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Editorial
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francois.rivest@rmc.ca
* Correspondence: chehri@rmc.ca

Machine learning and deep learning have made tremendous progress over the last
decade and have become the de facto standard across a wide range of image, video, text,
and sound processing domains, from object recognition to image generation. Recently,
deep learning and deep reinforcement learning have begun to develop end-to-end training
to solve more complex operation research and combinatorial optimization problems, such
as covering problems, vehicle routing problems, traveling salesman problems, scheduling
problems, and other complex problems requiring general simulations. These methods also
sometimes include classic search and optimization algorithms for machine learning, such
as Monte Carlo Tree Search in AlphaGO.

Starting from the above considerations, this Special Issue aims to report the latest
advances and trends concerning advanced machine learning and mathematical modeling
for optimization problems. This Special Issue intends to provide a universally recognized
international forum to present recent advances in mathematical modeling for optimiza-
tion problems. We welcomed both theoretical contributions as well as papers describing
interesting applications. Papers invited for this Special Issue considered aspects of this
problem, including:

• Machine learning for optimization problems;
• Statistical learning;
• End-to-end machine learning;
• Graph neural networks;
• Combining classic optimization algorithms and machine learning;
• Mathematical models of problems for machine learning;
• Optimization method for machine learning;
• Evolutionary computation and optimization problems;
• Applications such as scheduling problems, smart cities, etc.

After reviewing submissions, we accepted a total of nine papers for publication.
The Internet of Things (IoT) encompasses many applications and service domains,

from smart cities, autonomous vehicles, surveillance, and medical devices, to crop control.
Most experts regard virtualization in wireless sensor networks (WSNs) as the most revo-
lutionary technological technique in these areas. Due to node failure or communication
latency and the regular identification of nodes in WSNs, virtualization in WSNs presents
additional hurdles.

In the contribution by Othman et al. [1], “A Multi-Objective Crowding Optimization
Solution for Efficient Sensing as a Service in Virtualized Wireless Sensor Networks”, the
authors present a novel architecture for heterogeneous virtual networks on the Internet
of Things. They propose to embed the architecture in WSN settings to improve fault
tolerance and communication latency in service-oriented networking. Moreover, the au-
thors utilize the Evolutionary Multi-Objective Crowding Algorithm (EMOCA) to maximize
fault tolerance and minimize communication delay for virtual network embedding in
WSN environments for service-oriented applications focusing on heterogeneous virtual
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networks in the IoT. Unlike the current wireless virtualization approach, which uses the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II), EMOCA uses both domination
and diversity criteria in the evolving population for optimization problems. The analy-
sis of the results demonstrates that the proposed framework successfully optimizes fault
tolerance and communication delay for virtualization in WSNs.

Scholars have recently introduced various non-systematic satisfiability studies on
Discrete Hopfield Neural Networks to address the lack of interpretation. Although a flexible
structure was established to help generate a wide range of spatial solutions that converge
on global minima, the fundamental issue is that the existing logic completely ignores the
distribution and features of the probability dataset, as well as the literal status distribution.

In the study by Abdeen et al. [2], “S-Type Random k Satisfiability Logic in Discrete
Hopfield Neural Network Using Probability Distribution: Performance Optimization
and Analysis”, the authors consider a new type of non-systematic logic known as S-
type Random k Satisfiability, which employs a novel layer of a Discrete Hopfield Neural
Network and plays a significant role in identifying the predominant attribute likelihood of
a binomial distribution dataset. Establishing the logical structure and assigning negative
literals based on two specified statistical parameters is the objective of the probability
logic phase. Abdeen et al. examined the performance of the proposed logic structure by
comparing a proposed metric to current state-of-the-art logical rules. As a result, they
discovered that the models have a high value in two parameters that efficiently introduce
a logical structure in the probability logic phase. In addition, the study observed that
implementing a Discrete Hopfield Neural Network reduced the cost function. The authors
employed a novel statistical method of synaptic weight assessment to investigate the
influence of the two proposed parameters on the logic structure. Overall, they revealed that
regulating the two proposed parameters positively impacts synaptic weight management
and the generation of global minimum solutions.

Traditional leak detection methods for gas pipelines necessitate task offloading de-
cisions in the cloud, which has poor real-time performance. Edge computing provides a
solution by allowing decisions to be made directly at the edge server, improving real-time
performance; however, energy is the new bottleneck. In “Edge Computing Offloading
Method Based on Deep Reinforcement Learning for Gas Pipeline Leak Detection”, Wei
et al. [3] concentrate on the real-time detection of gas transmission pipeline leaks. As a
result, the authors propose a novel detection algorithm that combines the benefits of both
the heuristic algorithm and the advantage actor-critic (AAC) algorithm.

The proposed detection algorithm seeks to optimize and ensure real-time pipeline
mapping analysis tasks and maximize the survival time of portable gas leak detectors.
Because the computing power of portable detection devices is limited due to their battery
power, the main problem posed in this study is how to account for node energy overhead
while ensuring system performance requirements.

Wei et al. establish the optimization model by introducing the concept of edge com-
puting and using the mapping relationship between resource occupation and energy
consumption as a starting point to optimize the total system cost (TSC). This is consti-
tuted of the transmission energy consumption of the node, the local computing energy
consumption, and the residual electricity weight.

To reduce TSC, the algorithm employs the AAC network to make task scheduling deci-
sions and determine whether tasks should be offloaded. Furthermore, it uses heuristic strategies
and the Cauchy–Buniakowsky–Schwarz inequality to allocate communication resources.

Their experiments show that their proposed algorithm can meet the detector’s real-
time requirements while consuming less energy. Compared to the Deep Q Network (DQN)
algorithm, their proposed algorithm saves approximately 56% of the system energy. It
saves 21%, 38%, 30%, 31%, and 44% of energy consumption compared to the artificial
gorilla troops Optimizer (GTO), the black widow optimization algorithm (BWOA), the
exploration-enhanced grey wolf optimizer (EEGWO), the African vulture optimization
algorithm (AVOA), and the driving training-based optimization (DTBO). Moreover, it
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saves 50% and 30% compared to entirely local computing and fully offloading algorithms,
respectively. Meanwhile, this algorithm’s task completion rate is 96.3%, the best real-time
performance among these algorithms.

The pickup and delivery problems are pertinent problems in our interconnected world.
Efficiently moving goods and people can decrease costs, emissions, and time. In the
contribution by Little et al. [4], “Comparison of Genetic Operators for the Multi-Objective
Pickup and Delivery Problem”, the authors develop a genetic algorithm to solve the multi-
objective capacitated pickup-and-delivery problem by adapting standard benchmarks.

They aim to reduce the total distance traveled and the number of vehicles employed.
Based on NSGA-II, the authors investigate the effects of inter-route and intra-route mu-
tations on the final solution. Little et al. introduce six inter-route operations and sixteen
intra-route operations. Then, they calculate the hypervolume to compare their impact
directly. In addition, the authors present two unique crossover operators tailored to
this problem.

Their methodology identified optimal results in 23% of the instances in the first
benchmark. In most other models, it generated a Pareto front within 1 vehicle and 20% of
the best-known distance. Users can select the routes that best suit their requirements due
to the presence of multiple solutions.

In a disaster, the road network is often compromised in capacity and usability condi-
tions. This is a challenge for humanitarian operations delivering critical medical supplies.
In the contribution by Anuar et al. [5], “A Multi-Depot Dynamic Vehicle Routing Problem
with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision
State Rollout Algorithm in Reinforcement Learning”, the authors optimize vehicle routing
for a Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road Capacity (MD-
DVRPSRC) using the Markov Decision Processes (MDP) model. They use the Post-Decision
State Rollout Algorithm (PDS-RA) as a look-ahead approach in an Approximate Dynamic
Programming (ADP) solution method. The authors execute a PDS-RA for all assigned
vehicles to effectively solve the problem. The agent then decides at the end.

For the PDS-RA, Anuar et al. propose five types of constructive base heuristics. Firstly,
they propose the Teach Base Insertion Heuristic (TBIH-1) to investigate the partial random
construction approach for non-obvious decisions. The paper presents TBIH-2 and TBIH-3 as
extensions to the TBIH-1 to demonstrate how experts could execute the Sequential Insertion
Heuristic (I1) and Clarke and Wright (CW) in a dynamic setting, respectively. Additionally,
the authors propose TBIH-4 and TBIH-5 (TBIH-1 with the addition of Dynamic Look-ahead
SIH (DLASIH) and Dynamic Look-ahead CW (DLACW)). The goal is to improve the
on-the-fly constructed decision rule (dynamic policy on the fly) in look-ahead simulations.

COVID-19 has shaken the world economy and affected millions of people in a brief
period. COVID-19 has countless overlapping symptoms with other upper respiratory
conditions, making it challenging for diagnosticians to diagnose correctly. Several mathe-
matical models have been presented for their diagnosis and treatment. In “An Optimized
Decision Support Model for COVID-19 Diagnostics Based on Complex Fuzzy Hypersoft
Mapping”, Saeed et al. [6] propose a mathematical framework based on a novel agile
fuzzy-like arrangement, the complex fuzzy hypersoft (CFHS) set, a combination of the
complex fuzzy (CF) and the hypersoft sets (an extension of the soft set).

First, the authors develop the CFHS elementary theory, which considers the amplitude
term (A-term) and phase term (P-term) of complex numbers simultaneously to address
uncertainty, ambivalence, and mediocrity of data. This new fuzzy-like hybrid theory is
versatile in two parts.

First, it provides access to a wide range of membership function values by broadening
them to the unit circle on an Argand plane and incorporating an additional term, the P-term,
to account for the periodic nature of the data. Second, it divides the distinct attributes
into corresponding sub-valued sets for easier comprehension. The CFHS set and CFHS
mapping, with its inverse mapping (INM), can manage such issues. They validate their
proposed framework by connecting COVID-19 symptoms to medications. This work also
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includes a generalized CFHS mapping [6], which can assist a specialist in extracting the
patient’s health record and predicting how long it will take to overcome the infection.

With the fourth industrial revolution developing, the way factories operate will no
longer be the same. Factory automation can save labor and avoid equipment failures with
online fault-detection systems. In recent years, various signal-processing methods have
received much attention in the problem of fault-detection systems. In the article by Lee
et al. [7], “Application of ANN in Induction-Motor Fault-Detection System Established
with MRA and CFFS”, the authors propose a fault-detection system for faulty induction
motors (bearing faults, inter-turn shorts, and broken rotor bars) based on a multiresolution
analysis (MRA), correlation and fitness values-based feature selection (CFFS), and artificial
neural network (ANN).

For induction–motor–current signature analysis, Lee et al. compare two feature-
extraction methods: the MRA and the Hilbert Huang transform (HHT). This work compares
feature-selection methods to reduce the number of features while maintaining the best
detection system accuracy to reduce operating costs. In addition, the proposed detection
system is tested with additive white Gaussian noise, and the best signal-processing and
feature-selection methods are chosen to create the best detection system. According to their
results, features extracted from MRA outperform HHT using CFFS and ANN. The authors
also confirm that the CFFS significantly reduces operation costs (95% of the features) while
maintaining 93% accuracy using ANN in their proposed detection system.

Detection and recognition of scene text, such as automatic license plate recognition, is
a technology with various applications. Although numerous studies have been conducted
to increase detection performance, accuracy decreases when low-resolution and low-quality
legacy license plate images are input into a recognition module.

In “HIFA-LPR: High-Frequency Augmented License Plate Recognition in Low-Quality
Legacy Conditions via Gradual End-to-End Learning”, Lee, S.-J. et al. [8] propose a model
for high-frequency augmented license plate recognition. They integrate and collaboratively
train the super-resolution and the license plate recognition modules using a proposed
gradual end-to-end learning-based optimization. To train their model optimally, the authors
propose a holistic feature extraction method that effectively precludes the generation of
grid patterns from the super-resolved image during training.

Moreover, to exploit high-frequency information that affects license plate recogni-
tion performance, the authors propose a high-frequency augmentation-based license plate
recognition module. In addition, they present a three-step, gradual, and end-to-end learn-
ing process based on weight immobilization. Their three-step methodological approach
optimizes each module for robust performance in recognition. The experimental outcomes
demonstrate that their model outperforms extant methods in low-quality legacy conditions
for the UFPR and Greek vehicle datasets.

In machine learning, the convex minimization problem in the sum of two convex
functions is fundamental. Many authors have analyzed this problem due to its applications
in various fields, such as data science, computer science, statistics, engineering, physics, and
medical science. These applications include signal processing, compressed sensing, medical
image reconstruction, digital image processing, and data prediction and classification. In the
contribution by Chumpungam et al. [9], “An Accelerated Convex Optimization Algorithm
with Line Search and Applications in Machine Learning”, the authors introduce a new line
search technique and use it to build a novel accelerated forward–backward algorithm for
solving convex minimization problems in the sum of two convex functions, one of which is
smooth in a real Hilbert space.

The authors demonstrate a weak convergence to a solution of the proposed algorithm
in the absence of the Lipschitz assumption on the gradient of the objective function. Further-
more, they evaluate its performance by applying the proposed algorithm to classification
problems on various data sets and comparing it to other line search algorithms. The authors’
experiments show that their proposed algorithm outperforms other line search algorithms.
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The articles presented in this Special Issue provide insights into fields related to “Ad-
vances in Machine Learning and Mathematical Modeling for Optimization Problems”,
including models, performance evaluation and improvements, and application develop-
ments. We wish that readers can benefit from the insights of these papers and contribute
to these rapidly growing areas. We also hope that this Special Issue sheds light on major
developments in the area of machine learning and mathematical modeling for optimiza-
tion problems and attracts the attention of the scientific community to pursue further
investigations leading to the rapid implementation of these techniques.

Acknowledgments: We would like to express our appreciation to all the authors for their informative
contributions and to the reviewers.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The Internet of Things (IoT) encompasses a wide range of applications and service domains,
from smart cities, autonomous vehicles, surveillance, medical devices, to crop control. Virtualization
in wireless sensor networks (WSNs) is widely regarded as the most revolutionary technological
technique used in these areas. Due to node failure or communication latency and the regular
identification of nodes in WSNs, virtualization in WSNs presents additional hurdles. Previous
research on virtual WSNs has focused on issues such as resource maximization, node failure, and
link-failure-based survivability, but has neglected to account for the impact of communication
latency. Communication connection latency in WSNs has an effect on various virtual networks
providing IoT services. There is a lack of research in this field at the present time. In this study, we
utilize the Evolutionary Multi-Objective Crowding Algorithm (EMOCA) to maximize fault tolerance
and minimize communication delay for virtual network embedding in WSN environments for
service-oriented applications focusing on heterogeneous virtual networks in the IoT. Unlike the
current wireless virtualization approach, which uses the Non-dominated Sorting Genetic Algorithm-
II (NSGA-II), EMOCA uses both domination and diversity criteria in the evolving population for
optimization problems. The analysis of the results demonstrates that the proposed framework
successfully optimizes fault tolerance and communication delay for virtualization in WSNs.

Keywords: fault tolerance; virtualization; internet-of-things; multi-objective optimization; evolutionary
crowding algorithm

MSC: 37M05; 37-04

1. Introduction

To accommodate the ever-expanding range of services offered by the IoT, network
virtualization has been heralded as a crucial future-proofing mechanism for the Internet [1].
Through virtualization, a computer’s hardware may be abstracted into a set of logical
units that can then be shared across several users and, in some cases, competing software
programmers. Multiple applications will be able to cohabit on the same virtualized WSNs,
making this a potential strategy that can enable efficient use of WSN implementations [2].
The virtualization of networks has been proposed as a component of future inter-network
communication models that might make it simple to integrate new functions into the Inter-
net without requiring fundamental changes to the underlying architecture. The evolution
of Internet structures would be hastened by this [3].

As a whole, the network virtualization environment is made up of individual network
nodes and the connections between them. A virtual topology is created when virtual
nodes are linked together via virtual connections to overcome the limitations of a single

Mathematics 2023, 11, 1128. https://doi.org/10.3390/math11051128 https://www.mdpi.com/journal/mathematics7
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connection, such as low bandwidth. The same physical hardware can host many virtual
networks, each of which may have drastically different features. Resource-virtualization
technologies also make things more abstract, which gives network operators a lot of
freedom in how they run and change the network [4].

Sensing as a service (SaaS), which may be carried out in conjunction with network
as a service (NaaS), is one of several fascinating application areas where the concept of
WSN virtualization can be put to use. WSN virtualization enhances IoT security, resource
usage, and administration, and decreases energy consumption [5]. Figure 1 shows how
WSN visualization can be performed by making it easier for different kinds of networks to
work together on the same physical infrastructure. The current four-tiered virtualization
architecture for WSN networks is designed to cut down on unnecessary duplication of
sensor networks across various IoT use cases [6–8].

Figure 1. Architecture for virtualized wireless sensor networks.

The current virtualized wireless sensor networks architectures have not taken into
account the possibility of a communication breakdown on a virtual network as a result of
a breakdown in communications on real-world WSN networks. All nodes in a WSN are
susceptible to failures such as node failures, communication failures, or internal component
malfunctions of the sensors (such as a transceiver, CPU, battery, etc.) due to the wide
variety of risk or hazard situations in which WSNs are deployed. Additionally to sensor
attributes (low cost, compact size, high quality, etc.) [9], WSN technology has a number of
challenges, but fault tolerance is by far the most significant of these. Due to the severity of
these problems, it is even more important to include procedures and ways to remedy these
flaws and reinforce their operation in order to boost fault tolerance [10].

In many scientific and technical contexts, it is important to simultaneously maximize
many objectives while weighing the tradeoffs between them. Recent years have seen
extensive studies devoted to the development of effective algorithms for resolving such
multi-objective optimization (MOO) challenges. To solve MOO issues, these algorithms
employ a population of candidate solutions, investigating a number of non-dominated

8



Mathematics 2023, 11, 1128

solutions simultaneously. This is in contrast to the single-solution-at-a-time approach taken
by conventional methods. In this process, the authors in [11] used a probabilistic approach
to the formulation of a novel evolutionary multi-objective crowding algorithm (EMOCA). A
middle ground between the issues of dominance and variety in the expanding population
appears to be provided by their method.

In this context, this paper presents a novel architecture for heterogeneous virtual
networks in the IoT that may be embedded into WSN settings to improve fault tolerance
and decrease communication latency in service-oriented networking. Since fault tolerance
and communication latency are often two conflicting objectives in WSN settings, the
problem can be formulated as a reactive optimization of fault tolerance and communication
delay, which in our case is carried out by adapting an evolutionary multi-objective crowding
algorithm (EMOCA). EMOCA’s novel method lies in its use of a non-domination ranking
scheme and a probabilistic technique to decide whether an individual’s offspring will
be considered during the replacement-selection phase. EMOCA incorporates diversity
preservation as an integral part of the algorithm. Compared with the well-known non-
dominated sorting genetic algorithm NSGA-II, EMOCA discovers a diverse set of non-
dominated solutions with near-uniform spacing [11]. Simulations are used to find out how
well EMOCA performs at optimizing fault tolerance for virtualization in WSNs.

The remaining sections of the paper are as follows: the literature on virtual network
embedding’s fault tolerance is discussed in Section 2. Section 3 lays forth the specifics
of the multi-objective optimization problem’s mathematical formulation and EMOCA’s
application toward resolving it. The simulation environment, metrics, and performance
comparisons are discussed in Section 4, and a summary is provided in Section 5.

2. Related Works

This section will provide an overview of some of the studies that have been carried
out on fault tolerance in virtual network embedding (VNE). We surveyed the literature and
classified past research into three broad classes: that focusing on link failure, that focusing
on node failure, and that focusing on multi-objective optimization for network survival. We
will next move on to a discussion of virtualization as a contributing area in WSNs. Many
approaches have been suggested to strengthen VNE’s dependability against the failure of
the substrate resources, and many researchers have attempted to address the VNE problem
using these mechanisms [12].

There are two main types of solutions to VNE survivability issues that have been
identified in the literature: (a) proactive solutions that involve reserving resources in
advance of a potential failure, and (b) reactive solutions that respond to a failure by
immediately initiating a restoring mechanism [13]. In this case, each link’s backup-storage
quota has been depleted to be used for protection and restoration. Survivability techniques
based on connection restoration and protection are useful from a commercial standpoint,
but they have certain limitations. In many instances, the reactive method might cause
data loss. The survivability measurement also does not account for the fault-tolerance
capabilities of connections or communication latency [13].

Reactive solutions utilize a path-selection algorithm to determine backup pathways
for each underlying connection before any VNE request is received. An existing embedding
technique is then used to create the virtual node and link it to the subsequent request. With
increased data loads, failure can cause a significant loss of data, and the backup mechanism
may not be able to restore the VNE [14]. In [15], the authors presented the link-based
backup strategy as a preventative measure against link failure. A portion of each core
link’s backup bandwidth is reserved in advance of any incoming VN request during the
setup process. In this case, the backup bandwidth is scheduled ahead of time, before a
problem occurs, which is preferable. Further, the VN embedding process requires fewer
computational resources. With the shared pre-allocation method, backup bandwidth is
held regardless of the VN requests, meaning it might not be used if even a small number of
VN requests come at once.
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To choose the most suitable virtual link for failure recovery, a hybrid technique was
presented in [16]. In contrast to the reactive approach, which seeks to reallocate any capacity
negatively impacted by a large request, the preventative approach embeds virtual links
into numerous core channels to promote resistance to attacks and efficiency in resource
use. This method depends on the WSN’s remaining hardware resources, which may not be
enough to fix the virtual network on a very busy network. An approach for identifying the
alternate link among the impacted virtual network (VN) resources is introduced in [17].
While a dynamic recovery method is useful in general, it is especially useful when physical
failures cause additional downtime and resources are limited. This approach demands a
full VN reset, which takes a long time and makes the service inaccessible.

The authors in [18] presented a two-step methodology for restoring the whole VN of
the failed attachment node. First, a graph is built to request VN with a virtual link backup
contract, and then the improved VN is requested on the core set by employing both the
redundant and K-redundant schemes. While this strategy may help optimize the allocation
of certain resources, it may not be able to do so for all of them. It is recommended to set
aside a spare node and link for every vital node in the network. A second two-step strategy
for restoring VN is presented in [19]. The VN is augmented using virtual nodes (VNodes)
and virtual links (VLinks) in the first stage, and sensor networks are then given access to
this improved VN in the second stage. In the worst event, each VNode needs to have a
backup set aside. The research in [20] offered an enhanced VN based on a failover method
to minimize backup resources. Despite being resource-efficient, this method is unworkable
because VNodes frequently migrate.

Contrary to these approaches, in [21], the authors presented a joint optimization
approach to assign both primary and backup resources. Although heuristic-based mapping
quickly tackles single-node failure, the complexity and inconvenience of considering backup
resources and the possibility of node and connection failure are inherent in this embedding
technology. A method for improving long-term viability with minimal operating expenses
was discussed in [22], which takes advantage of the spatial distribution of VNE’s physical
resources. A heuristic-based method was used for the smaller network, while an integer
linear programming model was used for the larger one. It has been hypothesized that
this is a multi-commodity network-flow issue. Since smaller networks often have faster
physical connectivity, location data have less of an effect. If the structure of the virtual
networks is altered, undesirable topology-based survival characteristics will emerge as a
direct result. Even though there are more and more factors that take survival into account,
the use of single-objective optimization approaches has stopped progress toward the best
values for network parameters [23–26].

To improve fault tolerance in WSN virtualization, the popular MOO approach of non-
dominated sorting based on a genetic algorithm (NSGA-II) is developed in [4]. Through
a process of chromosomal sorting, NSGA-II is modified to address the optimization is-
sue. The technique of sorting prioritizes chromosomes depending on competing criteria.
Concerning solution dispersion and convergence to the genuine Pareto optimal, NSGA-II
performs better than other Pareto-optimal approaches. However, there are drawbacks to
the framework because of restrictions on the dissemination of consistency in some issues.
Moreover, crowded comparisons can restrict the convergence. Virtualization proposals for
WSNs tend to focus on improving resource (sensor) usage via the use of application-centric
multitasking and the abstraction of sensors according to their use (i.e., virtual sensors).

The research in [27] investigated the challenge of finding the optimal lifetime and
number of relay nodes for a network operating in three-dimensional environments. To
achieve a better compromise between two goals, a new method is suggested. The technique
combines a decomposition-based multi-objective evolutionary algorithm with a targeted
local search to improve its component parts. In [28], the controller placement problem,
which is a multi-objective optimization problem, is stated for selecting the optimal location
for Software Defined Network (SDN) controllers to improve WSN performance. Considera-
tions such as cost, time, and dependability are among the constraints that are applied here.
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In addition, a novel adaptive population-based cuckoo optimization (APB-CO) is used to
position controllers optimally.

The work in [29] discussed WSN resource allocation for combined time-slot assign-
ment, channel allocation, and power control. This study analyses resource dependency to
design a two-stage resource-allocation optimization technique for a non-convex issue with
diverse research aims and computing complexity. First, a graph-coloring technique for time-
slot assignment is created for conflict-free sensor information interchange. Based on the
first stage of this technique, combined power control and channel allocation are examined
and articulated as a multi-objective optimization problem to solve the tradeoff between
energy efficiency and network capacity maximization under link interference and load-
balancing constraints. In their work, multi-objective hybrid-particle swarm optimization
yields Pareto-optimal solutions.

In [30], the time function of the goal function perception matrix is presented, taking
into account the features of low-power and real-time performance of sensor nodes in WSN.
In order to limit the perceptual nodes’ inherent bias, a constraint on the number of targets
they can detect is suggested; a weighted factor on the utility function is employed to ensure
users are treated fairly; and finally, an optimization model of multi-objective resource
allocation is established. To effectively allocate resources, a new technique is presented
that builds on top of a modified version of simulated annealing (SA), bringing together the
speedy optimization capabilities of SA with the robust search capabilities of logistic chaos.

The authors in [31] presented a multi-objective protocol (MOP) that maximizes net-
work lifespan and residual energy using a mixed-integer linear-programming (MILP)
optimization technique. Within the boundaries of the nodes that make up a given target,
sets of MILP are solved locally. Therefore, within the same coverage nodes, energy is con-
served. This research takes into account the goals of optimizing network residual energy
and neighbor node connections. In order to determine which nodes to deactivate, each
round’s local MILP solution is used to identify the nodes that have the lowest connection
to their neighbors and are thus the most heavily used throughout the routing process.

For 5G systems that support the Internet of Things, the research in [32] developed a
new method of clustering based on optimization via network slicing. By using network
slicing and cluster construction, multi-objective improved seagull optimization-based
clustering with network slicing (MOISGO-CNS) aims to improve 5G systems’ energy
efficiency and load distribution. Both ISGO-based clustering and IGSO using bidirectional
long short-term memory (BiLSTM) form the backbone of the MOISGO-CNS method. Two-
hop connectivity ratio, residual energy, and link quality are the three metrics used to build
a fitness function in the IGSO-based clustering method. In addition, the ISGO algorithm
is developed as part of the network-slicing process in order to pick hyperparameters for
optimum slicing classification performance. See [33,34] for an updated review of multi-
objective optimization in wireless sensor networks. Recent studies that have looked at the
crucial research of node and network-level virtualization in WSNs for the IoT [35,36] and
applications show this to be the case [6,8,37–39].

In general, the problem with employing evolutionary algorithms for improving fault
tolerance in WSN virtualization is that they cannot determine whether or not a solution
is optimum; they can only determine whether or not it is “better” than other solutions
that they already know about. It is also tricky to provide accurate weights to the objective
functions, run the algorithm numerous times, and end up with various Pareto-optimal
solutions; and Pareto-front concaves are notoriously difficult to analyze. A key challenge
in the development of effective algorithms is the incorporation of diversity mechanisms
into evolutionary algorithms for multi-objective optimization problems. This is the case for
problems with an exponentially large number of possible non-dominated goal vectors. An
acceptable approximation of the Pareto front is what we are aiming to obtain.

We look at how this can be carried out using the diversity mechanism of crowding
dominance and highlight where this idea is demonstrably beneficial to handle internal
failure perspectives in virtualization in WSNs. We use EMOCA as an MOO technique to
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maximize fault tolerance and minimize communication delay. The performance of EMOCA
is compared with that of the well-known non-dominated sorting genetic algorithm NSGA-
II. According to [11], EMOCA performs better than the other algorithm in eight of the nine
test problems when it comes to convergence and diversity. It always finds a wide range of
solutions that are not dominant.

3. The Proposed Framework

Here we cover the topic of virtualization’s fault tolerance in WSNs. We evaluate a
network structure with four layers. There is the “physical” layer, which is made up of the
real sensor nodes, and then there is the “virtualization” layer, which creates additional
“virtual” sensors that can perform additional jobs and services beyond what the “physical”
layer can. In the third layer, known as the “access layer”, different WSNs are developed
based on the fault-tolerant incorporation of mission-oriented sensors. There is an access
agent for every embedded network. The applications layer is where the IoT’s smart
applications, such as humidity, fire monitoring, temperature, etc., are represented to the
end users who really benefit from them. In order to implement the suggestion, the access
layer is modified.

Every node in a traditional sensor network cooperates to deploy sensors at the same
level [24]. When many sensor networks operate together and share the same physical
location, they form the Virtual Sensor Network (VSN). The same domain hosts a variety
of physically distinct sensor networks. As part of a larger wireless sensor network, it is
established by the sensor nodes that are most relevant to a certain activity or use case at
that moment [20]. But in a virtual sensor network, the nodes work together to complete a
specified task at a precise moment. To create a virtual sensor network, logical connections
must be made between cooperating sensor nodes. Depending on the phenomenon being
monitored or the function being served, nodes may be organized into distinct virtual
sensor networks. The capability for network construction, utilization, adaptation, and
maintenance of a subset of sensors working on a given job should all be provided by the
virtual sensor network protocol. The proposed framework’s flowchart is shown in Figure 2,
and the mathematical terminology used to describe its key processes is included in Table 1.

Say we have a sensor network with nodes dispersed over the network region NA.
Assume mesh topology, meaning all nodes are connected. This network supports virtual
networks. Assume a link-route breakdown causes sv and dv’s link connection to fail. The
wireless sensor network connects source physical sensor sp and destination physical sensor
dp nodes. Investigate all possible paths between sp and dp to discover a fault-tolerant
alternative. To find these routes, you must know the expected number of intermediary
nodes. By calculating the average distance to the nearest-neighboring node, we may count
the paths. Obtaining the sensor’s probability density function (pdf) is all that is required to
compute the nearest-neighbor sensor’s distance; pdf is the probability of a neighbor sensor
within r and (r + Δr), where r is the transmission radius and Δr is the incremental distance.
The physical wireless sensor network is considered to have a uniform sensor distribution λ
such that [4]. ∫

NA

λ dNA = 1 ⇒ λ =
1

NA
(1)

For any two sensors separated by a distance between r and (r + Δr), the probability
Pc

r|(r+Δr) of the closest-neighbor sensor is equal to the product of the probabilities that one
of the sensors is present at the distance Ps

r|(r+Δr) and that none of the other sensors are closer

P0
<r. Assume that the Nn sensor nodes in the network can only send data at a distance of

0.5 rad to the destination dp. In this case, Pc
r|(r+Δr) can be computed as:

Pc
r|(r+Δr) = P0

<r · Ps
r|(r+Δr) (2)
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Pc
r|(r+Δr) = [1 − Ps

<r] ·
[

Ps
r|(r+Δr)

]
(3)

Pc
r|(r+Δr) =

[
1 − ∑Nn

j=1

(
Nn
j

)(
λπr2

2

)j(
1 − λπr2

2

)Nn−j]
.

[
∑Nn

j=1

(
Nn
j

) ∫ r+Δr

r

(
2λπr · dr

2

)j
dr ·
∫ r+Δr

r

(
1 − 2λπr · dr

2

)Nn−j
dr

]
(4)

Pc
r|(r+Δr) = (1 − λπr2)Nn

[
1 −
(

1 − λπ
(

rdr + dr2
))Nn

]
(5)

Pc
r|(r+Δr) = (1 − λπr2)Nn

[
1 −
{

1 −
(

Nn
1

)
·
(

λπ(rdr + dr2)
)
+

(
Nn
2

)
·
(

λπ(rdr + dr2)
)2

. . .
}]

(6)

Pc
r|(r+Δr) = (1 − λπr2)Nn

[
Nnλπrdr + Nnλπdr2 −

(
Nn
2

)
· (λπ(rdr + dr2)

)2
. . . .
]

(7)

Figure 2. Flowchart of the proposed framework.
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Table 1. Mathematical Nomenclature.

Notation Description

sv Virtual source sensor of a link failure
dv Virtual destination sensor of a link failure
sp Source physical sensor
dp Destination physical sensor
Np Total number of paths between sp and dp

Nn Number of sensors in the network
NA Network area
Nin Number of intermediate nodes between sv and dv

E(r) Expected closest-neighbor distance
r Distance of nearest-neighbor sensor

Δr A small incremental distance in r
λ Density of sensors in the network

Pc
r|(r+Δr) Probability of closest sensor between r and r + Δr

Ps
r|(r+Δr) Probability of some sensor between r and r + Δr

P0
<r Probability of no sensor at less than r distance

Si or Sij The ith sensor or the jth virtualization of ith sensor
fr(r) Probability density function (pdf) of closest-neighbor distance
R Transmission range of sensors
D Distance between sp and dp

(Nin − 2)ck Number of paths with k intermediates
FTp

i Fault tolerance of ith path
FTl

i Fault tolerance of ith link
CDp

i Communication delay of ith path
CDl

i Communication delay of ith link
CHi The ith chromosome
Nre Number of retransmissions for a success
ei,j Packet error rate of a link between nodes i and j
dl

i,j Degree estimation of a link between nodes i and j
de

i Degree of ith node
a Decision variable

di,j Distance between nodes i and j
Sp Propagation speed
St Transmission speed

Spkt Size of packet
Spop Size of chromosome population
Ngen Number of generations during solution optimization
lS,D Link between sp and dp

Fpath
i

Fault tolerance of ith path
Ds

i Dominance set of ith solution
Si The ith solution of the population
np The number of solutions that dominate p
Fj The jth front

Schild−pop Size of child population
Ri Rank of ith solution

In order to calculate the probability density function of the nearest-neighbor distance
fr(r), we can use the limit in Equation (7) as:

fr(r) = lim
dr→0

Pc
r|(r+Δr)

dr
= Nnλπr(1 − λπr2)Nn (8)

Considering R as transmission range of sensors, the expected closest-neighbor distance
(r) can be expressed as

E(r) =
∫ R

0
r fr(r)dr =

∫ R

0
Nnλπr2

(
1 − λπr2

)Nn
dr (9)
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E(r) =

[
−r
(
1 − λπr2)

λπ(Nn + 1)

]R

0

+
∫ R

0

(
1 − λπr2)Nn+1

λπ(Nn + 1)
dr (10)

E(r) =

[
1

λπ(Nn + 1) ∑Nn+1
i

(
Nn+1

i

)(−λπr2)ir
i + 1

]R

0

(11)

E(r) =
√

NA

λπ
3

2(Nn+1)
∑Nn+1

i
(−1)i

i + 1
(12)

It can be shown that there are exactly (Nin − 2)ck pathways from sp to dp with exactly
k intermediary nodes, where

k =

{
1, 2, 3, . . .

(⌊
D

E(r)

⌋
− 1
)}

(13)

Nin =

(⌊
D

E(r)

⌋
− 1
)

(14)

D represents distance between sp and dp. The equation for the total number of routes,
Np, from sp to dp is as follows:

Np = (Nin − 2)C1
+ (Nin − 2)C2

+ · · ·+ (Nin − 2)C(Nin−2)
(15)

Np =
{
(Nin − 2)C0

+ (Nin − 2)C1
+ · · ·+ (Nin − 2)C(Nin−2)

}
− 1 (16)

Np = 2Nin − 1 (17)

If we want to maximize fault tolerance (FT), we can write it as:

Maximize FT = max
i=1,2,...,Np

(
FTp

i

)
(18)

FTp
i =

1
(
⌊ D

E(r)

⌋− 1 ) ∑
i=(
⌊

D
E(r)

⌋
−1), j=dp

i=sp ,j=1 FTl
i,j (19)

FTp
i is the fault tolerance of the ith path from source sp to destination dp, and FTl

i,j is
the fault tolerance of a link between an adjacent pair of nodes. The ordered set of nodes of
ith path is represented by Sop

i

Sop
i = {sp, 1, 2, . . . ,

(⌊
D

E(r)

⌋
− 2
)

,
(⌊

D
E(r)

⌋
− 1
)

, dp} (20)

Similar to how the maximize FT function is written, the communication-delay (CD)
minimization function is given by:

Minimize CD = min
i=1,2,...,Np

(
CDp

i

)
(21)

CDp
i =

1(⌊ D
E(r)

⌋− 1
) ∑

i=(
⌊

D
E(r)

⌋
−1 ), j=dp

i=sp ,j=1

(
CDl

i,j

CDl
max

)
(22)
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CDp
i represents delay of ith path from sp to dp, CDl

i,j is the delay of a link between

an adjacent pair of nodes, and i, j ∈ Sop
i . The maximum link delay among all the links is

represented by CDl
max. The optimization issue outlined above has the following restrictions:

0 < FTp
i ≤ 1, 0 < FTl

i ≤ 1, 0 < CDp
i ≤ 1, 0 <

CDl
i,j

CDl
max

≤ 1 (23)

The problem can be formulated as a reactive optimization of fault tolerance and
communication delay, which is accomplished in our case by adapting an evolutionary
multi-objective crowding algorithm (EMOCA). The number of objectives being optimized
for is the primary dividing line between single- and multi-objective streamlining. When
there are several competing goals, there is no best way to solve the situation at hand. There
are a few possible good solutions. Pareto-optimal solutions are those that maximize utility
with the fewest costs. As far as all goals go, the Pareto front does not provide a single
solution that is optimal. Accordingly, all Pareto-front solutions are valuable without any
problem-specific knowledge regarding the relative importance of different goals. Finding
numerous such solutions that represent tradeoffs between goals is the primary aim of
multi-objective optimization [40,41].

The primary objectives of multi-objective evolutionary algorithms (MOEAs) include:
(1) settling on a Pareto-optimal solution set; and (2) acquiring a wide variety of options
that are evenly spaced. When solutions are distributed unevenly, the Pareto front becomes
crowded in certain areas. The EMOCA solution prioritizes variety throughout the algorithm
to solve this problem [11]. Evolutionary operators such as crossover and mutation, in
addition to chromosomal sorting through the non-dominance concept and diversity, are
used to alter the solutions in EMOCA. After multiple cycles, the EMOCA eventually arrives
at a collection of tradeoffs known as the Pareto front. Unlike an aggregate optimization
strategy that only offers one solution, this set of alternatives gives the system designer
many to choose from. The main structure of EMOCA is illustrated in Algorithm 1. Now
we will discuss each of EMOCA’s distinct steps [11].

Algorithm 1: EMOCA main structure

1. Initialize.
2. For the number of iterations determined by computational bounds, do:

2.1. Generate Mating Population.
2.2. Generate offspring by crossover followed by mutation.
2.3. Create a new pool consisting of parents and some offspring.
2.4. Trim new pool to generate the population for the next iteration.
2.5. Update archive to contain all non-dominated solutions

Mating Population Generation: As a means of increasing the number of viable mates,
EMOCA uses a system of binary tournament selection. An individual’s fitness level is
equal to their non-dominance rank plus their diversity rank. Individuals’ non-dominance
ranks are determined using the non-dominated sorting algorithm presented in [42–44].
Each individual within the population is compared to the others to determine dominance.
This gives initial non-dominated front solutions. The first front’s solutions are temporarily
discarded, and then the preceding method is repeated until no non-dominated fronts
remain. Solutions from the same non-dominated front are ranked equally.

For diversity rank, NSGA-II crowding’s distance metric determines each solution’s
crowding density. To determine the density of solutions around a specific solution in a front,
we calculate the average distance of two solutions along each goal (two solutions on either
side of the solution xi). Front boundary solutions have an infinite crowding distance. For
all other solutions within a front, the following Algorithm 2 is used to assign the crowding
distance [36]. Greater crowding distance in a solution suggests more variety (diversity).
Based on their crowding distance, the solutions in the population are rated and ordered.
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Algorithm 2: Crowding distance measure

1. For each solution xi of front F, initialize crowding distance d(xi) to be 0;
2. For each objective function fm do:

2.1 Sort the solutions in F along objective fm;

d(xi) = d(xi)+ fm(the individual that precedes xi in the sorted sequence)
− fm(the individual that f ollows xi in the sorted sequence)

New Pool Generation: After comparing each child to one of its randomly selected
parents, taking dominance and crowding density into account, a new pool consisting of all
the parents and some of the offspring is formed. Possible outcomes include the following
three scenarios:

- Case 1: The child gets introduced to the new pool if it is dominant over the parent.
- Case 2: The probability of acceptance of the children is calculated using the crowding

distance measure if the parent is dominant over the offspring. The probability P that
a child will be included in the new pool if it has a larger crowding distance than its
parent is:

P = 1 − exp((δ(parent)− δ(o f f spring)) (24)

δ denotes the crowding distance of a solution. A more diverse child with a larger
crowding distance than its parent has a greater chance of survival. More diverse solutions
are rewarded by being given a chance to thrive in subsequent generations.

- Case 3: In cases where the parent and offspring are not dominant over one another,
the offspring will be included in the new pool if its crowding distance is greater than
that of the parent.

Trimming New Pool: Both non-domination rank and diversity rank are used to sort
the new pool. Thus, the diversity rank is used to compare alternatives that have the same
non-domination rating. The new population will be made up of the initial items of the
sorted list of fronts F1, F2, . . . , Fn where elements of Fi + 1 are dominated only by elements
in F1, F2, . . . , Fi. All generations of non-dominated solutions are saved in EMOCA’s archive.

For the most part, EMOCA relies on an individual’s diversity score to determine
whether or not their offspring will be allowed to join the new population. While EMOCA
does not tolerate offspring who are dominant like their parents, it does allow some low-
quality offspring to remain in the population, provided they have sufficient variety. The
result is a more well-rounded and interesting population. Although NSGA-II allows all
viable offspring to go on into the next generation, EMOCA only allows a small percentage
to do so. Therefore, whereas NSGA-II executes non-dominated sorting on a population
of size 2N, where N is the population size, EMOCA executes non-dominated sorting on
a population size between N and 2N. With this, EMOCA’s computational complexity
decreases [11].

3.1. Chromosome Representation

In EMOCA’s solution space for an optimization problem, a chromosome CHi is an
ordered collection of intermediate nodes Sop

i that begins with source sp and ends with dp.
Genes in the chromosomal model are represented by each node in the set.

CHi =

{
sp, 1, 2, . . . ,

([
D

E(r)

]
− 2
)

, (|D/E(r)| − 1), dp
}FT,CD

(25)

FTl
i,j =

(
1 − ∑Nre

t=0

(
ei,j
)t(1 − ei,j

))
+ dl

i,j (26)
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Given a connection with packet error rate ei,j and degree estimate of the link dl
i,j, we

may calculate the number of retransmissions, Nre, that will be necessary for a successful
transmission. In this case, a path’s cumulative fault tolerance is calculated by adding the
fault tolerances of its individual connections. With the help of packet-error-rate-based link-
quality estimation and neighbor-density-based degree estimation, we are able to calculate a
link’s fault tolerance FTl

i,j. The degree estimation can be derived from Equation (27) where
de

i and de
j are the degrees of nodes i and j, respectively, and α is a decision variable varying

between 0 and 1.

dl
i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, de

i = de
j = Nn − 1

1 − αde
i , de

i = de
j < Nn − 1

1 − α

(de
i −de

j )
2

de
i +de

j ,
∣∣∣de

i − de
j

∣∣∣ > 0
(27)

When calculating the communication delay CDl
i,j, we factor in interference for the

connection, which is based on the link quality, as well as propagation and transmission
delay where di,j is the distance between the pair of nodes i and j, Sp represents propagation
speed, Spkt is the packet size, and st represents transmission speed.

CDl
i,j =

(
1 − ∑Nre

t=0

(
ei,j
)t(1 − ei,j

))
+

di,j

Sp
+

Spkt

st
(28)

3.2. Crossover and Mutation

The crossover procedure involves randomly swapping a collection of nodes between
two chromosomes from the population (all paths between sp and dp). The exchange is
limited to nodes that are reachable both downstream and upward. Larger group sizes
are desirable in the earlier stages (lower generations) of a solution. Generation number
and chromosomal pair size determine crossover group size. Due to the recurrence of
intermediate nodes, chromosomes after crossover operations (also called offspring in
optimization theory) are repaired. Intermediate nodes in the parent chromosome but
not in the offspring are considered during repair. If two randomly chosen nodes on the
chromosome can be reached (present as neighbors) from their respective descendant nodes,
then the mutation process will swap their positions.

3.3. Non-Dominance and Crowding-Distance-Based Sorting for Chromosomes

Using non-dominance, chromosomes are sorted. Multiple competing goals are used
to arrange chromosomes. Consider population chromosomes CHi and CHj. According to
Pareto optimum, a chromosome CHi dominates CHj if at least one of its fitness values is
higher than CHj’s and the other fitness values are equal. Multi-objective optimization in
communication networks favors Pareto-optimal prioritizing [40,41]. For two goals, it is:

CHi > CHj =

{
CHi(FT) > CHj(FT),∧CHi(CD) ≮ CHj(CD)
CHi(CD) > CHj(CD),∧CHi(FT) ≮ CHj(FT)

(29)

The population’s chromosomes are sorted by fitness using the non-dominance notion.
Non-dominant chromosomes rank first in the population. Only one chromosome in a pop-
ulation ranks second. Population-wise, chromosomes dominated by two others rank third.
Each chromosome’s crowding distance is computed after ranking. The next generation is
chosen via a tournament method.
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Algorithm 3 lays out the whole process that was followed to obtain an optimal solution,
for which a population (paths between pairs of sources and destinations) of size Spop is
formed by randomly scattering the decision variable throughout some allowed range (low,
high). Non-dominance-based sorting oldpop is used to order the population. To determine
the objective-1 normalized fault tolerance and the objective-2 normalized delay for each
Si ∈ oldpop, the best half of the population is selected, and for each Si the crowing distance
Cdist is computed from all points excluding boundary points. Using the tournament-
selection approach, the best half of the population is chosen based on the rank of ith solution
Ri and crowding distance Cdist. By introducing mutations and performing crossovers, a
superior solution may be generated from a preselected parent population. The optimal half
of the population is once again chosen from the whole population. These procedures are
iterated until the stop criterion is met (the maximum number of generations is reached) in
order to produce optimal chromosomes. The time complexity of EMOCA is
O(2× Spop × Ngen), where Spop is size of the old population and Ngen represents the number
of generations. The number of generations, and hence the amount of time it takes to run,
is indirectly determined by the size of the network. As a result, the time needed for each
generation might change based on the system’s hardware.

In summary, convergence is emphasized by the concept of non-domination rank.
During the period of tournament selection and population reduction, variety is preserved by
the use of diversity rank. It is also possible to apply the crowding distance to the parameter
space [11]. In contrast, we measure crowding in the target space to determine the optimal
solution. When compared to NSGA-II and other multi-objective evolutionary algorithms
(MOEAs) such as multi-objective ant-colony optimization (MOACO) and multi-objective
particle-swarm optimization (MOPSO), EMOCA’s most distinguishing features include:

- When selecting whether or not to include a new generation into the population,
EMOCA takes into account each individual’s diversity score. In contrast to MOEAs,
which eliminate offspring who take after a single parent, EMOCA lets some low-
quality offspring to persist in the population so long as they contribute to genetic
variety. In a nutshell, this contributes to a more diverse population.

- While NSGA-II allows all viable offspring to go on into the next generation, EMOCA
allows just a small percentage to do so. Thus, whereas NSGA-II can only carry out non-
dominated sorting on a population of size 2N, EMOCA can perform non-dominated
sorting on populations with sizes ranging from N to 2N. The computational burden
placed on EMOCA is therefore decreased.

- In EMOCA, both non-domination and diversity are equally weighted by a single
measure (the total rank) used for mate selection. This tremendously aids efforts to
diversify and improve the quality of the available mating pool. But MOEAs and
NSGA-II employ non-domination rank as the major criterion for selecting the mating
pool. As a result, the resulting mate pool could not be as diverse as it otherwise
would be.

The next section details the simulations run to assess the framework’s efficacy, paying
special attention to the parameters of the test beds, the metrics used, and the analysis of
the resulting data. Two goals were set to accomplish simulations based on case studies. To
begin, the number of generations has an influence on fault-tolerant optimization’s efficacy,
which is then used to determine how well it performs. Second, network density is a key
indicator of fault-tolerant optimization’s effectiveness.
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Algorithm 3: EMOCA for solving the optimization problem

Input: Spop, Ngen, lS,D, Fpath
i

Starting with generate initial population size Spop. Then saving one copy of population as
“oldpop”.
For each Si ∈ oldpop

Calculate objective-1 normalized fault-tolerance using Equation (19)
Calculate objective-2 normalized delay using Equation (22)

End for

g = 1;
While (g ≤ Ngen)

Non-dominated sorting (oldpop)
For each Si ∈ oldpop

Calculate Ds
i

End for

j = 1,
For each Si ∈ oldpop

If (Ds
i = φ)

Fj = Fj ∪ Si, Ri = 1
End if

End for

j = 2,
For each Si ∈ oldpop

If (Ds
i 	= φ && Ri == j − 1)

Fj = Fj ∪ Si, Ri = 1, j = j + 1
End if

End for

Crowding _distance (oldpop)
Assume Cdist from boundary point (group of solution) to ∞ for any solution.
For each Si ∈ oldpop

Calculate Cdist from all point excluding boundary points
End for

Select the best half population as parentpop considering Ri & Cdist using tournament selection
approach.

childpop = φ

Schild−pop = 0
While (Schild−pop ≤ Spop)

Randomly select two chromosomes from the parent population.
Perform crossover to produce two child chromosomes.
Update childpop and Schild−pop = Schild−pop + 2
Randomly choose a chromosome from parent population.
Mutate chromosome to produce a child chromosome
Update childpop and Schild−pop = Schild−pop + 1

End while

Generate new population of size (2 × Spop) by oldpop ∪ childpop

Calculate normalize fault-tolerance using Equation (19).
Calculate normalized delay using Equation (22).
Non-dominated sorting (Noldpop ∪ childpop)
Crowing_ distance (oldpop ∪ childpop)
Select again the best half population as oldpop using rank and Cdist

End while

Output: optimized chromosomes

4. Experimental Results

In order to evaluate the proposed framework in virtual networks, the NS2 network
simulator employs C++ to develop the simulation’s primary classes. The major classes of the
simulation include ‘NetworkNode’, ‘VirtualNode’, ‘RandomProvider’, ‘PathSearch’, and
‘MainApp’. All the characteristics of a node in a network, such as position, list of neighbors,
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link delay with neighbors, and fault tolerance of associated links, are implemented in
‘NetworkNode’. At ‘VirtualNode’, tasks are processed using an interface-based architecture.
Different sets of network nodes are generated at random by the ‘RandomProvider’ for
each simulation run. PathSearch is a tool for optimizing virtual network generation with
respect to delay and fault tolerance. The simulation is run on a machine with a 64-bit
UBUNTU operating system (Linux), 16 GB of RAM, and an Intel Core i7-11700K processor
running at 3.6 GHz. Three sets of randomly formed networks of 100, 500, 1000, 1500,
and 2000 nodes are constructed using the Poisson distribution method. For each of four
distinct networks, the EMOCA algorithm is run for 500, 1000, 1500, and 2000 generations
in an effort to maximize fault tolerance and minimize communication latency. The most
recent generation’s chromosomes in the results table stand in for the most recent set of
optimized values.

Parameter and setting values utilized in the simulations are listed in Table 2. Sensors
are deployed in a range of 100 to 1000, according to a specific deployment pattern, with
a maximum transmission radius of 30 m, uniformly and randomly distributed across the
circle with area NA = 1500 m2. The initial energy level J of each sensor is the same. The
power consumed while transmitting, receiving, and in the idle state are 175 mJ, 175 mJ, and
0.015 mJ, respectively. The power consumed for sensing is equal to 1.75 μJ. For focusing
on coverage measurement, a sensing range of 10 m and a transmission range of 30 m are
considered during the simulation. Transmission delays due to propagation have been
deemed insignificant for the simulation region chosen. Each experiment was repeated
30 times using the specified simulation settings and variables, and the arithmetic mean was
used to optimize the data record with a 95% degree of confidence.

Table 2. Basic parameter setting for simulation.

Parameter Value

Simulation area 1500 m2

Simulation time 600 s
Number of nodes 100 − 1000

Bandwidth 40 Kbps
Transmission range 15 m to 30 m

Receiving range 15 m
Initial node energy 30 J

Packet type UDP
Channel type Wireless

Antenna model Omni
MAC protocol IEEE 802.11
Query period 3 s
Hello timeout 1 s

4.1. Comparative Results

In Figures 3–6, we see how EMOCA, NSGA-II, and multi-objective versions of both op-
timization algorithms, which include particle-swarm optimization (PSO) and ant-colony op-
timization (ACO), perform while optimizing a network with 100 nodes across
500–2000 generations. Herein, the comparative algorithms were employed as black-box
versions with their default parameters (open-source code from GitHub). It is evident that
EMOCA outperforms other comparative algorithms in terms of optimization performance,
with regards to both fault tolerance and communication latency. The finding demonstrates
that virtualized WSNs based on EMOCA can successfully deal with failure. More specifi-
cally, the optimal values for fault tolerance and communication latency are 0.67 and 0.02,
respectively. This is because packet-error rate is a reliable predictor of fault tolerance. For
the multi-objective version of ACO, the optimal value of fault tolerance is approximately
0.57 and the optimal value of communication delay is approximately 0.038. However, for
the multi-objective version of PSO, the optimal values of fault tolerance and communication
delay are 0.31 and 0.11, respectively.
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Figure 3. Optimized chromosome with 100 nodes after 500 generations.

 

Figure 4. Optimized chromosome with 100 nodes after 1000 generations.

 

Figure 5. Optimized chromosome with 100 nodes after 1500 generations.
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Figure 6. Optimized chromosome with 100 nodes after 2000 generations.

The optimal value of fault tolerance for NSGA-II is around 0.44, whereas the optimal
value of delay is approximately 0.05. This is because a fault-tolerant estimate is reliant on
the degree of connection. In a wireless environment, the estimate is inappropriate. Having
a large number of chromosomes also increases latency and decreases fault tolerance. In
addition, because of the reduced size of the network (100 nodes), the effect of a larger
number of generations on the final, optimized chromosome is far less dramatic. It is
difficult to tell what makes one set of results distinct from the next. This is because there
are fewer possible paths to create in more compact networks.

The network is scaled up to 500 nodes in order to amplify the optimization per-
formance gap between generations. Figures 7–10 display a comparison of optimization
performance with increasing network size. The results show that when both goals are
included, EMOCA achieves greater optimization performance than NSGA-II and multi-
objective versions of both ACO and PSO. Specifically, the fault tolerance value of the latest
optimized chromosome is about 0.92, while the communication latency value is around
0.015. This is because more paths are available in more extensive networks, allowing for
the selection of connections of higher quality, with higher fault tolerance and reduced
communication latency. There is a tradeoff between fault tolerance and communication
latency, with the optimal value for each ranging around 0.82, 0.06 for ACO; 0.72, 0.08 for
NSGA-II; and 0.59, 0.1 for PSO, respectively. The pace at which the system converges on an
optimal solution has slowed, and the number of optimized chromosomes has decreased.
Additionally, the bigger network (500 nodes) mitigates the negative effects of increasing
the number of generations on the optimized chromosome.

The convergence rate toward the ideal solution is boosted by increasing the network
size to 1000 nodes. Figures 11–14 display a comparison of the optimization convergence
rates. As expected, the results show that EMOCA has a higher optimization convergence
rate compared to NSGA-II, ACO, and PSO for both goals. Comparatively, the optimum
chromosomal value for communication latency is about 0.010, whereas the fault-tolerance
value is around 0.98. This is because, as the size of the network grows, more and more
paths become suitable for use, allowing for more discriminatory tolerance in the paths
that are ultimately chosen. The optimal fault tolerance for ACO chromosomes is around
0.82, whereas the optimum communication delay is about 0.06. The optimal fault tolerance
for NSGA-II chromosomes is around 0.78, whereas the optimum communication delay is
about 0.07. The optimal fault tolerance for PSO chromosomes is around 0.59, whereas the
optimum communication delay is about 0.1. In addition, when the size of the network is
ramped up, the proportion of optimized chromosomes grows. In both cases, you will find
that the chromosomes are packed closely together. We can also observe that the Pareto
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front obtained by EMOCA covers a wider region of the objective space compared to the
Pareto fronts obtained by the other algorithms.

 

Figure 7. Optimized chromosome with 500 nodes after 500 generations.

 

Figure 8. Optimized chromosome with 500 nodes after 1000 generations.

4.2. Summary of Results

We can also observe that the Pareto front obtained by EMOCA covers a wider region of
the objective space compared to the Pareto fronts obtained by the other algorithms. EMOCA
yields much smaller values for the crowding distance of a solution compared to competing
techniques. EMOCA finds a wide variety of non-dominated solutions spaced out almost
uniformly. These characteristics enable EMOCA algorithms to search for solutions in a
much larger space with less complexity, and the results show that the EMOCA approach
was capable of providing more accurate solutions at a lower computational complexity
than the existing compared methods.
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Figure 9. Optimized chromosome with 500 nodes after 1500 generations.

 

Figure 10. Optimized chromosome with 500 nodes after 2000 generations.

 

Figure 11. Optimized chromosome with 1000 nodes after 500 generations.
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Figure 12. Optimized chromosome with 1000 nodes after 1000 generations.

 

Figure 13. Optimized chromosome with 1000 nodes after 1500 generations.

 

Figure 14. Optimized chromosome with 1000 nodes after 2000 generations.

Algorithms built on the NSGA-II framework outperform their PSO-based counterparts.
Here are several explanations that might be at play. Because of NSGA-II’s crossover and
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mutation processes, chromosomes may be shifted across huge distances in the solution
space. Additionally, in NSGA-II, there is no correlation between individual chromosomes
and the present local or global best results. Such capabilities allow NSGA-II based VNE
algorithms to explore solutions in a considerably broader area than is possible with the
PSO method alone. On the other hand, only the “best” particle shares its knowledge in
PSO-based VNE algorithms. In contrast to PSO-based algorithms, those based on ACO
vary in the calculation rank of the nodes, which affects the sequence in which virtual node
consolidation and pheromone computing occur. As a result, EMOCA algorithms are a viable
option for multi-objective optimization since they may provide more workable solutions.

5. Conclusions and Future Work

Both diversity and convergence are crucial for VNE optimization techniques. A system
designer who is interested in analyzing several tradeoff alternatives in order to make an
informed decision would not benefit from a Pareto set with few solutions concentrated
in a certain location of the Pareto front. In this study, we demonstrate how we opti-
mized two conflicting objectives—fault tolerance and communication latency in virtualized
WSNs—by concentrating on heterogeneous network requirements for IoT applications
through utilizing an EMOCA framework that uses a stochastic replacement-selection tech-
nique that includes both non-domination and diversity. In order to address the issues of
fault tolerance and communication latency in virtualized WSNs, a mathematical formula-
tion of a multi-objective optimization problem is presented. Using NSGA-II as a benchmark,
we found that EMOCA’s optimization framework was superior to the current standard.
Simulation results demonstrate that EMOCA outperforms superior optimization tech-
niques produced with fewer generations. Moreover, the time to achieve the optimization
outcomes is reduced compared to the best current methods. This proves the effectiveness
of the suggested framework in terms of convergence and diversity, since a diverse range of
non-dominated solutions is constantly discovered. The successful performance of EMOCA
in optimization challenges across a broad range of sectors, such as routing and battery
life in virtualized WSNs, will be considered in future research work. This is in addition
to expanding the current work to include many other objective functions besides fault
tolerance and communication delay.
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Abstract: Recently, a variety of non-systematic satisfiability studies on Discrete Hopfield Neural
Networks have been introduced to overcome a lack of interpretation. Although a flexible structure
was established to assist in the generation of a wide range of spatial solutions that converge on
global minima, the fundamental problem is that the existing logic completely ignores the probability
dataset’s distribution and features, as well as the literal status distribution. Thus, this study considers
a new type of non-systematic logic termed S-type Random k Satisfiability, which employs a creative
layer of a Discrete Hopfield Neural Network, and which plays a significant role in the identification
of the prevailing attribute likelihood of a binomial distribution dataset. The goal of the probability
logic phase is to establish the logical structure and assign negative literals based on two given
statistical parameters. The performance of the proposed logic structure was investigated using
the comparison of a proposed metric to current state-of-the-art logical rules; consequently, was
found that the models have a high value in two parameters that efficiently introduce a logical
structure in the probability logic phase. Additionally, by implementing a Discrete Hopfield Neural
Network, it has been observed that the cost function experiences a reduction. A new form of synaptic
weight assessment via statistical methods was applied to investigate the effect of the two proposed
parameters in the logic structure. Overall, the investigation demonstrated that controlling the two
proposed parameters has a good effect on synaptic weight management and the generation of global
minima solutions.

Keywords: discrete hopfield neural network; non-systematic satisfiability; probability distribution;
binomial distribution; statistical learning; optimization problems; travelling salesman problem;
evolutionary computation

MSC: 37M22; 37M05

1. Introduction

A Discrete Hopfield Neural Network (DHNN) is a significant type of Artificial Neural
Network (ANN) that employs a learning model based on association features formulated by
Hopfield and Tank [1]. ANNs have long been used as a mathematical method with which
to solve a range of issues [2–8]. DHNN is a recurrent ANN with feedforward connections
that comprise interconnected neurons in which every neuron output is fed back into every
neuron input. Neurons are stored in either a binary or bipolar form in the input and output
neurons of the DHNN structure [9]. Further, to approximate optimization solutions for
problems, the structures of DHNN have been extensively modified. This network has many
interesting behaviors. Fault tolerance is also a feature of the Content Addressable Memory
(CAM) technique, which has an infinite capacity for pattern storage and is useful for its
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converging iterative process [10]. Numerous applications have made use of DHNNs, in-
cluding optimization problems [1], clinical diagnosis [11–13], the electric power sector [14],
the investment sector [15], location detectors [16], and others. Despite the importance of
using the intelligent decision systems of the DHNN to solve optimization problems, it is
necessary to implement the symbolic rule to guarantee that the DHNN always converges to
the ideal solution, because recent studies failed to conduct a thorough analysis of a DHNN
based on neural connections. This issue was solved by Wan Abdullah [17], who suggested
a logical rule for ANNs by associating each neuron’s connection with a true or plausible
interpretation.

The Wan Abdullah approach is a novel approach, and it is interesting to note that the
synaptic weight is determined by matching the logic cost function and the Lyapunov energy
function. This approach led to better performance than traditional teaching techniques such
as Hebbian learning with respect to obtaining the synaptic weight during the training phase.
A more specific logical rule has been developed since the logical rule was first introduced
in the original DHNN. Sathasivam [18] decided to expand the work of Wan Abdullah
and proposed Horn Satisfiability (HORNSAT) as a new Satisfiability (SAT) concept. This
study introduced the Sathasivam method of relaxation to improve the finalized state of
neurons. This proposal demonstrates the strong capabilities of the HORNSAT in terms
of reaching the absolute minimum amount of energy. The outcome demonstrates that
logical rules can be included in DHNNs. Nevertheless, because DHNNs relax too quickly
and offer fewer possibilities for neurons to interchange information, more local minimum
solutions result, which makes it difficult to understand how different logical rules affect
DHNNs. This motivated the emergence of a new era of research with different perspectives,
beginning with Kasihmuddin et al. [9], who introduced systematic k Satisfiability (kSAT)
for k = 2, 2 Satisfiability (2SAT). With each clause containing two literals and all clauses
joined by a disjunction, the implementation of 2SAT in a DHNN was reported to achieve a
high global minima ratio while keeping computational time to a minimum. Subsequently,
Mansor et al. [19] continued the research by proposing a high degree of order of kSAT
for k = 3, namely, 3 Satisfiability (3SAT), in a DHNN. With each clause containing three
literals and all clauses joined by a disjunction, the proposed 3SAT in a DHNN increases the
storage capacity of a network because each neuron’s number of local minimum solutions
tends to be low. Despite the success of the implementation of systematic logic in DHNNs,
this approach lacks control with respect to distributing the number of negative literals
as well as regarding a variety of clauses. Furthermore, as the number of such neurons
increases, the efficiency of the training phase in the DHNN decreases. During the testing
phase of DHNNs, there is less neuronal variation. Sathasivam et al. [20] clarified that the
rigidity of the logical structure contributes to overfitting solutions in DHNNs. When the
number of neurons is large, the restricted number of literals per clause results in suboptimal
synaptic weight values, thereby decreasing the likelihood of locating diverse global minima
solutions. The necessity of variance in the recovered solutions ensures that the search space
is well-explored. Further stated by [21], DHNNs are still vulnerable to various challenges,
including a lack of generality as a result of non-flexible logical rules and a strict logic
structure, despite the fact that the accuracy of research acquired from the real-world dataset
has been satisfactory.

Due to the need for a different logical clause set that contributes to the degree of
connection between the logical formulae, Sathasivam et al. [20] proposed a non-systematic
SAT called Random k Satisfiability (RANkSAT) by using first-order and second-order
logic 2SAT in conjunction, where k = 1, 2; Random 2 Satisfiability (RAN2SAT); and all
clauses are connected by disjunction. RAN2SAT introduces a flexible logic structure that
contributes to the generation of more logical inconsistency, which expands the diversity
of synaptic weights. The proposed RAN2SAT in a DHNN achieved about 90% of the
global minima ratio with fewer neurons. Due to the necessity of increasing the storage
capacity of RAN2SAT and dealing with the absence of interpretation in a typical systematic
satisfiability logic and limited k ≤ 2, Karim et al. [22] were inspired to resolve this problem
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and thus proposed a flexible logic structure that increases storage capacity by incorporating
third-order clauses into the formulation. Random 3 Satisfiability (RAN3SAT) suggests
three logical (k = 1, 3; k = 2, 3; and k = 1, 2, 3) literal structures per clause, and for all
clauses to be joined by a disjunction. This increases the capacity of the DHNN to recover
neuronal states based on different logical orders, which can lead to a variety of convergent
interpretations of global minimum solutions. Both RANkSAT types experience difficulty
regarding the selection system in terms of the composition represented by the first, second,
and third logical formulations, which is still poorly defined. Thus, the combination of
correct interpretations is restricted to the number of k-order clauses with a predefined term
assigned in the logical formula.

Another fascinating study on non-systematic logic with a different perspective was
introduced by Alway et al. [23]; this solution increases the representation of 2SAT compared
to 3SAT clauses in non-systematic SAT logic through an assigned 2SAT ratio (r*) in DHNN
in order to decrease the duplication of final neuron state patterns. The proposed Major
2 Satisfiability (MAJ2SAT) in the DHNN successfully provides more neuronal variation.
Zamri et al. [24] introduced Weighted Random k Satisfiability (rSAT) as a non-systematic
method with a proposed logical structure that ideally produces the proper rSAT logical
structure using a Genetic Algorithm (GA) by taking into account the desired proportion of
negative literals (r). Another method introduced by Sidik et al. [25] consisted of altering
the rSAT logic phase by adding a binary Artificial Bee Colony algorithm to guarantee that
negative literals are distributed properly. The proposed rSAT in a DHNN with a weighted
ratio of negative literals leads to a significant global minima ratio. Nonetheless, despite this
significant advancement in controlling the logical structure of selecting clauses and using
a metaheuristic approach to distribute the number of negative literals, these techniques
fail to account for the representation of the probability distribution of the dataset in the
selection system.

Unique, flexible logical systems were formed by combining systematic and non-
systematic approaches with a unique perspective. This approach leads to a great potential
for solution diversity as it randomly generates a number of clauses. Guo et al. [26] proposed
Y-Type Random 2 Satisfiability (YRAN2SAT), in which a number is randomly assigned
to the first-order and second-order clauses, while further final states can be retrieved
by YRAN2SAT in a DHNN with the minimum global energy. With high order logic,
Gao et al. [27] proposed a G-Type Random k Satisfiability (GRAN3SAT) system, in which
a set of clauses of first, second, and third orders is randomly generated. In a DHNN,
GRAN3SAT can exhibit a larger storage capacity and is capable of investigating complex
dimensional issues. Despite this success, its system of selection still has a flaw: there is
no clear system with which to control a distribution over the desired number of negative
literals based on the probability distribution of a dataset.

The Probabilistic Satisfiability problem (PSAT) involves assigning probabilities to a
set of propositional formulations and deciding whether this assignment is consistent. The
pioneering work was introduced by George Boole [28] as another perspective. He proposed
the PSAT to determine if he could discover a probability measure for truth assignments
that satisfy all assessments. The PSAT framework was developed to demonstrate these
details as logical sentences with linked probabilities to infer the likelihood of a query
sentence. The PSAT was initially suggested by George Boole and, subsequently, was refined
by Nilsson [29]. This intelligent perspective was followed by different studies [30–33],
which all aimed to integrate the probability tools into satisfiability without considering
their implementation in a DHNN. The present study addresses this gap by introducing a
probability distribution to the prevailing attribute in the data set, which is represented in a
DHNN through desire logic.

There are no studies in this area regarding the way in which the probability distribution
for literals with SAT may be represented in a DHNN. Thus, the findings addressing this
issue can be used to guarantee the most effective search for satisfying interpretations.
Therefore, this study introduces S-type Random k Satisfiability (δkSAT), where k = 1, 2
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(δ2SAT) and with the probability distribution of the prevailing attribute in the simulation
dataset. It aims to address the problem regarding RANkSAT, where k randomizes structural
issues by utilizing two statistical features, the probability distribution and the sample size
formula, to obtain an estimator for the binomial distribution dataset. In addition to helping
to assign the negative literal that was mapped to the prevailing attribute in a dataset
with a non-systematic logical RAN2SAT, the main feature of RAN2SAT is its structural
flexibility, which takes advantage of another logical rule, 2SAT, whereas the non-systematic
logical rule provides a more diversified solution [34,35]. Furthermore, the probability
distribution is used to control the composition’s probability of appearing in first- and
second-order logic to avoid a poorly explained or lack of interpretation in non-systematic
SAT by providing suitable logical combinations depending on the dataset’s distribution.
Moreover, the logic system uses the binomial distribution’s sample size to determine the
appropriate number of negative literals based on the predetermined proportion appearing
in the dataset. Then, the clauses are distributed in each order depending on the probability
distribution governing appearance. This approach will help us determine the appropriate
weight of a negative literal number in logic systems based on the distributed clauses in
order to create suitable solutions [24]. Notably, researchers tend to neglect negative literals
because they are indirectly mapped errors in a logical structure [36]; however, in this study,
negative literals represent the prevailing attribute in a binomial distribution that has only
two characteristics.

Our proposed logical rule will provide flexibility with respect to controlling the overall
structure of δ2SAT in terms of the dataset’s characteristics by combining both the effects of
statistical parameters and non-systematic features to identify suitable neuronal variation
and diversity in the proposed logic. The main aims of this study are as follows:

(a) To formulate a novel logical rule called S-Type Random k Satisfiability, where k = 1, 2
and statistical tools are integrated to structure first- and second-order logic in order to
select the most suitable number of negative literals.

(b) To propose a probability logic phase to determine the probability of the appearance of
the number of the first- and second-order literals and the distribution of the desired
number of negative literals on every clause by considering the selected dataset.

(c) To implement the proposed S-Type Random 2 Satisfiability as a symbolic structure
in the Discrete Hopfield Neural Network by reducing the logical inconsistency of
the corresponding zero-cost function’s logical rule, as well as determine the synaptic
weight of the DHNN that achieves the cost function equivalent to the satisfied δ2SAT.

(d) To compare the effectiveness of δ2SAT with respect to producing the appropriate
logical structure during the probability logic phase before training in the Discrete
Hopfield Neural Network by using three proposal metrics in accordance with the
existing benchmark works.

(e) To examine the capability of the proposed δ2SAT under the current logical rules with
respect to the training and testing phase, demonstrate synaptic weight management,
and ascertain the quality of neuronal states’ efficiency in the DHNN via well-known
performance metrics.

(f) To investigate the proposed δ2SAT system’s structural behavior during the training
phase and thereby demonstrate the flexibility of this logical structure by using a novel
form of analysis—synaptic weight analysis—via the mean of the synaptic weights.

The framework of this paper is as follows: The motivation for this study is described in
detail in Section 2. An overview of δ2SAT’s structure is given in Section 3. The integration
of δ2SAT into a DHNN is described in Section 4. Section 5 explains the experimental setup
and performance assessment metrics incorporated into the simulation. In Section 6, the
effectiveness of the proposal logic in a DHNN is discussed and analyzed, with comparisons
made to several existing logical structures with regard to various parameters and phases.
The conclusions and future work are presented in Section 7 at the end of the article.
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2. Motivation

2.1. Issue with the Identified Probability Distribution

With reference to the structural issue regarding existing systematic and non-systematic
satisfiability, that is, the systematic logic kSAT [19,37], the relevant approaches in this respect
implement random selection for the literal states from within clauses, where the clauses are
selected uniformly, without regard to the individual probability or chance of appearing
in the required population dataset. Whereas the non-systematic logic RANkSAT [20,22]
structure is defined randomly, wherein the clauses are selected uniformly. Moreover,
the chance of obtaining both negative and positive literals is uniformly distributed [38],
with both outcome having an equally likely chance of appearing. This implies that the
population follows a uniform distribution and is thus considered a limited option. In this
study, we address this research gap by giving the clauses and negative literals inside clauses
the priority of a population dataset’s probability distribution, and when the dataset has
two characteristics, i.e., negative and positive literals, we assign the negative literal for the
prevailing attribute that is withdrawn from a binomial distribution.

