine, Stanford University, Stanford, CA 94305, USA
* Correspondence: russ.altman@stanford.edu

Abstract: Drug abuse is a serious problem in the United States, with over 90,000 drug overdose deaths
nationally in 2020. A key step in combating drug abuse is detecting, monitoring, and characterizing
its trends over time and location, also known as pharmacovigilance. While federal reporting systems
accomplish this to a degree, they often have high latency and incomplete coverage. Social-media-
based pharmacovigilance has zero latency, is easily accessible and unfiltered, and benefits from drug
users being willing to share their experiences online pseudo-anonymously. However, unlike highly
structured official data sources, social media text is rife with misspellings and slang, making automated
analysis difficult. Generative Pretrained Transformer 3 (GPT-3) is a large autoregressive language model
specialized for few-shot learning that was trained on text from the entire internet. We demonstrate
that GPT-3 can be used to generate slang and common misspellings of terms for drugs of abuse. We
repeatedly queried GPT-3 for synonyms of drugs of abuse and filtered the generated terms using
automated Google searches and cross-references to known drug names. When generated terms for
alprazolam were manually labeled, we found that our method produced 269 synonyms for alprazolam,
221 of which were new discoveries not included in an existing drug lexicon for social media. We repeated
this process for 98 drugs of abuse, of which 22 are widely-discussed drugs of abuse, building a lexicon
of colloquial drug synonyms that can be used for pharmacovigilance on social media.
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1. Introduction

The opioid epidemic is a growing crisis, driving a drastic rise in deaths attributed to
drug overdose over the past several years in the United States [1,2]. Of the nearly 92,000
overdose deaths in 2020, over 56,000 involved synthetic opioids such as fentanyl [3]. It is
imperative for researchers to understand the past, present, and future of drug abuse in
order to combat this national emergency.

Pharmacovigilance is the detection, assessment, and analysis of the usage and effects
of drugs [4]. Monitoring trends in the opioid epidemic and the abuse of other drugs is
a critical first step in reducing the number of deaths from drug overdoses [5]. Several
international and national agencies, such as the World Health Organization (WHO), the
European Medicines Agency (EMA), the U.S. Food and Drug Administration (FDA), the
U.S. Centers for Disease Control and Prevention (CDC), the U.S. National Institutes of
Health (NIH), the U.S. Drug Enforcement Administration (DEA), and the U.S. Department
of Health and Human Services (HHS), survey and monitor drug use and effects. Notable
pharmacovigilance systems from these agencies include VigiBase, EudraVigilance, the FDA
Adverse Event Reporting System (FAERS), the National Health and Nutrition Examination
Survey (NHANES), the National Drug Early Warning System (NDEWS), the National
Forensic Laboratory Information System (NFLIS), and the National Survey on Drug Use
and Health (NSDUH). Concern about growing opioid abuse has driven numerous analyses
on opiates’ pharmacovigilance data from these systems [6–13]. In addition to analysis of
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statistics and metrics from reporting systems, pharmacovigilance studies have also been
conducted using text mining and natural language processing (NLP) on free text notes in
electronic health records (EHRs) [14–19].

There has been an increased interest over the past decade in using social media for
NLP-based pharmacovigilance. While official pharmacovigilance surveys may have a
latency of months to years to make results available, social media data can be queried
nearly instantaneously. Drug users are also willing to freely post their experiences with
drugs online, sharing information that they may not want to make accessible to federal
agencies, making social media a valuable resource for surveillance of illicit drug use [20].
The pseudo-anonymity offered by various social media platforms facilitates this openness.
Social media pharmacovigilance is believed to have first appeared in 2010 [21] and has
gained traction since, with most studies using the social media platforms Twitter [22–30],
Facebook [28–30], and Reddit [31–33] for tasks such as adverse drug reaction extraction
and off-label drug usage analysis.

While social media holds promise for improving pharmacovigilance efforts, it also
brings unique challenges. Social media data are fundamentally different from that of the
FDA, WHO, CDC, NIH, or even clinical notes in an EHR in that it is by nature casual
and unstandardized, and therefore rife with misspellings and slang. There is abundant
missingness, as not all posts will contain geographic or demographic information. Mis-
information is rampant on social media, with the ease of posting and incentivization of
viral content leading to the easy spread of rumors, conspiracy theories, and misleading
interpretations of scientific results, both intentionally and unintentionally [34,35]. In many
cases, it is impossible to verify the validity of any information posted. The contents of
social media are also heavily influenced by politics, current events, and pop culture. As
such, analyses of social media could be considered “unscientific”, or at least in violation
of the traditional standards of epidemiological studies. There is much improvement to
be desired from social media pharmacovigilance efforts [36], which are still very much in
their infancy. However, despite these limitations, multiple meta-analyses and qualitative
reviews have found that social media pharmacovigilance efforts are able to extract some
meaningful signal pertaining to drug use and effects [37–39].

One method that addresses some of the outstanding problems of social media pharma-
covigilance is RedMed [40], a word embedding model based on continuous bag-of-words
modeling [41] and trained on archived comments on health- and drug-related Reddit fo-
rums. After training the model to cluster similar terms, RedMed can discover candidate
terms with significant cosine similarity to an index term from DrugBank [42] and subse-
quently verify those terms with filters related to edit distance, phonetics, pill impressions,
and Google search results. RedMed produced a lexicon of drug synonyms that included
misspellings and slang terms, enabling better retrieval of pharmacovigilance-relevant text
from social media sources; it was subsequently used for quantification of adverse drug
reaction severity [32].

We propose to extend RedMed without training a new embedding model by using
pre-trained large language models—specifically, Generative Pretrained Transformer 3
(GPT-3) [43]. GPT-3 is the third installation of a generative pre-trained transformer from
the company OpenAI that has been trained on the entire internet. It is an autoregressive
language model of unprecedented size, with 175 billion parameters. Generally, language
models are probability distributions over sequences (typically of words) that can identify
if a given sequence is likely or generates likely sequences. Transformers are a machine
learning architecture that is built around the attention mechanism [44], and have sparked
great advances in language modeling. GPT-3 garnered much discussion upon its release in
2020 due to its performance in few-shot learning; given only a few examples, it is able to
produce desired text output that closely resembles real human writing. Typical examples
of GPT-3 tasks are question-answering, story completion, translation, and summarization.
Researchers have also explored using GPT-3 in a medical context, on tasks such as EHR
summarization or supporting a medical chatbot, but no such models have been deemed
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ready for deployment in the clinic [45–47]. The reception of GPT-3 has not all been positive,
and due to its training on the entire internet, it is prone to generating text that perpetuates
harmful stereotypes or promotes dangerous activity [43,48,49]. OpenAI has made GPT-3
available as an application programming interface (API), allowing researchers to leverage
its capabilities without needing to train a massive language model themselves.

We argue that GPT-3 is valuable for social media pharmacovigilance as it is able to
generate text that closely resembles common writing patterns used on the internet at large.
In this work, we make the following contributions:

• We introduce a novel method to repeatedly query GPT-3 for drug synonyms and filter
the generated terms to create a lexicon enriched for likely synonyms, all in an auto-
mated fashion. We make the code for the method publicly available to build similar
lexicons, facilitating interpretable pharmacovigilance on messy, casually-written social
media data that does not require training a new large machine learning model;

• We present a lexicon of GPT-3 synonyms for 98 drugs of abuse, including 22 widely-
discussed drugs of abuse, which can be used to easily flag text likely to be related to
drug abuse from a large corpus of informal language in an interpretable manner;

• Finally, we also demonstrate of the capabilities of GPT-3, and similar models, for
practical contributions to pharmacovigilance.

Code and data are available on GitHub (https://github.com/kristycarp/gpt3-lexicon).

2. Materials and Methods

2.1. Datasets
2.1.1. RedMed

We use index terms from the RedMed lexicon to provide seed terms to GPT-3. The
RedMed lexicon is comprised of index terms from DrugBank, their respective associated
known drug terms (AKDTs) (e.g., brand names), and their respective synonymous terms
generated by a word embedding model and subsequently filtered. The terms in the
RedMed lexicon data frame are organized into columns to indicate how the term was
validated: because it is an AKDT (known), within close edit distance (edOne, edTwo), within
close phonetic edit distance (misspellingPhon), a pill impression (pillMark), validated by
Google search (google_ms, google_title, google_snippet), or present in a slang-specific
database (ud_slang). To improve quality of our results, we only sample from the RedMed
synonyms that are a single-word AKDT, within close edit distance, within close phonetic
edit distance, and a pill impression. The choice to limit inclusion of AKDTs to only those
comprised of a single word followed from the observation that many multi-word AKDTs
were simply short phrases containing the seed term (e.g., for alprazolam, commonly known
as xanax, the multi-word AKDTs include “started taking alprazolam”, “xanax works great”,
and “quit taking xanax”). When these phrases are presented to GPT-3, more such phrases
are generated, which are not useful for our task as they already contain a known drug
synonym and therefore add no information. We also excluded RedMed synonyms from
the google_ms, google_title, google_snippet, and ud_slang columns, as these tended
to include a higher rate of false positives, and presenting GPT-3 with irrelevant examples
leads to generation of more irrelevant terms.

2.1.2. Drugs of Abuse

The DEA maintains a list of controlled substances, which are defined to be drugs with
high potential for abuse. As of July 2022, there are 543 DEA-controlled substances [50]. We
took the intersection of the 543 controlled substances and the 2997 index terms in RedMed,
resulting in 131 controlled index terms. Of these, 33 contained fewer than three terms in
our selected columns of RedMed; we eliminated these index terms as they did not have
sufficient RedMed synonyms for GPT-3 prompt generation. This resulted in a final set of
98 controlled index terms to input into the GPT-3 query pipeline.
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2.1.3. Widely-Discussed Drugs of Abuse

Some of the 98 selected index terms are more widely-discussed online than others, and
therefore would likely have more synonyms than less widely-discussed index terms. In
order to better evaluate how our pipeline performs on these drugs, we took approximately
the top 25% of index terms with respect to discussion on Reddit and created a subset of
widely-discussed drugs of abuse. For each of the 98 index terms, we used Google to search
for exact matches to the index term on Reddit. We choose to limit to Reddit to reduce
noise and because Reddit is a popular platform for discussing drug use [40,51,52]. The
cutoff for the top 25% of index terms was approximately 10,000 Reddit hits (Figure A1),
so for simplicity we used 10,000 hits on Reddit webpages as the cutoff to determine if an
index term should be included in the “widely-discussed” subset. Of the 98 selected index
terms, 22 are “widely-discussed.” We note that this subset is only intended to demonstrate
pipeline performance on drugs which are discussed more frequently on relevant discussion
forums, as they are more likely downstream applications of our lexicon and pipeline than
less prominent drugs.

2.2. External Models
2.2.1. GPT-3

We accessed the GPT-3 model [43] through the OpenAI API. We used the text-davinci-

002 engine for all queries.

2.2.2. Google Search API

We used the Custom Search JSON API from Google’s Programmable Search Engine to
automate Google searches of generated terms.

2.3. Terminology

Terminology coined in this manuscript (or in [40] and key to this study) is defined in Table 1.

Table 1. Definitions of new terminology used throughout this manuscript.

Term Abbreviation Definition

Associated known drug term AKDT

As defined in [40], known
terms used synonymously for
a given drug, most often brand
names.

Controlled index term - A controlled substance that is an
index term.

Controlled substance -

A substance (i.e., drug) that is
deemed to have a high poten-
tial for abuse by the DEA and
is therefore controlled.

Generated term - See GPT-3 generated term.

GPT-3 generated term -

A term generated from a GPT-
3 query as a candidate syn-
onym for the corresponding in-
dex term used in the prompt.

GPT-3 synonym -

A GPT-3 generated term that has
been automatically labeled as
a synonym following a filter-
ing scheme.

9



Biomolecules 2023, 13, 387

Table 1. Cont.

Term Abbreviation Definition

Index term -

The identifying term of a drug
as indexed in RedMed; also
the generic name of a drug as
indicated in DrugBank.

Novel GPT-3 synonym -
A GPT-3 synonym that is not
already present in RedMed as
a RedMed synonym.

Non-synonym -

A generated term that has been
manually labeled as not syn-
onymous for the correspond-
ing queried index term.

RedMed synonym -
A term listed in RedMed as
synonymous for a given index
term.

Synonym -

A generated term that has been
manually labeled as synony-
mous for the corresponding
queried index term.

Unique novel GPT-3 synonym UNGS

Equivalent to a novel GPT-3
synonym but specifying that
each unique novel GPT-3 syn-
onym is only counted once no
matter how many times it has
been generated.

Widely-discussed -

Specifying that a drug appears
relatively more frequently
on Reddit, suggesting higher
rates of online discussion,
more synonymous terms, and
potentially greater interest for
pharmacovigilance.

2.4. Methods
2.4.1. Overview of Query Pipeline

An iteration of the query pipeline begins by uniformly sampling three RedMed synonyms
for the queried index drug term. We insert the index term and the sampled RedMed synonyms
into a prompt template (further described below), which we provide to GPT-3 as a Completion
query. Because we use an enumerative list in our prompt templates, and because GPT-3 is
easily able to pick up on enumerative formatting, nearly all results returned by GPT-3 will
also be formatted in an enumerative list. We automatically parse the listed results to extract
the GPT-3 generated terms. We repeat this process to build a set of GPT-3 generated terms for
the queried index term. We also pass the generated terms through filters described below. A
schematic of this GPT-3 querying pipeline is depicted in Figure 1.
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Figure 1. Overview of the selection steps and overall pipeline. (a) preprocessing. The intersection of
RedMed and DEA controlled substances are taken as index terms to feed through the pipeline. Each
index term goes through the pipeline for 1000 iterations, resulting in a lexicon of GPT-3 synonyms.
Approximately one-quarter of the index terms put through the pipeline are designated as “widely-
discussed” and are used to examine performance on terms with many synonyms and of high relevance
to pharmacovigilance; (b) an example of a single iteration through the GPT-3 querying pipeline. For
the desired index term (red), we uniformly sample three RedMed synonyms (blue) to insert into
the prompt template. We present the prompt to the GPT-3 Completions API and parse the returned
result for generated terms (purple). We use a Google search filter and a drug name filter to determine
whether to classify generated terms as GPT-3 synonyms (green checkmark) or not (red x).

2.4.2. GPT-3 Prompt Templates

We experimented with a variety of prompt templates at a small scale in a sandbox
environment when constructing the format of GPT-3 queries. Examples included asking
for synonymous terms with and without examples, asking for synonymous terms in a
colloquial manner (using slang and misspellings in the prompt), and writing the prompt as
a conversation between two drug users discussing slang terms. We observed that prompts
formulated as an enumerative list most often led to GPT-3 completions that continued the
list, facilitating automated parsing of generated terms. Other types of prompts (such as
asking in a colloquial manner or framing the prompt as a conversation) led to responses
that were too varied to easily extract sets of generated terms at scale. In addition, because
GPT-3 is specialized for few-shot learning [43], we know that it works very well for a
desired task when given a few examples of desired output, and saw this reflected in our
small-scale prompt experiments. These observations resulted in the choice of the following
prompt template:

11



Biomolecules 2023, 13, 387

“ways to say [index term]:
1. [RedMed synonym 1]
2. [RedMed synonym 2]
3. [RedMed synonym 3]
4.”

The hanging “4.” indicates to the model that it should continue filling in the list.
We chose to include three example synonyms in the prompt template because we

observed in our small scale experiments that GPT-3 tended to complete the enumerated list
until there were three or ten items in the list. Therefore, using three example synonyms
often led to seven additional terms being generated, maximizing the number of generated
terms when this pattern was followed. Because we did not observe a drastic change in the
number of generated terms beyond this pattern, we chose to not further investigate varying
the number of synonyms presented in the prompt template, though this could become an
area of future work. We note that GPT-3 queries limit the number of tokens in the prompt
and response combined, meaning that listing a large number of example synonyms could
impact the number of terms able to be generated.

We also observed that, with this formulation, GPT-3 tends to generate the names of
drugs that are different from the index term but have the same indications (e.g., generating
the names of other anti-anxiety medications when prompted for alprazolam terms). We hy-
pothesized that providing counterexamples in the prompt might reduce this phenomenon.
Our prompt template with counterexamples is as follows:

“these are not synonyms for [index term]:
1. [counterexample 1]
2. [counterexample 2]
3. [counterexample 3]
4. [counterexample 4]
but these are synonyms for [index term]:
1. [RedMed synonym 1]
2. [RedMed synonym 2]
3.”

In our parameter search experiments, we used hand-picked counterexamples; for the
index term of alprazolam, our counterexamples were ativan, zoloft, lexapro, and klonopin.

2.4.3. GPT-3 Parameter Search

The GPT-3 query API allows for the specification of model parameters, which include
temperature, frequency penalty, and presence penalty. Temperature indicates how much
the model should prioritize high-likelihood answers over providing diverse answers and
ranges from 0 to 1; a low temperature leads to the model prioritizing high-likelihood
answers, and a high temperature leads to the model prioritizing diverse answers. The
frequency penalty controls how likely the model is to generate the same tokens verbatim
and ranges from −2 to 2, with more positive numbers increasing the penalty of this verbatim
repetition. In this context, a token is a sequence of characters (often full words, though a
word can also be comprised of multiple tokens) commonly found in the training corpus of
GPT-3. GPT-3 functions by learning the statistical relationships between tokens [43]. The
presence penalty controls how likely the model is to generate text about new topics and
ranges from −2 to 2, with more positive numbers increasing the penalty of topic repetition.
We sought to identify the model parameters, as well as the prompt template that would
maximize the number of unique novel GPT-3 synonyms (UNGSes), which we define as
generated terms that pass the post-query filters and are not already present in RedMed. We
only want to count each unique generated term once, as generating the same term multiple
times does not add new information to the lexicon. We do not want to count terms that
are already RedMed synonyms because these were already known and available. We ran
1000 iterations of the query pipeline on one index term for each possible combination of the
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following parameter settings: temperatures of 0.0, 0.3, 0.6, and 1.0; frequency penalties of
0.0, 0.5, and 1.0; presence penalties of 0.0, 0.5, and 1.0; and the prompt templates with and
without counterexamples. We chose to only investigate these settings, rather than conduct
a full automated parameter sweep, due to budget constraints (both the OpenAI API and
the Google Search API incur costs per query) and the rationale that a grid search of values
spanning the ranges of each parameter would be sufficient to identify settings useful for
downstream application. We selected alprazolam as the index term for the initial parameter
sweep experiment because it is a common drug of abuse that is discussed widely online
and therefore a representative example of the type of term for which we would like good
performance. We confirmed the observed trends from alprazolam by additionally running
1000 iterations of the query pipeline on two more drugs on a smaller set of parameter
setting combinations: temperatures of 0.0, 0.5, and 1.0; frequency penalties of 0.0 and 1.0;
presence penalties of 0.0 and 1.0; and only the prompt template without counterexamples.
We selected heroin and benzphetamine as our index terms for these follow-up experiments
because these are both drugs of abuse that the DEA classifies as having higher and lower
potential for abuse, respectively, than alprazolam. Additionally, we would expect heroin
to be discussed at a rate similar to or higher than that of alprazolam, whereas we would
expect much less discussion of benzphetamine.

2.4.4. Google Filter

We used Google searches to automate an approximate validation of whether generated
terms were synonymous with the index term. Upon extraction of each generated term from
the GPT-3 response, we made a series of Google searches: the generated term alone, the
generated term with “pill” appended, the generated term with “drug” appended, and the
generated term with “slang” appended. The rationale behind the searches with appended
keywords is that some drug slang terms have multiple meanings and a search of only the
term itself may yield non-drug-related results; appending “drug”, “pill”, or “slang” makes
it more likely to yield results with the drug-related context. We processed the search results
through a specified maximum depth (e.g., a specified maximum depth of 10 would entail
processing the top 10 search results), recording whether there is a search result within the
maximum depth that has an instance of the index term appearing in its title or content
snippet, and if so, the depth of the first result for which it does. Because the Google API
limits the rate and daily number of API queries, we terminated the Google searching
process for a term once one search contained a result with the index term. We also made
the searching process more efficient with memoization.

2.4.5. Drug Name Filter

We filtered out generated terms if they appeared in the set of RedMed index terms and
were not the same as the queried index term. This choice was informed by the observation
that GPT-3 tends to generate the name of different drugs with the same indications as the
queried index term.

2.4.6. Final Pipeline Parameters

After our parameter search experiments, we ran the final version of the pipeline on the
set of 98 controlled index terms. We used a temperature of 1.0, a frequency penalty of 0.0,
and a presence penalty of 0.0 for all GPT-3 queries. We used the Google filter with depth 10
and the drug name filter. We conducted 1000 iterations of the pipeline for each index term.

2.4.7. Manual Labeling

To be able to evaluate pipeline performance, we manually labeled the terms generated
by our pipeline for alprazolam and fentanyl. We chose to manually label these two index
terms because these drugs are very widely abused and discussed and therefore of high
interest for pharmacovigilance efforts; in addition to informing this study, generating gold
standard labels for alprazolam and fentanyl may be useful for later pharmacovigilance
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research. For each unique generated term, a human labeler performs internet searches,
searches directly on substance-related Reddit forums, and cross-references with compiled
lists of known drug slang terms to determine if, by their best judgment, the generated
term was a valid slang term, misspelling, brand name, or other synonym. All labelers had
previous experience in drug-related informatics and were very familiar with the domain.
We instructed labelers to mark a generated term as a synonym if they found at least one
instance online of a person using that term in a context where it was apparent that they
were referring to the index term or if it was the brand name of the index term in any country.
This includes terms that have both drug meanings and non-drug meanings. For example,
“bars” could refer to alprazolam, a long rod, an establishment serving alcoholic drinks, or
the action of prohibiting something. Even though in many contexts, “bars” does not refer
to alprazolam, it would be labeled as a synonym because there are contexts in which “bars”
indisputably does refer to alprazolam. Terms in other languages were also accepted. For
example, “alprazolan” is Spanish for alprazolam and is therefore a synonym of alprazolam.
We acknowledge that it is possible that some manual labels may be incorrect, but given
the expertise of the reviewers, we believe that such errors are scarce enough to not majorly
impact the conclusions we draw from our results.

2.4.8. Evaluation Criteria

We quantify the performance of our pipeline on the two index terms that we manually
labeled by calculating precision (Equation (1)) and recall (Equation (2)). The F score is
a metric to quantify the trade-off between precision and recall; the F1 score weights the
two equally (Equation (3)), whereas the F2 score favors high recall over high precision
(Equation (4)). We denote number of true positives by TP, number of false positives by FP,
and number of false negatives by FN:

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

F1 score = 2 ∗ precision ∗ recall
precision + recall

(3)

F2 score = 5 ∗ precision ∗ recall
2 ∗ precision + recall

(4)

In the context of this method, we prefer high recall to high precision when evaluating
different filtering schemes. We do this because the primary use case for the lexicons
produced by our pipeline is to scan social media posts for drug-related terms in order to
identify which posts are likely about the drug of interest. In this context, it is better to flag
irrelevant posts as relevant than to miss relevant posts because it is possible to use manual
inspection or other automated models to further filter the posts, whereas the size of social
media corpora makes it intractable to identify false negative posts. Therefore, we consider
both the F1 and F2 scores in our evaluation.

We note that some applications of this lexicon or pipeline may require higher specificity
or precision than provided by our current criteria, in which case subsequent filters will be
needed to remove false positives. However, we maintain that favoring recall in an initial
evaluation is important because, while it is possible to filter out likely false positives from
an existing lexicon, it is much more difficult to introduce likely false negatives into an
existing lexicon.
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3. Results

3.1. Parameter Search

We first examined parameter trends from the results of the pipeline parameter sweep
for the index term of alprazolam. We saw a clear relationship between increased tempera-
ture and increased number of UNGSes (Figure 2a). We also saw a large difference between
the two prompt templates; the prompt template without counterexamples had dramatically
more UNGSes than that with counterexamples (Figure 2b). There were not obvious relation-
ships between frequency penalty or presence penalty and number of UNGSes, though for
both penalties, we saw that the the maximum of the range of UNGSes per iteration tended
to decrease as the penalties increased (Figure 2c,d). We found that the temperature trend
was consistent when examining the results of the heroin and benzphetamine iterations
(Figure 3a); we did not repeat the prompt variation as the alprazolam results were so stark.
These two sets of iterations also showed a slight average decrease in number of UNGSes
when either the frequency penalty or presence penalty was increased (Figure 3b,c). We
therefore decided that a temperature of 1.0, a frequency penalty of 0.0, a presence penalty
of 0.0, and the prompt template without counterexamples were the best parameter settings
to use going forward. Further solidifying the decision to use these parameter settings, we
observed that, for each drug, the set of 1000 iterations that generated the most UNGSes
was one with all, or almost all, parameter settings matching our choices (Figure 4).

3.2. Google Search Depth Analysis

We used the manually labeled alprazolam and fentanyl data to both determine an
appropriate cutoff for the maximum search depth and to examine if there is a relationship
between search depth and manual label. We used a maximum search depth of 30 for the
1000 alprazolam iterations and saw a sharp decrease in the proportion of generated terms
that are synonyms to generated terms that are not synonyms around a search depth of 10,
in addition to an overall decrease in the number of unique terms generated (Figure 5a).
This informed a lower maximum search depth of 10 for the 1000 fentanyl iterations, which
displayed a similar power-law-like decrease in number of synonyms, non-synonyms, and
unique terms generated overall as the depth increased (Figure 5b).

Figure 2. Parameter search using alprazolam as index term. Each combination of temperature,
prompt template, frequency penalty, and presence penalty was used to conduct 1000 iterations of
the query pipeline. The number of unique novel GPT-3 synonyms (UNGSes) generated by the 1000
iterations was recorded for each parameter set. Each subfigure shows the distribution of UNGSes for
each value of (a) temperature; (b) prompt template; (c) frequency penalty; and (d) presence penalty.
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Figure 3. Smaller parameter search using heroin and benzphetamine as index terms. Each combina-
tion of temperature, frequency penalty, and presence penalty was used to conduct 1000 iterations of
the query pipeline. The number of UNGSes generated by the 1000 iterations was recorded for each
index term and parameter set. Each subfigure shows the distribution of UNGSes for both heroin and
benzphetamine for each value of (a) temperature; (b) frequency penalty; and (c) presence penalty.

3.3. Generation Frequency Analysis

Across the 1000 iterations of the query pipeline, GPT-3 tended to generate many terms
more than once. Notably, some very common colloquial names for the index terms used
in these initial experiments appeared at a very high rate. We sought to investigate if a
generated term’s frequency of generation could be used to estimate how likely it is to be a
true synonymous term. For both the set of alprazolam iterations and the set of fentanyl
iterations, we observed that terms generated only once or twice were overwhelmingly
manually labeled as non-synonyms, and that most, but not all, terms generated more than
15 times were manually labeled as synonyms (Figure 6a,b). While it is possible that not all
manual labels are correct, the trend still holds even if there are some erroneous labels. We
examined the five most frequently generated terms for both alprazolam and fentanyl. The
five most frequent alprazolam terms were “xanax”, “ativan”, “zoloft”, “alprazolan”, and
“xanor”. Both “xanax” and “xanor” are common brand names of alprazolam, and “alpra-
zolan” is both a common misspelling of alprazolam and the Spanish word for alprazolam.
“Ativan” and “zoloft” are brand names of lorazepam and sertraline, respectively, which
are distinct from alprazolam but share its anxiolytic effects. These two terms, which are
not synonyms of alprazolam, were not caught by the drug name filter as they are brand
names. The five most frequent fentanyl terms were “sublimaze”, “duragesic”, “fentanil”,
“fentanylum”, and “fentora”, all of which are either brand names or common misspellings
of fentanyl, and are therefore fentanyl synonyms.
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Figure 4. Number of UNGSes per each combination of temperature, prompt template, frequency
penalty, and presence penalty for (a) alprazolam; (b) heroin; and (c) benzphetamine. The bar shading
in each subplot represents the value of the parameter indicated in the title of that subplot. Each bar
represents a different parameter set used for 1000 iterations of the pipeline.
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Figure 5. Histogram of the number of unique terms generated at each depth in the Google search for
both (a) alprazolam and (b) fentanyl. At each search depth, the count of synonyms (true examples) is
shown as blue bars, and the count of non-synonyms (false examples) is shown as red bars. The blue
bars are stacked on top of the red bars (i.e., they do not continue behind the red bars). The alprazolam
queries allowed a maximum search depth of 30, whereas the fentanyl queries were limited to a
maximum search depth of 10 as utility drops after the tenth result.

After applying the Google search filter to the generated terms, we observed a reduc-
tion in the number of non-synonyms, most notably at the low end of the frequency range.
Without the Google search filter, there were 137 alprazolam synonyms, 571 alprazolam
non-synonyms, 168 fentanyl synonyms, and 907 fentanyl non-synonyms generated once
(Figure 6a,b). With the Google search filter, there were 128 alprazolam synonyms, 115 alpra-
zolam non-synonyms, 125 fentanyl synonyms, and 152 fentanyl non-synonyms generated
once (Figure 6c,d). While, without the Google search filter, we may have discarded the
terms only generated once or twice due to their high proportion of non-synonyms, we see
that the proportion evens out after applying the Google search filter. We also note that,
on the high-frequency end of the spectrum, the two non-synonyms present in the top five
most frequently generated alprazolam terms do not pass the Google search filter, while the
three synonyms do. Because of this effect, as well as the fact that there are synonyms at all
frequency levels, we choose to not include a frequency-based filter into our query pipeline.

3.4. Pipeline Performance

We evaluated the performance of the lexicon generation pipeline using the manual
labels for both alprazolam and fentanyl generated terms as a proxy for ground truth. In
doing so, we sought to characterize the ability of each filter setup to automatically identify
manually labeled synonyms and to determine which filters to run the pipeline with on a
larger set of index terms.

As a baseline, we analyzed the performance when predicting that all terms generated
by GPT-3 are synonyms (Figure 7a). This demonstrated how many synonyms were gen-
erated by GPT-3 for both alprazolam and fentanyl (269 and 314, respectively), but also
showed how many non-synonyms are generated (750 and 1114, respectively). Despite
the perfect recall in both cases (due to never assigning negative predicted labels), the low
precision (0.264 and 0.220, respectively) supports our decision to filter the GPT-3 outputs.
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Figure 6. Histogram of the number of terms generated at different frequencies for (a) alprazolam
without the Google search filter; (b) fentanyl without the Google search filter; (c) alprazolam with the
Google search filter; and (d) fentanyl with the Google search filter. Plots use a logarithmic scale. At
each search depth, the count of synonyms (true examples) is shown as blue bars, and the count of
non-synonyms (false examples) is shown as red bars. The blue bars are stacked on top of the red bars
(i.e., they do not continue behind the red bars). The top five most generated terms for each drug are
labeled. All plots omit generated terms that do not pass the drug name filter.

We also analyzed the performance when only predicting a generated term as a synonym if
it was already present in RedMed (Figure 7b). This led to perfect precision for both alprazolam
and fentanyl (i.e., no false positives) but a low recall (0.178 and 0.115, respectively). The
low recall is an indication of how many new terms that GPT-3 is generating that were not
previously included in RedMed.

We analyzed multiple combinations of filters for the prediction of synonyms. The three
filters assessed were the drug name filter, the frequency filter, and the Google search filter.
The drug name filter removes generated terms that match any index term besides the queried
index term. The frequency filter removes generated terms that are generated only once. We
found that increasing the frequency threshold beyond one increased precision, but decreased
recall; as previously stated, we prefer to maximize recall. The Google search filter removes
generated terms if the corresponding index term does not appear in the first 10 Google search
results for the term alone or with “pill”, “drug”, or “slang” appended. The precision, recall,
and F1 and F2 scores for all filter combinations tested are shown in Table 2.
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Figure 7. Confusion matrices for both alprazolam and fentanyl queries. True labels are determined
by manual labeling. Predicted labels are determined by (a) classifying all generated terms as true;
(b) classifying all generated terms that appear in RedMed as true; (c) classifying all generated terms
that pass the drug name filter as true; (d) classifying all generated terms that pass the drug name filter
and the generation frequency filter as true; (e) classifying all generated terms that pass the drug name
filter and the Google search filter as true; and (f) classifying all generated terms that pass the drug
name filter, the generation frequency filter, and the Google search filter as true. In each confusion
matrix, a 0 denotes a negative classification, which is a non-synonym, and a 1 denotes a positive
classification, which is a synonym.

Because it generated both the highest F1 and F2 scores on the manual labels for both
alprazolam and fentanyl, we used the classification scheme of the drug name filter and the
Google search filter (but not using the frequency filter) to build the final lexicon for all drugs
of abuse. We made this decision under the assumption that high F1 and F2 scores on the
manual labels would correlate with high F1 and F2 scores on the (unknown) ground truth.
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Table 2. Evaluation metrics when using different classification schemes for GPT-3 synonyms and
using manual labels as a proxy for ground truth.

Index
Term

GPT-3 Synonym Criteria Precision Recall
F1
Score

F2
Score

Alprazolam All generated terms 0.264 1.000 0.418 0.642
Fentanyl All generated terms 0.220 1.000 0.361 0.585
Alprazolam All RedMed terms 1.000 0.178 0.302 0.213
Fentanyl All RedMed terms 1.000 0.115 0.206 0.140
Alprazolam Drug name filter 0.285 0.996 0.443 0.664
Fentanyl Drug name filter 0.232 1.000 0.377 0.602
Alprazolam Drug name & frequency filters 0.567 0.487 0.524 0.501
Fentanyl Drug name & frequency filters 0.521 0.465 0.491 0.475
Alprazolam Drug name & Google filters 0.698 0.859 0.770 0.821
Fentanyl Drug name & Google filters 0.568 0.793 0.662 0.735
Alprazolam Drug name, frequency, & Google filters 0.859 0.431 0.574 0.479
Fentanyl Drug name, frequency, & Google filters 0.770 0.395 0.522 0.438

3.5. Drugs of Abuse Lexicon

We conducted 1000 iterations of the query pipeline on each the 98 index terms. On
average, each index term had 3880 total generated terms and 1426 unique generated terms
over the 1000 iterations, though this varies widely per drug (Figure 8a,b). All generated terms
that passed the drug name filter and the Google search filter were compiled into a lexicon of
GPT-3 synonyms for drugs of abuse. Each index term had an average of 141 unique GPT-3
synonyms in the lexicon (Figure 8c) and an average of 132 UNGSes (Figure 8d).

When only considering widely-discussed drugs, the observed distributions of the afore-
mentioned counts shift. Widely-discussed drugs yielded more total generated terms on
average (4063 per index term; Figure 8e) but fewer unique generated terms on average
(1259 per index term; Figure 8f). They also yielded more unique GPT-3 synonyms on average
(293 per index term; Figure 8g) and more UNGSes on average (268 per index term; Figure 8h).

We include Google search, drug name matching, and frequency information in the full
lexicon to enable the addition or removal of filters in future applications.

4. Discussion

In this study, we demonstrate that GPT-3, a large language model trained on the
entire internet and used extensively for few-shot text generation, is able to generate drug
synonyms to facilitate pharmacovigilance based on social media. With automated API
queries and simple automated filters, we create a lexicon of slang terms, misspellings,
brand names, and other synonyms of drugs identified by the DEA as drugs of abuse with
minimal manual intervention. We offer both the lexicon and the code used to create the
lexicon for use in identifying drug-related social media posts and characterizing large-scale
trends in drug abuse and overdoses.

Our lexicon allows researchers conducting pharmacovigilance on social media (or
other text source that uses colloquial language without a controlled vocabulary) to easily
scan a large amount of text data and flag posts that contain terms synonymous with a drug
of interest. Not only is this approach very accessible, as it does not require the machine
learning expertise or computational resources needed for advanced language models, but
it also provides interpretability as it is clear which term is responsible for flagging each
post. This interpretability can aid the removal of false positive examples. We hope that our
lexicon enables pharmacovigilance to be more efficient and have lower latency, due to the
ability to utilize social media data and the lack of a need to develop complicated machine
learning models. Additionally, our pipeline can be used for easy synonym generation tasks
in areas beyond pharmacovigilance.
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Figure 8. Histograms showing various distributions of quantities for each index term in the full
lexicon of 98 drugs of abuse (a–d) and the subset of 22 widely-discussed drugs of abuse (e–g).
Quantities depicted are total generated terms (a,e), unique generated terms (b,f), unique GPT-3
synonyms (generated terms passing filters) (c,g), and UNGSes (generated terms passing filters and
not present in RedMed) (d,h).

While we found that GPT-3 generated hundreds of terms identified to be synonyms
by manual labeling, the raw outputs also contained a large number of false positives,
demonstrating the need for post-processing. We have shown that the drug name filter in
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combination with the Google filter yields the highest recall of all the filtering schemes. On
average, our lexicon contains 141 GPT-3 synonyms per index term, and on average 132 of
these are novel discoveries not found in RedMed. Importantly, these numbers increase for
widely-discussed drugs that are more likely to be the focus of pharmacovigilance research.
If we assume that the precision of the pipeline when generating fentanyl synonyms (the
less precise of the two manually-labeled examples) holds for all index terms, then our
lexicon contains 80 synonyms on average per index term, and 166 synonyms on average
per widely-discussed index term. Notably, because GPT-3 is available as a pre-trained
model, the process of querying GPT-3 and filtering the results to obtain these tens to
hundreds of real synonyms requires relatively little effort, in direct contrast to RedMed’s
word embedding model, which required its own training and tuning.

Our pipeline has some limitations. For example, our choice to prioritize high recall over
high precision means that the resulting lexicon is likely to contain many false positives. The
number of false positives may be additionally increased by our broad definition of positive
examples in the manual labeling process (e.g., labeling “bars” as a positive example/synonym
for alprazolam, when in many contexts it would be not be a synonym for alprazolam). If
the application for which the lexicon is being used requires higher precision, then additional
filters will need to be applied to remove false positives. Alternatively, one could generate a
new lexicon using different pipeline parameters than those specified above.

GPT-3 is unlikely to be able to predict new drug slang. The version of GPT-3 that we
use in our experiments completed training in late 2019. It therefore has no information
about any event from 2020 and onward. While GPT-3 may produce plausible-sounding
predictions of the future, it is important to remember that it is not an oracle and, unlike
Google, does not have up-to-date access to the happenings of the world. Drug slang terms
can shift with new media and trends in pop culture, and these shifts will not be represented
in the outputs of GPT-3. Therefore, as time goes on, our pipeline may generate slang
terms that become less relevant to the current state of online conversations about drug
use. However, because GPT-3 is optimized for few-shot learning, it is possible to present it
with recent knowledge and let it generate likely tokens from that. It is also not unlikely
that OpenAI will release an updated GPT model in the future that will be trained on new
internet content.

Similarly, we note that the use of the Google filter in the final version of the pipeline
means that the generative capabilities of GPT-3 may be suppressed, in that a plausible
novel slang term that is not yet in use online would be omitted from the final lexicon. This
occurs because our current mode of pipeline evaluation depends upon online presence
and would therefore also miss plausible novel terms. One may use our method without
the Google search filter in an attempt to recover more such original terms, but they would
need a different evaluation method or else risk an influx of false positives. However,
we believe that this is not a major limitation, as the primary utility of this method in a
pharmacovigilance context is that it can recover terms currently in use on the internet that
may be unknown to pharmacovigilance researchers; the generation of a term that will never
be used is not useful for monitoring trends in drug use.

We recognize that our method requires a set of existing synonyms (e.g., RedMed
synonyms) to construct the initial prompts presented to GPT-3. In the absence of a relevant
RedMed entry for a drug of interest, there are alternate ways that one can generate such
a set of synonyms. First, one could use resources such as existing online slang term lists,
specialized slang dictionary sites such as Urban Dictionary, social media sites such as
Twitter and Reddit, or a simple Google search to manually gather a few example synonyms.
Second, one could modify the GPT-3 prompt template to query GPT-3 for synonyms of
the index term without providing examples, and manually validate the resulting terms
through the aforementioned online resources. While either of these options would require
extra manual processing, we believe that the amount of work required to obtain a few
synonyms to construct a prompt pales in comparison to the amount of work saved when
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using our pipeline to generate novel synonyms based on that prompt, as the strength of
GPT-3 is in few-shot learning.

Finally, our pipeline shares a common problem with many applications that use GPT-3:
GPT-3 is so good at producing plausible outputs that it is very difficult to tell if an output is
truth or fiction. Beyond our discussion of using automated filters to reduce the number of
false positives, we must also address the philosophical question of whether it is appropriate
to use GPT-3, or a similar generative language model, for this task at all. One could
argue that the task might be better approached by training a new large language model to
recognize drug-relevant text, or by using simpler AI methods than large language models.
However, the incredible performance of GPT-3 across a range of text generation tasks,
in addition to the evidence from our experiments with alprazolam and fentanyl terms,
convinces us that there are enough synonyms produced by GPT-3 for it to be a valuable
resource for social media pharmacovigilance. We encourage future users of our pipeline to
carefully consider if GPT-3 is appropriate for their task of interest.

This work is primarily a proof-of-concept, and there are numerous improvements
to the pipeline which could be made to further enrich the resulting lexicon. One such
improvement would be additional prompt engineering to further maximize the number of
synonyms generated per API query. For example, it is possible that changing the format of
the synonym list from a numbered list to some other form may be beneficial. One could also
consider other ways of giving GPT-3 examples of desired output (whether using the index
drug or some other drug) to reduce generation of false positives. We acknowledge that
the manual tuning of query parameters may have led to a suboptimal choice of parameter
settings, though the fact that the three numerical query parameters were at their extremes
(highest possible temperature and lowest possible nonnegative presence penalty and
frequency penalty) suggests that this is unlikely to be the case. Nevertheless, future work
could verify this choice with a parameter sweep conducted via an automatic optimization
algorithm. Additionally, the release of ChatGPT [53], which was concurrent with the
preparation of this manuscript, brings a newer model with more advanced capabilities to
the research community. It is possible that using ChatGPT for this task instead of GPT-3
may yield better results.

We share these methods and results in the hopes of contributing to population-scale
pharmacovigilance to combat the opioid epidemic and reduce harm from drug abuse.
We do not condone the use of our lexicon or pipeline for censorship or surveillance at
the individual level. We also acknowledge that our pipeline could be used to evade
censorship or monitoring on online platforms, or could potentially otherwise influence the
emergence of new slang. However, we believe that the chance of such influence is minor,
and greatly outweighed by the potential for lexicons created from this pipeline to better
inform understanding of large-scale trends in drug abuse.
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GPT-3 Generative Pretrained Transformer 3
WHO World Health Organization
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CDC U.S. Centers for Disease Control and Prevention
NIH U.S. National Institutes of Health
DEA U.S. Drug Enforcement Administration
HHS U.S. Department of Health and Human Services
FAERS FDA Adverse Event Reporting System
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NLP Natural Language Processing
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AKDT Associated Known Drug Term
API Application Programming Interface
UNGS Unique Novel GPT-3 Synonym
TP True Positive
FP False Positive
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Appendix A

Figure A1. Histogram showing the distribution of the number of Reddit search hits for all DEA
controlled substances (i.e., drugs of abuse) in RedMed. The x-axis is on the log scale. The 25th, 50th,
and 75th percentiles are indicated with dashed and solid lines. All drugs in the 75th percentile are
considered “widely-discussed” in this study for the purpose of examining pipeline performance for
drugs with a high number of synonymous terms.
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Abstract: Quantum computing holds great promise for a number of fields including biology and
medicine. A major application in which quantum computers could yield advantage is machine
learning, especially kernel-based approaches. A recent method termed quantum metric learning, in
which a quantum embedding which maximally separates data into classes is learned, was able to
perfectly separate ant and bee image training data. The separation is achieved with an intrinsically
quantum objective function and the overall approach was shown to work naturally as a hybrid
classical-quantum computation enabling embedding of high dimensional feature data into a small
number of qubits. However, the ability of the trained classifier to predict test sample data was
never assessed. We assessed the performance of quantum metric learning on test ants and bees
image data as well as breast cancer clinical data. We applied the original approach as well as
variants in which we performed principal component analysis (PCA) on the feature data to reduce its
dimensionality for quantum embedding, thereby limiting the number of model parameters. If the
degree of dimensionality reduction was limited and the number of model parameters was constrained
to be far less than the number of training samples, we found that quantum metric learning was able
to accurately classify test data.

Keywords: quantum machine learning; quantum metric learning; kernel method; kernel classifiers

1. Introduction

Significant progress has recently been made toward the development of fault tolerant
quantum computers (FTQCs) [1]. Their development would result in the speedup of many
algorithms that are approaching severe limits on classical computers. The range of applica-
tions include quantum chemistry [2], search [3], cryptography [4] and machine learning [5].
These applications are relevant to many domains of study including biology and medicine.
In the field of machine learning, exponential speedups on a quantum compared to classical
computer have been proven [5] for implementing quantum support vector machines [6],
quantum Boltzmann machines [7,8], least squares fitting [9], and quantum principal compo-
nent analysis [10]. Quadratic speedups have been demonstrated [5] for classical Boltzmann
machines [11], quantum reinforcement learning [12], online perceptron [13], and Bayesian
inference [14,15]. However, these speedups assume a FTQC with high connectivity and
hundreds to thousands, even millions for some applications, of qubits. In addition, some
of these quantum algorithms require quantum RAM (qRAM) which executes a quantum
coherent mapping of a classical vector into a quantum state [16,17], for their quantum
advantage over classical computers. However, qRAM hardware has not been developed.
Currently, quantum computing is in its noisy intermediate-scale quantum (NISQ) era [18].

A major application in which even NISQ-era quantum computers could yield advan-
tage is kernel-based machine learning [19–22]. Broadly, two sets of approaches have recently
been explored [20,21]: (1) map a large feature space into a quantum state and calculate a
kernel function on a quantum computer and make use of this kernel in a classical classifier
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(e.g., SVM) and (2) apply a variational quantum circuit to classify data on the quantum
computer in Hilbert space. Kernel-based classifiers that interfere the test and train data
and effectively calculate their Euclidean distance [19,23,24] and/or inner product [23–25]
have been developed and assessed on IBM quantum computers and performed close to
theoretical expectations if the number of gates were kept to a relatively small number [25].
Formally, supervised quantum models have been shown to be kernel methods [22], and it
has been suggested that quantum computers could enable kernel-based machine learning
in a similar way that GPU-accelerated hardware enabled deep learning [22]. As a result of
these developments, a number of kernel-based quantum machine learning studies have
been performed in which the trainability [26–29], expressivity [30,31], robustness [32,33]
and generalizability [30,31,33–35] of quantum kernel-based models implemented on NISQ-
era quantum computers have been studied as well as the extent to which quantum errors
can be mitigated on a classical computer [30,31].

In this work, we focus on a quantum kernel-based machine learning approach termed
quantum metric learning (QML) [26]. Here, a quantum embedding is learned by maximiz-
ing the Hilbert-Schmidt distance of data samples from two classes in such a way that two
classes are separated in Hilbert space. This enables a simple linear decision boundary to
be implemented in Hilbert space which represents a complex decision boundary in the
original feature space. This approach has all the advantages that come with kernel-based
approaches mentioned above along with a number of other attractive features for NISQ-
era quantum computing including: (1) simple, quantum-based cost function based on the
Hilbert-Schmidt distance, (2) seamless applicability as a hybrid quantum-classical approach
that reduces the dimensionality of the input feature space for quantum embedding to a
small number of qubits, (3) ability to directly visualize the extent to which samples with dif-
ferent class labels are separated and (4) ability to be implemented on a quantum computer
as a classifier using multiple swap gates [23–26]. Despite these highly promising attributes
of QML, the primary manuscript detailing the method [26] only demonstrated its ability to
separate training data. The ability of QML to generalize well by assessing a trained model
on test data was not shown. Consequently, we fill this gap by training and testing QML
with the original ImageNet Hymenoptera Dataset containing images of ants and bees [36]
as well as the University of California Irvine Machine Learning Breast Cancer Wisconsin
(Diagnostic) dataset [37]. The breast cancer dataset contains 30 normalized clinical features
for each breast cancer patient whose tumor was diagnosed as malignant and benign. We
used precision, recall and F1-score as performance metrics for test data. We also report
the resulting cost function for both train and test data. We reproduced the result that for
the original ant and bee image data, we were able to achieve a high level of separation
on training data. However, we found that the trained classifier did not perform well on
hold out test data. We noticed that the number of model parameters exceeded the number
of training samples, so we hypothesized that the model was overfitting the training data.
Application of principal component analysis (PCA) to reduce the input feature dimension
and number of model parameters did not significantly improve test performance on this
dataset. We turned to the breast cancer data which contained far fewer input features and
more samples and further applied PCA as well to reduce the input feature dimensions
and number of model parameters. We found that QML was able to perform well on both
training and test data in this setting. Thus, when adhering to conventional bias-variance
principles, namely, constraining the number of model parameters to be notably less than
the number of training samples, we find that QML-based classifiers generalize well. This is
true as long as the initial number of features (i.e., the number of features prior to PCA) is
not too high.
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2. Materials and Methods

2.1. Quantum Metric Learning Expressed as a Kernel-Based Quantum Model

In quantum metric learning, a quantum embedding,

|x〉 = Φ(x, θ) |0 . . . 0〉 , (1)

is learned where Φ(x, θ) is a feature map which maps the input data x to a quantum state
|x〉 which separates the data according to class labels in Hilbert space by maximizing the
Hilbert-Schmidt distance Dhs or, equivalently, by minimizing a cost function C defined in
terms of Dhs, through gradient descent of the model parameters θ. The Hilbert-Schmidt
distance is

Dhs(ρ, σ) = tr[(ρ − σ)2], (2)

where ρ and σ are density matrices representing ensembles of Ma and Mb training data
points a and b from class A and B, respectively:

ρ =
1

Ma
∑

a∈A
|a〉 〈a| (3)

and
σ =

1
Mb

∑
b∈B

|b〉 〈b| . (4)

The cost function C, whose range is [0, 1], that is minimized is

C = 1 − 1
2

Dhs(ρ, σ). (5)

Once C is minimized, the parameters, θ, of the feature map are determined in such
a way that the training data {a, b} is separated in Hilbert space. In order to classify a test
sample, x, it must first be embedded using the feature map as shown in Equation (1). A
fidelity classifier [23–26] can then be defined by the difference in squared inner product
between the embedded test sample |x〉 and the respective class A and B embedded training
samples {|a〉 , |b〉}:

f (x) =
1

Ma
∑

a∈A
| 〈a|x〉 |2 − 1

Mb
∑
b∈B

| 〈b|x〉 |2 (6)

= 〈x| ρ − σ |x〉 . (7)

Equation (7) can be viewed as an expectation of a measurement, M, where

M = ρ − σ (8)

=
1

Ma
∑

a∈A
|a〉 〈a| − 1

Mb
∑
b∈B

|b〉 〈b| . (9)

Thus, the fidelity classifier may be expressed as follows:

f (x) = 〈x|M|x〉 (10)

= tr[|x〉 〈x|M]. (11)

Equation (11) is the definition of a quantum model (see Equation (34) of Schuld et al. [22])
which can be expressed as a quantum kernel-based model. We implement and assess the
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generalization performance of quantum metric learning using the following k-nearest
neighbor (KNN) kernel-based classifier:

ŷ = sgn( f (x)) (12)

= sgn( ∑
a∈A

αaκ(a, x)− ∑
b∈B

αbκ(b, x)), (13)

where ŷ is the prediction for test sample x and sgn denotes the sign function. Comparison
of Equations (6) and (13) yields the result that αa = 1/Ma, αb = 1/Mb,

κ(a, x) = | 〈a|x〉 |2, (14)

and
κ(b, x) = | 〈b|x〉 |2, (15)

where κ(a, x) and κ(b, x) are defined as quantum kernels (see Equation (6) of Schuld et al. [22])
which are the inner product between the embedded test data, x, and training data, a and b,
respectively, in the context of a KNN classifier.

2.2. The Quantum Metric Learning Embedding Circuit

Various adaptations of Lloyd et al.’s hybrid quantum metric learning embedding [26]
were used throughout this work. See Figure 1A for a full illustration of the general
embedding. The quantum component of the algorithm (the trainable quantum feature map, a
repeating circuit ansatz consisting of single-qubit Rx, Ry rotation gates and two-qubit ZZ
coupling gates [26,38] resulting in 12 trainable quantum parameters) was left unchanged.
The classical components leading to the intermediate x1 and x2 inputs to the quantum
feature map were replaced and varied. We note that the quantum circuit is precisely the
same as that of Lloyd et al. [26]. The example ansatz in Figure 3 of [26] is for three inputs
(x1, x2 and x3). However, we and Lloyd et al. [26] use two inputs (x1 and x2) to assess QML
on real world datasets.

We now describe the effects that the Rx(xi), Ry(θj) and ZZ(θj) gates have on the two-
qubit state at the kth stage of the circuit, |xk〉, where i = 1, 2, j = 1, 2, ..., 12, k = 1, 2, ..., 14 and

|xk〉 = αk |00〉+ βk |01〉+ γk |10〉+ δk |11〉 . (16)

For example, |x1〉 = |00〉 with α1 = 1 and β1 = γ1 = γ1 = 0 is the initial two-qubit
state entering the circuit on the left of Figure 1A. The state |x14〉 = |x〉 is the final state
shown on the right of the circuit in Figure 1A. The operation of the first Rx(x1) and Rx(x2)
gates yields |x2〉, where

α2 =
1
2

cos (
x1 + x2

2
) +

1
2

cos (
x1 − x2

2
), (17)

β2 = − i
2

sin (
x1 + x2

2
) +

i
2

sin (
x1 − x2

2
), (18)

γ2 = − i
2

sin (
x1 + x2

2
)− i

2
sin (

x1 − x2

2
) (19)

and
δ2 = −1

2
cos (

x1 − x2

2
) +

1
2

cos (
x1 + x2

2
). (20)
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We see that the two-qubit state becomes angularly embedded by a combination real
and complex coefficients containing sine and cosine functions. The operation of the first
ZZ(θ1) entangler gate yields |x3〉, where

α3 = e
−iθ1

2 α2, (21)

β3 = e
iθ1
2 β2, (22)

γ3 = e
iθ1
2 γ2 (23)

and
δ3 = e

−iθ1
2 δ2. (24)

The operation of the Ry(θ2) and Ry(θ3) gates then yields |x4〉, where

α4 =
α3 − δ3

2
cos (

θ2 + θ3

2
) +

α3 + δ3

2
cos (

θ2 − θ3

2
)

− β3 + γ3

2
sin (

θ2 + θ3

2
) +

β3 − γ3

2
sin (

θ2 − θ3

2
),

(25)

β4 =
β3 + γ3

2
cos (

θ2 + θ3

2
) +

β3 − γ3

2
cos (

θ2 − θ3

2
)

+
α3 − δ3

2
sin (

θ2 + θ3

2
)− α3 + δ3

2
sin (

θ2 − θ3

2
),

(26)

γ4 =
β3 + γ3

2
cos (

θ2 + θ3

2
)− β3 − γ3

2
cos (

θ2 − θ3

2
)

+
α3 − δ3

2
sin (

θ2 + θ3

2
) +

α3 + δ3

2
sin (

θ2 − θ3

2
)

(27)

and

δ4 = −α3 − δ3

2
cos (

θ2 + θ3

2
) +

α3 + δ3

2
cos (

θ2 − θ3

2
)

+
β3 + γ3

2
sin (

θ2 + θ3

2
) +

β3 − γ3

2
sin (

θ2 − θ3

2
).

(28)

In this way, we see that we get growing products of sine and cosine components (in
terms of both the linear trainable parameters, xi, and the ’quantum’ trainable parameters,
θj) in each element of the resulting vector as we progress through the circuit. As the circuit
ansatz is repeated further, this results in an increase in both the ’sharpness’ and the number
of peaks and troughs representing the angular embedded data, allowing for the high levels
of expressivity needed for effective embedding.

When working with the Hymenoptera ants and bees image dataset, the replaceable
classical part of the embedding consisted of images of ants and bees that had been standard-
ized and normalized. We explored passing them through a pre-trained ResNet-18 network
(without the final layer) as well as working with them directly. The first approach resulted
in 512 classical input features [26,39], while the second approach yielded 150528 classi-
cal input features. In the second approach, the features were then always dimensionally
reduced via PCA to prevent there being an exceptionally high number of trainable pa-
rameters. When working with the breast cancer dataset, the replaceable classical part of
the embedding corresponded to 30 normalized input clinical features. This resulted in
30 classical input features.
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Figure 1. Diagrams illustrating the training process and results of the quantum feature map: (A) Di-
agram of the general quantum metric embedding used. The model takes n classical input features
and reduces them to two intermediary values (x1 and x2) through matrix multiplication with a 2 × n
parameter matrix, whose elements behave as trainable linear parameters. Thus, n input features
yield 2n trainable linear parameters. The resulting intermediate (x1, x2) values are then used as
input alongside 12 trainable ’quantum’ parameters (θ1–θ12) to progress through the quantum feature
map. Each sample ultimately ends up in the embedded |x〉 state in which the Hilbert-Schmidt
distance between different classes is maximized through iterative training of the linear and quantum
parameters. The illustrated approach represents a generalized adaption of the hybrid quantum metric
learning embedding used by Lloyd et al. [26] (B) Scatter plot of the (x1, x2) values of the Hymenoptera
dataset with 512 ResNet features (corresponding to 1024 trainable linear parameters) after 0 steps
of training. Datapoints from both the training set and the test set are depicted. We note that we
used precisely the same train and test samples as in the original study [26] for the Hymenoptera
data which corresponded to 61% train and 39% test. (C) Scatter plot of the (x1, x2) values of the
Hymenoptera dataset with 512 ResNet features after 1500 steps of training using the PennyLane
software package [40]. Datapoints from both the training set and the test set are depicted.

These n classical input features were then multiplied by a 2 × n parameter matrix,
resulting in 2n trainable linear parameters and the two inputs (x1, x2) to the quantum
feature map. In many cases in both datasets, the initial input features also underwent
dimensional reduction through principal component analysis (PCA) to yield lower values
of n, so as to help minimize overfitting by the subsequent models. However, when working
with this dimensional reduction approach, it was also important not to reduce the number
of linear parameters too much so as to retain the expressivity of the models.

2.3. Training the Quantum Metric Learning Models

The quantum feature map itself provided 4 × 3 = 12 trainable quantum parameters
(i.e., 4 repeated circuit ansatzes containing 3 parameters per ansatz) and as such, every
model consisted of 2n+ 12 total trainable parameters. Each model was randomly initialized
and trained for 1500 steps with a batch size of 10, using the root mean squared propagation
(RMSProp) optimizer with a step size of 0.01. With successful training, each new (x1, x2)
input to the model becomes embedded into a state |x〉 in Hilbert space such that the Hilbert-
Schmidt distances between the embedded states of opposing classes, shown in Equation (2),
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are maximized or equivalently, the Hilbert-Schmidt cost function, Equation (5), is mini-
mized. The hybrid parameter optimization steps were performed using the PennyLane
software package [40] and the embedded data were subsequently classified by a k-nearest
neighbor (KNN) classifier.

2.4. ImageNet Hymenoptera Dataset

The first dataset used to explore Lloyd et al.’s quantum metric learning embedding [26]
was the ImageNet Hymenoptera image dataset [36]. This dataset consists of 397 colored
images of ants and bees in various environments. Each sample can thus be assigned a
class of either ant or bee. By default, the dataset is split into a training set and a test set
in the approximate ratio of 3:2. This train-test split was manually changed at times, as
dictated by a random seed. Each image was standardized into a resolution of 224 × 224
then normalized using the PyTorch Normalize function [41] to yield ImageNet’s preferred
mean pixel values of (0.485, 0.456, 0.406) and standard deviation pixel values of (0.229,
0.224, 0.225) [36,41]. Notably, this ants/bees dataset is the same dataset as the one used by
Lloyd et al. in their paper [26], as well as by Mari et al. in their 2019 paper on quantum
transfer learning [39].

2.4.1. Training QML Models with Feature Extraction Using ResNet-18

The first step in assessing the hybrid embedding was to investigate the resulting
training cost, test cost, test set precision, test set recall and test set F1-score using the same
embedding setup as presented in the demo code associated with Lloyd et al.’s paper [26].
This setup includes the pre-trained ResNet-18 component which converts each normalized
ant or bee image into 512 input features. The 2 × 512 = 1024 resulting linear parameters
and 12 quantum parameters of the quantum feature map were optimized as detailed above.

