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1. Introduction

To achieve carbon neutrality by 2050, additional measures must be taken, including
the extensive incorporation of renewable energy sources (RESs). Additionally, we must
pave the way for new market and grid structures that facilitate the integration of these
clean technologies, along with initiatives for demand response (DR), electric vehicles (EVs),
and energy storage.

In this context, microgrids (MGs) have emerged as a highly valuable framework.
Specifically, a microgrid can be described as a small-scale network equipped with local
power generation capabilities, typically connected to a larger power grid but being capable
of operating independently [1]. As a result, microgrids offer numerous opportunities
for various entities to optimize the utilization of local resources while ensuring a reliable
electricity supply in remote and isolated areas [2].

2. Design Control and Optimization of Renewable-Based MGs

For the effective advancement, integration, and implementation of renewable-based
MGs in existing power systems, the development of appropriate tools for their optimal
design and control is crucial. This Special Issue aims to gather the latest advancements
in this field, particularly focusing on optimization tools with various objectives. A total
of 16 papers were submitted to this Special Issue, out of which, 10 were accepted for
publication, indicating a 62.5% acceptance rate. This demonstrates the significant interest
of the research community in this particular topic.

The first paper, authored by S. Panda et al. [3], presents a comprehensive overview of
the recent advancements in modern DR initiatives and their interaction with renewable
sources and energy storage systems. The second paper, written by A. Malki et al. [4],
proposes a procedure based on metaheuristic algorithms to identify the key parameters
of photovoltaic (PV) modules. It should be emphasized that accurately determining these
parameters is crucial for the development of advanced optimization tools in PV-based
systems. Another paper [5], authored by S. Mikkili et al., investigates electronic converters,
specifically focusing on the performance analysis of a modular multilevel converter with
NPC sub-modules. Such converters have numerous applications in PV-based systems.

The main focus of this Special Issue is the development and study of various optimiza-
tion tools. These tools have been specifically designed for potential application in MGs. The
majority of the papers in this issue concentrate on different strategies for the management
of energy in systems that rely on renewable sources. For example, H. Kraiem et al. [6]
compare two metaheuristic methodologies aimed at enhancing the autonomy of PV-battery

Appl. Sci. 2023, 13, 8235. https://doi.org/10.3390/app13148235 https://www.mdpi.com/journal/applsci
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systems. Z. Xu et al. [7] present a cooperative multi-objective optimization approach for
DC multi-MG systems, where multiple MGs work together to achieve common goals. Fur-
thermore, authors in [8] introduce a novel optimization methodology applied to a real case
study conducted in Alrashda Village in Egypt. Lastly, M. Espitia-Ibarra et al. [9] introduce
a linear-programming methodology for optimal energy management in MGs, notable for
its efficient computational performance, making it suitable for online applications.

The previous references primarily focus on electricity systems and do not take into
account other energy forms like hydrogen or heat. However, it is essential to consider
the interaction between various energy carriers for the future development of renewable
energy systems. It has been extensively demonstrated that different energy vectors such as
gas, electricity, or hydrogen can effectively interact and offer numerous advantages through
established technologies like power-to-gas systems or microturbines [10]. In this Special
Issue, a paper is dedicated to multi-energy MGs [11]. It presents an energy management
strategy for a thermal–gas–electricity MG, employing Mixed-Integer Linear Programming
as the underlying methodology.

While the aforementioned references primarily concentrate on energy management
strategies applicable during the operational phase of the system, the successful devel-
opment of MGs necessitates thorough planning, highlighting the significance of optimal
design tools. This Special Issue includes two papers centered around the optimal planning
of renewable-based MGs. The first paper authored by H. Abdel-Mawgoud et al. [12] pro-
poses an optimal strategy for integrating PV and storage systems into distribution networks.
Notably, this reference takes into account uncertainties in generation and demand, which is
crucial in MGs in which the intermittent behavior of renewable generation increases envi-
ronmental risks and uncertainties. Conversely, reference [13] by A. Almaleh et al. focuses
on resilient aspects, specifically aimed at enhancing the autonomy of MGs, particularly in
the face of severe weather events or natural disasters.

3. Future Challenges and Perspectives

Despite the closure of this Special Issue, we still anticipate further comprehensive
research will be carried out in this field. Specifically, there is a continuing need for investi-
gations into energy management techniques that address uncertainty in renewable-based
MGs. Additionally, the integration of EVs into these systems is considered a promising area
for future research. Lastly, cooperative game-based methodologies are expected to gain
prominence in addressing emerging topics such as MG clusters in the coming years [14].

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Demand-side management (DSM) is a significant component of the smart grid. DSM
without sufficient generation capabilities cannot be realized; taking that concern into account, the
integration of distributed energy resources (solar, wind, waste-to-energy, EV, or storage systems) has
brought effective transformation and challenges to the smart grid. In this review article, it is noted that
to overcome these issues, it is crucial to analyze demand-side management from the generation point
of view in considering various operational constraints and objectives and identifying multiple factors
that affect better planning, scheduling, and management. In this paper, gaps in the research and
possible prospects are discussed briefly to provide a proper insight into the current implementation
of DSM using distributed energy resources and storage. With the expectation of an increase in the
adoption of various types of distributed generation, it is estimated that DSM operations can offer
a valuable opportunity for customers and utility aggregators to become active participants in the
scheduling, dispatch, and market-oriented trading of energy. This review of DSM will help develop
better energy management strategies and reduce system uncertainties, variations, and constraints.

Keywords: demand-side management (DSM); distributed generations (DGs); energy management
systems (EMS); renewable energy sources (RES); optimization; waste to energy (W2E)

1. Introduction

The management of energy consumption is a critical challenge pertaining to the current
load consumption schedule of the electrical power system. With the introduction of several
efficient and intelligent devices for use by diverse customers and prosumers participating
in a power flow network at the residential and industrial usage load levels, there is a neces-
sity for standard and robust energy management architecture and implementation at the
prosumer and the generation levels. The main focus is on load consumption management
on the demand side, which can be accomplished by integrating various programs focused
on efficiency and minimizing loss at both the appliance and the intelligent grid system level.
The consumers and the energy-generating organizations participating at the energy market
levels will gain significantly from such an adjustment in the load profile. Introducing
standardization protocols for efficiency and consumption management approaches can
help resolve severe concerns such as fossil fuel use, carbon emissions, energy costs, and
other sustainability elements, to some extent. Integrating multiple communication and

Appl. Sci. 2022, 12, 8914. https://doi.org/10.3390/app12178914 https://www.mdpi.com/journal/applsci
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Internet of Things (IoT) protocols in renovating conventional grid systems into intelligent
grids has enabled a bidirectional information exchange [1]. This data can be utilized for a
variety of energy management strategies. On the demand side, by incorporating various
digital sensing and communication protocols, smart device control, and connectivity be-
tween utilities and geographically distant grid organizations, appliances can leverage this
information to strategically provide an optimal strategy for better operation and efficiency
characteristics. Understanding the problems related to integrating different sources and
technology can provide ideas to establish synchrony between generation and load.

The notion of demand-side management (DSM) is a solution to these significant
challenges related to grid sustainability, security, reliability, and load profile management
from the perspective of consumption and for providing strategies for load reduction. DSM
is a collection of load management solutions that plan, integrate, and monitor preassigned
routine operations on the basis of a consumer’s consumption behavior [2]. The DSM
architecture can conservatively dispatch available generation capacity, lowering emissions
and peak load usage while allowing users to use their preferred energy type [3]. DSM was
launched in 1970 [4] when the electrical sector offered the DSM model and architecture
to manage time-of-use (ToU) and peak electricity consumption and to analyze consumer
load usage profiles. DSM can establish synchrony between generation and load, taking on
maximum cases of obstacles.

There are substantial incentives to employ distributed generation (DG) to reduce
greenhouse gas emissions, improve power system efficiency and reliability, implement
competitive energy policies, and delay transmission and distribution system upgrades.
DGs are made up of renewable units such as wind turbines (WTs), photovoltaics (PV), fuel
cells (FCs), and biomass, as well as non-renewable units such as micro-turbines (MTs), gas
engines (GEs), diesel generators (DiGs), etc. By being near the clients, DGs avoid needing a
transmission system. The integration and control of DGs, storage devices, and flexible loads
can form a microgrid, a low voltage distribution network that can operate in isolated or
grid-connected modes [5]. Due to a lack of sufficient energy generation sources, microgrids
frequently struggle to meet demand. The intermittent nature of loads and renewable energy
sources create this barrier [6]. As a result, to address this issue, an energy management
system (EMS) is required. Using an EMS for a microgrid is a relatively new and trendy
issue that has recently received much attention.

1.1. Motivation behind the Adoption of DSM

The necessities of the load–grid from the perspectives of synchronization, stability of
operation, security and data protection from external attacks, reliability issues, and profit
maximization requirements have prompted attention in various areas of DSM research.
The following are motivations for the rising interest in the application of DSM techniques:

• To reduce consumer annoyance during the adoption of DSM by incorporating demand
reduction bidding during peak hours, incentive DSM, and demand response (DR)
programs.

• To create an interactive load management market, which is a prosumer-based market
in which each customer plays a part in achieving low-cost energy usage.

• To match energy supplies and dispatch additional available sources within the current
system and regulate the required demand.

• To enable proper demand and supply balance by either reducing or shifting energy use
from critical loading periods to fewer off-peak times, factoring in economic standards
and active control methods.

• To consider electricity generation and trading tariffs, environmental considerations,
demand-based usage patterns, and prosumer convenience levels when creating opti-
mal load dispatch and usage scheduling.

• To adapt to changes brought about by erratic consumption and a lack of understanding
of the operational state of daily-use devices and machines [6].

6
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• To conduct forecasting based on weather data assessing client comfort levels and
convenience.

• To achieve the lowest possible electricity cost from an economic standpoint, maximiz-
ing energy consumption from geographically nearby renewable energy sources (RES)
from an environmental perspective and preventing power quality issues.

• To raise consumer awareness of DSM’s benefits, which can stimulate adoption or
improve electricity usage patterns.

• To combine operational flexibility for an individual home with the flexibility of other
residential customers in the neighborhood to achieve operational flexibility for a
unique family.

• To improve grid efficiency and reliability by minimizing the peak-to-average ratio
(PAR) by offloading optional loads during peak periods [7].

1.2. Benefits of DSM

DSM comes into play to solve such difficulties concerning the current situation on the
load end and to enable greater flexibility and the robust scheduling of specific devices and
gadgets at an autonomous stage through intelligent control mechanisms. DSM can provide
several advantages, such as:

• To help minimize voltage fluctuations on a poor distribution feeder by providing grid
support [6].

• To resist environmental concerns by lowering peak demand, which decreases the need
for new traditional generating plants.

• To allow the principles of DSM to be successfully implemented, where it can benefit
both customers and the utilities economically.

• To guarantee steady and sustainable power delivery within the system, thereby avoid-
ing shortfalls.

• To provide cost savings in energy usage while also assisting in achieving positive
environmental goals.

• To decrease load profiles by intelligently managing loads [7].

1.3. Issues and Challenges in Implementing DSM

The path to DSM integration is littered with several challenges and issues that must be
solved for the program to be executed effectively and efficiently among the participating
institutions. Some of the concerns and difficulties that will be discussed are as follows:

• Residential loads frequently contribute a major portion of load demand owing to
seasonal and daily peak load consumption, causing the available grid system to be
under-sized in handling peak energy usage.

• Pricing blocks that can be adapted according to consumption at multiple levels can be
implemented smoothly.

• To use the best load scheduling approaches possible.
• Centralized controllers for both control choices and control actions are required to im-

plement direct load controls (DLCs), interruptible tariffs, demand-bidding programs,
and emergency programs. Because the client wants to save money on energy, and
the utility wants to maximize profit from the available energy, the goal is to balance
energy and save money.

• Consumer response to the price signals supplied by the utility and market tariffs,
which modifies consumer behavior, fluctuates unexpectedly depending on their ability
and willingness to adapt quickly, indifference to minor tariff adjustments, and pricing
system awareness.

• To address the opposing objectives of consumer convenience and reduced-cost con-
sumption, decrease load consumption for customers and increase revenues for utility
companies with accessible energy generation sources, etc., while formulating energy
regulations.
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• Inadequate system-wide scalability measures to address the multi-vendor dilemma,
upgrade, and expansion.

• Usage of robust system privacy measures to secure the vital information of participat-
ing customers.

• To address the neighbor effect, some consumers over-estimate other consumers’ price
rates, where any change affecting a consumer influences the choice and preference of
nearby present customers.

• A generalized operational framework of DSM is necessary owing to the characteristics
and objectives of DSM participants and loads operating in an independent system in
order to provide the customers with more control over their energy consumption.

• The reduction in peak load requirements and the minimization of overall load usage
tariffs for residential occupants while maintaining an acceptable degree of comfort
and choice for the user.

• Integrated volatile power sources such as wind and solar impact grid stability and
create issues.

• The difficulty of balancing supply and demand for electricity in the face of uncertain
demand and uncontrollable sources.

• DR faces four significant operational issues: scalability, distribution of control, unpre-
dictability, and aggregation.

• Supply and demand may become imbalanced at different locations along a changeable
demand curve [6].

• The need to build a model of energy generation is essential due to the effects of
traditional power generation and global climate change.

• Lower peak demand and overall load consumption costs while maintaining appropri-
ate comfort and convenience for residents. Integrated unreliable power sources such
as wind and solar impact system stability and create issues.

1.4. Suggested Solutions in DSM Implementation

The following suggested solutions are viable for implementation and for driving grid
integration programs in a more effective and coordinated way to deal with the above
concerns and obstacles faced during the implementation of various policies concerning
DSM using DGs systems:

• An adequately designed pricing structure will result in a flexible electricity system,
allowing residential customers and utilities to achieve their goals.

• Time-of-day (ToD) pricing can incentivize large-scale residential and commercial users
to conserve energy.

• The load profile forecast mechanism can serve as a transitive feedback signal, and the
tariff associated with it can serve as a transitive incentive signal.

• A stochastic and multi-objective optimization technique for the optimal scheduling of
various domestic appliances utilizing model predictive control (MPC) optimization.

• The transitive energy concept is a viable coordination paradigm for maximizing the
importance placed on prosumers and operators at the utility level and their overall
participation in the market structure.

• From the perspective of trading entities present in the market and their involvement
and market-based signaling, extensive changes in government laws consider both
energy providers and customers.

• A variety of sophisticated methodologies can factor in individual residential prosumer
overhead and comfort levels, optimize individual consumption schedules, and offer
positive DSM impacts [7].

• To allow the electricity markets to generate higher revenues, an incentive-based pro-
gram can change conventional consumers into new era prosumers by modifying their
behavior and habits of use [8].

• For the improved functioning of DR ideas in residential utilities, measurement and
verification protocols and an automated procedure are required [9].
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• Complete service-oriented topology and structure is a necessity to allow for provisions
of appropriate infrastructure oriented toward dynamic integration techniques and for
a more flexible operation to bring out the best in the power system scenario [10].

• DSM contributors can consume or generate energy in a coordinated operational state as
cooperative agents or virtual power plant models, which can simulate the performance
of an aggregated virtual single power source indirectly incorporated into the power
system [11].

• The introduction of generation systems such as solar photovoltaics (SPV) and energy
storage system combinations for usage during peak hours.

1.5. Outline of This Paper

This paper is presented to address the issues and solutions of DSM using a method-
ological and critical survey-based exploration of the implementation of DSM using DERs.
Efforts are made to put forth the following points concisely: Firstly, to assess and study the
suggested optimization techniques and implementations of DSM in the present literature.
This will allow the researchers with the necessary exposure to arrive at more practical and
better optimization techniques to establish a proper energy management system (EMS).
In addition, energy management modeling studies are examined in terms of uncertainty
modeling techniques, objective functions, constraints, and optimization techniques. Lastly,
EMS-related papers are reviewed and analyzed correctly to help the researcher find out the
problems and the solutions.

The remaining part of this review article is designed as follows: Section 2 represents
the detailed review methodology used to formulate this paper, Section 3 states the brief
introduction to DSM and DR, Section 4 briefly states the various DGs possible in an
intelligent grid network, Section 5 represents the DSM with different types of cleaner
energy, Section 6 briefly illustrates the energy management system and some standards
related to DG integration, Section 7 explains some issues related to different types of
DGs being integrated with DSM techniques, Section 8 represents the various optimization
techniques ascribed to DSM with objective and objective functions, Section 9 deals with
the different research gaps and critical analyses, and the future scope and conclusion are
analyzed in Sections 10 and 11, respectively.

2. Review Methodology

Any research project’s primary focus is on three key elements: the purpose, study
technique, and outcome, as well as future implementation prospects. An approach based on
an analytic-based search technique was undertaken on numerous scientific and interpretive
sources such as Google Scholar, ResearchGate, IEEE Explorer, and Scopus to gain a detailed
and complete overview of existing research publications. Combinations of thematic words,
such as “Demand-side management distributed energy resources”, “Demand response”,
“Energy management using distributed energy sources”, “Optimization”, “Scheduling”,
“Distributed energy sources integration in microgrids”, and so on, were used to filter out
the critical articles using search engines. Specific search engine parameters were employed
to find relevant, on-point, particular research papers for the review study. Exact keywords,
peer-reviewed publications published in English mainly in the last ten years, and open-
access articles were the deciding factors.

Based on the research articles, an eight-point prospect was developed:

• DSM techniques in general, with sub-strategies investigated from a modification
standpoint.

• Incentivized and price-based programs, as well as demand response strategies.
• The customer rationale for employing distributed generation to implement DSM.
• Researching the architecture and topology of the EMS system, as well as comparing it

to alternative DSM methodologies.
• The scope of limitations and constraints associated with implementing DSM using

DER architecture with present issues.
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• Published research methods and optimization approaches.
• Analysis and conclusions from the study of the approaches employed in the optimiza-

tion challenges stated.
• Action plan for the future.

As shown in Figure 1, 31 review papers, 40 case studies, 15 news articles, 107 technical
papers, and 10 research reports were reviewed and placed in this paper.

Figure 1. Review methodology for this paper.

3. Demand-Side Management

Demand-side management is an essential part of an intelligent grid architecture
because it allows consumers to adjust their load consumption patterns, making it a crit-
ical feature of an energy management system in power delivery networks [11,12]. “The
planning, implementation, and monitoring of those daily activities designed to influence
customer use of electricity in ways that will produce desired changes in the utility’s load
shape, i.e., time pattern and magnitude of a utility’s load,” according to the Electric Power
Research Institute (EPRI) [13]. Instead of relying on additional generation to meet demand,
DSM prioritizes the integration of power-saving techniques, the implementation of variable
or dynamic unit pricing, and the adoption of DR-based programs to minimize peak load,
managing the DGs to establish a proper power balance, as shown in Figure 2.
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Figure 2. Principle of DSM in the smart grid environment.

The four methodologies outlined below and illustrated in Figure 3 can be used to
classify various alterations that can be used to shape and define the electricity load profiles:

Figure 3. Basic principle of DSM.

Energy efficiency (EE): These are end-user, appliance-specific controls intended to
reduce load utilization over time by employing energy-saving methods on the device level.
Rather than relying on an event-triggered strategy for consumption profile minimization,
energy efficiency refers to the reduction in overall load consumption achieved by providing
more efficient power delivery for each unit with respect to the supplied input power to the
appliance, decreasing consumption over time. An in-depth look at the energy efficiency
improvement profiles, measurements, and roadblocks can be found in [14,15].

Time of use (ToU): The ToU pricing method divides the utility’s fixed tariff into 24 h
time blocks and then assigns a variable pricing profile for each period [16,17]. This method
can help keep peak load rates and seasonal fluctuations in pricing tariffs under control
based on the hourly block-based signal tariff of electricity units.

Spinning reserve: In the case of a drastic shortfall in generating levels, the spinning
reserve is synonymously recognized with the electric power system’s backup power, which
may be utilized by the distribution network operator (DNO) to balance the difference or
gaps between demand and supply in generation [18]. Power outages can be caused by
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various factors, including damage to producing units, inadequate load prediction, and
dispatch scheduling [19]. In general, there are two types of spinning reserves: primary and
secondary [16], with the central spinning reserve employing frequency regulation to limit
active power output and the secondary spinning reserve injecting extra active power.

Demand response: Energy users depart from their usual use patterns in response to
unit rate variations over time or incentive programs. The primary focus is to reduce load
profiles during critical tariff periods in the energy wholesale market or when grid reliability
is uncertain [20]. Short-term variations throughout the day’s critical peak pricing/usage
times, when demand is low and spinning reserve capacity is scarce, are of primary interest
to DR. DSM is more concerned with long-term load profiles, which may be accomplished
on the demand side by improving energy efficiency or adopting consumer-centric usage
behavior.

4. Distributed Generations in Smart Grid

A distributed energy resource (DER) is an aggregation of distributed generators, as
shown in Figure 4, or controllable loads (conventional or smart) connected to the network
in a smart grid. A DER unit, or distributed generation (DG), often blends a variety of
energy sources. They are classified into, essentially, two sorts of sources based on their
dispatch capacity and source of generation type:

Figure 4. Various types of energy sources in the smart grid.

4.1. Renewable Energy Sources (RES)

Solar Photovoltaics: Converting solar energy to electrical energy via mounted semicon-
ductor panels is the primary renewable generating source across the globe. It can produce
energy in any mode, stand-alone or grid-integrated, and small-scale (such as rooftop PV
in residential areas) or large-scale (centralized power plants). Scheduling, as per weather
condition forecasting, boosts production capabilities.

Solar Thermal: Solar thermal power plants use solar energy to heat a fluid to a high
temperature to generate electricity. The heat from this fluid is transferred to water, which
subsequently forms superheated steam. In a power plant, steam is utilized to run turbines,
and mechanical energy is transformed into electricity by a generator. This sort of generating
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is similar to electricity generation that uses fossil fuels, except that instead of burning fossil
fuels, sunlight is used to heat steam.

Hydropower Plants: The flowing capacity of water is capable of rotating a turbine
to generate electricity, which can be the centralized or decentralized mode of operations
according to the availability of the water and the water head. Generally, small-scale
hydropower stations are used for DSM operations, which are described in Section 5.

Wind Turbines: Wind energy conversion systems (WECs) are also a significant compo-
nent of DGs where the appropriate wind reach is available. This generation unit is limited
to smaller, low-capacity generation units. This allows for small-scale WT unit deployment
on the customer side to be possible without affecting the operation of the entire power
system as a whole.

Geothermal Energy: Geothermal energy captures the energy from the core of the
earth. DGs can be localized around nearby natural geothermal energy sources, such as lava
flows, hot springs, geysers, or places that experience direct contact between water and high
thermal capacity surfaces. As part of the natural cycle of evaporation and replenishment,
geothermal sources can be considered a viable source of renewable energy generation.

4.2. Traditional Energy Sources

Combined Heat and Power: Fossil fuels are the primary sources of CHP that are set
to run as centralized power stations, mainly to fulfill the baseload requirement. Fossil
fuels are burnt to produce steam, which rotates the turbine to produce electricity. Due to
substantial carbon emissions, limited availability of sources, and environmental concerns,
the focus has shifted toward renewables.

Fuel-based DERs: To supply supplemental power to the grid, diesel generators and
fuel cell (FC) generators often employ readily available fossil fuels, waste-derived fuel, and
hydrogen-based production, and they are typically run on-demand rather than always-on.
Due to their simple dispatch mechanism and controllability, they are suitable DER units to
link to a smart grid design. For the purposes of providing power to emergency loads, they
are suitable as a DSM option.

4.3. Energy Storage Systems

ESS is now viewed as a novel technique for adjusting generating capacity to load
demand changes, particularly as energy buffers in the situation of the high availability of
non-dispatchable generation sources. These ESS capture and store surplus energy generated
during off-peak hours, then dispatch it during peak periods when the extra load is needed.
They also allow for the optimal redistribution of PV array and WT unit output power
throughout the daily scheduling period. In terms of ESS concerned with energy supply,
they are categorized as compressed air energy storage (CAES) and hydraulic pumped
energy storage (HPES), depending on the method of application. Similarly, ESS focused
on power supply include supercapacitor energy storage (SCES), superconductor magnetic
energy storage (SMES), pumped storage, and flywheel energy storage (FWES) [21,22].

4.4. Waste-to-Energy (Bio-Energy)

An increase in urbanization is the cause of the generation of a large amount of waste,
particularly MSW (municipal solid waste). The thermal treatment of municipal or industrial
waste and sludge, as well as medical or industrial hazardous waste, decreases trash disposal
in landfill sites dramatically. The produced energy yields a new revenue stream that
helps both the local population and the environment through cleaner air, water, and
soil. The process starts with collection, followed by segregation, then processing through
various stages, such as pyrolysis, and then incineration to produce electricity. Taking into
consideration the United Nations’ Sustainability Goal of cleaner energy, waste is counted
as one of many effective sources of conversion to electricity [23,24]. The different processes,
which can be followed to convert the waste, are presented in Figure 5.
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Figure 5. Different processes of waste-to-energy.

4.5. Electric Vehicle (V2G)

Vehicle-to-grid (V2G) is a system in which plug-in electric vehicles (PEVs), such as
battery electric vehicles (BEVs), plug-in hybrids (PHEVs), and hydrogen fuel cell electric
vehicles (FCEVs), communicate with the power grid to sell demand response services by
returning electricity to the grid or throttling their charging rate. Electric vehicles with V2G
storage capability can store and discharge power generated from renewable energy sources
such as solar and wind, with output that varies based on weather and time of day [25,26].
The process of V2G is the same as in the case of the ESS shown in Figure 6.

Figure 6. Electric vehicle as a source of energy.

5. DSM Using DGs and ESS

DSM is the systematic energy management in the case of using DGs and ESS. Using
DSM can have a lot of benefits to industry, residents, nations, and the globe, which is
shown in Figure 7. DSM can be implemented by using distributed energy resources such
as solar, wind, waste-to-energy, etc. DSM generally involves load shape modification by
applying different optimization techniques [27–29]. This modification is carried out by
the significant DSM component, which is the load duration curve (LDC). LDC offers a
general and analytical idea of off-peak hours and peak hours. Six techniques are used in
load shaping, which are discussed below and in Figure 8.

a. Peak Clipping: This technique is used to reduce the peak demand at peak hours.
Effective use of this method can reduce the chances of establishing new generating
stations. Generation from DERs also helps in balancing load and can reduce the peak
demand.
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b. Valley Filling: This technique is set to rebuild the load during off-peak hours, which
helps reduce tariffs. Charging electric vehicles at off-peak hours to work as V2G at
the time of need is a possible example of valley filling.

c. Load Shifting: This is based on shifting load from peak hours to off-peak hours.
d. Load Reduction: This strategy is based on using energy-efficient equipment to reduce

load demand. Rooftop solar installation in residential areas can reduce the load
overall, which is an example of this technique.

e. Load Growth: Building up the load at the time of reduced load conditions or in off-peak
hours. This technique is an example of charging ESS or EVs at non-peak times or
during non-peak days.

f. Flexible Load Shaping: The rearrangement of LDC according to the conditions. WEC
system generation is an example of this method.

Figure 7. Benefits of using DGs and ESS in DSM.

Figure 8. DSM techniques.
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The discussed DSM objectives can be achieved by integrating the DERs described in
earlier sections in a forecasted manner [29]. The reason for using all these renewables is as
simple as the UN’s Sustainability Goal of cleaner energy. Different types of available DERs
and possible DSM techniques are discussed in Table 1, which is a new and innovative way
of expressing the information in this paper.

Table 1. Different types of DERs with DSM applications.

DERs
Available for

the Time
(24 h)

Possible DSM Techniques Types of Operations Benefits

Solar [30,31]
Morning to
afternoon

(7–9 h)

Peak clipping
Load reduction
Load shifting
Valley filling

Thermal: Converting solar
heat energy to electrical

energy.

Cleaner energy, reduction
in the use of carbon.

Photovoltaic: Converting
solar radiations to electrical

energy with solar cells.

Cleaner energy, tariff
reduction, decentralized
generation, residential

mode generation.

Wind Energy [32] 24 h
Load reduction
Load shifting
Valley filling

Converting wind energy to
electrical energy with
induction generators

Cleaner energy,
decentralized generation.

Hydro Energy
[33]

24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

Pumped hydro: Water
pumped during off-peak

hours generates electricity
during peak hours.

Emergency power, cleaner
energy, small centralized

power generation.

Small hydro: Decentralized
runaway water used for

electricity generation.

Emergency power, cleaner
energy, small centralized

power generation, low-cost
generation.

Waste-to-Energy
[34,35] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Biogas: Anaerobic
digestion of biodegradable

waste into methane
produces energy.

Cleaner energy, small
centralized power

generation, less carbon
production.

Thermal: Combustion of
waste to produce energy.

Cleaner energy, small
centralized power

generation, less carbon
production.

ESS [36] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

Energy is stored at off-peak
hours in various systems
such as electric springs,

pumped hydro, fuel cells,
hydrogen cells,

supercapacitors, etc.

Emergency power, cleaner
energy, small centralized
power generation, less

carbon production,
charging stations.

Vehicle-to-Grid
[37] 24 h

Peak clipping
Load reduction
Load shifting
Valley filling

Flexible load growth

EV charging in off-peak
hours can provide power

to grid-like ESS at the time
of need.

Emergency power, cleaner
energy.

Geothermal
Energy [38]

Available when
water is in

contact with
lava

Peak clipping
Load reduction

Valley filling

Providing intermittent
boosts to power levels.

Small centralized power
generation, spinning

reserve.
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6. Energy Management System

An energy management system is an operational system used to plan, manage, miti-
gate, forecast, and continuously improve energy performance to establish a balance in the
power flow network, including various DERs, as shown in Figure 9. An EMS optimizes the
energy supplied by generating stations to the grid, taking into account various parameters,
which are listed below:

• Energy consumption in the power flow network;
• Load behavior pattern on the demand side;
• Consumer energy consumption patterns;
• Seasonal forecasting of consumer data;
• Weather forecasting data;
• Time of pricing when it is highest.

Figure 9. Energy management system.

Major components of EMS are measuring units, IoT-based tools to forecast data from
collected data, various types of sources of generation, and generation scheduling. An EMS
is operated by various optimization models with specific objectives, taking into account the
constraints related to them, which are discussed in the later section.

6.1. Energy Monitoring, Measurement, and Analysis

An EMS includes monitoring, measuring, and analysis as major components to carry
forward its operations, which will determine the energy flow performance and help it
perform DSM effectively. Its key characteristics include [9,39]:

• Significant energy use in the SG network;
• Variables related to energy use;
• Energy performance indicators;
• Effective energy-efficient plans to achieve objectives and targets.

6.2. Standards Used for Communications in DSM Using DGs and ESS

There are specific standards used for communicating various DGs and ESS to the SG’s
power flow network, which are provided in Table 2 [40].
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Table 2. Standards used for communication in DSM using DGs and ESS.

Code
Year of

Implementation
Objective

IEEE 1547 2003 To find a bridge between distributed generation and the electric network.
IEEE 1547.1 2005 Specifies the test procedure for the interconnection.
IEEE 1547.4 2011 Deals with the planning and operation of integration.
IEEE 1547.7 2013 To standardize the DG integration system.

IEEE 1547.8 2014 It identifies and expands the innovative design, process, and operational procedure to
achieve flexibility.

IEEE 2030 2011 Integration of information technology into the grid, the establishment of a framework
of operation because of the prospects of a smart grid.

IEEE P2030.2 2015 Integration of hybrid energy storage systems into the power flow in the network.
IEEE 2030.3 2015 The test procedure for a single storage device in the power network.
IEEE2030.7 2017 Standards for microgrid energy management.
IEEE 802.1/

802.3/802.15.4 2003 Interfaces the identifiers, which operate as the interconnecting modes and power
control. Information exchange between the components.

EEC 61850-7-2 2003 Sets standards for abstract communication service interface (ACSI) as a paradigm
used for vertical and horizontal communication for MC61850.

EEC 61970/
61968/62325 2013 Sets standards based on information integration and the software framework of EMS

for DGs

IEEE 2030.8 2018 Sets standards for microgrid energy management and control in a grid-tied or
off-grid system.

IEC 61850 2019
Automation architecture requirement for utility subsystems, enabling communication

and semantic interoperability among multi-vendor equipment, communication
networking, and the communication front-end for the network.

7. Issues and Challenges

During the review process, several issues related to integrating DGs into the smart grid
for DSM purposes were found, which are listed below, categorically segregating different
types of DGs [41–48].

7.1. DSM with SPV

SPV energy conversion systems have been used for a long time since their discovery
as a significantly cleaner energy source. Much of the maturity in semiconductor technology
has allowed for vast improvements in the scope of SPV generation. The issues discussed
below are the major difficulties in addressing stable grid operations with DSM.

• These sources of generation, albeit easy to install, are not flexible to operate. This is
because the reactive power necessary to complement the generated active power from
SPV is not readily sourced and is difficult to integrate when upgrading the primary
SPV generation sources.

• SPV generation necessitates the use of ESS to avoid drops in power delivery and the
energy buffer as and when power is not readily available for generation.

• The installation safety measures need to be stepped up, as they are prone to damage
from meteorological and physical factors such as hurricane winds and rust in the
installation equipment. This presents a potential hazard, hindering the safety aspect
of SPV installation.

• Maturity in SPV panel technology has vastly improved since its inception, but the
technology has still not reached its peak maturity for the maximum extraction of
available solar energy using existing power conversion and extraction techniques, viz.,
MPPT.

• The manufacturing and disposal of SPV equipment leave behind a very high carbon
footprint, presenting a deterrent toward adoption owing to environmental concerns.
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7.2. DSM with Wind Energy Conversion System

Wind energy conversion systems integrated into DSM have been wholly realized for a
long time; this includes wind turbines, wind monitoring systems, and related environmen-
tal protection systems, such as environmental protection stations and power generation
systems. Still, it has proved challenging to synchronize wind and hydropower effectively
in actual operations, which does achieve high efficiency at the same time each year [3]. The
complexity can be seen in the following aspects.

There are three significant issues in the current use of wind turbines in DSM that
challenge its high efficiency and stable operation [3,24]:

1. The prediction and forecasting are not accurate, as various sources influence the
generation capacity. The meteorological uncertainty, coupled with the continuous
available wind flow available at the tip level, influences the generation capacity of the
wind turbine.

2. The transmission and distribution of the existing power grid are too complicated,
making it more challenging to integrate with wind turbines effectively, as they have
issues concerning intermittency and frequency deviations from the existing grid
requirements.

3. The operation of wind turbines with the existing power grid is not sustainable during
the nighttime, eventually leading to an increased load on the grid during the daytime.

7.3. DSM with Hydro Energy Sources

Generation sources pertaining to hydro-based sources are a major part of the power
supply to grids. Complex hydropower-generating units installed in dams and tidal-based
generation can be leveraged to a high extent, owing to their pollution-free generation and
the replenishable source of waterbodies, which are naturally replenished via the water
cycle. The major issues that are present in the existing power generation scenario that can
affect DSM operation, to a certain extent, are highlighted as follows:

• The availability of water sources for potential generation is not feasible in every possi-
ble geographical location. Large-scale generation is only possible if the geographical
arrangement allows for dams to be constructed or the waves to be harnessed suitably
without causing ecological imbalance to nearby flora and fauna.

• The ratios of cost-to-establishment and revenue generation-to-cost are generally low,
owing to high recurring and installation expenditures. However, these can be lever-
aged by using an environmental outlook to justify the cost.

• Maintaining the frequency of the power generated is complex due to the intermittent
nature of water flow at the available head level. This prevents the energy generated
from the wind turbines to be directly integrated into the transmission system, as
pre-conditioning the power supplied is necessary for reliable grid operation. This adds
significantly to the power generation costs as additional power conditioning units are
required to bring the frequency and other parameters up to an acceptable generation
level.

7.4. DSM with Waste-to-Energy Sources

In recent times, waste-to-energy has gained significant potential in the renewable and
biologically eco-friendly energy market owing to its nature-oriented disposal and pollution-
free generation. DSM can be implemented at the prosumer level, with the prosumers being
active power generation sources putting greater emphasis on waste-to-energy potential
as their preferred source of energy to defer them from using conventional grid-supplied
electricity. However, the present scenario is plagued with many issues, some of which affect
DSM integration with waste-to-energy potential as a potent source of power generation.
Some of these issues are:

• Waste segregation and management on the ground level are the primary tasks that
need to be focused on. In developed countries, this is not a major issue, as the
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general population is aware at a high level in comparison to countries with developing
economies. Better awareness among the general masses can be a solution to the
segregation and management of waste.

• Complex techniques are involved in waste-to-energy-based generation, such as pyrol-
ysis in controlled environments and the use of a specific mixture of substances to keep
the entire process pollution-free.

• High investment costs are required for setting up the incineration and biogas plants.

7.5. DSM with EV and ESS

The automobile sector is presently witnessing a surge in sales of EVs with the tran-
sition to battery-based power delivery from conventional gasoline and diesel as sources
of transportation fuel being the prime focus. This has seen a rise in the adoption of more
efficient and high power density battery systems to be implemented at the EV end-user
side. Higher capacity batteries can be configured from a backup or buffer storage system
standpoint. A bidirectional implementation of these battery-enabled mobile EVs can allow
for dispatch strategies to be collectively aggregated and disbursed by DNOs as a virtual
power plant system through DSM strategies. Similarly, DSM can allow intelligent control
of EVs, charging and discharging according to adaptive schedules, which will benefit
the power system. Nonetheless, issues pertaining to EV adoption prevent the large-scale
integration of DSM in EV-based programs due to:

• High investment costs and costs of ownership from the perspective of the manufac-
turers, grid utility operators, and consumers. The careful economic and technical
planning of charging stations, the grid’s capacity to accept increased loading, and the
minimization of losses along the transmission and distribution systems to allow for
efficient use of available energy are the primary concerns from the maintenance and
setting-up perspective.

• Consumer acceptance is still low in developing countries due to a range of anxieties
about reliability and initial expenditure during purchase as compared to fossil fuel-
based automotives [46].

• Battery degradation and better health are also major concerns; the periodic mainte-
nance of fossil fuel vehicles is a fuss-free ownership experience in the long run, as
battery degradation does not hinder the performance of the vehicle to a great extent.
In contrast, in the case of EVs, the batteries eventually require replacement at their
end-of-life stage unless they find use as second-life batteries.

These issues and challenges must be addressed to make EMS architecture more robust
and reliable. After resolving these challenges, the optimization techniques can be integrated
seamlessly into the EMS architecture.

8. Optimization Methods

The earlier literature presents various ideas about different types of mathematical
approaches to solve the DSM problem. Techniques such as linear programming, dynamic
programming, non-linear programming, game theory approach, and particle swarm op-
timization set a mark for solving the DSM objectives. Recently, hybrid techniques, such
as gray wolf optimization (GWO), harmony search (HS) algorithm, enhanced differential
evolution (EDE), etc., have drawn the interest of researchers in this field. Many of these
optimization approaches and real-world implementations of DSM (mostly on residential
premises) were discussed in [26], with distinct classifications between each approach and
classification. The various objectives and constraints are discussed in Table 3, and different
types of optimization techniques are broadly listed in Table 4, below.
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Table 3. Classical technique-based single objective optimization.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[47]

To facilitate EMS to
reduce the total cost

of energy
consumption and

generation.

F(x) = min

(
∑
i∈I

Econ,i.Pi − ∑
j∈J

Egen,j.Pj

)
� �

[48]

To assign a thermal
management system

for peak load
shifting.

F(x) = J(s, p) =
T
∑

t=1
Δt(pload(t)− pload(t))

T × KΔt(pload(t)− pload(t))

+ (s(t)− s(t))T M(s(t)− s(t))
�

[49]

To reduce power
consumption in
classroom-based
smart buildings.

F(x) = Eobj = min
(

c
∑

r=1

h
∑

t=1
Erαrt +

c
∑

r=1
Eα

r

)
� �

[50]

To reduce a
building’s peak

electrical demand
through

customer-side load
control.

F(x) = min
(

∑
h

Eh
DG.Ch

)
∀h ∈ H

Eh
DG =

(
Ph

NINSLs + Ph
INSLs + Ph

SLs + Ph
B − Ph

R

)
·
(

DS
60

) �

[51]

To propose
reduction values for

home energy
management.

F(x) = min

⎧⎪⎪⎨
⎪⎪⎩

nLoad
∑

Load=1
λLoad × PLoad + λGrid × PGrid + λDown × RegDown−

nDG
∑

DG=1
λDG × PDG + λUp × RegUp

⎫⎪⎪⎬
⎪⎪⎭

� � �

[52]

To minimize the
electricity cost and
lower the delay of

equipment running.

F (x) = W1
(∑120

u=1 pr Cu Pscd
(u))Pscd

(u)

((∑120
u=1 pr Cu Pscd

(u))Pscd
(u))max

+ W2
∑ a∈A ρDT Ra

(∑ a∈A ρDT Ra )max
�

[53]
To minimize the cost

of use on the
generation side.

F (x) = (Emaxnen − 1/2α Eres n
Emaxn

en
2 − β

pm
pmin

Swen � �

[54]

To minimize the cost,
including

overall energy costs,
scheduling costs,

and climate comfort.

F (x) = αECCEC + αPRCPR + αCCCCC �

[55]
To minimize the cost

of use on the
consumer side.

F (x) = ∑i,j Fi,jxi,j + ∑i,j Gi,jdi,j �

[56]

To minimize the
generation costs,

including all
possible types of

DGs.

F =
T
∑

t=1

{
Ng

∑
i=1

[
ui(t)Pgi(t)

(
Bgi(t) + KOMi

)
+ Sgi|ui(t− 1)|

]

+
NES

∑
j=1

[
ui(t)PSj (t)BSj (t)

]
+ PGrid (t)BGrid (t)

}

+
T
∑

t=1

{(
TE

∑
i=1

N
∑

j=1
EFijPgi (t)

)
+ PGrid (t)EFgrid

}
�

[57] To reduce the charge
and discharge costs. F =

m
∑

t=1

(
Cg

t + Cι
g
t + CES−

t − Cl
t − CES+

t + Ωt

)
× Δt �
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Table 3. Cont.

Refs. Objective Objective Function
Concepts Employed

LS PC VF LS LG LR

[58]
To reduce NPC,

taking into account
all types of sources.

F = NPC +
8760
∑

t=1
Pb(t) +

8760
∑

t=1
PH2 (t) +

8760
∑

t=1
Pw(t) + Pwt + PH2T

�

[59]
To reduce operation
costs, emissions, and
the reliability of SG.

F = CFOPR
t + CFEMI

t + CFRLB
t

F = CMG
in + CMG

op
�

[60]
To reduce the

investment and
operating costs.

CMG
op =

L
∑

i=1
(CFi + COMi + CSi + CEi) +

M
∑

j=1
CESS

OMj − CMG
G

�

[61]

To minimize the
operating and
emission costs,

including startup
and shutdown costs,

reverse costs, and
exchange of power

costs.

F = CostOperating + CostEmission

CostOperating =
T
∑

t=1
(cos tDG(t) + STDG(t) + cos ts(t) + cos tGrid(t) + cos tDR(t))

CostEmission =
T
∑

t=1
{emissionDG(t) + emissionS(t) + emissionGrid(t)}

F = Fstart−up
Cost + Freserve

Cost + Fgeneration
Cost + FDR

Cost + FEmission

�

[62]
To minimize the
overall costs of

generation.

F =
ND
∑

t=1

{
A
∑

a=1
[(ATat.utat + (MTCa + BTat).ptat).H/ND

+DTa.ytat + FTa.ztat] +
B
∑

b=1
[((MFCb + CFb).p fbt + ζb.dp fbt)

..H/ND + EFb.y fb f + GFb.z fbt

]
+

C
∑

c=1
[(CCc.pdcct)..H/ND]

+[BPt.pgbt − SPt.pgst + CD.pdet + CE.pext]..H/ND}

�

[63] To reduce the
operating costs.

F = ∑
s∈S

λs

[
∑

k∈K
∑
j∈J

(
Cj
(

Pj,k,s
)
+ SUj,k

)
+ ∑

k∈K
CES.

(
VCH

k,s + VDCH
k,s

)

+ ∑
k∈K

PInt,R−C−I
k,s .CInt,R−C−I

k + ∑
k∈K

ΔPdo,R−C−I
k,s .CDR,R−C−I

k

] �

[64]
To minimize

short-term variable
generation costs.

Minimize f = CHV(PHV , QHV) �

[65]

To maximize
economic benefit by

integrating small
CPPs, ESSs, RES,
and interruptible

demand loads.

max
T
∑

t=1

I
∑

i=1
ρs,tPdl,i,t − Cdg,i,t(Pdg,i,t)− Ces,i,t(Pes,i,t)− ρb,tPb,t

�

[66]
To provide a

self-scheduling
program for an SG. Maximize

T
∑

t=1
(

nw

∑
w=1

π(w).
Ns

∑
s=1

π(s).
Np

∑
p=1

π(p).(λp(t).Gwsp(t)

−Cwsp
conv(t)− ywsp

conv(t).Sconv))

�

[67]
To maximize the
SG’s short-term

profit.
Max

T
∑

t=1

nw
∑

w=1
πw

np
∑

p=1
πp

ndown
r
∑

rdown=1
πdown

r

nup
r
∑

rup=1
π

up
r [λp(t)(Gwp(t) + bmdown

wp (t).ψdown
r (t)

−bmup
wp(t).ψ

up
r (t))− Cc

wp(t)− SUCc .vc
wp(t)]

�

[68]
To minimize the cost,
as well as the carbon
emission percentage.

Pro f it =

max
Ns
∑

s=1
πs ×

24
∑

t=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
Np
∑

p=1

{
Cchp

t,p + Cho
t,p

}
{

ρem
s,t × Pgrid

s,t +
Np
∑

p=1

{
ρret_e

t × Psel
s,t,p + ρh

t × Htl
t,p − Cens

s,t,p

}
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Emission = min
Ns
∑

s=1
πs ×

24
∑

t=1

⎧⎪⎨
⎪⎩

Np
∑

p=1

{
Echp

t,p + Eho
t,p

Egrid
s,t

⎫⎪⎬
⎪⎭

� �
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[69]
To minimize of

average generation
cost of DG units.

MinSVPP =

n
∑

i=1
PDG_C,i ∗ vDG_C,i(PDG_C,i)

n
∑

i=1
PDG_C,i

MinCVPP =
n
∑

i=1
PDG_C,i ∗ vDG_C,i(PDG_C,i)

�

[70]

To maximize the
worst-condition

expected profit of
SG.

maxψM ∑
ω∈Ω

πω

[
∑

t∈τ
[λE

tω pE
t Δt + λ̂

R

tω
+ pR

t

−(CC,FuC
t + SUCCvC,SU

t + SDCCvC,SD
t )] + υ

+ λ̂R
tω − pR

t − � �

[71] To maximize the SG
profit. Max ZPro f it =

T
∑

t=1
(PD

t .λDSO,charge
t + ∑

k∈GSP
PUpstream

kt .λLMP
kt

− ∑
i∈DG

(PDG
it .λDG,cos t

i + yDG,start
it .λDG,start cos t

i + zDG,shut
it .λDG,shut cos t

i

− ∑
j∈SG

PSG
jt .λSG,cos t

j − PFL
t .λFL,cos t

t )

� �

[72]

To integrate EV, ESS,
and wind generation
for participation in
the day-ahead and
reserve electricity

market.

maxY =
T
∑

t=1

(
λDA

t eDA
t + Pres λRes

t eRes
t + calltλRes

t eRes
t −

N
∑

n=1
cos t

deg
t,n

)
+

N
∑

n=1
(λS Edem

n ) �

[73]

To minimize the SG
cost and

emissions using
day-ahead
scheduling.

Minimize CDN = ΔT.
T
∑

t=1

⎛
⎜⎜⎝

kP
t .PDN

t .QDN
t +

NB
∑

i=1

[
cRES

i .PRES
i,t + FDG

i

(
PDG

i,t

)]
−

NVPP
∑

k=1

(
πP

k,t .P
VPP
k,t + πQ

k,t .Q
VPP
k,t

)
⎞
⎟⎟⎠

Maximize BVPP,k
i = ΔT.

T
∑

t=1

⎛
⎝ UDR

k

(
PDR

k,t

)
− FDG

k

(
PDG

k,t

)
−cRES

k .PRES
k,t −

(
πP

k,t .P
VPP
k,t + πQ

k,t .Q
VPP
k,t

)
⎞
⎠

� �

[74] To minimize the total
operating cost of SG.

Minimize f =
T
∑

t=1
Cost =

T
∑

t=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PGrid(t)× CGrid(t)
+UWT(t)× PWT(t)× CWT(t)
+UPV (t)× PPV (t)× CPV (t)
+UFC(t)× PFC(t)× CFC(t)
+UMT(t)× PMT(t)× CMT(t)

Ns
∑

j=1
Uj(t)× PSj(t)× CSj(t)

+
Ng
∑

i=1
SGi |Ui(t)−Ui(t− 1)|

+
Ns
∑

i=1
SSj
∣∣Uj(t)−Uj(t− 1)

∣∣
−ΔP(t)× CΔP(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

[75] To maximize the
profit.

