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Machine learning and deep learning have made tremendous progress over the last
decade and have become the de facto standard across a wide range of image, video, text,
and sound processing domains, from object recognition to image generation. Recently,
deep learning and deep reinforcement learning have begun to develop end-to-end training
to solve more complex operation research and combinatorial optimization problems, such
as covering problems, vehicle routing problems, traveling salesman problems, scheduling
problems, and other complex problems requiring general simulations. These methods also
sometimes include classic search and optimization algorithms for machine learning, such
as Monte Carlo Tree Search in AlphaGO.

Starting from the above considerations, this Special Issue aims to report the latest
advances and trends concerning advanced machine learning and mathematical modeling
for optimization problems. This Special Issue intends to provide a universally recognized
international forum to present recent advances in mathematical modeling for optimiza-
tion problems. We welcomed both theoretical contributions as well as papers describing
interesting applications. Papers invited for this Special Issue considered aspects of this
problem, including:

Machine learning for optimization problems;

Statistical learning;

End-to-end machine learning;

Graph neural networks;

Combining classic optimization algorithms and machine learning;
Mathematical models of problems for machine learning;
Optimization method for machine learning;

Evolutionary computation and optimization problems;
Applications such as scheduling problems, smart cities, etc.

After reviewing submissions, we accepted a total of nine papers for publication.

The Internet of Things (IoT) encompasses many applications and service domains,
from smart cities, autonomous vehicles, surveillance, and medical devices, to crop control.
Most experts regard virtualization in wireless sensor networks (WSNs) as the most revo-
lutionary technological technique in these areas. Due to node failure or communication
latency and the regular identification of nodes in WSNSs, virtualization in WSNs presents
additional hurdles.

In the contribution by Othman et al. [1], “A Multi-Objective Crowding Optimization
Solution for Efficient Sensing as a Service in Virtualized Wireless Sensor Networks”, the
authors present a novel architecture for heterogeneous virtual networks on the Internet
of Things. They propose to embed the architecture in WSN settings to improve fault
tolerance and communication latency in service-oriented networking. Moreover, the au-
thors utilize the Evolutionary Multi-Objective Crowding Algorithm (EMOCA) to maximize
fault tolerance and minimize communication delay for virtual network embedding in
WSN environments for service-oriented applications focusing on heterogeneous virtual
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networks in the IoT. Unlike the current wireless virtualization approach, which uses the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II), EMOCA uses both domination
and diversity criteria in the evolving population for optimization problems. The analy-
sis of the results demonstrates that the proposed framework successfully optimizes fault
tolerance and communication delay for virtualization in WSNs.

Scholars have recently introduced various non-systematic satisfiability studies on
Discrete Hopfield Neural Networks to address the lack of interpretation. Although a flexible
structure was established to help generate a wide range of spatial solutions that converge
on global minima, the fundamental issue is that the existing logic completely ignores the
distribution and features of the probability dataset, as well as the literal status distribution.

In the study by Abdeen et al. [2], “S-Type Random k Satisfiability Logic in Discrete
Hopfield Neural Network Using Probability Distribution: Performance Optimization
and Analysis”, the authors consider a new type of non-systematic logic known as S-
type Random k Satisfiability, which employs a novel layer of a Discrete Hopfield Neural
Network and plays a significant role in identifying the predominant attribute likelihood of
a binomial distribution dataset. Establishing the logical structure and assigning negative
literals based on two specified statistical parameters is the objective of the probability
logic phase. Abdeen et al. examined the performance of the proposed logic structure by
comparing a proposed metric to current state-of-the-art logical rules. As a result, they
discovered that the models have a high value in two parameters that efficiently introduce
a logical structure in the probability logic phase. In addition, the study observed that
implementing a Discrete Hopfield Neural Network reduced the cost function. The authors
employed a novel statistical method of synaptic weight assessment to investigate the
influence of the two proposed parameters on the logic structure. Overall, they revealed that
regulating the two proposed parameters positively impacts synaptic weight management
and the generation of global minimum solutions.

Traditional leak detection methods for gas pipelines necessitate task offloading de-
cisions in the cloud, which has poor real-time performance. Edge computing provides a
solution by allowing decisions to be made directly at the edge server, improving real-time
performance; however, energy is the new bottleneck. In “Edge Computing Offloading
Method Based on Deep Reinforcement Learning for Gas Pipeline Leak Detection”, Wei
et al. [3] concentrate on the real-time detection of gas transmission pipeline leaks. As a
result, the authors propose a novel detection algorithm that combines the benefits of both
the heuristic algorithm and the advantage actor-critic (AAC) algorithm.

The proposed detection algorithm seeks to optimize and ensure real-time pipeline
mapping analysis tasks and maximize the survival time of portable gas leak detectors.
Because the computing power of portable detection devices is limited due to their battery
power, the main problem posed in this study is how to account for node energy overhead
while ensuring system performance requirements.

Wei et al. establish the optimization model by introducing the concept of edge com-
puting and using the mapping relationship between resource occupation and energy
consumption as a starting point to optimize the total system cost (TSC). This is consti-
tuted of the transmission energy consumption of the node, the local computing energy
consumption, and the residual electricity weight.

To reduce TSC, the algorithm employs the AAC network to make task scheduling deci-
sions and determine whether tasks should be offloaded. Furthermore, it uses heuristic strategies
and the Cauchy-Buniakowsky-Schwarz inequality to allocate communication resources.

Their experiments show that their proposed algorithm can meet the detector’s real-
time requirements while consuming less energy. Compared to the Deep Q Network (DQN)
algorithm, their proposed algorithm saves approximately 56% of the system energy. It
saves 21%, 38%, 30%, 31%, and 44% of energy consumption compared to the artificial
gorilla troops Optimizer (GTO), the black widow optimization algorithm (BWOA), the
exploration-enhanced grey wolf optimizer (EEGWO), the African vulture optimization
algorithm (AVOA), and the driving training-based optimization (DTBO). Moreover, it
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saves 50% and 30% compared to entirely local computing and fully offloading algorithms,
respectively. Meanwhile, this algorithm’s task completion rate is 96.3%, the best real-time
performance among these algorithms.

The pickup and delivery problems are pertinent problems in our interconnected world.
Efficiently moving goods and people can decrease costs, emissions, and time. In the
contribution by Little et al. [4], “Comparison of Genetic Operators for the Multi-Objective
Pickup and Delivery Problem”, the authors develop a genetic algorithm to solve the multi-
objective capacitated pickup-and-delivery problem by adapting standard benchmarks.

They aim to reduce the total distance traveled and the number of vehicles employed.
Based on NSGA-II, the authors investigate the effects of inter-route and intra-route mu-
tations on the final solution. Little et al. introduce six inter-route operations and sixteen
intra-route operations. Then, they calculate the hypervolume to compare their impact
directly. In addition, the authors present two unique crossover operators tailored to
this problem.

Their methodology identified optimal results in 23% of the instances in the first
benchmark. In most other models, it generated a Pareto front within 1 vehicle and 20% of
the best-known distance. Users can select the routes that best suit their requirements due
to the presence of multiple solutions.