2.4.2. Training QML Models with Feature Extraction Using ResNet-18 Followed by PCA

To help address the potential issue of overfitting due to the high number of parameters
used when training the linear half of the model, principal component analysis (PCA)
was performed on the 512 output features of the ResNet. First, for each sample, the
ResNet output features were normalized using the scikit-learn StandardScaler function [42],
resulting in a mean of 0 and a standard deviation of 1 for each feature. The 512 normalized
features were then reduced to 256, 64, 16, 4 and 2 principal components, leading also to a
reduction in the number of linear model parameters. For instance, whenever the features of
each sample were reduced to 256 principal components, the model would be trained with
512 linear parameters (as opposed to the original 1024 linear parameters). With a reduction
to 4 principal components, the model would be trained using just 8 linear parameters.
In general, n principal components were multiplied by a 2 × n matrix to yield the two-
dimensional (x1, x2) values used as input to the quantum feature map. The elements
of the 2 × n matrix change between each training iteration, acting as 2n trainable linear
parameters. Other than this change to the number of trainable parameters, the training
setup of the optimizer was kept the same as in the non-PCA case.

2.4.3. Training QML Models with Feature Extraction Using PCA

A more direct form of PCA was also used on the Hymenoptera image dataset. Instead
of passing the images through a ResNet first, the 224 × 224 × 3 = 150528 normalized
pixel datapoints per image were reduced directly down to 256, 64, 16, 4 and 2 principal
components. As before, these principal components were then multiplied by a 2 × n
parameter matrix to yield the (x1, x2) values and 2n trainable linear parameters, where n is
the number of principal components. These (x1, x2) values were again used as input to the
quantum feature map, then optimized using the optimization approach detailed above.
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2.5. UCI ML Breast Cancer Wisconsin (Diagnostic) Dataset

The second dataset that we used was the University of California Irvine Machine
Learning Breast Cancer Wisconsin (Diagnostic) Dataset [37]. This dataset consists of
569 breast cancer samples, each associated with 30 quantitative values such as cell radius,
symmetry and smoothness. Each sample in the dataset can be classified as either benign or
malignant. At different points in this work, the dataset was manually divided into different
train-test splits (as determined by set random seeds), each in the ratio of 3:2.

2.5.1. Training QML Models Using All Input Features

As with the Hymenoptera dataset, the goal was to establish how well the hybrid
embedding generalizes. To begin, the 30 quantitative attributes of the breast cancer dataset
were normalized using the scikit-learn StandardScaler function [42], such that the mean and
standard deviation of each attribute became 0 and 1, respectively. The normalized attributes
were then matrix-multiplied with a 2 × 30 parameter matrix, resulting in a set of x1 and
x2 values associated with each sample, as well as a set of 60 trainable linear parameters
corresponding to the elements in the matrix. Mirroring the steps that were performed on
the Hymenoptera dataset, the 60 linear parameters and 12 quantum parameters were then
trained as detailed above. For this dataset, two sets of results were collected in separate
tables. Each set of results came from a different pseudo-random train-test split of the data
as determined by a random seed. Two sets of results were obtained to account for potential
bias in the splits caused by chance.

2.5.2. Training QML Models with Feature Extraction using PCA

Taking the same approach as with the Hymenoptera dataset, PCA was also performed
on the 30 normalized features of the breast cancer dataset to reduce the number of train-
able parameters.

Two new sets of models were trained according to the same train-test splits as estab-
lished in the non-PCA case. Each of these two sets consisted of models trained from 30,
16, 8, 4 and 2 principal components. Just as with the Hymenoptera dataset, the resulting
principal components were multiplied by a 2 × n parameter matrix where n is the number
of principal components. This approach yields (x1, x2) values and 2n linear parameters
needed for training and embedding. The same optimizer configuration was used as in all
prior cases.

2.6. Assessing Quantum Metric Learning Model Performance

For all the QML models generated for both datasets, training costs, test costs, test
set precision scores, test set recall scores and test set F1-scores resulting from each of the
train-test splits were calculated. x1, x2 scatter plots and Hilbert space mutual data overlap
matrices were generated to examine the level of expressivity of the models and to further
review the ability of these models to separate and classify test data.

3. Results

3.1. Hymenoptera Dataset

As detailed in the Methods section, we trained and tested the Hymenoptera image
and Breast Cancer Wisconsin (Diagnostic) datasets using the hybrid classical-quantum
classifier shown in Figure 1A. We started with the Hymenoptera dataset using the same
approach as Lloyd et al. [26]. In Figure 1B,C, we show a scatter plot of the inputs to the
quantum circuit for train and test data before and after 1500 steps of training, respectively.
Figure 1B illustrates that we recapitulate the ability of quantum metric learning (QML)
to perfectly separate the Hymenoptera image training data when using the ResNet-18
layer with 512 input features in the same way as is seen in Lloyd et al.’s work [26]. With
1024 linear parameters and 12 quantum parameters, the training set (x1, x2) datapoints
seem to cluster very well two-dimensionally after 1500 steps. In contrast, as shown in
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Figure 1C, the test set datapoints remain very poorly separated. This contrast in separability
suggests that the model is severely overfitting in this case.

Figure 2 illustrates the Hilbert space mutual data overlap gram matrices demonstrating
the classifiability associated with the training and test results provided in Figure 1C. As
expected from a case that shows a high level of overfitting, the training data is separated
almost perfectly in Hilbert space (as seen in Figure 2B) while the test data remains barely
separated at all (as seen in Figure 2D), demonstrating that the embedding generalizes
poorly with the Hymenoptera dataset.

Figure 2. Gram matrices for mutual data overlap (i.e., | 〈x|x′ 〉 |2) in Hilbert space for 10 ant and
10 bee samples from the Hymenoptera dataset where 0 and 1 correspond to no and perfect overlap,
respectively. In each case, 512 ResNet features (corresponding to 1024 trainable linear parameters)
were used. The stronger the separation between the purple tiles (bees) and the yellow tiles (ants), the
better the model’s ability to classify. The Hymenoptera dataset’s default train-test split was used for
these results. The PennyLane software package was used to train the embedding [40]. (A) Mutual
data overlap in Hilbert space for training set datapoints at optimization step 0. (B) Mutual data
overlap in Hilbert space for training set datapoints at optimization step 1500. (C) Mutual data overlap
in Hilbert space for test set datapoints at optimization step 0. (D) Mutual data overlap in Hilbert
space for test set datapoints at optimization step 1500.

Summarised in Table 1 are the results of training the model on the Hymenoptera
dataset in various ways. A specific random seed of ’123’ was used for the train-test split in
every row other than the first. The first row uses the same default train-test split as was
used in Lloyd et al.’s work [26]. It also corresponds to the results shown in Figures 1 and 2.
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Table 1. Test set assessment outcomes for training performed on the Hymenoptera dataset’s training
set. Corresponding training costs are also given. In each row, training was performed for 1500 itera-
tions using the root mean squared propagation optimizer (step size of 0.01) and a batch size of 10.
All values are given to four decimal places. The features in row 1 did not undergo PCA, while the
features from the rest of the rows did. A random seed of ’123’ used for the train-test split in every
row other than the first (the first row used the default train-test split of the Hymenoptera dataset).
The same random seed of ’123’ was used for all subsequent evaluations in all rows. The best value
for each column is shown in bold.

No. of Features ResNet (y/n) Training Cost Test Cost Precision Recall F1-Score

512 y 0.0141 0.9931 0.6184 0.5663 0.5912
256 y 0.9944 0.9885 0.5326 0.5976 0.5632
256 n 0.9947 0.9859 0.4945 0.5488 0.5202
64 y 0.9756 0.9942 0.4891 0.5488 0.5172
64 n 0.9956 0.9928 0.4828 0.5122 0.4970
16 y 0.9926 0.9897 0.5000 0.5488 0.5233
16 n 0.9969 0.9892 0.4831 0.5244 0.5029
4 y 0.9909 0.9911 0.4545 0.4878 0.4706
4 n 0.9959 0.9947 0.4783 0.5366 0.5057
2 y 0.9700 0.9928 0.4545 0.4878 0.4706
2 n 0.9954 0.9965 0.4316 0.5000 0.4633

Test set F1-score and precision are maximized when using the original setup involving
the full 512 output features of ResNet-18 with no further feature reduction through PCA.
Training cost is minimized at 512 features, but the corresponding test cost is high, which
provides further evidence of overfitting and poor generalization. This also means that
the minimized training cost of 0.0141 is likely achieved only when overfitting the training
data. The lowest test cost, which is achieved with 256 principal component features and
no ResNet step, is hardly reduced from its maximum value of 1. The test set recall is
maximized at 256 principal component features with the ResNet step.

Although the 512 feature setup and 256 principal component feature setups seemed
to perform slightly better than entirely random class assignment, the resulting scores
are still very poor. The highest F1-score being just 0.5912 and the lowest test cost still
being as high as 0.9859. Furthermore, regardless of whether or not a ResNet step was
used, subsequent feature reduction through PCA only worsened F1-score while drastically
increasing training costs. Thus, after reducing the number of parameters, there seems to
have been a drop in expressivity, which prevented overfitting. However, this was due
to training costs becoming much worse. While it can be said than none of the models in
Table 1 demonstrate good test set classification performance, the observed ability for PCA
to prevent overfitting is still worth noting, despite it being achieved exclusively through
increased training cost values in this case.

3.2. Breast Cancer Dataset

Figure 3A,B illustrate the effects of training the hybrid model for 1500 iterations on
the breast cancer dataset. Both the training set and test set (x1, x2) values seem to have
separated reasonably well in two dimensions, which contrasts with the Hymenoptera
dataset result where only the training set separated well. However, neither set separates
well enough for entirely distinct non-overlapping clusters to form (as was seen in Figure 1C).
While the training set datapoints in Figure 1 separated into very tight clusters that were
isolated from other surrounding clusters, the clusters in Figure 3B are much broader and
less well defined. This more modest training set separation, in conjunction with the much
greater similarity between the training set clusters and test set clusters indicates that the
level of overfitting is much lower when using the breast cancer dataset.
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Figure 3. Scatter plots of the (x1, x2) values of the breast cancer dataset with 30 starting features
(corresponding to 60 trainable linear parameters). Datapoints from both the training set and the test
set are depicted. A random seed of ’1’ was used for the train-test split of this data. The PennyLane
software package was used to optimize the parameters [40]. (A) Scatter plot of the (x1, x2) values
after 0 training steps. (B) Scatter plot of the (x1, x2) values after 1500 training steps.

Figure 4 depicts the Hilbert space mutual data overlaps (i.e., | 〈x|x′ 〉 |2) associated with
the training and test scatter plot results shown in Figure 3. It is clear from Figure 4B,D that
both the training set embeddings and the test set embeddings separate relatively well in
Hilbert space when using the trained model. The Hilbert space separation and resulting
classifiability of the test set appear comparable to those of the training set, which serves as
further evidence that overfitting is less of an issue with this dataset.

However, the test set is still classified observably worse than the training set, as seen
by the significantly misplaced ’lines’ of overlap present within Figure 4D. Thus, despite
the improvements compared to the previous dataset, there is still a moderate level of
overfitting occurring. Consequently, there is still room for generalization performance to
be improved further.

Figure 5 demonstrates the effects of carrying out PCA on the 30 input features of the
breast cancer dataset. As seen in Figure 5B,D, PCA seems to bring both training set and
test set (x1, x2) values into tighter two-dimensional clusters compared to those seen in
Figure 3B. This generally has the effect of reducing the relative surface area of the borders
between neighboring clusters, which could potentially correlate with better classification
after subsequent embedding.

It is worth noting that in Figure 5A (with feature reduction to 8 principal components),
the (x1, x2) values seem to start off reasonably well separated in two-dimensions as a result
of the prior PCA step. Then after 1500 steps of training, Figure 5B shows how the model
is able to further separate the values such that much more distinctive, globular clusters
are formed with a much lower relative surface area where the clusters meet. In contrast,
Figure 5C shows that the (x1, x2) values resulting from 4 principal components begin
in a much less well separated two-dimensional state after the initial PCA step. Despite
this, the trained model is still able to separate the values into quite distinctive clusters, as
shown in Figure 5D. In fact, the two-dimensional area of cluster overlap in Figure 5D still
seems to be slightly smaller than the area of cluster overlap in Figure 3B. In other words,
regardless of whether PCA is able to group the pre-training (x1, x2) values by class, the
resulting post-training test set is well separated. Interestingly, the PCA-based post-training
separation (Figure 5B,D) appears to be better than its non-PCA counterpart (Figure 3B).
Thus, we find that feature reduction through PCA can consistently contribute to better
generalization performance for this dataset.
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Figure 4. Gram matrices depicting mutual data overlap in Hilbert space (i.e., | 〈x|x′ 〉 |2) for 10 benign
and malignant train and test samples from the breast cancer dataset. In each case, 30 starting
features (corresponding to 60 trainable linear parameters) were used, with no subsequent PCA
feature reduction. The stronger the separation between the purple tiles (benign) and the yellow tiles
(malignant), the better the model’s ability to classify. A random seed of ’1’ was used for the train-test
split of this data. The PennyLane software package was used to train the embedding [40]. (A) Mutual
data overlap in Hilbert space for training set datapoints at optimization step 0. (B) Mutual data
overlap in Hilbert space for training set datapoints at optimization step 1500. (C) Mutual data overlap
in Hilbert space for test set datapoints at optimization step 0. (D) Mutual data overlap in Hilbert
space for test set datapoints at optimization step 1500.

A final observation is that the 8 principal component model (with 16 trainable linear
parameters) seems to demonstrate greater expressivity than the 4 principal component
model (with 8 trainable linear parameters). While the 8 principal component model moves
the (x1, x2) values into more distinctive, globular clusters, the 4 principal component model
instead moves the values into a simpler, more linear shape. It seems that having fewer
trainable linear parameters can cause the model to lose expressively, leading to less well-
defined clusters and perhaps worse post-embedding classification. However, as seen in
Figures 1C and 3B, having too many parameters, and, thus, too much expressivity for a
limited number of samples, can lead to overfitting and noisier clustering.
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Figure 5. Scatter plots of the (x1, x2) values of the breast cancer dataset following feature reduction
through PCA. Datapoints from both the training set and the test set are depicted. A random seed
of ’1’ was used for the train-test split of this data. The PennyLane software package was used to
optimize the parameters [40]. (A) Scatter plot of (x1, x2) values associated with 8 principal components
after 0 training steps. These 8 principle components correspond to 16 trainable linear parameters.
(B) Scatter plot of (x1, x2) values associated with 8 principal components after 1500 training steps.
These 8 principle components correspond to 16 trainable linear parameters. (C) Scatter plot of
(x1, x2) values associated with 4 principal components after 0 training steps. These 4 principle
components correspond to 8 trainable linear parameters. (D) Scatter plot of (x1, x2) values associated
with 4 principal components after 1500 training steps. These 4 principle components correspond to
8 trainable linear parameters.

Figure 6 illustrates the mutual test data overlaps in Hilbert space (i.e., | 〈x|x′ 〉 |2)
that correspond to the scatter plots from Figure 5. After training, the purple and yellow
tiles seem to have separated better when 8 principal components were used (Figure 6B)
compared to when 4 principal components were used (Figure 6D). In particular, there are
overall not as many ’lines’ of misassigned overlap running across the four grouped squares
in Figure 6B. This suggests that that the 8 principal component model is better at maximally
separating embedded test data in Hilbert space than the 4 principal component model and
is thus better at classifying new data. This aligns with the higher expressivity observed
within the 8 principal component clusters of Figure 5B. Not surprisingly, there appears
to be an optimal number of principal components for a given number of samples, which
yields the best embedding ability, model expressivity and generalizability.
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Figure 6. Gram matrices depicting mutual data overlap in Hilbert space (i.e., | 〈x|x′ 〉 |2) for 10 benign
and 10 malignant train and test samples from the breast cancer dataset. In each case, PCA was used to
reduce the number of features (and thus the number of trainable linear parameters). The stronger the
separation between the purple tiles (benign) and the yellow tiles (malignant), the better the model’s
ability to classify. A random seed of ’1’ was used for the train-test split of this data. The PennyLane
software package was used to train the embeddings [40]. (A) Mutual data overlap in Hilbert space for
test set datapoints at optimization step 0, using (x1, x2) values generated from 8 principal components.
(B) Mutual data overlap in Hilbert space for test set datapoints at optimization step 1500, using
(x1, x2) values generated from 8 principal components. (C) Mutual data overlap in Hilbert space for
test set datapoints at optimization step 0, using (x1, x2) values generated from 4 principal components.
(D) Mutual data overlap in Hilbert space for test set datapoints at optimization step 1500, using
(x1, x2) values generated from 4 principal components.

Summarised in Tables 2 and 3 are the results of training the hybrid model on the breast
cancer dataset in various ways. A different random seed (for creating a pseudo-random
pre-determined train-test split) was used for each table. Within each table, the random seed
of choice (and thus the specific train-test split) stays consistent. Table 3 also corresponds to
the results in Figures 3–6.

We emphasize that the differences between the results of Tables 2 and 3 come solely
from the differences in random seeds used. In both result sets, test set F1-score is maximized
and test cost is minimized when PCA is performed to produce 8 principal components.
Meanwhile, training cost is minimized when all 30 principal components are used (i.e., the
same as the initial number of features in the dataset). Test set precision and recall are
maximized at either 8 or 16 principal components in each case and are all much higher than
the Hymenoptera test set precision and recall scores from Table 1.

Based on our analysis of the breast cancer dataset, it is evident that lowering the
number of input features through PCA (thus lowering the number of trainable linear
parameters) reduces the level of overfitting by the trained hybrid model. This is observed in
the shrinking difference between training costs and test costs. This arises from increases in
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training costs and is sometimes coupled with decreases in test costs, as well as improvement
in test set F1-scores. However, when there are too few linear parameters, F1-scores and test
costs worsen again. This is consistent with the observations made relating to Figure 5B,D,
where a reduction in the number of features caused the clusters to be more linear (less
globular) in shape, pertaining to a decrease in expressivity.

For this particular dataset, reducing the 30 initial features to 8 principal components
(16 trainable linear parameters) seems to be the ideal compromise for good generalizability
in terms of minimizing overfitting while maximizing expressivity.

Table 2. Test set assessment outcomes for training performed on the UCI ML Breast Cancer Wisconsin
(Diagnostic) Dataset training set. Corresponding training costs are also given. In each row, training
was performed for 1500 iterations using the root mean squared propagation optimizer (step size of
0.01) and a batch size of 10. All values are given to four decimal places. The features in row 1 did
not undergo PCA, while the features from the rest of the rows did. A random seed of ’123’ was used
in each row, for both the train-test split and for all subsequent evaluations. The best value for each
column is shown in bold.

No. of Features Training Cost Test Cost Precision Recall F1-Score

30 0.1727 0.3623 0.9032 0.9790 0.9396
30 0.1465 0.3751 0.9091 0.9790 0.9428
16 0.2692 0.3023 0.9338 0.9860 0.9592
8 0.2757 0.2903 0.9226 1.0000 0.9597
4 0.2569 0.3440 0.9156 0.9860 0.9495
2 0.3953 0.3817 0.8981 0.9860 0.9400

Table 3. Test set assessment outcomes for training performed on the UCI ML Breast Cancer Wisconsin
(Diagnostic) Dataset training set. Corresponding training costs are also given. In each row, training
was performed for 1500 iterations using the root mean squared propagation optimizer (step size of
0.01) and a batch size of 10. All values are given to four decimal places. The features in row 1 did
not undergo PCA, while the features from the rest of the rows did. A random seed of ’1’ was used
in each row, both for the train-test split and for all subsequent evaluations. The best value for each
column is shown in bold.

No. of Features Training Cost Test Cost Precision Recall F1-Score

30 0.2026 0.2791 0.9205 0.9720 0.9456
30 0.1750 0.2899 0.9211 0.9790 0.9492
16 0.2201 0.3101 0.9281 0.9930 0.9595
8 0.2497 0.2646 0.9655 0.9790 0.9722
4 0.2885 0.2913 0.9467 0.9930 0.9693
2 0.3450 0.3306 0.9517 0.9650 0.9583

4. Discussion

We implemented the hybrid classical-quantum machine learning approach termed
quantum metric learning [26]. Specifically, we addressed the following gap: while the
approach was shown to separate training samples perfectly on a Hymenoptera dataset
containing images of ants and bees, the performance of the trained models on hold out test
data was not assessed. When using the same circuit, dataset and train-test split as seen
in Lloyd et al.’s paper [26], it was found that the resulting hybrid model severely overfits
the training data and generalizes poorly. While almost perfect Hilbert space-embedded
separation was achieved with the training data, the test data yielded very poor results with
an F1-score of only 0.5912. Reducing the number of linear parameters through principal
component analysis (PCA) produced even worse outcomes for both the training set and
the test set. This is likely due to a decrease in model expressivity. Specifically, a drop in
test set recall and F1-score was observed, along with a very steep increase in training cost.
The increase in training cost was so dramatic (from 0.0141 to ≥0.9700) that the training
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cost values became comparable to those of the test. After omitting the ResNet-18 step and
carrying out PCA directly on the pixel data, there were no improvements to the results. We
found that no method resulted in even modest generalizability for this dataset which had a
large number of features compared to the number of samples.

The breast cancer dataset consists of a significantly smaller number of features, while
having a greater number of total samples. Even without carrying out PCA, the trained
models seemed to generalize reasonably well for the test data, yielding high F1-scores of
0.9396 and 0.9456. However, there was still some evidence of overfitting, with training
costs of 0.1727 and 0.2026 being associated with much higher test costs of 0.3623 and 0.2791,
respectively. When PCA was performed on the initial features, resulting test set F1-scores
were always higher than that of their non-PCA counterpart, while differences between the
training costs and test costs were often much lower. Not surprisingly, we also found that
test costs and F1-scores tended to worsen again if the number of principal components
was too low. For the breast cancer dataset, the ideal balance of high expressivity and low
overfitting needed for good generalization was found to be at 8 principal components
(16 linear parameters). This yielded an F1-score as high as 0.9722 and a test cost as low as
0.2646 (with a similar training cost of 0.2497). Of course, the optimal number of principal
components would vary depending on the dataset.

Quantum metric learning models appear to follow the traditional bias-variance con-
straints, namely, good generalization results if the number of model parameters is signifi-
cantly lower than the number of training samples. The above requirements are fulfilled by
the breast cancer dataset, where there are 72 initial parameters (resulting from just 30 initial
features) and as many as 357 training samples. The initial 72 parameter model generalized
well and parameter reduction through PCA served to improve this generalization even
further, most notably after a reduction to just 28 model parameters. In contrast, the Hy-
menoptera dataset has as many as 1036 initial parameters (resulting from at least 512 initial
features) while having only 244 training samples; the initial 1036 parameter model general-
ized poorly and parameter reduction through PCA offered no significant improvement.

For future explorations, it would be insightful to vary the shape of the quantum
feature map (and thus the number of quantum parameters involved) and to assess the
subsequent effects this has on the expressivity and overfitting observed in any resulting
trained models. The quantum feature map can be varied both in its length (the number of
’horizontal’ repetitions of each gate) and its width (the number of qubits used). It could
be the case that varying the dimensions of the quantum feature map changes the ideal
ratio between the number of initial parameters and the number of samples to achieve good
generalization performance. It would also be valuable to explore methods of dimensional
reduction other than PCA, such as classical or quantum auto-encoding. Comparisons in
generalization performance and classification accuracy between quantum metric learning
and other methods of classification (using the breast cancer dataset, as well as a broad
range of other datasets) would also be insightful.
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Abstract: The binding of small organic molecules to protein targets is fundamental to a wide array
of cellular functions. It is also routinely exploited to develop new therapeutic strategies against a
variety of diseases. On that account, the ability to effectively detect and classify ligand binding sites in
proteins is of paramount importance to modern structure-based drug discovery. These complex and
non-trivial tasks require sophisticated algorithms from the field of artificial intelligence to achieve
a high prediction accuracy. In this communication, we describe GraphSite, a deep learning-based
method utilizing a graph representation of local protein structures and a state-of-the-art graph neural
network to classify ligand binding sites. Using neural weighted message passing layers to effectively
capture the structural, physicochemical, and evolutionary characteristics of binding pockets mitigates
model overfitting and improves the classification accuracy. Indeed, comprehensive cross-validation
benchmarks against a large dataset of binding pockets belonging to 14 diverse functional classes
demonstrate that GraphSite yields the class-weighted F1-score of 81.7%, outperforming other ap-
proaches such as molecular docking and binding site matching. Further, it also generalizes well to
unseen data with the F1-score of 70.7%, which is the expected performance in real-world applications.
We also discuss new directions to improve and extend GraphSite in the future.

Keywords: structure-based drug discovery; ligand binding sites; deep learning; graph neural network

1. Introduction

Proteins carry out numerous biological functions in the cellular environment. Interac-
tions between proteins and other molecules, such as peptides, neurotransmitters, nucleic
acids, hormones, lipids, and metabolites, are, therefore, vital to understanding the biology
of the cell. In particular, interactions between proteins and small molecules, or ligands, are
associated with a wide range of the functions of a living cell [1]. Ligand binding sites are
typically pockets and cavities on the surface of proteins formed by spatially close amino
acid residues interacting with small molecules in a specific way [2]. The ability to precisely
detect and annotate these sites in protein structures is of paramount importance in modern
structure-based drug discovery. It can help reveal novel targets for pharmacotherapy and
support the design of biopharmaceuticals not only against the most common health issues
affecting a large population worldwide [3] but also rare diseases without any treatment
options currently available [4]. Numerous approaches have been developed over past years
to identify and analyze ligand binding sites in proteins, including LIGSITE [5], FTSite [6],
eFindSite [7], Fpocket [8], and SiteComp [9], to mention a few examples. A comprehen-
sive characterization of ligand binding accounts for multiple factors of this multifaceted
phenomenon, such as the conformational dynamics [10], the druggability [11], interaction
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hotspots [12], and the amino acid composition [13]. Despite the encouraging progress in
ligand binding site detection, there is a need for a better functional characterization of the
identified sites with respect to the types and properties of binding molecules.

It has been demonstrated that similar ligands can bind to evolutionary unrelated
proteins [14]. Therefore, accurate methods to classify binding sites depending on the ligand
information are essential to study ligand binding at a system level with a broad range of
applications in polypharmacology [15], side effects prediction [16], and drug reposition-
ing [17]. Several algorithms to predict binding sites in protein targets, given the ligand
information, have been developed to date. For instance, the ProBiS-ligands web server can
help figure out the types of ligands binding to the input protein structures [18]. As many
ligands perform specific cellular functions important for a variety of biological processes,
such as cell signaling, active transport, cell metabolism, and the regulation of the cell cycle,
several algorithms focus on specific types of ligands. VitaPred employs the evolutionary
information to predict residues interacting with vitamin ligands [19], SITEPred identifies
nucleotide-binding residues from protein sequences [20], and HemeBIND detects heme
binding residues based on the sequence and structure information [21]. Similar techniques
were designed to work with other specific organic molecules, such as flavin adenine din-
ucleotide [22], guanosine triphosphate [23], nicotinamide adenine dinucleotide [24], and
inorganic ions, such as calcium [25] and zinc [26]. Most of these methods employ traditional
machine learning classifiers to predict binding residues based on the sequence, structure,
and evolutionary information. However, currently available state-of-the-art deep learning
approaches hold significant promise to greatly improve the accuracy of the functional
annotation of ligand binding sites.

Deep learning is currently the most advanced group of machine learning techniques
employing various types of multilayer artificial neural networks to learn complex patterns
from the input data. Deep learning makes headway in the computer vision field, where
it has successfully been applied across numerous tasks, including object detection [27],
face recognition [28], and body pose estimation [29]. A key to the success of deep learning
methods is the convolutional neural network (CNN), which utilizes local trainable filters to
effectively learn hierarchical latent features from the Euclidean data, such as 2D and 3D
images [30]. Advances in computer vision have inspired the development of deep learning
tools for biology and biomedicine as well. Most approaches to predict and annotate
ligand binding sites in proteins with CNNs represent pockets as either 2D or 3D images.
The former group of methods includes BionoiNet, which first projects pockets onto a 2D
plane encoding various physicochemical, structural, and evolutionary properties, and
then employs a 2D-CNN to perform classification tasks [31]. An example of a 3D-based
approach is DeepDrug3D, which deploys a 3D-CNN to accurately classify binding sites for
adenosine triphosphate (ATP) and heme ligands represented as voxel-based 3D images [17].
A related method, DeeplyTough, employs a similar pocket representation as DeepDrug3D
and pocket matching with a CNN to detect similar binding sites [32]. Another 3D-based
predictor is DeepSite, which deploys a CNN to binding pockets represented as voxels
annotated with various atomic-based pharmacophoric properties [33].

In addition to the Euclidean space, many contemporary data, such as social networks,
sensor networks, biological networks, and meshed surfaces, have an underlying structure
that belongs to the non-Euclidean domain. Graph neural network (GNN) is a group of deep
learning models designed to work specifically with non-Euclidean graph data [34]. GNNs
have been demonstrated to achieve unparalleled performance in numerous applications
against non-Euclidean data, including text classification [35], traffic prediction [36], and
complex physics simulations [37]. GNNs were deployed to address important problems in
biology as well, for instance, to predict the quantum properties of organic molecules [38],
generate molecular fingerprints [39], detect protein interfaces [40], and identify drug-target
interactions [41]. These applications are based on a notion that molecular structures can
conveniently be represented as graphs, in which atoms are nodes, and chemical bonds are
undirected edges connecting pairs of nodes.
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In this communication, we expand the repertoire of graph-based approaches in biology
and biomedicine by developing GraphSite, a new method to classify ligand binding sites
with a GNN. First, a large and diverse dataset of binding sites are converted into graphs
preserving the physicochemical properties of local protein structures, which are then used
to train a GNN classifier. In contrast to computationally more intensive methods operating
in the Euclidean space, lightweight GraphSite generates the graph representations of ligand
binding site on-the-fly without any pre-processing requirements. Encouragingly, it not only
achieves state-of-the-art performance in multi-class classification benchmarks with respect
to other approaches but also generalizes well to unseen data. A comprehensive analysis of
selected predictions by GraphSite demonstrates that its high performance is a result of the
ability to effectively learn the underlying patterns of various types of binding pockets. We
would like to note that the current GraphSite employing a GNN model to classify ligand
binding sites is distinct from another software with the same name that utilizes a graph
transformer to predict DNA binding residues in protein structures [42].

2. Materials and Methods

2.1. Datasets of Ligand Binding Pockets

A non-redundant collection of 51,677 pockets were compiled in September 2019
following a protocol developed previously to construct a dataset to evaluate binding
site prediction with eFindSite [7,43]. Binding ligands in the eFindSite dataset were clustered
at a Tanimoto coefficient (TC) threshold of 0.7 with the SUBSET program [44]. The 30 most
abundant clusters were then manually curated into 14 pocket classes, referred to as the
benchmarking dataset. The benchmarking dataset was divided into training (80%) and
testing (20%) subsets by randomly splitting each class at a 4:1 ratio. The unseen dataset was
created by selecting ligand-bound protein structures deposited to the Protein Data Bank
(PDB) [45] no earlier than October 2019. Those proteins having a sequence identity of ≥50%
to any protein in the benchmarking dataset were excluded. Pocket classes were assigned
based on the chemical similarity of binding ligands to small molecules in the benchmarking
dataset at a TC threshold of 0.7. This procedure resulted in 45 unseen pockets assigned
to 9 classes. Finally, as the negative dataset, we use a previously published collection of
42 surface pockets resembling binding sites but not known to bind any ligand [46].

The eFindSite collection of ligand binding pockets [7,43] was first clustered by lig-
and chemical similarity and then the 30 most abundant clusters were manually curated
into a dataset of 14 pocket classes. Clusters containing ATP, adenosine diphosphate
(ADP), phosphoaminophosphonic acid-adenylate ester (ANP), uridine monophosphate
(UMP), thymidine monophosphate (TMP), nicotinamide adenine dinucleotide, adenosine,
azamethionine-5′-deoxyadenosine, and β-D-erythrofuranosyl adenosine, were merged
to form class 0 (nucleotides). Further, clusters composed of glucose, fructose, α-D galac-
topyranose, and manopyranose, were combined into class 2 (carbohydrates). Another
merged class 5 comprises phosphocholine, bromododecanol, tetradecylpropanedioic acid,
oleic acid, palmitic acid, and hexaenoic acid. Clusters containing amino acids, such as
lysine, arginine, and norvaline, citric acid and its derivatives, tartaric acid, tetraglycine
phosphinate, and 1,3 dihydroxyacetone phosphate were joined to class 6. Finally, class 10
includes methylbenzamide, pentanamide, hexaethylene glycol, and tetraethylene glycol.
The remaining clusters were sufficiently distinct to become separate classes. The clustering
procedure followed by a manual data curation resulted in the benchmarking dataset of
21,124 pockets assigned to 14 classes binding a variety of ligands listed in Table 1.
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Table 1. Classes of ligand binding sites in the primary benchmarking dataset. Support is the number
of pockets in the dataset.

Class Binding Ligands Support

0 nucleotide 7625
1 heme 1158
2 carbohydrate 3001
3 benzene ring 1054
4 chlorophyll 968
5 lipid 1890

6 essential amino/citric/tartaric
acids 1663

7 S-adenosyl-L-homocysteine 602
8 coenzyme A 573
9 pyridoxal phosphate 566
10 benzoic acid 897
11 flavin mononucleotide 417
12 morpholine ring 374
13 phosphate 337

2.2. Graph Representation of Binding Sites

Ligand binding pockets are converted to graphs, which are the input for the classifier.
The nodes of these graphs are atoms contacting ligands identified through the analysis
of interatomic contacts with the Ligand-Protein Contacts (LPC) software [47]. Nodes
are connected by undirected edges when the distance between two atoms is ≤4.5 Å. We
employ 11 node features, 7 of which are spatial features, and the other 4 are physicochemi-
cal/evolutionary features. Spatial features defining the shape of binding pockets include
atomic Cartesian coordinates (x, y, z), spherical coordinates (r, ϑ, γ), and the solvent ac-
cessible surface area (SASA). Physicochemical/evolutionary features comprising charge,
hydrophobicity, binding probability, and sequence entropy have been previously used in
Bionoi, a method to represent ligand binding sites as Voronoi diagrams [48]. To distinguish
between various bonding and non-bonding interactions, the bond multiplicity is used as the
edge attribute with the value of 1.5 for aromatic bonds and 0 for non-covalent interactions.

Figure 1 illustrates the procedure to transform pockets into graphs. Atoms of binding
residues become nodes connected to neighboring nodes within a distance threshold of
4.5 Å. To distinguish between bonding and non-bonding interactions, the edge attribute is
set to either the bond multiplicity if two atoms form a chemical bond or 0 for those atoms
interacting non-covalently. Individual nodes are assigned two types of features, spatial
features defining the shape of the binding pocket (atomic coordinates and the solvent
accessible surface area) and physicochemical/evolutionary features describing various
properties, such as the charge, the hydrophobicity, the binding probability, and the sequence
entropy. Representing pockets as graphs captures their overall characteristics and enables
the information flow between atoms during the GNN model training.

2.3. Graph Neural Network

As pockets are represented as graphs, the binding site classification task becomes a
graph classification problem essentially. A general graph classification framework employ-
ing a GNN incorporates three key components, message passing, the graph readout, and
the classification stage. The overall architecture of a classifier implemented in GraphSite is
presented in Figure 2. The main module consists of an embedding network (Figure 2B–D)
comprising message passing layers (Figure 2B), the jumping knowledge connections (Fig-
ure 2C), and a global pooling layer to perform the graph readout (Figure 2D). As illustrated
in Figure 2B, the node features of the input graph are first iteratively updated by neural
weighted message (NWM) passing layers hω taking the edge attribute e12 as input to
generate a12 as the weight of a message propagating from node 2 to node 1. Subsequently,
the jumping knowledge network (JK-Net) [49] connecting message passing layers is em-
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ployed, allowing the model to learn the optimal number of layers for individual nodes. The
generated outputs are then processed by a max pooling layer performing a feature-wise
pooling. The max pooling layer is followed by a global pooling layer to reduce the node
feature dimension to a fixed-size vector, which is passed to a set of fully connected layers
to generate the final classification result (Figure 2E).

Figure 1. Example of the graph representation of a binding site. (A) The structure of a binding pocket
for ADP in DnaA regulatory inactivator Had from E. coli (PDB-ID: 5x06). (B) The graph representation
of four residues, W20, R174, E14, and R53, selected from (A).

 

Figure 2. Architecture of the pocket classifier in GraphSite. (A) The input graph represents a
binding site. (B) A neural network computing the weight for message passing from the edge
attributes of the input graph. (C) Message passing layers of the jumping knowledge network. (D) A
global pooling layer implementing the Set2Set model. (E) Fully connected layers generate the final
classification results.

2.3.1. Message Passing

The role of message passing layers of the GNN is to update node features by propagat-
ing the information along edges. Node features updated with the information aggregated
from neighbors contain valuable local patterns. Message passing layers in GraphSite adopt
the general form of the neighborhood aggregation [50]:

x
(k)
i = λ

(
x
(k−1)
i , aggr

j∈N (i)
φ
(

x
(k−1)
i , x

(k−1)
j , eij

))
, (1)

where φ is a differentiable function generating a message, aggr is a permutation-invariant
function aggregating all messages, and λ is the updating function. Other parameters are
x
(k)
i corresponding to the output feature vector of node i in layer k, x

(k)
j representing feature
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vectors of the neighbors of node i, and the edge attribute eij. To better exploit node and
edge features of binding site graphs, we implemented the following single-channel NWM:

x
(k)
i = hθ

(
(1 + ε) · x

(k−1)
i + ∑

j∈N (i)
hω

(
eij
)
· x

(k−1)
j

)
, (2)

where hω is an MLP taking the edge attribute as the input and outputting a message weight,
which is a node feature j, ε is a learnable scalar, and hθ is another MLP updating the aggre-
gated information. Edge attributes are the same for all layers and are not updated during
training. The NWM message passing rule can be regarded as an extension of the graph
isomorphism network (GIN) [51], an expressive message passing model that is as powerful
as the Weisfeiler–Lehman test in distinguishing graph structures. Its sum aggregator is
replaced in GraphSite by the sum of weighted messages with weights generated by a
neural network hω. From another perspective, the NWM model belongs to the message
passing neural network (MPNN) family [38]. The gated graph neural network (GGNN)
is an MPNN family member whose message is formed by Aeij x

(k)
j , where Aeij is a square

transformation matrix generated by a multilayer perceptron (MLP) from the edge attribute
eij. The GGNN can be regularized to the NWM by imposing a restriction on the matrix Aeij

to make it diagonal with all elements on the diagonal equal. We found empirically that the
regularization of GGNN to NWM is not only computationally more efficient but also helps
mitigate model overfitting.

Finally, inspired by the idea that multiple aggregators can improve the expressiveness
of GNNs [52], we extended the single-channel NWM layer described by Equation (2) to a
multi-channel NWM layer by concatenating the outputs of multiple aggregators:

x
(k)
i = hθ

(
concat

c∈Channels

(
(1 + εc) · x

(k−1)
i + ∑j∈N (i) hωc

(
eij
)
· x

(k−1)
j

))
, (3)

where εc and hωc represent an aggregator learned as channel c. The aggregated node
features are concatenated in their last dimension so that the concatenated node features
have the shape of n by d × |C|, where d is the dimension of node features. The updated
neural network hθ also acts as a reduction function, decreasing the size of node features
from d × |C| to d. Intuitively, the concatenation of multiple aggregators in the GNN is
analogous to using multiple filters in the CNN; each aggregator corresponds to a filter, and
the concatenated output is equivalent to the output feature maps in the convolution layer
of the CNN.

2.3.2. Graph Readout

A graph readout function reduces the size of a graph to a single node. GraphSite em-
ploys Set2Set [53] as a global pooling function to perform graph readout. Set2Set generates
fixed-sized embeddings for sets of various sizes by utilizing the attention mechanism to
compute the global representation of a set. Briefly, a long short-term memory (LSTM) [54]
neural network recurrently updates a global hidden state of the input set. During the
recurrent process, the global hidden state is used to compute attention values associated
with each element in the set, which are in turn used to update the global hidden state.
After several iterations, a global graph representation is created by concatenating the global
hidden state constructed by the LSTM and the weighted sum of elements in the set. The
global pooling layer reduces the node feature dimension from n × d to d, where n is the
number of nodes and d is dimension of the node feature vector.

2.3.3. Loss Function

The dataset of ligand binding pockets is imbalanced, meaning that some classes, such
as nucleotide, have many more data points than other classes. Consequently, a training
mini batch contains mostly the data from major classes, which could bias a typical loss
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function utilizing the cross-entropy. To mitigate this problem, GraphSite employs the focal
loss (FL) function adding a damping factor (1 − pt)

γ to the cross-entropy loss [55]:

FL(pt) = −(1 − pt)
γ log(pt), (4)

where pt is the predicted probability generated by the softmax function, and γ ≥ 0 is a
tunable hyperparameter. With this damping factor, dominating predictions with high proba-
bilities are suppressed, while those predictions having low probabilities are assigned higher
weights. This approach has been shown to minimize the problem of imbalanced classes.

2.4. Other Methods to Classify Pockets

A docking-based approach employs a small library of 14 ligands, each representing
one class of pockets listed in Table 1. These compounds are docked to a query pocket
with a molecular docking program smina [56] and the class of a molecule with the best
docking score is assigned to that pocket. A pocket matching-based approach scans a query
pocket against a small library of 14 representative pockets for all classes in Table 1 with
a local structure alignment program G-LoSA [57]. The query pocket is then assigned a
class from the library pocket having the best matching score. A random classifier randomly
assigns the query pocket with a class according to the frequencies of individual classes in
the dataset.

3. Results

3.1. Classification Performance against the Benchmarking Dataset

The performance of GraphSite is compared to that of several other approaches, GIN,
molecular docking, pocket matching, and a random classifier. The GIN is an expressive
message passing model, shown to be as powerful as the Weisfeiler–Lehman algorithm in
distinguishing graph structures [51]. As the GIN employs a sum aggregator ignoring edge
attributes, it constitutes an appropriate baseline to demonstrate the benefit of taking advan-
tage of edge attributes in GraphSite with the NWM model. To conduct a fair comparison,
the configurations of GraphSite and GIN are identical, except for the architecture of GNN
layers. In addition to GNN-based classifiers, we also include docking- and pocket matching-
based approaches. The former method employs smina [56], a fork of AutoDock Vina [58]
featuring improved scoring and minimization, whereas pocket matching is conducted with
G-LoSA, a tool to align protein local structures in a sequence order independent way [57].

After training, Graphsite and GIN is tested on the testing split of the dataset. Training
the GraphSite classifier on Nvidia V100 GPU for 200 epochs took about 5 h. The clas-
sification performance of all tested methods on the testing subset is reported in Table 2.
GraphSite achieves the best overall classification accuracy with a high recall of 81.3% and
F1-score of 81.7%. Both recall and F1-score for the GIN are lower, therefore, utilizing edge
attributes with multi-channel NWM layers indeed improves the classification accuracy
over GIN layers. The performance of docking- and pocket matching-based approaches
assessed by the recall and F1-score is comparable to that of a random classifier. Despite
this low sensitivity, both techniques achieve relatively high precision, corresponding to a
high fraction of correctly classified instances among all pockets. We note that docking and
pocket matching were executed with default parameters because it is impractical to apply
these algorithms exhaustively to increase the classification accuracy further.

Figure 3 shows the confusion matrix calculated for GraphSite predictions against
the benchmarking dataset, in which numbers on the diagonal are recall values for ligand
classes. Although GraphSite correctly predicted most classes, it misclassified a few pockets
as well. There are two main reasons for these misclassifications. First, the support for some
pocket classes across the dataset is low; for instance, only 1.8% of instances belong to class
12 and 1.6% to class 13 (Table 1). As more gradients are generated for the majority of classes
during training, the model learns these classes more efficiently. Although this issue can
partially be mitigated by employing the focal loss [55], the performance of minority classes
is still going to be somewhat lower compared to those classes having stronger support. The
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second reason is that ligands binding to pockets belonging to different classes can, in fact,
contain similar chemical moieties. We discuss several representative examples of these
misclassifications in the following section.

Table 2. Classification performance against the benchmarking dataset. GraphSite is compared to the
graph isomorphism network (GIN), molecular docking with smina, pocket matching with G-LoSA,
and a random classifier. Precision, recall, and F1-score are class-weighted.

Method Recall Precision F1-Score

GraphSite 81.3% 82. 3% 81.7%
GIN 75.1% 74.3% 74.3%

Smina 16.7% 43.4% 16.1%
G-LoSA 14.8% 34.4% 15.9%
Random 17.8% 17.7% 17.7%

Figure 3. Confusion matrix for classification with GraphSite on the benchmarking dataset. Each row
of the confusion matrix is normalized. Numbers on the diagonal correspond to the recall of each
class, while other numbers indicate the fraction of misclassified pockets.

3.2. Examples of Misclassified Pockets

Class 12 comprises pockets binding ligands containing morpholine rings, 17% of which
are misclassified as nucleotides (Figure 3). Examples of these molecules are commonly
used organic buffering agents [59], such as piperazine-N,N′-bis(2-ethanesulfonic acid)
(PIPES). GraphSite classified a binding site in centromere-associated protein E (CENP-E)
complexed with PIPES (PDB-ID: 1t5c) [60] as a nucleotide-binding pocket with a confidence
score of 0.96. This prediction can be validated by structurally aligning the CENP-E pocket
with a known nucleotide binding site. Here, we selected the ATP binding site in phos-
phoribosylformylglycinamidine (FGAM) synthase II (PDB-ID: 2hs0) [61], whose sequence
identity with CENP-E is only 21%. Ligand binding sites in both proteins were aligned
with PocketAlign, which employs shape descriptors in the form of geometric perspectives,
supplemented by chemical group classification, to compute sequence order-independent
alignments [62]. Figure 4A shows the superposition of binding sites in CENP-E (purple)
and FGAM synthase II (yellow). Encouragingly, the root-mean-square deviation over Cα
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atoms (Cα-RMSD) of 9 equivalent residues is as low as 1.6 Å. Generally, values below 3.0 Å
indicate that the aligned pockets are structurally similar [62].

Figure 4. Structure alignments between misclassified pockets and those belonging to the predicted
class. (A) PIPES (orange sticks) binding site in CENP-E (purple surface) and ATP (cyan sticks) binding
site in FGAM synthase II (yellow surface). (B) MES (orange sticks) binding site in zitR (purple
surface) and ATP (cyan sticks) binding site in FGAM synthase II (yellow surface). (C) Imatinib
(orange sticks) binding site in ANC-AS (purple surface) and ATP (cyan sticks) binding site in
FGAM synthase II (yellow surface). (D) (3R)-3-hydroxy-2,4-dioxopentyl dihydrogen phosphate
(orange sticks) binding site in LsrF (purple surface) and arginine (cyan sticks) binding site in AT
(yellow surface). (E) Colchicine (orange sticks) binding site in BRD4 (purple surface) and ATP
(cyan sticks) binding site in FGAM synthase II (yellow surface). (F) Tromethamine (orange sticks)
binding site in MAT (purple surface) and di(hydroxyethyl)ether (cyan sticks) binding site in BtR318A
(yellow surface).

Another example is 2-(N-morpholino)ethanesulfonic acid (MES) containing the mor-
pholine ring that is structurally related to the piperazine ring with one nitrogen atom
replaced by oxygen [63]. GraphSite classified a binding pocket in zinc transport transcrip-
tional regulator (zitR) complexed with MES (PDB-ID: 5yhz) [64] as a nucleotide-binding
pocket with a confidence score of 0.97. Figure 4B shows that this pocket (purple) is struc-
turally related to the ATP binding site in FGAM synthase II (yellow) with 1.5 Å Cα-RMSD
over 6 equivalent residues reported by PocketAlign. Note that the global sequence iden-
tity between zitR and FGAM is only 20%. Piperazine and morpholine rings are often
used to develop molecules competing with nucleotides. For instance, morpholinos, nu-
cleotide analogs blocking mRNA splicing and translation [65], contain the morpholine
ring replacing the sugar group of a nucleotide [66]. Further, morpholine-containing pyra-
zolopyrimidines are selective and potent ATP-competitive inhibitors of mTOR, showing
anti-cancer properties in xenograft tumor models [67]. ATP-competitive inhibitors often
contain piperazine rings to increase their aqueous solubility [68] and to form favorable
interactions with the hinge region of protein kinases [69].

An example of the ATP-competitive inhibitor containing piperazine is imatinib, a
widely used chemotherapeutic to treat certain types of cancer [70]. Piperazine and benzene
rings in imatinib are required for their inhibitory activity against leukemia cell lines [10]. A
binding site in Src-Abl tyrosine kinase ancestor (ANC-AS) complexed with imatinib (PDB-
ID: 4csv) [71] was classified by GraphSite as a nucleotide-binding pocket with a confidence
of 0.99. Despite a low sequence identity between ANC-AS and FGAM synthase II of
23%, PocketAlign aligned their binding sites with a Cα-RMSD of 1.8 Å over 17 equivalent
residues (Figure 4C, ANC-AS is purple and FGAM yellow), indicating that both pockets
can bind similar ligands. Indeed, ANC-AS has also been co-crystallized with ATP (PDB-ID:
4ueu); therefore, the classification by GraphSite is, in fact, correct. This is an example of a
pocket capable of binding multiple, chemically dissimilar ligands, which may belong to
more than one class.
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GraphSite classified 26% of pockets binding alkyl phosphates belonging to class 13 as
binding sites for essential amino acids (Figure 3). For instance, a binding site in a coenzyme
A-dependent thiolase LsrF bound to (3R)-3-hydroxy-2,4-dioxopentyl dihydrogen phos-
phate (PDB-ID: 4p2v) [72] was classified as an essential amino acid binding pocket with
0.96 confidence. Figure 4D shows a valid structure alignment constructed by PocketAlign
between this pocket (purple) and a known amino acid binding pocket in L-arginine:glycine
amidinotransferase (AT, yellow) complexed with arginine (PDB ID:4jdw) [73]. This align-
ment has a Cα-RMSD of 1.5 Å calculated over 14 equivalent residues indicating that the
binding site in LsrF is structurally related to arginine binding pockets. As a matter of fact,
alkyl phosphates and amino acids are connected through common biochemical pathways,
e.g., phosphoenol pyruvate is an important citric acid cycle intermediate that produces
alpha-ketoglutarate, ultimately leading to the synthesis of amino acid arginine [74,75]. This
may explain the classification result by GraphSite of the binding site in LsrF.

Colchicine is an anti-inflammatory agent primarily used to treat gout [76]. A colchicine
binding site in human bromodomain-containing protein 4 (BRD4, PDB-ID: 6ajz) [77] was
classified by GraphSite as a nucleotide binding site with a confidence score of 0.93. Inter-
estingly, BRD4 is homologous to the murine mitotic chromosome-associated protein [78]
and the human RING3 protein [79], both annotated with kinase activity. Colchicine is
also effective against acute coronary syndrome by inhibiting a nucleotide-binding domain
(NOD)-like receptor protein 3 inflammasome protein complex [80]. The colchicine binding
site in BRD4 was aligned to a known ATP binding site in FGAM synthase II with Pock-
etAlign. The resulting alignment shown in Figure 4E has a low Cα-RMSD of 1.7 Å over
9 equivalent residues (BRD4 is purple and FGAM is yellow). This result indicates that both
pockets are structurally similar, explaining the classification by GraphSite of the pocket in
BRD4 as nucleotide binding.

A few pockets binding essential amino/citric/tartaric acids belonging to class 6 were
classified by GraphSite as binding sites for lipids (Figure 3). An example is a pocket in
maltose O-acetyltransferase from E. coli binding tromethamine (MAT, PDB-ID: 6ag8) [81]
assigned by GraphSite to class 5 with a confidence score of 0.98. MAT catalyzes the CoA-
dependent transfer of an acetyl group to maltose and other sugars [82]. The fatty acid or
lipid biosynthesis pathway produces acetyl CoA that enters the citric acid cycle to produce
citrate [83]. According to results by PocketAlign shown in Figure 4F, the binding site in
MAT is structurally similar to a pocket in putative endonuclease/exonuclease/phosphatase
family protein binding di(hydroxyethyl)ether (BtR318A, PDB-ID: 3mpr) [84] with an RMSD
of 1.5 Å over 8 equivalent residues (MAT is purple and BtR318A is yellow). This high
similarity to a lipid-binding site gives a reason for the misclassification of a pocket in MAT
by GraphSite.

3.3. Performance on Unseen Data

Next, the performance of GraphSite is evaluated against a small dataset of “unseen”
pockets. All data in this set were published later than the benchmarking dataset; thus,
these pockets have not been used to train the machine learning model. In addition, the
unseen dataset comprises only those proteins having low homology to benchmarking
proteins. Encouragingly, using GraphSite yields the weighted recall, precision, and F1-score
against the unseen dataset of 68.9%, 75.5%, and 70.7%, respectively. Although these values
are somewhat lower than those reported in Table 2, the performance of GraphSite is still
satisfactory considering that the unseen dataset is smaller and much more challenging
than the benchmarking dataset. GraphSite is expected to achieve such performance in
real-world applications employing new data.

3.4. Classification of the Negative Dataset

Lastly, GraphSite was applied to the negative dataset of surface pockets having char-
acteristics of binding sites yet not binding any ligands [46]. Figure 5 shows that the
distribution of the classification confidence is diametrically different from that obtained for
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the benchmarking dataset. A purple violin plot on the left shows the distribution of the
probability of the top-ranked class predicted by GraphSite for the benchmarking dataset.
The median probability of 0.93 indicates that the model produced not only accurate but
also highly confident predictions for the benchmarking dataset. Note that this performance
was obtained employing a proper cross-validation protocol. In contrast, predictions for the
negative dataset are clearly less confident, with a median probability of only 0.67. These
results demonstrate that even though non-binding sites were classified into 14 classes as
GraphSite was designed for, unconfident predictions indicate that these surface pockets do
not fit well any ligand class the model was trained against.

Figure 5. Distribution of the classification confidence for benchmarking and negative datasets. The
classification confidence corresponds to a probability of the top-ranked ligand binding class predicted
by GraphSite.

3.5. Siamese-GraphSite Extension

In addition to the classifier model, we extended GraphSite by adding a Siamese model
for metric learning. This model generates two graph embeddings for a pair of input graphs,
which are then used to calculate the contrastive loss (CL) [85]:

CL(W, y, x1, x2) =
1
2
(1 − y)(dW)2 +

1
2
(y)(max(0, m − dW))2 (5)

where y is the label of the pair of input graphs x1 and x2 (either 1—similar or 0—dissimilar),
W parameterizes the embedding network, dW is the Euclidean distance between graph
embeddings, and m > 0 is a distance margin for the input pair to contribute to the loss
function. Intuitively, using the contrastive loss in model training results in embeddings
from the same class being close to one another in the Euclidean space and far away from
each other for embeddings belonging to different classes.

As shown in Figure 6, embedding networks with shared parameters require a pair
of graphs representing binding pockets as the input to generate two graph embeddings.
These embeddings can subsequently be used in various machine learning applications,
such as the visualization of the binding pocket conformational space. As this architecture
optimizes the relative distances of the data in the Euclidean space, embeddings generated
by Siamese-GraphSite are well suited for distance-based analyses, including, for instance,
t-distributed stochastic neighbor embedding (t-SNE) visualization [86] and k-nearest neigh-
bor clustering [87].
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Figure 6. Architecture of Siamese-GraphSite. This model requires a pair of graph-structured data
as the input for two embedding networks sharing their parameters and utilizes the contrastive
loss function.

To test the distance metric learning on weakly supervised data, we trained Siamese-
GraphSite against 8 clusters in the original dataset prior to the manual curation. Figure 7
shows the t-SNE visualization of the clusters from the validation subset (10%) after the
model was trained on the remaining subset (90%). Overall, similar pockets are grouped
together, while dissimilar pockets are located away from one another. Interestingly, clus-
ters 0 (green dots in Figure 7) and 3 (orange dots in Figure 7) come together according
to the t-SNE analysis. The former cluster contains ADP and ANP, whereas the latter is
composed of UMP and TMP. Because of the functional similarity of pockets belonging
to these clusters, both groups were merged during the manual curation of the dataset
into a single class 0 comprising nucleotides (Table 1). Similarly, clusters 3 (red dots in
Figure 7) and 8 (yellow dots in Figure 7) are grouped together. These clusters containing
glucose and fructose ligands were also manually curated into a single class 2 composed
of carbohydrates (Table 1). These observations indicate that the Siamese model effectively
learns embeddings to represent functional relations among binding pockets in line with the
human expert knowledge.
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Figure 7. t-SNE visualization of embeddings generated by Siamese-GraphSite. Each dot represents
one pocket colored by the cluster assignment.

4. Discussion

In this communication, we describe GraphSite, a method to classify ligand binding
sites, represented as graphs, with a graph deep learning model. Comprehensive bench-
marking calculations demonstrate that the trained classifier extracts informative features of
binding pockets yielding state-of-the-art classification performance. Importantly, GraphSite
successfully classifies binding sites without any information on their ligands. It has the
desired capability to generalize to unseen data, as shown for an independent dataset of
pockets taken from proteins having low homology and solved posterior to training struc-
tures. Moreover, calculations conducted for the negative dataset of surface pockets not
binding any ligands demonstrate that GraphSite does not overpredict; therefore, the false
positive rate in real applications should be low.

GraphSite can further be extended in several directions. Utilizing larger datasets com-
prising more classes will not only help train a more powerful and accurate classifier, but it
will also increase the performance of metric learning by the Siamese model presented here
as an example of the extension of GraphSite. However, this plan of action would require em-
ploying various data augmentation techniques [31] to account for fewer structures currently
available for certain pocket classes. We also expect that exploring additional node features
of binding site graphs may also improve the classification performance. GraphSite is a
versatile approach that can be useful in other deep learning-based applications involving
the analysis of ligand binding sites. For example, it is possible to train a graph autoencoder
to generate latent embeddings of binding sites for subsequent use in machine learning.
Another potential application is to build a model to predict drug-target interactions where
the GNN layers of GraphSite can be used as the feature extractor for input binding sites.
These new directions to improve and extend GraphSite will be explored in the future.
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Abstract: The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB),
funded by the United States National Science Foundation, National Institutes of Health, and Depart-
ment of Energy, supports structural biologists and Protein Data Bank (PDB) data users around the
world. The RCSB PDB, a founding member of the Worldwide Protein Data Bank (wwPDB) partner-
ship, serves as the US data center for the global PDB archive housing experimentally-determined
three-dimensional (3D) structure data for biological macromolecules. As the wwPDB-designated
Archive Keeper, RCSB PDB is also responsible for the security of PDB data and weekly update of the
archive. RCSB PDB serves tens of thousands of data depositors (using macromolecular crystallogra-
phy, nuclear magnetic resonance spectroscopy, electron microscopy, and micro-electron diffraction)
annually working on all permanently inhabited continents. RCSB PDB makes PDB data available
from its research-focused web portal at no charge and without usage restrictions to many millions
of PDB data consumers around the globe. It also provides educators, students, and the general
public with an introduction to the PDB and related training materials through its outreach and
education-focused web portal. This review article describes growth of the PDB, examines evolution
of experimental methods for structure determination viewed through the lens of the PDB archive,
and provides a detailed accounting of PDB archival holdings and their utilization by researchers,
educators, and students worldwide.