Pro f itincrease =

[
n
∑

j=1
pro f itj(1 + i)−j

]
− Ccap

=

[
n
∑

j=1
(priceVPP × powerVPP − Incomebaseline)× (1 + i)−j

]
− Ccap

� �

[76] To minimize the
generation costs. F =

T
∑

t=1

(
Ncpp

∑
i=1

Fcpp
i,t

(
Pcpp

Gi,t

)
+

Nvpp

∑
j=1

Fvpp
j,t

(
Pvpp

Gj,t

))
�

[77]

To minimize
congestion based on

the day-ahead
scheduling of DERs.

min
Ns

∑
s=1

ps(
Hda

∑
th=1τda

(
Nchp

∑
i=1

Cf ,chp,i,s(th)

+
Ne,sto

∑
i=1

Cop,e,sto,i,s(th)− Pm,da(th)cm,da(th)τda))

min
Hid

∑
th=1τid

(
Nchp

∑
i=1

Cf ,chp,i(th) +
Ne,sto

∑
i=1

Cop,e,sto,i(th) + Cpen,imb(th))

� �
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[78]

To schedule
optimally using
EMS, taking into

account all possible
types of DGs aimed
toward profit and

the minimization of
carbon emissions.

Maximize Income =
T
∑

t=1

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

NL
∑

L=1
PLoad(L,t) .MPLoad(L,t) +

NM
∑

M=1
PSell(M,t) .MPSell(M,t) +

NE
∑

E=1
PDischarge(E,t) .MPDischarge(E,t) +

NV
∑

V=1
PDischarge(V,t) .MPDischarge(V,t)

⎞
⎟⎟⎟⎠.Δt

⎤
⎥⎥⎥⎦

Minimize OperatingCost =
T
∑

t=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

NDG
∑

I=1
PDG(I,t) .cDG(I,t) +

NS
∑

S=1
PSupplier(S,t) .cSupplier(S,t) +

NL
∑

L=1
PLoadDR(L,t) .cLoadDR(L,t) +

NDG
∑

I=1
PDischarge(E,t) .cDischarge(E,t)

NV
∑

V=1
PDischarge(V,t) .cDischarge(V,t) +

NL
∑

L=1
PNSD(L,t) .cNSD(L,t)

NDG
∑

I=1
PGCP(I,t) .cGCP(I,t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.Δt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Minimize E =
T
∑

t=1

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

Ωd
DG
∑

I=1
PDG(I,t) × EDG(I,t) +

Ωe
SP

∑
S=1

PSupplier(S,t) × ESupplier(S,t)

⎞
⎟⎟⎟⎠.Δt

⎤
⎥⎥⎥⎦

� �

[79]
To minimize the

operating cost of SG
over 24 h. Minimize F =

⎡
⎢⎢⎣ 24

∑
t=1

⎡
⎢⎢⎣
⎛
⎜⎜⎝

PWT(t).KWT(t) + PPV(t).KPV(t)
+PFC(t).KFC(t)− PCh(t).KCh(t)
+PDch(t).KDch(t)− PSp(t).KSp(t)

+PNs(t).KNs(t)

⎞
⎟⎟⎠Δt

⎤
⎥⎥⎦
⎤
⎥⎥⎦ � �

Table 4. The optimization papers surveyed across DGs DSM optimization problems.

Refs.
Optimization

Algorithm
DR Programs

Used
Objective Function Constraints Decision Variables

[80]

ANN

• RTP
• Minimization of

the total cost to
consumers

• Battery SoC
• Battery

charge/discharge
power

• RTP pricing values
• PEV charg-

ing/discharging
rate

[81]
• Peak shaving

(PS)

• Minimization of
transformer
loading

• Transformer limits
• Line current

carrying capacity

• Transformer
parameters

• Number of EVs
• EV charging power

[82]
• PS
• IBR

• Minimization of
energy cost

• Minimization of
network losses

• Minimization of
voltage magnitude
deviation

• EV battery SoC
• EV charging power
• DG power balance

limits

• Participating active
loads

• Power injected into
the grid

[83] • PS • Maximization of
revenue

• Load
charge/discharge
limits

• EV SoC
• Maximum

charge/discharge
power

• Charging time
constraints

• Charging tariff
• Day-ahead

forecasted prices
• EV drive cycle

[84] • ToU

• Minimization of
the total cost

• Maximization of
revenue

• RES generation
limits

• DG unit operating
costs

• Available tradeable
power

• RES generation-
dependent
parameters
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Refs.
Optimization

Algorithm
DR Programs

Used
Objective Function Constraints Decision Variables

[85] DP • Load shifting
(LS)

• Minimization of
energy costs
without sacrificing
user preferences
and satisfaction

• EV
charge/discharge
power

• EV battery SoC

• RES generation
parameters

• Utility tariff rates

[86]

Fuzzy Logic
(FL)

• LS
• PS

• Minimization of
total operation cost

• Power balance
constraints

• Spinning reserve
constraints

• Generator limits
• Wind power

penetration rate

• Fuel cost
• Startup cost

[87]

• ToU
• CPP
• Valley filling

(VF)

• Minimization of
peak load demand

• EV SoC
• Bus voltage limits

• EV
charge/discharge
time

• Market pricing
signals

[88]

• ToU
• VF
• LS

• Maximization of
profit of consumers
through maximum
EV integration

• EV SoC
• Charging

preference limits
consumers

• Electricity tariff
• EV availability

[89] • LS

• Minimization of
generation costs,
emissions, and
energy losses

• Active power
output limits

• Generator limits
• Total flexible load

limits

• Flexible load
operation time

[90] • VF
• Minimization of

high ramp rates in
G2V mode

• EV SoC
• Ramp rate limits
• Wind power

output limits

• EV charging
current

[91]

Game Theory

• LS
• Minimization of

cost for residential
users

• The discharge rate
of PEV

• Hourly electricity
tariff

• PEV energy
consumption

[92] • PS • Minimization of
energy cost

• Transmission limits
• EV

charge/discharge
limits

• Total load demand
• Cost function
• Welfare function

[93] • LS
• PS

• Minimization of
peak demand
using distributed
EV integration

• Charging outlet
limits

• Energy trading
limits

• EV charging time
• Number of

participating EVs
under the same
aggregator
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Refs.
Optimization

Algorithm
DR Programs

Used
Objective Function Constraints Decision Variables

[94]

Game Theory

• PS
• ToU

• Minimization of
electricity costs

• Minimization of
deviation between
predicted and
actual load
demand

• EV storage limits
• ESS storage limits
• EV SoC limits

• EV availability
• Load demand

[95] • ToU
• PS

• Minimization of
the
peak-to-average
ratio (PAR) of the
total energy
demand

• Energy balance
limits

• PEV discharge
limits

• Charging/
discharging time
limits

• Cost function
• Load demand

[96] • ToU

• Maximization of
profits in the
market
environment

• EV charging limits
• Number of

participating EVs
• Bidding tariff

[97]
• PS
• ToU
• VF

• Minimization of
charging the cost of
EV

• Grid power limits
• EV SoC limits

• Satisfaction income
of EVs

• Battery loss of EV
• Charging cost

[98] • PS
• VF

• Minimization of
energy cost

• Minimization of
battery
degradation

• Client usage
parameters

• Cost function
• Residential load

demand
• PHEV driving

behavior

[99] • ToU
• RTP

• Minimization of
electricity tariff for
the customers

• Hourly power
demand limits

• Total energy
consumption limits

• Availability of EVs
in the parking lot

• SoC of EVs
• Battery power rate
• Load demand

[100] • RTP
• ToU

• Maximization of
system stability

• Maximization of
profits

• Average power
generation limits

• Daily energy usage
limits

• EV availability
• Load demand

[101] • RTP
• Maximization of

profits of utility
companies

• Charging rate
limits

• Price function of
utility

[102] • RTP

• Maximization of
retailer profits

• Minimization of
generation cost

• Charging rate
limits

• Charging period of
EVs

• Battery charging
efficiency

[103] LP
• PS
• VF

• Minimization of
energy expenses of
individual
customer

• Charging rate
limits

• Battery SoC for
driving cycle

• Appliance
operating time

• Appliance power
demand
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[104]

LP

• LS
• RTP
• ToU

• Minimization of
peak load in the
distribution
network

• Minimization of
consumer tariff

• Power limit of EV
• Availability of

appliances
• Power generation

[105]
• PS
• VF
• ToU

• Minimization of
difference between
peak and off-peak
tariff

• Minimization of
EV charging cost

• Base tariff limits
• Price deviation

limits
• EV SoC limits
• EV charging power

limits
• Feeder baseload

limits

• Electricity tariff
• Operation time slot

[106] • VF

• Maximization of
EVs availability in
charging

• Minimization of
monetary expenses

• Charging load
limits

• EV SoC limits

• Charging decision
value/vector

[107] • PS
• ToU

• Minimization of
home electricity
expenses

• EV availability
period

• EV demand
• Electricity tariff

[108] • RTP
• ToU

• Minimization of
the operation cost
of EVCS and
energy
management
system (EMS)

• Power supply
constraints

• ESS constraints
• Heating system

constraints
• EV power balance

limits

• Load demand
• EV and ESS reserve

tariff
• Heating

compensation
prices

[109] • PS
• Minimization of

variation of the
load curve

• EV SoC • EV charging load

[110] • PS
• LS

• Maximization of
revenues

• EV charging level
limits

• Grid power limits

• Hourly tariff
• DG power

generation capacity
• Hourly critical load

demand

[111] • RTP
• ToU

• Minimization of
PAR and system
costs

• PV power trade
limit

• EV SoC limits

• PV generation
capacity

• EV charging load
• EV availability

[112] • RTP

• Minimization of
costs, peak
charging load

• Maximization of
PV integration

• EV charging
demand limit

• EV availability
• EV charging load
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[113]

LP

• RTP • Minimization of
cost of the system

• EV charging limits
• EV SoC limits

• Grid power
consumption

• Appliance
schedule

• Hourly tariff

[114] • PS
• Minimization of

operational costs
and emissions

• Thermal unit limits
• Power flow and

grid constraints
• PEV constraints
• Power balance

limits

• EV SoC
• Thermal

generation
requirement

[115] • ToU
• Minimization of

the total cost for
the consumer

• Power balance
limits

• EV SoC limits
• Power transaction

limits

• EV charg-
ing/discharging
time

• The usable capacity
of EV ESS

[116] • ToU
• Minimization of

the total cost for
the consumer

• EV charging limits
• EV operation time

limits
• EV battery capacity

limits

• Real-time tariff

[117] • RTP

• Minimization of
the total energy
cost of a smart
home

• Power balance
limits

• Power trading
limits

• EV SoC limits
• PV generation

limits

• PV generated
power

• EV availability

[118] • PS
• LS

• Minimization of
individual
consumer costs at
lower participation
levels

• EV SoC limits
• ESS storage limits
• DER generation

limits

• Price indicators
• Customer fairness

index

[119] • ToU
• Maximization of

EVCS operating
profits

• EV SoC limits
• ESS

charge/discharge
power limits

• Efficiency limits

• Short-term
forecasted loads

• Load reduction
signal

[120] • ToU
• PS

• Minimization of
energy cost • EV charging limits

• Cost function
• Total charging

demand

[121] • RTP
• LS

• Minimization of
generation costs for
the customer and
utility

• Shiftable load
power limits

• EV SoC limits
• EV availability

[122] • PS • Minimization of
PAR of the system

• Grid power
injection limits

• EV SoC limits

• EV charging
efficiency
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[123] LP • ToU • Minimization of
overall system cost

• ESS power limits
• EV

charge/discharge
power limits

• Cost function

[124]

PSO

• ToU

• Maximization of
revenues

• Minimization of
load fluctuation

• EV aggregator
power limits

• Grid power limits
• EV

charge/discharge
power limits

• Charging tariffs
from the grid

• Service revenues of
EV aggregator

[125] • LS
• PS

• Minimization of
operating costs for
the network
operator

• Grid power
balance limits

• Bus voltage limits
• Line thermal limits
• EV

charge/discharge
limits

• EV SoC
• Network power

injection
• DG power injection

[126] • PS
• Minimization of

fuel and startup
costs

• Power balance
constraints

• Generation limits
• Up/downtime

constraints
• Spinning reserve

limits
• EV

charge/discharge
power limits

• Fuel economics
cost

• Startup/shutdown
time

[127] • RTP

• Minimization of
the load curve

• Maximization of
customer profit

• Power capacity and
balance constraints

• EV
charge/discharge
limits

• EV charging time
limits

• EV availability
• The power

exchanged from
the grid

[128] Evolutionary
PSO • ToU • Minimization of

system cost

• Active and reactive
power generation
limits

• Grid voltage limits

• Power flow from
the grid

• EV availability

[129] ACO • PS • Minimization of
overall system cost

• DG generation
limits

• Grid power
balance limits

• Cost function

[130]

GA

• PS

• Minimization of
cost variance

• Maximization of
user satisfaction

• EV SoC limits
• EV

charge/discharge
power limits

• EV availability
• Load demand from

the grid

[131] • VF
• PS

• Minimization of
PAR • EV SoC limits • EV availability
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[132]

GA

• PS • Minimization of
PAR • EV SoC limits • Power demand

• EV availability

[133] • ToU

• Maximization of
profit

• Minimization of
PAR

• Minimization of
variance

• EV SoC limits
• EV

charge/discharge
power limits

• EV availability
• EV charging power

[134]

Improved
partheno-

genetic
algorithm

(IPGA)

• LS

• Minimization of
annual
construction
maintenance cost

• Grid power limits
• System reliability

constraints
• DG and ESS

penetration limits
• EVCS charging

power limits

• EV availability at
EVCS

• DG power
generation capacity

[135]
Hyper-

heuristic
optimization

• LS
• Minimization of

total cost and
emission

• EV SoC limits
• Electricity tariff

limits

• Emissions from
CPP

• DG is active in the
grid

[136] DE • PS

• Maximization of
energy
consumption using
EV-ESS

• Minimization of
PAR

• EV SoC limits • EV availability

[137]
Virus colony
search (VCS)
optimization

• PS
• Minimization of

smart parking costs

• Upstream grid
power limits

• EV SoC limits
• Power equilibrium

limits

• Cost function

[138] Hybrid GA
and PSO

• LS
• ToU

• Minimization of
total tariff for
customers in 24 h

• Energy balance
limits • EV availability

[139]

Model
predictive

control (MPC)

• PS
• RTP

• Minimization of
total operational
cost for energy
management

• Heat pump
capacity limits

• Heat pump
thermal capacity
limits

• SoC of EV limit

• Heat pump
generated power

• EV availability
• Fuel price
• Natural gas price

[140] • RTP

• Minimization of
ramping
requirements from
power plant

• Power balance
constraints

• Service quality
constraints of EVs

• EV charging load
request vector

[141] • RTP

• Minimization of
cost of energy
consumption
considering EV
owner preferences

• EV SoC limits
• EV SoC level
• Price signal
• Volume signal
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[142]
Model

predictive
control (MPC)

• PS
• Minimization of

electricity bills and
peak load

• EV SoC limits
• EV

charge/discharge
power limits

• Grid power
balance limits

• Energy tariff
• Capacity tariff

[143]
Nonlinear

programming
(NLP)

• RTP

• Maximization of
total profit
considering social
welfare

• EVCS EV loading
limits

• EV SoC limits
• EV BESS

temperature limits

• EVCS operation
time

[144] Robust
programming

• PS
• LS

• Maximization of
EV-V2G power
integration

• Grid power
balance limits

• EV power
trajectory limits

• EV availability

[145]

Robust
mixed-integer

linear
programming

(RMILP)

• LS

• Minimization of
total operational
costs and emissions

• CAES operational
limits

• BESS
charge/discharge
limits

• EV SoC limits
• RES generation

limits

• EV availability
• Grid power

injection

[146]

Robust
mixed-integer

quadratic
programming

(RMIQP)

• PS
• LS

• Minimization of
PAR and energy
cost for the users

• RES generation
limits

• Appliance loading
limits

• EV SoC limits
• Power

demand-supply
balance limits

• Appliance
operation time

• Grid power
exchange tariff

[147]

Stochastic
programming

• RTP
• PS

• Minimization of
operational cost

• DG power limits
• Fuel cell power

limits
• EV SoC limits
• Grid power

balance limits

• Cost of power at
DG units

[148] • ToU
• Maximization of

expected profits of
EV aggregator

• Bidding amount
capacity limits

• EV charger
capacity limits

• EV
charge/discharge
power

• Grid electricity
tariff

[149]

• ToU
• CPP
• RTP
• Incentive-

based pricing

• Maximization of a
parking lot profit

• EV SoC limits
• Parking lot stored

energy limits

• EV arrival and
departure SoC
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[150]

Stochastic
programming

• ToU
• DLC

• Minimization of
maximum
transformer
loading during the
charging operation

• EV SoC limits
• EV

charge/discharge
limits

• Grid power
balance limits

• Load demand
curve

• EV availability
• Transformer

loading capacity

[151]

• ToU
• Incentive-

based pricing
• Maximization of a

parking lot profit

• EV SOC limits
• EV battery

efficiency

• EV battery capacity
• Cost of

degradation
• Availability of EVs
• EV

charge/discharge
tariff

[152] • ToU
• Maximization of

EV aggregation
profit

• EV SoC limits

• Market electricity
tariff

• Spinning reserve
capacity

• EV availability

[153] • ToU

• Maximization of
expected profit

• Minimization of
risks and costs
associated with DR

• Available DR limits
• EV charg-

ing/discharging
power limits

• EV SoC limits

• Intraday price
• RES generation

capacity

[154]

Conditional
value at risk

(CVaR)
function

optimization

• RTP
• Minimization of EV

charge/discharge
cost

• EV
charge/discharge
rate limits

• EV SoC limits
• EV charging time

limits

• EV
charge/discharge
power

[155]
CVaR-based

stochastic
programming

• LS

• Minimization of
operation cost,
emissions, and
renewable power
curtailment

• Active and reactive
power limits

• Power flow and
balance limits

• EV SoC limits

• Shiftable appliance
schedule

• EV availability

[156]

Multi-period
security

constraint
optimal power
flow (MPSOPF)

• ToU

• Minimization of
generation costs,
contingency costs,
load-following
costs, and load
shedding costs

• EV SoC limits
• Distributed energy

resource (DER)
generation limits

• Load shedding and
load following
reserve limits

• Electricity ToU
tariff

• Electricity load
curve

[157]
Techno-

economic
optimization

• ToU
• CPP
• RTP

• Maximization of
income of
distribution
operator

• Minimization of
operational costs

• RES generation
limits

• Bus and line
voltage limits

• Available DR limits
• EV SoC, efficiency,

and power
exchange limits

• EV energy trading
tariff

• Bidirectional
power flow tariff

• Battery
depreciation cost
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[158]

Stochastic
dynamic

programming
(SDP)

• ToU

• Minimization of
customer’s energy
charges
considering
residential power
demand and EV
charging

• EV SoC limits
• EV charger power

limits
• Grid power

injection limits

• Time index
• Residential load

demand

[159]

Deep learning
(DL)

• ToU
• PS

• Minimization of
overall vehicle
energy cost

• EV SoC limits
• EV charger

efficiency limits

• Cost function
• Real-time

electricity tariff
• EV availability

[160] • ToU
• Minimization of

energy costs in the
real-time market

• Voltage and
current limits

• EV SoC limits

• Real-time
electricity tariff

• EV load demand

[161]

Robust
adversarial

reinforcement
learning
(RARL)

• ToU

• Minimization of
customer’s
electricity bill
considering
privacy concerns

• RES generation
limits

• EV SoC limits

• Dynamic electricity
tariff

• Appliance
schedule

[162]

Reinforcement
learning (RL)

• PS

• Minimization of
monetary and
non-monetary
costs in DSM

• EV battery SoC
limits

• Energy prices
• Load demand

curve
• Total cost function

[163] • ToU

• Minimization of
the load demand
curve of the system

• EV SoC limits
• EV

charge/discharge
power limits

• Charging reward
function

[164] • ToU

• Minimization of
charging cost over
the day-ahead time
frame

• EV BESS
charge/discharge
time limits

• EV
charge/discharge
rate limits

• EV availability
• Real-time

electricity tariff

[165]
Hierarchical

reinforcement
learning (HRL)

• PS
• Minimization of

hydrogen
consumption

• EV SoC limits
• Fuel cell operation

limits

• Fuel consumption
• Fuel cell operation

status

[166]
RL-based
pursuit

algorithm (PA)

• RTP
• ToU

• Minimization of
total energy cost

• EV SoC limits
• EV

charge/discharge
time limits

• Reward function

[167]

Correlation
optimization

algorithm
(COA)

• ToU

• Minimization of
electricity cost of
the consumers
considering PV
generation and
ToU pricing

• PV generation
limits

• EV operation time
limit

• Grid supply of
power

• Electricity price
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[168]

Market-based
multi-agent

system
optimization

• PS
• Minimization of

total operation
costs

• Aggregated energy
constraints

• Power limit of EV
fleet

• EV battery capacity
limits

• Cost function
• Demand function

[169]
Alternating

direction
method of
multipliers
(ADMM)-

based
decentralized
optimization

algorithm

• PS • Minimization of
the load curve

• EV SoC limits
• EV charging

efficiency limits
• EV charge rate

limits
• Network

constraints

• EV charging load

[170]
• VF
• LS
• PS

• Minimization of
total generation
cost

• EV charg-
ing/discharging
efficiency limits

• EV ESS capacity
limits

• EV SoC limits

• Load demand
curve

• EV availability

[171]

Multi-EV
reference and

single-EV
real-time
response
(MRS2R)

online
algorithm

• PS
• VF

• Minimization of
payment by EV
customers

• EV SoC limits
• EV BESS capacity

limits
• EV availability

[172] Interior point
optimization • VF

• Minimization of
peak valley
difference and
improvement of
stability

• EVCS charg-
ing/discharging
time limits

• Grid power limits

• Active power load
• Grid bus voltage

magnitude

[173]

Constrained
nonlinear

optimization
problem with

Karush–Kuhn–
Tucker (KKT)

conditions

• PS
• Minimization of

charging the cost
for EV owners

• Charging power
limits

• Grid power limits
• Cost function

[174]
Decision-table-
based control
optimization

• PS

• Maximization of
economic benefits

• Minimization of
grid power
consumption

• EV BESS SoC limits
• Balancing current

limits

• PV generation
during daytime

• SoH of BESS

[175]

Monte Carlo
simulation

using
mixed-integer

linear
programming

(MILP)

• ToU
• Minimization of

building energy
consumption

• EV charging time
limitations

• EV SoC limits
• Energy balance

limits

• Load demand
curve
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[176]

Convex
optimization

• VF • Minimization of
EV charging costs

• ESS charging rate
constraints

• ESS SoC limits
• ESS availability

[177] • RTP
• VF

• Minimization of
electricity costs

• Consumer comfort
limits

• EV charging time
constraints

• ESS availability

[178] • PS
• Minimization of

total electric energy
costs

• Power balance
limits

• SoC limits
• Home ESS SoC

limits

• Number of
available EVs

[179] • RTP
• Minimization of

electricity cost for
the consumer

• Charge/discharge
power limits

• Load threshold
• SoC limits

• Number of
available EVs

• Real-time energy
tariff

[180] Quadratic
programming • PS

• Maximization of
vehicle’s fuel
economy

• Power flow limits
• SoC limits • Cost function

[181]

Non-intrusive
load extracting

(NILE)
algorithm

• LS
• PS

• Minimization of
the daily cluster
charging costs of
EVs

• Power balance
limits

• Ramping rate
limits

• User comfort
constraints

• EV charging power
• Availability of EVs

[182]

Monte
Carlo-based
risk-averse

charge
scheduling

optimization

• ToU
• RTP

• Maximization of
profits

• SoC limits
• Charging period

limits

• Electricity tariff
• EV drive cycle

9. Discussion and Findings

During the systematic review of the papers as a part of the literature survey, several
research gaps were identified in the present research scenario, as well as implementations
in various projects across the research domain. Some of the key findings identified during
the survey include:

• Most of the research papers addressed DSM formulation in the EV scenario by incorpo-
rating bidirectional power flow, but the uncertainty in demand and supply forecasting
leads to inefficient control over power flow.

• The limited participation of DGs, mainly on the distribution level, restrains the in-
dividual customers, and they cannot directly participate in ancillary services and
energy markets [183,184]. Clustered DGs must be able to collectively participate in
the formation and maintenance of such groups in the proper sizing and architecture,
which should be scalable in future implementations.

• The clustering of uncoordinated DGs, which generally operate in a decentralized setup
among different utility operators, seems challenging. It is necessary to implement a
proper service-oriented architecture to group together the operation and participa-
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tion of different DG aggregating companies to make DG-DSM integration into the
commercial markets more profitable and easier to implement on a technical front.

• The drive cycle of the EV owners, on an individual basis, has not been taken into
consideration on an end-user level. The optimization of charging and discharging
can be improved, to a great extent, with the personalized scheduling of EV and ESS
charge/discharge operations based on the user’s comfort and usage cycle.

• ICT technologies are currently implemented mainly on the transmission system opera-
tor (TSO) and DSO levels. They need to be integrated directly into the end-user location
with a two-way communication channel to ensure more engaging and detailed EV
and ESS charge scheduling operations. The EV and ESS can provide personalized data
collected during diagnostic and data collection schedules to supply the EV aggregator
with proper charge schedule data. This will allow the EV aggregator to optimally
dispatch loads based on detailed SoC, SoH, BESS capacity, and drive cycle condition
data.

• The customer’s security and privacy are prioritized in the public domain. Consumers
need to be made aware that their privacy is assured when they avail themselves of
services in public locations, such as when sharing the consumer’s charging location
history and charging and discharging profile. The public charge scheduling setup
presents the issue of DGs sending private information or erroneous data to affect grid
operation and load dispatch scheduling. Even though there is research on DGs, com-
munication strategies concerning privacy issues, their effect on DG DSM scheduling in
coordination with secure communication protocols, and procedures to mitigate them
have not been explored in detail.

• Meta-heuristic optimization techniques have been studied in a few research formula-
tions, and their efficiency in forecasting the load and charge schedule of DGs in DSM
operation can be exploited to a greater extent with the discovery of newer and more
efficient meta-heuristic techniques. This would ensure better computation with less
complexity in arriving at a proper solution.

• Consumer comfort needs to be given a higher priority in DSM operations regarding
their drive cycle usage and charge/discharge patterns.

• The maximum penetration of EVs in the grid system can facilitate the better usage
of RES generation, and the high capacity of EV BESS can provide ample reserves for
power relaying, which are necessary in cases of intermittent generation sources. The
DSM operation, in the case of DGs, ensures the maximum utilization of the BESS
capacity in conjunction with RES generation.

• The centralized control architecture of DGs is necessary for setting up standards of
DSM operation and charge scheduling.

• The higher penetration of DGs into the distribution grid and the DSM operation
associated with them can cause problems during peak usage periods, when other
factors such as voltage drops and thermal overloading of transformer equipment and
cables might occur.

• Robust control and device monitoring and remote upgrade capabilities in DG DSM
architecture are important, as they may facilitate further upgradation and provide
better and more reliable operation and communication.

• Most DGs can be connected to the Internet through the global system for mobiles
(GSM), Wi-Fi, ZigBee, and other communication networks, which aggregators can
exploit and coordinate the operation thereof among constituent EVs as dispatchable
loads to the distribution grid [185].

• In the DSM environment, DGs lack methodologies to maximize revenues and grid
utilization. The primary reason can be attributed to the lack of policies for participating
entities in wholesale electricity markets, and low priority being given to commercializ-
ing DSM due to environmental, economic, and social barriers [186,187].
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10. Future Research Direction

This literature survey carefully examined the current research and the advances in the
domain of EV-based DSM, and after thoughtful discussion, based on the identified research
gaps, some valuable suggestions regarding future research directions and prospective areas
of research are suggested:

• DG integration on a system-wide scale can be a beneficial front for the maximum
utilization of intelligent loads and appliances to participate in DSM, with EVs being
smart energy hubs concerning energy dispatch and storage [188,189].

• Data collection and data handling for relevant information extraction and calculation
should be prioritized in the future since information gathering and processing have a
significant influence on performance.

• Hybrid incentive-based and tariff-based financial models can be formulated for the
optimization of load control features, such as the DSM response speed, the duration of
the program, advanced alert and notification systems, geolocation sensitivity-based
analysis, and real-time load monitoring rates [190–192].

• Meta-heuristic-based optimization can be hybridized, or newer, more efficient heuris-
tic algorithms can be used for better computation in the scheduling of DSM operations.
PSO, GA, wavelet transform-modified ANN, adaptive FL, support vector machine
computation, and autoregressive moving average value integration with models
can be implemented to obtain higher load forecast accuracy considering the regu-
lation of loads, dispatch, scheduling, and the unit commitment problems of smart
grids [193,194].

• K-map algorithms, fuzzy constrained algorithms, self-reorganizing maps, multilevel
hierarchy-based clustering techniques, artificial bee colony (ABC) optimization, and
an ACO can be implemented for the extraction of crucial information from aggregated
load consumption profiles and in the classification of various load types in intelligent
distribution systems [195].

• EV DSM models need to be more comprehensive in their operation for better prac-
tical implementation, i.e., varying charging rates, standards implemented on EVCS
premises, standardized BESS swapping station methodologies, and the active par-
ticipation of EVs in overall market trading and ancillary service support scenarios.
More research needs to be focused on obtaining an optimized tradeoff between the
performance of the system and computational complexity.

• Through data-mining and decision-making processes, diverse and hybrid optimization
techniques, such as game theory and Bayesian probability theory, among others,
should be explored further for internal energy dispatch, external market participation,
risk evaluation, information and strategy coordination, and bidding strategy.

• The practical and easy implementation of the management of charging demand during
peak/off-peak usage periods, with price-sensitive scheduling, is an excellent prospect
for DSM aggregators. With large-scale EV integration into smart grids, it is a very
feasible research direction to be focused upon, with an emphasis on EV charging
strategies based on price response and price elasticity dynamics [196].

• Climate-based EV-DSM scheduling should be researched further, as it would affect
RES generation to a large extent, and forecasting-based scheduling could help the RES
to be dispatched more efficiently based on meteorological data [197].

• There is a severe lack of datasets necessary for training machine learning and deep
learning models. Only five well-known EV charge scheduling datasets are available
in the open research domain for researchers [198–202]. Other datasets that have been
developed are available to commercial companies. More machine learning models
and bio-inspired optimization techniques need to be developed to represent varying
architectures and geographical locations [203].

• Big-data analysis should be emphasized to establish appropriate information to im-
prove the perception of the energy market to bring compatibility, universality, and
competitiveness.
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11. Conclusions

In this review paper, existing research on DSM operations, including the various DGs
and an area that has witnessed significant interest in the energy management domain in the
last few years, was reviewed extensively. The general structure, operation, and optimiza-
tion models of DSM and DG-DSM integration into the present smart grid scenario were
discussed and represented. New concepts such as waste-to-energy were explored through a
brief study, as were their implementations in test case scenarios. The optimization aspect of
DG-DSM scheduling was tabulated and represented, with emphasis placed on the objective
function formulation, constraints or limitations, and the selection and parameterization of
decision variables. With the expectation of an increase in the adoption of various types of
DG, it is estimated that DSM operations can play a valuable opportunity for the customers
and utility aggregators to be active participants in the scheduling, dispatch, and market-
oriented trading of energy. The research directions that this review article provides can
help researchers identify potential gaps, which have been discussed previously, and they
can be given due importance in finding solutions to the existing issues and challenges.
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Nomenclature

DG Distributed Generation
DR Demand Response
RES Renewable Energy Sources
DERs Distributed Energy Resources
EMS Energy Management System
CPP Critical Peak Pricing
V2G Vehicle to Grid
EVCS Electric Vehicle Charging Station
BESS Battery Energy Storage System
PHEV Plug-in Hybrid Electric Vehicle
PV Photovoltaic
PEV Plug-In Electric Vehicle
DG Distributed Generation
DP Dynamic Programming
PSO Particle Swarm Optimization
GA Genetic Algorithm
FL Fuzzy Logic
PAR Peak-to-Average Ratio
VCS Virus Colony Search
NLP Nonlinear Programming
RMIQP Robust Mixed-Integer Quadratic Programming
DER Distributed Energy Resource
SBP Stochastic Dynamic Programming
RARL Robust Adversarial Reinforcement Learning
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HRL Hierarchical Reinforcement Learning
ADMM Alternating Direction Method of Multipliers
KKT Karush–Kuhn–Tucker
PC Peak Clipping
VF Valley Filling
LG Load Growth
Pgrid(h) Transfer of Power from the Grid to Load (kW)
De(h) Electrical Energy Demand at Hour h (kWh)
SoCmin(h) Minimum SoC at Hour h
Eh

batt The Battery Energy at Hour h
dr Load Duration
Pmax

grid(h) The Maximum Power Draw by Load from the Grid at Hour h
Bsj(t) The Energy of jth Storage Device
Psj Power Emission from jth Storage
Crt

g Cost of Renewable Energy Production
Pb Penalty of Battery
PH Penalty of Hydrogen
PHT Penalty Hydride Tank
CFtRLB Cost of Reliability Operations
DSM Demand-Side Management
EV Electric Vehicle
SG Smart Grid
EE Energy Efficiency
SoC State of Charge
SoH State of Health
RTP Real-time Pricing
DoD Depth of Discharge
ISO Independent System Operator
ADR Automated Demand Response
UC Unit Commitment
ANN Artificial Neural Network
LP Linear Programming
ACO Ant Colony Optimization
DE Differential Evolution
EMS Energy Management System
IPGA Improved Parthenogenetic Algorithm
MPC Model Predictive Control
RMILP Robust Mixed-Integer Linear Programming
CVaR Conditional Value at Risk
MPSOPF Multi-Period Security Constraint Optimal Power Flow
DL Deep Learning
RL Reinforcement Learning
PA Pursuit Algorithm
MRS2R Multi-EV Reference and Single-EV Real-time Response
MILP Mixed Integer Linear Programming
TSO Transmission System Operator
LS Load Shifting
LS Flexible Load Shifting
LR Load Reduction
Pbatt(h) The Net Output Power of the Battery in (kW)
SoCmax(h) Maximum SoC at Hour h
SoC(h) SoC at Hour h
Pch(h) Power for Charging at Hour h (kW)
Pmax(h) Maximum Power at Hour h (kW)
Bgi(t) Energy Bids of ith DG
Pgi Power Generations of ith DG
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Ct
g Cost of Energy Production

Ct
ES−

, Ct
ES+ Cost of Energy Storage Charge (+) and Discharge (−)

CFtOPR Cost of Operations
Pw Penalty for Water Tank
2
CFtEMI Cost of Microgrid Installation
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Abstract: The use of metaheuristics in estimating the exact parameters of solar cell systems con-
tributes greatly to performance improvement. The nonlinear electrical model of the solar cell has
some parameters whose values are necessary to design photovoltaic (PV) systems accurately. The
metaheuristic algorithms used to determine solar cell parameters have achieved remarkable success;
however, most of these algorithms still produce local optimum solutions. In any case, changing to
more suitable candidates through elephant herd optimization (EHO) equations is not guaranteed;
in addition, instead of making parameter α adaptive throughout the evolution of the EHO, making
them adaptive during the evolution of the EHO might be a preferable choice. The EHO technique
is used in this work to estimate the optimum values of unknown parameters in single-, double-,
and three-diode solar cell models. Models for five, seven, and ten unknown PV cell parameters are
presented in these PV cell models. Applications are employed on two types of PV solar cells: the
57 mm diameter RTC Company of France commercial silicon for single- and double-diode models
and multi-crystalline PV solar module CS6P-240P for the three-diode model. The total deviations
between the actual and estimated result are used in this study as the objective function. The perfor-
mance measures used in comparisons are the RMSE and relative error. The performance of EHO and
the proposed three improved EHO algorithms are evaluated against the well-known optimization
algorithms presented in the literature. The experimental results of EHO and the three improved
EHO algorithms go as planned and proved to be comparable to recent metaheuristic algorithms. The
three EHO-based variants outperform all competitors for the single-diode model, and in particular,
the culture-based EHO (CEHO) outperforms others in the double/three-diode model. According
the studied cases, the EHO variants have low levels of relative errors and therefore high accuracy
compared with other optimization algorithms in the literature.

Keywords: metaheuristics; solar cell systems; elephant herding optimization; alpha tuned EHO;
cultural-based; biased initialization; parameter identification; single diode; double diode; three diodes

1. Introduction

Energy is an essential component of the universe and is considered one of the forms
of existence. Energy is divided into two main types (renewable energy and non-renewable
energy); non-renewable energy as fossil fuels has a terrible impact on the environment.
Therefore, many nations tend to use renewable energy to produce their electricity. Solar
energy is one of the primary and available renewable energy sources on the planet that
has no pollution and easy installation as well as being inexpensive and noise-free. The
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need to add renewable energy sources is increased with the dramatic changes in electricity
requirements. Therefore, the effective modeling of renewable energy resources is an
important issue for efficient energy management [1].

Solar cells are one of the ways to take advantage of solar energy, so significant attention
went to model photovoltaic (PV) cells [2–7]. Several parameters define the nonlinear
electrical model of a solar cell, which must be studied in depth to design PV systems. It is
vital to understand the current–voltage graph (I-V) before using PV cells. In addition to
determining PV’s parameters, picking a few points from this curve can also help. Based on
the number of diodes, different parameter models are presented. Three different types are
available: single diode, double diode, and three diode [8–11].

Parameter identification can be accomplished in two ways, using deterministic methods
or using metaheuristics. Examples of traditional approaches are Lambert W-functions [12]
and the interior-point method [13]. Although traditional models can solve parameter
identification, it has some drawbacks facing nonlinear problems such as sensitivity to the
initial solution besides sticking in a local optimum solution with heavy computations and
taking a long time to reach this optimum. Therefore, metaheuristics algorithms are used
to overcome these drawbacks. Examples of these metaheuristics are the Particle Swarm
Optimization (PSO) [6], Genetic Algorithm (GA) [14], Differential Evolution (DE) [15],
Harmony Search (HS) [16], Artificial Bee Colony (ABC) [17], and Simulated Annealing
(SA) [18].

The continuous development in optimization methods has been notable in recent
decades. For example, several optimization methods were developed and applied for
different power system problems, as presented in [19,20]. Furthermore, in [21–25], an
algorithm that mimics the elephant herding behavior called Elephant Herding Algorithm
(EHO) was proposed for different applications. Reference [26] proposes three improved
variants of EHO that are developed.

The basic architecture of the PV cell guarantees that two differentially doped semicon-
ductor layers form a PN junction. When irradiation is present, the cell absorbs photons
from incoming light and produces carriers (or electron–hole pairs). As a result, there may
be a discrepancy at the intersection [27]. In an ideal PV cell model, a photocurrent source
and a diode are connected in parallel. Model estimation is made easiest by the fact that
there are only three unknown parameters: the ideality factor η, the photocurrent Ipv, and
the reverse saturation current Is.

The contact resistance Rs between the silicon and electrode surfaces is described by
this resistance. A parallel resistance Rp is attached to the diode to prepare for leakage
current in the PN junction. The single-diode model (SDM) model has five parameters that
must be estimated: Ipv, Is, Rs, and Rp [28]. The double-diode model (DDM) is a more
precise method of modeling PV cells. It takes into account current loss recombination in
the depletion area. With the addition of the seventh parallel diode, there are now seven
parameters to estimate (Ipv, η1, Id1, η2, Id2, Rp, and Rs) [8].

These models are of great interest to many researchers. There have been many suc-
cessful algorithms for adjusting parameters of PV cells in SDM and DDM, but few works
in TDM have been published in this area. Reference [29] proposed a solar PV parameter
extraction method based on the Flower Pollination Algorithm (FPA). Two diode models
are chosen to understand the precision of the computation. The authors experimented with
the effectiveness of FPA using RTC France info. Simulated Annealing (SA), Pattern Search
(PS), Harmony Search (HS), and Artificial Bee Swarm Optimization (ABSO) techniques
are often used to compare the measured root mean square error and relative error for
the built model. Researchers [30] proposed a hybridized optimization algorithm (HISA)
for accurately estimating the parameters of the PV cells and modules. From the experi-
mental data obtained from five case studies consisting of two cells and three modules for
monocrystalline, multi-crystalline, and thin-film PV technologies, single- and double-diode
models of PV cells/modules were developed with their respective single I V nonlinear
characteristics.
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The authors [31] propose two simple metaphor-free algorithms called Rao-2 (R-II) and
Rao-3 (R-III) to estimate the parameters of PV cells. Several well-known optimization algo-
rithms are compared to the efficiency of the proposed algorithms. The comparison helps
show the merit of the algorithms. Finally, an analysis of statistical data is combined with
experimental findings to verify the efficiency of the proposed algorithms. The Grasshopper
Optimization Algorithm (GOA) is proposed [32] for parameter extraction of a PV module’s
three-diode PV model. This GOA-based PV model uses two popular commercial modules:
Kyocera KC200GT and Solarex MSX-60.

The single-, double-, and three-diode models have different solar cell parameters.
These models have five parameters for the single-diode model and seven parameters for
the double- and three-diode models. Each parameter must be obtained accurately based
on the objective function to reach the global optimum. In this study, the EHO algorithms
have been chosen to solve this problem because they have a few control parameters and
smooth implementation. In addition, EHO’s simplicity and few parameters made it a
suitable choice for achieving such enhancements. Furthermore, by dividing the population
into clans, we could avoid becoming trapped in a local optimum and instead converge on
reaching a global minimum. Finally, after getting experimental results for this problem, a
comparison with other well-known algorithms was presented to prove the result’s quality.
This comparison is important to ensure that the new variants can solve this problem and
compete with other algorithms.

Table 1 reports some of the recent solvers that were applied for PV parameter estima-
tion problems in the recent years

Table 1. Recent optimizers for PV parameter estimation.

Ref #/Year Algorithm Ref #/Year Algorithm Ref #/Year Algorithm

[3], 2020 Projectile Search Algorithm [32], 2020 Grasshopper Optimizer [33], 2020 Backtracking Search
Algorithm

[5], 2020 Cuckoo Search Optimizer [34], 2020 Flower Pollination [35], 2021 Marine Predators Optimizer

[6], 2018 Differential Evolution
Algorithm [36], 2021 Newton-Raphson jointed

with Heuristic Algorithm [37], 2020 Improved Wind-Driven
Algorithm

[9], 2021 Turbulent Flow of Water
Optimizer [38], 2021 Supply–Demand Optimizer [39], 2019 Differential Evolution

Algorithm

[10], 2021 Forensic Optimizer [40], 2021 Improved Bonobo Optimizer [41], 2020 Slime Mold Optimizer

[11], 2021 Gorilla Optimization
Algorithm [42], 2013 Artificial Bee Swarm [43], 2020 Coyote Optimization

Algorithm

[21], 2021 Closed loop PSO and EHO [44], 2021 Hybrid Whale and PSO
Optimizer [45], 2020 Adaptive Differential

Evolution

[31], 2019 Metaphor-Less Algorithms [46], 2021 Artificial Ecosystem
Optimizer [47], 2019 Gray Wolf Optimization

The RMSE and the relative error are used as the most performance measures developed
in the previous methods. The proposed variants of EHO are compared against most of the
new well-known algorithms on the parameter identification of different photovoltaics. The
performance of these proposed algorithms can be judged according to convergence speed,
high estimation of parameters, and low computation time.

The main contributions of this paper can be summarized as follows:

• Proposing three variants of the EHO algorithms for solar cell parameters estimation.
• The EHO and the proposed EHO variants are tested on single-, double-, and three-

diode models.
• Verifying the performance of each algorithm by comparing results with those of

competitors.
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• Proving that the culture-based variant has the most effective performance that im-
proves the EHO.

• Validation of the proposed variants under different environmental conditions for
temperature and irradiation. In this regard, the applications are employed on two
types of PV solar cells.

The rest of the paper is organized as follows. The second section focuses on solar cells
and mathematical models. In Section 3, an elephant-herding algorithm is proposed, and its
different versions are discussed. The results, computer simulations, and comparisons are
listed and discussed in Section 4. Finally, we conclude in Section 5 with a wrap-up and
conclusion.

2. Mathematical Models of Photovoltaic Cell

Solar cell models describing the I-V characteristics typically contain one diode, two
diodes, or three diodes. These detailed models are described as follows:

2.1. Single Diode Model (Five-Parameter Model)

A modified Shockley diode equation can describe a single diode model. It is widely
used for modeling solar cells because it is simple to implement with five parameters
(Iph, Id, n, Rsh, Rs). However, at low illuminations, the single diode model is particularly
inaccurate in describing cell behavior [48,49]. Figure 1 shows a single diode model consist-
ing of a current source in parallel with a diode, and the module shunt resistance controls
the loss of currents at the junction within the cell.

Figure 1. Single diode model.

The mathematical model of the single diode model is given by:

It = Iph − Id1

[
exp
(

q(Vt + Rs · It)

n1 · k · T

)
− 1
]
− Vt + Rs · It

Rsh
. (1)

2.2. Double-Diode Model (Seven-Parameter Model)

Figure 2 shows the double-diode model as an additional diode is added in parallel with
the current source. This additional diode can achieve higher accuracy than a single diode
model, but with seven parameters, more computation is needed (Iph, Id1, Id2, n1, n2, Rsh, Rs).

Figure 2. Double-diode model.

The mathematical model of the double-diode model is given below.

It = Iph − Id1

[
exp
(

q(Vt + Rs · It)

n1 · k · T

)
− 1
]
− Id2

[
exp
(

q(Vt + Rs · It)

n2 · k · T

)
− 1
]
− Vt + Rs · It

Rsh
(2)
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2.3. Three-Diode Model (10-Parameter Model)
The three-diode model shown in Figure 3 extends the double-diode model by adding the third

diode in parallel with the two other diodes. The three-diode model has three more parameters than
the double-diode model (Id3, n2, K) [50,51].

Figure 3. Three-diode model.

The mathematical formulation of the three-diode model is given by Equation (3) as:

It = Iph − Id1

[
exp
(

q(Vt + Rs · It)

n1 · k · T

)
− 1
]
− Id2

[
exp
(

q(Vt + Rs · It)

n2 · k · T

)
− 1
]
− Id3

[
exp
(

q(Vt + Rs · It)

n3 · k · T

)
− 1
]
− Vt + Rs · It

Rsh
. (3)

2.4. Parameter Extraction of the Solar Cell
A set of current–voltage (I–V) experimental data is given to extract the cell parameters. To

define an objective function to be used in optimization algorithms, Equations (1)–(3) are reformed
as in Equations (4)–(6). Equations (4)–(6) are used to get the error between the experimental and
measured currents for the PV models, which are considered as the fitness functions of the three PV
models.

f1(Vt, It, y) = It − Iph + Id1

[
exp
(

q(Vt + Rs · It)

n1 · k · T

)
− 1
]
+

Vt + Rs · It
Rsh

(4)

f2(Vt, It, y) = It − Iph + Id1

[
exp
(

q(Vt + Rs · It)

n1 · k · T

)
− 1
]
+ Id2

[
exp
(

q(Vt + Rs · It)

n2 · k · T

)
− 1
]
+

Vt + Rs · It
Rsh

(5)

f3(Vt, It, y) = It − Iph + Id1

[
exp
(

q(Vt+Rs ·It)
n1·k·T

)
− 1
]
+ Id2

[
exp
(

q(Vt+Rs ·It)
n2·k·T

)
− 1
]

+Id3

[
exp
(

q(Vt+Rs ·It)
n3·k·T

)
− 1
]
+ Vt+Rs ·It

Rsh

(6)

The objective function can be implemented as the root mean square error (RMSE) as:

F =

√√√√ 1
N

N

∑
l=1

fl(Vt, It, y)2. (7)

3. EHO-Based Optimization Algorithms

The wild elephant grows in herds. Clans of elephants are organized into groups under the
leadership of female leaders. Furthermore, male elephants abandon the herd as they mature. To
implement the elephant’s behavior to solve nonlinear optimization problems, EHO is summarized
into three essential rules:

1. The population has a fixed number of clans; each clan consists of some elephants.
2. The male elephant separates the clan and lives alone away from the group.
3. A leadership of female elephants rules the clan.

There are clans within the elephant population, and within each clan, each elephant is ranked
based on its fitness, and then each group is updated separately.

Clan updating operator: For each member in clan ci, the best elephant effect on its next position
in clan c. We can update elephant j in clan c by:

xn,c,j = xc,j + α · r ·
(

xbest,c − xc,j

)
. (8)

The best elephant in each clan can be updated as:

xn,c,j = β · xcenter,c. (9)
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Separating operator: As mentioned, the male elephant will live alone, separately away from the
family. This separating process acts as the separating operator, which can be implemented into each
generation as the worst fitness. We achieve it as follows:

xworst,c = xmin + r · (xmax − xmin + 1). (10)

The elephant optimization procedure has been randomly generated based on the pseudocode
in Figure 4 and the flowchart in Figure 5. The EHO algorithm has significant merit of a few control
parameters. However, the chances of finding a new good elephant vs. a poor one are low; thus,
the new candidate solution is unlikely to be as excellent as or better than the old one. The search
operator does not consider the knowledge of the best solution or other solutions that may have
a beneficial influence on steering EHO toward more promising areas of search space due to the
participation of these random variables. However, a closer look at the flowchart and pseudocode of
EHO reveals several gaps and shortcomings. These shortcomings may have a bad impact, affecting
EHO’s performance.