2.2. Initialization for the Number of Clauses and Number of Neuron

The investigation into controlling the general structure of SAT is still ongoing. Cai and
Lei’s [39] work proposed a Partial Maximum Satisfiability (PMAXSAT) clausal weighting
mechanism, with a positive integer as its weight. This method demonstrated the power of
weight in terms of controlling the distribution of a logical structure based on the desired
result. Conversely, Always et al. [23] suggested a non-systematic logical rule, MAJ2SAT,
which seeks to create bias in the selection of 2SAT over 3SAT via the r* ratio. The MAJ2SAT
system successfully provides more neuronal variations that increase the composition of
the 2SAT with the same number of neurons. Despite the benefit of extracting information
from real datasets that exhibit the behaviors of 2SAT and 3SAT, the persistent issue is the
system of selection, which limits the value of r in the set of limited pre-defined intervals
and is chosen randomly without considering a dataset’s probability distribution. Therefore,
we propose the non-systematic logical rule δ2SAT, which incorporates a probability logic
phase to calculate the probability of first- and second-order clauses appearing from the
dataset by determining the required number of literal and clauses.

2.3. Initialization for the Number of Negative Literals

The structure of SAT should be subjected to a systematic analysis to avoid the poor
description of a dataset. Dubois and Prade [40] examined the role of logic in dealing with
uncertainty in an ANN. The work concluded that it was crucial to use the generaliza-
tion method to determine how many negative literals should be distributed for technical
convenience. Zamri et al. [24] introduced rSAT with the (logic phase) as a new phase to
produce a non-systematic logical structure based on the ratio of negative literals. The ratio
is generated in the logic phase by employing GA to increase the logic phase’s effectiveness.
Nevertheless, the findings showed that the proposed model performed well, indicating
that having a dynamic distribution of negative literals will benefit the generation of global
minimum solutions with different states of the final neurons. One of the limitations of the
weighting scheme is the method of choosing the number of negative literals, where the
value of r is in the set of limited pre-defined intervals and is subject to the issue of random
system selection without considering the probability distribution of literals.

Alway and Zamri’s studies motivated the current study, in which we propose the non-
systematic logical rule δ2SAT, which incorporates a probability logic phase to calculate the
appearance-related probability distribution in the first-order and second-order clauses from
the real dataset by predetermining the required number of neurons or number of clauses
via harnessing the behavior of 2SAT so as to explore a wider solution space and extract
information from datasets, as well as assign the number of negative literals required for
logic by using the sample size formula with a predefined, prevailing attribute proportion
from the dataset that will be exposed in the logic.
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2.4. Synaptic Weight Performance Using Statistical Analysis

The research on satisfiability in DHNNs suffers from a lack of statistical analysis,
especially in terms of synaptic weight, which is considered the backbone for the global
minimum solution achieved during testing phases. We determine synaptic weight by
contrasting the cost function with Lyapunov energy. The previous studies on systematic
and non-systematic approaches were limited in terms of assessing the performance accuracy
of the logic in different phases, as mentioned in [9,21,22]. The synaptic weight was analyzed
at several points in this study since they were not completely comprehensible in [20,26],
wherein the authors describe the dimensions of the synaptic weight values. In addition, [27]
measured the accuracy of the error in the synaptic weight by evaluating the differences
between the synaptic weight obtained by Wan’s method and the synaptic weight achieved
in the training phase. The gap was addressed in this study by using new statistical tests
to capture the impact of changing the synaptic weight during training phases due to the
absence of statistical tools in the synaptic weight analysis.

3. S-Type Random 2 Satisfiability Logic

S-Type Random 2 Satisfiability (δ2SAT) is a new category of non-systematic-clause
SAT in which the probability distribution is used to assign prevailing attributes in the
dataset via two methods: First, depending on the dataset requirements, we assigned the
probability of the appearance of first- and second-order logic. Second, we used the sample
size from a binomial population [41] to ascertain the appropriate number of negation literals
inside each clause based on its assigned probability since the probability of a negative literal
appearing follows a binomial distribution. The novelty of the mentioned methods is that
they determine the suitable weight of negative literal numbers (ξ) in logic depending on the
probability clauses distributed, which will lead to greater structural diversity. In addition,
the negative literal number is not fixed, and by increasing or decreasing the probability of
obtaining a literal number in the logic system, there is greater flexibility in the dataset.

Our approach can be introduced as a form of non-systematic logic comprising n literals
per T clauses. It is a general form of RANkSAT logic, where k = 1,2 is expressed in the k
Conjunctive Normal Form (kCNF). The components of the S-Type Random 2 Satisfiability
Logic problem are as follows:

(a) A set of h variables, τ1, τ2, τ3, . . . . . . . . τh, where τi ∈ {−1, 1} for all items in our logic
system;

(b) A set of h non-redundant literals ri, where ri is the positive (ri) or a negative (¬ri)
nature of a literal;

(c) A set of λ distinguishable clauses, T1, T2, T3, . . . . . . . Tλ, where every clause is com-
posed of h literals joined by ∧ logical (AND) Booleans, which is distributed as follows:

i. A set of x first-order clauses: T(1)
1 , T(1)

2 , T(1)
3 , . . . . . . T(1)

x , x ∈ N.

ii. A set of y second-order clauses: T(2)
1 , T(2)

2 , T(2)
3 , . . . . . . T(2)

y , where T(2)
y = (ri ∨

rj), y ∈ N.

The general formulation of S-Type Random 2 Satisfiability is given as follows:

Θδ2SAT =
x∧
i
T(1)

y∧
j

T(2) for k = 1, 2 (1)

Tk
i =

{
(ri), k = 1

(ri ∨ rj), k = 2
(2)

where Θδ2SAT in Equation (1) is δ2SAT for k = 1, 2. The difference between δ2SAT and
RAN2SAT lies in the selection system for the number of clauses and the number of negative
literals in δ2SAT. This system is established under the condition that the number of clauses
corresponds to: {

xm = p(x) · λm
ym = p(y) · λm

(3)
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where λm denotes the total number of literals λ1 or total number of clauses λ2; ym and xm
denote the number of literals in the first- and second-order clauses or the number of clauses
when m = 1, 2, respectively; ym, xm ≥ 0 represent clauses Tk

i for different values of k; and
p(xm) and p(ym) denote the probability of first- and second-order logic appearing, which
is calculated by the Laplace formula [42] to find the probability Aym from population Ω
expressed as follows:

p(ym) =

∣∣Aym

∣∣
|Ω| (4)∣∣Aym

∣∣ represents a number of elements that contain a prevailing attribute from the
total number of a dataset |Ω| in this study. We will denote the probability of second-order
p(ym) by Y, which is considered as the first parameter in δ2SAT.

The number of negated literals that exist in each Tk
i will be determined by ξ, where

ξ ∈ N is the negative literal number used to obtain ρ in the dataset [41] and is calculated as
follows:

ξ =
λmρ0(1 − ρ0)

(λm − 1)(d2/z2) + ρ0(1 − ρ0)
(5)

where:
ρ: The pre-defined negative literal proportion required in the logic system (Second

parameter in Logic).
ρ0: the negative literal proportion in the population (which is available before the

survey; if no estimate of ρ0 is available prior to the survey, a worst-case value of ρ0 = 0.5
can be used to determine the sample size).

d: the margin of error (or the maximum error) of the negative literal proportion, which
is calculated as follows:

d = Zα

√
ρ(1 − ρ)

λ
(6)

Z: the upper α/2 point of the normal distribution when α = 0.01, where Significance
Level = P (type I error) = α.

The distribution of the number of negated literals in each order logic clause Tk
i is

dependent on the value βk , where: {
β1 = (ξ × p(x))
β2 = (ξ × p(y))

(7)

In (7), β1 and β2 denote first- and second-order logic, respectively, and ∑ βk is the total
number of negated literals existing in δ2SAT logic, where:

∑ βi − ξ = 0 (8)

The structure of Θδ2SAT is believed to provide more variations and greater diversity
of the final neuron states and to be able to find more global solutions in other solution
spaces via two effective parameters: Y and ρ. The implementation of S-type Random k
Satisfiability logic in this study is outlined in Figure 1.

Probability Logic Phase in δ2SAT

The probability logic phase was developed to assess the features of a prevailing
attribute in the dataset via probability distribution, which are then reflected in the logic
system by the two parameters Y and ρ; this differs from the logic phase in rSAT [24],
where the phase is established to allocate the correct ratio of the negative literals and
the position in the rSAT logic via metaheuristics. The main purpose for the probability
logic phase is to extract the required information from the dataset, and then generate the
correct structure of RAN2SAT logic depending on the dataset features assigned by the two
probability Equations (3) and (5). Subsequently, once the desired logic has been attained,
the probability logic phase is complete. This section will introduce some logic generated
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from the dataset using the two parameters Y and ρ; the restriction in the probability logic
phase is as follows:

p(ym) + p(xm) = 1, p(ym) > p(xm), p(xm) 	= 0 (9)

whose probability function can be defined as follows (Nilsson 1986) [29]:⎧⎨⎩
p(λ) = 1

ri ∧ rj ≡ 0, its mutually exclusives, then
p(ri ∧ rj) = p(ri) + p(rj)

(10)

 

Figure 1. Block diagram of the proposed S-type Random 2 Satisfiability logic Θδ2SAT .

According to the applied method for the determination of probability, there are two
types of δ2SAT: First, there is the type of probability logic phase that determines the
probability of the appearance of the number of first-order logic and second-order logic
literals λ1 and the distribution of the desired number of negative literals in each clause
depending on the selected dataset. Second, there is the type of probability logic phase
that determines the probability of the appearance of the number of first-order logic and
second-order logic clauses λ2 and the distribution of the desired number of negative
literals in each clause depending on the selected dataset. Table 1 introduces some possible
examples of two cases of the logic of δ2SAT that can be used to generate the dataset using
Equations (4), (5) and (7) when ρ = 0.7.

Table 1. Possible structures of δ2SAT when ρ = 0.7.

λm ξ Y Possible δ2SAT
λ1 = 10 6 0.6 Case 1: ¬r1 ∧ r2 ∧ ¬r3 ∧ r4 ∧ (r5 ∨ ¬r6) ∧ (r7 ∨ ¬r8) ∧ (¬r9 ∨ ¬r10)

6 0.8 Case 2: ¬r1 ∧ ¬r2 ∧ (r3 ∧ ¬r4) ∧ (r5 ∨ ¬r6) ∧ (r7 ∨ ¬r8) ∧ (r9 ∨ ¬r10)
λ2 = 5 4 0.6 Case 3: ¬r1 ∧ r2 ∧ (r3 ∧ ¬r4) ∧ (r5 ∨ ¬r6) ∧ (r7 ∨ ¬r8)

5 0.8 Case 4: ¬r1 ∧ (r2 ∨ ¬r3) ∧ (r4 ∨ ¬r5) ∧ (r6 ∨ ¬r7) ∧ (r8 ∨ ¬r9)

We observe that applying the same probability to more clauses λ2 results in a reduced
number of first-order logic items than applying it to a greater number of neurons λ1;
notably, the number of unique logic combinations that a probability logic phase can create

by using a specific value of the two parameters Y and ρ is
(

x
1

)
×
(

y
1

)
. Algorithm 1
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presents the pseudocode for the steps taken to generate the Θδ2SAT , which starts with the
determination of the value of the two parameters Y and ρ; then, by applying the constraint
of the logic in Equation (9), the probability logic phases operate under the following
conditions: (a) ρ 	= 0.5, because we need to expose the prevailing attribute. (b) The z is a
random number generated to ensure the negative values will be distributed in the logic
phase randomly. (c) The loop will run w times to ensure that the logic system will be
correctly generated. (d) The probability logic phase ends when Equation (8) is satisfied, at
which point the DHNN training phase begins.

The limitation that we observed in δ2SAT’s logic structure is the position of negative
literals; these are selected randomly depending on z random numbers, and this random-
ization clearly effects results in an inconsistent interpretation. In addition, there are no
redundant literals. Also, due to the high probability of 2SAT, the Exhaustive Search (ES)
algorithm is unable to find the best number of instances of first-order logic for a small
number of clauses that satisfies Equation (9). The utilization of Θδ2SAT in a DHNN is
presented as DHNN − δ2SAT. In the next section, we clarify how Θδ2SAT functions as a
representational command to control the neurons of the DHNN mappings.

Algorithm 1: Pseudocode for generating the probability of logic phases

Input: λm, ρ, p(ym), Set of ri
Output: The best Θδ2SAT

Begin

Generate Θδ2SAT
Initialized λm;
Initialized Proportion ρ;
Initialized Second-order clauses p(ym);
Calculate The number of first- and second-order clauses

While

(β1 ≤ y&β2) ≤ x&(β1 + β2) = ξ&p(ym) + p(xm) = 1&p(ym) > p(xm)&ym + xm = λm&ym/2 = 0, xm 	= 0)
Do

Calculate ym, xm by Equation (3);
Calculate ξ by Equation (5);
Calculate β1 & β2 by Equation (7);
End while

distributed negative literal in logic

While (ω ≤ 1000) do

While (b = β1&ρ 	= 0.5&b∗ = β2)do

for (u = 0 to xm) do

Generate random number z;
Generate proportion to be initial negative literal ρ∗;
IF (ρ∗ ≥ z) THEN

¬ri ;
(b = b + 1);
ELSE

ri ;
End IF

End for

for (u = 0 to ym) do

Generate random number z;
Generate proportion to be initial negative literal ρ∗;
IF (ρ∗ ≥ z) THEN

-B;
(b∗ = b∗ + 1);

Else

B;
End IF

End for

End While

End While

End

Note: b, b∗ is a counter.
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4. Θδ2SAT in Discrete Hopfield Neural Network

A DHNN is a type of free, self-feedback information comprising N interconnected
neurons with no hidden layers. The neurons are updated one at a time; Ref. [23] asserts
that the possibility of neuronal oscillations is eliminated by asynchronous updating. This
network has parallel computing, quick convergence, and is also effective in terms of its
CAM capacity, which has encouraged researchers to use DHNNs as mediums for solving
challenging optimization problems. A general description of the state of activated neurons
in a DHNN is provided below:

Si =

⎧⎪⎨⎪⎩ 1,
N
∑
j

WijSj ≥ ε

−1, otherwise
(11)

where the synaptic weight from unit i to unit j is Wij. The synaptic weight of a DHNN
is always symmetrical, whereby Wij = Wji, and has no self-looping, Wii = Wjj = 0. Si
represents the state of neuron j; ε is a predetermined threshold value, and in this study,
ε = 0 to guarantee a uniform decrease in DHNN energy [18]; and h is the number of logic
variables. The δ2SAT is implemented in a DHNN according to the following equation
(DHNN − δ2SAT), due to the requirement for a symbolic rule that can control the network’s
output and decrease logical inconsistency by minimizing the network’s cost function. To
derive the cost function EΘδ2SAT of Θδ2SAT , the following formula can be used:

EΘδ2SAT =
x

∑
i=1

(
1

∏
i=1

Ψij

)
+

y

∑
i=1

(
2

∏
i=1

Ψij

)
(12)

where x2 and y2 are the number of clauses. The inconsistency of Θδ2SAT , denoted as Ψij, is
specified in Equation (13), as literals are possible in Θδ2SAT :

Ψij =

{
(1−Sr)

2 , if ¬r
(1+Sr)

2 , if r
(13)

where r denotes the random literals assigned in Θδ2SAT . If (1+Sr)
2 = 0, which leads to

EΘδ2SAT = 0; this indicates that all clauses in Θδ2SAT are satisfied with the value of the mean
task for the logic program during the training phase (i.e., a consistent interpretation is
found). A consistent interpretation will help the logic program to derive the correct synaptic
weight of Θδ2SAT clauses, and the Wan Abdullah (WA) method [17] can be used to directly
compare the cost function and Lyapunov energy function of the DHNN to determine the
values of Wij. However, it is noted that the DHNN’s synaptic weight can be effectively
trained using a traditional approach such as Hebbian learning [1]; nevertheless, Ref. [43]
demonstrated that the (WA) method, when compared to Hebbian learning, can achieve the
optimal synaptic weight with minimal neuron oscillation. Synaptic weight is a building
block (matrix) of CAM. Therefore, a specific output-squashing mechanism will be applied to
every neuron in DHNN − δ2SAT via the Hyperbolic Tangent Activation Function (HTAF)
to retrieve the correct logic pattern of the CAM; according to Karim et al. [22], the equation
is expressed as follows:

tanh(hi) =
ehi − e−hi

ehi + e−hi
(14)

A DHNN’s testing phase allows for the asynchronous updating of the neuronal state
based on the following equation:

hi =
N

∑
j=1,j 	=i

W(2)
ij Sj + W(1)

j (15)
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hi represents the network’s local field, where W(2)
ij is the second-order synaptic weight

and W(1)
j is the first-order synaptic weight. By applying the HTAF to the hi values, the final

state of the neurons is retrieved, and the neuron states Si(t) are updated by:

Si(t) =
{

1, if tanh(hi) ≥ 0
−1, otherwise

(16)

The information that results in EΘδ2SAT = 0 must be present in the neuron’s final state [44], which
corresponds to HΘδ2SAT , the Lyapunov energy function [18]:

HΘδ2SAT = −1
2

n

∑
i=1,i 	=j

n

∑
j=1,j 	=i

W(2)
ij SiSj −

n

∑
i=1

W(1)
i Si (17)

The convergence of the energy will indicate when the degree of convergence has reached a stable
state according to [22]. This is supported by Sathasivam [18], who states that if a DHNN is stable and
oscillation-free, the Lyapunov energy will reach its lowest value (the equilibrium state). Hence, [45] a
DHNN will always converge to the global minimum energy. One can see the convergence of the final
neuron state based on the following Equation:∣∣∣HΘδ2SAT − Hmin

Θδ2SAT

∣∣∣ ≤ Tol (18)

where Hmin
Θδ2SAT

, the final neuron state, produces the anticipated global minimum energy and is
calculated as follows:

Hmin
Θδ2SAT

= −(
x2
2

+
y2
4
) (19)

where x2 and y2 denote the number of first- and second-order clauses, respectively. Algorithm 2 is an
example of the DHNN − δ2SAT given in pseudocode, which explains the processes of the training
phase and testing phase of DHNN − δ2SAT. Conventionally, the logic program employs a 2n search
space to find consistent interpretations by ES in the training phase.

Figure 2 illustrates the schematic diagram of DHNN − δ2SAT. Different orders of k = 1, 2 are
shown in two different blocks. In the orange block, there are two inputs and an output (I/O) line, which
are green and yellow, representing the two types of logic distributed by clauses and neuron, respectively.
Inside the orange box, the second-order clauses are depicted, and every line represents the connection of
the neuron state via weights. On the right side, the dashed blue line denotes the first-order clause that is
present in this phase as well, with two (I/O) lines: green and yellow. On the inside, the line represents
the connection of the neuron state via weights. The satisfied clauses from the two boxes will result in
EΘδ2SAT = 0; the figure only represents the satisfied clauses of Θδ2SAT .

Algorithm 2: Pseudocode of DHNN − δ2SAT

Begin

Probability logic phase

Initialized Θδ2SAT ;
Training phase

do

According to Equation (12), minimize cost function;
Use WA method to calculate Synaptic weight and store it in CAM;
According to Equation (19), calculate global minimum energy Hmin

Θδ2SAT
;

End

Testing phase

Initialize Random neuron state;
do

According to Equation (14), calculate the HTAF;
According to Equation (15), calculate the local field;
According to Equation (16), update neuron state;
End

According to Equation (17), calculate the final neuron energy;
By using Equation (18), confirm global or local minimum energy;
Recognize global or local minimum solutions;
Global minima solutions
Else

Local minima solutions
End
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Figure 2. Schematic diagram of DHNN − δ2SAT for both types of logic; the total of literal is n for
first-second-order logic.

5. Experimental Procedure for Testing DHNN -δ2SAT

In this section, we explain the proposed logic output and evaluate it using several evaluation
metrics at all phases to guarantee the effectiveness of adding statistical parameters in RAN2SAT,
which aimed to produce Θδ2SAT logic. Furthermore, the simulation platform, the assignment of
parameters, and the metrics for performance are all explained. All models were used with the ES
algorithm, where the algorithm utilizes trial and error to achieve a cost function that is minimized
(EΘδ2SAT = 0) [23].

5.1. Simulation Platform
All simulations were carried out using an open-source software, visual basic C++ (Version

2022), and a 64-bit Windows 10 operating system. To avoid biases in the interpretation of the results,
the simulations were run on a single personal computer equipped with an Intel Core i5 processor.
The open-source software R studio was used to perform the statistical analysis. Eight different
simulations—depending on the statistical parameters (probability and proportion)—were conducted,
including those involving different numbers of clauses and neurons. In addition, different numbers
of logic combinations (η) were tested in this study.

Each simulation’s specifics are as follows:

(a) Various range of parameter Y. This section assesses and examines the effects of the various
probabilities that can be obtained from the dataset applied to δ2SAT. The performance metrics
at each phase and the effect of parameter alterations on Θδ2SAT were determined.

(b) Various proportions of negative literals, ρ. In this section, we evaluate the impact of different
proportions of negative literals on Θδ2SAT , evaluating the performance metrics at each phase
and determining the effects of parameter alterations on the proposed logic.

(c) A variety of logic structure analyses. In this section, we compare Θδ2SAT with a number of
well-known logical rules in terms of the diversity-satisfying clauses of the logical rule.

(d) Synaptic weight mean analysis for Θδ2SAT models’ simulation includes boxplot and whiskers
and a probability function curve.
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5.2. The Parameter Setting in Probability Logic Phase
The proposed model incorporates a probability logic phase. As we previously mentioned, there

are two types of Θδ2SAT depending on the probability that is applied to the number of neurons or the
number of clauses. Numerous types of simulations are conducted to examine the impacts of different
probabilities and several types of expected negative literal proportions on the dataset, in which the
probability logic phase is dependent upon the dataset. The different probability logic phase will be
denoted as δγ2SATρ, where γ = 1, 2 (1 refers to the probability with respect to the number of neurons
and 2 refers to the probability of the number of clauses), and ρ refers to the negative literal proportion;
the overall model can be denoted as δ12SAT0.9. Another type of logic is possible if the range of the
probability parameter Y with respect to the number of neurons or clauses stated in the simulation
step generates only one type of neuron or clause state, and this will yield a systematic 2SAT during
initialization, which is not covered in this study; alternatively, the first-order logic clauses will correspond
to more than second-order logic. When this occurs, the proposed system’s structural benefit cannot be
seen because only one specific type of solution can be found in the final neuron state. In order to prevent
these two types of logic, it is proposed that Y > 0.5, wherein more features of second-order as opposed
to first-order logic are implemented in the DHNN. In parallel, to determine the range proportion, we
proposed ρ > 0.5 to determine the correct number of negative literals that represent the prevailing
attribute in the dataset, and we also considered ρ0 = 0.5 since there is no available information prior to
the survey; the symbols of the stages are presented in Table 2.

Table 2. Parameter list for probability logic phases.

Parameter Parameter Values

Predefined proportion range (ρ) [0.6, 0.9]
Negative literal proportion (ρ0) 0.5

Probability second-order logic range (Y) [0.6, 0.9]
The upper α/2 point of the normal distribution (Z) 2.576

Significance Level (α) 0.01
Number of learning stages in probability logic phases (ω) 1000

5.3. Parameter Setup of DHNN − δγ2SATρ

All simulations were run with 100 logical combinations (η = 100). This method aids the DHNN
model’s analysis and the approximate evaluation of the efficacy of the proposed logic in a DHNN
with various distributions of the two parameters Y and ρ. The number of total literals in the logic
system is represented by the number of neurons (λ1) in the DHNN. We chose a specific number of
neurons: 5 < λ1 < 50. For the DHNN, we apply a relaxation procedure in accordance with [18]. We
select R = 3 in this context because a further reduction in the potential neuron oscillation has been
observed, and a value of R greater than 4 will yield the same outcome as [27]. Table 3 summarizes the
establishment of all the parameters necessary for DHNN − δγ2SATρ. In addition, it is notable that
each δγ2SATρ has a neuron combination that is equivalent to the other DHNN logic systems, which
eliminates the issue of a small sample size.

Table 3. List of parameters for DHNN − δ2SAT.

Parameter Parameter Values

Number of Learning stages (υ) 100 [9]
Number of Combinations (η) 100 [9]

Number of Trials (ϕ) 100 [44]
Number of Neurons (λ1) 5 < λ1 < 50

Tolerance value (Tol) 0.001 [18]
Method of determining synaptic weight Wan Abdullah (WA) [17]

Rate of relaxation (R) 3 [18]
Time of threshold CPU 24 h [20]
Learning iteration (φ) φ ≤ υ [26]

Initialization of neuron states Random [27]
Training Algorithm Exhaustive Search

Threshold constraint of DHNN (θ) 0 [9]
Activation function HTAF [22]

Order of clauses First- and second-order logic
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5.4. Performance Metrics
The objective of each phase includes the evaluation of the performance of the proposed model.

Therefore, this study will utilize several performance metrics to assess the efficacy of each simulation
in the different phases with respect to the DHNN − δγ2SATρ model to verify the effectiveness of the
proposed logic system in terms of the probability logic, learning, and testing analysis phases.

5.4.1. Assessment Logic Structure
The probability logic phase is the phase in which the correct logic sequence is generated and

that controls the number of clauses and negative literals by solving Equations (3), (5) and (7). We
attempt to evaluate the features of the output logic by comparing it with other models to guarantee
well-produced logic in terms of clauses and negative numbers, which will the acquirement of the
minimum cost function given in Equation (12). To determine the appropriate synaptic weight based
on the main objective of this phase, we express three features: (a) the number of negative literals
affected by parameter ρ, (b) the weights of the second-order logic clauses affected by parameter Y,
and (c) the full-negativity second-order logic clauses affected by the two parameters Y and ρ. The
goal is to compare these features to determine whether the probability logic phase will be successful
in achieving the desired logic system by changing this parameter and demonstrating its excellence
with respect to expressing the logic features. The parameter ρ controls the proportion of negative
literals; hence, in this section, we test the effectiveness of this parameter based on several different
aspects, which are provided below.

The proportion of negativity: in the probability logic phase, the optimal value of negative literals
in the logic system will be assigned ξ, which is a constant ratio that is dependent on λ1, and the
probability of negative literals in the logic system will be computed using the following equation:

Probability Of total Negativity (PON):

PON =
1
η

η

∑
i=1

ξ

λ1
(20)

Equation (20) is derived from a Laplace formula [42]; we need to test whether the change
in ρ will affect the probability of a negative literal structure occurring in the two types of logic
compared to other forms of logic that introduce random proportions of negative literals in the logic
structure. When compared to other types of logic, this matrix’s scale, if corresponding to the necessary
proportion, gives us the correct negative literal probability in the logic structure. While analyzing the
deviation of the negative literal in terms of the whole logic system, we introduce a second measure to
determine the state of the negative literals in the whole logic system, as shown below:

Negativity Absolute Error (NAE):

NAE =
1
η

η

∑
i=1

|λ1 − ξ|
ξ

(21)

The proposed NAE scale measures the amount of error that is not negative if it fits the desired
proportion in Equation (5). The optimal NAE is zero, which is equivalent to the required number of
negative literals.

The probability of the full negativity of second-order logic: Full negativity second-order
(¬ri ∨ ¬rj) logic helps us to represent a greater number of the attributes in the final solution. The
main objective of the δ2SAT is to control the number of negative literals and second-order logical
items in the logic structure. We need to expose the features of second-order logic as mentioned
previously to fully enjoy the benefits of 2SAT in terms of our proposed logic system. Therefore, the
next measure is presented as follows:

Full-Negativity Absolute Error second clauses (FNAE):

FNAE =
1
η

η

∑
i=1

|ξ2SAT − λ2SAT |
λ2SAT

(22)

where ξ2SAT is the number of full negativity second-order clauses and λ2SAT is the number of second-
order clauses in a specific string of logic. The accuracy of the logic will be measured by the FNAE
scale in terms of generating the full-negative second-order clauses, which are expressed as (¬ri ∨¬rj),
from the rest of the second-order clauses, that is, (¬ri ∨ rj), (ri ∨ ¬rj), and (ri ∨ rj). Similarly, using
this scale, we will address the effectiveness degree of the two factor parameters Y and ρ with respect
to their significance in terms of altering the second-order clauses. We can determine if the required
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logic can represent the prevailing attributes by the properties of this measure. The optimal best of
FNAE scale is zero, which is equivalent to the required number fully negative second-order clauses.

To address the effect of a parameter Y in the second-order weight, we propose the weighted
error measure, which gives the accuracy of the changing of the effect of Y in both proposed logic
types when compared to other logic systems, as follows:

Weight Full-Negativity Absolute Error (WFNAE):

WFNAE =
1
η

η

∑
i=1

(
∣∣ξ2SAT − λ2SAT

∣∣ )× w(ym)
η

∑
i=1

λ2SAT

(23)

where λ2SAT is the mean number of second-order clauses, and w(ym) is the weight of second-order
clauses, which equals Y because the Laplace formula determines an equally likely probability for
all the elements. Using this measure, we can determine the effect of Y on the amount of deviation
of the full negative clauses from the mean. We can calculate the real weight for this deviation by
multiplying it with the weighted w(ym). A large scale signifies a high degree of representation in
terms of the weight of the negative strings, which greatly improves our understanding of the weight
of dominating attribute in logic. By comparing the scale to the other reasoning and assigning weight
to that prioritized (completely negative sentences), the deviance is biased towards. Table 4 lists the
symbols that we require during this phase.

Table 4. List of parameters used in DHNN − δ2SAT experimental setup.

Parameter Parameter Name

Fdesierd Maximum fitness
Fi Current fitness

WE Expected Synaptic weight obtained by the Wan method.
WA Actual synaptic weight
λ1 Total number of neurons
ξ The Total of negative literals in logic system

p(ym) The probability of obtaining second-order clauses
ξ2SAT The number full-negativity second-order clauses
λ2SAT The number of second-order clauses
λ2SAT The mean number of second-order clauses

HΘδ2SAT Minimum energy value
Hmin

Θδ2SAT
Final energy

RG Ratio of global minimum solutions
GΘδ2SAT Number of global minimum solutions

Si Neuron state
Smax

i Benchmark neuron state
Sokal Sokal and Michener Index
Rtv The Ratio of cumulative neuronal variation

5.4.2. Assessment during the Training Phase
In the training phase, we achieved satisfying assignments of the clauses, which generated the

optimal synaptic weights in terms of Θδγ2SATρ by minimizing Equation (12). The Root-Mean-Square
Error (RMSE) has been used as a basic statistical metric for measuring the quality of a model’s
prediction in many fields [24], and it is utilized to identify the quality of the training phase, wherein
the value of RMSE training (RMSEtrain) signifies the root square of the error between the neurons’
desired fitness value Fdesierd generated and their current fitness Fi [22]. The RMSEtrain formula is:

RMSEtrain =

√√√√ 1
υ

η×υ

∑
i=1

(Fi − Fdesierd)
2

(24)

The optimal value of the RMSE in the DHNN model is achieved when it is zero, which means
the WA method derived the correct synaptic weight. Furthermore, a good model is achieved when
the measure is between 0–60. Whereas the Root-Mean-Square Error in synaptic weight (RMSEweight)
used will be assessed based on the following formula

RMSEweight =

√√√√ 1
υ×η

η×υ

∑
i=1

(WE − WA)
2

(25)
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where WE denotes the Expected synaptic weight obtained by the WA method, and WA is the actual
synaptic weight obtained in the testing phases; this measure gives us a complete understanding of the
error produced by the WA method, wherein the best result is 0, which corresponds to Equation (12).

5.4.3. Assessment for Testing Phase
In the event that the suggested network satisfies the requirement in Equation (18), the proposed

DHNN − δ2SAT will act in conformance with the embedded logical rule during the testing phase.
The final neuron state will enter a state of minimum energy, which corresponds to the cost function
of the proposed DHNN − δ2SAT logical rule. Therefore, based on the synaptic weight generated in
the training phase, we evaluate the quality of the retrieved final neuron states (global), namely, the
minima solutions. Thus, we apply the next measure as follows: Global minima ratio (RG)—the goal
of the global minima ratio is to assess the retrieval efficiency of the DHNN − δ2SAT. The formula of
the RG is:

RG =
1

η × ϕ

λ1

∑
i=1

GΘδ2SAT (26)

where GΘδ2SAT is the number of global minimum solutions that satisfy condition (18) after being
distributed in Equation (19), ϕ is the number of trials in the training phase, and η is the logical
combination for each run. This metric was frequently used in articles such as [21,38] to assess the
proposed DHNN − δ2SAT’s convergence property.

The second measure in the testing phase is the Root-Mean-Square Error energy (RMSEen-
ergy) [22], which is used to evaluate the minimization of energy achieved by DHNN − δ2SAT. The
energy profile can be determined using RMSEenergy:

RMSEenergy =

√√√√ 1
υ × ϕ

η×υ

∑
i=1

(HΘδ2SAT − Hmin
Θδ2SAT

)
2

(27)

We use RMSEenergy to analyze the converge of δ2SAT to determine the actual energy difference
between the absolute minimum energy Hmin

Θδ2SAT
and the final minimum energy HΘδ2SAT .

5.4.4. Similarity Index
The similarity index [38] and cumulative neuronal variation [24] can be used to evaluate SAT

performance using a DHNN. The similarity index values will be compared with benchmark neuron
states Smax

i to determine the quality of each optimal final neuron state that achieved global lowest
energy, as indicated in the following formula:

Smax
i =

{
1, ri
−1, ¬ri

(28)

where 1 denotes a positive literal of ri, and −1 denotes a negative literal of ¬ri in each clause. It should
be noted that the benchmark neuron states are the DHNN model’s ideal neuron states that satisfy the
conditions in Equation (18). The retrieved final neuron states are compared to the benchmark neuron
states indicated in Table 5 to provide a comprehensive comparison of the benchmark neuron states
and final neuron states.

Table 5. Variables’ similarity index specifications.

Variable Smax
i Si

e −1 −1
f 1 1
g −1 1
h 1 −1

The overall comparison of the benchmark and final neuron states is conducted as follows [9]:

CSiS
max
i

= {(Si, Smax
i )|i = 1, 2, . . . ., n} (29)

According to Case 1 in Θδ2SAT given in the examples in Table 1, the final neuron states are
generalizable, as follows: Smax

i = (−1, 1,−1, 1, 1,−1, 1,−1,−1,−1).
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In this study, we selected a well-known measure with which to determine the similarity index
for diverse perspectives, namely, that developed by Sokal and Michener (Sokal) [46], which will be
employed to evaluate the viability of the recovered final neuron states. It should be noted that Sokal
measures the similarity of negative cases of Si with Smax

i over a range of (0, 1). The formulation is as
follows:

Sokal(Si, Smax
i ) =

f + e
f + e + h + g

(30)

The Ratio of Cumulative Neuronal variation (Rtv) is used because the testing phase uses the
DHNN’s ability to directly memorize the final neuron states ratio without the need to create a new
state. This is expressed as follows: ⎧⎪⎪⎨⎪⎪⎩

Rtv = 1
ϕ×η×υ

ϕ

∑
i=1

ηυ

∑
i=1

Ei,

Ei =

{
1, Si 	= Smax

i
0, Si = Smax

i

(31)

where Ei denotes the points scores used to assess the difference between newly recovered final neuron
states and the benchmark neuron states. The symbol that we require for this Testing and Training
phase is shown in Table 4.

5.5. Comparison of Method and Baseline Models
Since this study focuses on investigating δγ2SATρ performance with respect to its logical

behavior, we need to investigate the δγ2SATρ’s performance in terms of Y and ρ with regard to
constructing a good logical structure in the probability logic phase. Therefore, we compare δγ2SATρ

with the existing logic systems in DHNNs based on the logic structures, testing phases, and the
quality of the solution to examine two behaviors relating to logic:

(a) The effects of controlling a number of clauses on the second-order weight and non-systematic
logic structure.

(b) The capability of δ2SAT to control the negative literals and accurately reflect the behavior of
the dataset.

In order to examine the logic in a DHNN after its implementation, we also compare its final neuron
state’s quality to that of RAN2SAT. We also evaluate the variation introduced by the testing phase,
global minima solutions, and variation of neurons. The most recent logic systems with a 2SAT
structure were selected for this reason, and one of their features was the decision to compare the logic
systems’ structures. Each clause contains two literals and all clauses are joined by a disjunction.

(a) 2SAT [37]: This is a systematic logical rule that was implemented into a DHNN, with each
clause containing two literals. It is a special type of logic of general Boolean satisfiability. Each
phrase in the 2SAT model can withstand no more than one suboptimal neuron update, leaving
it more akin to a two-dimensional decision-making system. When included into logic mining,
this logic system has demonstrated good applicability in task classification. Neuron counts
varied from 5 < λ1 < 50.

(b) MAJ2SAT [23]: The initial focus of the effort was on developing the current non-systematic
SAT logic structure. MAJ2SAT suggests structural modifications when considering unbalanced
clauses. The unbalanced feature result from different compositions of 2SAT and 3SAT. As a
result, MAJ2SAT prefers a greater number of 2SAT clauses. Moreover, to avoid any bases, we
limited the number of neurons ranging from 5 < λ1 < 50.

(c) RAN2SAT [20]: This system is a second-order and first-order clause logical rule that was
implemented in a DHNN as an initial form of non-systematic logic. The δγ2SATρ has no
structural differences compared to RAN2SAT but consists of a logic probability phase. Due to
the connection of the first-order clause, RAN2SAT is reported to provide a greater variety in
terms of synaptic weight. Although each literal state was chosen at random, the number of
clauses in each order can be determined in advance. Specifically, the number of neurons ranged
from 3 < λ1 < 50.

(d) RAN3SAT [22]: This work expanded on the previous work by [20], incorporating higher-
order logic of 3SAT clauses in a non-systematic SAT structure, which improved the lack of
interpretability of the current non-systematic SAT by storing more neurons per clause. Although
the number of clauses for each sequence was selected at random, each literal state was defined.
In this case, again, we restricted the number of neurons; the range was 6 < λ1 < 50.
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(e) YRAN2SAT [26]: This system is known as the Y-Type Random 2-Satisfiability logical rule.
YRAN2SAT’s novelty is introduced by randomly generating first- and second-order clauses. It
is a combination of systematic and non-systematic logic. YRAN2SAT can explore the search area
with a high potential for solution diversity by adding the features of both clauses. YRAN2SAT
introduces remarkable logical flexibility, while the number of all clauses is predefined by the
user and the literal states are defined at random. The range of the number of neurons is
1 < λ1 < 50.

(f) rSAT [24]: This is a new, non-systematic satisfiability logic class, known as Weighted Random k
Satisfiability for k = 1, 2, which includes a weighted ratio of negative literals and adds a new
logic phase to produce a non-systematic logical structure based on the number of negative
literals specified. More diverse final neuron states were obtained by integrating rSAT into a
DHNN. The proposed model showed outstanding promise as an advanced logic-mining model
that can be used further in the forecasting and prediction of real-world problems. In this study,
we select (r = 0.5) because it has been discovered that it performs well in the logic phase of the
rSAT [24]. The range of the number of neurons was 5 < λ1 < 50.

5.6. Benchmark Dataset
In this study, the proposed model generated bipolar interpretations randomly from a simulated

dataset. More specifically, the logical illustration that was used in the simulations will serve as the
foundation for the structure of the simulated data. The simulated dataset is commonly used in the
modeling and evaluation of the efficacy of SAT logic programming, as demonstrated in the work
of [18,22,27].

5.7. Statistical Test
This section provides a brief definition of the statistical measures that will be used in this study

for two purposes (description and testing):

(a) The measure of central tendency is defined as “the statistical measure that designates a single
value as being indicative of a whole distribution” [47]. Therefore, we selected two measures: (a)
The average, which is known as the arithmetic mean (or, simply, “Mean”). It is calculated by
adding all of the values in the dataset and dividing them by the number of observations. One of
the most significant measures is the central tendency measure. The mean has the disadvantage
of being sensitive to extreme values/outliers, especially when the sample size is small. As
a result, it is ineffective as a measure of central tendency for a skewed distribution [48]. Its
formula is expressed as follows:

X =

n
∑

i=1
xi

n∗ (32)

where X denotes the mean, xi represents the set of data, and n* denotes the sample size of the data.
(b) The median is the value that, when all observations are arranged in ascending/descending order,
occupies the central position. It divides the frequency distribution into two halves, is not biased by
outliers, and is determined by the following formula [49]:

X̃ =

{ x n∗
2
+x n∗

2 +1

2 , if n ∗ even
x n∗+1

2
, if n ∗ odd

(33)

where X̃ denotes the median, and n* denotes the sample size of the data.

(b) The measure of dispersion: Variability measures inform us about the distribution of the data
and allow us to compare the dispersion of two or more sets of data. We can determine whether
the data are stretched or compressed using dispersion metrics, namely, the Standard Deviation
(SD), which evaluates variability by considering the distance between each score and the
distribution’s mean as a reference point. It is a variance square root and gives an indication of
the standard deviation or average separation from the mean. It is presented as follows:

σx (SD) =

n
∑

i=1
(Xi − X)

2

n ∗ −1
(34)
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(c) The boxplot and whiskers (measure of position): The boxplot (Tukey1977) [50] is a well-known
tool for displaying significant distributional features of a dataset. The classical box-plot displays
the quartiles Q1,Q2,Q3, and whiskers, where the median is equal Q2, which is used to estimate
the 25th (Q1) and 75th (Q3) quantiles, thus providing an estimate of the interquartile range
IQR = Q3 −Q1. The range of the majority of the data (the whisker’s length) ends at those values
just inside the whisker’s “limits” (referred to as “fences” and defined by LF = Q1 − 1.5× (IQR)
and UF = Q3 − 1.5 × (IQR), lower (LF) and upper (UF) respectively. Observations outside
the whiskers (the outliers), observations beyond the fences [51], plotted individually, are
defined as the data points outside the boundaries. When comparing different datasets, the
boxplot is particularly helpful. Instead of using a Table of Values, we can quickly compare all
reported statistics across numerous datasets. The simple, effective design of the boxplot aids
the comparison of summary statistics (location, spread, and range of the data in the sample or
batch).

(d) The Laplace Principle of Probability states that in a space of elementary events Ω, where each
element has the same chance of appearing, the probability of a compound event, A, is equal
to the ratio of outcomes that are favorable to the occurrence of all other outcomes. This is
demonstrated by the formula in Equation (4):

(e) The probability density function curve is a schematic illustration of the probability of random
variable density function that is given by:

f (x) =
∞∫

−∞

fx(x).dx (35)

where f (x) denotes the probability density function for random variables; the shape provides a
visualization of the distribution of continuous random variables and provides the probability that a
continuous random variable’s value will fall within a specific interval.

(f) The Wilcoxon signed-rank test: The Wilcoxon signed-rank test was introduced for the first time
by Frank Wilcoxon in 1945 [52]. It is a one-sample location problem-based nonparametric test
that is used to test the null hypothesis wherein the median of a distribution equals some value
(H0 : X̃ = 0) for data that are skewed or otherwise (i.e., do not follow a normal distribution). It
can be used instead of a one-sample t-test or paired t-test, or for ordered categorical data with
a normal distribution. If (p-value ≤ α), the null hypothesis is rejected; this is strong evidence
that the null hypothesis is invalid, i.e., the result of the median is significant. The Formula for
the Wilcoxon Rank Sum Test (W) for xi independent random variable is:

W =
W∗

s
− π(π+1)

4√
π(π+1)(2π+1)

24

(36)

where π = number of pairs whose difference is not 0. W∗
s

= smallest of the absolute values of the
sums of xi. The symbols of these statistics are listed in Table 6. The details of the implementation of
Θδ2SAT into DHNN is presented in Figure 3, which contains the probability logic, the learning and
testing phases, and the evaluation metric in each phase.

Table 6. Parameters List for DHNN − δ2SAT.

Parameter Parameter Name

X The arithmetic mean
X̃ The median
σx Standard deviation
Q1 First quartile
Q2 Second quartile
Q3 Third quartile

IQR Interquartile range
LF Lower fences
UF Upper fences
f (x) Probability density function for random variables
W∗

s
Smallest of absolute values of the sum of xi in Wilcoxon test

W Wilcoxon test value (sum of smallest and largest absolute values of the sum xi)
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Figure 3. Flowchart of DHNN − δ2SAT and Experimental evaluation.

6. Results and Discussion

In this section, we describe the suggested logical output and evaluate it using a variety of
evaluation metrics throughout all three phases to ensure that the addition of statistical tools to the
RAN2SAT structure and the produced δγ2SATρ logic was effective. Furthermore, the simulation
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platform, assigned parameters, and the metrics’ performance are discussed in this section. It is
important to note that we have not considered any optimization during the probability logic phase,
as in Zamri et al.’s [24] work; the training phase, as proposed in [21,38]; or the testing phase, as
proposed in [9,53].

6.1. Logic Structure Capability
The probability phases give us different models in terms of negative literals and second-order

logic with respect to the two parameters Y and ρ. Since both parameters fall within the [0,1] interval,
we can generate an endless (infinite) number of 2SAT models using both parameters. For the majority
of the representations of 2SAT, we chose to use Y (p(ym)) more frequently than p(xm) so that the
results would be in the range (0.6–0.9). In this study, we chose values of ρ greater than 0.5 in the range
(0.6–0.9) of the probability logic phases to obtain a greater representation of the negative numbers in
order to study the predominating attributes in the dataset, as we previously mentioned.

We selected the most significant differences from the two intervals and designated them as
models, which are illustrated in Table 7, in order to examine the efficacy of the two parameters with
different numbers of λm, where 5 < λ1 < 50 so at improve the benefits compared with other recently
developed produced logic systems. Subsequently, we will test two δγ2SATρ types with different
numbers of λm, Y, and ρ; these values are selected considering the significant change in probability
and negative literals. Notably, values of ρ = 1 will be disregarded because we do not need all literals
to be negative because the structure will not represent the Binomial distribution dataset. Moreover,
the DHNN − δ2SAT will give one satisfied interpretation of a first-order clause [54]; on the other
hand, Y = 1 will give us second-order logic. It is important to emphasize that we do not consider a
systematic δ2SAT logical system in this study. Table 7 shows the names of two δγ2SATρ types for
different possible models depending on the two parameters Y and ρ, as well as other logic symbols.

Table 7. The logical symbols in the experiment.

Y ρ δ12SATρ δ22SATρ

0.6 0.6 A1 Q1
0.7 A2 Q2
0.8 A3 Q3
0.9 A4 Q4

0.7 0.6 A5 Q5
0.7 A6 Q6
0.8 A7 Q7
0.9 A8 Q8

0.8 0.6 A9 Q9
0.7 A10 Q10
0.8 A11 Q11
0.9 A12 Q12

0.9 0.6 A13 Q13
0.7 A14 Q14
0.8 A15 Q15
0.9 A16 Q16

The negativity representation: The PON measure in the different logic models has been tested
by Equation (20). The PON represents the probability of the appearance of a negative literal in the
entire logic system in all combinations with different λ1. It is necessary to control the negative literals
in order to determine the prevailing attributes in the dataset, as negative literals will ensure more
negativity in the final neurons; then, we can ensure that the attribute will appear in the solution space
by helping the DHNN find the optimal solution [24].

The Figure 4, a line representation, shows different layers of logic in different proportions for
both types of δγ2SATρ. At the same time, for other groups, ρ = 0.5 for rSAT logic, and ρ = random
for other logic systems (YRAN2SAT, MAJ2SAT, RAN3SAT, 2SAT, and RAN2SAT). The reason why
this is in the minimum levels of the proposed logic for the δγ2SATρ is because, as was already noted,
the probability of receiving a negative literal for the SAT is incredibly low. The highest two layers were
recorded as ρ = 0.9 and ρ = 0.8 in both types of δγ2SATρ, respectively. By applying Equation (5),
we obtain the best number of negative literals for all λ1, which is similar to the third layer for the
other two groups, where ρ = 0.6 and ρ = 0.7 were the lowest probabilities in both types of δγ2SATρ,
which, by the change in the proportional parameter ρ, indicates the success in terms of producing the
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desired number of negative literals in the logic system, representing the predominate attributes in
our dataset. Additionally, there was a direct correlation between the number of neurons in each class
of the desired proportion and the proportions where a high PON recorded low probability when the
number corresponded to λ1. When the number is less than 17 and after 31 for λ1, the PON becomes
approximately stable. This is because the d in Equation (6) in the sample size equation always selects
the optimal sample that reflects the number of negative literals, even if the number of neurons is low.
Table 8 provides detailed information on the PON in each proportion group for the two types of logic.
Note that group (ρ = 0.9) recorded the maximum PON and highest mean value of the PON with
low σ in both types of δγ2SAT0.9; the small σ indicates a different number of neurons λ1, and this
provides the nearest value of the PON means, and that result is highly similar within each group for
all models and increases in accordance with the Y increasing in the models for both types, namely,
δ12SATρ and δ22SATρ. the small σ indicate, with different number of neuron λ1, it provides the
nearest value of PON mean’s, and that result is highly similar within each group for all models and
increases in accordance with the Y increasing in models for both types, namely, δ12SATρ, δ22SATρ.
However, we can also note that the PON mean of the other logic systems is closest, indicating that
the minimal PON value was recorded in YRANSAT with a minimum mean of 0.4966 and a low
SD(σ) = (0.015), which indicates that it was also the lowest for different numbers of neurons, but we
can also notice that the PON mean of other logic systems is closest, showing low values for different
numbers of neurons that were less than or equal to 0.5. The PON results prove the flexibility of
δγ2SATρ’s structure in terms of controlling the literals’ states.

  
(a) (b) 

Figure 4. PON line representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ, and
recently developed logic systems.

The accuracy of the models is evaluated by the NAE measure in Equation (21) in terms of the
amount of error that is non-negative or the quantity of the negative literal status for the entire logic
system in each proportion group for both types of δγ2SATρ models. According to Figure 5, in the line
representation, note that the effect of the proportional changes in the logic restructure guarantees that
the best RAN2SAT is required, or effective of the prevailing attribute in the dataset where different
proportions give us different layers. The details of Figure 5 can be found in Table 9, which shows
the minimum values of the NAE that were recorded in a group ρ = 0.9 where A4 in δ22SAT0.9 was
recorded as the lowest error by (0.1429). It should be observed that the median value (0.3090) was the
lowest possible value, indicating that the A4 for all n neurons of λ1 always had a lesser error in the
middle sections. Additionally, it should be noted that all models in the same group, A16, A12, and A8,
have very similar median values (0.333, 0.31, and 0.320), which is because, as shown in the PON, this
group has the highest probability for the representation of a negative literal, which is accomplished
by the proportion ρ = 0.9. Similarly, in δ22SAT0.9, Q4 recorded the lowest error as 0.1429, but the
least median was recorded by Q16 (0.13125), which means the minimum error lies in the middle
values with respect to the number of neurons λ1. Moreover, it can be noted from Figure 5 that for a
small number of neurons λ1, Q4 has fewer NAE values than Q8, Q12, and Q16. However, the reverse
is true for the middle values of Q16 compared to Q12, Q8, and Q4, as mentioned before regarding
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the effect of Y in λ1. However, in Table 9 the value of the median has very small differences from
the model in group ρ = 0.9. As discussed in terms of the PON, this indicates the successfulness of
the proportion of representation in the logic system. The highest NAE value was observed to be for
rSAT with a high median, where r = 0.5 with the nearest value of NAE for the other logic systems
(YRAN2SAT, MAJ2SAT, RAN3SAT, 2SAT, and RAN2SAT); as previously mentioned, there was a lack
of representation of the negative literals in the logic system, as they recorded the least degree of the
probability of the appearance of negative literals.

Table 8. PNO results for models with both types of logic, δ12SATρ and δ22SATρ, and recently
developed logic systems’ details determined by Wilcoxon test for median divided by ρ value.

ρ Model Mean SD Min Max Model Mean SD Min Max

0.6 A1 0.5483 0.0294 0.5217 0.6250 Q1 0.5454 0.0318 0.5200 0.625

A5 0.5503 0.0290 0.5208 0.6250 Q5 0.5392 0.0165 0.5200 0.5714

A9 0.5460 0.0211 0.5200 0.6000 Q9 0.5392 0.0115 0.5227 0.5556

A13 0.5368 0.0100 0.5208 0.5500 Q13 0.5319 0.0134 0.5200 0.5556

0.7 A2 0.5827 0.0253 0.5526 0.6364 Q2 0.5779 0.0215 0.5500 0.625

A6 0.5812 0.0246 0.5556 0.6364 Q6 0.5850 0.0466 0.5500 0.7143

A10 0.5858 0.0405 0.5532 0.7143 Q10 0.5863 0.0353 0.5500 0.6667

A14 0.5829 0.0242 0.5500 0.6364 Q14 0.5668 0.0097 0.5526 0.5806

0.8 A3 0.6565 0.0524 0.6170 0.8000 Q3 0.6558 0.051 0.6170 0.8000

A7 0.6558 0.0501 0.6190 0.8000 Q7 0.6384 0.0257 0.6200 0.7143

A11 0.6481 0.0441 0.6170 0.8000 Q11 0.6410 0.0172 0.6170 0.6667

A15 0.6481 0.0441 0.6170 0.8000 Q11 0.6410 0.0172 0.6170 0.6667

0.9 A4 0.7753 0.0362 0.7429 0.8750 Q4 0.7716 0.0378 0.7400 0.8750

A8 0.7709 0.0360 0.7419 0.8750 Q8 0.7704 0.0349 0.7400 0.8571

A12 0.7730 0.0315 0.7400 0.8571 Q12 0.7678 0.0217 0.7447 0.8182

A16 0.7578 0.0206 0.7419 0.8182 Q16 0.7623 0.0183 0.7400 0.7895

random 2SAT 0.5041 0.0211 0.4870 0.5600

MAJ2SAT 0.5021 0.0159 0.4750 0.5286

RAN2SAT 0.4982 0.0131 0.4829 0.5240

RAN3SAT 0.5056 0.0121 0.4962 0.5288

YRAN2SAT 0.4966 0.0152 0.4625 0.5117

0.5 rSAT 0.4900 0.0100 0.4700 0.5100

Note: The yellow highlights indicate the highest number in the column and the green indicates the smallest
number in the column.

  
(a) (b) 

Figure 5. NAE line representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ, and
recently developed logic systems.
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Table 9. Maximum and minimum NAE results for models with both types of logic δ12SATρ, δ22SATρ,
and recently developed logic systems with details determined by Wilcoxon test for median divided
by ρ value.

ρ Model Min Max Median W Model Min Max Median W

0.6 A1 0.6 0.9167 0.8571 120 Q1 0.6 0.9231 0.875 120

A5 0.6 0.92 0.8333 120 Q5 0.75 0.9231 0.8634 78

A9 0.6667 0.9231 0.85 190 Q9 0.8 0.913 0.8571 91

A13 0.8182 0.92 0.8536 78 Q13 0.8 0.9231 0.9 45

0.7 A2 0.5714 0.8095 0.7417 105 Q2 0.6 0.8182 0.75 136

A6 0.5714 0.8 0.75 120 Q6 0.4 0.8182 0.753 78

A10 0.4 0.8077 0.75 190 Q10 0.5 0.8182 0.7333 91

A14 0.5714 0.8182 0.7361 78 Q14 0.7222 0.8095 0.76923 45

0.8 A3 0.25 0.6207 0.5635 105 Q3 0.25 0.6207 0.5635 136

A7 0.25 0.6154 0.56 120 Q7 0.4 0.6129 0.5848 78

A11 0.25 0.6207 0.5833 190 Q11 0.5 0.6207 0.5714 91

A15 0.4444 0.6087 0.5714 78 Q15 0.5333 0.6154 0.5862 45

0.9 A4 0.1429 0.3462 0.309 105 Q4 0.1429 0.3514 0.3274 136

A8 0.1428 0.3478 0.32 120 Q8 0.1667 0.3514 0.3191 78

A12 0.1667 0.3514 0.3125 190 Q12 0.2222 0.3429 0.3182 91

A16 0.2222 0.3478 0.3333 78 Q16 0.2667 0.3514 0.3125 45

random 2SAT 1.005 1.47 1.097 55

MAJ2SAT 1.018 1.171 1.076 10

RAN2SAT 0.999 1.34 1.086 36

RAN3SAT 1.012 1.309 1.058 21

YRAN2SAT 1.039 1.2 1.062 28

0.5 rSAT 1.03 1.501 1.1 36

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00), for all models in terms of Wilcoxon test, which means that H0
should be rejected.

The probability of full negativity of second-order logic: We examined the ability of several
models incorporating the two types of δγ2SATρ to produce full-negativity second-order clauses
with greater accuracy compared to other recently developed logic systems by manipulating two
parameters, Y and ρ, using the FNAE measure for the second-order clause in Equation (22). Obtaining
full negativity second-order logic guarantees that the prevailing attribute in the desired logic structure
is represented. Figure 6, a columnar representation, shows the result of the FNAE measure, the higher
accuracy achieved by A8 and A4 in δ12SATρ, and Q4 in δ22SATρ that obtained a value of (0) for
FNAE. This is due to the effect of the two parameters in this model, for which the proportion of
negative number is ρ = 0.9, with a lower probability than other models in second-order logic where
Y = 0.6, 0.7, which means that all second-order clauses are satisfied by negative numbers because of
the small representation of second-order clauses. Based on the same figure, the low accuracy obtained
by A1 and Q1, which obtain the maximum number in terms of the FNAE logic (0.8930, 0.8650), is the
reason for the low representation of the negative proportion in the logic system. Thus, if we need
greater representation of the prevailing attributes in the desired logic structure, we should choose
the A8 and A16 from δ12SAT0.9 and Q4 from δ22SAT0.9. Model A4 recorded higher accuracy using
the lowest value of the FNAE median (0.3995), which means the minimum error lies is in the middle
values for all neuron quantities λ1. We also note the proportion of negative literals is ρ = 0.9, which
means there are more second-order negative clauses in the models in δ12SATρ recorded in model
Q12, where the lowest FNAE median was (0.4147). The accurate results regarding the FNAE measure
are listed in Table 10. It is evident that the ratios of the negative literals are ρ = 0.9 and Y = 0.9,
indicating that the model has a higher fraction of negative, second-order representations. Comparing
these results to those of other state-of-the-art logic systems, all of them provide low accuracy due
to a higher median value, which indicates that the mean lacks the ability to accurately represent
the full-negative second-order values in this model. RAN2SAT performs the best among the logic
systems. The latest logic systems give higher errors because the fluctuation in predetermine for
assigning second-order logic and low represent for negative literal that indicate the δ12SATρ and
δ22SATρ is flexible more than the recent logic systems in controlling of two parameters.
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(a) (b) 

Figure 6. FNAE column representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ,
and recently developed logic systems.

Table 10. Maximum and minimum FNAE results for models in both types of logic δ12SATρ, δ22SATρ,
and recently developed logic systems with details determined by Wilcoxon test for median.

Model Min Max Median W Model Min Max Median W

A1 0.5650 0.8931 0.6186 120 Q1 0.6322 0.8650 0.7472 120

A2 0.5071 0.8683 0.7688 105 Q2 0.5722 0.8400 0.6993 136

A3 0.3333 0.8025 0.4825 105 Q3 0.3333 0.7633 0.5678 136

A4 0.0000 0.5525 0.3996 91 Q4 0.0000 0.7594 0.4527 120

A5 0.5756 0.8700 0.7186 120 Q5 0.6576 0.8141 0.7322 78

A6 0.5129 0.8560 0.6860 120 Q6 0.5763 0.7856 0.7000 78

A7 0.3333 0.7975 0.5950 120 Q7 0.4962 0.7043 0.6179 78

A8 0.0000 0.7488 0.4440 105 Q8 0.3333 0.7378 0.5017 78

A9 0.6570 0.8515 0.7775 190 Q9 0.6818 0.7880 0.7660 91

A10 0.5753 0.8050 0.6925 190 Q10 0.6475 0.7489 0.6938 91

A11 0.4712 0.7231 0.6047 190 Q11 0.5418 0.6840 0.6225 91

A12 0.3217 0.7510 0.4488 190 Q12 0.3538 0.4773 0.4148 91

A13 0.7068 0.7860 0.7651 78 Q13 0.7254 0.7615 0.7386 45

A14 0.6445 0.7594 0.7125 78 Q14 0.6745 0.7383 0.7018 45

A15 0.5445 0.6700 0.6245 78 Q15 0.6009 0.6467 0.6196 45

A16 0.3780 0.5044 0.4204 78 Q16 0.3965 0.4742 0.4177 45

2SAT 0.6850 0.7682 0.7502 55

MAJ2SAT 0.7350 0.7800 0.7505 36

RAN2SAT 0.7300 0.7658 0.7441 36

RAN3SAT 0.7100 0.7700 0.7530 21

YRAN2SAT 0.7225 0.7900 0.7514 45

rSAT 0.7400 0.8200 0.7500 78

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.

A high result in the WFNAE measure in Equation (23) indicates that full-negative second-order
logic is more greatly represented. By using this scale, the weight of the sentences in the logic has been
evaluated, and the Y parameter may be used to determine whether the model is desirable because
the highest probability gives the highest weight. The maximum probability, as shown in Figure 7, is
the highest weight represented and is obtained by A16, Q16 in δ12SAT0.9, and δ22SAT0.9, respectively,
and 0 for YRANSAT, because it also produces first-order logic. In Table 11, note the highest significant
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median value was achieved by the A16 and Q16 models (0.4477 and 0.4691, respectively), and the
lowest significant median value was achieved by the YRANSAT (0) WFNAE value. This would
ensure that the prevailing attribute has the highest representation in our logic compared to other
state-of-the-art logic systems, in addition to its ability to minimize and maximize changes in Y. In
conclusion, it is evident that the two parameters, Y and ρ, have a direct impact on the probability
distribution dataset in the δγ2SATρ logic structure.

  
(a) (b) 

Figure 7. WFNA column representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ

and recently developed logic systems.

Table 11. Maximum and minimum WFNAE results for models in both types of logic δ12SATρ,
δ22SATρ and recently developed logic systems with details determined by Wilcoxon test for median.

Model Median Min Max W Model Median Min Max W

A1 0.1162 0.0308 0.1373 120 Q1 0.0889 0.0270 0.1181 120

A2 0.0721 0.0374 0.1501 105 Q2 0.1058 0.0320 0.1369 136

A3 0.1506 0.0559 0.1849 105 Q3 0.1293 0.0832 0.1789 136

A4 0.1896 0.1100 0.2695 105 Q4 0.1904 0.0818 0.2400 136

A5 0.1024 0.0390 0.1486 120 Q5 0.1258 0.0782 0.1653 78

A6 0.1140 0.0448 0.1616 120 Q6 0.1353 0.1017 0.1977 78

A7 0.1409 0.0608 0.1943 120 Q7 0.1702 0.1380 0.2432 78

A8 0.2014 0.0910 0.2800 120 Q8 0.2304 0.1233 0.2931 78

A9 0.1141 0.0507 0.1646 190 Q9 0.1412 0.1056 0.1980 91

A10 0.1563 0.0520 0.2184 190 Q10 0.1760 0.1552 0.2233 91

A11 0.1906 0.1333 0.2708 190 Q11 0.2157 0.1685 0.2851 91

A12 0.2732 0.1262 0.3305 190 Q12 0.3517 0.2628 0.3945 91

A13 0.1630 0.1284 0.2131 78 Q13 0.2058 0.1744 0.2158 45

A14 0.1973 0.1673 0.2571 78 Q14 0.2386 0.1992 0.2563 45

A15 0.2676 0.2040 0.3245 78 Q15 0.3029 0.2544 0.3086 45

A16 0.3977 0.3244 0.4477 78 Q16 0.4414 0.4158 0.4691 45

2SAT 0.2300 0.1250 0.2447 55

MAJ2SAT 0.1734 0.0883 0.2141 36

RAN2SAT 0.1287 0.0850 0.1393 36

RAN3SAT 0.0987 0.0575 0.1088 21

YRAN2SAT 0.0610 0.0000 0.2131 36

rSAT 0.1200 0.0600 0.1500 36

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.
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6.2. Training Phase Capability
This phase’s objective is to evaluate the efficiency of various δγ2SATρ structures produced in

the probability logic phase, which were trained in a DHNN and minimize the logical inconsistencies
using Equation (12), to obtain the correct synaptic weight. In this phase, ES obtained consistent
interpretations for Θδγ2SATρ and derived the correct synaptic weight for the logic system. If the
model arrived at an inconsistent interpretation (EΘδ2SAT = 0), the DHNN − δ2SAT model will reset
the whole search space and generate a new one until φ = υ. The error of the maximum fitness of
logic, which is represented by the total clause from the achieved fitness, is calculated by employing
RMSEtrain and RMSEweight to quantify the error in the training phase via Equations (24) and (25),
respectively. Figures 8 and 9 show different RMSEtrain, and RMSEweight results for both types
of δγ2SATρ, when (υ = 100); for both types of δγ2SATρ, RMSEtrain was described to undergo an
exponential increase (logistic growth) with a rate of growth equal to |Fi − Fdesierd| and a linear positive
increase in RMSEweight. According to [26], the error value in the training phase starts off low when
the learning set is small because it is more difficult to fit the larger learning set. In this instance,
as λ1 rises, more iterations are required for the DHNN to locate SAT structures with satisfying
interpretations, and the training phase metrics obtain 0 value when λ1 is small. When the value of Y
is high, there is always low error because the structure of second-order logic helps ES by becoming
satisfied (Fi = Fdesierd) to a greater extent than first-order logic and because the probability of finding
a consistent interpretation for each δγ2SATρ clause follows a binomial distribution, which measures
the effect of flexible structure by changing in two parameters Y and ρ in terms of the RMSEtrain and
RMSEweight results [24]. As shown in Figures 8 and 9, high probability of obtaining second-order Y
makes it easier to locate optimal interpretations [22], which means the WA method will derive the
correct synaptic weight. On the other hand, when Y decreases, it signifies that the probability of the
first-order clauses being satisfied is very low for 2SAT. Due to its limited number of interpretations,
the non-systematic logical rule with first-order clauses reduces the cost function of the logic.

  
(a) (b) 

Figure 8. RMSEtrain line representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ.

Table 12 records the values in Figure 8; in the line representation, it is noted for δ12SATρ large
RMSEtrain reported for A4 (118.895) that follows group Y = 0.6, have the smallest number for 2SAT
at the same time, the result of the RMSEtrain median gives us the more significant result reported
by group Y = 0.7, whereas A8(68.5274) has a large RMSEtrain value without any effect by outlier
for all λ1; thus, when Y decreases, the ES could not find a consistent interpretation for first-order
logic. The low RMSEtrain median go for group Y = 0.9 were A14 (38.16665), which also indicates a
large number of 2SAT that make it simpler for ES to achieve consistent interpretation. For δ22SATρ a
large error was reported for the Y = 0.6 group in Q1(114.342) because of a small number of 2SAT.
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For the median result, we note that Q3(64.7599) reported a high RMSEtrain in the same group, and
group Y = 0.9 reported a lower value with respect to Q16 (41.0488), which indicates it has the same
behavior for δ12SATρ; it is worth noting here that large Y and ρ have large fitness errors. It is clear in
Q(4,8,12,16) that when ρ = 0.9 in both measures, that means it is difficult for ES to become satisfied for
negative literals, because the extreme value for negative literal makes it difficult to achieve optimal
fitness, as mentioned in [24]. Due to the limited room for searching, it is challenging for ES to be
applied to large Y in small λ1. Finally, the mechanism of ES in the training phase of DHNN is only
effective when λ1 is small and effected by a high number of neurons because of the non-randomized
operator [24]. The training phase can be improved further by embedding a learning algorithm in a
DHNN and using global and local search operators [26]. This approach may aid in the search for
optimal Θδγ2SATρ interpretations and ensures that logical inconsistencies are minimized.

  
(a) (b) 

Figure 9. RMSEweight column representation for models in both types of logic (a) δ12SATρ,
(b) δ22SATρ.

From Figure 9, column representation, the RMSEweight for two types δγ2SATρ models help to
better understand the fitness of the neuron state. Based on the results, the value of 0 was obtained
in different quantities of λ1 in the interval [5,18] in different models in both types of δγ2SATρ; then,
the values started to fluctuate at large λ1—the maximum RMSEweight values were reported for
A7 and Q3, where the values of the negative literals were large (ρ = 0.9) and where λ1 was large.
In Table 13, which corresponds Figure 9, it is reported that the maximum RMSEweight values in
terms of the median are A1(0.0791) and Q10(0.0548), wherein the ρ is small. In addition, a small
result was reported for A16 (0.0075) and Q14(0.0048), where the negative numbers are large, which
is clearly the result of the RMSEweight being affected by the fitness clauses that were measured by
RMSEtrain, because the ES is could not find the interpretation for a clause with a high value of λ1
then the DHNN could not derive the correct synaptic weight by WA methods when the result was
more than zero. The fluctuation in the result is because the DHNN is selected the random number
for weight if EΘδ2SAT 	= 0 after the number of iterations φ reaches the maximum. In conclusion, it is
evident that two parameters, Y and ρ, have a direct impact on the probability distribution dataset
during the testing phases.
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Table 12. Maximum and minimum RMSEtrain results for models in both type of logic δ12SATρ,
δ22SATρ details by Wilcoxon test for median.

Y Model Min Max Median W Model Min Max Median W

0.6 A1 0 114.965 65.6734 78 Q1 0.0000 114.342 61.3433 91

A2 0 113.345 62.2179 78 Q2 0.0000 113.745 59.2203 91

A3 0 116.34 62.4112 78 Q3 0.0000 110.381 64.7599 91

A4 0 118.895 56.8860 78 Q4 0.0000 106.132 64.1423 105

0.7 A5 0 111.853 65.3299 91 Q5 0.0000 93.0699 59.5461 55

A6 0 113.982 67.6314 78 Q6 0.0000 93.8776 57.8688 55

A7 0 116.327 63.0476 91 Q7 0.0000 101.459 58.5859 55

A8 0 118.617 68.5274 91 Q8 0.0000 102.528 57.0719 55

0.8 A9 0 100.822 53.1695 120 Q9 0.0000 84.5754 41.8091 55

A10 0 101.922 50.3786 120 Q10 0.0000 85.4868 41.6653 66

A11 0 103.015 50.6162 120 Q11 0.0000 82.3286 43.8634 55

A12 0 103.388 51.0294 136 Q12 0.0000 87.8521 44.6654 55

0.9 A13 0 78.5366 38.3444 45 Q13 5.8309 74.3707 41.7971 45

A14 0 72.9383 38.16665 55 Q14 5.0000 71.2881 41.6413 45

A15 0 76.0526 41.35185 55 Q15 1.0000 68.2202 42.4853 45

A16 0 79.4921 41.86575 55 Q16 2.0000 73.2871 41.0488 45

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.

Table 13. Maximum and minimum RMSEweight results for models in both types of logic δ12SATρ,
δ22SATρ and details by Wilcoxon test for median.

Y Model Min Max Median W Model Min Max Median W

0.6 A1 0 0.2458 0.0791 91 Q1 0.0000 0.1978 0.0295 55

A2 0 0.2567 0.0485 91 Q2 0.0000 0.2340 0.0241 55

A3 0 0.2943 0.0321 78 Q3 0.0000 0.2365 0.0145 91

A4 0 0.2642 0.0242 78 Q4 0.0000 0.2350 0.0193 105

0.7 A5 0 0.1134 0.0364 136 Q5 0.0000 0.1700 0.0093 55

A6 0 0.0887 0.0397 78 Q6 0.0000 0.2077 0.0304 91

A7 0 0.3374 0.0261 91 Q7 0.0000 0.1389 0.0319 91

A8 0 0.2591 0.0138 78 Q8 0.0000 0.1598 0.0134 55

0.8 A9 0 0.2277 0.0175 91 Q9 0.0000 0.1268 0.0321 55

A10 0 0.1821 0.0110 120 Q10 0.0000 0.1012 0.0548 55

A11 0 0.2023 0.0228 120 Q11 0.0000 0.1079 0.0396 55

A12 0 0.1265 0.0135 120 Q12 0.0000 0.0368 0.0207 66

0.9 A13 0 0.0790 0.0389 45 Q13 0.0004 0.0639 0.0178 45

A14 0 0.0990 0.0250 55 Q14 0.0016 0.0358 0.0048 45

A15 0 0.0423 0.0213 55 Q15 0.0005 0.0246 0.0171 45

A16 0 0.0427 0.0075 55 Q16 0.0005 0.0885 0.0329 45

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.

6.3. Testing Phase Capability
Optimal testing phase is achieved when EΘδ2SAT = 0 retrieved optimal synaptic weight, after

DHNN − δ2SAT completing checking clause satisfaction and generating optimal synaptic weight
through the WA method. The final state of the neuron will converge towards the global minimum
energy. It is important to evaluate testing phase because DHNN frequently produces similar final
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neuron states as opposed to novel final neuron states [55]. Therefore, we compare the δγ2SATρ logic
with the recent logic systems by global minima ratio matric. If the model is unable to reach a global
solution, this indicates that it is trapped in a local solution, which makes it impossible to determine
whether the proposed DHNN − δ2SAT is satisfied or not.