Keywords: Protein Data Bank; Open Access; Worldwide Protein Data Bank; macromolecular
crystallography; cryogenic electron microscopy; cryogenic electron tomography; electron crystallography;
micro-electron diffraction; nuclear magnetic resonance spectroscopy; biological macromolecules;
proteins; nucleic acids; DNA; RNA; carbohydrates; small-molecule ligands

1. Introduction

The Protein Data Bank (PDB) is now in its 51st year of continuous operations. As
the first open-access digital data resource in biology, it was established in 1971 with just
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seven protein structures [1]. At the time of writing, PDB holdings numbered nearly
200,000 experimentally-determined three-dimensional (3D) structures of proteins and nu-
cleic acids (DNA and RNA) and their complexes with one another and small-molecule
ligands (e.g., enzyme co-factors, drugs, investigational agents). Since 2003, the PDB
archive has been jointly managed by the Worldwide Protein Data Bank (wwPDB, wwpdb.
org, accessed on 28 August 2022) partnership [2,3]. wwPDB Full Members include the
US-funded Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB
PDB, RCSB.org, [4–7]); Protein Data Bank in Europe (PDBe, PDBe.org, [8]); Protein Data
Bank Japan (PDBj, PDBj.org, accessed on 28 August 2022 [9]); the Electron Microscopy Data
Bank (EMDB, emdb-empiar.org, accessed on 28 August 2022 [10,11]); and the Biological
Magnetic Resonance Bank (BMRB, bmrb.io, accessed on 28 August 2022 [12,13]). The
activities of the wwPDB are governed by a charter, which was last renewed in 2021 on
the occasion of the accession of EMDB (www.wwpdb.org/about/agreement, accessed on
28 August 2022). The RCSB PDB is headquartered at Rutgers, The State University of
New Jersey with smaller teams based at the University of California San Diego (UCSD)
and the University of California San Francisco (UCSF). Within the wwPDB, RCSB PDB
serves as the designated Archive Keeper for the PDB, responsible for safeguarding both
digital information and a physical archive of correspondence. A conservative estimate of
USD 100,000 for the average replacement cost of each individual PDB structure translates
to a replacement cost of the structures in the entire archive of nearly USD 20 billion (as
of mid-2022).

wwPDB partners are committed to the FAIR (Findability, Accessibility, Interoperability,
and Reusability [14]) and FACT (Fairness, Accuracy, Confidentiality, and Transparency [15])
Principles emblematic of responsible data stewardship in the modern era. The PDB archive
has been accredited by CoreTrustSeal (coretrustseal.org accessed on 28 August 2022). Since
its inception, the PDB has been regarded as a pioneer in the open-access data movement.
More than 60,000 structural biologists working on every inhabited continent have gen-
erously deposited 3D structure information (atomic coordinates, experimental data, and
related metadata) to the archive over more than fifty years. Today, many millions of PDB
data consumers worldwide working in fundamental biology, biomedicine, bioengineering,
biotechnology, and energy sciences enjoy no-cost access to 3D biostructure information
with no limitations on data usage. Many scientific research areas have been profoundly
impacted by the creation and availability of the PDB archive [16–42].

This review article is published in a Special Issue of Biomolecules honoring Professor
Phil Bourne, who served as Associate Director of the RCSB PDB from 1998–2014. Phil led
the UCSD site, where he focused on database development, integration with the scientific
literature, and PDB search and data visualization tools. Bourne and Helge Weissig played
critical roles in developing the inaugural version of the RCSB PDB data-delivery web portal
at RCSB.org [4,43]. Access to PDB data and development of tools for query, visualization,
and analysis as supported by the wwPDB partnership have helped drive the growth of
structural and computational biology. PDB data and its usage by researchers, educators,
and students over more than five decades is presented to highlight the evolution of these
scientific fields and inform the next fifty years of successful PDB operations.

2. Results

2.1. PDB Data Metrics and Trends

Since 1971, PDB structures have been contributed freely by more than sixty thou-
sand structural biologists (depositors) working on every permanently inhabited continent
(Figure 1). Structural biologists in 53 countries, territories, etc. recognized by the United
Nations deposited data to PDB during 2021. All used the wwPDB OneDep software sys-
tem (deposit.wwpdb.org) that enables complete structure data deposition [44], rigorous
validation [45,46], and expert biocuration [47]. OneDep currently supports 3D macromolec-
ular structures determined using the following experimental methods: macromolecular
crystallography (MX), 3D electron microscopy (3DEM), nuclear magnetic resonance (NMR)

65



Biomolecules 2022, 12, 1425

spectroscopy, electron crystallography (EC), and micro-electron diffraction (microED).
Currently, newly deposited structures are processed at RCSB PDB (Americas, Oceania),
PDBe (Europe, Africa), or PDBj (Asia, Middle East), allocated based on the depositor’s IP
address location.

 

Figure 1. Geographic distribution of PDB depositions from 1971 to mid-2022.

Figure 2A illustrates growth of the PDB archive over the past 50+ years. Since the
first X-ray crystal structure of a protein (sperm whale myoglobin) was determined by Sir
John Kendrew and his colleagues [48], the discipline has become central to molecular and
cellular biology. Figure 2B documents the impact of MX, 3DEM, and NMR on annual PDB
data releases. Since 2016, annual releases of PDB MX structures have plateaued at ~10,000,
with the exception of substantial spike in 2020 driven by the pandemic lockdown and
various MX-based fragment screening campaigns against SARS-CoV-2 proteins thought to
represent good drug discovery targets. During the same period, NMR structure releases
declined, and 3DEM structure releases grew exponentially (increasing ~6-fold in only
4 years). As of mid-2022, the archive contained 166,894 MX structures, 11,294 3DEM
structures, and 13,738 NMR structures. Given current deposition metrics, aggregate 3DEM
structure holdings are expected to surpass those of NMR in late 2022 or early 2023. Of
immediate importance to those working to combat the COVID-19 pandemic, the PDB
archive currently holds >2600 SARS-CoV-2 related structures (~800 released in 2020, and
~900 released in 2021). Figure 2C shows the number of PDB MX and 3DEM structures
broken down as a function of resolution (median value ~2.0 Å). While nearly all PDB
structures determined at better than 2.5 Å resolution came from MX (~99.6%), 3DEM is now
capable of delivering structures to nearly 1Å resolution (e.g., 1.15 Å resolution structure of
apoferritin, PDB ID 7a6a [49]).
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Figure 2. PDB archive metrics. (A). Growth 1976–2021. (B). New MX, 3DEM, and NMR structures
released annually (2000–2021). (C). MX and 3DEM structure counts vs. resolution (Å). (D). Average
number of residues per structure for structures released annually (2000–2021). (E). Average number
of polymer chains per structure for structures released annually (2000–2021). (F). Average number of
non-polymer ligands per structure for structures released annually (2000–2021).

While the total number of PDB structures continues to grow, their complexity is
increasing year-on-year. Figure 2D illustrates structure complexity as a function of time
as judged by the average number of amino acid and/or nucleotide residues per PDB ID.
As of mid-2022, the total number of residues (proteins and nucleic acid) in the archive
exceeded 200 million and the total number of atoms exceeded 1.5 billion. Figure 2E,F
show similar trends for the average number of polymer chains per PDB ID and average
number of ligands per PDB ID (excluding bound water molecules, other solvents, salts, ions,
common buffers, crystallization and cryoprotection agents as specified in Shao et al. [50]),
respectively.

2.2. Evolution of Structural Biology Methods Viewed through the Lens of the PDB

As evidenced in Figure 2A, growth of the PDB has been much faster than linear. This
section examines the evolution of structural biology as a discipline viewed through the lens
of PDB archival holdings. Technical innovations in MX, 3DEM, and NMR are discussed in
some detail, followed by a brief account of the emergence of microED as an exciting new
diffraction method for structure determination of biological macromolecules.
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2.3. Macromolecular Crystallography (MX)

Structures determined using the MX method were the first to be deposited into the
PDB. All of these early structures were determined using isomorphous replacement (IR) [51]
to solve the crystallographic phase problem. Slow but steady growth of the PDB archive
during the 1980s combined with development of the molecular replacement (MR) method
for structure determination by Michael Rossmann [52] helped to accelerate MX. In 2001,
after PDB first began systematic collection of phasing method information, it was already
apparent that most 3D structures being deposited to the archive were determined using
MR. Figure 3 also shows that by 2001 IR had been largely abandoned as a de novo structure
determination method in favor of multiple-wavelength anomalous dispersion (MAD, to
be supplanted by single-wavelength anomalous dispersion or SAD) for new structure
determinations for which MR was not feasible. Analyses across the entire archive revealed
that MR was used to determine ~85% of all PDB MX structures as of mid-2022. This method
depends critically on the parsimony of macromolecular evolution. Protein domain folds
(3D structures) are reused repeatedly within biomolecules carrying out similar biochem-
ical or biological functions. According to generally accepted estimates, ~10,000 distinct
polypeptide chain folds account for the vast majority of naturally occurring proteins.

Figure 3. PDB MX structure phasing method trends vs. year of structure release from 2001–2021 (MR:
molecular replacement; MAD: multi-wavelength anomalous dispersion; SAD: single-wavelength
anomalous dispersion; IR: isomorphous replacement).

The other important trend in MX structure determination practices evident from
historical PDB data concerns X-ray sources. Widespread availability of MX beamlines at
synchrotron radiation sources transformed how protein crystallographers work. As of
mid-2022, ~85% of PDB MX structures relied on diffraction data collected at synchrotrons vs.
~15% that used home X-ray sources. Before 2000, most PDB MX structures released annually
were the products of home sources. In contrast, only ~7% of new PDB MX structures came
from home sources during the period of 2017 through 2021. Among global synchrotron
sources worldwide, the top five contributors of PDB MX structures in rank order as of
mid-2022 were the Advanced Photon Source (APS, ~21% of all PDB MX structures), the
European Synchrotron Research Facility (ESRF, ~12%), Diamond (~9%), the Advanced
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Light Source (ALS, ~7%), and the National Synchrotron Light Source (NSLS, ~6%). Three
of these top five biostructure-producing synchrotrons (APS, ALS, and NSLS) and others
operated by the US Department of Energy contributed ~41% of all PDB MX structures
worldwide as of mid-2022.

Given the critical roles played by synchrotron radiation sources in MX structure
studies, one could reasonably expect that bright X-ray sources combined with cryogenic
data collection would have contributed to ongoing improvements in structure resolution
throughout the history of the PDB. Figure 4 tells an entirely different story. As of 1990,
well before access to synchrotron beamlines and cryo-cooling of protein crystals became
routine, median resolution of new MX structures released by the PDB annually plateaued
at ~2.0 Å. Since then, median resolution of PDB MX structures has not changed appreciably.
This reality almost certainly reflects limitations due to the degree of order (or disorder)
typical of crystalline preparations of biological macromolecules. Absent new crystallization
strategies that markedly increase the order of protein crystals or modeling methods that
deconvolute this disorder into multiple structural states, it appears unlikely that median
resolution of MX structures in PDB will improve substantially, if at all. Fortunately for most
PDB data consumers, 2 Å resolution usually suffices to reveal features of macromolecules
relevant for understanding biological phenomena in 3D. In contrast, higher resolution
studies may be required to understand fully biochemical functions of proteins and nucleic
acids (e.g., reactions catalyzed by protein enzymes and ribozymes).

Figure 4. Box plot display of PDB MX structure resolution vs. time. The bold solid bar within each
box corresponds to the median value for structures publicly released that year. (N.B.: Small numbers
of extreme outliers with resolution > 4 Å were excluded from this analysis for clarity).

Geometric validation of atomic coordinates deposited to the PDB was introduced
in the 1990s. Validation of 3D structures vs. experimental structure factors was not
routinely performed until 2008, when deposition of experimental structure factor data
became mandatory at the behest of the MX community. Stakeholder recommendations
regarding some additional means of validating MX structures were subsequently provided
in 2011 by the wwPDB X-ray Validation Task Force [53] and implemented in wwPDB
legacy deposition systems in 2013 before the wwPDB global OneDep system was launched
in 2014 [44]. Availability of experimental data has enabled systematic validation of atomic
structures and contributed to development of better validation tools [45] and improved
quality of the archived data [54].
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Notwithstanding numerous aspects of 3D structure validation initially implemented
within the wwPDB OneDep software system validation module, ligand validation was
somewhat limited at the outset. The 2016 wwPDB/CCDC/D3R Ligand Validation Work-
shop recommended best practices for validation of MX co-crystal structures [55]. These
recommendations were subsequently incorporated into the OneDep validation module to
provide “Buster-like” 2D geometry quality and 3D electron density graphical overlays with
small-molecule ligands [46]. Validation of PDB MX structures was further enhanced with
introduction of uniform representation for carbohydrates [56].

Arguably, one of the most exciting new methods for measuring diffraction data at
the time of writing is serial crystallography [57–59]. This approach is being used to probe
dynamic properties of proteins and nucleic acids and visualize progress of chemical re-
actions in 3D (e.g., M. tuberculosis β-lactamase (BlaC) inactivating the β-lactam antibiotic
ceftriaxone: PDB IDs 6b5x, 6b5y, 6b6a-6b6f, 6b68, and 6b69 [60]). Both X-ray free-electron
lasers (XFELs) and 3rd generation synchrotron sources are being used to conduct such
experiments. As of mid-2022, PDB archival holdings included 587 serial crystallography
structures, with 343 (~58%) coming from XFELs and 244 (~42%) based on data collected
from synchrotrons. Additionally, 217 PDB MX structures were determined using XFEL
data without recourse to serial methods (e.g., PDB ID 3pcq [61]).

2.4. 3D Electron Microscopy (3DEM)

Over the last decade, resolution of 3DEM PDB structures has improved dramatically.
Since 2013, average resolution of a 3DEM PDB structure has improved from worse than
14 Å to better than ~4 Å (Figure 5A). These overall statistics, however, obscure some of
the most impressive recent developments in 3DEM. Between the beginning of 2019 and
mid-2022, 40 3DEM structures with resolution better than 2.0 Å were publicly released by
the PDB.

Technical breakthroughs in four critical areas were responsible for this “Resolution
Revolution” [62,63]. First, improvements in electron optics, driven by the needs of materials
scientists and the semiconductor industry, ensure that state-of-the-art transmission electron
microscopes (TEM, e.g., Thermo-Fisher Titan Krios, Waltham, MA, USA) preserve phase
information at atomic resolution. Second, vitrification of biological samples and imaging
under cryogenic conditions is now routine [64]. Third, direct electron detectors (DEDs)
have revolutionized how we collect TEM data for single particles arrayed on EM grids.
The move away from charge-coupled device (CCD) detectors to DEDs has been nothing
short of a stampede. Figure 5B illustrates the trend. In 2013, only ~5% of new 3DEM
PDB structures relied on DEDs. By 2017, the fraction relying on DEDs exceeded 90%,
and in 2021 the fraction was ~99%. In aggregate, DEDs have been used to collect data for
10,406 3DEM PDB structures released as of mid-2022 (vs. 11,309 total 3DEM PDB structures).
Finally, the other key contributor to the rapid rise of 3DEM has been advances made in
data processing software. Key software engineering developments include beam-induced
motion correction [65–67] and use of Bayesian maximum-likelihood statistics [68]. Figure 5C
shows that the most popular 3DEM reconstruction software package at the time of writing
is RELION [69], which has been used for determination of more than 4000 3DEM PDB
structures since 2013.

Year-on-year growth of 3DEM PDB structure depositions evident in Figure 3B was
driven by the single-particle method, which is revealing structures of ever more complex
macromolecular assemblies and illuminating important areas of biology (e.g., ion channels,
transcription–translation expressome complexes, nuclear pore complexes). Arguably even
more exciting advances are yet to be made using cryo-electron tomography (cryo-ET)
combined with sub-tomogram averaging [70]. One of the earliest cryo-ET structures in the
archive is PDB ID 4bzj (40 Å resolution COPII Transport-Vesicle Coat Assembled on Mem-
branes [71]). As of mid-2022, the highest resolution cryo-ET structure in the archive was
PDB ID 7zbt (3.3 Å resolution RuBisCO visualized within native Halothiobacillus neapolitanus
carboxysomes [72]). At better than 3.5 Å resolution, both α-helix and β-strand secondary
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structural elements and bulky amino acid sidechains are discernible in experimental 3DEM
density maps (deposited to EMDB) revealing molecular details in 3D important for under-
standing biochemical and biological function.

Figure 5. (A). Annual average reported resolution (blue) and annual best reported resolution (orange)
for 3DEM PDB structures released 2013–2022. (B). Percentage of 3DEM PDB structures released per
year reporting use of direct electron detectors. (C). Top-three reported image reconstruction software
packages per year shown as a percentage of 3DEM PDB structures reporting reconstruction software.
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The H. neapolitanus RuBisCO cryo-ET structure employed a relatively new sample
preparation technique that relies on cryogenic dual-beam focused ion beam/scanning
electron microscopes (cryo-FIB/SEM) to generate 10–20 nm thickness lamellae of vitrified
samples using the focused ion beam to “mill” away unwanted parts of the sample. This tool
allows researchers to isolate thin wafer-like volumes from inside frozen cells for subsequent
cryo-ET imaging and sub-tomogram averaging. Immediate-term prospects for cryo-ET
plus cryo-FIB/SEM milling with sub-tomogram averaging brightened considerable with
the advent of AlphaFold2 [73–75] and RoseTTAFold [76]. For example, in 2021, computed
structure models of human nuclear pore complex (NPC) proteins from AlphaFoldDB were
combined with cellular cryo-ET and molecular dynamics simulations, to generate composite
3DEM density maps of the human NPC in both dilated and constricted conformations
(PDB IDs 7r5k, 7tbl, 7tbm, 7tbj, 7tbk, and 7tbi [77]). Combining cryo-FIB/SEM with
correlative light microscopy prior to cryo-ET imaging of lamellae holds the promise of
improving the efficiency of the method by maximizing the number of molecular assemblies
of interest present in a given wafer-like sample for imaging and subsequent sub-tomogram
averaging [78].

At the time of writing, wwPDB validation reports for 3DEM structures included:
(a) assessment of model geometry similar to that used for all MX and NMR structures
(ClashScore, Ramachandran outliers, Sidechain outliers, nucleic acid polymer backbone);
(b) orthogonal projections of map and map-model overlays; (c) half-map FSC plot based
on mandatory half-maps collected at deposition; (d) voxel-value distribution and volume-
estimation graph; (e) evaluation of map-model fit via atom-inclusion plot and residue
inclusion analysis; and (f) finer evaluation of map-model fit incorporating both overall and
per residue Q-scores [79]. EMDB also provides 3DEM density map and structure quality
assessments on its website, including Q-scores [80]. (For more details regarding the history
of 3DEM validation in the PDB, see [81]).

2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy

Solution nuclear magnetic resonance (NMR) spectroscopy can be used to determine 3D
structures of biomolecules (e.g., [82,83]). The first NMR structure of a protein was deposited
to the PDB in 1988 and released publicly in 1989 (PDB ID 1bds [84]). By the end of the 1980s,
solution NMR structures of 10 proteins had been determined, for which no crystallographic
data were previously available [85]. At the same time, heteronuclear 3D and 4D NMR
experiments were introduced to overcome limitations of spectral complexity and increased
molecular weight (polypeptide chains longer than 150 amino acid residues, hereafter
residues) [86]. At the beginning of the 1990s, the first NMR data file that included NMR
restraints used to determine the 3D structure of Interleukin-8 (IL-8/NAP) was deposited
to the archive (PDB ID 1il8 [87]). At the end of the 1990s, the first chemical shift file
(containing a total of 179 chemical shifts) was deposited as part of PDB ID 1qlo [88]. Upon
the recommendation of the wwPDB NMR Validation Task Force (NMR-VTF), NMR PDB
structure depositions were required to include NMR restraint data and chemical shift data,
in 2008 and 2010, respectively [89].

The number of new NMR structures released to the public annually from the PDB
peaked in 2007 at 965, when NMR structures accounted for ~17% of the entire archive.
Annual depositions have been trending downward ever since (362 NMR structures released
publicly in 2021), and NMR structures now account for only ~7% of PDB holdings. As of
mid-2022, the archive housed 13,733 NMR structures, 13,602 solution plus 131 solid-state.
Figure 6 provides a breakdown of NMR PDB structures as a function of biomolecule
sample type.
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Figure 6. Breakdown of NMR PDB structure holdings by sample type.

Historically, NMR structural studies of biomolecules were size-limited. Most NMR PDB
structures are those of smaller proteins or isolated protein domains (polymer entities < 8.5 kDa).
Both solution and solid-state NMR (SSNMR) can, however, be used to study larger, more
complex structures. SSNMR has been utilized to overcome some of the obstacles restricting
the purview of solution NMR (e.g., relatively insoluble proteins). Both techniques can be
deployed in tandem to overcome respective limitations. As of mid-2022, the PDB archive
housed at least six structures determined using a combination of solution and SSNMR
(e.g., O. cuniculus phosphorylated phospholamban homopentamer PDB ID 2m3b [90]).

Advances in technology for both solution and SSNMR have allowed for larger struc-
tures to be determined. For example, the largest solution NMR structure in the archive (as
judged by total number of residues) is the Box C/D enzyme, a multimeric complex con-
sisting of four instances of three unique proteins totaling 3044 residues (PDB ID 4by9 [91]).
Additionally, use of magic angle spinning (MAS) SSNMR has enabled determination of
structures with no inherent molecular size limitation, overcoming obstacles faced by so-
lution NMR and MX. Exploiting these capabilities, SSNMR has been used to elucidate
structures of complex assemblies similar in size to those studied by cryo-EM while in their
native state, without the need for cryogenic preservation. As of mid-2022, the largest macro-
molecular structure determined by MAS SSNMR is the HIV-1 Capsid Tube, containing
378 repeats of a 231-residue subunit for a total of 87,318 residues (PDB ID 6x63 [92]). Larger
structures have also been determined using integrative or hybrid methods, including that
of a 484.61 kDa, 24mer αB-crystallin oligomer (4200 residues), incorporating experimental
data from solution NMR, solution scattering, and 3DEM (PDB ID 3j07 [93]), and that of the
470.42 kDa tetrahedral aminopeptidase TET2 (4236 residues total), incorporating data from
SSNMR and 3DEM (PDB ID 6r8n [94]).

With use of membrane-mimicking systems (e.g., micelles, bicelles, and nanodiscs), it
is possible to study integral membrane proteins in their near-native environments using
NMR [95]. A structure of the 7.77 kDa transmembrane domain of bacterioopsin (residues 1–71)
was determined using solution NMR by solubilizing the protein in methanol/chloroform and
SDS micelles, and deposited into PDB in 1993 (PDB IDs 1bha and 1bhb [96]). At the time of
writing, the largest membrane protein structure determined via solution NMR deposited to
the PDB is that of 149.16 kDa, 1360 residue human α7 nicotinic acetylcholine receptor, deter-
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mined by a combination of solution NMR, electron spin resonance spectroscopy, and Rosetta
calculations (PDB ID 7rpm [97]). As of mid-2022, the largest membrane protein structure
determined by SSNMR in the PDB is that of 183.51 kDa, 1750 residue M13 bacteriophage
capsid (PDB ID 2mjz [98]).

In addition to the study of 3D structures of biological macromolecules, examination of
dynamics is often important for understanding function. Insights into a biomolecule’s local
dynamic behavior can be used to identify parts of structures important for ligand binding,
protein–protein or protein–nucleic acid interactions, allostery, or conformational changes
(e.g., integral membrane proteins). NMR spectroscopy is uniquely capable of studying
macromolecular movement because of its ability to study samples spanning a wide range
of solvent/solute conditions at atomic resolution over relevant timescales (i.e., picoseconds
to seconds). Such studies are also possible using MAS SSNMR, which can be used to
interrogate dynamics of the protein backbone atoms and sidechains (both globally and
locally). As of mid-2022, the PDB archive housed results of dynamics studies of both small
proteins (e.g., 8.58 kDa ubiquitin, PDB ID 2k39 [99]) and large biological nanomachines
(e.g., 181.87 kDa proteasome subunit alpha heptamer, PDB ID 2ku1 [100]).

As is the case for MX and 3DEM, validation standards for NMR structures archived
in the PDB are being developed collaboratively by the wwPDB and independent experts.
Following implementation of chemical shift validation in 2015 at the behest of community
stakeholders, the NMR Data Exchange Format (NEF) Working Group, which includes
developers of NMR structure determination and refinement software packages, recom-
mended use of a common exchange format to represent NMR chemical shifts, restraints,
and related metadata [101]). NMR structure validation utilizing this unified exchange for-
mat was incorporated within the wwPDB OneDep software system and wwPDB validation
reports in 2020. At the time of writing, archive-wide regeneration of extant NMR structure
validation reports to enable restraint validation was underway. Completion of this reme-
diation project and public release of regenerated wwPDB validation reports for all NMR
structures archived in the PDB is anticipated in 2023. Additional improvements in wwPDB
validation of NMR structures is expected to encompass data representation and validation
of multiple conformers (e.g., pro-islet amyloid polypeptide open conformer (PDB ID 6ucj)
and pro-islet amyloid polypeptide bent conformer (PDB ID 6uck [102]) and validation of
structures determined using NMR combined with other experimental methods (e.g., PDB
ID 3j07 [93]).

2.6. Electron Crystallography (EC) and Micro-Electron Diffraction (microED)

Electron diffraction or electron crystallography (EC) has also been used to determine
3D structures of biological macromolecules. The method employs 2D crystals, beginning
with those of bacteriorhodopsin, the first integral membrane protein structure to be de-
posited into the archive (PDB ID 1brd [103], resolution 3.5 Å). Prior to 2013, a total of
37 biostructures determined using EC were deposited to PDB. With the advent of modern
electron microscopes, a new electron diffraction method using miniscule 3D crystals (micro-
electron diffraction or microED) has been developed [104]. The first microED structure
of a globular protein (hen egg white lysozyme, PDB ID 3j4g [105], resolution 2.9 Å) was
deposited to the PDB in late 2013. As of mid-2022, the PDB housed 137 microED structures
of biomolecules, the largest two of which are human adenosine receptor A2a/cytochrome
b562 chimeric protein (PDB ID 7rm5, 50 kDa, resolution 2.8Å [106]) and bovine catalase
(PDB ID 3j7b, 60 kDa, resolution 3.2Å [107]). Unlike most EC structures archived in PDB,
microED structures are typically determined at very high resolution. As of mid-2022, the
highest resolution microED structure in PDB was that of hen egg white lysozyme (PDB ID
7skw [108], resolution 0.87 Å).
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2.7. PDB Archive Management and Weekly Update/Release

The PDB data standard is defined by the PDBx/mmCIF dictionary [109–111]. It is the
macromolecular extension of an earlier community data standard, the Crystallization Infor-
mation Framework (cif.iucr.org, accessed on 28 August 2022), developed for small molecules
by the International Union of Crystallography [112]. The macromolecular data standard is
maintained by the wwPDB partnership together with the wwPDB PDBx/mmCIF Working
Group (wwpdb.org/task/mmcif, accessed on 28 August 2022) [111]. wwPDB partners and
the Working Group collaborate on developing terminologies for new and rapidly evolving
methodologies and remediating (or enhancing) representations for existing data content.

In its role as wwPDB-designated PDB Archive Keeper, RCSB PDB is responsible for
safeguarding >100 TB of digital information and a physical archive that includes correspon-
dence and other archive-related artifacts dating back to the early 1970s. Snapshots of the
digital information are preserved annually and following large-scale archive-wide data
remediation campaigns, the most recent of which involved standardizing atom naming, etc.
for >14,000 carbohydrate-containing structures in the PDB [56]. The size of the 2021 digital
snapshot was ~1 TB, which does not include ~4.5 TB of 3DEM density map information
archived in EMDB (also jointly managed by the wwPDB partnership).

In its role as wwPDB-designated Archive Keeper, RCSB PDB is responsible for weekly
updates of the PDB archive using the following two-stage process:

Stage One releases sequence(s) for each distinct polymer (amino acid or nucleotide) in
the structure; InChI string(s) for each distinct ligand; and crystallization pH value(s), where
appropriate, on the wwPDB web portal (see www.wwpdb.org/ftp/pdb-ftp-sites, accessed
on 28 August 2022) every Saturday by 03:00 Universal Time Coordinated (UTC). This first
stage in the process supports weekly blind challenges for in silico prediction of protein
structure (CAMEO, cameo3d.org, accessed on 28 August 2022 [113]) and small-molecule
docking (CELPP, drugdesigndata.org/about/celpp, accessed on 28 August 2022 [114]).

Stage Two completes the weekly process every Wednesday at 00:00 UTC by releasing
the updated PDB archive in full (currently adding ~300 new structures/week, updating
previously released structures with literature citation information, etc., and on occasion
removing obsolete structures).

PDB data are freely distributed online, providing universal open access to the archival
information in two forms (latest archive, files.wwpdb.org/pub/pdb/data, accessed on
28 August 2022; and latest and prior versions of archive, files-versioned.wwpdb.org, ac-
cessed on 28 August 2022). Hypertext Transfer Protocol (HTTP) and remote sync (rsync)
are recommended for access; File Transfer Protocol (FTP) access will be retired in late 2024.
PDB data are also made available without storage fees or egress charges by Amazon Web
Services (AWS) through its Open Data Sponsorship Program (registry.opendata.aws/pdb-
3d-structural-biology-data/, accessed on 28 August 2022).

Global PDB archive data downloads in 2021 reached a record high of 2,364,150,827 structure
data files, which represents an ~80% increase vs. the previous record of 1,323,213,832 set
in 2020. Approximately 70% of global structure data file downloads in 2021 originated
from the FTP archive. The remainder were accessed by users of wwPDB member
web portals.

2.8. All Three Kingdoms of Life Are Represented in the PDB Archive

As of mid-2022, MX, 3DEM, NMR, EC, and microED had been used collectively to
determine >190,000 3D biostructures housed in the PDB archive, which encompasses pro-
teins from organisms representing all living kingdoms (Figure 7). Archaebacterial proteins
were the least numerous (totaling 5664 structures), followed by bacteria (65,967 structures).
PDB holdings of eukaryotic protein structures exceeded 105,000, with more than half being
human in origin. There is limited PDB coverage across the so-called model organisms, with
mouse proteins being most numerous at >8000 structures.
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Figure 7. Phylogenetic Tree showing PDB holdings (as of mid-2022). Within each of the three
branches, PDB structure totals are provided for selected organisms. N.B.: The PDB also houses
3D structures that solely contain nucleic acids (DNA, RNA, DNA-RNA hybrids, etc.) and/or viral
proteins or human-designed proteins, which collectively accounted for ~8% of archival holdings as
of mid-2022.

2.9. PDB Data Delivery/Usage Metrics

Most RCSB PDB users access the archive through our RCSB.org research-focused web
portal, which makes PDB data available at no cost with no limitations on usage via the
Creative Commons CC0 1.0 Universal license (creativecommons.org/publicdomain/zero/
1.0/, accessed on 28 August 2022). In 2021, 6,845,233 unique internet protocol (IP) addresses
from more than 240 countries and territories recognized by the United Nations (Figure 8A)
were used to access RCSB.org (exceeding the 2020 pandemic lock-down record of 6,677,853).
Figure 8B ranks RCSB.org utilization for the top ten user countries for 2019–2021. Not
surprisingly, the US–RCSB PDB’s host country–has the largest percentage of users, followed
by the world’s two most populous nations, India and the People’s Republic of China.

We estimate that ~99% of PDB data consumers are not experts in structural biol-
ogy. Their research interests are extremely broad, encompassing fundamental biology,
biomedicine, energy sciences, bioengineering, and biotechnology [115,116]. Beyond the
natural, physical, mathematical, and engineering sciences, there is also use of PDB data by
social scientists (e.g., economists, [117,118]).

The RCSB.org web portal provides added value to PDB users that goes well beyond
the content of the archive itself. On a weekly basis, RCSB PDB integrates PDB data with
information from ~50 trusted external resources (Table 1). Integrating individual PDB
structures with information from trusted external resources ensures that the RCSB.org
web portal operates as a “living data resource.” Scholarly journal articles describing PDB
structures are static documents, reflecting what was known about the biomolecule(s) at
the time of publication. Thereafter, it is not uncommon for new biological or biochemical
functions of a macromolecule to come to light, or new disease-causing mutations to be
identified. Such new findings are integrated with PDB data every week, thereby ensuring
that RCSB.org users have access to the most current information pertaining to every 3D
biostructure in the public domain.
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Figure 8. (A). Geographic distribution of RCSB.org users by country. (B). Top 10 countries with the
highest percentage of users from 2019–2021. Data from Google Analytics.

Table 1. Trusted external resources/data content integrated weekly with PDB archival data by
RCSB PDB from rcsb.org/docs/general-help/data-from-external-resources-integrated-into-rcsb-pdb
(accessed on 28 August 2022). (N.B.: In response to community input, RCSB PDB continues to
integrate new external data resources.).

Resource Description

AlphaFold DB [73,74] Computed Structure Models by AlphaFold2

ATC Anatomical Therapeutic Chemical (ATC) Classification System from World
Health Organization

Binding MOAD [119] Binding affinities

BindingDB [120] Binding affinities

BMRB [13] BMRB-to-PDB mappings

CATH [121] Protein structure classification

CCDC [122] Cambridge Structural Database (CSD)

ChEBI [123] Chemical entities of biological interest

ChEMBL [124] Manually curated database of bioactive molecules with drug-like
properties

DrugBank [125] Drug and drug target data

ECOD [126] Evolutionary Classification of Protein Domains

EMDB [11] 3DEM density maps and associated metadata

ExplorEnz [127] IUBMB Enzyme nomenclature and classification

77



Biomolecules 2022, 12, 1425

Table 1. Cont.

Resource Description

Gencode [128] Gene structure data

Gene Ontology [129] Gene structure data

Genotype-Tissue Expression (GTEx) [130] Tissue-specific gene expression data

GlyCosmos [131] Web portal integrating the glycosciences with the life sciences

GlyGen [132] Data integration and dissemination resource for carbohydrates
and glycoconjugates

GlyTouCan [133] Glycan structure repository

Human Gene Nomenclature Committee
(genenames.org, accessed on 28 August 2022) Human gene name nomenclature and genomic information

IMGT [134] International ImMunoGeneTics information system

Immune Epitope Database [135] Antibody and T cell epitopes

International Mouse Phenotyping Consortium
(mousephenotype.org, accessed on 28 August 2022) Mouse gene phenotype data

InterPro [136] Classification of Protein Families

MemProtMD [137] Database of Membrane Proteins Embedded in Lipid Bilayers

ModelArchive (modelarchive.org accessed on 28
August 2022) Computed Structure Models (e.g., by RoseTTAFold)

Mpstruc [138] Classification of transmembrane protein structures

NCBI Gene [139] Gene info, reference sequences, etc.

NCBI Taxonomy [139] Organism classification

NDB [140] Experimentally determined nucleic acids and complex assemblies

OPM [141] Orientations of Proteins in Membranes database; Classification of
transmembrane protein structures and membrane segments

PDBbind-CN [142] Binding affinities

PDBflex [143] Protein structure flexibility

PDBTM [144] Protein Data Bank of Transmembrane Proteins

Pharos [145] Drug targets and diseases

ProteinDiffraction.org (proteindiffraction.org,
accessed on 28 August 2022) Diffraction images

PubChem [146] Chemical information

PubMed [139] Citation information

PubMedCentral [139] Open access literature

RECOORD [147] NMR structure ensembles

RESID [148] Protein modifications

SAbDab [149] The Structural Antibody Database

Thera-SAbDab [150] Therapeutic Structural Antibody Database

SBGrid [151] Structural Biology Data Grid/diffraction images

SCOP [152] Structural Classification of Proteins

SCOPe [153] Structural Classification of Proteins—extended

SIFTS [154] Structure, function, taxonomy, sequence

UniProt [155] Protein sequences and annotations
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PDB data utilization worldwide is also mediated by third parties that repackage and
reuse the archival information. While the RCSB PDB is unable to assess utilization of the
archive via third parties, review of the Nucleic Acids Research Online Molecular Biology
Database Collection [156], which comprises databases from Nucleic Acids Research annual
Database Issues, identified 460 external data resources that distribute repackaged PDB data
(Supplementary Materials Table S1). Additional utilization of PDB data occurs within all
major biopharmaceutical companies and many smaller biotechnology companies that main-
tain copies of the archive inside company firewalls. They frequently use PDB data alongside
proprietary MX structures determined by company structural biologists or their contractors.
Most, if not all, global biopharmaceutical companies (e.g., Pfizer, Novartis, Eli Lilly and
Company) rely on structure-guided drug discovery of small-molecule, orally bioavailable
therapeutic agents, which typically begins with scanning of PDB archival holdings for a
public domain structure of the target protein to begin the discovery process [25,157,158].
They also make use of PDB structures when engineering new biologic agents (monoclonal
antibodies, cytokines, etc.) for use as injectables [159].

Literature searching provides another means of assessing utilization and impact of
PDB data. As of mid-2022, 162,262 (~84%) of PDB structures are described in 75,497 unique
primary publications, the vast majority of which appeared in peer-reviewed journals. Cita-
tion analyses carried out using EuropePMC revealed that in 2021, the PDB was mentioned
by name in 23,030 publications. It further documented that PDB IDs were mentioned in
585,903 publications in 2021. An RCSB PDB study published in 2018 [160] documented
that citations of PDB data spanned the sciences, literally from Agriculture to Zoology.
Not surprisingly, nearly 90% of published PDB structures analyzed in 2018 were cited by
journals in the area of Biochemistry and Molecular Biology. High impact within other areas
of biomedicine (Cell Biology, Pharmacology and Pharmacy, Microbiology, Genetics and
Heredity) was, as expected, also documented. Further RCSB PDB analyses on this topic
highlighted PDB structure publications that were frequently cited in scientific journals
focused on Materials Science, Physics, Computer Science, Chemistry, Engineering, and
Mathematics [116].

Searching of the patent literature in August 2022 also documented substantial impact
of PDB data. Directed searches for PDB mentions using the US Patent and Trademark
Office website (uspto.gov, accessed on 28 August 2022) identified nearly 19,000 in-process
patent applications and ~10,000 issued US patents (vs. ~20,000 in process applications and
~6500 issued patents in June 2017 [160]). Analogous searches of global patent literature
using PatSeer (patseer.com) documented ~90,000 issued patents and patent applications in
process worldwide that include PDB mentions (vs. ~50,000 in June 2017 [160]).

Finally, RCSB PDB also operates a second web portal focused on outreach and educa-
tion (PDB101.RCSB.org, with PDB-101 denoting an introductory course) [161]. PDB-101
was launched in 2011 to support PDB archive exploration and training by university fac-
ulty, postdoctoral researchers, undergraduate and graduate students, school teachers and
their pupils, and the general public. It was established to help train the next generation
of PDB users and promote structural biology and protein science to non-experts. Regu-
larly published features include the highly popular Molecule of the Month series [162], 3D
biostructure-related activities, molecular animations and videos, and educational curricula,
many of which are organized around a public health topic [163]. The Guide to Understanding
PDB Data covers key topics, including file format information and explanations of the
types of data included with a PDB entry. Materials are organized into various categories
(Health and Disease, Molecules of Life, Biotech and Nanotech, and Structures and Structure
Determination) and searchable by keyword (e.g., cancer, checkpoint therapy, antibody). Al-
though it is not as intensively accessed as our RCSB.org research-focused web portal, there
is substantial utilization of PDB101.RCSB.org by users from around the world (Figure 9).
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Figure 9. Average monthly usage of PDB-101 (PDB101.RCSB.org, accessed on 28 August 2022) from
2019–2021. Data from Google Analytics.

2.10. Impact of PDB Data on Computational Structure Modeling

Use of PDB data to compute 3D structure information for other proteins is well-established.
For many years, publicly available computational services (e.g., Modeller/ModBase [164–166]
and ProMod3/SWISS-MODEL, [167,168] and Rosetta [169]) used comparative or homology
modeling to predict protein structures. This approach depends on finding an experimentally-
determined protein structure in the PDB with an amino acid sequence similar to that of the
target protein to use as a modeling template or scaffold. Homology modeling typically succeeds
when a structural template with >40% sequence identity is available. Like MR, homology
modeling is often useful because of the parsimony of macromolecular evolution.

As the PDB archive grew, template-free computational structure modeling became
possible for very small globular proteins. Continuous advances in both homology modeling
and template-free protein structure prediction were fostered by two community-led blind
challenges (i.e., CASP [170], and the weekly Continuous Automated Model EvaluatiOn
(or CAMEO) online challenge [113]). Both CASP and CAMEO rely on coordination with
structural biologists and the wwPDB to ensure relevant structure data are not publicly
released before each challenge concludes.

Google DeepMind emerged as the top performer in the 2020 CASP challenge [170]. Its
AlphaFold2 software uses artificial intelligence/machine learning (AI/ML) to predict 3D
structures of smaller globular proteins with accuracies comparable to that of low-resolution
experimental methods [74]. It was rightly heralded as a major breakthrough in de novo
protein structure prediction. Subsequently, the Rosetta team led by David A. Baker (Uni-
versity of Washington/Howard Hughes Medical Institute) released RoseTTAFold [76]
and then RoseTTAFold2, which also use AI/ML methods to generate computed structure
models (CSMs) of proteins with reported accuracies comparable to that of AlphaFold2.
Figure 10 contrasts experimental structure determination with computed structure model
calculation. At the time of writing, CSMs for nearly every protein sequence represented
in UniProt [155] generated by DeepMind using AlphaFold2 were publicly available from
AlphaFold DB [73–75]. Some of the CSMs generated by computational biologists operating
independently of DeepMind (using RoseTTAFold, AlphaFold2, etc.) are available from the
open access ModelArchive (modelarchive.org, accessed on 28 August 2022).

Of particular importance when evaluating CSMs for use in research are pLDDT
(predicted local distance difference test) scores or confidence estimates generated by
AlphaFold2 [74,171]. pLDDT scores (scaled between 0 and 100) denote polypeptide chain
segments as very high confidence (pLDDT ≥ 90), confident (90 > pLDDT ≥ 70), low confi-
dence (70 > pLDDT ≥ 50), and very low confidence (pLDDT < 50). We do not yet know
how much enhanced AI/ML methods will improve prediction accuracy and expand the
scope thereof to larger, multidomain proteins, but history shows us that continued growth
of the PDB should only help in this regard.

It is no exaggeration to say that neither AlphaFold2 nor RoseTTAFold2 would exist
today without open access to complete, rigorously validated, expertly biocurated 3D
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biostructure data from the PDB [172]. Looking ahead, use of AI/ML methods for accurate
prediction of structures of macromolecular assemblies and, perhaps even more challenging,
transient intermolecular interactions that underpin complex regulatory processes in biology
will depend critically on continued growth in the number of 3DEM structures of large
molecular machines deposited to the PDB. Successful application of AI/ML methods for
predicting small-molecule ligand binding to protein targets may not be possible in the near
term given current PDB data deposition trends. The number of co-crystal structures of
small molecules binding to proteins in the PDB is dwarfed by 3D structure data collectively
held as trade secrets across the biopharmaceutical industry. Contributions of significantly
more co-crystal structure data from industry would almost certainly fuel advances in
prediction of small-molecule binding to proteins. With sufficient data placed in the public
domain, we can reasonably expect that AI/ML methods would accelerate drug discovery
and development efforts in both academe and industry for the greater good [172].

Figure 10. Experimental approaches for determination of protein structures and computational
methods for predicting structures both rely on open access to genomic and 3D structure data.
Here, methods for determining the structure of the RNA-binding protein Nova-2 are shown. The
MX structure (left) was determined for an isolated domain of the protein bound to its RNA tar-
get. The computed structure (right) includes the entire polypeptide chain, which is predicted
to include three well-folded domains (blue/cyan) connected by apparently unstructured linkers
(yellow/orange). Image adapted from New England Journal of Medicine, Stephen K. Burley, Wadih
Arap, Renata Pasqualini, Predicting Proteome-Scale Protein Structure with Artificial Intelligence, 385,
2191–2194 [173].Copyright © 2022 Massachusetts Medical Society. Reprinted with permission.
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2.11. Future Directions

The futures of structural biologists and the PDB appear even brighter, contrary to
post-AlphaFold2 rumors to the effect that experimental structural biology is on the verge
of precipitous decline. Depositions of structures to the PDB in 2022 are on track to exceed
those in all previous years. Experimentally determined 3D biostructures are highly prized
accomplishments. Medium-to-high resolution experimental structures (e.g., MX structures
better than 3.5 Å resolution) are more accurate than CSMs [174]. Moreover, they frequently
contain bound small-molecule ligands of biological or biomedical importance. They may
also include more than one macromolecule, providing information regarding homo- and
hetero-meric assemblies that underpin the workings of complex molecular machines.

CSMs generated with AI/ML methods are of considerable interest to experimental
structural biologists. Many are taking a “glass half full” approach to this information.
They often rely on CSMs of large multi-domain eukaryotic proteins for designing protein
expression constructs by excluding low confidence and very low confidence regions when
generating truncations suitable for MX, NMR, or 3DEM studies. (N.B.: CSMs are not
eligible for archiving in the PDB, because they do not involve measurements from a sample
of the biological macromolecule for which the structure is determined.)

The future of experimental structural biology is also looking bright. Researchers
are tackling ever larger and more complex macromolecular machines using so-called
integrative or hybrid methods that combine experimental measurements from more than
one biophysical technique. Anticipating this trend, a wwPDB Integrative/Hybrid Methods
(IHM) Task Force was assembled to make recommendations regarding data archiving
and structure validation [175,176]. As an interim measure, the wwPDB established PDB-
Dev as a standalone prototype system [177–179] for archiving and publicly disseminating
integrative structures and associated data. Integrative structure determination entails
making measurements using complementary experimental methods (e.g., 3DEM and
chemical cross-linking) and converting the results into spatial restraints that are applied
to with known starting structures of molecular components to determine the structures of
complex macromolecular assemblies.

The PDB-Dev software system supports data collection, processing, curation, valida-
tion, archiving, and distribution of integrative biostructures. It is underpinned by ModelCIF
(github.com/ihmwg/ModelCIF, accessed on September 29 2022), an expanded set of data
standards based on the PDBx/mmCIF data standard (above) for representing integrative
structures and associated experimental restraints; a software library that supports the new
data standards; a data harvesting system for collecting heterogeneous data from diverse
experimental techniques, methods for curating, validating and visualizing integrative
structures; and web services for distributing archived data. The PDB-Dev prototype system
has allowed structural biologists to make their integrative structures publicly available,
including but by no means limited to those involved in transport of proteins and nucleic
acids across the nuclear envelope (nuclear pore complex [180]), regulation of gene expres-
sion (expressome complex [181]), cellular vesicle trafficking (exocyst complex [182]), and
regulation of genomic architecture (BAF complex [183]). Importantly, the PDB-Dev data
standard was designed to interoperate with PDBx/mmCIF and the PDB, so that integrative
structures and related metadata can eventually be archived in the PDB.

In parallel with building PDB-Dev, wwPDB partners are working to establish a feder-
ated network of interoperating structural biology data resources, as recommended by the
IHM Task Force [176]. This effort involves collaboration with other experimental data repos-
itories (e.g., SASBDB [184] and PRIDE [185]). Tools are being created to support automated
data exchange between PDB-Dev and these and other biodata repositories (e.g., BioImage
Archive, www.ebi.ac.uk/bioimage-archive, accessed on 28 August 2022 [186]). The over-
arching goal of the wwPDB partnership is to foster federation of structural biology data
resources across length scales ranging from atoms to individual proteins to macromolec-
ular machines to organelles to cells and eventually tissues to maximize the impact that
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atomic level 3D biostructures will have on research and education across basic and applied
biological, biomedical and energy sciences.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12101425/s1, Table S1 Cumulative list of external data
resources identified as repackaging and redistributing PDB data.
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Abstract: Much scientific work over the past few decades has linked health outcomes and disease risk
to genomics, to derive a better understanding of disease mechanisms at the genetic and molecular
level. However, genomics alone does not quite capture the full picture of one’s overall health. Modern
computational biomedical research is moving in the direction of including social/environmental
factors that ultimately affect quality of life and health outcomes at both the population and individual
level. The future of studying disease now lies at the hands of the social determinants of health
(SDOH) to answer pressing clinical questions and address healthcare disparities across population
groups through its integration into electronic health records (EHRs). In this perspective article, we
argue that the SDOH are the future of disease risk and health outcomes studies due to their vast
coverage of a patient’s overall health. SDOH data availability in EHRs has improved tremendously
over the years with EHR toolkits, diagnosis codes, wearable devices, and census tract information to
study disease risk. We discuss the availability of SDOH data, challenges in SDOH implementation,
its future in real-world evidence studies, and the next steps to report study outcomes in an equitable
and actionable way.

Keywords: social determinants of health; electronic health records; real-world evidence; census tract;
data science

1. Introduction

Understanding disease at the molecular level has dominated the field of genetics,
which has been the major basis for studying disease risk over the past two decades. Re-
searchers have presented considerable evidence that disease risk is generally conferred
through genetic inheritance, and now more recently, through specific rare and common
mutations [1,2]. Using tools in molecular and cellular biology, researchers and medical
providers can investigate many diseases and conditions. However, the results of previous
investigations have shown that disease risk is too complex to model using genetics or
molecules alone. Indeed, genetic, social, and environmental factors including socioeco-
nomic status, geolocation, and age, as well as racial and ethnic background play a role in
disease risk across different population groups [3]. Growing evidence increasingly indicates
the importance of accounting for the social and environmental factors that are likely to
affect health outcomes. While Dr. Phil Bourne, whom this Special Issue honors, is certainly
known for his work in computational methodologies and structural biology, he also un-
derstood the importance of external influences on health and called for better methods
to measure and “describe individuals’ activity spaces and exposure to the built, natural,
social, and economic environments that influence behaviors and health outcomes” [4].
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2. Social Determinants of Health

Social determinants of health (SDOH) are one of the ways to capture, represent, and
assess the impact of social and environmental factors in clinical research, thus improving
patient care. SDOH are the conditions in which people are born, live, work, play, worship,
and age, which affect a wide range of health, functioning, quality of life outcomes, and
risks [5]. A patient’s SDOH can be used to estimate their access to healthcare and treatments,
their positive or negative health outcomes, and to assess comorbidities by using information
related to an individual’s health including alcohol and tobacco usage, socioeconomic status,
insurance status, living situation, access to healthy foods, access to health literacy, and
access to quality of care [5]. The main components of the SDOH commonly gathered in
medicine are grouped into five domains: economic stability, education access and quality,
healthcare access and equity, social and community context, and neighborhood and built
environment [5]. Though noted separately, each domain is interconnected to match the
complexity of SDOH variables and represent SDOH at both the population and individual
levels [6,7].

Population-level SDOH measures are heavily reliant on census tract information
derived from the United States Census Bureau (U.S. Census). Census tracts are indicative of
geographical areas, which are defined as small, relatively permanent statistical subdivisions
of a county providing information on demographic and housing estimates, occupation
codes, industry codes, product and service codes, and material/fuel codes [8]. Census
tracts have surveys such as the American community survey, decennial census, economic
surveys, population estimates, public sector census, and economic censuses that can be
leveraged to assess the overall impact of socioeconomic parameters on the health and
wellbeing of patients in a given healthcare system at a given geographical location. Census
tract information is gathered by assigning each person, household, housing unit, institution,
farm, business establishment, or other responding entity to a specific location, and then
assigning that location to a zip code tabulation area appropriate to the census or sample
survey by way of geocoding [8,9]. The geocoding process ensures that the Census Bureau
can provide correct counts for small geographic entities and that both the Census Bureau
and data users can accumulate the data for small entities to provide totals for larger
geographic entities such as zip code areas. Census tract information has been used to
develop indices that directly explain the SDOH of people by using their zip code location
to develop the area deprivation index, social vulnerability index, and modified retail
food index [10–13]. Indices that use census tract information often categorize data by
socioeconomic status, location, and education to calculate the deprivation or vulnerability
of people residing in a location.

SDOH are utilized in clinical care and research studies by way of electronic health
records (EHRs) which are the primary way to capture real-world data from providers
on patient encounters in a health system [14]. EHRs provide a unique opportunity to
study the relationship between SDOH and the management and outcomes of clinical
diseases through real-world data (RWD). RWD captured in EHRs are used to develop
real-world evidence (RWE) studies that analyze data and inform providers about the causes
of different treatment strategies, disease risk, quality of life, and outcomes for different
patients and populations. RWE studies often contain diverse patient populations that are
representative of real patients’ health where common SDOH are collected. Prior to EHRs,
the SDOH were primarily captured by population-level questionnaires administered by the
U.S. Census or through direct questionnaires administered in clinical trials. However, the
innovation of EHRs has provided us with patient-derived data to help us understand the
social and lifestyle factors of patients. SDOH data coupled with questionnaires and clinical
data in EHRs could be used to enable precision medical studies on healthcare access and
health outcomes, by linking with data about treatments, disease conditions, drug response,
insurance status, and demographics.

Although the classification of SDOH at the individual or patient level is becoming
increasingly standardized for operational and clinical research purposes, a current challenge
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in the wide adoption of SDOH in RWE studies is that of missing data, HIPAA regulations,
and quality control issues that severely limit the amount of data available to answer clinical
questions with high precision [15–18]. Therefore, the roles that the SDOH play in various
chronic illnesses and diseases are ill-defined but have the potential to address population-
and person-specific questions in the future. Research shows that public health goals cannot
be realized without addressing the underlying SDOH that contribute to disparities and
outcomes [19,20]. Therefore, healthcare research should strive to include SDOH in addition
to race/ethnicity in RWE studies. A plethora of research reveals numerous socioeconomic
parameters potentially accelerating disease risk, especially among minorities [20]. We
must improve our understanding of the impact of SDOH on disease risk by investigating
the different roles that SDOH play for patients, population groups, healthcare providers,
healthcare access, and health outcomes (Figure 1).

Figure 1. Grouped SDOH factors are categorized at the population and individual levels. At each
level, we define the SDOH factors that contribute to the overall health of a population and the overall
health of a patient, which mark the difference between a good outcome and a poor outcome.

3. SDOH Integration into Electronic Health Records

In EHR databases across the country, there is incompleteness of SDOH data, which has
led previous RWE studies to use only race/ethnicity, sex, and age as measures of SDOH.
In theory, those demographics can provide context, but cannot capture the full picture
of one’s overall health. In an attempt to capture SDOH effectively in EHRs, efforts to
map de-identified patients’ information to census tracts have been extremely important in
providing researchers the ability to use evidence-based SDOH to answer clinical questions.
However, the SDOH are often only captured in clinical notes, without structured coding,
and we need better methods to obtain SDOH data trapped in notes. Currently, social
aspects found in clinical notes vary across EHR databases in the country; however, the
Institute of Medicine (IOM) has worked aggressively on identifying SDOH domains to be
suggested for use in EHRs for academic research purposes [21]. The type of data suggested
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includes sociodemographic domains, psychological domains, behavioral domains, and
individual-level social relationship and living condition domains. Our field is still in the
early days of extracting specific SDOH information and mapping such data to and from
EHRs, but alongside social indices, other structured data elements, such as insurance
status, can now be used to understand a patient’s socioeconomic status. The indices can be
used to answer questions related to SDOH and in cooperation with EHRs to understand
surgical outcomes, drug distribution, health outcomes, and hospital readmissions. As time
progresses, we will effectively utilize more SDOH data in EHRs and RWE studies.

EHR toolkits offer precise categorization of SDOH captured from census tracts for use
in RWE studies. SDOH-standardized vocabularies are offered through these toolkits to map
data to census tracts in EHR databases, but these are not yet widely adopted. A popular
toolkit called the PhenX toolkit offers ontologies such as health insurance coverage, food
insecurity, air quality index, wealth, job insecurity, food swamp, and more to increase the
SDOH measures used in studies [22]. The SDOH ontologies were precisely chosen to enable
highly qualitative measures that will increase the statistical power of studies [22]. The
International Classification of Diseases (ICD) coding system has incorporated specific ICD-Z
codes for SDOH that refer to problems related to education and literacy, housing, economic
circumstances, social environments, upbringing, primary support groups, psychosocial
circumstances, and occupational exposures to risk factors (Table 1). Although important,
the Z codes are listed as non-diagnosis codes rather than disease-specific codes. Yet, they
all play a major part in understanding the causes of health disparities in communities. At
this point, there are several SDOH-standardized vocabularies and ontologies to use, but
challenges occur with the utilization of these codes and capturing these codes and related
data from patients in an effective way to use in research. Until EHR databases increase
their SDOH data availability for SDOH-specific studies, navigating this field will remain
difficult.

Table 1. International Classification of Disease (ICD) Z codes for SDOH [23].

ICD-10 CM Code SDoH Categories

Z55 Problems related to education and literacy

Z56 Problems related to employment and unemployment

Z57 Occupational exposure to risk factors

Z58 Problems related to physical environment

Z59 Problems related to housing and economic circumstances

Z60 Problems related to social environment

Z62 Problems related to upbringing

Z63 Other problems related to primary support group, including family
circumstances

Z64 Problems related to certain psychosocial circumstances

Z65 Problems related to other psychosocial circumstances

When SDOH are made available for research, one can start to model and predict
occurrences across a wide range of diseases, relating SDOH elements to numerical measure-
ment tests, diagnostics, and other health outcomes. It will be important to choose diseases
that are easy to define in terms of severity, prevalence, and incidence of the condition,
as well as diseases that have been known to be prominent in lower socioeconomic areas.
With SDOH mapped to and from EHRs, we can understand what causes differences in
the prevalence and incidence of a disease between different population groups. To do
this, we can use descriptive biostatistical methods such as ordinal logistic regression and
multivariate logistic regression that describe the relationship between categorical variables
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predominantly found in EHR datasets, alongside other effective analysis techniques for
EHRs as previously described [24].

4. The Future of SDOH in Real-World Evidence Studies

The next step in biomedical informatics is to develop a streamlined method for map-
ping census tract information to EHRs that can be implemented by each institution. In
structured data, there needs to be a unified goal to create more diverse databases by pro-
viding healthcare access to underserved populations, thus ensuring that SDOH studies are
well-balanced and produce answers backed by realistic outcomes. In the future, we could
increase the versatility of SDOH for medical studies by developing a universal “medical
grade social index” that could contain specific SDOH information that is most directly
related to clinical outcomes, to best answer research questions. The power of this data will
be to create knowledge that fills current gaps in healthcare, such as the need to incorporate
brick-and-mortar needs-based healthcare services into deprived communities.

The future looks bright for even newer sources of data on SDOH. Such patient-derived
data have allowed us to obtain information on SDOH beyond that in EHRs thanks to
people using health measures including wearable fitness monitors, smartphones, step
trackers, food trackers, and telemedicine. Tracking information from patients allows us
to understand patients’ daily activities that can lead to chronic illnesses and diseases, and
thus understand how to potentially eliminate them. Currently, however, patient-derived
data offer limited information across larger populations. Luckily, the adoption of mHealth
has increased SDOH measures by utilizing mobile technology to improve health goals in
communities. mHealth is a medical and public health practice supported by mobile devices,
such as mobile phones, patient monitoring devices, personal digital assistants, and other
wireless devices, as defined by the World Health Organization [25]. Whilst mHealth is not
widely adopted yet, patient-derived data can be used in the future to estimate a patient’s
health or risk of clinical diseases and provide better patient-centered health approaches
to improve overall individual health. How mHealth and digital devices will feed into
SDOH is still an active area of research. Other newer sources of SDOH-related data will
also include genomic information for large populations uploaded to EHR databases, which
is already being implemented by various institutions around the country [26].

Thus far, questionnaires, population surveys, and patient-reported outcomes are
heavily used in SDOH and epidemiological research studies because they allow researchers
to answer clinical research questions when structured data elements of the EHR database
system themselves do not give a full picture of SDOH data. Due to inconsistencies in SDOH
data availability, the field has been using questionnaire-based data to answer in-depth
questions related to SDOH, along with EHR data, to understand surgical outcomes, drug
distribution, health outcomes, and hospital readmissions [27–30].

5. Conclusions

The communication of RWE studies, especially related to disparities in health, has
the potential to create political conflict, medical mistrust, and harm to marginalized com-
munities. Therefore, it is important to effectively communicate results in a manner that is
understood by both clinicians and patients from all paths of life so that the knowledge of
health outcomes is more accessible. More importantly, including a diverse set of researchers
to harness the power of this data is important for leveraging different mindsets to under-
stand SDOH clinical questions in a different context. Since we know that a large portion of
health disparities occur in communities under-represented in medicine, the best way to
relate to these communities is by having people who understand the vernacular, culture,
and the patience needed to communicate risk, health literacy, and health accessibility to the
most affected communities.

All of this is an acknowledgment and perhaps a frustration that studying SDOH is
likely to be harder than studying genes, molecules, and cells. However, the more we
finetune the idea and execution of SDOH in EHR databases across the country, the more we
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will increase the opportunities to use precision medicine to target clinical diseases. Precision
medicine can be used to accurately prescribe patients based on RWE of health outcomes
and treatment patterns respective to different population groups. More importantly, it will
give clinicians the ability to prescribe patients using patient-centered approaches derived
from research. Nevertheless, it is critical to remember that precision medicine means more
than just genes, molecules, and cells. The future implementation of SDOH will provide
greater precision of treatments based on an array of demographics, lifestyle factors, and
environmental factors, all of which are likely to make a greater difference for our patients
than any given measured cell or base-pair in their genome.
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Abstract: This paper presents HBcompare, a method that classifies protein structures according to
ligand binding preference categories by analyzing hydrogen bond topology. HBcompare excludes
other characteristics of protein structure so that, in the event of accurate classification, it can implicate
the involvement of hydrogen bonds in selective binding. This approach contrasts from methods
that represent many aspects of protein structure because holistic representations cannot associate
classification with just one characteristic. To our knowledge, HBcompare is the first technique with
this capability. On five datasets of proteins that catalyze similar reactions with different preferred
ligands, HBcompare correctly categorized proteins with similar ligand binding preferences 89.5% of
the time. Using only hydrogen bond topology, classification accuracy with HBcompare surpassed
standard structure-based comparison algorithms that use atomic coordinates. As a tool for implicating
the role of hydrogen bonds in protein function categories, HBcompare represents a first step towards
the automatic explanation of biochemical mechanisms.