• As depicted in Equation (10), the new generated xworst ,ci value may be worse than the original
value of F. Thus, in this equation, a better value cannot be guaranteed.

• The constant value alpha (α in Equation (8)) remains consistent during algorithmic steps.
Therefore, making the parameter based on the generation number of the elephant makes sense.

This paper aims to improve EHO performance, which is under-reported in the scientific litera-
ture. Listed below are three potential enhancements to EHO performance:

• Alpha tuning of αEHO.
• Cultural-based EHO (CEHO).
• Biased initialization EHO (BIEHO).

Figure 4. Pseudocode for EHO procedure.
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Figure 5. Flowchart of EHO.

3.1. Alpha Tuning of αEHO
Careful investigation of EHO parameters recommends setting the scale factor α to be adaptive

is more promising than being a constant value in the range [0, 1].
Putting it simply, making alpha adaptive and related to the population number is more conve-

nient and matched to the notion of evolution in Equation (11). In the original EHO algorithm, the
scale factor-alpha is a constant value. Now, α is varying with the generation number by this function:

αnew = α +
αmax − αmin

n
. (11)

3.2. Cultural-Based EHO (CEHO)
By utilizing the space of the best prior members, the cultural-based algorithm aids in the

improvement of the algorithm [26,52,53]. The cultural-based algorithm constructs a better community
by considering a belief space comprised of selected population members by acceptance function,
as shown in Figure 6. A new member can be generated by using the belief space. A cultural-
based algorithm is used to generate new solutions among belief space boundaries in the separating
operation.

Figure 6. Belief space in cultural-based.
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3.3. Biased Initialization EHO (BIEHO)
The main idea of the biased initialization algorithm is that the algorithm did not start evolving

while the population’s average fitness did not exceed a certain threshold. Therefore, the clan should
be satisfied with its population’s quality and ensure high-quality elephants. Start the generation with
a population with functional fitness. The next step of evolution will not begin until the quality of
the first generation reaches a suitable predetermined threshold. Biased algorithms are used in the
initialization step by adding a rule or a limit [54]. Forcing the first generation of the population to
have a good candidate solution may lead to another good production.

4. Computer Results and Simulations

EHO variants were tested using 57 mm diameter commercial silicon solar cells from the RTC
Company of France to verify their performance against single- and double-diode models. The experi-
ment is carried out under 1 sun (1000 W/m2) at 33 ◦C [8,42,55]. A multi-crystalline PV solar module
CS6P-240P is used to represent the three-diode model. CS6P-240P experimental data based on [56,57]
are established for four irradiance levels (109.2, 246.65, 347.8, and 580.3 W/m2) at temperatures (37.32,
40.05, 347.8, and 51.91 ◦C), respectively. Table 2 shows the manufacture specification for CS6P-240P
under standard test conditions (STD). The basic EHO and its three variants are compared with the
results of two algorithms from [42] called Artificial Bee Swarm Optimization algorithm (ABSO) and
Harmony Search (HS) algorithm. The few adjustable parameters for EHO can be set as α = 0.9, β = 0.1,
number of clans = 4, population size = 32, and maximum iteration = 5000.

Table 2. Manufacture specification under standard test condition.

Maximum Power at STC 240 W

Optimum operating voltage 29.9 V

Optimum operating current 8.03 A

Open circuit voltage 37.0 V

Short circuit current 8.59 A

V Temperature coefficient Voc −0.43%

I Temperature coefficient Isc 0.065%

Cell arrangement 60 (6 × 10)

Tables 3 and 4 present the optimal solar cell parameters and RMSE by EHO algorithms, Artificial
Bee Swarm Optimization algorithm (ABSO), and Harmony Search (HS) for single- and double-diode
modes. The single-diode model is considered the simplest model among all models with only five
parameters. Table 3 shows that the four EHO algorithms obtained the same result due to the model’s
simplicity, but all four algorithms outperformed ABSO and HS. Table 4 shows the results for the
double-diode model with seven parameters, showing differences between the extracted parameters
and the RMSE. Compared to other algorithms, CEHO achieved the lowest RMSE. Figure 7 shows
the convergence of the four EHO algorithms for the single-diode and double-diode model at the
first 250 generations, respectively. In addition, it showed the fast convergence of the proposed EHO
algorithms for obtaining good results.

Table 3. Comparison between EHO algorithms, ABS, and HS for single-diode solar cells.

Item EHO
EHO Variants

ABSO HS
αEHO CEHO BIEHO

Iph (A) 0.76078 0.76077 0.76078 0.76077 0.7608 0.7607

Id (μA) 0.32201 0.32143 0.32098 0.320479 0.30623 0.30495

Rs (Ω) 0.036388 0.036397 0.0364027 0.0364085 0.03659 0.03663

Rsh (Ω) 53.5851 53.58874 53.52479 53.49828 52.2903 53.5946

n 1.48086 1.48068 1.48054 1.48038 1.47583 1.47538

(RMSE) 9.861 × 10−4 9.861 × 10−4 9.861 × 10−4 9.861 × 10−4 9.9124 × 10−4 9.9510 × 10−4
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Table 4. Comparison between EHO algorithms, ABS, and HS for double-diode solar cells.

Item EHO
EHO Variants

ABSO HS
αEHO CEHO BIEHO

Iph(A) 0.76079 0.7607 0.76077 0.76079 0.76078 0.76176

Id1(μA) 0.19895 0.23015 0.470885 0.294513 0.26713 0.12545

Id2(μA) 0.25005 0.22753 0.258635 0.478734 0.38191 0.25470

Rs(Ω) 0.0367292 0.036594 0.036595 0.036591 0.03657 0.03545

Rsh(Ω) 53.47509 54.0848 54.85623 53.415705 54.6219 46.8269

n1 1.44596 1.45601 1.994023 1.47250 1.46512 1.49439

n2 1.69709 1.73558 1.462378 1.98067 1.98152 1.49989

(RMSE)F 9.876 × 10−4 9.853 × 10−4 9.830 × 10−4 9.852 × 10−4 9.834 × 10−4 0.00126

 
(a) (b) 

Figure 7. Convergence rates of EHO and its variants. (a) single diode. (b) double diode.

As demonstrated by Table 5, the measured current is very close to the calculated current. In
addition, cultural-based EHO leads to outperformed results compared with other EHO variants.

Figures 8 and 9 show the power and current of the calculated and measured current from
cultural-based EHO. Again, the measured and calculated curves are almost identical, while the
relative error for the double-diode model for cultural-based EHO is presented in Table 6.

The previous results were for the PV panels at standard temperature and radiation. The
four EHO algorithms were tested against three other algorithms at different irradiance levels and
temperatures for more testing. Table 7 shows the extracted parameters for the seven algorithms
at different irradiance levels and temperatures. Finally, the three-diode model is tested against
three algorithms from [43] (Moth-Flame Optimizer (MFO), FPA, and Hybrid Evolutionary algorithm
(DEIM)). The RMSEs for each algorithm at varying irradiance levels are listed in Table 8. Again, at
low radiation with 109.2 W/m2, CEHO outperforms EHO with a slightly small difference but a big
difference compared to other algorithms. CEHO outperformed other algorithms at other radiations,
and BIEHO’s results were slightly different from CEHO’s. The superiority of the CEHO algorithm
is proven as the best compared with the other three variants and the other three algorithms for all
irradiance levels. Figure 10 shows that calculated data fit the I-V curve of measured data for CEHO.

57



Appl. Sci. 2021, 11, 11929

Table 5. The relative error for 26 measurements (single diode) with CEHO.

No. Vt (v) It (A) Measured Iph (A) Calculated Relative Error

1 −0.2057 0.764 0.764104 −0.000104

2 −0.1291 0.762 0.762674 −0.000674

3 −0.0588 0.7605 0.761362 −0.000762

4 0.0057 0.7605 0.760156 0.000344

5 0.0646 0.76 0.759053 0.000947

6 0.1185 0.759 0.758037 0.000963

7 0.1678 0.757 0.757083 −0.000083

8 0.2132 0.757 0.756130 0.00087

9 0.2545 0.7555 0.755073 0.000427

10 0.2924 0.754 0.753649 0.000351

11 0.3269 0.7505 0.751377 −0.000877

12 0.3585 0.7465 0.747342 −0.000842

13 0.3873 0.7385 0.740110 −0.000161

14 0.4137 0.728 0.727382 0.000618

15 0.4373 0.7065 0.706981 −0.000481

16 0.459 0.6755 0.675295 0.000205

17 0.4784 0.632 0.630777 0.001223

18 0.496 0.573 0.571946 0.001054

19 0.5119 0.499 0.499618 −0.000618

20 0.5265 0.413 0.413650 −0.00065

21 0.5398 0.3165 0.317502 −0.001002

22 0.5521 0.212 0.212138 −0.000138

23 0.5633 0.1035 0.102232 0.0013

24 0.5736 −0.01 −0.008728 −0.001272

25 0.5833 −0.123 −0.125504 0.002504

26 0.59 −0.21 −0.208448 −0.007552

(a) (b) 

Figure 8. Measured power vs. calculated by CEHO. (a) single diode. (b) double diode.
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(a) (b) 

Figure 9. Measured current vs. calculated by CEHO. (a) single diode. (b) double diode.

Table 6. The relative error for 26 measurements (double diode) with CEHO.

No. Vt (v) It (A) Measured Iph (A) Calculated Relative Error

1 −0.2057 0.764 0.764019 −0.000019

2 −0.1291 0.762 0.762623 −0.000623

3 −0.0588 0.7605 0.761343 −0.00843

4 0.0057 0.7605 0.760166 0.000334

5 0.0646 0.76 0.759088 0.006912

6 0.1185 0.759 0.758093 0.001093

7 0.1678 0.757 0.757154 −0.000154

8 0.2132 0.757 0.756208 0.000792

9 0.2545 0.7555 0.755147 0.000353

10 0.2924 0.754 0.753704 0.000296

11 0.3269 0.7505 0.751400 −0.000900

12 0.3585 0.7465 0.747325 −0.000825

13 0.3873 0.7385 0.740054 −0.001554

14 0.4137 0.728 0.727300 0.0007

15 0.4373 0.7065 0.706897 −0.000397

16 0.459 0.6755 0.675236 0.0003

17 0.4784 0.632 0.630758 0.001242

18 0.496 0.573 0.571968 0.001032

19 0.5119 0.499 0.499668 −0.000668

20 0.5265 0.413 0.413703 −0.000703

21 0.5398 0.3165 0.317536 −0.001036

22 0.5521 0.212 0.212140 −0.00014

23 0.5633 0.1035 0.102201 0.001299

24 0.5736 −0.01 −0.008761 −0.008761

25 0.5833 −0.123 −0.125531 0.002531

26 0.59 −0.21 −0.208418 −0.001582
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Table 7. Comparison between different EHO algorithms among irradiance levels.

Irradiance Algorithm Iph Id1 Id2 Id3 Rs Rsh n3

580.3 W/m2

51.91 ◦C

EHO 5.9992 1.7321 × 10−8 6.7684 × 10−7 1.1186 × 10−5 0.39027 493.15 3.9986

αEHO 5.9947 1.5744 × 10−8 2.2779 × 10−7 5.8365 × 10−5 0.35637 4729.3 2.1169

CEHO 5.9997 1.7336 × 10−8 3.84148 × 10−7 2.0015 × 10−10 0.39055 478.607 2.7151

BIEHO 5.9988 1.7292 × 10−8 1.3773 × 10−6 2.3406 × 10−8 0.38977 502.29 3.048

MFO 6.00066 1.7346 × 10−11 9.210 × 10−7 1.210 × 10−6 0.38481 461.866 3.2135

FBA 6.0075 1.7297 × 10−11 8.7857 × 10−7 9.0089 × 10−7 0.39137 457.054 3.2926

DEIM 6.0016 1.7363 × 10−11 9.9751 × 10−7 1.0234 × 10−6 0.38524 457.282 3.2658

347.8 W/m2

43.95 ◦C

EHO 3.0421 5.6398 × 10−9 2.116 × 10−6 2.0512 × 10−7 0.41272 522.92 3.925

αEHO 3.0328 4.5677 × 10−9 7.2634 × 10−8 3.1293 × 10−5 0.26283 4927.8 2.001

CEHO 3.0415 5.6216 × 10−9 2.6116 × 10−6 9.3642 × 10−9 0.41118 540.79 3.9941

BIEHO 3.0413 5.676 × 10−9 2.1503 × 10−7 7.9926 × 10−5 0.41442 562.44 3.4295

MFO 3.0457 5.6724 × 10−12 9.985 × 10−7 1.0234 × 10−6 0.4163 461.524 3.2256

FBA 3.04277 5.6211 × 10−12 5.3506 × 10−7 9.6777 × 10−7 0.42925 517.401 3.1541

DEIM 3.0454 5.6773 × 10−12 9.9482 × 10−6 1.3562 × 10−6 0.41479 465.385 3.6897

246.65 W/m2

40.05 ◦C

EHO 2.138 3.2543 × 10−9 5.3294 × 10−6 0.0005517 0.44377 4961.5 3.2946

αEHO 2.135 2.4755 × 10−9 9.8526 × 10−8 4.3367 × 10−5 0.28076 4977.9 2.0474

CEHO 2.1379 3.2050 × 10−9 8.1838 × 10−6 0.0005982 0.43518 4999.86 3.4380

BIEHO 2.1378 3.2494 × 10−9 4.9161 × 10−6 0.0004857 0.43959 4971.3 3.2026

MFO 2.1435 3.3585 × 10−12 1.62 × 10−6 0.9391 × 10−3 0.45333 4989.25 3.5252

FBA 2.1484 3.453 × 10−12 5.4342 × 10−7 9.0503 × 10−7 0.4923 4889.44 3.6523

DEIM 2.1498 3.4402 × 10−12 9.9684 × 10−7 1.025 × 10−6 0.8932 4746.08 3.5697

109.2 W/m2

37.32 ◦C

EHO 0.99658 1.8992 × 10−9 3.7627 × 10−7 7.6187 × 10−7 0.74613 469.11 3.9922

αEHO 0.98919 1.7615 × 10−9 6.7713 × 10−9 3.1843 × 10−5 0.58626 709.92 2.5034

CEHO 0.99641 1.8939 × 10−9 5.1732 × 10−7 3.4151 × 10−8 0.74203 472.73 3.8993

BIEHO 0.99641 1.901 × 10−9 2.5001 × 10−7 1.8607 × 10−5 0.74568 475.05 3.9983

MFO 0.99853 2.2787 × 10−12 1.0698 × 10−9 9.9999 × 10−7 0.7337 450.15 3.7173

FBA 0.9978 2.2761 × 10−12 1.0399 × 10−7 5.8927 × 10−7 0.7230 473.45 3.7569

DEIM 0.9985 2.2658 × 10−12 3.1652 × 10−8 4.9986 × 10−7 0.7351 449.34 3.3526

Table 8. Comparison between EHO algorithms, MFO, FBA, and DEIM for three-diode solar cells.

EHO
EHO Variants

MFO FBA DEIM
αEHO CEHO BIEHO

0.014598 0.026082 0.014591 0.014607 0.02455 0.02708 0.02807

0.0014236 0.02323 0.001337 0.001359 0.009927 0.016307 0.015864

0.0018575 0.006821 0.0017978 0.001821 0.012602 0.13287 0.012913

0.0009912 0.003721 0.00099094 0.0001923 0.001855 0.003607 0.0035508
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Figure 10. Measured current vs. calculated for three-diode model by CEHO.

5. Conclusions

This paper presents a new optimization algorithm based on elephant herding behavior called
Elephant Herding Optimization (EHO) and three improved variants called αEHO, CEHO, and
BIEHO. The EHO and its three variants are developed to estimate single, double, and three-diode
solar cell models. The 57 mm diameter RTC Company of France commercial silicon solar cell with
26 points of measured data was chosen to present single and double models’ problem under one
irradiance level (25 ◦C and 1000 W/m2). The EHO variants results are compared with two good
algorithms (ABSO, HS). For presenting the three-diode model multi-crystalline PV solar module
CS6P-240P under four irradiance levels (109.2, 246.65, 347.8, and 580.3 W/m2) at temperature (37.32,
40.05, 347.8, and 51.91 ◦C) respectively. The EHO algorithms are compared with another three
algorithms (MFO, FBA, and DEIM). The superiority of the four EHO algorithms is proven in the
results. Cultural-based algorithms outperformed all algorithms used in the double- and three-diode
models and ABSO, HS, and Biased in the single-diode model. Finally, it can be concluded from the
results that EHO algorithms are very suitable for solving parameters extraction of solar cell problems
for variant models.

Among the drawbacks of conventional EHO is its scale factor alpha being a constant value.
Additionally, the behavior of EHO requires more attention to the solutions. Therefore, it would
be helpful to employ more hybrid solutions, as this study recommends. Moreover, due to the
practical nature of elephant herding, there are more processes involved than clan updating and
separating. Thus, more models should be developed and incorporated into the EHO method that
models elephant behavior. Finally, the main EHO was designed for solving continuous problems, so
it must be validated for continuous and discrete problems [58].

Future work will include extracting parameters for more complex models for more accurate
parameter extraction. In addition, the adaptive scaling factor is more promising than being a constant
value in the range [0, 1]. Moreover, due to the superiority of the CEHO algorithm, we can do more
enhancements to the CEHO algorithm to get more accurate results for more complex optimization
problems. In addition, more behavior characteristics are recommended to investigate an advanced
version of EHO accomplished with new hybrid algorithms.
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Nomenclature

Iph The photogenerated current
Id The diode current
Id1 The first diode current
Id2 The second diode current
Id3 The third diode current
Vt The internal voltage
Rs The series resistance
Rsh The shunt resistance
n1 The first diode ideality factor
n2 The second diode ideality factor
n3 The third diode ideality factor
k Boltzmann’s constant
T Temperature
ql The charge of an electron
N Number of experimental data
xn,c,j Updated position for elephant j in clan c
xc,j Old position for elephant j in clan c
α A scale factor ε [0, 1]
r Random number ε [0, 1]
β A scale factor ε [0, 1]
xcenter,c Centre of clan c
xc,j,d The dth of the elephant individual xc,j
xman Upper bound of the position of elephant
xmin Lower bound of the position of elephant
xworst,c Worst elephant individual in clan ci
αmin Lower bound of permissible range of α

αmax Upper bound of permissible range of α
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Abstract: In this article, a three-phase modular multilevel converter (MMC) with three-level neutral
point clamped converter (NPC) sub-modules (SMs) along with the placement of transformers in
place of arm inductors is proposed for PV grid integration. Compared to the traditional MMCs, the
proposed configuration reduces the voltage and power rating for the switches and the requirement of
a high capacitor bank. In order to analyze the performance of the proposed converter arrangement,
we have implemented four pulse width modulation schemes, such as Sine PWM with phase-level
shifted carrier (SPWMLSC), Sine PWM with a phase-shifted carrier (SPWMPSC), Sine with the
third harmonic injected level-shifted carrier (STHILSC), and Sine with the third harmonic injected
phase-shifted carrier (STHIPSC). The proposed converter was simulated in the MATLAB/Simulink
platform. Under normal and faulty operation, the results were presented with their performance
indices of voltage and current harmonic distortion and sub-module capacitor voltage ripples at
various modulation indices.

Keywords: modular multilevel converter (MMC); fault-tolerant; voltage source modular multilevel
converter (VSMMC); SPWMLSC; SPWMPSC; STHILSC; STHIPSC

1. Introduction

In order to achieve lower harmonic content in the output waveforms and lower filter-
ing requirements at the grid side, multi-level inverters would have been the future trend in
grid integration applications. To boost the efficiency and performance of grid-connected
systems, multi-level inverters would have been integrated into renewable energy appli-
cations. Recently, a topology, that is, the modular multilevel converter (MMC) evolved
from the multi-level family that has a profound application in photovoltaics, offshore,
onshore wind energy, and medium voltage motor drives STATCOM, and UPQC, etc. The
advantages of MMC are handled for high voltage applications, compact construction,
stability, and reliability, whereas the PV is integrated into the grid. We could see some
special characteristics like peak power capacity, fault ride-through, power quality, and
higher redundancy capabilities popularly in MMC PV-based inverters [1]. One of the key
topics that has been in current research is how to improve the efficiency and performance of
photo-voltaic systems in the field of advanced power electronics for the energy conversion
stages. There are various publications directed toward improvements and future imple-
mentation areas of before and after MMC studies. Many of those studies mostly focused on
the various sub-module arrangements. The idea of a unidirectional sub-module has been
explored in [2]. The efficiency of the MMC has been tested and compared to traditional
two-level cells using various cell configurations, such as neutral point clamped and flying
capacitor topologies. DC-MMC-based systems have been used as PV conversion systems
with two stages with MMC-based HVDC [3,4], where high irradiance is available at longer
distances from the consumption centers. Generally, in some MMC-based PV systems, it is
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required to provide each dc-dc converter without independent MPPT to supply for the SM
capacitor balance, which in turn helps in constant production of output required voltage
levels without any power fluctuations [5]. Having said that, by maintaining lossless energy
conversion, we have had MV grid integration of PV using MMC [6], because the individual
MPPT arrangement in MMC and multi-string central inverter have lower MPPT losses
when compared to a central inverter. In addition, a high-power hybrid-MMC was used for
PV grid integration to provide reliable performance, even though under partial shading
condition, because of the presence of individual MPPTs in each SM [7]. Thus, some of
the MMC-based PV-BESs (photovoltaic-battery energy storage systems) [8] and energy
distribution areas [9] had also been potential options for handling power mismatches
and smoothening the output power. In addition, for applications where high power and
medium voltage requirements, we can have some topologies of inverters without any need
for the line-frequency transformer are given in [10]. The organization of the paper is as
follows: Section 1 deals with the introduction. Section 2 explains the MMC and its sub-
module variants. Section 3 details the control of MMC. Section 4 illustrates the modulation
strategies for MMC. Section 5 discusses the results. Finally, the paper is concluded in
Section 6.

2. Modular Multilevel Converter and Sub Module Variants

Figure 1a is a three-phase MMC, and it consists of the top arm (Tarm) and the bottom
arm (Barm). This arrangement generally could have an N-number of SM in each arm [11].
Each phase consists of arm inductors (Larm) and the submodules to provide better arm-
currents without circulating harmonics and fault currents. Submodule (SM) or power cell
represents a topological connection of IGBTs and could be of any voltage level. Generally,
this SM is half-bridge (HBSM) or full-bridge (FBSM), but some researchers [12] started
using SM with high levels. The SMs in the arms must be identical to get a symmetrical
output wave. In the basic operation of the MMC, there is a chance of two events—sub-
module insertion or by-passing state—whenever all the sub-modules are inserted in series
and would result in arm voltages, respectively, and in turn produces a multilevel output.
During the insertion processes, the SM capacitors were charged to their rated voltage mag-
nitudes in the blocking mode based on the SM variants. The DC-link energy was equally
divided among the SM capacitors; otherwise, there would be an unbalance of voltages and
circulating currents within the phases. Figure 1b is a single-phase equivalent representation
of a conventional MMC. The top and bottom arms’ SM’s total voltage magnitudes constitute
V au and Val, respectively. For many applications, like motor drive, the number of SMs
drastically increased day by day. The ongoing developer has structurally connected multi-
level SM topologies to have dc fault handling capability, dimension reduction, and a higher
number of voltage levels. Table 1 here provides us with the topological variants of SMs.
Two-level SMs: Figure 2a shows the half-bridge submodule (HBSM) to produce the unipo-
lar voltage by chopping the dc-link voltage. It consists of two IGBTs and a capacitor [13]. It
can produce two levels of voltages 0, +VC1 when bypassed and inserted. In the HBSM, the
dc voltage component will be present in the MMC arms [14]. Figure 2b is unipolar voltage
FBSM [12], and this is similar to FBSM but with a slight replacement of a S3 switch with
D3 of the FBSM (Figure 3a); it would be suitable for dc-fault handling capability. Another
two-level variant is the unidirectional SM [15], and it has fewer semiconducting switches,
as shown in Figure 2c. The clamp single submodule (CSSM) configuration is another
configuration [16], which is shown in Figure 2d. The CSSM is derived from the three-level
flying capacitor submodules (TLFCSM) for providing dc-fault handling capability during
unidirectional operation.
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Figure 1. (a) Configuration of three-phase MMC, (b) single-phase equivalent circuit of conven-
tional MMC.

Figure 2. Two-level submodule variants (a) Half-bridge (b) Unipolar voltage full-bridge (c) Unidirec-
tional SM (d) Clamp single SM.
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Table 1. Comparison of different submodules [13–20].

Sub-Module (SM) NVL Voltage Level NS MNSC MBV Bipolar
DC-Fault
Handling

Two-Level SMs

HBSM 2 0, +VC1 2 1 VC1 No No

Unipolar SM 2 0, +VC1 3 1 VC1 No Yes

Unidirectional 2 0, +VC1 1 1 VC1 No No

CSSM 2 0, +VC1 3 2 VC1 No Yes

Three-Level SMs

FBSM 3 0, +VC1, −VC1 4 2 VC1 Yes Yes

TLFCSM 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

TLNPC-1 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

TLNPC-2 3 0, +VC2, +(VC1 + VC2) 6 2 VC1 + VC2 No No

TLNPC-3 3 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 No No

DSM 3 0, +VC2, +(VC1 + VC2) 8 4 VC1 + VC2 No Yes

TLCCSM 3 0, +VC2, +(VC1 + VC2) 5 3 VC1 + VC2 No Yes

DBSM 3 0, +VC1, −VC2 2 1 VC1 Yes Yes

IHSM 3 0, +VC1, +(VC1 + VC2) 5 3 VC1 + VC2 No Yes

Four-Level SMs

CDSM-1 4 0, +VC1, +(VC1 + VC2) 5 3 VC1 + VC2 Yes Yes

CDSM-2 4 0, +VC2, +(VC1 + VC2) 7 3 VC1 + VC2 Yes Yes

Asymmetrical 4 0, +VC2, +(VC1 + VC2) 4 2 VC1 + VC2 Yes Yes

Mixed SM 4 0, +VC2, +(VC1 + VC2) 6 3 VC1 + VC2 Yes Yes

SDSM 4 0, +VC2, +(VC1 + VC2) 5 3 VC1 + VC2 Yes Yes

Five-Level SMs

FLCCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 6 3 VC1 + VC2 Yes Yes

CCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 8 4 VC1 + VC2 Yes Yes

PCSM 5 0, +VC1, +VC2, ±(VC1 + VC2) 8 4 VC1 + VC2 Yes Yes

Note: SM—Submodule, NVLs—Number of Voltage Levels, NSs—Number of Switches, MNSC—Maximum
Number of Switches in the Conduction Path.

Three-level SMs: The well-known FBSM [16] is depicted in Figure 3a, and it gener-
ates bipolar output voltage levels, and we can use this for bipolar operation systems [17].
Moreover, if we connect two FBSMs in parallel, we could have a four-quadrant opera-
tion [18]. From Figure 3e, we can see that the three-level flying capacitor sub-module
(TLFCSM) [14,15,18] has two capacitors—C1 which is twice in voltage rating with C2. This
configuration does not have dc-fault handling and computationally complex control [19,20].
We see a three-level neutral point clamped submodules (TLNPC) in Figure 3b,d,g [14,18,21].
SMs in Figure 3d and TLFCSM are structurally close and produce 0, +VC2, and +(VC1 + VC2)
magnitudes; SM in Figure 3b contains four switches, two capacitors, and two diodes,
whereas SM in Figure 3g has six switches and two capacitors. Figure 3d, SM will be formed
by the two-series combination of commutation circuits, while Figure 3b can be possible
with the T-connection of switches; the midpoint switch here can block the voltages in both
directions [22].

Even though it has more components, it lacks the dc-link short circuit handling ca-
pability, which results in severe control losses [17]. Two FBSMs are connected, as shown
in Figure 3c, for improving the capacitor voltage performance, while keeping their SM’s
power level the same. This configuration [23] double-submodule (DSM) can improve the
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functionality of the SM without an increment in the semiconducting device’s cost. With
this capacitor, voltage ripples at low frequencies could also be reduced. However, it lacks
the presence of bipolar operation. In [12], another three-level cross-connected SM (TL-
CCSM,) formed by connecting two HBSMs back-to-back with switch and diode, is shown
in Figure 3f. Making the connection like this, we could produce voltage magnitudes 0, VC1,
and (VC1 + VC2). The diagonal-bridge SM (DBSM), shown in Figure 3i, is another variant
that is similar to FBSM but with two diagonal switches that are replaced by diodes [24].

Figure 3. Three-level submodule variants (a) Full-bridge SM (b) Three-level flying capacitor submod-
ule (TLFCSM) (c) TLNPC-1 (d) TLNPC-2 (e) TLNPC-3 (f) double-submodule (DSM) (g) three-level
cross-connected (TLCCSM) (h) Improved hybrid SM(IHSM) (i) Diagonal-bridge SM (DBSM).

The last one is the three-level SM that is an improved hybrid SM (IHSM) [14], which
has maximum voltage blocking of (VC1 + VC2), as depicted in Figure 3h. Four-level
SMs: Figure 4a,b shows two kinds of double clamp submodules (CDSM) [12,14,21]. These
configurations are the combination of two HBSMs connected in series. Here the switch S5
is on continuously, so it becomes two HBSMs connected in series under normal operating
conditions. When the IGBTs are in blocking mode, both capacitors form either series or
parallel connections in this CDSM. Further, this SM, operated as FBSM, has undergone
different capacitor voltages as paralleled. To prevent this paralleling issue, diodes presented
in that path could be replaced with IGBT switches. They would make another configuration,
as shown in Figure 4b (CDSM); so far as losses are considered, CDSM is the combination of
HBSM and FBSM. The alternate way of arranging commutation cells is shown in Figure 4c.
This arrangement could be able to provide a dc-fault handling capability and can generate
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four voltage magnitudes. A combination of FBSM and HBSM would result in forming
a hybrid submodule termed an asymmetrical SM [25], and it can perform both unipolar
and bipolar operations, as shown in Figure 4d. The series connected double SM(SDSM) in
shown in Figure 4e, which is obtained by connecting two HBSMs with S5 and D6 [26]. It
has the capability of arc extension whenever a short circuit has taken place, and it could
protect MMCs even when zero impedance current would have been taken place. Five-level
SMs: As shown in Figure 5a, five-level cross-connected SM (FLCCSM) is the same as CDSM.
Structurally FLCCSM is designed with two HBSMs in back-to-back cross-connection with
the help of S5 and S6 [21,27]. Due to the two capacitors of the SM being connected in
series, a blocking effect on the dc-fault current can be created. A different cross-connected
SM (CCSM) [27] is shown in Figure 5b. It has a balanced bipolar voltage output, which
could achieve greater voltage [28]. Similarly, if FBSMs are connected as parallel-connected
SMs [29], which is shown in Figure 5c, they would give a reduced capacitor ripple.

Figure 4. Four-level submodule variants (a) Clamp Double Submodules (CDSM), (b) Clamp Double
Submodules (CDSM), (c) Mixed SM, (d) Asymmetrical SM, (e) Series Connected Double SM (SDSM).

Figure 5. Five-level submodule variants (a) Five-Level Cross-Connected SM(FLCCSM), (b) Cross-
Connected SM(CCSM), (c) Parallel-Connected SM.
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3. Control Strategy of the Proposed MMC

The main part is the SM, which is may be a DC-DC or DC-AC power converter.
Selection of better SM can provide fair control complexity, voltage blocking capability, and
bipolar operation at a minimal cost. A new circuit performance of MMC with HB-SM is
discussed in [2] by interchanging inductors with a transformer and also it offers twice the
DC-AC voltage gain. The conventional MMC is having the advantage of power devices
voltage ratings are halved, and the capacitor size of the SM is also lessened.

This paper uses neutral point clamped (NPC) SMs for the converter arrangement. The
schematic (Figure 6) of the proposed MMC has slightly changed the SM with NPC SM
with every single PV-panel, and the DC-DC converter and the DC-link to the MMC has
been maintained by the PV array followed with the DC-DC converter. Figure 7 shows the
controlling structure. For this controller implementation, initially, we are sensing the line-to-
line three-phase voltages, and then these are transformed to two-phase voltage quantities
by alpha-beta park’s transformation. Using these alpha-beta voltages, PLL is implemented,
alpha-beta voltages are then converted into dq voltages using Clark’s transformation. Now
from here, we are sensing the inverter side currents for the controller implementation.
These currents are then transformed to the alpha-beta domain using park’s transformation
and then transformed to the dq domain using Clark’s transformation. Here, Id corresponds
to active current, and Iq corresponds to reactive current. Later Id&Iq are then subtracted
from reference currents to find the error, and the error is fed to the PI controller to produce
Eq and Ed. It is then transformed to abc voltages to get the references for PWM generation
and, finally, we get the PWM generation block.

 
Figure 6. Schematic of the proposed modular multilevel converter.
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Figure 7. Control block diagram.

Generally, arm components in the traditional MMC are designed using the following
equations.

Larm·Carm =
1

ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(1)

Carm =
1

Larm·ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(2)

where ω is the operating frequency, h is the harmonic order, and m is the modulation index.
However, in the proposed strategy, we use the transformers instead of arm inductors

in the traditional MMC.

(Larm + mutual inducance)·Carm =
1

ω2

{
2
(
h2 − 1

)
+ m2h2

8h2(h2 − 1)

}
(3)

From Equations (1) and (3), the inductance component is more in the proposed strategy,
because of the mutual inductance of the transformer when compared to the traditional
MMC for the same harmonic order and modulation index. Hence, from Equations (2)
and (4), the proposed system requires a lesser value of capacitance when compared to the
traditional MMC.

4. Modulation Strategies

Pulse width modulation (PWM) is generally used for regulating the power converter
AC output voltage. The desired (reference) AC output voltage is achieved by regulating
the duty cycle of the switching equipment. PWM methods were intended to eliminate
harmonic components in the output voltage and increase the magnitude of the output
voltage at any switching frequency. Figure 8 demonstrates the classification of various pulse
width modulation techniques commonly used in multilevel converters. These are the PWM
techniques adopted in VSC applications based on the switching frequency requirements.
Figure 9 shows the simulation results with the (a) Sine PWM with the level-shifted carrier
(SPWMLSC), (b) Sine PWM with the phase-shifted carrier (SPWMPSC), (c) Sine with
the third harmonic injected level-shifted carrier (STHILSC), and (d) Sine with the third
harmonic injected phase-shifted carrier (STHIPSC).
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Figure 8. General pulse width modulation classification based on switching frequency.
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Figure 9. Modulation schemes conducted on this converter. (a) Sine PWM with level-shifted carrier
(SPWMLSC); (b) Sine PWM with phase-shifted carrier (SPWMPSC); (c) Sine with third harmonic
injected level-shifted carrier (STHILSC); and (d) Sine with third harmonic injected phase-shifted
carrier (STHIPSC).

5. Results and Discussion

The simulation results of the proposed converter with various PWM schemes are
clearly explained in this section. The parameters chosen for the simulation are given in
Table 2. From Figure 10, we can see that the converter is operated with a modulation index
(MI) of 0.5 from t = 0.8 s to t = 1.2 s, and it is operated with M = 0.95 from t = 0.8 s to t = 1.2 s.
It is observed from Figure 10a,k that the THD in line voltage of the converter with d-q
control and SPWMLSC is 2.58% at 50 Hz. respectively. In addition, from Figure 10b,m, the
THD in line voltage of the converter with d-q control and SPWMPSC is 1.63%. Similarly, the
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THD in line current with d-q control and SPWMLSC is 12.20% and with SPWMPSC is 6.64%
at 50 Hz, as shown in Figure 10c,l, respectively. Figure 10e,g shows the capacitor voltages of
upper arm phase-a SM-1 and lower arm phase-a SM-1 with SPWMLSC modulation scheme.
Figure 10f,h shows the capacitor voltages of the upper arm phase-a SM-1 and lower arm
phase-a SM-1 with SPWMPSC modulation scheme. Figure 10i,j shows the transformer
primary and secondary phase-a currents for both PWM techniques, respectively.

Table 2. Simulated converter parameters.

Number of Cells in Each Arm 3

Ac line inductor 3 μH

Carrier frequency 1 KHz

Transformer resistance 74 m-ohm

Transformer inductor 3.48 mH

Cell capacitance 1000 μF
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Figure 10. Change in modulation index. (a) Line voltages of converter with d-q control and SP-
WMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) Line currents of converter
with d-q control and SPWMLSC, (d) line currents of converter with d-q control and SPWMPSC,
(e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm phase-a SM-1
capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary
and secondary phase-a transformer currents when SPWMLSC is implemented, (j) primary and sec-
ondary phase-a transformer currents when SPWMPSC is implemented, (k) SPWMLSC implemented
line voltage THD, (l) SPWMLSC implemented line current THD, (m) SPWMPSC implemented line
voltage THD, and (n) SPWMPSC implemented line current THD.

Further, the converter’s dynamic performance is analyzed when there is a step-change
from time t = 1 s to t = 1.2 s in the current magnitude of I = 7.25 A to I = 17.5 A at 50 Hz
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frequency. It is observed from Figure 11a,k that the THD in line voltage of the converter
with d-q control and STHILSC is 1.26% at 50 Hz, respectively, and from Figure 11b,m the
THD in line voltage of the converter with d-q control and STHIPSC is 1.18%. Similarly,
the THD in line current with d-q control and STHILSC is 10.26% and with STHIPSC is
8.84% at 50 Hz, as is shown in Figure 11c,l and Figure 11d,n respectively. Figure 11e,g
shows the capacitor voltages of upper arm phase-a SM-1 and lower arm phase-a SM-1 with
STHILSC modulation scheme. Figure 11f,h shows the capacitor voltages of upper arm
phase-a SM-1 and lower arm phase-a SM-1 with STHIPSC modulation scheme. Figure 11i,j
shows the transformer primary and secondary phase-a currents for both STHILSC and
STHIPSC PWM techniques, respectively.
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Figure 11. Change in current. (a) Line voltages of converter with d-q control and STHILSC, (b) line
voltages of converter with d-q control and STHIPSC, (c) line currents of converter with d-q control and
STHILSC, (d) line currents of converter with d-q control and STHIPSC, (e) STHILSC implemented
upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented upper arm phase-a SM-1
capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capacitor voltage, (h) STHIPSC
implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and secondary phase-a trans-
former currents when STHILSC is implemented, (j) primary and secondary phase-a transformer
currents when STHIPSC is implemented, (k) STHILSC implemented line voltage THD, (l) STHILSC
implemented line current THD, (m) STHIPSC implemented line voltage THD, and (n) STHIPSC
implemented line current THD.

Now, the performance of the MMC is analyzed when it is operating in open and
short circuit conditions. The Figure 12a,b shows the line voltages with d-q control and
SPWMLSC and SPWMPSC respectively, when one of the phases is open-circuited from
time t = 1 s to t = 1.2 s at 50 Hz frequency. Figure 12c,d is the line currents with d-q control
and SPWMLSC and SPWMPSC. During the faulty open-circuited operation, Figure 12e–h
shows the capacitor voltages of the upper arm and lower arm of phase-a SM-1 with
SPWMLSC and SPWMPSC modulation schemes, respectively. Further, the primary and
secondary phase-a transformer currents, when SPWMLSC and SPWMPSC schemes are
implemented, are shown, respectively, in Figure 12i,j. Similarly, Figure 13a,b shows the
line voltages with d-q control and STHILSC and STHIPSC respectively, when one of the
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phases is open-circuited from time t = 1 s to t = 1.2 s at 50 Hz. Figure 13c,d shows the
line currents with d-q control and STHILSC and STHIPSC respectively. During the faulty
open circuit condition, Figure 13e–h shows the STHILSC implemented upper arm and
lower arm phase-a SM-1 capacitor voltages, respectively, and STHIPSC implemented
upper arm and lower arm phase-a SM-1 capacitor voltages, respectively. The primary and
secondary phase-a transformer currents when implementing STHILSC STHIPSC are shown
in Figure 13i,j. Further, the short circuit condition is created from time t = 1 s to t = 1.2 s. At
this time interval, the converter performance is visualized, with simulation results shown
in Figure 14. Figure 14a,b shows the line voltages with d-q control and SPWMLSC and
SPWMPSC respectively. Furthermore, Figure 14c,d shows the line currents with d-q control
and SPWMLSC and SPWMPSC respectively. During the faulty short circuit condition,
Figure 14e–h shows the upper arm mad lower arm phase-a SM-1 capacitor voltages with
SPWMPSC and SPWMLSC schemes, respectively. Furthermore, the primary and secondary
phase-a transformer currents SPWMLSC and SPWMPSC modulation schemes are shown
in Figure 14i,j, respectively.
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Figure 12. Converter when one phase is open circuited. (a) Line voltages of converter with d-q control
and SPWMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) line currents of
converter with d-q control and SPWMLSC, (d) line currents of converter with d-q control and
SPWMPSC, (e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC
implemented upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm
phase-a SM-1 capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor
voltage, (i) primary and secondary phase-a transformer currents when SPWMLSC is implemented,
(j) primary and secondary phase-a transformer currents when SPWMPSC is implemented.
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Figure 13. Converter when one phase is open circuited. (a) Line voltages of converter with d-q
control and STHILSC, (b) line voltages of converter with d-q control and STHIPSC, (c) line currents of
converter with d-q control and STHILSC, (d) line currents of converter with d-q control and STHIPSC,
(e) STHILSC implemented upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capac-
itor voltage, (h) STHIPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and
secondary phase-a transformer currents when STHILSC is implemented, (j) primary and secondary
phase-a transformer currents when STHIPSC is implemented.
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Figure 14. Converter during short circuited condition. (a) Line voltages of converter with d-q control
and SPWMLSC, (b) line voltages of converter with d-q control and SPWMPSC, (c) line currents
of converter with d-q control and SPWMLSC, (d) line currents of converter with d-q control and
SPWMPSC, (e) SPWMLSC implemented upper arm phase-a SM-1 capacitor voltage, (f) SPWMPSC
implemented upper arm phase-a SM-1 capacitor voltage, (g) SPWMLSC implemented lower arm
phase-a SM-1 capacitor voltage, (h) SPWMPSC implemented lower arm phase-a SM-1 capacitor
voltage, (i) primary and secondary phase-a transformer currents when SPWMLSC is implemented,
(j) primary and secondary phase-a transformer currents when SPWMPSC is implemented.

Here, the proposed converter’s performance is analyzed with sin third harmonic
injection for both levels—shifted and phase-shifted PWM schemes—when the converter
has been short-circuited from t = 1 s to t = 1.2 s at 50 Hz. Figure 15a,b shows the line voltages
with d-q control and STHILSC and STHIPSC respectively. Figure 15c,d shows the line
currents with d-q control and STHILSC and STHIPSC respectively. During short-circuited
operation, Figure 15e–h shows the capacitor voltages of the upper arm and lower arm phase-
a SM-1 with STHILSC modulation scheme. The primary and secondary phase-a transformer
currents with STHILSC and STHIPSC schemes are shown in Figure 15i,j respectively.
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Figure 15. Converter during short circuited condition. (a) Line voltages of converter with d-q control
and STHILSC, (b) line voltages of converter with d-q control and STHIPSC, (c) line currents of
converter with d-q control and STHILSC, (d) line currents of converter with d-q control and STHIPSC,
(e) STHILSC implemented upper arm phase-a SM-1 capacitor voltage, (f) STHIPSC implemented
upper arm phase-a SM-1 capacitor voltage, (g) STHILSC implemented lower arm phase-a SM-1 capac-
itor voltage, (h) STHIPSC implemented lower arm phase-a SM-1 capacitor voltage, (i) primary and
secondary phase-a transformer currents when STHILSC is implemented, (j) primary and secondary
phase-a transformer currents when STHIPSC is implemented.

6. Conclusions

In this paper the performance of the proposed MMC with NPC sub-modules in PV
grid-connected applications was investigated under steady and transient conditions by
employing various PWM techniques. The proposed MMC with NPC sub-modules with
various SPWMLSC, SPWMPSC, STHILSC, and STHIPSC modulation techniques reports
the voltage THDs were 2.58%, 1.63%, 1.26%, and 1.18%, and the current THDs were
12.20%, 6.64%, 10.26%, and 8.84%, respectively. The phase-shifted carrier modulation
scheme has features like a low computational burden, can manage fault tolerance, and
provides superior voltage balance under abnormal conditions when it comes to the digital
controllers. From the results it is clearly revealed that the modulation schemes, such as
STHILSC and STHIPSC, give superior performance in terms of lower output voltage and
current harmonic distortions. The proposed arrangement achieves any volage level with
lower rating of power switches when compared to the conventional neutral point clamped
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converter. This strategy can also significantly reduce the requirement of the high rating
capacitor bank due to the presence of the mutual inductance component in the transformers,
which is not present in the traditional MMC. Hence it can used for many high-power and
medium-voltage grid-connected applications.
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Abstract: This research focuses on a photovoltaic system that powers an Electric Vehicle when
moving in realistic scenarios with partial shading conditions. The main goal is to find an efficient
control scheme to allow the solar generator producing the maximum amount of power achievable.
The first contribution of this paper is the mathematical modelling of the photovoltaic system, its
function and its features, considering the synthesis of the step-up converter and the maximum power
point tracking analysis. This research looks at two intelligent control strategies to get the most power
out, even with shading areas. Specifically, we show how to apply two evolutionary algorithms for
this control. They are the “particle swarm optimization method” and the “grey wolf optimization
method”. These algorithms were tested and evaluated when a battery storage system in an Electric
Vehicle is fed through a photovoltaic system. The Simulink/Matlab tool is used to execute the
simulation phases and to quantify the performances of each of these control systems. Based on our
simulation tests, the best method is identified.

Keywords: optimization algorithm; control system; renewable energy; PSO; GWO; battery storage
energy; electric vehicle

1. Introduction

Due to its availability and the good conversion factor, solar energy technology has
advanced at an exponential rate in the last few years [1]. As a renewable energy source,
generation from solar energy eliminates pollution caused by traditional energy industries
by lowering air nocive emissions [2]. Moreover, electricity generation from this resource
is quite viable for a variety of uses. In particular, the rapid development of solar energy
instruments gives a complete kit of tools that can be directly applied into the field of Electric
Vehicles (EV) [3,4]. Several studies have suggested that photovoltaic cells can be used to
cover EVs’ surfaces to store a significant amount of electricity in the storage system [5,6].
This would increase EVs’ autonomy, which will in turn increase the use of EVs. Some
additional benefits are also associated to solar-powered Electric Vehicles [7,8]. First, the
load peaks may be reduced so that the grid management is easier. Second, a decrement of
the costs of charging the EVs would also be perceived by the drivers.

In [9], researchers provided some statistics that prove that there is a huge free space to
place photovoltaic (PV) cells in the car. As pointed out, these components can be used to
help feed the car with electricity. It is possible to have 6 kW of electrical power in some
buses or trucks with this kind of installation [10].

Appl. Sci. 2021, 11, 7732. https://doi.org/10.3390/app11167732 https://www.mdpi.com/journal/applsci
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In order to benefit from this technology, the solar cells must be installed in a particular
location on the vehicle to enhance the average autonomy of the vehicle. In the previously
cited references, it is stated that the Audi car model can get around 600 W from solar
equipment. If the EV model is pure electric, the PV cells can help to feed the vehicle with
1% of the total electric power when it is moving. In addition, the energy can be obtained
while the EV is parked. It is proved that the PV solution is interesting for heavy trucks
because there is more vacant area that can be used to generate renewable electricity. The PV
system can provide 2% of their consumption when moving along a long road. However,
the statistics are different in the city, as there are many shading areas where the efficiency
of the PV system may be affected. The way to estimate the energy return is challenging
since it depends on the vehicle’s relative situation compared to the sun’s light and the
presence of road obstructions. Because the car can quickly change from one type of shading
scenario to another, obtaining the maximum amount of energy in all these conditions is
quite tough. This is even more complex if we take into account that the efficiency of PV
energy production mainly depends on the dynamic conditions associated to solar energy.
The most relevant features are radiation, temperature, and the state of the PV field surface
(dirt, deterioration). These factors directly influence its photon absorption and therefore
affect the productivity of PV panels. In addition, the phenomenon of partial shading is
one of the problems that impair the proper functioning of a PV plant. Partial shading is a
non-uniform distribution of illumination on photovoltaic modules, which is due to several
reasons. Indeed, there are two types of shading [11,12] The distant shade corresponds to
the disappearance of the sun behind the horizon line. Alternatively, close shading is often
due to unavoidable obstacles such as power lines, trees, neighboring buildings or dirt.