In a disaster, the road network is often compromised in capacity and usability condi-
tions. This is a challenge for humanitarian operations delivering critical medical supplies.
In the contribution by Anuar et al. [5], “A Multi-Depot Dynamic Vehicle Routing Problem
with Stochastic Road Capacity: An MDP Model and Dynamic Policy for Post-Decision
State Rollout Algorithm in Reinforcement Learning”, the authors optimize vehicle routing
for a Multi-Depot Dynamic Vehicle-Routing Problem with Stochastic Road Capacity (MD-
DVRPSRC) using the Markov Decision Processes (MDP) model. They use the Post-Decision
State Rollout Algorithm (PDS-RA) as a look-ahead approach in an Approximate Dynamic
Programming (ADP) solution method. The authors execute a PDS-RA for all assigned
vehicles to effectively solve the problem. The agent then decides at the end.

For the PDS-RA, Anuar et al. propose five types of constructive base heuristics. Firstly,
they propose the Teach Base Insertion Heuristic (TBIH-1) to investigate the partial random
construction approach for non-obvious decisions. The paper presents TBIH-2 and TBIH-3 as
extensions to the TBIH-1 to demonstrate how experts could execute the Sequential Insertion
Heuristic (I1) and Clarke and Wright (CW) in a dynamic setting, respectively. Additionally,
the authors propose TBIH-4 and TBIH-5 (TBIH-1 with the addition of Dynamic Look-ahead
SIH (DLASIH) and Dynamic Look-ahead CW (DLACW)). The goal is to improve the
on-the-fly constructed decision rule (dynamic policy on the fly) in look-ahead simulations.

COVID-19 has shaken the world economy and affected millions of people in a brief
period. COVID-19 has countless overlapping symptoms with other upper respiratory
conditions, making it challenging for diagnosticians to diagnose correctly. Several mathe-
matical models have been presented for their diagnosis and treatment. In “An Optimized
Decision Support Model for COVID-19 Diagnostics Based on Complex Fuzzy Hypersoft
Mapping”, Saeed et al. [6] propose a mathematical framework based on a novel agile
fuzzy-like arrangement, the complex fuzzy hypersoft (CFHS) set, a combination of the
complex fuzzy (CF) and the hypersoft sets (an extension of the soft set).

First, the authors develop the CFHS elementary theory, which considers the amplitude
term (A-term) and phase term (P-term) of complex numbers simultaneously to address
uncertainty, ambivalence, and mediocrity of data. This new fuzzy-like hybrid theory is
versatile in two parts.

First, it provides access to a wide range of membership function values by broadening
them to the unit circle on an Argand plane and incorporating an additional term, the P-term,
to account for the periodic nature of the data. Second, it divides the distinct attributes
into corresponding sub-valued sets for easier comprehension. The CFHS set and CFHS
mapping, with its inverse mapping (INM), can manage such issues. They validate their
proposed framework by connecting COVID-19 symptoms to medications. This work also
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includes a generalized CFHS mapping [6], which can assist a specialist in extracting the
patient’s health record and predicting how long it will take to overcome the infection.

With the fourth industrial revolution developing, the way factories operate will no
longer be the same. Factory automation can save labor and avoid equipment failures with
online fault-detection systems. In recent years, various signal-processing methods have
received much attention in the problem of fault-detection systems. In the article by Lee
et al. [7], “Application of ANN in Induction-Motor Fault-Detection System Established
with MRA and CFFS”, the authors propose a fault-detection system for faulty induction
motors (bearing faults, inter-turn shorts, and broken rotor bars) based on a multiresolution
analysis (MRA), correlation and fitness values-based feature selection (CFFS), and artificial
neural network (ANN).

For induction-motor—current signature analysis, Lee et al. compare two feature-
extraction methods: the MRA and the Hilbert Huang transform (HHT). This work compares
feature-selection methods to reduce the number of features while maintaining the best
detection system accuracy to reduce operating costs. In addition, the proposed detection
system is tested with additive white Gaussian noise, and the best signal-processing and
feature-selection methods are chosen to create the best detection system. According to their
results, features extracted from MRA outperform HHT using CFFS and ANN. The authors
also confirm that the CFFS significantly reduces operation costs (95% of the features) while
maintaining 93% accuracy using ANN in their proposed detection system.

Detection and recognition of scene text, such as automatic license plate recognition, is
a technology with various applications. Although numerous studies have been conducted
to increase detection performance, accuracy decreases when low-resolution and low-quality
legacy license plate images are input into a recognition module.

In “HIFA-LPR: High-Frequency Augmented License Plate Recognition in Low-Quality
Legacy Conditions via Gradual End-to-End Learning”, Lee, S.-]. et al. [8] propose a model
for high-frequency augmented license plate recognition. They integrate and collaboratively
train the super-resolution and the license plate recognition modules using a proposed
gradual end-to-end learning-based optimization. To train their model optimally, the authors
propose a holistic feature extraction method that effectively precludes the generation of
grid patterns from the super-resolved image during training.

Moreover, to exploit high-frequency information that affects license plate recogni-
tion performance, the authors propose a high-frequency augmentation-based license plate
recognition module. In addition, they present a three-step, gradual, and end-to-end learn-
ing process based on weight immobilization. Their three-step methodological approach
optimizes each module for robust performance in recognition. The experimental outcomes
demonstrate that their model outperforms extant methods in low-quality legacy conditions
for the UFPR and Greek vehicle datasets.

In machine learning, the convex minimization problem in the sum of two convex
functions is fundamental. Many authors have analyzed this problem due to its applications
in various fields, such as data science, computer science, statistics, engineering, physics, and
medical science. These applications include signal processing, compressed sensing, medical
image reconstruction, digital image processing, and data prediction and classification. In the
contribution by Chumpungam et al. [9], “An Accelerated Convex Optimization Algorithm
with Line Search and Applications in Machine Learning”, the authors introduce a new line
search technique and use it to build a novel accelerated forward-backward algorithm for
solving convex minimization problems in the sum of two convex functions, one of which is
smooth in a real Hilbert space.

The authors demonstrate a weak convergence to a solution of the proposed algorithm
in the absence of the Lipschitz assumption on the gradient of the objective function. Further-
more, they evaluate its performance by applying the proposed algorithm to classification
problems on various data sets and comparing it to other line search algorithms. The authors’
experiments show that their proposed algorithm outperforms other line search algorithms.
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The articles presented in this Special Issue provide insights into fields related to “Ad-
vances in Machine Learning and Mathematical Modeling for Optimization Problems”,
including models, performance evaluation and improvements, and application develop-
ments. We wish that readers can benefit from the insights of these papers and contribute
to these rapidly growing areas. We also hope that this Special Issue sheds light on major
developments in the area of machine learning and mathematical modeling for optimiza-
tion problems and attracts the attention of the scientific community to pursue further
investigations leading to the rapid implementation of these techniques.