Keywords: structural bioinformatics; function annotation; specificity annotation

1. Introduction

Exploring the space of protein structures with algorithms that compare molecular
shape can reveal structural similarities that point to shared evolutionary origins and bio-
logical functions. The nature of these observations is influenced strongly by the way in
which molecular structure is represented. Algorithms that represent protein structure as
a geometric arrangement of secondary structure elements [1,2] or as a collection of alpha
carbon coordinates [3,4] can reveal relationships between families of protein folds [5,6].
Comparisons of binding sites, represented as collections of atomic coordinates [7,8], molecu-
lar surface patches [9,10] or volumetric constructs [11], can identify proteins with similar
catalytic functions and different overall folds [12]. Representing binding site geometry or
electrostatic isopotentials as geometric solids can reveal differences in binding site geometry
and charge that identify mechanisms that alter binding specificity [13–16].

Existing representations integrate many aspects of protein structure, but none to our
knowledge focus exclusively on the topology of hydrogen bonds. Yet hydrogen bonds play
a central role in organizing tertiary structure and in governing the specificity of molecular
recognition. For this reason, we hypothesize that the topology of hydrogen bonds, alone, can
distinguish proteins with different binding preferences, even if they have the same overall
fold. To evaluate this hypothesis, we developed HBcompare, a deep learning algorithm for
comparing the topology of hydrogen bonds in protein structures.

The specific problem studied here begins with a superfamily of proteins that perform
the same catalytic function, which have been classified into subfamilies with different
binding preferences. The goal is to classify a new protein into one of these subfamilies
based on similarities in hydrogen bond topology. In such cases, the superfamily exhibits
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the same overall fold, so the topology of their hydrogen bonds is largely conserved. At the
same time, critical variations in hydrogen bonding patterns could lead to differences in
binding specificity that differentiate subfamilies in terms of preferred binding partners.
Correctly classifying a protein into one of the subfamilies requires a look beyond the shared
similarities of the superfamily to focus on differences that betray subfamily membership.

HBcompare describes the topology of hydrogen bonds in a protein structure using a
molecular graph, which we define in detail below. As a representation of protein structures,
graphs have been used frequently to describe spatial relationships between atoms, amino
acids and secondary structure elements (e.g., [17]) or protein structure prediction (e.g., [18]).
Rather than represent more aspects of protein structure, HBcompare is first to use graphs
that exclusively represent the topology of hydrogen bonds.

This exclusivity enables a novel capability: Since HBcompare atomistically considers
only hydrogen bond topology, the classification of a protein into a subfamily with specific
binding preferences is also predicting a role for hydrogen bond topology in the specificity
mechanism. That is, since only hydrogen bond topology is considered, it must be at least
related to the difference between categories. We call this feature "mechanism prediction",
and it cannot be performed with holistic methods. In the holistic case, multiple biophysical
mechanisms, such as atomic coordinates and electrostatic potentials, are used together in
a weighted fashion to distinguish between specificity categories. In such cases, a single
mechanism cannot be said to explain the distinction between categories.

The atomistic approach has useful applications. By suggesting a role for hydrogen
bonding, HBcompare generates explanations that a non-computational user can adapt into
experimental design. For example, if similarities in hydrogen bond topology justify the
classification of a protein structure into a category with well defined binding preferences,
then it is logical that experiments that mutate hydrogen bond donors and acceptors may
reveal the bonds that play an important role in recognition. Without that observation,
a much larger space of experimental redesigns must be considered.

Naturally, HBcompare is only a first step in creating possibilities for automatically
explaining binding mechanisms. Furthermore, a complete explanation may not always
possible, because some biophysical phenomena will co-occur with hydrogen bonds. For ex-
ample, a protein that lacks one side of a salt bridge differs from one with a complete salt
bridge because it might lack a hydrogen bond donor or because it might lack a charged
amino acid. We see HBcompare as one tool in an Analytic Ensemble that would eventually
be complemented by other methods—both holistic and atomistic—that focus on other
mechanisms, such as electrostatic isopotentials [16]. Together, these tools might assemble
explanations for mechanisms that achieve specific binding.

HBcompare classifies patterns of hydrogen bonds using graph convolutional networks
(GCNs), which make use of the symmetrically normalized graph Laplacian to compute
vertex embeddings and to evaluate vertex similarity [19]. Recent works [20,21] have shown
that GCNs are useful for automating feature learning from graph-structured data compared
to traditional methods, such as convolutional neural networks (CNN). HBcompare adapts
existing GCN approaches by constructing a molecular graph for each protein to aggregate
neighborhood information. As a result, HBcompare performs accurate graph classification
and avoids sensitivity to the input order of graph vertices, which can be a challenge for
existing methods.

In this paper, we evaluated the effectiveness of HBcompare for classifying protein
binding preferences on several protein superfamilies. Each superfamily was selected be-
cause it contained well defined subfamilies with different binding preferences, where
differences in specificity hinge on differences in hydrogen bonding patterns. These super-
families include groups of subfamilies from the tRNA-synthetases, the alpha-amylases,
and the serine proteases. Our computational results explore how accurately HBcompare
performed classifications consistent with experimentally established binding preferences.
We also examine how HBcompare would perform in a more holistic setting, integrated with
atomic coordinates, and compare its performance to existing methods on the same kinds of
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features. These results point to the importance of considering the distinct applications of
both holistic and atomistic techniques.

2. Methods

2.1. Constructing Molecular Graphs with HBondFinder

HBcompare represents hydrogen bond topologies using molecular graphs. We define a
molecular graph as an undirected graph G = (V, E, A). The nodes or vertices V = {vi}N

i=1
are atoms that are hydrogen bond donors and/or acceptors. The edges E are hydrogen bonds,
identified between one donor and one acceptor atom. Since donors and acceptors may be
positioned to participate in one of several possible hydrogen bonds, the resulting graph may
be more than a collection of disconnected donor-acceptor pairs. Finally, a weighted adjacency
matrix A describes the weights Aij of edges between nodes i and j.

To generate molecular graphs from protein structures, we developed HBondFinder,
which uses geometric criteria to determine the set of all possible hydrogen bonds. Beginning
with a standard chain from the Protein Data Bank [22], we prepare the data by first removing
all ligands, ions, hydrogens and water molecules. Hydrogens specifically are removed
because their positions are not always solved in an experimental crystal structure, leaving
some amino acids with incomplete protonation. Thus, for uniformity, we model the
positions of all hydrogens using the reduce tool from MolProbity [23], assuming biological
pH. We then use the element of each atom, its position within an amino acid and residue
names, which define the type of amino acid, to identify all atoms that are hydrogen bond
donors, donor hydrogens, hydrogen bond acceptors, and acceptor antecedants. These four
atoms appear in pairs on each end of the hydrogen bond. The nodes of the molecular graph
are defined by any atom that is a donor, acceptor, or both.

HBondFinder defines the edges of the graph by finding all donor-acceptor pairs that
satisfy our hydrogen bond criteria, which are inspired by the HBPlus program [24]. This
process is accelerated with a lattice-based geometric data structure [25] that allows us to
rapidly search for all atoms of a specific identity that are within a radius of a given point.
This search allows us to find all combinations of the four critical atoms of a hydrogen
bond: "D", the hydrogen bond donor, "H", the donor hydrogen, "A", the acceptor, and "AA",
the acceptor antecedent. From these combinations, we enforce our criteria: First, the D-A
distance must be within 3.9 Å, and the H-A distance must be within 2.5 Å. In addition,
the angles D-H-A, H-A-AA, D-A-AA, where the middle member is the node of the angle,
must all exceed 90 degrees. If these four atoms satisfy the constraints, then a hydrogen
bond could exist and we add an edge to the graph, and a weight of 1.0 to the adjacency
matrix, between donor and acceptor. All weights on the adjacency matrix are otherwise
zero. We refer to graphs with these binary weights as coordinate-free molecular graphs.

To compare the predictive value of coordinate-free molecular graphs to a maximally
similar representation that incorporates atomic coordinates, we also created a second kind
of molecular graph called a coordinate-based molecular graph. These graphs are identical
except that the edges recorded in the adjacency matrix, between donors and acceptors that
can form a hydrogen bond, are weighted by the Euclidean distance in angstroms.

2.2. HBcompare

Overview. We hypothesize that molecular graphs with similar topology and class
labels will describe proteins with similar binding preferences. These proteins are expected
to exhibit different numbers of atoms, different amino acids, different numbers of hydrogen
bond donors and acceptors, and also some variation in edge topology. The classification
task performed by HBcompare begins with a set of molecular graphs {G1, · · · , GM}, each
assigned a subfamily class label {yi}M

i=1. HBcompare performs whole-graph analysis on an
input graph Gi to learn an embedding eGi and predict its subfamily label yi (Figure 1).
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Figure 1. The HBcompare model. As input, HBondFinder takes protein structures and constructs the
feature matrix and graph representation. Next, these data are analyzed using GCN layers and their
results are concatenated to generate the output feature matrix, which is vectorized via graph pooling
and fed to a logistic regression (LR) classifier.

Consider the general multi-layer GCN model with the following propagation rule for
graph-structured data [19]:

X(l) = σ(ÂX(l−1)W(l)), (1)

where Â ∈ R
N×N is the normalized adjacency matrix of the graph G with added self-

connections, i.e., Â = D− 1
2 (A + IN)D

− 1
2 , D is the degree matrix, W(l) ∈ R

D(l−1)×D(l)
is the

layer-specific weight matrix with trainable parameters, and σ(·) is a nonlinear activation
function. X(l−1) ∈ R

N×D(l−1)
is the input of the l-th layer, and X(l) ∈ R

N×D(l)
is the output

of the l-th layer. Naturally, X(0) is the initial node feature matrix.
In the following, we show how the propagation rule of GCN in Equation (1) can be

extended to multiplex models, thereby enabling HBcompare to learn graph representations
across multiple graphs with different orders and sizes of nodes.

Node feature construction. Unfortunately, the initial node features are not available.
To solve this issue, we notice that every node of a molecular graph is labelled a hydrogen
bond donor, acceptor, or both, we adopted the one-hot encoding strategy on node labels [26]
to construct the input node feature matrix X(0) ∈ R

N×3.
Multi-GCN model. After the initial node representations are obtained, each molecular

graph can be represented by G = (V, E, A, X(0)). To explain how the multi-GCN model
works, we first analyze the propagation Equation (1) and factorize it into feature aggregation
(FA) and feature transformation (FT) following [27].

Feature aggregation. To learn the node representation X(l) of the l-th layer, in the first
step GCN follows the neighborhood aggregation strategy to smooth nodes’ representations
over a graph by

X̂(l) = ÂX(l−1), (2)

This means that the role of Â in GCN is to aggregate the neighborhood information of
a node for updating its embedding. This design of GCN is suitable for hydrogen bond data
analysis. First, the learning process and the ultimate classification of graphs with similar
topologies is performed independent of the order in which the nodes are described. Second,
the GCN approach is unaffected by graphs with sparse edges, where classification is more
difficult. Finally, noise in hydrogen positions, which may affect whether a hydrogen bond
is considered to exist near its length and angle limits, is also unlikely to affect classification.

Feature transformation. After FA, in the second step GCN conducts FT in the l-th layer,
which consists of linear and nonlinear transformations:

X(l) = σ(X̂(l)W(l)) (3)

101



Biomolecules 2022, 12, 1589

The weight matrix W(l) can adjust the output features, which is equivalent to feature
selection and combination. Intuitively, if the same weight matrix is used for different
graphs, then we can project them into the common feature space with the same dimension
to perform group analysis.

Based on the above analysis, we generalize the propagation rule in Equation (1) to the
following form for multi-graph embedding.

X
(l)
i = σ(ÂiX

(l−1)
i W(l)), ∀i ∈ {1, 2, · · · , M} (4)

where Âi is the normalized adjacency matrix of the i-th graph Gi, X
(l−1)
i and X

(l)
i are its

corresponding input and output embeddings of nodes in the l-th layer, and W(l) is the
trainable weight matrix shared by all graphs.

To obtain the vector representation eGi of the entire graph Gi, a general and straight-
forward practice [28,29] is to aggregate the embedded node features of the last GCN layer.
However, the extracted information from each layer could also be useful to supplement the
graph structure—especially for the molecular graphs that are sparse and the initial informa-
tion of nodes is not rich. Thus, we adopt the concatenation strategy [30] to exploit features
from all layers at multiple scales to contribute to the characterization of the graph, and let
the classifier decide which of the features are useful. More specifically, we concatenate the
node features X

(l)
i from all layers to get the final node representation matrix

Xall
i = [X

(1)
i , X

(2)
i , · · · , X

(L)
i ], (5)

where Xall
i ∈ R

Ni×∑L
l=1 D(l)

, with each row corresponding to a node and each column
corresponding to a feature, and Ni = |Vi| is the number of nodes for the i-th graph Gi.

Whole-graph training. Based on the node representations, we are able to design
different task-specific loss functions to train the overall multi-GCN model in the same way
as of training GCN. Since for the protein family identification problem, we have access
to all nodes from the entire datasets and the node labels are available, we can adopt the
learning method in [20,31] to make full use of the node-level information and also capture
the substructures within each graph to improve classification accuracies. Specifically, given
the node label set Y for all nodes, the training process for multi-GCN is then formulated as:

min
W(1) ,··· ,W(L) ,Θ

Loss({Xall
1 , · · · , Xall

M }, Θ, Y), (6)

where Θ ∈ R∑L
l=1 D(l)×C is the linear classification matrix, C is the number of classes

in the classification problem, and Loss(·) is the cross-entropy loss function for multi-
class classification.

Graph embedding and classification. There are several ways to get the graph-level
outputs using node features, such as concatenation, mean pooling, and max pooling
operators [29]. In our task, graphs are not aligned across different subjects and each graph
may have an arbitrary number of nodes. Thus, the average pooling technique is used [30]
here to obtain the embedding eGi of the entire graph Gi, which allows us to eliminate
the dependence on the node order and size. Mathematically, for each graph Gi, we can
formalize the mean pooling of node features as

eGi =
1
Ni

∑
v∈Vi

[x
(1)
iv , x

(2)
iv , · · · , x

(L)
iv ], ∀i ∈ {1, 2, · · · , M} (7)

Finally, we apply the logistic regression (LR) classifier based on the above whole-graph
embedding vectors {eGi}M

i=1 and associated protein subfamily class labels {yi}M
i=1 as input

for prediction.
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2.3. Datasets Used in This Study

To evaluate HBcompare as a classifier, we constructed datasets based on protein
superfamilies with three criteria. First, we selected superfamilies that contained subfamilies
with distinct ligand binding preferences. Second, we selected only superfamilies and
subfamilies where differences in binding preferences are experimentally established to rely
on variations in hydrogen bonding patterns. Finally, proteins in each superfamily were
selected with the same overall fold.

These criteria enable our datasets to test the overall hypothesis. The first two criteria
are required for evaluating HBcompare as a classifier of hydrogen bonding topologies.
The third ensures that the classification task is not trivial, because subfamilies with differ-
ent folds have very different hydrogen bond topologies that can be easily distinguished.
The general properties of the constructed protein datasets are summarized in Table 1 and
details are described as below.

Table 1. Primary and Auxiliary data sets used in this study.

Dataset
Superfamily

E.C. Class
Pivot

Structure
Subfamily

E.C.
Class

Number of
Structures

Primary-1
(P1)

Glycosidases
3.2.1.* 1aqm Alpha Amylase

Beta Amylase
3.2.1.1
3.2.1.2

30
30

Primary-2
(P2)

Serine Proteases
3.4.21.* 1ghz

Chymotrypsin
Trypsin
Elastase

Thrombin
Coagulation

factor Xa

3.4.21.1
3.4.21.4
3.4.21.36
3.4.21.5

3.4.21.6

40
40
40
37

39

Primary-3
(P3)

Aminoacyl-tRNA
Synthetases

6.1.1.*
6rlt

Ser-tRNA
Synthetase
Thr-tRNA
Synthetase

6.1.1.11

6.1.1.3

24

23

Auxiliary-1
(A1)

Serine Proteases
(subset) 1ggd Chymotrypsin

Trypsin
3.4.21.1
3.4.21.4

40
40

Auxiliary-2
(A2)

Glycosidases,
Serine Proteases

(A1 + P1)
2xfy

Alpha Amylase
Beta Amylase
Chymotrypsin

Trypsin

3.2.1.1
3.2.1.2

3.4.21.1
3.4.21.4

40
40
30
30

Primary protein datasets. Our criteria identified the glycosidases, the serine proteases,
the aminoacyl-tRNA synthetases, and several subfamilies of each (Table 1). We used the
Enzyme Commission Classification index [32] of each subfamily to identify the protein data
bank (PDB) [33] structure of every constituent protein. To avoid the overrepresentation
of well studied proteins with many available structures, we removed one member of any
pair of proteins with greater than 95% sequence identity. We also removed any structures
labeled as mutants to avoid misclassifying proteins with deactivating mutations (Table 2).
After this filtration, molecular graphs were generated on the remaining structures using
the method in Section 2.1.

There are 303 structures across all primary datasets. 298 structures were derived from
X-ray crystallography, and five were produced by nuclear magnetic resonance spectroscopy.
Xray structure resolutions ranged from 0.81 Å to 3.5 Å, with an average of 2.05 Å, a median
of 2.0 Å, and a standard deviation 0.443 Å. 291 out of 303 structures have resolution less
than or equal to 3.0 A, and 261 out of 303 structures have resolution less than or equal to
2.5 A. The number of proteins observed in each subfamily of each dataset was generally
similar, requiring no additional treatment to to balance the datasets.

In Primary-1 (P1), the glycosidase superfamily proteins conserve an alpha/beta barrel
fold where they hydrolyze the glycosidic bonds of polysaccharide chains. The alpha and
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beta amylase subfamilies hydrolyze the intermediate and the terminal bonds, respectively,
of these chains, and recognize them in part through differences in hydrogen bonding [34,35].

In Primary-2 (P2), the PA clan of the serine protease superfamily exhibit a chymotrypsin-
like fold and catalyze the cleavage of peptide bonds. They share a catalytic triad at the
center of an extensive hydrogen bonding network that also plays a crucial role in stabilizing
substrate backbones for efficient substrate hydrolysis [36].

In Primary-3 (P3), the aminoacyl-tRNA synthetases catalyze the attachment of a
transfer RNA and an amino acid in preparation for protein translation. The seryl- and
threonyl-tRNA Synthetase share an anti-parallel beta-sheet fold [37] but coordinate their
amino acid substrates through different patterns in hydrogen bonding [38,39].

Auxiliary datasets. We also developed two variations on our original datasets to
evaluate the performance of HBcompare. Noting that the serine protease dataset has five
subfamilies, we developed a two-subfamily variation, using only the chymotrypsin and
trypsin subfamilies. This variation allowed us to evaluate how HBcompare performed
on a classification problems with different numbers of categories. We created a second
dataset to evaluate the scenario where some subfamilies have different folds, and thus
radically different hydrogen bond topologies. We combined the glycosidases and the serine
proteases into a single artificial superfamily. Using two subfamilies of each of the joined
superfamilies, we assess if the substantial differences between the superfamilies obscure
the subtler differences between subfamilies.

Table 2. Average properties of proteins in all datasets.

Dataset # Proteins # Subfamilies Avg. # Nodes Avg. # Edges

P1 60 2 826 578
P2 196 5 402 241
P3 47 2 901 573
A1 80 2 372 201
A2 140 4 568 363

2.4. Comparison with Existing Methods

Directly comparing HBcompare against existing methods is difficult, because HBcom-
pare uses only the topology of hydrogen bonds while existing methods for comparing
protein structures generally require atomic coordinates and other data. For this reason, we
performed two separate comparisons. First, to demonstrate the fitness of HBcompare as a
tool for coordinate-free graph classification, we compare the performance of HBcompare
against several modern graph classification techniques that also use only graph topology.
Second, to understand how classification by hydrogen bond topology performs relative
to classification by atomic coordinates, we modified all methods, including HBcompare,
to incorporate coordinate-based molecular graphs (see Section 2.1).

Our first comparison study includes a convolutional neural network (CNN), a graph
kernel-based comparison method (GK), and principal component analysis based methods
(PCA, 2DPCA, and PCA-NF). These methods use hydrogen bond topology alone via an
analysis of node adjacency matrices, but they have never been applied for the coordinate-
free comparison of hydrogen bond topologies. As such, they require modifications for
direct comparison. The need for small modifications demonstrates, qualitatively, a degree
of unsuitability for the problem of topological comparison relative to HBcompare, which
does not require such modification.

First, CNN, PCA and 2DPCA are sensitive to variations in input order, while GCNs
are not. To minimize this sensitivity, dataset proteins were structurally aligned to an
arbitrarily selected pivot structure to produce a 1-to-1 mapping between most amino acids,
ensuring that all proteins could be indexed in the same order. Structural alignments were
performed with ska [1], which is designed for identifying distantly related proteins with
subtle similarities in their folds. In this application, where we are considering datasets of
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closely related proteins with nearly identical folds, ska easily generated 1-to-1 mappings
appropriate for our comparison.

Second, CNN, PCA and 2DPCA also require input data to have the same number of
nodes, because the features they consider cannot have varying dimensionality. To resolve
this issue, we trimmed all molecular graphs to contain exactly 600 nodes, a quantity
chosen because the largest connected component of all graphs in our dataset would not be
altered. This trimming was possible without disrupting the topology of the graph because
all structures contain a large number of donors and acceptors that are uninvolved in a
hydrogen bond. In the molecular graph they are singleton nodes, and they contribute no
distinguishing information to the topological character of the graph overall. By removing
some of these nodes as necessary, we were able to trim larger graphs to exactly 600 nodes.
Graphs that had fewer than 600 nodes, such as those in P2, had singleton nodes added to
arrive at exactly 600 nodes.

Our second comparison study adds the protein structure comparison algorithm Ska
and the sequence comparison algorithm Clustalw [40]. These classic methods benchmark
the performance of HBcompare against existing comparison techniques in structural bioin-
formatics. GK, CNN, PCA and 2DPCA remain, but they are provided coordinate-based
rather than coordinate-free molecular graphs as input.

The CNN model [41] utilizes shared weights for common feature extraction, and also
local reception fields to take advantage of the local structure of input data. In our case, we
trained an end-to-end CNN model with fully connected network (FCN) classifier that takes
adjacency matrices A as input and outputs the corresponding graph classes.

The GK method [42] applies the Weisfeiler Lehman (WL) kernel to calculate similarities
between graphs [43,44]. Each vertex is labelled with its original vertex label and the label
of its neighbors, resulting in a representation of graphical neighborhoods of each vertex.
The WL kernel goes through n iterations until WL kernels are unchanged for successive
iterations. This kernel is then fed into a support vector machine (SVM) to measure the
graph classification performance.

The PCA method [45] for comparing graphs learns a common projection matrix via
singular value decomposition (SVD) by vectorizing the submatrices to perform feature
extraction. Similar to our HBCompare model, the extracted graph feature vectors are passed
to the LR classifier. Furthermore, to investigate the effectiveness of using one-hot encoding
labels as the node feature input for GCN, we also concatenate the features extracted by
PCA and the GCN node features. This variation, PCA-NF, adds the donor/acceptor status
of each graph node to the topology being classified.

The 2DPCA method [46] avoids vectorization of input submatrices by learning pair-
wise projection matrices for feature extraction and dimensionality reduction. The extracted
feature matrices are then vectorized and fed to the LR classifier for prediction.

The ska [1] algorithm finds corresponding secondary structure elements between two
proteins to build detailed correspondences between backbone atom coordinates, which
are required. The atomic correspondences are used to compute least root mean square
difference (RMSD) between backbone atoms. As a measure of geometric similarity, RMSD
is lower between proteins that are more similar. Using ska, we generated an all-vs-all
matrix of RMSD distances between all proteins of each dataset. Viewed as a set of column
vectors, this matrix is decomposed into training and test sets and the training sets are used
to train an LR classifier via five fold validation, similar to [47]. Finally, the test set is passed
to the classifier to form predictions.

Clustalw [40] is the classic sequence-based comparison algorithm that measures simi-
larity between the sequences of amino acids that define two proteins. It applies dynamic
programming to build correspondences between amino acid sequences and then measure
the percentage of sequence identity. Higher percentages are generated by protein pairs
with similar sequences of amino acids, and lower percentages indicate proteins that are
more different. These percentages are subtracted from 100 so that smaller values indicate
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more similar proteins, and then used to populate an all-vs-all matrix that is treated in the
same way as the RMSDs are for ska.

2.5. Implementation Details

All models were implemented in Python 3.6 with Tensorflow 1.15 for the deep learning
backend. The validation of our method was performed by randomly and uniformly
splitting each dataset and each subclass by a 4:1 ratio. The split results in a larger training
set (80% of the data) and a smaller test set (20% of the data). Since the subclasses were
split uniformly, the approximate balance of the subclasses in each dataset was preserved in
each split. The performance of all classifiers reported in Tables 3 and 4 is an average and a
standard deviation of accuracy, f1-score, and AUC-ROC computed from 10 such random
splits. We evaluate predictions as correct if the prediction agrees with the class label and
incorrect if the prediction does not agree with the label. We report accuracy (acc) as the
ratio of correct predictions to total predictions, Correct

Correct+Incorrect .
We performed parameter tuning on all methods using 5-fold validation on the training

set. Since this training set is held separate from the testing set, no data leakage influ-
ences the classifier performance reported. Training was performed for 50 epochs per fold,
and parameters associated with the highest accuracy fold were used for evaluation on the
corresponding test set. We used the Adam optimizer [48] and selected the learning rate lr
from {5e−4, 1e−4, 5e−3, 1e−3}.

For the design of HBcompare we considered between 1 and 6 GCN layers, and batch
sizes in the range {1, 2, 4, 8, 16}. To build the CNN model, we varied the number of filters
in the set {6, 12, 18, 24, 30}, and the number of strides in the set {1, 2, 4, 8, 16}. The total
number of parameters in the network was 384. The number of layers, epochs, the batch
size, and learning rate are selected for the CNN model in the same manner as HBcompare.
For the other compared methods, we also carefully tuned their parameters and use the same
data splits and the same 5-fold cross-validation scheme. All experiments were performed
on a 8-core machine with 32 GB RAM.

3. Results

During training, we observed converging improvements in accuracy relative to train-
ing time and number of epochs. These observations are illustrated for all datasets in
Appendix A, Figures A1 and A2. By dividing the data sets into non-overlapping training
and testing sets, we found that classification accuracy of HBcompare for training and testing
quickly converged towards a stable accuracy performance and remains at this performance
level regardless of added epochs past the saturation point. This is shown in Appendix A,
Figure A3. Collectively, these observations suggest that overtraining is not a major concern
for the accuracy of HBcompare on our datasets.

Overall, using only hydrogen bond topology, HBcompare had a high degree of classi-
fication accuracy. The classification accuracy of HBcompare averaged from 85.0% to 92.3%
on all folds of all primary datasets (Table 3, right column, top three rows). The standard
deviation in accuracy across all folds ranged from 4.8% to 7.7%. The F1 score averaged be-
tween 84.8% and 92.2%, and the area under the ROC curve (AUC-ROC) averaged between
90.6% and 92.3%.

In comparison to existing coordinate-free methods, HBcompare was 11.38% more
accurate, had 12.17% greater F1 score, and had 9.92% higher AUC, on average, than the
second best method, PCA-NF, across all data sets. Standard deviations in HBcompare
accuracy, F1 score and AUC were also generally the same or lower than existing methods.
Overall, HBcompare had the best classification performance of all methods on all primary
datasets (Table 3, top three rows).
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Table 3. Average classification accuracy and F1 score (avg ± std) of compared methods using only
hydrogen bond topology, across all cross-validation folds. The set(#) column indicates the dataset
and the number of subfamilies it contains. The stat column indicates rows with either classifier
accuracy or F1 score. The highest value in each row is bolded.

set(#) stat GK PCA PCA-NF 2DPCA CNN HBCompare

P1(2)
Acc 68.8 ± 1.1 76.7 ± 15.3 81.7 ± 12.2 73.3 ± 8.2 85.0 ± 15.3 92.3 ± 7.0
F1 69.3 ± 1.1 74.7 ± 17.6 79.8 ± 15.6 73.1 ± 8.1 83.1 ± 18.5 92.2 ± 6.8

AUC-ROC 68.8 ± 1.1 76.7 ± 15.3 81.7 ± 12.2 73.3 ± 8.2 85.0 ± 15.3 92.3 ± 6.7

P2(5)
Acc 38.1 ± 1.5 63.3 ± 4.6 67.8 ± 4.0 65.3 ± 6.9 68.6 ± 3.1 85.0 ± 4.8
F1 41.8 ± 1.4 62.0 ± 5.0 67.2 ± 3.9 65.4 ± 7.0 68.6 ± 3.4 84.8 ± 5.0

AUC-ROC 27.0 ± 1.1 76.8 ± 2.8 79.7 ± 2.4 69.1 ± 4.3 80.2 ± 2.0 90.6 ± 3.1

P3(2)
Acc 58.7 ± 3.4 61.6 ± 10.7 68.0 ± 9.6 59.1±12.0 68.0 ± 9.6 91.3 ± 7.7
F1 60.2 ± 3.7 60.9 ± 10.8 66.3 ± 10.7 58.4 ± 12.7 67.3 ± 9.2 91.2 ± 8.5

AUC-ROC 58.1 ± 3.4 62.0 ± 10.2 67.0 ± 9.9 60.0 ± 11.3 68.0 ± 8.6 91.5 ± 8.2

A1(2)
Acc 76.6 ± 1.2 90.0 ± 5.0 93.8 ± 4.0 90.0 ± 3.1 88.1 ± 4.4 91.8 ± 5.5
F1 77.8 ± 1.5 89.9 ± 5.0 93.7 ± 4.0 89.9±3.1 88.0 ± 4.4 91.7 ± 5.6

AUC-ROC 76.6 ± 1.2 90.0 ± 5.0 93.8 ± 4.0 90.0 ± 3.1 88.1 ± 4.4 91.8 ± 5.5

A2(4)
Acc 52.2 ± 0.9 75.7 ± 4.7 80.0 ± 2.9 72.9 ± 5.3 73.6 ± 3.6 86.8 ± 5.4
F1 50.2 ± 2.0 74.3 ± 5.2 79.3 ± 3.1 70.1 ± 5.1 73.3 ± 3.6 86.3 ± 6.7

AUC-ROC 54.6 ± 1.0 83.4 ± 3.3 86.3 ± 2.1 81.3 ± 3.0 82.4 ± 1.7 90.9 ± 4.3

Auxiliary-1 simplified the multi-class classification problem by removing three of the
five subfamilies in Primary-2. As a result, on Auxiliary-1, all comparison methods were
significantly more accurate, with PCA-NF outperforming HBcompare slightly (93.8% vs.
91.8%). The fact that HBcompare significantly outperforms other methods on the five cate-
gories of Primary-2 suggest that it is more robust to the multi-class classification problem.

On Auxiliary-2, which combined two subfamilies from each of Primary-1 and Auxiliary-
1, HBcompare outperformed other methods by at least 6.8%. In this case, where some
subfamilies are far more similar than others, HBcompare did not lose discriminating power,
performing only slightly worse than it did on Primary-1 and on Auxiliary-1 despite two
additional categories.

Since HBcompare operates with only hydrogen bond topology, we also asked how
HBcompare and other graph-based methods would perform if atomic coordinates were
included (Table 4). Again, on all primary datasets, HBcompare outperformed existing meth-
ods, with accuracy averaging from 2.1% to 14.9% above existing methods. Unsurprisingly,
since these comparisons used representations of both hydrogen bond topology and also
atomic coordinates, GK, PCA, 2DPCA, CNN, and HBcompare all performed the same or
better than their coordinate-free counterparts. Classifications using only sequence identity
or structure similarity underperformed.

On Auxiliary-1, the addition of atomic coordinates into the graph representation
resulted in slightly superior classification accuracy for HBcompare (93.8%) relative to PCA-
NF (91.3%). As in the coordinate-free scenario, GK, PCA, 2DPCA and CNN all performed
similarly. On Auxiliary-2, HBcompare was again more accurate (88.4%).
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Table 4. Average classification accuracy and F1 score (avg ± std) using both hydrogen bond topology
and coordinate information, across all folds. The set column indicates the dataset. The stat column
indicates rows with either classifier accuracy or F1 score. The highest value in each row is bolded.

Set stat Clustalw Ska GK PCA PCA-NF 2DPCA CNN HBcompare

P1 Acc 75.0 ± 17.7 63.3 ± 4.6 68.3 ± 1.2 83.3 ± 12.9 86.7 ± 11.3 83.3 ± 9.1 88.3 ± 8.5 92.3 ± 7.2
F1 79.5 ± 11.7 66.9 ± 5.3 68.8 ± 1.2 81.5 ± 16.3 85.8 ± 12.8 82.4 ± 10.6 87.8 ± 9.6 92.8 ± 7.1

P2 Acc 80.0 ± 8.1 68.8 ± 7.7 37.3 ± 1.1 70.4 ± 3.8 72.4 ± 3.9 74.5 ± 5.9 70.4 ± 3.0 83.6 ± 6.3
F1 80.8 ± 7.1 70.1 ± 8.1 41.7 ± 1.8 69.5 ± 5.5 72.0 ± 4.7 74.8 ± 5.6 70.8 ± 3.1 83.9 ± 6.5

P3 Acc 60.8 ± 3.4 63.3 ± 2.6 58.7 ± 2.4 74.7 ± 12.8 76.7 ± 12.6 74.7 ± 12.8 76.8 ± 8.9 90.6 ± 6.8
F1 69.2 ± 2.3 73.4 ± 7.7 60.3 ± 2.8 73.8 ± 13.1 76.2 ± 12.7 73.8 ± 13.1 76.4 ± 8.7 90.5 ± 6.9

A1 Acc 60.7 ± 2.5 50.0 ± 8.1 76.3 ± 1.3 91.3 ± 6.4 91.3 ± 6.4 92.5 ± 6.1 91.9 ± 5.6 93.8 ± 4.4
F1 67.6 ± 3.8 53.9 ± 6.8 77.3 ± 1.5 91.2 ± 6.4 91.2 ± 6.4 92.5 ± 6.1 91.8 ± 5.6 93.9 ± 4.4

A2 Acc 86.6 ± 14.5 81.1 ± 8.0 52.1 ± 0.5 75.0 ± 6.4 77.9 ± 5.2 80.7 ± 5.3 80.4 ± 6.4 88.4 ± 6.4
F1 87.6 ± 13.3 82.3 ± 6.8 49.5 ± 1.3 73.7 ± 6.5 76.7 ± 5.4 80.0 ± 5.4 80.1 ± 6.7 88.2 ± 6.5

3.1. Hyperparameter Analysis

In training HBcompare, we considered a range of batch sizes and GCN layers, both
of which can influence classifier performance. Adding more GCN layers expands the
graph neighbourhood within which the node features are averaged [49]. These findings are
plotted in Figure 2. We observed that accuracy was maximized with batch size 4 and with
3 GCN layers, using these parameters in HBcompare.

(a) Batch size (b) Number of Layers

Figure 2. Influence of the number of layers (a), and of the batch size (b) on the classification accuracy
of HBcompare. Accuracy is shown on all three primary datasets (blue, red and green lines), and was
highest for batch size 4 and for 3 GCN layers.

3.2. Feature Concatenation

In our HBcompare model, we concatenate the output of all GCN layers to obtain the
final feature representation (Figure 1). To evaluate the effectiveness of this concatenation
strategy, we compare the implementation of HBcompare with and without feature concate-
nation in Table 5 using only hydrogen bond topology. We observed that HBcompare can
benefit from the concatenation strategy, which helps to aggregate more information when
the input node feature size is small.
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Table 5. Average classification accuracy of HBcompare model with and without concatenation
strategy using only hydrogen bond topology across all folds. The more accurate method is bolded.

Method (Acc) Primary-1 Primary-2 Primary-3 Auxillary-1 Auxillary-2

Hbcompare with
concatenation 91.3 80.6 89.6 90.8 87.1

Hbcompare without
concatenation 88.6 78.2 89.1 91.8 86.4

4. Discussion

We have presented HBcompare, a GCN-based algorithm for classifying protein struc-
tures based exclusively on hydrogen bonding topology. Once trained on a group of closely
related subfamilies that perform the same function on different preferred ligands, HBcom-
pare addresses the problem where a novel protein structure or model is to be classified
into one of the subfamilies. HBcompare should be retrained to make classifications into
different subfamilies.

Since it only examines hydrogen bond topology, accurate classifications implicate
the importance of hydrogen bonds in achieving the binding preferences of the predicted
subfamily. This novel capability contrasts from holistic representations, which do not
implicate specific mechanisms.

To evaluate HBcompare, we performed specificity classification experiments on protein
superfamilies that achieve distinct binding preferences based on differences in hydrogen
bonding. On nonredundant subsets of the glucosidases, serine proteases, and tRNA
synthetase superfamilies, the average accuracy of HBcompare was 92.3%, 85.0% and 91.3%.
As a tool for classifying hydrogen bond topologies, HBcompare is a capable classifier. When
we adapted several modern techniques to the topology-only classification problem, we
observed that HBcompare was more accurate in all but one case, where PCA with node
features outperformed HBcompare 93.8% versus 91.8%. This classification performance
was well within the variations observed in different training folds, indicating comparable
performance between PCA-NF and HBcompare, rather than a superior performance of
one over the other. Furthermore, it is important to note that CNN, GK, PCA, PCA-NF
and 2DPCA all require a structural alignment to produce a 1-to-1 mapping between most
amino acids, ensuring that all proteins could be indexed in the same order. CNN, PCA,
PCA-NF and 2DPCA also require input graphs to have the same number of nodes. Our
comparison included a preprocessing step that maximizes their comparability in this study,
but in truly experimental settings, accurate preprocessing could not be guaranteed, further
limiting the applicability of these alternative methods. The same challenges do not apply
to HBcompare, which is unaffected by input order or graph size, making it more applicable
in experimental settings and often more accurate than existing methods.

We also compared HBcompare to conventional coordinate-based approaches. In com-
parison to ska, a coordinate-based method that does not use hydrogen bonding topology
(Table 4), coordinate-free HBcompare (Table 3) was an average of 20.6% more accurate
on all datasets. These findings demonstrate that hydrogen bond topology contributes
information that is complementary to conventional structural approaches.

Finally, we modified HBcompare to consider both atomic coordinates and also hy-
drogen bond topology. In a comparison to the same methods above, each modified to
incorporate both data types, HBcompare was 2.1% to 14.9% more accurate on average
(Table 4). This result demonstrates that combining hydrogen bond topology and atomic
coordinates enhances subfamily classification at the cost of being able to implicate hydrogen
bonds as a mechanism.
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As a first step in the atomistic analysis of hydrogen bond topology, HBcompare has
considerable potential for novel applications. Where specificity mechanisms are unknown,
HBcompare can detect when hydrogen bonding distinguishes between isoforms with
different binding preferences without influences from other structural properties. This
capability can focus experimental scrutiny on hydrogen bonding when it correlates with
specificity. Combined with structural models, HBcompare could be applied to identify
mutations that change bond topology to resemble proteins with different binding prefer-
ences. Together with other sources of information, HBcompare could thus support efforts
in protein engineering and in annotating binding specificity mechanisms.
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Appendix A. Protein Datasets Used in This Work

The following tables catalog the protein structures used in this work, based on Protein
Data Bank codes. The two datasets Auxiliary-1 and Auxiliary-2 are generated from these
sets (see Table 1), so they are not listed again here.

Table A1. Dataset: Primary-1.

Subfamily A: Alpha-Amylase (3.2.1.1)
1amy 1aqm 1b2y 1bpl 1bvn 1clv 1e3x 1eh9 1g94 1hny
1ht6 1hvx 1hx0 1jae 1ji1 1jxk 1kxq 1l0p 1mfu 1mwo
1ose 1p6w 1pif 1rpk 1smd 1tmq 1u2y 1ua3 1ud2 1uh3

Subfamily B: Beta-Amylase (3.2.1.2)
1b90 1b9z 1btc 1bya 1byb 1byc 1byd 1cqy 1fa2 1j0y
1j0z 1j10 1j11 1j12 1j18 1q6c 1vem 1wdp 2laa 2lab
2xff 2xfr 2xfy 2xg9 2xgb 2xgi 3voc 5bca 5wqs 5wqu
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Table A2. Dataset: Primary-2.

Subfamily A: Chymotrypsin (3.4.21.1)
1ab9 1acb 1afq 1cbw 1cgi 1chg 1cho 1dlk 1eq9 1ggd
1gha 1ghb 1gl0 1gl1 1gmc 1gmh 1hja 1mtn 1oxg 1p2m
1yph 2cga 2jet 3bg4 3cp7 3gch 3ru4 3t62 3wy8 4cha
4gch 4q2k 4vgc 5cha 5gch 5j4q 6di8 6gch 7gch 8gch

Subfamily B: Trypsin (3.4.21.4)
1a0j 1aks 1ane 1bit 1bju 1bra 1brc 1btp 1bzx 1c1n
1co7 1d6r 1eja 1ezx 1f5r 1fmg 1fn8 1fni 1fxy 1fy4
1fy8 1g36 1gdn 1ghz 1h4w 1h9i 1hj8 1jir 1mbq 1mts
1os8 1ox1 1ppc 1pq5 1qb1 1trm 1trn 1utj 1xvm 2f3c

Subfamily C: Elastase (3.4.21.36)
1b0e 1bma 1btu 1c1m 1e34 1eai 1eas 1eat 1eau 1ela
1elb 1elc 1esa 1est 1fle 1fzz 1gvk 1gwa 1h9l 1hax
1hay 1hb0 1hv7 1inc 1jim 1l0z 1l1g 1lka 1lkb 1lvy
1mmj 1nes 1okx 1qgf 1qix 1qnj 1qr3 1uo6 1uvo 1uvp

Subfamily D: Thrombin (3.4.21.5)
1a2c 1aoh 1avg 1awf 1bbr 1bcu 1hah 1hrt 1id5 1ihs

1mkw 1mu6 1nrp 1sr5 1ta2 1tb6 1tbq 1tbr 1tmb 1ucy
1uma 1vit 1vr1 1ycp 1ypm 2a1d 2c8z 2jh5 2ocv 2pf1
2pf2 2pgb 2pux 2r2m 2thf 2v3h 3edx

Subfamily E: Coagulation factor Xa (3.4.21.6)
1apo 1c5m 1ccf 1ezq 1f0s 1fjs 1g2l 1hcg 1iod 1ioe
1iqf 1kig 1ksn 1lpg 1mq5 1xkb 2bmg 2boh 2bok 2bq6
2cji 2ei7 2fzz 2g00 2h9e 2j94 2p16 3sw2 3tk5 4a7i
4bti 4btt 4bxw 4y6d 5jqy 5jtc 5k0h 5voe 5vof

Table A3. Dataset: Primary-3.

Subfamily A: Ser-tRNA Synthetase (6.1.1.11)
1ses 1set 1sry 2dq0 2zr2 2zr3 3lsq 3lss 3qne 3qo5
3qo8 3vbb 6gir 6h9x 6hdz 6he1 6he3 6hhy 6hhz 6r1m
6r1n 6r1o 6rlt 6rlv

Subfamily B: Thr-tRNA Synthetase (6.1.1.3)
1tje 1tke 1tkg 1tky 1wwt 1y2q 2hl0 2hl1 3pd2 3pd3

3pd4 3pd5 3ugq 3uh0 4eo4 4hwo 4hwp 4hwr 4hws 4hwt
4p3n 4ttv 4yye
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Appendix B. Additional Results

The following figures show additional data on HBcompare performance over all
data sets.

Figure A1. Accuracy over time.

Figure A2. Accuracy over number of epochs.
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Figure A3. Learning Curve: Training and testing accuracy for P1 (a), P2 (b), P3 (c), A1 (d) and A2 (e).
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Abstract: The main target of retrosynthesis is to recursively decompose desired molecules into
available building blocks. Existing template-based retrosynthesis methods follow a template selection
stereotype and suffer from limited training templates, which prevents them from discovering novel
reactions. To overcome this limitation, we propose an innovative retrosynthesis prediction framework
that can compose novel templates beyond training templates. As far as we know, this is the first
method that uses machine learning to compose reaction templates for retrosynthesis prediction.
Besides, we propose an effective reactant candidate scoring model that can capture atom-level
transformations, which helps our method outperform previous methods on the USPTO-50K dataset.
Experimental results show that our method can produce novel templates for 15 USPTO-50K test
reactions that are not covered by training templates. We have released our source implementation.

Keywords: drug discovery; retrosynthesis; reaction template; machine learning; recurrent neural
network; and graph neural network

1. Introduction

Retrosynthesis plays a significant role in organic synthesis planning, in which target
molecules are recursively decomposed into available commercial building blocks. This
analysis mode was firstly formulated in the pioneering work [1,2] and now is one of the
fundamental paradigms in modern chemical society. Since then numerous retrosynthesis
prediction algorithms have been proposed to aid or even automate the retrosynthesis
analysis. However, the performance of existing methods is still not satisfactory. The
massive search space is one of the major challenges of retrosynthesis considering that on
the order of 107 compounds and reactions [3] have been reported in synthetic–organic
knowledge. The other challenge is that there are often multiple viable retrosynthesis
pathways and it is challenging to decide the most appropriate route since the feasibility of
a route is often compounded by several factors, such as reaction conditions, reaction yield,
potential toxic byproducts, and the availability of potential reactants [4].

Most of existing machine-learning-powered retrosynthesis methods focus on the
single-step version. These methods are broadly grouped into template-based and template-
free major categories. Templates-free methods [4–9] usually rely on deep learning models
to directly generate reactants. One effective strategy is to formulate the retrosynthesis
prediction as a sequence translation task and generate SMILES [10] sequences directly using
sequence-to-sequence models such as Seq2Seq [5], SCROP [6], and AT [11]. SCROP [6]
proposes to use a second transformer to correct the initial wrong predictions. Translation-
based methods are simple and effective, but lack interpretability behind the prediction.
Another representative paradigm is to first find a reaction center and split the target
accordingly to obtain hypothetical units called synthons, and then generate reactants
incrementally from these synthons, such as in RetroXpert [4], G2Gs [7], RetroPrime [12],
and GraphRetro [13].
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On the other hand, template-based methods are receiving less attention than the rapid
surge of template-free methods. Template-based methods conduct retrosynthesis based
on either hand-encoded rules [14] or automatically extracted retrosynthesis templates [15].
Templates encode the minimal reaction transformation patterns, and are straightforwardly
interpretable. The key procedure is to select applicable templates to apply to targets [15–18].
Template-based methods have been criticized for the limitation that they can only infer
reactions covered by training templates and cannot discover novel reactions [4,19].

In this work, we propose a novel template-based single-step retrosynthesis framework
to overcome the mentioned limitation. Unlike previous methods only selecting from
training templates, we propose to compose templates with basic template building blocks
(molecule subgraphs) extracted from training templates. Specifically, our method composes
templates by first selecting appropriate product and reactant molecule subgraphs iteratively,
and then annotates atom transformations between the selected subgraphs. This strategy
enables our method to discover novel templates from training subgraphs, since the reaction
space of our method is the exponential combination of these extracted template subgraphs.
What is more, we design an effective reactant scoring model that can capture atom-level
transformation information. Thanks to the scoring model, our method achieves state-of-
the-art (SOTA) Top-1 accuracy of 54.5% and 65.9% on the USPTO-50K dataset without and
with reaction types, respectively. Our contributions are summarized as: (1) we propose
a first-ever template-based retrosynthesis framework to compose templates, which can
discover novel reactions beyond the training data; (2) we design an effective reactant
scoring model that can capture atom-level transformations, which contributes significantly
to the superiority of our method; (3) the proposed method achieves 54.5% and 65.9%
Top-1 accuracy on the benchmark dataset USPTO-50K without and with reaction types,
respectively, which establishes the new SOTA performance. The code is available at
https://github.com/uta-smile/RetroComposer (accessed on 10 September 2022).

2. Related Work

Recently there has been an increasing amount of work using machine learning meth-
ods to solve the retrosynthesis problem. These methods can be categorized into template-
based [15–18,20] and template-free approaches [4,5,7,13,21]. Template-based methods
extract templates from training data and build models to learn the corresponding relation-
ship between products and templates. RetroSim [15] selects the templates based on the
fingerprint similarity between products and reactions. NeuralSym [16] uses a neural classi-
fication model to select corresponding templates. However, this method does not scale well
with an increasing number of templates. To mitigate the problem, [20] adopts a multi-scale
classification model to select templates according to a manually defined template hierarchy.
GLN [18] proposes a graph logic network to model the decomposed template hierarchy
by first selecting reaction centers within the targets, and then only consider templates that
contain the selected reaction centers. The decomposition strategy can reduce the search
space significantly. GLN models the relationship between reactants and templates jointly
by applying selected templates to obtain reactants, which are also used to optimize the
model simultaneously.

Template-free methods do not rely on retrosynthesis templates. Instead, they construct
models to predict reactants from products directly. Translation-based methods [6,11,22,23]
use SMILES to represent molecules and treat the problem as a sequence-to-sequence task.
MEGAN [8] treats the retrosynthesis problem as a graph transformation task, and trains the
model to predict a sequence of graph edits that can transform the product into the reactants.
To imitate a chemist’s approach to the retrosynthesis, two-step methods [4,7,12,13] first
perform reaction center recognition to obtain synthons by disconnecting targets according
to the reaction center, and then generate reactants from the synthons. G2Gs [7] treats the
reactant generation process as a series of graph editing operations and utilizes a variational
graph generation model to implement the generation process. RetroXpert [4] converts the
synthon into SMILES to generate reactants as a translation task. GraphRetro [13] also adopts
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a similar framework and generates the reactants by attaching leaving groups to synthons.
Dual model [9] proposes a general energy-based model framework that integrates both
sequence- and graph-based models, and performs consistent training over forward and
backward prediction directions.

3. Preliminary Knowledge

3.1. Retrosynthesis and Template

Single-step retrosynthesis predicts a set of reactant molecules given a target product,
as shown in Figure 1a. Note that the product and reactant molecules are atom-mapped,
which ensures that every product atom is uniquely mapped to a reactant atom. Templates
are reaction rules extracted from chemical reactions. They are composed by reaction
centers and encode the atom and bond transformations during the reaction process. The
illustrated template in Figure 1b consists of a product subgraph (upper) and reactant
subgraphs (lower). The subgraph patterns are highlighted in pink within the corresponding
molecule graphs.

Figure 1. A retrosynthesis example from USPTO-50K dataset and its template extracted using an open-
source toolkit. Note that the product and reactant are atom-mapped. The product and reactant subgraphs
in (b) are highlighted in pink within the product and reactant molecule graphs in (a), respectively.

3.2. Molecule Graph Representation

The graph representation of a molecule or subgraph pattern is denoted as G(V , E),
where V and E are the set of graph nodes (atoms) and edges (bonds), respectively. Following
previous work [4,18], each bond is represented as two directed edges. Initial node and edge
features can be easily collected for the learning purpose.

3.3. Graph Attention Networks

Graph neural networks [24] are especially good at learning node- and graph-level
embeddings of molecule data. In this work, we adapt graph attention networks (GATs) [25]
to incorporate bond features. The GAT layer updates a node embedding by aggregating
its neighbor’s information. The modified GAT concatenates edge embeddings with the
associated incoming node embeddings before each graph message passing. The input of
the GAT layer is node embeddings {vi|∀i ∈ V} and edge features {ei,j|(i, j) ∈ E}, and the
output updated node embeddings {v′i|∀i ∈ V}. Each node embedding is updated with a
shared parametric function tθ :
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v′i = tθ(vi, AGGREGATE({[vj||ei,j]|∀j ∈ N (i)})), (1)

where N (i) are neighbor nodes of vi and || is the concatenation operation. The AGGREGATE
of GAT adopts an attention-based mechanism to adaptively weight the neighbor informa-
tion. A scoring function c(i, j) computes the importance of the neighbor node j to node i:

c(i, j) = LeakyReLU(wT [W1vi||W1vj||W2ei,j]), (2)

where w is a learnable vector parameter and each W is a learnable matrix parameter. These
importance scores are normalized using the Softmax function across the neighbor nodes
N (i) of the node i to obtain attention weights:

α(i, j) = Softmaxj(c(i, j)) =
exp(c(i, j))

∑j′∈N (i) exp(c(i, j′))
. (3)

The modified GAT instances tθ and updates the node embedding as the non-linear
function σ activated weighted-sum of the transformed embeddings of its neighbor nodes:

v′i = σ( ∑
j∈N (i)

α(i, j) ∗ W3[W1vj||W2ei,j]). (4)

GAT is usually stacked by multiple layers and enhanced with multi-head attention [26].
Please refer to [25] for more details.

3.4. Graph-Level Embedding

After obtaining the output node embeddings from the GAT, a graph READOUT
operation can be used to obtain the graph-level embedding. Inspired by [27], we aggregate
and concatenate the output node embeddings from all GAT layers to learn structure-aware
node representations from different neighborhood ranges:

embG = READOUT({vi,1||vi,2||...||vi,L|∀i ∈ V}). (5)

where vi,l is the output embedding of node i after the lth GAT layer. The READOUT
can be any permutation-invariant operation (e.g., mean, sum, max). We adopt the global
soft attention layer from [28] as the READOUT function for molecule graphs due to its
excellent performance.

4. Methods

We propose to compose retrosynthesis templates from a predefined set of template
building blocks; then, these composed templates are applied to target products to obtain the
associated reactants. Unlike previous template-based methods [15–18] only selecting from
training templates, our method can discover novel templates that are beyond the training
templates. To further improve the retrosynthesis prediction performance, we design a
scoring model to evaluate the suitability of product and candidate reactant pairs. The
scoring procedure acts as a verification step and it plays a significant role in our method.

The overall pipeline of our method is shown in Figure 2. Our method tackles ret-
rosynthesis in two stages. The first stage is to compose retrosynthesis templates with a
TCM, which composes retrosynthesis templates by selecting template building blocks and
then assembling them. In the second stage, the obtained templates are applied to the
target product to generate the associated reactants. After that, we utilize a powerful RSM
to evaluate the generated reactants for each product. During evaluation, the probability
scores of both stages are linearly combined to rank Top-K reactant predictions. In following
sections, we will detail each stage of our method.
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Figure 2. The overall pipeline of our proposed method. Given the desired product as shown at the top
left, single-step retrosynthesis finds the ground-truth reactant as shown at the bottom left. Numbers
indicated in blue are the corresponding log-likelihoods of our models, and the log-likelihoods of the
template composer model (TCM) and the reactant scoring model (RSM) are combined to obtain the
final ranking of the reactants. In this example, combining log-likelihoods of TCM and RSM helps to
find the correct Top-1 reactant.

4.1. Compose Retrosynthesis Templates

Template-based retrosynthesis methods are criticized for their limitation of not gen-
eralizing to unseen reactions, since all existing template-based methods follow a similar
procedure to select applicable templates from the extracted training templates. To over-
come the above limitation, we propose a different pipeline to find template candidates. As
illustrated in Figure 3, our method first selects product and reactant subgraphs sequen-
tially from the corresponding subgraph vocabularies, which is detailed in Section 4.1.1.
Then, these selected subgraphs are assembled into templates with properly assigned atom
mappings, as detailed in Section 4.1.4. As far as we know, this is the first attempt to com-
pose retrosynthesis templates instead of simple template selection. During evaluation, a
beam search algorithm [29] is utilized to find Top-K predicted templates. Reactants can be
obtained by applying templates to the target molecule.

Figure 3. The workflow of our template composer model: (a) selecting a proper product subgraph
from product subgraph candidates with PSSM, (b) selecting reactant subgraphs sequentially from
reactant subgraph vocabulary with RSSM, and (c) annotating atom mappings between the product
and reactant subgraphs to obtain a template.
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4.1.1. Subgraph Selection

We denote a subgraph pattern as f , the product and reactant subgraphs for a template
as fp and fr, respectively, and the product and reactant subgraph vocabulary for the
dataset as FP and FR, respectively. To build the product subgraph vocabulary FP and
reactant subgraph vocabulary FR, retrosynthesis templates extracted from training data
are split into separate subgraphs to collect unique subgraph patterns. We build separate
vocabularies for the product and reactant subgraphs due to their essential difference.
Product subgraphs represent reaction centers and are more generalizable, while reactant
subgraphs may contain extra leaving groups, which are more specific to the reaction type
and the desired target. We find this strategy works well in practice.

4.1.2. Product Subgraph Selection

To compose retrosynthesis templates for a desired target, the first step is to choose
proper fp from the vocabulary FP. In this work, we focus on the single-product reactions;
therefore, there is only a single product subgraph pattern. Note that there may be multiple
viable retrosynthesis templates for each reaction, so each target may have several applicable
product subgraphs. The set of applicable product subgraphs are denoted as Fa. Starting
with any applicable product subgraph in Fa may obtain a applicable retrosynthesis template
for the target. Here, Fa ⊆ FP because all applicable product subgraphs must be in the
vocabulary FP.

Each product molecule graph Gp contains only a limited set of candidate subgraphs
Fc predefined in the vocabulary FP. Three candidate subgraphs are illustrated in Figure 3a.
The candidate subgraphs for each target can be obtained offline by checking the existence
of every product subgraph from FP in the product graph Gp. Therefore, we only need to
consider the candidate subgraphs Fc to guide the selection process [18] when selecting a
product subgraph. Here, Fa ⊆ Fc ⊆ FP since the candidate subgraphs Fc must contain all
applicable subgraphs.

In this situation, the product subgraph selection can be regarded as a multi-label
classification problem and starting with any applicable product subgraph in Fa can obtain
a viable retrosynthesis template. However, it is not optimal to train the product subgraph
selection model with binary cross-entropy loss (BCE) as in the multi-label classification
setting, since it predicts the applicability score independently for each f ∈ Fc without
considering their interrelationship. Note that the absolute applicability scores of subgraphs
in Fc do not matter here; what really matters is the ranking of these applicability scores,
since the beam search is adopted to find a series of template candidates during model
inference. While a Softmax classifier can consider the relationship of all subgraphs in Fc, it
cannot be directly applied to PSSM, since it is not suitable for the multi-label case. Inspired
by Softmax, we propose a novel negative log-likelihood loss for the PSSM:

LPSSM = log
arg min f∈Fa o f

arg min f∈Fa o f + ∑ f∈Fc\Fa o f
, (6)

where o f is the exponential of PSSM output logits for subgraphs in F , |F | is the size
of F , and \ is set subtraction. In the above loss function, the numerator is the minimal
exponential output for all applicable subgraphs in Fa, which is considered as the ground-
truth class proxy in the Softmax classifier. The extra item in denominator is the summation
of exponential output of all inapplicable subgraphs in Fc. The intuition is that we always
optimize the PSSM to increase the prediction probability for the least probable applicable
subgraph, so the model is driven to generate large scores for all applicable subgraphs Fc
while considering interrelationships of candidate subgraphs. The novel loss outperforms
BCE loss in our experiments. Detailed experimental comparison results between the
proposed loss function Equation (6) and BCE loss can be found in the experiment section.

PSSM scores candidate subgraphs Fc based on their subgraph embeddings. As shown
in Figure 3a, to obtain subgraph embeddings, the nodes of product molecule graph Gp
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are first encoded with the modified GAT that is detailed in Section 3.3. The embedding
emb f of the subgraph f is gathered as the average embedding of subgraph f−associated
nodes in Gp, and then these embeddings are fed into a multilayer perceptron (MLP) for
subgraph selection. Here, for a subgraph f , the READOUT function is implemented as the
arithmetic average for its simplicity and efficiency. Note that this is different from GLN [18],
in which product graphs and candidate subgraphs are considered as separate graphs and
embedded independently. Our strategy to reuse node embeddings is more efficient and can
learn more informative subgraph embedding since the neighboring structure of a subgraph
is also incorporated during the message passing procedure of GAT. Besides, our method
can naturally handle multiple equivalent subgraph situations in which the same subgraph
appears multiple times within the product graph.