This undesirable phenomenon affects the conversion efficiency and the ability to
extract the maximum available power from the PV field by generating multiple local
maxima in the PV curves. In addition, shading also disrupts the operation of PV cells,
causing two problems. The first problem is the mismatch, which is due to the fact that the
total current in a PV field is limited by the current of the shaded module (low power) if the
current Isc (the current flowing through the photovoltaic cell in short-circuit) of the shaded
module is greater than the Isc of the uniformly lit modules. The second problem is the
onset of hot spot. This problem occurs when the Isc current of the shaded module is less
than the Isc of the uniformly illuminated modules, so that the shaded module behaves like
an energy receiver extracting energy from the other PV modules. This effect can be noticed
in the PV curve of a shaded PV panel, depicted in Figure 1. In partially shaded conditions,
when the PV system does not receive uniform irradiation, the P-V characteristics become
more complex, with multiple local peak displayed and a single global peak. These points
are referred to as Maximum Power Points (MPP).

Figure 1. Typical curve of a shaded PV panel.
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In addition to the deformation of the I-V curve, shading may lead to the heating of this
module by dissipation of this energy. If the operating point of the shaded module reaches
the breakdown voltage, the module will be destroyed by the avalanche effect [13,14].

Thus, it is crucial to find an optimal operating voltage to extract the maximum amount
of PV power when designing the PV system while avoiding the aforementioned problems.
A Maximum Power Point Tracking (MPPT) management tool is a required control loop that
helps to get the most power out of a PV system. The basic performance of this algorithm is
to adjust the duty cycle of the power converter connecting the PV modules to the DC-link.
Concerning this tracking technique, various methods were carried out and help improve
the energetic performances of the system. The traditional process relies on the incremental
method’s principle (IC) [15,16]. It is based on the principle of the zero derivative of the
output power P of the PV panel, with respect to its output voltage V at the point maximum
MPP power. In the maximum point, it is positive on the left and negative on the right, so
the algorithm tries to find the voltage where this condition holds [17].

The Perturb and Observe (P&O) approach was the focus of further studies [18,19].
Because of its simplicity and convenience of use, it is frequently implemented. The primary
benefit of this method is its direct torque design and lesser rate of monitored parameters.
However, it has a significant flaw in terms of chattering on the supplied power form.

Classic MPPT methods such as P&O and IC are based on moving the next operating
point (OP) in the direction of increasing PV power. However, when partial shading is
present, the P–V curve is no longer monastically increasing, as shown in Figure 1. Thus,
these conventional methods can only achieve a local MPP and may not reach the global
maximum [20,21]. Therefore, it is necessary to develop an appropriate MPPT algorithm
that can get to the global maximum power regardless of the state of illumination on
the modules.

To overcome this limitation, other strategies based on intelligent optimization, such as
the fuzzy logic technique or the neural network method, have been designed in the same
sector [22,23]. The two techniques lead to higher profitability, but their main issue is the
database required to adapt these algorithms to PV systems. Optimization algorithms were
also used to help resolve this issue of partial shading of the photovoltaic system [24,25]. In
particular, the evolutionary algorithms aim to have an adaptable MPPT tracking method,
based on the animal behavior to find food [26,27].

There is a variety of swarm algorithms, which have been applied in multiple systems
such as in [28–31]. Among them, Particle Swarm Optimization (PSO) [25] and Grey Wolf
Optimization (GWO) [32] have shown their reliability to solve real optimization problems
where the objective function is not linear. In particular, the works in [17,33] only considered
these two algorithms to configure a DC/DC power converter. The review presented in [34]
show that PSO algorithms are still investigated to tune the power converters of microgrids.
Moreover, the study elaborated by Mirjalili in [32] presents a comparison between multiple
swarm algorithms. As a conclusion, they state that the better results were found for the PSO
and the GWO algorithms. Indeed, the two algorithms are inspired by natural competence
to reach high speed and precision. Based on these previous works, in this paper we evaluate
their relative feasibility and performance of employing the swarm algorithms to configure
the power converter of the PV panels in order to cope with different shading conditions.

These two algorithms have already been applied and evaluated separately in PV
systems. Particle Swarm Optimization algorithm can help to calculate the duty cycle of the
power converter in the PV connection dynamically. Several works tested this solution for
this application, as in [35] where the authors proved that this solution could be efficient
if it is running offline. On the other side, the Grey Wolf Optimization (GWO) algorithm
appeared as a useful solution for extracting energy from the PV system with maximum
efficiency [36]. However, the two algorithms have several parameters and constants, which
must be fixed initially to start the algorithms correctly.

The contribution of the paper is to apply and evaluate these two optimization algo-
rithms for the same PV system, considering different partial shading conditions. The PV
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system model considered in this work is based on a commercial PV panel. So we can
compare both performances to study their suitability in realistic implementations. The
evaluation of each of these algorithms is based on the precision and the speed for tracking
the global MPP with different partial shading conditions. Specifically, we have studied the
two swarm-intelligence based algorithms for four shading conditions in a four-module
PV system.

This research paper is organized to initially present an introduction section, which
describes the objective of the paper and explains the state-of-the-art in this application
field. In the second section, the PV system is modeled with the necessary equations that
regroup all the parameters and constants that define this physical system. In the third
section, the two optimization algorithms are explained. Their flowcharts are exposed and
the principle running of each one is described for the MPPT algorithm. In the next section,
the simulation conditions and the obtained results are shown for each irradiance case.
In the end, a conclusion section is formatted for resuming the paper and giving some
perspectives of this work.

2. Model of the PV System

In this section, we first describe the model for a solar PV cell. Then, we integrate it
into the model of a PV system.

A. Solar PV Cell Model

A PV module consists of several solar cells connected in series and in parallel to achieve
the desired voltage and current levels. A solar panel cell is essentially a p-n semiconductor
junction. When exposed to light, a direct current is generated. For simplicity, the single
diode model of Figure 2 is used in this document [37]. This model offers a good compromise
between simplicity and precision with the basic structure.

Figure 2. Simplified equivalent circuit of solar cell.

The equivalent circuit of the general model consists of a photo current (Iph), a diode,
a parallel resistance (Rp) expressing a leakage current, and a series resistance (Rs) due to
the contacts between the semiconductors and the metal parts. This equivalent circuit is
depicted in Figure 2.

In Figure 2, we apply Kirchhoff’s law. The current will be obtained by the following
Equation:

I = Iph − ID − Ip (1)

where Iph the current generated by light or photocurrent and Ip the current flowing in the
parallel resistor, which can be computed as:

Ip =
V + Rs I

Rp
(2)
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ID is the current of the diode, which is proportional to the saturation current. The following
equation expresses the value of this magnitude

ID = Isd

(
exp
(

q.(V + Rs.I)
n.K.T

)
− 1
)

(3)

being Isd the reverse saturation current in amperes (A), q the electron charge (1.6 × 10-19 C),
K the Boltzmann constant (1.38 × 10-23 J/K), T the cell temperature in Kelvin (K) and n the
ideal factor.

We replace the voltage-current characteristic equation of a solar cell in Equation (1).
So we derive that:

I = Iph − Isd

(
exp
(

q.(V + Rs.I)
n.K.T

)
− 1
)
− V + Rs I

Rp
(4)

The photocurrent depends mainly on the solar radiation and the operating tempera-
ture of the cell, which is described by the following Equation:

Iph =
[

Isc + Ki

(
T − Tre f

)] G
Gre f

(5)

where:
Isc: is the short-circuit current of the cell at 25 ◦C and 1000 W/m2

Ki: the temperature coefficient of the cell short-circuit current,
Tref: is the reference temperature of the cell, in Kelvin (K) (=25 ◦C + 273),
G: is the solar radiation in watt/square meter (W/m2),
Gref: is the reference insolation of the cell (=1000 W/m2),
On the other hand, the cell saturation current varies with the temperature of the cell,

which is described as follows:

Isd = Irs

(
T

Tre f

)3

.exp

⎛
⎝ q.Eg

(
1

Tre f
− 1

T

)
K.n

⎞
⎠ (6)

being:
Irs: the reverse saturation current of the PV cell
Eg: is the gap energy of the semiconductor used in the PV cell in electron-volt (eV)
n: is the ideal factor, which depends on the PV technology listed in Table 1.

Table 1. Ideal Factor n dependence on PV cell technology.

Technology N

Monocrystalline Silicon (Si-mono) 1.2
Polycrystalline Silicon (Si-poly) 1.3

Hydrogenated Amorphous Silicon (a-Si:H) 1.8
Hydrogenated Amorphous Silicon tande (a-Si:H tandem) 3.3

Hydrogenated Amorphous Silicon triple (a-Si:H triple) 5
Cadmium Telluride (CdTe) 1.5

Copper Indium Selenide (CIS) 1.5
Gallium arsenide (GaAs) 1.3

The reverse saturation current is given by the following Equation (7):

Irs =
Isc

exp
(

q.Voc
Ns .n.K.T

)
− 1

(7)

B. Solar PV Module Model
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A typical PV cell produces less than 2 W at about 0.5 V so that cells must be connected
in series-parallel on a module to produce enough power [38]. A PV array, like presented in
Figure 3, is a group of several PV modules electrically connected in series (Ns cells) and in
parallel (Np columns) to generate the required current and voltage.

 

 

Figure 3. A general model of a Photovoltaic Module.

The voltage-current characteristic equation of a PV module becomes as follows:

I = Np.Iph − Np.Isd

⎡
⎣exp

⎛
⎝ q
(

Vpv
Ns

+ I.Rs
Np

)
K.T.n

⎞
⎠− 1

⎤
⎦−

(
Np .Vpv

Ns
+ I.Rs

)
Rp

(8)

The following Table 2 gives the parameters of the PV module used in this work.

Table 2. Characteristics of PV Module “Tata Power Solar Systems TP250MBZ”.

Maximum Power (Pmax) 249 W

Voltage at maximum power point (Vmpp) 30 V
Current at maximum power point (Impp) 8.3 A

Open Circuit Voltage (Voc) 36.8 V
Short Circuit Current (Isc) 8.83 A

Number of cell per module 60
Temperature coefficient of Voc(%/deg.c) −0.33
Temperature coefficient of Isc(%/deg.c) 0.063805

Nominal Voltage Vbattery 100 V
Rated Capacity Battery 10 Ah

Initial Stat of Charge 50%
Battery response time 0.001 s

Figure 4 shows the proposed block diagram of the PV system. In this model. We
include the intelligent MPPT algorithm (based on GWO and PSO), which will be described
in Sections 3 and 4. The proposed algorithms aim to compensate for the limitations of
conventional maximization algorithms, which cannot find the overall maximum, especially
during a partial shading phenomenon. Regardless of the partial shading profile, it can
find the maximum power point on the power-voltage characteristic (Ppv) of a photovoltaic
system. This characteristic is usually referred to as Ppv = f (Vpv). The algorithm is applied
to the semiconductor switch of the boost converter installed to connect the PV panels to
the DC-link. Specifically, the duty cycle of this device is adjusted according to the output
of the Intelligent MPPT algorithm. In our implementation, Vout is the voltage that will be
used for feeding the battery with the required power for its charge.
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Figure 4. Block diagram of a PV system using an intelligent MPPT algorithm.

3. Optimization Algorithms

This paper focuses on two swarm-intelligence based algorithms. Specifically, they
are the Particle Swarm Optimization and the Grey-Wolf Optimization algorithms. They
have been selected for this PV system due to its demonstrated capability to adjust power
converters.

A. The PSO algorithm

This algorithm was one of the solutions that was used for resolving a huge mathemat-
ical optimization problem. It is classified as an evolutionary metaheuristic that belongs to
the larger class of evolutionary algorithms.

It was exposed by Russel Eberhart (electrical engineer) and James Kennedy (sociopsy-
chologist) in 1995 [39]. It was originally inspired by the social behavior of animals evolving
in swarms, such as schools of fish and flight groups of birds. We can see highly complex
movement dynamics in these organisms, despite the fact that each individual has minimal
intelligence and only local knowledge of his place in the swarm. [40]. Therefore, local
information and the memory of each individual are used to decide their displacement.
Simple rules, such as “stay close to another candidate”, “go in the same direction, “or” to
go at the same speed, “are sufficient to maintain the cohesion of the swarm and allow the
implementation of complex adaptative collective behaviors [26].

The particle swarm is a population of simple agents called particles. Each particle is
considered as a solution to the problem, where it has a position and a speed. In addition,
each particle has a memory allowing it to remember its best performance and the best
performance achieved by “neighboring” particles (informants). In addition, each particle
has a group of informants, historically called its neighborhood [41,42]. A swarm of particles,
which are potential solutions to the optimization problem, will look for the global optimum
with their movements.

The following three components that influence the movement of a particle are:

1. An inertia component: the particle tends to follow its current direction of movement;
2. A cognitive component: the particle tends to move towards the best site through

which it has already passed;
3. A social component: particle tends to rely on the congeners’ experience and, thus, to

go to the best site already reached by its neighbors.

The strategy for moving a particle is shown in Figure 5, where the three previous
trends are illustrated.
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Figure 5. Displacement of a particle in the PSO algorithm.

In an N-dimensional search space, particle i of the swarm is modeled by its position
vector

→
x i = (xi1, xi2, . . . , xiN) and by its speed vector

→
v i = (vi1, vi2, . . . , viN). The value

of the objective function determines the quality of its position at this point. The particle
keeps in memory the best position through which it has ever passed, which we denote

by
→
Pbest_i(pbest_i1, pbest_i2, . . . , pbest_iN). The best position reached by the particles of the

swarm is denoted by
→
Gbest = (gbest_1, gbest_2, . . . , gbest_N).

At the start of the algorithm, the swarm particles are randomly initialized in the search
space of the problem. Then, at each iteration, each particle moves, linearly combining the
three components mentioned above. Indeed, at iteration t + 1, the speed vector and the
position vector are calculated from Equations (9) and (10), respectively, as follows:

vt+1
i,j = ωvt

i,j + c1rt
1,t

[
pbest

t
i,j − xt

i,j

]
+ c2rt

2i,j

[
gbest

t
j − xt

i,j

]
(9)

xt+1
i,j = xt

i,j + vt+1
i,j j ∈ {1, 2 . . . , N} (10)

where ω is a constant, called the coefficient of inertia; c1 and c2 are two constants, called
acceleration coefficients; r1 and r2 are two random numbers drawn uniformly in the
interval [0 1], at each iteration t and for each dimension j.

The three components mentioned above (i.e., inertia, cognitive and social) are repre-
sented in Equation (9) by the following terms:

ωvt
i,j corresponds to the inertia component of the displacement, where the parameter

ω controls the influence of the direction of displacement on the future movement.
c1rt

1,t

[
pbest

t
i,j − xt

i,j

]
corresponds to the cognitive component of the displacement,

where the parameter c1 controls the cognitive behavior of the particle.
c2rt

2i,j

[
gbest

t
j − xt

i,j

]
corresponds to the social component of the displacement, where

the parameter c2 controls the social aptitude of the particle.
Once the particles have moved, the new positions are evaluated. The two vectors

Pbest_i and Gbest are updated, at iteration t + 1, according to the two Equations (11) and (12).
This procedure is presented in Algorithm 1, where M is the number of particles in the
swarm.

→
Pbest_i(t + 1) =

⎧⎨
⎩

→
Pbest _i(t), if f

(→
x i(t + 1)

)
≥
→
Pbest _i(t)

→
x i(t + 1), if f

(→
x i(t + 1)

)
<
→
Pbest _i(t)

(11)

→
Gbest(t + 1) = arg minPbest_i f

(→
Pbest_i(t + 1)

)
, 1 ≤ i ≤ M (12)

The corresponding flowchart that describes this organization can be found in Figure 6
and explained as follows:
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Algorithm 1. The procedure of corresponding flowchart

1 Randomly initialize M particles: position and speed.
2 Evaluate the positions of the particles

3 For each particle i,
→
Pbest i =

→
x i

4 Calculate
→
Gbest according to Equation (12)

5 While the stop criterion is not satisfied, do
6 Move the particles according to Equations (9) and (10)
7 Evaluate the positions of the particles

8 Update
→
Pbest i and

→
Gbest according to Equations (11) and (12)

9 end

Figure 6. Hierarchical levels of grey wolves and their tasks.

B. The GWO Algorithm

Similarly to the particle swarm Optimization algorithm, one of the new algorithms,
which are based on the metaheuristic principle is the Grey Wolf Optimization GWO
algorithm. The researcher, Mirjalili, was one of the first researchers who developed this
algorithm and exposed its running principle in 2014 [32,43]. To obtain the optimum
solution of the problem to be optimized, the algorithm principle uses social authority,
which is represented by the behaviour of the wolves when surrounding a victim. During
the operation of hunting for the victim, this algorithm simulates the hierarchical supremacy
of grey wolves until their movements end. It works in a similar way to population-based
algorithms in which it simulates the natural behavior of grey wolves foraging for food
in their social lives. Four types of grey wolf groups can be used to compose hierarchical
commands. Figure 6 shows this hierarchy, with the following three levels:

a. The first level represents the group’s command. A wolf in this level is called
(alpha) (α). The alpha is responsible for deciding to hunt and orders the other
wolves in the pack. Therefore, it can be considered as the correct solution.

b. The next level in the chain is called (β). Wolves in this level help the alpha to make
decisions and monitor the actions of other groups. They can replace the alphas when
they die or get older.

c. The lower level contains the delta and omega, which are the lowest ranks and who
eat last after the wolves of the upper levels have finished.
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The hunting process of the wolf pack involves three main steps: chasing, surrounding
the prey, and attacking the prey. The algorithm starts with a given number of grey wolves
with their positions generated arbitrarily.

The following equations determine the encircling behavior of each group of the pack:

→
D =

∣∣∣∣→C .
→
Xp(t)−

→
X(t)

∣∣∣∣ (13)

→
X(t + 1) =

∣∣∣∣→Xp(t)−
→
A.
→
D
∣∣∣∣ (14)

where
→
X(t) is the vector position of the grey wolf,

→
Xp(t) is the vector prey position and

→
A

and
→
C are the vectors gives by the following Equations:⎧⎨

⎩
→
A = 2.

→
a .
→
r 1 −

→
a

→
C = 2.

→
r 2

with : a = 2.
(

1− t
Tmax

)
(15)

being t the current iteration, Tmax the total number of iterations and r1 and r2 are random
vectors chosen in the interval [0,1].

The prey position Xp (t + 1) update is calculated by averaging the positions of grey
wolves α, β and Δ (three temporarily optimal solutions). The following average function is
used for this purpose

→
Xp(t + 1) =

→
X1(t) +

→
X2(t) +

→
X3(t)

3
(16)

where: ⎧⎪⎪⎨
⎪⎪⎩
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→
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→
Dα

→
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→
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→
A2.

→
Dβ

→
X3(t) =

→
XΔ(t)−

→
A3.

→
DΔ

and

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

→
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∣∣∣∣→C1
→
Xα(t)−

→
X(t)

∣∣∣∣
→
Dβ =

∣∣∣∣→C2
→
Xβ(t)−

→
X(t)

∣∣∣∣
→
DΔ =

∣∣∣∣→C3
→
XΔ(t)−

→
X(t)

∣∣∣∣
Equation (13) represents the distance from the current position, which should be

minimized as much as possible so that the next position represented by Equation (14) gets
closer and closer to the position of the prey. This will imply that the algorithm will get to
the correct solution of the problem XP(t).

The parameter “a” used in this algorithm decreases linearly in the interval [2,0] for the
successive iterations using Equation (15). Thus, it will model the behavior of the wolves
when approaching the victim (exploration phase). For this phase, if the condition |A|< 1
is verified, the wolves attack the victim.

The alpha group are said to have the best possible knowledge of the location of prey.
Once the position of the prey is determined, the hunt will be guided by the alpha group
followed by the beta and delta wolves. The latter two groups participate in the hunt
occasionally. The rest of the group is limited to take care of the injured wolves of the pack.
When the prey stops moving, the wolves attack and finish the hunt [43].

The flowchart of this algorithm is illustrated in Figure 7.
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Figure 7. PSO and GWO algorithms flowchart.

C. The PSO and GWO MPPT controllers

To apply the previous evolutionary algorithms, we need to define the functions and
parameters for the proposed problem. The objective is to maximize the energy extraction
from the PV cells installed on EVs, even when there are shadowing areas involved in the
scenario to consider.

For the PSO algorithm, the function to optimize is expressed in Equation (17).

max(Ppv) = f
(

xt
i,j, vt+1

i,j

)
(17)

In the GWO, each wolf position corresponds to the duty cycle factor applied on the
MPPT. Thus, the Gmax represents the global best position of all of the wolves and Pmax is
the corresponding best position of the corresponding wolf. If no partial shading exists, the
global best wolf best position and the local wolf best position will be the same. However,
for the partial shading case, there is several (Pmax) wolf best positions, and the global best
position (Gmax) will be related to the max of the best wolf position Gmax = max (Pmax).
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The proposed GWO algorithm aims to compensate for the limitations of conventional
maximization algorithms, which cannot find the overall maximum, especially during a
partial shading phenomenon. Regardless of the partial shading profile, this algorithm
can find the maximum power point on the power-voltage characteristic of a photovoltaic
system. Towards this goal, the objective function for this algorithm is defined as it is in
Equation (18).

max(Ppv) = f (α, β, Δ,ω) (18)

The proposed MPPT algorithm is based on the application of GWO to control the
duty cycle. The expected consequence is that this will turn into decreasing the steady-state
oscillations presented by the conventional MPP tracking algorithms. Consequently, the
power loss due to oscillation is reduced, which increases the photovoltaic system efficiency.

For the implementation of GWO MPPT algorithm, duty cycle d is defined as a grey
wolf. Therefore, the Equation (14) can be rewritten as follows:

di(k + 1) = di(k)− A.d (19)

The fitness function of the GWO algorithm is formulated to have the objective of
function 20. It is for the two optimization algorithms.

P
(

dk
j

)
> P

(
dk−1

j

)
(20)

where P represents the PV power, d is the duty cycle of the boost converter, j is the current
grey wolves number, and k is the iteration number.

The flowchart and the parameters of the PSO and GWO MPPT algorithms are detailed
in Figure 7 and Table 3, respectively.

Table 3. Parameter of the PSO and GWO MPPT algorithms.

PSO GWO

Inertia weight (w) 0.1 –
Personal Learning Coefficient c1 1.7 –
Global Learning Coefficient c2 1.5 –

Constant a – Self adaption
Coefficient r1 and r2 – Random numbers in [0,1]

Number of iterations N 100 100
Number of particles P 10 10

Sampling time 0.0001s 0.0001s
Initial duty cycle 0.4

The choice of these parameters was fixed after several online simulation tests, where
the goal is to find the best combination in terms of the algorithm running speed and the
best performances. Specifically, we have varied the number of particles/wolves and the
maximum number of iterations. The first test had the configuration of 150 iterations and
10 particles. The corresponding simulation time was evaluated to 30 min when using an I5
laptop with 8-GB as RAM memory. The resulting performances were found perfect. The
second configuration was fixed to 50 iteration and 8 particles, and then the corresponding
simulation time was evaluated to 24 min, but the resulting energetic performances were
not so good. There were some problems with the stability of the output power.

Many other tests (more than 5 combinations) were also applied, and the best combina-
tion was found as it is indicated in Table 3. For the selected configuration, the simulation
time was 26 min, and we get a good performance in terms of extracted power and stability.

4. Implementation and Simulation Results

The algorithms previously studied are applied to a PV system composed of 4 photo-
voltaic modules. They are connected in a combination of serial and parallel cells and the
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characteristics are given in Table 2. Considering the size of the PV modules, this system
could be implemented in electric vehicle application or even an isolated grid for feeding
some isolating area using a solar energy. Some recharge stations can also benefit from this
solution and the proposed method can improve energy yield.

The simulation bloc can be illustrated as it is Figure 8, all the PV cells are connected to
the DC bus, which can give information about the global voltage and current, in relation to
the solar radiation factor. Then the MPPT algorithm can extract the maximum of power
using the PSO or the GWO algorithm. A DC converter is used for having information
about the outputted power delivered to the load.

 

Figure 8. Overall system design in the simulation phase.

Indeed, to compare the efficiency of MPPT PSO and GWO we considered four simula-
tion tests so that a wide variety of conditions are modelled, Table 4, gives the maximum
power, voltage and current parameters for each shading condition. During the first test,
Figure 9a, the irradiation was kept constant and uniform for the four modules (1000 W/m2).
The second test is characterized by partial shading on two of the four modules of around
40%, represented in Figure 9b. It corresponds to the following lighting distribution on
the four modules (600 W/m2, 600 W/m2, 1000 W/m2, 1000 W/m2). The third test (in
Figure 9c) resembles the second one, but the partial shading on the two modules is varied
in the order of 50% on the first and 20% for the second (500 W/m2, 800 W/m2, 1000 W/m2,
1000 W/m2). Three modules operate under partial shade during the fourth Test, in Fig-
ure 9d. This corresponds to the following lighting distribution (200 W/m2, 300 W/m2,
700 W/m2, 1000 W/m2)

Table 4. PV characteristics study for a different type of shading.

Pmpp (W) Vmpp (V) Impp (A)

Uniform irradiation 996 120 8.3

First case of Partial shading 646.3 126.2 5.12

Second case of Partial shading 637.9 93.04 6.85

Third case of Partial shading 363.4 60.74 5.98
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Figure 9. PV characteristics under different levels of partial shading.

Figures 10–13 show the main electrical measurements of the PV tested for different
shadowing conditions. For these results, we have used the Matlab simulation tool.

A. Uniform irradiation

Figure 10. PV characteristics under uniform irradiation: 0% partial shading.
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B. The first case of partial shading

Figure 11. PV characteristics under partial shading: (600 W/m 2, 600 W/m 2, 1000 W/m 2, 1000 W/m 2).

C. Second case of partial shading.

Figure 12. PV characteristics under partial shading: (500 W/m2, 800 W/m2, 1000 W/m2, 1000 W/m2).
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D. Third case of partial shading

Figure 13. PV characteristics under partial shading: (200 W/m2, 300 W/m2, 700 W/m2, 1000 W/m2).

Table 5 presents a comparative study between the two MPPT algorithms for different
types of shading distribution on the panels. The essential criteria for a judicious comparison
between the two algorithms are:

- Track of the point of maximum power under the different levels of partial shading.
- Rapid convergence towards the point of the global maximum.

As can be observed, the simulation results from Figure 10 to Figure 13 show the
evolution of the power, current, voltage and duty cycle of the PV system for the four types
of shading distribution we have tested on the panels. From these results, it can be observed
that the two solutions ensure a good MPP tracking. The advantage of the PSO MPPT over
the GWO MPPT is related to two issues: (i) the amplitude of the oscillations at the transient
state and (ii) the accuracy to track the point of maximum power. A high oscillation exists
for the case of GWO, which can be one the weaknesses of this algorithm. There is also
a small oscillation when executing the PSO at the beginning, when the radiation form
changes. However, this will not cause a problem as in the real situation, the modification
of the radiation comes very slow. So, we a look a better performance in a real situation.

Table 5. Comparative study between PSO-MPPT and GWO-MPPT.

MPPT Techniques
Uniform Irradiation

First Case of Partial
Shading

Second Case of Partial
Shading

Third Case of Partial
Shading

PSO GWO PSO GWO PSO GWO PSO GWO

Time to reach the MPP (s) 0.081 0.096 0.071 0.106 0.079 0.091 0.0561 0.105

Extracted Power at MPP (W) 993.2 994.7 645.6 645.1 633.9 628 359.1 357.5

Tracking Efficiency (%) 99.71 99.86 99.89 99.81 99.37 98.44 98.81 98.37

The application of these algorithms in real time requires the use of the high-speed
processor given the large number of operations to be carried out in one second (processing
and control measurement). Therefore, the time needed to converge towards the best
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response depends on the speed of the algorithm used and the material available (essentially
the speed of the processor). In addition, the presence of high amplitude oscillations during
the transient phase is a harmful phenomenon for electrical systems and can cause a variety
of problems. According to the simulation results and the criteria indicated above, the PSO
MPPT algorithm shows itself well for the real-time application.

We have also studied how these algorithms impact on the battery State-of-Charge
(SoC). In particular, we have studied the effects on a representative lithium-ion battery
characterized by the parameters in Table 6. Figure 14 shows the efficiency of PSO MPPT
versus GWO MPPT in terms of storage charge in the battery under uniform irradiation.
A gain of about 0.0014% SoC for 1 s corresponds to almost 5.04% of battery charge for
one hour.

Table 6. Parameters of lithium-ion battery.

Nominal Voltage Vbattery 100 V

Rated Capacity Battery 10 Ah
Initial Stat of Charge 50%
Battery response time 0.001 s

Figure 14. SoC using the PSO MPPT and GWO MPPT.

5. Conclusions

This work attempts to study and discuss two MPPT techniques based on two meta-
heuristic optimization algorithms, i.e., PSO and GWO. These new techniques of MPPT
overcome the problems of classic MPPT strategies (e.g., perturb and observe and incremen-
tal) when tracking the maximum power point, even in the presence of sudden changes
of irradiation and shadows on the photovoltaic modules. The MPPT techniques studied
show good behavior and better performance. A comparative study of simulation results
for a different type of shading shows PSO-MPPT effectiveness compared to GWO-MPPT
from the point of view of speed and oscillation during the transient state. In addition, a
simulation test shows the efficiency of PSO MPPT versus GWO MPPT in terms of storage
charge in the battery under uniform irradiation. As a future work, we would like to analyze
how to adapt the algorithm’s parameters (which are now constant) to the dynamic lighting
conditions.

Moreover, one of the future endeavors of this work is to compare more algorithms
performances and search the best combination that can be used for such an optimization
problem. Therefore, incremental algorithm, perturb and observe algorithm, the fuzzy
solution and other population-based metaheuristic algorithms as bio-inspired algorithms,
evolutionary algorithm and physics-based algorithm will be studied, tested and evaluated.
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Featured Application: A cooperative multi-objective optimization model of a DC multi-microgrid

that considers across-time-and-space energy transmission of EVs is established to improve the econ-

omy of the system, decrease the loss of the distribution network, and reduce carbon emissions.

Abstract: By constructing a DC multi-microgrid system (MMGS) including renewable energy
sources (RESs) and electric vehicles (EVs) to coordinate with the distribution network, the utilization
rate of RESs can be effectively improved and carbon emissions can be reduced. To improve the econ-
omy of MMGS and reduce the network loss of the distribution network, a cooperative double-loop
optimization strategy is proposed. The inner-loop economic dispatching reduces the daily operating
cost of MMGS by optimizing the active power output of RESs, EVs, and DC/AC converters in MMGS.
The outer-loop reactive power optimization reduces the network loss of the distribution network
by optimizing the reactive power of the bidirectional DC/AC converters. The double-loop, which
synergistically optimizes the economic cost and carbon emissions of MMGS, not only improves the
economy of MMGS and operational effectiveness of the distribution network but also realizes the
low-carbon emissions. The Across-time-and-space energy transmission (ATSET) of the EVs is con-
sidered, whose impact on economic dispatching is analyzed. Particle Swarm Optimization (PSO) is
applied to iterative solutions. Finally, the rationality and feasibility of the cooperative multi-objective
optimization model are proved by a revised IEEE 33-node system.

Keywords: DC multi-microgrid system; carbon emissions; economic dispatch; across-time-and-space
energy transmission; cooperative multi-objective optimization

1. Introduction

Since the national carbon neutrality and carbon peak requirements have been put
forward [1], low carbon emissions and new energy have become hot research topics [2,3].
It is a trend to replace petrol vehicles with electric vehicles (EVs) and replace regional large-
scale power grids with microgrids (MGs) containing renewable energy sources (RESs) [4,5].
As the output of RESs is intermittent and uncertain, the MGs need to coordinate with the
distribution network to centrally regulate the RESs, which is a challenge to the operation
mode of the traditional power system. With the popularity of EVs, the burden of the
distribution network will greatly be increased. Additionally, the safe operation of the
distribution network will be threatened if EVs are charged in the distribution network
without control.

The research on the charging and discharging dispatching strategy of EVs is mainly
from the view of the economy [6,7]. Many studies have considered charging/discharging
strategies of EVs but overlooked the energy storage characteristics of EVs. Through the
bidirectional Vehicle-to-grid (V2G) technology, EVs can also deliver electrical energy to the
grid by discharging, and improve the operation of the grid [8–10].
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Some research combines EVs with distributed RESs in the MG. In [11], an optimization
method for the operation route and charging/discharging time of EVs is proposed, which
uses the timely charging/discharging of EVs to consume the output of RESs and reduce the
volatility of the equivalent load. In [12], the MG energy management strategy is discussed
from the perspective of system operating cost and the consumption efficiency of RESs, and
V2G technology has been applied. In [13], the structure and parameter design of the system
have been discussed, and the actual MG system using V2G technology has been studied.
However, most of the energy scheduling in MGs and the distribution network is to adjust
the output of active power.

Some research focuses on the economic dispatch of the multi-microgrid system. In [14],
an interconnected multi-microgrids (IMMGs) system using various complementary power
sources effectively coordinates the energy sharing/trading among the MGs and the main
grid to improve energy efficiency. In [15], A probabilistic modeling of both small-scale
energy resources (SSERs) and load demand at each microgrid (MGs) is performed to
determine the optimal economic operation of each MG with minimum cost based on the
power transaction between the MGs and the main grid. The above does not consider the
reactive power exchange between MMG and the main grid.

In the current research on reactive power exchange and network loss, most studies
focus on the reactive power of a single distribution network. In [16], the trend of reac-
tive power demand in the distribution network is evaluated. Reactive power demand
management plays an important role in the cost-effectiveness and stable operation of
the distribution network. A multi-objective planning algorithm for reactive power com-
pensation of radial distribution networks is proposed in [17], which uses unified power
quality conditioner (UPQC) compensation for load reactive power to reduce network
loss. In [18], the solid-state transformer (SST) is used to supply the load reactive power
demand and inject reactive power into the grid, which reduces network losses in a radial
distribution network.

Some research focuses on the impact of reactive power optimization on the loss of MG.
In [19], a distributed, leaderless and randomized algorithm is proposed, which controls the
microgenerators in the island-operated MG system to compensate for reactive power and
reduce power distribution loss in MG. A generalized approach for probabilistic optimal
reactive power planning is proposed in [20], which can reduce the annual energy losses of
the grid-connected MG system.

These papers mentioned above give less consideration to the collaborative optimiza-
tion of MG clusters and the distribution network. To solve the above problems, a coopera-
tive multi-objective optimization model of a DC multi-microgrid system (MMGS) including
RESs, EVs, and DC/AC converters is established. The goal of the model is to obtain the
optimal MMGS economic cost and the network loss of the distribution network. The main
contributions of this paper are as follows:

1. A grid-connected MMGS containing RESs and EVs is constructed, where RESs, EVs,
MGs and distribution networks are combined, bidirectional V2G technology is used
and the across-time-and-space energy transmission (ATSET) of EVs is thoroughly
considered. The effect of the across-time-and-space energy transmission on MMGS
economic operation is analyzed to state the potential benefits of cooperative multi-
objective optimization.

2. A cooperative multi-objective optimization model is established, including the dy-
namic economic dispatch of RESs, EVs, DC/AC converters, and the reactive power
optimization of DC/AC converters in MMGS. The cooperative multi-objective opti-
mization model consists of two loops. The inner-loop model uses the active power
output of RESs, EVs, DC/AC converters as variables, and the daily operating cost of
MMGS is used as the optimization objective. The outer-loop model uses the reactive
power output of the DC/AC converters as the variable to optimize the network loss
of the distribution network, thereby reducing network loss cost and carbon emissions
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cost. The ultimate goal of the cooperative multi-objective is to obtain the optimal
daily economic cost.

3. The concepts of carbon neutrality and carbon peaking are combined. Through the
cooperative multi-objective optimization model, the carbon emissions generated by
the operation of the MMGS and the distribution network are effectively reduced. The
cooperative multi-objective optimization model not only improves the economy but
also reduces the total carbon emissions of MMGS and the distribution network.

2. System Structure

2.1. Structure of the DC Multi-Microgrid System

The MMGS discussed in this paper includes multiple relatively independent MGs
in space. The DC multi-microgrid energy management system (MMGEMS) manages all
energy transactions in MMGS. Each MG is integrated into the distribution network through
power electronic devices and exchanges energy with the distribution network. Each MG
contains RESs and EVs charging/discharging infrastructures (EVCDIs). There are two
main types of MGs in the MMGS: MGs located in residential areas (RMG) and MGs located
in office areas (OBMG). The structure of the MMGS is shown in Figure 1.

Figure 1. Structure of a DC multi-microgrid system.

The control of the system is mainly conducted by the collaboration of the MG energy
management system (MEMS) and the EVs management system (EVMS). The MEMS is
responsible for the energy dispatching of photovoltaics (PVs), wind turbines (WTs), and
EVs in MGs, and the EVMS manages the charging and discharging behaviors of EVs. A
DC multi-microgrid control system is shown in Figure 2.

2.2. DC Microgrid

The basic structure of the DC microgrid is shown in Figure 3. Each MG is connected
to the distribution network through a transformer and a DC/AC converter, which can
exchange energy with the distribution network. A connection switch is installed in the
grid-connected circuit, which can switch the MG between island operation mode and
grid-connected operation mode.

105



Appl. Sci. 2021, 11, 8916

 

PV PV

 

EV EVWT

 

WT

Figure 2. Structure of a DC multi-microgrid control system.

Figure 3. Structure of a DC microgrid.

2.3. Bidirectional DC/AC Converter

The bidirectional DC/AC converters are used to connect the MMGS and the distribu-
tion network, which can output active and reactive power with the distribution network.
DC/AC converters use power factor correction (PFC) to obtain the unity power factor [21].
Therefore, the DC/AC converters are set to the unity power factor in this paper when
the reactive power is not optimized [22]. However, by using the appropriate pulse-width
modulation (PWM) switching technique, the power factor is adjusted to control the reactive
power output of the DC/AC converters to the distribution network [22]. This is the basis
for reactive power optimization.

3. Mathematical Model

3.1. Renewable Power Generation
3.1.1. Photovoltaic Module

In this paper, the power prediction module based on artificial neural networks
(ANNs) [23] is applied to the economic dispatching of MMGS. The weather data are
from the numerical weather forecast (NWP).
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3.1.2. Wind Turbine

The output of WTs is mainly affected by wind speed [24]. The ANN is still used to
predict wind power [25]. The inputs are the wind speed and wind direction from NWP.

3.2. Electric Vehicles
3.2.1. EVs Model

The EVs in the MMGS are all commuter vehicles, and the residents of the residential
area are the workers in the office area. As 77.95% of EVs’ users will reach the working area
at 7:30–9:30 [26], the standard parking time slots in OBMG and RMG are assumed to be
9:00–17:00 and 19:00–7:00 [27,28]. The capacity of EV at t-th is

SOCEVm,n,t = SOCEVm,n,t−1(1− σ) + PEV
m,n,t•Δt•ηCEV , i f PEV

m,n,t ≥ 0 (1)

SOCEVm,n,t = SOCEVm,n,t−1(1− σ) + PEV
m,n,t•Δt/ηDEV , i f PEV

m,n,t < 0 (2)

The power output of EV in (1) and (2) is measured on the MMGS side. Where
SOCEVm,n,t is the remaining power capacity of the n-th EV in the m-th MG in the t-th hour,
σ is the self-discharge coefficient. PEV

m,n,t is the charging or discharging power in the t-th
hour of the n-th EV in the m-th MG. If PEV

m,n,t ≥ 0, EVs are charged. If PEV
m,n,t < 0, EVs release

energy; Δt = 1 h. ηDEV and ηCEV are the discharging and charging efficiency of EVs to
calculate the power actual charging or discharging power of EVs.

3.2.2. Across-Time-and-Space Energy Transmission of EV

In the same MG, the EV is used as an energy storage unit, and its charging/discharging
power can be dispatched for the operation of the MG. When the EV is connected to the
MG and the power is sufficient, MMGS controls the EV to charge during the low charging
price or when the system has excess energy, and discharge during the peak discharging
price or when the system is short of power. The EV is charged and discharged in the same
MG to realize energy transfer over time, thereby reducing the cost of MMGS purchasing
electricity directly from the distribution network. At the same time, it also allows the user
of the EV to profit by selling part of the electricity, which enables both parties to obtain a
certain amount of economic benefit.

On the other hand, EVs not only have energy storage characteristics but also can
move between different locations. In the case of differences in the electricity price of the
distribution network within a region, benefits can be obtained through the cross-space
transfer of energy. For example, the electricity prices of RMG and OBMG for electricity
trading with the distribution network are quite different. Most of the time, the electricity
price of OBMG purchasing electricity from the distribution network is higher than RMG.
Therefore, the electric energy charged in the RMG at a low charging price is sold to the
MMGS at a high discharging price in the OBMG, and the electric energy is transferred
between different spaces and times through charging and discharging.

EVs realize the across-time energy transmission in the same MG and realize the across-
time-and-space energy transmission in different MGs, which can transfer the lower-priced
electric energy in RMG to OBMG at a higher price. Under the right conditions, both MMGS
and EV users can benefit. This characteristic of EVs for energy transfer between different
times and different spaces is called the across-time-and-space energy transmission.

3.3. EV Charging/Discharging Infrastructures

The charging/discharging behaviors of EVs are carried out through the EVCDIs.

PEVCDIs
m,n,t = PEV

m,n,t•ηCEV , i f PEV
m,n,t ≥ 0 (3)

PEVCDIs
m,n,t = PEV

m,n,t/ηDEV , i f PEV
m,n,t < 0 (4)

where PEVCDIs
m,n,t is the power of the EVCDIs of the n-th EV in the m-th MG in the t-th hour.
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4. Cooperative Multi-Objective Optimization Model

4.1. Description of the Optimization Model

The EVMS collects the dispatchable capacity forecast data of EVs and outputs the
dispatching plan of the EVs. The MEMS collects the output of predicted RESs, the predicted
load data, and the energy price of the distribution network. Based on this information,
MEMS outputs the active power of RESs, EVs, and DC/AC converters in MMGS, and
transmits it to the reactive power optimization module in MMGEMS. The reactive power
optimization module outputs the optimal reactive power of the DC/AC converters accord-
ing to the data. The two modules coordinate and output the optimal result.

4.2. Double-Loop Optimization Process

The process is shown in Figure 4. The inner-loop is the dynamic economic dispatch
which is used to optimize the active power output of RESs, EVs, and DC/AC converters to
obtain the optimal total operating cost of the MMGS. The outer-loop optimizes the reactive
power output of the DC/AC converters according to the active power output of the inner-
loop, to make the network loss of the distribution network minimum, thereby reducing
the network loss cost and carbon emissions of MMGS and the distribution network. The
inner-loop and the outer-loop work together to obtain the optimal active power output
plan in MMGS and reactive power output of the DC/AC converters, which makes the
economic cost of MMGS minimum.

4.3. Cooperative Multi-Objective Optimization Objective Function

The main goal of optimization is to reduce the daily economic total cost of MMGS.
MMGS discussed in this model consists of multiple MGs, which are assumed to be owned
by a single operator. Another goal of the model is the lowest network loss of the distribution
network, which can be obtained through the outer-loop model. Therefore, the objective
function to minimize the total economic cost of the entire system can be expressed as:

f = CETC = COTC + CWTC (5)

where f is the main goal of the cooperative optimization, CETC is the economic total cost
of MMGS. COTC is the operating total cost of MMGS, CWTC is the energy loss cost of the
MMGS that is obtained from the outer-loop model, where

CWTC = Cil + Cco (6)

Cco = ECO•kc (7)

ECO = (WG
S −WB

S )•Δt•ec (8)

Cil = (WG
S −WB

S )•Δt•kil (9)

EC =
M

∑
m=1

ECIm + ECO (10)

Cil and Cco are the network loss cost and carbon emissions cost caused by the increase
in the distribution network loss in the outer-loop model, respectively. ECO is the carbon
emissions generated by the distribution network. WG

S is the total daily operating network
loss of the distribution network when MMGS is integrated into the distribution network
and runs. WB

S is the total daily operating network loss when there is no MMGS access,
which is a fixed value also called the original baseline loss. kil, ec, kc are fixed factors, kil
is the loss cost coefficient of the distribution network, ec is the carbon emissions factor,
kc is the carbon cost factor. Δt = 1 h. EC is the total carbon emissions of MMGS and the
distribution network, ECIm is the carbon emissions generated by m-th MG in the inner-loop
model, M is the number of MGs in the MMGS.
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Figure 4. Process of the cooperative multi-objective optimization.

Since COTC and WG
S are the optimization targets of the inner-loop model and the

outer-loop model, respectively, the objective functions of the inner-loop model and the
outer-loop model are set as follows:

f1 = minCOTC (11)

f2 = minWG
S (12)

where f 1 and f 2 are the objective functions of the inner-loop model and the outer-loop
model, respectively.

Through (5)–(12), f can be expressed as:

f = f1 + ( f2 −WB
S )•Δt•[ec•kc + kil ] (13)
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4.4. Inner-Loop Optimization

The goal of the inner-loop optimization model is to minimize the daily operating cost
of the MMGS. The daily operating cost is mainly composed of system energy transaction
cost and carbon emissions cost. The objective function is as follows:

f1 = minCOTC (14)

COTC =
M

∑
m=1

COCm (15)

COCm = Cexm + Ccim (16)

Ccim = ECIm•kc (17)

COCm is the operating cost of the m-th MG that is obtained from the inner-loop model.
Cexm is the energy transaction cost in the m-th MG. Ccim is the carbon emissions cost due to
energy exchange in the inner-loop model.

4.4.1. Energy Transaction Cost

The energy transaction cost is the sum of RESs cost, energy exchange cost between
MMGS and EVs, MMGS and distribution network, and the additional cycle cost of EV
batteries. PEV

m,t , PPV
m,t , PWT

m,t , and PG
m,t are the optimization variables.

Cexm = Cresm − Cevm + Cgm + Ccym (18)

Cresm = CPVm + CWTm (19)

CPVm + CWTm =
T

∑
t=1

PPV
m,t CPV

m,t Δt +
T

∑
t=1

PWT
m,t CWT

m,t Δt (20)

Cevm =
T

∑
t=1

N

∑
n=1

PEV
m,n,t•ηCEVCCEV

m,t Δt , i f PEV
m,n,t ≥ 0 (21)

Cevm =
T

∑
t=1

N

∑
n=1

PEV
m,n,tC

DEV
m,t Δt , i f PEV

m,n,t < 0 (22)

Cgm =
T

∑
t=1

PG
m,tC

G
m,tΔt (23)

Ccym =
N

∑
n=1

kcyCEV
cyn (24)

where Cresm is the cost of RESs of the m-th MG in a day, CPVm, and CWTm are the cost
of PVs and WTs. PPV

m,t is the power output of PVs in the m-th MG, at t-th hour, CPV
m,t is

the PV power generation cost, PWT
m,t is the power output of WTs, CWT

m,t is the WT power
generation cost. Cevm is the cost of energy exchange between MMGS and EVs, CCEV

m,t is the
charging price of EVs in m-th MG, CDEV

m,t is the discharging price, Δt = 1 h, T = 24 h. Cgm
is the energy exchange cost between the MG and the distribution network through the
DC/AC converters, PG

m,t is the active power output between the MG and the distribution
network through the DC/AC converters. If PG

m,t ≥ 0, MG purchases electricity from the
distribution network. If PG

m,t < 0, MMGS sells electricity to the distribution network. CG
m,t

is the electricity price that MG purchases/sells to the distribution network. Ccym is the
additional cycle cost of EV batteries, CEV

cyn is the additional battery charging/discharging
cycle cost of n-th EV, kcy is the number of additional charging/discharging cycles, N is the
number of EVs.
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4.4.2. Carbon Emissions and Cost

The electricity of the distribution network mainly comes from thermal power genera-
tion. When MG exchanges energy with the distribution network, the distribution network
emits more CO2. To reduce carbon emissions as much as possible and increase the use
of RESs, in this paper, the cost of carbon emissions is used as the penalty cost of CO2
generated by the energy exchange between the MMGS and the distribution network [29].

Ccim = ECIm•kc (25)

ECIm =
T

∑
t=1

PG
m,tΔt•ec (26)

4.5. Constraints of the Inner-Loop Model
4.5.1. EVs Power Constraint

The charging/discharging power of EVs cannot exceed the rated power of EVCDIs.∣∣∣PEV
m,n,t

∣∣∣ ≤ PEVCDIs
m,n,R (27)

where PEVCDIs
m,n,R is the rated power of the EVCDI serving the n-th EV.

4.5.2. EVs Capacity Constraint

The remaining power of EVs must meet the constraints of rated capacity.

SOCEVm,n,min ≤ SOCEVm,n,t ≤ SOCEVm,n,max (28)

where SOCEVm,n,min, and SOCEVm,n,max are the minima and maximum capacity, respectively,
of n-th EV in m-th MG.

4.5.3. RESs Output Constraint

Considering the performance limitations of renewable energy, the output of RESs in
m-th MG has a certain upper limit.

0 ≤ PWT
m,t ≤ PWT

m,max (29)

0 ≤ PPV
m,t ≤ PPV

m,max (30)

4.5.4. System Power Balance Constraint

For MMGS, the active power output should meet the power balance constraint.

PEV
m,t + PG

m,t + PWT
m,t + PPV

m,t = PL
m,t (31)

where PL
m,t is the total load of the m-th MG at time t.