Acknowledgments: We would like to express our appreciation to all the authors for their informative
contributions and to the reviewers.
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Abstract: The Internet of Things (IoT) encompasses a wide range of applications and service domains,
from smart cities, autonomous vehicles, surveillance, medical devices, to crop control. Virtualization
in wireless sensor networks (WSNs) is widely regarded as the most revolutionary technological
technique used in these areas. Due to node failure or communication latency and the regular
identification of nodes in WSNs, virtualization in WSNs presents additional hurdles. Previous
research on virtual WSNs has focused on issues such as resource maximization, node failure, and
link-failure-based survivability, but has neglected to account for the impact of communication
latency. Communication connection latency in WSNs has an effect on various virtual networks
providing IoT services. There is a lack of research in this field at the present time. In this study, we
utilize the Evolutionary Multi-Objective Crowding Algorithm (EMOCA) to maximize fault tolerance
and minimize communication delay for virtual network embedding in WSN environments for
service-oriented applications focusing on heterogeneous virtual networks in the IoT. Unlike the
current wireless virtualization approach, which uses the Non-dominated Sorting Genetic Algorithm-
1T (NSGA-II), EMOCA uses both domination and diversity criteria in the evolving population for
optimization problems. The analysis of the results demonstrates that the proposed framework
successfully optimizes fault tolerance and communication delay for virtualization in WSNs.

Keywords: fault tolerance; virtualization; internet-of-things; multi-objective optimization; evolutionary
crowding algorithm

MSC: 37MO05; 37-04

1. Introduction

To accommodate the ever-expanding range of services offered by the IoT, network
virtualization has been heralded as a crucial future-proofing mechanism for the Internet [1].
Through virtualization, a computer’s hardware may be abstracted into a set of logical
units that can then be shared across several users and, in some cases, competing software
programmers. Multiple applications will be able to cohabit on the same virtualized WSNs,
making this a potential strategy that can enable efficient use of WSN implementations [2].
The virtualization of networks has been proposed as a component of future inter-network
communication models that might make it simple to integrate new functions into the Inter-
net without requiring fundamental changes to the underlying architecture. The evolution
of Internet structures would be hastened by this [3].

As a whole, the network virtualization environment is made up of individual network
nodes and the connections between them. A virtual topology is created when virtual
nodes are linked together via virtual connections to overcome the limitations of a single
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connection, such as low bandwidth. The same physical hardware can host many virtual
networks, each of which may have drastically different features. Resource-virtualization
technologies also make things more abstract, which gives network operators a lot of
freedom in how they run and change the network [4].

Sensing as a service (SaaS), which may be carried out in conjunction with network
as a service (NaaS), is one of several fascinating application areas where the concept of
WSN virtualization can be put to use. WSN virtualization enhances IoT security, resource
usage, and administration, and decreases energy consumption [5]. Figure 1 shows how
WOSN visualization can be performed by making it easier for different kinds of networks to
work together on the same physical infrastructure. The current four-tiered virtualization
architecture for WSN networks is designed to cut down on unnecessary duplication of
sensor networks across various IoT use cases [6-8].
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Figure 1. Architecture for virtualized wireless sensor networks.

The current virtualized wireless sensor networks architectures have not taken into
account the possibility of a communication breakdown on a virtual network as a result of
a breakdown in communications on real-world WSN networks. All nodes in a WSN are
susceptible to failures such as node failures, communication failures, or internal component
malfunctions of the sensors (such as a transceiver, CPU, battery, etc.) due to the wide
variety of risk or hazard situations in which WSN’s are deployed. Additionally to sensor
attributes (low cost, compact size, high quality, etc.) [9], WSN technology has a number of
challenges, but fault tolerance is by far the most significant of these. Due to the severity of
these problems, it is even more important to include procedures and ways to remedy these
flaws and reinforce their operation in order to boost fault tolerance [10].

In many scientific and technical contexts, it is important to simultaneously maximize
many objectives while weighing the tradeoffs between them. Recent years have seen
extensive studies devoted to the development of effective algorithms for resolving such
multi-objective optimization (MOO) challenges. To solve MOO issues, these algorithms
employ a population of candidate solutions, investigating a number of non-dominated
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solutions simultaneously. This is in contrast to the single-solution-at-a-time approach taken
by conventional methods. In this process, the authors in [11] used a probabilistic approach
to the formulation of a novel evolutionary multi-objective crowding algorithm (EMOCA). A
middle ground between the issues of dominance and variety in the expanding population
appears to be provided by their method.

In this context, this paper presents a novel architecture for heterogeneous virtual
networks in the IoT that may be embedded into WSN settings to improve fault tolerance
and decrease communication latency in service-oriented networking. Since fault tolerance
and communication latency are often two conflicting objectives in WSN settings, the
problem can be formulated as a reactive optimization of fault tolerance and communication
delay, which in our case is carried out by adapting an evolutionary multi-objective crowding
algorithm (EMOCA). EMOCA’s novel method lies in its use of a non-domination ranking
scheme and a probabilistic technique to decide whether an individual’s offspring will
be considered during the replacement-selection phase. EMOCA incorporates diversity
preservation as an integral part of the algorithm. Compared with the well-known non-
dominated sorting genetic algorithm NSGA-II, EMOCA discovers a diverse set of non-
dominated solutions with near-uniform spacing [11]. Simulations are used to find out how
well EMOCA performs at optimizing fault tolerance for virtualization in WSNSs.

The remaining sections of the paper are as follows: the literature on virtual network
embedding’s fault tolerance is discussed in Section 2. Section 3 lays forth the specifics
of the multi-objective optimization problem’s mathematical formulation and EMOCA’s
application toward resolving it. The simulation environment, metrics, and performance
comparisons are discussed in Section 4, and a summary is provided in Section 5.

2. Related Works

This section will provide an overview of some of the studies that have been carried
out on fault tolerance in virtual network embedding (VNE). We surveyed the literature and
classified past research into three broad classes: that focusing on link failure, that focusing
onnode failure, and that focusing on multi-objective optimization for network survival. We
will next move on to a discussion of virtualization as a contributing area in WSNs. Many
approaches have been suggested to strengthen VNE's dependability against the failure of
the substrate resources, and many researchers have attempted to address the VNE problem
using these mechanisms [12].

There are two main types of solutions to VNE survivability issues that have been
identified in the literature: (a) proactive solutions that involve reserving resources in
advance of a potential failure, and (b) reactive solutions that respond to a failure by
immediately initiating a restoring mechanism [13]. In this case, each link’s backup-storage
quota has been depleted to be used for protection and restoration. Survivability techniques
based on connection restoration and protection are useful from a commercial standpoint,
but they have certain limitations. In many instances, the reactive method might cause
data loss. The survivability measurement also does not account for the fault-tolerance
capabilities of connections or communication latency [13].

Reactive solutions utilize a path-selection algorithm to determine backup pathways
for each underlying connection before any VNE request is received. An existing embedding
technique is then used to create the virtual node and link it to the subsequent request. With
increased data loads, failure can cause a significant loss of data, and the backup mechanism
may not be able to restore the VNE [14]. In [15], the authors presented the link-based
backup strategy as a preventative measure against link failure. A portion of each core
link’s backup bandwidth is reserved in advance of any incoming VN request during the
setup process. In this case, the backup bandwidth is scheduled ahead of time, before a
problem occurs, which is preferable. Further, the VN embedding process requires fewer
computational resources. With the shared pre-allocation method, backup bandwidth is
held regardless of the VN requests, meaning it might not be used if even a small number of
VN requests come at once.
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To choose the most suitable virtual link for failure recovery, a hybrid technique was
presented in [16]. In contrast to the reactive approach, which seeks to reallocate any capacity
negatively impacted by a large request, the preventative approach embeds virtual links
into numerous core channels to promote resistance to attacks and efficiency in resource
use. This method depends on the WSN’s remaining hardware resources, which may not be
enough to fix the virtual network on a very busy network. An approach for identifying the
alternate link among the impacted virtual network (VN) resources is introduced in [17].
While a dynamic recovery method is useful in general, it is especially useful when physical
failures cause additional downtime and resources are limited. This approach demands a
full VN reset, which takes a long time and makes the service inaccessible.