4.1.3. Reactant Subgraph Selection

The second step of the subgraph selection is to choose reactant subgraphs fr from the
vocabulary FR, which is ordered according to the subgraph frequency in training data, so
that fr is also determinedly ordered. With minor notation abuse, fr also denotes an ordered
sequence of reactant subgraphs in the following content.

Since the number of reactant subgraphs is undetermined, we build the reactant sub-
graph selection model based on the recurrent neural network (RNN), as illustrated in
Figure 3b, and formulate reactant subgraph selection as the sequence generation. The
hidden state of RNN is initialized from the product graph embedding embGp as defined
in Equation (5) to explicitly consider the target product, and the start token is the product
subgraph fp selected in the previous procedure (Section 4.1.2). Furthermore, an extra end
token [END] is appended to reactant subgraph sequence fr. At each time step, the RNN
output is fed into a MLP for the token classification. For the start token fp, we reuse product
subgraph embeddings obtained previously (Section 4.1.2) since we find it provides better
performance than embedding the token in the traditional one-hot embedding manner.

4.1.4. Annotate Atom Mappings

Given fp and fr, the final step is to annotate the atom mappings between fp and
fr to obtain the retrosynthesis template, as shown in Figure 3c. A subgraph pattern f
can also be represented in the SMARTS string, and we use open source toolkit Indigo’s
(https://github.com/epam/Indigo (accessed on 20 March 2022) ) automap() function to
build atom mappings. We empirically find about 70% of USPTO-50K training templates can
be successfully annotated with correct atom mappings. To remedy this deficiency, we keep
a memo of training templates and associated fp and fr. During evaluation, the predicted fp
and fr are processed with automap() if not found in the memo.

4.2. Score Predicted Reactants

After a retrosynthesis template is composed, reactants can be easily obtained by ap-
plying the template to the target using RunReactants from RDKit [30] or the run_reaction()
function from RDChiral [31]. To achieve superior retrosynthesis prediction performance, it
is important to verify that the predicted reactants can generate the target successfully. The
verification is achieved by scoring the reactants and target pair, which is formulated as a
multi-class classification task where the true reactant set is the ground-truth class.

To serve the verification purpose, we build a reactant scoring model based on the
modified GAT. Product molecule graph Gp and reactant molecule graph Gr are first input
into a GAT to learn atom embeddings. Since the target and generated reactants are atom-
mapped as in Figure 1a, for each atom in Gp, we can easily find its associated atom in Gr.
Inspired by WLDN [32], we define a fusion function F(np

a , nr
a′) to combine embeddings of a

product atom a and its associated reactant atom a′:

F(np
a , nr

a′) = W4(n
p
a − nr

a′)||W5(n
p
a + nr

a′), (7)
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where || indicates the concatenation operation and W is a matrix that halves the node
embedding dimension so that the concatenated embedding restores the original dimension.

The fused atom embeddings are regarded as new atom features of Gp, which are
input into another GAT to learn the graph-level embedding embG. In this way, the critical
difference between the product and reactant can be better captured since our RSM can
incorporate higher order interactions between fused atom embeddings through the message
passing process of GAT. Previous retrosynthesis methods score reactants by modeling the
compatibility of reactant and product at the molecule level without considering the atom-
level embedding.

The graph-level embedding embG is then fed into a simple MLP composed of two fully-
connected layers to output a compatibility score. The final probability score is obtained by
applying a Softmax function to the compatibility scores of all candidate reactants associated
to the target.

Our scoring model is advantageous since it operates on atom-level embeddings and is
sensitive to local transformations between the product and reactants, while the existing
method GLN [18] takes only molecule-level representations as the input. Therefore, GLN
cannot capture atom-level transformations and has a weaker distinguishing ability.

The log-likelihoods of our TCM and RSM model predictions are denoted as
lTCM = log(P(T |P)) and lRSM = log(P(R|P)), respectively. The predicted reactants
are finally ranked according to the linear combination value of λ ∗ lTCM + (1 − λ) ∗ lRSM,
0 ≤ λ ≤ 1. The formulation can be understood as:

λ ∗ log(P(T |P)) + (1 − λ) ∗ log(P(R|P))
= log(P(T |P)λ ∗ P(R|P)1−λ),

(8)

where P(T |P) is the probability of that the template T is applicable to the given product
P and P(R|P) is the probability of the reactant set R for the given product P. When com-
bined together, P(T |P) ∗P(R|P) approximates the joint probability distribution P(T , R|P).
Hyper-parameter λ regulates the relative importance of P(T |P) and P(R|P). The optimal
λ can be determined by the validation.

5. Experiment and Results

5.1. Dataset and Preprocessing

Our method is evaluated on the standard benchmark dataset USPTO-50K [33] under
two settings (with or without reaction types) to demonstrate its effectiveness. USPTO-50K
is derived from USPTO granted patents [34] and is composed of 50,000 reactions annotated
with 10 reaction types. More detailed dataset information can be found in the Appendix A.1.
We split reaction data into training/validation/test sets at an 8:1:1 ratio, in the same way as
previous work [15,18]. Since the original annotated mapping numbers in the USPTO dataset
may result in unexpected information leakage (https://github.com/uta-smile/RetroXpert
(accessed on 20 March 2022)), we first preprocess the USPTO reactions to re-assign product
mapping numbers according to the canonical atom order, as suggested by RetroXpert [4].
The atom and bond features are similar to the previous work [4] and reaction types are
converted into one-hot vectors concatenated with the original atom features.

Following RetroXpert [4], we extract templates from training reactions using RD-
Chiral [31]. We can obtain 10386 unique templates in total for the USPTO-50K training
data and 94.08% of test reactions are covered by these training templates. The gathered
templates are split into product and reactant subgraphs, from which mapping numbers are
further removed to obtain the subgraph vocabularies FP of size 7766 and FR of size 4391.

For each target molecule, we find its candidate subgraphs Fc using graph matching
algorithms and applicable templates by checking if the ground-truth reactant can be ob-
tained when each training template is applied to the target. The applicable subgraphs
Fa then can be obtained easily from the acquired applicable templates. Since the exact
graph matching process might be time-consuming, we extract the fingerprint for each
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molecule/sub-molecule to filter those impossible subgraphs. For the subgraph screening
purpose, we adopt the PatternFingerprint from RDKit and use a fingerprint size of 1024.

5.2. Evaluation

Following previous methods [4,18], we use beam search [29] to find Top-50 template
predictions during evaluation, which are applied to targets to collect candidate reactants.
The collected reactants and targets are the experimental data for RSM. The predicted
reactants are finally ranked according to the combined log-likelihood of TCM and RSM.
The evaluation metric for retrosynthesis prediction is the Top-K exact match accuracy,
which is the percentage of reactions where the ground truth reactant set is within the top
K predictions.

5.3. Implementation

Our model is implemented using PyTorch [35] and PyTorch Geometric [36]. The adapted
GAT model is built based on the source implementation of Pretrain-GNN [37]. The TCM
model is composed of a modified GAT and a simple RNN model. The embedding dimen-
sion is set as 300 for all embeddings for simplicity. The number of GAT layers is six. We
adopt GRU [38] as the RNN implementation in TCM; the number of GRU layers is two
and both its embedding and hidden size are 300. We add a self-loop to each graph node
following [4,18]. We use the parametric rectified linear unit (PReLU) [39] comprehensively
as the activation function in our model. We replace the original batch normalization [40]
layer with a layer normalization [41] layer after each GAT layer, since we find layer normal-
ization provides better performance in our experiments. We adopt Equation (5) as the graph
READOUT operation. A simple MLP is applied to product subgraph embeddings to select
the proper product subgraph. The MLP is composed of two linear layers, and the PReLU
activation function is placed between the two linear layers. We also use a dropout [42] layer
with a dropout rate of 0.3 in the MLP.

The RSM model is composed of two GATs and a MLP head, and the GAT uses the
same settings as in the TCM except that each GAT is composed of three layers. Product
and reactant graphs are embedded with the first GAT model. Note that for reactions
with multiple reactants, we regard the disconnected molecule graphs as a single large
graph. Once the fused atom embeddings are obtained, the new product molecule graphs
with fused atom embeddings are input into the second GAT. The composition of the MLP
head is similar to that in TCM. The RSM model is also trained in multi-process mode
for acceleration.

Both TCM and RSM are optimized with the Adam [43] optimizer with default settings,
and the initial learning rates are 0.0003 and 0.00005 for TCM and RSM, respectively. The
learning rate is adjusted with the CosineAnnealingLR scheduler during training. The
models are trained in multi-process mode on a single GTX 1080 Ti GPU for acceleration.
TCM is trained with batch size 32; it only takes about two hours to train TCM for 80 epochs.
RSM training takes about 6 hours for 20 epochs. The final model parameters are saved
and loaded later for inference. We repeat all experiments three times and report the
mean performance as default. We find our model is quite robust to the hyper-parameters,
and most of the model settings are copied from [37] as they are given. We slightly tune the
model hyper-parameters, such as learning rate and batch size, manually on validation data
to achieve the best results.

5.4. Main Results

We decide the optimal value of λ according to validation performance. Specifically,
we set λ as 0.4 for both experimental settings (with/without reaction types). We use these
optimal settings in all experiments unless explicitly stated. Detailed ablation study about λ
are included in Section 5.4.3.
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5.4.1. Retrosynthesis Prediction Performance

We compare our RetroComposer with existing methods on the standard benchmark
dataset USPTO-50K, and report comparison results in Table 1. The results of RetroXpert
have been updated by the authors (https://github.com/uta-smile/RetroXpert (accessed on
20 March 2022)). For both evaluation settings (with or without reaction types), our method
outperforms previous methods by a significant margin in seven out of eight compared
Top-K metrics.

Table 1. Retrosynthesis evaluation results (%) on USPTO-50K. Existing methods are grouped into
two categories. Our method RetroComposer belongs to the template-based methods. The best results
in each column are highlighted in bold. RetroXpert* results have been updated by the authors in their
GitHub repository (https://github.com/uta-smile/RetroXpert (accessed on 20 March 2022)).

Methods
Without Reaction Types With Reaction Types

Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

Template-free methods

SCROP [6] 43.7 60.0 65.2 68.7 59.0 74.8 78.1 81.1
G2Gs [7] 48.9 67.6 72.5 75.5 61.0 81.3 86.0 88.7

MEGAN [8] 48.1 70.7 78.4 86.1 60.7 82.0 87.5 91.6
RetroXpert* [4] 50.4 61.1 62.3 63.4 62.1 75.8 78.5 80.9
RetroPrime [12] 51.4 70.8 74.0 76.1 64.8 81.6 85.0 86.9

AT [11] 53.5 - 81.0 85.7 - - - -
GraphRetro [13] 53.7 68.3 72.2 75.5 63.9 81.5 85.2 88.1
Dual model [9] 53.6 70.7 74.6 77.0 65.7 81.9 84.7 85.9

Template-based methods

RetroSim [15] 37.3 54.7 63.3 74.1 52.9 73.8 81.2 88.1
NeuralSym [16] 44.4 65.3 72.4 78.9 55.3 76.0 81.4 85.1

GLN [18] 52.5 69.0 75.6 83.7 64.2 79.1 85.2 90.0
Ours 54.5 77.2 83.2 87.7 65.9 85.8 89.5 91.5

TCM only 49.6 71.7 80.8 86.4 60.9 82.3 87.5 90.9
RSM only 51.8 75.7 82.4 87.3 64.3 84.8 88.9 91.4

Specially, our RetroComposer achieves 54.5% Top-1 accuracy without reaction types,
which improves on the previous best template-based method GLN [18] significantly by 2.0%
and also outperforms existing SOTA template-free methods Dual model and GraphRetro.
Besides, our method achieves 77.2% Top-3 accuracy, which improves on the Top-3 accuracy
70.8% of RetroPrime [12] by 6.4%, and 87.7% Top-10 accuracy, which improves on the
Top-10 accuracy 85.7% of AT [11] by 2.0%.

When reaction types are given, our method also obtains the best Top-1 accuracy, 65.9%,
among all methods and outperforms GLN by 1.7%. Compared with template-free methods
GraphRetro and Dual model, our method outperforms the SOTA Dual model (65.7%) by
0.2% and GraphRetro significantly by 2.0% in Top-1 accuracy. As for the Top-10 accuracy,
our method achieves 91.5%, which is slightly lower than 91.6% of MEGAN [8].

As the ablation study, we report results with only TCM or RSM. With only either TCM
or RSM, the model performance is largely degraded. Without reaction types, TCM only
achieves 49.6% Top-1 accuracy while RSM achieves only 51.8%. With reaction types, TCM
only achieves 60.9% Top-1 accuracy while RSM achieves only 64.3%. Since TCM and RSM
score retrosynthesis from different perspectives and are complementary, their results can
be combined to achieve the best performance. Particularly, our method achieves 54.5% and
65.9% Top-1 accuracy when combining TCM and RSM according to Equation (8).

The superior performance demonstrates the effectiveness of our method. Particularly,
the superiority of our method is more significant in real world applications where reaction
types are unknown. What is more, our Top-10 accuracy is already quite high. This indicates
that our method can usually find the best reactant set for the target in a few candidates.
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This is especially important for multi-step retrosynthesis scenarios, in which the number of
predicted reaction paths may grow exponentially with the retrosynthesis path length.

5.4.2. Ablation Study of PSSM Loss

We experimentally show that our proposed loss function Equation (6) for PSSM
outperforms the BCE loss. For all ablation experiments, we find the optimal value of
hyper-parameter λ independently and report the best results for a fair comparison. The
comprehensive experimental results are reported in Table 2.

Without given reaction types, our method with Equation (6) as PSSM loss achieves
the best Top-1 and Top-3 accuracy results, outperforming the BCE loss in Top-1 and Top-3
accuracy by 1.4% and 1.5%, respectively. With known reaction types, our method with
Equation (6) as PSSM loss outperforms BCE loss by 0.6% in Top-1 accuracy. While BCE loss
can achieve better Top-5 and Top-10 results in both settings, our proposed loss function
Equation (6) can achieve better Top-1 accuracy. The retrosynthesis prediction emphasizes
more Top-1 accuracy, therefore, we adopt Equation (6) as the PSSM loss in our method.

For all experiments, combining the TCM and RSM scores can always achieve the best
performance, which proves the effectiveness of our strategy.

Table 2. Ablation study results (%) of two different PSSM loss functions: our proposed Equation (6)
and BCE. The bold indicates the best results.

Types LPSSM Methods Top-1 Top-3 Top-5 Top-10

Without

Equation (6)
Ours 54.5 77.2 83.2 87.7

TCM only 49.6 71.7 80.8 86.4
RSM only 51.8 75.7 82.4 87.3

BCE
Ours 53.1 77.1 83.8 89.2

TCM only 46.5 69.9 78.5 86.9
RSM only 51.2 75.7 82.9 88.6

With

Equation (6)
Ours 65.9 85.8 89.5 91.5

TCM only 60.9 82.3 87.5 90.9
RSM only 64.3 84.8 88.9 91.4

BCE
Ours 65.3 85.9 90.3 92.6

TCM only 58.5 81.8 87.6 91.5
RSM only 64.2 85.4 89.6 92.4

5.4.3. Ablation Study of Hyper-Parameter λ

We conduct the ablation study of λ and report results in Table 3; when λ = 0.4, the best
Top-1 accuracy is achieved for both settings. Note that with only RSM (λ = 0), the Top-1
accuracy 64.3% already outperforms the previous best template-based method GLN of
63.2% [18] with given reaction types. This demonstrates the effectiveness of our RSM. With
only TCM (λ = 1.0), the performance has an appreciable gap with the existing methods.
In our method, each generated set of subgraphs may have multiple associated templates
due to the uncertainty of product subgraphs and atom transformations. Therefore, there
may be multiple top-tier predictions that cannot be distinguished with only TCM. With a
little help from RSM (λ = 0.9), these top-tier predictions can be differentiated and the Top-1
accuracy significantly boosted.

The lRSM indicates the likelihood of retrosynthesis templates, while lTCM scores each
reaction by looking at the detailed atom transformations. These two terms are complemen-
tary and combined together to achieve the best performance.
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Table 3. Top-1 accuracy (%) with different λ values. The bold indicates the best results.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Without types 51.8 53.3 53.9 54.5 54.5 54.4 54.1 53.6 53.0 52.3 49.6
With types 64.3 65.2 65.6 65.7 65.9 65.9 65.6 65.1 64.7 64.4 60.9

5.4.4. Novel Templates

Different from existing methods, our method can find novels templates that are not in
training data. Our model predicts different templates based on different possible reaction
centers for a given target. For example, an amide formation template and alkylation
template may both be applied in the same target molecule, and our model can predict
suitable templates very well and give reasonable corresponding reactants for such cases.
For the 5.92% of test reactions that are not covered by training templates, our algorithm
can predict relevant templates very well for most reaction types, although it fails in some
heterocyclic formation reactions. This is because there are very few reaction data on such
reactions in USPTO-50K. Particularly, our method successfully discovers chemically valid
templates for 15 uncovered test reactions, which confirms that our method can find novel
reactions. Two such examples are illustrated in Figure 4.

Figure 4. Our method successfully finds valid templates for two test reactions that are not covered by
training data. The matched product subgraphs are highlighted in pink for better visualization.

6. Discussion and Conclusions

In this work, we propose a novel template-based retrosynthesis prediction frame-
work that composes templates by selecting and assembling molecule subgraphs. Besides,
experimental results confirm that the proposed strategy can discover novel reactions. Al-
though currently our method can find only a few novel templates, we believe our method
can inspire the community to explore further in this direction to improve models’ ability to
find more novel reactions. To further improve the ranking accuracy, we present a novel
reactant scoring model to rank candidate reactants by taking into account atom-level trans-
formations. Our method significantly outperforms previous methods and sets new SOTA
performance on the USPTO-50K, which proves the effectiveness of our method.

We tried to adapt our method to run on the USPTO-full dataset [34], but find it needs
non-trivial effort to manually handle edge cases due to noisy reactions (such as wrong
mapping numbers) from USPTO-full, since our methods rely on correct mapping numbers
to extract templates as well as build the reactant scoring model. We have released our
source implementation and encourage the community to help adapt our method to the
USPTO-full dataset.
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Appendix A

Appendix A.1. USPTO-50K Dataset Information

The USPTO-50K consists of 50,000 reactions that are annotated with 10 reaction types;
the detailed distribution of reaction types is displayed in the below Table A1. The imbal-
anced reaction type distribution makes the retrosynthesis prediction more challenging.

Table A1. Distribution of 10 recognized reaction types.

Type Reaction Type Name Number of Reactions

1 Heteroatom alkylation and arylation 15,204
2 Acylation and related processes 11,972
3 C-C bond formation 5667
4 Heterocycle formation 909
5 Protections 672
6 Deprotections 8405
7 Reductions 4642
8 Oxidations 822
9 Functional group interconversion 1858

10 Functional group addition (FGA) 231

We can extract 10,386 unique templates from the training data, and 94.08% of test
reactions are covered by these templates. For each product molecule, there are an average
of 35.19 candidate subgraphs, which are denoted as Fc in Section 4.1.2. Among these
subgraphs, there are an average of 2.02 applicable subgraphs denoted as Fa for each target.

Table A2. Statistical results of templates and reactions. # is the short for “number”.

# total templates 10,386
# unique product subgraphs 7766
# unique reactant subgraphs 4391

Test reactions coverage by training templates 94.08%
Average # contained product subgraphs per mol 35.19
Average # applicable product subgraphs per mol 2.02

Average # templates per reaction 2.23
Average # reactants per reaction 1.71

Appendix A.2. Atom and Bond Features

Following [4], we use similar bond and atom features to build molecule graphs as
listed in Tables A3 and A4. These features can be easily extracted using the chemistry
toolkit RDKit.
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Table A3. Bond features used in our method. These features are one-hot encoding.

Feature Description Size

Bond type Single, double, triple, or aromatic. 4
Conjugation Whether the bond is conjugated. 1

In ring Whether the bond is part of a ring. 1
Stereo None, any, E/Z or cis/trans. 6

Table A4. Atom features used in our method. All features are one-hot encoding, except the atomic
mass is a real number scaled to be on the same order of magnitude. The reaction type is applicable
for type conditional setting.

Feature Description Size

Atom type Type of atom (ex. C, N, O), by atomic number. 17
# Bonds Number of bonds the atom is involved in. 6

Formal charge Integer electronic charge assigned to atom. 5
Chirality Unspecified, tetrahedral CW/CCW, or other. 4

# Hs Number of bonded Hydrogen atom. 5
Hybridization sp, sp2, sp3, sp3d, or sp3d2. 5
Aromaticity Whether this atom is part of an aromatic system. 1
Atomic mass Mass of the atom, divided by 100. 1

Reaction type The specified reaction type if it exists. 10
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Abstract: We present the Pharmacorank search tool as an objective means to obtain prioritized
protein drug targets and their associated medications according to user-selected diseases. This
tool could be used to obtain prioritized protein targets for the creation of novel medications or to
predict novel indications for medications that already exist. To prioritize the proteins associated with
each disease, a gene similarity profiling method based on protein functions is implemented. The
priority scores of the proteins are found to correlate well with the likelihoods that the associated
medications are clinically relevant in the disease’s treatment. When the protein priority scores
are plotted against the percentage of protein targets that are known to bind medications currently
indicated to treat the disease, which we termed the pertinency score, a strong correlation was
observed. The correlation coefficient was found to be 0.9978 when using a weighted second-order
polynomial fit. As the highly predictive fit was made using a broad range of diseases, we were
able to identify a general threshold for the pertinency score as a starting point for considering drug
repositioning candidates. Several repositioning candidates are described for proteins that have high
predicated pertinency scores, and these provide illustrative examples of the applications of the tool.
We also describe focused reviews of repositioning candidates for Alzheimer’s disease. Via the tool’s
URL, https://protein.som.geisinger.edu/Pharmacorank/, an open online interface is provided for
interactive use; and there is a site for programmatic access.

Keywords: protein database; search tool; prioritization algorithm; drug repositioning

1. Introduction

Proteins are currently being mapped to diseases in a comprehensive manner within
open, online databases [1–4]. There is also an ongoing expansion of resources that docu-
ment the associations of proteins with medications [2,5–12]. With the availability of these
two types of information, proteins can serve as connection points between diseases and
medications. Such connections have the potential to predict new indications for existing
medications via the process of drug repurposing, also called drug repositioning [13].

To aid with the process of drug repurposing, estimates of the likelihoods that drug
repurposing candidates could be effective new treatments have been made using various
approaches. These approaches include network-based approaches, text-based approaches,
and semantics-based approaches, as reviewed by Xue et al. [14]. A central component of
some of these approaches is a gene prioritization algorithm that uses similarity profiling,
and such algorithms offer demonstrated applicability to the prioritization of proteins associ-
ated with diseases [15]. The proteins’ priority or rank scores, in turn, mirror the likelihoods
that they may be useful as medication targets for the treatment of a selected disease [16].
Since the priority scores of the protein targets can be linked to their associated medications,
the result can be the uncovering of novel predictions regarding which medications may be
most effectively repurposed [17].
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Methods that prioritize proteins involved in diseases may use the presence of co-
occurring words or database terms as part of the prioritization algorithm. Consider,
for example, the use of co-occurring database terms in the PolySearch tool [18]. We
previously implemented a tool called KB-Rank that considers the co-occurrences of a diverse
set of functional annotations to prioritize proteins associated with selected diseases [19].
More example methods that prioritize protein–disease datasets using protein functions
include ToppGene [20], TargetMine [21], and network methods [22,23]. Examples of the
integration of gene prioritization methods into an online search tool with the goal of
aiding drug repositioning efforts have been implemented in RepurposeDB [24] and Project
Rephetio [25].

To further enable drug repurposing efforts, we present the Pharmacorank search tool.
To prioritize the candidates, an unsupervised gene prioritization algorithm is implemented,
which may be classified as a similarity profiling or a data fusion method [26]. This method
utilizes the diverse set of protein functions and annotations that are available via the
UniProt database [3].

To validate and benchmark the search tool’s accuracy, we calculated the percentages
of medication–protein target pairs that were already known to be involved in the disease’s
treatment for each priority range, and we termed these values the pertinency scores. An
optimal correlation was sought between the priority scores and the pertinency scores. The
equation of best fit then served as a predictive model that takes the priority score of each of
the protein targets and predicts the pertinency score. We interpret the pertinency scores as
being estimates of the likelihoods that the medications associated with the protein targets
will be clinically relevant in a selected disease’s treatment.

With the goal of helping to spur drug repositioning efforts within the greater scientific
community, the predictive model between the priority score and pertinency score was
applied to all diseases described in Disease Ontology (DO) [27], and drug repositioning
candidates were made available for each of the diseases described in DO that map to an
ICD-9-CM or ICD-10-CM code. To highlight the results, a few of the drug repositioning
candidates with the highest predicted pertinency scores across all the diseases are further
described. We also provide focused manual reviews of the drug repositioning candidates
that are identified as possible future treatments for Alzheimer’s disease (AD).

2. Materials and Methods

2.1. Overview

The overall steps of the method to obtain prioritized proteins and medications to
inform drug repurposing studies may be summarized as: (1) retrieve the proteins asso-
ciated with each identified disease; (2) rank the proteins with priority scores calculated
using protein functions; (3) obtain the correspondences between medications and proteins
along with correspondences between medications and diseases from public databases to
determine whether each protein interacts with a medication already known to treat the
disease; (4) perform validation studies regarding the contribution that each type of protein
function has in generating a priority score that discerns whether a protein interacts with
a medication that is already used to treat the disease; (5) derive a predictive, quantitative
relationship between the priority score and pertinency score, where the pertinency score
is the percentage of protein targets known to interact with medications that are already
known to treat the disease; (6) apply the resulting predictive relationship between the
priority score and pertinency score to all proteins and medications associated with the
disease; (7) identify a recommended pertinency score threshold for the end-user; and
(8) review the protein targets and medications that have high predicted pertinency scores
for consideration in future drug repositioning studies.

2.2. Assemble Protein–Disease Datasets (Overall Step 1)

A set of proteins associated with each disease was obtained based on information from
multiple sources. Known correspondences were retrieved based on the Online Mendelian
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Inheritance in Man (OMIM) phenotypic descriptions [1] for a total of 4646 correspon-
dences. Further, an additional 1798 correspondences between diseases and proteins were
obtained using the Kyoto Encyclopedia of Genes and Genomes (KEGG) disease name
assignments [2]. The integrated protein–disease datasets from DisGeNET [28] added an
additional 54,226 correspondences. The total number of protein–disease correspondences
was therefore 60,670. With nonredundant protein–disease datasets derived collectively
from these multiple sources, the result was a comprehensive dataset for each DO entry.

2.2.1. Implement the Prioritization Algorithm Using Protein Functions (Overall Step 2,
First Part)

The functions used in the prioritization algorithm were retrieved from UniProt files
and from coordinating resources that describe protein function. The types of functions
include UniProt keywords, Gene Ontology terms, Enzyme Commission (EC) numbers,
InterPro assignments, SUPERFAMILY assignments, small molecule interaction assignments
from Chemical Entities of Biological Interest (ChEBI) [11], and UniProt residue features.

There were three types of annotations used from Gene Ontology (GO): molecular
function, cellular component, and biological process. GO terms were obtained through
UniProt GOA, which had granular GO annotations and excluded those higher up within
the GO hierarchy when identified by the same technique [29,30]. All ChEBI entries except
those that mapped to ChEMBL entries were utilized as function assignments. Broadly,
the functions used here are functional characteristics that are shared among two or more
proteins. Functional characteristics that could only possibly be attributed to one protein
were excluded. For example, point mutations were excluded as functions since a point
mutation would not be shared with other proteins.

2.2.2. Calculate the Priority Scores (Overall Step 2, Second Part)

After the identification of the proteins of each protein–disease dataset, the priority
scores of the proteins and their associated medications were calculated. An outline of the
prioritization algorithm is shown in Figure 1. Raw priority scores were first calculated
separately according to each type of function. For this purpose, the total number of proteins
in the protein–disease dataset with a specific function was found, and this number was
assigned to the specific function. A protein’s raw priority score according to the type of
function was then the sum of the numbers assigned for each specific function for which
the protein was known to have. Mathematically, the raw priority score of a protein using a
type of function is equivalent to the dot product of two equal length 1D arrays, rho and
mu. The array mu, μ, has an entry for each of the specific functions found among the
proteins in the protein–disease dataset with the value that is equal to the number of UniProt
accession codes (proteins) in the protein–disease dataset that had that specific function.
Each protein in the protein–disease dataset also had its own associated binary array rho,
ρ, which consisted of one if the specific function was attributed to that protein or zero
otherwise. The formula for the raw priority score for a protein regarding a type of function
was calculated as the dot product of ρ and μ:

PscoreFuncType
raw = ρ·μ

To calculate the raw priority score, a Python dictionary was created, where the keys
were the unique identifiers of the specific functions in the protein–disease dataset and the
values were the corresponding total numbers of proteins that had each specific function.
The raw priority score for a protein regarding a type of function was then the sum of the
values associated with each of the specific functions that were attributed to that protein.
This is numerically equivalent to the dot product but avoids what we found to be a more
computationally intense and more error-prone task of creating and multiplying the 1D
arrays ρ and μ

133



Biomolecules 2022, 12, 1559

Figure 1. Diagram describing how priority scores are calculated. The protein–disease dataset for AD
is used in the example. The proteins are identified by their corresponding accession codes in UniProt.
A unit matrix is then created where the rows are the UniProt entries, and the columns are specific
functions. The 1D array rho, ρ, is a binary array that represents the presence or absence of each
function for a given UniProt entry. The 1D array mu, μ, holds the total number of UniProt entries
for each function among the proteins of the protein–disease dataset. The dot product of rho and mu
produces a raw priority score. The factor eta, η, is one of the variables that is used to normalize the
raw priority score. Eta is calculated by summing in quadrature the total number of UniProt entries
and the total number of functions associated with the disease for a given type of function. A second
normalization factor beta, β, is the average number of unique functions per protein of a given type
of function. The priority score of a protein is the mean of the normalized priority scores that were
calculated separately using each of the different types of functions.

The raw priority score of each protein was normalized using the total number of
proteins in the protein–disease dataset and the total number of distinct specific functions
of the type of function under consideration that were represented in the protein–disease
dataset. The normalization factor eta, η, was obtained with the following formula:

ηFuncType =
√

p2 + a2

where the variables p and a, respectively, are the number of proteins retrieved in the
protein–disease dataset and the number of distinct specific functions represented in the
protein–disease dataset with reference to the type of function.

We inferred that η was proportional to the combined error associated with the mea-
surements of the number of proteins in the protein–disease dataset and the numbers of
unique specific functions represented for proteins in the protein–disease dataset. Based
on this inference, the normalization then follows a standard procedure of dividing by the
total error [31], where the total error was obtained by adding the contributing errors in
quadrature. Since the numbers of proteins and functions can vary greatly across diseases,
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the normalization factor η helped to ensure that the values of the priority scores were on a
comparable scale for the different diseases.

The rate at which functional features were assigned to proteins varied greatly accord-
ing to the type of function. We therefore introduced the second normalization factor beta,
β, which considered the average number of functions per protein for each type of function
separately. Upon application of both normalization factors, the resulting priority score of a
protein was calculated with the following formula:

PscoreFuncType
norm

PscoreFuncType
raw

ηFuncType·βFuncType

The final normalized priority score of a protein for a given disease was then the average
of the normalized priority scores calculated when using each type of function separately.
In the formula, n is in the number of different types of functions considered, which was
9. As described above, the types of functions were UniProt keywords, the three types of
Gene Ontology terms (molecular function, cellular component, and biological process),
Enzyme Commission (EC) numbers, InterPro assignments, SUPERFAMILY assignments,
small molecule interactions from ChEBI, and UniProt residue features.

PscoreAverage
norm

∑ PscoreFuncType
raw

n

2.3. Select Diseases Used for the Validation Studies (Overall Step 3)

To select the diseases from Disease Ontology that were to be used in the validation
studies, the following procedure was implemented. The correspondences between medica-
tions and indications were retrieved from three sources: Medication-Indication (MEDI-C)
resource [32], DrugCentral [12], and ChEMBL [7]. All medications were classified as being
on the market with a status of being in phase 4, and each medication did not have a flag
indicating it had been withdrawn from the market as per the annotations in DrugCentral.
For each indication, the diagnostic code(s) from the International Classification of Diseases,
Clinically Modified, was obtained from the 9th and 10th editions, which are referred to,
respectively, as the ICD-9-CM and ICD-10-CM codes. The DO term description that corre-
sponded to each diagnostic code was subsequently obtained using the correspondences
that are available in the DO OBO file.

Each of the diseases analyzed were required to have at least one medication currently
on the market for the disease’s treatment, which interacted with a protein in the corre-
sponding protein–disease dataset. To ascertain whether a retrieved protein interacted with
a known medication for a selected disease, the list of medications for that disease was
compared to the list of medications associated with the protein obtained from ChEMBL [7].
Diseases that were nonspecific such as “cancer” or “skin disease” were excluded; these are
listed as the vague diseases in the Supplementary Material.

2.4. Evaluate the Contributions of the Types of Functions to the Priority Score Accuracy
(Overall Step 4)

To evaluate the utility of the priority score for discerning medication–protein target
pairs that are clinically useful for the treatment of a selected disease, receiver operator
characteristic (ROC) curves were generated. The positives were defined as those proteins
in the protein–disease dataset that interacted with one or more medications currently
known to treat the disease. The rest of the proteins in the protein–disease dataset were
the negatives.

Fixed values of the priority scores that corresponded to each protein were used as
thresholds. The sensitivity and specificity values at each threshold for each of the different
protein–disease datasets were obtained. The area under the curve (AUC) for each ROC
for each protein–disease dataset was calculated, and an average AUC across the protein–
disease datasets was obtained. The AUC calculations were performed using a Python script
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developed for this purpose. For the analyses, each protein–disease dataset was required
to have 30 or more proteins to ensure there was ample data to estimate the sensitivity
and specificity measurements at each threshold. Each protein–disease dataset used for
validation was also required to have at least one protein that was known to be the target of
a medication used to treat the corresponding disease.

To identify medications that may be repositioned to treat a selected disease, we first
identified those medications already known to treat the disease. A match was sought
between the ChEMBL medication identifier and the medication identifier in MEDI-C
or DrugCentral. Matching was carried out by one of the following ways: match the
identification codes between RxNorm Ingredient ID [6] of MEDI-C to ChEMBL ID with the
normalized names for clinical drugs (RxNorm) database, table ‘RXNCONS’O; or match
the generic medication name with the text match. Since the MEDI-C resource contained
medication–indication pairs for which the medication was a combination of two or more
drugs, each drug of each combination was connected separately.

2.5. Relationship between the Priority Score and Pertinency Score (Overall Step 5 and 6)

The relationship between the priority score and percentage of proteins that interact
with medications currently known to treat a selected disease, referred to as the pertinency
score, was assessed. To generate a plot of priority scores versus pertinency scores, six equal
intervals were considered along the full range of priority scores. Six cross-fold validation
sets, each containing 16.6% of the diseases of the full validation set, were generated for
each of the intervals. For each fold, the percentage of proteins targeted by medications
known to treat the selected disease was calculated. A scatter plot of the average of these
percentages, called the pertinency scores, versus the average priority scores was generated.
A fit of the scatter plot was constructed using a weighted, second-degree polynomial using
the lm package R [33]. The average inverse of the variances of the pertinency scores was
used as a weighting factor in the scatter plot [34]. These variances were based on the six
values that were obtained using the six folds of the validation set.

2.6. Identification of a Threshold for the Pertinency Score (Overall Step 7)

To provide the end-user with a threshold for the pertinency score, tests were conducted
using the drug to disease correspondences from MEDI-1, which was created in 2013, and
the drug to disease correspondences from MEDI-2. The goal was to empirically identify
the pertinency score range(s) of the drug to protein to disease tuples that were identified
using MEDI-2 data but were absent when using MEDI-1 data. The study protocol was run
using only the MEDI-1 data and only the MEDI-2 data separately.

We then examined the number of new entries for different pertinency score ranges
to observe empirically where the new entries fell. To normalize the numbers for each
range, the number of new drug/protein/disease tuples for each pertinency score range
were divided by the total number of protein targets that fell within each corresponding
pertinency score range. We then plotted a bar chart of these ratios to empirically observe
the cut-off point, where there was a large increase in the estimated likelihood of success.

2.7. The Retrieval of Results on the Pharmacorank Site (Overall Step 8)

After completing the validation and prediction studies, we expanded the diseases
considered and further applied the resultant prediction mode based on the second-degree
polynomial fit of the priority score versus pertinency score. For the presentation of the
predicted pertinency scores on the Pharmacorank website, analyses of all diseases de-
scribed in Disease Ontology that mapped to either an ICD-9-CM or ICD-10-CM code
were performed. The pertinency score was calculated for each protein in each protein–
disease dataset regarding all corresponding proteins within Swiss-Prot, which does not
include TrEMBL.
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3. Results

3.1. Validation Studies of the Priority Score

We first tested the accuracy of the priority score regarding its ability to discern, among
all the proteins of a protein–disease dataset, those that were targets of medications already
known to treat the disease. ROC curves were obtained for each disease, where the positives
are the known medication targets and the negatives are the rest of the proteins within the
protein–disease dataset. All protein–disease datasets with thirty or more proteins that had
one or more proteins that were identified as interacting with a currently used medication for
the disease were included. There were 513 diseases that met these criteria. The list of these
513 diseases in the validation set is provided in the Supplementary Material. The results
presented here are based on the 3 August 2022 timestamp of the UniProt/Swiss-Prot data.

The effect on the AUC values of using each type of function separately for the calcula-
tion of the priority scores is shown in Table 1. We observe that when using the SUPERFAM-
ILY or ChEBI assignments only, their resultant AUC values were not significantly higher
than an AUC of 0.5, which is the value that corresponds to no discrimination. These two
types of functions were therefore removed from the formulation of the priority score. The
average AUC value obtained when all types of functions except SUPERFAMILY and ChEBI
were retained was 0.68661.

Table 1. Area under the curve (AUC) values for the retrieval of known targets of the queried diseases.
The positives are proteins known to be targeted by medications currently used to treat the disease.
The negative comparison set is represented by proteins of the protein–disease dataset that are not
known to be targeted by a medication used to treat the disease. The average AUC value per analysis
was determined by obtaining the mean AUC when using the 513 diseases of the validation set.

Type of Function(S) Used in The Priority
Score Formulation

Average AUC and Standard
Deviation

p-Value of t-Test Relative to 0.5

All 0.68936 ± 0.25888 1.08310 × 10−49

All but ChEBI and SUPERFAMILY 0.68661 ± 0.26522 9.66598 × 10−47

UniProt keywords only 0.65680 ± 0.25919 1.22968 × 10−36

GO molecular function only 0.65522 ± 0.24997 3.12006 × 10−38

GO biological process only 0.65329 ± 0.26250 1.42324 × 10−34

UniProt residue features 0.62528 ± 0.267669 7.01153 × 10−24

GO cellular component 0.61153 ± 0.27507 1.02508 × 10−18

InterPro 0.58814 ± 0.00050 3.54596 × 10−14

Enzyme commission (EC) number 0.53205 ± 0.25601 0.00570
SUPERFAMILY identifier 0.47983 ± 0.25644 0.07545
ChEBI 0.42085 ± 0.25987 1.55528 × 10−11

3.2. Predictive Relationship between the Priority Score and Pertinency Score

We modeled the relationship between the priority score of a protein in a protein–
disease dataset and its pertinency score. As described in the methods, six equal intervals
along the priority score range were identified, and the average priority score for each of the
intervals was calculated. Then, for each priority score interval, the fraction of proteins in
the interval that were targets of medications currently used to treat the disease, referred to
as the pertinency score, was calculated. To obtain the average and standard error estimates
for the priority scores and pertinency scores, a six-fold cross-validation was implemented
as described in the methods.

A weighted least-squares fit with a second-degree polynomial was found to have the
following equation: y = 1.399x2 − 0.110x + 0.015. The correlation coefficient for the fit
was 0.9978, which indicates a highly predictive relationship, as shown in Figure 2. The
polynomial equation for the fit was subsequently applied to estimate the pertinency score
of a protein for a selected disease given its priority score for that disease.
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Figure 2. Plot of the pertinency scores versus priority scores. The priority scores of proteins in the
protein–disease datasets were collected into six equally spaced intervals along the priority score
range. The points on the ordinate of the plot are the means of the fractions of proteins that interact
with medications currently known to treat the corresponding disease, termed the pertinency score,
for the six folds of the validation set for each of the priority score intervals. The error bars are
the standard errors of the means across the six folds. The curved black line indicates the fit using
a weighted least squares regression with a second-order polynomial. The resulting equation is
y = 1.399x2 − 0.110x + 0.015, and the correlation coefficient is 0.9978.

The pertinency score is interpreted as an estimate of the probability that the medication
would be relevant in the treatment of the corresponding disease. To be clinically useful in
the disease’s treatment, the medication would need to oppose the aberrant function of the
protein, which contributes to the disease. This determination is left to the user. The tool
estimates the strength of the association, but the user must then determine if the drug can
theoretically be indicated or contraindicated. For example, if a protein’s function increases
in the disease state and the medication inhibits the corresponding protein function, the
medication would likely be clinically useful in the disease’s treatment. If the medication
further increases the aberrant protein function or the medication exacerbates a loss of
function that is associated with the disease, the medication would be relevant as a possible
contraindication. The direction of the effect of the medication and the direction of the
aberrant protein function in the disease mechanism therefore need to be ascertained to
know whether the drug’s effect would be useful in the control the disease [35].

3.3. Estimation of an Empirical Threshold for the Pertinency Score

As described in the methods, the analyses were conducted separately using only
known drug to disease correspondences from MEDI-1 and then using only the drug to
disease correspondence from MEDI-2. The pertinency scores of the drug/protein/disease
tuples found from the MEDI-2 analyses but not from the MEDI-1 analyses were used to
estimate the pertinency score range(s) where the tuples with a high likelihood of successful
development would lie in the future.
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Figure 3 shows a bar chart with the ratios of the pertinency scores of new drug/protein/
disease tuples to the number of protein targets for each of the corresponding pertinency
score range bins. For the range of 0–0.1, there were 4790 new tuples and 100,369 protein
targets, which gave a ratio of 0.048. For the range of 0.1–0.2, there were 1231 new tuples and
7019 protein targets, giving a ratio of 0.175. For 0.2–0.3, there were 96 tuples and 625 protein
targets, giving a ratio of 0.154. For 0.3–0.4, our analysis detected no new tuples. Within
0.4–0.5, there were 2 tuples and 75 protein targets, giving a ratio of 0.027. Based on the
large jump when moving to the 0.1–0.2 bin, and a review of the rest of the chart, we infer
that a threshold of 0.1 or above for the pertinency score captures new drugs effectively
while eliminating most of the protein targets from consideration. We make the inference
that new drug repositioning candidates would also likely have pertinency scores above the
0.1 threshold and have the highest likelihoods of ultimately becoming useful drugs.

Figure 3. Bar chart of the ratio of the number of drug/protein/disease tuples to the number of
proteins targets for each pertinency score bin.

3.4. Three Illustrative Examples of Repositioning Candidates

We reviewed the examples of the top repositioning candidates with the highest priority
scores and therefore the highest predicted pertinency scores across all the diseases analyzed.
The total number of unique diseases was 4041. The idea is that by considering those
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candidates with the highest predicted pertinency scores across all the diseases, a focus
would be placed on those most likely to be clinically relevant. We selected three medications
among the top predicted repositioning candidates to gain insight as to whether these
candidates would likely be clinically useful. Additionally, these examples help to illustrate
what one would expect to encounter when carrying out such reviews.

The main goal of each individual candidate review was to identify cases where the
drug has an opposing effect to that of the aberrant function of the protein. This boils
down to finding cases where there is a gain of function of the disease protein and the drug
inhibits the corresponding function. Alternatively, it corresponds to cases where the protein
has a loss of function variation, and the drug increases the corresponding function of the
protein. Cases where the drug enhances a gain of function of a disease or where the drug
inhibits the function of a protein that had a corresponding loss of function would likely be
contraindicated.

Three proteins and repositioning candidates selected from across all the diseases are
listed in Table 2. A top repositioning candidate is sotorasib for the possible treatment
of linear sebaceous syndrome. Sotorasib inhibits GTPase KRas. Consider that while
linear sebaceous syndrome is usually associated with a benign skin lesion, more severe
phenotypes such as malignant tumors may also manifest [36]. Linear sebaceous syndrome
can also be associated with cerebral, ocular, or skeletal defects, which together are referred
to as Schimmelpenning syndrome. The mutant GTPase KRas of the disease state has
a higher proportion of HRAS-GTP activity than that found in wild-type cells [36]. The
inhibitor sotorasib may therefore offer a treatment to reduce the relatively high activity
seen of GTPase KRas in the disease state [37].

Table 2. Illustrative candidates for drug repositioning across all diseases. For each medication, the
protein target, the current use, and the putative indication are listed. The estimated pertinency score
for the possible indication is also shown.

Medication Target UniProt ID Current Use(s) Possible Indication(s)
Pertinency

Score

Sotorasib GTPase KRas P01116

Non-small cell
lung cancer with

KRAS G12C
mutation

Linear
nevus sebaceous

syndrome
0.5861

Pyrimethamine Beta-hexosamididase
subunit beta P07686 Toxoplasmosis GM2 gangliosides 0.4671

Tolcapone Genome polyprotein P29990 Parkinson’s
disease

Dengue
hemorraghagic fever 0.1942

For the review of the second candidate, consider GM2 gangliosidosis, which is progres-
sive lysosomal storage disease marked by the accumulation of GM2 gangliosides in neu-
ronal cells. This condition is caused by loss of function variations in beta-hexosaminidase
subunit beta protein, and the phenotype of GM2 gangliosidosis is indistinguishable from
that of Tay–Sachs disease. A possible repositioning candidate is pyrimethamine, which is
a pharmacological chaperone (PC) that can stabilize the conformation of the mutant pro-
tein [38]. This allows the protein to pass quality control, avoid degradation, and continue to
function. Although pyrimethamine can cross the blood–brain barrier and increase the beta-
hexosaminidase activity, clinical trials have described limited impact on the manifestations
of the disease in the central nervous system [39,40].

A third repositioning candidate is tolcapone for the possible treatment of dengue
hemorrhagic fever. Tolcapone inhibits the serine protease function of NS3. The dengue
virus type 2 NS3 protein is one of the cleavage products of a large 3391-amino-acid glyco-
protein from the dengue virus. The combination of several proteins into one large genome
glycoprotein that is subsequently cleaved into functional smaller proteins has apparently
enabled all the proteins of this genome glycoprotein to have high priority scores since all the
functional annotations of all the proteins (cleavage products) that make up the glycoprotein
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would have been used in the prioritization algorithm. Further, given that there are multiple
strains of the dengue virus, which means repeats of similar glycoproteins of the dengue
virus are described in UniProt, these glycoproteins have high calculated priority scores.
Nonetheless, the NS3 protein is described as being a target of tolcapone, and tolcapone
is reported as a hit from a high-throughput screening with a Ki value range of 0.61–1.25
μM [41,42]. These results point to possible treatment of the viral infection through the
possible derivation of tolcapone as a hit compound and the subsequent steps required for
drug development.

3.5. Examples of Repositioning Candidates for Alzheimer’s Disease

A list of three protein targets and their associated medications to consider for reposi-
tioning studies for AD is provided in Table 3. One repurposing candidate is insulin, which
binds to the insulin receptor. Insulin is used to treat type 1 diabetes mellitus and type 2
diabetes mellitus [43]. The insulin receptor has a high predicted pertinency score, and in-
sulin has demonstrated disease-modifying activity that opposes the disease mechanism. A
recent study by Keller et al. found that intranasal insulin has demonstrated clinical benefit
based on a phase 2 clinical trial [44]. Relative to the control group, the insulin-treated group
showed beneficial changes in CSF immune/inflammatory/vascular markers. Beneficial
changes in cognition, brain volume, and both amyloid and tau concentrations were also
observed. The authors conclude that intranasal insulin may promote a compensatory
immune response that is associated with the therapeutic benefit.

Table 3. Protein targets or biochemical pathways together with drug repositioning candidates for the
possible treatment of Alzheimer’s disease.

Medication Target/Pathway Uniport ID Current Use(s)
Pertinency

Score

Insulin Isoform short of insulin receptor P06213-2 Types 1 and 2 diabetes
mellitus 0.1666

Riluzole Alpha-synuclein P37840 Amyotrophic lateral
sclerosis 0.1637

Diminazene aceturate
(DIZE) to increase

ACE2 activity

Neuroinflammation pathway of
angiotensin-converting enzyme

(ACE1)
P12821 Trypanosomiasis 0.1442

A second repurposing candidate is riluzole, which has the ability to reduce the alpha-
synuclein protein aggregation seeds [45]. The current indication for riluzole is amyotrophic
lateral sclerosis [43]. There is evidence that the pathology of AD is linked to alpha-synuclein
via multiple mechanisms that include asymptomatic accumulation of Aβ plaques and tau
hyperphosphorylation [46]. A clinical trial demonstrated a strong correlation between rilu-
zole treatment, cognitive measures, and brain metabolism in those with AD. The changes
in brain metabolism included a slower rate of cerebral glucose metabolism decline [47,48].
Further, in a mouse model, riluzole impacted some immune-related pathways that are
implicated in AD [49].

We found that angiotensin-converting enzyme 1 (ACE) has a relatively high pertinency
score. Some evidence suggests that ACE2 inhibitors are associated with a slower rate
of cognitive decline [50], but this evidence appears to be inconclusive. Alternatively,
evidence also points to a protective effect of angiotensin-converting enzyme 1 against AD.
Specifically, the function of ACE within the cerebrum is needed for a protective effect
in AD, and the associated function of ACE is possibly independent of its contributions
to the control of blood pressure [51]. In addition to the inhibitors retrieved here via the
ChEMBL mappings to ACE, we observe that there are known activators of angiotensin-
converting enzyme 2 (ACE2) [52,53]. Additionally, we observe that the neuroinflammation
pathways involved in neurodegeneration can have associated decreases in ACE2 activity
and increases in ACE1 activity [54]. Further, in a mouse model of AD, the ACE2 activator
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diminazene aceturate (DIZE) reduced the levels of Aβ1-42, hyperphosphorylated tau, and
pro-inflammatory cytokines in the brain [55]. DIZE is a veterinary drug used to treat blood-
transmitted protozoan parasites such as trypanosoma, and it has also been used to treat
human trypanosomiasis without major toxicity [56]. This example highlights the need to
review each target that has a high pertinency score and see which medications, regardless
of whether they are currently represented in the ChEMBL mappings, may oppose the
overall disease pathway.

4. Discussion

4.1. Pharmacorank’s Possible Role in Enabling Drug Repositioning

Drug repositioning can improve treatment outcomes and reduce the cost of drug
development [57]. Marketed drugs have already been through clinical trials, so the number
of trials that would be required during the drug repositioning process would be reduced.
Such a reduction can save approximately 2 years of time and 40% of the overall cost of
drug development [58].

Computational approaches for drug repositioning prioritize their identified candidates
based on their estimated likelihoods of success [17,59]. The estimates of the success rates
can be made using the known, clinically used medication–indication pairs. These estimates
can further aid in the selection of the drug repositioning candidates that are to be moved
forward through drug development. This information has demonstrated importance for
modeling purposes [60] and validation purposes [61].

As described through our manual reviews, the results of searches across different
diseases with Pharmacorank can be collated, and drug repositioning candidates with
the highest predicted pertinency scores can be identified for review. These candidates
may constitute the lowest hanging fruits, where a focus on further drug discovery and
development may be placed [62]. Further, when there is identification of protein targets with
a determined three-dimensional structure or accurate structural models, computational
approaches that use structural information, such as for rational drug design [63], docking,
and/or virtual screening, may be readily applied [64].

We anticipate that the Pharmacorank search tool will complement other open tech-
nologies that are available to aid in the identification of new possible treatments for orphan
diseases. There is a need for software applications that identify drug repositioning candi-
dates for orphan diseases [65,66]. Our findings regarding the repositioning candidates for
the possible treatments of linear nevus sebaceous syndrome, dengue hemorrhagic fever,
and GM2 gangliosides highlights examples for orphan diseases. The need to fully bring
to light easily searchable and viable drug repositioning candidates for orphan diseases is
apparent. The long-term goal would be to improve clinical outcomes for these conditions.
The identification of new uses for old drugs may also add value by enabling a drug to enter
into a new market for the treatment of an orphan disease, which may extend the patent life
of the drug [67,68].

4.2. Relation to Other Tools for Drug Repositioning

Drug repositioning methods span a variety of different experimental and computa-
tional approaches [67,69,70], which may be grouped according to whether they predict new
interactions between medications and proteins or just prioritize the proteins involved in
the disease. Those that predict new physical interactions between medications and protein
targets may validate their results by testing the predicted interactions using ligand-binding
assays [71]. In contrast, methods that prioritize known medication–protein target pairs
may validate predictions using cross-validation studies or by evaluating their effects on
disease phenotypes using animal models [72]. In the absence of performing clinical trials,
both types of methods may be validated using evidence from the literature that describes
the possible clinical usefulness of medications for a selected disease.

The application of Pharmacorank for drug repositioning may be classified into the
latter group of methods, since the priority scores of medication–protein target pairs are
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described, and no new physical interactions between protein targets and medications
are predicted. Comparable methods include ToppGene [20], TargetMine [21], a network
method by Emig et al. [22], and DrugNet [73]. ToppGene discusses drug repositioning can-
didates in the context of evidence from literature references that support their plausibility.
DrugNet takes validation a step further by performing cross-validation of the predicted
medication–indication pairs using data from clinical trials. The use of DrugNet reports an
AUC value of 0.836 when the positives were medication–indication pairs found to be in
clinical trials and the negatives were randomly selected drugs.

Regarding the network method reported by Emig et al., the positives were those
proteins known to be targeted by a medication in a clinical trial for the treatment of
the disease and the negatives were randomly selected protein targets [22]. The Emig
study reports AUC values that range between 0.63 and 0.93 for different diseases. In
a study by Kissa et al. [74], algorithmic approaches for unsupervised prioritization of
drug repositioning candidates were also described. The validation sets include positives
that were approved medication–protein target pairs for each disease in question [74].
The negatives were random pairs of drugs with targets. They report an overall AUC
value of 0.84 for the discovery of medication–indication pairs using the Pointwise Mutual
Information algorithm.

For the Pharmacorank search tool, the following validation approach was undertaken:
the priority score was used to discern proteins targeted by medications used to treat the
disease from all the other proteins associated with the disease. The Pharmacorank search
tool similarly falls into the category of methods that utilize AUC values for validation, and
it therefore falls into the category of methods that use both sensitivity- and specificity-based
validation (SSV) as described by Brown and Patel [75]. Here, the priority score is used to
discern proteins targeted by medications used to treat the disease from all the other proteins
associated with the disease. This was carried out based on the coordinated mapping of
the medication–indication pairs in MEDI-C and DrugCentral with the medication–protein
target pairs in ChEMBL. For the described previous studies, we observe that the values for
AUCs are higher than those described in the current study. One difference in the approaches
is that random proteins were part of the comparison sets of the previous described studies
and not all these random proteins were deemed to be directly involved in the disease.

For example, in the Emig study, all the proteins of the comparison set have a score
that relates each protein to the disease but not all the proteins were deemed to be directly
involved in the disease. In our studies, we note that our negatives do not include many
random proteins not directly associated with the condition. Specifically, our negatives are
proteins directly involved in the disease but are not known to interact with a known drug
to treat the disease. Since we are contrasting the functions of proteins directly involved in
the disease that interact with medications known to treat the disease versus the functions
of protein directly involved in the disease that do not interact with medications known to
treat the disease, we infer that the method enabled a more precise identification of those
functions most relevant to make the protein a viable target whose corresponding function
could be modified as part of the disease’s treatment.

We interpret the AUC values obtained here as being more relevant and applicable to
drug repositioning. This is because discerning the most clinically useful targets among the
proteins known to be directly involved in the disease is likely what will be most useful
in practice. Drug discovery and development projects focus on the proteins known to be
involved in the disease and then try to figure out which of those will be the most effective
drug targets.

4.3. Significance of the Relationship between the Priority Score and Pertinency Score

One of the take home messages from the analyses is that there is a predictive phe-
nomenological relationship between the priority score and pertinency score. Knowledge
of the set of proteins involved in a disease along with their normal biological functions
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can be used to quantitatively predict the likelihood that a given protein and its associated
medications would be relevant in the treatment of the selected disease.

We note that in the relationship between the priority score and pertinency score, as
the priority score reaches relatively high values, the standard deviations of the pertinency
scores increase. One reason for this observation was noted earlier, which is that some
proteins are part of polyproteins, such as what is typically found in viruses. These proteins
will receive high priority scores since all the protein functions would be attributed to a
single UniProt entry that represents the entire polyprotein prior to cleavage. Furthermore,
since there are multiple viral strains represented in UniProt, protein functions would be
repeated multiple times in the prioritization algorithm, thus artificially increasing the
corresponding priority scores. Of note is that the predictive relationship between the
average priority score versus the average pertinency score holds.

The observation that this strong relationship between the priority score and pertinency
score exists is significant since the data assembled in UniProt and the data from the clinical
trials of medications are of disparate origins. The information in UniProt regarding the
characterization of the normal functions of proteins is independent of the testing and
validation of medications brought to market via the required clinical trials.

When considering the selection of drug repositioning candidates to consider for a
selected disease, we recommend starting with those with the highest predicted pertinency
scores that are likely to oppose the disease pathway. In many cases, the pertinency score
may not reach above 10–20%, but those with the highest predicted pertinency scores are
recommended to be the ones to reviewed first. There are many factors that contribute to
this low rate such as, simply, not all the drugs have been successfully developed yet so the
percentage of proteins that are targeted by clinically useful medications has not achieved
its maximum value.

As described in the results section, we recommend that the end-user consider a
threshold of 0.1 for the pertinency score. We further note that the current success rates
for drug development from the downstream points of the beginning of the clinical trial to
the point of receiving marketing approval has remained about 10–20% [76]. Although the
pertinency score is not on the same scale, we surmise that a drug repositioning candidate
with a pertinency score above 10% should garner attention as these are predicted to have
likely paths to success that is possibly better than many of the drugs that have reached the
stage of entering clinical trials.

Now, the Pharmacorank site reveals that there are hundreds of drug repositioning
candidates across a wide range of conditions that meet the 0.1 threshold. These candidates
may be particularly ripe for the clinical trials that are required in their development for
the selected conditions. As an additional repurposing example candidate that meets
the 0.1 threshold, we observe that probucol has a pertinency score of 0.102 through its
interaction with vascular cell adhesion protein 1 in the condition multiple sclerosis. We
note that probucol has been shown to reduce neural cell apoptosis after cellular injury [77].
This example further highlights the potential of identifying viable drug repositioning
candidates for future drug development studies as guided by the threshold value of the
pertinency score.

4.4. Access

The web interface for the Pharmacorank search engine is available at the URL
http://protein.som.geisinger.edu/Pharmacorank/. Automated monthly updates of the
searchable content and the predictive model are enabled based on the routine updates of
the information in UniProt. All analyses are pre-run prior to making them available on the
website to make the queries fast since it is then just a matter of looking up the pre-computed
results. For interactive queries, an autocomplete tool identifies the corresponding Disease
Ontology term as a disease name is being typed. For each protein and drug retrieved, links
are provided to the corresponding entries in UniProt and ChEMBL for further information.
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Programmatic access is enabled to retrieve the results of precomputed searches via the URL
http://protein.som.geisinger.edu/Pharmacorank/Downloads/.

5. Conclusions

The Pharmacorank search tool provides a means to retrieve protein medication targets
and their associated medications that are either known or predicted to be relevant in the
treatment of a selected disease. The results of searches are prioritized using an objective
algorithm that considers each protein target’s complement of functions. The functions
are derived from the broad collection of function descriptions in UniProt. Different types
of functions are collectively used in the formulation of the priority scores. We find a
quantitative, predictive relationship between the resulting priority score of a medication–
protein target pair and its probability of being clinically relevant in the treatment of the
selected disease.