4.6. Outer-Loop Optimization

The outer-loop optimization model takes the network loss as the optimization goal.
By optimizing the reactive power output of the DC/AC converters QG

m,t, the daily network
loss of the distribution network is minimized, thereby reducing network loss cost and
carbon emissions of MMGS and the distribution network [30]. This paper assumes that the
m-th MG is connected to node i of the distribution network.

f2 = minWG
S (32)

WG
S =

T

∑
t=1

Nbr

∑
i,j=1

kiRij
P2

ij,t + Q2
ij,t

V2
ij,t

(33)
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WI
S = WG

S −WB
S (34)

Pij,t = P0
ij,t + PG

m,t (35)

Qij,t = Q0
ij,t + QG

m,t (36)

WI
S = f2 −WB

S (37)

Cil + Cco = WI
S•Δt•kil + WI

S•Δt•ec•kc (38)

WI
S is the daily operating increased network loss of the distribution network. Nbr is

the number of branches. i, j are the nodes, ki is the state variable of the i-th branch switch, 1
means closed, 0 means open; Rij is the resistance of branch ij, Pij,t, Qij,t are the active and
reactive power of branch ij in the t-th hour, Vij,t is the voltage, P0

ij,t, Q0
ij,t are initially active,

reactive power when connected without MMGS. PG
m,t, QG

m,t are the active and reactive
power through the DC/AC converters injected into node i by the m-th MG connected to
node i. To facilitate the calculation of network loss, a day is divided into 12 small periods,
with a time interval of 2 h.

4.6.1. Network Loss Cost

The operation of MMGS connected to the distribution network will cause increased
network loss in the distribution network. Therefore, the distribution network will sign a
contract with the operator of MMGS, and the operator needs to pay a certain network loss
fee for the daily operating increased network loss in the distribution network.

Cil = WI
S•Δt•kil (39)

4.6.2. Carbon Emissions and Cost

When the network loss of the distribution network increases by the operation of
MMGS, more CO2 will be emitted. MMGS will still incur a penalty cost for carbon emissions
by the increasing network loss, which differs from the carbon emissions cost due to energy
exchange in the inner-loop model.

Cco = WI
S•Δt•ec•kc (40)

4.7. Constraints of the Outer-Loop Model

The model takes the actual power flow of the power grid as the constraints.

4.7.1. Node Power Flow Constraint

PG
m,t + P0

i,t = PLi,t + Vi,t

Nn

∑
j=1

Vj,t(Gij cos δij + Bij sin δij) (41)

QG
m,t + Q0

i,t = QLi,t + Vi,t

Nn

∑
j=1

Vj,t(Gij sin δij + Bij cos δij) (42)

where P0
i,t and Q0

i,t are the initial input active and reactive power of node i in the t-th hour,
PLi,t and QLi,t are the active and reactive load, Vi,t and Vj,t are the voltage of node i and j,
Gij, Bij, and δij are the conductance, susceptance, and phase angle difference of branch ij.

4.7.2. Node Voltage Constraint

Vmin
i ≤ Vi,t ≤ Vmax

i (43)

Vmin
i and Vmax

i are lower and upper limits of the node i voltage amplitude.
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4.7.3. Branch Power Constraint

∣∣Pij,t
∣∣ ≤ Pij,max (44)

∣∣Qij,t
∣∣ ≤ Qij,max (45)

Pij,max, Qij,max are the maximum active and reactive power of the branch ij.

4.7.4. Branch Current Constraint

Iij ≤ Imax
ij (46)

where Imax
ij is the upper limit of branch ij current carrying capacity.

4.7.5. Reactive Output Constraint of DC/AC Converter

The reactive power output of the DC/AC converters must satisfy the constraint:

∣∣∣QG
m,t

∣∣∣ ≤ √S2
m − (PG

m,t)
2 (47)

where Sm is the rated power of the DC/AC converter in m-th MG, QG
m,t is the reactive

power that the DC/AC converter can output to the distribution network, PG
m,t is the active

power output by DC/AC converter.

4.8. Particle Swarm Algorithm
4.8.1. Procedure of PSO

The steps of particle swarm optimization (PSO) are shown in Figure 5 [31].

4.8.2. Coding

In the inner-loop, the coding about the economic dispatch of RESs, EVs, and DC/AC
converters can be represented by a real-valued matrix. k is the index of the particle of the
inner-loop. M is the number of MG. T is the dispatching cycle.

Ik
MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

IMG1
IMG2

...
IMGm

...
IMGM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

IMGm =

⎡
⎢⎢⎢⎢⎣

PPV
m,1 PPV

m,2 · · · PPV
m,t · · · PPV

m,T

PWT
m,1 PWT

m,2 · · · PWT
m,t · · · PWT

m,T

PG
m,1 PG

m,2 · · · PG
m,t · · · PG

m,T

PEV
m,1 PEV

m,2 · · · PEV
m,t · · · PEV

m,T

⎤
⎥⎥⎥⎥⎦ (49)

PEV
m,t , PPV

m,t , PWT
m,t , and PG

m,t are the power outputs of EVs, PVs, WTs, and DC/AC
converters in the m-th MG in the t-th hour, respectively.

In the outer-loop, the coding about the reactive power output by DC/AC converters
can be represented by a real-valued matrix. s is the index of the particle of the outer-loop.
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Figure 5. Process of the PSO algorithm.

Os
MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

OMG1
OMG2

...
OMGm

...
OMGM

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

Os
MGm =

[
QG

m,1 QG
m,2 · · · QG

m,t · · · QG
m,T

]
(51)

QG
m,t is the reactive power output of DC/AC converters in the m-th MG at t-th hour.

However, the dispatch range of the outer-loop variable also changes when the variable
of the DC/AC converters changes in the inner-loop. Therefore, a dynamic range adjustment
algorithm is added to the outer-loop model.

∣∣∣QG
m,t

∣∣∣max
=
√

S2
m − (PG

m,t)
2 (52)

The inner-loop and outer-loop cooperate to generate the optimal optimization results.

5. Case Study and Discussion

5.1. Case Description

There are 30 EVs concentrated in OBMG/RMG for the charging/discharging ser-
vice [31]. The dispatching cycle is 24 h. This paper sets up four cases to analyze the
optimization model. By using NWPs from Wuhan City, Hubei Province, China in June
2020, a day’s renewable power generation in summer is predicted as the input of the model.
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5.1.1. Case 1

In this case, the EVs do not participate in the energy dispatch of the MG. Once they
reach the MG, the EVs will be charged until the batteries are fully charged. MMGS does
not optimize the reactive power output by DC/AC converters.

5.1.2. Case 2

In this case, after EVs are connected to the MG, they participate in the energy manage-
ment system of each MG. Once they reach the MG, the energy in the EV battery will be
dispatched by the MG’s energy management system until they leave. When the EVs leave
the MG at the end of the dispatching, the energy of EVs should be fully charged. This case
takes advantage of the across-time energy transmission of EVs in each independent MG,
and the optimization of the reactive power output of DC/AC converters is not considered.

5.1.3. Case 3

In this case, only the inner-loop economic dispatch model is used to minimize the total
cost of MMGS by optimizing the active power output of RESs, EVs, and DC/AC converters.
The ATSET of EV between RMGs and OBMGs is used. However, the reactive power output
of DC/AC converters is also not optimized. Case 3 can be used as a reference.

5.1.4. Case 4

In this case, cooperative multi-objective optimization combines the inner-loop eco-
nomic dispatch model and the outer-loop reactive power optimization model. The ATSET
of EV between RMG and OBMG is considered. By optimizing the active power output of
RES, EVs, and DC/AC converters, the total daily operating cost of MMGS is reduced. By
optimizing the reactive power output of DC/AC converters, the loss of the distribution
network is reduced, and the total economic cost of MMGS is reduced synergistically.

5.2. Simulation System Construction
5.2.1. System Introduction

The modified IEEE 33-node system is used to prove the model, whose structure is
shown in Figure 6, and its parameters can be obtained from [32]. According to the principle
of distribution [32], OBMG and RMG are set at node 19 and node 20, respectively.

Figure 6. Topological diagram of the modified IEEE 33-node system.

5.2.2. Parameters of RESs

According to the principle of renewable energy consumption [27], the RESs installed
in each MG and the power generation cost are given in Table 1. The optimization time
interval is 1 h, and the optimization cycle is 1 day (24 h).
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Table 1. Installed RESs and the power generation cost.

MG Type RES Type Installed Capacity/kW Power Generation Cost/¥·kWh−1

OBMG
PV1 800 0.24
WT1 800 0.38

RMG
PV2 400 0.24
WT2 400 0.38

The daily wind speed, radiation intensity, temperature, and load data are adopted in
this area. The renewable energy output and load curves of each MG come from [27].

5.2.3. Parameters of DC/AC Converter

Considering the performance of the DC/AC converters of MMGS, Sm = 1000 kW, the
power limit is set as [33]:

0 ≤
∣∣∣PG

m,t

∣∣∣ ≤ 1000kW (53)

0 ≤
∣∣∣QG

m,t

∣∣∣ ≤ 1000kVar (54)

5.2.4. Parameters of EVs

Take a BYD E6 electric vehicle as an example, whose parameters are from [34]. The
battery capacity is 80 kWh, and the upper limit of charging and discharging power of
EVCDI is 7 kW. The charging and discharging efficiency are all 90% [34]. An EV consumes
an average of 8% of electricity per way between RMG and OBMG [31]. The additional
battery charging/discharging cycle cost of EV is CNY 50 each time [35]. The minimum
power of the battery of EV is not less than 20% [36]. Considering the needs of users, the
upper and lower limits for the battery are 100% and 35% [27].

5.2.5. Other Parameters

The time-of-use (TOU) energy prices in RMG/OBMG from [31] are shown in Figure 7.
The carbon emissions factor ec is 86.47 g/kWh [29], and the carbon cost factor kc is 0.21
CNY/kg [37]. The loss cost coefficient of the distribution network kil is 0.74 CNY/kWh [38].

 
(a) (b) 

Figure 7. (a) Prices of energy exchanging in OBMG; (b) prices of energy exchanging in RMG.

5.3. Simulation Results
5.3.1. Inner-Loop Optimization Results

1. Case 1

In this case, when EVs are connected to the MG, they are charged immediately. In
case 1, the 24 h curve of RESs, EVs, load, and DC/AC converter active power output in
OBMG/RMG is shown in Figure 8. EVs are charged as soon as they reach RMG/OBMG.
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The active power curve of the DC/AC converter represents the active power output curve
of the MG to the distribution network. When it is below the X-axis, it means that the MG
sells electric energy to the distribution network. When it is above the X-axis, it means that
the MG purchases electric energy from the distribution network. The power curve of EVs
has a similar definition. In Figure 8, RMG will allow EVs to be charged at maximum power
from 19:00–20:00, and when RESs are insufficient, MEMS will purchase electricity from the
distribution network. OBMG is also charging EVs at 9:00–10:00. The total daily operating
cost of RMG is CNY 2776.3, and the total daily operating cost of OBMG is CNY 5732.6.
Therefore, the total daily operating cost of MMGS is CNY 8508.9.

 
(a) (b) 

Figure 8. (a) Power output of RESs, EVs, and the DC/AC converter in OBMG; (b) power output of
RESs, EVs, and the DC/AC converter in RMG.

2. Case 2

In this case, since EVs can participate in the energy dispatching of independent MGs,
their across-time energy transmission is used. When the total generated power of the
RESs in the MGs is greater than the load, the MEMS will sell the remaining energy to the
distribution network or charge the EVs according to the energy prices. When the total
power generation of RES is less than the load, the MEMS will purchase electricity from
the distribution network or EVs according to the energy prices. In Figure 9, the active
power output of RES, EV and DC/AC converters in OBMG and MG are optimized. In
OBMG, due to the high energy prices of the distribution network and EVs from 9:00 to
12:00, MEMS choose to let EVs release electric energy. OBMG lowers costs by selling energy
to the distribution network. When energy prices are low between 12:00 and 15:00, MEMS
fully charges EVs. In RMG, MEMS chooses to charge EVs at 23:00 when energy prices are
low. This is to avoid additional battery charge–discharge cycle costs due to discharge, so
EVs are only charged. The across-time energy transmission of the EV in the independent
MG is fully utilized. Through optimization model calculation, the total daily operating
cost of RMG is CNY 2644.1, and the total daily operating cost of OBMG is CNY 5642.1.
Therefore, the total daily operating cost of MMGS is CNY 8286.2. Compared with Case 1,
the across-time energy transmission of EVs can reduce the overall operating cost of MMGS.
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(a) (b) 

Figure 9. (a) Power output of RESs, EVs, and the DC/AC converter in OBMG; (b) power output of
RESs, EVs, and the DC/AC converter in RMG.

3. Case 3

In this case, EVs can transfer energy among multiple MGs, and EVs participate in
MMGS energy dispatching. For OBMG, the energy price of the distribution network and
the discharging price of EVs are both high, and the difference between the energy price
of the distribution network and the discharging price of EV is much higher than that of
RMG. Therefore, MMGS’s energy management system will discharge almost all EVs as
much as possible when EVs are connected to OBMG, and earn more profits. For RMG, its
advantage is that the charging price is lower, so MMGEMS will try its best to allow almost
all EVs to be charged during the low energy price of RMG to reduce the charging cost of
EVs. In Figure 10, EVs are discharged as much as possible in OBMG and then charged as
much as possible in RMG. After optimization model calculation, the total daily operating
cost of RMG is CNY 2391.8, and the total daily operating cost of OBMG is CNY 5404.1.
Therefore, the total daily operating cost of MMGS is CNY 7795.9. However, compared with
case 1 case 2, by using the across-time-and-space energy transmission of EVs, the total
daily operating cost of the MMGS is the lowest in this case.

 
(a) (b) 

Figure 10. (a) Power output of RESs, EVs, and the DC/AC converter in OBMG; (b) power output of
RESs, EVs, and the DC/AC converter in RMG.

Table 2 is the comparison of the results of the inner-loop economic dispatch in the
three cases. Since case 4 and case 3 use the same inner-loop economic dispatch model,
their inner-loop output conditions are the same. Here, the effectiveness of the inner-loop
economic dispatch model is mainly discussed, so there is no need to show the results in
case 4.
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In case 1, EVs do not participate in the energy dispatching of the MG, and MMGS has
the highest total operating cost. In case 2, the across-time energy transmission of EVs in the
independent MG is used to reduce the cost. In case 3 and case 4, the across-time-and-space
energy transmission of EVs is considered to further reduce the total daily operating cost of
MMGS, which achieves the lowest daily operating cost COTC.

Table 2. Comparison of operating cost in three cases.

Case MGs
Cex

Energy Transaction
Cost/CNY

Cci
Carbon Emissions

Cost/CNY

COTC
Total Operating

Cost/CNY

Case 1
RMG 2760.0 16.3 2776.3

OBMG 5700.8 31.8 5732.6
MMGS 8460.8 48.1 8508.9

Case 2
RMG 2627.8 16.3 2644.1

OBMG 5609.6 32.5 5642.1
MMGS 8237.4 48.8 8286.2

Case 3
RMG 2348.9 42.9 2391.8

OBMG 5394.6 9.5 5404.1
MMGS 7743.5 52.4 7795.9

Figure 11 is the remaining capacity curve of EVs, which proves that EVs meet the
power constraint in the four cases. It is also verified that the charging and discharging
behaviors analyses of EVs in the three cases are correct.

Figure 11. Remaining capacity of EVs in three cases.

Table 3 is the cost of EVs’ users. Among the three cases, the user cost of case 3 is the
lowest. In case 1, EVs do not participate in dispatching, and the cost of users is the highest.
In case 2, the cost of users is reduced by the across-time energy transmission. In case 3, the
inner-loop economic dispatch is adopted, which makes full use of the across-time-and-space
energy transmission of EVs. Additionally, the cost of users is further reduced. Combining
with the lowest daily operating cost of MMGS, the inner-loop economic dispatch model
using ATSET of EVs achieved a win–win situation for MMGS and EVs’ users.

Table 3. The cost of EVs’ users in three cases in one day.

Case Case 1 Case 2 Case 3

The Cost of EVs’ Users/CNY 211.2 173.4 −410.8

5.3.2. Outer-Loop Optimization Results

In case 1, case 2, and case 3, the reactive power output of the DC/AC converters is not
optimized. In case 4, the outer-loop reactive power optimization model is used to optimize
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the reactive power output of the DC/AC converters. The optimized reactive power output
of the DC/AC converters of RMG and OBMG in case 4 is shown in Figure 12. The converters
will absorb or output a certain amount of reactive power to the distribution network at
every moment, which is used to optimize the operating network loss of the distribution
network, thereby reducing the energy loss cost CWTC and total carbon emissions EC of
MMGS and the distribution network, and cooperating with the inner-loop model to reduce
the total economic cost CETC of MMGS. The comparison of the results under the four cases
is shown in Table 4.

 
(a) (b) 

Figure 12. (a) Reactive power output by the DC/AC converter of OBMG in case 4; (b) reactive power
output by the DC/AC converter of RMG in case 4.

Table 4. Comparison of network loss in the four cases.

Case Case 1 Case 2 Case 3 Case 4

WG
S

Total Network Loss/kW
14,889.2 14,872.5 14,876.0 13,987.2

WI
S

Increased Network Loss/kW
101.3 84.6 88.1 −800.7

By analyzing the distribution network loss under the above different cases, it can be
concluded that the reactive power output of the DC/AC converters to the distribution
network will affect the distribution network loss. When MMGS is not integrated into the
distribution network to work, the original baseline loss WB

S of the distribution network is
14,787.9 kW. The distribution network loss under the first three cases is all greater than
WB

S , while the distribution network loss under case 4 is less than WB
S and lower than the

first three cases. Case 3 and case 4 are a set of comparisons. Under the common premise of
using the inner-loop optimization model, case 4 that uses reactive power optimization has
lower network loss. Figure 13 is the increased network loss diagram for each period of the
distribution network which further proves that intelligently optimizing the reactive power
output of DC/AC converters through the outer-loop model can effectively reduce the daily
network loss of the distribution network.

Table 5 is the network loss cost and energy loss cost in four cases. Among the four cases,
the network loss cost Cil and the carbon emissions cost Cco derived from the optimization of
the outer-loop model are the lowest, which proves that the outer-loop optimization model
plays a role in the cooperative optimization of the economic cost of MMGS.
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Figure 13. Increased network loss in four cases.

Table 5. Network loss cost and energy loss cost in the four cases.

Case
Cil

Network Loss Cost/CNY
Cco

Carbon Emissions Cost/CNY
CWTC

Energy Loss Cost/CNY

Case 1 75.0 1.8 76.8
Case 2 62.6 1.5 64.1
Case 3 65.2 1.6 66.8
Case 4 −592.5 −14.5 −607.0

5.3.3. Cooperative Multi-Objective Optimization Results

It can be concluded from Table 6 that, under the cooperative multi-objective optimiza-
tion model, the total daily economic cost CETC of MMGS is the lowest. The cost of case 4
adopting the cooperative multi-objective model is 16.3% lower than that for case 1, 13.9%
lower than that for case 2, 8.6% lower than that for case 3 which only uses the economic
dispatch model of the inner-loop without optimizing reactive power output of DC/AC
converters. It is proved that the cooperative multi-objective optimization model improves
the economy of MMGS.

Table 6. The final economic cost of MMGS in four cases.

Case Case 1 Case 2 Case 3 Case 4

CETC
Total Economic Cost of MMGS/CNY 8585.7 8350.3 7862.7 7188.9

It can be concluded by analyzing the carbon emissions data in Table 7 that the total
carbon emissions of the MMGS and distribution network with cooperative multi-objective
optimization are the lowest among the four cases, which is 24.0% lower than that for
case 1, 24.6% lower than that for case 2, and 29.8% lower than that for case 3, which does
not optimize the reactive power. The economic cost of MMGS, the network loss of the
distribution network, and the total carbon emission of MMGS and the distribution network
were all optimized, which fully proves that the cooperative multi-objective optimization
achieved the effect.

Table 7. Total carbon emissions in the four cases.

Case Case 1 Case 2 Case 3 Case 4

EC
Total Carbon Emissions/kg 237.6 239.5 257.1 180.5
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5.3.4. Further Verification

To further verify the correctness and validity of the model, the weather type of a
certain day in the winter of December 2020 in Wuhan City, Hubei Province, China was used
as the input of the model. The results of the economic dispatch of the inner-loop model are
shown in Table 8, and the results of the network loss optimization of the outer-loop model
are shown in Table 9. The network loss cost and energy loss cost in four cases are shown in
Table 10. The final economic cost of MMGS in the four cases on another day is shown in
Table 11.

Table 8. Comparison of operating cost in three cases on another day.

Case MGs
Cex

Energy Transaction
Cost/CNY

Cci
Carbon Emissions

Cost/CNY

COTC
Total Operating

Cost/CNY

Case 1
RMG 2968.9 23.4 2992.3

OBMG 6446.4 48.6 6495.0
MMGS 9415.3 72.0 9487.3

Case 2
RMG 2836.7 23.4 2860.1

OBMG 6304.5 44.6 6349.1
MMGS 9141.2 68.0 9209.2

Case 3
RMG 2574.4 48.5 2622.9

OBMG 6154.2 27.6 6181.8
MMGS 8728.6 76.1 8804.7

Table 9. Comparison of network loss in the four cases on another day.

Case Case 1 Case 2 Case 3 Case 4

WG
S

Total Network Loss/kW
14,933.1 14,915.8 14,919.4 14,110.8

WI
S

Increased Network Loss/kW
145.2 127.9 131.5 −677.1

Table 10. Network loss cost and energy loss cost on four cases on another day.

Case
Cil

Network Loss Cost/CNY
Cco

Carbon Emissions Cost/CNY
CWTC

Energy Loss Cost/CNY

Case 1 107.4 2.6 110.0
Case 2 94.6 2.3 96.9
Case 3 97.3 2.4 99.7
Case 4 −501.1 −12.3 −513.4

Table 11. The final economic cost of MMGS in the four cases on another day.

Case Case 1 Case 2 Case 3 Case 4

CETC
Total Economic Cost of MMGS/CNY 9597.3 9306.1 8904.4 8291.3

It can be concluded from the above tables that the multi-objective optimization of the
model is still achieved after using the weather data of one day in winter. The optimal total
economic cost of MMGS CETC and the lowest distribution network loss WG

S are obtained,
which further proves the correctness and effectiveness of the model.

6. Conclusions

A cooperative multi-objective optimization strategy for MMGS containing EVs and
RESs is proposed, including dynamic economic dispatch and optimization of reactive
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power output by DC/AC converters. Dynamic economic dispatch optimizes the active
power output of RESs, EVs, and DC/AC converters in MMGS to obtain the optimal daily
operating cost of MMGS. Reactive power optimization reduces the daily operating network
loss of the distribution network by optimizing the reactive power output of the DC/AC
converters to the distribution network. By comparing the results of the four cases, the
following conclusions are drawn:

1. According to the simulation results, the economic dispatch model of the inner-loop in
the cooperative multi-objective optimization can reduce the operating cost of MMGS,
which makes full use of the ATSET of EVs. Additionally, the optimization of the
output reactive power output of the DC/AC converters of the outer-loop can reduce
network loss cost and carbon emissions cost of the distribution network. The two
cooperate to realize the improvement of the economy of MMGS and the efficient
operation of the distribution network.

2. The cooperative multi-objective optimization model not only realizes the optimization
of the economic cost of MMGS and the network loss of the distribution network, but
also reduces the total carbon emissions of MMGS and the distribution network, which
greatly responds to the calls for national carbon neutrality and carbon peak.
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Nomenclature

Bij Susceptance of branch ij in the distribution network.
CETC Economic total cost of MMGS.
COTC Operating total cost of MMGS from the inner-loop model.
CWTC Energy loss cost of the MMGS from the outer-loop model.
Cil Network loss cost.
Cco Carbon emissions cost.
COCm Operating cost of the m-th MG from the inner-loop model.
Cexm Energy transaction cost in the m-th MG.
Ccim Carbon emissions cost in the m-th MG.
Cresm Cost of RESs of the m-th MG.
CPVm Cost of PVs in the m-th MG.
CWTm Cost of WTs in the m-th MG.
CPV

m,t PV power generation cost in the m-th MG in the t-th hour.
CWT

m,t WT power generation cost in the m-th MG in the t-th hour.
Cevm Cost of energy exchange between the m-th MG and EVs.
CCEV

m,t Charging price of EVs in m-th MG in the t-th hour.
CDEV

m,t Discharging price of EVs in m-th MG in the t-th hour.
Cgm Energy exchange cost between the m-th MG and the distribution network.

CG
m,t

Electricity price that m-th MG purchases/sells to the distribution network in the
t-th hour.

Ccym Additional cycle cost of EV batteries in m-th MG.
CEV

cyn Additional battery charging/discharging cycle cost of n-th EV.
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EC Total carbon emissions of MMGS and the distribution network.
ECim Carbon emissions generated by m-th MG in the inner-loop model.
ECO Carbon emissions in the outer-loop model.
ec Carbon emissions factor.
f The main objective function of the cooperative optimization model.
f1 The objective functions of the inner-loop model.
f2 The objective functions of the outer-loop model.
Gij Conductance of branch ij in the distribution network.
Imax
ij Upper limit of branch ij current carrying capacity in the distribution network.

i,j Nodes of the distribution network.
kil Loss cost coefficient.
kc Carbon cost factor.
kcy Number of additional charging/discharging cycles.
ki The state variable of the i-th branch switch.
M Number of MGs in the MMGS.
N Number of EVs in m-th MG.
Nbr Number of branches in the distribution network.
PEV

m,n,t Exchanging power in the t-th hour of the n-th EV in the m-th MG.
PEV

m,t Exchanging power in the t-th hour of the EVs in the m-th MG.
PEVCDIs

m,n,t Power of the EVCDIs of the n-th EV in the m-th MG in the t-th hour.
PPV

m,t Power output of PVs in the m-th MG in the t-th hour.
PWT

m,t power output of WTs in the m-th MG in the t-th hour.

PG
m,t

Active power output between the m-th MG and the distribution network in the
t-th hour through the DC/AC converters.

PEVCDIs
m,n,R Rated power of the EVCDI serving the n-th EV in the m-th MG.

PL
m,t Total load of the m-th MG in the t-th hour.

Pij,t Active power of branch ij in the t-th hour.
P0

ij,t Initially active power of branch ij when connected without MG in the t-th hour.
P0

i,t Initial input active power of node i in the t-th hour.
PLi,t Active load of node i in the t-th hour.
Pij,max Maximum active power of the branch ij.
Qij,t Reactive power of branch ij in the t-th hour.

Q0
ij,t

Initially reactive power of branch ij when connected without MMGS in the t-th
hour.

QG
m,t

Reactive power output between the m-th MG and the distribution network in the
t-th hour through the DC/AC converters.

Q0
i,t Initial input reactive power of node i in the t-th hour.

QLi,t Reactive load of node i in the t-th hour.
Qij,max Maximum reactive power of the branch ij.
Rij The resistance of branch ij.
SOCEVm,n,t Remaining power capacity of the n-th EV in the m-th MG in the t-th hour.
SOCEVm,n,min Minima capacity, respectively, of the n-th EV in the m-th MG.
SOCEVm,n,max Maximum capacity, respectively, of the n-th EV in the m-th MG.
Sm Rated power of the DC/AC converter in the m-th MG.
T Scheduling cycle, one day, 24 h.
Vij,t Voltage of branch ij in the t-th hour.
Vmin

i Lower limits of the node i voltage amplitude.
Vmax

i Upper limits of the node i voltage amplitude.
WB

S Original baseline network loss.
WG

S Total daily operating network loss of the distribution network.
WI

S Daily operating increased network loss of the distribution network.
σ Self-discharge coefficient of EV’s battery.
Δt Length of the time slot set for the optimization.
ηDEV Efficiency for EV discharging.
ηCEV Efficiency for EV charging.
δij Phase angle difference of branch ij.
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Abstract: This paper presents an analysis and optimization of an isolated hybrid renewable power
system to operate in the Alrashda village in the Dakhla Oasis, which is situated in the New Valley
Governorate in Egypt. The proposed hybrid system is designed to integrate a biomass system with
a photovoltaic (PV), wind turbine (WT) and battery storage system (Bat). Four different cases are
proposed and compared for analyzing and optimizing. The first case is a configuration of PV and
WT with a biomass system and battery bank. The second case is the integration of PV with a biomass
system and battery bank. The third case is WT integrated with biomass and a battery bank, and the
fourth case is a conventional PV, WT, and battery bank as the main storage unit. The optimization is
designed to reduce component oversizing and ensure the dependable control of power supplies with
the objective function of reducing the levelized cost of energy and loss of power supply probability.
Four optimization algorithms, namely Heap-based optimizer (HBO), Franklin’s and Coulomb’s
algorithm (CFA), the Sooty Tern Optimization Algorithm (STOA), and Grey Wolf Optimizer (GWO)
are utilized and compared with each other to ensure that all load demand is met at the lowest
energy cost (COE) for the proposed hybrid system. The obtained results revealed that the HBO has
achieved the best optimal solution for the suggested hybrid system for case one and two, with the
minimum COE 0.121171 and 0.1311804 $/kWh, respectively, and with net present cost (NPC) of
$3,559,143 and $3,853,160, respectively. Conversely, STOA has achieved the best optimal solution
for case three and four, with a COE of 0.105673 and 0.332497 $/kWh, and an NPC of $3,103,938 and
$9,766,441, respectively.

Keywords: PV; wind turbine; biomass system; heap-based optimizer; Franklin’s and Coulomb’s
algorithm; sooty tern optimization; energy cost

1. Introduction

The world’s need is increasing every day to reduce dependence on the use of fossil
fuels, so finding means, solutions, and alternatives for how to produce the required
energy has become of paramount importance. Thus, the push to develop and produce
renewable energy globally increases every year, and many countries have managed to
develop renewable energy projects based on solar and wind energy on a large scale. This
progress is essential to the plan to replace renewable energy sources that depend on fossil
fuels and establish a solid foundation for a sustainable society [1].

Off-grid power generation is a viable option for supplying electricity to small commu-
nities in developing countries that do not have enough money to spend on a continuous
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connection to the public electric grid, and places that are very remote and cannot be easily
connected to the grid due to their distance from basic infrastructure. In such circumstances,
the utilization of renewable energies can help these places develop more quickly [2]. The
most common methods of generating renewable energy are solar and wind energy solu-
tions. However, it often depends on the area to decide which resources will be used to
get the best results. This could include hydropower and/or biomass energy as additional
means of producing renewable energy. Hybrid Renewable Energy System stations are
generally characterized as a combination of two or more various power sources to supply
the electrical power required for the loads, and can be a mixture of either traditional and
renewable sources, or only renewable sources [3].

An off-grid power generation system causes reliability issues because of an unavail-
ability of electricity backup from the utility grid. Moreover, solar and wind energy’s
variable nature causes non-linear and erratic energy production, which leads to a power
mismatch where the load requirements of the consumer are not satisfied by the capacity
production [4]. To overcome this, a hybrid renewable energy system is used with an energy
backup unit to meet consumer demand. Where the energy storage system consists of
fuel cells (FCs), batteries (Bats), etc., thereby the wind and solar energy complimentary
characteristics are integrated with the energy storage system backup unit to make the
system credible and sustainable [5].

Several researchers have introduced popular software-based, classical, and meta-
heuristic techniques for the unit sizing of hybrid renewable systems. One of the most
known of these software programs used for the optimization process is the Multiple Energy
Sources Hybrid Optimization Model (HOMER). The authors in [6] utilized the HOMER
simulation to study the performance of six different configurations of hybrid systems based
on a photovoltaic (PV)/wind turbine (WT)/FC/Bat model. This research paper aims to
look at the energy production potential and creation of hydrogen using solar and wind
power resources in various regions throughout Saudi Arabia, including Dhahran, Riyadh,
Jeddah, Abha, and Yanbu. The results revealed that integrating PV/WT/Bat storage bank
is the optimal option for achieving the lowest energy cost (COE) with 0.609 $/kWh in
the Yanbu area. Ref. [7] investigated a design of a hybrid stand-alone renewable energy
model for the Azad National Institute of Technology, Bhopal in the Indian state of Mad-
hya Pradesh using 5 kW PV, 5 kW biomass gasifier generator and a 5 kW fuel cell. The
HOMER program was employed for obtaining the optimized results, where the COE of
the proposed power system has been found to be 15.064 Rs/kWh and total net present cost
(TNPC) Rs. 5189003. Authors in [8] introduced a techno-economic analysis and optimum
analysis planning of different configurations of a hybrid renewable energy system based
on PV/WT/ diesel generator (DG)/Bat, and converter to meet up with the electric load
requirements for a rural area in Dongola, Sudan. This was achieved by studying various
layouts of the suggested hybrid system to explore the optimal solution for the lowest NPC
and greenhouse gas emissions using the HOMER program. The results evidenced that the
construction of the PV/WT/DG/Bat converter unit achieved the best performances for
both the TNPC with 24.16 M$ and COE with 0.387 $/kWh.

Ajlan et al. [9] examined the feasibility of introducing a micro-grid hybrid system using
five alternative energy scenarios (DG-only, PV/DG, WT/DG, PV/WT and PV/WT/DG) for
a rural community in the Shafar village, Hajjah province, Yemen. From an environmental
and economic standpoint, the results obtained from the HOMER software showed that
PV/WT/DG scenario was the optimal hybrid system in CO2 emission reduction with
70%, system cost reduction with 45%, and high system reliability. Dufo-López et al. [10]
formulated a new multi-objective evolutionary algorithm (MOEA) to identify the best
feasible way of a stand-alone hybrid power system based on PV/WT/DG/Bat/converter
to satisfy the required load in the Tindouf area, Algeria. The main objective functions of
this suggested system are to reduce the NPC and maximize both Human Development
Index (HDI), as well as job creation (JC).
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Antonio et al. [11] evaluated an optimal configuration analysis using HOMER soft-
ware for an off-grid hybrid system based on PV/BG/hydrokinetic turbines/Bats bank
located in Southern Ecuador. Mehran et al. [12] applied the multi-objective crow search
algorithm for optimum sizing and the techno-economic analysis of a hybrid system con-
sisting of PV/DG/FCs and batteries. Suresh et al. [13] developed the multi-objective
improved genetic algorithm to find the optimal sizing of an off-grid hybrid model for
rural areas by considering the minimization of the COE. This proposed system was based
on PV/WT/DG/Bat components. Kharrich et al. [14] discussed improving a hybrid sys-
tem consisting of PV/WT/DG/Bat in the Dakhla area in Morocco by considering the
minimization of the NPC. This optimization problem is based on using a novel Equilib-
rium Optimizer (EO), and the obtained results of this optimizer were compared with
the results obtained from the use of the Harris Hawks optimizer (HHO), Artificial Elec-
tric Field optimizer (AEFO) Algorithm, GWO Algorithm, and Sooty Tern Optimization
Algorithm (STOA).

Ramli et al. [15] developed a multi-objective self-adaptive differential evolution
(MOSaDE) technique for the optimal scheduling of a microgrid system composed of
PV/WT/DG/Bat for Yanbu, Saudi Arabia. This optimization technique has been used to
analyze the COE, LPSP, and the Renewable Factor (RF) simultaneously. Ashraf et al. [16]
presented the PV/WT/DG hybrid system as the optimal configuration for providing the re-
quired loads with least minimum COE, the total emissions generated, and maximum LPSP
in the Gobi Desert in China. The optimized design of the proposed hybrid system is based
on a new Elephant Herding Optimization (EHO) algorithm. Diab et al. [17] formed an
optimal grid system to reduce the energy cost while satisfying the operational constraints
by using a Modified Farmland Fertility Algorithm (MFFA), while the hybrid system is a
combination of PV, WT, and FC units as a case study for Ataka region in Egypt.

Geleta et al. [18] proposed and analyzed an optimized sizing of PV/WT/Bat bank
hybrid system as the optimal configuration for supplying the needed load with the least
COE. The GWO algorithm is the proposed technique used for solving the optimization
problem. Shakti and Subhash [19] studied an optimized sizing of an off-grid PV/biomass
system compared to grid-connected PV/biomass system. The assessment of various view-
points of multiple technical and economic performance were made using two optimization
techniques, the Artificial Bee Colony (ABC) optimization technique and HOMER software.
The results showed that the grid-connected model outperformed the off grid model in
terms of cost. Bukar et al. [20], determined the optimal hybrid energy system composed of
PV/WT/DG/Bat that would fulfill the load required to reliably supply residential housing
in Yobe State, Nigeria, based on reducing the COE and LPSP. Optimization of the suggested
hybrid power system was done using the grasshopper optimization algorithm (GOA) and
the obtained results were compared with the results obtained from CS, PSO algorithms.

Heydari and Askarzadeh [21], evaluated an approach for optimal sizing of an off
grid hybrid system based on PV/biomass in Bardsir, Iran, with objectives of minimizing
NPC and the LPSP. This research is focused on utilizing the harmony search (HS) opti-
mization algorithm on modeling the optimal hybrid system. Sarkar et al. [22] analyzed the
operational behavior of an optimized hybrid micro-grid consists of PV/WT/biomass/Bat
storage unit using the HOMER program to supply the required load of the investigated
area in India with least COE, and to ensure zero LPSP. Li et al. [23] addressed the issue
of techno-economic optimal design of stand-alone PV/WT/Biomass/Bat hybrid model
utilizing HOMER program for a town in West China.

Ghosh et al. [24] discussed the optimal sizing and cost reduction solution for a micro-
grid hybrid system that both includes PV and biomass. The dragonfly algorithm has been
applied to simulate and perform this optimization analysis and the results have been
compared with the obtained results from the ABC method. Eteiba et al. [25] evaluated
the effect of four optimization techniques (Flower Pollination Algorithm (FPA), the HS,
ABC, and the Fire-fly Algorithm (FA)) to determine the optimal sizing of an off-grid
hybrid PV/biomass/Bat storage system while utilizing the minimization of NPC as the
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fitness function for the suggested optimization methods. Sawle et al. [26] presented
different optimization strategies based on GA, BFPSO, PSO and Teaching-Learning-Based
Optimization (TLBO) to construct an optimal PV/WT/Biomass/Bat hybrid system with
different objectives which are COE, LPSP, RF, Particular matter (PM), HDI, JC, and GHG.
According to the results, the TLBO technique is an effective tool for dealing with all problem
objectives and providing the best solution. Alshammari and Asumadu [27] discussed the
optimization of an off-grid hybrid system consisting of PV/WT/biomass/Bat units to
supply customers’ electrical demands in a cost-effective, efficient, and reliable manner.
To determine the optimal solution, two optimization methods were used (HS and PSO
techniques). The major objectives of this work are as follows:

• The paper contains the study of four scenarios of a stand-alone hybrid system utilizing
real-time meteorological data for a remote area located in the New Valley Gover-
norate of Egypt called Alrashda village in Dakhla Oasis. The first system scenario is
PV/WT/Biomass/Bat, the second is PV/Biomass/Bat, the third is WT/Biomass/Bat,
and the fourth one is PV/WT/Bat.

• Studying a new optimization algorithm, which is the Heap-based optimizer (HBO)
technique, while make a comparison with a three recent types of optimization methods
namely, Franklin’s and Coulomb’s algorithm (CFA), the Sooty Tern Optimization
Algorithm (STOA), and Grey Wolf Optimizer (GWO).

• The study includes exploiting the capabilities of the proposed algorithms to optimize
and minimize COE with increasing the reliability and efficiency of the suggested
hybrid systems, and performs different sensitivity analyses on an optimal design to
predict the upcoming system implementation.

The suggested work is structured as follows: Section 2 explains the modeling of the
suggested system units. Section 3 discusses the description of the studied area. Section 4
discusses the formulation of the optimization problem. Section 5 discusses a brief explana-
tion of the optimization methodology of HBO, CFA, GWO, and STOA. Section 6 presents
the results of the optimal sizing for the stand-alone hybrid power system. Finally, the
conclusions are provided in Section 7.

2. Modeling of the Proposed System

The stand-alone hybrid system considered in this paper consists of PV/WT/Biomass/Bat
units. The layout of the suggested hybrid model is illustrated in Figure 1. This section ex-
plains in detail the description of the major system units and the optimization methodology
of the suggested hybrid model.

 

Figure 1. The architecture of the proposed stand-alone hybrid system.
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2.1. Photovoltaic System (PV)

A simplified model based into account ambient temperature and solar irradiation
is employed in this study to compute the energy generated by the PV panels PVp(t), as
indicated in the equation below [28,29].

PVp(t) = NPV × PVP
rat

(
Rint(t)
RSTC

)[
1 + γT

(
(Rint(t)

(
Tnor − 20

0.8

)
+ Tamb(t))− TSTC

)]
·ηw ηPV (1)

where, PVP
rat indicates the rated power of the PV panel at standard test condition (STC)

[kW], Rint(t) is the intensity of solar radiation at time (t), RSTC denote the intensity of
solar radiation at standard conditions [1000 W/m2], NPV is the number of PV units, γT
is the PV module temperature coefficient [%/°C], ηw is the wiring efficiency, ηPV is the
PV module efficiency, Tnor is the cell temperature under at normal operating conditions,
Tamb(t) denote the ambient temperature (◦C), TSTC denote the cell temperature under
standard operating conditions (◦C). The technical specifications of the PV panel modeling
are shown in Table 1.

Table 1. The main parameters of the selected photovoltaic model [30].

Parameter Value Unit

Model type PV-MLT260HC
PV panel cost (CPV) 14,854 $/m2

γT 0.0037 -
ηPV 15 %
TSTC 25 ◦C
PVP

rat 1 kW
Length 1625 mm
Width 1019 mm

Thickness 46 mm
lifetime of PV system (PVS) 20 year
PV replacement cost (CPV

rep) 13,885 $

2.2. Wind Turbine

Every month, NASA supplies data on wind speed, which has been utilized as input
data for this study (NASA, 2020). The following mathematical formulas are employed to cal-
culate the wind turbine output WTP(t) based on a comprehensive literature review [2,31].

WTp(t) =

⎧⎪⎨
⎪⎩

0, V(t)< Vin
cut or V(t) >Voff

cut

NWT ×WTP
rat × WT

(
V2(t)−V2

cut
V2

rat−V2
cut

)
, Vin

cut < V(t) < Vrat

NWT ×WTP
rat × ηWT, Vrat < V(t) < Voff

cut

⎫⎪⎬
⎪⎭ (2)

In which, V(t), Vin
cut, Voff

cut, and Vrat are WT speed at time t, WT speeds cut-in, WT
speeds cut-off wind speed, and rated speed respectively. NWT denotes the number of WTs
modules, ηWT is the WT efficiency, and WTP

rat is the rated power of the WT (kW).
Wind speed increases with height above ground level, and the wind turbine hub’s

height has also a major impact on wind speed, which affects power generation, according
to the below power law equation [13]:(

Vn

Vref

)
=

(
Hn

Href

)εwt

(3)

where, Vn represents the WT speed (m/s) at the new height Hn (m), Vref is the WT speed
(m/s) at the original turbine hub height Href (m), and εwt denotes the WT friction coefficient.

According to the International Electro technical Committee (IEC), the value of the
coefficient of friction in the case of normal wind conditions is 0.20 and in the case of
intensive wind conditions is 0.11. The technical specifications of the selected WT modeling
are presented in Table 2.
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Table 2. The main parameters of the selected wind turbine model [30].

Parameter Value Unit

Model type Fuhrländer FL 30
WTP

rat 30 kW
wind turbine height 50 m

ηWT 80 %
Vin

cut 2.5 m/s
Vrat 12 m/s
Voff

cut 25 m/s
lifetime of WT (WTS) 20 year

wind turbine cost (CWT) 3200 $/kW

2.3. Biomass System

Biomass comprises of the stored chemical energy from solar energy, so biomass can be
used for heating by direct burning or transformed through many operations into liquid
fuels and renewable gases [32,33]. One of the major aspects in determining the type of
technology used to generate biomass energy is the type of biomass to be used and the type
of fuel to be produced from the conversion process [34].

In this work, biomass gasification is the conversion process used which is a pyrolysis
process in which the raw materials of biomass are heated in closed and pressurized vessels,
the output gaseous fuel by this process is usually called the producer gas [35].

In this study, sugarcane bagasse was used as a raw material for biomass to feed a
small-scale downdraft gasifier, as the cane crop is one of the agricultural crops available
in the New Valley city. The biomass generator was utilized as the primary generator
to satisfy the electrical load requirement beside the PV and WT systems, the technical
characteristics of the biomass system are illustrated in Table 3. The hourly generated power
from the biomass system BGP(t) can be expressed according to the following mathematical
formula [25,27];

BGP(t) = FSrat(t)×HHVfs×ηgas ×ω (4)
where, FSrat(t) is the biomass raw material rate per hour (kg/h), HHVfs indicates the
higher heat value of the biomass raw material, ηgas denotes the efficiency of the gasifier
reactor (75%), and ω represents a factor for converting units from kJ to kWh (27.78 × 10−5).

The load ratio of the considered biomass generator is set to operate at no less than 30%
(Genmin = 30%) of its rated capacity to avoid running at much lower demands, while its
maximum load is 80% (Genmax = 80%) of its rated capacity. The generator output power
(Genout) can be described according to the following constraints [25,27,36];

Genout =

⎧⎨
⎩

0 BGP < Genmin
BGP Genmax > Genmax

BGP Genmax < BGP < Genmin

(5)

Table 3. The main parameters characteristics of the biomass system.

Parameter Value Unit

ηgas 75 %
Generator rated 50 kW
Capital Cost [37] 23,700 $/kW

Lifespan [37] 15,000 h
Replacement cost [37] 15,000 $/unit
Yearly O&M cost [37] 0.05 $/ h

Based on the previous mathematical expressions, FBG
con(t) is the average fuel con-

sumption per hour, and EBio (kWh) is the annual energy output which can be computed
as following;
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EBio = ∑8760
t=1 Ng ×Genout × t (6)

where, Ng is the number of generators.

2.4. Battery Bank Model

The battery bank serving as a backup system of storing energy in the event that
the renewable sources are unable to deliver the needed power. The hourly total power
generated by the PV, WTs, and biomass system Pre(t) is obtained based on the below
equation [19,25];

Pre = PPV + WTP + BGP/ηinv (7)
The technical specifications of the battery bank model are illustrated in Table 4. The

following equations explain the energy production and consumption of the battery system
from time t–1 to time t [30,38];

During the charging phase BatCH,

BatCH(t) = (Pre(t)− (PL (t)/ηinv))× Δt× ηCH (8)

SOCBat(t)= SOCBat(t− 1)× (1− σ) +BatCH(t) (9)

During discharging phase BatDIS,

BatDIS(t) = ((PL (t)/ηinv)− Pre (t))× Δt× ηDIS (10)

SOCBat(t)= SOCBat(t− 1)× (1− σ)−BatDIS(t) (11)

Table 4. The main parameters characteristics of the batter bank.

Parameter Value Unit

Model RS lead acid battery
Nominal battery voltage [39] 5 V
Nominal battery capacity [39] 360 Ah
Storage capacity of battery [7] 4.8 kWh

ηCH [30] 90 %
ηDIS [30] 85 %
σ [30] 0.005 -

Battery cost (CBat) [30] 3880 $
Battery lifetime (BatS) [30] 25 year

In which, ηCH and ηDIS indicate the battery charging and discharging efficiencies,
respectively, σ is self-discharge rate, and SOCBat is the battery state of charge. ηinv denotes
the inverter efficiency.

2.5. Bi-Directional Converter Model

A bidirectional transducer is adopted to maintain power flow between DC and AC
components. There are two kinds of power conversion devices in a power system, the
inverter which converts DC current to AC current and the rectifier which converts AC
current to DC current. The technical characteristics of the inverter model are presented in
Table 5. The hourly input power of the inverter Pinv(t) can be expressed as below [16];

Pinv(t) = PL (t)/ηinv (12)

In which, ηinv represents the inverter efficiency.
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Table 5. The main parameters characteristics of the inverter.

Parameter Value Unit

ηinv 95 %
Max. power 1 kW

inverter lifetime (InvS) 10 year
Inverter cost (Cinv) 711 $/kW

Inverter replacement cost
(Cinv

rep) 650 $/kW

ηinv 95 %

3. Description of the Studied Area

The considered area for this study is Alrashda village, which is located 10 km north-
west of Mut town, the administrative center of the Dakhla Oasis in the New Valley Gov-
ernorate in Egypt, at 28.938◦ east longitude, 25.576◦ north latitude, and an altitude of
243 m. The reason of choosing this village because of its comparatively high solar, wind,
and biomass energy potential. The proposed mathematical model is used for designing
a small scale stand-alone hybrid system to feed a range of loads which are represented
in residential loads, where the peak loads are occurred during the summer and in the
evening period from 19:00 to 23:00 p.m. In Figure 2, the profile of the proposed loads
during a year is depicted, which shows that the average residential load of the village has
reached about 260 kW, with a maximum load of 410 kW. Figures 3–5 illustrate the plot
of hourly data of the solar radiation, temperature, and wind speed which are obtained
from the NASA Surface Meteorology and Solar Energy website for 20 years for the selected
area. Figure 3 presents the short-wave solar irradiance of the studied area during a year,
where the yearly radiation rate is between 2.45 kWh/m2/day to 10.94 kWh/m2/day, with
the average yearly radiation on this site’s horizontal surface is around 6.89 kWh/m2/day,
while the yearly ambient temperature of the selected site is indicated in Figure 4, which
showed that the maximum ambient temperature can be reached, is 40◦. Figure 5 illustrates
the annual wind speed for the selected location with a maximum wind speed of about
13.9 m/s and an average in the range from 8.71 m/s to 9.89 m/s. As previously mentioned,
the biomass feedstock used in this study was the sugarcane bagasse. The sugar cane crop
is considered one of the strategic crops in Egypt, where the harvest period begins during
January of each year and extends until May. The amount of biomass feedstock available at
the selected site was assumed to have a variable values over the year, the monthly biomass
consumption rate is presented in Figure 6, with an average of one ton/day.