Figure 10, column representation, shows the global minima ratio results, calculated by
Equation (26) for two types δγ2SATρ and state-of-the-art logic systems, without considering any
optimizer, to assess the actual testing phase capability for of DHNN − δ2SAT. Where the optimal
result for global minima ratio RG is 1, we can note in Figure 10 that all are capable of retrieving
the optimal synaptic weight values in small λ1 and then it decreases linearity with large λ1, be-
cause the ES is unable to manage synaptic weight in the training phase and will be susceptible to
retrieving non-optimal neuron states and ensnared in local minima. A model’s ability to achieve
maximum global minima ratio demonstrates that the suggested SAT is effectively integrated into
DHNN. Maximum global minima ratio reported for YRAN2SAT, rSAT, and (A1, A11, Q11) models in
δγ2SATρ. The reason for YRAN2SAT recorded the high global minima ratio for small λ1 [26] because
the flexibility in the structure offers an accurate result. Table 14 gives the Figure 10 numerical result,
from the RG median results without effect from the outliers, note both type δγ2SATρ achieve near
result to other latest logic systems. High median goes for MAJ2SAT because the structure of logic
that (2SAT,3SAT) [23], also the fare literals state represent in rSAT [24] make it achieved highly RG.
Based on Table 14, from RG median, there is a high effect for two parameters Y and ρ in δγ2SATρ,
small λ1 in the DHNN for small Y and ρ can retrieval the right synaptic weight such as (A1,Q1),
but from median, the high Y and ρ achieved more global minimum than other such as A(13,14,15),
Q(9,10,13,14). It can say the proposed models showcased the efficiency of δγ2SATρ to control DHNN
as a symbolic structure that causes network convergence. Since the local field in Equation (15) drives
the neuron’s final state in accordance with the behavior of the second and first-order clause, it exhibits
the same behavior as the non-systematic RAN2SAT structure presented by [20].

(a) (b) 

Figure 10. Column representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ and
recently developed logic systems.
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Table 14. Maximum RG results for models in both type of logic δ12SATρ, δ22SATρ and RAN2SAT
details by Wilcoxon test for median.

Model Median Max W Model Median Max W

A1 0.0200 0.9338 66 Q1 0.0197 0.9321 105

A2 0.0133 0.9125 105 Q2 0.0152 0.9191 136

A3 0.0194 0.7945 91 Q3 0.0097 0.7479 136

A4 0.0077 0.7468 91 Q4 0.0099 0.7603 105

A5 0.0061 0.8855 91 Q5 0.0185 0.8322 78

A6 0.0096 0.9008 120 Q6 0.0299 0.7276 78

A7 0.0092 0.7970 120 Q7 0.0170 0.7025 78

A8 0.0058 0.7551 105 Q8 0.0162 0.5546 78

A9 0.0563 0.9093 190 Q9 0.1084 0.7822 91

A10 0.0437 0.9009 153 Q10 0.1014 0.6888 91

A11 0.0200 0.9338 66 Q11 0.0740 0.6787 91

A12 0.0204 0.7479 171 Q12 0.0240 0.5382 91

A13 0.1576 0.7467 78 Q13 0.0945 0.5113 45

A14 0.1226 0.6243 78 Q14 0.0864 0.4968 45

A15 0.0815 0.6197 78 Q15 0.0560 0.4055 45

A16 0.0434 0.4152 78 Q16 0.0261 0.2097 45

2SAT 0.4190 0.8789 55

MAJ2SAT 0.5050 0.8076 36

RAN2SAT 0.0172 0.8756 36

RAN3SAT 0.2580 0.8213 21

YRAN2SAT 0.0178 0.9488 21

rSAT 0.0000 0.9200 28

Note: The Yellow highlighted to indicate the highest number in the column, (p-value < 0.00) for all models in
terms of Wilcoxon test, it means reject H0.

The purpose of finding the RMSEenergy in Equation (27) is to calculate the difference between
the final energy and the absolute minimum energy, as stated in condition Equation (18). indicates
whether or not the solutions produced by DHNN − δ2SAT are optimal, it must assess the flexibility
of δγ2SATρ by determining the value of RMSEenergy. Based on Figure 11 column representation,
was reported to small λ1 achieve less RMAEenergy value for all models, which indicates a successful
convergence towards the optimal final neuron state, after which the final energy difference fluctuates
as the number of λ1 increased. This phenomenon occurs as a result of the decreased probability
of receiving cost function EΘδ2SAT = 0, as clear in RMSEtrain which leads to higher energy, and
DHNN − δ2SAT’s ineffective learning strategy. As the number of λ1 increases, some synaptic weights
become suboptimal, resulting in final neuron states stuck in local minimum energy. Additionally,
Sathasivam [18] claims that during the DHNN testing phase, suboptimal neuron updates are what
caused the local minimum energy to exist. Suboptimal neuron updates in this situation will result in
more incomplete sentences, which raises the energy gap. When the logical formulation containing
2SAT was incorporated into DHNN − δ2SAT we said the δγ2SATρ behaved like the traditional
non-systematic logical rule RAN2SAT. As shown in Figure 11 it can be observed that the adverse
impact of negative literal with high number of λ1 in logic where A4 Q12 recorded the highest value
of RMSEenergy and A1 Q1 when number of λ1 small is the opposite, from Table 15 gives from the
Figure 11 the median of RMSEenergy gives us the accurate result where the small median go for A13,
Q9 with low value parameter ρ and A8, A16 with high value parameter ρ give high RMSEenergy
error. This demonstrates that when most neuron states are negative, tend to converge towards local
minimum energy. In conclusion, it is evident that two parameters, Y and ρ, have a direct impact on
the probability distribution dataset during the testing phases.
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(a) (b) 

Figure 11. RMSEenergy column representation for models in both types of logic (a) δ12SATρ,
(b) δ22SATρ.

Table 15. Maximum and minimum RMSEenergy results for models in both type of logic δ12SATρ,
δ22SATρ details by Wilcoxon test for median.

Model Median Min Max W Model Median Min Max W

A1 1.8703 0.2573 3.0905 120 Q1 1.9596 0.2606 2.7905 120

A2 1.9854 0.2958 2.7368 105 Q2 1.9339 0.2844 2.7724 120

A3 2.1074 0.4555 3.1800 105 Q3 2.0517 0.5021 3.1297 136

A4 2.3208 0.5032 3.9210 105 Q4 2.1874 0.4896 3.4820 136

A5 1.9285 0.3384 2.7783 120 Q5 1.7077 0.4096 2.6531 78

A6 2.1017 0.3150 2.8161 120 Q6 1.8026 0.5526 2.9892 78

A7 2.2435 0.4680 3.0432 120 Q7 2.1137 0.5819 3.5014 78

A8 2.5302 0.4949 3.4379 120 Q8 2.2589 0.7982 2.7102 78

A9 1.6867 0.3012 2.2621 190 Q9 1.4306 0.4812 2.5811 91

A10 1.5883 0.3148 2.9905 190 Q10 1.5079 0.6127 2.7328 91

A11 1.7648 0.5055 3.0828 190 Q11 1.6259 0.6307 3.1733 91

A12 2.0895 0.5021 3.5483 190 Q12 2.4068 0.8465 3.6066 91

A13 1.4357 0.5445 2.3507 78 Q13 1.6090 0.8600 2.3148 45

A14 1.5348 0.7222 2.7120 78 Q14 1.7685 0.9484 2.4639 45

A15 1.7717 0.7171 3.0085 78 Q15 2.0352 1.1185 2.6995 45

A16 2.2963 1.0788 3.5845 78 Q16 2.5315 1.6824 3.3637 45

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.

6.4. Similarity Index Analysis
For final neurons’ quality states only compare both type of δγ2SATρ with RAN2SAT because

δγ2SATρ consider the enhancement and developing for RAN2SAT, also, they have the same structure
behavior, we tested the variation introduced by the testing phase for δγ2SATρ models and final
neurons’ quality state compared with RAN2SAT, where the degree of state redundancy for the DHNN
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model training phases is indicated by the similarity index of the final neuron state. A standard has
been introduced indexing metrics, which is Sokal index, and consider the effective metric known as
the ratio of total neurons variation Rtv.

Firstly, consider the lower Sokal in Equation (30) in the similarity index matrices indicates that
the final neuron states obtained are highly distinct to the benchmark states. According to Figure 12,
a column representation to both types of δγ2SATρ reported low values, which imply higher more
variety solution than other recorded by A16, Q16m but Q1, A5 recorded high value, due to parameter
ρ. Table 16 translates Figure 12, which clarifies numerically, where the A16, Q16 reported low median
value. Where all logic has the ρ = 0.9 and Y = 0.9 record low value, it indicates that there is more
negative neuron and less first-order logic provides the final neuron state and the benchmark state
distinction as shown in blue numbers in Table 16, Q, A (4,8,12,16). In other words, the low negativity
and greater representation for first-order logic give us a high Sokal, as shown in Q, A (1,5,9,13) with a
red number.

  
(a) (b) 

Figure 12. Sokal column representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ

and RAN2SAT.

Secondly, the effective parameter known as the ratio total variation of neurons Rtv In Equation (31).
From the Figure 13 its clearly a column representation to both types giving us different number of
variation solution for different number of λ1 because of the effect of two parameter Y and ρ in the
training phase. The highly oscillation recorded for δ12SATρ in 14 < λ1 < 20 and 14 < λ1 < 26 for
δ12SATρ models and the highest oscillation value is recorded for A16 in 17 < λ1 < 20. For δ22SATρ.
The highly oscillation recorded in 14 < λ1 < 26 for δ12SATρ models and the highest oscillation
value is traced for Q15 in 13 < λ1 < 23. At the same time both type of δγ2SATρ models affected
by a number of neurons, they start the ups and downs in different λ1 according to the effect of two
parameter Y and ρ. The total oscillation for some of models is rich to zero when λ1 < 5, λ1 > 39 such
as A (1,3,4,5,8,10,12) and so low for others models δ12SATρ, also Q1,Q4 when λ1 < 5, λ1 > 35 for
δ22SATρ, we can be said there are no significant variations for high than 37, also we can note here
the effect of Y, it can’t achieve the global solution for low Y because the ES will disturb the δγ2SATρ

model in order to reach the optimal training phase (known as learn inconsistent interpretation),
from Figure 10, global solutions acquired by δγ2SATρ models grow as λ1 decrease as introduce
previously. Table 17 for numerical result for Figure 13 note the effect of increase ρ where the logic
has ρ > 0.7 recorded the highest high number of Rtv, where the highest variation go for A16 (0.2149)
and Q15 (0.2084), and also can see the δ22SATρ record high Rtv than δ12SATρ in general, the reason
her the δ22SATρ give less number of first-order logic than δ12SATρ for the same Y that was mention
previously in Table 1, then the ES will deal with fewer numbers for first-order logic where it difficult
to reach the optimal training phase. Moreover, Figure 13 presents the reason for the decrease when
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λ1 increases the hard achieved global solution. It was observed that the RAN2SAT behave similarly
to the δγ2SATρ, with a high Rtv recorded of (0.1764) at the same time as its increase in the interval
13 < λ1 < 42 and then decrease with a high λ1. The impact of the global minimum solution Rtv
is related to the number of neurons. As λ1 rises, the probability of the number of global solutions
reduces. We can conclude from the above results that Rtv is related to the occurrence of other neuron
states that lead to global minimum solutions in other domain adaptations [22].

Table 16. Maximum and minimum Sokal results for models in both types of logic δ12SATρ, δ22SATρ

and RAN2SAT details by Wilcoxon test for median.

Model Median Min Max W Model Median Min Max W

A1 0.6483 0.6367 0.7667 120 Q1 0.6601 0.6350 0.7225 120

A2 0.6771 0.6212 0.7512 105 Q2 0.6527 0.6337 0.6887 136

A3 0.6335 0.6020 0.7074 105 Q3 0.6341 0.5993 0.6747 136

A4 0.6286 0.5988 0.6447 105 Q4 0.6189 0.5884 0.6757 136

A5 0.6632 0.6360 0.7751 120 Q5 0.6509 0.6324 0.6810 78

A6 0.6556 0.6329 0.7509 120 Q6 0.6385 0.5965 0.6730 78

A7 0.6369 0.6000 0.7074 120 Q7 0.6271 0.5997 0.6423 78

A8 0.6232 0.6024 0.6790 120 Q8 0.6095 0.5593 0.6662 78

A9 0.6594 0.6374 0.7266 190 Q9 0.6536 0.6284 0.6709 91

A10 0.6493 0.5974 0.6915 190 Q10 0.6276 0.5960 0.6614 91

A11 0.6288 0.5987 0.6547 190 Q11 0.6051 0.5850 0.6322 91

A12 0.6027 0.5702 0.6702 190 Q12 0.5790 0.5468 0.6096 91

A13 0.6453 0.6377 0.6651 78 Q13 0.6385 0.6167 0.6459 45

A14 0.6277 0.6031 0.6475 78 Q14 0.6228 0.6058 0.6335 45

A15 0.6080 0.5770 0.6227 78 Q15 0.5977 0.5836 0.6060 45

A16 0.5783 0.5517 0.5890 78 Q16 0.5665 0.5458 0.5863 45

RAN2SAT 0.6379 0.6007 0.6564 55

Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column, (p-value < 0.00) for all models in terms of Wilcoxon test, it means reject H0.

  
(a) (b) 

Figure 13. Column representation for models in both types of logic (a) δ12SATρ, (b) δ22SATρ and
RAN2SAT.
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Table 17. Maximum and minimum Rtv results for models in both types of logic δ12SATρ, δ22SATρ

and RAN2SAT.

Model Min Max Model Min Max

A1 0.0000 0.0246 Q1 0.0000 0.0364

A2 0.0003 0.0573 Q2 0.0002 0.0712

A3 0.0000 0.0962 Q3 0.0001 0.1327

A4 0.0000 0.1469 Q4 0.0000 0.1840

A5 0.0000 0.0347 Q5 0.0003 0.0804

A6 0.0004 0.0624 Q6 0.0013 0.0926

A7 0.0001 0.1031 Q7 0.0006 0.1219

A8 0.0000 0.1423 Q8 0.0002 0.1587

A9 0.0005 0.059 Q9 0.0028 0.0929

A10 0.0000 0.1067 Q10 0.0007 0.1225

A11 0.0002 0.1413 Q11 0.0003 0.1596

A12 0.0000 0.188 Q12 0.0002 0.1979

A13 0.0027 0.0984 Q13 0.002 0.1581

A14 0.0009 0.1288 Q14 0.0047 0.1542

A15 0.0015 0.1678 Q15 0.0033 0.2084

A16 0.0008 0.2149 Q16 0.0018 0.1987

RAN2SAT 0.0004 0.1764
Note: The results highlighted in yellow indicate the highest number in the column and the green indicates the
smallest number in the column.

6.5. Synaptic Weight Analysis
The mean is important because it signifies the location of the dataset’s centre value, it contains

information from each observation in a dataset. When a dataset is skewed or contains outliers, the
mean may be untrue. We are utilizing various statistical tests to aid us comprehend the behaviors
of synaptic weight to deduce information about the performance of logic in the training phases for
further inquiry in synaptic weight distribution. The descriptive statistic of mean synaptic weight is
a novel perspective in synaptic weight analysis, and we consider the mean of full logic to obtain a
meaningful result in this analysis of our study by using the following formula:

Mean of δ2SAT =
η×υ

∑
i=1

(

η

∑
i=1

Wri +
η

∑
j=1

Wrj +
η

∑
j=1

Wrjrj+1

λ1
) (37)

where Wri = ±0.5 synaptic weight for first-order logic, Wrj = ±0.25 synaptic weight for second-order
logic literals, Wrjrj+1 = ±0.25 synaptic weight for second-order logic clauses. An example of the
formula is shown as follows:{

δ2SAT = ¬a ∧ b ∧ (¬e ∨ ¬ f ) ∧ (¬k ∨ l)
Mean of δ2SAT = −.5+.5+(−.25−.25−.25)+(−.25+.25+.25)

6 = 0.0833
(38)

The center value located in a dataset is carries a piece of information from every observation in
a dataset; accordingly the mean will give the information of the center value for all synaptic weight
in logic, where they affect together in cos function on training phases, in this study the mean for
100 combinations been calculated in training phase as sampling size for each logic in both type of
δγ2SATρ, so we have 100 individual results for the means that have the same characteristic in two
parameters Y and ρ. It is worth noting that all means’ values were tested first using appropriate tests
that yielded significant p-values to ensure a correct outcome. The logic value signifies that features
will be statistically defined by the curve of probability density function f (x), representing points and
(boxplot and whiskers), denoted as (Raincloud Plot), and we want to achieve the following by using
these figures:

(a) The probability density function f (x) the curve will give an accurate result data behaviors
(symmetric or skewness) so that we can determine if there is an outlier or if all value is
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distributed normality in the δ12SATρ and δ22SATρ logic (a normal bell curve indicating there
is no outlier, and this logic has a high probability of achieving satisfaction in terms of Y and ρ).

(b) The representing points the spread of mean values, while the boxplot and whiskers explain
the amount of spread around the median, along with the details of an outlier from the median
value given by whiskers sides.

This investigation will look at the impact of mean value analysis in evaluating the DHNN −
δ2SAT during the training phase. We consider the highest λ1 in each logic systems combination to
calculate the mean, so we have λ1 between 48,50 to obtain more accurate results. In the training phase,
the synaptic mean value was determined using the ES effect to uncover inconsistent interpretations
that offer us a basic understanding about the behavior of logic and achieving satisfied. There are
4 figures for both types of δγ2SATρ, each figure includes a probability density function curve, the
representing point, and (boxplot and whiskers), its classification depending on the Y values in both
types of δγ2SATρ, where they have the same structure because it is the key affected parameter in the
mean values discussed as follows: For both δ12SATρ and δ22SATρ:

(a) When Y = 0.6 noted the following from Figure 14:

(a) 

 
(b) 

Figure 14. The Raincloud Plot analysis for (a) δ12SATρ, (b) δ22SATρ synaptic weight means when
Y = 0.6.
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δ12SATρ probability function curve shows thin-tailed on two sides, so it is fairly to be a
symmetric ship, which indicates that outliers are infrequent (an observation is considered an outlier
if it differs numerically from the rest of the data), and the values for the mean tend to be normal for A
(1,2,3,4), whereas the probability function curve Q3,4 are similar in behavior for δ12SATρ. It is fairly
to a symmetric ship, so it has thin tailed on two sides and rare outliers, but Q1,2 shows different
results because it tends to be non-symmetric by the heavier tail on the left which means that there
are a lot of outliers. This result will be supported by the boxplot and whiskers. When we look at
interquartile ranges, IQR (the lengths of the boxes), the longer it is, the more dispersed the data are,
and the shorter it is, the less dispersed the data are. It can be observed that the δ12SATρ is highly
dispersed from the median compared to δ22SATρ since the IQR range is higher in A (1,2,3,4) than Q
(1,2,3,4). In addition, in terms of outlier, when checking a box plot, an outlier is defined as a data point
that lies outside the box plot’s whiskers, the δ12SATρ and δ22SATρ have the approximate behavior of
a huge outlier, but it can be noted that the δ12SATρ has more outlier than δ22SATρ because ES could
not achieve inconsistent interpretation in the training phase due to the δ22SATρ models structure that
leads to a random value for synaptic weight. Finally, the boxplot clearly shows that the distribution
is nonsymmetric for δ12SATρ and δ22SATρ, as previously explained (the distribution is symmetric
when the median is in the center of the box and the whiskers are nearly the same on both sides of the
box), in both logic systems. The reasons for these results are:

In terms of Y parameter, the number of first-order logic that has a p(xm) = 0.4 in logic value
that pulls the logic curve to the sides because the suboptimal synaptic weight for first-order logic
is clearly in the distribution tail and box-whiskers plot also δ22SATρ has more 2SAT than δ12SATρ

for the same Y parameter, and that reflects in the spread of value in the boxplot, which is high in
δ12SATρ. This indicates a high variation between the mean values ES failed to find a consistent
interpretation. In terms of ρ parameter, from the boxplot also, we can observe that the effect of ρ gives
more negative synaptic weight, but we should also consider the value of WBB that was positive in
clauses (¬ri ∨ rj), (ri ∨ ¬rj) and (ri ∨ rj) that affected 2SAT clauses mean values, because it is noted
in δ22SATρ there is no effect for ρ, as mentioned previously, it has more 2SAT clauses than δ12SATρ

for the same Y. Therefore, the ES tend to obtain consistent interpretation that is reflected in the mean
values of whole synaptic weight logic. Conversely, for δ12SATρ the effect of ρ is clearer in the mean
values, with most points of the values located on the negative side.

(b) When Y = 0.7 noted the following from Figure 15 as follows:

The probability function curve for δ12SATρ exhibits the same behavior for Y = 0.6, indicating
that it is a symmetric ship with normal mean values. It has a thin tailed on two sides, so outliers are
infrequent. For δ22SATρ it is a little different, all Q (5,6,7,8) is symmetric. Then, the mean values tend
to be normal and have a light tail, except for Q6, as we see in the curve, it is a fat tail, therefore there
are a lot of outliers on both sides. The boxplot and whiskers tell the same story for Y = 0.6. When we
look at the box side, we can see that the δ22SATρ is highly dispersed from the median compared than
the δ22SATρ because the value of IQR is higher in A (4,5,6,7) than the Q (4,5,6,7). Moreover, in terms
of an outlier, we can observe that the δ12SATρ and δ22SATρ both have the approximate behavior
of a huge outlier, but the δ12SATρ is more outlier than δ22SATρ except for Q6. Most logic has an
outlier and, at the same time, is a short box (which implies that high-frequency data tends to be more
fat-tailed). Finally, from the boxplot, the non-symmetric shape in both for δ12SATρ and δ22SATρ can
be seen clearly. The reasons for these results are justified as follows:

In terms of Y parameter, the number of second-order logic clauses that have a p(xm) = 0.3 is
considered a bit high, especially in high λ1 which generates EΘδ2SAT 	= 0 that pulls the logic curve to the
two sides because the suboptimal synaptic weight is clearly in the tail of probability curve distribution
and boxplot-whiskers. For δ22SATρ, it has more 2SAT clauses than δ12SATρ, for the same Y parameter.
This reflects in the spread of value in the boxplot at its highest more than in δ12SATρ. Therefore, it
shows a high variation between mean values because ES failed to find consistent interpretations. In
terms of ρ parameter, boxplot in δ12SATρ and δ22SATρ are reflected in a negative synaptic weight
value. Both models have the parameter of Y = 0.6, the spread of data affected by ρ in 2SAT clauses and
it affects the value of the mean which tends to be positive, as we mentioned previously. Finally, as seen
in the Q6, the reasons for right fat-tailed the number of high second-order logic sentences that generate
suboptimal synaptic weight, resulting in positive mean values.
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(a) 

(b) 

Figure 15. The Raincloud Plot analysis for (a) δ12SATρ, (b) δ22SATρ synaptic weight means when
Y = 0.7.

(c) When Y = 0.8 is observed from Figure 16 as follows:

Where the 2SAT clauses are the common clauses, for δ12SATρ the curve shows semi normal
ship in A (9.11,12) with a semi skewed in A10, the light tail on the two sides with less outlier is in all
δ12SATρ. On the other side, δ22SATρ gives near result where Q (10,12) is fairly to be symmetric ship,
the mean values tend to be normal, it has a thin-tailed in two sides, Q (9.11) tend to be non-symmetric,
the light tail in the two sides with less outlier is on all δ22SATρ. The boxplot and whiskers for
δ12SATρ and δ22SATρ, is highly sparse from the median comparison because the IQR range is higher
in A (9,10,11,12) than Q (9,11,12), and shorter in Q10. In the terms outlier, from a box plot whiskers,
the δ12SATρ and δ22SATρ have approximate behavior of huge outliers on both sides, but we can note
the Q11 is more outlier on the left than others and Q9 is more outlier on the right. Finally, based on
the boxplot, it clarifies both logic systems have non symmetric curves. The reasons for these results
are justified as follows:

In terms of Y parameter, the number of first-order logic clauses that have a small appearance
probability that makes the range values of mean is high in the two previous Figures 14 and 15. It
is clear here in these figures the δ12SATρ, δ22SATρ obtaining (0.5) synaptic weight is small, so most
of the means value range is small that led to less spread curve line, on the other side, the high
representation of 2SAT clauses makes the length of the box highest because the volatile in the mean
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values of 2SAT clauses it gives a different result depending on negative literal, where (¬ri ∨ rj),
(ri ∨ ¬rj) and (ri ∨ rj) have the mean values different from (¬ri ∨ ¬rj) the effect also by ES algorithm
searching and that effect in cost function in Equation (12), that pull the logic curve and boxplot-
whiskers into sides, that reflects in the spread of values in boxplot its highest than in Y = 0.6, 0.7. In
terms of ρ parameter, its high effect here, in boxplot in δ12SATρ and δ22SATρ is clearly in the range
of values, most of it full in the negative side, more clearly in Q, A( 11,12) because the mean values of
full negative second-order logic clauses it is highest here as we clarify in FNAE matric. It is also noted
for Q (9,10), A10 is in the positive side because the ρ is small therefore, the mean will be positive
and ES algorithm searching tend to find inconsistent interpretation. This indicates the effect of the
parameter ρ but A9 still has first-order logic, which makes the data spread in two sides with light tail.
However, in Q10 and Q12, the tail because the extreme mean values that come from full negative
clauses and first-order logic clauses.

(a) 

(b) 

Figure 16. The Raincloud Plot analysis for (a) δ12SATρ, (b) δ22SATρ synaptic weight means when.

(d) When Y = 0.9 is observed from Figure 17 as follows:
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(a) 

(b) 

Figure 17. The Raincloud Plot analysis for (a) δ12SATρ, (b) δ22SATρ synaptic weight means when
Y = 0.9.

The δ12SATρ probability function curve indicates that it is reasonable to be a symmetric shape
in A(15,16), but A14 tends to be non-symmetric, with a thin tail in two sides, implying that outliers
are infrequent. Whereas A13 is left–right skewed and heavy-tailed, which implies that there a lot
of outliers on the left, but in δ22SATρ, Q (13,14,16) is symmetrical. While Q15 tends to be non-
symmetric, they have a thin tailed on two sides, implying that outliers are infrequent. Moreover, Q14
is heavily tailed which indicates there is a lot of outliers, but Q13, 16 have light tails and outliers
are infrequent. When we look at interquartile ranges, we can observe that δ12SATρ, A (15,16) is
considerably distributed from the median compared to A (13,14) because the IQR range is similarly
high in δ22SATρ. Meanwhile, Q (13,15,16) is highly dispersed from the median compared to Q (14)
because the IQR range is highest in terms of an outlier. When reviewing box whiskers, the δ12SATρ

and δ22SATρ have the approximate behavior of a huge outlier however, we can note that Q, A (13,14,)
is more outlier than Q, A (15,16). Finally, from the boxplot, it is clearly the non-symmetric for δ12SATρ

and δ22SATρ as we previously mentioned. The reasons for these results are justified as follows:
In terms of Y parameter, the number of second-order logic clauses that have the smallest

appearance, so the mean values are high, is clear in the δ12SATρ, δ22SATρ figures. Moreover, the
majority of 2SAT clauses representing, make the spread in all length box highest in δ12SATρ, δ22SATρ
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because of the volatility in the mean of 2SAT clauses, as mentioned previously. This effect in the
logic curve and pulling the logic curve into the two sides also for boxplot-whiskers, which reflect
in the dispersion of value in boxplot is more than Y = 0.6, 0.7. In terms of the ρ parameter, it has a
high effect as well, in the boxplot in δ12SATρ and δ22SATρ, it is clearly in the range of value, most
of it fails in the negative side also more clearly in Q, A (15,16) because the mean of full negative
second-order logic clauses is highest here. As we explain in the FNAE metric, for other logic A, Q (14,
13) still has more first-order logic, which causes the mean spread in two directions and a heavy tail in
Q14 and A13 due to the extrema value that occurs due to the full negative clauses and second-order
logic clauses.

From this result, we can note the significance of the synaptic weight analysis; it gives a summary
of the search space area for a specific algorithm in training phases, and it is clarified by the mean
synaptic weight results, which give the center of search space (optimal) and the wide by the range of
spread (suboptimal) from the previous result the mean synaptic weight gives a general perspective
for the mechanism of ES algorithm in this search space. Thus, we can observe the behavior of working
in this limited space, as well as the behaviors of obtaining a solution using optimal and suboptimal
synaptic weights. The ES has a unique search space that is heavily influenced by the number of
neurons and the structure of logic.

6.6. The Limitation of the DHNN-δ2SAT
One of the limitations of DHNN − δ2SAT in this study is that the proposed hybrid network

DHNN only considers propositional logic programming. The DHNN is unable to embed other variant
of logic, such as predicate logic, fuzzy logic, or probabilistic logic due to the nature of Hopfield Neural
Network proposed by Pinkas [56] that are limited to symmetric connectionist network, as well as the
DHNN’s low storage capacity and the cost function proposed by Wan Abdullah (1992), which only
considers bipolar neurons. Conversely, this study takes a number of neurons limits is less than 52
because of ES. Consequently, as we improve, will replace ES by metaheuristics such as Artificial Bee
Colony Algorithm [57] and Election Algorithm [58]. Despite DHNN flexibility, δ2SAT’s the quality
of solutions offered needed to be improved. We can increase the iterations numbers required in our
simulations by increasing the number of learning. The proposed model may yield more variation
neurons, less errors, and a global minimum solution with more iterations.

6.7. Summary
In this section, we provide a brief summary of the beneficial properties of the logical structure

of the proposed model; moreover, we provide a simple summary of the most important accom-
plishments of the proposed logic system, clarifying the findings given in the Results and Discussion
section with respect to the following points:

(a) Probability logic phases were applied to introduce various models to address dataset-related
requirements. Notably, one of the most significant advantages of δkSAT is that it can generate
multifarious models by controlling parameters that are revealed from the dataset features
in the logic system. It is a flexible logic system, but this is not discussed in this study. The
parameters can be used to generate models of logic that can be systematic when p(xm) = 0,
transforming to 2SAT and when p(ym) = 0, it becomes first-order logic or it can be high-
order non-systematic when k = 3, and it can be SRAN3SAT for order k = 1, 2, 3 or k = 2, 3
or k = 1, 3 by adding a new parameter p(zm). In this case, regarding the probability of third
clauses, we consider the probability concept p(zm) + p(ym) + p(xm) = 1, when p(ym) = 0 and
p(xm) = 0, it becomes 3SAT. The main differences between δkSAT and other logic systems such
as YRAN2SAT, RAN3SAT, and RAN2SAT, as well as other systematic logic systems such as
2SAT and 3SAT, are the factors of probability, wherein the dataset will choose the best structure
by controlling the probability parameter; in addition, the terms of negative literals determined
from the dataset and distributed in clauses depend on the probability parameter, whose two
main features render the δkSAT unique.

(b) The testing and the training phases were examined. By applying Equations (24) and (25) in the
testing phase, the results show that the proposed model obtained optimal synaptic weight after
checking the clauses’ satisfaction. It also generated optimal synaptic weight through the WA
method for the small number of neurons and high parameter values. Equations (26) and (27) in
the training phase showed that the efficiency of the probability logic phase produced various
logical structures in the DHNN compared to the current systems.

(c) A novel analysis of the synaptic weight for DHNN − δ2SAT was introduced, which was
termed the descriptive statistic of mean synaptic weight. Previously, there have been various
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statistical tests used to study the behaviors of synaptic weight to deduce information about
the performance of a proposed logic system in the training phases. Whereas, in this study, the
descriptive statistical method analyzed the synaptic weight distribution by obtaining the mean
of the synaptic weight in the testing phase.

(d) Notably, in the Results and Discussion section, the sample size in Equation (5) gives us the best
number of negative literals for the desired logic needed to obtain satisfaction. Of particular
significance are the models δ12SATρ and δ22SATρ, which have a high proportion (ρ = 0.9)
and high probability (Y = 0.9) introduced by probability logic phases, have the best structure
as clarified by the measures used in the study (PON, NAE, and FNAE), and tended to be the
best models in the training and testing phases, which are also shown by the similarity index
measures. This result is the opposite of that obtained by Zamri et al. [24], which concluded
a value of r = 0.5 for negative literal works efficiently in the logic phase and yielded a better
structure than (r = 0.1, 0.9). The reason behind these contrary findings is that the proportion
is dependent on the d value in Equation (6), which gives a margin of error dependent on the
Z value; additionally, there is the probability of second-order logic Y drawn from the dataset,
which affected the δγ2SATρ models—all these factors rendered it the best in terms of logic
structure.

(e) In this study, the probability distribution from the contributed data set successfully generated an
efficient, new logical structure for a DHNN. The discussion section considered the introduction
of the comparative analysis of the δ2SAT with other existing SATs, for which the proposed
model was superior in several aspects, as shown in Table 18.

Table 18. A summary of comparative analysis between δ2SAT and other SATs.

Contribution δ2SAT rSAT MAJ2SAT 2SAT RAN3SAT RAN2SAT YRAN2SAT

Organized phase
√ √

System for selecting clauses
√ √

System for selecting negative literals
√ √

Systematic structure
√ √ √

Non-Systematic structure
√ √ √ √ √ √

7. Conclusions and Future Work

It is critical to create a non-systematic logical framework in a DHNN, employing parameters
conducive to building a flexible final neuronal state. This study introduced a new probability logic
phase that assigns the probability of the first- and second-order clauses and the desired negative
literals appearing in each sentence, which helped to address the requirements of datasets. Statistical
tools govern the creation of Θδ2SAT during the probability logic phase. The novel logic probability
phase of the proposed δ2SAT model provides a new enhancement with which to shape the logic
structure according to the dataset, for which it was found that these models have high values in two
parameters (Y = 0.9, ρ = 0.9) of two δγ2SATρ types, which introduced efficient logic structures in the
probability logic phase. The new logic was embedded in the DHNN − δ2SAT by reducing the logical
inconsistency of the corresponding zero-cost function’s logical rule. The achieved cost function that
corresponds to satisfaction was used to calculate the synaptic weight of the DHNN’s effectiveness
with a δ2SAT logical structure, which was examined using three proposal metrics in comparison with
state-of-the-art methods, such as 2SAT, MAJ2SAT, RAN2SAT, RAN3SAT, YRAN2SAT, and rSAT. The
final neuron state was assessed based on various initial neuron states, statical method parameters,
and various metric performances, such as learning errors, synaptic weight errors, energy profiles,
testing errors, and similarity metrics, which were compared with existing benchmark works. To
further demonstrate the efficiency and robustness of the proposed Θδ2SAT , it was validated using
four different second-order probability distributions with four different proportions of extensive
simulations. Further, a new prospective logical investigation was introduced in this study, which
consisted of the analysis of the mean of synaptic weight for DHNN − δ2SAT to evaluate the existence
of a flexible logical structure. The findings demonstrated that the proposed δ2SAT was successful in
achieving a flexible logical structure with a prevailing attribute dataset compared to other state-of-
the-art SAT. For future work: (1) A metaheuristic analysis of the probability logic phase would aid
the selection of the negative literals’ positions in a logic system. (2) A metaheuristic analysis of the
training phases would aid the satisfaction of Equation (12). (3) A metaheuristic analysis of the testing
phases would aid the generation of a vast range of space solutions. (4) Synaptic weight analysis can
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be applied in the training phases to address the effects of the energy function and global solutions on
the synaptic weight. Moreover, we can add the measure of variability to address the deviation in the
results. Notably, the robust architecture of ANNs integrated with our proposed logic would serve
as a good foundation for real-life applications such as Natural Disaster prediction. In this context,
each neuron would represent the attributes from the data, such as rainfall trends, river levels, and
drainage and ground conditions. These attributes will be embedded into the logic-mining approach
proposed by [45], which will lead to the formation of induced logic, which, in turn, has predictive
and classificatory abilities. In other developments, the proposed logic system would be indispensable
in finding the optimal route in the Travelling Salesman Problem.
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Abbreviations

Notation Explanation

AI Artificial Intelligence
DHNN Discrete Hopfield Neural Network
ANN Artificial Neural Network
CAM Content addressable memory
SAT Satisfiability
HORNSAT Horn Satisfiability
2SAT 2 Satisfiability
3SAT 3 Satisfiability
RAN2SAT Random 2 Satisfiability
RAN3SAT Random 3 Satisfiability
MAJ2SAT Major 2 Satisfiability
YRAN2SAT Y-Type Random 2 Satisfiability
GRAN3SAT G-Type Random k Satisfiability
PSAT Probabilistic Satisfiability Problem
rSAT Weighted Random k Satisfiability
PMAXSAT partial maximum satisfiability
GA Genetic Algorithm
ES Exhaustive Search
HTAF Hyperbolic Tangent Activation Function
WA Wan Abdullah method
CNF Conjunctive Normal Form
RMSE Root-Mean-Square Error
PON Probability of total negative
NAE Negativity Absolut Error
FNAE Full negativity Absolut Error second clauses
WFNAE Weight Full negativity Absolut Error
ρ0 pre-defined proportion range
ρ negative literal proportion
α Significance Level
Z the upper α/2 point of the normal distribution
w Number of learning in probability logic phases
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τi literal

T(1)
x First-order clause

T(2)
y Second order clause

Y Probability second-order logic range
λ1 Number of literals/neurons
λ2 Total clauses
x Number of the second-order clauses
y Number of the first-order logic clauses
Θδ2SAT General formula of δ2SAT
Wij Synaptic weight between i and j
Wii Synaptic weight of neuron i
Fdesierd Maximum fitness
Fi Current fitness
WE Expected Synaptic weight that obtained by Wan method
WA Actual synaptic weight
ξ The Total of negative literal in logic
p(ym) The probability of obtaining second-order clauses
ξ2SAT The number full negativity second-order clauses
λ2SAT The number of second-order
λ2SAT The mean number of second-order clauses
HΘδ2SAT Minimum energy value
Hmin

Θδ2SAT
Final energy

RG Ratio of global minimum solutions
GΘδ2SAT Number of global minimum solutions
Si Neuron state
Smax

i Benchmark neuron state
Sokal Sokal and Michener Index
Rtv The Ratio of cumulative neuronal variation
hi local field
b, b∗ Counter
υ Number of Learning
η Number of neuron combination
ϕ Number of Trials
Tol Tolerance value
R Relaxation rate
φ Learning iteration
θ Threshold constraint of DHNN
EΘδ2SAT The cost function of the DHNN-YRAN2SAT
X The arithmetic mean
X̃ The median
σx Standard deviation
Q1 First quartile
Q2 Second quartile
Q3 Third quartile
IQR Interquartile range
LF Lower fences
UF Upper fences
f (x) Probability density function for random variables
W∗

s
Smallest of absolute values of the sum of xi in Wilcoxon test

W
Wilcoxon test value (sum of smallest and biggest of absolute values of
the sum xi)
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Abstract: Traditional gas pipeline leak detection methods require task offload decisions in the cloud,
which has low real time performance. The emergence of edge computing provides a solution by
enabling offload decisions directly at the edge server, improving real-time performance; however,
energy is the new bottleneck. Therefore, focusing on the gas transmission pipeline leakage detection
scenario in real time, a novel detection algorithm that combines the benefits of both the heuristic
algorithm and the advantage actor critic (AAC) algorithm is proposed in this paper. It aims at
optimization with the goal of real-time guarantee of pipeline mapping analysis tasks and maximizing
the survival time of portable gas leak detectors. Since the computing power of portable detection
devices is limited, as they are powered by batteries, the main problem to be solved in this study is
how to take into account the node energy overhead while guaranteeing the system performance
requirements. By introducing the idea of edge computing and taking the mapping relationship
between resource occupation and energy consumption as the starting point, the optimization model
is established, with the goal to optimize the total system cost (TSC). This is composed of the node’s
transmission energy consumption, local computing energy consumption, and residual electricity
weight. In order to minimize TSC, the algorithm uses the AAC network to make task scheduling
decisions and judge whether tasks need to be offloaded, and uses heuristic strategies and the Cauchy–
Buniakowsky–Schwarz inequality to determine the allocation of communication resources. The
experiments show that the proposed algorithm in this paper can meet the real-time requirements of
the detector, and achieve lower energy consumption. The proposed algorithm saves approximately
56% of the system energy compared to the Deep Q Network (DQN) algorithm. Compared with
the artificial gorilla troops Optimizer (GTO), the black widow optimization algorithm (BWOA), the
exploration-enhanced grey wolf optimizer (EEGWO), the African vultures optimization algorithm
(AVOA), and the driving training-based optimization (DTBO), it saves 21%, 38%, 30%, 31%, and 44%
of energy consumption, respectively. Compared to the fully local computing and fully offloading
algorithms, it saves 50% and 30%, respectively. Meanwhile, the task completion rate of this algorithm
reaches 96.3%, which is the best real-time performance among these algorithms.

Keywords: edge computing; deep reinforcement learning; heuristic algorithm; task offloading;
resource allocation

MSC: 68W99

1. Introduction

With the advent of 5G, high-performance computing and other technologies in in-
dustry have developed in the direction of high real-time engagement and low energy
consumption, and many delay-sensitive and computationally intensive applications and
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services have emerged. Although cloud computing can provide sufficient computing
resources, a large amount of traffic generated in the process of task delivery to the cloud
will likely lead to network congestion, unpredictably high delay, and massive transmis-
sion energy consumption, and a distributed computing method is needed to solve these
problems. Edge computing makes this feasible. To move computing to the edge of the
network solves the problem of high latency of cloud services and makes up for the lack of
computing resources of end devices to a certain extent.

Although edge computing provides a feasible solution for such scenarios, it entails the
problem of using limited resources to realize high real-time performance and low energy
consumption. Much research has been performed in this field, with good results. The
main concern is to balance low latency and low energy consumption, which can effectively
solve the offloading problem when the attributes of the task set to be processed are known.
However, such solutions have the common limitation of low robustness, which will lead
to a chain reaction when unexpected tasks enter the system, sharply degrading system
performance. This is more likely to occur when tasks arrive in real time. Sun et al. [1]
proposed a task offloading algorithm based on a hierarchical heuristic strategy, aiming
to minimize the task delay and energy consumption, but it assumes the task set to be
scheduled is known, without taking into account sudden tasks. Similarly, Li et al. proposed
a task offloading algorithm based on deep reinforcement learning, which is based on a
known task set, to schedule tasks [2].

Taking the leak detection of a natural gas transmission pipeline as an example, once a
leak occurs, there is a great danger. Detectors need to work in the leak area. The faster they
locate the leak point, the less the security risk; hence this scenario demands high reliability
in real time. Many portable gas leak detectors depend on the collection of infrared or other
spectral images for image analysis [3]. Because the detector must constantly change its
position during operation, it needs to feedback results immediately so that it will not miss
the leak point. However, due to the size of the detector, its computing and battery capacity
have certain limitations. It is difficult to complete some complex recognition tasks on time,
which greatly affects detection efficiency and accuracy. Figure 1 shows the workflow of the
solution. By introducing edge computing, complex image processing tasks generated by
the detection equipment can be uploaded to the cloud and processed quickly, which can
enable the accurate and quick location of the leak point.

 

Figure 1. Workflow of edge computing in natural gas pipeline detection.

This paper proposes a natural gas leak detection algorithm that combines edge comput-
ing task offloading with portable natural gas leak detection technology—a real-time multi-
leak detection algorithm based on the improved advantage actor-critic (AAC) method—to
improve the detection efficiency and endurance of instruments. We consider a three-tier
edge computing architecture with cloud-side and end-to-end collaboration, where the
portable gas leak detector is at the end of the system and has some computing power
itself. To improve the efficiency and range of the detector, the image analysis task must be
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offloaded, so as to determine where to process the task and allocate resources to it. The
current system state is determined, and this is input to the constructed AAC network to
determine the processing position of tasks in the system. The results obtained from the
network are optimized using the proposed heuristic algorithm. At the same time, the
allocation strategy of communication resources is determined, and tasks are scheduled
and executed according to the offloading results. By analyzing the problem, improving
the detection efficiency and range of the existing detection instruments can address the
objectives in the edge computing task offloading problem, that is, to improve the real-time
performance and minimize the energy consumption of the edge computing system as much
as possible. This paper makes the following contributions:

1. The system real-time requirements and energy consumption limits are modeled in a
unified manner. Tasks arrive and are unloaded in real time in order to be close to the
real situation to the maximum extent, which enables the proposed algorithm in this
study to achieve good practical relevance.

2. A real-time multi-leak detection algorithm based on the improved AAC is proposed
to solve the problem in that traditional reinforcement learning methods are difficult to
converge and traditional heuristics cannot fully consider various influencing factors.
The proposed algorithm in this paper allows the AAC algorithm to complement
the traditional heuristics, and the AAC algorithm can fully take into account the
impact of various environmental factors on the unloading results while also taking
into account the long-term payoff of the system. However, the AAC algorithm is a
reinforcement learning algorithm whose convergence effect is not stable enough, so
this paper supplements the AAC algorithm with a heuristic algorithm to correct the
obtained results in order to ensure that the proposed algorithm can at least achieve
the performance of the heuristic algorithm. Moreover, through detailed mathematical
analysis, the condition that the proposed heuristic algorithm obtains the minimum
value of total system cost (TSC) is proved to hold.

3. We compare the performance of the proposed algorithm with that of the deep Q
network (DQN), the artificial gorilla troops optimizer (GTO), the black widow opti-
mization algorithm (BWOA), the exploration-enhanced grey wolf optimizer (EEGWO),
the African vultures optimization algorithm (AVOA), and the driving training-based
optimization (DTBO), and two other baseline algorithms. Experiments show that
the proposed algorithm reduces the energy consumption by 56% compared to DQN.
Compared with GTO, BWOA, EEGWO, AVOA and DTBO algorithms, the energy
consumption is reduced by 21%, 38%, 30%, 31% and 44%, respectively. The energy
consumption is reduced by 50% compared to the fully local computing algorithm,
and by 30% compared to the fully offloading algorithm. Meanwhile, the task com-
pletion rate of this algorithm reaches 96.3%, which is the best real-time performance
among these algorithms. In addition, the proposed algorithm in this paper has a faster
convergence speed than the DQN algorithm.

The remainder of this paper is organized as follows. Section 2 describes related work.
Section 3 presents the proposed system model and describes the problem. Section 4 details
the main steps of the proposed algorithm. Section 5 compares the performance of the
proposed algorithm with baseline algorithms such as DQN and GTO through experiments.
Section 6 concludes the paper.

2. Related Work

Many studies have been conducted on the task offloading problem of edge computing,
which is NP-hard, and all solutions thus far have been approximate. However, different
optimization techniques can be used such that the approximate solution converges to the
optimal solution. These solutions start either with machine learning or traditional means
such as greedy heuristics, integer optimization, branch delimitation, game theory, or convex
optimization. The two most important factors in edge computing are latency and energy
consumption.
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2.1. Traditional Task Offloading Methods

Kan et al. proposed a heuristic algorithm for offloading tasks to MEC servers con-
sidering radio and computational resources with the goal of minimizing the average task
latency, which was shown by experiments to achieve excellent results under different
latency requirements [4]. Due to the relative lack of infrastructure, they introduced drones
to assist in edge computing, and proposed a USS algorithm [5] that can satisfy the task
processing latency constraint in the multiuser case. Wang, Shen, and Zhao introduced a
dynamic penalty function in a study of edge computing in the smart grid domain, and
proposed an improved algorithm for solving Lagrange multipliers [6], which overcomes
the shortcomings of traditional grid systems that cannot provide deterministic services,
and can effectively improve the overall system revenue and reduce the average delay of
user tasks. Li et al. considered event-triggered decision systems, whose goal is to optimize
the average system revenue to satisfy the average delay constraint for different priority
services [7]. Ref. [8] presented designs of online computing task scheduling methods for
multi-server edge computing scenarios [8]. Sun et al. [9] considered an ultra-dense network
environment that supports edge computing. Constantly moving users dynamically gener-
ate computational tasks in the network, which need to be offloaded to the base station for
computation. In order to minimize the average delay given a limited energy budget, users
need to make mobility management decisions about base station association and switching
based on their service requirements without knowing future information.

System energy consumption has long been a concern among edge computing re-
searchers, as an important component of system cost, and especially in mobile edge
computing, where energy consumption directly affects system endurance and reliabil-
ity. Michael proposed a hybrid method based on particle swarm optimization and the gray
wolf optimizer [10] to optimize the energy consumption of MEC task offloading. Ding and
Zhang [11] proposed a game theory-based computational offloading strategy for massive
IoT devices, which improves data transfer and reduces task energy consumption using the
beneficial task offloading theory.

Delay and energy consumption factors are usually considered together, and are impor-
tant factors affecting the user experience. Researchers can decide whether to optimize delay
or energy consumption based on specific requirements. Some studies have considered
the minimum energy consumption while satisfying the latency constraint using heuristic
algorithms [12,13]. Others have proposed a more flexible optimization objective, synthe-
sizing both into a cost objective, where the weights of delay and energy consumption in
the cost formulation can be changed according to the case [14,15]. Ref. [16] considered
two different cases of adjustable and non-adjustable CPU frequency of APs. A linear
relaxation based approach and an exhaustive search based approach are proposed to obtain
the offloading decision for these two cases, respectively. The method aims to minimize
the total task ground execution delay and the energy consumption of the mobile device
(MD) [16]. In order to trade-off the two metrics of energy consumption and computational
latency, a Liapunov-based algorithm was proposed in Ref. [17] for computing task offload-
ing decisions in mobile edge computing systems. The algorithm greatly reduces the energy
consumption of the device while satisfying the latency constraint [17]. Ref. [18] investigated
the computational offloading and scheduling problem, which seeks to minimize the cost
per mobile device, where the cost is defined as a linear combination of task completion time
and energy consumption. In addition, the literature considers inter-device communication
and competition for computational resources. The problem is also defined formally using
a game model, and a decentralized algorithm is designed to achieve a pure policy Nash
equilibrium [18]. Tang et al. modeled the multi-user computational offloading problem
in an uncertain wireless environment as a non-cooperative game based on PT, and then
proposed a distributed computational offloading algorithm to obtain a Nash equilibrium,
which minimizes the user overhead [19]. Yi et al. considered that tasks are randomly
generated by mobile users and proposed a mechanism based on queuing model. This is
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used to maximize social welfare and achieve the equilibrium of the noncooperative game
among mobile users [20].

Task offloading algorithms based on the above studies are based on ideal mathematical
models, and cannot consider all the factors that affect the optimization objective, which
limits their task offloading performance. To solve this problem, a new class of offloading
methods has been proposed, using deep learning techniques, with good results.

2.2. Machine Learning Task Offloading Methods

To cope with the variability of edge computing application environments, Wang and Jia
et al. proposed a meta-reinforcement learning-based approach to solve the computational
offloading problem [21], which enables fast adaptation to dynamic scenarios without
updating too many parameters. A joint task offloading and bandwidth allocation problem
was considered for multiuser computational offloading, with the goal of minimizing
the overall delay in completing user tasks, using a DQN approach to find the optimal
solution [22].

Wang Jin et al. [23] found that studies using DRL for task offloading rarely focus on
the dependencies between tasks, and proposed a DRL offloading method that can address
dependent tasks. The general dependency of tasks was modeled as a directed acyclic
graph (DAG), and an S2S neural network captured the features of the DAG and output the
offloading strategy. The method can use delay, energy consumption, or tradeoffs of both as
optimization objectives.

In Ref. [24], the authors are the first to attempt to consider end-device energy con-
sumption in a deep learning-based modeling of MEC partial offloading schemes [24]. They
propose a novel partial offloading scheme EEDOS based on a fine-grained partial offloading
framework, in which the cost function comprehensively considers important parameters
such as residual energy of end-devices and energy consumption of previous application
components. Dai and Niu [25] used unmanned aerial vehicles (UAVs) to assist edge servers
for task offloading, minimizing the energy consumption of all mobile end devices by jointly
optimizing UAV trajectories, task association, and the resource allocation of computation
and transmission. They reduced the problem complexity by decomposing the joint op-
timization problem into the subproblems of UAV trajectory planning, task association
scheduling, and resource allocation of computation and transmission. A proposed hybrid
heuristic and learning-based scheduling strategy (H2LS) algorithm incorporated long short-
term memory neural networks, fuzzy c-means, deep deterministic policy gradients, and
convex optimization techniques.

As with traditional optimization techniques, most of the research on the application of
deep learning in offloading edge computing tasks focuses on the integrated consideration
of delay and energy consumption. To focus on only one of these aspects can bring the
results closer to the optimal solution, at the price of a narrow range of practical applications.
Yang and Lee proposed a deep supervised learning-based dynamic computing task of-
floading approach (DSLO) for mobile edge computing networks [26], minimizing the delay
and energy consumption by jointly optimizing the offloading decision and bandwidth
allocation problem. Cao et al. proposed a multi-intelligent deep reinforcement learning
(MADRL) scheme [27] to solve the multichannel access and task offloading problems in
edge computing-enabled Industry 4.0, which allows edge devices to collaborate and sig-
nificantly reduce computational latency and mobile device energy consumption relative
to traditional methods. Huang et al. [28] considered a mobile edge computing system, in
which each user has multiple tasks transferred to the edge server over a wireless network.
They proposed a deep reinforcement learning based approach to solve the problem of
joint task offloading and resource allocation. In Refs. [29,30], the authors proposed to use
deep reinforcement learning methods to solve the task offloading problem in mobile edge
computing, and made some progress, obtaining better latency and energy consumption
than when using deep learning [29,30].
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Although the above deep learning-based solutions have achieved good results, they
have limitations if we only consider how to optimize the latency and energy consumption
of task processing. In the problem addressed in this paper, each image analysis task is
generated in real time, and the optimization goal of low latency can cause some tasks
to have low processing latency, at the cost of some subsequent tasks that exceed their
deadlines; hence, they cannot guarantee overall high real-time performance. We propose an
AAC and heuristic policy-based task offloading algorithm that simultaneously considers
overall task execution in real time and low energy consumption, and use it to optimize the
performance of a portable gas leak detector. The algorithm reduces the energy consumption
of the detector as much as possible by jointly optimizing the task offloading location and
resource allocation problems while ensuring completion within the deadline.

3. System Model and Problem Description

3.1. System Model

The edge computing system (ECS) consists of a cluster of cloud servers, a wireless
communication base station with small edge servers, and K portable gas leak detectors, γ =
{U1, U2, U3, . . . . . . , Uk}; each detector Ui can generate in time order a series of independent
image recognition tasks, each task of all detectors is generated in real time and cannot be
split, and the set of tasks can be denoted by Гi = {Ti,1, Ti,2, Ti,3, . . . . . . Ti,N}; each task has
six attributes, and any task i can be denoted as Ti = {j, si, di, Di, cyi, ωi}, where j is the
serial number of the detector, si is the release time of task i (in seconds), di is the relative
deadline of the task, Di is the size of the data carried by the task (in Mb), cyi is the CPU
processing cycle required by the task, and ωi is its priority. An example of the system
model is shown in Figure 2. The cloud server has sufficient resources for the detectors,
so there is no need to consider the waiting and preemption of tasks in the cloud, and
only one task can be processed at a time on a detector. The task offloading algorithm
is deployed on the edge server in the communication base station, and the information
changes of each node are transmitted to the edge server in real time. In this model, the
tasks to be offloaded are generated by the detector in real time, and each task is indivisible.
Considering that the offloading decision requires knowledge of the global information of
the system, while the system that transmits the main task parameters is not a complete
model and the base station is very close to the detector and there is no conflict in the
transmission process, the offloading algorithm generates comparable and almost negligible
communication energy consumption and delay whether it is executed on the detector or
on the base station equipped with the edge computing server [1]. The edge server has
more arithmetic power and faster execution, so the communication base station is left
in charge of the communication function and makes the offloading decision, based on
which the detector offloads the computational task to the cloud or processes it locally.
If offloaded to the cloud, the cloud server will return the results after processing, and
the energy consumption of the detector during the offloading process includes that for
transmission and local processing.
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Figure 2. System model.

3.2. Description of problem

Since each task in the system can be chosen to be executed either locally or in the
cloud, an offloading decision variable is introduced to indicate the execution location of a
task,

πC
i =

{
0 Task executed locally,
1 Task executed in the cloud

(1)

The transmission power of all edge devices (detectors) is P. The data transmission
rate assigned for any task i is ri, the average CPU frequency of the cloud server is FC, and
the CPU frequency of the edge device is f L

i . Therefore, the time to locally execute task Ti of
edge device U is

tL
i =

cyi

f L
i

(2)

The local execution energy consumption of a task is

eL
i = a ∗

(
f L
i

)2 ∗ cyi (3)

If a task is unloaded, its unloaded transfer time is

tLC
i =

Di
P

(4)

The cloud processing time of a task is

tC
i =

cyi
Fc (5)

The offloading transmission energy consumption of a task is

eT
i =

Pi ∗ Di
ri

(6)

where a is the chip-related energy consumption coefficient of edge device U [31].
The mathematical model described in this paper must optimize the objectives of

the real-time system and the total energy consumption of edge devices for synergistic
optimization while considering load balancing. To achieve the joint optimization of the

83



Mathematics 2022, 10, 4812

above objectives, the model optimization objective is transformed to the total system cost
TSC,

TSC = min
ri ,πL

i

M

∑
1

(
1 − πC

i

)
∗ a ∗

(
f L
i

)2 ∗ cyi + πC
i ∗ E

Ei
∗ Pi ∗ Di

ri
(7a)

πC
i = {0, 1} (7b)

0 ≤ f L
i ≤ FL

i (7c)

0 ≤ Ei ≤ 1 (7d)

0 ≤
M

∑
i=1

ri ≤ R (7e)

where Ei is the remaining power percentage of edge device i, and E is the average power
percentage of all devices that are idle and must perform offload tasks.

Equation (7a) is the weighted sum of the local execution energy consumption and
offload transmission energy consumption for task i, and E

Ei
is the distance between the

remaining power of each device and the average power. A larger E
Ei

indicates that the
remaining power of the device is farther from the average power. To reduce the energy
consumption of the device, it has the opportunity to share more communication resources
(faster data transmission rate) when the system performs bandwidth resource allocation [1]

Constraints 7b, 7c, 7d, and 7e refer to the offloading decision variables, range of CPU
frequency variation per device, range of power percentage variation per edge device, and
range of data transfer rate variation per device, respectively.

The variables involved in the model are shown in Table 1.

Table 1. Model variables.

Symbol Definition

si Task i release time
di Task i relative deadline
Di Amount of data carried by task i
ωi Task i priority
πC

i Offload decision variables
tL
i Task i local execution time

tLC
i Task i offload transfer time
tC
i Task i cloud execution time

eL
i Task i local execution energy consumption

eT
i Task i offload transfer energy consumption

ri Task i assigned data transfer rate
Ei Percentage of power remaining in detector
E Average power percentage of detectors idle and performing offload tasks

TSC Total system cost

4. Task Offloading Algorithm

The proposed task offloading algorithm has two parts. The AAC algorithm gives the
scheduling location of the task. The initial offloading decision is obtained by the heuristic
algorithm, based on which the AAC network is updated. The heuristic algorithm can be
solved quickly for the NP-hard problem, but the suboptimal solution found by this method
has room for improvement. Reinforcement learning is used to optimize the obtained
unloading strategy. The algorithms are described below.

4.1. Heuristic Algorithm

The heuristic algorithm considered in this paper takes Equation (7a) as the opti-
mization objective. Since the optimization for the TSC is an NP-hard problem, the deep
reinforcement learning algorithm is used to first determine whether the new arrival task
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is to be offloaded, and the Cauchy–Buniakowsky–Schwarz inequality is used to derive
the transmission rate allocation, and thus the processing time for each task. If the process-
ing time exceeds the task deadline, the processing position of the task is redetermined
according to the priority of the task, and the transfer rate allocation is calculated. Iterations
continue until an approximate optimal solution is found.

The Cauchy–Buniakowsky–Schwarz inequality is often applied to quickly solve n-
dimensional inequalities [32] and its application to solve the system communication re-
source allocation can simplify computations and reduce the execution time of the offloading
algorithm. When using this inequality, we must first ensure that the left-hand side of the
inequality can be split into two non-negative expressions multiplied together.

Theorem 1. If the inequality R ∗ ∑M
1

πC
i ∗ E

Ei
∗Pi∗Di

ri
≥
(

∑M
i

√
πC

i ∗ E
Ei
∗ Pi ∗ Di

)2
satisfies both

R > 0 and ∑M
1

πC
i ∗ E

Ei
∗Pi∗Di

ri
≥ 0, the equality sign holds when and only when

r∗i =
R ∗
√

πC
i ∗ E

Ei
∗ Pi ∗ Di

∑M
i=1

√
πC

i ∗ E
Ei
∗ Pi ∗ Di

(8)

Additionally, when ri =r∗i , TSC obtains the minimum value.

Proof of Theorem 1. It is known that R is the total transmission rate of the system, which

is always positive, and each term in ∑M
1

πC
i ∗ E

Ei
∗Pi∗Di

ri
is greater than or equal to zero, which

satisfies the condition of use of the Cauchy–Buniakowsky–Schwarz inequality. Then the
following inequalities are solved by combining the constraints, and the specific solved
process is stated in Equation (9) for the optimization objective expression (7a) and its
constraint (7e):

R ∗ ∑M
1

πC
i ∗ E

Ei
∗ Pi ∗ Di

ri
≥ ∑M

i ri ∗ ∑M
1

πC
i ∗ E

Ei
∗ Pi ∗ Di

ri
≥
⎛⎝∑M

i

√
πC

i ∗ E
Ei

∗ Pi ∗ Di

⎞⎠2

. (9)

According to the Cauchy–Buniakowsky–Schwarz inequality, if there exists some ri not
equal to 0, the equality sign holds when and only when there exists a real number X such

that for every i = 1, 2, . . . , n, there is ri ∗ X +
πC

i ∗ E
Ei
∗Pi∗Di

ri
= 0, i.e.,

r∗i =
R ∗
√

πC
i ∗ E

Ei
∗ Pi ∗ Di

∑M
i=1

√
πC

i ∗ E
Ei
∗ Pi ∗ Di

(10)

and when ri = r∗i , TSC obtains the minimum value, and the theorem is proved. �

In the task scheduling process of the real-time edge system in this paper, not only
should we consider making the energy consumption of the edge devices as low as possible,
but the tasks should meet the deadline requirements to the maximum extent to improve
the real-time performance of the whole system. In traditional scheduling methods, often
only the remaining execution time or deadline of a task is used to reflect that the urgency of
task execution evaluation criteria is too singular. We propose a dynamic priority evaluation
method that integrates the initial priority, remaining execution time, deadline, and idle
time of a task. The dynamic task priority Ωi is composed of the preemption cost δi of the
task and the execution urgency ϕi,

Ωi = δi ∗ ϕi (11)
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where
δi =

ωi

tLC
i + tC

i
(12)

Tasks have different levels of importance. Equation (12) integrates the initial priority
of tasks and deadlines, which can ensure that important tasks can be completed on the
basis of as many tasks as possible that are close to the deadline and can also be executed,
which protects the tasks being executed to some extent. The task execution urgency is

ϕi = q
tLC
i +tCi
di−t (13)

where t is the current moment and q ∈ (1, ∞). The execution urgency of the task decreases
as the task is executed, which in turn gives a somewhat greater chance of execution for
newly arrived tasks.

4.2. Deep Reinforcement Learning Algorithms

To perform further optimization based on the task unloading decision obtained from
the heuristic strategy, a deep reinforcement learning model, AAC, is considered to perform
the unloading decision for the newly arrived task. The network structure of the model is
shown in Figure 3.

Figure 3. Advantage actor-critic network structure.

From Figure 3 above, we can see that the AAC network is composed of two sub-
networks, actor and critic, where the first two layers of the two sub-networks are shared,
in order to reduce the complexity of the model and speed up the network convergence.
Meanwhile, the hidden layers of both sub-networks consist of 256 × 128 neurons, which is
the best combination chosen after several attempts in the experiments. Through keeping
the other conditions of the experiment constant, only the number of neurons in the network
was allowed to increase evenly between 64 × 64 and 256 × 256. We found that too few
neurons make the training unstable and difficult to converge, while too many neurons lead

86



Mathematics 2022, 10, 4812

to overfitting. Optimal model performance is only achieved when the number of neurons
is varied to near 256 × 128.

The offloading decision is a prerequisite for resource allocation. We discuss the three
elements of the reinforcement learning-based offloading decision method: environment,
action, and reward.

1. Environment state S

The superiority of the state will have a great impact on the final training effect of the
model. In this model, the environment state includes the state of the task and the external
environment. The model is updated only when a new task arrives, and these arrive in
chronological order, so the task’s own state includes the properties of the new task, and the
external environment state has the remaining power Ei of each node in the system at this
time, the average remaining power E, the CPU speed f L

i of the node generating the task,
the average CPU speed FC of the cloud, and the number of tasks to be transmitted in the
system.

2 Action a

In the reinforcement learning model, the action is the decision made by the agent, and
there are only two actions in this scheduling model: transmission and non-transmission.

3 Reward function

The output of the reinforcement learning model is the probability pθ(a|S) of selecting
different actions in a certain state. To measure the goodness of an action, the system cost
TSC is used as the reward.

The AAC algorithm first defines an initial actor π to interact with the environment,
as shown in Figure 4. The collected information is used to train the critic network to
estimate the value function V, which is the sum of the rewards received by the system
after performing an action until the end of the interaction. The actor network is updated
and iterated until both networks converge. The actor network parameters are updated as
follows:

∇̃Rθ ≈ 1
N ∑N

n=1 ∑Tn
t=1

(
LSCn

t + Vπ
(
Sn

t+1
)− Vπ(Sn

t )
)∇logpθ(an

t |Sn
t ) (14)

θ = θ − η ∗ ∇̃Rθ (15)

where ∇̃Rθ is the gradient of the mean of the reward sum of multiple trajectories, and
θ is the parameter of the actor network. Since the optimization goal is to reduce energy
consumption while satisfying the real-time performance of the task, which is the opposite
of the goal of maximizing the reward of reinforcement learning, gradient descent is used to
update the network.

 

Figure 4. Trajectory of interaction between actor π and environment.
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4.3. Algorithm Process

We combine the heuristic algorithm and deep reinforcement learning algorithm, using
the AAC network for offloading decisions, and a heuristic algorithm for resource allocation,
as shown in Algorithm 1.

Algorithm 1: Offloading algorithm for edge computing tasks based on deep reinforcement
learning.

Input: Number of training rounds M, set of tasks GM∗L used for training, number of edge devices
N, CPU frequency f L

i , energy consumption factor α, transmission power Pi, CPU frequency FC of
cloud server, total data transmission rate R available to system, learning rate of actor and critic
networks
Output: Trained Advantage Actor-critic model, total energy consumption of system, and task
completion rate
1. Initialize model and related parameters;
2. Let actor π interact with environment
3. for i = 1 to M do

4. Storing j-th task in i-th subtask set in training set in a list;
5. Updating status of environment and storing it in the list;
6. Input environmental state parameters to actor network, and record action a selected by
network with probability p;
7. Determining value of offloading decision variable πC

i based on recorded actions;
8. while flag = True
9. Passing value of πC

i into Equation (7a) and using Equations (8) and (9) to
derive allocation of data transfer rate r;
10. Substitute r back into Equation (7a) to find value of TSC at this point,
and use Equations (4) and (5) to calculate expected transmission time tLC

i and execution time tC
i

for task;
11. if di < tLC

i +tC
i

12. Calculating priority of all tasks being transmitted and pending
transmission and forcing selection of lowest priority task to be executed locally;
13. end if

14. if All tasks that are subject to offload meet deadlines
15. flag = False
16. end if

17. Storing track data;
18. end for

19. Training critic network using stored trajectory data and storing output V of critic network
each time;
20. Training actor network once more with data stored in steps 6, 18, and 20;
21. end for

22. return Trained Advantage Actor-critic model, total energy consumption of system, along with
task completion rate;

The core part of Algorithm 1 uses a heuristic algorithm and the AAC network, which is
a deep reinforcement learning network model. In the edge computing scenario considered
in this paper, task offloading, and resource allocation is an NP-hard problem. At the
same time, the uncertainty of task arrival poses a great challenge for task offloading.
Facing this multi-objective optimization problem, traditional optimization techniques (e.g.,
linear programming) have difficulty in obtaining better results [33]. In addition, deep
reinforcement learning has two advantages in facing the above problem: (1) compared
with many one-time optimization methods, deep reinforcement learning can adjust the
strategy with the change of environment; (2) its learning process does not need to know
the relevant a priori knowledge about the law of network state change over time [34,
35]. In fact, the heuristic algorithm is the basis on which the present model can operate
efficiently, and the main purpose of the AAC is to further optimize the optimization results
derived from the heuristic algorithm. The heuristic algorithm performs the optimization
search by introducing the Cauchy–Buniakowsky–Schwarz inequality, which can reduce the
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number of iterations and greatly accelerate the solution efficiency by using the conclusion
of Theorem 1.

The AAC model is improved from the actor-critic model. In the actor-critic model,
both Q-network (Network to evaluate good and bad actions) and V-network (Network to
evaluate good and bad status) need to be estimated, which is not only time-consuming,
but also has greater uncertainty. In the AAC model, the expectation of the V-network is
directly used to estimate the Q-network, that is, the critic network is allowed to learn the
Advantage value directly instead of the Q value. In this way, the assessment of behavior
is not only based on how good the behavior is, but also on how much the behavior can
be improved. The benefit of the advantage function is that it reduces the variation in the
values of the policy network, and stabilizes the model, giving the AAC model superior
convergence.

5. Experimental Results and Analysis

Simulation experiments are used to demonstrate the performance of the proposed algo-
rithm. All parameters are chosen according to real scenarios. As shown in Table 2, the num-
ber of portable detection devices is set to 10, their computational power is 0.2 GCycles/s,
and that of the cloud is 10 GCycles/s. The transmission power (w) of the portable devices
is a random number in (0.1,0.2), with a total system transmission rate of 800 Mb/s. The
amount of data for each task is (10,40) Mb, and the required computation period is (0.01,0.3)
GCycles. The arrival time of the task conforms to a uniform distribution [36].

Table 2. Simulation parameters.

Parameter Value

Number of items of testing equipment K 10
Local computing capability f L

i 0.2 GCycles/s
Cloud server computing capability FC 10 GCycles/s

Transmitted power Pi (0.1,0.2) w
Total system transmission rate R 800 Mb/s

Computation cycles required per task cyi (0.01,0.3) GCycles

To demonstrate the performance of the improved AAC-based multi-leakage real-time
detection algorithm, the algorithm and the DQN algorithm are trained simultaneously in
the same environment. The proposed algorithm is also compared with two benchmark
algorithms, that is, task fully local computation and full offloading. Meanwhile, in order to
better represent the performance of the proposed algorithm in this paper, we also compare it
with a series of excellent heuristics, such as GTO [37], BWOA [38], EEGWO [39], AVOA [40]
and DTBO [41].

The variations in the total cost TSC per iteration based on the improved AAC multi-
leakage real-time detection algorithm and the DQN algorithm in this experimental setting
are shown in Figure 5. From Figure 5, it can be seen that the proposed algorithm in this
paper has nearly stabilized and the model reached convergence at 50 rounds of training,
while the DQN algorithm only shows a significant trough when the training reaches
700 rounds. Although both use a 256 × 128 network structure, the AAC algorithm allows
for more stable training and faster convergence due to the presence of the critic network.
The figure also shows that the total cost per round of the proposed algorithm is lower than
that of the DQN algorithm, so it is better in terms of overall performance. In Figure 6, the
vertical coordinate indicates the total system energy consumption. The energy consumption
variation curve of the improved AAC-based multi-leakage real-time detection algorithm is
approximately 56% lower than that of the DQN algorithm after convergence. The AAC
algorithm is improved on the basis of the DQN algorithm, which overcomes the problem
of unstable training of the DQN algorithm. Moreover, the AAC algorithm in this paper is
not used alone, it works as a further enhancement after the heuristic algorithm gets the

89



Mathematics 2022, 10, 4812

suboptimal solution of the model. Therefore, this algorithm can obtain a large improvement
relative to the DQN algorithm.

Figure 5. TSC based on improved AAC multi-leakage real-time detection algorithm and DQN
algorithm.

Figure 6. Total system energy consumption based on improved AAC multi-leakage real-time detec-
tion algorithm and DQN algorithm.
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Figures 7 and 8 compare the line graphs of the energy consumption of the improved
AAC-based multi-leakage real-time detection algorithm to the fully local computation
algorithm and the fully offloading algorithm. Since these two algorithms are not machine
learning algorithms, there is no training process, so it is not necessary to compare the
algorithm convergence here. They show that the system using the improved AAC-based
multi-leakage real-time detection algorithm has better total energy consumption than
the two baseline algorithms, thus saving approximately 50% of the energy consumption
compared to the fully local calculation, and saving approximately 30% of the energy
consumption compared to the fully unloaded algorithm. To make the experiments more
realistic, the test tasks have different amounts of data and complexity; thus, having them
all executed locally or in the cloud would result in higher energy consumption due to the
underutilization of system resources. At the same time, if we combine Figures 5–7 together
for comparison, we can see that the system energy consumption of the DQN algorithm
is around 9, which would be slightly higher than the 6.5 energy consumption for local
computation and 5.3 energy consumption for full offloading. This is due to the fact that
in the scenario considered in this paper, the task to be offloaded is so random that the
performance of the DQN algorithm is no longer sufficient for this scenario, and incorrect
predictions can waste a lot of energy.

Figure 7. Total system energy consumption based on improved AAC multi-leakage real-time detec-
tion algorithm with fully locally calculated system.

Figure 9 shows the comparison of the total system energy consumption between
the proposed algorithm and some current excellent heuristics. With a simple calculation,
we can conclude that the proposed algorithm saves 21%, 38%, 30%, 31% and 44% of
energy consumption compared to the GTO, BWOA, EEGWO, AVOA and DTBO algorithms,
respectively. If combined with Figures 6–8, it can be seen that all these heuristics used
for comparison in the experiments perform well. Nevertheless, the proposed algorithm
outperforms them. Thus, we can say with more certainty that due to the addition of
deep reinforcement learning, the performance of the traditional heuristic algorithm can be
brought to a higher level.
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Figure 8. Total system energy consumption based on improved AAC multi-leakage real-time detec-
tion algorithm with fully offloaded system.