The authors in [18] presented a two-step methodology for restoring the whole VN of
the failed attachment node. First, a graph is built to request VN with a virtual link backup
contract, and then the improved VN is requested on the core set by employing both the
redundant and K-redundant schemes. While this strategy may help optimize the allocation
of certain resources, it may not be able to do so for all of them. It is recommended to set
aside a spare node and link for every vital node in the network. A second two-step strategy
for restoring VN is presented in [19]. The VN is augmented using virtual nodes (Vyjodes)
and virtual links (Vi) in the first stage, and sensor networks are then given access to
this improved VN in the second stage. In the worst event, each Vy,,4e Needs to have a
backup set aside. The research in [20] offered an enhanced VN based on a failover method
to minimize backup resources. Despite being resource-efficient, this method is unworkable
because Vyges frequently migrate.

Contrary to these approaches, in [21], the authors presented a joint optimization
approach to assign both primary and backup resources. Although heuristic-based mapping
quickly tackles single-node failure, the complexity and inconvenience of considering backup
resources and the possibility of node and connection failure are inherent in this embedding
technology. A method for improving long-term viability with minimal operating expenses
was discussed in [22], which takes advantage of the spatial distribution of VNE'’s physical
resources. A heuristic-based method was used for the smaller network, while an integer
linear programming model was used for the larger one. It has been hypothesized that
this is a multi-commodity network-flow issue. Since smaller networks often have faster
physical connectivity, location data have less of an effect. If the structure of the virtual
networks is altered, undesirable topology-based survival characteristics will emerge as a
direct result. Even though there are more and more factors that take survival into account,
the use of single-objective optimization approaches has stopped progress toward the best
values for network parameters [23-26].

To improve fault tolerance in WSN virtualization, the popular MOO approach of non-
dominated sorting based on a genetic algorithm (NSGA-II) is developed in [4]. Through
a process of chromosomal sorting, NSGA-II is modified to address the optimization is-
sue. The technique of sorting prioritizes chromosomes depending on competing criteria.
Concerning solution dispersion and convergence to the genuine Pareto optimal, NSGA-II
performs better than other Pareto-optimal approaches. However, there are drawbacks to
the framework because of restrictions on the dissemination of consistency in some issues.
Moreover, crowded comparisons can restrict the convergence. Virtualization proposals for
WSNss tend to focus on improving resource (sensor) usage via the use of application-centric
multitasking and the abstraction of sensors according to their use (i.e., virtual sensors).

The research in [27] investigated the challenge of finding the optimal lifetime and
number of relay nodes for a network operating in three-dimensional environments. To
achieve a better compromise between two goals, a new method is suggested. The technique
combines a decomposition-based multi-objective evolutionary algorithm with a targeted
local search to improve its component parts. In [28], the controller placement problem,
which is a multi-objective optimization problem, is stated for selecting the optimal location
for Software Defined Network (SDN) controllers to improve WSN performance. Considera-
tions such as cost, time, and dependability are among the constraints that are applied here.
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In addition, a novel adaptive population-based cuckoo optimization (APB-CO) is used to
position controllers optimally.

The work in [29] discussed WSN resource allocation for combined time-slot assign-
ment, channel allocation, and power control. This study analyses resource dependency to
design a two-stage resource-allocation optimization technique for a non-convex issue with
diverse research aims and computing complexity. First, a graph-coloring technique for time-
slot assignment is created for conflict-free sensor information interchange. Based on the
first stage of this technique, combined power control and channel allocation are examined
and articulated as a multi-objective optimization problem to solve the tradeoff between
energy efficiency and network capacity maximization under link interference and load-
balancing constraints. In their work, multi-objective hybrid-particle swarm optimization
yields Pareto-optimal solutions.

In [30], the time function of the goal function perception matrix is presented, taking
into account the features of low-power and real-time performance of sensor nodes in WSN.
In order to limit the perceptual nodes’ inherent bias, a constraint on the number of targets
they can detect is suggested; a weighted factor on the utility function is employed to ensure
users are treated fairly; and finally, an optimization model of multi-objective resource
allocation is established. To effectively allocate resources, a new technique is presented
that builds on top of a modified version of simulated annealing (SA), bringing together the
speedy optimization capabilities of SA with the robust search capabilities of logistic chaos.

The authors in [31] presented a multi-objective protocol (MOP) that maximizes net-
work lifespan and residual energy using a mixed-integer linear-programming (MILP)
optimization technique. Within the boundaries of the nodes that make up a given target,
sets of MILP are solved locally. Therefore, within the same coverage nodes, energy is con-
served. This research takes into account the goals of optimizing network residual energy
and neighbor node connections. In order to determine which nodes to deactivate, each
round’s local MILP solution is used to identify the nodes that have the lowest connection
to their neighbors and are thus the most heavily used throughout the routing process.

For 5G systems that support the Internet of Things, the research in [32] developed a
new method of clustering based on optimization via network slicing. By using network
slicing and cluster construction, multi-objective improved seagull optimization-based
clustering with network slicing (MOISGO-CNS) aims to improve 5G systems’ energy
efficiency and load distribution. Both ISGO-based clustering and IGSO using bidirectional
long short-term memory (BiLSTM) form the backbone of the MOISGO-CNS method. Two-
hop connectivity ratio, residual energy, and link quality are the three metrics used to build
a fitness function in the IGSO-based clustering method. In addition, the ISGO algorithm
is developed as part of the network-slicing process in order to pick hyperparameters for
optimum slicing classification performance. See [33,34] for an updated review of multi-
objective optimization in wireless sensor networks. Recent studies that have looked at the
crucial research of node and network-level virtualization in WSNs for the IoT [35,36] and
applications show this to be the case [6,8,37-39].

In general, the problem with employing evolutionary algorithms for improving fault
tolerance in WSN virtualization is that they cannot determine whether or not a solution
is optimum; they can only determine whether or not it is “better” than other solutions
that they already know about. It is also tricky to provide accurate weights to the objective
functions, run the algorithm numerous times, and end up with various Pareto-optimal
solutions; and Pareto-front concaves are notoriously difficult to analyze. A key challenge
in the development of effective algorithms is the incorporation of diversity mechanisms
into evolutionary algorithms for multi-objective optimization problems. This is the case for
problems with an exponentially large number of possible non-dominated goal vectors. An
acceptable approximation of the Pareto front is what we are aiming to obtain.