 
Figure 2. Load profile of the studied area.
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Figure 3. The annual short-wave solar irradiance of the studied area.

Figure 4. The yearly ambient temperature of the studied area.

Figure 5. The yearly wind speed of the studied area.
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Figure 6. The biomass consumption of the studied area.

4. Optimization Problem

The primary aim of this work is to indicate the capacity to optimize the suggested
stand-alone hybrid power system in order to provide a guaranteed supply of power at
the lowest feasible cost. In this section, the economic and cost analysis, the main objective
function, the optimization constraints, and system management strategy are discussed.

4.1. Economic and Cost Analysis

The COE for a specific system is an economic evaluation of the system’s costs and of
the associated cost in its lifespan. The COE is a function of the NPC, it actually helps to
select the lowest energy prices from different feasible hybrid configurations, which means
the least overall investment cost in a renewable power system plant, after fulfilling the
energy dependability limitations. While the NPC represents the current value of the capital
investment and operating costs over the lifespan. The NPC and the COE in ($/kWh) can
be computed as follows [3,30]:

COE =
NPC

∑8760
1 PL

CRF (13)

NPC= CT
Ann/CRF (14)

where, CT
Ann is the total annual cost of the proposed hybrid system, and CRF is the capital

recovery factor, which is a ratio for the current cash value calculation and it can be estimated
over a lifespan of years (S = 25 years) and an interest rate (Ir = 6%). CRF and CT

Ann are
modeled as:

RF (Ir , S)=
Ir × (Ir + 1)S

(Ir + 1)S − 1
(15)

CT
Ann= ∑ Cu

Ann = CPV
Ann + CWT

Ann+CBG
Ann+CBat

Ann+Cinv
A (16)

Cu
A= Cu

Ann_Cap+Cu
OM+Cu

Ann_Rep+CAnn_fuel (17)

where, Cu
Ann is the annual cost of each unit, Cu

Ann_Cap is the total annualized cost of each
unit, Cu

OM is the operation and maintenance cost of each unit, Cu
Ann_Rep is the replacement

cost for each unit, and CAnn_fuel is the annual fuel cost of the biomass unite which is
computed by applying the following formula [25,27]:

CAnn_fuel= CBio × BioT (18)

BioT = ∑8760
1 FSrat(t) (19)

where, CBio is biomass fuel cost, and BioT is the total feedstock consumption of the
generator (kg/year).
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4.2. Objective Function

The aim is to create the optimal combination of units for the hybrid renewable energy
system to achieve maximum energy supply. To achieve this aim, the COE is minimized,
high power supply reliability is maintained, the LPSP is minimized, excess power (PEXC)
absorption is reduced dummy load (Pdum) to reduce the total system costs. To calculate
this objective functions, the following formulas are applied:

Min F(X) = Min (ϕ1 COE +ϕ2LSPS+ϕ3) (20)

X = [NPV ·NWT·Ng·NBat] (21)

LPSP = ∑8760
1

LPS (t)
PL (t)

(22)

LPS (t) = PL (t)−((t) + SOCBat(t− 1)− SOCmin) ∗ ηinv (23)

PEXC= ∑8760
1

Pdum (t)
PL (t)

(24)

where, ϕ is the weight factor value of each objective function, X represents the control vari-
ables of the optimization problem that must be optimized using the studied optimization
algorithms, and LPS(t) is the loss of power supply at any time.

4.3. Constraints

The optimization procedure is based on the following limitations and on the upper
and lower limit of the following decision variables;

1 ≤

⎡
⎢⎢⎣

NPV
NWT
Ng

NBat

⎤
⎥⎥⎦ ≤

⎡
⎢⎢⎣

Nmax
PV

Nmax
WT

Nmax
g

Nmax
Bat

⎤
⎥⎥⎦ (25)

LSPS ≤ LSPSmax (26)

where, Nmax
PV is the maximum number of PV, and Nmax

WT represent the maximum number of
WTs units, based on the maximum load and rated power of PV/wind unit, which set to be
410 (410 kW/1 kW) and 13 (410 kW/30 kW), respectively. Nmax

g is the maximum number
of generator units which set to be 8 (410 kW/50 kW), Nmax

Bat is the maximum number of
batteries which is set to be 1000.

4.4. System Management Strategy

The methodology provided in this work aims to optimize the combination of PV,
WT, biomass generators as the main power sources, and batteries which work to keep the
energy supply continuous to the loads and enhancing the power supply, which reduces the
costs of LPSP and PEXC. The flowchart explaining the operational strategy of the proposed
hybrid system is presented in Figure 7, while the operating management methodology can
be stated according to the following steps:

• Initially, the charge (SOC) state of the battery bank remains unchanged when Pre
meets the charge requirement (Pre(t) = Pinv(t)), and the loss in power supplies is zero
(LPS (t) = 0) during this time interval.

• When the system’s generation of Pre exceeds the load demand (Pre(t) > Pinv(t)), and
the battery system’s SOC is less than the maximum permissible charging limit for that
interval, then the battery is charged with the surplus power (PSur(t)) until it reaches
its highest limit, PSur(t) is computed according to the following formula:

PSur(t) = Pre(t)− Pinv(t) (27)

• When the maximum charge limit of the battery is reached, the storage system charging
status remains unmodified and identical to the previous charge state (SOCBat(t) =
SOCBat(t− 1)), while the surplus energy remaining is treated as waste energy (PW)
that can be discharged into the dummy load.
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PW(t)= PSur(t)−(SOCmax−SOCBat(t− 1)) (28)

The energy stored in the battery bank shall be used to satisfy the load demand if
the Pre generated from the proposed system cannot meet the load need and if the battery
storage system charge is higher than a minimum permissible limit Pre(t) < Pinv(t) and
SOCBat(t− 1)× (1− σ) > SOCmin).

Figure 7. Flowchart of the operating management methodology.

5. Optimization Techniques

To find the solution of optimal sizing problem, four optimization algorithms with the
highest efficiency have been utilized.
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5.1. HBO

A new meta-heuristic optimization technique based on human-behavior called Heap-
based optimizer (HBO) has been created by Qamar Askari in [40]. The HBO technique is
based on the hierarchy of corporate rank (CRH) and the interplay of individuals in this hier-
archy, HBO’s mathematical model is based on three phases: interplay between employees
and their direct manager, interplay amongst coworkers, and employee self-contribution.
Unlike numerous of previous meta-heuristics algorithms, the relative fitness of search
agents is used to organize them in a hierarchy, and the notion of minimum or maximum
heap is used to allow interplay between them while maintaining their relative difference.
Furthermore, a factor termed Gamma (γ) is established to help the algorithm avoid pre-
mature convergence without compromising the exploitation capability by allowing it to
escape local optima. The pseudo-code of the HBO technique is indicated in Algorithm 1.

To prove the efficiency and performance of the HBO technique, it has been tested and
compared with seven well-known algorithms and 97 diverse test functions involving 29
CEC-BC-2017 functions. The exploitative and explorative behavior of HBO has assessed
from the obtained results of using 24 unimodal and 44 multimodal functions. Experiments
and the Friedman mean rank test reveal that HBO outperforms and takes first place.

Algorithm 1. HBO [40]

1. Initialize general parameters, N, D, Tmax, and (Li, Ui)
2. Generate a random population P of N search agents
3. Building the heap
4. Algorithm 1; Heapify_Up (i)
5. Input: i (the index of the node we are trying to heapify)
6. Assuming that the rest of the nodes fulfill the heap property
7. while i 	= root and heap[i].key < heap[parent (i)].key do
8. swap(heap[i], heap[parent (i)])
9. i← parent (i)
10. end
11. Algorithm 2; Build_Heap (P, N)
12. Input: P, N
13. for i← 1 to N do
14. heap[i].value← i
15. heap[i].key← f (Xi)
16. Heapify_Up (i)
17. end
18. Update Search agents positions repeatedly
19. Algorithm 3; HBO_Main_Body
20. for t← 1 to Tmax do
21. Compute γ, p1, p2
22. for I← N down to 2 do
23. i← heap[I].value
24. bi← heap[parent (I)].value
25. ci← heap[colleague(I)].value

26.
→
B ← →

xc1

27.
→
S ← →

xb1
28. for k← 1 to D do
29. p← rand ()
30. xk

temp ← update xk
i (t)

31. end

32. if f(
→
x temp) < f(

→
x i(t)) then

33.
→
x i(t + 1)←→

x i(t)
34. end
35. Heapify_Up (I)
36. end
37. end
38. return xheap[1].value
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5.2. CFA

A meta-heuristic optimization algorithm called Franklin’s and Coulomb’s algorithm
(CFA) has been created by Ghasemi et al. [41], is based on the theories of the Coulomb’s
and Franklin’s law. For optimal outcomes, the CFA employs two separate theories. First
is the Coulomb’s Law, which is based on the attraction and repulsion of electrons. This
phenomenon governs the interaction of two independent point charges separated by a cer-
tain distance. Second is the Franklin’s Law, which is based on that every item has an equal
quantity of positive and negative charges, according to this law. CFA’s mathematical model
is based on four steps: Initialization, Attraction/repulsion, Probabilistic ionization, and
Probabilistic contact. The pseudo-code of the CFA technique is indicated in Algorithm 2.

Algorithm 2. CFA [41]

1. Generate the initial point charges (population)
2. Initialize parameters
3. Initial fitness evaluation of whole population
4. While criteria not satisfied do
5. for (i = 1: N) do
6. The attraction/repulsion phase is applied for point charges of objects.
7. Evaluate the fitness values.
8. The probabilistic ionization phase is applied for elementary charges
(control variables) of point charge and fitness evaluation.
9. The probabilistic contact phase is applied for objects.
10. Selection of the best solution.
11. end for
12. end while

5.3. STOA

A novel bio-inspired optimization algorithm called Sooty Tern Optimization Algo-
rithm (STOA) has been created by Dhiman and Kaur [42] to address the constraints of
the industrial issues. The movement and attacking habits of the sea bird sooty tern in
nature are the key motivations for modeling the STOA technique. STOA was validated
using 44 benchmark test functions and compared it with nine well-known optimization
techniques in terms of performance. The results of CEC 2005 and CEC 2015 standard test
functions prove that the STOA is capable of addressing difficult and high dimensionality
bound constrained actual situations. The pseudo-code of the STOA technique is indicated
in Algorithm 3.

Algorithm 3. STOA [42]

1. Initialize the population Xp
1 = (Xp

1 , Xp
2 , Xp

3 , . . . . . . , Xp
N within the limits Xmin

i ≤ Xp
i ≤ Xmax

i
2. Initialize parameters DA and CB
3. Evaluate the fitness of whole population
4. Best search agent→ Xbest
5. While (it < Maxit)
6. for (i = 1: N) do
7. Update the position of the current search agent
8. end for
9. Initialize parameters DA and CB
10. Evaluate the fitness of whole population
11. Update Xbest
12. it = it +1
13. end while
14. return Xbest

5.4. GWO

The GWO has been proposed by Mirjalili et al. [43], it’s a heuristic optimization
technique created to find a candidate solution from a large solution space without requiring
any explicit input parameters. Such qualities are ideal for dealing with nonlinear issues,
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such as controller parameter tweaking. Grey wolves’ natural behavior and social structure
in seeking prey served as inspiration for GWO. There is a hierarchical framework that
governs each wolf pack. The alpha wolf, who heads the entire group, is the most formidable.
In the absence of the alpha wolf, the second strongest wolf, called as the beta wolf, assumes
leadership. The weaker wolves are the delta and omega wolves. The pseudo-code of the
GWO technique is indicated in Algorithm 4.

Algorithm 4. GWO [43]

1. Initialize the grey wolf population Xp
1 = (Xp

1 , Xp
2 , Xp

3 , . . . . . . , Xp
N within the limits

Xmin
i ≤ Xp

i ≤ Xmax
i

2. Initialize parameters a, A, and C
3. Evaluate the fitness of whole population
4. Xα = the best search agent
5. Xβ = the second best search agent
6. Xδ = the third best search agent
7. While (it < Maxit)
8. for (i = 1: N) do
9. Update the position of the current search agent
10. end for
11. Update a, A, and C
12. Evaluate the fitness of whole population
13. Update Xα, Xβ, and Xδ

14. end while
15. return Xα

6. Results and Discussion

In this work, a novel HBO technique is suggested to determine the optimal sizing
of four alternatives off-grid hybrid system scenarios based on PV, WT, biomass, and
battery units. These four scenarios of the hybrid system are namely PV/WT/biomass/Bat,
PV/biomass/Bat, WT/biomass/Bat, and PV/WT/Bat. In order to validate the effectiveness
of this HBO as a way to provide optimal reliability and least cost, the results achieved by the
suggested algorithms are compared with other recent optimization techniques CFA, GWO
and STOA. The control parameters used in the optimization process for each algorithm are
listed in Appendix A.

Figure 8 presents the graphic form of the final values of the target function over
the 50 executes for the four analyzed configurations scenarios utilizing the optimization
techniques namely, HBO, CFA, GWO, and STOA. It can be noted that, the fitness values for
the suggested HBO method in the four system cases were within a limited range, which
demonstrated the stability of the suggested technique over the other techniques. Therefore,
parametric and nonparametric metric values are superior using the HBO method compared
to the rest of the optimization techniques.

Figure 9 displays the best optimal solution convergence curve for each scenario
utilizing HBO, CFA, GWO, and STOA. For Case (1), the best solution achieved by using
HBO technique which is 0.0643767 after 27 iterations, followed by CFA technique with
0.06437783 after 44 iterations. For Case (2), the best solution achieved by using HBO
technique which is 0.0703404 after 49 iterations, followed by best solution achieved by CFA
technique with 0.07034462 after 32 iterations. For Case (3), the best solution achieved by
using HBO technique with 0.0705909 after 41 iterations, followed by best solution achieved
by CFA technique with 0.0651240320 after 39 iterations. Finally for Case (4), the best
solution achieved by using HBO technique with 0.151991724 after 41 iterations, followed
by best solution achieved by CFA technique with 0.152001799 after 58 iterations. It can be
noticed that the HBO method provides a good convergence characteristic over the other
optimization algorithms CFA, GWO, and STOA in all suggested cases.
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Figure 8. Cont.
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Figure 8. End values of the fitness function for 50 executions using HBO, CFA, GWO, and STOA methods: case-1:
PV/WT/Biomass/Bat system, case-2: PV/Biomass/Bat system, case-3: WT/Biomass/Bat system, case-4: PV/WT/
Bat system.
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Figure 9. Cont.

144



Appl. Sci. 2021, 11, 10191

Figure 9. The Convergence curves for 100 iterations using HBO, CFA, GWO, and STOA methods: case-1:
PV/WT/Biomass/Bat system, case-2: PV/Biomass/Bat system, case-3: WT/Biomass/Bat system, case-4: PV/WT/
Bat system.
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Tables 6–9 illustrate the results of the optimization properties for the four system
scenarios proposed, which is based on many factors including the best value of the objective
function, the decision variables (NPV, NWT, Ng and NBat), the COE, LPSP, and NPC of the
suggested optimization algorithms (HBO, CFA, GWO and STOA).

Table 6. The optimization properties for the proposed hybrid system based on using HBO, CFA, GWO and STOA for an
isolated PV/WT/Biomass/Bat.

Best It. Num. NPV NWT Ng NBat COE LPSP NPC

HBO 0.0643767 27 15 1 2 400 0.121171 0.026789 3,559,143
CFA 0.06437783 44 15 1 2 401 0.1213225 0.0267184 3,563,603

GWO 0.0643857 12 17 1 2 406 0.1236759 0.0262159 3,632,730
STOA 0.0644027 28 15 1 2 441 0.1291354 0.0096015 3,793,092

Table 7. The optimization properties for the proposed hybrid system based on using HBO, CFA, GWO and STOA for an
isolated PV/Biomass/Bat.

Best It. Num. NPV Ng NBat COE LPSP NPC

HBO 0.0703404 49 17 2 447 0.1311804 0.0298557 3,853,160
CFA 0.07034462 32 17 2 447 0.1315446 0.0291707 3,863,857

GWO 0.07034495 28 16 2 450 0.1316478 0.0287446 3,866,887
STOA 0.0703484 40 21 2 468 0.1384959 0.0163783 4,068,036

Table 8. The optimization properties for the proposed hybrid system based on using HBO, CFA, GWO and STOA for an
isolated WT/Biomass/Bat.

Best It. Num. NWT Ng NBat COE LPSP NPC

HBO 0.0651238467 41 1 2 413 0.11216872966 0.0300781042 3,294,729.69
CFA 0.0651240320 39 1 2 403 0.11097771588 0.0306442748 3,259,746.07

GWO 0.0651241750 87 1 2 412 0.11213661772 0.0301290735 3,293,786.47
STOA 0.0651252636 99 1 2 375 0.10567322935 0.0504315519 3,103,937.501

Table 9. The optimization properties for the proposed hybrid system based on using HBO, CFA, GWO and STOA for an
isolated PV/WT/Bat.

Best It. Num. NPV NWT NBat COE LPSP NPC

HBO 0.1519917239 41 182 94 999 0.3471381051 0.05921588 10,196,480.121
CFA 0.1520017987 58 182 94 1000 0.3470716848 0.059466541 10,194,529.161

GWO 0.1543193268 51 181 98 996 0.3469565942 0.05992429 10,191,148.605
STOA 0.1530886015 97 170 88 983 0.3324974563 0.089288773 9,766,440.657

In Table 6, for the PV, WT, Biomass, and Bat system, the results indicate that the
HBO has the best configuration by using 15 PV panels, 1 WTs, 2 biomass generators, and
400 batteries, achieving the least COE, and NPC with 0.121171$/kWh and $ 3,559,143,
respectively. In Table 7, for the second system case based on PV, Biomass, and Bat, the
results prove that the HBO has the best configuration by using 17 PV panels, 2 biomass
generators, and 447 batteries, achieving the least COE, and NPC with 0.1311804$/kWh
and $ 3,853,160, respectively.

While Table 8, for the WT, Biomass, and Bat system, the results prove that the STOA
has the best configuration by using 1 WT, 2 biomass generators, and 375 batteries, achieving
the least COE, and NPC with 0.1056732 $/kWh and $ 3,103,938, respectively. In Table 9,
for the fourth system case based on PV, WT, and Bat, the results illustrate that the STOA
has the best configuration by using 170 PV panels, 88 WTs, and 983 batteries, achieving the
least COE, and NPC with 0.3324975$/kWh and $ 9,766,441, respectively.

By comparing the COE and NPC of the four suggested cases, it finds that Case-3
achieved the lowest COE and NPC, followed by the Case-1. Although the third scenario
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which based on WT/biomass/Bat units produces the minimum value of COE and NPC,
but it is not the optimal and efficient system for use. As the design of this case is based
on batteries and biomass generators only, which have the highest yearly sharing of the
capital cost, operating and maintenance cost. While the first scenario which is consists of
PV/WT/biomass/Bat units considered an appropriate solution with minimal investment
cost for the suggested case study area.

Parametric and non-parametric statistical measurements were performed for a more
accurate comparison between the four optimization methods (HBO, CFA, GWO and
STOA) on the basis of the acquired values of the objective function across a hundred
individual runs for all analyzed cases. Parametric measurements comprise the lower
value (Min.), maximum value (Max.) and mean of the target function, whereas the non-
parametric measurements contain the median, relative error (RA), mean absolute error
(MAE), standard deviation (SD), and efficiency. The efficiency here referred to the ratio of
the lower value to the mean value of the goal function. For all four system scenarios, the
results for statistical metrics for HBO, CFA, GWO, and STOA are shown in Table 10. On
the basis of the results obtained, the proposed HBO in each case proved the best sensitivity
and stability results compared to other optimization methods.

Table 10. The statistical performance of the studied optimization algorithms for the four system cases.

HBO CFA GWO STOA

Case 1

Max. 0.0644471 0.0644714 0.0648796 0.0657149
Min. 0.0643767 0.0643778 0.0643857 0.0644027
Mean 0.064386 0.064403 0.064513 0.064812

Median 0.064382 0.064401 0.064484 0.064838
SD 0.001476 0.002092 0.011667 0.032557
RE 0.007403 0.019536 0.099052 0.317511

MAE 0.0000095 0.000025 0.000128 0.000409
RMSE 0.000017 0.000033 0.000172 0.000521

Efficiency 99.9852 99.9609 99.8026 99.3714

Case 2

Max. 0.0703979 0.0706643 0.0708796 0.0711048
Min. 0.0703404 0.0703446 0.07034495 0.0703484
Mean 0.070347 0.070368 0.070392 0.070722

Median 0.070344 0.070358 0.070368 0.070681
SD 0.001061 0.004539 0.008255 0.028633
RE 0.004321 0.016689 0.033444 0.265769

MAE 0.000006 0.000023 0.000047 0.000374
RMSE 0.000012 0.000051 0.000094 0.000469

Efficiency 99.9914 99.9667 99.9333 99.4729

Case 3

Max. 0.0651243 0.06513126 0.0651819 0.06544516
Min. 0.065123847 0.065124032 0.06512418 0.06512526
Mean 0.065123988 0.065125588 0.06513273 0.06518123

Median 0.065123916 0.065125436 0.06512924 0.06516043
SD 0.000014838 0.000112835 0.00111241 0.00612358
RE 0.0001089 0.001194718 0.00657080 0.04296589

MAE 0.000000142 0.000001556 0.00000856 0.00005596
RMSE 0.000000204 0.000001915 0.00001395 0.00008250

Efficiency 99.9998 99.9976 99.9869 99.91423
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Table 10. Cont.

HBO CFA GWO STOA

Case 4

Max. 0.151983478 0.15198479 0.1520216 0.151993102
Min. 0.151991724 0.152001799 0.154319327 0.153088601
Mean 0.151985107 0.151991986 0.152775666 0.152047201

Median 0.151984263 0.151991439 0.152656294 0.152014582
SD 0.000194530 0.000389174 0.057991385 0.015732186
RE 0.000535826 0.002367153 0.248002849 0.01779644

MAE 0.000001629 0.000007195 0.000754036 0.000054099
RMSE 0.000002522 0.000008162 0.000947705 0.000164869

Efficiency 99.99893 99.99527 99.50784 99.96452

Figure 10, illustrate the sensitivity analysis of studying the impact of the variation of
the decision parameters on the stand-alone system objective functions, (a) COE, (b) NPC,
(c) LPSP, (d) EXP. Where “0” on the x-axis refers to the nominal values of the sensitivity factors.

(A) 

Figure 10. Cont.
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(B) 

(C) 

Figure 10. Cont.
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(D) 

Figure 10. Sensitivity analysis of studying the influence of sizing parameters variation on the stand-alone system variables,
(a) COE, (b) NPC, (c) LPSP, (d) EXP. (A) The influence of sizing change on the energy cost. (B) The influence of sizing change
on the NPC. (C) The influence of sizing variation on the LPSP. (D) The influence of sizing variation on an excess of energy.

Figure 10A,B illustrate the effect on the COE and the NPC. As it can be noted that, at
lower values of the specified parameters, both COE and NPC drop when the number of
each PV panels, biomass generators, and batteries decreased. While, at a higher parameter
values, the COE and NPC raise with increasing the number of each PV panels, biomass
generators, and batteries. For the number of wind turbines, it can be noted that both the
COE and NPC are nearly constant with the variation of the wind turbines number.

Figure 10C,D indicates that the chosen parameters has an effect on the system param-
eters, especially the number of the biomass generators.

Table 11, illustrate the yearly expenses breakdown of the hybrid system units and in
turns show the system’s NPC. The reader can notice that, for all suggested system cases
the battery storage system has the highest yearly sharing of the capital cost compared to
other system units. While the Biomass system has the highest operating and maintenance
cost compared with other generating units in the suggested hybrid power system.
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7. Conclusions

This study offered a new meta-heuristic optimization method, called the Heap-based
optimizer (HBO) technique, for design four different scenarios of a stand-alone hybrid
power model based on PV, WT, Biomass system, and battery storage unit. The major
objective function is minimizing the COE with increasing the reliability LPSP, which
fulfils the required load of an isolated society in Alrashda village, Dakhla Oasis in the
New Valley Governorate, Egypt. The operation of the suggested off-grid system relies
on the meteorological data of wind speed, radiation and temperature per hour which
obtained from NASA Surface Meteorology and Solar Energy website for 20 years for the
selected region. The result obtained by the proposed methodology HBO which is based on
utilizing MATLAB software was compared with other optimization methods CFA, GWO,
STOA techniques.

The simulation results clearly showed that the suggested optimization method HBO
is an effective method in identifying the optimal capacities of the generating and energy
storage units and ensured good execution in the different scenarios of proposed the hybrid
system. The results from the analyses presented in this study show the following:

� The obtained results indicated that the HBO technique showed the optimal conver-
gence between the investigated algorithms in reaching the best solution.

� The HBO method has achieved the best optimal solution for Case-1 scenario. This case
is a combination of PV/WT/biomass/Bat units, the best optimal solution has achieved
after 27 iterations with the minimal COE of 0.121171 $/kWh, NPC of $ 3,559,143, and
LPSP of 0.026789, followed by the results obtained from the CFA technique with the
minimal COE of 0.1213225 $/kWh, NPC of $ 3,563,603, and LPSP of 0.0267184 after
44 iterations, followed by the results obtained from GWO, and STOA methods

� The HBO technique has achieved the best optimal solution for Case-2 scenario. This
case is consisted of PV/biomass/Bat units, the best optimal solution has achieved
after 49 iterations with the minimal COE of 0.1311804 $/kWh, NPC of $3,853,160, and
LPSP of 0.0298557, followed by the results obtained from the CFA method with the
minimal COE of 0.1315446 $/kWh, NPC of $3,863,857, and LPSP of 0.0291707 after
32 iterations, followed by the results obtained from GWO, and STOA techniques.

� Based on the results of parametric and non-parametric statistical measurements
performed for a more accurate comparison of the four optimization methods, the
proposed HBO in all studied cases showed the best results compared to other opti-
mization methods.

� STOA has achieved the best optimal solution for Case-3, and Case-4 with COE of
0.105673 and 0.332497 $/kWh, and NPC of $3,103,938 and $9,766,441, respectively.

� By comparing the NPC of the four suggested cases, it finds that Case-3 achieved
the lowest NPC, followed by the Case-1. Although the third scenario which based
on WT/biomass/Bat units is the least NPC, but it is not the optimal and efficient
system for use. As the design of this case is based on batteries and biomass gener-
ators only, which have the highest yearly sharing of the capital cost, operating and
maintenance cost.

� The hybrid power system which is consists of PV/WT/biomass/Bat units would be
an appropriate solution with minimal investment cost for rural communities, small
industries, isolated wells and isolated farming areas where grid access is too costly or
even impossible.
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Appendix A

• HBO: Search agents number (NS) = 20, Maximum number of iterations (Maxit) = 100,
and dimension size (DS) = 4.

• CFA: NS = 20, T = 50, and dimension size = 4.
• GWO: NS = 20, Maxit = 100, DS = 4, and a linearly decreased from 2 to 0.
• STOA: NS = 20, Maxit = 100, =4, and a linearly decreased from 2 to 0.
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Abstract: Energy is a fundamental tool for human development and this paper presents an approach
that seeks to improve its use in Colombian off-grid communities. This approach is based on microgrid
concepts where generation, storage, and consumption units interact with each other, and these
interactions are presented through a linear programming model. In this approach, specific strategies
are implemented according to the Colombian context, where some isolated communities already
have diesel-based solutions for energy access, and the type of element that is studied, finding that the
proposed optimization model is capable of adequately managing the loads of the microgrid,, thus
improving the way in which the generated energy is stored and used through said horizon. Finally,
different characteristics of the model are evaluated against multiple indicators and it is concluded
that there may be much more specific strategies that improve its operation.

Keywords: microgrids management; renewable energy resources; isolated microgrids;
optimization techniques

1. Introduction

Electricity is an essential commodity for economic growth and the well-being of
developing communities. However, almost 15% of the world’s population does not have
access to it [1]. The use of energy is absolutely necessary in the production, distribution,
and consumption activities of human society [2] and the supply of electrical energy is one
of the primary needs in modern societies [3]. However, meeting this need over all the areas
in a country is a challenge for governments and companies in the energy and electricity
sector. Therefore, electricity and its management have been one of the most important
topics in scientific and industrial research for the past few decades [4].

In recent years, discussion has also been focused around sustainable energy and
its environmental obligations, specifically on greenhouse gas emissions such as carbon
dioxide (CO2) [5], resulting from companies in the energy and electricity sector. Energy
diversification arises as a solution to the emission of gases and is focused on guaranteeing
the security of the energy supply through the incorporation of non-conventional renewable
energy sources (NCRES). This diversification aims to have a hedge against energy supply
problems, such as those caused by intense summers (climate change) or by problems
resulting from a shortage of hydrocarbons.

Consequently, new approaches based on renewable technologies could provide elec-
tricity to communities in off-grid areas. Those technologies are usually less polluting and
easy to maintain and operate [6]. “Microgrids” are one of the most typical approaches in
scientific and industrial research that considers renewable energy sources to optimize the
use of, and access to, electricity. They are defined as a group of interconnected loads and
distributed energy resources, such as generators and energy storage devices, with defined
electrical boundaries that form a local electric power system at distribution voltage levels,
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acting as a single, controllable entity that is able to operate in either grid-connected or island
mode [7]. A microgrid serves as a system that integrates the actions of all users connected
to it and uses advanced information, control, and communication technologies to save
energy, reduce costs, and increase reliability and transparency [8]. Microgrids are emerging
as an alternative solution to the problem of accessibility to service isolated areas where
the electric power system cannot reach, or even as a sustainable alternative that allows
communities to autonomously manage part (or even all) of their energy requirements.

This research studies the methods and tools used to make optimal use of renewable
energy sources in microgrids within the context of isolated communities in Columbia in
order to develop a new approach that could optimize the generation and use of electricity
in off-grid areas where the current energy solution is the use of fossil sources such as diesel
to supply energy demand.

Consequently, this research presents a novel approach within a Colombian context
for the use of renewable resources to produce energy and its storage capacity within a
microgrid. This approach seeks to meet the energy demand from isolated communities at
the lowest possible cost, implementing strategies that ensure good load distribution and
the minimum amount of unattended demand.

2. Materials and Methods

2.1. Microgrid Control System

One important component of microgrids is the energy source. There are different
sources for the generation of energy that can be classified according to their predominance,
called conventional and non-conventional sources, or according to the type of resources
used, that is, renewable and non-renewable sources [9]. Conventional sources refers to
the most widely used energy sources worldwide, among which the energy supplied by
means of hydroelectric plants or the burning of fossil fuels, such as diesel, coal, and gas,
stand out. Less predominate sources in the market are called unconventional sources,
where the primary source is produced by natural resources or it is an emerging energy
source under development. In the same way, renewable energy sources are those whose
potential is abundant and include solar energy, hydraulic energy, wind energy, biomass
energy, and geothermal energy [10]. Conversely, there are other sources of energy that are
not renewable, that is, they are found in a limited quantity in the world and the rate of their
consumption is higher than their regeneration time; some of these non-renewable energy
sources are fossil fuels such as coal, oil, and natural gas, as well as uranium. A traditional
microgrid system generally consists of a set of wind turbines, photo-voltaic panels, small
hydro power, diesel micro-turbine engine, and battery storage.

The unpredictable nature of renewable energy sources such as solar and wind affects
the performance and reliability of the microgrid, due to excess electricity generation or
lack of generation, which is considered to be the main drawback for its adoption [11].
However, some approaches such as those presented by [12] argue that this problem can
be solved by combining two or more power sources together with a backup unit to form
a hybrid renewable energy system. In other words, the system is operated with a set of
energy sources and storage devices to satisfy the demand, even when some of them are
not available.

The microgrid control system is described in [13] as a four-levels system: the fourth
level has a system that assigns the production of active and reactive power to each generator
element of the grid according to the demand. The third level sets the voltage and frequency
references in the nodes, while the second level of the control system corrects the voltage
and frequency deviations in the network. Finally, the primary control level executes actions
locally on the generation sources, keeping the voltage and power at the reference values.

Within the fourth level of the control system mentioned above, setting the active and,
sometimes, reactive power from each generator unit at each time period is a core element
of the strategy adopted to manage the power generated by the microgrid. This strategy
would depend of the system goals, minimizing costs and/or maximizing coverage. In this
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study, the management strategy is a Unit Commitment (UC) that defines an optimization
problem that seeks the optimal scheduling of generation units in a specific time horizon
(hourly, daily, or weekly). The objective of the UC strategy described in [14] is to satisfy the
demand at minimum cost, considering the on/off states of each generation unit, its ramps,
reliability restrictions, system capacity, transmission, environmental impact, etc.

2.2. Literature Review

The UC has usually been formulated as a non-convex and nonlinear combinatorial
optimization problem by some authors. However, in some cases, the UC strategy can be
applied to models like the one described by [15], where a lineal cost function is considered
and only management constraints are taken into account. This research adopts a linear
definition of the cost function based on the amount of energy produced by each of the
generation technologies.

Optimal power flow and UC has been also divided by [13] into two more specific
problems: static and dynamic economic dispatch. The first one is a typical mode of power
system planning and operation, which only studies the optimization scheme of a single
time section rather than the connection between each time period. When modeling the
static economic dispatch of the microgrid system, the objective function is usually to
minimize the overall operating cost of the microgrid. Most of the constraints only consider
the active power limits of the generating units in the microgrid and the power balance
constraints within it, while ignoring the characteristics of battery storage units such as
useful life, loading and unloading ramps, among other. On the other hand, dynamic
economic dispatch is defined in [16] as one that considers the relationships between the
values of the optimization variables in subsequent periods; for example, the battery level
in a defined period affects the battery charge level in future periods depending on the state
of charge or discharge that is defined through optimization.

The dynamic economic dispatch model of the microgrid takes into account factors
such as the ramp restriction of the controllable sources and the operation restriction [17] of
the energy storage units, etc., which is closer to the power system. The addition of energy
storage units not only makes the microgrid more closely connected in time, but also makes
the operation more economical and reliable. In [18], it is shown that dynamic economic
scheduling with energy storage units can save about 37% of the operating cost compared
to static economic scheduling without an energy storage unit.

One example of the implementation of a UC strategy to manage microgrids is pre-
sented in [15]. This research proposed a optimization model for planning an appropriate
stand-alone, renewable-based electricity system for off-grid communities in Colombia. It
used implicit stochastic optimization to make decisions regarding the sizing of renewable
energy sources to meet energy demand during an average day. This research also con-
siders the use of a unitary battery system for each zone in such a way that the energy
generated from renewable sources during a certain period of time can be used later. This
work concludes that the use of renewable energies must be adaptive according to the
conditions associated with the environmental variables. In addition, the combination of
these technologies provides a solution that is significantly cheaper for the community than
typical diesel platforms because it is not necessary to buy or transport fuel.

Another important study related to power microgrid management is [19]. In this
study, a multi-objective economic-emission dispatch problem of combined heat and power
is developed. In their model, multiple energy sources are also considered: renewable and
non-renewable, but its objective function involves unit operating costs, emission level,
emission tax, and the cost of power purchase from the main external grid. Their case is also
important since it is possible to study the chance of managing microgrids in non-isolated
areas, whose access to energy from the main grid is partial and, therefore, energy from it
can be accessed to fully or partially satisfy the demand in certain periods of time.

An important approach to mention is the one developed in [20], where the microgrid
is approached from the basic consumer unit. In this case, it is considered that each client has
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an energy storage unit that can be used to store energy generated from renewable sources
and that this is then used to reduce the total load on the general grid. In this case, the main
objective is to reduce the load on the conventional network from the use of production and
consumption forecasts. In this study, metaheuristics are used to solve the proposed model
and the results and computation times for the methods used are compared.

In [21], a mathematical optimization approach is proposed for the optimal operation
focused on the economic dispatch of a DC microgrid using renewable energy generators and
energy storage systems through semi-defined programming. The proposed mathematical
approach contemplates the operation of a DC microgrid over a period of time with variable
energy purchase prices. This characteristic makes it a practical methodology to be applied
in real-time operating conditions. Further, a nonlinear auto regressive exogenous model
(NARX) is used to train an artificial neural network (ANN) to forecast solar radiation and
wind speed for the integration and dispatch of renewable generation considering prediction
periods of 0.5 h and a time horizon 24 h.

Finally, the work developed in [22] shows a more robust model in which a greater
number of possible technologies (diesel, gas, fuel, solar, and wind power generators) can
be used for power generation and are considered, as well as different costs associated with
the power generation activity. Consideration of these multiple costs is then reflected in
multiple objective functions. On the one hand, there is cost-effective operation, which
is the minimization of the operation and the aging costs of the micro-grid components.
On the other hand, there is the maximum islanding degree, which states either there is
no physical connection with the macrogrid, or no power will be exchanged, or only a
fixed and predefined power profile may be considered as exchange power; in this case,
the formulation of the objective function is similar to the cost-effective operation objective
function. Finally, there is eco-friendly operation, where the objective function is formulated
as the minimization of the pollutant treatment costs. A genetic algorithm is used to solve
instances and a case of study is presented.

2.3. Renewable Energy in Colombia

Colombia is one of the most privileged countries in Latin America thanks to its
geographical location. It provides special characteristics like zones where wind speeds
are twice the world average and there is also sunlight most days of the year [23]. As a
consequence, a great research scenario is open for new ideas to propose and develop
different methodologies to take advantage of these characteristics and then to focus on the
optimal use of renewable resources, specifically, in off-grid zones.

In 2020, 29 off-grid zones supplied their own energy demand using renewable energies;
however, it is a small number in front of 1798 off-grid localities that are distributed in almost
51% of national territory [24]. In most of the cases, off-grid energy demand is supplied
with diesel-based generators as a single option and only 31.3% of them have electric
service available 24 h a day. One of the reasons that could explain this limited use of
renewable options to supply energy in those off-grid zones is that their installation cost
used to be substantially high and made this solution financially impractical. However, their
prices have come down and the renewable generator industry is more competitive than
before [25].

In the same way, in recent years, the Colombian government has developed some laws,
such as “Ley 1715” [26], that have encouraged the development of projects that promote
the generation of electrical energy solutions in off-grid areas [27]. However, these laws
do not present a clear framework on the benefits that the use of renewable generation
sources can bring in specific contexts such as isolated areas. In this sense, and given the
economic difficulties represented by the implementation of projects based on renewable
energies in these contexts, it is necessary to develop alternatives that allow for the intelligent
management of resources and that ensure their optimal operation.

The model we propose seeks to manage the energy microgrids considering uncertainty
from different sources (environmental variables that affect the generation and demand
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of energy) at the same time as it implements specific strategies on some components of
the microgrid, such as the battery system. This management is carried out through an
optimization process by scenarios, which allows for adaptation to various situations whose
conditions may affect the operation of the microgrid.

2.4. Proposed Optimization Approach

Mathematically, the problem is described as follows: Let G be a set of available
generation technologies (Solar: S, Wind: W, Diesel: D), I be a set of electric generators,
conventional and non-conventional, each of them with technical parameters and dimen-
sions depending on the associated technology, and T be the set of time periods within the
planning horizon. In addition, consider a battery system with the capacity to charge when
the total power of the microgrid exceeds the demand load and also supports the microgrid
by serving as another energy source.

The goal is to satisfy the expected load demand for each time period (dt) into an energy
microgrid, determining the functional capacity connected to the network of each generation
technology in each time frame, all while minimizing the total cost of operation. Table A1
presents model variables.

According to the nature of the problem, the optimization model needs to calculate
how much power needs to be produced by each generator at each time period (t ∈ T ).
Therefore, based on the work of [15], Equations (1)–(3) describe, respectively, the solar,
wind, and diesel generation. Let f (i)→ G = {S, W, D} serve as the function that returns
the type of generator technology i ∈ I. Thereby, power generation git depends on whether
the generator is switched on or off.

f (i) = S → gSt =

(
GS,test ∗

Rt

RS,test

)
∗ xSt (1)

f (i) = W → gWt =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, Wt < Wmin
1
2
(
ρW AWW3

t ηW
)
∗ xWt, Wmin ≤ Wt < Wa

1
2
(
ρW AWW3

a ηW
)
∗ xWt, Wa ≤ Wt ≤ Wmax

0, Wt > Wmax

(2)

f (i) = D → xDt ∗ gD
min ≤ gDt ≤ xDt ∗ gD

max (3)

In the generation equations, the concept of installed capacity is used to measure how
much energy can be generated from a specific source. In the case of renewable sources, the
concept of peak power is used by the technology, which allows one to calculate how much
electricity would be transformed according the amount of the primary source.

Considering the decisions and the associated generation functions, the mathematical
model is defined as follows:

min ∑
i∈I

va_opi ∗ git (4)

The objective function (4) seeks to minimize the variable operational costs of the
energy system. The variable operational cost, va_opi, is associated with the maintenance of
the equipment during its life-cycle and the fuel, if any is used by the generator.

∑
i∈I: f (i)∈{S,W,D}

git = elt + ebt + ewt (5)

dt = elt + gBt + gFt (6)

The first group of constraints is related to the control of the use of the generated
energy. Equation (5) splits the generated energy into the portion that seeks to satisfy
the demand, the portion that is used to load the battery, and a potential portion that is
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discarded. Meanwhile, constraints in Equation (6) ensure that the demand is satisfied
through the sum of the energy generated for that purpose, the energy coming from the
battery, and the energy from a dummy generator representing the unmet demand.

bt = bt−1 ∗ (1− σ) +

[
(ebt ∗ ηbat)−

(
gBt
ηinv

)]
∗ δt (7)

bt ≤ uB (8)

The second group of constraints is related to the state of charge of the battery. The
constraint in Equation (7) calculates the state of charge of the battery system, at the end
of the period t, taking into account the energy dissipation σ, and the charging and dis-
charging efficiencies, ηbat and ηinv, respectively. Equation (8) sets the limit to the capacity
of the battery uB. The remaining sets of constraints implement strategies for managing
the charging and discharging processes in order to enhance the battery health and long
term performance

uB ∗ yt ≥ gBt (9)

ε ∗ yt ≤ gBt (10)

Constraints in Equations (9) and (10) set the value of the binary variable yt that
indicates if the battery has been discharged (yt = 1) in period t.

Sc = ∑
t∈T

zt (11)

zt ≥ yt − yt−1 (12)

The first strategy is modeled through constraints (11) and (12), where they count the
number of times the battery system enters a discharge process.

ebt ≤ ebmax ∗ (1− yt) (13)

gBt ≤ gmax
B (14)

Constraints in Equations (13) and (14) implement the second strategy, which regulates
the charging and discharging ramps. A third strategy to manage the battery ensures that the
number of times that the battery reaches the deep discharge level (bmin), and the overcharge
level (bmax), is less than Lmin and Lmax, respectively.

bt

uB
+ pmin

t ≥ bmin (15)

bt

uB
− (1− pmin

t ) ≤ bmin (16)

bt

uB
− pmax

t ≤ bmax (17)

bt

uB
+ (1− pmax

t ) ≥ bmax (18)

∑
t∈T

pmin
t ≤ Lmin (19)

∑
t∈T

pmax
t ≤ Lmax (20)

yt, xit ∈ {0, 1} (21)

git, bt, ebt, elt, ewt, Ict, zt ≥ 0 (22)

Hence, the equations from (15) to (18) determine when the discharge or overcharge
levels are reached and constraints (19) and (20) set a limit to the number of times that it
occurs. Finally, constraints (21) and (22) define the domain of the decision variables.
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2.5. Computational Experiments

The model described in Section 2.4 is tested on different scenarios built on real operat-
ing conditions for non-interconnected zones (NIZ) in Colombia. We first described the case
studies that were used and then the experiments designed to validate different scenarios
upon them.

2.6. Instance Generation

This research considers energy microgrids in isolated communities of Colombia sub-
sidized by the state. These areas are difficult to access and the energy solution currently
implemented is 100% based on the use of diesel generators. This situation presents logistical
challenges to ensure the correct and continuous operation of the microgrid.

Data was collected from three different regions in Colombia: San Andrés (SA), Provi-
dencia (P), and Puerto Nariño (PN). These locations already have diesel-based solutions to
generate electricity and their installed capacities are presented in Table A3.

The parameters considered in the model are classified in technical, demand, and
environmental parameters. Technical parameters are defined in Table A2. For batteries and
generators, these parameters were drawn from existing bibliographic sources according
to the used technology [28]. The default values for each parameter within this category
were established by experts in the field. The parameters within the environmental category
are solar radiation, wind speed, and temperature. The web tool RenewableNinja [29]
was used to collect historical data for these parameters. This web tool provides a global
meteorological database from the MERRA-2 system of the National Aeronautics and Space
Administration [30] that gives timely (per hour) information. The downloaded data is from
January to December 2019.

Finally, the demand parameter represented by the demand loads of the NIZ in Colom-
bia were obtained and analyzed from the “Instituto de Planificación y Promoción de
Soluciones Energéticas para Zonas No Interconectadas” (IPSE) that shared all NIZ’s hourly
energy supply reports from 2019. These data is supplied to the IPSE by the “Centro Nacional
de Monitoreo” [24] that measures the actual electrical energy consumption of different
isolated communities through telemetry systems. Data for every day of the year is available.
However, when data was analyzed, it was observed that there was no significant variation
between the same days of the week throughout the year. For this reason, an annual average
is used as the actual hourly load for every day of the week. Therefore, 21 instances of the
problem were built, seven for each of the three NIZ considered.

2.7. Design of Scenarios

The experiments carried out with the model seek to generate information to vali-
date the model’s sensitivity and to understand the impact that some selected parameters
have on different management scenarios. For this, the following four research questions
are formulated:

• How sensitive is the model to changes in demand? (Scenario 1)
• How sensitive is the model to changes in the availability of resources? (Scenario 2)
• What impact do the technical characteristics of the battery have? (Scenario 3)
• What is the impact of the penalty on the unserved demand? (Scenario 4)

For each of these questions, scenarios with the parameters of interest (called factors)
will be identified and defined, and different levels will be experimented with.

Table 1 describes the four scenarios in terms of the parameters of interest in each
case and the values that they will take. The experiments of each scenario correspond to a
complete factorial design of the different levels for each factor.
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Table 1. Sets of experimental conditions.

Component Scenario 1 Scenario 2 Scenario 3 Scenario 4

Demand (dt)
[0.75 ∗ d, 1 ∗ d, 1.25 ∗ d,

1.25 ∗ rushhour] [1 ∗ d] [1 ∗ d] [1 ∗ d]

Diesel capacity [0.8 ∗ dmax] [0.8 ∗ dmax] [0.8 ∗ dmax] [0.8 ∗ dmax]

Solar capacity [0.3 ∗ d]
[0 ∗ d , 0.05 ∗ d, 0.1 ∗ d,

0.15 ∗ d, 0.20 ∗ d,
0.25 ∗ d, 0.3 ∗ d]

[0.3 ∗ d] [0.3 ∗ d]

Wind capacity [0.3 ∗ d]
[0 ∗ d, 0.05 ∗ d, 0.1 ∗ d,

0.15 ∗ d, 0.20 ∗ d,
0.25 ∗ d, 0.3 ∗ d]

[0.3 ∗ d] [0.3 ∗ d]

Battery capacity [500] [500] [0.1 ∗ dmax, 0.2 ∗ dmax,
0.3 ∗ dmax] [500]

Lmin [2] [2] [0, 1, 2] [2]
Lmax [2] [2] [0, 1, 2] [2]

ebmax [100] [100] [0.2 ∗ ub, 0.35 ∗ ub,
0.45 ∗ ub] [100]

gmax
B [100] [100] [0.2 ∗ ub, 0.3 ∗ ub,

0.6 ∗ ub] [100]

Unattended demand
cost [1.6 ∗ Dieselcost] [1.6 ∗ Dieselcost] [1.6 ∗ Dieselcost] [0.8− 1.2 ∗ Dieselcost]

The first scenario seeks to show the capacity of the model to properly manage the
changes on demand under different conditions of availability of renewable resources.
Therefore, it considers the actual demand, an increase of 25% and a decrease of 25% in the
hourly demand, and a special case in which only the interval with the highest demand is
increased by 25%. Additionally, the percentage of renewable energy generation varies from
0% to 30% with steps of 5%. The remaining factors are set to their default value according
to the recommendations of experts in the field of study. The second scenario explores the
model’s sensitivity to changes in the availability of renewable energy resources. This is
achieved by keeping demand and other parameters constant and making variations in the
percentage of renewable energy generation of 5%, starting from 0% and reaching 30%. The
third scenario evaluates the impact of the technical characteristics of the battery in meeting
the demand and the performance of the microgrid. For this, the demand is left constant,
a level of renewable resource capacity is selected where the use of batteries is evidenced,
and different levels of the parameters UB, ebmax, gmax

B , and Lmax Lmin are tested. Finally, in
the fourth scenario, the effect of the penalty to the unmet demand is studied. In this case,
different levels of penalty cost are tested for the unmet demand to check the behavior of the
latter as said cost increases. These different test values are based on percentages according
to the cost of the most expensive generation source, generally diesel generation. In this
way, it is possible to know how much the cost of unattended energy should be raised so
that the management model minimizes the unmet demand.