Figure 9. Total system energy consumption based on improved AAC multi-leakage real-time detec-
tion algorithm with some excellent current heuristics algorithms.
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In this experiment we also obtained another metric to evaluate the performance of
the algorithms, namely the task completion rate. Based on the output of the code, we can
obtain the task completion rate of 96.4% for the proposed algorithm and 93.2% for the DQN
algorithm; the corresponding values were 92.8%, 90.3%, 89.4%, 94.3% and 91.1% for the
GTO, BWOA, EEGWO, AVOA and DTBO algorithms, respectively. The task completion
rates for the fully local computing and fully offloading algorithms were 86.7% and 93.4%,
respectively. According to the experimental results, the use of the proposed algorithm
in this paper allows the highest execution success rate of the tasks, indicating that this
algorithm has the best real-time performance and can ensure that as many tasks as possible
are completed before the deadline. The task completion rate of the fully local computing
algorithm is the lowest, which is mainly due to the high complexity of the task and the
limited computing power of the nodes.

From the experiments designed in this paper, we can know that this algorithm design
idea is reasonable and effective. It is based on the principle of using heuristic algorithm
for initial optimization at first, and then further optimization using deep reinforcement
learning. It can bring about more efficient task offloading for edge computing, which not
only ensures the real-time performance of the algorithm, but also further reduces the system
energy consumption compared to the current better optimization-seeking algorithms such
as GTO.

6. Conclusions and Future Work

We studied an edge computing task offloading and resource allocation problem in
a natural gas pipeline leak detection scenario, with the optimization goal of minimizing
energy consumption while ensuring high real-time performance of the system. Due to the
unpredictability of computational tasks, deep reinforcement learning was used to solve this
problem. Using the AAC algorithm framework, the final offloading strategy was obtained
by fully considering minimizing the overall system cost and continuously optimizing the
task offloading strategy, followed by optimizing the allocation of communication resources
through a heuristic algorithm based on the Cauchy–Buniakowsky–Schwarz inequality.
Simulation results show that this algorithm has a faster convergence speed compared to
the DQN algorithm, while the energy consumption is reduced by 56%. Although heuristics
such as GTO, BWOA, EEGWO, AVOA and DTBO have better performance than the DQN
algorithm, the proposed algorithm still saves 21%, 38%, 30%, 31% and 44% of energy
consumption compared to them, respectively. The energy consumption is reduced by 50%
compared to the fully local computation, and by 30% compared to the fully offloaded
algorithm. This algorithm also has the highest task completion rate with the highest real-
time performance. Furthermore, this paper proves a sufficient condition for the heuristic
algorithm to achieve a suboptimal solution using the Cauchy–Buniakowsky–Schwarz
inequality. From the performance of the DQN algorithm in the experiments, due to the
strong real-time nature of the scenario in this paper and the strong uncertainty of the system
environment, the model convergence speed of the reinforcement learning algorithm alone
is slow, and at the same time, incorrect offloading predictions also tend to lead to higher
energy consumption. Finally, the proposed algorithm in this paper is also not optimal for
certain application scenarios. This algorithm uses a complex deep reinforcement learning
model in order to meet the performance requirements of task arrival scenarios in real time.
In contrast, for deterministic scenarios where the set of tasks to be offloaded is known and
no prediction of future tasks is required, simpler heuristics, such as linear programming
algorithms, etc. can achieve the same or even better performance, and the latter is clearly
the better choice.

In this paper, the communication environment of the system is simplified while
modeling, and the interference factor of the channel is not considered. The allocation of
network resources in the edge computing system is also idealized and will be studied
in detail in the next work in conjunction with SDN technology. In future work, we will
also further consider the mutual cooperation among edge nodes, in order to maximize the
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utilization of system idle resources and further reduce the system’s energy consumption.
In order to further improve this model, we will also allocate computation and storage
resources in edge and cloud servers in a more granular way.
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Abstract: The pickup and delivery problem is a pertinent problem in our interconnected world. Being
able to move goods and people efficiently can lead to decreases in costs, emissions, and time. In
this work, we create a genetic algorithm to solve the multiobjective capacitated pickup and delivery
problem, adapting commonly used benchmarks. The objective is to minimize total distance travelled
and the number of vehicles utilized. Based on NSGA-II, we explore how different inter-route and
intraroute mutations affect the final solution. We introduce 6 inter-route operations and 16 intraroute
operations and calculate the hypervolume measured to directly compare their impact. We also
introduce two different crossover operators that are specialized for this problem. Our methodology
was able to find optimal results in 23% of the instances in the first benchmark and in most other
instances, it was able to generate a Pareto front within at most one vehicle and +20% of the best-known
distance. With multiple solutions, it allows users to choose the routes that best suit their needs.

Keywords: optimization; vehicle routing; genetic algorithm; local search; pickup and delivery

MSC: 90C59

1. Introduction

The pickup and delivery problem is a problem that has gained significant popularity
since its inception. Much of its interest is due to strong applications in industry across
several important problems such as supply chain routing, distribution, ride hailing, food
delivery, etc. [1]. In recent years, in part due to the emergence of COVID-19, these problems
have been brought to the forefront of the public consciousness. It has been harder to fulfill
the demands of a global population. Supply chains have been hit particularly hard leading
to a sharp decrease in the number of goods that have been shipped [2]. The need for robust
and efficient solutions is more important than ever.

The pickup and delivery problem is a variation on vehicle routing [3]. Specifically,
this paper addresses the multiobjective capacitated pickup and delivery problem (PDP)
with time windows. Vehicle routing, in turn, is a generalization of the travelling salesman
problem. Vehicle routing expands upon its predecessors by allowing multiple routes and
multiple vehicles while still maintaining the goal of minimizing the total distance or time
travelled. The pickup and delivery problem further expands on vehicle routing by adding
precedence to pairs of nodes, pickup nodes and delivery nodes [3]. Each pickup node must
be visited prior to the corresponding delivery node. The added precedence constrains the
problem in unique ways such that many algorithms developed for regular vehicle routing
must be altered. The added constraints of capacity and time windows further restrict
operations on the solution.

The pickup delivery problem also has some additional constraints which are important
to this version of the problem. All vehicles start and end at the same location called a depot.
The fleet is assumed to have all the vehicles be the same and travel at uniform speeds
to simplify the problem. It is assumed that no node is visited twice as the pickup and
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delivery only needs to be completed once. If a vehicle must travel through a node to arrive
at another node, this is simply ignored.

As pickup delivery with time windows is NP-hard [1], there have been many attempts
to develop heuristics. One class of heuristics which have had success in solving the multi-
objective PDP is genetic algorithms. With the introduction of NSGA-II (Non-dominated
Sorting Genetic Algorithm II) [4], evolutionary algorithms have a strong framework for
modelling this kind of problem. Standard techniques to approach multiobjective prob-
lems include assigning weights to different objective values or solving them one at a time.
The latter essentially turns the problem into a sequential single-objective problem. NSGA-II
introduces nondominated sorting which allows solutions to be ranked according to nu-
merous objectives without specifying precedence or weights, by sorting solutions into
dominating fronts. Further, a crowding distance allows the comparison between within
each front while still avoiding the previous issues. This allows better solutions to propagate
without placing bias or preference to any one solution.

The large majority of current research into the pickup and delivery problem is single
objective. This is insufficient in practice in many cases. Real-world scenarios are dynamic
with many factors such as profit, vehicle count, or greenhouse emissions being factors in
determining routes. Even the visual nature of the routes can determine whether a solution
will be utilized in practice [5]. The research that does explore multiobjective pickup and
delivery often reduces it down into a weighted single-objective problem, adding bias and
eliminating diverse solutions [6]. This area of research has also grown with the recent
popularity in green vehicle routing. Green vehicle routing often attempts to minimize
environmental impacts alongside reducing costs and distance, making it a prime candidate
for multiobjective techniques.

To improve upon NSGA-II, mutation and crossover operators can be specified. There
are many different mutation and crossover operators that can be utilized for travelling
salesman problems and their variants [7].

This paper introduces several local search operators to quantify and compare them.
There are two main classifications of operators that are covered: inter-route operations and
intraroute operations. As multiple inter-route operations need to be included in order to
cover the search space, an ablation study is utilized to explore each operator’s effectiveness.
Intraroute operations are compared directly.

The paper is structured as follows. Section 2 reviews the current state of works in the
field of multiobjective pickup and delivery. Section 3 formally introduces the problem and
supply a linear programming model for the problem. Section 4 introduces the genetic algo-
rithm and explains its properties. Section 5 shows results and finally, Section 6 concludes
with a discussion of the results and future directions.

2. Background and Related Work

The pickup and delivery problem is a well-researched problem within the litera-
ture. There are numerous different variations and distinctions, each presenting different
challenges. A full taxonomy was constructed by Berbeglia et al. [8].

Being a combinatorial optimization problem, much of the research is looking into
heuristics to speed up computation time. Multiobjective capacitated pickup and deliv-
ery with time windows (MOCPDPTW) is an extension of the vehicle routing problem.
The highly constrained nature of the problem makes designing heuristics a unique chal-
lenge. One important paper for multiobjective problems is “A fast and elitist multiobjective
genetic algorithm: NSGA-II” by Deb et al. [4]. This paper proposed an efficient framework
for multiobjective evolutionary algorithms. Based on nondominated sorting, fronts were
assembled. Fronts are collections of solutions based on how many other solutions are
dominated. This allowed direct comparisons of groups of solutions.

Evolutionary algorithms such as genetic algorithms and memetic algorithms are
common approaches to solve the multiobjective pickup and delivery problem. Bravo,
Rojas, and Parada [9] focused on green vehicle routing, specifically on reducing pollution.
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They introduced an MO-PRP (multiobjective pollution routing problem) model which
considered customers serviced, distance travelled, and fuel consumption. This could
involve introducing additional variables to capture each objective. Chami et al. [10] offered a
hybrid algorithm that combined genetic algorithms with a local search to optimize distance
and cost. They did not cover time windows in their formulation. Fatemi-Anaraki et al. [11]
also offered a hybrid genetic algorithm which first clustered the nodes before creating an
initial population using one genetic algorithm. After the population had been generated,
NSGA-II was run to find the final solutions. Fatemi-Anaraki et al. [11] aimed to minimize
greenhouse emissions and cost of travel. Their formulation also did not contain time
windows. Garcia-Najera and Gutierrez-Andrade [12] attempted to solve the multiobjective
capacitated pickup and delivery problem with time windows by designing their own
evolutionary algorithm based on solution domination. Gong et al. [13] used a bee-inspired
algorithm to solve the MOCPDPTW. Their framework combined NSGA-II with the bee-
evolutionary-guided algorithm to minimize fuel consumption, waiting time, and distance.
Again, their model abstained from considering time windows. Li, Sahoo, and Chiang [14]
designed their evolutionary algorithm based on R2 indicators. Velasco et al. [15] formulated
their problem assuming the vehicles would be helicopters with no need for time windows.
They designed a genetic algorithm based on NSGA-II as well and improved upon it with
local search operators. Wang and Chen [16] explored genetic algorithms with numerous
different mutations in order to minimize vehicles and minimize travel distance. Finally,
Zhu et al. [17] introduced a memetic algorithm with locality-sensitive-hashing local-search
operators. They did not include time windows in their analysis.

There has been much exploration outside of the field of evolutionary computing as well.
Grandinetti [18] solved the problem by an ε-constraint method. This involved iteratively
solving constrained single objective functions to approximate the Pareto front. Ren et al. [19]
designed a variable neighbourhood search algorithm. Their methodology generated the
solutions, perturbed them with nonoptimal search operators, before improving them again
in hopes of leaving local optima. Wang et al. [6] compared two different frameworks for
MOCPDPTW: multiobjective local search (MOLS) and multiobjective memetic algorithms
(MOMA). Zou, Li, and Li [20] used particle swarm optimization hybridized with a variable
neighbourhood search.

The majority of the work done in the domain of vehicle routing and pickup and
delivery has been conducted on single objective functions. This is slowly changing as the
demand and the types of problems encountered change. The number of multiobjective
papers has been increasing in recent years. Previous surveys mention very few instances of
MO-PDP [21] but in the last 5 years, there has been papers by Chami et al. [10], Li et al. [14],
Gong et al. [13], and Bravo et al. [9], amongst others. The consequence of single-objective
work taking the majority of the attention is that many ideas have not been applied in this
domain. Carrabs, Cordeau, and Laporte [22] worked on the single-objective version of the
problem and introduced novel local search operators based on combining pickups and
deliveries into single entities. In recent years, the exploration of multiobjective problems
has become more prevalent. The increase in attention is driven in part by green vehicle
routing. Green vehicle routing aims to not only reduce the distance and the number of
vehicles but also to reduce the emissions the routes will produce.

One drawback of all of these papers is that most abstain from describing their method-
ology in full. The mutation and crossover operators are overlooked or implemented far
more simply than they need to be. The work by Bravo et al. [9] did not mention which
operators were chosen, making replication and derivation of their work difficult. Others,
such as the work by Chami et al. [10], only tested one operator: the swap operator. This
operator, while a classic genetic algorithm operator, does not take into account the structure
of the problem. Our work aims to further help the creation and study of genetic algorithms
by giving other researchers a jumping-off point when creating their algorithms. We aim
to compare and contrast how different operators affect the final solutions so that a more
intelligent algorithm design can be implemented.
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3. Problem Definition

The capacitated pickup and delivery with time windows problem is built on a complete
directed graph G = {N, A}. N is the set of nodes and is further broken down into
N = {0} ∪ P ∪ D, where 0 is the depot, P = {1, 2, . . . , n} is the set of all pickups and
D = {n + 1, n + 2, . . . , 2n} is the set of all deliveries. n is the number of requests. Pickup
and delivery locations always come in pairs. Explicitly, for any pickup i, the corresponding
delivery is n + i with n being the number of pickup and delivery pairs. The depot defines
the starting and ending location for all vehicles.

For each pickup or delivery node, there is additional information supplied. Given
a node i ∈ N, there exists qi, di, ETWi, and LTWi. qi designates the demand at node i.
For pickups, this represents the space needed in the vehicle to pick an item up and is
positive, while for deliveries it is negative to represent the removal of an item from the
vehicle. d_i is the service time at each node. This represents the amount of time it takes
to perform a pickup or delivery. Finally, [ETWi, LTWi] are the early time window and
late time window, respectively. This represents the time when a vehicle can visit and the
service can be performed. Should a vehicle arrive prior to ETWi, it has to wait, and should
a vehicle arrive after LTWi, the route is invalid.

We are also given a set K of vehicles. Each vehicle must keep track of how much it is
carrying and how long it has been travelling. Let Q_i, k be the total capacity of a vehicle
at a given node. As a vehicle traverses through the graph, the latter is updated to add q_i.
For nodes a vehicle does not visit, this value is irrelevant. Let B_i, k be the time at which
a vehicle has arrived at a given node. For each visited node, this should add the travel
time and the service time of the node. Again, should a vehicle not visit a node, this value
is irrelevant.

A is the set of all edges between the nodes A = {(i, j)|i, j ∈ N, i 	= j}. Each element
(i, j) in A has an associated cost Ci,j. This typically represents distance or time to travel.

In addition to G, we also receive the max capacity of each vehicle Q. As this version
of the problem has a homogeneous fleet, it is a constant. The max route time is implicitly
supplied by the latest time that the depot may be visited. Again, we are assuming a
homogeneous fleet, so all vehicles travel at the same speed and have the same capacity.

Let xi, j, k be a decision variable to determine if a vehicle k travels from node i to node
j. This is a multiobjective problem so there are two objective functions to minimize.

min ∑
i∈N,k∈K

xi,0,k

Objective 1 aims to minimize the total number of vehicles used.

min ∑
i,j∈N,i 	=j

ci,j ∗ xi,j,k

Objective 2 minimizes the total travel time that a vehicle takes. This does not take into
account waiting time to not incentive idling.

With these objectives, the following constraints are added to construct a linear pro-
gramming model:

∑
k∈K

∑
j∈N

xi,j,k = 1 ∀i ∈ N (1)

∑
j∈N

xi,j,k − ∑
j∈N

xn+i,j,k = 0 ∀ i ∈ P, k ∈ K (2)

∑
j∈N

x0,j,k = 0 ∀ k ∈ K (3)

∑
j∈N

xj,i,k − ∑
j∈N

xi,j,k = 0 ∀ i ∈ N, k ∈ K (4)
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∑
j∈N

xj,0,k = 0 ∀k ∈ K (5)

xi,j,k ∗ (Qi,k + qj) <= Qj,k ∀ i ∈ N, j ∈ N, k ∈ K (6)

max[0, qi <= Qi,k <= min[Q, Q + qi] ∀ i ∈ N, k ∈ K (7)

xi,j,k ∗ (Bi,k + ci,j + dj) <= Bj,k ∀ i ∈ N, j ∈ N, k ∈ K (8)

bi,k + ci,n+i + qn+i <= bn+i,k ∀ i ∈ P, k ∈ K (9)

ETWi <= Bi,k <= LTWi ∀ i ∈ N, k ∈ K (10)

xi,j,k ∈ [0, 1] (11)

Constraint 1 enforces that each node is visited once and only once across all vehicles.
As the pickup delivery problem with time windows assumes a complete graph, it is
assumed that any intermediate stops are irrelevant. Constraint 2 is to enforce that pickup
and delivery pairs are in the same route. If a vehicle picks up a product, it must also be
the one to deliver it. Constraints 3, 4, and 5 ensure that a subroute is consistent and both
starts and ends at the depot. In other words, the vehicle must start and stop at the depot,
while also making a cycle. Constraints 6, 7, and 8 guarantee that the routes always arrive
within the allowed time window. Equations (9) and (10) guarantee that a vehicle always
has a sufficient capacity for the route it is assigned to. Lastly, Constraint 11 enforces that
the decision variable be a Boolean variable.

The above is a 3-index model of the pickup and delivery problem with time windows,
constructed by [23]. With mixed-integer programming, the objectives are solved hierarchi-
cally. First, the minimum number of vehicles are found by solving the model with only one
objective. The number of vehicles is then set constant by adding an equality constraint, and
the model is rerun with the second objective function to find the minimum distance.

4. Genetic Algorithm

The motivation behind constructing a genetic algorithm heuristic is the size of the
problem. MOCPDPTW is NP-hard [1], as it extends the vehicle routing problem (VRP)
which is provably NP-hard. This makes finding solutions increasingly difficult as the size
of the problem increases. Using Gurobi, the three-index model was unable to find solutions
to 50 request instances within the time limit of an hour. The two-index model [24] was
able to find solutions but they were worse than using simple construction heuristics such
as the cheapest insertion method. Heuristics are required as they trade speed for solution
quality. For unexplained notations and for those unfamiliar with evolutionary computing,
the reader is referred to a review by Katoch et al. [25] or the introduction by Mitchell [26].
A survey on genetic algorithms with respect to capacitated vehicle routing is provided by
Karakatič and Podgorelec [21].

4.1. Solution Representation

For this problem, we encoded a solution (chromosome in genetic algorithms) as an
array of arrays. Each array in the outer array represented the route a vehicle would take.
Each route was a permutation of nodes sampled from N. An example route can be seen
in Figure 1. For each pickup, the corresponding delivery, x + n, appears after. Each route
is implicitly known to start and end at the depot, so those nodes are added during the
evaluation step.

3 4 2 (4 + n) (3 + n) (2 + n) 1 5 (1 + n) (5 + n)

Figure 1. Example route with 5 pickups and 5 deliveries; n = 5.

4.2. Initial Population

The populations were initialized using the insertion heuristics as construction heuris-
tics. First, we predicted an upper bound on the number of vehicles that were available to
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cap the number of routes generated. Each route was seeded with a random request. This
ensured that each individual would be different. Afterwards, a cheapest parallel insertion
heuristic was used. This algorithm is explained in Algorithm 1. Given a solution, each
request is inserted into each possible location and the cost is calculated. The solution with
the cheapest cost is kept and the process is repeated with the next request. This inserts the
request which minimizes the total route time. Once each request has been inserted, a 2-opt
algorithm is run on each route to improve the initial solutions.

Algorithm 1 Parallel Insertion
Input: Insertion heuristic H, insertion operator I, local search operator O, number of

routes K
Output: A feasible solution

1: routes ← List of K empty lists
2: Let requests be a set of pickup and delivery pairs
3: Initialize each route in routes with a randomly chosen request from requests
4: Remove each inserted request from requests
5: while Not all requests are inserted do
6: newSolution ← None
7: bestRequest ← None
8: for each idx, route in routes do � At the end newSolution contains the best request

inserted in the best location
9: Choose request with H

10: Insert request into newRoute with I
11: Improve newRoute with O
12: if newRoute is feasible then
13: if newSolution is None then � If this is the first valid insertion
14: newSolution ← routes
15: newSolution[idx] ← newRoute
16: bestRequest ← request
17: else
18: tempSolution ← routes
19: tempSolution[idx] ← newRoute
20: if tempSolution is better than newSolution then
21: newSolution ←tempSolution
22: bestRequest ← reqest
23: end if
24: end if
25: end if
26: end for
27: if newSolution is None then � The request cannot be inserted anywhere
28: bestRequest ← random request from requests
29: Append routes with new route containing bestRequest
30: else
31: routes = newSolution
32: end if
33: Remove bestRequest from requests
34: end while
35: return routes

4.3. Evaluation

Our genetic algorithm utilized NSGA-II to enable multiple objectives. The first objec-
tive was to minimize the total distance over all routes. This did not include waiting time or
service time. Service time was constant across all nodes, so adding it did not change the
solutions relative to each other. The waiting time was the time during which a vehicle was
simply sitting idle. This could occur if a vehicle arrived prior to the earliest time window.
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The second objective was to minimize the number of vehicles needed. This evaluation step
was different from the linear programming version as nondominated sorting was used
instead of hierarchical methods.

4.4. Selection

Selection followed the standard given by NSGA-II [4]. For parent selection, a binary
tournament was employed with replacement. Parents were chosen iteratively until the
number of parents was equal to two times the population. This allowed for the number of
offspring to be equal to the population. The offspring were then generated by performing
a crossover and a mutation operation before being added into the population. Selecting
the next generation was done by sorting the combined offspring and prior population into
fronts by which nodes they dominated/were dominated by. They were then sorted within
each front by the crowding distance. The individuals were then chosen based hierarchically
on their front, followed by their crowding distance until the new population was the same
size as the old population. This framework is the same as the (μ + λ) framework [26].

4.5. Crossover

Due to the highly constrained nature of the problem, a specialized crossover function
was used. The crossover function began by initializing an empty solution. Iteratively,
a route was selected from each parent until no route was left in either parent. If that route
contained only pickup and delivery pairs which had not been seen prior, the route was
appended to the solution as is. If a route had a node which had already been included, that
pickup delivery pair was removed, and the rest of the route was kept intact. The shortened
route was then added to the solution. At the end, the routes added got smaller due to nodes
being removed. As a final optimization step, all routes with 2 or fewer pickup and delivery
nodes were removed from the solution, and the pickup and delivery pairs were extracted.
These requests were then reinserted into the solution in a parallel fashion. The final solution
was then returned. The intuition for allowing partial routes was that it did not separate
requests that were often paired together. This crossover function was called route crossover
with ejection. For an example of how this works, see Figure 2.

First Parent 2, 2+n, 3, 3+n 1, 1+n 5, 5+n, 4, 4+n

Second Parent 2, 1, 2+n, 4, 4+n 1+n, 3, 3+n, 5, 5+n

Offspring 1st Iteration,
route 1 is taken 2, 2+n, 3, 3+n

Offspring 2nd Iteration,
route 2 is taken 2, 2+n, 3, 3+n 5, 5+n

Offspring 3rd Iteration,
route 3 is taken 2, 2+n, 3, 3+n 5, 5+n 4, 4+n

Offspring Final
Iteration, route 1 is

taken
2, 2+n, 3, 3+n 5, 5+n 4, 4+n 1, 1+n

Figure 2. Example of crossover without ejection. The final offspring would then have all “small”
routes removed and reinserted.

A second crossover operator was tested. Developed by Wang et al. [6] and Alvarenga
and Mateus [27]. Wang et al. [6] and Alvarenga and Mateus [27] chose routes iteratively
but only accepted routes that could be added in their entirety. Those that could not had all
nodes set aside to be reinserted into the surviving routes.

In our trials it was found that the first crossover operator produced slightly better
results, so in the results, we opted to use that one. A crossover rate of 1/5 was used.
The crossover algorithm is described in Algorithm 2.
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Algorithm 2 Crossover Operation
Input: Parent A, parent B Output: A single offspring C

1: o f f spring ← []
2: while A and B are not empty do
3: Select a random subroute from A
4: for each elem in subroute do
5: if elem in o f f spring then
6: Remove elem from subroute
7: end if
8: end for
9: Append subroute to o f f spring

10: Select a random subroute from B
11: for each elem in subroute do
12: if elem in o f f spring then
13: Remove elem from subroute
14: end if
15: end for
16: Append subroute to o f f spring
17: for each subroute in o f f spring do
18: if size of subroute <=2 then
19: Reinsert all element into routes in o f f spring
20: end if
21: end for
22: end while
23: Return o f f spring

4.6. Mutation

Mutation was divided into two stages. The first step was to perform an inter-route
operation. This moved nodes between each subroute. The second step was to perform in-
traroute optimizations. After a route was chosen, it searched an operational neighbourhood
for an improved solution. The motivation behind exploring different mutation operators
stemmed from the lack of diversity within the literature. Of those that employ intra-route
operations, swap mutations are by far the most common mutation. Chami et al. [10],
Gong et al. [13], Garcia-Najera and Gutierrez-Andrade [12], and Zhu et al [17] all used a
variation of this operator.

4.6.1. Inter-Route Operations

There were six inter-route mutations applied.

• Mutation 1: single-pair relocation

– Removes a single pickup and delivery pair from a random route and attempts to
insert it into another route.

• Mutation 2: double-pair relocation

– Randomly selects 2 routes and attempts to swap a pickup and delivery pair
between them.

• Mutation 3: customer relocation

– Randomly picks a route and attempts to add a random pickup and delivery pair.

• Mutation 4: best-customer relocation

– Randomly picks a route and attempts to add the pickup and delivery pair accord-
ing to a heuristic
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• Mutation 5: route ejection

– Selects a route and unassign all pickup and delivery pairs. Afterwards, it attempts
to insert all of them.

• Mutation 6: route divide

– Selects a route and creates 2 new routes out of the pickup and delivery pairs.

These 6 mutations were given an equal probability of occurring. Each of these muta-
tions required an insertion operator. To make the most general insertion operators, we fol-
lowed the algorithms as described in Algorithms 1 and 3. These inter-route operations were
inspired by the works of Wang and Chen [16] and Yanik, Bozkaya, and Dekervenoael [28].

Algorithm 3 Sequential Insertion
Input: Insertion heuristic H, insertion operator I, local search operator O
Output: A feasible solution

1: routes ← []
2: Let requests be a set of pickup and delivery pairs
3: while True do
4: newRoute ← []
5: while Not all requests are inserted do
6: tempRoute ← newRoute
7: Choose request with H
8: Insert request into newRoute with I
9: Improve newRoute with O

10: if newRoute is feasible then
11: Remove request from requests
12: else
13: Append tempRoute to routes
14: break
15: end if
16: end while
17: if requests is empty then
18: return routes
19: end if
20: end while

For the sequential insertion, a heuristic, an insertion operator, and a local search
operator were supplied. Starting with an empty solution, routes were built iteratively by
choosing a request based on the insertion heuristic and the insertion operator. Once the
optimal request had been inserted, the resulting route was improved by the local search
operator until it could not be improved anymore. If at any point a new pickup and delivery
pair could not be inserted, the route was added to the solution as is and a new route
was started with the previously uninserted pair. These processes were repeated until all
requests were inserted.

The parallel insertion heuristic worked very similarly. Given a starting number of
vehicles k, k routes were initialized with a randomly chosen request. The optimal request
across all routes were chosen via the insertion heuristic and operator. Only one route was
improved at each iteration. From there, the route was improved with the local search
operator and inserted into the solution. If a request could not be inserted into any route, a
new route was appended much like the sequential variation.

4.6.2. Insertion Operators

Another consideration in the design was which insertion operators to use. As men-
tioned previously one can insert in both parallel and sequential fashions. There are also
several heuristics to improve which requests get inserted and where to insert. Common
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methods include the cheapest insertion, which inserts the request that minimizes the to-
tal distance, the furthest insertion, which maximizes the total distance, and the random
insertion, which places a random request.

We found that choosing requests via the cheapest insertion method was the most
useful method. Moreover, our trials found that the number of vehicles had little effect
on the final result. As such, choosing a number of initial routes for the parallel insertion
operator was not impactful. In the end, we chose to use the parallel construction heuristic
for our initial populations. While both produced similar results, the parallel construction
was able to create more varied populations and therefore had more diversity throughout.

4.6.3. Intraroute Operations

In addition to insertion operators, the routes are often further optimized with local
search operators. Multiple local search operators are tested and explained in Table 1 below.
Some were standard genetic algorithm operators such as the swap mutation while others
were more problem-specific such as the blocked 2-opt operator. A blocked operation
involves grouping the pickup and delivery pairs into single entities. The idea is to keep
pickup and delivery pairs together. Sequentially going down a list, the nodes are added into
a bin starting with a pickup and until the corresponding delivery node is reached. After the
first bin has been filled, the route is restarted at the next pickup node and the process
repeats until all pickup and delivery pairs are considered. All nodes between a pickup and
delivery pair are included in the group and as such this results in multiple copies of some
nodes. The original decoding by [22] was LIFO (last in, first out) and assumed that there
would never be any overlap. To address this, only the first copy of a node was kept when
converting back into a normal route. This can be further seen in Table 2. Operations were
then performed on these groups instead of individual elements. The reasoning for this was
to preserve precedence. If pickup and delivery pairs moved together, it was impossible for
the precedence to be violated.

4.7. Datasets

When choosing a dataset, there is often many factors to consider. For nonstandard
PDP, there is no consensus on a benchmark dataset, with most papers generating their
own [1]. While this does allow data to be curated for any problem, there is the issue on
how representative of real-world scenarios the synthesized data will be.

One dataset we elected to use comes from Sulzbach Sartori and Buriol [29]. This
dataset is an open-source dataset based on geographical data from capital cities. It supplies
several instances of varying node counts and incorporates real-world travel time to ensure
that it is representative of actual data. We used 25 instances with 100 nodes. The input
instances were labelled with the city they were based on, the number of nodes, and the
instance number. In this case bar-n100-2 would be the second instance in Barcelona with
100 nodes.

In addition, we also used the well-known Li Lim [30] dataset. This is a commonly
used benchmark dataset for the pickup and delivery problem. It uses Euclidean distances
between points and hierarchically solves for the number of vehicles and then distance. Li
Lim [30] distinguished their instances based on how the nodes were arranged. Lr instances
were randomly distributed, lc instances were clustered, and lrc instances were partially
distributed randomly.
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Table 1. Descriptions of each local search operator.

Mutation Description

Swap Selects 2 nodes in a route and attempts to
switch them.

Displacement Selects a subroute of a fixed size within a route
and translates it.

Insertion Special case of displacement mutation with
size 1.

Gaussian displacement Selects a subroute of a randomly chosen size
within a route and translates it.

K-Opt Removes k edges and attempt to
reconnect them.

Blocked K-Opt Combines nodes into request blocks, removes k
edges and attempts to reconnect them.

End request swap Swaps the delivery of one request with the
pickup of another later on.

Request Swap
Swaps a pickup and delivery with another

pickup and delivery node within the
same route.

Boundaries Half of the time, performs a request swap and
half of the time, performs an end request stop.

Table 2. Example of a route that has been blocked.

3, 4, 2, 4 + n,
3 + n 4, 2, 4 + n 2, 4 + n, 3 + n,

2 + n 1, 5, 1 + n 5, 1 + n, 5 + n

Both datasets can be trivially adapted into multiobjective instances. Moreover, both
datasets come with the best-known solution which was treated as the optimal solution with
respect to the lower bound and for calculating optimality. Optimality gaps were calculated
through the equation

1 − (Found solution/best known solution)

5. Results

All instances were run for a max time of 30 min or a max epoch of 300 on an i7-9750H
CPU with 16 GB of RAM. A population of 50 was utilized. A time limit of 1800 s was
applied, should the algorithm fail to terminate within that time. The total results for each
instance can be found in Appendix A.

The max epochs of 300 was chosen arbitrarily such that the time limit was the more
important factor. This allowed the algorithms to compare highly complex operations against
very efficient operators without heavily biasing the results towards search techniques with
larger neighbourhoods. Measuring epochs instead of time limits biases the algorithm
towards complex and costly operations. Very rarely did instances hit the epoch limit as
opposed to the time limit. In this instance, convergence meant that all genomes within the
population had the same fitness value, essentially reducing the diversity to 0. Convergence
is important as if the population is still very diverse, it means that the local optimum has
not been reached yet, while if the diversity is 0, then no more learning can be done. Test
runs were run in 10 min intervals on the first five instances of the Li Lim dataset in order to
empirically choose these values. The 2-opt operator was chosen for these runs. These runs
held all other parameters constant. For a time limit of 10, the algorithm did not converge at
all, still having around 16 fronts on average. In four out of five cases the 20 min test run
converged, while when given 30 min, all test cases converged. As the time got longer the
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solutions got better. A final time limit of 30 min was chosen to allow a greater chance at
convergence, especially given more complex operators. On the final run, with a 30 min
time limit, the algorithm converged about 25% of the time.

The population size was chosen in much the same fashion. Using a grid search technique,
population sizes of 25, 50, and 100 were tested. A time limit of 30 min was allotted. On the
five test instances, a populations size of 50 was found to perform the best. A population size of
25 had the population converge very early on, preventing further learning from taking place.
With a population size of 50, there was still some diversity within the population. A population
size of 100 was far too large for the problem. Within 30 min, none of the five test cases had
converged and the four instances had upwards of 60 fronts. Of the resulting best solutions, all
five came from the test case where the population size was 50. With 25 and 50, the optimal
solution was found twice.

The results from the Li Lim dataset can be seen in Table A1. This table lists the instance
name, the best solution and our found solution. The solutions are in the form of number of
vehicles, distance travelled. Our algorithm was able to find the optimal (best known) result
in 13 out of 56 instances. In the rest of the trials, we were able to find results within one
vehicle and within 10% in most cases for the distance. The worst result we achieved was
on the instance lr205 in which our three-vehicle solution was only 27% within optimality in
regard to distance. Our five-vehicle solution was within 13%, however. Four of our results
were 20% or higher, while in forty-three instances our result was within 10% of optimality.
Omitting the lr 200 instances, the average distance optimality gap was 4% as seen in Table 3.
When nodes were randomly distributed, our algorithm performed the worst. The proposed
algorithm performed the best when the nodes were clustered, in which 9 out of 17 were
optimal. In three cases, our algorithm was able to reduce the total distance to below that of
the best-known solution. Often, the genetic algorithm would converge to a local optimum
and would then cease learning. The addition of the 4-opt mutation was able to help remove
solutions from this pool on occasion.

Table 3. Summary on Li-Lim benchmark.

Instance Distance Optimality Gap Vehicle Optimality Gap

lc 100 instances −0.0462 0.0416

lc 200 instances 0.02983 0.0

lr 100 instances 0.0402 0.0790

lr 200 instances 0.1364 0.2424

lrc 100 instances 0.0441 0.0658

lrc 200 instances 0.04779 0.1562

The results from the Sulzbach Sartori and Buriol’s [29] dataset can be seen in Table A2,
and summarized in Table 4. This dataset was more complex than the previous one, with our
algorithm not always converging within a 30 min time limit. As such, our algorithm was
not able to solve to optimality in any of the instances. Despite this, we were able to solve the
problem in every case and produce solutions within one vehicle and an average of 2.97% of
the optimal distance on average. Distancewise the worst solution was bar-n100-6 with an
optimality gap of 11.81%. It was one of two total solutions with a gap larger than 10%. It is
not surprising that we did not find that many optimal solutions within the specified time
limit. Our algorithm had a lot of overhead dedicated to finding many feasible solutions as
opposed to finding one optimal solution. Maintaining multiple unique genomes allow a
greater diversity and more options for choosing a final solution.
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Table 4. Summary on Sulzbach Sartori and Buriol’s benchmark.

Instance Distance Optimality Gap Vehicle Optimality Gap

bar instances 0.0550 0.0694

ber instances 0.0292 0.1360

nyc instances 0.0388 0.2666

poa instances 0.0019 0.1170

A secondary study was conducted to determine which inter-route and intraroute
operators would be most effective.

To choose which intraroute operations to utilize, a comparison was generated. For each
operator five trials were run on five different instances. Each trial was run using identical
parameters. Each run had a population of 50 and was run for 200 epochs. Initial popu-
lations were generated with a parallel construction and then solved to be 2-opt optimal.
The crossover rate was 0.2 and the starting number of vehicles was chosen to be slightly
higher than the known best solution, typically higher than four.

For each run, the total number of fronts and the number of unique solutions were
measured to quantify the diversity of the population, as seen in Table 5. Table 6 measures
the solution quality. The points at the Pareto front and the hypervolume were measured to
compare the quality of the solutions. For each operator the z score of the hypervolume was
also recorded. This allowed a direct measurement of how much better each operator was
in comparison. Table 7 aggregates all of the trials.

Table 5. Local search operators effects on diversity of bar-n100-1 [29].

Local Search Operator Final # of Fronts
Number of

Unique Solutions

No-op 1 1

Swap mutation 3 19

Blocked swap mutation 2 6

Insertion mutation 3 6

Blocked insertion 1 3

Displacement mutation 3 13

Blocked displacement
mutation 3 10

Gaussian displacement
mutation 1 6

Blocked Gaussian
displacement mutation 1 5

2-Opt 1 5

Blocked 2-opt 1 3

3-Opt 8 12

Blocked 3-opt 7 27

4-Opt 1 8

Blocked 4-opt 1 5

Boundary operators 2 15

Each operator with the exception of the 4-opt operator was run in a dynamic program-
ming fashion, fully exhausting the neighbourhood to ensure the best move was made. For
the 4-opt and blocked 4-opt operators, this was infeasible due to the size of the search space,
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so a Monte Carlo framework was used. One hundred random neighbourhood moves were
tested and the best one was used for this iteration of local search.

Table 6. Local search operators effects on solution quality of bar-n100-1 [29].

Local Search
Operator

(Vehicle Count,
Distance) in Front 0

Hypervolume z Score

No-op (7, 774) 126 −1.40152

Swap mutation (6, 779), (7, 776) 245 0.59139

Blocked swap
mutation (6, 797), (7, 762) 241 0.5244

Insertion mutation (6, 754) 292 1.37851

Blocked insertion
mutation (6, 797), (7,766) 237 0.45742

Displacement
mutation (6, 779), (7, 764) 257 0.79236

Blocked displacement
mutation (7, 783) 117 −1.55225

Gaussian
displacement

mutation
(6, 837), (7, 815) 148 −1.03308

Blocked Gaussian
displacement

mutation
(6, 782), (7, 771) 247 0.62489

2-Opt (6, 768) 264 0.90959

Blocked 2-opt (6, 776), (7, 778) 248 0.64164

3-Opt (7, 798) 102 −1.80345

Blocked 3-opt (6, 794), (7, 769) 237 0.45742

4-Opt (6, 790), (7, 787) 223 0.22296

Blocked 4-opt (7, 770) 130 −1.33453

Boundaries operators (6, 786), (7, 773), (8,
771) 241 0.5244

Reference Point 8, 900.

The results indicated that the 2-opt operator was the best move by a decently large
margin. The 3-opt operator move was too slow to test exhaustively and so failed to
converge like the other trials. The 4-opt operator had the largest variance of any operator.
On some runs it found the best solution and on some it found the worst. The standard
array of mutation operators performed adequately but were not able to compare to more
specialized operators.

As for diversity, out of those that converged, the 4-opt operator had the best diversity
within each front, with an average of eight unique individuals per front. Insertion mutation
had the worst diversity averaging only 1.8 fronts and 5.6 individuals.

To address both diversity and solution quality, a combination of 4-opt and 2-opt was
used in the final model.

To assess the effectiveness of each intraroute operator an ablation study was conducted.
There were seven different scenarios run over five different instances. All runs held all
parameters constant aside from the inter-route operations. They were run for 200 epochs
with a population of 50. The initial population was created with parallel insertion and
the 2-opt operator, with the intraroute operation also using the 2-opt operator. The 2-opt
operator is a standard local search operator for variants on the travelling salesman problem.
It involves selecting two edges and swapping them, effectively generating two new routes.
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In each scenario, a single inter-route operation was removed to assess its effect on the
final solution. Results are in Tables 8–10. Figure 3 shows the average hypervolume value
over time and Figure 4 shows how minimum distance is affected. The hypervolume is a
special measurement that calculates the area of the solution space and a reference point
that is larger in magnitude than any given point in all dimensions. This area allows a direct
comparison of the solutions generated. It was first introduced by Ziztler and Theile [31] in
1999. The main benefit of this measure is that it makes no assumptions on any knowledge
about the Pareto front, which the other measures require.

Table 7. Local search operators summary statistics.

Local Search
Operator

Mean Z Score Mean # of Fronts
Mean # of

Unique Solutions

No-op −0.51334 2.4 6.4

Swap mutation −0.043814 2.6 13.2

Blocked swap
mutation 0.97958 3.4 12.6

Insertion mutation 0.33991 1.8 5.8

Blocked insertion
mutation 0.32763 1.6 8.2

Displacement
mutation 0.3491 2.2 8.2

Blocked displacement
mutation −0.31909 2.8 12.6

Gaussian
displacement

mutation
−0.179226 1.8 8.4

Blocked Gaussian
displacement

mutation
−0.16168 2.4 10.8

2-Opt 0.87708 2 8

Blocked 2-opt 0.118585 3.6 11

3-Opt −1.22385 6.6 21.4

Blocked 3-opt 0.17869 4.8 16.6

4-Opt 0.16474 1.6 12.8

Blocked 4-opt −0.80439 3 14.6

Boundaries operators 0.044518 3.8 18.6

The experiment tested how much each pickup and delivery operation affected the
end result. For each operator, the genetic algorithm was run with all other parameters
fixed. The only difference was the inclusion of each operator. Each run was executed with
a population of 40, over 300 epochs. All other parameters were held constant.
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Figure 3. Hypervolume after removing each inter-route operator.

Figure 4. Minimum distance after removing each inter-route operator.
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Table 8. Inter-route operation effects on diversity of bar-n100-5 [29].

Inter-Route Operator Final # of Fronts
Number of

Unique Solutions

All 1.8 5

Double-pair relocation 1 4

Single-pair relocation 3 28

Best-customer relocation 3 13

Customer relocation 1 8

Route ejection 1 5

Route divide 2 9

Table 9. Inter-route operation effects on solution quality of bar-n100-5 [29].

Inter-Route Operator
(Vehicle Count, Distance) in

Front 0
Hypervolume

All (6, 780), (7, 772) 248

Double-pair relocation (6, 785), (7, 782) 233

Single-pair relocation (6, 784), (7, 761) 255

Best-customer relocation (6, 805), (7, 776) 219

Customer relocation (6, 806), (7, 777) 217

Route ejection (7, 746) 154

Route divide (6, 788), (7, 770) 242
Reference Point 8, 900.

Table 10. Inter-route operation effects on solution quality of bar-n100-5 [29] Part 2.

Inter-Route Operator Mean Z Score Mean # of Fronts

All 1 1

Double-pair relocation 3 19

Single-pair relocation 2 6

Best-customer relocation 3 6

Customer relocation 1 3

Route ejection 3 13

Route divide 3 10
Reference Point 8, 900.

6. Discussion and Conclusions

In this work we formulated a genetic algorithm based on NSGA-II for solving the
multiobjective capacitated pickup and delivery problem with time windows. We built two
generic metaheuristics which allowed solution construction and insertion and explored
six different inter-route operations and sixteen different intraroute operations. We found
that adding intraroute operations in addition to inter-route operations greatly improved
solution quality, with 2-opt being the best operator we trialed.

Of the inter-route operations, all of the tested operators benefited the end result.
The variety of each operator enabled a good diversity within the population. The intraroute
operators had more interesting results. Standard genetic algorithm operators such as
mutation tended to perform poorly. Operators that took structure into account such as
k-opt performed much better. Blocking the results did not have as much success despite
taking more of the problem into consideration.
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Our work does contain some limitations. Without proper benchmarks within the
literature, it is difficult to compare results directly. Additionally, future work would involve
exploring different ways to maintain diversity, as our algorithm was occasionally stuck in
local optima. There are many ways that this could be implemented, either by speciation,
island models, or geographical encodings.
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Appendix A

Below are Tables A1 and A2 and displaying the found and best solutions for each
instance in the Li Lim [30] and Sulzbach Sartori and Buriol [29] datasets, respectively.

Table A1. Results on Li-Lim’s benchmark.

Instance Best Solution Found Solution

lc101 (10, 828.94) (10, 828.94)
lc102 (10, 828.94) (10, 828.94)
lc103 (9, 1035.35) (10, 829.56) *
lc104 (9, 860.01) (10, 818.60) *
lc105 (10, 828.94) (10, 828.94)
lc106 (10, 828.94) (10, 828.94)
lc107 (10, 828.94) (10, 828.94)
lc108 (10, 826.44) (10, 828.94)
lc109 (9, 1000.60) (10, 828.94) *

lc201 (3, 591.56) (3, 591.56)
lc202 (3, 591.56) (3, 591.56)
lc203 (3, 591.17) (3, 648.05), (4, 637.87)
lc204 (3, 590.60) (3, 674.84)
lc205 (3, 588.88) (3, 588.88)
lc206 (3, 588.49) (3, 597.31)
lc207 (3, 588.29) (3, 588.29)
lc208 (3, 588.23) (3, 589.44)

114



Mathematics 2022, 10, 4308

Table A1. Cont.

Instance Best Solution Found Solution

lr101 (19, 1650.80) (20, 1700)
lr102 (17, 1487.57) (17, 1519.98)
lr103 (13, 1292.68) (13, 1337.34), (14, 1333.39)
lr104 (9, 1013.39) (10, 1067.19)
lr105 (14, 1377.11) (15, 1486.85)
lr106 (12, 1252.62) (12, 1287.67), (13, 1271.09)
lr107 (10, 1111.31) (10, 1111.31)
lr108 (9, 968.97) (9, 970.74)
lr109 (11, 1208.96) (12, 1251.53)
lr110 (10, 1159.35) (12, 1226.60)
lr111 (10, 1108.90) (12, 1203.15)
lr112 (9, 1003.77) (11, 1075.88)

lr201 (4, 1253.23) (4, 1311.34), (5, 1291.02),
(6, 1289.23)

lr202 (3, 1197.67) (4, 1287.83)
lr203 (3, 949.40) (3, 1042.40)
lr204 (2, 849.05) (3, 1053.58)

lr205 (3, 1054.02) (3, 1342.12), (4, 1211.80),
(5, 1191.29)

lr206 (3, 931.63) (3, 970.70)
lr207 (2, 903.06) (3, 1120.39), (4, 1116.43)
lr208 (2, 734.85) (3, 891.17)
lr209 (3, 930.59) (4, 1030.60)
lr210 (3, 964.22) (3, 1188.75), (4, 1179.80)
lr211 (2, 911.52) (3, 1097.17), (4, 1007.62)

lrc101 (14, 1708.80) (14, 1708.80)
lrc102 (12, 1558.07) (13, 1608.49)
lrc103 (11, 1258.74) (11, 1275.32)
lrc104 (10, 1128.40) (10, 1128.40)
lrc105 (13, 1637.62) (14, 1734.76)
lrc106 (11, 1424.73) (13, 1531.88)
lrc107 (11, 1230.14) (12, 1399.75)
lrc108 (10, 1147.43) (11, 1188.12)

lrc201 (4, 1406.94) (5, 1494.95)
lrc202 (3, 1374.27) (4, 1440.29)
lrc203 (3, 1089.07) (4, 1153.20)
lrc204 (3, 818.66) (3, 914.81), (4, 887.48)
lrc205 (4, 1302.20) (4, 1310.28)
lrc206 (3, 1159.03) (3, 1159.03)
lrc207 (3, 1062.05) (3, 1066.68)
lrc208 (3, 852.76) (4, 953.59)

Results in which distance was improved are indicated wtih an *.

Table A2. Results on Sulzbach Sartori and Buriol’s benchmark.

Instance Best Solution Found Solution

bar-n100-1 (6, 733) (6, 776), (7, 766)
bar-n100-2 (5, 554) (5, 608), (6, 579)
bar-n100-3 (6, 746) (6, 803), (7, 777)
bar-n100-4 (12, 1154) (13, 1217), (14, 1193)
bar-n100-5 (6, 838) (6, 909), (7, 877)
bar-n100-6 (3, 788) (4, 933), (5, 894), (6, 890), (7, 881)
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Table A2. Cont.

Instance Best Solution Found Solution

ber-n100-1 (12, 1857) (14, 1848) *
ber-n100-2 (6, 1491) (7, 1569)
ber-n100-3 (3, 713) (4, 745), (5, 702), (6, 695) *
ber-n100-4 (3, 494) (3, 555)
ber-n100-5 (5, 944) (5, 966)
ber-n100-6 (14, 2147) (16, 2108) *
ber-n100-7 (7, 1935) (8, 2043), (9, 2039)

nyc-n100-1 (6, 634) (6, 731), (7, 665)
nyc-n100-2 (4, 567) (4, 603), (5, 587), (6, 583)
nyc-n100-3 (3, 492) (4, 477)
nyc-n100-4 (2, 535) (3, 589)
nyc-n100-5 (2, 671) (3, 702)

poa-n100-1 (12, 1589) (14, 1637)
poa-n100-2 (15, 1539) (16, 1645), (17, 1640)
poa-n100-3 (10, 1301) (11, 1329), (12, 1311)
poa-n100-4 (7, 1668) (9, 1586) *
poa-n100-5 (6, 624) (6, 630), (7, 626)
poa-n100-6 (3, 562) (3, 601), (4, 574), (5, 572)
poa-n100-7 (5, 779) (6, 743), (7, 731)

Results in which distance was improved are indicated with an *.

References
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Abstract: In the event of a disaster, the road network is often compromised in terms of its capacity
and usability conditions. This is a challenge for humanitarian operations in the context of delivering
critical medical supplies. To optimise vehicle routing for such a problem, a Multi-Depot Dynamic
Vehicle-Routing Problem with Stochastic Road Capacity (MDDVRPSRC) is formulated as a Markov
Decision Processes (MDP) model. An Approximate Dynamic Programming (ADP) solution method
is adopted where the Post-Decision State Rollout Algorithm (PDS-RA) is applied as the lookahead
approach. To perform the rollout effectively for the problem, the PDS-RA is executed for all vehicles
assigned for the problem. Then, at the end, a decision is made by the agent. Five types of constructive
base heuristics are proposed for the PDS-RA. First, the Teach Base Insertion Heuristic (TBIH-1) is
proposed to study the partial random construction approach for the non-obvious decision. The
heuristic is extended by proposing TBIH-2 and TBIH-3 to show how Sequential Insertion Heuristic
(SIH) (I1) as well as Clarke and Wright (CW) could be executed, respectively, in a dynamic setting
as a modification to the TBIH-1. Additionally, another two heuristics: TBIH-4 and TBIH-5 (TBIH-1
with the addition of Dynamic Lookahead SIH (DLASIH) and Dynamic Lookahead CW (DLACW)
respectively) are proposed to improve the on-the-go constructed decision rule (dynamic policy on the
go) in the lookahead simulations. The results obtained are compared with the matheuristic approach
from previous work based on PDS-RA.

Keywords: reinforcement learning; Markov decision processes; approximate dynamic programming;
rollout algorithm; constructive base heuristic; vehicle routing problem.

MSC: 90C40; 90B15; 90C59

1. Introduction

Recent events have shown that the occurrence of a disaster continues to claim many
lives despite the growing number of relief organisations to support and help the victims
throughout the world. In the case of the 2015 Nepal earthquake, for example, nearly
9000 lives were lost, and 23,000 people were injured [1]. In the event, critical medical
supplies and health personnel were far from lacking, given aid rushed into Nepal as soon
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as the news went out. The relief supplies received worldwide were so large in volume
that the Kathmandu airport was overwhelmed with the sudden increase in air traffic [2].
However, these life-changing resources could not be distributed accordingly and in a
timely manner given the lack of coordination between the local and international relief aid
providers. This led to inefficiencies in executing relief operations [1,2]. The fact that Nepal
is a landlocked country without any sea access also exacerbated the logistical challenges
further, as seen from the bottleneck problem in Kathmandu airport [3]. The hilly topography
of Nepal is prone to landslides [1,2,4], while continuous aftershocks damaged the road
infrastructure, such as the Pasang Lhamu and Araniko highways [5], which compromised
the road network to the disaster zone [4,6]. Additionally, the sudden onset of the disaster
meant that there was limited availability of vehicles and little preparation for emergency
logistics operations [4]. The viability of the long-term humanitarian operations with the
available vehicles, with regards to safety and logistics and asset management, were also
in question since the road network was compromised [4]. This hindered efficient relief
operations in terms of transport and delivery [4,7].

Meanwhile, urgent local medical supplies were rapidly diminishing as both field and
local hospitals were overrun by victims seeking immediate treatment [2,8]. If the relief
aid and supplies that were laying dormant at the Tribhuvan Airport could have been
channelled through effectively, it would certainly have helped alleviate the problem of the
urgent need for medical supplies and treatment.

In terms of disaster management preparedness, this case study serves to highlight the
critical role of transportation in the event of a disaster. Transportation service is a crucial
element when it comes to humanitarian logistics operation, in particular the in-country
transportation for delivery of relief supplies [4]. From the 2015 Nepal earthquake event,
some observations have been made with regards to ensuring efficient delivery of goods
through vehicle routing. The study in [4] pointed out that the geographical topology and
mountainous landscapes of Nepal as well as the second earthquake tremors and weather
conditions during the event heavily impacted the delivery speed, especially involving
the last mile of the delivery. In the disaster event, the road condition and capacity were
compromised by major accidents, causing traffic density and loss of cargo [4]. Furthermore,
there was an overwhelming demand for the limited number of trucks in terms of capacity
and availability due to critical delay and backlogs. This increased the price of transport
vehicle procurement to as high as 40%. Additionally, the lack of a decision support system
(DSS) to monitor and track transport vehicles, coupled with untrained drivers, also led to a
serious shortage of reliable transportation. Landslides, in particular, limited the routing to
certain areas. In addition, the risk of accidents due to a unfamiliar route was significant and
not helped by landslides which are sensitive to weather conditions. As such, intelligent
routing and communication access is pivotal for this particular vehicle routing problem.

The proposed Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road
Capacity (MDDVRPSRC) model addresses such delivery problems in the setting of relief
humanitarian operations by incorporating the aforementioned challenges. The problem of
a bottleneck could be solved if “mini” airports were erected at strategic locations (multi-
depot). The problem of limited transport vehicles in terms of availability and capacity could
be addressed at some length through transport vehicles performing split deliveries which is
known to be a cheaper alternative by almost 50% [9]. Furthermore, these vehicles could also
perform multi-trip deliveries. Communication among Logistics Service Providers (LSPs)
and their local contacts helps in updating the road network conditions which may hint
towards dynamic problem modelling, with information updates at regular intervals. The
uncertainty which is the pivotal aspect of efficient delivery operations should be addressed
in terms of dynamic and stochastic settings of road capacity and conditions within the road
network [4,7].
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The Markov Decision Processes (MDP) modelling framework offers a natural way
to address these dynamic and stochastic aspects of the problem. However, incorporating
these aspects leads to an exponential growth of state, action and outcome spaces which
is needed when solving such a real and complex problem. To deal with the curse of
dimensionality [10], the Approximate Dynamic Programming (ADP) approach is com-
monly applied to solve the problem from the Machine Learning (ML) (Reinforcement
Learning, RL) perspective. To address the large outcome space, the Post-Decision State
(PDS) is applied as an extended version of the basic MDP modelling framework [11].

The ADP approach is usually applied to approximate the value of the next state sk+1
or the value of the action ak when solving the Bellman equation [12]. In ADP, the lookahead
approach is suitable when dealing with the large action and outcome space that constitutes
part of the curse of dimensionality. In this paper, the known Post-Decision State Rollout
Algorithm (PDS-RA) [13] is applied as part of the lookahead approach in the ADP.

A base heuristic in the PDS-RA is taken as the guiding policy for the decision rule
applied as the state transitions within the lookahead horizon. In modelling the VRP through
the MDP framework, the decision rule is generally the assignment of vehicles when the
state transitions. In the rollout, the transition occurs in the lookahead horizon beginning
from the potential next state sk+1 to the lookahead end state sK. In other words, the base
decision rule is a route computed for all vehicles to navigate within the future lookahead
horizon. In the case of MDDVRPSRC, however, assigning vehicles based on a computed
route, which is computed once, becomes problematic. This is due to the stochastic road
capacity which may render the computed route unusable in the next lookahead update.
One way to navigate around this is to have the route build dynamically on the go by a
simple constructive heuristic known as a base heuristic.

From the decision rule or route obtained through this approach at each iteration, only
the first assignments of the constructed route are applied while the rest are ignored. This
method is feasible and practical due to the less expansive computation performed by the
simple constructive heuristic. Here, the Teach Base Insertion heuristic (TBIH-1) is proposed
to balance the random exploration and to guide the exploitation by dictating obvious
assignments. Extending from this, the authors apply two known constructive heuristics:
Sequential Insertion Heuristic SIH(I1) and Clarke and Wright (CW), in a dynamic setting
and embed them into the TBIH-1(as proposed TBIH-2 and TBIH-3). To the best of our
knowledge, no paper has shown how these constructive heuristics can be executed, as
proposed, in a PDS-RA setting. We further derived from these two heuristics: TBIH-4 and
TBIH-5 that seek, within their algorithm, promising vehicle assignments by looking up
to two steps ahead. To deal further with the large action space, most research provides
some mechanism to segregate or cluster vehicles with a specific set of customers to serve.
Due to the stochastic road capacity, such mechanism is difficult to adopt. Thus, further
approximation is made when computing the optimal action a�k with regards to executing
the PDS-RA. Through this proposed method, each PDS-RA is executed for each vehicle for
every potential assignment that can be given to that vehicle.

The contributions made in this paper are as follows: first, the novel MDDVRPSRC
is proposed in a disaster event setting based on the modelling framework of MDP. Next,
TBIH-1 heuristic is proposed in this work along with four extended variants, namely
TBIH-2, TBIH-3, TBIH-4, and TBIH-5. By doing so, it is shown how SIH(I1) and CW can be
applied in the dynamic setting of route-based MDP for PDS-RA [14]. The authors also show
how these two can be extended by looking up to two steps ahead. Finally, it is also shown
and validated how the near optimal decision can be approximated further by disintegrating
the collective assignment decisions to an individual near optimal decision. To the best of
our knowledge, both the MDDVRPSRC MDP model and the five base heuristics applied in
the PDS-RA algorithm are novel and have not yet been proposed.
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This work is the extension of research published by [15], where the damage determi-
nation of the roads within the road network is referred from. Furthermore, the Poisson
stochastic distribution of a stochastic road capacity is also referred from. In this paper,
the dynamic and stochastic MDDVRPSRC MDP model is presented to complement the
earlier research in [15] that modelled the Deterministic Multi-Depot VRP with Road Capac-
ity (D-MDVRPRC) as well as the two-stage Stochastic Integer Liner Programming (SILP)
model of a Multi-Depot VRP with Stochastic Road Capacity (MDVRPSRC-2S). To solve
the MDP Model presented in this paper via the PDS-RA algorithm, the five base heuristics
are proposed as an alternative to the “cluster first, route second” approach that cannot
be applied. Meanwhile, to benchmark these heuristics, the matheuristic rollout presented
in [15] is applied where tractable.

This paper is organised as follows: Section 2 describes the literature review focusing on
the proposed model and base heuristics. Section 3 describes the problem of MDDVRPSRC
where some elements of the models have been referenced from the authors’ previous work.
The known PDS-RA approach is briefly described in Section 4 as well as how the optimal
decision is approximated through the proposed mechanism. Additionally, variants of the
proposed base heuristics are presented here. Section 5 presents the computational results.
while Section 6 synthesises the findings. Finally, Section 7 concludes the paper.

2. Literature Review

An extensive synthesis of the literature on works adapting VRP for humanitarian
operations can be found in [16,17]. In [17], numerous papers within the last decade
(as of 2020) have been reviewed in terms of the application of VRPs for three selected
humanitarian operations. Various modelling aspects, such as dynamic and stochastic
problem, multi-disaster phase, multi-objectives, multi-trips, multi-depots, split delivery and
more, which are relevant to the model proposed in this work, are elaborated. Furthermore,
the solution approaches applied are also discussed in detail, especially the challenges when
dealing with stochastic and dynamic VRPs. Ref. [15] extends the findings by discussing
some papers applying VRP outside the field of humanitarian operation settings but are still
relevant to the model that was proposed. Meanwhile, the RL adaptation in solving Supply
Chain Management (SCM) is discussed in [18]. Additionally, the adoption of RL in VRP
and TSP is discussed in [19].

2.1. Stochastic Vehicle Routing Problem for Humanitarian Operations

The survey in [20] discussed the recent dynamic VRP for various applications from
2015 to 2021. From the analysis of their work, it could be observed that the research focusing
on dynamic problems usually also address stochastic problems. The opposite, however,
may not necessarily be true. As such, some discussion on research works regarding
stochastic VRP for humanitarian operations is warranted to complement those discussed
in [17]. For example, the recent work of [21] addressed the Inventory Routing Problem (IRP)
with an uncertain traffic network. Here the distribution of essential multi-commodities in
the chaotic post-disaster phase among relief shelters and distribution centers is modelled
through the network flow model. The uncertain traffic network is due to the magnitude
of the earthquake’s attributes, such as the earthquake’s magnitude and the time of its
occurrence. Such attributes also affect the vehicle speeds when making split deliveries.
Apart from the optimized routing decision, the efficiency of the commodities distribution
is further improved through the optimized inventory decision. Both are computed via the
simulation optimization technique where the Sample Averaging Approximation (SAA)
method is applied.

On the other hand, Ref. [22] presented a two-stage Location Routing Problem (LRP) of
distributing first aid relief materials post-earthquake disaster where the complex demand
uncertainty is addressed. Here the mixture of uncertain demand from the perspective of
randomness (probabilistic theory) and fuzziness (possibility theory) due to the merging
of subjective and objective data forms the hybrid demand uncertainties. A scenario-
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based stochastic demand over a specified interval per scenario is considered for stochastic
probabilistic programming due to the strong relationship between events/scenarios such
as post-earthquakes and aftershocks and the demands’ uncertainty. As such, the demand
parameter is considered a fuzzy random variable. In the two-stage robust programming
model, the decision for locating a warehouse among existing warehouses is first determined,
while the routing and distribution decision is computed in the second stage. The objective is
to minimize the cost of warehouse location and the penalty induced by unsatisfied demand.
Here the equivalent crisp model is represented by the Basic Possibilistic Chance Constraint
Programming (BPCCP) model and later modified as the two-stage robust programming
model to overcome the drawback of BPCCP. A small-scale instance problem based on
the actual case study of Hamadan province of Iran, a location prone to earthquakes, is
applied to verify the model proposed. The solution obtained using CPLEX indicates that
the demand satisfaction level is significantly higher than in conventional scenario-based
stochastic programming.

Meanwhile, the work proposed in [23] focused on the redistribution of food to charita-
ble agencies, such as homeless shelters and soup kitchens, by picking up the resource (food)
from donors such as grocery stores and restaurants. Here the objective is to assure fairness
in distributing the donated foods while also considering the waste implicitly through the
constraints introduced. The demand from charitable agencies and the resource (donation)
are stochastic in this problem. Additionally, equity is the rate between allocated amounts to
respective agencies over the total demands. Some assumptions are made, such as unlimited
vehicle capacities and that all donors must be visited before distribution is performed. A
decomposition strategy in the form of a heuristic is applied to solve the problem where the
recipients and donors are clustered first. Then the route is computed for respective clusters,
and resources are allocated for each recipient.

Another multi-objective problem is addressed in [24] to deliver both non-perishable
and perishable items to demand points considering uncertainty, such as the location and
number of relief centers that should be established at the demand points as well as the
delivery means of the relief item post-disasters. A Mixed-Integer Non-Linear programming
(MINLP) model is formulated to minimise the total distance travelled, the maximum
travelled distance between relief centers and demand points, and the total cost associated
with acquiring the relief items and vehicles utilized as well as the inventory cost. This model
is solved by GAMS software for small-scale instances. Meanwhile, the larger instances are
solved by a Grasshopper Optimization Algorithm (GOA) metaheuristic.

Ref. [25] addressed another multi-objective problem involving the COVID-19 pan-
demic. In this problem, multi-period collection and delivery of multi-products in a single
open and close loop Supply Chain (SC) is modelled through the formulation of transporta-
tion problems and the Pick and Delivery VRP (PDVRP). Here the open and close supply
chain system involving reusable and non-reusable products is transferred from hybrid
depots that produce and recycle the products through a forward and reverse flow. The
transfer collection centers located in the affected COVID-19 areas acted as the intermediary
between the depots and the hospitals. Heterogeneous vehicles traverse the forward and
reverse flow via PDVRP from the transfer collection centers to the hospitals when delivering
products through split delivery while receiving the old product for reproduction. Various
uncertain parameters are defined involving vehicle cost, production cost, the demand from
the hospitals, and the returned products when computing for multiple decision variables
focusing on the number and routing of the vehicles, production and return of products,
shipping, and inventory of products. Finally, a robust optimization approach is applied
where the Tchebycheff method is adopted to solve the complex problem.

A complex problem of relief distribution within the humanitarian logistics network
and victim evacuation is addressed by [26]. This problem is based on the Facility Location
Problem (FLP) and VRP, where the uncertain demand, transportation time, miscellaneous
cost, injured victims, and facility capacity are considered. Moreover, the formulated
problem involves stakeholders, such as the suppliers of relief materials (e.g., charitable
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organizations), the distribution centers, the emergency centers that distribute the aids,
distribution units where the evacuated victims are located, and hospitals to which they are
sent to for further treatment. Thus, the decisions are based on locating and distributing
relief materials and allocating evacuated victims assigned to respective routed vehicles.
Multi-objectives are also addressed where the total humanitarian logistics cost, the total
time of relief operations, and the variation between the lower and upper bound of the
transportation cost of the distribution centers are minimized. The uncertainties in the
form of inconsistencies and unclear and inaccurate information are captured through the
neutrosophic fuzzy set. These uncertainties are prioritized and dealt with, respectively,
through the neutrosophic set and the robust optimisation, where the latter deals with the
uncertainties associated with worst-case planning involving victims, facility capacity, and
relief supply.

The work by [27] similarly addressed the LRP through the Conditional Value at Risk
with Regret (CVaR-R) bi-objective mixed nonlinear programming model in dealing with
relief distribution post-disaster. In this problem, the optimal decisions include selecting
distribution centers to be made operational among all existing distribution centers, the
number of vehicles that should be assigned, the assignment of vehicles to respective
demand points, and the allocation of relief aids delivered to each of these demand points.
The concept of regret when making these decisions due to inaccurate expectations of
demands allows for a novel chance constraint programming approach introduced through
the CVaR-R measure. The regret value for each objective to: (1) minimise the total waiting
time of demand points and (2) minimise the total system cost is measured by defining
possible demand scenarios with respective probability. For each demand scenario, the
difference between the ideal objective values (from the deterministic model) and the
objective values computed given the demands in each scenario is determined, from which
the worst-case scenarios are identified and applied to compute the CVaR-R. To solve the
problem model, the Nash Bargaining Solution (NBS) approach is applied with the help of a
hybrid Genetic Algorithm (GA) when solving the single LRP version of the problem (via
the GA) as well as determining the Pareto frontier (via the Non-Dominated Sorting GA
Algorithm II (NSGA-II)) used to compute the NBS.

Finally, Ref. [28] also addressed the risk decision factor regarding the relief distribution
with uncertain travel time. This problem is formulated based on the multi-level network
via a mixed integer programming model to minimise the total arrival time of vehicles
delivering relief materials to only selected demand points instead of satisfying demand for
all demand points. Furthermore, the near-optimal delivery route computed ensures that a
particular service level is reached throughout the operation by formulating the associated
constraints. By introducing the risk-averse approach, the objective function is adapted by
incorporating the standard deviation term representing the risk of the decision regarding
uncertain time travel. Meanwhile, the non-additional term is the expected total arrival that
needs to be minimized. Both are weighted to balance the importance of risk to the decision
maker when computing for the near-optimal decision. Here, the Variable Neighbourhood
Search (VNS) is employed to solve the problem based on the data obtained from the Haiti
earthquake case study in 2010.

2.2. Markov Decision Processes Model for Humanitarian Operations

In this paper, the current trends of VRP in the scope of MDP modelling are discussed.
It could be derived from [17] that MDP modelling for VRPs in the setting of humanitarian
operations is scarce. This is supported by the finding that only [29] addressed the problem
in humanitarian operations. Ref. [29] looked at multiple humanitarian operations, such as
delivery and search and rescue, by incorporating the Relief Assessment Team (RAT) and
the Emergency Relief Team (ERT), using the Decision-Making Agent (DMA) to coordinate
the former two. The problem is modelled as an MDP with multiple random parameters,
such as the demand and stability of the transport link. Here, the RAT is tasked to assess
affected areas and dynamically report the demand situation for each zone. ERT, on the
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other hand, is tasked to serve the zones assigned by the DMA. Meanwhile, decisions are
composed by assigning various combinations of aid organisations to a specified affected
zone, as well as routing decisions for both the ERT and RAT. Finally, Q-learning is applied
to solve the problem involving a maximum of 7 RAT and 10 ERT.

Other than papers reviewed by [17], there are works such as [30] which plan evacuation
routing for the last minute disaster preparedness phase. In this problem, residents are
evacuated prior to disaster occurrence via buses that pick up stochastic resident evacuees
at bus stops. The problem is modelled as a single trip operation with a homogeneous fleet
of vehicles within a finite horizon. Here, the action or decision is the assignment of the
next pick-up point for each of the vehicles and the number of evacuees taken, suggesting
a split delivery operation. The small instance of the problem is solved exactly using
structured value iteration. Meanwhile, dynamic re-routing is applied for a large-scale
problem through a reduced network flow MIP and Robust MIP (RMIP) model. Beyond
these aforementioned works, related works on modelling a VRP through the framework of
the MDP for humanitarian operations are sparse.

Instead, the MDP application is used to address humanitarian operations that revolve
around the coverage problem, the allocation problem, the path planning, and the scheduling
problem. Ref. [31] computed the evacuation routes during a disaster by modelling the
problem as an MDP model. However, the work cannot be regarded as a VRP as the target
application is not specified in terms that would constitute a VRP, such as the vehicles’
availability or their capacity. Similarly, Ref. [32] used the MDP model to address the
problem of clearing the debris from blocked edges or roads in an optimal assignment
with uncertain clearance resources. In the post-disaster event, the optimal decision was
computed considering the delivery of aid or service for demand nodes. Then we have [33]
who addressed the problem of congestion in terms of hospital facilities as well as limited
ambulances to rescue patients in the aftermath of a disaster. Considering the stochastic
treatment time and transportation availability, the decision for such planning was to allocate
ambulances to affected patients and to choose which medical facility the ambulance should
be headed for. Two types of vehicles are considered: a dedicated ambulance for a location
and another ambulance with flexibility in terms of the location. The latter might suggest
split delivery. However, neither capacity nor comprehensive routing were considered in
this problem. Dynamic patient treatment times were updated, and the problem was solved
based on proposed heuristics that applied a myopic approach with policy improvement.

2.3. Markov Decision Processes Model for Industrial Problems and the Application of Approximate
Dynamic Programming

Apart from the application for humanitarian operations, the MDP modelling frame-
work has also been adopted for industrial problems since 2000. Interestingly, most of the
early works are dedicated to solve the single VRP with stochastic demand such as in [34–37].
The study in [38] is among the first to look into the theoretical aspect of the pick-up and
delivery of a single vehicle-routing problem with stochastic request using MDP modelling.
The focus on the multi-vehicle problem is seen later in [39–41] for a VRP with stochastic
demands. On the other hand, Ref. [42] deviated from stochastic demands by addressing
the problem with stochastic customers or stochastic requests. In this type of application,
various different and diverse solution strategies were adopted. This contrasted with the
problem with stochastic demands which mainly applied the lookahead approach such as
the PDS-RA.

Meanwhile, in [14,43] the route-based MDP was introduced as opposed to the con-
ventional formulation of an MDP addressing a VRP while incorporating a dynamic route
plan at every decision epoch. This framework was applied in [44] to solve the problem of
maximising the number of services within the same period for stochastic service requests
using the Value Function Approximation (VFA). The problem was to decide which new
stochastic request should be accepted and which should be postponed to the next operation
period. Apart from the fixed working time, multi-periods would be considered as multi-trip
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operations. VFA was applied as one of the ADP solution approaches allowing for online
computation while dealing with the decision and outcome spaces. Through the VFA, the
state space was segregated based on common features. The resulting MDP model led to
a huge number of decision points which was dealt with by introducing a classification
of multi-period operations. The application of VFA as shown here is commonly known
to ignore some details of the state due to the aggregation mechanism within. The same
authors in [45] alleviated this problem by proposing a hybrid of two ADP approaches: the
VFA and the Rollout Algorithm (RA) to address the stochastic request for a single vehicle-
routing problem. The authors later addressed the same problem in [46] with a different
hybrid mechanism of VFA and RA by having the second part of the simulation horizon
driven by a base policy dictated by the VFA. This method was effective in increasing the
solution quality while reducing the computation time. A single vehicle-routing problem
was also addressed by [47] with regards to taxi routing when searching for a passenger. In
this MDP model, the transition probability is derived from the taxi–passenger matching
probability on a link. Here, an enhanced value iteration was applied to solve the problem
by reformulating Bellman’s Equation into a series of matrix operations.