We look at how this can be carried out using the diversity mechanism of crowding
dominance and highlight where this idea is demonstrably beneficial to handle internal
failure perspectives in virtualization in WSNs. We use EMOCA as an MOO technique to

11
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maximize fault tolerance and minimize communication delay. The performance of EMOCA
is compared with that of the well-known non-dominated sorting genetic algorithm NSGA-
II. According to [11], EMOCA performs better than the other algorithm in eight of the nine
test problems when it comes to convergence and diversity. It always finds a wide range of
solutions that are not dominant.

3. The Proposed Framework

Here we cover the topic of virtualization’s fault tolerance in WSNs. We evaluate a
network structure with four layers. There is the “physical” layer, which is made up of the
real sensor nodes, and then there is the “virtualization” layer, which creates additional
“virtual” sensors that can perform additional jobs and services beyond what the “physical”
layer can. In the third layer, known as the “access layer”, different WSNs are developed
based on the fault-tolerant incorporation of mission-oriented sensors. There is an access
agent for every embedded network. The applications layer is where the IoT’s smart
applications, such as humidity, fire monitoring, temperature, etc., are represented to the
end users who really benefit from them. In order to implement the suggestion, the access
layer is modified.

Every node in a traditional sensor network cooperates to deploy sensors at the same
level [24]. When many sensor networks operate together and share the same physical
location, they form the Virtual Sensor Network (VSN). The same domain hosts a variety
of physically distinct sensor networks. As part of a larger wireless sensor network, it is
established by the sensor nodes that are most relevant to a certain activity or use case at
that moment [20]. But in a virtual sensor network, the nodes work together to complete a
specified task at a precise moment. To create a virtual sensor network, logical connections
must be made between cooperating sensor nodes. Depending on the phenomenon being
monitored or the function being served, nodes may be organized into distinct virtual
sensor networks. The capability for network construction, utilization, adaptation, and
maintenance of a subset of sensors working on a given job should all be provided by the
virtual sensor network protocol. The proposed framework'’s flowchart is shown in Figure 2,
and the mathematical terminology used to describe its key processes is included in Table 1.

Say we have a sensor network with nodes dispersed over the network region Nj4.
Assume mesh topology, meaning all nodes are connected. This network supports virtual
networks. Assume a link-route breakdown causes s” and d°’s link connection to fail. The
wireless sensor network connects source physical sensor s” and destination physical sensor
d? nodes. Investigate all possible paths between s and d” to discover a fault-tolerant
alternative. To find these routes, you must know the expected number of intermediary
nodes. By calculating the average distance to the nearest-neighboring node, we may count
the paths. Obtaining the sensor’s probability density function (pdf) is all that is required to
compute the nearest-neighbor sensor’s distance; pdf is the probability of a neighbor sensor
within r and (r 4+ Ar), where r is the transmission radius and Ar is the incremental distance.
The physical wireless sensor network is considered to have a uniform sensor distribution A

such that [4].
1

Na
For any two sensors separated by a distance between r and (r + Ar), the probability
of the closest-neighbor sensor is equal to the product of the probabilities that one

/‘ AdNy =1 = A = (1)
Ny

pf\(r-%—Ar)

of the sensors is present at the distance Pf‘( ) and that none of the other sensors are closer

r+Ar
PY,. Assume that the N, sensor nodes in the network can only send data at a distance of
0.5 rad to the destination d”. In this case, Pf‘ (r+r) €A be computed as:

—po
P:|(r+Ar) - P<r‘PS\

r|(r+Ar) (2)
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Figure 2. Flowchart of the proposed framework.
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Table 1. Mathematical Nomenclature.

Notation Description
s? Virtual source sensor of a link failure
d’ Virtual destination sensor of a link failure
sP Source physical sensor
dar Destination physical sensor
NP Total number of paths between s? and d?
Nu Number of sensors in the network
Ny Network area
Niy Number of intermediate nodes between s and d”
E(r) Expected closest-neighbor distance
r Distance of nearest-neighbor sensor
Ar A small incremental distance in r
A Density of sensors in the network
f‘ (r+Ar) Probability of closest sensor between r and r + Ar
5‘(7 e Probability of some sensor between r and r + Ar
0. Probability of no sensor at less than r distance
S; or Sil The ith sensor or the jth virtualization of ith sensor
frn Probability density function (pdf) of closest-neighbor distance
R Transmission range of sensors
D Distance between s” and d?
(Nin —2) Number of paths with k intermediates
FT! Fault tolerance of ith path
F Ti’ Fault tolerance of ith link
C Df Communication delay of ith path
C Dg Communication delay of ith link
CH; The ith chromosome
Npe Number of retransmissions for a success
eij Packet error rate of a link between nodes i and j
di‘,j Degree estimation of a link between nodes i and j
s Degree of ith node
a Decision variable
di; Distance between nodes i and j
Sp Propagation speed
St Transmission speed
Spkt Size of packet
Spop Size of chromosome population
Ngen Number of generations during solution optimization
Isp Link between s’ and d?
Fi”“'h Fault tolerance of ith path
Df Dominance set of ith solution
Si The ith solution of the population
np The number of solutions that dominate p
F; The jth front
SC”””/*V"T” Size of child population
R; Rank of ith solution

In order to calculate the probability density function of the nearest-neighbor distance
fr(r), we can use the limit in Equation (7) as:

Pf\ (r+Ar)

_ A2\ Nu
Jim —2— = NpArmr(1— Amre) 8)

Considering R as transmission range of sensors, the expected closest-neighbor distance
(r) can be expressed as

Na

E(r) = ./OR rfr(r)dr = /OR NuA7r? (l - )\nr2> dr )
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R Ny+1
| —r(1 = Am?) R (1—Amr?)™
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E(T’) — \4 Nf NH+1 (71) (12)

ATy i+1

It can be shown that there are exactly (Nj, — 2) . pathways from s” to d” with exactly
k intermediary nodes, where

SESEA)
- (1)

D represents distance between s and d”. The equation for the total number of routes,
NP7, from sP to dP is as follows:

NV = (Nin - Z)Cl + (Nin - 2)C2 +oot (Nin - 2)C(N _2) (15)
N R IR
NP =2Nim _1 (17)

If we want to maximize fault tolerance (FT), we can write it as:
Maximize FT =  max (PT”) (18)

i=12,.
1 i=(| &5 ] -1, j=a

FTV = Yoo FT!, (19)

D =P j=1 ij

1 ( \_WJ —1 ) 1=st ,]

F T is the fault tolerance of the ith path from source s” to destination d”, and F Tl is
the fault tolerance of a link between an adjacent pair of nodes. The ordered set of nodes of
ith path is represented by S; o

rovr () () e

Similar to how the maximize FT function is written, the communication-delay (CD)
minimization function is given by:

Minimize CD = 1‘rr21i1’le (CD?) (21)
i=12,...,
1 i=(| &5 ]-1), j=av ( CD};
CcDl = Ty Yo E](:)l CDzl] (22)
(LWJ — 1) max
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CDZP represents delay of ith path from s” to d”, CDl’-/]. is the delay of a link between

an adjacent pair of nodes, and i,j € S?P . The maximum link delay among all the links is
represented by C Dl,.x- The optimization issue outlined above has the following restrictions:

1

cD!.
0<FT<1,0<FT/<1,0<CDI<1,0< —"1 <1 (23)
max

The problem can be formulated as a reactive optimization of fault tolerance and
communication delay, which is accomplished in our case by adapting an evolutionary
multi-objective crowding algorithm (EMOCA). The number of objectives being optimized
for is the primary dividing line between single- and multi-objective streamlining. When
there are several competing goals, there is no best way to solve the situation at hand. There
are a few possible good solutions. Pareto-optimal solutions are those that maximize utility
with the fewest costs. As far as all goals go, the Pareto front does not provide a single
solution that is optimal. Accordingly, all Pareto-front solutions are valuable without any
problem-specific knowledge regarding the relative importance of different goals. Finding
numerous such solutions that represent tradeoffs between goals is the primary aim of
multi-objective optimization [40,41].