3. Results

According to the proposed experiments in each scenario, the analysis of the results
is carried out in order to evaluate research hypotheses and review the sensitivities of the
response variables regarding changes in the configuration and working conditions to which
they are subjected to on a microgrid.

Figure 1 shows, for one of the experiments, the hourly balance of the load and each
energy resource on the microgrid. This figure shows a trend, which is repeated for all
scenarios, in the use of renewable generation resources as the operating base of the micro-
grid, ensuring that through this generation of renewable energy, renewable resources are
used for 100% of the time that they are available, despite the need for a diesel source in all
periods during the day, given that its total operating cost is higher than the other sources.
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Figure 1. Microgrid load management over the time horizon (24 h).

Additionally, it shows that after the availability of renewable resources increases in a
certain hour, charging processes start at the battery storage system. This process of storing
energy from different generation sources starts just before of the disappearance of the
generation from the solar source (which is the most available renewable generation source),
so it can be understood that the model identifies a lack of energy generation at night time
and tries to supply it by storing energy at the battery system to meet future demand.

Likewise, the model uses the energy produced and stored when the renewable sources
decrease, as expected. In particular, it makes use of stored energy at times when solar
generation is not available. In the same way, it uses renewable generation and allows for
the modulation of attention to demand with the diesel generator, which in each period of
time is available for regulation by the operator.

3.1. Sensitivity of the Model to Changes in Demand

To analyze how sensitive the management model is to different changes in the energy
demand of the microgrid, Figure 2 shows the values of the objective function and the
percentage of renewable energy used for different levels of demand as long as the installed
capacity of renewable production is constant. It shows that, at different levels of demand,
the management algorithm uses renewable energy resources in order to satisfy as much
demand as possible through them.

Additionally, it is evident that since there is a relative increase in demand of 25% for
each one of the three experimental levels, the decrease in the use of renewable sources to
cover the demand is proportional. This shows that the percentage of demand coverage
by renewable sources is determined by factors other than the level of demand, which are
probably associated with the installed capacity of renewable sources.

For the special case in which within one hour period the demand is as its maximum
peak during the day, the model handles demand coverage in a similar way as it does with
medium load because it is capable of reconfiguring the battery system’s usage processes to
meet peak demand.

For its part, the operating cost of the microgrid by making use of renewable sources is
lower compared to the use of diesel to fully satisfy the demand. This represents a saving in
economic terms that is presented in the second part of Figure 2. In this case, a concordance
is obtained in terms of demand coverage and savings generated by the use of renewable
energies to satisfy different levels of demand from the same installed production capacity.
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(a) (b)

Figure 2. Sensitivity of the model to changes in demand. (a) Percentage of renewable energy to
meet the demand for each experimental demand level. (b) Cost savings comparison for each level of
demand using the same installed capacity.

3.2. Sensitivity of the Model to the Availability of Renewable Resources

When the installed capacity of each renewable technology increases, measured as a
percentage of the demand, the portion of the total demand satisfied by renewable generation
sources increases.

Figure 3 shows that the demand coverage trend from renewable sources as they
increase their availability is linear, marking more extensive use in terms of the solar source,
as it uses approximately 100% of its installed capacity within the time horizon, which is
not the case for the wind source. However, despite the inferior performance of the wind
source compared to the solar source, its use in microgrids is justified due to its generation
availability over the entire time horizon.

Figure 3. Trend of use for renewable sources.

In conjunction with the previous results, Figure 4 presents the operating result of the
microgrid when the renewable capacity is established at 45% of the maximum demand.
This result shows that, in order to better meet the demand from renewable sources, it will
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be necessary to install a greater wind generation capacity, since this generation source is
available over the entire operating horizon of the microgrid. However, a similar effect can
be achieved with a smaller additional solar capacity and a larger battery capacity to be able
to supply the night demand from stored solar energy.
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Demand Charge Wind Solar Diesel Battery Unattended demand

Solar = 0.3∗dmax

Wind = 0.15∗dmax
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Wind = 0.3∗dmax

(b)

Figure 4. Use of renewable resources for a combined 45% of installed capacity. (a) Microgrid load
management for 30% ∗ dmax and 15% ∗ dmax of solar and wind installed capacity. (b) Microgrid load
management for 15% ∗ dmax and 30% ∗ dmax of solar and wind installed capacity.

3.3. Impact of the Characteristics of the Battery

The technical characteristics of the battery affect the performance of the microgrid
and especially the use of the storage system significantly in situations when the installed
capacity for renewable generation is extremely low or extremely high.

When the installed capacity of renewable sources is small and its generation is not
significant, there is an overgeneration from diesel sources in order have enough energy
to store in the battery system that will be used in periods of high demand. On the other
hand, in situations with a large renewable capacity of renewable sources and its production
is significant, the overgeneration is used to charge the battery system, in order to turn
off any of the diesel generators in one or more periods to lower the total cost of covering
the demand.

As shown in Table 2, as battery storage capacity increases, more intensive use is made
of it. However, the percentage of variation for the use of the battery refers to how much
percentage of the demand is covered from the use of the battery systems with respect to
the immediately previous level on which it has been experienced,and it is evident that the
use of this system to supply the demand does not increase in the same proportion as its
capacity increases.

Battery capacity has a direct impact on the fraction of demand that is not met over the
time horizon, since this is the first way to avoid unattended demand. On the one hand,
greater storage capacity would mean a lower fraction of unattended demand at night when
the solar (most available renewable source) is not in operation. This is reflected in the
savings represented by the use of a larger installed energy storage capacity. In this case, the
“Savings %” column contrasts the operating cost of the microgrid with each storage capacity,
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in front of the current option of covering the entire demand from diesel. However, a greater
power capacity from renewable sources and a higher charge and discharge capacity per
period in the ramp parameters of the battery system allow more charging and discharging
cycles to be started over the optimization time horizon.

Table 2. Impact of battery capacity.

Battery Capacity Demand Supply % Variation % Savings %

0.1 ∗ dmax 0.90% – 36.04
0.2 ∗ dmax 1.54% 71.11% 36.51
0.3 ∗ dmax 1.97% 27.92% 36.73

Regarding the battery charge and discharge ramp conditions (ebmax, Gmax
B ), it should

be mentioned that there are significant variations in the operation of the microgrid for
each of the experimental levels. As the charge and discharge value of the ramps increase
together, the battery charge and discharge processes are carried out in a greater number
of periods, thus allowing a more intensive use of the energy storage capacity and more
immediately using the energy produced from renewable sources. This decreases the use of
the diesel source, increasing the use of renewable sources.

Additionally, it should be noted that the deep discharge parameter Lmin has no impact
on the operation of the model; this can be attributed to the fact that due to the constant
production of energy, the battery is not only used to supply the demand, thus allowing it to
be recharged in several periods. However, due to the ability of the model to foresee low
production in certain periods of time, the parameter of the number of periods in which
overcharge is allowed, Lmax, does significantly influence its operation. These annotations
may affect the choice and configuration of the storage system, allowing it to increase the
level at which the battery enters an overcharge state, keeping the installed capacity as low
as possible and thus reducing purchase and installation costs.

3.4. Impact of the Penalty on Unmet Demand

Finally, for the analysis of changes in the price of unserved demand, it is necessary
to study the percentage of unserved demand with respect to total demand in each of the
scenarios previously proposed.

The model considers unattended demand because there are moments within the time
horizon in which the generation units are not available for operation, or the installed
capacity is not enough to fully meet the demand. In this unattended demand analysis, its
cost is calculated based on what has been implemented in [31], multiplying the amount of
unattended energy by the cost of the unattended load.

Figure 5 shows that the objective function presents significant increases for certain
levels of unsatisfied demand penalty cost as long as these are less than the cost of the most
expensive generation source. However, there is a limit to this value of unattended demand
cost, beyond which this quantity reaches its virtual limit and the overall changes in the
objective function are smaller.

It is important to highlight that when the value of unattended demand is equal to that
of the most expensive generation source, the maximum demand is met without changing
the load configuration in the microgrid, that is, the maximum possible demand is supplied
without entailing cost overruns. This can be attributed to the fact that the model does not
try to store energy and incur costs associated with this process to cover future demand
when it is possible to just leave it unattended. In addition, it avoids the intensive use of the
battery system due to the considerations of its self-discharge process.

It is important to note that since the unmet demand penalty strategy applies in the same
way over the entire time horizon, the model seeks to supply demand from all generation
and storage sources in the periods immediately following the low energy production. This
illustrates that at night time, when the solar generation is not available, the stored energy
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is used early, preventing the stored energy from dissipating in a self-discharge processes,
thus causing unattended demand at times when it is perhaps more important to supply
it. For this situation, as with the ability of the model to better cover unattended demand,
a segmentation of demand by type of demand and by hours could be considered, thus
making the model identify the best times to use stored energy and availability of renewable
and non-renewable resources. Thus, a new possible unattended demand penalty strategy
should consider different costs according to the priority of the type of demand and the
period of time in which it is presented.

Figure 5. Impact of the penalty to unmet demand.

4. Discussion

According to the characteristics and results of the methodology presented, it can
be concluded that it adapts to changes in the energy demand of the microgrid and also
to changes in the availability of generation resources (air and solar radiation), making
intensive use of renewable generation sources while possible and covering the gap from the
use of non-renewable sources and energy storage in the battery system. This use conforms
to the proposed strategies and, in this way, manages to satisfy the maximum possible
demand from an installed fixed generation capacity.

For its part, the battery system and its management, which is presented as a con-
tribution of this research, is especially relevant in seeking to achieve better coverage of
demand. In this case, there are characteristics of the battery that are highly relevant to
adequately meet the energy demand of the microgrid. Likewise, the use of a penalty
cost for unattended demand points to a better microgrid management process, estab-
lishing a turning point for said penalty once it reaches the cost of the most expensive
generation source.

That said, it is worth mentioning that, in many cases, the management model seeks to
use the stored energy as soon as possible with respect to its production period; however,
this generates periods in which the unserved demand reaches significant levels with respect
to the overall demand. This situation can be addressed in future research, developing
strategies that allow for the prioritization of demand at certain hours of the day and that
also considers multiple types of demand, such that the energy use available in each period
of time is prioritized for specific users or customers such as hospital infrastructure, food
warehouses, etc.

On the other hand, the analysis of the sources of uncertainty that can affect the
operation of the microgrid is proposed as future contributions, in such a way that the
reliability of the management of generation sources is increased, taking into account
different possibilities or scenarios.
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5. Conclusions

This study presents an optimization-based methodology for managing the generation
and use of energy from multiple sources within an isolated microgrid. This methodology
implements specific management strategies according to the Colombian isolated communi-
ties context, components such as generators and battery systems that allow, despite trying
to make the microgrid work at the lowest possible cost, other relevant aspects are taken into
account, such as the minimization of unattended demand and proper functioning of these
components. This methodology considers an initial situation in which there are isolated
communities with an existing solution for energy access based on the use of diesel units.
From this situation, the scenario is considered in which renewable generation sources and
energy storage units are included to subsequently analyze their impact on the operating
cost and sustainability of the microgrid.

This research offers a management model that contributes to improving energy access
conditions in remote communities in Colombia, allowing the intelligent management of
renewable generation units and energy storage units. This approach offers an alternative
that allows isolated communities to rely less on fossil fuels, such as diesel, and thus make
their microgrids more sustainable and robust.
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Appendix A. Model Components

Table A1. Decision variables.

Variable Description

xit Binary state (on/off) of the source i in the time interval t
git Output power by the generation unit i in the time interval t [kW]
gBt Output power by the battery unit in the time interval t [kW]
ebt Power intended to load the storage unit during the time interval t [kW]
bt Energy level in the storage unit in the time interval t [kWh]
elt Power generated at the time interval t destined to cover the demand [kW]
ewt Power discarded due to over generation in the time interval t [kW]
yt Binary state (discharging) of the battery in the time interval t
Sc Counter of periods in which a discharging process starts

pmin
t Binary state of the battery deep discharge level in period t

pmax
t Binary state of the battery overcharge level in period t

Table A2. Technical parameters of the model.

Parameter Description

dt Energy demand in the microgrid at time interval t [kW]
vao pi Variable generation cost per Kw contributed to the network by the generation unit i
GS,test Generation level for the solar panel under test conditions [kW]
RS,test Solar radiation test level for solar panel [kW/m2]

Rt Average solar radiation during the time interval t [kW/m2]
ρW Air density [kg/m3]
AS Wind turbine swept area [m2]
ηW Wind turbine efficiency

Wmin Minimum wind speed for the turbine to start operating [m/s]
Wa Wind speed for optimum turbine operation [m/s]

Wmax Maximum wind speed at which the turbine can operate [m/s]
Wt Average wind speed during the time interval t [m/s]

gD
min Minimum power generated by the Diesel unit [kW]

gD
max Maximum power generated by the Diesel unit [kW]

ηbat Battery system discharge efficiency
ηinv Battery system charge efficiency
uB Installed battery capacity [kWh]
ε Minimum power for the battery system to enter the discharge state [kW]

ebmax Maximum amount of energy used to charge the battery per period of time [kW]
gmax

B Maximum amount of energy to obtain from the battery per period of time [kW]
bmin Battery charge level from which deep discharge is considered [kWh]
bmax Battery charge level from which overcharge is considered [kWh]
Lmin Maximum number of periods in which deep discharge is allowed
Lmax Maximum number of periods in which overcharge is allowed

Appendix B. Installed Capacity for Experimental Locations

Table A3. Installed capacity for each location.

Localitation Operation Capacity Reserved Capacity

San Andrés (SA) 157,230 kW 18,700 kW
Providencia (P) 4482 kW 0 kW

Puerto Nariño (PN) 640 kW 130 kW
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Abstract: Increasing the load demand and penetration of renewable energy sources (RESs) poses real
challenges for optimal energy management of distribution networks. Moreover, considering multi-
carrier energy systems has increased the efficiency of systems, and provides an opportunity for using
the advantages of RESs. In this regard, we adopted a new framework based on the new challenges
in the multi-carrier energy micro-grid (MEMG). In the proposed method, a comprehensive MEMG
was modeled that benefits from a large assortment of distributed energy resources (DERs), such as
micro-turbines, fuel cells, wind turbines, and energy storage. Considering many DERs is necessary,
because these resources could cover one another’s disadvantages, which have a great impact on the
total cost of the MEMG and decrease the emission impacts of fossil-fuel-based units. Furthermore,
waste power plants, inverters, rectifiers, and emission constraints are considered in the proposed
method for modeling a practical MEMG. Additionally, for modeling the uncertainty of stochastic
parameters, a model based on a multilayer neural network was used in this paper. The results of
this study indicate that using a decentralized model, along with stochastic methods for predicting
uncertainty, can reduce operational costs in micro-grids and computational complexity compared
with optimal centralized programming methods. Finally, the equations and results obtained from the
proposed method were evaluated by experiments.

Keywords: optimal energy management; multi-agent system; multi-energy carrier; renewable energy
sources; uncertainty

1. Introduction

With the increasing need for electricity and the problems associated with centralized
fossil fuel power plants—such as environmental pollution, exorbitant construction and
maintenance costs, etc.—the use of MEMGs is a good solution; they allow the extensive
utilization of renewable energies, distributed energy resources (DERs), and participation
of consumers in the optimal management of power system operation, and using these
systems can play a vital role in optimal energy consumption, system stability, and system
reliability [1–4]. Furthermore, renewable energy sources have high uncertainty and an
intermittent nature [5–8]. One solution to this problem is the micro-grid, which facilitates
the response to load demand [9–12].

In terms of operation, micro-grid energy management systems (MEMSs) can be di-
vided into centralized and decentralized (distributed) perspectives [13]. In centralized
approaches, a central agent, which can process large amounts of data, is needed in order to
gather information from other agents [14]. In multi-carrier micro-grids with distributed
energy management, the privacy of agents is preserved. Moreover, each independent
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agent can optimize its costs in a parallel or sequential manner [15]. Providing an optimal
approach to planning of system components is very important. The network used in this
research consisted of micro-turbines, waste power plants, fuel cells, wind turbines, boilers,
anaerobic reactors, inverters, rectifiers, and some energy storage units. It is also possible
to exchange information between different levels of the system. This feature increases
the reliability of the system and, compared with non-participating systems, achieves a
better result. In this research, we sought to find the optimal performance strategy for
system components, while meeting the electrical and thermal needs of customers. The
micro-grid system is capable of exchanging electricity with high energy levels, as well as
daily component performance scheduling.

The rest of this paper is organized as follows: In Section 2, a review of the related
work, along with a description of the proposed methodology of this research, is provided.
Section 3 presents the proposed MEMG structure. In Section 4, agents are modeled. In
Section 5, the simulation of the proposed method to achieve optimal performance of MEMG
agents is performed. Section 6 presents the simulation results, and we review the obtained
results with different criteria and compare them with other methods in order to validate
the proposed method.

2. Literature Review

In energy management systems with a single energy carrier, optimal performance
and calculations are simpler, due to the lack of independence among energy carriers.
Some research has been done to optimize the performance of such systems based on
time-series analysis, factor-based optimization algorithms, etc. [16–19]. However, in a few
cases, uncertainty in load demand is included in optimizing system performance. For
example, in [20], the effect of the presence of DERs in optimizing the performance of energy
management systems is investigated.

In multi-carrier energy management systems, computing and optimizing system
performance is more complex. In [21], a model for optimizing the performance of the Poly
Generation micro-grid of the University of Geneva is presented, showing that MEMGs can
have economic and environmental benefits if they use the optimal strategy. Furthermore,
in [22], an optimization model for a PG micro-grid in the presence of renewable energy
sources is proposed. In [23], a real-time operational optimization method is presented.
In [24–26], the problems of optimizing the performance of multi-carrier energy systems
with centralized approaches, and from top to down, were investigated. On the other hand,
in a few cases—such as [27,28]—the problems of optimal planning of the performance
of the multi-carrier energy systems with decentralized and distributed approaches have
been investigated.

Load demand is not considered in energy management systems with multiple energy
carriers. The reasons for this include computational complexity, performance optimization of
energy carriers, uncertainties in renewable energy production, and continuous fluctuation.

Hence, the authors of [27,28] could not consider the uncertainties. Considering un-
certainties makes it difficult to provide an optimal approach but, on the other hand, it
makes the optimal approach more efficient and reduces the operating costs of the system.
In [29], optimization was achieved using PSO and GA to solve the problem of MEMG
operational planning. Meanwhile, [30] used a stochastic model for electricity and natural
gas pricing and load demand in real time. In [31], a micro-grid management approach is
presented, considering random load and predicting the demand. In [26], a new method for
a multi-agent system (MAS) is presented, which is a combination of ANFIS and GA.

In [15], deep learning is used to model uncertainties. In [32], optimization of the
performance of the system is achieved using the gray wolf optimization method. In [33],
the evolutionary vertical sequencing protocol is used to model coordination between
high-level agents, and a two-layer MLIP is used for low-level uncertainty. In [34], micro-
grid energy management with a decentralized approach is achieved using reinforcement
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learning. In [35], a game-theory-based optimization model is presented to configure the
capacity of energy carrier agents.

In multi-carrier systems, providing an optimal approach is complex because, in such
systems, uncertainties related to energy production in renewable sources, fluctuations in
load demand, and uncertainty in market price exist. Reviewing the related work in energy
management of multi-carrier energy networks indicates that such systems can reduce costs
and pollution if optimally operated. Due to the importance of the optimal performance
of MEMGs, studies in this field have been considered. However, most of these studies
have not considered demand response programs and uncertainties related to the output of
renewable energy. To overcome these limitations, this study presents a multi-carrier system
(MCS) for planning the optimal performance of MEMG agents, considering uncertainties
related to renewable energy production and energy demand fluctuations. The effect of
using demand response programs is also presented, with the two objectives of minimizing
operational and environmental costs. The efficiency of the proposed method is to simplify
the complex MEMG model and reduce the calculations so as to apply uncertainty in the
relationships of MG agents.

3. Introducing the Proposed System

As shown in Figure 1, the multi-agent combination, in which each agent performs its
tasks to achieve the overall goal of the system, is called MCS. Generally, MCS is divided
into three layers: upstream network, MG, and field, as shown in Figure 2. These three
layers consist of eight agents. The agents are the upstream network, micro-grid, thermal,
hydrogen, RB unit, renewable, storage, and load collector. The upstream grid agent is
located in the first layer, which includes the natural gas grid and the electricity grid. This
agent is used as an additional resource in case of a lack of energy production.

 

Figure 1. Structure of the proposed MEMG.
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Figure 2. Architecture of the MCS and date exchange.

The micro-grid agent is located in the second layer, which is responsible for coor-
dinating the production and consumption of electrical and thermal energy. This task is
performed under the optimal performance of agents while observing the constraints.

The other six agents associated with the production or consumption of electrical and
thermal energy and hydrogen are located in the field layer. The overall structure of the
proposed method of this study is shown in Figure 3. As shown in Figure 3, in the first step,
we select the data related to wind speed and energy demand, and apply them to the LSTM
block as input data. In the second step, using the recursive neural network (LSTM) method,
we predict the diagrams related to electrical energy data of the wind turbine output, energy
demand, and energy price. In the third step, we use a mixed-integer linear programming
method and optimize the total cost function, while meeting the existing constraints. This
step is carried out according to the modeling of MEMG agents, which is discussed in
the next section. Moreover, uncertainty data are modeled with the LSTM block. In the
fourth step, the optimal performance of each agent is determined, while minimizing the
objective function.

Figure 3. The overall structure of the proposed method.
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4. Modeling Agents

4.1. Upstream Network

This agent must announce the hourly price of buying and selling electricity and natural
gas, as well as the constraints on energy exchange in the network of the micro-grid operator.

PriceNET(t) = ±PNET(t) CNET(t)Δt (1)

PNET, min ≤ PNET(t) ≤ PNET, max (2)

4.2. Micro-Grid Agent

This agent must transmit information about energy costs to field layer agents; it is also
responsible for monitoring the optimal performance of field layer agents while observing
the constraints imposed by the upstream network and reducing the operating costs of
the micro-grid.

The electrical equilibrium equation is defined as follows:

PT(t) + PWPP(t) + PWT(t) + PINV(t)− PREC(t)± PNET(t) = PED(t) (3)

The AC power in the inverter is calculated using Equation (4):

PINV, AC(t) = PInv, DC(t)αInv (4)

Additionally, the AC power in the rectifier is obtained from Equation (5).

PRec, AC(t) =
PRec, DC(t)

αREC
(5)

The thermal equilibrium equation is also defined as follows:

PTT(t) + PTFC(t) + PB(t) + PTS(t) = PTD(t) (6)

The micro-grid agent checks the above equilibrium equations, and the system must
operate in such a way that the above conditions are met.

The amounts of air pollutants emitted from the operation of micro-turbines, fuel cells,
rubbish burning units, and the boiler in the micro-grid, in kg/kWh, are obtained from
Equation (7):

Emission =
24

∑
t=1
{ET(t) + EFC(t) + EWPP(t) + EB(t)} (7)

Micro-grid performance must be optimized with the following constraints:

Emission

∑24
t=1 PED(t)

≤ Emissionmax (8)

where Emissionmax is the maximum value of the pollutants, and is equal to 0.66 kg/kWh.
The objective function of total costs of the micro-grid is defined by the following equation:

Obj. Function =
24
∑

t=1

{
Cf ,T(t) + COM,T(t) + CS,T(t) + Cf . FC + COM,FC(t) + CS,FC(t)

+Cf ,WPP(t) + COM,WPP(t) + CS,WPP(t) + COM,WT(t) + COM,TS(t)
+COM,HT(t) + COM,ES(t)}

(9)

It should be noted that the electrical power of micro-turbine agents, fuel cells, rubbish
burning units, electrical storage agents, and PNet are considered to be decision variables.
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4.3. Thermal Agent

This agent consists of two parts: micro-turbine, and boiler. The equation of the
electrical output power of micro-turbines is as follows:

PT(t) =
αT HHVgasConsT(t)

Δt
(10)

Additionally, the thermal output power of the micro-turbine is proportional to the
electric power, which is as given in Equation (11):

PTT(t) = KTh,T PT(t) (11)

The thermal output power of the boiler is also given as Equation (12).

PB(t) =
αBHHVgasConsB(t)

Δt
(12)

The costs of fuel, maintenance and repair, and switching on and off of the micro-turbine
are also calculated by Equations (13)–(15), respectively.

Cf ,T(t) = PT(t)PricegasΔt (13)

COM,T(t) = uT(t)PT(t)PriceOM,TΔt (14)

CS,T(t) = ST |uT(t)− uT(t− 1)|Δt (15)

The amounts of air pollutants produced by micro-turbines and boilers can be calculated
through Equations (16) and (17), respectively.

ET(t) = uT(t)PT(t)ERTΔt (16)

EB(t) = uB(t)PB(t) ERBΔt (17)

4.4. Hydrogen Agent

This agent includes FC and HT; it must announce the characteristics of the above two
parts to the micro-grid agent. Electric and thermal output power in FC is calculated by
Equations (18) and (19), respectively.

PFC(t) =
αFCαre f HHVmethaneConsFC(t)

Δt
(18)

PTFC(t) = KTh,FCPFC(t) (19)

Costs related to fuel consumption, maintenance, and turning on and off of the FC are
formulated as in Equations (13)–(15). Moreover, the amount of air pollutants produced by
FC is similar to that given in Equation (16), according to the specifications of the FC.

The amount of hydrogen stored in the hydrogen tank is formulated as follows (20):

Vtank(t) = Vtank(t− 1) + ΔVtank(t) (20)

ΔVtank(t) = ±
EH2(t)PH2

HHVH2

(21)

where PH2 is the density of hydrogen, which is equal to 0.085 g/L. The constant HHVH2 is
considered to be 142 MJ/Kg.

4.5. Rubbish Burning Agent

The rubbish burning agent includes the RB power plant; it is also responsible for
announcing the status and characteristics of the RB power plant to the micro-grid operator.
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Moreover, the source of waste supply for this agent is municipal solid waste. The electrical
output power of this unit is calculated using Equation (10). Furthermore, the costs of fuel
consumption, maintenance and repair, and turning on and off of the RB unit are formulated
according to Equations (13)–(15). The amount of pollutants produced by the RB power
plant is similar to that given by Equation (16).

4.6. Renewable Agent

In recent years, artificial-intelligence-based methods have been known as a promising
tool to model the different stochastic parameters, such as load demand, generation of re-
newable energy sources, and electric vehicle behavior [36,37]. In this paper, a method based
on long short-term memory (LSTM) neural networks is used for modeling the stochastic
parameters. The LSTM networks are very popular in time-series forecasting because they
are robust against the vanishing gradient problem [38]. Interested readers are referred
to [37,38] for more information about the LSTM network structure and its formulation.

4.7. Storage Agent

The storage agent must report the status and characteristics of the electrical and
thermal storage units to the micro-grid agent. In this section, the amount of electric charge
stored by the system is calculated using Equation (22):

VES(t) = VES(t− 1) + VES,Ch(t)−VES,dch(t) (22)

The amount of heat stored by the system is also calculated with the same equation
(Equation (22)). An equation similar to Equation (14) satisfies the maintenance and repair
costs of the storage system.

4.8. Load Collector Agent

As a renewable agent for modeling the uncertainty of the load controller agent, an
LSTM neural network was used.

4.9. Agents’ Connection

According to Figure 2, the communication between agents takes place in six steps.
Figure 2 shows the sequence of information exchange in the proposed MCS. In Figure 2,
the numbers indicate the sequence of messages. It should also be noted that messages are
sent on an hourly basis. The connections between agents in the system are such that in
the first step, the upstream network agent announces information about energy purchase
costs and constraints to the micro-grid. In the second step, the micro-grid agent requests
the status of the agents from the field layer agents; then, in the third step, the field layer
agents respond to the micro-grid request. In the fourth step, the micro-grid agent sends the
status of the energy shortage and the purchase request to the upstream network agent in
order to return the confirmation of the purchase or sale of electricity to the micro-grid in
the fifth step. Finally, in the sixth step, the micro-grid agent sends instructions related to
the performance of the field agents to each agent.

4.10. LSTM

A recursive neural network (R-NN) is a modified version of conventional neural
networks [39]. In deep R-NNs, the descriptive version of R-NNs, known as LSTM networks,
can be used to solve the problem of gradient vanishing in hidden layers. In the mentioned
LSTM, various operational gates are considered, as shown in Equations (23)–(27) [40].

it = σ
(

WiS(l−1)
t

)
+ WhiS(t−1) + bi (23)

ft = σ
(

WiϕS(l−1)
t

)
+ WhϕS(t−1) + b f (24)
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ct = ftc(t−1) + ittanh
(

WiγS(l−1)
t

)
+ WhγS(t−1) + bc (25)

ot = σ
(

WioS(l−1)
t

)
+ WhoS(t−1) + bo (26)

St = ottanh(ct) (27)

where
Wi, Wiϕ, Wiγ ∈ Rr×nh

Whi, Whϕ, Whγ ∈ Rnh×nh

and
bi, b f , bc, bo ∈ R1×nh [41].

5. Linearization

In this step, in order to reduce the computational costs and problem-solving time, we
linearize the equations for modeling MEMG agents via the following methods:

• Linearizing by multiplying two binary variables u1, u2 [42]:

z = u1 × u2 (28)

So (28) will be linearized by (29).

z ≤ u1, z ≤ u2 , z ≥ u1 + u2 − 1 (29)

• Linearizing by multiplying a binary variable u1 and a continuous variable x1 [43]:

z = u1 × x1 (30)

So (30) is linearized by the inequalities of (31).

z ≤ x1, z ≤ M× u1 , z ≥ x1 − M(1− u1) (31)

where M is a large constant;
• Linearizing quadratic cost function: To linearize quadratic cost function, we use the

piecewise linear (P.W.L) method described in [44].

6. Simulation

To validate the proposed method, we used the proposed MCS method in the described
MEMG. All simulations were conducted with an Intel® Core (TM) i7-10810u CPU with a
frequency of 1.61 GHz and with GAMS software.

6.1. Input Data

In this research, information about uncertainties regarding wind turbine energy pro-
duction as well as energy demand was predicted using the LSTM networks, as can be seen
in the diagrams of Figures 4–7. The data from Ontario province in Canada were used as
input data for the LSTM network based on [45,46]. Hourly data on wind speed, electricity
prices, and energy demand over three years from 1 January 2018 to 30 December 2020 were
investigated. It should be noted that the energy price data are for Ontario in Canada. Given
that retail prices are commonly used for MGs, the Ontario market price data were scaled
at an appropriate rate. The specifications of the micro-turbines, fuel cells, boilers, and the
waste power plant are shown in Table 1 [47,48]. Moreover, the total cost in Equation (9)
is minimized by considering the constraints in the system with GAMES software and a
mixed-integer linear programming method. The nonlinear form of the total cost equation
makes the calculations difficult. Therefore, once the nonlinear equation is minimized, the
total cost equation is first linearized, and then the minimization is carried out. Furthermore,
to compare the proposed method and the validation of this method, we used a conventional
centralized approach to optimize the performance of agents in order to reduce the initial
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costs of the MG. In the centralized method, uncertainties related to wind speed and the
total energy demand are not considered, and the actual amount is not predicted.

Table 1. Specifications of the micro-turbine, fuel cell, boiler, and waste power plant.

Emission Factors (kg/MWh) Start/Stop
Cost

(USD)

O&M
Cost

(USD/kWh)

Electrical Power
Range (kW)

Thermal Power
Range (kW) Efficiency

(%)
Fuel
Cost

KThermal

NOx CO2 SO2 Min Max Min Max

Micro-
Turbine 0.2 724 0.0036 0.11 0.005 6 30 15.6 78 26 0.41

USD/m3 2.6

Fuel
Cell 0.013 489 0.0027 0.148 0.008 3 25 4.2 35 40 0.12

USD/kWh 1.4

Boiler 1.81 845 2.545 - - - - 3 80 90 - -

Waste
Power
Plant

0.2 300 0.1 0.12 0.006 6 30 - - 30 0.02
USD/kWh -

Figure 4. Daily electric power generated by wind turbines.

Figure 5. Daily electricity prices.

Figure 6. Daily electricity load demand.

181



Appl. Sci. 2022, 12, 3262

Figure 7. Daily thermal load demand.

6.2. Results

The results of the amounts of energy production or consumption in each of the network
agents are shown in Figures 8 and 9. To validate the proposed method, the optimization
results in linear and nonlinear methods, as well as the common optimization method, are
shown in Table 2, regardless of the uncertainties. As shown in Table 2, using the proposed
method reduces MEMG operating costs by 34% compared to conventional centralized
models. The USD 26.6 decrease is due to a reduction in the charge and discharge cycles (ES).
According to the diagram in Figure 8, it is clear that the electrical energy exchanged between
the MG and the upstream grid in one day is equal to 354.5 KW. Since power generation
with an MG is always assumed to be cheaper than purchasing power from the upstream
grid, micro-grids have reduced operating costs. On the other hand, according to the data in
Table 1, the electrical energy produced in WPP is cheaper than the micro-turbines and FC
units. According to Figure 8, it can be seen that the amount of electrical energy produced
by the WPP is higher than the FC and micro-turbine units, which is also one of the reasons
for reducing the cost of the MEMG. As shown in Figure 9, from points 2 to 6, the thermal
energy produced by the FC and micro-turbine is more than the heat load, and the thermal
storage system is charging. On the other hand, from points 9 to 13 and 16 to 22, since more
heat load is generated and stored than thermal energy, the boiler responds to the heat load
demand. Moreover, the use of the proposed method reduces the emission of pollutants by
the micro-turbine, RB, FC, and boiler compared to the conventional centralized method.
In addition, Table 2 shows that the use of the proposed method leads to a reduction in
CPU optimization time. This reduction in time indicates a reduction in the computation
in the proposed method. It is clear that by linearizing the equations related to MG agents,
the simulation time decreases significantly due to the linearization of equations and the
reduction in the complexity of the optimization calculations.

Table 2. Results of the proposed MCS-based method and centralized method.

Case
Total Cost

(USD/Day)
Total Emission

(kg/Day)
CPU Optimization

Time (s)

Nonlinear MCS 51.7 1080 32

Linear MCS 51.9 1081.25 2.6

Centralized 144.3 1330.81 69
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Figure 8. Optimal management of electrical elements of the micro-grid.

Figure 9. Optimal management of thermal elements of the micro-grid.

7. Conclusions

In this study, an applied method for optimal management of the performance of
an MEMG is presented, considering the uncertainties associated with the prediction of
daily demand. The agents of the energy system are at three decentralized levels, and are
interrelated at these levels. The equations are formulated according to the relationships
between agents at these three levels.

The proposed method was tested on an MEMG. The results indicate a reduction in
operational network costs and the complexity of computations compared to centralized
methods. On the other hand, linearization of equations was carried out. This linearization
can reduce the computational complexity of the proposed method.

Therefore, energy management systems with an MCS-based modeling approach are
a suitable solution for optimal energy management and reducing the demand of micro-
consumers (urban buildings) from upstream networks, electricity, and natural gas networks,
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reducing greenhouse gas emissions. In future work, the design of an MG should be
considered so that the MG can make operational decisions that affect the market price.
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Abbreviations

CNET(t) Cost of power exchange ConsT(t) Fuel consumption of micro-turbine
PNET(t) Exchanged power KTh,T Constant that relates PT and PTT
PriceNET(t) Price of power exchange αB Boiler efficiency
PT(t) Electrical power of micro-turbine ConsB(t) Fuel consumption of boiler
PWPP(t) Electrical power of waste power plant Pricegas Price of natural gas
PWT(t) Electrical power of wind turbine uT(t) Status of micro-turbine (0 or 1)
PINV,AC(t) Electrical AC power of inverter PriceOM,T Price of micro-turbine O&M
PREC,AC(t) Electrical AC power of rectifier ST Start/stop rate of micro-turbine
PED(t) Electrical power demand ERT Emission rate of micro-turbine
PTT(t) Thermal power of micro-turbine ERB Emission rate of boiler
PTFC(t) Thermal power of fuel cell αFC Fuel cell efficiency
PB(t) Thermal power of boiler αre f Reformer efficiency
PTS(t) Charging/discharging of thermal storage HHVmethane Higher heating value of methane
PTD(t) Thermal power demand ConsFC(t) Fuel consumption of fuel cell
ET(t) Emissions of micro-turbine KTh,FC Constant that relates PFC and PTFC
EFC(t) Emissions of fuel cell VES(t) Quantity of electrical storage
EWPP(t) Emissions of waste power plant VES,Ch(t) Charging energy of electrical storage
EB(t) Emissions of boiler VES,dch(t) Discharging energy of electrical storage
Cf ,T(t) Fuel cost of micro-turbine i(t), f (t), c(t) Data vector of cell block, forget, and input

gates at time t
COM,T(t) O&M cost of micro-turbine bi, b f , bc, bo Bias vector for cell block, forget, input, and

output gates
CS,T(t) Start/stop cost of micro-turbine o(t) Data vector of output gate at time t
Cf . FC(t) Fuel cost of fuel cell s(t) State vector of current layer at state t
COM,FC(t) O&M cost of fuel cell s(t)l State vector of layer l at state t
CS,FC(t) Start/stop cost of fuel cell Whi, Whϕ, Whγ, Who Weight vector for output of previous state

input gate, forget gate, cell block, and out-
put gate

Cf ,WPP(t) Fuel cost of waste power plant Wi, Wiϕ, Wiγ, Wio Weight vector for input of current state input
gate, forget gate, cell block, and output gate

COM,WPP(t) O&M cost of waste power plant Δt Period of time
CS,WPP(t) Start/Stop cost of waste power plant ub(t) Status of boiler (0 or 1)
COM,WT(t) O&M cost of wind turbine Vtank(t) Amount of stored hydrogen
COM,TS(t) O&M cost of thermal storage EH2 (t) Charging/discharging output of the HT
COM,HT(t) O&M cost of hydrogen tank PINV,DC(t) Electrical DC power of inverter
COM,ES(t) O&M cost of electrical storage PREC,DC(t) Electrical DC power of rectifier
αT Micro-turbine efficiency αINV Inverter efficiency
HHVgas Higher heating value of gas αREC Rectifier efficiency
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Abstract: In this paper, the Archimedes optimization algorithm (AOA) is applied as a recent meta-
heuristic optimization algorithm to reduce energy losses and capture the size of incorporating a
battery energy storage system (BESS) and photovoltaics (PV) within a distribution system. AOA is
designed with revelation from Archimedes’ principle, an impressive physics law. AOA mimics the
attitude of buoyant force applied upward on an object, partially or entirely dipped in liquid, which
is relative to the weight of the dislodged liquid. Furthermore, the developed algorithm is evolved
for sizing several PVs and BESSs considering the changing demand over time and the probability
generation. The studied IEEE 69-bus distribution network system has different types of the load,
such as residential, industrial, and commercial loads. The simulation results indicate the robustness
of the proposed algorithm for computing the best size of multiple PVs and BESSs with a significant
reduction in the power system losses. Additionally, the AOA algorithm has an efficient balancing
between the exploration and exploitation phases to avoid the local solutions and go to the best global
solutions, compared with other studied algorithms.

Keywords: photovoltaics; BESS; optimization; AOA algorithm; uncertainty; distribution network

1. Introduction

Recently, the penetration of PV systems into the electric grid has been increased in most
countries to take advantage of the environment as well as the economic benefits. PV energy
systems do not emit polluting gases such as traditional energy sources, and the owners of
PV energy systems obtain incentives from utilities by selling the output energy from their
PV units at a high price [1–3]. PV output is variable during the day as it depends on the
variable natural source [4,5]. The designing, optimization, and planning of PV has been
presented in [6–8]. The allocation of the PV energy system near the loads in the distribution
system leads to improvement in voltage profile and to a decrease the emission, cost, and
system losses as in [9,10]. The optimal planning of PV in a realistic case has been presented
in [11]. In [12,13], an analytical method has been applied to decrease the system loss by
incorporating PV in distribution networks. In [14], the optimal allocation of electric vehicles
with a combination of PV and battery storage to reduce the total system cost is presented.
Additionally, the optimal planning of PV with electric vehicles in distribution networks
to decrease the system loss is presented in [15]. Incorporating PV in the distribution
system to decrease the system loss and to improve the bus system voltage is introduced
in [16,17]. Nevertheless, the high penetration of the PV energy system with the variation
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in demand exposes the distribution systems to various problems, such as fluctuations of
power, voltage rise, extraordinary energy losses, and a low stability of voltage [1,18,19].
Therefore, load curtailment and integration of energy storage systems has been exploited
to decrease power fluctuations and overcome any system constraint violations [1].

Nowadays, the integration of DG into distribution systems considering the energy
losses has enticed attention. Research on the allocation of renewable DG (e.g., solar, wind
and biomass) has been proposed to reduce energy loss, considering the variations of power
generation and load demand [11,14,15]. According to the presence load type characteristics,
optimum DG power factor dispatch for every load level would be an integral part for
reducing energy losses. Nevertheless, most of the current research assumed that the DG
systems work at predefined power factors.

In contrast to generation systems that depend on conventional generation techniques
such as gas turbines and reciprocating engines, PV energy resources are non-dispatchable
and intermittent, depending on temperature and radiation. The BESS technologies create a
chance to transform the PV energy resources from non-dispatchable systems to dispatchable
systems with similar conventional resources [20,21]. Throughout the past two decades,
a hybrid system of BESS and PV has been considered for the applications of stand-alone
systems [22–24]. Recently, the hybrid system of PV and BESS has been exploited as one
of the furthermost worthwhile solutions in grid-connected applications to increase the
penetration of the PV energy system in distribution systems. Such hybrid design helps
alleviate the influences of intermittency in the PV energy systems, and offers many benefits
for the owners of PV system, customers, and utilities. Many researchers have devoted
their efforts to this interesting topic [18–20,25–31]. A hybrid PV-BESS has been evolved for
applications of load demand-side to improve the efficiency of the electrical system [25,26].
In [27], authors have proposed an optimal BESS charging and discharging schedule in a
PV grid-connected system for shaving of peak demand. Authors in [28] have presented a
methodology to calculate the BESS size for shaving of peak load and power balance used
in case of connecting PV energy system with the grid. In [29], authors have presented a
methodology to compute the BESS size for raising the penetration of the PV energy system
in case of residential system load with the objectives of voltage regulation and decreasing
in maximum output power and yearly cost. A discharging and charging strategy for the
BESS has been suggested to alleviate abrupt changes in the output power of the PV energy
system and boost the evening peak load in the case of a residential load system [30]. The
authors in [18] have proposed a conception of voltage regulation voltages in the distribution
systems with high penetration of PV energy system by adjusting the output power of BESS
at customer-side. BESS has been controlled and sized to diminish the fluctuation in the
PV output power [20,31]. In [19], the authors have evolved the BESS’s best discharging
and charging schedule on an hourly basis to alleviate the discontinuity of PV output by
reducing the energy loss.

Generally, the previous review indicates that significant research has been published
on the size and discharging and discharging schedules of the BESS exploited in the case
of connecting the PV energy system with the grid. Nevertheless, most of the research
introduced has supposed that the optimal power factor dispatch for every hybrid PV-BESS
throughout all of the time intervals is ignored as well and the size of PV units exploited
in hybrid PV-BESS is prespecified. Based on the characteristics of the loads served, every
PV-BESS hybrid that can provide reactive and active power with the optimum power factor
may positively reduce energy losses in distribution systems.

This paper shows a conception of involving a hybrid PV and BESS in residential,
industrial, and commercial distribution systems, taking into account the system energy
loss. Where the PV energy system is deemed as a non-dispatchable energy source as its
power output cannot be controlled, BESS is considered as a dispatchable energy source
as its power output can be controlled. In this paper, AOA is applied to reduce the energy
losses and capture the size of incorporating a PV energy system and BESS in a distribution
network. However, the paper contributions can be summarized as follows:
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• A new application of the Archimedes optimization algorithm for minimizing the
energy losses and capture the size of incorporating battery energy storage system and
photovoltaics in a distribution system.

• The developed algorithm is evolved for sizing several PVs and BESSs considering the
changing demand over time and the probability generation.

• Validating the developed algorithm using IEEE 69-bus distribution network system
which has different types of the load, such as residential, industrial, and commercial
loads.

• The simulation results indicate the robustness of the proposed algorithm for comput-
ing the best size of multiple PVs and BESSs, with a significant reduction in the power
system losses.

The remainder of this paper is constructed as following: the load, BESS, and PV
modeling are introduced in Section 2. Also the problem formulation of BESS with PV
is introduced in Section 2. The methodology of the proposed Archimedes optimization
algorithm (AOA) has been presented in Section 3. The cases study on a 69-bus industrial,
commercial, and residential distribution have been presented and discussed in Section 4.
Section 5 offers the conclusions of the paper.

2. Problem Formulation

The two buses of the main feeder in the distribution network with a combination of
PV and BES can be represented in Figure 1.

Figure 1. Two buses of radial distribution network.

Forward/backward sweep algorithm is utilized to obtain the system load flows. The
reactive and real power flows are calculated by Equations (1) and (2), respectively [32].

PK = P(K + 1) + PL,(K + 1) + RK,(K + 1)

(
(P(K + 1) + PL,(K + 1))

2 + (Q(K + 1) + QL,(K + 1))
2∣∣V(K + 1)

∣∣2
)

(1)

QK = Q(K + 1) + QL,(K + 1) + XK,(K + 1)

(
(P(K + 1) + PL,(K + 1))

2 + (Q(K + 1) + QL,(K + 1))
2∣∣V(K + 1)

∣∣2
)

(2)

where, P(K + 1) and Q(K + 1) represent the real and reactive power flow from bus (K) to the
next bus system, respectively. The reactive and real load flows between (K) and (K + 1)
buses are QK and PK, respectively. the reactance and resistance between (K) and (K + 1)
buses are XK,(K + 1) and RK,(K + 1), respectively. The reactive and real load at bus (K + 1) are
QL,(K + 1) and PL,(K + 1), respectively.
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The voltage magnitude of system buses is evaluated by Equation (3).

V(K + 1)
2 = V2

K − 2
(
PKRK,(K + 1) + QKXK,(K + 1)) + (RK,(K + 1)

2 + XK,(K + 1)
2
) (PK

2 + QK
2)

V2
K

(3)

where V (K+1) and V(K) are the system voltage at buses (K + 1) and (K), respectively. In-
stallation of PV and BESS in RDS changes the load flows through the system branches.
Therefore, Equations (1) and (2) are modified to Equations (4) and (5), respectively.

PK = P(K + 1) + PL,(K + 1) + RK,(K + 1)

(
(P(K + 1) + PL,(K + 1))

2 + (Q(K + 1) + QL,(K + 1))
2∣∣V(K + 1)

∣∣2
)
− P(PV + BESS) , (K + 1) (4)

QK = Q(K + 1) + QL,(K + 1) + XK,(K + 1)

(
(P(K + 1) + PL,(K + 1))

2 + (Q(K + 1) + QL,(K + 1))
2∣∣V(K + 1)

∣∣2
)
− Q(PV + BESS) , (K + 1) (5)

where, Q(PV + BES),(K + 1) and P(PV + BES),(K + 1) are the injection reactive and real power from
BESS and PV units at bus (K + 1), respectively.

The ratio of system losses with incorporating BESS and PV to the system losses without
incorporating BESS and PV in RDS is formulated as single objective function as shown
in Equation (6).

Fo = ∑(
∑24

h = 1Ploss(h)after (PV + BESS)Δ(h)

∑24
h = 1Ploss(h)before (PV + BESS)Δ(h)

), h = 1, 2, 3, 4, . . . . . . .. 24 h (6)

where, Ploss(t)before (PV + BES) and Ploss(h)after (PV + BESS) are the system losses before and
after incorporating BESS and PV in distribution system at time (h).

The inequality and equality constraints are formulated as shown next [33–36]:

2.1. Equality Constraints

These constraints include power flow balance equations. Therefore, the power genera-
tion from substation and PV with BESS should be equal to the system loss and system load
demand as shown next.