2.4. Approximate Dynamic Programming in Machine Learning

As can be seen from the example mentioned above, aside for [47], ADP is commonly
adopted as a solution approach for problems formulated in MDP. The ADP emerged as a
means to solve real and practical MDP problem models. This is due to the complexity of
the MDP model that increases exponentially due to the explosion of state, outcome, and
action spaces [48,49]. Such problem renders the exact solution to be prohibitive as shown
in [50,51]. Afterwards, Ref. [52] coined the term ADP which is otherwise known as RL or
neuro–dynamic programming. The interest in ADP sparked around the mid–1990s when
it was extensively written on by [53,54]; although the ideas and concepts could be found
dating back to the 1950s. For instance, Ref. [55] described the concept of approximating the
value of a position in a chess game which is based on the state of the board. He likened the
concept to an experienced player evaluating a move roughly but not based on all possible
scenarios. Later, Ref. [12], when introducing dynamic programming, hinted at the idea
with the mention of value space and approximation. Then [56] not only applied the idea
of [55] in evaluating a position move, but also showcased the practical use of the lookahead
approach while approximating the value of a move in the game of checkers. At the same
time, he considered the possibility of remembering all the positions and moves, much
like the concept of a dynamic lookup table. The work was further improved in [57] with
regards to a tree search lookahead with an improved alpha–beta pruning scheme based on
the memorisation of a board position, known as the book-learning procedure. The basic
ideas from the aforementioned works were explored further resulting in pivotal works
of [58–60] which formed what is known as the modern era of ADP [53]. Following that,
Refs. [61–63] in his experiments with the game Backgammon afterwards demonstrated the
practical application of ADP to solve real and complex problems.

2.5. Rollout Algorithm and Post-Decision State Rollout Algorithm in Approximate
Dynamic Programming

The authors take advantage of the well-known operations of the VRP from the human-
itarian operations’ perspective and propose that the model based on MDP is adopted for
MDDVRPSRC with a known variant of RA (PDS-RA) being applied to solve the problem
online. The intuition for the lookahead approach as elaborated above can be identified back
to the work of [55] who thought of evaluating a move by thinking ahead in a lookahead
manner. The RA is based on the same principle but is refined by means of the quality of
the lookahead which depends on the base policy applied. Furthermore, the horizon of the
lookahead plays an important role as was mentioned by [64,65]. Another crucial aspect
of the rollout is the Monte Carlo sampling that would enable the multiple lookaheads to
account for the stochastic parameter for the simulated episode. Finally, the number of
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simulations performed would also contribute to a better mean approximation of the state
or PDS value. The RA is proposed by [48] belonging to the class type of policy iteration in
reinforcement learning. Note that [34] was among the first to develop a specified RA in
solving sequencing problems. This work was extended in [35] for a single VRP. In [49], the
performance of the rollout policy is compared to the optimistic approximate policy iteration
for the single VRP. The former showed a better performance. Cyclic heuristic is applied as
the base policy for the RA in [66] to solve the problem of of a VRP with stochastic demand
(VRPSD) as well as the problem of the Travelling Salesmen Problem (TSP) with stochastic
travel time. The former was also addressed by [36] who presented the two–stage stochastic
programming solution approach and compared it to the online approach using RA. The
outcome space was addressed exactly for all these problems up to this point. However,
Ref. [37] managed to tackle this challenging computation approach by applying Monte
Carlo sampling instead in a single- and two-stage RA. The computation was shown to have
shrunk by 65% when compared with [35].

In [39], the multi-vehicle VRPSD is finally addressed. The challenges that come with
the multi-vehicle problem is addressed through clustering to dedicate a set of different
customers to each vehicle. An offline a priori route is computed for respective vehicles,
and RA is only applied if a route failure occurred. Although RA was not applied from the
get-go, this work highlighted the potential of a clustering mechanism when dealing with a
multi-vehicle VRP. This was seen in [40] who made the clustering mechanism dynamic at
every decision point as the status of stochastic demands were being updated. The problem
was then solved by proposed variants of RA making use of the extension of the MDP
framework, pre-decision state (PRE) ,and post-decision state (PDS) , advocated by [67].
Here, the base policy applied was the fixed route heuristic. This heuristic was relaxed
forming a known restocking fixed route heuristic in [41], from which policies were iterated
and obtained through a local search. These policies were evaluated with the help of the
optimal value computed by dynamic programming to help with pruning the search space
in the search for a more effective rollout base policy. This base policy was then applied in
the RA to obtain a more optimal policy for the problem. The same concept was applied
in [68] for the same problem, apart from the duration limit for a single vehicle, where a
hybrid of backward and forward recursive dynamic programming was applied instead. In
the work of [42], the authors applied RA with the cheapest insertion heuristic as the base
policy for the problem of single VRP with stochastic requests. The solution was compared
with the solution obtained from a greedy heuristic and VFA, respectively. Meanwhile,
Ref. [69] proposed a framework for applying RA for the dynamic and stochastic VRP as an
ADP solution approach. In [45], PDS–RA was applied with the VFA method driving the
decision rule for the lookahead.

2.6. Rollout Algorithm as Matheuristic

An RA with which the base heuristic is driven by the policy of applying a mathematical
programming method could be regarded as a matheuristic method. Among those who
applied such a technique are [15,70–73]. In the work of [70], the authors addressed the
scheduling problem with RA, where the decision rule was obtained using the quadratic
programming approach. In [71], the Mixed Integer Linear Programming (MILP) was
applied to obtain the decision rule for the RA in solving the problem of inventory routing
with a single vehicle. Such approaches were also seen in [72,73] for solving the inventory
routing problem. In other works, Ref. [15] proposed a matheuristic RA method to solve
the multi-vehicle routing problem for humanitarian delivery operations by reducing the
two-stage stochastic programming model to two reduced models that was dependent on
the vehicle’s mode of operation: replenishment or serving an emergency shelter.
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2.7. Knowledge Gap and Research Contribution

By referring to Section 2.2, it is very clear that a humanitarian VRP, which is being
addressed through machine learning, is still lacking. Meanwhile, from the industrial
problem’s perspective, the literature available shows that solving the VRP problem via
reinforcement learning and RA are largely limited to stochastic demands, customers, or
request problems. No such approach applied has addressed the problem with stochastic
road capacity. The authors intend to fill this gap.

Furthermore, addressing the VRP through MDP formulation and the RA solution
method is often limited to those of a single-vehicle problem as seen in the
work [35–37,41,42,45,49,66,68]. This is evident even in the published works of the last
five years. Those who solve multi-vehicle problems such as the work [39–41] often resort to
a clustering or decomposition method of the vehicles to a set of different customers. Such a
method, with the exception of a dynamic decomposition method, could not be performed
when addressing MDDVRPSRC as the road capacity; thus the route is uncertain. Further-
more, it is not clear how a dynamic clustering or decomposition method could address
the problem with stochastic road capacity while also accounting for the split delivery and
multi-trip operations. To the best of the authors’ knowledge, there is no literature that has
proposed the method of building the decision rule on the go, guided by the constructive
heuristic as the policy while performing the rollout. Similarly, no known variants of such
heuristics have been introduced to allow for decision ruling on the go. Here the authors
intend to fill the research gaps by proposing the application of proposed heuristics (TBIH-
1–TBIH-5) within the PDS-RA adopted from [13]. In terms of the modelling approach, to
the best of the authors’ knowledge, no literature addresses the MDDVRPSRC, whether in
the form of a mathematical programming model or in the MDP formulation, especially in
humanitarian operations settings. Most literature for MDP formulation in VRPs addressed
multi-trip operations only for on-route failure occasions. For example, the work such
as [74] addressed the split operation also when triggered by the event of route failure due
to stochastic demands. Literature such as [44,45] which addressed the multi-period oper-
ations, however, do not include the possibility of split delivery operations. Furthermore,
most of these models only described operations involving a single vehicle. We differ from
existing literature by intentionally allowing multi-trip operation as well as split delivery
to address the limitation of delivery trucks during a disaster event rather than a result of
route failure. Addressing multi-vehicles leads to the explosion of action space and is often
very difficult to solve without resorting to a clustering approach. The authors therefore
present here how with a moderate number of destination nodes in various simulated road
network, the MDDVRPSRC could be solved without utilising a clustering or dynamic
clustering method.

3. MDDVRPSRC MDP Model

3.1. Problem Statement

The problem of MDDVRPSRC focuses on the delivery problem, one of the crucial
humanitarian operations during a disaster and post-disaster event. Here, the road network
is represented as an undirected incomplete graph G = (H, E) in graph theory. H is the
set of nodes in graph G such that H = {D}⋃{S}⋃{N} where D, S, and N are the set
of depots, emergency shelters, and connecting nodes respectively. The connecting nodes
represent the junction connecting the edges (i, j) ∈ E, representing the roads such that
E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 	= j}. Note that emergency shelters whose demands are
satisfied can act as connecting nodes for vehicles to travel through.

In MDDVRPSRC, the medical supplies are to be delivered to temporary erected emer-
gency shelters, s ∈ S, with different demands, ws, by a homogeneous fleet of vehicles,
m ∈ M, with capacity, qm. The delivery of medical supplies is conducted via split delivery
to account for the limited number of vehicles during the sudden onset of a disaster. Vehicles
are allowed to perform multi-trip deliveries throughout the humanitarian operations to
satisfy all the demands. The vehicle capacity, qm, can be replenished to a full capacity, Q,
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as soon as they return to the depot, d ∈ D. All vehicles must be dispatched throughout
the operation until the total demand is satisfied as there is no guarantee that any assigned
vehicles might reach their designated emergency shelter. More on this point, a vehicle
is considered stranded when it is unable to travel to the next node on the way to the
depot for the consecutive decision points of ST once the total demand is satisfied. Unless
such an event occurs, all vehicles must return to the depot. However, they are not con-
strained as to which depot they should return to, advocating the flexibility needed for the
humanitarian operations.

All throughout the operation, the road capacity, ri,j, is uncertain. The mean road
capacity for each road, (i, j), as well as the capacity distribution deteriorates as the operation
time progresses for all damaged roads [15]. The deteriorating road capacity mean is due
to the damages inflicted by the subsequent post-disaster events, such as tremors of an
earthquake. This is simulated as the outward radial circles originating from the epicentre
of the earthquake [15]. For more information of road capacity distribution, road damage
determination, and simulation of earthquake tremors, refer to the work of [15].

3.2. Agent Solving MDDVRPSRC in Reinforcement Learning

In reinforcement learning, an agent learns to make decisions based on given informa-
tion of the system. The information is given in the form of the state representation of the
system as well as the transition of the state when making a constrained action or decision.
An agent learns to make optimal decisions based on the series of interactions it has made
from making decisions and in return obtained rewards. An MDP model formulates how an
agent sees the system through: (i) the state representation, (ii) how the system transitions,
(iii) the constrained actions or decisions it is allow to make as well, and (iv) the reward
it received from making a decision. In this work, the agent perceived the problem as a
MDDVRPSRC and will make a near optimal decision at every decision point. This agent
then becomes a part of the DSS for delivering critical medical supplies during a disaster.

The agent learns of the aforementioned delivery operations of the MDDVRPSRC
through a series of discrete states it observes at each decision point, k, beginning with the
initial state, s0, until the end state, sK, representing the end of delivery operations. The
Pre-Decision State (PRE), sk, represents the state of the operations at decision point, k, prior
to decision, ak, computed by the agent. The state observed by the agent after decision, ak, is
made and denoted as the Post-Decision State (PDS), sak

k . These states (PRE and PDS) are
described through the state variables l, t, q, w, e, and r, respectively:

• l: current location of all vehicles;
• t: the next arrival time to next destination of all vehicles;
• q: the capacity status of all vehicles;
• w: the demand status for all nodes;
• e: the occupancy status of road (i, j) in relation to vehicle m;
• r: the road capacity of all roads or edges.

In the MDDVRPSRC MDP formulation, an agent computes a decision, ak, to send
a fleet of vehicles to a destination node based on the state that it observed, sk. Once the
decision ak is executed, the PRE transitions to PDS, sak

k , deterministically and waits for the
next decision point, k + 1, which is triggered at Tk+1 by the arrival of one or more vehicles
m ∈ M′

k+1 simultaneously at the emergency shelter s ∈ S or connecting node n ∈ N or
depot d ∈ D.

Once the decision point k + 1 is triggered, the random road capacities ˆri,j are observed
for all roads (i, j) ∈ E through the dynamic update from the locals at the arrival destinations.
At this point, the PDS transitions to PRE, sk+1, stochastically and the PRE state variables
ek and rk are updated. This new random information is now known to the agent (via the
updates of ek and rk) who then uses it to compute the next decision, ak+1, for all vehicles.
Once the decision ak+1 is computed, the PRE transitions to PDS, sak+1

k+1 . At the same time,
demand wh, ∀h ∈ S is served or the vehicle’s capacity is replenished or neither (when a
vehicle arrives at connecting node h ∈ H ∩ {S + D}) depending on where the vehicles
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arrived. Hence, the variables of PDS representing the next destination, lak , arrival time to
next destination tak , capacity, qak , status edges travelled, eak and demand status, wak are
updated accordingly. The MDDVRPSRC formulation that follows is developed by referring
to [75] and the work of [13]. All parameters, state variables. and decision variables are
listed in Tables 1 and 2.

Table 1. MDDVRPSRC: Parameters.

Parameters

N connecting node set
D depot set
S shelter set
H N

⋃
S
⋃

D
E set of edges E = {(i, j) : i, j ∈ N

⋃
S
⋃

D, i 	= j}
M set of vehicles
K end decision point
sk state at decision point k prior to decision ak being made, PRE
sak

k state at decision point k after decision ak is made, PDS
sK termination PRE state
k decision point such that k ∈ N∩ {0, K}
M′

k set of vehicles that arrived at their assigned destination at decision point k where
M′

k ⊂ M
Tk time at decision point k such that Tk ∈ R
twait waiting time for vehicle arrived at a node but is assigned to remain stationary at

current node such that twait ∈ [0, inf)
A(sk) decision set of all possible decisions at decision point k given sk
Aπ(sk) MDP decision rule at decision point k following policy π given sk
�π(sk) on-the-go constructed lookahead decision rule at decision point k following policy

π given sk
ηπ(sk) decision rule computed through construction heuristic or CPLEX determined by

policy π at decision point k given sk in the lookahead horizon
O′

m set of all potential destination for vehicle m at i for all (i, j) ∈ E where O′
m ⊂ H

Om reduced decision space set for a single vehicle m in rollout given that Om ⊂ O′
m

Q maximum capacity of vehicles after replenishment at depot
ci,j cost incurred if edge (i, j) is travelled such that ci,j ∈ R
ti,j time travelled of edge (i, j) such that ti,j ∈ R
W(k) random information at decision point k
ri,j deterministic road capacity ri,j ∈ Z�, where Z� = Z+ ⋃{0} observed at decision

point k
ˆri,j stochastic road capacity ˆri,j ∈ Z�

pi,j damage unit sustained by road (i, j) [15], such that pi,j ∈ N
Z a large negative arrival time for vehicles resting at depot when all demand is served
G2 a larger constant acting as reward or penalty
ST a limit on how many times a vehicle is allowed to be stationary (stranded) consecu-

tively in terms of decision points
F(m, i) function that adds consecutive decision points for all stranded vehicle m at

i when all demand is served and all other vehicle is at depot consecutively
starting from decision point kstrand0 to current decision point kstrandk

such that

F : (m, i) → {kn|kn−1 − kn = 1}kstrandk
n=kstrand0

: ∀kstrandk
≤ ST m ∈ M, i ∈

H, ri,j = 0 ∀(i, j) ∈ E
λ discount factor in Bellman Equation [12]
π policy π ∈ Π ⊂ N that affect the decision rule �π(sk) : sk → ak
Rk(sk, ak) reward for the agent for making decision ak at decision point k when observ-

ing(given) the state sk
Rk,m(sk, ak) individual reward of vehicle m at decision point k

130



Mathematics 2022, 10, 2699

Table 2. MDDVRPSRC: State and Decision Variables.

PRE and PDS Variables

lk, vector of next destination ∀m ∈ M at decision point k, such that lk ∈ H|M| =
[l0, l1, . . . , l|M−1|]

lak , vector of next destination ∀m ∈ M at decision point k, such that lak ∈ H|M| =
[lak

0 , lak
1 , . . . , lak

|M−1|]
tk, vector of arrival time ∀m ∈ M to assigned destination at decision point k, such that

tk ∈ R|M| = [t0, t1, . . . , t|M−1|]
tak vector of arrival time ∀m ∈ M to assigned destination at decision point k, such that

tak ∈ R|M| = [tak
0 , tak

1 , . . . , tak
|M−1|]

qk, vector of vehicle capacity ∀m ∈ M at decision point k, such that qk ∈ R|M| =
[q0, q1, . . . , q|M−1|]

qak , vector of vehicle capacity ∀m ∈ M at decision point k, such that qak ∈ R|M| =
[qak

0 , qak
1 , . . . , qak

|M−1|]
wk, vector of demand for all node i ∈ H at decision point k, such that wk ∈ R|M| =

[w0, w1, . . . , w|H−1|]
wak , vector of demand for all node i ∈ H at decision point k, such that wak ∈ R|M| =

[wak
0 , wak

1 , . . . , wak
|H−1|]

rk, vector of road capacity for all edges (i, j) ∈ E at decision point k, such that rk ∈ R|E| =
[ri,j]∀(i,j)∈E

rak , vector of road capacity for all edges (i, j) ∈ E at decision point k, such that rak ∈ R|E| =
[ri,j]∀(i,j)∈E

ek, vector of road occupancy of each vehicle for all (i, j, m) ∈ {(i, j, m) : ∀m ∈
M, ∀(i, j) ∈ E} at decision point k, such that ek ∈ {0, 1}|{(i,j,m): ∀m∈M, ∀(i,j)∈E}| =
[ei,j,m]∀(i,j,m)∈{(i,j,m): ∀m∈M, ∀(i,j)∈E}
1 if edge (i, j) travelled by specific vehicle m, 0 otherwise

eak , vector of road occupancy of each vehicle for all (i, j, m) ∈ {(i, j, m) : ∀m ∈
M, ∀(i, j) ∈ E} at decision point k, such that eak ∈ {0, 1}|{(i,j,m): ∀m∈M, ∀(i,j)∈E}| =
[eak

i,j,m]∀(i,j,m)∈{(i,j,m): ∀m∈M, ∀(i,j)∈E}
1 if edge (i, j) travelled by specific vehicle m, 0 otherwise

Decision Variable

ak vector of next assigned destination for vehicles, such that ak ∈ H|M| =
[a1, a2, . . . , a|M|] ∈ A(sk)

3.3. MDDVRPSRC Formulation

The pre-decision state (PRE) sk is a multi dimensional vector consisting of other vectors
representing each state variable, respectively. Within this vector are the state variables
defined in Table 2:

sk = [lk, tk, qk, wk, rk, ek]. (1)

The PDS representation shares the same features as the PRE differs only by annotation
and that its variables are updated after decision ak is made:

sak
k = [lak , tak , qak , wak , rak , eak ]. (2)

Once the decision point is triggered, based on the minimum current values within the
arrival time vector tak , at:

Tk = min
m∈M, t

ak
m ≥0

tak , (3)
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the respective decision/assignment is computed for all vehicles including those that arrived
as shown in Equation (4) below:

M′
k = arg min

m∈M, t
ak
m ≥0

tak . (4)

Here, the vehicle that is still en route to its destination during the decision point k is
denoted by {m ∈ M\M′

k}.
In the MDDVRPSRC, the decision ak is a |M| dimensional vector in a decision space (a

set) A(sk) given the state sk. The decision involves assigning the next destination for all
vehicles at every decision point k,

ak = a ∈ H|M| = [a0, a1, . . . , a|M−1|] ∈ A(sk). (5)

However, the decision space A(sk) for MDDVRPSRC is too large to obtain a good
solution within reasonable computation efforts. Therefore, for every decision point k, the
decision by the agent is computed as proposed in [15] where the reduced decision set for a
single vehicle Om is as defined for the rollout in Table 1:

A(Sk) = {ak ∈ H|M| :

am = j, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j > 0, wj 	= 0, qm 	= 0, j ∈ Om : Om ⊂ S}

am = j, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j > 0, ∑

h∈H
wh 	= 0, qm = 0, j ∈ Om : Om ⊂ D}

am = j, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j > 0, ∑

h∈H
wh = 0, i 	∈ D, j ∈ Om : Om ⊂ D}

am = i, ∀{m ∈ M′
k : i = lm, j, d 	= i, ri,d > 0, ri,j = 0, ∑

h∈H
wh 	= 0, qm 	= 0,

j, d ∈ O′
m, d ∈ D}

am = i, ∀{m ∈ M′
k : i = lm, j, s 	= i, ri,j > 0, ri,s = 0, ∑

h∈H
wh 	= 0, qm 	= 0,

j, s ∈ O′
m, s ∈ S}

am = i, ∀{m ∈ M′
k : i = lm, ∑

h∈H
wh = 0, i ∈ D}

am = i, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j = 0 ∀(i, j) ∈ E}

am = j, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j > 0, ∑

h∈H
wh 	= 0, qm 	= 0, j ∈ Om : Om ⊂ (H\S)}

am = j, ∀{m ∈ M′
k : i = lm, j 	= i, ri,j > 0, ∑

h∈H
wh 	= 0, qm = 0, j ∈ Om : Om ⊂ (H\D)}

am = lm, ∀{m ∈ M \ M′
k}}

(6)

The state Sk transitions deterministically to PDS, sak
k :

sak
k = SM,a(sk, ak), (7)

where the decision is made by the agent (lak = ak). This is where the next destination lak ,
arrival time tak , capacity of vehicle qak , travelled edges status by vehicles eak , as well as the
demands status wak are updated. At this point, the stochastic road capacity is not known;
hence rak is not updated.

The time of arrival tak
m ∈ R, ∀m ∈ M is updated to:
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tak
m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tm − Z, ∀{m ∈ M′
k : lm ∈ D, ∑

h∈H
wh = 0}

tm − Z, ∀{m ∈ M′
k : i = lm, ri,j = 0, ∀(i, j) ∈ E,

|F(m, i)| = ST}
twait, ∀{m ∈ M′

k : am = lm, lm 	∈ D, wh = 0, ∀h ∈ H, }
Tk + tlm ,am , ∀{m ∈ M′

k : lm 	= am, lm 	∈ D, ∑
h∈H

wh = 0,

plm ,am = 0}
Tk + tlm ,am +

(
tlm ,am × plm ,am

10
)
, ∀{m ∈ M′

k : lm 	= am, lm 	∈ D, ∑
h∈H

wh = 0,

plm ,am 	= 0}
twait, ∀{m ∈ M′

k : am = lm, ∑
h∈H

wh 	= 0, }
Tk + tlm ,am , ∀{m ∈ M′

k : lm 	= am, ∑
h∈H

wh 	= 0, plm ,am = 0}
Tk + tlm ,am +

(
tlm ,am × plm ,am

10
)
, ∀{m ∈ M′

k : lm 	= am, ∑
h∈H

wh 	= 0, plm ,am 	= 0}
tm, otherwise

(8)

where twait is defined as:

twait =

⎧⎨⎩t2, t′k = (t1, t2, ...tn), ti ∈ tk : ti ≥ 0, ti − ti−1 > 0, n ≥ 2
min

∀(i,j)∈E
ti,j, otherwise , (9)

and t′k is an n-tuple with an increasing order of arrival time.
Meanwhile, the capacity of all vehicles m ∈ M is updated to:

qak
m =

⎧⎪⎨⎪⎩
Q, ∀m ∈ {M′

k : lm ∈ D}
max(qm − wlm , 0), ∀m ∈ {M′

k : lm ∈ S}
qm, otherwise

. (10)

The travelled edges eak are updated ∀(i, j) ∈ E, ∀m ∈ M:

eak
i,j,m =

{
1, ∀m ∈ {M′

k : i = lm, j = am, i 	= j}
ei,j,m, otherwise

. (11)

Finally, the demand of emergency shelter is also updated ∀h ∈ H:

wak
h =

{
max(wlm − qm, 0), ∀m ∈ {M′

k : lm ∈ S}
wh, otherwise

. (12)

At decision point Tk+1, the uncertainty of the road capacity ˆri,j∀(i, j) ∈ E is now
observed by the agent which leads to the transition from PDS to PRE, sk+1:

sk+1 = SM,W(sak
k , Wk+1). (13)

The road capacity at this point is no longer uncertain ( ri,j∀(i, j) ∈ E) since it has
been sampled/known to vehicles that have arrived at their destinations. This information
is thus known to the agent. The next destination lm = lak

m (∀m ∈ M), the arrival time
tm = tak

m (∀m ∈ M), capacity of the vehicle qm = qak
m (∀m ∈ M), as well as the shelter

demand wh = wak
h (∀h ∈ H) remain the same.
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The travelled edges status, ek is updated ∀m ∈ M, ∀(i, j) ∈ E:

ei,j,m =

{
0, ∀m ∈ M′

k
eak

i,j,m, otherwise
. (14)

The road capacity rk is at this point observed and updated:

ri,j = min((r̂i,j − ∑
m∈M

ek(i, j, m)), 0) ∀(i, j) ∈ E, (15)

where the random road capacity r̂i,j∀(i, j) ∈ E is obtained from a random Poisson distribu-
tion as described in [15].

When transitioning to PDS, sak
k , the agent receives a reward Rk(sk, ak) contributed by

all vehicles m ∈ M at decision point k:

Rk(sk, ak) = ∑
m∈M

Rk,m(sk, ak), (16)

where Rk,m(sk, ak), ∀m ∈ M is given by:

Rk,m(sk, ak) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ∀m ∈ {M\M′
k}

0, ∀m ∈ {M′
k : i = lm, lm = am, ∑

h∈H
wh 	= 0}

(max(wlm − qm, 0)× G2)− clm ,am − tlm ,am ,

∀m ∈ {M′
k : qm 	= 0, lm ∈ S, wlm > qm, plm ,am = 0}

(max(qm − wlm , 0)× G2)− clm ,am − tlm ,am ,

∀m ∈ {M′
k : qm 	= 0, lm ∈ S, wlm < qm, plm ,am = 0}

(max(wlm − qm, 0)× G2)− clm ,am − (tlm ,am + tlm ,am × plm ,am

10
)
,

∀m ∈ {M′
k : qm 	= 0, lm ∈ S, wlm > qm, plm ,am 	= 0}

(max(qm − wlm , 0)× G2)− clm ,am − (tlm ,am + tlm ,am × plm ,am

10
)
,

∀m ∈ {M′
k : qm 	= 0, lm ∈ S, wlm < qm, plm ,am 	= 0}

G2 − clm ,am − tlm ,am ,

∀m ∈ {M′
k : lm 	= am, qm 	= 0, lm ∈ S, wlm = qm, plm ,am = 0}

or ∀m ∈ {M′
k : lm 	= am, qm = 0, am ∈ D, ∑

h∈H
wh 	= 0,

plm ,am = 0}
or ∀m ∈ {M′

k : lm 	= am, am ∈ D, ∑
h∈H

wh = 0, plm ,am = 0}

G2 − clm ,am − (tlm ,am + tlm ,am × plm ,am

10
)
,

∀m ∈ {M′
k : lm 	= am, qm 	= 0, lm ∈ S, wlm = qm, plm ,am 	= 0}

or ∀m ∈ {M′
k : lm 	= am, qm = 0, am ∈ D, ∑

h∈H
wh 	= 0,

plm ,am 	= 0}
or ∀m ∈ {M′

k : lm 	= am, am ∈ D, ∑
h∈H

wh = 0, plm ,am 	= 0}

−clm ,am − tlm ,am , otherwise, plm ,am = 0, ∀m ∈ M′
k

−clm ,am − (tlm ,am + tlm ,am × plm ,am

10
)
, otherwise, plm ,am 	= 0, ∀m ∈ M′

k

(17)
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Here, a policy of decisions denotes the guiding principle on which the decision is based.
For example, a policy πB ∈ Π could be a heuristic if a decision function AπB(sk) is mapped
from that heuristic. In this model formulation, the decision ak = Aπ(sk) ⊂ A(sk) [67] is selected
among other potential decisions in the decision space, A(sk) following a certain policy
π ∈ ∏ such that the decision rule function Aπ(sk) : sk → ak.

The objective (Equation (18)) is to find an optimal policy π� such that the expected
total rewards are maximised (objective function for the Bellman optimality equation [67]):

max
π∈Π

Eπ

{
K

∑
k=0

(Rk(sk, Aπ(sk))

}
. (18)

Hence:

π� = arg max
π∈Π

Eπ

{
K

∑
k=0

(Rk(sk, Aπ(sk))

}
, (19)

where for every decision point k, the optimal decision a�k is chosen: a�k = Aπ�
(sk) by

following the optimal policy π�.

4. MDDVRPSRC Solution Approach

To solve an MDP is to seek an optimal policy π�. Through this optimal policy, every
decision made by the agent is optimal: Aπ�

(sk) : sk → a�k as stated by the principal of
optimality [12]. To obtain the optimal policy, the Bellman Equation is solved [12] such that the
optimal decision a�k is computed for every decision point k for each given state sk observed by
the agent. This series of optimal computed decisions is said to be guided by the optimal policy
π� ∈ Π, and therefore the problem formulated in MDP is solved. To compute the optimal
decision, a�k , the Bellman Equation could be written as Equation (20) [67]:

a�k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkE{Vk+1(sk+1)}). (20)

Due to the curse of dimensionality as seen in Equation (20), computing for an optimal
decision is often intractable. To alleviate the curse associated with the outcome or transition
space, the PDS is introduced [67] (Equation (21)) and the equation was rewritten as in
Equation (22):

Vak
k (sak

k ) = E{Vk+1(sk+1)}, (21)

a�k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkVak
k (sak

k )). (22)

Even with PDS introduced as above, the computation for an optimal decision is usually
challenging, especially when computing the value of the PDS, Vak

k (sak
k ) in Equation (22).

The ADP approach approximates the value of PDS instead. This is to deal with the
large state space in the MDP. Through the ADP approach, Equation (22) is rewritten as
Equation (23), where the value of PDS is approximated and thus the decision is computed
to near optimality instead:

ã�k = arg max
ak∈A(sk)

(Rk(sk, ak) + λkVak
k (sak

k )). (23)

For MDDVRPSRC, this equation is still challenging to solve since the decision space
A(sk) in Equation (23) is too large for a practical number of vehicles to be involved. Fur-
thermore, the decisions consist of combinations of vehicle assignments that would require
a long rollout horizon as well as a large number of Monte Carlo simulations. The concern
is that the reward obtained for one vehicle may exaggerate the value of the decision for
all vehicles collectively if computed prematurely. This is seen in the initial experiments
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where, given limited computation capabilities on the machine, inefficient assignments for
vehicles resulted.

Alternatively, to cope with this challenge, the near optimal decision could be further
approximated as in Equation (24) as proposed in work [15]:

ã�k ∈ H|M| ≈ [ã�1, ã�2, . . . , ã�|M|] ∀k, (24)

where the decision space, made of combinations of vehicle assignments (which could be
astronomical), could be restricted to a decision space of possible assignments for each
vehicle Om instead, as shown in Equation (25):

ã�m = arg max
am∈Om

(Rk(sk, ak) + λkVam
k (sam

k )) ∀(k, m). (25)

Even with such measures, given the machine’s capabilities, the computation is only
limited to a small number of rollout horizons and Monte Carlo simulations. However, it is
shown in this work that the decisions computed are applicable to this type of problem.

To compute Equation (25), the PDS value, Vam
k (sam

k ) is approximated using PDS-RA, as
proposed by [40]. However, different base heuristics can be applied to solve for the MDP
problems with characteristics such as the one in this work. Finally, this approach is applied
to reciprocate the model for the agent’s decision in Equation (6).

4.1. PDS-RA Algorithm

PDS–RA is one of the RA families first introduced in [40] as an ADP solution algorithm
to the dynamic VRP with stochastic demand. PDS–RA takes advantage of the PDS struc-
tures that alleviate the problem associated with the outcome or transition space. This thus
reduces the number of rollout executions compared to the conventional RA to approximate
the value of PDS in a modified Bellman Equation effectively. The general PDS-RA could be
referred to in Algorithm 1. Here, the rollout transitioned PDS (simulation) is denoted as
sa to avoid confusion with the real-time transitioned PDS, (sak

k ) observed by the agent. In
this algorithm, the values of PDS, Vak

k (sak
k ) associated with each respected ak ∈ A(sk) is ap-

proximated (Vak
k (sak

k )). For each possible PDS associated with the next decision ak ∈ A(sk),
the PDS-RA is executed, and by the end of the execution, the approximated value of PDS,
Vak

k (sak
k ) is obtained. In every execution of PDS-RA, the base policy πB(sak

k )
∈ Π is first

assigned (policy to apply heuristic B), computing the decision rule function �
πB(sak

k ) (sk) for
the rollout simulation is based on the heuristic B performed given the PDS, sak

k . Based on
this specific decision rule (which is normally the assignment of vehicles to next destination
for VRP), the lookahead into the future as far as horizon K is performed. Transiting from

the simulated PRE to PDS is enabled by referring to �
πB(sak

k ) (sk) when making a decision
during the lookahead. This decision is followed by a stochastic transition, transitioning
PDS back to PRE (sk = SM,W(sa, Wk+1(ω(k + 1)))) in the lookahead simulation. Here,
the random information of road capacities for all roads, (Wk+1(ω(k + 1))), is known by
sampling ω(k + 1) ∈ Ω through a known distribution as part of the Monte Carlo simu-
lation approach. By sampling ω(k + 1) ∈ Ω, the exhaustive computation for all random
transitions of outcomes in the outcome space Ω is prevented as first observed by [37] in her
application of RA.

Each time the transition occurs within the lookahead along the horizon, rewards
Rk(sk, ak) are consecutively amassed. At the end of a one-episode lookahead simulation,
the sum of rollout rewards B̂n(πB(sak

k )
, k + 1, K) is obtained. This value is used to update

the approximated PDS value of the respective potential decision ak through an incremental
mean approach (Algorithm 1: line 14). The process repeats for N Monte Carlo simulation
episodes. After this number of Monte Carlo simulations, the resulting updated approxi-

mated PDS value, Vak
k

N
(sak

k ) is considered good enough an estimation for the respective
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decision ak. This approximated PDS value is mapped to the respective decision by a

function: f : ak ← Vak
k

N
(sak

k ).

Algorithm 1 Compute Va
k (s

ak
k ) (as shown in [75] based on PDS-RA proposed by [13] and

highlighted in [15]).

Require: sk, λ, ak
Ensure: Va

k (s
ak
k )

1: Initialise n, k, Rk(sk, ak), Bn

2: sak
k = SM,a(sk, ak)

3: �
πB(sak

k ) (sk) ← πB(sak
k )

← B(sak
k )

4: while n ≤ N do
5: sa ← sak

k
6: while k 	= K do

7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(ω(k + 1)))

9: ak ← �
πB(sak

k ) (sk)
10: sa = SM,a(sk, ak)
11: k = k + 1
12: end while

13: B̂n(πB(sak
k )

, k + 1, K) ← Rk(sk, ak)

14: Va
k

n
(sak

k ) = Va
k

n−1
(sak

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)− Va
k

n−1
(sak

k )
)

15: n = n + 1
16: end while

17: return Vak
k

N
(sak

k )

The PDS-RA is then executed for the next possible decision ak ∈ A(sk) after which
the process repeats. Finally, when the PDS-RA is executed ∀ak ∈ A(sk), Equation (23) can
now be computed based on all approximated PDS values associated with each respective
potential next decision for agent to make. Based on the computation of Equation (23), a
decision is then made.

It should be noted that Algorithm 1 is applied to the rollout and looks into the
future of each potential decision where each decision ak revolves on the assignments of all
vehicles am = ak[m], ∀m ∈ M simultaneously per PDS-RA. The base policy πB(sak

k )
guides

the construction of the decision function �
πB(sak

k ) (sk) in one go, per PDS-RA execution
∀ak ∈ A(sk).

In the applied solution, the rollout is executed for every potential next destination
for each vehicle am, ∀m ∈ M, and the value for each PDS associated with the potential
next destination is computed by PDS-RA, such that near optimal assignments ã�m would
be computed in Equation (25). These near optimal individual assignments form the near
optimal decision as described in Equation (24). The base policy πB(sak

k )
is based on an

iterative policy πB(sk)
applied at each lookahead decision point sk to construct the decision

rule �
πB(sak

k ) on-the-go using constructive base heuristics B. The decision rule �
πB(sak

k ) is

constructed on the go such that �
πB(sak

k ) : sk → η
πB(sk) (sk) where η

πB(sk) (sk) is the decision
rule computed at every decision epoch k in the lookahead horizon when applying heuristic
B based on the rollout state sk according to the iterative policy πB(sk)

.

137



Mathematics 2022, 10, 2699

In Algorithm 2, for example, CPLEX (denoted as CPLEX) is applied instead as the
base heuristic. Here, CPLEX is run for a Stochastic Linear Integer Programming (SILP)

version of the reduced MDDVRPSRC to construct �
π

CP(s
ak
k ) (sk) on the go given the current

rollout state sk and this results in η
πCP(sk) (sk). Since here the policy is to apply CPLEX, we

denote that the policy that the decision rule follows is of πCP(s
ak
k )

.

A detailed explanation on this matheuristic is given in [15] (Algorithm 2). The authors
used this exact configuration (with CPLEX as the base heuristic) as a benchmark where
tractable. As a solution approach in general, the Algorithm 3 is referred. The authors
first introduced the TBIH-1 heuristic (Algorithm 4) based on a pure random insertion
for the non-obvious decisions. Furthermore, other constructive heuristics were applied
dynamically (TBIH-2 and TBIH-3), extended from TBIH-1, to construct the decision rule on

the go (�
πB(sak

k ) ) as shown in Algorithm 3, in contrast to Algorithm 2. Additionally from
these constructive heuristics, the authors propose another two new variants (TBIH-4 and
TBIH-5) for this problem by introducing the exploitation mechanism on both TBIH-2 and
TBIH-3.

Algorithm 2 Matheuristic Extended from Algorithm 1 to Compute ã�m [15].

Require: sk, λ, ak
Ensure: a�m

1: for am ∈ Om at decision point k do
2: Initialise n, k, Rk(sk, ak), Bn

3: while n ≤ N do
4: sam

k = SM,a(sk, am)

5: sa ← sam
k

6: while k 	= K do

7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(n(k + 1)))
9: πCPk(sk)

← CPLEX(sk)

10: η
πB(sk) ← πCPk(sk)

11: �
πB(sak

k ) : sk → η
πB(sk) (sk)

12: am ← �
πB(sak

k ) (sk)
13: sa = SM,a(sk, am)
14: k = k + 1
15: end while

16: B̂n(πB(sak
k )

, k + 1, K) ← Rk(sk, ak)

17: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)− Vam
k

n−1
(sam

k )
)

18: n = n + 1
19: end while

20: f : am ← Vam
k

N
(sam

k )
21: end for
22: ã�m = arg max

am∈Om

(Rk(sk, ak) + λk f (am)) ∀(k, m)

23: return ã�m
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Algorithm 3 Compute ã�m based on [15] using other Base Heuristic, B.

Require: sk, λ, ak
Ensure: a�m

1: for am ∈ Om at decision point k do
2: Initialise n, k, Rk(sk, ak), Bn

3: while n ≤ N do
4: sam

k = SM,a(sk, am)

5: sa ← sam
k

6: while k 	= K do

7: Rk(sk, ak) = Rk(sk, ak) + λkRk(sk, ak)
8: sk = SM,W(sa, Wk+1(n(k + 1)))
9: πB(sk)

← B(sk)

10: η
πB(sk) ← πB(sk)

11: �
πB(sak

k ) : sk → η
πB(sk) (sk)

12: am ← �
πB(sak

k ) (sk)
13: sa = SM,a(sk, am)
14: k = k + 1
15: end while

16: B̂n(πB(sak
k )

, k + 1, K) ← Rk(sk, ak)

17: Vam
k

n
(sam

k ) = Vam
k

n−1
(sam

k ) +
1
n
(

B̂n(πB(sak
k )

, k + 1, K)− Vam
k

n−1
(sam

k )
)

18: n = n + 1
19: end while

20: f : am ← Vam
k

N
(sam

k )
21: end for
22: ã�m = arg max

am∈Om

(Rk(sk, ak) + λk f (am)) ∀(k, m)

23: return ã�m

4.2. Teach Base Insertion Heuristic (TBIH-1)

In this section, the base heuristics applied are described in general (Algorithm 4), and
the elaboration of each is described in the subsections that follow. TBIH-1, TBIH-2, TBIH-3,
TBIH-4, and TBIH-5 are the heuristics applied in this work to both validate the model and
to cross-compare the performance for each of the models.

The algorithm for each heuristic applied here follows the same main structure of: (i)
the teaching part (TP) and (ii) the seeking part (SP).

In the TP, the obvious decisions are chosen without running any heuristics to search
for the best next destination. These obvious decisions are stated in Equation (6) and applied
to each vehicle:

• To serve any shelter s ∈ S randomly among possible shelters as the next destination;
• To replenish at any depots d ∈ D randomly among possible depots as the next destination;
• To return to any depots d ∈ D randomly among possible depots when all demands

have been served;
• To remain stationary at the current arrival node i while still having capacity (qm 	= 0)

and demands that have not all been served, if the only next possible destination is to
a depot;

• To wait at the current arrival node i while still having capacity (qm 	= 0) if the road
capacity to the next possible shelter is blocked ri,j = 0;

• To remain resting at the depot if the current arrival node is a depot i ∈ D and all
demands have been served;

• To remain stationary at the current arrival node i if all road capacity to a neighbouring
node j are blocked ri,j = 0, ∀(i, j) ∈ E.
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Algorithm 4 TBIH-1 and General Structure Algorithm. (Note: |M′
k| ≤ 1 in rollout).

Require: sk, M′
k, M\M′

k
Ensure: Decision during lookahead

1: update qm, ∀m ∈ M and wh, ∀h ∈ H as in Equation (10) and Equation (12)
2: unserved shelters vector, US = [h]∀h∈H:wh 	=0
3: for m ∈ M′

k do

4: i = lm
5: potential next destination vector, next = [h]∀h∈H:ri,h∈E,ri,h>0

6: init empty list nextS, nextD, nextND, Decision
7: nextS = [i : i ∈ (next ∩ US)]
8: nextD = [i : i ∈ (next ∩ D)]
9: nextND = [i : i ∈ (next 	∈ D)]

10: if qm 	= 0 AND len(nextS!=0) then
11: if len(nextS)!=1 then
12: am = random.choice(nextS)
13: while len(nextS)!=0 do
14: if ri,am > 0 then

15: Decision.append(am)
16: ri,am = max(ri,am − 1, 0)
17: break
18: else
19: nextS.remove(am)
20: if len(nextS)!=0 then
21: am = random.choice(nextS)
22: else
23: continue
24: end if
25: end if
26: end while
27: if Decision!= 0 then
28: break
29: else
30: continue
31: end if
32: else
33: am = random.choice(nextS)
34: if ri,am > 0 then

35: Decision.append(am)
36: ri,am = max(ri,am − 1, 0)
37: break
38: else
39: continue
40: end if
41: end if
42: else if qm == 0 AND len(nextD!=0) then
43: if len(nextD)!=1 then
44: am = random.choice(nextD)
45: while len(nextD)!=0 do
46: if ri,am > 0 then

47: Decision.append(am)
48: ri,am = max(ri,am − 1, 0)
49: break
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Algorithm 4 Cont.

50: else
51: nextD.remove(am)
52: if len(nextD)!=0 then
53: am = random.choice(nextD)
54: else
55: continue
56: end if
57: end if
58: end while
59: if Decision!= 0 then
60: break
61: else
62: continue
63: end if
64: else
65: am = random.choice(nextD)
66: if ri,am > 0 then

67: Decision.append(am)
68: ri,am = max(ri,am − 1, 0)
69: break
70: else
71: continue
72: end if
73: end if
74: else if len(US)==0 AND len(nextD!=0) then
75: if len(nextD)!=1 then
76: am = random.choice(nextD)
77: while len(nextD)!=0 do
78: if ri,am > 0 then

79: Decision.append(am)
80: ri,am = max(ri,am − 1, 0)
81: break
82: else
83: nextD.remove(am)
84: if len(nextD)!=0 then
85: am = random.choice(nextD)
86: else
87: continue
88: end if
89: end if
90: end while
91: if Decision!= 0 then
92: break
93: else
94: continue
95: end if
96: else
97: am = random.choice(nextD)
98: if ri,am > 0 then

99: Decision.append(am)
100: ri,am = max(ri,am − 1, 0)
101: break
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Algorithm 4 Cont.

102: else
103: continue
104: end if
105: end if
106: else if qm!=0 AND len(US)!=0 AND len(nextD)!=0 AND len(nextS)== 0 AND

len(nextND)== 0 then
107: Decision.append(i)
108: break
109: else if qm!=0 AND ANY(h, ∀h ∈ US ∩ next) AND len(nextS)== 0 AND ANY(wh 	=

0, ∀h ∈ next) then
110: Decision.append(i)
111: break
112: else if ALL(wh == 0, ∀h ∈ H) AND i ∈ D then
113: Decision.append(i)
114: break
115: else if ALL(ri,j == 0, ∀j ∈ next, if (i, j) ∈ E) then

116: Decision.append(i)
117: break
118: else
119: if len(nextND) > 1 then
120: am = random.choice(nextND)
121: while len(nextND)!=0 do
122: if ri,am > 0 then

123: Decision.append(am)
124: ri,am = max(ri,am − 1, 0)
125: break
126: else
127: nextD.remove(am)
128: if len(nextND)!=0 then
129: am = random.choice(nextND)
130: else
131: continue
132: end if
133: end if
134: end while
135: if Decision!= 0 then
136: break
137: else
138: continue
139: end if
140: else
141: Decision.extend(nextND)
142: break
143: end if
144: end if
145: end for
146: if M\M′

k then

147: for m ∈ M\M′
k do

148: Decision[m] = lm
149: end for
150: end if
151: if len(Decision) == 0 then
152: print(“error”)
153: end if

return Decision
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These decisions are considered obvious decisions where computation efforts should
not be focused on. Instead, only when all of the above TP decisions are not applicable (no
obvious decisions), will the heuristic be applied. Ideally, none of these obvious decisions
should be specified. Instead, the agent should be able to figure out and learn the obvious
decision based on the reward obtained. However, such an ideal mechanism would require a
humongous amount of rollout episodes with horizons extending to the termination state on
each of them. For practical purposes, limited by computation power, the obvious decisions
are filtered out to avoid extensive computation efforts. Hence the term “teach” in TBIH-1’s
“teaching part” (TP).

For the SP, a purely random selection of the next destinations could be applied as in
TBIH-1 (Algorithm 4 (line 122)). In the proposed TBIH-1, the obvious decisions are inserted
by “teaching”. The non-obvious decision is decided by a purely random selection among
possible next destinations. The general structure of TBIH-1 is described in Algorithm 4
where the SP part is shown in line (121–147).

The TP consists of updating the capacity of all the vehicles as well as the demand of
the shelters (Algorithm 4 (line 1)). This is performed so that the decision selected is based
on the current status of the demand and capacity which are otherwise updated/observed
by the agent during the transition from PRE to PDS. The next part involves determining
the potential next destinations j for vehicle m and sorting these destinations whether they
are emergency shelters, depots or non–depot nodes (line 5–9). Afterwards, the obvious
decision selection follows as described in Equation (6) (line 10–120). The SP is executed if
none of the obvious decisions are suitable (line 121–147). For en route vehicles, the decision
is to remain at their current destination (line 149–153). Finally, a decision is selected and
returned by the algorithm.

Instead of a purely random selection as in Algorithm 4 (line 121–147), there could be
more meaningful guided approaches to select the next destination for the SP. From here, an
extend Algorithm 4 (line 121–147) shows the possibilities of inserting a better possible next
destination in the route by applying a dynamic SIH-I1 (DSIH) (Algorithm 5) in TBIH-2 and
a DCW in TBIH-3 (Algorithm 6), in their respective SP. The authors also experimented with
the proposed heuristics TBIH-4 (with an embedded Dynamic Lookahead SIH (DLASIH) in
the SP) (Algorithm 7) and TBIH-5 (with an embedded Dynamic Lookahead CW (DLACW)
in the SP) (Algorithm 8) to see if both aforementioned heuristics could be enhanced further
for better insertion.

4.3. TBIH-2

Among the first to develop SIH is [76], whose work is based on the generalised savings
algorithm. Ref. [77] then introduced three types of SIH to solve the VRP and scheduling
problem with a time window. The proposed SIH (I1) constructs a route by considering two
criteria: the first involves determining the best place for insertion, c1 based on c1,1 and c1,2.
The second is the consideration for the best un-routed node υ to be inserted c2. For the VRP
considering time windows, the SIH (I1) is computed with the following equations [77]:

c1,1(i, υ, j) = ci,υ + cυ,j − ξci,j ξ ≥ 0,

c1,2(i, υ, j) = bjυ − bj,

where c1,1 is the generalised savings, and c1,2 is the time difference between the new service
time for j, bjυ and the time prior to insertion of υ. Together, the best insertion place of υ is
computed as c(i(υ), υ, j(υ)) given by:

c(i(υ), υ, j(υ)) = min
(i,υ,j)∈c1

c1(i, υ, j),

where c1 is given as:

c1 = θ1c1,1(i, υ, j) + θ2c1,2, θ1 + θ2 = 1.
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Meanwhile, the best υ insertion criterion c2 is given by:

c2(i, υ, j) = ζc0,υ − c1(i, υ, j), ζ ≥ 0,

where node 0 in the formulation is the depot; υ is then chosen based on:

υ� : (i, υ�, j) = arg max
(i,υ� ,j)∈c2

c2.

Since the MDDVRPSRC does not consider time windows, the θ2 value is given the
value of zero and therefore c1,2 is not considered. This turns c1 into a generalisation of [76].
Furthermore, both ζ and θ1 are given the value of one. Both node 0 and i are considered
as the current position of vehicle m at sk during the lookahead. In the DSIH, the seed j is
chosen randomly by looking one step ahead beyond the next destination of m currently at i
in a set such that {j : (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ (set of the immediate neighbor of i), ∀j ∈
H, ∀υ ∈ (set of the immediate neighbor of i)}. This is illustrated in Figure 1a–c. Here,
the road capacity is not considered to simplify the description of the DSIH. In Figure 1a,
the current position of vehicle m is at node 0 (not a depot) with capacity to serve. Node S5
is an emergency shelter with demand, while the rest are connecting nodes. The purpose of
the DSIH is to treat the next possible destination from the current position as υ by treating j
as the seed when constructing a route from node 0. In Figure 1b, the node j is identified
as node S9, node 4, and node 3. In the DSIH, the seed j is then chosen randomly among
these three potential seeds. In Figure 1c, node 3 is chosen randomly as the seed j. Here,
two possible nodes could be inserted as the υ: node 1 and node 5. After applying the
SIH(I1) (without time window consideration, θ1 and ζ is given the value one), node 5 is
considered the best inserted node and the route η

πB(sk) is constructed from node 0–5–3.
The next destination of the vehicle from node 0, am = η

πB(sk) (sk) is then selected as node

5. This also means that at the lookahead decision point k, the lookahead route �
πB(sak

k ) is

constructed on the go/updated such that �
πB(sak

k ) : sk → η
πB(sk) (sk) with heuristic B as per

TBIH-2. In addition, when applying TBIH-2, the route-based MDP concept is applied [14].
This means that at the lookahead decision point k + 1, the vehicle may not necessarily move
to node 3 (ηπB(sk) (sk+1)) next upon arriving at node 5 as the DSIH will be executed at every
decision point. In this example, the road capacity is ignored to simplify the explanation of
the DSIH that is used in the SP of TBIH-2. In reality, if the edge (0, 1) has no road capacity
available (r0,1 = 0), then SIH(I1) will not be applied as the only possible υ is node 5.

(a) (b)
Figure 1. Cont.
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(c)
Figure 1. Performing the DSIH in TBIH-2 in an example network (a) with node 0 as current position
of vehicle m and node S9 as an emergency shelter. The potential seeds j are considered in (b) and
chosen randomly in (c). As a result, node 5 (υ) is inserted and route (0–5–3) is constructed.

The decision selection specific to the DSIH is highlighted in Algorithm 5. Here, the
possible seed candidates are selected based on the neighbours of potential destination υ for
vehicle m (lines 3–5). The seed is then randomly selected (line 7) from which the number of
potential destinations υ is reduced (line 8). For each of the possible υ, the insertion criteria
are evaluated according to the SIH(I1) (lines 9–10), and the insertion of υ is determined
(lines 11–12) from which the decision is made and returned (line 18).

Algorithm 5 TBIH-2 (with Embedded DSIH) Algorithm.

Require: sk, M′
k, M\M′

k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: dict : υ ← {j : ∀j ∈ H, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈ nextND
4: newnextND = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 	= {}}
5: remove duplicate node: list(set(newnextND))
6: if len(newnextND)!= 0 then
7: seed = random.choice(newnextND)
8: list of potential inserted nodes based on the selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
9: dictC11 : (i, υ, seed) ← (ci,υ + cυ,seed − ci,seed), ∀j ∈ InsertList

10: dictC2 : (i, υ, seed) ← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
11: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

12: am = υ
13: Decision.append(am)
14: ri,am = max(ri,am − 1, 0)
15: break
16: else
17: am = random.choice(nextND)
18: Decision.append(am)
19: ri,am = max(ri,am − 1, 0)
20: break
21: end if
22: else
23: Decision.extend(nextND)
24: break
25: end if
26: continue Algorithm 4 (148–156)

return Decision
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4.4. TBIH-3

The CW is derived from the work of [78] as an alternative heuristic solution to the
method proposed in [79] to solve the general VRP [80]. This algorithm which is also known
as the savings algorithm [81] is based on the savings computed for two non-depot nodes
(i, j) in a complete graph (where all non-depot nodes have arcs connecting them to the
depot). The savings is computed as Si,j = 2ci,0 + 2cj,0 − (ci,0 + cj,0 + ci,j) where 0 is the
depot [81]. The route is then constructed based on the savings computed for all non-depot
nodes in a decreasing order, provided that the capacity constraint is respected and the
connection between edges are allowed (normally the theoretical application onto a complete
graph). In the event that the capacity constraint is violated, a new route is constructed for
the next vehicle in the same manner of the remaining savings pair. The concept of the CW
algorithm is illustrated in Figure 2 [82]. One of the few surveys on the CW algorithm for
VRP can be referred to in [83]. A good example of the CW application can be referred to
in [84].

Figure 2. Concept of the Savings Algorithm. Reprinted/adapted with permission from Ref. [82].
2015, ProQuest Information and Learning Company.

In this work, the application of the Dynamic Clarke and Wright Algorithm (DCW)
is proposed and applied. By replacing the random selection of the TBIH-1 in the SP
with the DCW, TBIH-1 is then modified to form TBIH-3 and is used as the base heuristic
(among other heuristics) in the execution of the PDS–RA. In the DCW, the route-based
MDP approach [14] is adopted during the rollout resulting in the on-the-go construction

of the decision function �
πB(sak

k ) . The idea is to apply the CW iteratively (πB(sk)
) when a

decision for a single vehicle’s next assignment during the lookahead is required, given that
the TBIH-3 has been selected as the base heuristic. Iteratively, the CW is applied when
no obvious decision can be taken during the lookahead when transitioning. At the point
of decision, the current position lm is regarded as the single depot in the CW while the
neighbouring nodes j ∈ Om : Om ⊂ H are considered customers. The example for applying
the DCW is illustrated in Figure 3a,b where node 3 is the current arrival spot of vehicle m.
Additionally, a shelter in the network example is denoted as the node S2. Using the CW,
route η

πB(sk) is constructed from the assumed depot (node 3) and back to the depot.
An example of a constructed route η

πB(sk) could be (3 − 5 − 1 − 4 − 3) or (3 − 4 −
1 − 5 − 3), or both if both edges (5,1) and (4,1) happen to have the highest savings. am

would then be chosen as the first insertion �
πB(sak

k ) : sk → η
πB(sk) (sk) of the chosen route to

transition within the lookahead horizon.
The algorithm for the TBIH-3 is shown in Algorithm 6 as the extension of Algorithm 4

by replacing lines 121–147. In this algorithm, a decision is computed if no other obvious
decision can be chosen. To execute the CW, all possible pairs (j, k) ∈ E are detected from
the possible next destination nodes in the list nextND (lines 3–4). If there are no edges
that exist, a randomly selected node is chosen as the next destination for the vehicle m
(lines 5–9). Otherwise, the savings are computed from these edges and sorted in decreasing
order (lines 11–12) prior to constructing the temporary decision function η

πB(sk) (line 16)

146



Mathematics 2022, 10, 2699

which constructs the on-the-go base decision function �
πB(sak

k ) : sk → η
πB(sk) (sk) (line 17).

Lines 148–156 are similar to Algorithm 4 where the computed decision is returned.

(a) (b)
Figure 3. Performing DCW in TBIH-3 in an example network (a) with node 3 as current position of
vehicle m and node S2 as an emergency shelter. The components for performing CW are selected
in (b).

Algorithm 6 TBIH-3 Algorithm.

Require: sk, M′
k, M\M′

k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND) > 1 then
3: Possible edges from the pair that could be formed in nextND, Pairs = (nextND

2 )

4: Remove (j, k) ∈ Pairs, if (j, k) 	∈ E
5: if len(pairs == 0) then
6: am = random.choice(nextND)
7: Decision.append(am)
8: ri,am = max(ri,am − 1, 0)
9: break

10: else
11: compute savings: (j, k) ← ci,j + ci,k − cj,k ∀(j, k) ∈ Pairs
12: sort (j, k) ∈ Pairs with decreasing savings
13: if len(Pairs)==1 then
14: am = j : (j, k) ∈ Pairs
15: else

16: construct route �
πB(sak

k ) : sk → η
πB(sk) (sk) from i = lm by inserting (j, k) ∈

Pairs as would be done in CW (decreasing savings)

17: am ← A
πB(sak

k ) (sk)
18: end if
19: Decision.append(am)
20: ri,am = max(ri,am − 1, 0)
21: break
22: end if
23: else
24: Decision.extend(nextND)
25: break
26: end if
27: continue Algorithm 4 (148–156)

return Decision

4.5. TBIH-4

The application of the SIH in the MDDVRPSRC for the rollout is quite clear, given the
chosen “seed customer” is the main driver of the method. In the MDDVRPSRC, the authors
concur with [85] that choosing an appropriate seed is very important for insertion heuristics.
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For this particular problem of depending on the capacity status of vehicle m, the seed is either
the depot in the route to replenish capacity or the emergency shelter in the route to serve a
shelter. This is different from Algorithm 5 where the seed is randomly chosen based on potential
destinations υ’s neighbour. In Figure 1a–c, it is clear that more can be done to guide the vehicles
towards fulfilling their task. In these figures, it could be argued that the selection of node 5
(while ignoring the road capacity condition in the network), which might occur through the
random selection of seeds that occurs in Algorithm 5, may not be the best choice. Instead, node
1 could be the better choice as it would lead to serving node S9. In the TBIH-4 (Algorithm 7),
the potential seeds j are reserved only for those which are either one of the depots, emergency
shelters, or neighbours of either. In Figure 1a–c, node 1 will be chosen instead as υ since this
node would lead to serving shelter S9. Only node 1 could be inserted as only a one-time
insertion procedure in DLASIH is performed at every decision point in the lookahead during
the construction of the route. For the shelter or depot which is farther than a one-step lookahead,
as seen in Figure 4a–c, the neighbour of either that shelter or depot is then chosen as the seed j.
In this case where the vehicle is packed with delivery supplies, node 9 shall be chosen as the
seed (j) since it is the neighbour of shelter S7. Since only node 1 can connect to node 9 from node
0 in the one-time insertion, node 1 is then regarded as the next destination υ. Here, no SIH(I1)
computation is necessary as the option is rather obvious. In this illustration case, recognising
node 9 as the neighbour of emergency shelter S7 helped in trimming down potential seeds to be
considered and thus also reduced the number of potential υ.

(a) (b)

(c)

Figure 4. Performing the DLASIH in the TBIH-4 in an example network (a) with node 0 as current
position of vehicle m ready to serve and node S7 as an emergency shelter. The potential seeds j are
considered in (b) and Node 9 was selected since it is the neighbour of shelter S7 in (c). As a result,
node 1 (υ) is inserted and route (0–1–9–S7) is constructed. (c) shows two potential seeds j (node 4 and
node 9) in which case a random selection between node 4 and node 9 as a seed is done.

However, if there are more potential υ leading to the neighbours of emergency shelters,
then one of these neighbours will be chosen randomly. If more than one possible υ is
connected to the chosen seed (j), the SIH(I1) will be executed.

In the TBIH-4 algorithm (Algorithm 7), the selection for j is restricted to those that would
lead to either a shelter or depot, depending on qm (lines 5 and 55). However, if such nodes
are not available, another lookahead is performed to see if there are potential destinations j
that could lead to neighbours of either a depot or shelter (lines 21 and 71). Depending on
the case considered, the numbers of possible j from which the seed for the SIH could be
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chosen from (lines 9, 37, 59, and 94) can be reduced. For either case, the insertion criteria

are computed and evaluated such that the on-the-go lookahead route �
πB(sak

k ) is updated:

�
πB(sak

k ) : sk → η
πB(sk) (sk), and the decision am = η

πB(sk) (sk) are returned (line 98 onwards).

Algorithm 7 TBIH-4 (with an embedded DLASIH) Algorithm.

Require: sk, M′
k, M\M′

k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: dict : υ ← {j : ∀j ∈ H, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈ nextND
4: if qm 	= 0 AND len(US)!= 0 then
5: dictA : υ ← {j : ∀j ∈ US, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈

nextND
6: if len(dictA)!= 0 then
7: newnextNDS = {j : ∀j ∈ dictA(υ), ∀υ ∈ nextND, dictA(υ) 	= {}
8: remove duplicate node: list(set(newnextNDS))
9: seed = random.choice(newnextNDS)

10: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈
nextND, (υ, seed) ∈ E}

11: dictC1 : (i, υ, seed) ← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
12: dictC2 : (i, υ, seed) ← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
13: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

14: am = υ
15: Decision.append(am)
16: ri,am = max(ri,am − 1, 0)
17: break
18: else
19: List of shelter’s neighbours, USN = {n : n ∈ H, (s, n) ∈ E, ∀s ∈ US, n 	= i}
20: USN = list(set(USN))
21: dictB : υ ← {j : ∀j ∈ USN, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈

nextND
22: if len(dictB)!=0 then
23: LNS = {j : ∀j ∈ dictB(υ), ∀υ ∈ nextND, dictB(υ) 	= {}
24: LNS = list(set(LNS))
25: else
26: continue
27: end if
28: init nextNDS
29: if len(LNS)== 0 then
30: nextNDS = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 	= {}
31: else
32: nextNDS.extend(LNS)
33: end if
34: if len(nextNDS)==0 then
35: am = random.choice(nextND)
36: Decision.append(am)
37: ri,am = max(ri,am − 1, 0)
38: break
39: else
40: pass
41: end if
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Algorithm 7 Cont.

42: seed = random.choice(nextNDS)
43: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
44: dictC1 : (i, υ, seed) ← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
45: dictC2 : (i, υ, seed) ← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
46: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

47: am = υ
48: Decision.append(am)
49: ri,am = max(ri,am − 1, 0)
50: break
51: end if
52: else
53: dictC : υ ← {j : ∀j ∈ D, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈

nextND
54: if len(dictC)!= 0 then
55: newnextNDS = {j : ∀j ∈ dictC(υ), ∀υ ∈ nextND, dictC(υ) 	= {}
56: remove duplicate node: list(set(newnextNDS))
57: seed = random.choice(newnextNDS)
58: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
59: dictC1 : (i, υ, seed) ← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
60: dictC2 : (i, υ, seed) ← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
61: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

62: am = υ
63: Decision.append(am)
64: ri,am = max(ri,am − 1, 0)
65: break
66: else
67: List of Depot’s neighbours, UDN = {n : n ∈ H, (d, n) ∈ E, ∀d ∈ D, n 	=

i, n 	∈ D}
68: UDN = list(set(UDN))
69: dictD : υ ← {j : ∀j ∈ UDN, (υ, j) ∈ E, rυ,j > 0, j 	= i, j 	∈ nextND} ∀υ ∈

nextND
70: if len(dictD)!=0 then
71: LND = {j : ∀j ∈ dictD(υ), ∀υ ∈ nextND, dictD(υ) 	= {}
72: LND = list(set(LND))
73: else
74: continue
75: end if
76: init nextNDD
77: if len(LND)== 0 then
78: nextNDD = {j : ∀j ∈ dict(υ), ∀υ ∈ nextND, dict(υ) 	= {}
79: else
80: nextNDD.extend(LND)
81: end if
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Algorithm 7 Cont.

82: if len(nextNDD)==0 then
83: am = random.choice(nextND)
84: Decision.append(am)
85: ri,am = max(ri,am − 1, 0)
86: break
87: else
88: pass
89: end if
90: seed = random.choice(nextNDD)
91: list of potential inserted nodes based on selected seed, InsertList = {υ : ∀υ ∈

nextND, (υ, seed) ∈ E}
92: dictC1 : (i, υ, seed) ← (ci,υ + cυ,seed − ci,seed), ∀υ ∈ InsertList
93: dictC2 : (i, υ, seed) ← (λci,seed − dictC1(i, υ, seed)), ∀υ ∈ InsertList
94: choose υ from (i, υ, seed) = arg max

(i,υ,seed)∈dictC2
(dictC2)

95: am = υ
96: Decision.append(am)
97: ri,am = max(ri,am − 1, 0)
98: break
99: end if
100: end if
101: else
102: Decision.extend(nextND)
103: break
104: end if
105: continue Algorithm 4 (148–156)

return Decision

4.6. TBIH-5

In the previous section (Section 4.4), an example network (Figure 3a) is used to demon-
strate how the DCW could be applied in constructing a temporary route η

πB(sk) with B
being the heuristic from TBIH-3. From the temporary route, the first insertion is selected as
the decision for the current lookahead state sk based on the temporary route constructed:

�
πB(sak

k ) : sk → η
πB(sk) (sk). From the example, it is seen that either node 4 or 5 (Figure 3b)

could be selected as the next destination since two routes could be computed from the
CW heuristic (if two edges have similar highest savings). However, it is also seen in the
example network that node S2 is next to node 4, while node 5 is much further than node S2.

If the vehicle is with capacity, inserting node 4 for the on-the-go lookahead route �
πB(sak

k )

would make more sense.
If TBIH-3 (with an embedded DCW) could perform as a sort of lookahead (for non-

obvious decisions, SP) for a nearby emergency shelter when a vehicle m has capacity,
then the selection for the next destination would be more accurate. This is illustrated in
Figure 5a,b. In Figure 5a, the current position of vehicle m is at node 3, and the nearby
emergency shelter is node S9. With the exception of node 5, which is the neighbour of
node 3, both nodes 1 and 4 are neighbours of node S9. As a result, only nodes 4 and 1
are considered when constructing η

πB(sk) (sk) even though node 5 is also a neighbour of

node 3. This leads to a more promising construction of �
πB(sak

k ) on the go. If node 5 is taken
into consideration, there is a possibility of node 5 being selected as the next destination for
vehicle m. This is undesirable as that would lead vehicle m, which has capacity, farther
from serving S9. With this concept, the DCW is extended into DLACW (turning TBIH-3
into TBIH-5). The principle of the proposed DLACW is, for most parts, similar with the
exception of a mechanism to detect a nearby shelter or depot depending on the capacity
status of vehicle m.
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The algorithm for TBIH-5 is presented in Algorithm 8. Similar to Algorithm 5,
Algorithm 6 is extended ,resulting in a different base heuristic. When compared to Algorithm 6,
some parts of this algorithm consist of detecting the potential next destination j of vehicle
m that might lead to either a shelter of depot, depending on the current capacity status qm
(lines 3–9). Through this mechanism, the possible option for j is restricted to only those
ideally more guided destinations. Edges are detected (line 10) and removed if they do
not exist in the network (line 11), while savings are computed (line 18) and sorted (line

19). Finally the on-the-go base policy �
πB(sak

k ) is updated for the lookahead state sk, where

�
πB(sak

k ) : sk → η
πB(sk) (sk) and the decision am = η

πB(sk) (sk) is returned.

Algorithm 8 TBIH-5 (with an embedded DLACW) algorithm.

Require: sk, M′
k, M\M′

k, current position of vehicle
Ensure: Decision

1: Perform Algorithm 4 (line 1–120)
2: if len(nextND)> 1 then
3: if qm 	= 0 AND len(US)!= 0 then
4: dict : j ← {k : ∀k ∈ US, (j, k) ∈ E, rj,k > 0, k 	= i, k 	∈ nextND} ∀j ∈

nextND
5: newnextND = {j : ∀j ∈ nextND, dict(j) 	= {}}
6: else
7: dict : j ← {k : ∀k ∈ D, (j, k) ∈ E, rj,k > 0, k 	= i, k 	∈ nextND} ∀j ∈ nextND
8: newnextND = {k : ∀k ∈ dict(j), ∀j ∈ nextND, dict(j) 	= {}}
9: end if

10: Possible edges from pair that could be formed in newnextND, Pairs = (newnextND
2 )

11: Remove (j, k) ∈ Pairs, if (j, k) 	∈ E
12: if len(pairs == 0) then
13: am = random.choice(nextND)
14: Decision.append(am)
15: ri,am = max(ri,am − 1, 0)
16: break
17: else
18: compute savings, (j, k) :← ci,j + ci,k − cj,k ∀(j, k) ∈ Pairs
19: sort (j, k) ∈ Pairs with decreasing savings
20: if len(Pairs)==1 then
21: am = j : (j, k) ∈ Pairs
22: else

23: construct route �
πB(sak

k ) : sk → η
πB(sk) (sk) from i = lm by inserting (j, k) ∈

Pairs as would be done in CW (decreasing savings)

24: am ← A
πB(sak

k ) (sk)
25: end if
26: Decision.append(am)
27: ri,am = max(ri,am − 1, 0)
28: break
29: end if
30: else
31: Decision.extend(nextND)
32: break
33: end if
34: continue Algorithm 4 (148–156)

return Decision
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(a) (b)
Figure 5. Performing the DLACW in TBIH-5 in an example network (a) with node 3 as the current
position of vehicle m and node S9 as an emergency shelter. The components for performing the CW
are selected in (b).

5. Computational Results

This study presents computational results for the following purposes:

• To validate the model MDDVRPSRC by observing through the simulation tool the
ecosystem (emergency medical supplies delivery) simulated.

• To validate the reinforcement learning solution of the agent in conducting the medical
delivery operations through decisions computed based on the ADP approach (PDS–
RA with 5 proposed base heuristics).

• To study the quality of the learning solution through the resulting simulated data
by means of a comparative approach against the matheuristic proposed in the work
of [15] in the stochastic setting of road capacity and dynamic road damage.

• To extend the findings in the work of [15] which serves as a preliminary study for
this research.

The experiment is conducted using the authors’ developed MDDVRPSRC Decision
Support System (DSS) program (Figure 6) with codes written in Python 2.7 programming
language. Embedded in this program is also a network monitoring layout through which
the simulation of medical supplies delivery operations in the setting of the MDDVRPSRC
is observed in real time (live simulation). Both the MDDVRPSRC model and the com-
putation of the agent’s decision are also implemented at the heart of the DSS. As part
of the computation of the agent’s decision, this program also executes the matheuristic
(upon selection) proposed in work of [15] with CPLEX computation executed through the
DOCPLEX API for Python. For the experiment, the MDDVRPSRC DSS is run on a laptop
computer running on IntelR CoreTM i7-7500U CPU at 2.70–2.90 GHz with 20 GB RAM.

Figure 6. MDDVRPSRC DSS for medical delivery operation.
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To test and validate the model and solutions algorithm for such a unique problem as
the medical supplies delivery operations with compromising circumstances, the common
benchmarks of Perl, Gaskell, and Christofides cannot be applied. So several test instances
are designed [86,87], ranging from a small and simple road network, to medium and more
challenging networks based on the available experimental apparatus (Figures A1–A10).
Along with each test instance are the associated initial damage for each road within the
network of the respective test instances [86,87]. These datasets, consisting of test instances
and the associated damage files are available in [87] and are shown in Table 3. In Table 3,
the test instances are ordered by increasing complexity levels, characterised in terms of total
number of nodes as well as the ratio between connecting node to a depot and emergency
shelter. The test instances associated with the road network D4N30S10 are placed last as
it is hypothesised as the most challenging network among the test instances listed. Each
network is comprised of multi-depots, multi emergency shelters with different demands
and connecting nodes as described in Section 3.1. The placement of the nodes is based on
the lessons learned from the 2015 Nepal earthquake.

In each of the road networks seen in Figures A1–A10, the blue, yellow, and brown
nodes each represent the depots, emergency shelters, and connecting nodes, respectively.
The violet circle lines represent the outward tremor that originated from an earthquake
epicentre (coordinate (460, 180) in all the networks). The degree of the initial road damage
is based on the intersection of these circles onto the edges, and the corresponding random
road capacity is denoted in red at the center of the edges. The demands of each emergency
shelter hovers above in a pink box. The green boxes represent vehicles that have arrived at
the nodes where they are currently stationed. The blue boxes represent vehicles en route
to each of their next assigned destinations. In Figure A11, the simulation example of an
ongoing medical supplies operation is shown. In the road network D8N20S8, five vehicles
are assigned to deliver medical supplies to eight emergency shelters with their respective
demands. The full road capacity in this network for a city road, normal road, and highway
is given in Table 3 as (6, 7, 8), respectively. In all road networks, the highways are placed at
the outer part of the network, while the city roads are placed at the innermost sections of
the networks. Normal roads can be found connecting highways with city roads in most
cases, especially in the larger networks. At decision point 104, which is at the simulated
time of 3097 min (translated as 2:3:37:00), the road capacity for each road changes randomly
based on the dynamic road capacity mean for the random distribution of each road. These
dynamic deteriorating road capacities in turn depend on the initial damage sustained by
the road (given in the damage file of each test instance in the repository [87]). Thus the road
capacity for the edges with more interceptions with the radial earthquake tremor circles
are seen with a tendency to have less road capacity at random when compared with the
edges with less or zero intersections. Hence, vehicles travelling at these edges will suffer
longer travel times proportional to the initial damage sustained by the edges as accounted
for in the MDDVRPSRC model described in Section 3.3. The work [15] is referred to for
more explanation on how the random road capacity is sampled at each decision point.
The experiment settings for both the simulation and computation of the agent’s decision
(PDS-RA) is given in Table 4.