The primary objectives of multi-objective evolutionary algorithms (MOEAs) include:
(1) settling on a Pareto-optimal solution set; and (2) acquiring a wide variety of options
that are evenly spaced. When solutions are distributed unevenly, the Pareto front becomes
crowded in certain areas. The EMOCA solution prioritizes variety throughout the algorithm
to solve this problem [11]. Evolutionary operators such as crossover and mutation, in
addition to chromosomal sorting through the non-dominance concept and diversity, are
used to alter the solutions in EMOCA. After multiple cycles, the EMOCA eventually arrives
at a collection of tradeoffs known as the Pareto front. Unlike an aggregate optimization
strategy that only offers one solution, this set of alternatives gives the system designer
many to choose from. The main structure of EMOCA is illustrated in Algorithm 1. Now
we will discuss each of EMOCA's distinct steps [11].

Algorithm 1: EMOCA main structure

1. Initialize.
2. For the number of iterations determined by computational bounds, do:

2.1.  Generate Mating Population.

2.2.  Generate offspring by crossover followed by mutation.

2.3.  Create a new pool consisting of parents and some offspring.
2.4.  Trim new pool to generate the population for the next iteration.
25.  Update archive to contain all non-dominated solutions

Mating Population Generation: As a means of increasing the number of viable mates,
EMOCA uses a system of binary tournament selection. An individual’s fitness level is
equal to their non-dominance rank plus their diversity rank. Individuals” non-dominance
ranks are determined using the non-dominated sorting algorithm presented in [42—44].
Each individual within the population is compared to the others to determine dominance.
This gives initial non-dominated front solutions. The first front’s solutions are temporarily
discarded, and then the preceding method is repeated until no non-dominated fronts
remain. Solutions from the same non-dominated front are ranked equally.

For diversity rank, NSGA-II crowding’s distance metric determines each solution’s
crowding density. To determine the density of solutions around a specific solution in a front,
we calculate the average distance of two solutions along each goal (two solutions on either
side of the solution x;). Front boundary solutions have an infinite crowding distance. For
all other solutions within a front, the following Algorithm 2 is used to assign the crowding
distance [36]. Greater crowding distance in a solution suggests more variety (diversity).
Based on their crowding distance, the solutions in the population are rated and ordered.
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Algorithm 2: Crowding distance measure

1. For each solution x; of front F, initialize crowding distance d(x;) to be 0;
2. For each objective function f;; do:

2.1 Sort the solutions in F along objective f;;

d(x;) =d(x;)+  fu(the individual that precedes xi in the sorted sequence)
— fm(the individual that follows xi in the sorted sequence)

New Pool Generation: After comparing each child to one of its randomly selected
parents, taking dominance and crowding density into account, a new pool consisting of all
the parents and some of the offspring is formed. Possible outcomes include the following
three scenarios:

- Case 1: The child gets introduced to the new pool if it is dominant over the parent.

- Case 2: The probability of acceptance of the children is calculated using the crowding
distance measure if the parent is dominant over the offspring. The probability P that
a child will be included in the new pool if it has a larger crowding distance than its
parent is:

P =1—-exp((5(parent) —é(of fspring)) (24)

0 denotes the crowding distance of a solution. A more diverse child with a larger
crowding distance than its parent has a greater chance of survival. More diverse solutions
are rewarded by being given a chance to thrive in subsequent generations.

- Case 3: In cases where the parent and offspring are not dominant over one another,
the offspring will be included in the new pool if its crowding distance is greater than
that of the parent.

Trimming New Pool: Both non-domination rank and diversity rank are used to sort
the new pool. Thus, the diversity rank is used to compare alternatives that have the same
non-domination rating. The new population will be made up of the initial items of the
sorted list of fronts Fj, F,, ..., F, where elements of F; + 1 are dominated only by elements
inFy, B, ..., F. All generations of non-dominated solutions are saved in EMOCA’s archive.

For the most part, EMOCA relies on an individual’s diversity score to determine
whether or not their offspring will be allowed to join the new population. While EMOCA
does not tolerate offspring who are dominant like their parents, it does allow some low-
quality offspring to remain in the population, provided they have sufficient variety. The
result is a more well-rounded and interesting population. Although NSGA-II allows all
viable offspring to go on into the next generation, EMOCA only allows a small percentage
to do so. Therefore, whereas NSGA-II executes non-dominated sorting on a population
of size 2N, where N is the population size, EMOCA executes non-dominated sorting on
a population size between N and 2N. With this, EMOCA'’s computational complexity
decreases [11].

3.1. Chromosome Representation

In EMOCA's solution space for an optimization problem, a chromosome CH; is an
ordered collection of intermediate nodes S?p that begins with source s” and ends with d”.
Genes in the chromosomal model are represented by each node in the set.

D FT,CD
= {2, ([ 2] -2).4ore0 - v,0) @)
T = (1= 500 (o) (1 - ei7)) + 4 6)
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Given a connection with packet error rate ¢; j and degree estimate of the link dg,j’ we
may calculate the number of retransmissions, N;., that will be necessary for a successful
transmission. In this case, a path’s cumulative fault tolerance is calculated by adding the
fault tolerances of its individual connections. With the help of packet-error-rate-based link-
quality estimation and neighbor-density-based degree estimation, we are able to calculate a
link’s fault tolerance F Tll i The degree estimation can be derived from Equation (27) where
d¢ and df are the degrees of nodes i and j, respectively, and « is a decision variable varying
between 0 and 1.

1, i =df =Ny —1
s 1—af, df =df < Ny —1
W i 27)
1—a T, —ag| >0

!

ijr
connection, which is based on the link quality, as well as propagation and transmission
delay where dz-,j is the distance between the pair of nodes i and j, S, represents propagation

speed, Spy; is the packet size, and s; represents transmission speed.

When calculating the communication delay CD; ., we factor in interference for the

di; S
ol = (1= (e)) (1—ei)) + S’: + SL:" 28)

3.2. Crossover and Mutation

The crossover procedure involves randomly swapping a collection of nodes between
two chromosomes from the population (all paths between s? and d”). The exchange is
limited to nodes that are reachable both downstream and upward. Larger group sizes
are desirable in the earlier stages (lower generations) of a solution. Generation number
and chromosomal pair size determine crossover group size. Due to the recurrence of
intermediate nodes, chromosomes after crossover operations (also called offspring in
optimization theory) are repaired. Intermediate nodes in the parent chromosome but
not in the offspring are considered during repair. If two randomly chosen nodes on the
chromosome can be reached (present as neighbors) from their respective descendant nodes,
then the mutation process will swap their positions.