To facilitate drug repositioning efforts across a wide range of diseases, the disease terms
and phrases described in Disease Ontology were analyzed. The medications associated
with the retrieved proteins were considered as drug repositioning candidates if they were
not yet used to treat the queried disease and were likely to oppose the disease mechanism.
We anticipate that the drug repositioning candidates described here and those found
subsequently through the updated search tool will ultimately be clinically relevant for their
predicted indications, which may lead to cost savings and a reduction in disease burden.
An emergent feature of the search tool is that the repositioning candidates most likely to
be clinically relevant across a wide range of diseases could be readily identified since the
priority scores and pertinency scores are normalized across all the diseases analyzed.
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Abstract: Protein kinases are important targets for treating human disorders, and they are the second
most targeted families after G-protein coupled receptors. Several resources provide classification of
kinases into evolutionary families (based on sequence homology); however, very few systematically
classify functional families (FunFams) comprising evolutionary relatives that share similar functional
properties. We have developed the FunFam-MARC (Multidomain ARchitecture-based Clustering)
protocol, which uses multi-domain architectures of protein kinases and specificity-determining
residues for functional family classification. FunFam-MARC predicts 2210 kinase functional families
(KinFams), which have increased functional coherence, in terms of EC annotations, compared to
the widely used KinBase classification. Our protocol provides a comprehensive classification for
kinase sequences from >10,000 organisms. We associate human KinFams with diseases and drugs and
identify 28 druggable human KinFams, i.e., enriched in clinically approved drugs. Since relatives in
the same druggable KinFam tend to be structurally conserved, including the drug-binding site, these
KinFams may be valuable for shortlisting therapeutic targets. Information on the human KinFams
and associated 3D structures from AlphaFold2 are provided via our CATH FTP website and Zenodo.
This gives the domain structure representative of each KinFam together with information on any
drug compounds available. For 32% of the KinFams, we provide information on highly conserved
residue sites that may be associated with specificity.

Keywords: protein kinases; functional families; KinFams; KinBase classification

1. Introduction

Protein kinases are enzymes involved in multiple cellular pathways. They catalyse
the transfer of phosphate from a phosphate donor to the hydroxyl groups of acceptor
molecules which can either be protein substrates, lipids or small molecules. Most kinases
use ATP as their phosphate donor, however some use other donors, such as GTP, ADP,
inorganic pyrophosphate (PPi) and others [1,2]. Through this phosphorylation process, the
targets are covalently modified leading to the regulation of biological processes, such as the
control of metabolism, transcription processes, cell division and movement, programmed
cell death and several other signal transduction events in the cell. About 2% of the human
genome encodes for protein kinases [2]. They are the second largest enzyme family and the
fifth largest family of genes in humans, following zinc finger proteins, G-protein coupled
receptors, immunoglobulins, and proteases [3]. Protein kinases can be broadly classified as
either tyrosine kinases or serine/threonine kinases based on the specificity of the substrate
they phosphorylate.
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The protein kinase catalytic domain is structurally conserved and comprises around
250 to 300 amino acid residues [4]. It contains two lobes (N- and -C) connected through a
flexible hinge region with the active site in a cleft between the lobes, which together acts as a
functional unit (see Figure 1). The smaller N-lobe contains the highly conserved C-helix [5].
The larger C-lobe is mainly α-helical and contains the helices called E and G in its conserved
core. Other important structural motifs are the phosphate-binding loop and the activation
loop (A-loop), which bind ATP and the peptide substrate, respectively [6]. Kinases display
remarkable diversity in their primary sequences, substrate specificity, structure and the
pathways associated with them. However, they share a great degree of similarity in their 3D
structure and especially in their catalytic site where the ATP-binding cavity is found [7,8].
ATP binds in the cleft between the N and C lobes and therefore most kinase inhibitors
interact with this region to perturb the binding of ATP.

Figure 1. Schematic representing the generation of kinase functional units from the separate kinase
domains in CATH. The 3D structure is shown using PDB ID:1H8F. The kinase N-lobe domain (blue
box) is classified in the CATH 3.30.200.20 superfamily, while the C-lobe domain is classified in the
CATH 1.10.510.10 superfamily.

Most kinase family classification systems derive from the seminal work by Hanks and
Hunter [7] that uses the amino acid sequences of the catalytic domains, and which divides
kinases into groups, families and subfamilies. In 1997, the Bourne group built on this work
and included an additional dataset of ~1600 kinase sequences from the SwissProt and PIR
resources [9]. They made their data available through the Protein Kinase Resource (PKR),
which comprises nine groups, 81 families and 238 subfamilies [9]. This was one of the
very first resources to make the kinase classification data available online together with
structural annotations from the Protein Databank (PDB) and disease information from the
OMIM database [9].

The currently most widely used standard classification system was later developed by
Manning and colleagues in 2002 and made available via the KinBase resource [10]. Members
within a KinBase group have a broad substrate site specificity; members within a family are
grouped together based on sequence similarity and their biological function. Some of the
families in KinBase are further subdivided into subfamilies based on finer sequence-level
and functional similarity. To date, KinBase classifies protein kinases from 15 organisms, into
14 groups, 240 families and 339 subfamilies (according to the latest KinBase version 2014;
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kinase.com, accessed on 24 January 2023). The kinomes from the following 15 organisms
are classified in KinBase–H. sapiens, M. musculus, C. elegans, D. melanogaster, S. cerevisiae,
D. discoideum and T. thermophila, A. queenslandica, M. brevicollis, C. cinerea, G. lamblia, L. major,
T. vaginalis and S. moellendorffii.

Several other studies subsequently used or expanded these kinase classification
schemes (See Table 1). The Barton group used a multilevel hidden Markov model (HMM)
library to map sequences from SwissProt (version 2004) for H. sapiens, M. musculus,
D. melanogaster, C. elegans, S. cerevisiae, and D. discoideum and from 21 other additional
eukaryotic species [11,12]. This data was made available through the Kinomer database,
which provides only group-level classification based on KinBase version 2008 [13].

Table 1. The summary of existing kinase classification schemes and associated resources. Hanks and
Hunter (1995) developed the first kinase classification scheme, which was expanded in 1997 by the
Bourne group (Protein Kinase Resource) and Manning group (KinBase). KinBase (version 2014, shown
in bold). Other groups subsequently applied these classification schemes to map sequences from other
additional species. For example, KinG has mapped sequences from over 200 organisms to families
in Protein Kinase Resource (PKR). PrOKiNO has mapped kinase sequences from 1321 species to
families from KinBase (2012). More recently, CATH-KinFams, described in this study, maps sequences
from 13,981 species to 2210 functional families, using the novel FunFam-MARC protocol. a KinFams
consist of alignments of kinase domain sequences from 13,981 species (UniProt release 2018_02).
b Using HMMs built from these KinFams a, we detected hits to an additional 20,494 organisms (total
34,475) from the latest UniProt release (2022_03).

Year
Name of Family
Classification/

Database

Number of
Groups/Families/

Subfamilies

Organisms/
Version of Uniprot or

Swissprot Used
Website Reference

1995 Hanks and Hunter 5 groups,
55 subfamilies Model organisms Not available [7,8]

1997 PKR—Protein
kinase resource

9 groups, 81 families,
238 subfamilies SwissProt (2004)

http://pkr.sdsc.edu/
html/index.shtml (not

unavailable), accessed on
24 January 2023

[9]

2002 KinBase

KinBase 2014 version
14 Groups,

240 families,
339 Subfamilies

15 organisms
http://www.kinase.com/

kinbase, accessed on
24 January 2023

[10]

2004,
2010 KinG database PKR (as above) >2000 organisms

UniProt (2019)

http:
//king.mbu.iisc.ernet.in/,

accessed on
24 January 2023

[14]

2007,
2009 Kinomer v.1 8 groups from

KinBase (2008)
43 eukaryotic

organisms

http://www.compbio.
dundee.ac.uk/kinomer/
index.html, accessed on

24 January 2023

[13]

2011,
2015 PrOKiNO

KinBase (2012 version)
14 groups,

273 Families and
359 Subfamilies

1321 organisms
UniProt (2021)

http:
//vulcan.cs.uga.edu/

prokino/about/prokino,
accessed on

24 January 2023

[15]

2022 KinFams
(CATH v4.3) 2210 KinFams

a 13,981 organisms
(from UniProt 2018)
b 34,475 organisms

(from UniProt 2022)

https:
//www.cathdb.info/,

accessed on
24 January 2023

[16]
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In 2004, the Srinivasan group developed the KinG database [14], the first database to
include sequences from bacteria (total 27 species), archaea (total eight species) and plant
species (Arabidopsis thaliana). These were mapped to families from Bourne’s Protein Kinase
Resource (PKR, 9). Srinivasan and co-workers showed how information on other domains
tethered to the kinase catalytic domain revealed outliers in classical kinase classifications
that could be used to refine the classification [17]. They considered the composition of the
kinase accessory domains and the organisation of these domains. Classification was refined
manually using an alignment-free method to detect the similarity between sequences by
assessing short amino acid sequence patterns and structural features outside the catalytic
domain. Using this approach, they were able to detect outliers called “hybrid kinases” that
had sequence regions associated with the catalytic domains matching a particular subfamily
but regions outside the catalytic domain matching a different subfamily [17]. The standard
classification approach using only the catalytic domain sequences would not have been
adequate to capture these cases. KinG currently holds information on >2000 organisms
(including eukaryotes, viruses and prokaryotes) and allows searches for kinases based on
domain combinations [14].

Other integrated resources also exist [18–20]. In 2011, Ghosal et al. [15] developed
the protein kinase ontology (ProKinO) framework for human kinases, which now also
provides family annotations for 1321 species, by mapping sequences to KinBase (version
2012) and integrating data from COSMIC, UniProt and Reactome [15]. This framework
has been used in the analysis of cancer-associated mutations [18] and recently to annotate
dark kinases (i.e., experimentally uncharacterised) in humans [21,22]. A similar resource,
KinHub, also provides annotations specific to human kinases (http://www.kinhub.org,
accessed on 24 January 2023). KIDFamMap [19] provides a platform for accessing the
kinase conformational types and functions to gain biological insights into the selectivity of
human kinase inhibitors and mechanisms of action.

These resources provide a rich source of annotations of existing families in KinBase
or Protein Kinase Resource (PKR) (see Table 1), however most of them are based on
KinBase and are not completely up to date with sequences from all organisms in UniProt
(see Table 1). Since the Manning group developed KinBase, there has been a significant
expansion in protein kinase sequences deposited in UniProt (https://www.uniprot.org/
help/downloads [23], accessed on 24 January 2023) and other public sequence repositories.
Whilst other large resources, such as Pfam ([24], https://pfam.xfam.org, accessed on
24 January 2023) and PANTHER ([25], http://www.pantherdb.org/, acceseed on 24 January
2023) classify these proteins into evolutionary families, they do not explicitly classify them
into distinct functional families, i.e., comprising evolutionary relatives sharing similar
functional properties.

The CATH classification currently classifies the kinase functional unit into two separate
domains corresponding to the N-lobe and the C-lobe, as they are distinct globular regions.
Since both are required to provide the function, we have generated a new category of
superfamily in CATH, corresponding to the kinase ‘functional unit’, which concatenates
one or more domains contributing to the functional role of the protein. Subsequently
our CATH-FunFam (functional family) resource uses automated approaches including
agglomerative clustering and an entropy-based protocol, to segregate functionally distinct
groups by implicit identification of specificity-determining positions (SDPs) and other
functional sites [26]. CATH-FunFams have been endorsed in-silico [26,27] and by blind
independent assessment in CAFA, in which CAFA-FunFams were recently highly ranked
for prediction of molecular function [28].

In this study, we report the classification of kinase functional families (CATH-KinFams),
from all kinase sequences available in UniProt (version 2018_02) using an improved Fun-
Fam classification method (FunFam-MARC). Our automated approach has allowed us
to update information on sequences deposited in UniProt since the development of Pro-
tein Kinase Resource (PKR), KinBase, and other related kinase resources, and to identify
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new families (and subfamilies) and their relationship to families defined in Manning’s
KinBase classification.

The CATH FunFam-based protocol explicitly exploits information on the multi-domain
architecture (MDAs) of protein kinases. Our automated classification protocol identifies a
total of 2210 CATH-KinFams, the majority of which are observed to have high functional
purity in terms of EC annotations. Since mutations in protein kinases have been recorded
in several diseases especially cancer and kinases are a major therapeutic target, we also
analyse our human-associated KinFams in the context of disease information and drugs,
based on a CATH FunFam-based protocol developed earlier [29]. Our KinFam classification
is currently the most comprehensive in terms of functional families and species and the
data is available for download on Zenodo (https://zenodo.org/record/7575924, accessed
on 24 January 2023), the CATH FTP site (ftp://orengoftp.biochem.ucl.ac.uk/kinfams,
accessed on 24 January 2023) and will be made available via the CATH-FunVar website
(https://funvar.cathdb.info/ [16], accessed on 24 January 2023),. The multi-domain-based
functional family classification method designed for classification of the kinases, can be
readily extended to other important classes of enzymes and drug targets.

2. Materials and Methods

2.1. Generating CATH-KinFams

CATH typically classifies the functional unit in protein kinases into two separate
domains corresponding to the N- and C- lobes (or domains). These are represented as
the CATH superfamilies 3.30.200.20 (N-domain) and 1.10.510.10 (C-domain), respectively
(https://www.cathdb.info/, accessed on 24 January 2023). As the majority of the protein
kinase inhibitors act at the hinge region between these two domains, we have created a
new level within CATH to classify such ‘functional units’. This will clearly be valuable for
enzymes and other proteins where the functional unit straddles more than one domain.
In the context of the kinases, not only will it enable us to better understand the relation-
ships between different kinases, but it will be essential for understanding kinase–drug
interactions and enabling drug repurposing. The concept of a functional unit is illustrated
in Figure 1 (illustrated using PDB ID: 1H8F).

2.2. Updating Kinase Domain Sequences in the CATH Family Classification and Generating the
Kinase Functional Unit

The CATH kinase superfamilies were updated to include the most recent version
of UniProt (UniProt release 2018_02). This was achieved by scanning UniProt sequences
against the library of HMMs built from all CATH structural representatives using HM-
Mer3 [30]. CATH-resolve-hits [31] was then used to identify significant matches to the
kinase N- and C- domain superfamilies (CATH superfamilies ‘1.10.510.10’ and ‘3.30.200.20’,
respectively) and to other CATH domains. Kinase functional units were constructed for
each protein kinase by concatenating the domain sequences from the N- and C- lobe do-
mains. We allowed a linker (up to 20 residues long) between the two lobes to ensure that
we covered the complete kinase hinge region. The multi-domain architectures (MDA)
(i.e., the order of the domains along the protein sequence, including the kinase functional
unit and the additional domain partners) were determined using the CATH resolve-hits
(CRH) protocol [31]. CRH uses an optimisation algorithm to resolve matches to the CATH
HMM libraries and obtain a set of non-overlapping domain annotations for the sequence.

2.3. Running the FunFam-MARC Algorithm

FunFam-MARC (multidomain architecture-based clustering) is a suite of protocols, as
summarised in Figure 2. It first partitions the set of kinase functional unit sequences into
subsets of sequences having the same MDA (i.e., the same domains in the same order in
the protein sequence). Within each MDA partition, the sequences are clustered into 90%
sequence identity clusters (S90) using CD-HIT [32]. These CD-HIT clusters are the starting
point for the next step in FunFam-MARC which applies GeMMA [33] (see Figure 2a), a
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method for deriving a tree of sequence relationships in a protein superfamily. In the first
step of GeMMA, S90 clusters are annotated with experimentally characterised GO terms
(e.g., TAS) obtained using the UniProt API [34]. Since FunFam-MARC is computationally
expensive, clusters having no experimental GO annotations are discarded. HHsuite is used
to generate HMMs for each S90 cluster [35]. Subsequently, GeMMA applies agglomerative
clustering by performing all against all HMM comparisons between clusters and then pro-
gressively merging clusters with the highest scores (see Figure 2a). This generates an input
tree for FunFHMMER [27], a method that cuts the tree into clusters of functionally similar
sequences. FunFHMMer traverses the tree from leaves to the root, cutting the tree where
the branches comprise clusters with significant differences in function determining residues.
These are identified by using GroupSim [36]; see Figure 2b) which detects differences in
conservation patterns between equivalent residues in the combined multiple sequence
alignment of the two clusters being considered. Functional determinants, i.e., Specificity-
Determining Positions (SDPs) are identified as residues which are differentially conserved
between FunFam clusters.

Figure 2. FunFam-MARC protocol. (a). FunFam-MARC approach based on multi domain architectures,
(b). Overview of GeMMA/FunFHMMER protocol, (c). Example of FunFHMMER detection of specificity
determining positions, (d). Multiple iterations of GeMMA/FunFHMMER with MDA pooling.

Once all MDAs have been processed, FunFam clusters from each MDA partition
are pooled and form the starting clusters for a final run of GeMMA and FunFHMMer.
Following this final iteration of tree building and segregation into clusters, the resulting
clusters are the final kinase FunFams (subsequently referred to as KinFams). Finally, we scan
the sequences from the experimentally uncharacterised S90 clusters against the final kinase
FunFam HMMs to determine how close they are to functionally characterised FunFams to
help guide the functional characterisation of these clusters. The FunFam-MARC protocol is
illustrated in Figure 2.
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2.4. Assessing the Functional Coherence of KinFams and KinBase Classifications Using the
Enzyme Classification

We assessed the functional coherence of the Kinase FunFams (KinFams) and Kinase
families by examining the agreement in experimental EC-annotations between sequence
relatives in a given KinFam. That is, we determined whether relatives in each KinFam had
the same or similar Enzyme Classification (EC) numbers. This is an established approach
previously used to validate CATH FunFams [26,37]. The enzyme classification is a 4-digit
numerical classification scheme based on the chemical reactions of enzymes [38]. The first
digit describes the general type of reaction the enzyme undergoes; the second digit is the
subclass, reflecting the type of bond breakage or formation taking place; the third digit
represents the sub-subclass, which provides information on the chemical group involved in
the enzymatic reaction; and the fourth level indicates the substrate specificity of the enzyme.
The enzyme classification numbers of members in each FunFam were compared both at the
3-digit (EC3) and 4-digit (EC4) levels. The number of different EC codes among the relatives
within a KinFam gives a measure of the functional purity of that kinase functional family.

For each KinFam, we calculated the information content of the multiple sequence
alignment (MSA). This is captured as a diversity of position score (DOPs score) using
Scorecons [39]. A DOPs score above 70 is a good indicator of a high diversity in the
sequences. For FunFams with sufficient information content (DOPs > 70), Scorecons was
also used to calculate the residue conservation at each position in the MSA. Previous
analyses have shown that highly conserved residues in a FunFam are enriched in known
functional residues (e.g., catalytic, ligand binding or protein interface residues) [26]. Thirty-
two percent of the KinFams have a high DOPs score (>70). FunFams with low DOPs either
contain very few sequences (<6) or are very species specific and lack diverse sequences.

As KinBase only provides sequences using their internal naming scheme, in order
to extract Enzyme Commission codes (EC) we mapped KinBase entries to UniProt using
BLASTP [40] to retrieve matches with 100% sequence identity.

2.5. Mapping of the CATH KinFams and KinBase Classifications

To compare the predicted CATH KinFams with the curated KinBase family classi-
fication, sequences from each KinBase family and subfamily were scanned against the
KinFams-HMMs library using HMMER3 [24] with an e-value cutoff of 1 × 10−18 to give a
mapping between the classifications.

2.6. Mapping Drug Information from ChEMBL to Human KinFams

We previously developed a protocol [29] which associated domain families with
drugs, by calculating the over-representation of drug targets within domain families. To
identify druggable KinFams associated with human protein kinases, we adopted a similar
approach: an FDA-approved kinase-inhibitor drug dataset was extracted from ChEMBL
release 30 [41], https://www.ebi.ac.uk/chembl/, accessed on 2 November 2022). A drug
was considered as a small molecule with therapeutic application, with direct binding to a
single protein (ASSAY-TYPE = “B”), with a maximum phase of development = “4”, which
indicates that the drug has been approved. Those with weak activity were filtered out by
only considering a drug-target activity stronger than 1mM and a pChEMBL value of 6.
The pChEMBL value is the measure of the half-maximal potency/affinity on a negative
logarithmic scale. The anatomical therapeutic code (ATC-code) was used to select drugs
that are protein kinase inhibitors. The ATC code classifies drugs into different groups at
different levels (https://www.whocc.no/atc_ddd_index/, accessed on 24 January 2023).
The code “L01E” corresponds to antineoplastic drugs which are protein kinase inhibitors.

2.7. Obtaining 3D Structures (PDB and AlphaFold2) for Human-KinFams

For all the sequences in human associated KinFams, we extracted the kinase do-
mains from the PDB (https://www.rcsb.org/, accessed on 23 November 2022 [42]) or
from the AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/, accessed on
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23 November 2022 [43]), as a 3D-model based on the sequence region of the functional
unit in the UniProt sequence. We removed all AlphaFold2 models that did not fulfil the
internal quality criteria established in Bordin et al. 2022 [44], which filters models based
on below- pLDDT score > 70, more than 3 secondary structural elements, less than 65% of
residues not in secondary structures, less than 30% of residues in long unordered regions,
core packing and globularity.

We examined the extent of the structural diversity within kinase functional families
within each human KinFam, by doing all-against-all structure comparisons of domain
structures using the Sequential Structure Alignment Program (SSAP) [45].

3. Results and Discussion

3.1. Updating the CATH Kinase Superfamily

Following the update of the CATH kinase domain superfamilies with sequences from
UniProt (version release 2018_02) and concatenating N- and C- lobe sequences, 330,085 kinase
functional unit sequences were obtained. As reported by Martin et al. [17], many kinases
are multi-domain proteins and there is considerable diversity in their architectures, i.e., in
the nature and order of domains in the protein sequence. Sequence distribution by MDA,
is shown in Figure 3. There are 245 MDAs (out of 6958) comprising 100 sequences or more
(see Figure 3).

Figure 3. CATH kinase sequence distribution by multi–domain architecture (MDA).

The majority of MDAs are associated with small numbers of sequences whilst the
largest 100 MDAs comprise 86.7% of the total sequences. The topmost populated domain
architectures, in terms of number of sequences, are illustrated in Figure 4. It is worth
noting that ~50% of the kinase sequences possess only the fused canonical N-C architecture
(3.30.200.20-1.10.510.10) (Figure 4a).
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Figure 4. The most populated kinase multidomain architectures containing >5000 kinase sequences
are shown. N-lobe is shown in blue, and the C-lobe is shown in cyan. The accessory domain is shown
in grey. The domain architectures are illustrated using Alphafold2 structures from the following
UniProt entries- (a) L7I0P6, (b) A0A445ETT0, (c) A0A178WEY8, (d) A0A444WN80 and (e) Q6XAT2.

Within each of the 245 different MDA groups, kinase sequences were first clustered
using CD-HIT at a 90% sequence similarity, resulting in 12,392 starting clusters across all
MDAs. There were 39 clusters without experimental GO annotation that were not included
in the FunFam generation but subsequently scanned against FunFams to identify the
closest GO-annotated FunFams. The FunFam-MARC protocol was applied (see Methods)
generating 2210 Kinase FunFams referred to as KinFams. Our KinFams contained a total of
330,085 sequences, a more than 40-fold increase over the number of sequences currently
provided by KinBase.

The majority of KinFams are organism-specific while a few KinFams represent se-
quences from more than 250 species (Figure 5).

Figure 5. Species distribution associated with KinFams.
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3.2. Assessing the Functional Coherence of the KinFams

We analysed a subset of 543 KinFams comprising a total of 124,000 sequences (37.6% of
the total kinase sequences), as these KinFams had one or more relatives with an experi-
mentally characterised EC classification. We determined the number of EC terms in each
KinFam, considering enzyme classification (EC) numbers at both the 3-digit and 4-digit EC-
levels. Kinase sequences fall into 24 EC4 classes. Figure 6a,b shows the number of KinFams
that fall into the different EC3 and EC4 terms assigned to kinase sequences. Figure 6c,d
shows the number of EC terms assigned to KinFams.

Figure 6. Distribution of EC-terms at levels 3 (a) and 4 (b) found in the KinFams for the complete set of
330,085 sequences classified in KinFams. Numbers of KinFams with one or more EC at level 3 (c) and
EC at level 4 (d) in KinFams. It can be seen from Figure 6c,d that the majority of KinFams are associated
with one EC3 and one EC4 term. For a subset of sequences in KinFams that map to KinBase, the
right panel of the figure compares the numbers of unique EC terms at level 3 for KinBase (e) and
KinFams (f) and level 4 for KinBase (g) and KinFams (h).

We compared the functional coherence of our KinFams classification with the KinBase
classification using the same approach of considering the number of unique EC terms in
each KinBase family and subfamily. We compared with KinBase because this resource was
manually curated using experimental annotations for the sequences and is one of the most
widely used and highly cited kinase classifications available. To make this comparison, we
mapped KinBase sequences to KinFams to identify equivalent sequence sets (see Methods).
It can be seen from Figure 6 that KinFams are more functionally coherent than KinBase
subfamilies; the majority (85%) having only one EC4 term, compared to 73% for the
KinBase classification. At the EC3 level, both KinFams and KinBase classifications have
most families annotated with only one EC3 term 97% of relatives in KinFams and 92% of
relatives in the KinBase classification have only one EC3 annotation.

The improvement in EC functional coherence in KinFams was associated with the
splitting of some KinBase subfamilies by the FunFam-MARC protocol. Figure 7 shows
that 163 KinBase families and subfamilies have one-to-one mapping with KinFams, while
342 are split into two or more KinFams.
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Figure 7. Mapping of KinBase to KinFams. The figure illustrates how many KinBase families and
subfamilies are split into one or more KinFams by the FunFam-MARC protocol.

For certain KinBase groups and families, a further level of subclassification in subfam-
ilies is not available. For a subset of these KinBase groups and families, KinFams is able to
capture finer granularity in function by expanding the number of sub-families.

The group-wise expansion in the number of sub-families in KinBase due to KinFams is
shown in Figure 8. The highest expansion (~5-fold) of family space in KinFams is observed
for the KinBase ‘Other’ group. For the other kinase groups, the expansion varies from
about 1.5-fold in case of two groups (Atypical and PKL) to about 3-fold expansion in the
case of six groups (CMGC, TLK, CAMK, TK, AGC, STE and CK1). No expansion is seen in
the case of the RGC group.

 

Figure 8. Group-wise expansion of subfamilies in KinFams, as compared to KinBase.

Whilst our EC analyses of the KinBase classifications suggested that a majority (73%)
are likely to be functionally coherent, only a small proportion of KinBase sequences (11%)
are experimentally annotated and therefore the subclassification of KinBase families by
our KinFam protocol could reflect the detection of differences in Specificity-Determining
Positions (SDPs). Below, we provide some examples illustrating the ability of our strategy
to detect functional differences in relatives within KinBase families based on conservation
of SDPs.

3.3. Example Illustrating KinFam Sub-Classification of the KinBase JAK Family

The TK:Jak KinBase family includes the genes coding for the JAK1, JAK2, JAK3
and TYK2 proteins. These proteins comprise two distinct types of kinases, one of which
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is known to be catalytic and the other is reported as a pseudokinase (i.e., involved in
non-catalytic, regulatory functions) [46]. For example, human JAK1 (UniProt ID: P23458)
proteins are all annotated as EC 2.7.10.2. They comprise two kinases: the non-catalytic
kinase (residues 583-855) and a catalytic kinase (residues 875-1153). Our protocol correctly
subclassifies these into two distinct KinFams, namely KinFam-101 (catalytic) and KinFam-
104 (non-catalytic, i.e., pseudokinase).

Our SDP analyses (see Figure 9) clearly indicate a variation between these two Kin-
Fams in several crucial sites of the kinase: the key HRD motif in the catalytic loop (RD is
substituted with GN in the non-catalytic kinase) and within the DFG motif of the activation
loop (F to P in the non-catalytic domain). Moreover, the C-helix E925, in the active kinase,
which is in contact with the key active site K908 of the B3-strand (in the N-lobe), is equiva-
lent to A/T638 in the pseudokinase. The salt bridge between the glutamic acid and lysine
is crucial for the formation of the activated conformation of the kinase, as well as binding
ATP, and the mutation might be partially responsible for the inactivity of the pseudokinase.

Figure 9. Specificity-determining positions (SDPs) predicted using CATH-KinFams: an example
using the TK: JAK family. (a) TK: JAK family from KinBase is subdivided into two KinFams using
CATH, each representing distinct kinases (catalytic and non-catalytic). (b) List of top-ranked SDPs
(red) that are specific to each KinFam: 101 and 104: SDPs occur at/near the active site (within
HRD motif in catalytic loop), at the DFG motif of the activation loop (residue numbering is shown
according to the active kinase of JAK1, KinFam-101, PDB:6W8L). (c) Superposition of structures of the
representatives of the catalytically active (orange, PDB: 6W8L, domain 875-1153) and pseudokinase
(grey, AF_P23458, domain:583-855) of JAK1 (UniProt id: P23458). SDPs are shown in red. Ligand
molecule from PDB:6W8L (namely R4S, which binds at the ATP-binding site), is shown in blue.
(d) Close-up view of SDPs and their location within the catalytic and activation loops. Active site
residue (D1003) in HRD motif is shown as asterisk. The other two active site residues are D1022 (from
DFG motif) and K908 in the N-lobe (shown in magenta).

The impacts of these mutations have been previously discussed in the literature [47], in
a study which also highlights the lack of crucial autophosphorylation sites in the A-loop of
the pseudokinase. Our SDP analysis, based on the KinFam classification, identifies further
possible sites responsible for the inactivity of the pseudokinase, such as those involved
in ATP binding (next to the DFG motif and the active site), as well as sites near the active
site pocket: proline 1044, in contact with the active site, is mutated to an arginine in the
pseudokinase, which may prohibit the ATP or phosphorylation substrate from entering
into the active site pocket. The position of the SDPs is shown on Figure 9 below.
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3.4. KinFam Subclassification of the KinBase HIPK Subfamily

HIPK (homeodomain-interacting protein kinase) is a subfamily belonging to KinBase
family DYRK and the group CMGC. The HIPK subfamily comprises co-repressors that
differentially interact homeodomain transcription factors [48].

The KinBase subfamily HIPK is divided by the FunFam-MARC protocol into two
KinFams-10 and 319. KinFam-10 contains vertebrate HIPK1, HIPK2 and HIPK3 proteins
(which share more than 90% sequence identity with each other). These are primarily
present in the nucleus and expressed in all tissues [49]. By contrast, KinFam-319 consists
solely of HIPK4 proteins, which occur in cytoplasm and are expressed mainly in testis
and brain. The classification of HIPK4 into a distinct KinFam, is consistent with the fact
that the HIPK4 protein is known to be a distant member of the KinBase HIPK family
(sharing only 50% sequence identity with other HIPK1-3). In contrast to other HIPKs [1–3],
HIPK4 occurs in the cytoplasm and lacks a nuclear localisation sequence and homeobox-
interacting domain [49–52]. Additionally, in vitro studies confirmed that HIPK4 plays a
unique role in regulating phosphorylation of manchette protein RIMBP3 during spermio-
genesis [53]. A recent genome-wide microarray study suggested that HIPK4 does not
primarily act through transcriptional control (unlike other HIPKs1-3), and that HIPK4 is
essential for acrosome–acroplaxome function and male fertility [54]. The growing evidence
from various experimental studies thus supports a distinct functional role of HIKP4 and
endorses assignment to a distinct KinFam (KinFam-10), compared to the other HIPK1-3
proteins (KinFam-319).

Our SDP analysis shows that the majority of differentially conserved residues occur
within the ‘activation loop’, that harbors the tyrosine residue required for autophosphory-
lation of HIPKs (Figure 10). This is particularly interesting because catalytic activity and
subcellular localization of HIPKs is observed to be dependent on tyrosine autophosphory-
lation in the activation loop [49].

Figure 10. Specificity-determining positions (SDPs) predicted using CATH-KinFams: an example
using the HIPK family. (a) HIPK family from KinBase is subdivided into two KinFams using CATH,
each represents a distinct set of HIPK proteins (b) list of top-ranked SDPs (in red) that are specific to
each KinFams-10 (HIPKs 1-3, cyan) and KinFam-319 (HIPK4, green). The majority of SDPs occur at
and near the activation loop. SDPs (red) are numbered and mapped according to the AlphaFold2
af_Q8NE63_model. (c) Superposition of representative structures from KinFam-10 (PDB: 6P5S, green)
and KInFam-319 (af_Q8NE63_model, HIPK4, cyan), respectively. Active site residues (K40, D136,
D158) are shown in magenta; Ligand molecule (namely 3NG), which binds at the ATP binding site is
shown in blue. (d) Close-up view of SDPs (in red) and their location within the ATP-binding site and
activation loops.
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The activation loop of the DYRK family has a characteristic YxY element, whose
second tyrosine is auto phosphorylated for kinase activation [55]. This motif is known to
be altered to STY and EPY in HIPK1-3 and HIPK4, respectively. Interestingly, most of the
SDPs are observed at and near this tyrosine-containing motif (See Figure 10). Additionally,
E24Q substitution is observed in the P-loop lining the ATP-binding pocket, which also
forms an interaction with an active site residue in the N-lobe. In summary, we identified
additional SDPs within the activation loop, which are likely to be associated with distinct
functional phenotypes in the HIPKs and which can suggest further investigation using
experimental studies.

3.5. Merging of KinBase Groupings by KinFams

In some cases, the FunFam-MARC protocol merges distinct KinBase groupings into
a single KinFam. The majority (82%) of the KinFams (73% of the sequences) map to a
single KinBase family or subfamily. However, 18% of KinFams (comprising 4% of the total
kinase sequences in KinFams) contain sequences from two or more KinBase subfamilies,
whilst 11% of KinFams (2% of sequences) merge sequences from KinBase families and
4% of KinFams (0.3% of sequences) merge sequences from KinBase Groups (Figure 11,
Table S3). This suggests that KinFams may sometimes miss subtle variations, for example
between closely related species. It may also reflect the fact that the KinBase manual curation
exploited other information besides sequence data, e.g., tissue specificity.

 

Figure 11. An example illustrating the merging of members of distinct families by the FunFam-MARC
protocol. (a) KinFam-264 comprises 104 sequences from the KinBase TKL-IRAK family including
calcium/calmodulin-regulated receptor-like kinases from plants (CRLK1 and CRLK2, e.g., UniProt
ID: Q9FIU5). KinFam-264 merges a singleton sequence from TKL-RIPK, i.e., CRLK1 from Zea Mays
[UniProt ID: A0A1D6J105]. (b) Closer inspection of conserved sites (shown in green) identified by
Scorecons [39] indicates that many (91%) of the highly conserved residues (sites with Scorecons ≥ 90)
in the larger group were shared by the singleton sequence. Conserved sites that are in the key
functional regions are indicated in the figure-b. (c) The conserved sites are depicted using alphafold2
structures from TKL: RIPK (UniProt ID: A0A1D6J105, blue), and from the representative from TKL:
IRAK (Q9FIU5, grey). The key regions are annotated. The majority of conserved sites are located in
the N-lobe (known to harbor the calmodulin-binding site), the catalytic loop, the activation loop and
the substrate binding site.

We examined some of these cases and observed that most of the time, the protocol
was merging a single sequence with a much larger set of KinBase sequences and that many
of the highly conserved residues in the larger group were shared by the singleton sequence
(see Figure 11). Our protocol exploits information on differentially conserved positions to
segregate functionally distinct relatives. However, when one of the FunFams is very small
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(i.e., having few sequences) it can be difficult to determine the highly conserved positions
unless the sequences are from very distant species.

3.6. Increase in Kinase Family Space in KinFams Relative to KinBase

Our scans bring in protein kinases from all kingdoms and cover a total of 34,475 unique
taxa (i.e., species). There is a 5-fold increase in the coverage of human kinase sequences relative
to KinBase (2666 human domains in KinFams vs. 530 in KinBase). Out of 1,660,849 UniProt
sequences assigned to KinFams, 47,359 (~3%), were annotated as putative or uncharacterised
proteins in UniProt, so classification in KinFams is providing putative functions for these
proteins based on the GO experimental annotations for the matched KinFam.

Our KinFam classification identifies many more functional subfamilies than KinBase.
Whilst some of these families may relate to a finer subclassification of KinBase families
based on SDPs, some are likely to be novel families (see also below). Sequences from a more
recent version of UniProt (release 2022_03) were scanned against the KinFam HMMs and
sequences with an e-value below 1e-18 (threshold chosen to ensure functional similarity)
were denoted as matches (see Materials and Methods), resulting in 1,790,576 matches from
1,660,849 UniProt entries, since some proteins contain more than one kinase domain.

A total of 505 (out of 579) KinBase families (i.e., 208 families and 297 subfamilies)
map to 969 KinFams (out of 2210 KinFams). The remaining 74 KinBase families were not
mapped to any KinFams as they were small or single sequence families, and the sequences
are no longer maintained by UniProt. A further 1215 out of 2210 KinFams, are putative
novel families comprising sequences not classified in KinBase. However, these KinFams
appear to be functionally close to a KinBase family, i.e., they match the HMM for that family
with an E-value of 10−18. This threshold has been suggested in previous studies to be
associated with the functional similarity in catalytic mechanism and may be associated with
some similarity in specificity. The remaining KinFams (26/2210) are outside the 1 × 10−18

(sequence similarity space) from a KinBase family and are therefore more likely to be
completely novel families. Where experimental functional annotations are available for
these potentially novel families, they are provided in Supplementary Table S1.

3.7. Identifying Druggable KinFams

Since human kinases have been implicated in several diseases including cancer, we
mapped clinically approved drugs to human KinFams. Sixty-one out of 246 human Kin-
Fams have relatives that are associated with drugs and diseases using data from ChEMBL
version 30 [41] for drugs and from UniProt-Disease (https://www.uniprot.org/help/
involvement_in_disease, accessed on 2 November 2022) for diseases.

Kinases represent the second most targeted superfamily after the GPCRs, and they
have the ability to provide novel usage of drugs to families associated with diseases which
may help in repurposing available drugs. Therefore, we focused on identifying further
druggable KinFams by means of a statistical analysis we used previously [29]. This connects
drug with protein families, based on the statistical overrepresentation of the targets of
the drug among the relatives of a protein family. We identified 28 druggable KinFams
(Figure 12), that were associated with 47 drugs (BH False discovery q-value < 0.05) (See
details in Supplementary Table S2).

Our analysis of the druggable KinFam shows a multi-drug association of drug com-
pounds with the numbers of drugs associated with KinFams, ranging from 1–7. Most
of the approved drugs associated with the KinFams are antineoplastic drugs (i.e., they
prevent the growth of new tissues that may become cancerous). For example, the KinFam
(“kinases_4.3-FF-000030”) is associated with the drugs ceritinib (CHEMBL2403108; used
for the treatment of non-small cell lung cancer), ponatinib (CHEMBL1171837; developed
for the treatment of chronic myeloid leukemia) and nintedanib (CHEMBL502835; used for
some types of non-small-cell lung cancers).
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Figure 12. KinFams association with drug targets, i.e., 28 druggable KinFams based on overrepresen-
tation of drug targets in the KinFam (shown as asterisk).

We have previously shown that relatives within the same druggable CATH FunFams
are structurally conserved and have high conservation in the drug binding site [29]. There-
fore, knowledge of the drug binding site in one or more of the relatives in a druggable
KinFam may be useful for inheriting drug binding information to other relatives [56].

We already have experimental Protein Databank (PDB) structures for some relatives
in some of the human KinFams. For the remaining sequences we extracted good quality
models (see Methods Section 2.7) from the AlphaFold2 portal [43,57], where available. There
are 246 human KinFams (comprising a total of 1379 sequences). Using the Alphafold2 and
PDB domains associated with all sequences in these KinFams we performed and all-vs-all
structural comparisons of relatives in each KinFam using SSAP [4]. We observed that for
80% of the human KinFams (75% of druggable KinFams) there is a very high average
structural similarity between the relatives (RMSD < 3 Å, SSAP structure similarity > 90 (out
of 100). Therefore, these KinFams may be particularly valuable for inheriting information
on the drug binding pocket.

Druggable KinFams in which relatives share considerable similarity in structure, may
also be valuable to consider when narrowing down therapeutic targets for a disease condi-
tion. This could be further substantiated by carrying out molecular dynamic simulations to
establish potential binding energies for the various drugs associated with a druggable Kin-
Fam. Furthermore, relatives in the KinFams could be further explored to suggest possible
side-effects of the drugs. However, this is beyond the scope of this current paper.

4. Conclusions and Future Directions

We developed the FunFam-MARC protocol which considers the multi-domain ar-
chitecture of protein kinases and specificity determining residues to classify kinases into
2210 distinct kinase functional families (KinFams). KinFams are observed to have a higher
functional purity in terms of EC annotations than families in the widely used canonical
KinBase classification. This is due to the fact that we subclassified many (67%) of the
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KinBase families into two or more distinct KinFams. Although some apparently pure
KinBase families may be split unnecessarily, given the lack of experimental annotation in
most KinBase families, it is difficult to determine the extent to which we might over-split
families. For example, in mammals, there may be differences in kinase interactions and
thus functional specificities of kinases in different tissues, leading to changes in SDPs and
giving rise to new KinFams. By contrast we rarely merge KinBase families.

A major advantage of our KinFam classification is the functional coherence of our
functional families, which ensures that relatives can be easily aligned to give robust multiple
sequence alignments that can be further analysed to detect highly conserved residues likely
to be associated with the specificity of the kinase.

Our classification approach is based purely on protein sequence information and does
not take account of any experimental information on the oligomerization state, or known
functional properties of the proteins, including substrate specificity, activity or subcellular
localisation. Whilst these annotations are publicly available for some kinases, they are
not comprehensive and therefore currently not sufficient for large-scale automated classifi-
cations, similar to our KinFams resource. However, previous analyses have shown that
our CATH-FunFam protocol tends to implicitly capture residues differentially conserved
between relatives associated with different multidomain compositions or oligomerization
states, i.e., residues involved in domain-domain or protein-protein interfaces [26,27]. Fun-
Fams can also capture residues involved in promiscuous or moonlighting functions of the
enzyme [58]. Furthermore, since KinFams are built from sequences in UniProt, it is possible
to use the Uniprot ID to obtain a range of additional structural and functional annotations
available from other resources (e.g., GO, PDB, REACTOME) to examine the similarity of
these properties across a KinFam.

We provide a catalogue of protein kinase families (KinFams) comprising sequences
available in UniProt version 2018_02. We also provide information on the predicted
multidomain composition of each kinase sequence with information on CATH superfamily
assignment for each domain so that users can determine all of the partner domains in
the kinase, beside the functional unit. We also provide hidden Markov models (HMMs)
generated for each of the KinFams using HMMer3 [30,59]. The comprehensive mapping of
UniProt sequences to KinFams revealed that our kinase family space covers all available
taxa in UniProt (release 2022) including eukaryotes, prokaryotes and viruses.

We demonstrated the application of our previously developed protocol [29] to find drug-
gable families in the set of human protein kinases. Some of the structurally uncharacterised
human (30%) KinFams have AlphaFold2 models of very good quality (i.e., pLDDT > 90).
For some of these (80.8%), the high structural similarity between relatives is further evi-
dence of a high functional similarity and suggests that drug binding characteristics can be
inherited across relatives. The high-quality models will also be valuable for determining
whether disease associated mutations lie on or close to functional sites and could be a
modifying function or whether they are buried in the protein and the mutation could be
destabilising the protein. In a small proportion of cases, we merge two or more KinBase
families, but our FunFam-MARC protocol rarely merges KinBase groups.

We have provided information on the KinFams via our CATH-FunVar (Functional
Variation) resource [16]. This was previously established to display cancer associated
CATH FunFams enriched in driver mutations. Whilst we have provided an initial set of
predicted structures for human KinFams, we also aim to bring in alphfold2 domains of
high quality (pLDDT ≥ 90) for all UniProt sequences in KinFams. The human KinFam
classification will also be made available through CATH-FunVar. Thirty-two percent of
KinFams have high information content (DOPs > 70) for which we provide information on
conserved residues. This data can aid the characterisation of functional sites involved in
the specificity and mechanism of the kinase. Where possible, we provided information on
the EC purity of the KinFam as measured based on available experimental EC annotations
for the relatives. We also provided information on the KinBase families that map to the
KinFam to highlight KinFams where we merged KinBase families. This will allow users

165



Biomolecules 2023, 13, 277

to derive multiple sequence alignments for these families and verify the degree of likely
functional coherence across the family, by analysing highly conserved sites shared by the
majority of the relatives.

Our KinFam classification was generated to test the ability of our FunFam-MARC
protocol to identify functionally distinct families in a highly populated evolutionary super-
family. Only sequence data has been used to generate the classification.

In future, we will explore the value of using the predicted structural data now available
from the AlphaFold2 portal to improve our FunFam classification protocol. We hope that
our KinFam data will facilitate the study of this diverse and medically relevant superfamily
and help guide other kinase classification schemes and the experimental targeting of kinases
that are predicted to have novel specificities.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13020277/s1, Table S1: Kinfams outside E-18, Table S2:
28 druggable KinFams in humans, Table S3: KinFams to KinBase mapping.
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Abstract: Smoking is a widely recognized risk factor in the emergence of cancers and other lung
diseases. Studies of non-cancer lung diseases typically investigate the role that smoking has in chronic
changes in lungs that might predispose patients to the diseases, whereas most cancer studies focus
on the mutagenic properties of smoking. Large-scale cancer analysis efforts have collected expression
data from both tumor and control lung tissues, and studies have used control samples to estimate the
impact of smoking on gene expression. However, such analyses may be confounded by tumor-related
micro-environments as well as patient-specific exposure to smoking. Thus, in this paper, we explore
the utilization of mutational signatures to study environment-induced changes of gene expression
in control lung tissues from lung adenocarcinoma samples. We show that a joint computational
analysis of mutational signatures derived from sequenced tumor samples, and the gene expression
obtained from control samples, can shed light on the combined impact that smoking and tumor-
related micro-environments have on gene expression and cell-type composition in non-neoplastic
(control) lung tissue. The results obtained through such analysis are both supported by experimental
studies, including studies utilizing single-cell technology, and also suggest additional novel insights.
We argue that the study provides a proof of principle of the utility of mutational signatures to be used
as sensors of environmental exposures not only in the context of the mutational landscape of cancer,
but also as a reference for changes in non-cancer lung tissues. It also provides an example of how a
database collected with the purpose of understanding cancer can provide valuable information for
studies not directly related to the disease.

Keywords: mutational signatures; smoking; lung cancers; APOBEC; immune response to smoking;
cell-type composition; goblet cells; ciliated cells; basal cells

1. Background

Over the last few decades, the scientific community has continued to collect large
quantities of biomedical data, typically organized in specialized databases. One such
effort, The Cancer Genome Atlas (TCGA), a landmark cancer genomics program, includes
data on over 20,000 primary cancer and matched normal samples, spanning 33 cancer
types. As research questions continue to evolve, such historical data, combined with new
computational approaches, remain fundamental for generating and testing new hypotheses
and suggesting new experimental analyses.

Many lung diseases, including cancer, are associated with environmental factors, such
as smoking or air pollution. Prolonged exposure to these factors often leads to chronic
changes in lung structure and function. However, interactions between such environmental
exposures and molecular-level changes in lung function are not fully understood. The
amounts of environmental exposures are difficult to measure, making it challenging to
quantify their impacts. In some cases, individuals might even be unaware of being exposed
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to harmful elements. Even when a sustained exposure can be established, as it is the case in
smoking, the level of the exposure is often under-reported [1]. Furthermore, cigarette smoke
contains a mixture of chemicals [2], and many factors, such as cigarette type, strength,
and smoking habits, also contribute to the net exposure to individual factors. To bypass
this challenge, studies typically resort to using binary classification—ever smoker vs. never
smoker (e.g., [3])—even though continuous measurements could be more informative. The
impact of cigarette smoking might also be indirect. For example, it is known that cigarette
smoking is one of sources of chronic inflammation [4], which might in turn lead to chronic
obstructive pulmonary disease (COPD) or cancer. Cigarette smoking has been also linked
to differences in response to immunotherapy [5–11]. Thus, in order to better understand the
process of emergence of lung diseases, it is important to develop computational approaches,
which, while leveraging existing data, can help to untangle the impact of various factors on
molecular changes in lung tissue. The emerging concept of mutational signatures can offer
an interesting opportunity to uncover hidden relations between cellular level changes and
a certain class of external exposures.

Smoking, and many other environmental exposures, are known to be mutagenic.
The effects of such mutagenic exposures have been studied extensively in the context of
cancer [12,13] and recent studies leveraged the idea of mutational signatures—characteristic
mutation patterns imprinted on DNA molecules by specific mutagens [14–18]. Mutational
signatures are typically defined based on a partition of mutations into mutation categories.
Most studies utilize mutation categories defined based on six types of single nucleotide
substitutions (C > A, C > G, C > T, T > A, T > C, and T > G), considered in the context of
the 5′ and 3′ flanking nucleotides, yielding 96 mutation categories (e.g., TCC > TAC, and
CAG > CTG). Given such categories, mutational signatures are defined as multinomial
distributions of mutation counts over these categories. Following the pioneering paper of
Alexandrov et al. [17], several computational methods have been proposed to infer such
signatures based on large cancer datasets. The Catalogue of Somatic Mutations in Cancer
(COSMIC) contains a reference set of signatures defined using the 96 mutation categories
mentioned above. COSMIC signatures have been broadly explored and many, but not all,
have been linked to specific mutagenic processes. A decomposition of somatic mutations in
a tumor genome into COSMIC signatures and mutation counts attributed to each signature
(signature exposure) can provide patient-specific information about mutagenic factors
contributing to the somatic mutations in the tumor (reviewed in [19–22]).

Mutational signatures can be easily inferred from bulk genome sequencing of tumor
samples. Although the influence of environmental factors, such as smoking, is not restricted
to tumors but also affects the whole organism, mutations in non-cancer cells are not
common and are difficult to capture by bulk sequencing since such cells are not related
by common ancestry from a tumor-initiating cell. Since mutagenic processes caused by
environment-related mutagens are exogenous for both cancer and non-cancer samples,
signature exposures inferred based on cancer mutation data can be used to estimate the
strength of the corresponding environmental factors acting on non-cancer cells as well.
However, while considering environmental processes through the lenses of mutational
signatures provides unique opportunities, it also comes with its set of challenges. Some
environmental factors, including cigarette smoke, are mixtures of many potentially harmful
components. While some such components might be uniquely associated with smoking,
others might be present in other contexts as well. In addition, even if the sample itself
is non-neoplastic, it should not be ignored that the sample donor was a cancer patient.
Conveniently, in many cancer types, tumor growth is correlated with a specific mutational
signature (SBS1), allowing for pinpointing correlations that could be due the disease’s
status rather than environment. Finally, the etiologies of many mutational signatures are
not fully understood, and not all chemicals impacting cell function are mutagenic but might
instead co-occur with mutagenic exposures. Thus, as in any association-based analysis,
additional studies might be required to obtain mechanistic explanations of the uncovered
associations (see Section 3).
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In this paper, we explore the application of the TCGA data for providing a better un-
derstanding of the relation between smoking (and other external processes) and molecular-
level changes in the lung. Utilizing mutational signatures, derived from cancer lung tissue,
and gene expression, derived from the corresponding normal (non-neoplastic control)
samples, we hypothesize that such data can inform about the impact of environmental
processes on the function of normal lung tissue (Figure 1). We take two complementary
computational approaches in our analysis; First, utilizing an approach developed in a
previous study [23], we analyzed the relation between patients’ exposures to mutational
signatures and gene expression in control samples. Next, recognizing that chronic changes
might be related to cellular reprogramming on the tissue level, we utilized methods to
decompose bulk samples into cell type proportions to uncover correlations of signature
exposures with changes in epithelial and immune cell type proportions. Our study demon-
strates the usefulness of such a joint analysis, recapitulating much of the known associations
obtained by previous studies (including results obtained using single cell analyses) and
providing additional novel insights. It provides a proof of principle of the utility of muta-
tional signatures to be used as sensors of environmental exposures not only in the context
of the mutational landscape of cancer, but also as a measurement of important exogenous
influences on non-cancer tissues.
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Figure 1. The analysis overview of the impact of smoking and exogenous processes on non-neoplastic
lung tissue.Given a tumor and control sample from the same patient, the tumor sample is used as a
readout of mutational signatures, while the control sample is used as a readout of changes in gene
expression in non-neoplastic control as a function of mutation signature exposure. The combined
analysis of mutational signatures and gene expression with ECoSigClust uncovers functional changes
in gene expression (upper panel), while the analysis of these signatures leveraging CIBERSORTx
uncovers changes in cellular composition (lower panel) and sheds light on their correlation with
exposures to exogenous processes.

2. Results

2.1. Properties of Mutational Signatures Observed in LUAD Patients

Smoking is a widely recognized risk factor in the emergence of lung diseases. It is
also one of the primary mutagens contributing to the emergence of lung adenocarcinoma
(LUAD). Previous studies have identified a specific mutational signature (SBS4) that is
uniquely associated with smoking [15] and is not observed in non-smokers [24]. This
signature is very similar to the mutational signature induced in vitro by exposing cells to a
known tobacco smoke carcinogen benzo[a]pyrene, and was shown to correlate with pack
years of smoking [15]. This provides strong evidence that SBS4 is a direct consequence
of tobacco carcinogens and presents a unique opportunity to study the relation between
environmental exposures, represented by mutational signatures from tumor sequencing,
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and gene expression from control samples. Importantly, even in the context of LUAD—a
cancer type that is related to smoking—information on the smoking status is often missing.
Quantification of the signature exposure allows to bypass this issue, providing an unbi-
ased estimate of exposure to smoking. We utilized TCGA LUAD mutation data to infer
mutational signatures in individual cancer patients, as described in the Methods section.

In addition to the presence of the SBS4 mutational signature in TCGA LUAD data,
the genomes of LUAD patients also harbor five additional COSMIC mutational signatu-
res—SBS1, SBS2, SBS5, SBS13, and SBS40 (Methods). Three LUAD signatures—SBS1, SBS5,
and SBS40, are often referred to as “clock-like” signatures, as their strength is positively
correlated with patients’ age in many (but not all) cancer types. However, no such correla-
tion is observed in LUAD patients (Figure S1B). Such loss of correlation with age suggests
the existence of other factors that accelerate (or otherwise modify) the accumulation of
naturally occurring mutations.

Out of the three clock-like signatures, SBS1 is the best understood. It is assumed to arise
due to a spontaneous or enzymatic deamination of 5-methylcytosine during replication.
Thus, SBS1 is gained during cell division and its accumulation is accelerated in tumor.
Consequently, the exposure of this signature is used to estimate the timing of the tumor
initiating event [25]. Consistent with this interpretation, we found that in LUAD, SBS1 is
highly associated with primary tumor grade (p-value < 4.8 × 10−5, Figure S1B).

SBS5 is present in nearly all cancer types but its etiology is less understood. As it
is frequently correlated with smoking [26], including in LUAD (Figure S1B), it might be
the result of exposure to environmental causes occurring with smoking, but also broadly
present in other, smoking-independent, contexts. One potential cause might be the accu-
mulation of mutations due to reactive oxygen species (ROS) that play an important role in
environment-related mutagenesis, and are prominently associated with smoking [27,28].
SBS5 has also been previously linked to the NER DNA repair pathway [29], but the exact
mechanism remains unknown.

The accumulation of SBS40 mutations with age in some cancer types suggests that
it might also be related to environmental factors. This is a recently defined signature,
characterized by a relatively uniform distribution of mutation types, similarly to SBS5. This
renders its contribution uncertain [18]. In the TCGA LUAD dataset, the signature strength
of SBS40 is correlated with the signature strength of SBS4 (Figure S1). Thus, we consider
these two signatures together in our analysis.

The two remaining signatures, SBS2 and SBS13, are attributed to mutations introduced
by the AID/APOBEC family of cytidine deaminases enzymes. The activity of these enzymes
is often related to innate immune response [30]. For example, the strength of these signatures
has been shown to correlate with the expression of immune-related genes and pathways [23].

The cause of the over-activity of APOBECs in LUAD is yet to be established, but Alexan-
drov et al. speculated that the cellular machinery underlying SBS2 and SBS13 can be
activated by tobacco smoking, perhaps as a smoking-related inflammatory response [15].
Indeed, it has been observed that cigarette smoke incites a potent inflammatory reaction in
the airways and alveoli [31], and, in LUAD data, SBS13 exposure is correlated with smoking
status (Figure S1B). However, it is also possible that the immune response is related to the
fact that the sample was taken from a cancer patient, even if it is from a non-neoplastic
lung. In what follows, we will attempt to shed more light on this distinction.

In summary, the mutational signatures observed in LUAD can be divided into three
groups: smoking-associated (SBS4, SBS5, SBS40), immune-related (SBS2, SBS13) and the
tumor growth-related signature (SBS1).

2.2. Pathway-Based Analysis and Relation between Signature Exposures and Gene Expression in
Control Samples

First, we asked if mutational signatures can reveal how smoking and other mutagenic
processes identified in LUAD interact with gene expression in non-cancer control samples.
In an attempt to understand the impact of external mutagens on molecular processes in

172



Biomolecules 2022, 12, 1384

cells, we utilized the approach developed in a previous study [23] and identified clusters of
genes whose expression is correlated with different combinations of signatures (Figure 2a and
Table S1). More specifically, we selected genes whose expression is significantly correlated
with the strength of at least one mutational signature (p < 0.05), and clustered the genes
based on their correlation patterns with mutational signatures. We refer to this clustering
procedure as ECoSigClust (expression correlated signature clustering).

Gene ontology (GO) enrichment analysis of the clusters obtained by ECoSigClust

revealed that the clusters are enriched with specific GO terms, providing insights into
the interactions between signatures and molecular pathways. In addition, we analyzed
the cluster assignment of known markers of specific lung cell types. Guided by the ob-
servations from this analysis, we further explored the association between exposure to
exogenous processes and changes in cell-type composition in the lung in the following
Section (Section 2.3).

2.2.1. Exposure to Smoking Signature is Correlated with Increased Inflammatory Response
in Non-Cancer Lung Tissue and Elevated Expression of the PD-L1 Immune
Checkpoint Gene

The cluster with the strongest positive correlation with the smoking-specific signa-
ture SBS4 (and thus with SBS40), which we call smoking-specific cluster (CL5, Figure 2a),
includes 837 genes, enriched with the cytokine-mediated signaling pathway (p < 10−13),
inflammatory response (p < 10−13) and cell activation (p < 10−14, Table S2). This is consis-
tent with previous observations that the exposure of epithelial cells to smoking triggers
pro-inflammatory response and increases the release of pro-inflammatory cytokines and
chemokines [28,32], many of which are included in the cluster. For example, the cluster in-
cludes several chemokines (CCL2, CCL3, CCL4, CCL7, and CCL11), and pro-inflammatory
cytokines (Interleukin 1α (IL1A), and tumor necrosis factor (TNF)) (Table S2). Interestingly,
the smoking cluster includes MUC5AC, the canonical marker of mucus-producing secretory
goblet cells [33,34], suggesting a relation between smoking and goblet cell population. We
investigate the relation further in Section 2.3.

Another notable gene in the cluster is GPR15, a chemoattractant receptor for lympho-
cytes. The expression of GPR15 was previously found to be up-regulated in smokers [35].

Cluster 5 contains the PD-L1 (CD274) gene. The up-regulation of PD-L1 is believed to
allow cancers to evade the host immune system. Thus, immune checkpoint inhibitors of PD-
L1 are promising tools for cancer immunotherapy [36,37]. The fact that the association of
expression of PD-L1 with smoking is observed in non-cancer lung tissue, and is not related
to tumor growth (no correlation with SBS1), is of particular importance. Indeed, a recent
experimental study demonstrated that cigarette smoke and the carcinogen benzo(a)pyrene
(BaP) induce PD-L1 expression on lung epithelial cells [11].