For the model and solution validation, simulated data is compiled (Figure 6). For
each proposed base heuristics (TBIH-1, TBIH-2, TBIH-3, TBIH-4, and TBIH-5) applied
for all test instances in Table 3, 10 complete simulations of a medical supplies delivery
operation are performed. Out of the 10 complete simulations, there are 10 readings for
4 key measurements:

1. Total travelled distance (K1);
2. Total travelled time (K2);
3. Total computation time (K3);
4. Average decision computation time (K4).
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Table 3. Simulated test instances applied to validate the model and solutions algorithm.

Instance Depot Shelter Nodes Vehicle Total Demand Max Road Capacity

D3N8S3_4 3 3 8 4 550 6, 7, 8
D3N8S3_8 3 3 8 8 550 6, 7, 8
D3N8S3_15 3 3 8 15 550 6, 7, 8
D3N8S3_30 3 3 8 30 550 6, 7, 8
D3N8S3_50 3 3 8 50 550 6, 7, 8
D4N11S4_4 4 4 11 4 550 6, 7, 8
D4N11S4_8 4 4 11 8 550 6, 7, 8

D4N11S4_15 4 4 11 15 550 6, 7, 8
D4N11S4_30 4 4 11 30 550 6, 7, 8
D4N11S4_50 4 4 11 50 550 6, 7, 8
D5N13S5_4 5 5 13 4 650 6, 7, 8
D5N13S5_8 5 5 13 8 650 6, 7, 8

D5N13S5_15 5 5 13 15 650 6, 7, 8
D5N13S5_30 5 5 13 30 650 6, 7, 8
D5N13S5_50 5 5 13 50 650 6, 7, 8
D6N16S6_4 3 3 8 4 950 6, 7, 8
D6N16S6_8 3 3 8 8 950 6, 7, 8

D6N16S6_15 3 3 8 15 950 6, 7, 8
D6N16S6_30 3 3 8 30 950 6, 7, 8
D6N16S6_50 3 3 8 50 950 6, 7, 8
D7N18S7_4 7 7 18 4 1250 6, 7, 8
D7N18S7_8 7 7 18 8 1250 6, 7, 8

D7N18S7_15 7 7 18 15 1250 6, 7, 8
D7N18S7_30 7 7 18 30 1250 6, 7, 8
D7N18S7_50 7 7 18 50 1250 6, 7, 8
D8N20S8_4 8 8 20 4 1350 6, 7, 8
D8N20S8_8 8 8 20 8 1350 6, 7, 8

D8N20S8_15 8 8 20 15 1350 6, 7, 8
D8N20S8_30 8 8 20 30 1350 6, 7, 8
D8N20S8_50 8 8 20 50 1350 6, 7, 8
D8N22S9_4 8 9 22 4 1600 6, 7, 8
D8N22S9_8 8 9 22 8 1600 6, 7, 8

D8N22S9_15 8 9 22 15 1600 6, 7, 8
D8N22S9_30 8 9 22 30 1600 6, 7, 8
D8N22S9_50 8 9 22 50 1600 6, 7, 8
D9N25S10_4 9 10 25 4 1650 6, 7, 8
D9N25S10_8 9 10 25 8 1650 6, 7, 8
D9N25S10_15 9 10 25 15 1650 6, 7, 8
D9N25S10_30 9 10 25 30 1650 6, 7, 8
D9N25S10_50 9 10 25 50 1650 6, 7, 8
D9N30S10_4 9 10 30 4 1650 6, 7, 8
D9N30S10_8 9 10 30 8 1650 6, 7, 8
D9N30S10_15 9 10 30 15 1650 6, 7, 8
D9N30S10_30 9 10 30 30 1650 6, 7, 8
D9N30S10_50 9 10 30 50 1650 6, 7, 8
D4N30S10_4 4 10 30 4 1650 6, 7, 8
D4N30S10_8 4 10 30 8 1650 6, 7, 8
D4N30S10_15 4 10 30 15 1650 6, 7, 8
D4N30S10_30 4 10 30 30 1650 6, 7, 8
D4N30S10_50 4 10 30 50 1650 6, 7, 8

The first three key measurements are self explanatory. The last key measurement is
the average time taken for the agent to make one decision at decision point k based on
the total computation time divided by the number of decisions made (decision points) to
complete the delivery operations simulation. The PDS-RA with the proposed heuristic
bases are benchmarked with the matheuristic rollout found in the work of [15] for all
vehicle number settings (4, 8, 15, 30, and 50) for the road networks D3N8S8-D7N18S7. For
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the road network D8N20S8-D4N30S10, however, the benchmarking is completed only up
to the vehicle number settings of 4, 8, and 15. This is due to the resultant computational
time which is far longer than considered reasonable when compared with the longest
computation time obtained among the five proposed heuristics (Figures A14 and A18).
With the resulting simulated data, the model is then validated based on the analysis of
the output data produced (Figure 6). Furthermore, the performance of the proposed
heuristics compared to the matheuristic rollout applied is observed through a descriptive
and comparative analysis.

Table 4. Simulation and PDS-RA Configuration.

Parameter Value

Deterioration Proportional Constant P 0.1
Ω 200
Vehicle Speed 90 km/h
Vehicle Capacity, Q 50
Monte Carlo Simulation 3
Lookahead Horizon K 7

The computational results in the Supplementary file (Tables S1–S81) are collected and
recorded for a time span of more than two years; given the hardware available for the
experiments. A total of 10 readings were taken for each of the proposed base heuristics
applied in the PDS-RA for all test instances. This was for all key measurements (K1–K4)
given the stochastic road capacity and dynamic deterioration of the mean road capacity
in the problem addressed. From each 10 readings, the descriptive analysis is performed
to measure the mean, standard deviation, variance, and covariance of the sample data.
The Normality test is performed to determine that a suitable comparative analysis method
is applied for benchmarking. A total of 11,600 key readings were recorded as a result of
2900 simulations performed for further analysis involving the key measurements of K1, K2,
K3, and K4 mentioned in Section 5. The 2900 simulations consist of 290 sets of 10 readings
per set, for each of the 4 key measurements which are then used to compute the average
reading. Not all 290 sets tested were found to have a normal distribution based on the
Shapiro–Wilk test [88] performed in the Excel [89]. The highest percentage for normal data
(around 50%) is only seen in the K3 and K4 measurements. Furthermore, the 10 readings
for each key measurement of a test instance is considered small for a parametric test. As
such, a non-parametric test (Wilcoxon Signed Rank Test) was applied to test for significance
in differences against the matheuristic solution (PDS-RA with CPLEX as base heuristic).
Moreover, the Best So Far (BSF) measurement among the solution algorithms applied
at each test instance was performed to observe the performance of each PDS-RA of the
respective proposed heuristics against the matheuristic rollout.

The full computation results are presented in the supplementary file and the abbrevi-
ations applied are listed in Table 5. Furthermore, the general overview of the simulated
data collected is shown in Table A1. Thorough investigation and synthesise of the resulting
simulation data by means of cross-referencing key values were performed to ensure that
no errors are presented.

The results obtained in Tables S1–S81 are further synthesised for numerical analy-
sis focusing on model validation and base heuristics performances. The MDDVRPSRC
model is validated based on the trends and patterns observed in Figures A12, A13, A16
and A17. Meanwhile, the performance of the proposed heuristics, as compared to the
matheuristic rollout, can be seen in the remaining figures between Figures A12–A27 and in
the supplementary file S1 (Figures S1–S62). Figures A12–A15 show the trends for average
measurements of each of the 10 sample readings based on all four key measurements, while
Figures A16–A19 shows the trends for best measurements among the 10 reading samples
for each key measurement. Figures A20–A23 show the total numbers of BSF counts for each
algorithm for all 40 instances with the matheuristic rollout benchmark. Figures A24–A27
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depict the total numbers of BSF counts in percentage for each algorithm for all 50 instances
with and without (omitting 10 test instances for matheuristic rollout due to computation
time limitation) the matheuristic rollout benchmark. A more detailed breakdown per test
instance of the percentage of BSF associated with each heuristics is shown in Figures S1–S40.
Meanwhile, Tables A2–A7 give a more detailed breakdown on numbers of the BSF counts,
normal distribution data, and the significant differences for each key measurements. Finally,
a detailed performance of each PDS-RA with proposed heuristics for all key measurements
is shown in Figures S41–S62.

Table 5. Abbreviation for Tables and Figures.

Base-H Base Heuristic applied during rollout lookahead
TBIH-1 Teach Based Insertion Heuristic
TBIH-2 TBIH with dynamic SIH
TBIH-3 TBIH with dynamic CW
TBIH-4 TBIH with dynamic lookahead SIH
TBIH-5 TBIH with dynamic lookahead CW
CPLEX DOCPLEX (Python): solving MDVRPSRC-2S1 and MDVRPSRC-2S2
SW(P) P value: Shapiro Wilk Test for normality test

Wilcox(P) P value: Wilcoxon Signed Rank Test for Significance test
BSF Best So Far Measurement Value
Sig. Significance
N Normal

(% V2) Percentage Performance based on 40 Measurements instead of 50
(CPLEX Application as Base Heuristic for benchmarking)

6. Discussion

In terms of the MDDVRPSRC MDP model validation, the behaviours plotted in
Figures A12, A13, A16 and A17 are conforming to the natural expectation on how the hu-
manitarian operational aspects will shape out based on the key measurements.
Figures A12 and A16, for example, show a logical increase of total distance travelled
with the increase in the number of vehicles. Here, the increase in total distance is also
attributed to the policy that all vehicles must be dispatched for delivery to compensate for
the potential risk that a vehicle might be stranded while en route due to the road damage
incurred. Furthermore, a stochastic road capacity with multiple dispatches of vehicles
might ensure a faster delivery time at the cost of an increase in total distance travelled.

For the road network D3N8S3, the increase of total distance is higher than that of
networks D4N11S4, D5N13S5, and D6N16S6. This is comparable to that of network
D7N18S7 onwards with operations involving 30 and 50 vehicles. This is due to the large
amount of vehicles travelling on a road network with limited roads. The random road
capacity as well as deteriorating road conditions cause a bottleneck at some connecting
nodes. However, a steady increase of roads in more complex networks alleviates this
problem, as shown in networks D4N11S4, D5N13S5, and D6N16S6. Given the increasing
demands and more complex networks, a different observation could be made.

The road networks of D7N18S7, D8N20S8, D9N25S9, and D9N30S10, for example,
indicate roughly the same trend of total distance travelled with an occasional peak at
about 10,000 km for networks D8N20S8 and D9N25S10. However, an obvious increase
of total distance travelled can be seen for the network D4N30S10, thereby confirming the
hypothesis that this network is the most complex in terms of delivery operations. This is
explained by the ratio of depots to connecting nodes where the vehicle has only a limited
number of depots to replenish supplies in this network as compared to the other networks.
Furthermore, the ratio of depots and shelters also contributes to this observation, showing
the difficulties of completing the deliveries given the smaller number of depots to replenish.

Additionally, the reduced number of depots in this network also leads to more con-
necting options between the depots and connecting nodes which may not necessarily be
advantageous to the delivery operations. This is especially true for networks that tend to
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have a shorter route disabled due to random road capacity and a dynamic reduction of the
road capacity due to damage to the road. As a result, a longer route is taken leading to the
increase of total distance travel by all vehicles.

All of the observations for the total distance travelled shown in Figures A12 and A16
also apply to the observations seen in Figures A13 and A17. In general, the increase of the
total vehicle numbers leads to the reduced delivery operations time (total travel time). For
the network D3N8S3, a limited number of vehicles in a small network with high demands
relative to the number of vehicles led to an increase in total travel time compared to network
D4N11S4. This is due to the longer time required by the smaller number of vehicles to
satisfy the total demands within the network. Moreover, the deteriorating road capacity for
each damaged road may lead to lesser road availability for an already small road network.
This leads to vehicles taking the longer route compared to that of network D4N11S4.

Vehicles may also travel back and forth along the same road due to connecting roads
becoming increasingly less available. The bottleneck effect is also seen for the larger number
of vehicles when comparing the total time travel within the road network of D3N8S3 with
the road networks of D4N11S4, D5N13S5, and D6N16S6. It is also shown clearer here that
the bottleneck effect could be alleviated through trends observed for networks D7N18S7,
D8N20S8, D9N25S9, and D9N30S10. Similarly the reduced ratio between depots to shelters
and depots to connecting nodes leads to a more complex network. This is despite not
having the highest number of nodes that contributes to a higher total travel time for some
of the algorithms. Interestingly, the matheuristic rollout approach does not show the same
observations. This shows the potential of the matheuristic rollout in navigating more
complex networks compared to the proposed heuristics.

This, however, comes at the cost of computation time as shown in Figures A14, A15,
A18, A19, A22, A23, A26 and A27. This was observed when investigating the performance
of the proposed base heuristics against the matheuristic rollout as a benchmark. The
total computation time increases for the matheuristic rollout applying CPLEX at every
lookahead decision point for road network D5N13S5 onwards for all vehicle settings
(Figures A14 and A18) when compared with the results obtained with PDS-RA applying
the proposed base heuristics. This trend is even more obvious in Figures A15 and A19,
showing a clear increase in computation time for the agent in making a decision on average.
As a result, no BSF count was ever obtained through the matheuristic rollout for the key
measurement of K3 and K4 (Figures A22, A23, A26 and A27).

Apart from showing an exponential increase for both K3 and K4 (see Figures A15
and A19), it is also obvious that this trend depends on the total number of nodes that
are involved in the network. This is evident when comparing the two key measurements
for networks D9N30S10 and D4N30S10. However, the road networks sharing a similar
number of nodes as D4N30S10, such as D9N25S10, do not indicate a similar magnitude of
increment. Therefore, it could be concluded that both the number of nodes and complexity
associated with each network affect the two key measurements for the matheuristic rollout.

Meanwhile, the performance of the proposed PDS-RA applying base heuristics is
further investigated through the BSF count for all instances tested. Figures A22, A23, A26
and A27 confirm the observation made for the matheuristic rollout in terms of compu-
tation time (K3 and K4). However. the matheuristic rollout shows clear dominance in
terms of the key measurements of K1 and K2 (Figures A20, A21, A24 and A25). This is
especially seen in the breakdown of K1 and K2 in Figures S46 and S52 which Figure S46
interestingly also show a good performance of TBIH-1 for K1. This shows the relevance
of the matheuristic approach for complex stochastic problems. In most of the individual
networks, the matheuristic approach seems to also perform better compared to the other
proposed approaches for K1 and K2 (Figures S46 and S52). However, as it can be seen in
Figures A12–A17 with the exception of Figures A14 and A15, the application of PDS-RA
with proposed heuristics remains competitive with low gaps of difference. This is also
supported by the statistical numerical evidence that show lower significance differences
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recorded throughout all simulated data involving K1 and K2 when compared with data
obtained by the matheuristic rollout (Table A1).

Of those, a vast majority of significance difference is seen in Figures A14, A15, A18
and A19 which corroborates findings in terms of computation time for K3 and K4. Judging
from the trends, the practicality of the matheuristic rollout as benchmarked, is shown to be
poor at least for the given hardware used for the experimentation. This is despite the good
performance shown for K1 and K2, albeit with no significance difference.

On the other hand, the TBIH-1 shows clear advantage as shown from Figures A20–A27
in terms of the BSF count. This is perhaps expected considering the stochastic problem
which may favour the exploratory approach more than the exploitation part, as is per-
formed in TBIH-1 with random selection for the SP part of the algorithm. The comparable
performance of PDS-RA with TBIH-1 compared to the matheuristic rollout is also shown in
most of the road networks, respectively. Furthermore, TBIH-1 is seen at times neck to neck
with the benchmark when looking into the performance in each individual network, such
as in Figures S26, S29, S33, S34, and S36 among others. It is also noteworthy to see that the
algorithm also performs rather well for the network D4N30S10, with the exception of key
measurement K2. Moreover, the dominance of the TBIH-1 is increasingly more noticeable
for larger networks as best seen in Figures S41, S47, S53, and S58. Meanwhile, both the
TBIH-2 and TBIH-4 also perform well in the overall BSF count (as seen in Figures A20–A27)
when compared to that of TBIH-3 and TBIH-5 which is based on DCW. This highlights the
advantages of the DSIH which centred on the concept of inserting and placing promising
nodes in ways that optimise the operation.

DCW, on the other hand, tends to ignore the inner part of the nodes and favour the
outer nodes in an attempt to reduce parallel connections to the origin node as CW has
always been intended for. This is evident by the performance of TBIH-3 which is the lowest
followed by TBIH-2 when looking at BSF counts for both the individual network and overall
networks (Figures S41–S62). Except for K3 in Figure S55, the TBIH-3 only scores a BSF
count of one for all other key measurements (Figures S43, S49 and S60). This translates in a
low BSF count obtained in Figures A20–A27 where the TBIH-3 is seen multiple times with
BSF counts as low as 0% and 2.5% while topping at most only an 8% as seen in Figure A26.
TBIH-5 shows an improved performance when compared to TBIH-3 (for K1, K2, K3, and
K4 in Figures S45, S51, and S57) and TBIH-2 (except for K3 and K4) with the addition of a
lookahead mechanism for selecting more promising nodes in the route. This demonstrates
the strength of exploitation in the heuristics to improve selection. The TBIH-2, however, is
better in terms of K3 and K4 (Figures S54 and S59), displaying the trade off for embedding
such features.

Similarly the TBIH-2’s performance is improved in TBIH-4 by means of an exploitation
mechanism that requires a lookahead in selecting more promising nodes and filtering out
those that are not. Unlike the TBIH-3 and TBIH-5, however, the gap in the computation
speed between the TBIH-2 and TBIH-4 is not obvious. This shows that the TBIH-5 might
be more costly to implement compared to TBIH-4 which improves on the TBIH-2 with less
trade-off as seen in Figures S54, S56, S59 and S61. As such, the TBIH-4 could be considered
an all-rounder with a balanced performance next to TBIH-1.

It should be noted that the PDS–RA is performed per vehicle when making a collective
decision for all vehicles. Furthermore, both the number of Monte Carlo simulations and
the length of the lookahead horizon shown in Table 4 could be considered low when
compared to other similar work. However, the new perspective of the computing decision,
as proposed in Equation (24), demands some compromise be made, especially with limited
computational power available for this research. Furthermore, the method applied in this
research is necessary to break the usual practice of clustering the emergency hot-spots per
vehicle and then computing the routing decision afterwards. Additionally, the research
for stochastic road capacity problems with additional consideration for damaged roads is
very limited among reinforcement-learning-oriented research. Due to the stochastic road
capacity, the resulting key measurements are highly varied as shown in the variance and
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covariance measurement of each of the simulated samples collected (Tables S2–S81). Ideally,
a good amount of Monte Carlo simulations of the rollout and a longer horizon for the
lookahead would be best to account for such stochastic problems. A trade-off still needs
to be made where the limitation of computation is a concern. If anything, this research
proves that the proposed methods could be applied to a machine with limited capability to
simulate, visualise, and compute decisions as a DSS for an emergency medical supplies
delivery humanitarian operation.

However, more study into this research is warranted. With capable machines, the
number of lookahead horizons and the number of Monte Carlo simulations should be
increased. With such an increase in parameters, perhaps the TP of the algorithm could be
discarded; allowing the agent a pure learning opportunity when making decisions. In the
experiments here, this could not be achieved; hence the TP is needed. Furthermore, with
enough Monte Carlo simulations, the highly stochastic problem concerning routing can
be properly addressed. A longer horizon of the lookahead ensures better decisions in a
long-term perspective.

The investigation included a one-factor experiment performed by varying the fixed
number of vehicles per road networks, which is a limitation. It should be note,d however
that various road networks were tested consisting of varying numbers of depots, emer-
gency shelters, and connecting nodes. Furthermore, given the entry level machine that is
utilized, this experiment (involving 2900 simulations and 11,600 measurement readings)
took more than one year to complete. Given a more capable machine, factorial experiments
should be performed to investigate the performance of the proposed heuristics againist the
matheuristic benchmark. For example, through a factorial experiment, the existing network
could be expanded into more challenging networks. In D4N30S10 for instance, it would
also be interesting to see how the delivery operation with such a number of depots and an
increase of connecting nodes fares with a smaller number of emergency shelters as more
options for routing become available. Will the agent with the proposed solution method
be able to navigate intelligently among these many options? Hence, more studies should
be performed with expanded networks where the combination of ratios between depots,
connecting nodes, and emergency shelters are varied. For this experiment, the vehicles
are placed randomly at depots initially. This is performed to account for the degree of
unpreparedness, where coordination should be planned with random accounts of assets.
Hence, even though the key measurements are assessed through 10 average readings for
each test instance, the initial situation for each simulation run is varied. There are two
ways that this study could be expanded further: (1) to increase the number of simulations
per test instance to obtain more than 10 readings for a better average reading, and (2) to
apply a fixed assignment of vehicles per depot for all simulations. The latter approach,
however would not account for a more realistic scenario of emergency medical supplies
delivery operations. Finally, in this study, the placement of depots, connecting nodes, and
emergency shelters are made such that the findings obtained from the lessons learned
in the 2015 Nepal earthquake are addressed. Instead of utilising a simulated network, a
more concrete simulation could be performed by applying real networks and incorporating
details of the depots, connecting nodes, emergency shelters, vehicles, road damages, and
road capacities during that actual disaster event. It is noted that such data is usually of a
sensitive nature. However, developing a simulated network allows for flexibility when
completing planning exercise and experiments.

7. Conclusions

As part of the DSS for humanitarian emergency medical supplies delivery operations,
the 2015 Nepal earthquake is referred to in developing the MDDVRPSRC MDP model. The
presented model focuses on the difficulty in navigating through stochastic road capacity
within the compromised road network due to the ongoing tremors from the earthquake.
The model also incorporates multi-depots, multi-trips, and split delivery operations. Here
the conventional approach of “cluster first, route second” largely applied among related
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research cannot be applied. Instead, to solve the problem, a lookahead approach of ADP
is adopted, where the PDS-RA is applied. As part of the PDS-RA mechanism, five base
constructive heuristics are proposed to construct the decision rule on the go dynamically
and iteratively. Unlike conventional applications of the PDS-RA in VRP, this research
adopted the proposed method in the work of [15] for a consecutive application of the PDS-
RA for each vehicle that arrives at every decision point. The resulting individual assignment
of vehicles computed collectively forms an MDP decision at every decision point.

The five proposed base heuristics are based on a decision-making strategy that con-
sists of obvious decisions (TP) and non-obvious decisions (SP) to reduce the burden of
computation. In the TBIH-1, the SP applied pure random selection for selecting a vehicle’s
next destination. Alternatively, the principle of constructive heuristics used in SIH(I1) and
CW, (coined as DSIH and DCW, respectively) are adopted in the TBIH-2 and the TBIH-3. A
lookahead exploitation mechanism is adapted to both the DCW and the DSIH, giving birth
to DLASIH and DLACW which is applied in the proposed TBIH-4 and TBIH-5, respectively.
These five proposed base heuristics are compared with the matheuristic proposed in the
authors’ previous work, [15]. Moreover, test instances were developed and made available
in the repository [87]. The results presented in the supplementary file validate the model
where expected behaviour is observed from the simulated operations based on four key
measurements: K1, K2, K3, and K4. Furthermore, the performance of the PDS-RA applied
with the proposed five base heuristics shows comparable performance for K1 and K2 with
no significant difference recorded. Meanwhile, all the proposed heuristics showed superior
performance for K3 and K4 when compared to the matheuristic. The results also highlight
the power of exploration associated to pure random selection in the TBIH-1 in addressing
a highly stochastic problem such as the MDDVRPSRC. Furthermore, the advantages of
exploitation are shown in TBIH-4 and TBIH-5 when compared with the performance of
TBIH-2 and TBIH-3, respectively. For problems such as the MDDVRPSRC, it would appear
that the DSIH (TBIH-2) and DLASIH (TBIH-4) perform better than their counterparts: DCW
(TBIH-3) and DLACW (TBIH-5).
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math10152699/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

ADP Approximate Dynamic Programming
MDDVRPSRC Multi-Depot Dynamic Vehicle Routing Problem with Stochastic Road Capacity
CSM Supply Chain Management
MDP Markov Decision Processes
DSS Decision Support System
LSPs Logistics Service Providers
ML Machine Learning
RL Reinforcement Learning
MIP Mixed Integer Programming
PRE Pre Decision State
PDS Post Decision State
RA Rollout Algorithm
PDS–RA Post Decision State Rollout Algorithm
SILP Stochastic Linear Integer Programming
SIH Sequential Insertion Heuristic
DSIH Dynamic Sequential Insertion Heuristic
DLASIH Dynamic Lookahead Sequential Insertion Heuristic
CW Clarke and Wright
DCW Dynamic Clarke and Wright
DLACW Dynamic Lookahead Clarke and Wright

Appendix A. Simulated Road Networks and Analysis Results

Figure A1. Road network for instance D3N8S3 [15].

162



Mathematics 2022, 10, 2699

Figure A2. Road network for instance D4N11S4 [15].

Figure A3. Road network for instance D5N13S5 [15].
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Figure A4. Road network for instance D6N16S6.

Figure A5. Road network for instance D7N18S7.
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Figure A6. Road network for instance D8N20S8.

Figure A7. Road network for instance D8N22S9.
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Figure A8. Road network for instance D9N25S10.

Figure A9. Road network for instance D9N30S10.
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Figure A10. Road network for instance D4N30S10.

Figure A11. Example of medical supply delivery in progress for the network D8N20S20.
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Table A1. Descriptive overall view on simulated data collected.

Total Test Instances: (10 Networks × 5 vehicle settings) 50
Proposed Base Heuristics & Benchmark: (5 + 1) 6
Total Test Instances: Base Heuristic & Benchmark 290
(with 10 Omitted Matheuristic Benchmark: ((50 × 6)− 10))
Total Simulation Run 2900
Total Key Measurements 4
Total Set of 10 Samples Readings: 290 × 4 1160
(for Four Key Measurements)
Total Sample Readings 11,600

Total Normality Analysis (Shapiro-Wilk Test) Applied 290
(for Each Key Measurement)
Total 10 Normal Sample Reading 39 (13.44%)
(Total Travelled Distance)
Total 10 Normal Sample Reading 42 (14.48%)
(Total Travelled Time)
Total 10 Normal Sample Reading 148 (51.03%)
(Total Computation Time)
Total 10 Normal Sample Reading 166 (57.24%)
(Average Decision Computation Time)

Total Comparative Analysis (Wilcoxon Signed-Ranks Test) Applied 200
(for Each Key Measurement: ((50 × 5)− (10 × 5)))
Total Significant Difference 68 (34%)
(Total Travelled Distance)
Total Significant Difference 69 (34.5%)
(Total Travelled Time)
Total Significant Difference 191 (95.5%)
(Total Computation Time)
Total Significant Difference 194 (97%)
(Average Decision Computation Time)

Table A2. PDS_RA performance with TBIH-1 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 � � � � � �
D3N8S3_8 � � � �
D3N8S3_15 � � �
D3N8S3_30 � �
D3N8S3_50 � � � �

1 3 2 0 0 1 3 4 0 1 4 0

D4N11S4_4 � � �
D4N11S4_8 � � � � �
D4N11S4_15 � � � � � � � �
D4N11S4_30 � � � � � �
D4N11S4_50 � � � �

2 2 0 2 2 0 3 4 0 4 5 2
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Table A2. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D5N13S5_4 � � � � �
D5N13S5_8 � � � �
D5N13S5_15 � � � � � �
D5N13S5_30 � � �
D5N13S5_50 � � � � � �

1 0 1 1 0 0 4 5 2 4 5 1

D6N16S6_4 � � � � �
D6N16S6_8 � � � � � �
D6N16S6_15 � � � � �
D6N16S6_30 � � � � � �
D6N16S6_50 � � � �

0 2 1 0 1 1 2 5 3 3 5 3

D7N18S7_4 � � � � � � � �
D7N18S7_8 � � � � � � �
D7N18S7_15 � � � �
D7N18S7_30 � � � � � � �
D7N18S7_50 � � � �

2 2 1 2 1 0 3 5 2 4 5 3

D8N20S8_4 � � � � � � � �
D8N20S8_8 � � � � � � � �
D8N20S8_15 � � � �
D8N20S8_30 � � �
D8N20S8_50 � �

2 0 2 1 0 1 3 3 3 3 3 4

D8N22S9_4 � � � � � �
D8N22S9_8 � � � �
D8N22S9_15 � � � � � � �
D8N22S9_30 � � � � � �
D8N22S9_50 � � �

0 1 3 1 1 2 2 3 4 3 3 3

D9N25S10_4 � � � � � � � �
D9N25S10_8 � � � �
D9N25S10_15 � � � �
D9N25S10_30 � � �
D9N25S10_50 �

0 1 2 0 1 0 3 3 1 4 3 2

D9N30S10_4 � � � � � � � �
D9N30S10_8 � � � � �
D9N30S10_15 � � � � � � �
D9N30S10_30 � � � �
D9N30S10_50 �

1 1 2 1 1 2 4 3 2 4 3 1

169



Mathematics 2022, 10, 2699

Table A2. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D4N30S10_4 � � � � � �
D4N30S10_8 � � � �
D4N30S10_15 � � � � �
D4N30S10_30 � � �
D4N30S10_50 �

0 3 2 0 3 0 2 3 1 1 3 1

Total 9 15 16 8 10 7 29 38 18 31 39 20
(%) 18.00 30.00 32.00 16.00 20.00 14.00 58.00 76.00 36.00 62.00 78.00 40.00

Table A3. PDS_RA performance with TBIH-2 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 � � � �
D3N8S3_8 � � �
D3N8S3_15 � � � � � � � �
D3N8S3_30 � � �
D3N8S3_50 �

1 0 0 0 2 0 2 4 2 1 4 3

D4N11S4_4 � � � � � �
D4N11S4_8 � � �
D4N11S4_15 � � � �
D4N11S4_30 � � � � � �
D4N11S4_50 � � �

1 1 1 2 0 0 3 5 1 2 5 1

D5N13S5_4 � � � � � � �
D5N13S5_8 � � � � � � � �
D5N13S5_15 � � � �
D5N13S5_30 � � �
D5N13S5_50 � � � � � �

1 2 0 2 1 0 2 5 1 5 5 4

D6N16S6_4 � � � �
D6N16S6_8 � � � � �
D6N16S6_15 � � � � � �
D6N16S6_30 � �
D6N16S6_50 � � � �

0 2 0 0 2 0 3 5 1 3 5 0

D7N18S7_4 � � � �
D7N18S7_8 � � � �
D7N18S7_15 � � � � � �
D7N18S7_30 � � � � �
D7N18S7_50 � � � � �

0 2 0 0 2 0 3 5 1 4 5 2
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Table A3. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D8N20S8_4 � � � � �
D8N20S8_8 � � � � �
D8N20S8_15 � � � � �
D8N20S8_30 �
D8N20S8_50

0 0 0 0 1 2 3 3 0 4 3 0

D8N22S9_4 � � � �
D8N22S9_8 � � � �
D8N22S9_15 � � � �
D8N22S9_30
D8N22S9_50 �

0 0 0 0 0 0 3 3 0 3 3 1

D9N25S10_4 � � � �
D9N25S10_8 � �
D9N25S10_15 � � � � �
D9N25S10_30 � � �
D9N25S10_50

1 0 0 0 0 1 3 3 0 3 3 0

D9N30S10_4 � � � � �
D9N30S10_8 � � � � � �
D9N30S10_15 � � � � �
D9N30S10_30 � �
D9N30S10_50 �

0 2 1 0 1 0 4 3 0 4 3 1

D4N30S10_4 � � � � � �
D4N30S10_8 � � � � �
D4N30S10_15 � � � � �
D4N30S10_30 �
D4N30S10_50 �

0 1 0 0 3 0 2 3 1 4 3 1

Total 4 10 2 4 12 3 28 39 7 33 39 13
(%) 8.00 20.00 4.00 8.00 24.00 6.00 56.00 78.00 14.00 66.00 78.00 26.00

Table A4. PDS_RA performance with TBIH-3 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 � �
D3N8S3_8 � � �
D3N8S3_15 � � �
D3N8S3_30 � �
D3N8S3_50 � � �

1 0 0 1 2 0 2 3 0 1 3 0
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Table A4. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D4N11S4_4 � � �
D4N11S4_8 � � � � �
D4N11S4_15 � � � �
D4N11S4_30 � � � � �
D4N11S4_50 � � � � �

1 4 0 1 3 0 2 4 0 2 5 0

D5N13S5_4 � � � � � �
D5N13S5_8 � � � � �
D5N13S5_15 � � � �
D5N13S5_30 � � � � �
D5N13S5_50 � � � � �

1 3 0 2 4 0 2 5 0 3 5 0

D6N16S6_4 � � � � � �
D6N16S6_8 � � � � � �
D6N16S6_15 � � � � � �
D6N16S6_30 � � � � �
D6N16S6_50 � � �

1 3 0 1 3 0 4 5 0 4 5 0

D7N18S7_4 � � � �
D7N18S7_8 � � � �
D7N18S7_15 � � � �
D7N18S7_30 � � � � � �
D7N18S7_50 � � � �

0 2 0 1 2 0 3 5 1 3 5 0

D8N20S8_4 � �
D8N20S8_8 � � � � � �
D8N20S8_15 � � � �
D8N20S8_30 � � �
D8N20S8_50 � � �

2 0 2 1 0 2 2 3 1 2 3 0

D8N22S9_4 � � � � � �
D8N22S9_8 � � � �
D8N22S9_15 � � � �
D8N22S9_30
D8N22S9_50

0 1 0 0 1 0 3 3 0 3 3 0

D9N25S10_4 � � � �
D9N25S10_8 � � �
D9N25S10_15 � � � �
D9N25S10_30 �
D9N25S10_50

0 0 0 0 1 0 2 3 1 2 3 0
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Table A4. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D9N30S10_4 � � � � � �
D9N30S10_8 � � � �
D9N30S10_15 � � � �
D9N30S10_30 �
D9N30S10_50

0 1 0 0 1 0 3 3 0 4 3 0

D4N30S10_4 � � � � �
D4N30S10_8 � � � � �
D4N30S10_15 � � � � �
D4N30S10_30
D4N30S10_50 �

0 3 0 1 3 0 0 3 1 1 3 1

Total 6 17 2 8 20 2 23 37 4 25 38 1
(%) 12.00 34.00 4.00 16.00 40.00 4.00 46.00 74.00 8.00 50.00 76.00 2.00

Table A5. PDS_RA performance with TBIH-4 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 � � � � �
D3N8S3_8 � �
D3N8S3_15 � � � �
D3N8S3_30 � � � � � � � � �
D3N8S3_50 � � � �

2 0 1 2 0 1 1 5 2 3 5 2

D4N11S4_4 � � � � � � �
D4N11S4_8 � � � � �
D4N11S4_15 � � �
D4N11S4_30 � � � � � � � � �
D4N11S4_50 � � � � � �

0 2 1 2 1 2 3 5 4 3 5 2

D5N13S5_4 � � � � �
D5N13S5_8 � � � � �
D5N13S5_15 � � � � �
D5N13S5_30 � � � �
D5N13S5_50 � � � � � � � �

2 1 0 1 0 4 4 5 2 3 5 0

D6N16S6_4 � � � �
D6N16S6_8 � � � � �
D6N16S6_15 � � � � � �
D6N16S6_30 � �
D6N16S6_50 � � � � � �

0 3 0 0 2 0 2 5 1 3 5 2
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Table A5. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D7N18S7_4 � � � � � �
D7N18S7_8 � � � � � �
D7N18S7_15 � � � � � �
D7N18S7_30 � � � � �
D7N18S7_50 � � �

0 4 1 0 3 1 3 5 0 4 5 0

D8N20S8_4 � � � �
D8N20S8_8 � � � �
D8N20S8_15 � � � � � �
D8N20S8_30
D8N20S8_50

1 0 0 1 0 0 3 3 0 3 3 0

D8N22S9_4 � � � � � �
D8N22S9_8 � � � �
D8N22S9_15 � � � �
D8N22S9_30
D8N22S9_50

0 1 0 0 1 0 3 3 0 3 3 0

D9N25S10_4 � � � �
D9N25S10_8 � � �
D9N25S10_15 � � � �
D9N25S10_30 � � �
D9N25S10_50 � � �

0 0 0 1 0 1 3 3 1 4 3 1

D9N30S10_4 � � � �
D9N30S10_8 � � � � � �
D9N30S10_15 � � � � �
D9N30S10_30 � �
D9N30S10_50 � � � �

0 0 0 2 0 1 3 3 3 3 3 3

D4N30S10_4 � � � � � � � �
D4N30S10_8 � � � � �
D4N30S10_15 � � � � � �
D4N30S10_30 �
D4N30S10_50 � � �

1 1 0 2 3 2 4 3 0 4 3 0

Total 6 12 3 11 10 12 29 40 13 33 40 10
(%) 12.00 24.00 6.00 22.00 20.00 24.00 58.00 80.00 26.00 66.00 80.00 20.00
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Table A6. PDS_RA performance with TBIH-5 application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4 � � �
D3N8S3_8 � � � � � � � �
D3N8S3_15 � �
D3N8S3_30 � � � �
D3N8S3_50 � � �

1 3 1 1 2 1 2 3 1 2 3 0

D4N11S4_4 � � �
D4N11S4_8 � � � �
D4N11S4_15 � � � �
D4N11S4_30 � � � � �
D4N11S4_50 � �

1 1 0 0 1 0 3 5 0 2 5 0

D5N13S5_4 � � � � � �
D5N13S5_8 � � � � �
D5N13S5_15 � � �
D5N13S5_30 � � � �
D5N13S5_50 � � � � �

0 1 0 1 3 0 4 4 0 5 5 0

D6N16S6_4 � � � � � �
D6N16S6_8 � � � � � �
D6N16S6_15 � � � � � � � �
D6N16S6_30 � � �
D6N16S6_50 � � � �

2 4 0 1 4 0 3 5 0 3 5 0

D7N18S7_4 � � � � � �
D7N18S7_8 � � � �
D7N18S7_15 � � � �
D7N18S7_30 � � � � � �
D7N18S7_50 � � � � �

1 2 0 0 2 1 4 5 1 4 5 0

D8N20S8_4 � � � �
D8N20S8_8 � � �
D8N20S8_15 � � � � �
D8N20S8_30
D8N20S8_50

0 0 1 0 0 0 1 3 1 2 3 1

D8N22S9_4 � � � � � �
D8N22S9_8 � � � � � �
D8N22S9_15 � � � �
D8N22S9_30 � �
D8N22S9_50

0 0 1 0 0 1 4 3 1 4 3 1
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Table A6. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D9N25S10_4 � � � �
D9N25S10_8 � �
D9N25S10_15 � � � � � �
D9N25S10_30 �
D9N25S10_50 � � � �

2 0 0 0 0 0 3 3 2 2 3 2

D9N30S10_4 � � � � � �
D9N30S10_8 � � � � � �
D9N30S10_15 � � � �
D9N30S10_30 � � �
D9N30S10_50

1 2 0 0 2 0 4 3 0 4 3 0

D4N30S10_4 � � � � � � �
D4N30S10_8 � � � � �
D4N30S10_15 � � � �
D4N30S10_30 �
D4N30S10_50 �

0 1 1 1 3 0 1 3 2 1 3 2

Total 8 14 4 4 17 3 29 37 8 29 38 6
(%) 16.00 28.00 8.00 8.00 34.00 6.00 58.00 74.00 16.00 58.00 76.00 12.00

Table A7. PDS_RA performance with CPLEX application as base heuristic.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D3N8S3_4
D3N8S3_8 �
D3N8S3_15 � � �
D3N8S3_30
D3N8S3_50 �

0 - 1 1 - 2 0 - 0 1 - 0

D4N11S4_4
D4N11S4_8 � � �
D4N11S4_15 � � �
D4N11S4_30 � �
D4N11S4_50 � � � � � �

2 - 3 3 - 3 1 - 0 2 - 0

D5N13S5_4 � �
D5N13S5_8 �
D5N13S5_15
D5N13S5_30 � � �
D5N13S5_50 � � � �

1 - 4 1 - 1 1 - 0 2 - 0
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Table A7. Cont.

Total
Distance
Travelled

Total
Travelled Time

Total
Computation
Time

Average
Decision
Computation

Test Instance N Sig. BSF N Sig. BSF N Sig. BSF N Sig. BSF

D6N16S6_4 � � � �
D6N16S6_8 � � � �
D6N16S6_15 � � �
D6N16S6_30 �
D6N16S6_50 � � � � � �

2 - 4 1 - 4 3 - 0 4 - 0

D7N18S7_4 �
D7N18S7_8 � �
D7N18S7_15 � � �
D7N18S7_30 � �
D7N18S7_50 � � �

0 - 3 1 - 3 2 - 0 2 - 0

D8N20S8_4 � �
D8N20S8_8
D8N20S8_15 �
D8N20S8_30
D8N20S8_50

0 - 0 0 - 0 2 - 0 1 - 0

D8N22S9_4 � � � �
D8N22S9_8
D8N22S9_15 � �
D8N22S9_30
D8N22S9_50

1 - 1 0 - 2 1 - 0 1 - 0

D9N25S10_4 � �
D9N25S10_8 � � �
D9N25S10_15 � �
D9N25S10_30
D9N25S10_50

0 - 3 0 - 3 0 - 0 1 - 0

D9N30S10_4 � �
D9N30S10_8 � �
D9N30S10_15
D9N30S10_30
D9N30S10_50

0 - 2 0 - 2 0 - 0 0 - 0

D4N30S10_4 � � �
D4N30S10_8 � �
D4N30S10_15 �
D4N30S10_30
D4N30S10_50

0 - 2 0 - 3 0 - 0 1 - 0

Total 6 - 23 7 - 23 10 - 0 15 - 0
(%) 12.00 - 46.00 14.00 - 46.00 20.00 - 0.00 30.00 - 0.00
(% V2) 15.00 - 57.50 17.50 - 57.50 25.00 - 0.00 37.50 - 0.00
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Figure A12. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total distance travelled (km) based on test instances.

Figure A13. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total travel time (min) based on test instances.
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Figure A14. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
total computation time (sec) based on test instances.

Figure A15. Algorithms performance compared to matheuristic rollout applied in PDS-RA: average
decision computation time (sec) based on test instances.
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Figure A16. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
distance travelled (km) measured based on test instances.

Figure A17. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
travel time (min) measured based on test instances.
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Figure A18. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best total
computation time (sec) measured based on test instances.

Figure A19. Algorithms performance compared to matheuristic rollout applied in PDS-RA: best
average decision computation time (sec) measured based on test instances.
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Figure A20. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total travelled distance over all test instances applied (omitting 10 non-benchmarked
measurements).

Figure A21. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for total travel time over all test instances applied (omitting 10 non-benchmarked
measurements).
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Figure A22. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total computation time over all test instances applied (omitting 10 non-benchmarked
aasurements).

Figure A23. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for average decision computation time over all test instances applied (omitting 10
non-benchmarked measurements).
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Figure A24. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total travelled distance over all test instances applied (including 10 non-benchmarked
measurements).

Figure A25. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for total travel time over all test instances applied (including 10 non-benchmarked
measurements).
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Figure A26. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total BSF
measured for total computation time over all test instances applied (including 10 non-benchmarked
measurements).

Figure A27. Algorithms performance compared to matheuristic rollout applied in PDS-RA: total
BSF measured for average decision computation time over all test instances applied (including 10
non-benchmarked measurements).
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Abstract: COVID-19 has shaken the entire world economy and affected millions of people in a brief
period. COVID-19 has numerous overlapping symptoms with other upper respiratory conditions,
making it hard for diagnosticians to diagnose correctly. Several mathematical models have been
presented for its diagnosis and treatment. This article delivers a mathematical framework based on
a novel agile fuzzy-like arrangement, namely, the complex fuzzy hypersoft (C FH S ) set, which
is a formation of the complex fuzzy (CF) set and the hypersoft set (an extension of soft set). First,
the elementary theory of C FH S is developed, which considers the amplitude term (A-term) and
the phase term (P-term) of the complex numbers simultaneously to tackle uncertainty, ambivalence,
and mediocrity of data. In two components, this new fuzzy-like hybrid theory is versatile. First, it
provides access to a broad spectrum of membership function values by broadening them to the unit
circle on an Argand plane and incorporating an additional term, the P-term, to accommodate the
data’s periodic nature. Second, it categorizes the distinct attribute into corresponding sub-valued sets
for better understanding. The C FH S set and C FH S -mapping with its inverse mapping (INM)
can manage such issues. Our proposed framework is validated by a study establishing a link between
COVID-19 symptoms and medicines. For the COVID-19 types, a table is constructed relying on the
fuzzy interval of [0, 1]. The computation is based on C FH S -mapping, which identifies the disease
and selects the optimum medication correctly. Furthermore, a generalized C FH S -mapping is
provided, which can help a specialist extract the patient’s health record and predict how long it will
take to overcome the infection.

Keywords: COVID-19; disease modelling; complex numbers (C-numbers); complex fuzzy hypersoft
set; mapping; inverse mapping

MSC: 03E72, 68U35

1. Introduction

COVID-19 marked itself on the world’s map at the end of 2019 in the Hunan Seafood
market of Wuhan district (Hubei, China) [1]. After a few days, deep sequencing analysis
of the samples taken from the infected patients’ lower respiratory tract led to identifying
a novel virus that belonged to the Severe Acute Respiratory Syndrome. From there, it
was given the name SARS-CoV-2 and was found to be the infection-causing agent of the
pneumonia clusters observed in the infected patients [2]. The coronavirus family is thought
to be the cause of sickness in both animals and humans, according to [3]. A total of seven
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family members of the Coronavirus family can produce infection in humans. The most
common infection causative agents in humans out of these viruses are namely: 229E, HKU1,
NL63, and OC43 [1].

Machine learning and deep learning methods are widely used for COVID-19 di-
agnostics (see, for example, [4–6]), severity prediction [7], and spread prediction [8,9].
The overview of these methods can be found in review papers [10,11]. Fuzzy-logic-based
methods have also been applied extensively for disease diagnostics with various examples
ranging from advice on the common cold [12] to Huntington’s disease [13].

Conventional methods are insufficient to solve multidimensional challenges in the
environment, economics, engineering, and robotics. The four theories discussed here that
specialize in solving these types of problems include the fuzzy set theory Zadeh [14], inter-
val mathematics [15], the probability set theory [16], and the rough set theory Pawlak [17].
They are widely used in various fields such as statistics, machine learning, and artificial
intelligence. Liu et al. [18] characterized the concept of a correlation coefficient between
hesitant fuzzy sets and applied it for medical diagnoses. Molodtsov [19] showed that soft
set (SS) theory has significant applications in the fields of data mining, medical imaging,
Riemann integration, game theory, and pattern recognition. Soft sets were initially de-
ployed by Maji et al. [20] to handle judgment call dilemmas. S-sets and associated variants
are relevant according Yang et al. [21]. The paradigm of imprecise SS and its various forms
was established by Maji et al. [22]. Kharal et al. [23,24] established the concepts of mappings
on fuzzy soft subclasses and soft classes. They deployed examples and empirical evidence
to explore the preservation of the image of fuzzy soft sets and soft sets. In [25], Karaaslan
investigated the word smooth class and its relevant functions. Alkhazaleh et al. [26] devel-
oped the concepts of a mapping on classes and categorised neutrosophic soft set collections
into single-valued neutrosophic classes and also explored and identified a single-valued
neutrosophic image and neutrosophic soft images of neutrosophic soft sets. Ropiak [27]
combined rough set based granular computing with deep learning methods, which allowed
for the improvement of knowledge extraction.

The notion of mappings over collections of multifunctional fuzzy soft sets was pio-
neered by Sulaiman et al. [28]. They focused on a few factors linked to the image and INI
of multi-aspect fuzzy soft sets and demonstrated their findings with numerical examples.
The concept of mappings between picture fuzzy soft sets and an intuitionistic fuzzy soft set
and INI was defined by Bashir and Salleh [29].

Samarandache [30] offered the fuzzified hypersoft (FHS) and hypersoft sets (HS) as
modifications of fuzzy soft and soft settings. Saeed et al. [31–34], Zulqarnain et al. [35],
Martin et al. [36], Musa et al. [37], Ajay et al. [38], and Debnath et al. [39] discussed the basics
of the HS and their entire mappings in an HS environment, as well as their exposition of the
HS in object classification, cell imaging, and multi-eligibility requirements. Ramot et al. [40]
proposed an extensive analysis of the mathematical properties of the CF set. Elementary
predetermined operations on CF sets were studied, including CF complement, union,
and intersection. Thirunavukarasu et al. [41] examined the intuitive understanding of a
soft CF set’s aggregation operation. They also illustrated uses for consolidation techniques,
demonstrating that the approach may be successfully used in a wide range of circumstances
including uncertainty and periodicities. In 2020, Rahman et al. [42] combined two major
theories complex set and hypersoft set in a fuzzy setting: a sophisticated neutrosophic set,
and a complex intuitionistic imprecise information given to build hypersoft mixtures.

The paradigm of a complex multi-fuzzy collection, which is a fusion of CF collections
and multi-fuzzy defines, was established by Al-Qudah et al. [43]. Their developed scheme
would indeed be equipped to deal with instabilities, ambiguities, and evaluation based
of two-dimensional cross inputs by continuously storing the magnitude and P-terms of
the C-numbers.

The main objective of this study is to simulate a feasible type of situation of COVID-
19-specific diagnosis, as well as to ensure an effective treatment because it is difficult to
distinguish other upper-respiratory infections from COVID-19 using existing theoretical
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and empirical models and techniques [23,24,44,45] because these techniques are restrained
from finalizing configurations. The above mentioned strategies are inadequate to thor-
oughly assess the data to gain a more substantial insight and correct diagnosis. To remedy
this defect, these foundations are coupled into a multifaceted system composed of a fuzzy
output and a hypersoft (HS) setting.

This approach is far more flexible in two main ways. To continue, it extends the
C FH S to obtain a new term ’P-term’ to support the statement’s reoccurring aspect, per-
mitting a broad range of weighted parameters. They cannot keep up in two-dimensional
quantities to the unit circle in an image plane. Furthermore, the C FH S traits can be fur-
ther grouped into sub-values to enhance explanation. A mapping is a correlation between
the two or more segments which is handled by guidelines that transfer an embedding
feature to its underpinning normative considered appropriate predicated on subsystem
and subsurface properties. This tool enables comparable inputs to be treated by a sin-
gle basic value. The goal of the research is to investigate COVID-19 treatments in the
community, as well as the manifestations that correlate with them. It is impossible to
discern which characteristic of COVID-19 is causing issues and how substantial it is after
gazing at the COVID-19 health consequences. To reduce this issue, the C FH S set and
C FH S -mapping with its INM are often used.

When linked with scientific modelling, these concepts are effective and crucial for
appropriately addressing the issues. A table based on the fuzzy region among [0, 1] is
constructed for the diverse strains of COVID-19. The approaches rely on C FH S -mapping
and would be used to create an index that indicates the ailment and then decides the correct
diagnosis. In addition, a detailed C FH S -mapping , which will support a practitioner in
estimating the time before the symptoms are alleviated, is established.

The main contributions and the advantages of the proposed method can be summa-
rized as follows:

1. The adopted C FH S model is more flexible and consistent as compared to existing
fuzzy soft set-like models because it is capable of managing the following limitations
of the existing literature collectively as a single model:

(a). Uncertainties involved in the approximation of alternatives.
(b). Periodic nature of the data.
(c). Consideration of sub-parametric values as disjointed classes.
(d). Entitlement of multi-argument approximate function.

It tackles first issue by assigning a fuzzy membership grade to each alternative corre-
sponding to parameters, the second by considering phase and amplitude terms, and
the third and fourth by considering the hypersoft setting. Thus it leads to constructing
a reliable decision support system by addressing these issues collectively.

2. An MA DM intelligent algorithm is proposed that aims to support problem-solving
for an early assortment of alternatives and identify sufferers with conflicting medical
indications.

3. This exploration demonstrates a well-built association between the signs and math-
ematically records them to ample concern. The scheme is assembled on trimming
C FH S set designs that can predict a patient’s state and estimate medical indica-
tions over time to analyze a medicine’s health effects. It can be carried out to foresee
the contagion’s reinfection parameters in anticipation that the infection is cured. In the
upcoming outlook, such pattern recognition-based algorithms are proposed to dimin-
ish medical inaccuracies and receive inspiring results depending on various patient
configurations.

The article is presented in the following manner: Section 2 highlights the concept of
complex fuzzy hypersoft classes. image The opted approach is validated by practically
applying it to a problem with comparative analysis in Section 3, while the conclusion sums
up the study in the Section 4.
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2. Implementation of C FH S Set for COVID-19

This section’s primary focus is to analyze the highlighted problem related to COVID-19.
The analysis is based on the cause of the disease, its symptoms, diagnosis, and treatment
of patients. C FH S mapping and inverse mapping are applied for precise and accurate
analysis and suggest a procedure policy purely based on mathematical strategies presented
in this article.

2.1. COVID-19 and Its Variants

With the passage of time, scientists have identified numerous variants of COVID-
19 as it has evolved. There are many distinct forms of coronaviruses, but just four are
discussed below.

The first is SARS, also known as Severe Acute Respiratory Syndrome, whose causative
agent also belongs to the coronavirus family. The SARS-CoV virus has a zoonotic origin,
targets the lungs, and causes acute respiratory problems. It was the first virus whose
virology or genetic sequence was remotely similar to the COVID-19 virus upon the first
examination.

SARS-CoV-2 or COVID-19 is responsible for the pandemic that started back in 2019.
As explained in the introduction, it also hinders respiratory functions and is renowned as
the successor of the SARS-CoV-1 virus by the US National Institutes of Health.

MERS, or Middle Eastern Respiratory Syndrome, also belongs to the coronavirus
family. It first presented itself in the Middle Eastern countries of Asia around 2012, and it is
called MERS or the Camel Flu. Its symptoms are quite similar to those of the COVID-19
virus, but the most prominent are mild to high fever, shortness of breath, diarrhea, and
cough. MERS is regarded as more severe when compared with other diseases.

The OC43(HCoV-OC43) strain of the human coronavirus is a component of the COVID
family and belongs to a group of viruses called the Betacoronavirus 1. This strain is
prominent in infecting humans and cattle. As far as the virus’s structural integrity goes,
it is a simple-stranded RNA, positive-sense, enclosed virus. It is also one of those viruses
of the coronavirus family that affects humans out of the seven strains. Its host-entering
mechanism involves binding with the N-acetyl-9-O-acetylneuraminic acid receptor of the
host cell.

These are the specific symptoms associated with these problems: loss of speech or
movement, chest pain or pressure, difficulty breathing or shortness of breath, loss of taste
or smell, headache, diarrhea, sore throat, aches and Pain, tiredness, dry cough, and fever.

An algorithm based on C FH S -mapping is proposed to diagnose COVID-19, suggest
appropriate treatments, and track the treatment steps and improvement measures for
the patients.

2.2. Preliminaries

This portion provides a few basic concepts to facilitate the readers for clear under-
standing proposed approach.

Definition 1 ([14]). The FS is characterized by a membership mapping �̂ : Θ̂ → Ω̂ which is
stated as a family of pairs (θ̂, �̂(θ̂)) where �̂(θ̂) and Ω̂ are regarded as belonging degree of θ̂ ∈ Θ̂
and unit closed interval, respectively.

Definition 2 ([19]). An SS is stated as the family of pairs (ô, ζ̂(ô)) where ζ̂ : Ξ̂ → P̂(Θ̂) with
ζ̂(ô), Ξ̂, and P̂(Θ̂) as an ô-approximate member of SS, a set of evaluating indicators and the family
of subsets of Θ̂, respectively.

Definition 3 ([41]). Let say Θ̂ and Π̂ are the initial universal set and attributes, respectively. For
any g ∈ Π̂, let F ⊆ Π̂ and (ϕ, F) be a CF soft set over Θ̂. Then, a CF soft set (ϕ, F) is subjected
to Θ̂, which is specified by a function ϕF that represents a mapping ϕF : F → C(Θ̂). Here, ϕF is
known as CF approximate function of the CF soft set, and it can be signified as
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(ϕ, F) = {(g, ϕF(�)) : � ∈ F, ϕF(�) ∈ C(Θ̂)}.

Definition 4 ([30]). An HS is stated as a class of pairs (δ̈, ζ̂HS(δ̈)) where ζ̂HS : Λ̂ → P̂(Θ̂) with
ζ̂HS(δ̈) as δ̈-multi-argument approximate member of HS for δ̈ ∈ Λ̂ and Λ̂ is equal to Λ̂1 × Λ̂2 ×
...× Λ̂n, whereas all Λ̂i are disjoint sub-classes of parameters having their respective sub-parametric
values. For more definition see, [31].

2.3. Methodology

This section aims to describe the various stages of complete methodology that are
adopted for this study. The Figure 1 presents the graphical view of complete methodology
adopted in this study.

Figure 1. Pictographic view of various stages involved in adopted methodology.

2.3.1. Description of Fuzzy Rules

In accordance with the terminological understanding of “fuzzy rule”, the following
criteria have been employed to justify fuzzy rule requirements:

1. Consideration of linguistic variables: The linguistic variables are taken as fuzzy input
and their corresponding linguistic variable are taken as fuzzy output.

2. Employment of membership function: In this proposed approach, a novel function
called multi-argument approximate function is employed which considers the Carte-
sian product of sub-parametric valued disjointed classes corresponding to parameters
as its domain and the collection of complex fuzzy sets as its co-domain. In other
words, this function has sub-parametric tuples having multi-argument coordinates.
It is the modified version of approximate function used in a soft set. It ensures the
entitlement of the hypersoft setting with provision of due status to parameters and
their sub-parametric values in the form of disjointed classes. Table 1 presents the
comparison of the adopted membership function with other existing membership
functions.

3. Designing of fuzzy-valued-based rules: In this step, construction and computation of
the relevant fuzzy system are involved.

4. Observation of fuzzy-valued-based output: This step is meant for obtaining the
optimum decision.
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Table 1. Comparison of employed membership function with other membership functions.

Model Function Domain Co-Domain

Fuzzy Set Membership function Universal set [0, 1]

Complex fuzzy set Membership function Universal set Complex plane within [0, 1]

Soft set Approximate function Single set of parameters Power set of universal set

Fuzzy soft set Approximate function Single set of parameters Collection of fuzzy sets

Complex fuzzy soft set Approximate function Single set of parameters Collection of complex fuzzy
sets

Hypersoft set Multi-argument
approximate function

Cartesian product of
sub-parametric valued
disjoint classes

Power set of universal set

Fuzzy hypersoft set Multi-argument
approximate function

Cartesian product of
sub-parametric valued
disjoint classes

Collection of fuzzy sets

Complex fuzzy hypersoft set Multi-argument
approximate function

Cartesian product of
sub-parametric valued
disjoint classes

Collection of complex fuzzy
sets

2.3.2. Pre-Stage

COVID-19 patients show similar symptoms to the sickness caused by the viruses listed
above, making it hard to pinpoint the cause of the ailment and propose an appropriate
treatment for the disease. This ambiguity and vagueness are dealt with by using C FH S
in a specialized manner. To translate oral data into numerical language, a fuzzy interval
[0, 1] is constructed for various types of COVID. A chart is created to find the actual form
of COVID from its different types; see Table 2.

Table 2. COVID diagnosis table with ranges.

Kinds of COVID Various Ranges

SARS-CoV [0.6, 1]

SARS-CoV-2 [0.5, 0.6)

MERS-CoV [0.2, 0.5)

OC43 (beta) [0.1, 0.2)

No COVID [0, 0.1)

Diseases are known to progress over time, so this paper will utilize this fact by
collecting the patient’s data for 2–3 days, comparing the symptoms and the side effects
(if any) presented, leading to a complete workup of the patient’s history. Further on,
additional graphs regarding the present condition compared to the previous condition of
the patients are created for better monitoring and trend identifying purposes. The above
statement is expanded in Table 3 and Figure 2. Depending on the conditions of COVID, it
is divided into a set of three ranges, namely serious, moderate, and low. Figure 2 defines
the ranges along with the constraints allocated to these ranges.

194



Mathematics 2022, 10, 2472

Table 3. COVID is analysed using associated concerns and how they are treated on a daily basis.

Situations 1st Day 2nd and 3rd Days Report After the 3rd Day

Serious (SARS-CoV) 0.72 ≤ � < 0.8 0.8 ≤ � < 1 =1
Moderate (SARS-CoV) 0.75 ≤ � < 0.82 0.82 ≤ � < 0.87 0.87 ≤ � < 0.92
Low (SARS-CoV) 0.6 ≤ � < 0.65 0.65 ≤ � < 0.69 0.69 ≤ � < 0.74
Serious (SARS-CoV-2 ) 0.55 ≤ � < 0.57 0.57 ≤ � < 0.58 0.58 ≤ � < 0.59
Moderate (SARS-CoV-2 ) 0.551 ≤ � < 0.558 0.558 ≤ � < 0.559 0.559 ≤ � < 0.5596
Low (SARS-CoV-2 ) 0.557 ≤ � < 0.559 0.559 ≤ � < 0.5597 0.5597 ≤ � < 0.5593
Serious (MERS-CoV) 0.2 ≤ � < 0.3 0.3 ≤ � < 0.4 0.4 ≤ � < 0.49
Moderate (MERS-CoV) 0.23 ≤ � < 0.25 0.25 ≤ � < 0.27 0.27 ≤ � < 0.4
Low (MERS-CoV) 0.22 ≤ � < 0.23 0.23 ≤ � < 0.235 0.235 ≤ � < 0.37
Serious (OC43 (beta)) 0.1 ≤ � < 0.15 0.15 ≤ � < 0.17 0.17 ≤ � < 0.176
Moderate (OC43 (beta)) 0.12 ≤ � < 0.13 0.13 ≤ � < 0.15 0.15 ≤ � < 0.157
Low (OC43 (beta)) 0.123 ≤ � < 0.125 0.125 ≤ � < 0.129 0.129 ≤ � < 0.189
No COVID 0.00 ≤ � < 0.01 0.01 ≤ � < 0.08 0.01 ≤ � < 0.08

Figure 2. Flowchart of various ranges related to COVID-19’s mentioned criteria.

2.4. Proposed Algorithm for Pre-Diagnosis of Patients Based on CFHS Mapping

This section proposes a multi-attribute decision-making-based (MA DM ) algorithm
(Algorithm 1) for pre-diagnosis of COVID-19 in patients who are under observation.
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Algorithm 1: Procedural flow of pre-diagnosis of COVID-19 in patients.
� Start

� Input

Step 1. To categorise the coronavirus family. Suppose W = {∂1, ∂2, ∂3, ..., ∂n} be set
of four patients suspected to have COVID and A = {�̂1, �̂2, �̂3, ..., �̂v} be set of

symptoms whose sub-values related to sets Fi’s, where F =
v

∏
i=1

Fi. Following a

crucial evaluation at εth times, the consultant’s C FH S set chart is customised
as: zε

F = {zε
s = {∂, 〈T ε

s (∂)〉} : T ε
s (∂) ∈ C(F), ∂ ∈ W , s ∈ F}, where T ε

s (∂) are
C FH S membership of SARS-CoV, SARS-CoV-2, MERS-CoV and OC43 (beta)
for lth patients and kth symptoms respectively and
(ε = 1, 2, 3, ..., t; k = 1, 2, 3, ..., |F |; l = 1, 2, 3, ..., n). The C FH S union of all “t”
day to clinical charts is used to procure the most relevant data on all patients.

Step 2. It is anticipated that B = {�̂′
1, �̂′

2, �̂′
3, ..., �̂′

w} a class having relevant

indications and the their respective sub-classes are F ′
i ’s with F ′ =

w

∏
i=1

F ′
i .

An C FH S set is constructed having weights proposed by decision-makers
(health experts) after assessing the physical condition of the patient under
observation over time ε.

Step 3. Now, mappings are defined as follows: λ : W → W and � : F → F ′
characterized as follows; λ(∂l) = ∂l , �(sk) = (s′k′),
(k′ = 1, 2, 3, ..., |F ′|; k = 1, 2, 3, ..., |F |; l = 1, 2, 3, ..., n) (based on the interrelations
with the basic symptoms).

Suppose C FH S -mapping σ = (λ, �) : C FH S (W ) → C FH S (W ) defined
as;

Tσ(zF )(s
′)(∂) = |Ts′

k′
|
⎧⎨⎩

maxv∈λ−1(∂)

(
maxs∈�−1(s′)∩F TzF

)
(∂) if

λ−1(∂) 	= ∅, �−1(s′) ∩F 	= ∅,
0 if otherwise

where Ts′
k′

are weights from zF ′ that are connected. Get the image of �zε
F by

using the mappings σ and denoted as z′F ′ .
� Construction

Step 4. Transform C FH S set to aggregation values by using,
Tz′(s′)(∂) = w1μz′(s′)(∂) + w2(

1
2π )ωz′(s′)(∂) [46], where w1, w2 ∈ [0, 1].

Step 5. Then, by making use of the information from Table 3, constitute a set after
symptoms and assemble the pre-diagnosis table which leads to the assessment
for consistency of the proposed study.

Step 6. Take the mean for each specific patient centred on their clinical
manifestations. Now, compare our outcomes to the diagnosis Table 2.
� Computation

Step 7. Consider a class B = {�̂′
1, �̂′

2, �̂′
3, ..., �̂′

w} consists of symptoms which are

correlated concurrently, where k′ =
w

∏
i=1

|F ′
i | and C = {�1,�2,�3, ...,�x} is a list

of potential medicines, then it allows for constructing χF ′ , where χ is the
C FH S function from F ′ to W (C) that is the collection with recommendations
of physician.

Step 8. Obtain W 1
C by applying min-max composition over z′F ′ and χF ′ .

Step 9. Use medications that offer additional benefits while having fewer side
effects. To determine the patient’s status, the guidelines are followed.
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Algorithm 1: Cont.
� Output

Step 10. Consider two mappings: λ′ : Jq−1 → Jq and
λ′ : W q−1 → W q and �′ : Cq−1 → Cq such that λ′(∂l) = ∂l and �′(�x) = �x.
Then this mapping can be constructed in this mechanism:
σ′ = (λ′, �′) : W

q−1
C → W

q
C and can be regarded as:

W
q

C = σ′(W q−1
C )(�)(∂) =

1
q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∨π∈λ′−1(∂)(∨ϑ∈�′−1(�)∩CW

q−1
C (π) if

λ′−1(∂) 	= ∅, �′−1(�) ∩ C 	= ∅

0 if otherwise

where g ∈ �′(C) ⊆ C, v ∈ W q, π ∈ W q−1, ϑ ∈ (C)q−1 for q = 2, 3, 4... is the
number of episodes of treatments.
Step 11. Continue step 10 whenever the outcomes need to be assessed and finally

compute the score values by taking arithmetic mean of all final obtained values
corresponding to each patient.

Methodological Limitations

Prior to the application of the algorithm above, the following limitations of the tech-
nique are checked:

1. As the parameters described have the same base and structure, a mapping will be
required to convert the criterion to its parameterized value.

2. The two collections to be compared must belong to the same structural class of the
C FH S set, and their composition must be independent of each other.

3. By using the patient’s history and medical records, the doctor should advise the best
course of medication based on the symptoms presented by the disease.

4. A database is required that comprises the ranges needed for the disease identification
and mapping, which can be constructed with the assistance of a medical professional.

5. If the proposed treatment method is leading to diverse effects on the patient, inverse
C FH S -mapping is utilized to remove the adverse effects and restart the medication
process all over again.

3. Experimental Study

The usage of the algorithm described above in a clinical situation is the main empha-
sis of this section. The patient’s medical condition is first translated into mathematical
syntax with the aid of medical personnel. The next step involves the comparison of the
mathematical syntax of the patient with the syntax of the patients recorded in the database
beforehand. The patient with distinct symptoms of COVID-19 is monitored with the help
of a diagnostic map, and day-by-day reports can be seen in (Tables 2 and 3). These tables
can be used for a comparative analysis to deduce the intensity of the disease on a particular
patient. The most significant advantage of the algorithm is its use case for determining a
particular disease based on its symptoms and severity using mapping functions. The al-
gorithm can propose an optimal treatment method based on the disease based on the
patient’s condition. The technique’s development will be aided by a fully generalized
mapping of the physician’s rehabilitation and convenient restoration graphs for clinical
practice, retrospective cohort analysis, and application users. Four patients present similar
symptoms making it complicated for medical professionals to suggest a diagnosis based
on their overlapping symptoms. Many dynamics are considered, but some are ruled out
for ease of explanation of the algorithm, such as the previous skin color changes, history,
and other aspects. Based on the diagnosis presented by the algorithm and the doctor’s
intuition, a treatment method can be started along with the patient’s rehabilitation plan.
The following example is performed on hypothetical data, but if real data is used, it can lead
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to fruitful results and help optimize the workflow in hospitals while minimizing human
errors and misdiagnosis problems.

Step 1.
Let W = {∂1, ∂2, ∂3, ∂4} be considered a set of four patients. Let �̂1 = Fever, �̂2 = Cough,
�̂3 = Pain, be ailments with distinct attributes, the attributes of which are associated to
the sets F1, F2 and F3, respectively. Let F1 = {�̂11 = Intermittent fever, �̂12 = Remittent
fever}, F2 = {�̂21 = Dry cough}, F3 = {�̂31 = Pain in temples of head, �̂32 = Pain in
forehead}. Now, generate the first two (ε = 2) days chart given in Tables 4 and 5 which are
in the form of C FH S . After that, take the union between them. The results can be seen
in Table 6, where 0 ≤ θ ≤ 2π.

Table 4. z1
F : Symptoms from F on the first day of patient’s treatment.

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂11, �̂21, �̂31) 0.4ei0.7θ 0.1ei0.4θ 0.5ei0.2θ 0.3ei0.4θ

(�̂11, �̂21, �̂32) 0.1ei0.9θ 0.8ei0.1θ 0.4ei0.8θ 0.1ei0.4θ

(�̂12, �̂21, �̂31) 0.4ei0.2θ 0.8ei0.1θ 0.7ei0.9θ 0.1ei0.4θ

(�̂12, �̂21, �̂32) 0.3ei0.8θ 0.1ei0.3θ 0.2ei0.4θ 0.6ei0.4θ

Table 5. z2
F : Symptoms from F on the second day of patient’s treatment.

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂11, �̂21, �̂31) 0.2ei0.9θ 0.2ei0.4θ 0.1ei0.5θ 0.2ei0.6θ

(�̂11, �̂21, �̂32) 0.2ei0.5θ 0.2ei0.3θ 0.6ei0.8θ 0.2ei0.4θ

(�̂12, �̂21, �̂31) 0.4ei0.2θ 0.8ei0.1θ 0.7ei0.9θ 0.1ei0.4θ

(�̂12, �̂21, �̂32) 0.5ei0.8θ 0.3ei0.4θ 0.6ei0.1θ 0.8ei0.4θ

Table 6. �zε
F : C FH S union of z1

F and z2
F .

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂11, �̂21, �̂31) 0.4ei0.9θ 0.2ei0.4θ 0.5ei0.5θ 0.3ei0.6θ

(�̂11, �̂21, �̂32) 0.2ei0.9θ 0.8ei0.3θ 0.6ei0.8θ 0.2ei0.4θ

(�̂12, �̂21, �̂31) 0.4ei0.2θ 0.8ei0.1θ 0.7ei0.9θ 0.1ei0.4θ

(�̂12, �̂21, �̂32) 0.5ei0.8θ 0.1ei0.3θ 0.6ei0.4θ 0.8ei0.4θ

Step 2.
Let F ′

1 = {�̂′
11 = tightness sensation in the head, �̂′

12 = stroke}, F ′
2 = {�̂′

21 = Scratchy
sensation}, F ′

3 = {�̂′
31 = Malaise, �̂′

32 = Body aches} be three sets related to three different
attributes �̂′

1 = Headaches, �̂′
2 = Sore throat, �̂′

3 =weakness, respectively, for COVID-
related symptoms. Specialists weight clinical conditions depending on clinical knowledge
and translate relevant knowledge to quantitative transcription to establish the C FH S
zF ′ displayed in Table 7.
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Table 7. zF ′ : Scales assigned to each C FH S patient’s clinical manifestations.

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂′
11, �̂′

21, �̂′
31) 0.2ei0.9θ 0.8ei0.3θ 0.6ei0.8θ 0.2ei0.4θ

(�̂′
11, �̂′

21, �̂′
32) 0.4ei0.2θ 0.8ei0.1θ 0.7ei0.9θ 0.1ei0.4θ

(�̂′
12, �̂′

21, �̂′
31) 0.4ei0.9θ 0.2ei0.4θ 0.5ei0.5θ 0.3ei0.6θ

(�̂′
12, �̂′

21, �̂′
32) 0.5ei0.8θ 0.1ei0.3θ 0.6ei0.4θ 0.8ei0.4θ

Step 3.
Define the mappings listed below; λ : W → W and � : F → F ′ such that;
λ(∂1) = ∂1, λ(∂2) = ∂2, λ(∂3) = ∂3, λ(∂4) = ∂4, and
�(�̂11, �̂21, �̂31) = (�̂′

11, �̂′
21, �̂′

31),
�(�̂11, �̂21, �̂32) = (�̂′

12, �̂′
21, �̂′

31),
�(�̂12, �̂21, �̂31) = (�̂′

11, �̂′
21, �̂′

32),
�(�̂12, �̂21, �̂32) = (�̂′

12, �̂′
21, �̂′

32).
Measure the image of �zε

F as well as z′F ′ in Table 8.