3.3. Non-Dominance and Crowding-Distance-Based Sorting for Chromosomnies

Using non-dominance, chromosomes are sorted. Multiple competing goals are used
to arrange chromosomes. Consider population chromosomes CH; and CH;. According to
Pareto optimum, a chromosome CH; dominates CH; if at least one of its fitness values is
higher than CH;’s and the other fitness values are equal. Multi-objective optimization in
communication networks favors Pareto-optimal prioritizing [40,41]. For two goals, it is:

CH;(FT) > CH;(FT), ACH;(CD) # CH;(CD)

CH;(CD) > CH;(CD), \CH,(FT) # CH;(FT) @9

CH; > CH i = {

The population’s chromosomes are sorted by fitness using the non-dominance notion.
Non-dominant chromosomes rank first in the population. Only one chromosome in a pop-
ulation ranks second. Population-wise, chromosomes dominated by two others rank third.

Each chromosome’s crowding distance is computed after ranking. The next generation is
chosen via a tournament method.

18



Mathematics 2023, 11, 1128

Algorithm 3 lays out the whole process that was followed to obtain an optimal solution,
for which a population (paths between pairs of sources and destinations) of size SF°7 is
formed by randomly scattering the decision variable throughout some allowed range (low,
high). Non-dominance-based sorting 0/d?°? is used to order the population. To determine
the objective-1 normalized fault tolerance and the objective-2 normalized delay for each
S; € 0ldP°P, the best half of the population is selected, and for each S; the crowing distance
C¥st is computed from all points excluding boundary points. Using the tournament-
selection approach, the best half of the population is chosen based on the rank of i solution
R; and crowding distance C**. By introducing mutations and performing crossovers, a
superior solution may be generated from a preselected parent population. The optimal half
of the population is once again chosen from the whole population. These procedures are
iterated until the stop criterion is met (the maximum number of generations is reached) in
order to produce optimal chromosomes. The time complexity of EMOCA is
O(2 x SPP x N8¢"), where SF7 is size of the old population and N8°" represents the number
of generations. The number of generations, and hence the amount of time it takes to run,
is indirectly determined by the size of the network. As a result, the time needed for each
generation might change based on the system’s hardware.

In summary, convergence is emphasized by the concept of non-domination rank.
During the period of tournament selection and population reduction, variety is preserved by
the use of diversity rank. It is also possible to apply the crowding distance to the parameter
space [11]. In contrast, we measure crowding in the target space to determine the optimal
solution. When compared to NSGA-II and other multi-objective evolutionary algorithms
(MOEAs5) such as multi-objective ant-colony optimization (MOACO) and multi-objective
particle-swarm optimization (MOPSO), EMOCA’s most distinguishing features include:

- When selecting whether or not to include a new generation into the population,
EMOCA takes into account each individual’s diversity score. In contrast to MOEAs,
which eliminate offspring who take after a single parent, EMOCA lets some low-
quality offspring to persist in the population so long as they contribute to genetic
variety. In a nutshell, this contributes to a more diverse population.

- While NSGA-II allows all viable offspring to go on into the next generation, EMOCA
allows just a small percentage to do so. Thus, whereas NSGA-II can only carry out non-
dominated sorting on a population of size 2N, EMOCA can perform non-dominated
sorting on populations with sizes ranging from N to 2N. The computational burden
placed on EMOCA is therefore decreased.

- In EMOCA, both non-domination and diversity are equally weighted by a single
measure (the total rank) used for mate selection. This tremendously aids efforts to
diversify and improve the quality of the available mating pool. But MOEAs and
NSGA-II employ non-domination rank as the major criterion for selecting the mating
pool. As a result, the resulting mate pool could not be as diverse as it otherwise
would be.

The next section details the simulations run to assess the framework’s efficacy, paying
special attention to the parameters of the test beds, the metrics used, and the analysis of
the resulting data. Two goals were set to accomplish simulations based on case studies. To
begin, the number of generations has an influence on fault-tolerant optimization’s efficacy,
which is then used to determine how well it performs. Second, network density is a key
indicator of fault-tolerant optimization’s effectiveness.
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Algorithm 3: EMOCA for solving the optimization problem

Input: SP°P, N8 Ig p, Fipmh
Starting with generate initial population size SP°7. Then saving one copy of population as
“oldPopP”.
For each S; € oldF°F
Calculate objective-1 normalized fault-tolerance using Equation (19)
Calculate objective-2 normalized delay using Equation (22)
End for
g=1
While (g < N3°)
Non-dominated sorting (old?°F)
For each S; € oldP°?
Calculate D
End for
j=1
For each S; € oldP°P
If (D = 9)
FF=FUS,R =1
End if
End for
j=2,
For each S; € old"°P
I (D5 # ¢ && Ry ==j — 1)
F=FKUS,Ri=1 j=j+1
End if
End for
Crowding _distance (old"°F)
Assume C*** from boundary point (group of solution) to co for any solution.
For each S; € oldP°P
Calculate C%! from all point excluding boundary points
End for
Select the best half population as parent?? considering R; & C%* using tournament selection
approach.
childP? = ¢
Gehild—pop —
While (Schild—pop < §pop)
Randomly select two chromosomes from the parent population.
Perform crossover to produce two child chromosomes.
Update child?°P and Scild—pop = gchild—pop 5
Randomly choose a chromosome from parent population.
Mutate chromosome to produce a child chromosome
Update child?°P and §hild=pop = gehild—pop , 1
End while
Generate new population of size (2 x 5P°F) by old?°P U childP°?
Calculate normalize fault-tolerance using Equation (19).
Calculate normalized delay using Equation (22).
Non-dominated sorting (NoldP°? U childP°P)
Crowing_ distance (o/dP°P U childP°P)
Select again the best half population as 0ld?°P using rank and C%5
End while
Output: optimized chromosomes

4. Experimental Results

In order to evaluate the proposed framework in virtual networks, the NS2 network
simulator employs C++ to develop the simulation’s primary classes. The major classes of the
simulation include ‘NetworkNode’, ‘VirtualNode’, ‘RandomProvider’, ‘PathSearch’, and
‘MainApp’. All the characteristics of a node in a network, such as position, list of neighbors,
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link delay with neighbors, and fault tolerance of associated links, are implemented in
‘NetworkNode’. At ‘VirtualNode’, tasks are processed using an interface-based architecture.
Different sets of network nodes are generated at random by the ‘RandomProvider” for
each simulation run. PathSearch is a tool for optimizing virtual network generation with
respect to delay and fault tolerance. The simulation is run on a machine with a 64-bit
UBUNTU operating system (Linux), 16 GB of RAM, and an Intel Core i7-11700K processor
running at 3.6 GHz. Three sets of randomly formed networks of 100, 500, 1000, 1500,
and 2000 nodes are constructed using the Poisson distribution method. For each of four
distinct networks, the EMOCA algorithm is run for 500, 1000, 1500, and 2000 generations
in an effort to maximize fault tolerance and minimize communication latency. The most
recent generation’s chromosomes in the results table stand in for the most recent set of
optimized values.