Finally, Cluster 5 also includes the APOBEC3B gene, which is known to induce mu-
tations related to the emergence of mutational signatures (SBS2 and SBS13). The fact that
APOBEC3B belongs to the smoking cluster, rather than a cluster associated with signatures
SBS2 and SBS13, suggests that over-activity of this APOBEC enzyme is likely to be triggered
by an inflammatory response to smoking [15]. As for negative correlations, we observe
that the exposure of these two signatures (SBS2 and SBS13) is negatively correlated with
Clusters 8 and 9, both of which are enriched with cell differentiation and morphogenesis.
This negative correlation suggests that smoking may shift the overall epithelial function
away from a diversity of cell types with specialized functions, toward a consensus increase
in mucus secretion, proliferation, and response to stress.
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                # genes   Landmark GO terms 

CL1 0.15 0.33 0.29 −0.056 −0.065 −0.085   461 
  

regula on of histone deacetyla on 

CL2 0.25 0.36 0.35 0.031 0.12 0.091   1367 
  

ribosomal subunit, viral gene expression 

CL3 0.29 0.3 0.32 0.17 0.27 0.23   1035 
  

myeloid leukocyte ac va on, exocytosis, innate 
immune response 

CL4 0.083 0.054 0.071 0.33 0.049 −0.012   284 
  

posi ve regula on of transla onal ini a on, golgi 
vesicle transport 

CL5 0.14 0.056 0.086 0.092 0.3 0.3   837 
  

cytokine−mediated signaling pathway, inflamma-
tory response, lymphocyte ac va on 

CL6 −0.24 −0.34 −0.32 −0.062 −0.048 −0.033   1656 
  

cilium organiza on, homologous recombina on 

CL7 −0.0067 −0.0045 −0.022 −0.34 −0.073 −0.0044   471 
  

voltage−gated ca on channel ac vity, learning, 
reg. of respiratory gaseous exchange 

CL8 −0.21 −0.17 −0.2 −0.087 −0.31 −0.31   593 
  

synapse assembly 

CL9 −0.067 0.039 −0.0075 −0.03 −0.29 −0.3   829 
  

tube morphogenesis, extracellular matrix locomo-
on 

  SBS1 SBS2 SBS13 SBS5 SBS4 SBS40         

(a)

0.077 0.028 0.057 0.13 −0.071 −0.1   Sign. Alv. Ept. Type 2 

0.12 0.17 0.029 0.0035 −0.13 −0.12   Alveolar Epith. Type 2 

0.16 −0.099 0.00089 −0.012 0.2 0.2   Goblet 

−0.0049 −0.074 −0.074 0.26 0.15 0.036   Basal 

−0.28 −0.29 −0.31 0.084 −0.19 −0.19   Alveolar Epith. Type 1 

−0.086 −0.11 −0.12 −0.21 −0.021 −0.13   Club 

−0.083 −0.27 −0.14 −0.26 −0.086 0.079   Ciliated 

SBS1 SBS2 SBS13 SBS5 SBS4 SBS40   
  

(b)

0.066 0.25 0.29 0.15 0.14 0.099   Dendri c 

0.26 0.11 0.066 0.15 0.21 0.22   Neutrophil 

0.27 0.14 0.16 0.1 0.23 0.22   Macrophage 

−0.046 −0.11 −0.13 0.17 0.21 0.12   Classical Monocyte 

0.074 −0.025 −0.056 0.16 0.045 0.016   CD4+ Memory/Effector T 

0.2 0.18 0.21 −0.03 −0.17 0.032   Prolifera ng NK/T 

−0.2 −0.018 0.026 0.12 −0.11 −0.16   Natural Killer 

−0.07 −0.09 −0.0039 0.12 −0.24 −0.12   CD8+ Memory/Effector T 

−0.049 0.01 −0.048 0.011 −0.024 −0.085   Nonclassical Monocyte 

−0.091 0.03 0.013 −0.066 −0.091 −0.058   Basophil/Mast 1 

0.054 0.12 0.089 −0.11 −0.0056 −0.039   CD8+ Naive T 

−0.02 0.17 0.15 −0.051 −0.026 −0.072   Basophil/Mast 1 

SBS1 SBS2 SBS13 SBS5 SBS4 SBS40   
  

(c)

Figure 2. Correlation between mutational signatures and cell type composition and gene expression.
(a) ECoSigClust clusters, based on the correlation between mutational signatures and gene expression.
Genes having a significant correlation with at least one mutational signature (p < 0.05) are included
in the clustering. The heat map shows the mean correlation between signature and expression
among all genes in the cluster (left). For each cluster, the number of genes and representative
GO terms enriched in the cluster genes are also shown. (b,c) Correlation between mutational
signatures and cell composition. Bulk expression counts are decomposed into different cell types
using CIBERSORTx, and Spearman correlation coefficients are shown for (b) epithelial cells and
(c) immune cells, separately.

2.2.2. Strength of SBS5, a Signature Correlated with Smoking but Not Unique to This
Mutagen, Is Correlated with Changes in Ciliogenesis

The exposure to signature SBS5 is overall correlated with smoking in many cancers,
including LUAD. However, as discussed before, this signature is not unique to smokers.
The exposure to this signature is negatively correlated with Cluster 7, which is enriched
with genes related to voltage gated cation channel activity and neurotransmitter receptor
complex. It is known that these channels are targets of a number of naturally occurring tox-
ins and therapeutic agents, as well as environmental toxicants [38], including nicotine [39].
In addition, the cluster also contains known early transcriptional drivers of ciliogenesis,
such as MYB and TP73 (Table S1), consistent with the reports that smoking blocks early
ciliogenesis [40,41]. The results discussed in Section 2.3 provide further insights into the
relation of this signature and changes in the population of ciliated cells in lung.

174



Biomolecules 2022, 12, 1384

2.2.3. Relation between the Strengths of APOEBEC-Related Signatures and
Gene Expression

The two APOBEC signatures (SBS2 and SBS13) are positively correlated with the
expression of genes in Clusters 1–3, and negatively correlated with Cluster 6. We note that
correlation of Clusters 2 and 3 with SBS1 suggests a possible relation to tumor growth,
so it is not clear to which extent the activity of this cluster is related to smoking and to
which extent the changes in the immune system are triggered by tumor growth. Inter-
estingly, Cluster 2 also includes SFTPB and SFTPC, the genes responsible for encoding
pulmonary-associated surfactants secreted by the alveolar cells of the lung and maintaining
the stability of pulmonary tissue by reducing the surface tension of fluids that coat the lung
(Table S1). Interestingly, we found that the expression of the APOBEC3C gene is correlated
with the expression of the immune checkpoint gene PD-1 (PDCD1) (p-value < 0.0051).
The APOBEC3C gene is a member of Cluster 2, suggesting that, in contrast to PD-L1, PD-1
might be stimulated by immune response. Out of the three clusters with positive correlation,
Cluster 1 correlated with APOBEC signatures most specifically. GO enrichment analysis
of this cluster reveals a relation with the regulation of histone deacetylation (Table S2).
While a general relation between immune response and histone deacetylation has been
well appreciated [42], the association with APOBEC activity remains to be investigated. GO
enrichment analysis of Cluster 6, showing negative correlation with APOBEC signatures,
found that this cluster is significantly enriched with cilium. Cluster 6 also includes TUBB1,
a marker of ciliated cells. This suggests a link between the number of ciliated cells and
APOBEC activity.

2.3. Mutational Signatures Reveal Relation between Exposure to Exogenous Processes and a
Remodeling of Cell-Type Composition in Lung

The signature-dependent expression changes of MUC5AC, a canonical marker of
mucus producing secretory goblet cells, as well as other markers discussed in the previous
section, suggest a relation between exposures of mutational signatures and changes in the
cell-type composition. Indeed, previous studies reported that exposure to smoking leads
to the reprogramming of cell-type composition in lungs [3,43]. Thus, we asked whether
examining the relation between the exposures of mutational signatures and cell-type
composition can identify such trends and potentially provide additional insights.

To investigate the relation between cell-type composition and mutational signatures,
we decomposed the bulk expression data using CIBERSORTx [44] and estimated the cell
composition in each sample (see Section 4). Considering epithelial and immune cells
separately, we then computed the correlation coefficients between the proportions of cell
types (within epithelial and immune cell types, respectively) and the strengths of mutational
signatures (Figure 2b,c), which revealed several changes in both epithelial and immune
cell-type composition correlated with mutational signature activities.

Among epithelial cell types, the proportion of goblet cells is positively correlated with
smoking signatures (SBS4, SBS40), while SBS5 has the strongest correlation with Basal cells
(Figure 2b). This is consistent with the previous observation that the exposure to cigarette
smoke increases the number of mucous-secreting goblet cells and thus can lead to goblet
cell hyperplasia, mucus hypersecretion and promote inflammatory responses [45,46].

The correlation pattern of goblet cells is similar to the pattern of smoking cluster in
Figure 2a, supporting the hypothesis that the inflammatory responses are generated by
epithelial cells with altered cytokine-mediated signaling pathways in response to smoking
exposure. Previous studies found that bronchial epithelial cells exposed to cigarette smoke
produced a dose-dependent increase in the expression of MUC5AC, IL8 (also called CXCL8)
and TNFα genes [47], all of which belong to the smoking cluster.

Interestingly, exposure of SBS4 and SBS5 is correlated with an increased proportion
of Basal cells. Basal cells are located below the surface epithelial cell layer and serve as
progenitor cells from which ciliated, secretory, and goblet cells differentiate.
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Consistent with the results of the previous section, the proportion of ciliated cells
has negative correlations with SBS2 and SBS5. The major function of airway ciliated cells
is to mediate the propulsion of mucus gel. Thus, a proper balance between goblet and
ciliated cells is required for the correct functioning of lungs. Previous studies indicated
that this balance might be disturbed by smoking [3,43] and our results confirm this view,
but additionally reveal a contribution of APOBEC-related processes captured by SBS2.
Interestingly, the reduction in the number of ciliated cells is also associated with SBS2,
suggesting a potential relation of the reduction in the ciliated cell number to APOBEC and
immune response, which warrants further investigations.

As for immune cells, we observe that innate immune cells, such as dentritic cells,
macrophages, and neutrophiles, have overall positive correlation across all mutational
signatures (Figure 2c), including the tumor growth-related SBS1. Interestingly the exposure
of smoking signature (SBS4) is associated with reduction in CD8+ cells, suggesting an
immunosuppressive effect. A similar effect was previously observed in HNSCC cancer [48].

3. Conclusions

Exposure of individuals to environmental factors, such as smoking, might lead to
molecular changes within cells and the reprogramming of cellular tissue composition. Such
changes might be relevant to human health. Yet, the relations between environmental
exposures and the above-mentioned changes are not well understood. One of the chal-
lenges in studies of the impact of environmental factors on cellular changes is related
to the fact that historical exposure to environmental factors is often difficult to quantify.
However, many such adverse environmental factors are mutagenic and leave characteristic
mutational signatures.

In this paper, we explored whether a joint analysis of mutational signatures and
gene expression of non-cancer samples can provide insights into the impact of mutagenic
factors on the expression of genes, pathways, and cellular composition in non-neoplastic
lung tissue.

Currently, mutational signatures are the most readily accessible for cancer patients
by sequencing tumor samples. We reasoned that even if the signatures are inferred from
mutations in cancer cells, exogenous environmental factors act on both the cancer and
non-cancer cells. Therefore, in this study, we performed a combined analysis of mutational
signatures, obtained from cancer genomes, and gene expression from control samples.
The fact that a specific mutational signature, SBS1, is known to be correlated with tumor
growth, allowed us to identify relations that might be due to tumor growth response in
non-neoplastic lung tissue rather than a direct effect of smoking.

Our signature-based analysis uncovered many interesting insights on how smoking
can impact the activities of genes, pathways, and tissue composition in lung. The results of
our studies are in good agreement with current knowledge, providing confidence in our
approach; see Table 1. Furthermore, our results provide additional insights that were not
accessible with previous approaches. For example, previous studies demonstrated that
smoking can decrease ciliated cells and increase goblet cells in their proportion [3,49]. By
analyzing correlations with mutational signature values rather than binary smoking status,
our analysis further revealed that the decrease in the ciliated cells proportion is related
to the exposure of the SBS5 signature—a signature known to be correlated with smoking
but also occurring in contexts not related to smoking.

The interplay between smoking and immune system that we uncovered is also consis-
tent with current knowledge, although the correlation of SBS1 with one of the two immune
related clusters suggests that some of the immune response in the control lung tissue could
be contributed by an immune response to cancer.

Knowledge of mutational processes acting on a patient’s genome might also help
to develop personalized therapies. For example, signature SBS3 indicates homologous
recombination deficiency (HRD), and since the patients with HRD are known to benefit
from PARP inhibitor therapy [50], the presence of this signature can be used as a marker
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for PARP inhibitor therapy [51]. Furthermore, APOBEC signatures have been associated
with sensitivity to ataxia telangiectasia and Rad3-related kinase (ATR) in some cancer
cell lines, suggesting a potential for targeted therapy [52–54]. Interestingly, some studies
indicated that a smoking history can have an effect on the efficacy of immune checkpoint
inhibitors [55]. Our signature-based analysis points to several different mechanisms that,
in addition to high tumor mutation burden, can contribute to this effect. First, we found
that the strength of smoking signatures is correlated with the expression of the immune
checkpoint gene PD-L1, which might promote immune escape. Next, smoking is associated
with a reduction in the proportion of CD8+cells, which can kill transformed tumor cells.
Finally, the expression of important immune checkpoint gene PD-1 appears to be (indirectly)
associated with APOBEC signatures. These examples illustrate an increasing role that
mutational signatures play in identifying treatment options.

Overall, we show that looking at the expression changes through the lenses of muta-
tional signatures provides a new and powerful stepping stone for studying the impact of
environmental factors on individual’s health, disease susceptibility, and progression. The
smoking-associated mutational signature allowed for an unbiased inference of smoking
status, key information that is often missing in collected data. In fact, the analysis provided
here would have been under-powered if we restricted the study to control samples with
reported smoking status only. Finally, cigarette smoke includes a complex mixture of
potentially harmful factors, and both direct and indirect as well as mutational signatures
based analyses allow for separating at least some of these factors. However, our analysis
has also some limitations. Most importantly, the current understating of the mechanisms
of many mutational signatures is incomplete, which can limit the interpretability of our
association-based results. In addition, as with any association-based approach, additional
experiments and knowledge are required to provide mechanistic explanations of the ob-
served dependencies. Finally, while it is easy to obtain mutational signatures from tumor
samples, such an approach is indirect, and it would be desirable to measure the mutations
directly in the sample of interest. In future, large-scale single-cell sequencing is likely to
enable the robust analysis of mutational signatures in non-cancer tissue.

Despite these limitations, our study shows that the utility of mutational signatures can
go beyond cancer studies and shed light on the role of environmental mutagens in chronic
molecular level changes in the organism. It also provides an example of how a database
collected with the purpose of understanding cancer can provide valuable information for
studies not directly related to the disease.

Table 1. Results of the analysis of the relation between mutational signatures and gene expression in
the context of previous studies.

Observation From Mutational Signatures Supporting Literature

Cluster 2:
ABOBEC signatures are associated with expression of SFTPB and SFTPC novel observation
APOBEC might indirectly trigger the expression PD-1 [56]
Cluster 5:
Smoking triggers pro-inflammatory response and cytokines signaling [28,32]
Smoking increases MUC5AC expression [34]
Smoking increases PD-L1 expression [36]
Smoking increases GPR15 expression [35]
Cluster 6:
APOBEC is associated with a reduction in cilium organization novel observation
Cell-type composition:
ABOBEC signatures are associated with a reduction in CD8+ cells [48]
Smoking is associated with increase of goblet cells [45,46,57],
Smoking is associated with decrease of ciliated cells [3,40,41]
APOBEC is associated with decrease of ciliated cells novel observation

177



Biomolecules 2022, 12, 1384

4. Methods

4.1. Mutational Signatures

We downloaded the TCGA LUAD (lung adenocarcinoma) exome mutation spectra and
the exome COSMIC reference mutational signatures, provided by Alexandrov et al. [18],
from Synapse (accession numbers: syn11801889 and syn11726602, respectively). We utilized
the data from 48 patients with known gene expression data for both cancer and control lung
tissue. The statistics on this cohort are provided in Table S3. To determine the predominant
signatures being active in LUAD samples, we started with the initial sample exposures
to mutational signatures from [18] (version 3.1, June 2020, Synapse accession number:
syn11804065). The list of active signatures was refined to remove any rare signatures;
namely, we keep only signatures that were present in at least 5% of samples and were
responsible for at least 1% of mutations. Next, using such a list of active mutational
signatures in LUAD (SBS1, SBS2, SBS4, SBS5, SBS13, SBS40, and SBS45), we determined
their sample-specific exposures using the quadratic programming (QP) approach available
in the R package—–SignatureEstimation [58]. Signature SBS45 was omitted from the
analyses presented in this study, as this signature is likely an artifact due to the 8-oxo-
guanine introduced during sequencing (see COSMIC Mutational Signatures website: https:
//cancer.sanger.ac.uk/signatures/ (accessed on 14 September 2022)).

4.2. Expression Data

TCGA LUAD RNAseq expression data were obtained from the Genomic Data Com-
mons Data Portal (https://portal.gdc.cancer.gov/ (accessed on 14 September 2022)) on
5 June 2020. HTseq counts were normalized and variance-stabilizing transformed (vst)
using DESeq2 [59]. Only donors that had both gene expression and mutational signature
exposures were kept, which resulted in 48 normal samples and 466 tumor samples used in
this study.

4.3. Clustering

To identify expression-based pathways that are associated with signatures, we used
ECoSigClust developed for our previous analysis [23]. Specifically, we first computed
Spearman correlation coefficients of the expression level and mutation counts for each
pair of genes and mutational signatures. We then selected the genes exhibiting significant
correlation with at least one of the mutational signatures; the expression of a gene is
considered significantly correlated with a signature if nominal p < 0.05 . This procedure
selected 7533 genes. We then clustered the genes based on their correlation patterns using
a consensus K-means algorithm; running K-means clustering 100 times with random
start, varying k from 5 to 50, and subsequently running hierarchical clustering with the
consensus matrix from 100 runs of the K-means algorithm. To determine the optimal cluster
number, three different clustering validation metrics—Silhouette Index, Calinski–Harabasz
Index, and Davies–Bouldin Index—were used, measuring compactness within clusters and
separation between clusters slightly differently. The chosen number of clusters k = 9 was
based on these metrics (Figure S2) and was kept small for the interpretability of each cluster.
GO enrichment analysis was performed using the hypergeometric test for each cluster with
all genes included in the clustering as the background to assess the differences among the
clusters. The list of genes and enrichment analysis results for all clusters are provided in
Tables S1 and S2.

4.4. Cell Composition Analysis with CIBERSORTx

HTseq raw counts in bulk expression data for the normal samples from TCGA LUAD
dataset were used for the analysis. For each gene, the counts in every sample were normal-
ized by the total sum of counts in that sample, multiplied by 1,000,000. The genes without
at least one normalized count with a value greater than 1 were discarded. The Human
Lung Cell Atlas (HLCA) [60] single-cell reference data containing 42 distinct cell types was
obtained in the form of counts from synapse (accession number: syn21560511). As per
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CIBERSORTx guidelines, the same normalization procedure was used on the single-cell
reference data and used as input to CIBERSORTx to impute the cell proportions of the
42 given cell types in the bulk TCGA-Lung expression data.

For two subsets of cell types—epithelial and immune cell types, we computed the
Spearman correlation of each imputed cell type’s fraction with the exposures of Signatures
1, 2, 4, 5, 13, and 40. The strength of the correlation and the resulting heatmaps are shown
in Figure 2.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/biom12101384/s1, Table S1: Gene membership in clusters
of genes whose expression is correlated with different combinations of signatures. Table S2: GO
enrichment analysis of expression clusters from Table 1. Table S3: Statics on the cohort used in these
study. Four stages refer to the extent of patient’s cancer, the mean cigarettes in per day (CPD), mean
age in days, gender and number of samples whose corresponding information is available. The mean
values were computed over the samples whose corresponding CPD and Days are available. The last
column is the number of patients with the given information. The complete information can be
obtained from the TCGA data portal. Figure S1: Spearman correlations (above) and corresponding
p-values (below) represent the pairwise associations in control samples. Figure S2: Evaluation of
clustering for varying k’s (the number of clusters) using different metrics.

Author Contributions: Conceptualization, Y.-A.K. and T.M.P.; methodology, Y.-A.K. and E.H.; valida-
tion, Y.-A.K. and T.M.P.; formal analysis, all authors; data curation, D.W. and A.S.; writing—original
draft preparation, Y.-A.K., E.H. and T.M.P.; writing—review and editing, E.H. and T.M.P.; supervision,
T.M.P.; project administration, T.M.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Intramural Research Program of the National Library
of Medicine, NIH.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: ECoSigClust is available at https://github.com/ncbi/ECoSigClust
(accessed on 14 September 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gorber, S.C.; Schofield-Hurwitz, S.; Hardt, J.; Levasseur, G.; Tremblay, M. The accuracy of self-reported smoking: A systematic
review of the relationship between self-reported and cotinine-assessed smoking status. Nicotine Tob. Res. 2009, 11, 12–24.
[CrossRef] [PubMed]

2. Hecht, S.S. Tobacco Smoke Carcinogens and Lung Cancer. JNCI J. Natl. Cancer Inst. 1999, 91, 1194–1210. [CrossRef] [PubMed]
3. Smith, J.C.; Sausville, E.L.; Girish, V.; Yuan, M.L.; Vasudevan, A.; John, K.M.; Sheltzer, J.M. Cigarette Smoke Exposure and

Inflammatory Signaling Increase the Expression of the SARS-CoV-2 Receptor ACE2 in the Respiratory Tract. Dev. Cell 2020,
53, 514–529. [CrossRef] [PubMed]

4. Lee, J.; Taneja, V.; Vassallo, R. Cigarette Smoking and Inflammation. J. Dent. Res. 2011, 91, 142–149. [CrossRef] [PubMed]
5. Cortellini, A.; Giglio, A.D.; Cannita, K.; Cortinovis, D.L.; Cornelissen, R.; Baldessari, C.; Giusti, R.; D’Argento, E.; Grossi, F.;

Santoni, M.; et al. Smoking status during first-line immunotherapy and chemotherapy in NSCLC patients: A case–control
matched analysis from a large multicenter study. Thorac. Cancer 2021, 12, 880–889. [CrossRef]

6. Li, J.J.; Karim, K.; Sung, M.; Le, L.W.; Lau, S.C.; Sacher, A.; Leighl, N.B. Tobacco exposure and immunotherapy response in PD-L1
positive lung cancer patients. Lung Cancer 2020, 150, 159–163. [CrossRef]

7. Norum, J.; Nieder, C. Tobacco smoking and cessation and PD-L1 inhibitors in non-small cell lung cancer (NSCLC): A review of
the literature. ESMO Open 2018, 3, e000406. [CrossRef]

8. Sun, L.Y.; Cen, W.J.; Tang, W.T.; Long, Y.K.; Yang, X.H.; Ji, X.M.; Yang, J.J.; Zhang, R.J.; Wang, F.; Shao, J.Y.; et al. Smoking status
combined with tumor mutational burden as a prognosis predictor for combination immune checkpoint inhibitor therapy in
non-small cell lung cancer. Cancer Med. 2021, 10, 6610–6617. [CrossRef]

9. Desrichard, A.; Kuo, F.; Chowell, D.; Lee, K.W.; Riaz, N.; Wong, R.J.; Chan, T.A.; Morris, L.G.T. Tobacco Smoking-Associated
Alterations in the Immune Microenvironment of Squamous Cell Carcinomas. JNCI J. Natl. Cancer Inst. 2018, 110, 1386–1392.
[CrossRef]

179



Biomolecules 2022, 12, 1384

10. Lafuente-Sanchis, A.; Zúñiga, Á.; Estors, M.; Martínez-Hernández, N.J.; Cremades, A.; Cuenca, M.; Galbis, J.M. Association of
PD-1 , PD-L1 , and CTLA-4 Gene Expression and Clinicopathologic Characteristics in Patients with Non–Small-Cell Lung Cancer.
Clin. Lung Cancer 2017, 18, e109–e116. [CrossRef]

11. Wang, G.Z.; Zhang, L.; Zhao, X.C.; Gao, S.H.; Qu, L.W.; Yu, H.; Fang, W.F.; Zhou, Y.C.; Liang, F.; Zhang, C.; et al. The Aryl
hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat.
Commun. 2019, 10, 1125. [CrossRef] [PubMed]

12. Basu, A. DNA Damage, Mutagenesis and Cancer. Int. J. Mol. Sci. 2018, 19, 970. [CrossRef] [PubMed]
13. Poon, S.; McPherson, J.R.; Tan, P.; Teh, B.; Rozen, S.G. Mutation signatures of carcinogen exposure: Genome-wide detection and

new opportunities for cancer prevention. Genome Med. 2014, 6, 24. [CrossRef] [PubMed]
14. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Børresen-

Dale, A.L.; et al. Signatures of mutational processes in human cancer. Nature 2013, 500, 415–421. [CrossRef]
15. Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.;

Shibata, T.; et al. Mutational signatures associated with tobacco smoking in human cancer. Science 2016, 354, 618–622. [CrossRef]
16. Nik-Zainal, S.; Alexandrov, L.B.; Wedge, D.C.; Van Loo, P.; Greenman, C.D.; Raine, K.; Jones, D.; Hinton, J.; Marshall, J.;

Stebbings, L.A.; et al. Mutational processes molding the genomes of 21 breast cancers. Cell 2012, 149, 979–993. [CrossRef]
17. Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Campbell, P.J.; Stratton, M.R. Deciphering Signatures of Mutational Processes

Operative in Human Cancer. Cell Rep. 2013, 3, 246–259. [CrossRef]
18. Alexandrov, L.B.; Kim, J.; Haradhvala, N.J.; Huang, M.N.; Tian Ng, A.W.; Wu, Y.; Boot, A.; Covington, K.R.; Gordenin, D.A.;

Bergstrom, E.N.; et al. The repertoire of mutational signatures in human cancer. Nature 2020, 578, 94–101. [CrossRef]
19. Kim, Y.A.; Leiserson, M.D.; Moorjani, P.; Sharan, R.; Wojtowicz, D.; Przytycka, T.M. Mutational Signatures: From Methods to

Mechanisms. Annu. Rev. Biomed. Data Sci. 2021, 4, 189–206. [CrossRef]
20. Koh, G.; Degasperi, A.; Zou, X.; Momen, S.; Nik-Zainal, S. Mutational signatures: Emerging concepts, caveats and clinical

applications. Nat. Rev. Cancer 2021, 21, 619–637. [CrossRef]
21. Helleday, T.; Eshtad, S.; Nik-Zainal, S. Mechanisms underlying mutational signatures in human cancers. Nat. Rev. Genet. 2014,

15, 585–598. [CrossRef] [PubMed]
22. Ma, J.; Setton, J.; Lee, N.Y.; Riaz, N.; Powell, S.N. The therapeutic significance of mutational signatures from DNA repair

deficiency in cancer. Nat. Commun. 2018, 9, 3292. [CrossRef] [PubMed]
23. Kim, Y.A.; Wojtowicz, D.; Sarto Basso, R.; Sason, I.; Robinson, W.; Hochbaum, D.S.; Leiserson, M.D.M.; Sharan, R.; Vadin, F.;

Przytycka, T.M. Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer.
Genome Med. 2020, 12, 52. [CrossRef] [PubMed]

24. Landi, M.T.; Synnott, N.C.; Rosenbaum, J.; Zhang, T.; Zhu, B.; Shi, J.; Zhao, W.; Kebede, M.; Sang, J.; Choi, J.; et al. Tracing Lung
Cancer Risk Factors Through Mutational Signatures in Never-Smokers. Am. J. Epidemiol. 2020, 190, 962–976. [CrossRef] [PubMed]

25. Gerstung, M.; Jolly, C.; Leshchiner, I.; Dentro, S.C.; Gonzalez, S.; Rosebrock, D.; Mitchell, T.J.; Rubanova, Y.; Anur, P.; Yu, K.; et al.
The evolutionary history of 2,658 cancers. Nature 2020, 578, 122–128. [CrossRef]

26. Alexandrov, L.B.; Jones, P.H.; Wedge, D.C.; Sale, J.E.; Campbell, P.J.; Nik-Zainal, S.; Stratton, M.R. Clock-like mutational processes
in human somatic cells. Nat. Genet. 2015, 47, 1402–1407. [CrossRef]

27. Waris, G.; Ahsan, H. Reactive oxygen species: Role in the development of cancer and various chronic conditions. J. Carcinog.
2006, 5, 14. [CrossRef]

28. Strzelak, A.; Ratajczak, A.; Adamiec, A.; Feleszko, W. Tobacco Smoke Induces and Alters Immune Responses in the Lung
Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. Int. J. Environ. Res. Public Health
2018, 15, 1033. [CrossRef]

29. Kim, J.; Mouw, K.W.; Polak, P.; Braunstein, L.Z.; Kamburov, A.; Tiao, G.; Kwiatkowski, D.J.; Rosenberg, J.E.; Van Allen, E.M.;
D’Andrea, A.D.; et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat.
Genet. 2016, 48, 600–606. [CrossRef]

30. Vieira, V.C.; Soares, M.A. The Role of Cytidine Deaminases on Innate Immune Responses against Human Viral Infections. BioMed
Res. Int. 2013, 2013, 683095. [CrossRef]

31. O’Callaghan, D.S.; O’Donnell, D.; O’Connell, F.; O’Byrne, K.J. The role of inflammation in the pathogenesis of non-small cell lung
cancer. J. Thorac. Oncol. 2010, 5, 2024–2036. [CrossRef] [PubMed]

32. Qiu, F.; Liang, C.L.; Liu, H.; Zeng, Y.Q.; Hou, S.; Huang, S.; Lai, X.; Dai, Z. Impacts of cigarette smoking on immune responsiveness:
Up and down or upside down? Oncotarget 2017, 8, 268–284. [CrossRef] [PubMed]

33. Nomi, K.; Hayashi, R.; Ishikawa, Y.; Kobayashi, Y.; Katayama, T.; Quantock, A.J.; Nishida, K. Generation of functional conjunctival
epithelium, including goblet cells, from human iPSCs. Cell Rep. 2021, 34, 108715. [CrossRef] [PubMed]

34. Shao, M.X.G.; Nakanaga, T.; Nadel, J.A. Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-α-
converting enzyme in human airway epithelial (NCI-H292) cells. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2004, 287, L420–L427.
[CrossRef] [PubMed]

35. Bilsborough, J.; Viney, J.L. GPR15: A tale of two species. Nat. Immunol. 2015, 16, 137–139. [CrossRef]
36. Akinleye, A.; Rasool, Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J. Hematol. Oncol. 2019, 12, 92. [CrossRef]
37. Ai, L.; Chen, J.; Yan, H.; He, Q.; Luo, P.; Xu, Z.; Yang, X. Research Status and Outlook of PD-1/PD-L1 Inhibitors for Cancer

Therapy. Drug Des. Dev. Ther. 2020, 14, 3625–3649. [CrossRef]

180



Biomolecules 2022, 12, 1384

38. Atchison, W.D. Effects of toxic environmental contaminants on voltage-gated calcium channel function: From past to present.
J. Bioenerg. Biomembr. 2003, 35, 507–532. [CrossRef]

39. Schuller, H.M. Is cancer triggered by altered signalling of nicotinic acetylcholine receptors? Nat. Rev. Cancer 2009, 9, 195–205.
[CrossRef]

40. Goldfarbmuren, K.C.; Jackson, N.D.; Sajuthi, S.P.; Dyjack, N.; Li, K.S.; Rios, C.L.; Plender, E.G.; Montgomery, M.T.; Everman,
J.L.; Bratcher, P.E.; et al. Dissecting the cellular specificity of smoking effects and reconstructing lineages in the human airway
epithelium. Nat. Commun. 2020, 11, 2485. [CrossRef]

41. Nemajerova, A.; Kramer, D.; Siller, S.S.; Herr, C.; Shomroni, O.; Pena, T.; Gallinas Suazo, C.; Glaser, K.; Wildung, M.;
Steffen, H.; et al. TAp73 is a central transcriptional regulator of airway multiciliogenesis. Genes Dev. 2016, 30, 1300–1312.
[CrossRef] [PubMed]

42. Licciardi, P.V.; Karagiannis, T.C. Regulation of Immune Responses by Histone Deacetylase Inhibitors. ISRN Hematol. 2012,
2012, 690901. [CrossRef]

43. Schamberger, A.C.; Staab-Weijnitz, C.A.; Mise-Racek, N.; Eickelberg, O. Sci RepCigarette smoke alters primary human bronchial
epithelial cell differentiation at the air-liquid interface. Sci. Rep. 2015, 5, 8163. [CrossRef] [PubMed]

44. Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.;
Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019,
37, 773–782. [CrossRef] [PubMed]

45. Haswell, L.E.; Hewitt, K.; Thorne, D.; Richter, A.; Gaça, M.D. Cigarette smoke total particulate matter increases mucous secreting
cell numbers in vitro: A potential model of goblet cell hyperplasia. Toxicol. In Vitro 2010, 24, 981–987. [CrossRef]

46. Lumsden, A.B.; McLean, A.; Lamb, D. Goblet and Clara cells of human distal airways: Evidence for smoking induced changes in
their numbers. Thorax 1984, 39, 844–849. [CrossRef]

47. Damiá, A.d.e.D.; Gimeno, J.C.; Ferrer, M.J.; Fabregas, M.L.; Folch, P.A.; Paya, J.M. Arch BronconeumolA study of the effect of
proinflammatory cytokines on the epithelial cells of smokers, with or without COPD. Arch. Bronconeumol. 2011, 47, 447–453.
[CrossRef]

48. de la Iglesia, J.V.; Slebos, R.J.; Martin-Gomez, L.; Wang, X.; Teer, J.K.; Tan, A.C.; Gerke, T.A.; Aden-Buie, G.; van Veen, T.;
Masannat, J.; et al. Effects of Tobacco Smoking on the Tumor Immune Microenvironment in Head and Neck Squamous Cell
Carcinoma. Clin. Cancer Res. 2020, 26, 1474–1485. [CrossRef]

49. Kim, V.; Oros, M.; Durra, H.; Kelsen, S.; Aksoy, M.; Cornwell, W.D.; Rogers, T.J.; Criner, G.J. Chronic bronchitis and current
smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction. PLoS ONE
2015, 10, e0116108. [CrossRef] [PubMed]

50. Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific
killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 2005, 434, 913–917. [CrossRef]

51. Davies, H.; Glodzik, D.; Morganella, S.; Yates, L.R.; Staaf, J.; Zou, X.; Ramakrishna, M.; Martin, S.; Boyault, S.; Sieuwerts, A.M.; et al.
HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures. Nat. Med. 2017, 23, 517–525. [CrossRef]
[PubMed]

52. Buisson, R.; Lawrence, M.S.; Benes, C.H.; Zou, L. APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR
Inhibition. Cancer Res. 2017, 77, 4567–4578. [CrossRef] [PubMed]

53. Wang, S.; Jia, M.; He, Z.; Liu, X.S. APOBEC3B and APOBEC mutational signature as potential predictive markers for immunother-
apy response in non-small cell lung cancer. Oncogene 2018, 37, 3924–3936. [CrossRef] [PubMed]

54. Brady, S.W.; Gout, A.M.; Zhang, J. Therapeutic and prognostic insights from the analysis of cancer mutational signatures. Trends
Genet. 2022, 38, 194–208. [CrossRef] [PubMed]

55. Chen, D.L.; Li, Q.Y.; Tan, Q.Y. Smoking history and the efficacy of immune checkpoint inhibitors in patients with advanced non-small
cell lung cancer: A systematic review and meta-analysis. J. Thorac. Dis. 2021, 13, 220–231. [CrossRef] [PubMed]

56. Boichard, A.; Tsigelny, I.F.; Kurzrock, R. High expression of PD-1 ligands is associated with Kataegis Mutat. Signat. APOBEC3
Alterations.OncoImmunology 2017, 6, e1284719. [CrossRef]

57. Kim, V.; Jeong, S.; Zhao, H.; Kesimer, M.; Boucher, R.C.; Wells, J.M.; Christenson, S.A.; Han, M.K.; Dransfield, M.; Paine, R.; et al.
Current smoking with or without chronic bronchitis is independently associated with goblet cell hyperplasia in healthy smokers
and COPD subjects. Sci. Rep. 2020, 10, 20133. [CrossRef]

58. Huang, X.; Wojtowicz, D.; Przytycka, T.M. Detecting presence of mutational signatures in cancer with confidence. Bioinformatics
2018, 34, 330–337. [CrossRef]

59. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome
Biol. 2014, 15, 550. [CrossRef]

60. Travaglini, K.J.; Nabhan, A.N.; Penland, L.; Sinha, R.; Gillich, A.; Sit, R.V.; Chang, S.; Conley, S.D.; Mori, Y.; Seita, J.; et al. A
molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 2020, 587, 619–625. [CrossRef]

181



Citation: Vora, D.S.; Verma, Y.;

Sundar, D. A Machine Learning

Approach to Identify the Importance

of Novel Features for CRISPR/Cas9

Activity Prediction. Biomolecules 2022,

12, 1123. https://doi.org/10.3390/

biom12081123

Academic Editors: Cameron Mura

and Lei Xie

Received: 13 July 2022

Accepted: 10 August 2022

Published: 16 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

A Machine Learning Approach to Identify the Importance of
Novel Features for CRISPR/Cas9 Activity Prediction

Dhvani Sandip Vora 1, Yugesh Verma 1 and Durai Sundar 1,2,*

1 Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas,
New Delhi 110016, India

2 Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, Hauz Khas,
New Delhi 110016, India

* Correspondence: sundar@dbeb.iitd.ac.in

Abstract: The reprogrammable CRISPR/Cas9 genome editing tool’s growing popularity is hindered
by unwanted off-target effects. Efforts have been directed toward designing efficient guide RNAs as
well as identifying potential off-target threats, yet factors that determine efficiency and off-target activity
remain obscure. Based on sequence features, previous machine learning models performed poorly on
new datasets, thus there is a need for the incorporation of novel features. The binding energy estimation
of the gRNA-DNA hybrid as well as the Cas9-gRNA-DNA hybrid allowed generating better performing
machine learning models for the prediction of Cas9 activity. The analysis of feature contribution towards
the model output on a limited dataset indicated that energy features played a determining role along
with the sequence features. The binding energy features proved essential for the prediction of on-target
activity and off-target sites. The plateau, in the performance on unseen datasets, of current machine
learning models could be overcome by incorporating novel features, such as binding energy, among
others. The models are provided on GitHub (GitHub Inc., San Francisco, CA, USA).

Keywords: CRISPR/Cas9; genome editing; machine learning; SHAP values; binding energy; off-targets

1. Introduction

Clustered regularly interspersed short palindromic repeats (CRISPR) and its associated
nuclease Cas9 constitute a versatile and reprogrammable genome editing mechanism that
has been repurposed as a widely used tool [1–3]. The single guide RNA can be customised
to target the DNA at any location by changing the 20 nucleotides “spacer”. This spacer is
designed to complement the “protospacer” region in the DNA, at which the Cas9 nuclease
would create a double-stranded break [4]. A 3-nucleotide protospacer adjacent motif
(PAM) is a prerequisite for probing and cleaving the target DNA by this two-component
protein–RNA system [1]. The PAM site is generally of the form of NGG (where N is any
nucleotide) for the Streptococcus pyogenes-derived Cas9 (SpCas9) protein [5,6]. The SpCas9
is a multidomain protein consisting of (i) three recognition domains that bind to the RNA
and DNA strands, (ii) two nuclease domains to cleave each of the DNA strands, (iii) a PAM
interaction domain, and (iv) an arginine-rich helix which acts as a linker [7]. Although this
system is a facile and flexible genome editing tool, there are two critical design problems
associated with this system: (i) designing a guide RNA with good activity at the intended
target region and (ii) ensuring that the selected guide does not show activity at similar
unintended sites, or in other words, has low off-target activity [8,9]. The presence of the
Cas9 off-target activity has hindered clinical applications of Cas9, which is a significant
area of focus for CRISPR/Cas9 study.

Great strides have been taken to understand the mechanism of action and, conse-
quently, develop design rules to aid experimentalists in optimising guides for the intended
applications. The field has benefited greatly over the past decade, majorly because of the
development of multiple methods to detect Cas9 off-target activity in vitro and in situ
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within the cell [10–15]. Off-target detection techniques have enabled the identification of
empirical rules that seem to drive off-target identification and activity by allowing analyses
of various off-targets generated for multiple guides under different conditions [16–19].

The availability of an experimentally derived structure and sequence of target and
off-target data has allowed computational studies to understand Cas9 activity. Many
prediction algorithms have been proposed to achieve each of the tasks mentioned above,
qualitative algorithms and scoring schemes to rank guides by on-target efficiency and
off-target predictions [20,21]. Most algorithms are based on sequence features—number
and position of mismatches (PAM proximal ends are less likely to tolerate mismatches,
while the distal ends report more tolerance for mismatches) [17]. Many machine learning
models have been built to predict the performance of guides and the prediction of their
respective off-targets based on rules depending on the system’s various sequence and
structural features [17,22–25], yet there is a gap between the predictions and experimentally
observed results. Popular machine learning models are based on features such as the
sequence at the cut-site, the number of mismatches, experimentally validated efficiency and
off-target activity of the guides. Recently, deep learning models have been reported, which
are trained on large-scale datasets, and some have included novel features for validation;
for example, DeepCRISPR, one of the earlier attempts at building a deep learning-based tool
for prediction, introduced four epigenetic features apart from the sequence features [26].
DeepCpf1 is a convolution neural net (CNN) model, and CRISPcut is a rule-based model,
both of which include chromatin accessibility as an additional feature to improve the
prediction confidence [27,28]. CRISPcut and AttnToCrispr are prediction algorithms that
also have included the cell-line information as features while predicting off-targets and
on-target efficiency, respectively [28,29]. The addition of new and important features has,
in each case, improved the model performance and confidence in the predictions. Recent
studies have reported that DNA enthalpy (a proxy for the stability of the DNA duplex)
and DNA-RNA duplex energy parameters play an essential role in predicting on-target
efficiency and off-target activity [24,30]. This study presents two new features that prove to
be important in future prediction algorithm designs: MMGBSA-based binding energy for
(i) DNA and guide RNA, and (ii) Cas9 protein–nucleic acid recognition domain and the
DNA-RNA hybrid.

2. Materials and Methods

2.1. Data Assembly

The data used for model training and validation were obtained from published meth-
ods of CRISPR/Cas9 off-target site prediction (CRISPcut) [28] and detection (CIRCLE-
seq) [11,28] (SRA identifier SRP103697). The predictions obtained from CRISPcut, run with
default parameters, for the 11 guide RNAs used in CIRCLE-seq were used to obtain a
comprehensive list of potential off-target sites in the genome for the corresponding cell
lines used in the CIRCLE-seq experiment. The experimentally validated off-target sites
were called the positive dataset, while the predictions not validated experimentally were
referred to as the negative dataset. All predictions obtained from CRISPcut were analysed
for chromatin accessibility; only accessible sequences were selected since earlier studies
have established the importance of this feature [31–33]. The data assembly and selection
are summarised in Table S3. The cleavage efficiency obtained from the CIRCLE-seq dataset
for all reported off-targets was normalised to fit a uniform scale. The features used for
model training are detailed in Table S4.

2.2. Predictive Features

Multiple predictive features were calculated for each of the sequences—mismatch
position, number of mismatches, mismatch in PAM, type of mismatch (transition, transver-
sion or indel), cell line information, percentage GC for the protospacer, percentage GC in
the seed region, chromosome number, DNA strand information and the two new proposed
binding energy features. Two MMGBSA-based binding energy features were considered—
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dG(REC3:hybrid) and dG(DNA:RNA). The dG(REC3:hybrid) was calculated between the
REC3 domain of SpCas9 and the 20-nucleotide DNA-RNA hybrid. The binding energy of
the 20-nucleotide RNA and target DNA strands was calculated as dG(DNA:RNA). The
MMGBSA calculations were carried out using the Schrödinger Maestro suite’s Prime utility
after pre-processing and the restrained minimisation of the complexes [34,35].

2.3. MMGBSA Binding Energy Calculation

The structure used as a template was obtained from RCSB PDB (ID: 4UN3). The
REC3 domain was selected (residues 447–718) along with the 20 nucleotides of the target
DNA and the 20 nucleotides of the guide RNA. The PyMOL nucleic acid mutagenesis tool
was used to create all target and off-target systems from the template [36]. The structures
were imported in the Schrödinger Maestro suite and preprocessed, hydrogen bonds were
optimised, and restrained minimisation was carried out before performing MMGBSA
calculation using the Prime utility [34,37]. The energies of molecular mechanics when
combined with the generalized Born and surface area continuum solvation (MMGBSA) is a
popular approach to estimate the binding free energy between biomolecules. MMGBSA
is an intermediate in both computational costs and accuracy, widely applied for various
systems [38–40]. The free energy is calculated and summed over solvation energy, gas-
phase energy and entropic contributions. The REC3 domain was chosen as the receptor
and the DNA-RNA hybrid was used as the ligand for the dG(REC3:hybrid) feature; DNA
was selected as the receptor for the dG(DNA:RNA) feature.

2.4. Mann–Whitney U Test

The Mann–Whitney U test, also called the Mann–Whitney–Wilcoxon test, is a non-
parametric test to compare differences of a variable between two groups when the variable
in question is not normally distributed. The test was performed on the dataset for both dG
features, the values of which served as input for the test enabled by the Pingouin Python
package (0.5.2) [41]. The common language effect size was calculated using a Python script.
The output is a U statistic and p-value, which indicates whether the groups show stochastic
equality or not. The test is also robust to outliers. The U test was used to determine if the
dG values for the experimentally validated off-targets (positive) and the non-validated
predictions (negative) were statistically different.

2.5. Machine Learning Model Implementation

Two machine learning models were implemented:

(1) A random forest regression model on a small fraction of the CIRCLE-seq dataset with
the dependant variable as normalised cleavage frequencies following their normalisation;

(2) A random forest classification model on a fraction of the CIRCLE-seq and CRISPcut
derived datasets with the dependant variable being whether the sequence is cleaved
experimentally or not.

The regression model was to determine whether the binding energy features sig-
nificantly impact the cleavage frequency of the off-target sequences. The classification
model would help determine if the energy features play a role in differentiating experi-
mentally unlikely predictions from experimentally validated off-target sequences. Since
the dG values calculation was computationally intensive and time consuming, the dataset
consisted of 186 positive examples and 126 negative examples. However, the sequences
were collected manually to ensure sufficient diversity in cleavage frequency, the number
of mismatches, and other sequence features that were previously reported as significant.
The classification model was implemented to understand if the features were sufficient to
differentiate between experimentally likely predictions and those that are not.

Multiple machine learning models were tested with varying parameters; the best
performing models were reported. All models evaluated were implemented using the
scikit-learn package in Python [42].
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2.6. Sampling Data for Training

Initial training was performed on a 75% train set, and assessment of the model per-
formance was measured on the 25% held-out test dataset. The best performing model
architecture was selected. For analysis of feature importance, since the dataset was limited,
training was carried out again with 5-fold cross validation to ensure that the unbalanced
dataset was not a limiting factor for model performance. The 5-fold cross-validation was
repeated to ensure the absence of bias for both models.

2.7. Assessing Model Performance

The regression model’s performance was evaluated by comparing the mean squared
error (MSE), mean absolute error (MAE) and the R-squared values, and the better per-
forming model was selected for feature importance determination and feature ranking.
The MAE and MSE measure the difference between the model predictions and actual
observations; hence, the ideal score is 0. The R-squared value is a correlation coefficient
measuring a linear correlation between two continuous variables. The variance weighted
measure is an explanation of the variance in the model output, the best score being 1.

The classification model was assessed using its confusion matrix:

M =

[
TP FN
FP TN

]

where TP stands for true positive, FP for false positive, FN for false negative and TN for
true negative. The accuracy of a model is defined as

Accuracy =
TP + TN

TP + TN + FP + FN

The recall is the measure of how many actual positives the model can capture, while the
precision is how many of the predicted positives are correct. The precision–recall curve, a
standard evaluation criterion for a classification model, is based on the following definitions:

Recall =
TP

TP + FN

Precision =
TP

TP + FP
The F1 score, or F-measure, is the harmonic mean of the precision and recall, conveying

a balance between the two. It is defined as

F1 score =
2 ∗ Recall ∗ Precision

Recall + Precision

2.8. Identifying Feature Importance

Interpreting the features that impact a machine learning model’s outcome is important
for enabling the predictions’ validation. In the regression and classification models used,
the feature set is small, and so is the dataset; hence, each feature’s influence must be
understood. Hence, Shapley additive explanations (SHAP) values were implemented using
the shap library in Python [43]; the TreeExplainer utility was used to analyse the random
forest regressor output and to describe the model output of the random forest classifier [44].
The shap method employs an explanatory model with feature weights to explain relative
feature importance and is adapted from game theory. It is to be noted that shap values do
not indicate causality.
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3. Results

3.1. Data Assembly and Processing

The guide RNAs and their respective off-targets were obtained from the CIRCLE-
seq data [11]. The data obtained from the prediction algorithm CRISPcut were checked
for the number of sites predicted for each guide RNA input [28]. The number of sites
predicted hold little correlation with the experimental sites (Figure S1a). However, when the
chromatin accessible sites were selected and compared, a sufficient correlation was obtained
between the number of sites predicted and the number of sites confirmed experimentally
(Figure S1b). Moreover, since chromatin accessibility has been shown in earlier studies to
be an important feature, sequences selected for the model were only from the accessible
sequences’ subset [31,45].

The sequences selected from the CIRCLE-seq (positive dataset) and CRISPcut pre-
dictions, but not found in the experimentally validated datasets (negative dataset), were
selected manually to ensure that the other features, such as the number of mismatches,
cleavage frequencies and cell lines, were sufficiently represented. The features included
for the model prediction were calculated using Python scripts, except the binding energy
features, which were calculated using the method described. The resulting dataset had
40 features and 312 data points.

To determine if the features were correlated with each other, correlation analysis was
carried out, and the results are shown in Figure S2. No significant correlation between
the features was observed. The correlation islands observed were between the cell lines
that were one-hot encoded and are hence mutually exclusive. A high correlation was
expected for the total mismatches and protospacer mismatches (referred to as number of
mismatches, #mm); the same can be stated for total PAM mismatches and types of PAM
mismatches—transversion or transition type. Hence, the features selected were unique and
not redundant.

3.2. Statistical Analysis of the Binding Energy Features

To determine if the values of the binding energies, by themselves, could be used to
differentiate between the positive and negative datasets, the Mann–Whitney U test was
carried out to compare the values between the two sets (Supplementary Table S1). The
Mann–Whitney U test is a non-parametric test to check if a feature’s values are larger for
one of the two populations being compared; it is the non-parametric equivalent of the
unpaired t test.

The values of the two binding energy features were compared for the positive and
negative datasets, where the H0 hypothesis was that the values for the two groups are
equal. Hence, the H0 hypothesis’s rejection indicated that the difference between randomly
selected values of the features from both populations is big enough to be statistically
significant (Table S1). The rank–biserial correlation coefficient indicated the difference
between total amount of favourable and unfavourable evidence. The common language
effect size is the probability that a random value from Group 1 is greater than a random
value from Group 2.

The Mann–Whitney U (MWU) test indicated that the values of the two binding energy
features—dG(REC3:hybrid) and dG(DNA:RNA)—have differing values for the positive
and negative datasets (Table S1). Moreover, it is evident from the MWU test that a random
value from the negative dataset is likely to be higher than a random value from the positive
dataset. However, since the effect size values are low, the features cannot solely be used as
a distinguishing factor for the negative and positive datasets. The difference in population
means the calculation was not enough to reliably call these features distinguishing.

3.3. Regression Model Selection and Performance Assessment

Linear, quadratic, cubic, multi-layer perceptrons and random forest regressors were
implemented with varying parameters and random states to determine the best performing
model. The dependent variable was the cleavage frequency for the off-target sequences
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obtained from the CIRCLE-seq dataset. The performance measured in the R-squared value,
mean absolute error, mean squared error and variance-weighted measure is summarised in
Table 1. The random forest regressor was chosen based on its superior performance on the
dataset, compared to the other models tested. The random forest algorithm is known for
its ability to predict well on tabular data, as is the case here. The perceptron was also tested
for multiple nodes in one and two hidden layers trained till convergence; however, it failed
to outperform the random forest regressor.

Table 1. Summary of model performances. All values shown are for the test dataset.

Metrics
Regressor

Linear Quadratic Cubic Decision Tree SVR MLP XGBoost Random Forest

Mean Absolute Error 0.19 1.23 0.51 0.21 0.19 0.19 0.17 0.06
Mean Squared Error 0.07 3.49 0.54 0.09 0.08 0.07 0.06 0.01

Root MSE 0.26 1.87 0.73 0.29 0.28 0.26 0.24 0.08
R-squared value 0.37 −32.26 −4.15 0.18 0.27 0.42 0.47 0.94

Variance weighted 0.38 −31.82 −4.13 0.24 0.27 0.47 0.55 0.94

The various model metrics listed in the first column are given for the regression models tested. For the random
forest regressor, the metrics are comparatively much better than the other three. It was selected for feature
importance analysis. SVR stands for support vector regressor. MSE stands for mean squared error. The values
reported for each regressor is after the optimisation of individual models.

The best performing regression model, the random forest regressor, was initialized on
various random states and number of trees (as shown in Figure S3). The model with the
maximum R-squared and minimum mean absolute error (MAE) was selected for further
analysis, following which 5-fold cross-validation was performed. The resulting mean
squared error (MSE) remained at 0.05, standard deviation (STD) was 0.01, and the R2 score
was 0.92, indicating that the chosen model was robust.

3.4. Explaining Feature Importance for the Random Forest Regressor

The importance and magnitude of the impact of the features on the model output
were explored in detail since the aim of the study was to establish the importance of the
two features proposed, namely the energy of binding of the REC3 domain of Cas9 to the
20 nucleotide hybrid of the target DNA and guide RNA-dG(REC3:hybrid), and the binding
energy of the 20 nucleotide DNA to the guide RNA strand-dG(DNA:RNA). The variable
importance plot (Figure 1a) generated by implementing SHAP [43,44,46] lists the most
important features in descending order. The ones on top contributed the most to the model
output and hence, have high predictive capability.

The SHAP values also help determine the relationship of the features to the output.
The SHAP variable importance plot (Figure 1b) ranked variables in descending order of im-
portance, and the horizontal spread indicated the effect of the value and the corresponding
higher or lower prediction. Each dot is a value for an instance in the data, and the colour
indicates a higher or lower value for that instance. While distance (total mismatches in
the sequence) and #mm (mismatches in the protospacer region) were redundant features
and showed a similar impact on output, Figure 1 shows that the low binding energy of
the DNA-RNA hybrid, dG(DNA:RNA), had a high impact on model output; while the
binding energy of the Cas9 REC3 domain to the DNA-RNA hybrid, dG(REC3:hybrid) was
negatively correlated with the model output. Figure 1 also indicates that the presence of
mismatch at the 6th position played an important role in determining the model output.

The SHAP variable importance plot (Figure 2) takes three values: a base value, SHAP
values, and the matrix of feature values. The base value was the average or expected
model output, and the SHAP value of a feature and the value of the feature at that instance
determined in which direction the features “push” the model output. The output value
highlighted is the model output for this instance. The features in red direct the output
higher, while those in blue push the predictions lower. The SHAP plot for three instances
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are shown; since each feature plays a different role for each instance, it is essential to
consider the local as well as global relevance of the feature.

 

Figure 1. SHAP variable importance plots. (a) The plot arranges features in decreasing order of
magnitude of impact on model output. (b) The features are listed in decreasing order of importance,
the dots are coloured according to value (in a gradient from high to low, as red to blue) and the
impact for each instance is plotted horizontally. The spread indicates impact on model output, and
the colour indicates feature value for that output.

Figure 2. SHAP variable importance plot. The SHAP variable impact on outcome for singular
datapoints are shown. Examples shown are explainer plots for dataset indices (a) 0, (b) 1 and (c) 2.
The base value labelled in the figure in influenced by varying degrees by the features shown in the
diagrams and the output value (shown in bold) was obtained. The features SHAP values are written
alongside the features if it causes an increase in base value it is shown in red otherwise in blue.
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The SHAP dependence plot (Figure 3) describes partial dependence between a feature
selected, and the reference feature was chosen automatically by the script with which the
chosen feature interacts the most. The dots mark each instance of the chosen variable,
and the colour of the dots indicate the value of the reference feature for that instance. In
Figure 3a,b, there is no clear trend between the two features; however, in Figure 3a the
absence of a mismatch at position 4 and the lower values of dG(DNA:RNA) have a higher
impact on the model output. Figure 3b shows that the partial dependence between the two
features is not significant and no trend can be observed. The spread of the plot indicates the
relationship between the two features. As in Figure 3c, the vertical dispersion at a particular
value shows the interaction effect between the two features. Moreover, an approximately
negative correlation exists between the variables, and a smaller Hamming distance (total
mismatches in the off-target) would have more influence on the model output; it also
corresponds with lower values of dG(DNA:RNA).

Figure 3. SHAP feature dependence plot. The plots show dependence between (a) dG(DNA:RNA)
and a mismatch at position 4, (b) dG(REC3:hybrid) and dG(DNA:RNA) and (c) distance and
dG(DNA:RNA). The vertical axis marks the SHAP values for the chosen feature, while the hor-
izontal axis shows spread of the values of the feature. The reference feature was selected by the
algorithms automatically and was used to colour the dots that indicate value of the primary feature
for an instance. No clear trend can be observed in (a,b). In (c), vertical clusters at individual values
indicate a correlation with dG(DNA:RNA) values, and the plot also shows a negative correlation of
the values of the distance with the output variable.

3.5. Classifier Model Selection and Performance Assessment

The classifier models were built to study the contribution of the binding energy features
to machine learning models that can distinguish between positive (sequences that are off-
target sites in experiments) and negative datasets (sequences predicted to be off-targets but
were not found in experiments). Various classification models were trained on the dataset,
optimised for each type of model (the best performing model’s accuracy summarised in
Table S2). Since the random forest classifier performed well on the 25–75 test-train split, the
model was evaluated after 5-fold cross validation. The classifier yielded good accuracy and
was implemented for further analysis. The model metrics for the random forest classifier
model are summarised in Table 2.

Table 2. Model performance of the random forest classifier, measured on test dataset.

Model Metrics Score on Test Data Overall Score

Accuracy 0.86 0.97
Precision 0.88 0.98

Recall 0.94 0.96
F1 score 0.91 0.97

The accuracy, precision, recall and F1 scores are calculated as mentioned in the Methods section. The accuracy
reported is after 5-fold cross validation. The overall score is for combined test and train datasets.
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The performance of the random forest classifier was tested using various parameters
as shown in Figure 4. The model predicted the correct classes for each label reliably. The
precision–recall curve and receiver operating characteristic (ROC) cover over 95% area
under the curve, indicating a robust classification model. The next best performing model
(support vector machine classifier) did not perform better, even on 5-fold cross validation,
and hence was not evaluated further. Since the study aimed not to build an off-target
determination model, but rather discern the importance of energy features, more complex
models were not tested.

Figure 4. (a) Confusion matrix for the random forest classifier, vertical axis is for predicted labels and
the horizontal axis states the true labels. The values are ratios of the number of instances predicted to
the total instances in the class. (b) Precision–recall curve, shown in orange which has an area under
the curve of 0.98 for the whole dataset, (c) receiver operating characteristic (ROC) also shown in
orange for the test dataset, which plots the true positive rate against the false positive rate. The area
under the curve (AUC) is 0.96. The dashed blue line across the diagonal shows 50% accuracy.

3.6. Explaining Feature Importance for the Classifier

The importance of the features in a well-performing classification model that can learn
the difference between the positive and negative datasets will determine if the binding
energy features play a significant role in determining the model output. The SHAP value
plots for each instance are not shown for lack of space, but three examples are shown in
Figure 5. The base value, determined as the average from the training dataset, is influenced
by the features listed in order of magnitude of impact. Features in blue lower the output,
while features in red increase the output. In all instances, energy features play an important
role. However, since feature importance for each datapoint varies, it is important to see
each feature’s global impact, which is shown in Figure 6.

This SHAP value plot ranks the features in decreasing order of importance, while the
spread across the horizontal determines the impact on the model for higher values (in red)
and lower values (in blue). As is shown in Figure 6, the energy features are ranked high.
Lower values of both binding energies are characteristic of the positive dataset. Hence,
lower values of the binding energy tend to result in a positive impact on the model output;
here, it is the classification in the positive dataset.
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Figure 5. SHAP value plots for singular datapoints. Examples shown are for dataset indices (a) 10,
(b) 17 and (c) 21, and are chosen randomly. The base value shown increases by features shown in
red and decreases because of features shown in blue. Each feature impacts the value in magnitude
indicated by SHAP values labelled alongside for each instance.