Table 8. z′F ′ : The image of �zε
F under C FH S mapping

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂′
11, �̂′

21, �̂′
31) 0.4ei0.7θ 0.1ei0.4θ 0.5ei0.2θ 0.3ei0.4θ

(�̂′
11, �̂′

21, �̂′
32) 0.1ei0.9θ 0.8ei0.1θ 0.4ei0.8θ 0.1ei0.4θ

(�̂′
12, �̂′

21, �̂′
31) 0.4ei0.2θ 0.8ei0.1θ 0.7ei0.9θ 0.1ei0.4θ

(�̂′
12, �̂′

21, �̂′
32) 0.3ei0.8θ 0.1ei0.3θ 0.2ei0.4θ 0.6ei0.4θ

Step 4.
Changed Table 8 to fuzzy values, for this please see Table 9 by applying Tz′(s′)(∂) =

w1μz′(s′)(∂) + w2(
1

2π )ωz′(s′)(∂) [46], with weights w1 = 0.2, w2 = 0.4.

Table 9. Scores in the form of FHS set.

Symptoms/Individuals ∂1 ∂2 ∂3 ∂4

(�̂′
11, �̂′

21, �̂′
31) 0.22 0.12 0.24 0.2

(�̂′
11, �̂′

21, �̂′
32) 0.2 0.18 0.24 0.1

(�̂′
12, �̂′

21, �̂′
31) 0.1 0.18 0.32 0.09

(�̂′
12, �̂′

21, �̂′
32) 0.22 0.08 0.12 0.2

Step 5.
Compare Table 9 with Table 3 to obtain initial diagnosis and generate a diagnosis Table 10.
This table is utilized to check the accuracy of the generated diagnosis.
Step 6.
Determine the average of all the aspects from Table 9 that correspond to each individual’s
symptoms. This can be seen in Table 11. The COVID chart (Table 2) is currently being
compared to the Table 11 findings. Patients ∂1, ∂3 are diagnosed with SARS-CoV, while
patients ∂2, ∂4 are suspected with SARS-CoV-2.
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Table 10. Initial treatment chart is developed to assess the validity of the results.

Symptoms/Patients ∂1 ∂2 ∂3 ∂4

(�̂′
11, �̂′

21, �̂′
31) low MERS-CoV serious OC43 (beta) moderate MERS-CoV serious MERS-CoV

(�̂′
11, �̂′

21, �̂′
32) serious MERS-CoV low OC43 (beta) moderate MERS-CoV serious OC43 (beta)

(�̂′
12, �̂′

21, �̂′
31) serious OC43 (beta) low OC43 (beta) serious MERS-CoV NO COVID

(�̂′
12, �̂′

21, �̂′
32) serious MERS-CoV NO COVID moderate OC43 (beta) serious MERS-CoV

Step 7.
The doctor prescribes medicine after accurately assessing the true essence of each clinical
condition. The C FH S set evolves based on critical specific suggestions, along with
the adequate care for the different sorts of COVID. Suppose C = {�1 = Pfizer, �2 =
Moderna, �3 = Novavax, �4 = AstraZeneca} be distinctive sustainable therapies, then
χF ′ is established, which is a set of surgeon’s advice for the effective treatments for COVID
manifestations, and repurpose C FH S to fuzzy values using Tz′(s′)(∂) = w1μz′(s′)(∂) +

w2(
1

2π )ωz′(s′)(∂) [46], with weights w1 = 0.2, w2 = 0.4 to obtain aggregation values.
Table 12 contains χF ′ ∈ C FH S (W ). The assessment methods in Table 12 are determined
depending on each patient’s condition.
Step 8.
Measure the C FH S union among both χF ′ , z′F ′ and collect the linkage among both
predicted treatments and doctors as C FH S set χF ′ � z′F ′ = W 1

C , see Table 13.
Step 9.
The prescription is pertinent for the patients because it generates more rewards while
having low toxicity. Table 14 shows the best medicine dosages for each patient. From
Table 14, the treatment �4 is most suitable for patient ∂1, while one of the treatments among
�1, �3, and �4 is to be advised for patient ∂2; for patient ∂3 the most suitable treatment is
�1, and the treatment �4 is the most suitable for patient ∂4. The concluding position relies
on the person’s actual status, disease features, and disease.
Step 10.
The individual’s predicament is classified by the characteristics of ailments and the patient’s
condition. The incidences will repeat whenever illnesses are cured. By using C FH S -
mapping and creating mappings to assess the development of each patient; λ′ : W q−1 →
W q and �′ : Cq−1 → Cq such that

λ′(∂1) = ∂1, λ′(∂2) = ∂2, λ′(∂3) = ∂3, λ′(∂4) = ∂4;

and

�′(�1) = �1, �′(�2) = �2, �′(�3) = �3, �′(�4) = �4.

This is how the C FH S -mapping can be conveyed;

σ′ = (λ′, �′) : W
q−1

C → W
q

C

The C FH S -mapping is underlying as;

W
q

C = σ′(W q−1
C )(�)(∂) =

1
q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∨π∈λ′−1(∂)(∨ϑ∈�′−1(�)∩CW

q−1
C (π) if

λ′−1(∂) 	= ∅, �′−1(�) ∩ C 	= ∅

0 if otherwise

where � ∈ �′(C) ⊆ C, ∂ ∈ W q, π ∈ W q−1, ϑ ∈ Cq−1 identify the number of remedies and
rehabilitation exacerbations in Tables 15–18 for q = 2, 3, 4, 5.
Step 11.
Step 10 is reiterated until patients’ targets are met. Figures 3–6 depict each patient’s
status update.
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Table 11. Personal information from patient significance levels related to clinical manifestations.

Patients Total Average Score

∂1 0.74

∂2 0.56

∂3 0.92

∂4 0.509

Table 12. χF ′ is represented in a tabular format: Doctor’s advice for COVID symptoms and the
appropriate treatment.

Treatments/
Symptoms

(�̂′
11, �̂′

21, �̂′
31) (�̂′

11, �̂′
21, �̂′

32) (�̂′
12, �̂′

21, �̂′
31) (�̂′

12, �̂′
21, �̂′

32)

�1 0.2 0.3 0.1 0.5

�2 0.6 0.4 0.6 0.6

�3 0.6 0.5 0.3 0.2

�4 0.5 0.3 0.4 0.7

Figure 3. Graph of progress of patient ∂1.

Figure 4. Graph of progress of patient ∂2.
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Figure 5. Graph of progress of patient ∂3.

Figure 6. Graph of progress of patient ∂4.

Table 13. W 1
C tabular representation: union of χF ′ and z′F ′ to investigate the affiliation for both

envisaged treatments and patients.

Patients/Treatments �1 �2 �3 �4

∂1 0.3 0.4 0.3 0.512

∂2 0.7 0.5 0.7 0.7

∂3 0.7 0.6 0.4 0.3

∂4 0.6 0.4 0.5 0.8

Table 14. Data pertaining to suggested treatment is represented in a tabular format.

Patients/Treatments �1 �2 �3 �4
Maximum

Values
Selected

Treatment

∂1 0.22 0.3 0.24 0.5 0.5 �4
∂2 0.6 0.4 0.6 0.6 0.6 �1 or �3 or �4
∂3 0.6 0.5 0.32 0.2 0.6 �1
∂4 0.5 0.3 0.4 0.7 0.7 �4
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Table 15. W 2
C tabular representation: after the second therapy event, the patient’s improvement report.

Patients/Treatments �1 �2 �3 �4

∂1 0.3 0.5 0.4 0.6

∂2 0.7 0.6 0.7 0.7

∂3 0.8 0.5 0.3 0.2

∂4 0.5 0.3 0.2 0.4

Table 16. W 3
C tabular representation: After the third therapy event, the patient’s improvement report.

Patients/Treatments �1 �2 �3 �4

∂1 0.2 0.4 0.2 0.1

∂2 0.2 0.2 0.4 0.2

∂3 0.1 0.1 0.2 0.02

∂4 0.2 0.01 0.2 0.02

Table 17. W 4
C tabular representation: After the fourth therapy event, the patient’s improvement report.

Patients/Treatments �1 �2 �3 �4

∂1 0.01 0.03 0.03 0.04

∂2 0.06 0.03 0.06 0.05

∂3 0.05 0.04 0.02 0.01

∂4 0.04 0.02 0.3 0.06

Table 18. W 5
C tabular representation: After the fifth therapy event, the patient’s improvement report.

Patients/Treatments �1 �2 �3 �4

∂1 0.0014 0.002 0.01 0.003

∂2 0.06 0.03 0.006 0.007

∂3 0.05 0.002 0.003 0.004

∂4 0.001 0.03 0.004 0.006

In Table 19, the symbols � and × are meant for YES and NO, respectively. Similarly,
the features such as FMG stand for fuzzy membership grade, COP for “consideration of
parameters”, COSP for “consideration of sub-parameters”, MOPND for “management of
periodic nature of data” and REC for “ranking evaluation criteria”.
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Table 19. The proposed C FH S is compared to established paradigms.

Literature\Features FMG COP COSP MOPND REC

Zadeh [14] � × × × ×
Molodtsov [19] × � × × ×
Maji et al. [22] � � × × ×

Smarandache [30] × � � × ×
Ahsan et al. [47] � � � × ×
Ramot et al. [40] � × × � ×

Zadeh [48] � × × × ×
Atanassov [49] � × × × ×

Smarandache [50] � � × × ×
Zhang & Zhang [51] � × × × ×

Chen et al. [52] � × × × ×
Deli et al. [53] � � × × ×
Zeb et al. [54] � × × × ×

Proposed model � � � � �

3.1. Target Users of the Proposed Approach

The proposed algorithm aims to be a problem-solving support for early assortment
alternatives and identifying sufferers with conflicting medical indications. This exploration
demonstrates a well-built association between the signs and mathematically records them.
The scheme is assembled on trimming C FH S set designs that can predict a patient’s
state and estimate medical indications over time to analyse the health effects of a medicine.
It can be carried out to foresee the contagion’s reinfection possibilities in anticipation of a
cure. In their upcoming implementation, such pattern recognition-based algorithms are
committed to diminishing medical inaccuracies and receiving inspiring results depending
on various patient configurations.

3.2. Comparative Analysis

The concept of C FH S mapping is both broad and appropriate for various illnesses.
Existing theories cannot be used to cope with and examine the challenges; however, our
proposals do have their limits (Table 19). Because of such boundaries, some physicians
may be incapable or unwilling to gather all the initial information. The presented method
can transform the patient’s condition into a quantitative style without gaps or overlaps,
permitting us to secure the best diagnosis and treatment. The presented approach is
compared to existing theories on structural and computational basis in Tables 19 and 20.
When attributes are further split into attribute values and the concerns include complex
(2D) data, current techniques fail to execute. The proposed mapping addresses these
shortfalls. It reveals that, compared to conventional techniques, our framework is stable
and effective in responding to such obstacles satisfactorily.

Now, the recommended plan is discussed along with its comprehensive nature.

• Because the COVID diagnosed individual cannot be comprehensively assessed after
the initial assessment, additional days are added to this approximation . All of the
patient’s facts are contained in the C FH S set, and its union and severity can be
linked to symptoms.

• In each patient trial, a relationship between related and critical indications can be
determined, and weights assigned to them, which is crucial. The results will be
non-specific if only the initial symptoms are considered.

• A treatment method for the patients is suggested in the second stage of the algorithm
based on their COVID type.

• At the third stage, a generalized version of C FH S -mapping tracks the patients’
progress. With each scene, all memberships decrease until they reach zero. COVID
symptoms, pharmaceutical neutral effects with therapies, and side effects are all falling.
As time passes, this model depicts the evolution of the disease.
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• If an individual does not progress after that round, inverse C FH S -mapping is used
to reinstate him to his initial state, and then the medications must be resumed from
the beginning.

• Under the influence of parameterizations, the proposed approach is helpful for many
patients with various illnesses and multiform criteria. This research is comprehensive
and coherent in dealing with concerns in the medical world and multi-criteria.

• The data recorded by the medical personnel will be evaluated in the form of C FH S .
The intensity of the effect and the time the patient has been sick are recorded in the
form of a complex number, while the sub-parametric values of the attributes are taken
in hypersoft structures. The data recorded is taken between 0 and 1, depending on the
degree of % match.

• This framework attempts to identify any illness’s prognosis as well as their asso-
ciated symptoms. By integrating these notions with a scientific prototype, these
concepts can ve fully understand. This investigation demonstrates a relationship be-
tween symptoms and treatments, which simplifies the issue. The calculation relies on
C FH S -mapping to correctly identify the disease and choose the most appropriate
treatment for each patient. A generalized mapping is used to predict the physician’s
progression record and evaluate the spacing of rehabilitation until it is mitigated.

Table 20. Comparison of computational results of proposed algorithm.

Authors Approach Approximated Score Values Ranking of Patients

Zeb et al. [55] Fermatean fuzzy soft weighted averaging
operator (FFSWA) 0.94, 0.91, 0.93, 0.89 �1 > �3 > �2 > �4

Zeb et al. [55] Fermatean fuzzy soft Yager average
(FFS f WA) 0.46, 0.35, 0.39, 0.12 �1 > �3 > �2 > �4

Riaz et al. [56]
Grey relational analysis (GRA) based on
q-rung orthopair m-polar fuzzy soft set

(q-RO-m-PFSS)
0.2854, 0.2825, 0.2820, 0.2921 �4 > �1 > �2 > �3

Riaz et al. [56] TOPSIS based on q-rung orthopair m-polar
fuzzy soft set (q-RO-m-PFSS) 0.5545, 0.5342, 0.5324, 0.6084 �4 > �1 > �2 > �3

Proposed
approach C FH S set 0.1124, 0.0640, 0.0230, 0.0020 �1 > �2 > �3 > �4

4. Conclusions

COVID-19 and its associated complications have been discussed in this article. A tech-
nique is suggested for diagnosing the patient’s primary symptoms and analyzing their
COVID. As a result, the C FH S -mapping, INM and a few practical works with associated
features are described. There are three stages to the calculation that have been established.
The model examines the patients’ actual COVID in the first stage. In the second step,
C FH S -mapping was utilized to locate suitable medications for the patients depending
on their COVID-19 severity. Thirdly, generalized mapping is developed for the patient’s
development. The system predicts which medication will best treat the patient until the
patient achieves suitable immune response. By associating this approach with existing
knowledge, the findings thus gained are precise, simple to cope with, and have outstanding
flexibility to examine MCDM issues. Other zones of the Neutrosophic HS set, Plithogenic
HS set, Plithogenic Intuitionistic Fuzzy HS set, Q-Rung Orthopair Fuzzy HS set and their
gluing models are to be explored for developing flexible hybrid structures. It may also be
adapted for intelligent machines, diagnostic devices, information retrieval, information
processing, social bonding, personalized recommendation approaches, algorithms, media
platforms, remote sensing, the macroeconomic paradigm, classification techniques, image
recognition, virtual architecture, and probabilistic reasoning.

205



Mathematics 2022, 10, 2472

Author Contributions: Conceptualization, M.S., M.A., A.U.R. and M.A.M.; methodology, M.S., M.A.,
A.U.R. and M.M.J.; software, M.H.S., A.U.R., M.A.M., M.M.J. and R.D.; validation, M.H.S., A.M.,
M.M.J. and R.D.; formal analysis, M.S., A.U.R., M.A. and R.D.; investigation, M.S., M.A., A.U.R.,
M.A.M. and M.M.J.; data curation, M.H.S., A.M., M.A.M. and R.D.; writing of the original draft,
M.A., A.U.R., M.H.S. and M.A.M.; writing of the review and editing, M.S., M.A., M.A.M. and R.D.;
visualization, M.S., M.A., A.U.R., M.H.S. and M.M.J.; supervision, M.S., M.A.M., M.M.J. and R.D.;
project administration, M.S., M.A.M. and M.M.J.; funding acquisition, R.D. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hafeez, A.; Ahmad, S.; Siddqui, S.A.; Ahmad, M.; Mishra, S. A review of covid-19 (coronavirus disease-2019) diagnosis, treatments
and prevention. Ejmo 2020, 4, 116–125.

2. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X. Clinical features of patients infected with
2019 novel coronavirus in wuhan, china. Lancet 2020, 395, 497–506. [CrossRef]

3. Shekhar, S.; Wurth, R.; Kamilaris, C.D.; Eisenhofer, G.; Barrera, F.J.; Hajdenberg, M.; Tonleu, J.; Hall, J.E.; Schiffrin, E.L.; Porter, F.;
et al. Endocrine conditions and covid-19. Horm. Metab. Res. 2020, 52, 471–484. [CrossRef] [PubMed]
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Abstract: This paper proposes a fault-detection system for faulty induction motors (bearing faults,
interturn shorts, and broken rotor bars) based on multiresolution analysis (MRA), correlation and
fitness values-based feature selection (CFFS), and artificial neural network (ANN). First, this study
compares two feature-extraction methods: the MRA and the Hilbert Huang transform (HHT) for
induction-motor-current signature analysis. Furthermore, feature-selection methods are compared
to reduce the number of features and maintain the best accuracy of the detection system to lower
operating costs. Finally, the proposed detection system is tested with additive white Gaussian noise,
and the signal-processing method and feature-selection method with good performance are selected
to establish the best detection system. According to the results, features extracted from MRA can
achieve better performance than HHT using CFFS and ANN. In the proposed detection system, CFFS
significantly reduces the operation cost (95% of the number of features) and maintains 93% accuracy
using ANN.

Keywords: multiresolution analysis (MRA); correlation and fitness values-based feature selection
(CFFS); artificial neural network (ANN); feature selection

MSC: 68T07

1. Introduction

With the fourth industrial revolution developing, the way factories operate will no
longer be the same. Factory automation can save manpower and avoid equipment fail-
ures with online fault-detection systems [1–3]. In factories, motors can cause production
equipment failure and a significant impact on the economy [4]. Therefore, establishing a
motor-detection system could solve the failure problems before severe damages are caused
to factory productions. This study analyzes and builds a fault-detection system for common
cases of motor failure [5]: (1) bearing fault, (2) interturn short circuit, and (3) broken rotor
bar, based on motor-current signature analysis (MCSA) [6].

In recent years, many signal-processing methods have received high attention in
the problem of fault-detection systems. For example, R. Romero-Troncoso improved the
fast Fourier transform (FFT) by fractional resampling and proposed a multirate signal-
processing technique for induction-motor fault detection [7]. M. Riera-Guasp et al. pro-
posed the Gabor analysis of the current via the chirp z-transform to obtain high-resolution
time–frequency images of transient motor currents [8]. V. Climente-Alarcon used a combi-
nation of Wigner–Ville distribution (WVD) and particle-filtering feature extraction to study
in detail the evolution of principal slot harmonics (PSH) in induction motors under different
load profiles [9]. M. Z. Ali et al. proposed a threshold-based fault-diagnosis method for
induction motors, first using discrete wavelet transform to process the stator current, and
then calculating the threshold value of the motor load through a curve-fitting equation [10].
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The above signal-processing methods have their own advantages, but the current signal
may obtain nonlinear and nonstationary noise signals in the time and frequency domains
due to the faulty motor, which limits the performance of these methods. For example, FFT
and GT are sensitive to noise [7]. The cross-term interference of nonstationary signals limits
the performance of WVD [11]. The predefined wavelet-based parameters cause the WT
may not be able to adaptively process nonstationary signals [12].

In recent years, several studies have demonstrated the advantages of multiresolution
analysis (MRA) [13,14] and Hilbert Huang transform (HHT) [15–17] in analyzing nonlinear
and nonstationary noise signals of induction motors. Therefore, this study compares
two signal-processing approaches: (1) MRA, (2) HHT. The result of the research could
help establish the best fault-detection system for induction motors. (1) MRA can analyze
undetectable fault information in the time and frequency domain with current signals that
are composed of detail coefficients and approximation coefficients. MRA is used to analyze
motor-failure-current signals and extract the important features for fault-detection system
from noisy signals; (2) HHT is widely used to analyze nonlinear and nonstationary signals.
In conclusion, the HHT is used to analyze the noisy current signals that are caused by a
faulty motor in order to find the noise frequency through the Hilbert transform to improve
the accuracy of the fault-detection system.

The fault-detection system established with the features extracted from signal-processing
approaches. Therefore, this study uses feature engineering to improve the system. Feature
engineering can be divided into three categories [18]: feature construction [19,20], feature
extraction [21–23], and feature selection [24–26]. Feature construction can increase the num-
ber of features by creating the new features based on old features. If the new features are
important information, the fault-detection system may achieve better performance. Feature
extraction can decrease the dimension of features from high-dimensional features with
transfer function, and also avoid a situation where the accuracy of the system would be re-
duced when the Hughes phenomenon occurs. Feature selection has two methods: filter and
wrapper. The filter selects the features based on feature correlation. The wrapper selects the
features based on the evaluation function. Therefore, this study uses correlation and fitness
values-based feature selection (CFFS) [27] to select the features. The CFFS is improved from
correlation-based feature selection (CFS) [28]. CFFS uses Relief [29,30] and ReliefF [31] to
calculate the correlation. CFFS selects the features based on evaluation function (perfor-
mance of artificial neural network (ANN)) and features correlation. In conclusion, the CFFS
obtains the advantages from the filter method and the wrapper method.

The selected classifier is the last part of fault-detection system. In [32], most classifier
types are compiled, the advantages and disadvantages are discussed, and it is shown that
ANNs are supervised by machine learning and achieve robust performance for irrelevant
input data and noise and nonlinear data. This study also trains the neural network with
Levenberg–Marquardt (LM) [33,34]. LM has advantages when training the neural network
with small or medium data, so it is widely used for training feedforward networks [35–37].
Therefore, this study uses an artificial neural network with LM to establish a fault-detection
system, selects important features via feature-selection method, and adds additive white
Gaussian noise with a different signal-to-noise ratio (SNR) to test the efficiency of the
fault-detection system.

2. Measure and Analyze the Current Signals

The classes of motor faults and damages are shown in Figure 1. As the equipment
layout is shown in Figure 2, this study uses the AC power supply with 3 phases and
220 volts for motors. The control panel could adjust the load of the servo motor, which has
a 220 V rated voltage, a 60 Hz power frequency, a 2 Hp output, a 1764 rpm rated speed,
and a 0.8 power factor. The data-acquisition equipment (PXI-1033) captures the current
from all types of motors. Labview can save each observation for 2 s and save sampling
frequency for 1 kHz. Corresponding to four types (one healthy motor and three faulty
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motors) Labview can collect 400 observations for each case, save each observation for 2 s,
and save the sampling frequency at 1 kHz.

1.96

0.
53

8

10

(a) (b) (c)

Figure 1. Faulty motor failure sample. (a) Bearing fault (0.53 mm width and 1.96 mm length),
(b) interturn short circuit (5 insulation destructive coils), (c) broken rotor bar (2 holes—10 mm depth
and 8 mm diameter).

Induction motor AC servo motor

NI PXI-1033 Labview Matlab

Control panel

AC power supplyAC power supply

Induction motor AC servo motor Control panel

MatlabLabviewNI PXI-1033

 
Figure 2. Equipment layout.

After measuring the data, this study establishes the fault-detection system with Matlab
as shown in Figure 3. This classification system is divided into five parts: (a) NI PXI-1033 is
used to capture 400 observations of current signals for four types of motors. The current
signals will be processed by normalization, benefiting system operation. (b) A total of
1600 observations (4 classes) of normalized current signals were analyzed using MRA and
HHT, while features were captured by Matlab. In this section, a fault dataset of 4 types
of induction motors with 1600 observations and 4 classes is established. The number of
extracted features is described in detail in the next subsection. (c) Critical features are
selected by feature-selection approaches to lower the number of features. (d) In the dataset,
each type is divided into 300 observations for training and 100 observations for testing. The
artificial neural network is trained by the LM to build the fault-detection system. (e) Finally,
the accuracy of the fault-detection system can be calculated.

Current signal of motor

MRA, HHT

ANN with LM

Accuracy

Data capture

Signal analysis 

Feature selection

Classifier

Result of 
classification

ReliefF, CFS, CFFS

(a)

(b)

(c)

(d)

(e)
 

Figure 3. Schematic diagram of classification system. (a) capture the observations, (b) build fault
detection dataset, (c) feature selection, (d) train the ANN, (e) classification result.
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2.1. MRA and Feature Distribution of Current Signals

The MRA is used to analyze the current signals of four motors. According to [38], the
MRA function in (1) demonstrates that signal f (t) can be decomposed into approximation
coefficient aj and detail coefficient dj. ϕ(t) is the scaling function. ψ(t) is the wavelet function,
where g0 and h0 are filter coefficients.

f (t) = ∑
k

aj0,k ϕj0,k(t) + ∑
j

∑
k

dj,kψj,k(t) (1)

ϕ(t) = ∑
k

g0(k) + ϕk(2t − k) (2)

ψ(t) =
√

2∑
k

h0(t) + ϕk(2t − k) (3)

Firstly, the MRA decomposes the signal and uses detail coefficients and approximation
coefficients to compose the signal, as shown in Figure 4, where x-axis is the time and
y-axis is the amplitude. Then, 60 features extracted from the signal will be composed with
d1–5 and a5, as shown in Table 1, namely (1) Tmax; (2) Tmin; (3) Tmean; (4) Tmse; (5) Tstd;
(6) Fmax; (7) Fmin; (8) Fmean; (9) Fmse; (10) Fstd. Features are summarily presented below.
The frequency domain is analyzed with FFT. Finally, Figure 5 shows the feature distribution
of IM.

(1) Tmax: maximum of each coefficient in time domain;
(2) Tmin: minimum of each coefficient in time domain;
(3) Tmean: average of each coefficient in time domain;
(4) Tmse: root mean square of each coefficient in time domain;
(5) Tstd: standard of each coefficient in time domain;
(6) Fmax: maximum of each coefficient in frequency domain;
(7) Fmin: minimum of each coefficient in frequency domain;
(8) Fmean: average of each coefficient in frequency domain;
(9) Fmse: root mean square of each coefficient in frequency domain;
(10) Fstd: standard of each coefficient in frequency domain.

(a) (b) (c) (d)

Time(sec)

(a) (b) (c) (d)

d1

d2

d3

d4

d5

a5

2

0

1

1

0

0.2

0.2

0

1

1

0

2

2

0

0.5

0.5

0

0.2

0.2
2 2222 22

Figure 4. The MRA of current signal. (a) Normal motor, (b) bearing fault, (c) interturn short circuit,
(d) broken rotor bar.
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Figure 5. Feature distribution of the MRA. (a) Normal motor, (b) bearing fault, (c) interturn short
circuit, (d) broken rotor bar.

Table 1. Feature extraction of the MRA.

a5 d5 d4 d3 d2 d1

Tmax F1 F2 F3 F4 F5 F6
Tmin F7 F8 F9 F10 F11 F12

Tmean F13 F14 F15 F16 F17 F18
Tmse F19 F20 F21 F22 F23 F24
Tstd F25 F26 F27 F28 F29 F30

Fmax F31 F32 F33 F34 F35 F36
Fmin F37 F38 F39 F40 F41 F42

Fmean F43 F44 F45 F46 F47 F48
Fmse F49 F50 F51 F52 F53 F54
Fstd F55 F56 F57 F58 F59 F60

2.2. Hilbert–Huang Transform and Feature Distribution of Current Signals

This study uses Hilbert–Huang transform (HHT) to analyze the current signals of
four classes of motors. According to [39], the HHT decomposes the signal into several
intrinsic mode functions (IMF) ci by empirical mode decomposition (EMD) and calculates
Hi(t) from ci with Hilbert transform (HT) in (4), as shown. (5) and (6) calculate the instanta-
neous amplitude ai(t) and instantaneous phase angle θi(t). Finally, (7) differentiates the
instantaneous phase angle θi(t) and obtains instantaneous frequency ωi(t).

Hi(t) =
1
π

∞∫
−∞

ci
t − τ

dτ (4)

ai(t) =
√

c2
i (t) + H2

i (t) (5)

θi(t) = tan−1 Hi(t)
ci(t)

(6)

ωi(t) =
dθi(t)

dt
(7)

Firstly, the HHT decomposes the signal into seven (limitation of the signal) intrinsic
mode functions, IMF1 (c1) to IMF7 (c7) by EMD, as shown in Figure 6, where x-axis is the
amplitude, y-axis is the time. Then, instantaneous frequencies w1 to w7 are calculated with
c1 to c7, as shown in Figure 7, where x-axis is the time, y-axis is the frequency. In w1, most
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of the bandwidths are around 60 Hz (fundamental frequency), and some of the bandwidths
are close to 1 kHz, because the value of AC current emerged close to zero has a great slope.
Furthermore, 70 features are extracted from c1 to c7 and w1 to w7, as shown in Table 2,
namely (1) max; (2) min; (3) mean; (4) mse; (5) std. Features are summarily presented below.
Finally, Figure 8. shows the feature distribution of IM.

(1) max: maximum of w1 to w7 and c1 to c7;
(2) min: minimum of w1 to w7 and c1 to c7;
(3) mean: average of w1 to w7 and c1 to c7;
(4) mse: root mean square of w1 to w7 and c1 to c7;
(5) std: standard of w1 to w7 and c1 to c7.
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Figure 6. The EMD of current signal. (a) Normal motor, (b) bearing fault, (c) interturn short circuit,
(d) broken rotor bar.

1k

0

w1

(a) (b) (c) (d)(a) (b) (c) (d)

1k

0
1k

0

1k

0

1k

0

1k

0

100

0

w2

w3

w4

w5

w6

w7

60

Time(sec)

22 22

22 22

Figure 7. Instantaneous frequency of EMD. (a) Normal motor, (b) bearing fault, (c) interturn short
circuit, (d) broken rotor bar.

Table 2. Feature extraction of the HHT.

max min mean mse std

EMD

c1 F1 F2 F3 F4 F5
c2 F6 F7 F8 F9 F10
c3 F11 F12 F13 F14 F15
c4 F16 F17 F18 F19 F20
c5 F21 F22 F23 F24 F25
c6 F26 F27 F28 F29 F30
c7 F31 F32 F33 F34 F35
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Table 2. Cont.

max min mean mse std

HT

w1 F36 F37 F38 F39 F40
w2 F41 F42 F43 F44 F45
w3 F46 F47 F48 F49 F50
w4 F51 F52 F53 F54 F55
w5 F56 F57 F58 F59 F60
w6 F61 F62 F63 F64 F65
w7 F66 F67 F68 F69 F70
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Figure 8. Feature distribution of the HHT. (a) Normal motor, (b) bearing fault, (c) interturn short
circuit, (d) broken rotor bar.

3. Feature-Selection Approaches for Features of the MRA and HHT

3.1. ReliefF

The ReliefF algorithm shows as Algorithm 1. ReliefF is improved for multiclass
classification situations. This study uses ReliefF to calculate the correlation between feature
and classification. The algorithm selects the feature (Fh) from all of the features, and Fh is
selected as one value of the set. Then, the feature (Fh) chooses the nearest values of the
same classification and other classifications. In addition, function (8) is used to calculate
the correlation, and features with greater correlation will be considered more important.

Algorithm 1: ReliefF

1: repeat

2: Choose one of the features Fh;
3: Choose one value fh randomly from Fh;
4: Choose the nearest values fnh and fnmb with fh;
5: Calculate the Fh correlation R f Fh in (8);
6: until obtain all correlations R f F with ReliefF for feature selection
7: Choose the best performance of feature set for establish ANN

R f F = Wi − (
1

km
)di f f ( fh, fnh) + (

p(m n)
1 − p(n)

)(
1

km
)× di f f ( fh, fnmb) (8)

where

R f F

⎛⎜⎜⎜⎜⎜⎜⎝

Rf F1
...

Rf Fi
...

Rf Fm

⎞⎟⎟⎟⎟⎟⎟⎠,

is the correlation between feature and classification.
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3.2. CFS

The CFS algorithm is shown as Algorithm 2. CFS calculates the Merit value for
selecting the features under three conditions: (I) feature correlation and (II) correlation
between feature and classification. The algorithm calculates the correlation Rf between
features with Relief that is shown in (9). Next, ReliefF is used to calculate the correlation RfF
between feature and classification in (8). In addition, (III) calculates the Merit value in (10).

Algorithm 2: CFS

1: (I) The feature correlation:
2: repeat

3: Choose two of the features Fh and Fi;
4: Choose one value fh randomly from Fh;
5: Choose the nearest values fnh and fnm with fh;
6: Calculate the correlation between Fh and Fi with (9);
7: until obtain all correlation RF with Relief.
8: (II) The correlation between feature and classification:
9: Use ReliefF to calculate RfF in (8);
10: (III) Calculate the Merit value:
11: repeat

14: Calculate the Merit value in (10);
15: until obtain the whole Merit value.
16: Choose the best performance of feature set for establish ANN.

R f = Wi − (
1
k
)di f f ( fh, fnh)

2 + (
1
k
)× di f f ( fh, fnm)

2 (9)

where

R f

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 Rf 12 Rf 13 · · · · · · Rf 1m

0 1 Rf 23 · · · · · · ...
... 0

. . . · · · Rf hm
...

... 0 0
. . . · · · ...

...
...

... 0 1
...

0 · · · · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is the correlation between features;

Merit =
n f × Rf Fi√

n f + n f (k − 1)×Rf ij

(10)

3.3. CFFS

The CFFS algorithm is shown as Algorithm 3. CFFS is the feature-selection approach
improved by CFS, which is proposed in our previous study [28]. CFFS selects the features
under four conditions. The algorithm calculates (I) correlation between features in (9),
(II) correlation between features and classification in (8), (III) Merit value in (10). Then,
(IV) fitness value Wfi is calculated for Merit_new value in (11).

Merit_new = Merit × Wf i (11)

The fitness value was calculated by PSO. The PSO is used to optimize the weights
of features [40,41] and selects the best-known solution in swarms. Therefore, this study
could establish the best induction-motor fault-detection system with the features selected
by CFFS and the weights of these features after training ANN.

To compare the feature-selection approach’s performance, this study chooses the 1st to
the 10th feature-selection approach orders through the MRA and the HHT, which are shown
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in Table 3. The MRA–ReliefF, MRA–CFS, and MRA–CFFS have the same 9 features (F35,
F24, F54, F60, F27, F57, F30, F51, and F58). The HHT–ReliefF, HHT–CFS, and HHT–CFFS
only have the same 2 features (F5 and F4). The important features mentioned above are
marked in Figures 5 and 8 (the red dot •). Inferring to Table 3, the features extracted from
the MRA with feature-selection approaches are more similar than the HHT. According to
the result, the performance of feature selection is affected by the features extracted from
signal processing.

Algorithm 3: CFFS

1: (I) The correlation between features:
2: Use Relief to calculate the correlation;
3: (II) The correlation between feature and classification:
4: Use ReliefF to calculate the correlation;
5: (III) Calculate the Merit value:
6: Use CFS to calculate the Merit value;
7: (IV) Calculate the Merit_new value:
8: repeat

9: Select the feature set to training ANN with PSO;
10: Calculate the fitness value Wfi from PSO;
11: Calculate the Merit_new value in (11);
12: until obtain all the Merit_new value.
13: Choose the best performance of feature set for establish ANN.

Table 3. Features order.

Signal Processing Feature-Selection Approach
Features Order of 1st to 10th

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

MRA
ReliefF F35 F24 F54 F60 F27 F57 F30 F21 F51 F58

CFS F35 F54 F60 F24 F57 F51 F58 F30 F27 F21
CFFS F35 F57 F58 F27 F24 F51 F60 F30 F22 F54

HHT
ReliefF F5 F4 F61 F32 F56 F12 F40 F58 F44 F10

CFS F39 F40 F38 F5 F4 F13 F64 F65 F14 F45
CFFS F39 F5 F4 F13 F64 F43 F25 F46 F24 F45

4. The Result of Induction-Motor Fault Detection

This section demonstrates the results of the fault-detection system and analyzes the
current signals using MRA and HHT. As shown in Figure 9, the feature-selection method
is used to reduce the number of features to test the efficiency of IMFD with noise current
signals (including SNR: 40 dB, 30 dB, 20 dB, and 10 dB): (a) Use Matlab to add the AWGN
into current signals; (b) analyze the data; (c) select the features. The feature order after
adding noise is the same as the feature-selection method applied to the original signal.
(d) Training the fault-detection system. (e) Finally, obtain the accuracy of this fault-detection
system. ReliefF and CFS both select features based on feature correlation, whereby the
feature orders of ReliefF and CFS are the same. CFFS selects the features based on feature
correlation and the performance of the fault-detection system, whereby feature orders will
change every time according to accuracy. Therefore, the accuracies of the MRA–ReliefF,
MRA–CFS, HHT–ReliefF, and HHT–CFS are at an average level through 50 rounds of
training and testing. The MRA–CFFS and HHT–CFFS only undergo the training and
testing process once, whereby the accuracy curves are more unstable than the accuracy
curves of the MRA–ReliefF, MRA–CFS, HHT–ReliefF, and HHT–CFS. In conclusion, this
study compares the accuracy curve of all results and proposed the best model to establish
the fault-detection system.
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Figure 9. Schematic diagram of current signal added the noise to establish fault-detection system.
(a) capture the observations, (b) build fault detection dataset, (c) feature selection, (d) train the ANN,
(e) classification result.

4.1. Parameter Setting of ANN

The ANN is composed of the input layer, hidden layer, output layer, and neurons.
In the hidden layer, the input is computed via weights, biases, and activation functions.
The classification result is computed by the output layer. In ANN, the weight and bias
of each neuron are adjusted by calculating the error between the output and the target.
Updating the weights and biases during the iteration will reduce the cross-entropy loss.
The parameter settings of the ANN used in this study are shown in Table 4.

Table 4. Parameter setting of ANN.

Parameters Value

Hidden layer size 10
Output layer size 4

Training ratio 75/100
Testing ratio 25/100

Training function Levenberg-Marquardt
Learning rate 0.007

Iteration 50
Activation function Softmax

Performance function Cross-Entropy
Transfer function Hyperbolic tangent sigmod

4.2. Compare the Signal-Processing Aproaches: The MRA, and the HHT

The accuracies of the MRA–ReliefF (Figure 10) are displayed at 60 feature numbers and
the accuracies of the HHT–ReliefF (Figure 11) are displayed at 70 feature numbers under
different noise conditions. The comparison results are summarized below. The accuracies
under different noise conditions of the MRA–ReliefF is higher than the accuracies of
the HHT–ReliefF.

(1) In ∞ dB, MRA: 94.8%, HHT: 85.8%;
(2) In 40 dB, MRA: 92.2%, HHT: 84.4%;
(3) In 30 dB, MRA: 92%, HHT: 81.9%;
(4) In 20 dB, MRA: 88.2%, HHT: 68.4%;
(5) In 10 dB, MRA: 69.2%, HHT: 43.9%.

The accuracies of the MRA–CFS (Figure 12) are displayed at 60 feature numbers and the
accuracies of the HHT–CFS (Figure 13) are displayed at 70 feature numbers under different
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noise conditions. The comparison results are summarized below. The accuracies under
different noise conditions of the MRA–CFS are higher than the accuracy of the HHT–CFS.

(1) In ∞ dB, MRA: 94.8%, HHT: 85.9%;
(2) In 40 dB, MRA: 94.5%, HHT: 83.4%;
(3) In 30 dB, MRA: 93.7%, HHT: 81.9%;
(4) In 20 dB, MRA: 87.7%, HHT: 68%;
(5) In 10 dB, MRA: 70.3%, HHT: 44.1%.

The accuracies of the MRA–CFFS (Figure 14) are displayed at 60 feature numbers
and the accuracies of the HHT–CFFS (Figure 15) are displayed at 70 feature numbers
under different noise conditions. The comparison results are summarized below. The
accuracies under different noise conditions of the MRA–CFFS are higher than the accuracy
of the HHT–CFFS.

(1) In ∞ dB, MRA: 92%, HHT: 83.5%;
(2) In 40 dB, MRA: 91.8%, HHT: 82.7%;
(3) In 30 dB, MRA: 91.3%, HHT: 81.5%;
(4) In 20 dB, MRA: 91%, HHT: 73.3%;
(5) In 10 dB, MRA: 89.8%, HHT: 66%.

Figure 10. Accuracy curves of the MRA–ReliefF.

Figure 11. Accuracy curves of the HHT–ReliefF.

Figure 12. Accuracy curves of the MRA–CFS.
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Figure 13. Accuracy curves of the HHT–CFS.

Figure 14. Accuracy curves of the MRA–CFFS.

Figure 15. Accuracy curves of the HHT–CFFS.

4.3. Compare the Feature-Selection Approaches: ReliefF, CFS, and CFFS

The highest efficiencies of the MRA with different feature-selection approaches under
different noise conditions are shown in Tables 5–7. The comparison is summarized as below.
The accuracies of the CFFS are slightly higher than the accuracy of ReliefF and the CFS
under ∞ dB, 40 dB, and 30 dB. Under severe noise conditions such as 20 dB and 10 dB, the
CFFS achieves a better performance than ReliefF and the CFS.

(1) In ∞ dB, ReliefF: 10 features and 92.8%, CFS: 7 features aFnd 92.02%, CFFS: 3 features
and 93%;

(2) In 40 dB, ReliefF: 10 features and 92.7%, CFS: 7 features and 91.9%, CFFS: 3 features
and 93%;

(3) In 30 dB, ReliefF: 10 features and 90.4%, CFS: 7 features and 90.7%, CFFS: 3 features
and 93%;

(4) In 20 dB, ReliefF: 14 features and 87.6%, CFS: 11 features and 88.3%, CFFS: 4 features
and 92.8%;

(5) In 10 dB, ReliefF: 22 features and 70.3%, CFS: 20 features and 70.3%, CFFS: 6 features
and 92%.

The highest efficiencies of the HHT with different feature-selection approaches under
different noise conditions are shown in Tables 8–10. The comparison is summarized below.
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The accuracies of the CFFS are slightly lower than the accuracy of ReliefF and the CFS
under ∞ dB, 40 dB, and 30 dB. Under severe noise conditions such as 20 dB and 10 dB, the
CFFS achieves a better performance than ReliefF and the CFS.

(1) In ∞ dB, ReliefF: 9 features and 78.2%, CFS: 13 feature and 81.3%, CFFS: 7 features
and 74.8%;

(2) In 40 dB, ReliefF: 9 features and 77.6%, CFS: 13 features and 79.6%, CFFS: 6 features
and 73.5%;

(3) In 30 dB, ReliefF: 9 features and 72.9%, CFS: 13 features and 75.2%, CFFS: 6 features
and 73%;

(4) In 20 dB, ReliefF: 9 features and 60.4%, CFS: 13 features and 62.9%, CFFS: 6 features
and 72.3%;

(5) In 10 dB, ReliefF: 9 features and 43.8%, CFS: 13 features and 44.6%, CFFS: 6 features
and 71.5%.

According to the comparison of the signal-processing approaches and feature-selection
approaches, the performance of the MRA is better than the HHT, and the CFFS can establish
an effective fault-detection system than ReliefF and CFS. The result could be inferred by
the feature distribution of MRA (Figure 5) and the HHT (Figure 8). The features of MRA
(Figure 5) have more significant features than the HHT (Figure 8). For establishing the fault-
detection system, the selected signal-processing approach has an impact on the system, and
the system established with the feature-selection approach could reduce the considerable
feature numbers.

Table 5. Result of the MRA–ReliefF.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector

∞ 10 92.8 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58

40 10 92.7 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58

30 10 90.4 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58

20 14 87.6 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58, F34, F36, F28, F22

10 22 70.3 F35, F24, F54, F60, F27, F57, F30, F21, F51, F58, F34, F36, F28, F22, F52, F33,
F9, F3, F49, F19, F31, F13

Table 6. Result of the MRA–CFS.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector

∞ 7 92.02 F35, F54, F60, F24, F57, F51, F58

40 7 91.9 F35, F54, F60, F24, F57, F51, F58

30 7 90.7 F35, F54, F60, F24, F57, F51, F58

20 11 88.3 F35, F54, F60, F24, F57, F51, F58, F30, F27, F21, F52

10 20 70.3 F35, F54, F60, F24, F57, F51, F58, F30, F27, F21, F52, F34, F36, F28, F22, F33,
F49, F59, F55, F31

Table 7. Result of the MRA–CFFS.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector

∞ 3 93 F35, F57, F58

40 3 93 F35, F57, F58

30 3 93 F35, F57, F58

20 4 92.8 F35, F57, F58, F27

10 6 92 F35, F57, F58, F27, F24, F51
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Table 8. Result of the HHT–ReliefF.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector

∞ 9 78.2 F5, F4, F61, F32, F56, F12, F40, F58, F44

40 9 77.6 F5, F4, F61, F32, F56, F12, F40, F58, F44

30 9 72.9 F5, F4, F61, F32, F56, F12, F40, F58, F44

20 9 60.4 F5, F4, F61, F32, F56, F12, F40, F58, F44

10 9 43.8 F5, F4, F61, F32, F56, F12, F40, F58, F44

Table 9. Result of the HHT–CFS.

SNR Feature Numbers Accuracy (%) The Elements of the Feature Vector

∞ 13 81.3 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

40 13 79.6 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

30 13 75.2 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

20 13 62.9 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

10 13 44.6 F39, F40, F38, F5, F4, F13, F64, F65, F14, F45, F63, F15, F46

Table 10. Result of the HHT–CFFS.

SNR Feature Numbers Accuracy (%) The Elements of the feature Vector

∞ 7 74.8 F39, F5, F4, F13, F64, F43, F25

40 6 73.5 F39, F5, F4, F13, F64, F43

30 6 73 F39, F5, F4, F13, F64, F43

20 6 72.3 F39, F5, F4, F13, F64, F43

10 6 71.5 F39, F5, F4, F13, F64, F43

5. Conclusions

The study proposes the CFFS with the advantage of filter and wrapper; therefore,
the CFFS has significant performance in the fault-detection system. According to the
results of this research, the choice of signal processing and feature-selection approach is a
crucial influence on the accuracy of the fault-detection system. MRA is one useful method
to analyze the faulty motor in this paper, which provides good features for the CFFS,
which has a significant effect on the system, reducing 57 (95%) of the features from MRA
and achieving 93% accuracy. The system established with CFFS also achieves excellent
performance under 40 to 10 dB AWGN, reducing about 54 to 57 (90% to 95%) features and
maintaining an accuracy of about 92% to 93%. In this research, the low-dimensional feature
is suitable to use CFFS. In other words, CFFS uses in other cases with high-dimensional
features could have higher operating costs; this factor is the limitation for CFFS. Therefore,
this study establishes the fault-detection system with MRA and CFFS for the faulty motors
in this study.
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Nomenclature

aj approximation coefficient
ai(t) instantaneous amplitude
ci intrinsic mode function
dj detail coefficient
di f f ( fh, fnm) distance between f h and f nh
di f f ( fh, fnm) distance between f h and f nm
di f f ( fh, fnmb) sum of the distance between f h and f nmb
fh one value of Fh
fnh nearest values of Fh with fh
fnm nearest values of Fi with fh
fnmb nearest values of other classification different with fh
g0 filter coefficients 1
h0 filter coefficients 2
k maximum times of sampling
n the class belong fh
nf number of features
m the all classification
R f F correlation between feature and classification
R f Fi the average of RfFi
R f Fi the average of Rfij
Wi initial value of correlation
ψ(t) wavelet function
ϕ(t) scaling function
θi(t) instantaneous phase angle
ωi(t) instantaneous frequency
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Abstract: Scene text detection and recognition, such as automatic license plate recognition, is a
technology utilized in various applications. Although numerous studies have been conducted to
improve recognition accuracy, accuracy decreases when low-quality legacy license plate images are
input into a recognition module due to low image quality and a lack of resolution. To obtain better
recognition accuracy, this study proposes a high-frequency augmented license plate recognition model
in which the super-resolution module and the license plate recognition module are integrated and
trained collaboratively via a proposed gradual end-to-end learning-based optimization. To optimally
train our model, we propose a holistic feature extraction method that effectively prevents generating
grid patterns from the super-resolved image during the training process. Moreover, to exploit high-
frequency information that affects the performance of license plate recognition, we propose a license
plate recognition module based on high-frequency augmentation. Furthermore, we propose a gradual
end-to-end learning process based on weight freezing with three steps. Our three-step methodological
approach can properly optimize each module to provide robust recognition performance. The
experimental results show that our model is superior to existing approaches in low-quality legacy
conditions on UFPR and Greek vehicle datasets.

Keywords: gradual end-to-end learning; single-image super-resolution; automatic license plate
recognition; low-quality legacy conditions; holistic feature extraction; high-frequency augmentation

MSC: 68T45

1. Introduction

1.1. License Plate Recognition in a Real-World Scenario

Scene text detection and recognition is a task that detects text regions and recognizes let-
ters and numbers in image frames. This task can be utilized in various applications in smart
parking and driving such as illegal parking detection and traffic sign recognition. When
this task is applied to image frames in real-world scenarios, it does not assure satisfactory
performance due to the varying resolutions of the input images. Specifically, this is a critical
issue for the license plate recognition task. As shown in Figure 1, the plate regions detected
in vehicle LP images may have small resolutions depending on the distance between the
camera and the vehicle object. Even if the detected region images are input directly to the
LP recognition module, it causes severe recognition accuracy degradation, as shown in
the result of the low-resolved LP recognition approach in Figure 1. To address this prob-
lem, a bicubic-interpolation-based approach can be considered. However, this approach
also generates low recognition accuracy with resized low-quality images, as shown in the
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result of the bicubic-interpolation-based LP recognition approach in Figure 1. To acquire
high-quality LP images, super-resolution (SR) techniques can be considered. Nevertheless,
conventional SR modules may not be suitable for enhancing recognition accuracy because
the SR modules only focus on improving image quality, not recognition. For this reason,
such an approach causes insufficient recognition performance, as shown in the result of
the super-resolved LP recognition approach in Figure 1. Hence, in the real world, there is
a necessity for an integrated model to improve LP recognition accuracy by restoring LP
images in terms of LP recognition.

 
Figure 1. Examples of LP recognition approaches in a real-world scenario. Our proposed HIFA-LPR
model outperforms conventional approaches. “_” denotes a missing character recognition. Red
character denotes incorrect prediction. Blue character denotes correct prediction. “GT” denotes
ground truth. “Pred” denotes the prediction result.

1.2. High-Frequency Augmented License Plate Recognition Model

To tackle this issue in Section 1.1, we propose a high-frequency augmented license
plate recognition (HIFA-LPR) model. The HIFA-LPR model can improve the input image
resolution optimally from the point of view of LP recognition and robustly classify the
LP characters in the optimal super-resolved image, as shown in the last row of Figure 1.
To this end, we suggest gradual end-to-end learning so that LP recognition accuracy is
robust to input data with various image qualities and resolutions. When performing the
gradual end-to-end learning method, most SR modules are trained with a small-sized
image patch such as about 8 × 8 pixels. However, this patch-based SR approach is not
suitable for end-to-end learning due to the grid patterns generated by the SR module. Since
grid patterns cut off characters, the patch-based SR approaches cannot preserve character
information that is closely related to LP recognition accuracy. Hence, we propose a holistic
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image feature extraction method that is adopted for preventing grid pattern generation
while preserving character information in the SR module.

In recognition tasks, high-frequency information, such as edge, contrast, and texture,
is closely related to recognition performance. For this reason, we propose an LP recogni-
tion module based on high-frequency augmentation to exploit enhanced high-frequency
information. Our LP recognition module mainly consists of high-frequency augmentation
blocks (HAB). We utilize the discrete cosine transform (DCT) principle that the component
corresponds to the higher-frequency component as it goes to the right and bottom directions
in the DCT domain. In the HAB, we extract the desired high-frequency components using
the DCT principle and augment the high frequency of the feature map.

The training process of HIFA-LPR consists of three steps based on a weight freezing
technique. First, the SR and the LP recognition modules are independently trained for sta-
bilizing the training process. Second, to properly restore images in terms of LP recognition,
the SR module is trained with SR loss and recognition loss while the LP recognition module
weights are frozen. Third, the recognition module is trained with super-resolved LP images
for enriching LP recognition accuracy. By using the weight freezing technique, we enhance
the collaborative correlations between each module. To verify HIFA-LPR, we perform
experiments with SR and recognition performance in low-quality legacy conditions using
the UFPR [1] and Greek vehicle datasets [2]. The UFPR dataset is organized with Brazilian
LP images and character labels for detecting LP and recognizing LP characters. The Greek
vehicle dataset is organized with Greek LP images for LP detection only. To utilize this
dataset for low-resolution (LR) recognition, we build the LP recognition dataset by manu-
ally annotating each LP character in the LP images. The contributions of this study can be
summarized as follows:

• A gradual end-to-end learning-based optimization method that collaboratively learns
the SR and LP recognition modules is designed. We suggest this method in three steps
based on the weight freezing technique.

• An LP recognition module based on high-frequency augmentation is proposed to
improve the recognition performance using HABs. The HAB extracts the desired high-
frequency components using the DCT principle and augments the high frequency of
the feature map.

• A novel holistic image feature extraction method is proposed to prevent generating
grid patterns during the SR module. This enables the utilization of more complete
character information than using patch-based SR with the character area cut off.

• To evaluate the performance of the proposed HIFA-LPR model, we build the LP
recognition dataset by manually annotating 2415 characters in 345 images from the
Greek vehicle dataset. Our model is superior to existing state-of-the-art works in
low-quality legacy conditions. Even if the LP image resolution is 19 × 6, our model
provides robust recognition performance relatively.

2. Related Works

2.1. Single-Image Super-Resolution

Single-image SR is a method to predict a high-resolution (HR) image from the cor-
responding LR image. However, single-image SR is an ill-posed problem because there
are various methods of degradation while reducing the image quality from HR to LR.
To address this problem, several studies have been conducted with deep-learning-based
methods. A super-resolution convolutional neural network (SRCNN) [3] proposed the SR
method based on convolutional neural networks for the first time, and it showed innova-
tive restoration performance. A very deep convolutional network (VDSR) [4] proposed
a deeper SR neural network with a residual learning strategy. An efficient sub-pixel con-
volutional neural network (ESPCNN) [5] proposed a pixel-shuffling layer that can learn
an up-sampling module. Using this layer, ESPCNN solved the limitation of feature map
magnification in the neural network. A deep back-projection network (DBPN) [6] proposed
an iterative up-sampling and down-sampling module that repeatedly stacks the image
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upscaling and downscaling layers. A residual channel attention network (RCAN) [7] pro-
posed a channel attention mechanism that helps to create a deep model. A dual regression
network (DRN) [8] proposed a closed circuit and added an LR domain loss function that cal-
culates the difference from the input image. A residual dense network (RDN) [9] proposed
a neural network that can learn the hierarchical representation of all feature maps through
the residual density structure. A second-order attention network (SAN) [10] showed out-
standing performance by strongly improving the representation of image feature maps
and learning the interdependencies between feature maps. Meta-transfer learning for zero-
shot SR (MZSR) [11] proposed a flexible algorithm for restoring images that are blurred
under actual blur conditions by training on various kernels. Shifted windows using image
restoration (SwinIR) [12] proposed the SR method for image restoration by using a shifted
windows (Swin) transformer which performs reliable performance on high-level vision
tasks. By using this method, SwinIR outperforms the state-of-the-art SR method.

However, these SR modules only focus on image reconstruction. Since the SR mod-
ules cannot appropriately restore the image in terms of LP recognition, the recognition
performance is degraded. To obtain better recognition performance, we propose a stepwise
gradual end-to-end learning method using combined loss and weight freezing. Specifically,
the above SR modules [3–12] generate grid patterns during the end-to-end training process
due to patch-extraction-based approaches. The extracted patches that include insufficient
character information hinder the optimization of the LP recognition module. To address
this issue, we propose the holistic-feature-extraction-based SR module that takes the whole
LP image as input. Since our method uses full character information, our SR module can be
trained to improve LP character recognition compared with existing patch-extraction-based
SR modules.

2.2. License Plate Recognition

LP recognition is the task to recognize the LP characters in the vehicle image. Var-
ious studies have been conducted to boost LP character recognition performance. Ope-
nALPR [13] is the LP recognition API and it is based on OpenCV and TesseractOCR [14].
Lee et al. [15] mentioned that LP recognition performance is improved with the SR mode
when the LP image is too small to recognize with the recognition module, which has a
fixed input size. This shows that the SR method can improve the LP recognition perfor-
mance with LR images. A super-resolved recognition method [16] was proposed for LR
image character recognition and the data augmentation algorithm for left-right reversal.
Wang et al. [17] proposed a method that can exploit a synthetic data generation approach
based on a generative adversarial network (GAN) for a data generation procedure to
obtain a large representative LP dataset. Hamdi et al. [18] proposed double GAN for
image enhancement with LP images. They performed SR training used for constructive LP
denoising and SR to increase the LP recognition accuracy when an LR image was used for
recognition. Wang et al. [19] proposed a convolutional recursive neural network followed
by the connectionist temporal classification for LP character recognition. Combining with
multitask cascaded convolutional neural network detection, they proposed a recognition
module that can detect the LP region and classify characters of LP.

LPRNet [20] proposed the LP character recognition module with the end-to-end
method for automatic LP recognition (ALPR) without preliminary character segmentation.
Moreover, this method is lightweight enough to run on a variety of platforms, including
embedded devices. Laroca et al. [1] proposed the LP dataset with 4500 fully annotated
images focused on usual and different real-world scenarios to help address the inadequacy
of an LP database and to address the low-recognition problem. Nguyen et al. [21] proposed
the LP detection and LP recognition module which is embedded with the spatial trans-
former to increase the accuracy of LP character detection and recognition with the CCPD
dataset [22]. Xu et al. [23] proposed the location-aware 2D attention-based recognition mod-
ule that recognizes both single-line and double-line plates with perspective deformation.
Vasek et al. [24] proposed the LP recognition neural network with the CNN method in LR
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frames. Lee et al. [25] proposed the GAN-based SR method that can be adopted in LP-
recognition-challenged environments. Zhang et al. [26] proposed the multitask generative
adversarial network (MTGAN) which combines the SR and recognition modules in a one-
step end-to-end learning method. Li et al. [27] proposed the unified deep neural network
for the LP image localizing and recognizing the characters at once in a single forward pass.
This method operates the LP detection and recognition jointly by a single network to avoid
intermediate error accumulation and accelerate the LP processing speed. However, these
methods are not the end-to-end training method for LP recognition that cannot guarantee
the training stability for stable performance. Moreover, these methods cannot make the
recognition module be optimized so that the loss function of LP recognition approaches
the global minimum. Zhang et al. [28] proposed the robust LP recognition module in
the wild situation. This method also proposed the GAN-based LP generation engine to
reduce the exhausting human annotation work. However, there is significant performance
degradation when these methods are applied to the image frames in real-world scenarios
because the input images have various image resolutions and qualities.

Even if the SR-based approach [15–17,24,25] is applied to the low-quality legacy image,
it produces insufficient performance due to irreverent relationships with the recognition
module. Moreover, other approaches [18,26] tried to figure it out using the single-step
end-to-end learning method. However, these methods based on single-step end-to-end
learning cannot optimally strengthen the collaborative correlations between the SR and
LP recognition modules. Meanwhile, these LP recognition modules [13–28] do not have
any module that augments the high frequency of characters, which is the main clue of LP
recognition. For this reason, the LP recognition performance of the referred LP recognition
module is not satisfactory at recognizing low-quality characters.

To tackle this issue, in this study, we propose a gradual end-to-end learning method
with three steps: Step 1: the independent training of the SR module and LP recognition
module; Step 2: SR module training with LP recognition module weight freezing; Step 3:
LP recognition module training with SR module weight freezing.

Furthermore, we propose the LP recognition module based on high-frequency aug-
mentation. Our LP recognition module mainly consists of HAB which reinforces the high
frequencies of precise character components such as edge, texture, and contrast. Due to
HAB, our LP recognition can provide robust recognition performance even if low-quality
legacy LP images are inputted.

3. Proposed Method

In this section, we present our methodological contributions. First, a holistic image
feature-extraction SR module is proposed to guarantee a stable end-to-end learning process,
unlike DBPN [6]. Second, an LP recognition module based on high-frequency augmentation
is proposed to strengthen the high-frequency component for LP recognition accuracy, unlike
the state-of-the-art object recognition module, Yolov5 [29]. Our LP recognition module
mainly consists of HAB. The proposed HAB extracts only the desired frequency by using
our new DCT-based frequency mask. Finally, a gradual end-to-end learning process
with three steps based on weight freezing is suggested to strengthen the collaborative
correlations with each module.

3.1. Architecture of Each Module in HIFA-LPR Model

In this section, we introduce the HIFA-LPR model architecture. The HIFA-LPR model
consists of a holistic-feature-extraction-based SR module and an LP recognition module
based on high-frequency augmentation.

Holistic-Feature-Extraction-based SR Module. The existing SR methods [3–12] ran-
domly extract patches with about 8 × 8 pixels by cropping the LR image, due to a lack
of computing power. The extracted patches pass through the SR module and LP recog-
nition module in an end-to-end learning process. However, character information is not
fully considered because of the truncated character information. It causes severe training
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performance degradation of the recognition module in the end-to-end learning process.
On the other hand, our holistic-feature-extraction-based SR ensures the training stability
of the LP recognition module because our module utilizes the character position and full
character information by using the whole image. Due to a lack of computing power, we set
the training batch size to 1 during the end-to-end learning process.

In this study, considering end-to-end learning for super-resolved character recognition,
we propose the holistic-feature-extraction-based SR that takes the whole LP image as input.
The DBPN [6] is benchmarked to improve the quality of LP images. Our holistic feature
extraction consists of a 3 × 3 convolution layer and a 1 × 1 convolution layer. Unlike the
original DBPN method, our SR method takes the whole LP image and performs SR by
extracting holistic features and repeatedly upscaling and downscaling the holistic features
through the convolution layers, as shown in Figure 2. The SR module extracts the feature
map of the input image. The extracted feature maps pass through the up-blocks and
down-blocks to obtain feature maps of 64 channels per block. The SR module connects the
feature maps obtained for each block so that feature maps are passed to the final output
layer, and then, the super-resolved RGB 3-channel image is acquired. This SR module can
magnify the image resolution and improve the image quality. However, training stability
cannot be guaranteed since patch-based SR models generate grid patterns in the super-
resolved image. Such generated grid patterns cause restoration performance degradation.
As shown in Figure 3a, since the patch-based end-to-end training process loses character
information, it causes severe training performance degradation. It is a critical issue in terms
of LP recognition. In addition, LP recognition model training is impossible with the patch
that has a small part of the input image. On the other hand, our holistic image feature
extraction consisting of a 3 × 3 convolution layer and a 1 × 1 convolution layer preserves
character information in the super-resolved image while alleviating annoying grid patterns,
as shown in Figure 3b. By using this method, our LP recognition module can be trained
with a stable training process. Algorithm 1 shows the pseudocode of the holistic-feature-
extraction-based SR module for scale factor of ×4. Our holistic-feature-extraction-based SR
module utilizes character position and character information by using the whole image,
unlike DBPN.

Figure 2. Architecture of holistic-feature-extraction-based SR module.
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Figure 3. (a) Diagram of the patch-based end-to-end training process. (b) Diagram of the holistic-
feature-based end-to-end training process. In output images, red boxes denote the detected
character region.

LP Recognition Module based on High-frequency Augmentation. In the LP recog-
nition task, high-frequency information, such as edge, contrast, and texture, affects LP
recognition performance. Hence, to improve LP recognition performance, high-frequency
components should be appropriately augmented. To this end, we propose the LP recog-
nition module which is benchmarked and improved from Yolov5 [29]. Since there is no
correlation between adjacent numbers or characters in a single LP, our proposed LP recog-
nition module independently detects and recognizes each character in the LP instead of a
whole-character-based recognition. To this end, we adopt and improve Yolov5, which is
known to provide state-of-the-art accuracy in the object detection field. We note that we
utilize high-frequency components to promote LP recognition accuracy, unlike Yolov5.

To augment the high-frequency component, it is necessary to extract only the desired
high frequency. Therefore, we utilize the DCT, which has the principle that low-frequency
components are concentrated on the upper left and high-frequency components are concen-
trated on the lower right in the DCT spectrum. A two-dimensional image of size N × M
can be transformed into the frequency domain through DCT, as shown in Equation (1).
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Algorithm 1. The pseudocode of the holistic-feature-extraction-based SR module for scale
factor ×4.

LR: LR images
W: Width of LR image
H: Height of LR image
F(W,H)(k): Feature map with W × H pixels at stage k
Gk: Convolutional layers at stage k
Pk: Deconvolutional layers at stage k
N: Number of training images
I: Number of iterations in the SR module
set * = Convolution operation
set Conv_3 = 3 × 3 convolution layer
set Conv_1 = 1 × 1 convolution layer

do:
1: For i = 1 to N do:
2: //holistic feature extraction process of the single image
3: F(W,H)(0) = Conv_1(Conv_3(LRi

(W,H)))
4: For k = 1 to I do:
5: F(4W,4H)(k) = F(W,H)(k-1) * Pk
6: F(W,H)(k) = F(4W,4H)(k) * Gk
7: F(4W,4H)(k) = F(W,H)(k) * Pk
8: if k > 1:
9: F(4W,4H)(k) = concatenation(F(4W,4H)(k-1), F(4W,4H)(k))
10: F(W,H)(k) = F(4W,4H)(k) * Gk
11: F(4W,4H)(k) = F(W,H)(k) * Pk
12: F(W,H)(k) = F(4W,4H)(k) * Gk
13: if k > 1:
14: F(W,H)(k) = concatenation (F(W,H)(k-1), F(W,H)(k))
15: F(W,H) = F(W,H)(k)
16: end for
17: F(4W,4H) = F(W,H) * P

18: F(W,H) = F(4W,4H) * G

19: F(4W,4H) = F(W,H) * P

20: //Convert SR feature map to SR image
21: Si

(4W,4H) = Conv_3(F(4W,4H))
22: return Si

(4W,4H)

23: end for

F(u, v) = α(u)β(v)
N

∑
i=0

M

∑
j=0

f(i, j)γ(i, j, u, v) (1)

γ(i, j, u, v) = cos(
π(2 i + 1)u

2N
) cos(

π(2 j + 1)v
2M

) (2)

α(u) =

⎧⎨⎩
√

1
N , u = 0√
2
N , u 	= 0

(3)

β(v) =

⎧⎨⎩
√

1
M , v = 0√
2
M , v 	= 0

(4)

f(i, j) =
N

∑
u=0

M

∑
v=0

α(u)β(v)F(u, v)γ(x, y, u, v) (5)

In Equation (1), f(i, j) is the pixel value of the (i, j) position of the image, and F(u, v) is
the DCT coefficient value at the (u, v) position. Equations (2)–(4) show the definitions of the
cosine basis function and regularization constant, respectively. As shown in Equation (5),
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the frequency domain signal can be transformed into the spatial domain using a two-
dimensional inverse DCT (IDCT).

By using the DCT principle, we can dynamically extract high-frequency components
via a frequency mask M. The frequency mask M consists of a binary value and is
determined depending on the hyper-parameter ε as given below.

M(x, y) =
{

0, y < −x + 2εh
1, otherwise

, (6)

where h denotes the height of the input image and x, y denote the horizontal and vertical
coordinates of M, respectively. The hyper-parameter ε ranges from 0 to 1. Since the more
directed from the top left to the bottom right in the zigzag direction is, the higher the
frequency component in the DCT domain is, we can extract the desired high-frequency
components. Figure 4 shows examples of M according hyper-parameter ε.

Figure 4. Examples of M according to ε. Because of the larger hyper-parameter ε, more low-frequency
components are masked. We empirically set ε to 0.2.

Our LP recognition module mainly consists of HABs which reinforce the high fre-
quency of the feature map. As shown in Figure 5, the HAB receives the feature map as
input. Then, the feature map is transformed into the DCT domain using 2D-DCT. To extract
the high frequency in the DCT domain, the element-wise product of the feature map and
frequency mask M determined by hyper-parameter ε is conducted. The extracted high-
frequency feature map is transformed into the spatial domain by 2D-IDCT. The obtained
high-frequency feature map is added to the original feature map.

Figure 5. Architecture of HAB.

Our LP recognition module based on high-frequency augmentation is illustrated in
Figure 6. The Focus layer downscales the input image with as little information loss as
possible for fast recognition by transforming input image space into depth. By transporting
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to a convolution batch normalization leaky ReLU (CBL) and a cross-stage partial (CSP)
layer, feature maps obtain richer gradient combinations while maintaining lower com-
putations. Moreover, by splitting the gradient flow, CSP reduces the computation of the
architecture with the residual unit, which maintains the gradient of the neural network.
Then, the feature map passes through the spatial pyramid pooling (SPP) layer to generate a
fixed one-dimensional array as input to the fully connected layer to predict. The up-sample
block performs up-sampling of the feature map to expand the feature map size, and it
allows for small-object detection. Before the concatenation of each feature map, the pro-
posed HAB is employed to exploit enhanced high-frequency information. Finally, the LP
recognition module can obtain three different-sized feature maps to detect and recognize
the characters of the LP image. The character recognition loss (localization, classification,
and confidence losses) is obtained by comparing the result of the LP recognition module
with the ground truth label. For training for LP recognition, we define 10 numerical classes
for 0–9 and 26 character classes for A–Z. Algorithm 2 shows the pseudocode of the LP
recognition module based on high-frequency augmentation.

Figure 6. Flowchart of LP recognition module based on high-frequency augmentation.

Algorithm 2. The pseudocode of the LP recognition module based on high-frequency
augmentation.

I: Input LP image
M: Frequency mask as in Equation (6)
set Conv = Convolution layer
set CBL = Convolution, batch normalization, leaky ReLU layers
set Up-sample = Bicubic interpolation
set • = Element-wise product
set CSP1 = Combination of CBL and a residual unit layer
set CSP2 = Combination of convolution and a residual unit layer

do:
1: //Convert the input image to four depth maps by focus layer
2: D1, D2, D3, D4 = channel slice(I)
3: F = concatenation(D1, D2, D3, D4)

4: //Feature extraction.
5: F = CBL(F)
6: //CSP layer
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7: F1, F2 = channel slice(F)
8: F1 = CBL(F1)
9: F = concatenation(F1, F2)
10: F = CSP1_3(F)
11: //Getting three feature maps with different sizes
12: F1 = CBL(F)
13: F2 = CBL(CSP1_1(CBL(F1)))
14: F3 = CBL(CSP2_1(CBL(SPP(CBL(CBL(F2)))))
15: F3 = Up-sample(F3)
16: //High-frequency augmentation
17: F3_dct = DCT(F3) as in Equation (1)
18: F3_H = F3_dct • M

19: F3_H = IDCT(F3_H) as in Equation (5)
20: F3_Aug = F3 + F3_H

21: //Concatenate the F2 and F3_Aug

22: C1 = concatenation(CBL(F2), F3_Aug))
23: F1 = CBL(F1)
24: //High-frequency augmentation
25: F1_dct = DCT(F1) as in Equation (1)
26: F1_H = F1 • M

27: F1_H = IDCT(F1_H) as in Equation (5)
28: F1_Aug = F1 + F1_H

29: C1_dct = DCT(C1) as in Equation (1)
30: C1_H = C1_dct • M

31: C1_H = IDCT(C1_H) as in Equation (5)
32: C1_Aug = C1 + C1_H

33: //Concatenate F1_Aug and C1_Aug

34: C2 = concatenation(CBL(F1_Aug), Up-sample(CBL(CSP2_1(C1_Aug))))
35: //Getting first LP recognition feature map
36: P1 = Conv(CBL(CSP2_1(C2)))
37: //Concatenate the C1 and C2

38: C3 = concatenation(CBL(CSP2_1(C1))), Conv(CBL(CSP2_1(C2))))
39: //Getting second LP recognition feature map
40: P2 = Conv(CBL(CSP2_1(C3)))
41: //Concatenate the high-frequency augmented F3 and the C3

42: C4 = concatenation(F3, CBL(CSP2_1(C3)))
43: //Getting third LP recognition feature map
44: P3 = Conv(CBL(CSP2_1(C4)))
45: //Calculating the confidence of each output feature map P1, P2, P3.

46: Output = Non-maximum suppression (P1, P2, P3)

3.2. Gradual End-to-End Learning Process Based on Weight Freezing

A schematic diagram of the gradual end-to-end learning method is shown in Figure 7.
We implemented the training process based on weight freezing in Steps 1, 2, and 3 as
follows. The gradual end-to-end learning process based on weight freezing is one of our
methodological contributions.

Step 1 process. Step 1 requires the pretrained weights of both modules to guarantee
optimized performance. As shown in Figure 7a, we independently train the SR and LP
recognition modules using SR loss and LP recognition loss, respectively. The SR loss LossSR
reduces the L1 difference in pixel values between SR images and HR images. The LossSR is
defined as

LossSR =
N

∑
i=1

|HRi − f (LRi)| , (7)

where N is the number of training images, LRi is the i-th LR training image, f (LRi) is the
SR result of LRi, and HRi is the i-th HR training image corresponding to the SR image
f (LRi).
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Figure 7. Flowchart of gradual end-to-end learning method. (a) Step 1: Independent training of the
SR module and LP recognition module. (b) Step 2: SR module training while freezing LP recognition
module. (c) Step 3: LP recognition module training while freezing SR module. “GT” denotes ground
truth. “Pred” denotes the prediction result.