Parameter and setting values utilized in the simulations are listed in Table 2. Sensors
are deployed in a range of 100 to 1000, according to a specific deployment pattern, with
a maximum transmission radius of 30 m, uniformly and randomly distributed across the
circle with area N, = 1500 m?. The initial energy level J of each sensor is the same. The
power consumed while transmitting, receiving, and in the idle state are 175 m]J, 175 mJ, and
0.015 m], respectively. The power consumed for sensing is equal to 1.75 pJ. For focusing
on coverage measurement, a sensing range of 10 m and a transmission range of 30 m are
considered during the simulation. Transmission delays due to propagation have been
deemed insignificant for the simulation region chosen. Each experiment was repeated
30 times using the specified simulation settings and variables, and the arithmetic mean was
used to optimize the data record with a 95% degree of confidence.

Table 2. Basic parameter setting for simulation.

Parameter Value
Simulation area 1500 m?
Simulation time 600 s

Number of nodes 100 — 1000

Bandwidth 40 Kbps

Transmission range 15mto 30 m
Receiving range 15m
Initial node energy 30]
Packet type ubP
Channel type Wireless
Antenna model Omni
MAC protocol IEEE 802.11
Query period 3s
Hello timeout 1s

4.1. Comparative Results

In Figures 3-6, we see how EMOCA, NSGA-II, and multi-objective versions of both op-
timization algorithms, which include particle-swarm optimization (PSO) and ant-colony op-
timization (ACO), perform while optimizing a network with 100 nodes across
500-2000 generations. Herein, the comparative algorithms were employed as black-box
versions with their default parameters (open-source code from GitHub). It is evident that
EMOCA outperforms other comparative algorithms in terms of optimization performance,
with regards to both fault tolerance and communication latency. The finding demonstrates
that virtualized WSNs based on EMOCA can successfully deal with failure. More specifi-
cally, the optimal values for fault tolerance and communication latency are 0.67 and 0.02,
respectively. This is because packet-error rate is a reliable predictor of fault tolerance. For
the multi-objective version of ACO, the optimal value of fault tolerance is approximately
0.57 and the optimal value of communication delay is approximately 0.038. However, for
the multi-objective version of PSO, the optimal values of fault tolerance and communication
delay are 0.31 and 0.11, respectively.
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CA NSGA-II

Figure 3. Optimized chromosome with 100 nodes after 500 generations.

EMOCA

Figure 4. Optimized chromosome with 100 nodes after 1000 generations.

NSGA-II PSO

Figure 5. Optimized chromosome with 100 nodes after 1500 generations.
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EMOCA NSGA-II

Figure 6. Optimized chromosome with 100 nodes after 2000 generations.

The optimal value of fault tolerance for NSGA-II is around 0.44, whereas the optimal
value of delay is approximately 0.05. This is because a fault-tolerant estimate is reliant on
the degree of connection. In a wireless environment, the estimate is inappropriate. Having
a large number of chromosomes also increases latency and decreases fault tolerance. In
addition, because of the reduced size of the network (100 nodes), the effect of a larger
number of generations on the final, optimized chromosome is far less dramatic. It is
difficult to tell what makes one set of results distinct from the next. This is because there
are fewer possible paths to create in more compact networks.

The network is scaled up to 500 nodes in order to amplify the optimization per-
formance gap between generations. Figures 7-10 display a comparison of optimization
performance with increasing network size. The results show that when both goals are
included, EMOCA achieves greater optimization performance than NSGA-II and multi-
objective versions of both ACO and PSO. Specifically, the fault tolerance value of the latest
optimized chromosome is about 0.92, while the communication latency value is around
0.015. This is because more paths are available in more extensive networks, allowing for
the selection of connections of higher quality, with higher fault tolerance and reduced
communication latency. There is a tradeoff between fault tolerance and communication
latency, with the optimal value for each ranging around 0.82, 0.06 for ACO; 0.72, 0.08 for
NSGA-IL; and 0.59, 0.1 for PSO, respectively. The pace at which the system converges on an
optimal solution has slowed, and the number of optimized chromosomes has decreased.
Additionally, the bigger network (500 nodes) mitigates the negative effects of increasing
the number of generations on the optimized chromosome.

The convergence rate toward the ideal solution is boosted by increasing the network
size to 1000 nodes. Figures 11-14 display a comparison of the optimization convergence
rates. As expected, the results show that EMOCA has a higher optimization convergence
rate compared to NSGA-II, ACO, and PSO for both goals. Comparatively, the optimum
chromosomal value for communication latency is about 0.010, whereas the fault-tolerance
value is around 0.98. This is because, as the size of the network grows, more and more
paths become suitable for use, allowing for more discriminatory tolerance in the paths
that are ultimately chosen. The optimal fault tolerance for ACO chromosomes is around
0.82, whereas the optimum communication delay is about 0.06. The optimal fault tolerance
for NSGA-II chromosomes is around 0.78, whereas the optimum communication delay is
about 0.07. The optimal fault tolerance for PSO chromosomes is around 0.59, whereas the
optimum communication delay is about 0.1. In addition, when the size of the network is
ramped up, the proportion of optimized chromosomes grows. In both cases, you will find
that the chromosomes are packed closely together. We can also observe that the Pareto
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front obtained by EMOCA covers a wider region of the objective space compared to the
Pareto fronts obtained by the other algorithms.

EMOCA - NSGA-II

Figure 7. Optimized chromosome with 500 nodes after 500 generations.

Figure 8. Optimized chromosome with 500 nodes after 1000 generations.

4.2. Summary of Results

We can also observe that the Pareto front obtained by EMOCA covers a wider region of
the objective space compared to the Pareto fronts obtained by the other algorithms. EMOCA
yields much smaller values for the crowding distance of a solution compared to competing
techniques. EMOCA finds a wide variety of non-dominated solutions spaced out almost
uniformly. These characteristics enable EMOCA algorithms to search for solutions in a
much larger space with less complexity, and the results show that the EMOCA approach
was capable of providing more accurate solutions at a lower computational complexity
than the existing compared methods.
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EMOCA PSO

Figure 9. Optimized chromosome with 500 nodes after 1500 generations.

EMOCA NSGA-II PSO e ACO

Figure 10. Optimized chromosome with 500 nodes after 2000 generations.

EMOCA

Figure 11. Optimized chromosome with 1000 nodes after 500 generations.
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EMOCA

Figure 13. Optimized chromosome with 1000 nodes after 1500 generations.

Figure 14. Optimized chromosome with 1000 nodes after 2000 generations.

Algorithms built on the NSGA-II framework outperform their PSO-based counterparts.
Here are several explanations that might be at play. Because of NSGA-II's crossover and
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mutation processes, chromosomes may be shifted across huge distances in the solution
space. Additionally, in NSGA-II, there is no correlation between individual chromosomes
and the present local or global best results. Such capabilities allow NSGA-II based VNE
algorithms to explore solutions in a considerably broader area than is possible with the
PSO method alone. On the other hand, only the “best” particle shares its knowledge in
PSO-based VNE algorithms. In contrast to PSO-based algorithms, those based on ACO
vary in the calculation rank of the nodes, which affects the sequence in which virtual node
consolidation and pheromone computi