Figure 6. (a) SHAP value plot indicating global impact n model output. Each dot is an instance for a
datapoint, the colour represents if the value for that instance is low (blue) or high (red). The spread
indicates the magnitude of impact on the model output. (b) SHAP summary plot shows the impact
of the features on each model output, negative class shown in blue and positive class shown in red,
as stacked bars, in decreasing order of impact on output.

4. Discussion

The accurate prediction of CRISPR/Cas9 activity is crucial to not only designing
experiments for various applications but also understanding the mechanism of Cas9 activity
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in vivo. Computational methods for predicting activity, off-targets and guide design
have advanced significantly in recent times, yet there remains room for improvement
regarding precision and accuracy. Prediction models would also benefit from improved and
more sensitive Cas9 off-target detection methods to better distinguish between sequences
likely to be acted upon by Cas9 (here, the positive dataset). This study reported that the
incorporation of novel features allows for creating reliable prediction models. Moreover,
the identification of novel features also sheds light on the factors influencing Cas9 activity
in vivo.

The two major binding events responsible for Cas9 activity are (1) the binding of the
Cas9 protein to the guide RNA, allowing DNA interrogation for complementary sequences,
(2) followed by binding to the complementary sequence, which allows nuclease activa-
tion and a subsequent DNA double-stranded break [47]. Significantly accelerated by the
availability of X-ray and cryo-EM structures, computational methods, such as QM/MM
and molecular dynamics (MD), have elucidated the pre-catalytic and catalytic structures
of Cas9 [48,49]. Enhanced MD simulations have shed light on the concerted mechanisms
of HNH and RuvC domain activities [50–52]. The HNH domain via an Mg2+ ion cuts the
target strand, while the RuvC domain houses two metal ions coordinated by conserved
residues, which mediate a break in the non-target strand [52]. The varying tolerance of the
mismatches across the guide-target heteroduplex has also been investigated [18,53,54]. The
REC3 domain is known to interact with the guide RNA-target DNA complex, investigate
the complementarity between the two, and tolerate mismatches [55,56]. Mismatches were
seen to be tolerated towards the centre of the guide–target hybrid [53]. In contrast, mis-
matches towards the end of the hybrid induced an extended opening of the heteroduplex
and leading to a conformational lock with the “L2” loop region [54]. Hence, the interactions
of the guide RNA with target DNA and the heteroduplex with the REC3 domain of Cas9
protein have been shown to play a decisive role in nuclease activation, leading to Cas9
activity. The introduction of mismatches alters the interactions, leading to altered Cas9
activity. Understanding the factors that govern the RNA:DNA interactions is critical to
elucidating biological function that it is involved in [57–60]. Hence, to quantify the interac-
tions, DNA-RNA hybrid binding energy and Cas9-hybrid binding energy were estimated
and analysed. The scores were then included as features alongside sequence features, and
machine learning models were built for Cas9 activity prediction. Well-performing models
were selected to analyse the importance of the new energy-based features, if any.

The random forest algorithm outperformed the others tested on both classification
and regression tasks. The improved performance could be attributed to the limited number
of features on each split. When compared to individual decision trees, which have a
higher bias, random forests tend to perform better because of the variance reduction due to
bagging. The features used, as the results describe, have minimum redundancy. The energy
features prove vital in driving model output in both regression and classification tasks.
This feature importance was also observed in the second-best performing classification
model: a support vector-based machine classifier (a second regressor was not evaluated
due to the performance being subpar, not reliable enough to study feature importance). The
importance of the number of mismatches in the seed region has already been established in
multiple studies [61,62]. Interestingly, a higher number of transversions was shown not to
be tolerated in the experimental dataset, indicating a preference in the sequences (Figure 6a).
However, a bigger dataset is required to be tested to establish this. The “distance” feature’s
trend may also be inferred intuitively since lower values of total mismatches are likely to be
observed in the positive dataset. The energy features’ contribution was novel and ranked
high consistently in multiple results, enough to be considered important. The performance
of the reported random forest classifier was also compared against existing methods for
off-target prediction and was found to perform better (Figure S4).
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5. Conclusions

In this study, the binding energy of the Cas9 REC3 domain and the 20-nucleotide
DNA-RNA hybrid, and the binding energy of the 20 nucleotides of target DNA to guide
RNA were novel features and proposed to be important for Cas9 activity. In the regression
model, which predicts Cas9 cleavage frequency, and the classification model, which predicts
Cas9 activity, both these features were shown to be important in driving model output.
The same importance of the features was observed in the classification model, which can
reliably distinguish between experimentally likely and unlikely off-target sequences. The
other features used in the model were standard features used in most studies: the number
and position of mismatches and type of mismatch, among others. The binding energy
features were not redundant and did not show correlation with the other features, and
hence they can be implemented in future algorithms for improved off-target prediction and
guide-RNA design algorithms.

Supplementary Materials: The following supporting information [23,24,28,63–65] can be down-
loaded at: https://www.mdpi.com/article/10.3390/biom12081123/s1, Figure S1: Features of the
predicted dataset. On the vertical axis is the number of predicted sequences and on the horizontal
axis is the number of experimentally validated sequences. (a) The number of CRISPcut predictions
vs. CIRCLE-seq off-targets which shows poor correlation as can be determined by the low R2 value of
0.22. Each dot represents a unique target sequence for which the number of experimentally validated
off-targets, plotted on the X-axis are compared against the number of predicted off-targets using the
CRISPcut tool, as plotted on the Y-axis (b) Shows only the number of accessible predictions plotted
against number of CIRCLE-seq off-target sites for a guide, high correlation denoted by an R2 value of
0.84 can be observed here; Figure S2: Correlation plot of the features used for model training. The
dark blue diagonal indicates self-correlation. There is a poor correlation between most feature pairs,
but a few high correlation islands in dark blue and yellow colour can be seen. Since cell lines are
mutually exclusive, the correlation between the cell lines will be negative. The dark blue islands are
between PAM mismatches, PAM transitions and PAM mismatch positions, which can be expected;
Figure S3: The mean absolute error (MAE) multiplied by 10, and R2 value plotted for each model
tested, various models were tested with increasing n_estimators and random states. The dashed grey
line marks the maximum R2 and minimum error instance, which corresponds to n_estimators of
18 and a random state of 6; Figure S4: The best-performing random forest classifier was compared
with the existing off-target prediction models for predicting the off-targets of a randomly selected
EMX1 locus. The precision was calculated against experimentally validated sequences obtained
from CIRCLE-seq. The off-targets were obtained from the CRISPOR [1,2], CRISTA [3], Elevation [4],
ge-CRISPR [5] and CRISPcut [6] webservers (accessed on 13 June 2021); Table S1: Results of the
two sample Mann–Whitney U test; Table S2: Random forest classification model performance sum-
mary; Table S3: Details of negative dataset; Table S4: Complete set of features used in the model
learning process.
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Abstract: Background: Analysis of the distribution of amino acid types found at equivalent positions
in multiple sequence alignments has found applications in human genetics, protein engineering, drug
design, protein structure prediction, and many other fields. These analyses tend to revolve around
measures of the distribution of the twenty amino acid types found at evolutionary equivalent positions:
the columns in multiple sequence alignments. Commonly used measures are variability, average
hydrophobicity, or Shannon entropy. One of these techniques, called entropy–variability analysis, as the
name already suggests, reduces the distribution of observed residue types in one column to two numbers:
the Shannon entropy and the variability as defined by the number of residue types observed. Results:
We applied a deep learning, unsupervised feature extraction method to analyse the multiple sequence
alignments of all human proteins. An auto-encoder neural architecture was trained on 27,835 multiple
sequence alignments for human proteins to obtain the two features that best describe the seven million
variability patterns. These two unsupervised learned features strongly resemble entropy and variability,
indicating that these are the projections that retain most information when reducing the dimensionality
of the information hidden in columns in multiple sequence alignments.

Keywords: MSA; entropy; variability; deep learning; amino acids; Philip Bourne; FAIR; bioinformatics

1. Introduction

In a recent article [1], Phil Bourne provocatively asked, “Is bioinformatics dead?”. As
always with such after-dinner questions, the answer is “Yes and No”, a conclusion that Phil
himself already drew implicitly. Phil credits Florian Markowetz for starting the whole discus-
sion [2]. Phil’s article and the three references he cites mention the fourth paradigm—data
science—that is to follow the first three: empirical evidence, scientific theory, and computa-
tional science [3]. Using Google Scholar, we found many suggestions for the fifth paradigm
after data science, e.g., letting computers decide which will be the best experiment to perform
next, the mismatch between data-intensive and computer-intensive work, brain–computer
integration, network pairing for small sample sizes, or a whole lot more. Zubarev and Pit-
era’s [4] definition of the fifth paradigm is arguably among the most inclusive and integrative:
“cognitive systems seamlessly integrate information from human experts, experimental data,
physics-based models, and data-driven models to speed discovery”.

Working with data requires that the data are well-annotated and well-curated, and
several articles have been written about the 10 rules for (biological) data storage [5,6]. We
agree with Florian Markowetz and Phil Bourne that data science is key to understanding
biology, but we also have to deal with the reality that a Google Scholar search for FAIR [7]
data results in three million hits, while finding articles that are the result of harvesting
multiple FAIR-compliant databases in the bioscience domain is a bit of a challenge. Clearly,
a lot of FAIR-related work still needs to be conducted in the worlds of the first three
paradigms. The FAIR principles have been applied rigorously to a series of large data
collections that are maintained by institutions such as EBI or NCBI, and Phil is one of those
whom we should thank for that. Indeed, access to protein, DNA, and RNA sequence data
is at the basis of most of today’s understanding of biology and biomedicine. Markowetz [2],
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for example, asked the question of how one can quantify the genetic heterogeneity that
was suggested to be related to the outcome of anticancer therapies. He concluded that
“Computational biology excels at distilling huge amounts of complex data into something
testable...” and we believe this to be a step towards a fifth paradigm: data-based science
(biology) with a human domain expert at the helm. We are starting to see an increasing
number of fifth paradigm examples that illustrate the power of the trinity of data science,
deep learning, and human domain expertise. It is imperative that artificial intelligence—
especially deep learning approaches—will be a tool that is equally as important for this
fifth paradigm’s helmsmen as the data science taught in Phil’s school.

The alphafold2 three-dimensional structure prediction algorithm [8], for example, imple-
ments human insights and numerous innovations in a deep learning architecture that analyses
correlations in multiple sequence alignments (MSAs) to determine which amino acids are in
close proximity in three-dimensional space. This follows the philosophy that if it sits together,
it evolves together [9,10]. A notable example that demonstrates the power of the data trinity
comes from Wang et al., who used deep learning to generate protein scaffolds for user-defined
protein functional sites [11]. Mirhoseini et al. demonstrated that the data trinity can even
drive AI progress itself by letting a deep learning model create the next generation of Google’s
AI accelerators, reducing months of human effort to a few hours [12].

Frameworks have been designed that allow non-AI bioscience domain experts—the
helmsmen of the trinity—to combine data with deep learning to answer biomedical ques-
tions. An example is DeepRank, a general protein–protein interface analysis framework
that outperforms the state-of-the-art algorithms in ranking protein docking models and in
classifying biological versus crystallographic interfaces [13].

The alphafold2 experiment lent support to one of the classical ideas in biology that all
the data needed to determine the three-dimensional structure of a protein is available in its
sequence. Two decades earlier, Laerte Oliveira asked the question of whether the functional
role of each amino acid could be extracted from an MSA [14,15]. He showed that this was
indeed possible, but in those days, databases were small, computers were slow, and the
term ‘deep learning’ still had to be invented. We show here, as an example of the fifth
paradigm, that with deep learning, human domain knowledge, and a large set of MSAs,
we can reconstruct Laerte’s proposed features to determine the functional properties per
amino acid given a protein’s MSA.

The study of protein sequence–structure–function relations has always been a central
theme of bioinformatics, and next-generation sequencing has only strengthened this interest.
As there are many more protein sequences available than experimentally determined
protein structures, multiple sequence alignments (MSAs) dominate this field, as is, for
example, illustrated by information systems such as the GPCRDB [16,17] or 3DM [18].

Two principally different philosophies are in vogue to produce MSAs. Classically,
MSAs are produced to best represent what happened to the underlying genes during
evolution, and the more sequences that can be included, the more information that can be
extracted. MSAs that are used in information systems for protein engineering, drug design,
and DNA diagnostics, on the other hand, work best if they are centred on one sequence
and if all aligned sequences are of similar length. Correlated mutation analysis (CMA) for
the purpose of alphafold2-style structure prediction seems to work best using the broader
MSAs [9,19,20], while protein engineering and the prediction of residue function normally
require one-sequence-centred MSAs.

The information extracted from MSAs is often visualized low-dimensionally using
phylogenetic trees or networks of residues that show a high level of mutation correlation.
In DNA diagnostics, for example, the degree of conservation at the amino acid residue
position where the disease-causing mutation is observed is the single most important factor
underlying all analyses [21]; a fully conserved residue position is very important, while
a residue found in a maximally variable MSA column is unlikely to be causative for a
patient’s disease state. The variability observed in a column in an MSA has been described
in many ways, with the Shannon entropy (Σi=1,20 pi × log(pi) with pi being the fraction
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of each of the 20 amino acid types i in column p in an MSA) probably being the most
popular. Oliveira et al. [14,15] found large functional differences between columns with
similar entropy but different numbers of observed residue types and introduced entropy–
variability (EV) plots to combine these two features. These plots proved to be a powerful
tool to learn about the function of individual residues.

The use of the EV method to answer biological questions is well documented in the
scientific literature. Vollan et al. [22] used the EV approach, for example, to determine the
multimeric state of porins. Gaspari et al. [23] used the methods of Oliveira et al. [14,15]
to analyse and extend the Pacifastin protease inhibitor family. Wang et al. [24] predicted
the early risk of ophthalmopathy in Graves’ disease patients using EV analyses on a
patient’s T cell receptor repertoire. Samsonova et al. [25] used the EV method to understand
the role of individual residues in the function of olfactory G protein-coupled receptors.
Abascal et al. [26] made their model for residue variability among Arthropoda fit the
concepts behind the EV method. Bywater [27] used a variant of EV that includes the use
of Kolmogorov complexity to extract protein structural features from multiple sequence
alignments. These are just a few of the many applications.

EV plots illustrate that residues with either similar entropy or similar variability can
still have radically different functions (see Figure 1). Although their method worked nicely
for a large series of well-studied proteins, Oliveira et al. could not prove that EV plots were
the best way to represent MSAs in two dimensions.

Figure 1. Example EV plot. Colours correspond to functional classes. Each circle represents one
column in the MSA, and in this example, thus also one position in the structure. Oliveira et al. divided
the EV plot in five areas that—from bottom left to top right—are called Box 11 (pink), 12 (blue),
22 (grey), 23 (orange), and 33 (green). Residue positions in Box 11 were mostly involved in the
protein’s main function, while Box 12 residue positions were found in the 3D structure around
Box 11 residues. Residue positions in Box 23 were generally associated with modulation (such as
ligand-binding residues in receptors, calcium-binding residues in calcium-modulated proteins, etc.).
Residue positions in Box 22 tended to be in the 3D structure between residue positions from Box 12
at the one side and residue positions from Box 23 at the other. Residue positions in Box 33, finally,
tended to have no discernible function.

Modern machine learning methods, such as deep learning, have shown to significantly
outperform previous methods in many fields [8,28,29]. The power of deep learning lies in
the fact that, given enough data, it can fully automatically and unsupervised learn complex
features from raw input alone, thereby bypassing the need to create hand-crafted features
using the knowledge of a domain expert.

Deep learning models in the biosciences tend to be heavily parameterized, often using
large numbers of data types as input and normally using deep learning in a supervised manner
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for classification purposes. We asked the question of which features would result from a
fully unsupervised reduction of the twenty dimensions of an MSA. Using an autoencoder
architecture, we stepwise reduced the dimensionality from 20 to 15 to 10 to 5 to 2, while taking
great care that at each step the information loss was kept minimal. The features remaining
after reduction to two dimensions resemble entropy and variability remarkably well.

2. Materials and Methods

Multiple sequence alignments were extracted from the human genome HSSP files [30,31].
This dataset was filtered to remove individual columns where the 20 canonical amino acids
contributed for less than 75%. The remaining 7,033,530 columns were each converted to a
vector p of twenty elements pi that are the fraction of the twenty amino acids i in that column.
The elements pi were sorted from high to low.

We combined elements from several well-known techniques [32–34] into an autoen-
coder that is optimal for MSA variability signal reduction. This autoencoder consisted of
an encoder with layers of size 20-15-10-5-2 and a symmetric decoder [34]. The input to and
the output from the autoencoder are the 20-dimensional vector of the relative frequency for
each amino acid; the output vector is the best reconstruction possible of the input vector
after passage through the 2-dimensional bottleneck. The network does not make use of
tied weights. Batch normalization with parameters [33] was used for all hidden layers.
The sigmoid function was applied after batch normalization to all units. Due to the small
bottleneck of two neurons, the training procedure consisted of a greedy layerwise pretrain-
ing finished with fine-tuning [34]. Parameter optimization was performed via stochastic
gradient descent using ADAM [35] with a learning rate of 10−3 and a batch size of 128
(i.e., 128 column vectors of p). The design of this autoencoder allowed all training steps
to use the fast binary cross-entropy loss function. The binary cross-entropy function (not
to be confused with the sequence entropy in columns in an MSA) measures the difference
between the 20-dimensional input vector and its reconstruction.

The entropy values in neural plots (neuron1 with respect to neuron2) are normalized
to the maximum entropy per variability.

The code was written in Python using the PyTorch library [36]. The resulting autoen-
coder software is available from GitHub: https://github.com/cmbi/EntVar/, accessed on
1 July 2022.

3. Results

Figure 2a is the classical EV plot for the SPG11 protein. Figure 2b is the neural repre-
sentation for this same protein, i.e., each column from the SPG11 MSA is now represented
in the two dimensions according to the autoencoder’s data reduction. In Figure 2b, each
residue is coloured as in Figure 2a. Figure 2c,d are the same as Figure 2b, but coloured by
the variability and the entropy, respectively. It is remarkable how well residues of the same
colour cluster in the three neural plots. Oliveira et al. analysed well-studied protein families
and mapped experimentally determined residue functions on the EV plots. They then drew
boundaries between areas where certain types of function were predominantly observed.
These boundaries were somewhat arbitrary, and their optimal location depended, for example,
on the number of sequences aligned, the average pairwise sequence identity between the
aligned sequences, and the function of the protein family. Oliveira et al. realized that the
functional classes are not very sharply divided over the EV plot and that it would be better
to see the boundaries as guidelines. The mapping of the EV plot colours on the three neural
plots supports this latter idea. The neural plots show a clear gradient when going from low to
high entropy or variability. The only exceptions are columns with variability 1 or 2, which
are separate groups at the bottom left of the neural plots. Since neural networks operate in
continuous space, the discrete character of variability is expected to be blurred out in the
plot. Columns with variability 1 or 2 are found at distinct locations, while columns with high
variability and high entropy tend to not be separated well. In Figure 2d, entropy values are
normalized to the maximal value attainable at each of the twenty variability values. When the
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entropy values are not normalized, the colour gradient in neural plot 2d does not run from
bottom to top, but from bottom left to top right.

Figure 2. Variability reduction of an MSA. Each circle represents one column from the SPG11 [37]
MSA. (a) The EV plot according to Oliveira et al. using today’s MSA (colours corresponding to
functional classes as in Figure 1). (b) Neural residue plot in which each residue is coloured as in A.
(c) The same as B but coloured by variability. The column of circles at the right-hand side indicates
the colour used for the variability values from 1 till 14. (d) The same as B, but coloured by relative
entropy on a gliding scale from red to green. Neuron 1 and neuron 2 are the two elements of the
2-dimensional bottleneck vector of the autoencoder.

4. Discussion and Conclusions

Oliveira et al. had to read nearly a thousand articles to obtain the data needed to
functionally classify residue positions in five well-studied protein families. Their EV plots
were an attempt to map residue functions on a human readable representation. We used an
autoencoder that completely unsupervised, and without the need to spend years of human
effort on feature creation, to obtain essentially the same results.

We used an autoencoder with layers 20-15-10-5-2. Alternate layer schemes such as
20-16-8-4-2, 20-19-18 . . . 4-3-2, 20-64-32-16-8-4-2, etc., all produced highly similar results.

A reduction to three rather than two dimensions resulted in a three-dimensional
distribution of MSA columns (and thus residue positions in the protein’s structure) that
we could not relate to anything biologically meaningful. This is partly caused by the
fact that there is no literature available in which variability patterns are reduced to three
features by either supervised or unsupervised methods. The three features were not entropy,
variability, and a third term. Entropy and variability mapped seemingly randomly on the
three-dimensional plot.

The 7,033,530 columns were all sorted with the highest residue frequency first to
ensure that the autoencoder analysed variability patterns. When the vectors were not
sorted so that the twenty elements pi always represented the frequencies of Ala, Cys, Asp,
Glu, etc., the two dimensions represented the amino acid types, their characteristics, and
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their mutabilities in ways that are not surprising to bioinformaticians from Phil’s generation.
These results are shown in Figure 3.

 

Figure 3. Autoencoder results for the MSA column reduction with fixed order of the twenty amino acid
types over the column. These results are beyond the scope of this article but will be discussed extensively
on the associated website: https://swift.cmbi.umcn.nl/gv/EV/index.html, accessed on 1 July 2022.
Neuron 1 and neuron 2 are the two elements of the 2-dimensional bottleneck vector of the autoencoder.

Figures 2 and 3 illustrate that the autoencoder software can represent variability patterns
in MSAs in two dimensions in ways that correspond well to human knowledge about amino
acids and protein sequence–structure–function relations. However, the autoencoder remains
a black box. It is impossible to determine how it obtained its results. For example, when
the dimensionality of the data gets reduced from twenty to three, no discernible patterns
emerged, but with two dimensions the classical EV plot emerges. In Figure 3 we observe that
residues with similar biophysical characteristics land close to each other. As these biophysical
characteristics are not one single continuum, Figure 3 principally must contain exceptions.
Indeed, we observe that the largest residue, tryptophan (W), lies adjacent to the smallest one,
glycine (G). Other than the knowledge that hydrophobicity is the most important parameter
when comparing amino acid types (and thus that hydrophobicity is ‘more important’ than
residue size) we cannot learn from the autoencoder why this is true. Therefore, even though
the autoencoder beautifully describes the information in the data, a human expert must still
place this information in the wider context of our knowledge, confirming the need for a
domain expert in our fifth-paradigm bioinformatics trinity.
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Abstract: Metagenomics is a technique for genome-wide profiling of microbiomes; this technique
generates billions of DNA sequences called reads. Given the multiplication of metagenomic projects,
computational tools are necessary to enable the efficient and accurate classification of metagenomic
reads without needing to construct a reference database. The program DL-TODA presented here
aims to classify metagenomic reads using a deep learning model trained on over 3000 bacterial
species. A convolutional neural network architecture originally designed for computer vision was
applied for the modeling of species-specific features. Using synthetic testing data simulated with
2454 genomes from 639 species, DL-TODA was shown to classify nearly 75% of the reads with high
confidence. The classification accuracy of DL-TODA was over 0.98 at taxonomic ranks above the
genus level, making it comparable with Kraken2 and Centrifuge, two state-of-the-art taxonomic
classification tools. DL-TODA also achieved an accuracy of 0.97 at the species level, which is higher
than 0.93 by Kraken2 and 0.85 by Centrifuge on the same test set. Application of DL-TODA to the
human oral and cropland soil metagenomes further demonstrated its use in analyzing microbiomes
from diverse environments. Compared to Centrifuge and Kraken2, DL-TODA predicted distinct
relative abundance rankings and is less biased toward a single taxon.

Keywords: deep learning; DNA sequencing; read classification; metagenomics

1. Introduction

A microbiome defines a community of microorganisms and their activities in a given
environment. This term encompasses the microbial species themselves, but also the col-
lection of molecules they produce such as metagenomes [1,2]. Microbiome studies can be
useful to different fields such as medicine or environmental protection. For example, the
human gut microbiome is being extensively analyzed to uncover how its composition is
linked to various disorders [3], while the ocean microbiome provides information on the
potential impact of climate change on marine biodiversity [4].

The metagenomic study of microbiomes has gained a lot of interest due to the progress
made in DNA sequencing technology. While the history of DNA sequencing started a
decade after many proteins were already sequenced and RNA sequencing was being ap-
prehended [5], it quickly evolved in the late 1970s when Sanger and Gilbert independently
developed methods that allowed sequencing of 50 and 100 nucleotides, respectively [6,7].
The automation of Sanger’s technique combined with the desire to sequence large frag-
ments of DNA brought various improvements that led to the development of efficient
machines able to perform DNA sequencing in a particularly parallel fashion. Current high-
throughput sequencing methods can produce billions of DNA fragments simultaneously
during a single run. In addition, high-throughput sequencing technology offers speed and
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a decrease in cost per base, but also offers high sequencing depth that comes with better
sensitivity. This provides the means to study uncultivable microorganisms and to detect
low abundance microorganisms of a microbial community.

In a typical metagenomic study, the genetic material in all organisms contained in a
given sample is fragmented, and the DNA fragments sequenced are identified as reads. Fol-
lowing sequencing, diverse bioinformatic tools are used to remove low-quality sequences
and to assemble overlapping reads into contiguous DNA segments, also called contigs.
Contigs are then arranged through scaffolding into longer segments to eventually recon-
struct genomes present in the sample. This complex process of de novo sequence assembly
is further challenged when dealing with short-read sequences and the high sequencing
depth that is required to differentiate similar or repetitive sequences. The recent develop-
ment of third-generation sequencing platforms enabled the determination of long-read
sequences. With a length of 10–25 kb [8] from the Pacific Biosciences (PacBio) and 10–100 kb
from Oxford Nanopore Technologies (ONT) platforms, de novo assembly will be greatly
facilitated and improved as it can already be seen [9,10].

A complementary approach to analyze metagenomic data and provide information
on the composition of microbial communities is the taxonomic classification of reads. This
method involves assigning a taxonomic group to every read with the goal of classifying as
many sequences as possible and identifying species present in the sample. One strategy for
taxonomic classification consists of comparing k-mer signatures in metagenomic reads to a
database of categorized k-mers. One of the state-of-the-art tools for metagenomic classifica-
tion is Kraken [11], which relies on a database of k-mers with each k-mer associated with
the lowest common ancestor of all genomes containing that specific k-mer. Kraken has been
criticized for employing a memory-intensive algorithm [12–14], prompting its designers to
release Kraken2, which features a more memory-efficient data structure [15]. An alternative
method to efficiently store and query the database of k-mers is a modified implementation
of the FM-index, employed by Centrifuge [16]. Both Kraken2 and Centrifuge have been
praised in the literature for providing high accuracy and rapid runtimes [13,17].

The rapid development of deep learning techniques has inspired new applications in
the analysis of metagenomic data. Deep learning models rely on artificial neural networks
designed based on the structure and function of neurons in the human brain [18]. Complex
deep learning models containing many layers have the ability to extract relevant features
and find abstract patterns in data, allowing them to achieve high accuracy. For example, the
desire to push forward the capacities of deep neural networks has led to the development
of new techniques and architectures to classify images, which can reach an accuracy of
99.84% [19] on the MNIST handwritten digit classification dataset.

The first study to consider deep learning algorithms in the classification of DNA se-
quences built a convolutional neural network (CNN) to classify 16S small subunit ribosomal
RNA (rRNA) genes which are commonly used for the identification of bacteria [20]. This
study employed the bag of words technique to represent reads simulated from 16S rRNA
reference sequences in terms of k-mer occurrences, thus obtaining sparse matrices as input
vectors for their neural network. A k-mer size of 7 was used to restrict the storage and
computational complexities that occur with sparse input vectors. Despite these limitations,
they reported an accuracy of 91% across 100 bacterial genera on an artificial validation
dataset. Another CNN method was proposed to classify short reads of 16S rRNA genes
across 2768 genera, and achieved better sensitivity compared to Kraken2 at the genus level
on 100 bp and 200 bp synthetic reads generated using 16S rRNA genes as templates [21].
While the tools mentioned above would support a high classification rate with amplicon
sequencing data that targets specific genetic regions such as the 16S rRNA genes, other soft-
ware have been designed to analyze the entire genetic materials sequenced from a sample.
One such method called GeNet shows the improvement of training a CNN model with long
DNA sequences by recording better classification of long metagenomic reads from a mock
community consisting of ten microbial species, with comparable performances with Kraken
and Centrifuge at the species and genus levels [22]. A more recent tool called DeepMicrobes

206



Biomolecules 2023, 13, 585

targets 2505 bacterial species from the human gut and implements a bidirectional long
short-term memory (LSTM) in addition to a self-attention mechanism [23]. DeepMicrobes
outperforms other traditional taxonomic classification tools at the genus level on mock com-
munities, suggesting the potential of LSTM in metagenomic read classification. However,
LSTM is significantly slower than CNN. Finally, a recent model called BERTax, based on
the state-of-the-art model BERT for natural language processing, classifies DNA sequences
at the superkingdom, phylum, and genus taxonomic levels and shows generalization on
unknown data compared to other approaches mentioned previously [24]. For a more in
depth analysis of the deep learning techniques applied to taxonomic classification, we
recommend a review published recently by [25].

Here, we present DL-TODA, a deep learning model based on CNN that classifies short
metagenomic reads from over 3000 bacterial species. Compared to the aforementioned
tools, DL-TODA is trained with a modified version of the deep neural network AlexNet, a
successful CNN in computer vision. A training dataset containing 250 bp reads simulated
from all complete bacterial genomes available in the NCBI Reference Sequence database
was used for training the DL-TODA model. This enabled the identification of bacteria
originating from a wide range of free-living and host-associated habitats. DL-TODA
classifies each read at the species level and supports the inference of higher-order taxa
based on NCBI or GTDB taxonomy. A probability score is generated for each prediction,
hence permitting the quality control of prediction results based on probability thresholds.

2. Materials and Methods

An overview of all steps involved in the training, validation, and testing of the DL-
TODA model is presented in Figure S1. Below, we provide detailed descriptions of the
corresponding steps.

2.1. Bacterial Genome Selection

A total of 9859 complete bacterial genomes representing 3313 different species isolated
from diverse free-living and host-associated environments were selected from the genome
taxonomy database (GTDB) release 95 and the NCBI RefSeq database, downloaded on
7 March 2020. The genomes selected are not derived from metagenome or environmental
samples and have a size equal to or above 500 kb. For each species, 70% of the genomes
were randomly assigned for model training and the remaining 30% for model testing. In the
cases of species with a single genome, the genome in question was automatically appointed
to the training set. Additionally, all representative genomes from GTDB were automatically
assigned for training. In total, we have 7405 and 2454 genomes assigned for training and
testing, respectively. Table 1 provides a summary of the number of taxa represented at
species, genus, family, order, class and phylum levels in training, validation and testing sets,
and for both GTDB and NCBI taxonomy. A smaller number of taxa are represented in the
NCBI classification due to different assignments with the GTDB classification. For example,
amongst the 537 genomes classified as Escherichia coli by NCBI, 363, 93, 80 and 1 genomes
are assigned by GTDB to Escherichia flexneri, Escherichia coli, Escherichia dysenteriae, and
Escherichia coli_C, respectively. Additionally, 244 genomes lack specific assignments in
at least one of the given taxonomic ranks in the NCBI taxonomy database. For example,
genome GCA_000317655.1 is not assigned a class in the NCBI taxonomy but is assigned to
the class of Cyanobacteria in the GTDB taxonomy.
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Table 1. Taxonomic distribution of training/validation and testing datasets based on the GTDB or
NCBI taxonomy databases.

Training and Validation Sets Testing Sets

Database GTDB NCBI GTDB NCBI

Species 3313 3053 709 639
Genus 1414 1136 331 289
Family 465 387 138 146
Order 224 171 79 77
Class 100 74 38 33

Phylum 45 43 24 19

2.2. Reads Simulation

Paired-end reads of 250 bp were simulated using ART Illumina read simulator (version
2.5.8) [26]. A coverage of 7 and 3 was used for read simulations using training and testing
genomes, respectively. A mean fragment length of 300 bp and a standard deviation of
fragment length of 10 bp were chosen according to ART Illumina usage information. The
built-in error profile of MiSeq v1 (MSv1) was used for simulation. The command for
running ART Illumina is art_illumina -ss ‘MSv1’ -i <input fasta file> -d <reads prefix id>
-na -s <standard deviation of fragment length> -m <mean fragment length> -l <read length>
-f <fold coverage> -p -o <output file>.

2.3. Training, Validation and Testing Sets

Paired-end reads obtained from training genomes were randomly shuffled and split
into 70% for training and 30% for validation. The forward and reverse reads from testing
genomes were treated separately and classified independently. Identical reads between
the training and testing data were identified by clustering the training and testing reads
using Mmseqs2 easy-linclust (version 13.45111) with a minimum sequence identity of 1.0
and a fraction of aligned residues of 1.0. To avoid biases in testing, testing reads that are
identical to the training reads were removed from the testing set. Table 2 summarizes the
final number of reads included in the training, validation and testing sets of this study. The
number of training reads allocated to each species in the NCBI taxonomy had a median
of 80,067 and ranges between 10,359 and 56,838,380 (Figure 1A). The number of testing
reads allocated to each species in the NCBI taxonomy had a median of 56,839 and ranges
between 6455 and 14,223,296 (Figure 1B). The genome coverage represented in the training
data was calculated for each species based on Equation (1), where the “number of training
reads” are the number of reads assigned to a given species label in the training data, and
the “average training genomes size” accounts for the average length of training genomes
of the given species.

genome coverage = 250 ∗ number o f training reads / average training genome size (1)

Table 2. The total number of simulated reads in training, validation and testing datasets.

Dataset Number of Reads

Training 563,434,720
Validation 241,467,730

Testing 109,851,839
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Figure 1. Distribution of number of training (A) and testing (B) reads per species based on the NCBI
taxonomy in the natural log scale.

2.4. Deep Learning Neural Network
2.4.1. Reads Representation

DL-TODA represents each read as a vector of k-mers, using a sliding-window of size
12 across the 250 bp read sequence. Reads shorter than 250 bp were padded with 0s before
representation of the k-mers. A vector of 239 integers was then used to represent each read
based on a k-mer size of 12 and an indexed vocabulary of 12-mers (described in the section
below). The read vectors were then stored in TensorflowRecord (TFRecord) files alongside
labels corresponding to the species assignment (i.e., ground truth), and presented to the
embedding layer.

2.4.2. K-mer Embedding

The DL-TODA model embeds each k-mer by choosing only the canonical form in a
pair consisting of the k-mer and its reverse complement. The canonical k-mer corresponds
to the k-mer that appears first, according to the alphabetical order. This strategy allows
us to reduce the vocabulary learned by the neural network and therefore lower the com-
plexity of the model. The number of all possible canonical 12-mers is 8,390,656, defined as
(4k+4(k/2))

2 (k = 12). The vocabulary of DL-TODA included all the canonical 12-mers and
two additional digits, one accounting for unknown 12-mer with characters different from
the four universal bases (i.e., A, T, G, C), and another for padded 0s to the right of sequences
shorter than 250 bp. Following the vocabulary definition, each 12-mer was assigned an
index between 0 and 8,390,657 in order to retrieve a vector of 60 real values from a list.
These vectors were initiated in the Tensorflow embedding layer, with each real value drawn
from the He Normal distribution [27], and were updated during training.
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2.4.3. DL-TODA Neural Network

The deep neural network architecture of DL-TODA is a modified version of AlexNet [28]
(Figure 2) with a trainable embedding layer generating an (8,390,658 × 60) embedding
matrix. The input layer of this neural network is a (239 × 60) matrix consisting of 239 rows
of 12-mers embedded as 60 real value vectors (described above). The input data are then
processed by five convolutional layers, two max pooling layers and three fully connected
layers. The rectified linear unit (ReLU) activation function is applied throughout the neural
network, except in the last layer, in which the softmax function transforms the output from
the fully connected layer to a probability distribution over the 3313 species.

Figure 2. Convolutional neural network architecture used to build the taxonomic read classifier
DL-TODA. Each read is represented as an input layer (239 × 1 × 60) by embedding 12-mers into
vectors of 60 real values. The input layer is then processed by five convolutional layers, two max
pooling layers and three fully connected layers.

2.4.4. Loss Function and Probability Scores

The following cross entropy loss function (Equation (2)) was used to compute the
difference between the species desired output (0 or 1) and the estimated probability of
correct prediction for a given species for one example.

Cross Entropy Loss = −
3313

∑
i=1

actual value o f Speciesi ∗ log(predicted probability o f Speciesi) (2)

The estimated probability of every species is obtained by applying the softmax func-
tion [29] to an output vector of 3313 real numbers.

2.5. Training and Testing

Data loading to the neural network was performed using the Nvidia Data Loading
Library (DALI). Shuffling was carried out exclusively for the training and validation sets.
Distributed training was executed by dispatching batches of 512 reads to four different
GPUs (global batch size of 2048). Each GPU computed gradient updates independently;
these were then averaged together and finally applied to the model. The accuracy and loss
computed with the training and validation sets were monitored and saved throughout the
training to create learning curves (Figure 3). Additionally, the model was saved at the end
of every epoch. Testing and applications to the oral and soil metagenomes were carried out
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similarly with a batch size per GPU of 512 reads distributed among four GPUs and using
the trained model saved at epoch 14.

Figure 3. Learning curves representing the predictive performance of DL-TODA during training in
terms of accuracy (A) and loss (B). The training loss and accuracy (solid line), validation loss and
accuracy (dashed line), and epoch 14 at which the model was tested (dotted line) are reported.

2.6. Evaluation of Model Performance

The performance of DL-TODA was assessed with the overall classification accuracy,
defined in Equation (3), at different taxonomic ranks including species, genus, family, order,
class and phylum.

Accuracy = # reads correctly classi f ied / # reads classi f ied (3)

At the species level, the number of correctly classified reads was directly obtained
from the neural network. At higher taxonomic ranks, the number of correctly classified
reads was calculated with the sum of all reads that were correctly assigned to the species
within each taxon.

The percentage of classified vs. unclassified reads was also examined with the ap-
plication of different thresholds on the predicted probability of species. The selection of
threshold settings was guided by the overall distribution of probability scores among the
correct or incorrect classification in the testing dataset (Figure 4). The eqgamma function
of the R package EnvStats (version 2.7.0) was used for identifying confidence intervals
based on a gamma distribution for the elimination of incorrect predictions. The precision
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(Equation (4)), recall (Equation (5)) and F1-score (Equation (6)) were obtained for each
species. The macro and micro average of each metric (Equations (7)–(12)) were computed
to provide a comparison of the performance between DL-TODA, Kraken2 and Centrifuge.
The number of true positives (TP), false positives (FP) and false negatives (FN) per species
required to compute precision, recall and F1-score were obtained based on the generation
of a confusion matrix.

Precision = TP/(TP + FP) (4)

Recall = TP/(TP + FN) (5)

F1 − score = 2 ∗ Precision ∗ Recall/(Precision + Recall) (6)

Macro average precision = sum o f Precision f or each species/number o f species (7)

Micro average precision = sum o f TP/(sum o f TP + sum o f FP) (8)

Macro average recall = sum o f Recall f or each species/number o f species (9)

Micro average recall = sum o f TP/(sum o f TP + sum o f FN) (10)

Macro average F1 − score = sum o f F1 − score f or each species/number o f species (11)

Micro average F1 − score = sum o f TP/(sum o f TP + 1/2 ∗ (sum o f FN + sum o f FP)) (12)

2.7. Comparison with Kraken2 and Centrifuge

We evaluated the performance of DL-TODA in comparison with Kraken2 version
2.0.8 and Centrifuge version 1.0.3. For both programs, an index was built with the training
genomes as references to classify the simulated reads in the testing set using the default
settings. Given that both Kraken2 and Centrifuge classify reads to the NCBI taxonomy
database, we used the NCBI taxonomy for analyzing the results from DL-TODA. Centrifuge
provides multiple possible predictions per pair of reads or unpaired reads. Here, the top
hit was systematically used as the predicted taxon.

2.8. Classification of Metagenomic Data

The functionality of DL-TODA was determined by classifying metagenomes obtained
from sampling two distinct environments, human oral cavity and cropland soil. The
human oral cavity datasets were identified following [30]. The cropland soil datasets (NCBI
accessions: ERR5004682, ERR5003895, ERR5003204, ERR5001925 and ERR4995171) were
identified from the National Microbiome Data Collaborative (NMCD) data portal [31], using
“soil” as the keyword for ecosystem type and “cropland ecosystem” as the keywords for
broad-scale environmental context. The metagenomic reads were retrieved using the SRA
Toolkit from NCBI, converted to TFRecords and classified by DL-TODA with a probability
score threshold above 0.5 (i.e., reads with probability scores below or equal to 0.5 were
counted as unclassified). The relative abundance of each taxon was measured by dividing
the number of reads classified to that taxon by the total number of reads in the metagenome
(Equation (13)). The DL-TODA classification was compared with Kraken2 and Centrifuge
classifications of the same metagenomes, using the training genomes as references.
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Figure 4. Distribution of probability scores in DL-TODA for correct and incorrect predictions obtained
on the entire testing set. The visualization is made in the form of a box plot. The median values are
indicated with a thick horizontal line in the rectangle boxes. Lower and upper edges of the rectangle
boxes indicate the first and third quartiles, respectively. The thin vertical lines indicate the upper and
lower whisker limits, defined as Q3 + 1.5 × IQR and Q1 − 1.5 × IQR, respectively, where Q1 is the
first quartile, Q3 is the third quartile, and IQR is the inter quartile range from Q1 to Q3. Outlier data
points beyond the upper and lower whisker limits are not shown in the box plot.

Relative Abundance = number o f reads classi f ied to a taxon / total number o f reads (13)

2.9. Computational Requirements

The DL-TODA model was trained and tested on a compute node with 768 GB of High
Performance DDR4 2666 MHz ECC system memory, 48 Intel Xeon Cascade Lake Scalable
Cloud Ready Processor Cores/2.2 GHz processors and four Nvidia A100/40 GB HBM2
Memory GPUs. Kraken2 and Centrifuge were run on a compute node with 24 Intel(R)
Xeon(R) CPU E5-4607 0/2.20 GHz processors and 512 GB of memory. The deep learning
model was implemented with TensorFlow as a Python3 script, Horovod was used to
distribute training across multiple GPUs and the Nvidia DALI was used to load the
TFRecord files.

3. Results

3.1. Model Training and Testing

Training of DL-TODA was conducted on a GPU node with four GPUs and was
terminated when the model had reached 31 epochs, as no improvements in the validation
accuracy were observed (Figure 3A). The model saved at epoch 14 was subsequently
selected to perform testing on the testing set, as the model started memorizing the training
data after that point, as shown by the progressive increase in the validation loss (dashed
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line on Figure 3B). Furthermore, additional testing carried out at other checkpoints did not
show significant accuracy improvement.

DL-TODA is designed to provide a vector of probability scores in the prediction
of every read, with each score corresponding to the probability that the read should be
assigned to a given taxon. A taxon with a score of 0.5 has an equal probability of being
the true or false assignment of the read analyzed, while a score between 0.5 and 1.0 gives
a higher confidence that the read can be truly assigned to the taxon. The DL-TODA
prediction of each testing read was designated as either correct or incorrect based on
whether the highest probability score was assigned to the ground truth taxon. Of the
109,851,839 reads tested, over 82%, 88%, 90%, 92%, 94%, and 96% were correctly assigned
to the corresponding ground truth taxa at the taxonomic ranks of species, genus, family,
order, class, and phylum, respectively. The distributions of probability scores among correct
and incorrect classifications were plotted in Figure 4. The probability scores of incorrect
predictions had median values under 0.5 across all taxonomic ranks, aligning with the
expectation that a probability of 0.5 or lower represents predictions with low confidence.
In contrast, the probability scores of correct predictions had median values above 0.99 for
all taxonomic ranks, and the 25th percentile ranging from 0.82 at the phylum level to
0.96 at the species level. Given the high number of correct taxonomy assignments even
with the simple application of top-ranking probability scores, along with the observed
clear separation of probability score distributions among correct predictions compared
to incorrect predictions, we hypothesize that a decision threshold can be applied on the
top-ranking probability scores to further enhance the prediction accuracy of DL-TODA.

3.2. Optimization of Probability Threshold

To guide the selection of an optimal threshold, we visualized the species-level pre-
cision of DL-TODA predictions in the testing data, given a series of cutoff values. The
probability scores below 0.5, 0.57, 0.66, 0.8 and 0.93 correspond to 60%, 70%, 80%, 90%
and 95% of incorrect predictions, respectively, based on fitting a gamma distribution over
the probability scores of the incorrect assignments. The elimination of low confidence
assignments (by assigning predictions only to reads with probability score higher than a
designated threshold) greatly enhances the overall precision of DL-TODA predictions for
the 639 species tested (Figure 5A). With a threshold of 0.93, the median precision across
all species was 0.98, which is 9% higher than the median precision of 0.89 obtained with
a threshold of 0.5. The higher thresholds, however, could potentially limit the number
of classified reads. Of the thresholds tested, the percentage of classified reads ranged
from 87% under 0.5 to 66% under 0.93 (Figure 5B). To balance the gains of precision on
species-level predictions and the losses on the number of classified reads, we decided to
choose a threshold of 0.8, which gives a median precision of 0.95 across the individual
species while still classifying 73% of all the testing reads with high confidence.

Despite the overall high performance, DL-TODA obtained relatively low precision
scores in the prediction of a small number of species (Figure 5A). A close examination
of these poorly predicted species revealed that each species was represented by only one
or a few genomes in the training data, suggesting a general lack of training depth in
the deep learning model. Figure S2 elucidates the correlations between training genome
coverage and model performance. With genome coverage higher than 55 (∼e4), DL-
TODA consistently reported high precision (e.g., greater than 0.75) in the prediction of
corresponding species. Under lower training coverage, however, the minimum precision
scores were positively correlated with the training coverage. It was also noted that many
species, despite having a training genome coverage of less than 7 (∼e2), achieved high
precision of above 0.9, suggesting that a high coverage is not required for all species in the
DL-TODA training.
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Figure 5. DL-TODA precision for the 639 species in the testing set (A) and fraction of unclassified and
classified reads at the species level (B) at different decision thresholds (0.5, 0.57, 0.66, 0.8 and 0.93).

3.3. Comparison with Kraken2 and Centrifuge

Kraken2 and Centrifuge were applied to the same testing set to assess the perfor-
mance of DL-TODA amongst taxonomic classification tools. Both Kraken2 and Centrifuge
require the construction of reference databases. In order to make a fair comparison, all
genomes seen by DL-TODA during training were used to build the indexed reference
database for both tools. The average accuracy obtained on ten subsets of the testing data
is shown in Figure 6. The ten subsets were obtained by randomly shuffling the testing
reads and splitting the testing dataset into nine subsets with 11,000,000 reads and 1 subset
with 10,851,839 reads. Comparable performances were observed among all three tools at
taxonomic ranks above the genus level, with the overall accuracy averaging above 0.98. At
the species level, DL-TODA reached a higher average accuracy of 0.97, compared to 0.93
and 0.85, respectively, achieved with Kraken2 and Centrifuge (Figure 6). The micro average
and macro average of precision, recall and F1-score obtained for the 639 species on the
entire testing set are shown in Table 3. DL-TODA has higher micro average precision, recall
and F1-score, which suggests that DL-TODA makes better overall predictions than Kraken2
and Centrifuge, regardless of the species compared. On the other hand, the macro average
metrics for DL-TODA are lower than the corresponding micro average metrics, indicating
that DL-TODA performs better for some species compared to others, especially with regard
to the performance of recall. For example, with a probability threshold of 0.8, 14 species
obtained a recall of 0 due to the removal of predictions with low probability scores, al-
though the majority of other species were predicted with high precisions (greater than
0.95) and recalls (greater than 0.85) by DL-TODA. As a contrast, Kraken2 and Centrifuge
appear to manifest similar performances for all species, as their macro average metrics are
largely consistent with the corresponding micro average metrics, with the exception that
Centrifuge shows variability across species in terms of the recall.
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Figure 6. Accuracy across taxa at different taxonomic ranks obtained by running DL-TODA, Cen-
trifuge and Kraken2 on ten subsets of the testing set. The error bar is plotted at the top of each bar.
Results for DL-TODA are reported in the presence of a decision threshold of 0.8.

Table 3. Micro average and macro average of precision, recall and F1-score obtained for the 639 species
in the testing set for DL-TODA, Kraken2 and Centrifuge. The DL-TODA metrics were calculated
with testing reads classified with a probability score higher than 0.8.

DL-TODA Kraken2 Centrifuge

Micro average
Precision 0.98 0.97 0.97

Recall 0.97 0.93 0.85

F1-score 0.98 0.95 0.90
Macro average

Precision 0.91 0.96 0.97

Recall 0.76 0.92 0.80

F1-score 0.80 0.93 0.82

3.4. Taxonomic Profiling of Metagenomic Data

The performance of DL-TODA on metagenomic data was assessed based on a proba-
bility threshold of greater than 0.5, using two sets of metagenomes. The first dataset was
taken from the human oral microbiome [30] and the second dataset was taken from the soil
microbiome [32], with a total count of 3,417,111,096 and 52,290,557 reads, respectively, for
the two environments. The relative abundance of reads classified by DL-TODA, Kraken2,
and Centrifuge are summarized at the species and genus levels (Table 4). In the oral micro-
biome, a similar percentage of metagenomic reads (20–30%) was classified by all three tools.
While a similar number of taxa was identified by the three tools, DL-TODA identified the
highest number of species (452 species) with a relative abundance above 0.01% over the
entire set of metagenomes. This is in contrast to Centrifuge, which classified the highest
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percentage of reads (33%, largely driven by the assignment of classifications to read pairs)
but identified a lower number of species (114 species) with a relative abundance above
0.01%. Kraken2 assigned a highest percentage of reads to unknown species compared
to the other tools, suggesting a relatively low resolution at the species level. In the soil
microbiome, the percentage of metagenomic reads classified by the three tools differed
greatly, ranging from 20% of total metagenomic reads identified by Centrifuge to merely
4–5% identified by Kraken2. The latter also had the highest percentage of reads assigned
unknown at both species and genus levels; this is similar to what was observed in the
analysis of oral microbiome data. DL-TODA classified around 15% of the reads in the soil
metagenome and identified 283 species with a relative abundance above 0.01%, which is
slightly lower than the Centrifuge predictions but higher than the Kraken2 predictions.

Table 4. Summary of species and genus level classifications made by DL-TODA, Centrifuge and
Kraken2 on the human oral and soil metagenomes. The number (#) of taxa observed with relative
abundances (r.a.%) ≥ 0.01% or <0.01% is reported in the table. Relative abundances represent the
percentage of classified reads over the total number of reads in the metagenomes. Unknown taxa
represent groups at a given taxonomic level that are not named in the NCBI taxonomy.

Tool
# Taxa ≥

0.01%
Sum of r.a.%
≥ 0.01%

# Taxa with
r.a. < 0.01%

Sum of r.a.%
< 0.01%

Sum r.a. % of
Classified Reads

Unknown
Taxa r.a%

oral

Species

DL-TODA 452 19.60 2571 3.76 23.35 0.0024

Kraken2 85 20.97 2942 1.32 22.29 2.89

Centrifuge 114 29.19 3066 4.32 33.50 0.036

Genus

DL-TODA 281 21.27 853 1.57 22.84 0.527

Kraken2 47 23.56 1075 0.85 24.41 0.78

Centrifuge 111 31.22 1025 2.07 33.29 0.25

soil

Species

DL-TODA 283 11.80 2648 3.04 14.84 0.012

Kraken2 62 1.13 2941 3.78 4.92 2.60

Centrifuge 697 15.81 2451 4.81 20.63 0.096

Genus

DL-TODA 206 13.11 918 1.57 14.68 0.18

Kraken2 119 3.84 1002 1.66 5.50 2.02

Centrifuge 345 18.65 786 1.81 20.46 0.26

Further examination of the classification results was based on the visualization of
taxonomic compositions at the class rank (Figure 7). A general consistency was observed
in the predicted classes by all three tools in both the oral and soil metagenomes, while
the ranking of each class’s relative abundance may vary among the different tools. The
most abundant classes identified by DL-TODA in the human oral microbiome (Figure 7A)
included Gammaproteobacteria (4.8%), Bacilli (3.9%), Actinomycetia (2.4%) and Clostridia
(2.2%). In comparison, Clostridia was only found in a small percentage of reads (0.4% and
0.14%, respectively) by Centrifuge and Kraken2. The taxa most seen by both Centrifuge
and Kraken2 are Actinomycetia (12.0% and 9.1%), Bacilli (4.9% and 4.3%), Betaproteobac-
teria (4.1% and 3.4%), Gammaproteobacteria (3.3% and 2.4%) and Bacteroidia (2.3% and
2%). The results obtained with the soil metagenome show similar trends. Kraken2 and
Centrifuge manifest similar outcomes with Kraken2 classifying a much lower number of
reads (Figure 7B). Actinomycetia, Alphaproteobacteria, Betaproteobacteria and Gammapro-
teobacteria are amongst the top-ranking classes observed by Kraken2 and Centrifuge, with
relative abundances ranging from 0.6% to 6.6%. These bacterial taxa are also predicted by
DL-TODA with different relative abundances varying between 1.7% and 2.9%. Addition-
ally, DL-TODA identified Coriobacteriia and Clostridia with relative abundances of 1.4%
and 0.9%, respectively, while the relative abundance for Coriobacteriia was 0.08% with
Centrifuge and 0.02% with Kraken2, and the relative abundance for Clostridia was 0.15%
with Centrifuge and 0.05% with Kraken2.
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Figure 7. Taxonomic distribution of metagenomic reads at the class rank based on predictions made
by DL-TODA, Centrifuge and Kraken2 in the human oral (A) and soil (B) metagenomes. The Y-axis
indicates the percentage of reads over the entire metagenome. The two panels are color coded with
the same color pallet so that the same color indicates identical taxa across the different stacked bars.
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4. Discussion

Taxonomic classification of billions of short sequencing reads is an important step
in the analysis of metagenomic data, shedding light into the function and diversity of
microbiomes. Such analysis can be performed by several existing programs but still has
room for improvement. K-mer based approaches, such as Kraken2 and Centrifuge, are the
most common strategies to classify metagenomic data. While both Kraken2 and Centrifuge
rely on the construction of reference databases, the use of a deep learning model in DL-
TODA permits the extraction of features during model construction, hence circumventing
the requirement of a reference database.

An accuracy similar to higher classification was achieved by DL-TODA compared to
Kraken2 and Centrifuge on an independent test set of over a hundred million simulated
metagenomic reads (Figure 6). A look at the precision, recall and F1-score (Table 3) further
demonstrated the better performance of DL-TODA, as it carried a higher micro average
on all three metrics compared to Kraken2 and Centrifuge. However, lower macro than
micro averages were observed in DL-TODA, indicating potential differences in how well it
recognizes different species. In contrast, Kraken2 and Centrifuge appeared to perform more
equally across species, as their macro average metrics are comparable to the corresponding
micro average metrics.

One possible reason why DL-TODA may have performed poorly on some species may
be the lack of sufficient training data. This is supported by the positive correlations between
depth of training genome coverage and minimum precisions observed (Figure S2). For
example, when the coverage is greater than 55 (∼ e4), the precision values are consistently
higher than 0.75, suggesting that a higher and potentially more diverse set of training data
may lead to an enhanced performance of DL-TODA. However, we note that some species,
despite having a low number of training reads, reached high precisions in DL-TODA
predictions. This may indicate that the DL-TODA model is efficient at extracting traits from
these species for label classification. While reaching high performances on a majority of the
species tested (Figure 5), DL-TODA seems to assign low probability scores to reads from a
few species, resulting in low precisions approaching zero for the prediction of these species,
especially when a probability threshold is used. Given the variability in the classification of
different species, the probability threshold may be individually adjusted for each species to
optimize the performance of DL-TODA. A careful selection of the probability threshold may
require more benchmarking efforts to maximize the prediction accuracy while minimizing
the fraction of unclassified data; this may be a topic of future research using diverse test
cases. Future studies that seek to reveal the correlations between different genomic features
(e.g., GC content, tetranucleotide frequency, distribution of mobile genetic elements, etc.)
and the outcomes of read classifications can also help guide the further advancement of
DL-TODA models and enhance their precision across all species.

The application of DL-TODA to the human oral and cropland soil metagenomes sup-
ports a general consensus on the prediction of top-ranking taxa, but distinct predictions on
the relative abundance of different taxonomic groups compared to Kraken2 and Centrifuge
(Figure 7). In the human oral metagenomes, DL-TODA identified a higher proportion of
Clostridia, which is known to be abundant and diverse in the human oral microbiome [33]
compared to Centrifuge and Kraken2. Likewise, in the cropland soil metagenomes, a
higher proportion of Clostridia and Coriobacteriia was identified by DL-TODA compared
to Centrifuge or Kraken2. The abundance of Clostridia and Coriobacteriia, as predicted by
DL-TODA, aligns well with prior studies of diverse agricultural related soil types [34–36].
Due to the lack of ground truth data, it is difficult to fully assess the accuracy of different
tools on the metagenomes. However, the Centrifuge and Kraken2 predictions seem to
be highly skewed towards assigning large proportions to a small number of taxa. For
example, the class Actinomycetia was assigned the highest proportions by both Centrifuge
and Kraken2 in both the oral and soil metagenomes, suggesting the potential biases of
Centrifuge and Kraken2 towards classifying certain taxa. In contrast, the prediction of
DL-TODA is less biased towards a single taxon, and it predicted different rankings of
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the dominant taxa between the human oral cavity and cropland soil, two highly distinct
environments. The total number of reads classified remains low across all three tools, and
the percentage of classified reads varies among the two environments tested (Table 4).
Large differences were observed with Kraken2, which classified over 20% of reads in the
oral metagenome but only around 5% of reads in the soil metagenome. Centrifuge seems
to have classified the highest proportion of reads among all three tools in both the oral
and soil metagenomes. Considering that Centrifuge assigns the same taxa to paired reads,
similar strategies may be employed by DL-TODA to leverage the read pairs for enhancing
the number of classified reads. It is noted that the DL-TODA predictions were based on
a probability threshold higher than 0.5 which was uniformly applied to all taxa. Based
on discussions in the above paragraph, further optimization of the probability threshold,
together with the introduction of more training data, especially for some underrepresented
species, will likely further enhance the number of classified reads in the metagenomes.

Overall, DL-TODA is a new deep learning-based model for the taxonomic classifica-
tion of metagenomic reads. The model showed a high accuracy in classifying synthetic
reads and demonstrated the potential of recognizing a wide range of taxonomic groups
from diverse environments. Besides DL-TODA, several other deep learning models have
recently been created for the classification of metagenomic data, showing varied accuracy
and generalizability, usually at the genus or higher taxonomic levels [23,24]. DL-TODA is
distinct from these deep learning-based read classification tools. It uses a convolutional
neural network designed based on the architecture of AlexNet and classifies metagenomic
reads at the species level. DL-TODA has the ability to classify over 3000 bacterial species,
covering all the phyla represented in the current GTDB and NCBI databases. An additional
advantage of DL-TODA is the possibility to resume training with new data without needing
to reanalyze the previous training sets. This allows the model to be efficiently updated
with newly discovered genomes. DL-TODA also supports the calibration of classification
results based on a probability score associated with each taxonomic assignment. The imple-
mentation of DL-TODA is designed to support high efficiency in processing high volumes
of metagenomic data. By making use of Horovod, DL-TODA distributes the training and
testing tasks across multiple GPUs in parallel, faster than with the data distribution strategy
provided by TensorFlow. This feature, in addition to loading data directly to the GPU
memory using the Nvidia DALI library, creates an efficient pipeline for dealing with large
datasets. Future developments will include investigating solutions to reduce the size and
number of parameters in DL-TODA to further accelerate the training and testing processes.
Given the rapid growth of deep learning applications in metagenomic data analysis, future
benchmarking studies would provide useful guidelines for the application of different deep
learning tools and will likely nurture the engagement of a broader scientific community.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom13040585/s1, Figure S1: A detailed illustration of the DL-
TODA pipeline; Figure S2: Precision of DL-TODA predictions over 639 species in the testing set
plotted against the depth of training set coverage for each corresponding species.
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