The LP recognition loss Lossrecognition consists of localization, confidence, and classifica-
tion losses [29]. The loss function is defined as

Lossrecognition = λcoord
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2 +
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2,

where S2 denotes the grid cell for recognition. This grid cell gets a value of one if the LP
character is recognized and zero otherwise. λcoord denotes the constants to take into account
more aspects of the loss function. The first and second lines denote the localization loss
that computes the error of the position of the bounding box for accurate box detection. xi
denotes the horizontal coordinate of the i-th input image, yi denotes the vertical coordinate
of the i-th input image, wi denotes the width of the i-th image, and hi denotes the height of
the i-th image. The LP recognition module calculates the sum of squared errors for the xi,
yi, wi, and hi between the predicted bounding box of the LP recognition module and the
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ground truth. Ci denotes the confidence of the class in the i-th image grid box. This Ci is a
probability value between zero and one that is determined when a character is detected
in the box. When no character is detected, λnoobj is used for the LP recognition loss. pi(c)
denotes the confidence of the detected class of the i-th image.

Step 2 process. Step 2 is constructed to associate the irrelevant SR modules with the LP
recognition module based on the weight freezing method. The SR and LP recognition losses
are summed to strengthen collaborative correlations with each other. To generate images
that are robust to LP recognition, the summed loss is backpropagated to the SR module,
as shown in Figure 7b. In this process, if the parameters of the LP recognition module are
changed, the end-to-end learning process cannot be performed properly. Therefore, weights
for the LP recognition module are frozen during the training process. Using this process,
the SR module is trained so that it reduces both the SR and LP recognition losses. Then,
we obtain SR weights that can restore the super-resolved image to improve LP recognition
accuracy. The summed loss is calculated as

LossTotal = α × LossSR + Lossrecognition, (9)

where α is a hyper-parameter that scales the SR loss. In Step 2, α is set to 0.1 to equalize the
scales between LossSR and Lossrecognition.

Step 3 process. Step 3 is designed by converting LP recognition module freezing to SR
module freezing, as shown in Figure 7c. Although the SR module reconstructs the image
to improve LP recognition accuracy, the LP recognition module is not yet adapted to the
enhanced super-resolved image. To address this issue, the super-resolved image is used to
train the LP recognition module using LossTotal with α = 0. Through this, the LP recognition
module presents superior recognition accuracy to other existing approaches.

As shown in Algorithm 3, a pseudocode capable of gradual end-to-end learning based
on weight freezing is implemented.

Algorithm 3. A pseudocode of the gradual end-to-end learning method based on weight freezing.

L: LR image
H: HR image
N: Number of training images
WSR: SR weights
WLP: LP recognition weights
do:
set SR = SR module of gradual end-to-end learning method
set LP = LP recognition module of gradual end-to-end learning method

(Step 1) Independent training of SR for getting initial weights
1: For p = 1 to N do:
2: S = SR(L)
3: LossSR =|H − S|1 as in (7)
4: gradSR = Backpropagate (SR, LossSR)
5: WSR ←WSR − gradSR
6: end for
7: return WSR
Independent training of LP
8: For q = 1 to N do:
9: H = Bicubic_interpolation(H, 256)
10: labelpred = LP(H)
11: Lossrecognition = Loss(labelpred, labelGT) as in (8)

239



Mathematics 2022, 10, 1569

12: gradLP = Backpropagate (LP, Lossrecognition)
13: WLP ←WLP − gradLP
14: end for
15: return WLP

(Step 2) Freeze LP with WLP and Train SR.
SR loss calculation
16: For p = 1 to N do:
17: S = SR(L)
18: LossSR =|H − S|1
19: end for
Recognition loss calculation
20: For q = 1 to N do:
21: S = Bicubic_interpolation(S, 256)
22: labelpred = LP(S)
23: Lossrecognition = Loss(labelpred, labelGT) as in (8)
24: end for
Total loss calculation
25: For p = 1 to N do:
26: Losstotal = LossSR + Lossrecognition × a as in (9)
27: end for
SR weight update via total loss backpropagation
28: For q = 1 to N do:
29: gradSR = Backpropagate (SR, Losstotal)
30: WSR ←WSR − gradSR
31: return WSR
32: end for

(Step 3) Freeze SR with WSR and Train LP.
SR loss calculation
33: For p = 1 to N do:
34: S = SR(L)
35: LossSR =|H − S|1 as in (7)
36: end for
LP loss calculation
37: For p = 1, N do
38: S = Bicubic_interpolation(S, 256)
39: labelpred = LP(S)
40: Lossrecognition = Loss(labelpred, labelGT) as in (8)
41: end for
LP weight update via LP loss backpropagation
42: For q = 1, N do
43: gradLP = Backpropagate (LP, Lossrecognition)
44: WLP ←WLP − gradLP
45: return WLP
46: end for

Optimizer. Our HIFA-LPR model utilizes the adaptive moment (Adam) optimizer [30]
to search a minimum of our loss function LossTotal with the iterative operation as follows:

m(n+1) = β1m(n) + (1 − β1)∇LossTotal(W(n)), (10)

v(n+1) = β2m(n) + (1 − β2)∇LossTotal(W(n))•∇LossTotal(W(n)), (11)

W(n+1) = W(n) − h√
v(n+1) + ω

m(n+1), (12)

where ∇LossTotal denotes the gradient of our loss function LossTotal, each β1 and β2 denote
the exponential decay rates for the moment estimates, m(n) denotes the estimate of the first
moment of the gradient, v(n) denotes the estimate for the second moment, W(n) denotes the
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vector before the optimization, W(n+1) denotes the updated vector by the Adam optimizer,
h denotes the step size for the optimization process, • denotes the element-wise product,
and ω denotes the variable that prevents the dividing by zero error in Equation (12). h is
the important parameter for optimization because it gives a balance between the speed and
convergence of the proposed model.

4. Experiments and Analysis

4.1. Experimental Setup

Dataset. To verify the effectiveness of our model, we utilize the UFPR [1] and Greek
vehicle datasets [2]. The UFPR dataset that consists of Brazilian vehicle LP is organized
into 1800 training sets, 900 validation sets, and 1800 test sets. To accurately measure the
performance of our framework, we reorganize the UFPR [1] dataset into 3600 training sets
and 900 validation sets. We organize the Greek vehicle dataset [2] into 280 training sets and
65 validation sets, and those sets are annotated by ourselves. To simulate low-quality legacy
conditions, we resize the HR images to LR images by using the built-in resize function of
MATLAB for each scale factor (×3, ×4).

Metric. To analyze the performance of SR modules, we use the peak signal-to-noise
ratio (PSNR), which evaluates the difference between the original image and the super-
resolved image. To quantify the recognition accuracy, the mean average precision (mAP) is
utilized.

Environments. Our framework is implemented in Pytorch 1.8.0., and we use Python 3.8.3,
CUDA 11.2, and cuDNN 8.2.0. Our experiment is performed with AMD Ryzen 5 5600X 6-Core
Processor CPU, 32GB memory, and NVIDIA RTX 3080 GPU. The 2D-DCT and 2D-IDCT
are implemented using the built-in functions of torch.fft.rfft and torch.fft.irfft, respectively.
Our HIFA-LPR model is trained by the Adam optimizer [30] with β1 = 0.9 and β2 = 0.999,
as shown in Equation (12). The training batch size of our study is set to 16, the number of
epochs to 200, ω is set to 10−8, and the learning rate to 10−4.

4.2. Experimental Results

We compare our model with other approaches combined with SR modules [8,11,12]
and LP recognition modules [14,29]. Among the recent LP recognition modules, we exclude
modules that do not provide the source codes [21,23,25–28]. We set the LR image-based LP
recognition module trained with LR LP images as the baseline. For a fair comparison, each
SR module is trained and validated by the same datasets. In addition, Yolov5 [29] is trained
with the corresponding HR LP images. Then, for a fair comparison, each LP recognition
module fine-tunes their SR results like Step 3 of our gradual end-to-end learning method.
Tables 1 and 2 show the comparison between our HIFA-LPR model and other existing
approaches. According to each training step, our HIFA-LPR model is denoted as HIFA-LPR
(Steps 1, 2, and 3). Our model outperforms other existing approaches, as shown in Tables 1
and 2. In particular, HIFA-LPR (Step 3) presents that the PSNR is increased by 0.8 dB
and the mean average precision (mAP) is increased by 19.7% more than that of HIFA-LPR
(Step 1) for a scale factor of ×3. Moreover, HIFA-LPR (Step 3) shows that the PSNR is
increased by 0.14 dB and the mAP is increased by 26.5% more than that of HIFA-LPR
(Step 1) for the scale factor ×4. These experimental results indicate that our proposed
gradual end-to-end learning method is superior to individual learning.
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Table 1. Comparison between the HIFA-LPR model and other existing approaches for scale factor
(×3) on the UFPR dataset.

PSNR and mAP on UFPR Validation Dataset

Method
PSNR (dB) mAP (%)

SR Module Recognition Module

LR baseline

Tesseract-OCR [14]

- 17.8

Bicubic 24.10 29.1

MZSR [11] 17.64 22.7

DRN [8] 25.11 33.3

SwinIR [12] 25.66 36.4

LR baseline

Yolov5 [29]

- 49.9

Bicubic 24.10 50.1

MZSR [11] 17.64 43.7

DRN [8] 25.11 58.5

SwinIR [12] 25.66 61.1

HIFA-LPR (Step 1) 26.40 62.7

HIFA-LPR (Step 2) 27.20 67.7

HIFA-LPR (Step 3) 27.20 82.4

Table 2. Comparison between the HIFA-LPR model and other existing approaches for scale factor
(×4) on the UFPR dataset.

PSNR and mAP on UFPR Validation Dataset

Method
PSNR (dB) mAP (%)

SR Module Recognition Module

LR baseline

Tesseract-OCR [14]

- 12.7

Bicubic 22.18 18.8

MZSR [11] 17.99 11.2

DRN [8] 22.74 19.7

SwinIR [12] 23.33 21.8

LR baseline

Yolov5 [29]

- 32.4

Bicubic 22.18 35.8

MZSR [11] 17.99 27.3

DRN [8] 22.74 36.7

SwinIR [12] 23.33 38.1

HIFA-LPR (Step 1) 23.77 34.4

HIFA-LPR (Step 2) 23.91 42.2

HIFA-LPR (Step 3) 23.91 60.9

Figure 8 shows experimental results from SR modules with the scale factor (×4) on the
UFPR dataset. As shown in Figure 8b–d, the SR modules cannot properly improve image
quality from the LR image in Figure 8a. As shown in Figure 8f, SwinIR presents a better
image quality when compared with the other SR modules. As illustrated in Figure 8h,
our HIFA-LPR model provides enhanced edges and textures that are closely related to
the LP recognition accuracy. As shown in Figure 9, the LP recognition results are used to
quantitatively compare our model and existing approaches. As shown in Figure 9b–e, the
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LP recognition results obtained from existing approaches include many missing characters
as well as several incorrect predictions. Although the result of HIFA-LPR (Step 3) includes
one missing character, it outperforms other approaches in terms of recognition accuracy, as
shown in Figure 9h. In addition, Figure 10 shows the mAP results for a numeric class (0–9)
for the bicubic method and HIFA-LPR (Step 1, Step 2, and Step 3), respectively. We focus
on only numeric class for detailed observation. The mAP result for the numerical class of
HIFA-LPR (Step 3) is increased by 21.6% more than HIFA-LPR (Step 1). As the gradual
end-to-end learning process progresses step by step, the mAP is increased. It demonstrates
the effectiveness of the gradual end-to-end learning method.

Figure 8. SR results on the LP image of the UFPR dataset for scale factor (×3): (a) input low-quality
legacy image (24 × 8), (b) bicubic (96 × 32), (c) MZSR, (d) DRN, (e) SwinIR, (f) HIFA-LPR (Step 1),
(g) HIFA-LPR (Step 2), (h) HIFA-LPR (Step 3), (i) HR image.

Figure 9. LP recognition results on (a) input low-quality legacy image (24 × 8), (b) bicubic image
(96 × 32), (c) MZSR result, (d) DRN result, (e) SwinIR result, (f) HIFA-LPR (Step 1) result, (g) HIFA-
LPR (Step 2) result, (h) HIFA-LPR (Step 3) result, (i) HR image. “_” denotes a missing character. Red
character denotes an incorrect prediction. Blue character denotes a correct prediction. “GT” denotes
ground truth. “Pred” denotes the prediction result.

Tables 3 and 4 show the comparison between our HIFA-LPR model and other ap-
proaches to the Greek vehicle datasets. As shown in Table 3, HIFA-LPR (Step 3) presents
that the mAP is increased by 1.5%, while the PSNR is decreased by 2.93 dB compared to
that of SwinIR for scale factor ×3. As shown in Table 4, although HIFA-LPR (Step 3) shows
that the PSNR is decreased by 3.6 dB less than SwinIR, the mAP of our model is increased
by 1.4%. As shown in Figure 11b–e, the SR modules also cannot properly enhance the
quality of the image from the LR image in Figure 11a. On the other hand, our HIFA-LPR
model produces enhanced edge components, as shown in Figure 11h. It helps improve
the performance of LP recognition. Figure 12 shows the results of the LP recognition
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module using SR results for scale factor ×4 on the Greek vehicle dataset. As illustrated in
Figure 12, HIFA-LPR (Step 3) accurately predicts all characters, while other approaches
include several missing characters and incorrect predictions. These experimental results
indicate that the proposed HIFA-LPR model produces high recognition performance be-
cause the model performs SR to improve recognition accuracy, despite PSNR degradation.
In addition, Figure 13 shows the mAP results for the numeric class (0–9) for the bicubic
method and HIFA-LPR (Step 1, 2, and 3), respectively. The mAP result for the numerical
class for HIFA-LPR (Step 3) is increased by 18.6% more than that of HIFA-LPR (Step 1).

Figure 10. mAP comparison results for only numbers (0–9) on the UFPR dataset for scale factor (×4).
(a–d) represent the mAP results on bicubic results, HIFA-LPR (Step 1) results, HIFA-LPR (Step 2)
results, and HIFA-LPR (Step 3) results, respectively.

Figure 11. SR results on the LP image of the Greek vehicle dataset for scale factor (×4): (a) input
low-quality legacy image (24 × 8), (b) Bicubic (96 × 32), (c) MZSR, (d) DRN, (e) SwinIR, (f) HIFA-LPR
(Step 1), (g) HIFA-LPR (Step 2), (h) HIFA-LPR (Step 3), (i) HR image.
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Table 3. Comparison between the HIFA-LPR model and other existing approaches for scale factor
(×3) on the Greek vehicle dataset.

PSNR and mAP on Greek Vehicle Validation Dataset

Method
PSNR (dB) mAP (%)

SR Module Recognition Module

LR baseline

Tesseract-OCR [14]

- 48.2

Bicubic 21.33 60.3

MZSR [11] 16.07 47.2

DRN [8] 25.08 70.4

SwinIR [12] 25.58 74.7

LR baseline

Yolov5 [29]

- 72.1

Bicubic 21.33 92.1

MZSR [11] 16.07 91.8

DRN [8] 25.08 95.9

SwinIR [12] 25.58 96.8

HIFA-LPR (Step 1) 21.43 91.9

HIFA-LPR (Step 2) 22.65 94.4

HIFA-LPR (Step 3) 22.65 98.3

Table 4. Comparison between the HIFA-LPR model and other existing approaches for scale factor
(×4) on the Greek vehicle dataset.

PSNR and mAP on Greek Vehicle Validation Dataset

Method
PSNR (dB) mAP (%)

SR Module Recognition Module

LR baseline

Tesseract-OCR [14]

- 27.4

Bicubic 21.33 31.1

MZSR [11] 16.07 22.3

DRN [8] 25.08 52.1

SwinIR [12] 25.58 55.1

LR baseline

Yolov5 [29]

- 57.1

Bicubic 19.63 77.3

MZSR [11] 15.96 74.1

DRN [8] 23.83 87.5

SwinIR [12] 23.61 89.1

HIFA-LPR (Step 1) 20.01 75.2

HIFA-LPR (Step 2) 20.60 80.6

HIFA-LPR (Step 3) 20.60 90.5
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Figure 12. LP recognition results on the Greek vehicle dataset with (a) input low-quality legacy image
(28 × 8), (b) bicubic result (112 × 32), (c) MZSR result, (d) DRN result, (e) SwinIR result, (f) HIFA-LPR
(Step 1) result, (g) HIFA-LPR (Step 2) result, (h) HIFA-LPR (Step 3) result. (i) HR image. “_” denotes
a missing character. Red character denotes an incorrect prediction. Blue character denotes a correct
prediction. “GT” denotes ground truth. “Pred” denotes the prediction result.

Figure 13. mAP comparison results for only numbers (0–9) on the Greek vehicle dataset for scale
factor (×4). (a–d) represent the mAP results on bicubic results, HIFA-LPR (Step 1) results, HIFA-LPR
(Step 2) results, and HIFA-LPR (Step 3), respectively.

4.3. Ablation Study

The effect of holistic feature extraction. In this section, we verify the effectiveness
of the holistic image feature-extraction-based SR module by comparison with the patch-
extraction-based SR module. For a fair comparison, each module is trained and validated
using the same datasets and LP recognition module. As shown in Table 5, the holistic-
extraction-based SR presents better mAP results than patch-extraction-based SR due to the
elimination of grid patterns during the gradual end-to-end learning process.
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Table 5. Comparison between the patch extraction-based SR and the holistic extraction-based SR for
scale factor (×4) on the UFPR dataset.

PSNR and mAP on UFPR Validation Dataset

Method
PSNR (dB) mAP (%)

SR Module Recognition Module

Patch-extraction-based SR
Yolov5 [29]

23.77 34.4

Holistic-extraction-based SR 24.65 44.7

The effect of the LP recognition module based on high-frequency augmentation.

In this section, we investigate the effect of our LP recognition module. As we mentioned,
the HAB extracts desired high-frequency components according to the hyper-parameter ε
and augments the extracted high-frequency components. We compare our LP recognition
module with Tesseract-OCR [14] and Yolov5 [29] which is our baseline module. Since
OpenALPR [13] only provides cloud demo service for a single image, we provide only
visual recognition results of OpenALPR, as shown in Figure 14. For a fair comparison,
each LP module is trained by the same SR results. As shown in Table 6, our LP recognition
module with high-frequency augmentation outperforms other modules because the HAB
effectively exploits high-frequency components which are closely related to LP recognition.
As shown in Figure 14, while our LP recognition module recognizes all characters, the other
modules provide missing or misrecognized characters.

Figure 14. LP recognition results on same SR result (80 × 60). (a) Tesseract-OCR result, (b) OpenALPR
result (c) Yolov5 result, (d) HIFA-LPR result, (e) HR image. “_” denotes a missing character. Red
character denotes an incorrect prediction. Blue character denotes a correct prediction. “GT” denotes
ground truth. “Pred” denotes the prediction result.

Table 6. Comparison between the LP recognition module based on high-frequency augmentation
and other modules for scale factor (×4) on the UFPR dataset.

PSNR and mAP on UFPR Validation Dataset

Method mAP (%)

Tesseract-OCR [14] 19.1

Yolov5 [29] 34.4

LP recognition module without
high-frequency augmentation 57.2

LP recognition module with
high-frequency augmentation 60.9

Extension to other countries’ LP images. Our HIFA-LPR model can be extended to
other countries’ LP images that include different language characters, such as Korean,
by building LP datasets and redefining character classes. To verify our framework, we
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conduct an additional experiment on the Korean LP dataset. Our model presents that the
PSNR is increased by about 1.7 dB and the mAP is increased by about 16.4% compared
with SwinIR-based LP recognition. Note that our model also surpasses other approaches
on the Korean LP dataset.

Limitations. Our HIFA-LPR model may have limitations in practical applications.
First, our experiments only assume that the LR image is downscaled with the known
bicubic kernel. Hence, there is a possibility that the SR restoration performance will be
degraded in the real world where the blur kernel is unknown. Second, our HIFA-LPR model
requires more training time due to gradual stepwise learning. However, the inference time
of our model is the same as that of other combination methods. The inference time of the
proposed HIFA-LPR model is 3.2 ms when the size of the HR LP image is 168 × 168 pixels
as input. The input image is 42 × 42 pixels in size scaled by a scale factor of ×4, and the
LP recognition module’s input size is 168 × 168 pixels. Moreover, the training time of
our HIFA-LPR model can be reduced by optimization techniques such as network weight
compression or weight sharing.

5. Conclusions

This study focuses on LP recognition in low-quality legacy conditions. For this, we
propose the HIFA-LPR model via gradual end-to-end learning. To this end, we suggest
the gradual end-to-end learning method based on weight freezing. This method consists
of three steps. In Step 1, the SR and LP recognition modules are independently trained
for stabilizing the training process. In Step 2, the SR module is trained with a combined
loss function by freezing the LP recognition module weights to strengthen collaborative
correlations with each module. In Step 3, the LP recognition module is trained with
super-resolved images by freezing the SR module weights to obtain higher LP recognition
accuracy. Due to this method, we can enhance collaborative correlations between each
module. To optimally train our model, we propose the holistic feature extraction method
that can prevent grid pattern generation in the training process. To exploit high-frequency
information, we propose an LP recognition module based on high-frequency augmentation.
Our LP recognition module extracts only the desired high frequency and enhances the
high-frequency component of the feature map. The experimental results show that our
HIFA-LPR model provides the best performance in terms of mAP among various existing
approaches. Although our HIFA-LPR model is intended for LP recognition, it can be
extended to other object recognition tasks by building the related datasets and redefining
object classes. In addition, our HIFA-LPR model can be considered in real-world scene
text recognition applications such as smart parking and autonomous driving. In the smart
parking task, our method can be applied to parking in designated areas and crackdown on
illegal parking. In addition, our HIFA-LPR model can be applied to character recognition
on traffic signs to help in autonomous driving.
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Abstract: In this paper, we introduce a new line search technique, then employ it to construct a novel
accelerated forward–backward algorithm for solving convex minimization problems of the form of
the summation of two convex functions in which one of these functions is smooth in a real Hilbert
space. We establish a weak convergence to a solution of the proposed algorithm without the Lipschitz
assumption on the gradient of the objective function. Furthermore, we analyze its performance by
applying the proposed algorithm to solving classification problems on various data sets and compare
with other line search algorithms. Based on the experiments, the proposed algorithm performs better
than other line search algorithms.

Keywords: forward–backward algorithm; line search; accelerated algorithm; convex minimization
problems; data classification; machine learning
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1. Introduction

The convex minimization problem in the form of the sum of two convex functions plays a
very important role in machine learning. This problem has been analyzed and studied by
many authors because of its applications in various fields such as data science, computer
science, statistics, engineering, physics, and medical science. Some examples of these
applications are signal processing, compressed sensing, medical image reconstruction,
digital image processing, and data prediction and classification; see [1–8].

As we know in machine learning, especially in data prediction and classification
problems, the main objective is to minimize loss functions. Many loss functions can be
viewed as convex functions; thus by employing convex minimization, one could find
the minimum of such functions, which in turn solve data prediction and classification
problems. Many works have implemented this strategy; see [9–11] and the references
therein for more information. In this work, we apply extreme learning machine together with
the least absolute shrinkage and selection operator to solve classification problems; more detail
will be discussed in a later section. First, we introduce a convex minimization problem,
which can be formulated as the following form:

min
x∈H

{ f (x) + g(x)}, (1)

where f : H → R∪ {+∞} is proper, convex differentiable on an open set containing dom(g)
and g : H → R ∪ {+∞} is a proper, lower semicontinuous convex function defined on a
real Hilbert space H.
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A solution of (1) is in fact a fixed point of the operator proxαg(I − α� f ), i.e.,

x∗ = proxαg(I − α� f )(x∗), (2)

where α > 0, and proxαg(I − α� f )(x) = arg miny∈H{g(y) + 1
2α‖(x − α� f (x)) − y‖2},

which is known as the forward–backward operator. In order to solve (1), the forward–backward
algorithm [12] was introduced as follows:

xn+1 = proxαng︸ ︷︷ ︸
backward

(I − αn� f )︸ ︷︷ ︸
forward

(xn), for all n ∈ N, (3)

where αn is a positive number. If � f is L-Lipschitz continuous and αn ∈ (0, 2
L ), then

a sequence generated by (3) converges weakly to a solution of (1). There are several
techniques that can improve the performance of (3). For instance, we could utilize an inertial
step, which was first introduced by Polyak [13], to solve smooth convex minimization
problems. Since then, there have been several works that included an inertial step in their
algorithms to accelerate the convergence behavior; see [14–19] for examples.

One of the most famous forward–backward-type algorithms that implements an
inertial step is the fast iterative shrinkage–thresholding algorithm (FISTA) [20]. It is defined as
the following Algorithm 1.

Algorithm 1. FISTA.

1: Input Given y1 = x0 ∈ Rn, and t1 = 1, for n ∈ N,

xn = prox 1
L g(yn − 1

L
� f (yn)),

tn+1 =
1 +
√

1 + 4t2
n

2
, θn =

tn − 1
tn+1

,

yn+1 = xn + θn(xn − xn−1),

where L is a Lipschitz constant of � f .

The term xn + θn(xn − xn−1) is known as an inertial term with an inertial param-
eter θn. It has been shown that FISTA performs better than (3). Later, other forward–
backward-type algorithms have been introduced and studied by many authors; see for
instance [2,8,18,21,22]. However, most of these works assume the Lipschitz assumption
on � f , which is difficult for computation in general. Therefore, in this paper, we focus on
another approach where � f is not necessarily Lipschitz continuous.

In 2016, Cruz and Nghia [23] introduced a line search technique as the following
Algorithm 2.

Algorithm 2. Line search 1. (x, δ, σ, θ).

1: Input Given x ∈ dom(g), δ > 0, σ > 0 and θ ∈ (0, 1).

2: Set γ = σ.

3: while γ‖� f (proxγg(x − γ� f (x)))−� f (x)‖ > δ‖proxγg(x − γ� f (x))− x‖ do

4: Set γ = θγ

5: end while

6: Output γ.

They asserted that Line Search 1 stops after finitely many steps and proposed the
following Algorithm 3.
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Algorithm 3. Algorithm with Line Search 1.

1: Input Given x0 ∈ dom(g), δ ∈ (0, 1
2 ), σ > 0, and θ ∈ (0, 1), for all n ∈ N,

xn+1 = proxγng(I − γn� f )(xn),

where γn := Line Search 1(xn, δ, σ, θ).

They also showed that the sequence {xn} defined by Algorithm 3 converges weakly
to a solution of (1) under Assumptions A1 and A2 where:

A1. f , g are proper lower semicontinuous convex functions with dom(g) ⊆ dom( f );
A2. f is differentiable on an open set containing dom(g), and � f is uniformly continuous

on any bounded subset of dom(g) and maps any bounded subset of dom(g) to a
bounded set in H.

It is noted that the L-Lipschitz continuity of � f is not necessarily assumed. Moreover,
if � f is L-Lipschitz continuous, then A2 is satisfied.

In 2019, Kankam et al. [3] proposed the new line search as the following Algorithm 4.

Algorithm 4. Line search 2. (x, δ, σ, θ).

1: Input Given x ∈ dom(g), δ > 0, σ > 0 and θ ∈ (0, 1). Set

L(x, γ) = proxγg(x − γ� f (x)), and

S(x, γ) = proxγg(L(x, γ)− γ� f (L(x, γ))).

2: Set γ = σ.
3: while

γ max{‖� f (S(x, γ))−� f (L(x, γ))‖, ‖� f (L(x, γ))−� f (x)‖}
> δ(‖S(x, γ)− L(x, γ)‖+ ‖L(x, γ)− x‖)

do
4: Set γ = θγ, L(x, γ) = L(x, θγ), S(x, γ) = S(x, θγ)
5: end while
6: Output γ.

They also asserted that Line Search 2 stops at finitely many steps and proposed the
following Algorithm 5.

Algorithm 5. Algorithm with Line Search 2.

1: Input Given x0 ∈ dom(g), δ ∈ (0, 1
8 ), σ > 0 and θ ∈ (0, 1), for all n ∈ N,

yn = proxγng(xn − γn� f (xn)),

xn+1 = proxγng(yn − γn� f (yn)),

where γn := Line Search 2 (xn, δ, σ, θ).

A weak convergence result of this algorithm was obtained under Assumptions A1 and
A2. Although Algorithms 3 and 5 obtained weak convergence results without the Lipschitz
assumption on � f , the two algorithms did not utilize an inertial step yet. Therefore,
some improvements of their convergence behavior using this technique are interesting
to investigate.

Motivated by the works mentioned earlier, we aim to introduce a new line search
technique and prove that it is well-defined. Then, we employ it to construct a novel forward–
backward algorithm that utilizes an inertial step to improve its performance to be better than
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the other line search algorithms. We prove a weak convergence theorem of the proposed
algorithm without the Lipschitz assumption on � f and apply it to solve classification
problems on various data sets. We also compare its performance with Algorithms 3 and 5
to show that the proposed algorithm performs better.

This work is organized as follows: In Section 2, we recall some important definitions
and lemmas used in later sections. In Section 3, we introduce a new line search technique
and algorithm for solving (1). Then, we analyze the convergence and complexity of the
proposed algorithm under Assumptions A1 and A2. In Section 4, we apply the proposed
algorithm to solve data classification problems and compare its performance with other
algorithms. Finally, the conclusion of this work is presented in Section 5.

2. Preliminaries

In this section, some important definitions and lemmas, which will be used in later
sections, are presented.

Let {xn} be a sequence in H and x ∈ H. We denote xn → x and xn ⇀ x as a strong
and weak convergence of {xn} to x, respectively. Let f : H → R∪ {+∞} be a proper lower
semicontinuous and convex function. We denote dom( f ) = {x ∈ H : f (x) < +∞}.
A subdifferential of f at x is defined by

∂ f (x) := {u ∈ H : 〈u, y − x〉 + f (x) ≤ f (y), y ∈ H}.

A proximal operator proxα f : H → dom( f ) is defined as follows:

proxα f (x) = (I + α∂ f )−1(x),

where I is an identity mapping and α is a positive number. It is well known that this
operator is single-valued, nonexpansive, and

x − proxα f (x)
α

∈ ∂ f (proxα f (x)), for all x ∈ H and α > 0; (4)

see [23] for more details. Next, we present some important lemmas for this work.

Lemma 1 ([24]). Let ∂ f be a subdifferential of f . Then, the following hold:

(i) ∂ f is maximal monotone;
(ii) Gph(∂ f ) := {(x, y) ∈ H× H : y ∈ ∂ f (x)} is demiclosed, i.e., for any sequence {(xn, yn)} ⊆

Gph(∂ f ) such that {xn} ⇀ x and {yn} → y, then (x, y) ∈ Gph(∂ f ).

Lemma 2 ([25]). Let f , g : H → R ∪ {+∞} be proper lower semicontinuous convex functions
with dom(g) ⊆ dom( f ) and J(x, α) = proxαg(x − α� f (x)). Then, for any x ∈ dom(g) and
α2 ≥ α1 > 0, we have

α2

α1
‖x − J(x, α1)‖ ≥ ‖x − J(x, α2)‖ ≥ ‖x − J(x, α1)‖.

Lemma 3 ([26]). Let H be a real Hilbert space. Then, for all a, b, c ∈ H and ζ ∈ [0, 1], the
following hold:

(i) ‖a ± b‖2 = ‖a‖2 ± 2〈a, b〉+ ‖b‖2;
(ii) ‖ζa + (1 − ζ)b‖2 = ζ‖a‖2 + (1 − ζ)‖b‖2 − ζ(1 − ζ)‖a − b‖2;
(iii) ‖a + b‖2 ≤ ‖a‖2 + 2〈b, a + b〉;
(iv) 〈a − b, b − c〉 = 1

2 (‖a − c‖2 − ‖a − b‖2 − ‖b − c‖2).

Lemma 4 ([8]). Let {an} and {bn} be sequences of non-negative real numbers such that

an+1 ≤ (1 + bn)an + bnan−1, for all n ∈ N.
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Then, the following holds:

an+1 ≤ K·
n

∏
j=1

(1 + 2bj), where K = max{a1, a2}.

Moreover, if
+∞

∑
n=1

bn < +∞, then {an} is bounded.

Lemma 5 ([26]). Let {αn}, {βn} and {γn} be sequences of non-negative real numbers such that

αn+1 ≤ (1 + γn)αn + βn, for all n ∈ N.

If
+∞

∑
n=1

γn < +∞ and
+∞

∑
n=1

βn < +∞, then lim
n→+∞

αn exists.

Lemma 6 ([27], Opial). Let {xn} be a sequence in a Hilbert space H. If there exists a nonempty
subset Ω of H such that the following hold:

(i) For any x∗ ∈ Ω, lim
n→+∞

‖xn − x∗‖ exists;

(ii) Every weak-cluster point of {xn} belongs to Ω.

Then, {xn} converges weakly to an element in Ω.

3. Main Results

In this section, we define a new line search technique and a new accelerated algorithm
with the new line search for solving (1). We denote S∗ the set of all solutions of (1) and
suppose that f , g : H → R∪ {+∞} are two convex functions that satisfy Assumptions A1
and A2, and dom(g) is closed. Furthermore, we also suppose that S∗ 	= ∅.

We first introduce a new line search technique as the following Algorithm 6.

Algorithm 6. Line Search 3 (x, δ, σ, θ).

1: Input Given x ∈ dom(g), δ > 0, σ > 0 and θ ∈ (0, 1). Set

L(x, γ) = proxγg(x − γ� f (x)), and

S(x, γ) = proxγg(L(x, γ)− γ� f (L(x, γ))).

2: Set γ = σ.
3: while

γ

2
(‖� f (S(x, γ))−� f (L(x, γ))‖+ ‖� f (L(x, γ))−� f (x)‖)

> δ(‖S(x, γ)− L(x, γ)‖+ ‖L(x, γ)− x‖),
or γ‖� f (L(x, γ))−� f (x)‖ > 4δ‖L(x, γ)− x‖.

do
4: Set γ = θγ, L(x, γ) = L(x, θγ), S(x, γ) = S(x, θγ)
5: end while
6: Output γ.

We first show that Line Search 3 terminates at finitely many steps.

Lemma 7. Line Search 3 stops at finitely many steps.
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Proof. If x ∈ S∗, then x = L(x, σ) = S(x, σ), so Line Search 3 stops with zero steps. If
x /∈ S∗, suppose by contradiction that, for all n ∈ N, the following hold:

σθn

2
(‖� f (S(x, σθn))−� f (L(x, σθn))‖+ ‖� f (L(x, σθn))−� f (x)‖)
> δ(‖S(x, σθn)− L(x, σθn)‖+ ‖L(x, σθn)− x‖), (5)

or
σθn‖� f (L(x, σθn))−� f (x)‖ > 4δ‖L(x, σθn)− x‖. (6)

Then, from these assumptions, we can find a subsequence {σθnk} of {σθn} such that
(5) or (6) holds. First, we show that

{‖� f (L(x, σθn))−� f (x)‖} and {‖� f (S(x, σθn))−� f (L(x, σθn))‖}

are bounded. It follows from Lemma 2 that

‖L(x, σθn)− x‖ ≤ ‖L(x, σ)− x‖,

for all n ∈ N. In combination with A2, we conclude that {‖� f (L(x, σθn))− � f (x)‖} is
bounded. Next, we prove that {‖� f (S(x, σθn)) − � f (L(x, σθn))‖} is bounded. Since
proxγg is nonexpansive, for any γ > 0, then

‖S(x, σθn)−�L(x, σθn)‖
= ‖proxσθng(L(x, σθn)− σθn� f (L(x, σθn)))− proxσθng(x − σθn� f (x))‖
≤ ‖(L(x, σθn)− σθn� f (L(x, σθn))− (x − σθn� f (x))‖
≤ ‖L(x, σθn)− x‖+ σθn‖� f (L(x, σθn)−� f (x))‖
≤ ‖L(x, σθn)− x‖+ σ‖� f (L(x, σθn)−� f (x))‖,

for all n ∈ N; hence, {‖S(x, σθn)−�L(x, σθn)‖} is bounded. Again, it follows from A2
that {‖� f (S(x, σθn))−� f (L(x, σθn))‖} is bounded. To complete the proof, we consider
the only two possible cases to find a contradiction.

Case 1: Suppose that there exists a subsequence {σθnk} of {σθn} such that (5) holds,
for all k ∈ N. Then, it follows that ‖S(x, σθnk )− L(x, σθnk )‖ → 0 and ‖L(x, σθnk )− x‖ → 0,
as k → +∞. Since � f is uniformly continuous, we obtain:

‖� f (S(x, σθnk ))−� f (L(x, σθnk ))‖ → 0 and ‖� f (L(x, σθnk ))−� f (x)‖ → 0,

as k → +∞. Therefore, it follows from (5) that ‖L(x,σθnk )−x‖
σθnk → 0, as k → +∞. By (4),

we obtain
x − σθnk� f (x)− L(x, σθnk )

σθnk
∈ ∂g(L(x, σθnk )).

Thus, L(x,σθnk )−x
σθnk − � f (x) ∈ ∂g(L(x, σθnk )). Since L(x, σθnk ) → x, as k → +∞, we

obtain from Lemma 1 that 0 ∈ � f (x) + ∂g(x) ⊆ ∂( f + g)(x). Hence, x ∈ S∗, which is a
contradiction.

Case 2: Suppose that there is a subsequence {σθnk} of {σθn} satisfying (6), for all
k ∈ N. Then, ‖L(x, σθnk )− x‖ → 0, as k → +∞. Again, from the uniform continuity of � f ,
we have

‖� f (L(x, σθnk ))−� f (x)‖ → 0,

as k → +∞. From (6), we conclude that

‖L(x, σθnk )− x‖
σθnk

→ 0,
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as k → +∞. By the same argument as in Case 1, we can show that 0 ∈ ∂( f + g)(x), and
hence, x ∈ S∗, a contradiction. Therefore, we conclude that Line Search 3 stops with finite
steps, and the proof is complete.

We propose a new inertial algorithm with Line Search 3 as following Algorithm 7.

Algorithm 7. Inertial algorithm with Line Search 3.

1: Input Given x0, x1 ∈ dom(g), αn ∈ [0, 1], βn ≥ 0, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
8 ), for

n ∈ N,

yn = xn + βn(xn − xn−1),
zn = Pdom(g)yn,

wn = proxγng(zn − γn� f (zn)),

xn+1 = (1 − αn)wn + αn proxγng(wn − γn� f (wn)),

where γn := Line Search 3(zn, δ, σ, θ), and Pdom(g) is a metric projection map onto
dom(g).

The diagram of Algorithm 7 can be seen in Figure 1.

Figure 1. Diagram of Algorithm 7.

Next, we prove the following lemma, which will play a crucial role in our main theorems.

Lemma 8. Let γn := Line Search 3(zn, δ, σ, θ). Then, for all n ∈ N and x ∈ dom(g), the
following hold:

(I) ‖zn − x‖2 − ‖wn − x‖2 ≥ 2γn[( f + g)(wn)− ( f + g)(x)] + (1 − 8δ)‖wn − zn‖2;
(II) ‖zn − x‖2 − ‖vn − x‖2 ≥ 2γn[( f + g)(wn) + ( f + g)(vn)− 2( f + g)(x)]

+(1 − 8δ)(‖wn − zn‖2 + ‖vn − wn‖2).
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where vn = proxγng(wn − γn� f (wn)).

Proof. First, we show that (I) is true. From (4), we know that

zn − wn

γn
−� f (zn) ∈ ∂g(wn), for all n ∈ N.

Moreover, it follows from the definitions of ∂g(wn),� f (zn) and � f (wn) that

g(x)− g(wn) ≥ 〈 zn − wn

γn
−� f (zn), x − wn〉,

f (x)− f (zn) ≥ 〈� f (zn), x − zn〉 and f (zn)− f (wn) ≥ 〈� f (wn), zn − wn〉,
for all n ∈ N. Consequently,

f (x)− f (zn)+g(x)−g(wn) ≥ 1
γn

〈zn − wn, x − wn〉+ 〈� f (zn), wn − zn〉

=
1

γn
〈zn−wn, x − wn〉+〈� f (zn)−� f (wn), wn − zn〉

+ 〈� f (wn), wn − zn〉
≥ 1

γn
〈zn−wn, x−wn〉−‖� f (zn)−� f (wn)‖‖wn − zn‖

+ 〈� f (wn), wn − zn〉
≥ 1

γn
〈zn−wn, x−wn〉 − 4δ

γn
‖wn−zn‖2 + f (wn)− f (zn),

for all n ∈ N. It follows that

1
γn

〈zn − wn, wn − x〉 ≥ ( f + g)(wn)− ( f + g)(x)− 4δ

γn
‖wn − zn‖2, for all n ∈ N.

From Lemma 3, we have 〈zn −wn, wn − x〉 = 1
2 (‖zn − x‖2 −‖zn −wn‖2 −‖wn − x‖2),

and hence,

1
2γn

(‖zn− x‖2− ‖zn− wn‖2− ‖wn− x‖2) ≥ ( f + g)(wn)− ( f + g)(x)− 4δ

γn
‖wn− zn‖2,

for all n ∈ N. Then, it follows that, for any x ∈ dom(g),

‖zn− x‖2− ‖wn− x‖2 ≥ 2γn[( f+ g)(wn)− ( f+ g)(x)]+ (1 − 8δ)‖wn− zn‖2,

and (I) is proven. Next, we show (I I). From (4), we have that

zn − wn

γn
−� f (zn) ∈ ∂g(wn), and

wn − vn

γn
−� f (wn) ∈ ∂g(vn).

Then,

g(x)− g(wn) ≥ 〈 zn − wn

γn
−� f (zn), x − wn〉, and

g(x)− g(vn) ≥ 〈wn − vn

γn
−� f (wn), x − vn〉, for all n ∈ N.

Moreover,
f (x)− f (zn) ≥ 〈� f (zn), x − zn〉,

f (x)− f (wn) ≥ 〈� f (wn), x − wn〉,
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f (zn)− f (wn) ≥ 〈� f (wn), zn − wn〉, and

f (wn)− f (vn) ≥ 〈� f (vn), wn − vn〉, for all n ∈ N.

The above inequalities imply

f (x)− f (zn) + f (x)− f (wn) + g(x)− g(wn) + g(x)− g(vn)

≥ 1
γn

〈zn − wn, x − wn〉+〈� f (zn), wn − zn〉+ 1
γn

〈wn − vn, x − vn〉+〈� f (wn), vn − wn〉

=
1

γn
〈zn − wn, x − wn〉+ 〈� f (zn)−� f (wn), wn − zn〉+ 〈� f (wn), wn − zn〉

+
1

γn
〈wn − vn, x − vn〉+ 〈� f (wn)−� f (vn), vn − wn〉+ 〈� f (vn), vn − wn〉

≥ 1
γn

〈zn − wn, x − wn〉+ 1
γn

〈wn − vn, x − vn〉 − ‖� f (wn)−� f (zn)‖‖wn − zn‖
+ 〈� f (wn), wn − zn〉 − ‖� f (vn)−� f (wn)‖‖vn − wn‖+ 〈� f (vn), vn − wn〉

≥ 1
γn

〈zn − wn, x − wn〉+ 1
γn

〈wn − vn, x − vn〉
− ‖� f (wn)−� f (zn)‖(‖wn − zn‖+ ‖vn − wn‖) + 〈� f (wn), wn − zn〉
− ‖� f (vn)−� f (wn)‖(‖wn − zn‖+ ‖vn − wn‖) + 〈� f (vn), vn − wn〉

=
1

γn
〈zn − wn, x − wn〉+ 1

γn
〈wn − vn, x − vn〉+〈� f (wn), wn − zn〉+〈� f (vn), vn − wn〉

− (‖� f (wn)−� f (zn)‖+ ‖� f (vn)−� f (wn)‖)(‖wn − zn‖+ ‖vn − wn‖)
≥ 1

γn
〈zn − wn, x − wn〉+ 1

γn
〈wn − vn, x − vn〉+ 〈� f (wn), wn − zn〉

+ 〈� f (vn), vn − wn〉 − 2δ

γn
(‖wn − zn‖+ ‖vn − wn‖)2

≥ 1
γn

〈zn − wn, x − wn〉+ 1
γn

〈wn − vn, x − vn〉+ f (vn)− f (zn)

− 4δ

γn
(‖wn − zn‖2 + ‖vn − wn‖2),

for all x ∈ dom(g) and n ∈ N. Hence,

1
γn

〈zn − wn, wn − x〉+ 1
γn

〈wn − vn, vn − x〉

≥ ( f + g)(wn) + ( f + g)(vn)− 2( f + g)(x)− 4δ

γn
‖wn − zn‖2 − 4δ

γn
‖vn − wn‖2.

Moreover, from Lemma 3, we have, for all n ∈ N,

〈zn − wn, wn − x〉 = 1
2
(‖zn − x‖2 − ‖zn − wn‖2 − ‖wn − x‖2), and

〈wn − vn, vn − x〉 = 1
2
(‖wn − x‖2 − ‖wn − vn‖2 − ‖vn − x‖2).

As a result, we obtain

1
2γn

(‖zn − x‖2 − ‖zn − wn‖2)− 1
2γn

(‖wn − vn‖2 + ‖vn − x‖2)

≥ ( f + g)(wn) + ( f + g)(vn)− 2( f + g)(x)− 4δ

γn
‖wn − zn‖2 − 4δ

γn
‖vn − wn‖2,
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for all x ∈ dom(g), and n ∈ N. Therefore,

‖zn − x‖2 − ‖vn − x‖2 ≥ 2γn[( f + g)(wn) + ( f + g)(vn)− 2( f + g)(x)]

+ (1 − 8δ)(‖wn − zn‖2 + ‖vn − wn‖2),

for all x ∈ dom(g), and n ∈ N, and hence, (I I) is proven.

Next, we prove the weak convergence result of Algorithm 7.

Theorem 9. Let {xn} be a sequence generated by Algorithm 7. Suppose that the following hold:

B1.
+∞

∑
n=1

βn < +∞;

B2. There exists γ > 0 such that γn ≥ γ, for all n ∈ N.

Then, {xn} converges weakly to some point in S∗.

Proof. Let x∗ ∈ S∗; obviously, x∗ ∈ dom(g). The following are direct consequences of
Lemma 8:

‖zn − x∗‖2 − ‖wn − x∗‖2 ≥ 2γn[( f + g)(wn)− ( f + g)(x∗)] + (1 − 8δ)‖wn − zn‖2

≥ (1 − 8δ)‖wn − zn‖2, (7)

and

‖zn − x∗‖2 − ‖vn − x∗‖2 ≥ 2γn[( f + g)(wn) + ( f + g)(vn)− 2( f + g)(x∗)]
+ (1 − 8δ)(‖wn − zn‖2 + ‖vn − wn‖2)

≥ (1 − 8δ)(‖wn − zn‖2 + ‖vn − wn‖2), (8)

where vn = proxγng(wn − γn� f (wn)). Then, we have

‖xn+1 − x∗‖ ≤ (1 − αn)‖wn − x∗‖+ αn‖vn − x∗‖
≤ (1 − αn)‖wn − x∗‖+ αn‖zn − x∗‖ (9)

≤ ‖zn − x∗‖.

Next, we show that lim
n→∞

‖xn − x∗‖ exists. Since Pdom(g) is nonexpansive, we have

‖xn+1 − x∗‖ ≤ ‖zn − x∗‖
= ‖Pdom(g)yn − Pdom(g)x

∗‖
≤ ‖yn − x∗‖
≤ ‖xn − x∗‖+ βn‖xn − xn−1‖
≤ (1 + βn)‖xn − x∗‖+ βn‖xn−1 − x∗‖, for all n ∈ N.

(10)

By using Lemma 4, we have that {xn} is bounded. Consequently,
+∞

∑
n=1

βn‖xn − xn−1‖ <

+∞, and
‖yn − xn‖ = βn‖xn − xn−1‖ → 0, as n → +∞.

By (10) together with Lemma 5, we conclude that lim
n→+∞

‖xn − x∗‖ exists. Since xn ∈
dom(g), for all n ∈ N, we obtain

‖yn − zn‖ ≤ ‖yn − xn‖, for all n ∈ N,

260



Mathematics 2022, 10, 1491

which implies that lim
n→+∞

‖yn − zn‖ = 0. Consequently, lim
n→+∞

‖xn − zn‖ = 0, and hence,

lim
n→+∞

‖xn − x∗‖ = lim
n→+∞

‖zn − x∗‖. Now, we will show that lim
n→+∞

‖xn − wn‖ = 0. To do

this, we consider the following two cases.
Case 1. lim sup

n→+∞
αn = c < 1, then from (9), we obtain

lim sup
n→+∞

‖wn − x∗‖ = lim sup
n→+∞

‖xn − x∗‖ = lim sup
n→+∞

‖zn − x∗‖.

Therefore, we obtain from (7) that lim
n→+∞

‖wn − zn‖ = 0. As a result, we have lim
n→+∞

‖xn −
wn‖ = 0.

Case 2. lim sup
n→+∞

αn = 1, then it follows from (9) that

lim sup
n→+∞

‖vn − x∗‖ = lim sup
n→+∞

‖xn − x∗‖ = lim sup
n→+∞

‖zn − x∗‖.

It follows from (8) that lim
n→+∞

‖wn − zn‖ = 0, and hence, lim
n→+∞

‖xn − wn‖ = 0.

We claim that every weak-cluster point of {xn} belongs to S∗. To prove this claim, let
w be a weak-cluster point of {xn}. Then, there exists a subsequence {xnk} of {xn} such that
xnk ⇀ w, and hence, wnk ⇀ w. Next, we show that w ∈ S∗. From A2, we know that � f is
uniformly continuous, so lim

k→+∞
‖� f wnk −� f znk‖ = 0. From (4), we also have

znk − γnk� f znk − wnk

γnk

∈ ∂g(wnk ), for all k ∈ N.

Hence,

znk − wnk

γnk

−� f znk +� f wnk ∈ ∂g(wnk ) +� f wnk = ∂( f + g)(wnk ), for all k ∈ N.

By letting k → +∞ in the above inequality, we can conclude from (1) that 0 ∈
∂( f + g)(w), and hence, w ∈ S∗. It follows directly from Lemma 6 that {xn} converges
weakly to a point in S∗, and the proof is now complete.

If we set βn = 0, for all n ∈ N, in Algorithm 7, we obtain the following Algorithm 8.

Algorithm 8. Algorithm with Line Search 3.

1: Input Given x0 ∈ dom(g), σ > 0, θ ∈ (0, 1), δ ∈ (0, 1
8 ) and αn ∈ [0, 1], for n ∈ N,

wn = proxγng(xn − γn� f (xn)),

xn+1 = (1 − αn)wn + αn proxγng(wn − γn� f (wn)),

where γn := Line Search 3(xn, δ, σ, θ).

The diagram of Algorithm 8 can be seen in Figure 2.
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Figure 2. Diagram of Algorithm 8.

We next prove the complexity of Algorithm 8.

Theorem 10. Let {xn} be a sequence generated by Algorithm 8. Suppose that there exists γ > 0
such that γn ≥ γ, for all n ∈ N, then {xn} converges weakly to a point in S∗. In addition, if
δ ∈ (0, 1

16 ), then the following also holds:

( f + g)(xn)− min
x∈H

( f + g)(x) ≤ 1
2γ

[d(x0, S∗)]2

n
, (11)

for all n ∈ N.

Proof. A weak convergence of {xn} is guaranteed by Theorem 9. It remains to show that
(11) is true. Let vn = proxγng(wn − γn� f (wn)) and x∗ ∈ S∗.

We first show that f (xk+1) ≤ f (xk), for all k ∈ N. We know that xk = zk in Lemma 8,
so for any x ∈ dom(g) and k ∈ N, we have:

‖xk − x‖2 − ‖wk − x‖2 ≥ 2γk[( f + g)(wk)− ( f + g)(x)] + (1 − 8δ)‖wk − xk‖2, (12)

and

‖xk − x‖2 − ‖vk − x‖2 ≥ 2γk[( f + g)(wk) + ( f + g)(vk)− 2( f + g)(x)]

+ (1 − 8δ)(‖wk − xk‖2 + ‖vk − wk‖2). (13)

Putting x = xk in (12) and (13), we obtain

− ‖wk − xk‖2 ≥ 2γk[( f + g)(wk)− ( f + g)(xk)] + (1 − 8δ)‖wk − xk‖2, (14)

and

−‖vk − xk‖2 ≥ 2γk[( f + g)(wk) + ( f + g)(vk)− 2( f + g)(xk)]

+ (1 − 8δ)(‖wk − xk‖2 + ‖vk − wk‖2), (15)
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respectively. Substituting x with wk in (13), we obtain

‖xk − wk‖2 − ‖vk − wk‖2 ≥ 2γk[( f + g)(vk)− ( f + g)(wk)]

+ (1 − 8δ)(‖wk − xk‖2 + ‖vk − wk‖2). (16)

By summing (15) and (16), we obtain

(16δ − 1)‖xk − wk‖2 + (16δ − 4)‖vk − wk‖2 ≥ 4γk[( f + g)(vk)− ( f + g)(xk)]. (17)

It follows from (14) and (17) that

( f + g)(wk) ≤ ( f + g)(xk) and ( f + g)(vk) ≤ ( f + g)(xk),

respectively, for all k ∈ N. Hence,

( f + g)(xk+1)− ( f + g)(xk) ≤ (1 − αk)( f + g)(wk) + αk( f + g)(vk)− ( f + g)(xk) ≤ 0, (18)

for all k ∈ N. Hence, {( f + g)(xk)} is a non-increasing sequence. Now, put x = x∗ in (12)
and (13), then we obtain

‖wk − x∗‖2 − ‖xk − x∗‖2 ≤ 2γk[( f + g)(x∗)− ( f + g)(wk)], (19)

and

‖vk − x∗‖2 − ‖xk − x∗‖2 ≤ 2γk[2( f + g)(x∗)− ( f + g)(wk)− ( f + g)(vk)]

≤ 2γk[( f + g)(x∗)− ( f + g)(vk)]. (20)

Inequalities (19) and (20) imply that

‖xk+1 − x∗‖2 − ‖xk − x∗‖2 ≤ (1 − αk)‖wk − x∗‖2 + αk‖vk − x∗‖2 − ‖xk − x∗‖2

≤ 2γk(1 − αk)[( f + g)(x∗)− ( f + g)(wk)]

+ 2γkαk[( f + g)(x∗)− ( f + g)(vk)]

= 2γk( f + g)(x∗)− 2γk[(1 − αk)( f + g)(wk) + αk( f + g)(vk)]

≤ 2γk[( f + g)(x∗)− ( f + g)(xk+1)],

for all k ∈ N. Since γk ≥ γ, we obtain

0 ≥ ( f + g)(x∗)− ( f + g)(xk+1) ≥ 1
2γk

(‖xk+1 − x∗‖2 − ‖xk − x∗‖2)

≥ 1
2γ

(‖xk+1 − x∗‖2 − ‖xk − x∗‖2), (21)

for all k ∈ N. Summing the above inequality over k = 1, 2, 3, ..., n − 1, we obtain

n( f + g)(x∗)−
n−1

∑
k=0

( f + g)(xk) ≥ 1
2γ

‖xn − x∗‖2 − ‖x0 − x∗‖2,

for all n ∈ N. Since, {( f + g)(xk)} is a non-increasing, we have

n( f + g)(x∗)− n( f + g)(xn) ≥ 1
2γ

‖xn − x∗‖2 − ‖x0 − x∗‖2,

for all n ∈ N. Hence,

( f + g)(xn)− ( f + g)(x∗) ≤ 1
2γ

‖x0 − x∗‖2

n
(22)
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Since x∗ is arbitrarily chosen from S∗, we obtain

( f + g)(xn)− min
x∈H

( f + g)(x) ≤ 1
2γ

[d(x0, S∗)]2

n
,

for all n ∈ N, and the proof is now complete.

4. Some Applications on Data Classification

In this section, we apply Algorithms 3, 5, 7, and 8 to solve some classification problems
based on a learning technique called extreme learning machine (ELM) introduced by Huang
et al. [28]. It is formulated as follows:

Let {(xk, tk) : xk ∈ Rn, tk ∈ Rm, k = 1, 2, . . . , N} be a set of N samples where xk is an
input and tk is a target. A simple mathematical model for the output of ELM for SLFNs with
M hidden nodes and activation function G is defined by

oj =
M

∑
i=1

ηiG(〈wi, xj〉+ bi),

where wi is the weight that connects the i-th hidden node and the input node, ηi is the
weight connecting the i-th hidden node and the output node, and bi is the bias. The hidden
layer output matrix H is defined by

H =

⎡⎢⎣G(〈w1, x1〉+ b1) · · · G(〈wM, x1〉+ bM)
...

. . .
...

G(〈w1, xN〉+ b1) · · · G(〈wM, xN〉+ bM)

⎤⎥⎦.

The main objective of ELM is to calculate an optimal weight η = [ηT
1 , . . . , ηT

M]T such
that Hη = T, where T = [tT

1 , . . . , tT
N ]

T is the training target. If the Moore–Penrose generalized
inverse H† of H exists, then η = H†T is the solution. However, in general cases, H† may
not exist or be difficult for computation. Thus, in order to avoid such difficulties, we
transformed the problem into a convex minimization problem and used our proposed
algorithm to find the solution η without H†.

In machine learning, a model can be overfit in the sense that it is very accurate on a
training sets, but inaccurate on a testing set. In other words, it cannot be used to predict
unknown data. In order to prevent overfitting, the least absolute shrinkage and selection
operator (LASSO) [29] is used. It can be formulated as follows:

Minimize: ‖Hη − T‖2
2 + λ‖η‖1, (23)

where λ is a regularization parameter. If we set f (x) := ‖Hx − T‖2
2 and g(x) := λ‖x‖1,

then the problem (23) is reduced to the problem (1). Hence, we can use our algorithm as a
learning method to find the optimal weight η and solve classification problems.

In the experiments, we aim to classify three data sets from https://archive.ics.uci.edu
(accessed on 15 November 2021):

Iris data set [30]. Each sample in this data set has four attributes, and the set contains three
classes with 50 samples for each type.
Heart disease data set [31]. This data set contains 303 samples each of which has 13 attributes.
In this data set, we classified two classes of data.
Wine data set [32]. In this data set, we classified three classes of 178 samples. Each sample
contains 13 attributes.

In all experiments, we used the sigmoid as the activation function. The number of
hidden nodes M = 30. We calculate the accuracy of the output data by:

accuracy =
correctly predicted data

all data
× 100.
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We chose control parameters for each algorithm as seen in Table 1.

Table 1. Chosen parameters of each algorithm.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

σ 0.49 0.124 0.124 0.124
δ 0.1 0.1 0.1 0.1
θ 0.1 0.1 0.1 0.1
αn - - 1

2
1
3

In our experiments, the inertial parameters βn for Algorithm 7 were chosen as follows:

βn =

{
0.95, if n ≤ 1000
1

n2 , if n ≥ 1001.

In the first experiment, we chose the regularization parameter λ = 0.1 for all algo-
rithms and data sets. Then, we used 10-fold cross-validation and utilized Average ACC and
ERR% for evaluating the performance of each algorithm.

Average ACC =
N

∑
i=1

xi
yi

× 100%/N,

where N is the number of folds (N = 10), xi is the number of data correctly predicted at
fold i, and yi is the number of all data at fold i.

Let errLsum = the sum of errors in all 10 training sets, errTsum = the sum of errors in all
10 testing sets, Lsum = the sum of all data in all 10 training sets, and Tsum = the sum of all
data in all 10 testing sets. Then,

ERR% = (errL% + errT%)/2,

where errL% = errLsum
Lsum × 100% and errT% = errTsum

Tsum × 100%.
With these evaluation tools, we obtained the results for each data set as seen in

Tables 2–4.

Table 2. The performance of each algorithm in the first experiment at the 200th iteration with 10-fold
cv. on the Iris data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 87.41 86.67 93.33 86.67 97.78 100 97.04 93.33
Fold 2 88.15 93.33 92.59 100 96.30 100 96.30 100
Fold 3 88.15 100 92.59 100 97.78 93.33 96.30 100
Fold 4 88.15 100 92.59 100 97.78 100 96.30 100
Fold 5 86.67 86.67 93.33 86.67 97.78 100 96.30 100
Fold 6 88.15 73.33 92.59 80 99.26 86.67 97.78 86.67
Fold 7 87.41 100 92.59 100 97.78 100 96.30 100
Fold 8 88.15 86.67 93.33 93.33 97.04 93.33 97.78 86.67
Fold 9 88.89 80 93.33 93.33 98.52 93.33 96.30 93.33

Fold 10 88.15 73.33 92.59 93.33 97.78 100 95.56 100

Average acc. 87.93 88 92.89 93.33 97.78 96.67 96.59 96

ERR% 12.04 6.89 2.78 3.70

Time 0.0609 0.0901 0.0781 0.0767
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Table 3. The performance of each algorithm in the first experiment at the 200th iteration with 10-fold
cv. on the Heart disease data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 79.85 86.67 81.32 86.67 83.15 93.33 82.05 86.67
Fold 2 80.15 80.65 80.15 80.65 84.19 83.87 81.62 83.87
Fold 3 81.25 77.42 82.35 77.42 84.93 77.42 83.09 80.65
Fold 4 80.51 83.87 82.35 87.10 84.56 80.65 82.72 90.32
Fold 5 79.85 90 81.32 90 84.98 86.67 82.42 86.67
Fold 6 81.68 80 83.15 83.33 84.62 86.67 83.52 83.33
Fold 7 80.22 86.67 81.68 83.33 84.25 83.33 82.05 83.33
Fold 8 82.05 66.67 82.42 66.67 84.98 73.33 82.42 66.67
Fold 9 81.32 70 81.68 70 86.08 73.33 82.05 70

Fold 10 80.95 76.67 82.05 80 84.25 83.33 82.05 80

Average acc. 80.78 79.86 81.85 80.52 84.60 82.19 82.40 81.15

ERR% 19.67 18.81 16.61 18.21

Time 0.0726 0.1048 0.1004 0.0921

Table 4. The performance of each algorithm in the first experiment at the 200th iteration with 10-fold
cv. on the Wine data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 96.89 100 96.89 100 99.38 100 98.14 100
Fold 2 96.88 100 97.50 100 99.38 100 98.13 100
Fold 3 97.50 100 98.13 100 99.38 100 98.13 100
Fold 4 97.50 100 96.88 100 99.38 100 98.13 100
Fold 5 96.88 100 97.50 100 99.38 100 98.13 100
Fold 6 97.50 94.44 96.88 100 99.38 100 98.13 100
Fold 7 97.50 94.44 98.13 94.44 100 94.44 98.75 94.44
Fold 8 97.50 100 96.88 100 99.38 100 98.13 100
Fold 9 98.75 88.89 98.13 88.89 99.38 88.89 99.38 88.89

Fold 10 98.76 88.24 98.76 88.24 99.38 100 98.14 100

Average acc. 97.57 96.60 97.57 97.16 99.44 98.33 98.31 98.33

ERR% 2.90 2.62 1.12 1.69

Time 0.0624 0.0997 0.0870 0.0810

As seen in Tables 2–4, with the same regularization λ = 0.1, Algorithms 7 and 8
perform better than Algorithms 3 and 5 in terms of accuracy, while the computation times
are relatively close among the four algorithms.

In the second experiment, the regularization parameters λ for each algorithm and data
set were chosen using 10-fold cv. We compared the error of each model and data set with
various λ, then chose the λ that gives the lowest error (ERR%) for the particular model
and data set. Hence, the parameter λ varies depending on the algorithm and data set. The
choice of parameters λ can be seen in Table 5.

Table 5. Chosen λ of each algorithm.

Regularization Parameter λ

Iris Heart Disease Wine

Algorithm 3 0.001 0.003 0.02
Algorithm 5 0.01 0.03 0.006
Algorithm 7 0.003 0.13 0.0001
Algorithm 8 0.01 0.008 0.003

With the chosen λ, we also evaluated the performance of each algorithm using 10-fold
cross-validation and similar evaluation tools as in the first experiment. The results can be
seen in the following Tables 6–8.
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Table 6. The performance of each algorithm in the second experiment at the 200th iteration with
10-fold cv. on the Iris data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 88.15 86.67 93.33 86.67 98.52 100 97.04 93.33

Fold 2 88.15 93.33 92.59 100 98.52 100 96.30 100
Fold 3 88.89 100 93.33 100 98.52 100 96.30 100
Fold 4 88.15 100 92.59 100 98.52 100 96.30 100
Fold 5 86.67 86.67 93.33 86.67 98.52 100 96.30 100
Fold 6 88.15 73.33 93.33 80 99.26 86.67 97.78 86.67
Fold 7 87.41 100 92.59 100 98.52 100 96.30 100
Fold 8 88.15 86.67 93.33 93.33 97.78 100 97.78 86.67
Fold 9 88.89 80 93.33 93.33 98.52 100 96.30 93.33

Fold 10 88.15 73.33 92.59 93.33 98.52 100 95.56 100

Average acc. 88.07 88 93.04 93.33 98.52 98.67 96.59 96

ERR% 11.96 6.81 1.41 3.70

Time 0.0618 0.0973 0.0793 0.0783

With the chosen regularization parameters λ as in Table 5, we see that the ERR%
of each algorithm in Tables 6–8 is lower than that of Tables 2–4. We can also see that
Algorithms 7 and 8 perform better than Algorithms 3 and 5 in terms of accuracy in all
experiments conducted.

In Figure 3, we show the graph of ERR% for each algorithm of the second experiment.
As we can see, Algorithms 7 and 8 have lower ERR%, which means they perform better
than Algorithm 3 and 5.

Table 7. The performance of each algorithm in the second experiment at the 200th iteration with
10-fold cv. on the Heart disease data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 79.49 86.67 82.05 86.67 84.25 80 82.05 86.67

Fold 2 80.15 80.65 80.51 83.87 83.82 87.10 81.62 83.87
Fold 3 81.62 77.42 81.99 80.65 84.56 80.65 83.46 80.65
Fold 4 80.51 83.87 82.72 90.32 83.82 87.10 83.09 87.10
Fold 5 79.85 90 82.42 86.67 86.45 76.67 82.78 86.67
Fold 6 81.68 80 83.52 83.33 85.35 86.67 83.52 83.33
Fold 7 80.22 86.67 81.68 83.33 84.98 73.33 82.05 83.33
Fold 8 82.42 66.67 82.42 66.67 83.15 90 82.78 66.67
Fold 9 80.95 70.00 82.05 70 84.62 83.33 82.42 70

Fold 10 80.95 76.67 82.05 80 84.98 90 82.78 83.33

Average acc. 80.78 79.86 82.14 81.15 84.60 83.48 82.66 81.16

ERR% 19.67 18.34 15.95 18.08

Time 0.0794 0.1129 0.1013 0.097

From Tables 6–8, we can notice that the computational time of Algorithms 7 and 8 is
30% slower than Algorithm 3 at the same number of iterations. However, from Figure 3, we
see that at the 120th iteration, both Algorithms 7 and 8 have lower ERR% than Algorithm 3
at the 200th iteration. Therefore, the time needed for Algorithms 7 and 8 to achieve the
same accuracy as or higher accuracy than Algorithm 3 is actually lower because we can
compute the 120-step iteration much faster than the 200-step iteration.
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Table 8. The performance of each algorithm in the second experiment at the 200th iteration with
10-fold cv. on the Wine data set.

Algorithm 3 Algorithm 5 Algorithm 7 Algorithm 8

acc.train acc.test acc.train acc.test acc.train acc.test acc.train acc.test

Fold 1 96.89 100 97.52 100 99.38 100 98.14 100
Fold 2 96.88 100 97.50 100 100 100 98.75 100
Fold 3 97.50 100 97.50 100 100 100 98.13 100
Fold 4 97.50 100 98.13 100 99.38 100 98.13 100
Fold 5 97.50 100 98.13 100 99.38 100 98.13 100
Fold 6 97.50 94.44 98.13 100 99.38 100 98.13 100
Fold 7 97.50 94.44 98.75 94.44 100 94.44 98.75 94.44
Fold 8 97.50 100 97.50 100 99.38 100 98.13 100
Fold 9 98.75 88.89 98.75 88.89 99.38 100 99.38 88.89

Fold 10 98.76 88.24 98.14 88.24 100 100 98.14 100

Average acc. 97.63 96.60 98 97.16 99.63 99.44 98.38 98.33

ERR% 2.87 2.40 0.47 1.65

Time 0.0644 0.0971 0.0874 0.0819

Figure 3. ERR% of each algorithm and data set of the second experiment.

5. Conclusions

We introduced a new line search technique and employed it in order to introduce new
algorithms, namely Algorithms 7 and 8. Furthermore, Algorithm 7 also utilizes an inertial
step to accelerate its convergence behavior. Both algorithms converge weakly to a solution
of (1) without the Lipschitz assumption on � f . The complexity of Algorithm 8 was also
analyzed and studied. Then, we applied the proposed algorithms to the data classification
of the Iris, Heart disease, and Wine data set, then their performances were evaluated and
compared with other line search algorithms, namely Algorithms 3 and 5. We observed
from our experiments that Algorithm 7 achieved the highest accuracy in all data sets under
the same number of iterations. Moreover, Algorithm 8, which is not an inertial algorithm,
also performed better than Algorithms 3 and 5. Furthermore, from Figure 3, we see that at
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a lower number of iterations, the proposed algorithms were more accurate than the other
algorithms at a higher iteration number.

Based on the experiments on various data sets, we conclude that the proposed algo-
rithms perform better than the previously established algorithms. Therefore, for our future
works, we would like to implement the proposed algorithm to predict and classify the data
of patients with non-communicable diseases (NCDs) collected from Sriphat Medical Center,
Faculty of Medicine, Chiang Mai University, Thailand. We aim to make an innovation for
screening and preventing non-communicable diseases, which will be used in hospitals in
Chiang Mai, Thailand.

Author Contributions: Writing—original draft preparation, P.S.; software and editing, D.C.; supervi-
sion, review and funding acquisition, S.S. All authors have read and agreed to the published version
of the manuscript.

Funding: The NSRF via the Program Management Unit for Human Resources & Institutional
Development, Research and Innovation (Grant Number B05F640183).

Data Availability Statement: All data can be obtained from https://archive.ics.uci.edu (accessed on
15 November 2021).

Acknowledgments: This research has received funding support from the NSRF via the Program
Management Unit for Human Resources & Institutional Development, Research and Innovation
(Grant Number B05F640183). This research was also supported by Chiang Mai University.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, M.; Zhang, H.; Lin, G.; Han, Q. A new local and nonlocal total variation regularization model for image denoising. Clust.
Comput. 2019, 22, 7611–7627. [CrossRef]

2. Combettes, P.L.; Wajs, V. Signal recovery by proximal forward–backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200.
[CrossRef]

3. Kankam, K.; Pholasa, N.; Cholamjiak, C. On convergence and complexity of the modified forward–backward method involving
new line searches for convex minimization. Math. Meth. Appl. Sci. 2019, 1352–1362. [CrossRef]

4. Luo, Z.Q. Applications of convex optimization in signal processing and digital communication. Math. Program. 2003, 97, 177–207.
[CrossRef]

5. Xiong, K.; Zhao, G.; Shi, G.; Wang, Y. A Convex Optimization Algorithm for Compressed Sensing in a Complex Domain: The
Complex-Valued Split Bregman Method. Sensors 2019, 19, 4540. [CrossRef]

6. Zhang, Y.; Li, X.; Zhao, G.; Cavalcante, C.C. Signal reconstruction of compressed sensing based on alternating direction method
of multipliers. Circuits Syst. Signal Process 2020, 39, 307–323. [CrossRef]

7. Hanjing, A.; Bussaban, L.; Suantai, S. The Modified Viscosity Approximation Method with Inertial Technique and For-
ward–Backward Algorithm for Convex Optimization Model. Mathematics 2022, 10, 1036. [CrossRef]

8. Hanjing, A.; Suantai, S. A fast image restoration algorithm based on a fixed point and optimization method. Mathematics 2020, 8,
378. [CrossRef]

9. Zhong, T. Statistical Behavior and Consistency of Classification Methods Based on Convex Risk Minimization. Ann. Stat. 2004, 32,
56–134. [CrossRef]

10. Elhamifar, E.; Sapiro, G.; Yang, A.; Sasrty, S.S. A Convex Optimization Framework for Active Learning. In Proceedings of the
2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 209–216. [CrossRef]

11. Yuan, M.; Wegkamp, M. Classification Methods with Reject Option Based on Convex Risk Minimization. J. Mach. Learn. Res.
2010, 11, 111–130.

12. Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979.
[CrossRef]

13. Polyak, B.T. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17.
[CrossRef]

14. Attouch, H.; Cabot, A. Convergence rate of a relaxed inertial proximal algorithm for convex minimization. Optimization 2019, 69,
1281–1312. [CrossRef]

15. Alvarez, F.; Attouch, H. An inertial proximal method for maxi mal monotone operators via discretiza tion of a nonlinear oscillator
with damping. Set-Valued Anal. 2001, 9, 3–11. [CrossRef]

16. Van Hieu, D. An inertial-like proximal algorithm for equilibrium problems. Math. Meth. Oper. Res. 2018, 88, 399–415. [CrossRef]
17. Chidume, C.E.; Kumam, P.; Adamu, A. A hybrid inertial algorithm for approximating solution of convex feasibility problems

with applications. Fixed Point Theory Appl. 2020, 2020, 12. [CrossRef]

269



Mathematics 2022, 10, 1491

18. Moudafi, A.; Oliny, M. Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 2003,
155, 447–454. [CrossRef]

19. Sarnmeta, P.; Inthakon, W.; Chumpungam, D.; Suantai, S. On convergence and complexity analysis of an accelerated for-
ward–backward algorithm with line search technique for convex minimization problems and applications to data prediction and
classification. J. Inequal. Appl. 2021, 2021, 141. [CrossRef]

20. Beck, A.; Teboulle, M. A fast iterative shrinkage–thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2009, 2,
183–202. [CrossRef]
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