Prf +
G

∑
g = 1

PPV + BES (g) =
m

∑
j = 1

PL,j +
NB

∑
nb = 1

P loss(nb) (7)

Qrf +
G

∑
g = 1

QPV + BES(g) =
m

∑
j = 1

QL,j +
NB

∑
nb = 1

Q loss(nb) (8)

where NB and m are the overall number of branches and buses, respectively. Qloss(nb) and
Ploss(nb) are the reactive and real system loss at branch (j), respectively. G are the overall
number of PV with BESS. Qrf and Prf represents the reactive and active power drawn from
substation in RDS, respectively.

2.2. Inequality Constraints

These constraints include system operating constraints such as system voltage limits,
PV generation with BESS limits and branch current limits as follows:

2.2.1. Voltage Limits

The operating bus voltage should be between high (Vup) and low (Vlo) voltage limits
as shown in Equation (9).

Vlo ≤ Vj ≤ Vup (9)

where, Vj represent the voltage at bus j.
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2.2.2. Sizing Limits of (PV + BESS)

G

∑
g = 1

PPV + BES(g) ≤
( m

∑
j = 1

PL,j +
NB

∑
nb = 1

P loss(nb)

)
(10)

G

∑
m = 1

QPV − BES(m) ≤
( m

∑
j = 1

QL, j +
NB

∑
nb = 1

Q loss(nb)

)
(11)

PPV,low ≤ PPV ≤ PPV,high (12)

where, PPV,high and PPV,low are the maximum and minimum power generation limits of PV.

2.2.3. Sizing Limits of Battery

EBESS,L ≤ EBESS,j(h) ≤ EBESS,H (13)

where, EBESS,L and EBESS,H are the low and high magnitudes of battery energy stored.

2.2.4. Line Constraints

The current should be lower than the maximum current (Imax,b) through the
branch (b) [37].

Ib ≤ Imax,b b = 1, 2, 3 . . . , Nb (14)

2.3. Modeling and Sizing of PV and BES
2.3.1. Load Modelling

The distribution network system studied in this paper have has various daily load
demand configurations, such as residential load as shown if in Figure 2, industrial load
as shown in Figure 3, and commercial load as indicated in Figure 4 [38,39]. All previous
load demand patterns are based on the voltage and time with reactive and actual load
voltage indexes. Time-varying load demands are modelled from Equations (15) and (16),
as shown below [40]:

Pw(t) = Pow(t) × Vw
Np (15)

Qw(t) = Qow(t) × Vw
Nq (16)

where Qk and Pk represent the reactive and real power at bus k; Qok and Pok are the
reactive and real load at bus k. Vk represents the voltage at bus k, and Nq and Np represent
the reactive and real load voltage indices that are demonstrated in Table 1 [40].

Figure 2. Normalized daily residential load demand curve.
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Figure 3. Normalized daily industrial load demand curve.

Figure 4. Normalized daily commercial load demand curve.

Table 1. The used parameters.

The Used Parameters The Proposed Value

Number of search agents 20
Maximum iteration 2000

voltage limits 0.9 pu ≤ Vi ≤ 1.05 pu
Limits of active output generation from PV with

BESS 0.3 MW ≤ PPV + BES,i ≤ 3 MW

the real load voltage indices (Np) for industrial,
residential and commercial load models

0.18, 0.92 and 1.51, respectively

the reactive load voltage indices (Nq) for
industrial, residential and commercial load models 6, 4.04 and 3.4, respectively
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2.3.2. PV Modelling

The solar radiation probabilistic nature can be designated according to the probability
density function (PDF) of Beta as follows [36,41]:

fb(s) =

{ Γ(α + β)
Γ(α) Γ(β) s(α − 1) (1 − s)(β − 1) 0 ≤ s ≤ 1, α, β ≥0

0 otherwise
(17)

where fb(s) refers to the s distribution function of Beta and s refers to the arbitrary variable
of solar radiation in kilowatt per meter square; α and β refer to the parameters of fb(s)

which are computed exploiting the standard deviation (σ) and mean deviation (μ) as
shown in (18). The value of standard deviation and mean deviation are presented in [42].

β = (1 − μ)

(
μ(1 + μ)

σ2
− 1

)
; α =

μ × β

1 − μ
(18)

The PV module output power output depends on the solar radiation and surrounding
temperature as well as the PV module characteristics itself. The maximum output power
related to solar radiation s, Po(s), can be expressed as [19]:

Po(s) = N × FF × Vy × Iy (19)

where,

FF =
VMPP × IMPP

Voc × Isc
; (20)

Vy = Voc − kv × Tcy; (21)

Iy = s[Isc + ki × (Tc − 25)]; (22)

Tcy = TA + s(
NOT − 20

0.8
) (23)

where, N refers to the module’s number; Tcy and TA refer to the cell temperature and
ambient temperature (C0), respectively; Ki and Kv refer to the coefficient of current temper-
ature (A/C0) and coefficient of voltage temperature (V/C0), respectively; FF refers to fill
factor; NOT refers to rated working temperature of cell per C0; Isc and refer to short circuit
current (A) and open circuit voltage (V), respectively; VMPP and IMPP refer to voltage at
maximum power point and current at maximum power point, respectively; Po(s) refers
to the PV module maximum output power at solar radiation (s). The prospective output
power at solar radiation (s) is computed according to Equation (10). Therefore, the overall
prospective output during the identified interval time t, Pt (t = 1 h in this study) can be
expressed as follows:

Pt =

∫ 1

0
Po(s)fb(s)ds (24)

2.3.3. BESS Modelling

BESS is supposed to be linked to an alternating current (AC) system through bidi-
rectional DC/AC converters [43]. In this paper, BESS works at unity power factor to
discharge or charge active power. In another meaning, the BESS can work as a generator
throughout the period of discharging and a load throughout the period of charging. The
energy variation of BESS at bus k in time interval t is evaluated as the following [44]:

EBESSk(t) = EBESSk(t − 1) − Pdisch
BESSk(t)

ηd
Δt, for PBESSk(t) > 0 (25)

EBESSk(t) = EBESSk(t − 1) − ηc Pch
BESSk(t)Δt, for PBESSk(t) ≤ 0 (26)
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ηBES = ηCh × ηDch (27)

where EBESSk refers to the overall energy stored inside the BESS; Pdisch
BESSk and Pch

BESSk refer
to the BESS discharged and charged power, respectively; ηd and ηc refer to the BESS
efficiency in case of discharging and charging, respectively; Δt indicates the duration of
time interval t.

2.3.4. Sizing BES and PV

BESS is installed at the same location of PV in RDS. Therefore, the optimal sizing of
BESS with PV are presented in [42]. Therefore, the charging and discharging energies of
batteries at time (t) are calculated by Equations (28) and (29).

EDC
BESS,j =

∫ t

0
PDC

BESS,j(t)dt =
24

∑
T = 1

PDC
BESS,j(t)Δt (28)

EC
BESS,j =

∫ t

0
PC

BESS,j(t)dt =
24

∑
t = 1

PC
BESS,j(t)Δt (29)

(E(PV + BES),j) is a combination energy of BESS and PV at bus (j) which is determined
by Equation (30). PV energy is determined by Equation (31).

E(PV + BES),j = EDS
PV,j + EDC

BES,j (30)

E(PV),j = EDS
PV,j + EC

BES,j (31)

where EDC
BESS,j is the discharging energy of BESS to the distribution system (DS). EDS

PV,j is the

injection power energy from PV to DS and EC
BESS,j the charging energy which is drawing

from PV to BESS.
Round-trip efficiency can be determined by the ratio of discharging energy to the

charging energy as shown below:

ηBES =
EDC

BES,j

EC
BES,j

(32)

Consequently, PV energy is updated to Equation (33) as follows:

EPV,j =
E(PV + BESS),j −

(
1 − ηBESS

)
EGR

PV,j

ηBESS
(33)

PPV,j = Ko
PVEPV,j (34)

Ko
PV =

Po
PV

Eo
PV

(35)

The high value of PV output during the day is evaluated by Equation (36).

PPV,j = Ko
PV(

E(PV + BESS),j −
(
1 − ηBESS

)
EGR

PV,j

ηBESS

)
(36)

where, Eo
PV and Po

PV are the energy and maximum output of PV during the day, respectively.
BESS sizing is determined by Equation (37).

ECh
BES,j =

E(PV + BES),j − EGr
PV,j

ηBES
(37)
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3. Optimization Methodology

3.1. Frame Design

In general, the recommended Archimedes optimization algorithm describes what
occurs when objects that have different volumes and weights are dipped into a liquid. The
following subsections indicate how the AOA was based on the phenomena elucidated in
Archimedes’ principle. Then, we explain how this law of physics is applied along with an
algorithm of optimization [45].

3.1.1. Principle of Archimedes

The Archimedes principle declares that when dipping an object partially or completely
into a liquid, the liquid goes flat out at an upward force on this object equivalent to liquid’s
weight dislodged by this object. Figure 5 describes that when an object is dipped into
a liquid, it will be exposed to an upward force, named buoyant force, equivalent to the
weight of the liquid dislodged by this object [46].

Figure 5. (a) An object is dipped into a liquid, and (b) the volume of liquid dislodged [45].

3.1.2. Theory

Figure 6 indicates when some objects dipped into the same liquid and every one
attempts to achieve the state of equilibrium. The speed at which each immersed object
reaches to the state of equilibrium varies due to its different density and volume. Any
object will be in the state of equilibrium when the buoyant force Fb is equivalent to the
weight (Wo) of this object:

Fb = Wo, (38)

ρbvbab = ρOvOaO (39)

where ρb and ρo are the density of the liquid and the dipped object, respectively, vb and
vo are the volume of the liquid and the dipped object, respectively, and ao and ab are the
gravity or acceleration of the liquid and the dipped object, respectively. This previous
equation can be reorganized as the following:

ao =
ρbvbab
ρovo

(40)
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Figure 6. Some objects dipped in the same liquid [45].

In the case of presence of another force acting on the object, such as colliding with
another adjacent object (r), then the state of equilibrium will be:

Fb = Wo, (41)

Wb −Wr = Wo, (42)

ρbvbab − ρrvrar = ρ0v0a0 (43)

3.2. Archimedes Optimization Algorithm

AOA is an algorithm that depends on a population. In this algorithm, the individuals
of the population are the dipped objects. Resembling other metaheuristic algorithms
that depend on population, AOA likewise initiates search procedure with preliminary
population of objects, called candidate solutions, with arbitrary densities, accelerations, and
volumes. At this phase, every object is likewise started with its arbitrary situation in liquid.
Afterward, assessing the fitness of preliminary population, AOA works in repetitions until
the end limit is achieved. After each repetition, AOA modernizes the volume and density
for each object. The object’s acceleration is modernized based on the state of collision with
any other nearby object. Modernizing, density, acceleration and volume define the object’s
new location. In the following sub-section, the mathematical expression steps for AOA
are explained.

Steps of AOA Algorithm

The mathematical construction for the algorithm of AOA is presented in this sub-
section. Theoretically, AOA is deemed as a universal algorithm where it involves both
exploitation and exploration procedures. The pseudocode of the AOA is indicated in
Algorithm 1; it includes the preliminary population of objects, population assessment, and
modernizing parameters. Mathematically, the stages of the suggested AOA are indicated
as follows:

1 Preparation Set the locations of overall objects using (44):

Oi = lbi + rand (i, Dim) × (ubi − lbi), i = 1,2, . . . ..,N (44)

where Oi refers to the ith object from the population that have N (search agents) objects.
ubi and lbi are the higher and lower limits of the search scope, respectively. Dim represents
the dimension variables.

Set the initial value of density (den) and volume (vo) for every ith object according to
Equations (45) and (46).

deni = rand(i, Dim) (45)

voli = rand(i, Dim) (46)

where rand refers to a random number within [0,1]. Finally, set the initial value of ith object
acceleration (acc) using (47):

acci = lbi + rand(i, Dim) × (ubi − lbi) (47)
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In this step, assess preliminary population and nominate the object that has the best
fitness value. Specify, the best location (xbest), the best density (denbest), the best volume
(vbest)), and the best acceleration (accbest).

2 Modernize volumes and densities The volume and the density for every object i at
the repetition (t + 1) is modernized according to (48) and (49):

volt + 1
i = volt

i + rand × (volbset − volt
i) (48)

dent + 1
i = dent

i + rand × (denbset − dent
i) (49)

where volbset is the volume correlated to the best object that has been obtained so far, and
rand is a random number that is distributed uniformly.

Algorithm 1 AOA Pseudo code.

Procedure AOA (size of population N, maximum repetition tmax, C1, C2, C3, and C4)
Preliminary objects population combined with random locations, volumes and densities

according to (44), (45), (46) and (47), respectively.
Assess preliminary population and nominate one of them that has best fitness significance.
Set repetition counter t = 1
While t ≤ tmaxdo

For every object I do

Modernize volume and density for every object according to (49)
Modernize the factors of transfer and decreasing of density TF and d according to

(50) and (51), respectively.
If TF ≤ 0.5 then Exploration stage

Modernize the object acceleration according to (52) and normalize this
acceleration according to (54)

Modernize the object location according to (55)
else Exploitation stage

Modernize the object acceleration according to (53) and normalize this
acceleration according to (54)

Modernize direction flag F according to (57)
Modernize the object location according to (56)

end if

end for

Assess every object and nominate one of them that has best fitness significance.
Set t = t + 1

End while

return object that has best fitness significance
end Procedure

3 In the AOA algorithm, the population objects (search agents) are searching for the
best promising area in all of the search space by the exploration phase and then
searching for the best location (best object) in this promising area by the exploitation
phase. TF is a factor that is changing with iteration to transfer the algorithm from the
exploration phase to the exploitation phase through the simulation time, and can be
evaluated as follows:

TF = exp(
t − tmax

tmax
) (50)

where the TF factor rises progressively with increasing time till up to 1; tmax and t are
the maximum repetitions number and repetition number, respectively. Likewise, density
decreasing factor d also supports the proposed AOA on universal to local inspection. It
reduces with increasing time according to (51):

dt + 1 = exp(
tmax − t

tmax
) − (

t
tmax

) (51)
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where dt + 1 reduces with increasing time that provides the capability to converge in the
previously specified promising zone. To guarantee a balance between the exploration and
the exploitation in the proposed AOA, this variable must be handled appropriately. The
text continues here.

4 Exploration step (colliding among objects happens). If TF ≤ 0.5, colliding among
objects happens, an arbitrary material (mr) must be nominated and the acceleration
of for repetition t + 1 according to (52) must be modernized:

acct + 1
i =

denmr + volmr × accmr

dent + 1
i × volt + 1

i
(52)

where acci, deni, and voli are the acceleration, the density, and the volume of the object
I, whereas accmr, volmr and denmr are the acceleration, the volume, and the density of
arbitrary material. It is significant to indicate that TF ≤ 0.5 guarantees exploration through
one third of repetitions. Using a value other than 0.5 will affect the behavior of changing
from exploration to exploitation steps.

5 Exploitation step (no colliding among objects). If TF > 0.5, there is no colliding among
objects, modernize the acceleration of the object for repetition (t + 1) according to (53):

acct + 1
i =

denbest + volbest × accbest

dent + 1
i × volt + 1

i
(53)

where accbest refers to the best object acceleration.

6 Normalize the object acceleration. Normalize the object acceleration to compute the
percentage of variation according to (54):

acct + 1
i − norm = u × acct + 1

i − accmin

accmax − accmin
+ l (54)

where l and u represent the scope of normalization and put it at 0.1 and 0.9, respectively.
The acct + 1

i − norm calculates the percentage of the period that every agent will alteration. The
value of acceleration will be great when the object is away from the global optimum, which
means that the object will be in the exploration stage; other than that, it will be in the
exploitation stage. This clarifies how the inspection modifies from the exploration stage
to the exploitation stage. In an ordinary case, the factor of acceleration initiates with high
value and reduces with increasing time. This aids search agents to move away from local
solutions and at the same time transfer towards the global best solution. However, it is
significant to state that there may still a small number of search agents that require extra
time to stay in the exploration stage than in the normal case. Therefore, the proposed AOA
attains the equilibrium between the exploration stage and the exploitation stage.

7 Modernize location If TF ≤ 0.5 (exploration stage), the ith object’s location for follow-
ing repetition t + 1 according to (55)

xt + 1
i = xt

i + C1 × rand × acct + 1
i − norm × d × (xrand − xt + 1

i ) (55)

where C1 referes to a constant that equals 2. Other than that, when TF > 0.5(exploitation
stage), the objects modernize their locations according to (56).

xt + 1
i = xt

best + F × C2 × rand × acct + 1
i − norm × d × (T × xbest − xt

i) (56)

where C2 referes to a constant that equals 6. T rises with increasing time and it is propor-
tional to transfer factor and it is determined according to T = C3 × TF. Additionally, it rises
with increasing time through the scope [C3 × 0.3, 1] and it possesses a particular percent-
age from the best location, at first. It begins with small percentage which causes a huge
difference between the best location and the present location; consequently, the random

198



Appl. Sci. 2021, 11, 8231

walk step-size will be big. As the search continues, this percentage will rise progressively
to reduce the difference between the best location and the present location. This results in
an appropriate equilibrium between the exploration and the exploitation. F is the flag to
vary the motion direction according to (57):

F =

{
+1 if P ≤ 0.5

−1 if P > 0.5
(57)

where P = 2 × rand − C4.

8 Assessment Assess every object exploiting function f and recollect the best solution
found yet. Designate xbest, volbest, denbest, and accbest.

4. Simulation Results and Dissections

The IEEE 69-bus radial distribution system (RDS) includes 69 buses with a reactive
load of 2694.6 kVAr and an active load of 3801.5 kW as shown in Figure 7 [47]. The results
are obtained under base values of 12.66 kV and 10 MVA. The used parameters and the
system constraints are given in Table 1. This paper studies the optimal allocation of PV
alone or with BES in residential, industrial, and commercial system loads.

4.1. Residential Load

In this case, the overall reactive and real load demand during 24 h are 34.43 MVAr
and 48.57 MW, respectively. Without integration PV and BES in RDS, the total reactive and
real loss during 24 h are 0.85 MVAr and 1.87 MW, respectively. Installing one PV alone in
RDS at bus 61 reduces the system loss to 1.39 MW. Additionally, installing two PV alone in
RDS at buses 61 and 17 reduces the system loss to 1.35 MW. The total energies of one and
two PV alone in RDS during the day are illustrated in Figures 8 and 9. Table 2 illustrates
the locations and sizes of PV, the total energy of PV, and the injection energy from PV to
the grid. Therefore, installing three PV alone reduces the system loss to 1.34 MW at buses
61, 18, and 11. From Figure 10, the total energy of three PV alone is 15.64 MWh.

From Table 3, simultaneous integration of PV and BES gives better results than in-
tegration of PV alone in RDS. Installing one BESS and PV in RDS decreases the system
loss to 0.71 MW at bus 61. The energies of PV and BESS during the day by incorporating
one PV with BESS in RDS are illustrated in Figures 11 and 12. Installing two and three
PV with BES in RDS decrease the system loss to 0.61 MW and 0.59 MW, respectively. The
energies of PV and BESS during the day by incorporating two PV with BESS in RDS are
illustrated in Figures 13 and 14. Additionally, energies of PV and BESS during the day
by incorporating three PV with BESS in RDS are illustrated in Figures 15 and 16. Table 3
illustrates the locations and sizes of PV and BESS, the total energy of PV, the injection
energy from PV to the grid, the charging energy from PV to BESS, and the discharging
energy from BESS to the grid.
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Figure 7. IEEE 69-bus RDS.

Figure 8. PV output during the day by installing one PV alone in residential system load.
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Figure 9. PV output during the day by installing two PV alone in residential system load.

Table 2. The obtained results with and without installing PV alone in residential system loads.

Item Position (Size (kW)) PV Energy (kWh) Total PV Energy (kWh) Ploss (kW)

Residential
Load

Without PV - - - 1867.977
1-PV 61 (1489) 61 (11,207) 11,207 1389.4

2-PV 61 (1417.5)
17 (419.2)

61 (10,668)
17 (3155.3) 13,823.3 1349.2

3-PV
61 (1369)
18 (302.8)
11 (406.1)

61 (10,304)
18 (2279)

11 (3056.6)
15,639.6 1341.6

Figure 10. PV output during the day by installing three PV alone in residential system load.
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Table 3. The obtained results with and without installing PV with BES in residential system loads.

Item
Position

(Size (kW))
PV Energy

(kWh)
EPV to grid

(kWh)

Charging
Energy
(kWh)

Discharging
Energy
(kWh)

Ploss

(kW)

Residential
Load

Without
PV and BES - - - - - 1867.977

1
PV 61 (3693.2) 27796 11666 - -

711.9071BES 61 (2467.5) - - 16,130 12,358

2
PV 61 (3466.1)

17 (1163.1)
61 (26,088)
17 (7797.1)

61 (10,971)
17 (3279.6) - -

613.1804

BES 61 (2323)
17 (693.992) - - 61 (15,116)

17 (4517.5)
61 (11,581)
17 (3460.9)

3
PV

61 (3345.6)
18 (745.66)
11 (1012.7)

61 (25,180)
18( 5612.2)
11 (7622.3)

61 (10,589)
18 (2361.7)
11 (3202.5)

- -
594.447

BES
61 (2242.17)
18 (498.78)
11 (681.1)

- -
61 (14,591)
18 (3250.5)
11 (4419.8)

61 (11,178)
18 (2490.2)
11 (3386)

Figure 11. PV output during the day by installing one PV with BES in residential system load.

Figure 12. BES output during the day by installing one PV with BES in residential system load.
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Figure 13. PV output during the day by installing two PV with BES in residential system load.

Figure 14. BES output during the day by installing two PV with BES in residential system load.

Figure 15. PV output during the day by installing three PV with BES in residential system load.
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Figure 16. BES output during the day by installing three PV with BES in residential system load.

4.2. Industrial Load

In this case, the overall reactive and real load demand during 24 h are 35.64 MVAr
and 50.29 MW, respectively. Without integrating PV and BES in RDS, the total active and
reactive power loss during 24 h are 1.89 MW and 0.86 MVAr, respectively. The total system
losses are decreased to 1.55 MW, 1.52 MW, and 1.52 MW by integrating one, two, and three
PV alone in RDS, respectively. Table 4 presents the locations and sizes of PV, the total
energy of PV, the injection energy from PV to the grid and the system power loss. From
Figures 17 and 18, the total energies of one and two PV alone during the day are 9.56 MWh
and 11.80 MWh, respectively. Additionally, the total energy of three PV alone during the
day is 13.35 MWh as shown in Figure 19.

Table 4. The obtained results with and without installing PV alone in industrial system loads.

Item Position (Size (kW)) PV Energy (kWh) Total PV Energy (kWh) Ploss (kW)

Industrial
Load

Without PV - - - 1890.1117
1-PV 61 (1270.7) 61 (9563.6) 9563.6 1553.5

2-PV 61 (1209.5)
17 (358.8)

61 (9102.9)
17 (2700.9) 11,803.8 1524.4

3-PV
61 (1168)
18 (259.6)
11 (345.9)

61 (8790.6)
18 (1954.1)
11 (2603.7)

13,348.4 1518.93

Figure 17. PV output during the day by installing one PV alone in industrial system load.

204



Appl. Sci. 2021, 11, 8231

Figure 18. PV output during the day by installing two PV alone in industrial system load.

Figure 19. PV output during the day by installing three PV alone in industrial system load.

The optimal allocation of one PV with BES in RDS at bus 61 decreases the system loss
to 0.72 MW. The total energies of PV and BESS during the day by incorporating one PV with
BESS are presented in Figures 20 and 21. The system losses are decreased to 0.62 MW and
0.60 MW by integrating two and three PV with BES in RDS, respectively. Figures 22 and 23
illustrate the energies of PV and BESS during the day by installing two PV with BESS in
RDS. Additionally, Figures 24 and 25 illustrate the energies of PV and BESS during the day
by installing three PV with BESS in RDS. The total injection energies from PV to BESS and
to the grid are presented in Table 5. Additionally, the charging and discharging energies of
BESS are presented in Table 5 and Figure 25.
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Figure 20. PV output during the day by installing one PV with BES in industrial system load.

Figure 21. BES output during the day by installing one PV with BES in industrial system load.

Figure 22. PV output during the day by installing two PV with BES in industrial system load.
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Figure 23. BES output during the day by installing two PV with BES in industrial system load.

 
Figure 24. PV output during the day by installing two PV with BES in industrial system load.

Figure 25. BES output during the day by installing three PV with BES in industrial system load.
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Table 5. The obtained results with and without installing PV with BES in industrial system loads.

Item
Position

(Size (kW))
PV Energy

(kWh)
EPV to grid

(kWh)

Charging
Energy
(kWh)

Discharging
Energy
(kWh)

Ploss

(kW)

Industrial
Load

Without
PV and BES - - - - - 1890.112

1
PV 61 (3812.4) 28,694 10,722 - - 720.7217
BES 61 (2841.7) - - 17,972 13,807

2
PV 61 (3627.4)

17 (1084.2)
61 (27,302)
17 (8160)

61 (10,203)
17 (3051.9) - - 622.0804

BES 61 (2703.8)
17 (807.842) - - 61 (17,099)

17 (5108.2)
61 (13,137)
17 (3924.5)

3
PV

61 (3501.1)
18 (780.37)
11 (1060)

61 (26,351)
18 (5873.4)
11 (7978)

61 (9848.4)
18 (2203.4)
11 (2964.7)

- - 603.1228

BES
61 (2609.5)
18 (580.93)
11 (790.95)

- -
61 (16,502)
17 (3670.1)
11 (5013.3)

61 (12,678)
17 (2819.6)
11 (3851.6)

4.3. Commercial Load

In this case, the overall reactive and real load demand during 24 h are 37.82 MVAr
and 53.35 MW, respectively. Without integrating BESS and PV in RDS, the overall reactive
and real loss during 24 h are 0.99 MVAr and 2.17 MW, respectively. The system power loss
is reduced to 1.12 MW with installing one PV alone at bus 61. The optimal placement and
sizing of two PV alone at buses 61 and 17 decreases the system loss to 1.04 MW as shown
in Table 6. Additionally, the optimal sizing of three PV alone at buses 61, 18, and 11 with
total energy of 22.81 MWh decreases the system loss to 1.02 MW. From Figures 26 and 27,
the total energies of one and two PV and three PV alone during the day are presented in
Figure 26, Figure 27, and Figure 28, respectively.

Table 6. The obtained results with and without installing PV alone in commercial system loads.

Item Position (Size (kW)) PV Energy (kWh)
Total PV Energy

(kWh)
Ploss (kW)

Commercial
Load

Without PV - - - 2173.851
1-PV 61 (2168.2) 61 (16,319) 16,319 1124.5

2-PV 61 (2063.1)
17 (611.6)

61 (15,527)
17 (4603) 20,130 1038.2

3-PV
61 (1991.5)
18 (439.4)
11 (599.7)

61 (14,989)
18 (3306.8)
11 (4513.5)

22,809.30 1021.7

Figure 26. PV output during the day by installing one PV alone in commercial system load.
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Figure 27. PV output during the day by installing two PV alone in commercial system load.

Figure 28. PV output during the day by installing three PV alone in commercial system load.

Installing one, two, and three PV with BES decreases the system losses to 0.83 MW,
0.71 MW, and 0.69 MW, respectively, as shown in Table 7. The total energy of PV and
the charging and discharging energies of BES by integrating one PV with BES in RDS are
illustrated in Figures 29 and 30. Figures 31 and 32 show the energies of two PV and the
charging and discharging energies of BESS during the day, respectively. By incorporating
three PV with BESS, the injection energies from PV to BESS and the grid during the day
are shown in Figure 33, and the charging and discharging energies of BESS are shown in
Figure 34. The results proved which the presented algorithm is an efficient to obtain the
best global results when compared with modified HGSO algorithm and HGSO algorithm.
This comparative study is illustrated in Table 8.
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Table 7. The obtained results with and without installing PV with BES in commercial system loads.

Item
Position

(Size (kW))
PV Energy

(kWh)
EPV to grid

(kWh)

Charging
Energy
(kWh)

Discharging
Energy
(kWh)

Ploss

(kW)

Commercial
Load

Without
PV and BES - - - - - 2173.851

1
PV 61 (3832.2) 28,843 17,155 - - 825.1585
BES 61 (2064.9) - - 11,688 8936.1

2
PV 61 (3644.3)

17 (1089.2)
61 (27,429)
17 (8197.6)

61 (16,253)
17 (4853.2) - - 709.9147

BES 61 (1945.8)
17 (582.223) - - 61 (11,175)

17 (3344.4)
61 (8544.5)
17 (2557.1)

3
PV

61 (3517.3)
18 (783.5)

11 (1065.6)

61 (26473)
18 (5897.1)
11 (8020.3)

61 (15685)
18 (3483.5)
11 (4777.6)

- - 688.1289

BES
61 (1878.5)
18 (420.22)

11 (564.685)
- -

61 (10788)
18 (2413.6)
11 (3242.7)

61 (8248.5)
18 (1845.4)
11 (2479.4)

Figure 29. PV output during the day by installing one PV with BES in commercial system load.

Figure 30. BES output during the day by installing one PV with BES in commercial system load.
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Figure 31. PV output during the day by installing two PV with BES in commercial system load.

 
Figure 32. BES output during the day by installing two PV with BES in commercial system load.

Figure 33. PV output during the day by installing three PV with BES in commercial system load.
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Figure 34. BES output during the day by installing three PV with BES in commercial system load.

Table 8. Comparison results between AOA, Modified HGSO, and HGSO algorithms in commercial system load.

Item AOA Modified HGSO [36] HGSO [36]

Ploss (kW) Without PV and
BES 2173.851 2173.851 2173.851

Location (PV size (kW))
61 (3517.3)
18 (783.5)

11 (1065.6)

61 (3517.488)
18 (784.1074)
11 (1064.323)

61 (3187.526)
18 (860.6001)
11 (934.0223)

Location (BES size (kW))
61 (1878.5)
18 (420.22)

11 (564.685)

61 (1878.5)
18 (420.843)
11 (563.386)

61 (1911.138)
18 (486.4727)
11 (595.803)

Ploss (kW) 688.1289 688.129 716.809

5. Conclusions

In this paper, an application for a recent optimization algorithm called the Archimedes
optimization algorithm (AOA) has been proposed for reducing energy losses and to capture
the size of incorporating battery energy storage system (BESS) and photovoltaic (PV)
energy system in RDS. In this paper, all non-dispatchable PV energy systems have been
transformed into a dispatchable energy resource with BESS integration with PV. AOA has
been evolved for sizing several PV and BESS considering the changing demand over time
and the probability generation. The proposed algorithm has been applied on the IEEE
69-bus distribution network with various daily demand configurations such as residential,
industrial, and commercial loads demand. The obtained results demonstrate that the
model can boost high penetration of the PV energy system accompanied with effective
usage of BESS energy resources, which shows the strength of the presented algorithm
for evaluating the best sizing of numerous PV and BESS with a significant reduction in
energy losses. In addition, the AOA gives better results compared with other well-known
optimization algorithms.
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Featured Application: This paper is concerned with a multi-criteria technical and economical

allocation procedure of microgrids in smart cities.

Abstract: Microgrids have the potential to provide reliable electricity to key components of a smart
city’s critical infrastructure after a disaster, hence boosting the microgrid power system’s resilience.
Policymakers and electrical grid operators are increasingly concerned about the appropriate con-
figuration and location of microgrids to sustain post-disaster critical infrastructure operations in
smart cities. In this context, this paper presents a novel method for the microgrid allocation problem
that considers several technical and economic infrastructure factors such as critical infrastructure
components, geospatial positioning of infrastructures, power requirements, and microgrid cost.
In particular, the geographic allocation of a microgrid is presented as an optimization problem to
optimize a weighted combination of the relative importance of nodes across all key infrastructures
and the associated costs. Furthermore, the simulation results of the formulated optimization problem
are compared with a modified version of the heuristic method based on the critical node identifi-
cation of an interdependent infrastructure for positioning microgrids in terms of the resilience of
multiple smart critical infrastructures. Numerical results using infrastructure in the city of Pittsburgh
in the USA are given as a practical case study to illustrate the methodology and trade-offs. The
proposed method provides an effective method for localizing renewable energy resources based on
infrastructural requirements.

Keywords: microgrid architecture; smart infrastructure; resilience; optimization model; critical node
identification

1. Introduction

The portion of the world population inhabiting an urban environment has grown in
the last decade from about 33% to 55% [1]. That growth has produced enormous demand
and stress on the infrastructures and systems that deliver essential city services, resulting in
significant interest in developing smart cities. The main purpose of smart city schemes is
to create intelligent infrastructures for cities by harnessing innovations in cyber-physical
systems, data science, and information and communication technology (ICT). Moreover,
smart infrastructures are more dependent on both ICT and electrical power for proper
operation. This increased dependence can introduce new vulnerabilities and lower in-
frastructure resilience [2]. In particular, severe weather (e.g., snow/ice storms, typhoons,
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tornadoes, drought-induced wildfires, etc.) is a growing vulnerability concern as the fre-
quency, intensity, and geographic scope of severe weather events are predicted to increase
with climate change [3]. Currently, severe weather events [4] are the number one reason for
power outages in the United States, which are in turn, the top reason for outages in ICT
services. For that, intelligent infrastructures provide more consistent and reliable system
performance, new features/functions, and increased sustainability.

Industrial scale microgrids are basically self-supporting power systems typically in
the 1.5–5 MW range. They have been advocated as a mechanism to improve the availability
of power to significant societal and business facilities such as hospitals, military bases,
and factories. Additionally, microgrids are promoted as an approach to incrementally
incorporate shared renewable power production, such as wind and solar, into the bulk
power grid in the case of disaster [5]. Mircrogrids are also proposed in the literature as a
solution to achieve climate adaptation and mitigation goals [6].

Figure 1 gives a typical microgrid architecture. As shown in Figure 1, the building
blocks of the microgrid are the controller, electrical power switches, local energy supplies
(e.g., solar cells, wind turbines, and diesel generators), energy storage, and various loads.
Microgrids are designed to operate in standalone mode and joined mode to the primary
grid. In the joined mode scenario, the microgrid serves as additional energy back up to
the bulk power system, decreasing peak loads, enhancing power stability, and reducing
harmful emissions [7]. In island mode, the microgrid disconnects from the bulk grid and
functions as a standalone power supply. The microgrid controller manages the transitions
between modes seeking to maintain voltage and synchronization while minimizing load
dropping and disruption.

Figure 1. Sample microgrid architecture.

Since the available power is limited in island mode, the power loads are grouped into
their significance categories: mission critical, mission priority, and non-critical. Mission
critical loads are given the highest priority and consists of the essential components of
the critical infrastructures of interest (e.g., hospitals, water treatment plants, and cellular
network base stations). Mission priority loads are given second priority and would include
loads that are important to society but not essential to the functioning of smart critical
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infrastructures (e.g., drug store, gas station, etc.). Lastly, non-critical loads would include
residential and non-essential businesses (e.g., movie theaters).

Generally, microgrids have fixed geographical limits and are planned in island mode
to produce power sufficient to sustain mission-critical loads inside the geographic bound-
aries. Thus, based on the power accessible in island mode, the microgrid controller may
implement load shedding, dropping non-critical loads and a portion of the mission priority
loads [5]. Furthermore, microgrids are required to possess the capability to shift efficiently
from island mode to grid-connected operation, providing re-synchronization with minimal
consequence to significant loads through the transition phases.

Unlike the nanogrids used in residential settings, a significant obstacle to the imple-
mentation of industrial size microgrids is the high cost in constructing, operating, and
maintaining a microgrid. Currently, industrial capacity microgrids are mostly owned by an
individual private organization. Recognizing the non-linear economic costs of implement-
ing microgrids [8], the authors in [9] advocated for shared mid-size microgrids, with the
expense borne by both the vital infrastructure proprietors with critical loads (e.g., cellular
network operators and hospitals) and the government organizations that will utilize the
infrastructures during disaster recovery. This shared community use approach could be
facilitated by government-sponsored financing and tax credits. Furthermore, it may justify
either re-insurance or bonding mechanisms to help in reducing the cost. Here, the goal of
this work is to design and place microgrids based on minimizing the overall expenses and
to ensure power flow connected over the most vital critical infrastructure parts. Therefore,
the proposed design is able to achieve significant techno-economical merits for microgrids.

Related work on microgrids includes using microgrids to improve radial distribu-
tion power grid restoration after a natural disaster [5,10] and dynamically forming local
microgrids around distributed generation sources after a disaster [11]. Kelly-Pitou [6]
introduced the notion of employing a microgrid for the purpose of enhancing both power
resilience and for alleviating climate change impacts. Nevertheless, this early work did not
propose a method for determining the location of microgrids to improve the resilience of
different critical infrastructures viewed as a group. In [12], the authors suggested using
an algorithm to achieve multi-agent resource allocation in distributed scenarios through a
shared microgrid, including residential and commercial buildings, with the least amount
of information exchange between the users. However, their study lacks the commercial
and residential segments by not assigning the priorities to critical nodes in the network.

The bulk of the research literature on critical infrastructures within smart-city schemes
has focused on optimizing performance and providing new functionalities. Previous work
covering smart-city resilience has focused specifically on developing frameworks [13] or
“solidifying” critical infrastructures. Traditionally, policy-makers mandated or supported
hardening techniques such as constructing flood barriers and rebuilding levees according
to the probability of 1 in 100-year situations. However, when considering smart critical
infrastructures and the increasing weather variability, planners need to move beyond
physical hardening techniques, adopting new preparedness methods and policies that
acknowledge the dependence on both power and ICT.

In [9], a structure for providing power and ICT is developed to enhance smart city
critical infrastructure services in post-disaster conditions. The proposed method in this
work employs multi-user microgrids to generate electricity concurrently with cellular-
based communications, which are dynamically re-adjusted into a mesh network along
with local edge computing to control/operate smart critical infrastructures. The main aim
of the framework is to construct districts within a mid size zone that act as secure area,
including essential critical infrastructure functions operating at limited but acceptable levels.
Guaranteeing that the combination of microgrids, cellular-based catastrophe recovery mesh
network, and edge computing are geographically located in this “socially planned” fashion
will assist in reducing at-risk districts and bolster the economic argument for microgrids.

Related work on enhancing critical infrastructure resilience has focused on harden-
ing [14,15] the essential elements in every infrastructure. Various techniques have been
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introduced in the literature for discovering the most vital components in a critical infrastruc-
ture, such as graph theoretic analysis, simulation-based analysis, stochastic modeling, and
expert judgment [14]. Graph centrality measures have been utilized in developing critical
infrastructure protection strategies, including vulnerability studies of power systems. A
heuristic approach introduced in [16] uses five graph centrality measures, namely degree
centrality, between centrality, centered centrality, eccentricity centrality, and radially. The
authors evaluated the nodes with each of the five centrality measures. If a node is highly
ranked by at least two measures, it is considered a critical node. The model was applied to
assess the impact of potential attacks on the Swiss power network. However, the author
utilized the proposed model considering the impact on the power network’s infrastructure,
neglecting the dependency on other infrastructures that could potentially have a higher
effect. In [17], the authors introduced a scheme to determine the critical nodes of a smart
power network according to the highest power flow in the system. However, their investi-
gation concentrated on the betweenness centrality as the primary graph measure, which
could lead to a bias in the outcome by neglecting other essential centrality measures in
networks, such as node degrees and closeness. The authors of [18] considered the centrality
metrics of a dependency risk graph, exploring the connection between dependency risk
paths and graph centrality. They mapped different critical infrastructures into one graph
and applied the centrality metrics on each node, assuming that the links are represented
by the escalating failure values between nodes from different infrastructures. The primary
motivation for that was to identify the critical infrastructure nodes between interdependent
critical infrastructures that noticeably impact the essential routes of risk in the network and
then to analyze cascading failures to different nodes or links in the network.

In [19], the authors proposed a model to identify the most critical nodes in interdepen-
dent critical infrastructures. They developed an integer linear programming optimization
formulation that models the approach of an attacker who targets a collection of nodes
with the intention of compromising or damaging them. They assumed that the attacker is
motivated by three objectives: (i) minimizing the size of the largest connected component,
(ii) maximizing the number of disconnected components, and (iii) minimizing the cost
of an attack. All three objectives are based on graph theory metrics and can be used to
determine where to hardened the infrastructure. Here, the problem of where to harden
multiple infrastructures as a group using a microgrid is considered.

Noting that microgrids are the most costly element in our framework, our focus is on
where to place a microgrid in order to promote smart critical infrastructure operations post-
disaster. An holistic approach is adopted for the microgrid location problem, considering
multiple critical infrastructures at once, and focuses on factors such as component impor-
tance within a critical infrastructure, the geospatial placement of infrastructures, power
requirements, and microgrid cost. Optimization problems are formulated to determine the
location of a microgrid in a geographic space that optimizes a weighted combination of the
relative importance of nodes across all critical infrastructures and the cost. Furthermore, a
simple heuristic method for positioning microgrids is presented and demonstrated. This
method is compared with the optimization problem. Numerical results using Pittsburgh as
a case study are given to illustrate the effectiveness of the methodology and its trade-offs.

This paper is structured as follows. Section 2 presents the proposed methodology,
which determines the placement of microgrids. In Section 3, the numerical results and a
discussion of implementing the proposed method are presented. Section 4 provides the
findings of the study and future work.

2. Materials and Methods

2.1. Microgrid Location Methodology

Consider a neighborhood or section of a city where multiple infrastructures geograph-
ically overlaid co-exist, as illustrated in Figure 2. For instance, the three infrastructures
shown could include an intelligent water network, a natural gas pipeline system, and a
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healthcare system consisting of a hospital and community health clinics. The proposed
approach to determining the location of a microgrid essentially has four steps as follows:

1. First, each smart critical infrastructure is analyzed individually to determine the
relative importance of each node/component of the infrastructure.

2. Second, a geographic grid of the city is defined, and the infrastructures are aligned
spatially.

3. An optimization problem is formulated to determine the place in a geographic grid
that optimizes a combination of the importance of nodes/components across infras-
tructures and the cost of the microgrid.

4. Following the three-step procedure, the analysis of critical infrastructures is considered
to define the comparable significance of elements.

Figure 2. Geographic overlaid infrastructures connected to a microgrid.

2.2. Critical Infrastructure Analysis

Critical infrastructures are grouped into two classes according to the applicability of
modeling the infrastructure with a network graph: (1) interconnected infrastructures and
(2) standalone infrastructures.

2.2.1. Interconnected Infrastructure

Network science methods based on graph theory have been applied to analyze criti-
cal infrastructures that include the interconnected elements or operations, such as power
grids [20], transportation networks [21], water systems [22], and optical backbone communi-
cation networks [23]. Interconnected infrastructures are modeled with a graph G = (V, E),
where V is the set of vertices or network nodes (e.g., power plants and substations, pumps
and pipe junctions, and optical switches), and E is the set of edges or links or connections
(e.g., power lines, water pipes, and optical fibers) joining the nodes. Given a graph model of
an interconnected infrastructure, one can use network science methods in part to determine
the relative importance of nodes in the infrastructure based on graph metrics. This paper
adopted centrality metrics similar to [16], as explained in the following.

Degree Centrality

Node degree denotes the total number of neighbor nodes to which a node is immedi-
ately attached. The degree of centrality is a primary graph analysis measure that can be
calculated as the total of edges connected to node v, which is called degree deg(v), and
identified as centrality degree Cd(v), which is provided as follows:

Cd(v) = deg(v) (1)
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Betweenness Centrality

Betweenness centrality is a benchmark of centrality measure used in graph networks
that reflects the shortest paths within couples of vertices s and t. It can be calculated as the
percentage of shortest paths that cross through a vertex v ∈ V(G). Hence, Cb(v) can be
written as follows:

Cb(v) = ∑
s 	=v 	=t

σst(v)

σst
, (2)

where σst signifies the number of shortest routes from node s to node t, and σst(v) equals
the total number of these routes that cross within v.

Closeness Centrality

In any connected graph, the normalized closeness centrality Cc(v) of a particular
node v ∈ V(G) equals the average distance of the shortest routes connecting node v to all
additional nodes in the graph. The closeness can be defined as follows:

Cc(v) =
1

∑s dist(s, v)
, (3)

In the above equation dist(s, v) denotes the length connecting vertices s and v.

Power Requirements

The power Cp(v) required for vertex v ∈ V(G) is one of the factors considered and is
assumed to be given.

Total Weighted Value (TWVII)

Combining the three centrality metrics forward beside the power requirements, we
define a total weight value for interconnected infrastructure TWVII(v) for each node
v ∈ V(G). In calculating TWV, feature scaling [24] is used to bring all values into a
common range by applying the z-score normalization approach based on the mean and
standard deviation of each node metric across all nodes v [25], as shown for metric Cd(v):

Cdnorm =
Cd(v)−mean(Cd(v))

standard deviation(Cd(v)
(4)

We apply the normalization method to each metric, resulting in the following:

TWVII(v) = Cdnorm(v) + Cbnorm(v) + Ccnorm(v) + Cpnorm(v) . (5)

2.2.2. Standalone Infrastructure

Many critical infrastructures are not typically presented as a graph (e.g., factories and
healthcare). Instead, as standalone infrastructures, we utilize a weighted mixture of m
context-dependent factors to discover the related importance of infrastructure elements.
For instance, the characteristic factors of one healthcare element, such as a hospital, are the
capacity of that hospital in terms of power requirements, bed number, and the population
inhabited around the hospital.

Four critical infrastructures have been measured in this paper, as follows:

Healthcare

A healthcare infrastructure analysis has shown that hospitals are the most critical com-
ponents. Therefore, ensuring that hospitals are running is crucial to disaster response and
resilience. Accordingly, three parameters were employed to describe hospitals: (1) power
consumption, (2) capacity, and (3) population surrounding a hospital area. Hospital size or
capacity is typically determined through a specific quantity of beds that can be obtained
from publicly available information. Employing the same hospital capacity further points
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to a helpful parameter called energy consumption over applying the formula conducted by
Schneider Electric [26], as

PH = BD ∗U (6)

This equation represents the hospital energy use as PH , BD denotes the number of
operated beds in the same hospital, and U signifies the bed’s power use in kWh (assumed
as 30,000 kWh/year in [26]). The population surrounding the hospital is another parameter
assigned to measure the importance of healthcare nodes. It can be assigned using the
density data from [27] and a one km radius circular space throughout that node (hospital).

Water System

Through natural disasters, ensuring a reserve of drinking water is crucial. There-
fore, water treatment plants have been selected to be critical in this model to ensure the
supply of such infrastructures. Their size can also be characterized by millions of gal-
lons per day (MGD). Thus, the power consumption PW was also estimated utilizing the
following formula:

PW = G ∗ J (7)

G in this equation reflects the portion of water processed in the MGD unit, and J represents
the power required to process a million gallons [28], where the average water planet use
around 1470 kWh/MG.

Cellular Network

The communication infrastructure is considered one of the most vital infrastructures
to a society remaining functional. Due to the ubiquity of cell phones, cellular base stations
are considered significant elements in the communication infrastructure. Furthermore,
the authors of [9] discussed how the cellular network could be reconfigured to be used to
provide disaster recovery communications. This study identified the most critical cellular
network base stations by employing three factors: (1) geographic coverage, (2) population
covered, and (3) power requirements. The geographic coverage for each base station was
classified into short, medium, and long in terms of distance in miles.

Emergency Shelter

Through natural disasters, it is critical to provide emergency shelters with power.
Governments commonly utilize event centers as a shelter when emergencies occur. For
instance, the George R. Brown Convention Center in Houston, TX, covered thousands of
people throughout hurricane Harvey [29]. Three inputs were selected to classify emergency
shelters: energy usage, size, and capacity. Both data regarding the capacity and size of
emergency shelters are openly accessible online. Nevertheless, power consumption was
determined by calculating the size in f t2 and then by multiplying it by the power average
required for universal non-residential property space, which is 14 kWh per f t2 [30].

Total Weighted Value (TWVSI)

The total weighted value TWVSI related to every node v in a standalone infrastructure
can be defined as follows:

TWVSI(v) =
m

∑
n=1

Parmn(v) (8)

where Parmn is the context-dependent factor for that infrastructure. As in the intercon-
nected infrastructure case, feature scaling is used to put the parameters on the same scale.

2.3. Optimization Model Formulation

Consider a set of L smart infrastructures in an area such as a city. Each infrastructure
include Nl nodes with {l = 1, 2, . . . L}. The geographic space is divided into K zones
denoted by Geoi with {i = 1, 2, . . . K}. The size and configuration of the geographic zones
can be based on various properties of the region investigated (e.g., political boundaries,
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squares, etc.). Note that the geographical range of microgrid elements are normally limited
to within 10 km2 [31]. Here, for simplicity, the geographic space is spilt into K equal size
squares, as shown in Figure 2.

Fi denotes the price of building and running a microgrid in Geoi. Determining the
total project cost Fi will be based on many determinants, such as the volume of power
produced, the combination of power sources (i.e., fuel cells, wind turbines, solar cells, and
batteries), the value of property, financing, and the construction and maintenance cost.
Here, we assume that Fi is pre-computed by employing a relevant model [8], including
the scaling toward the range of TWV. Let the decision variable xi denote a binary variable
equivalent to one if area Geoi is selected as the location for a microgrid. We define Si as the
power production of a microgrid at position i. Let PCivl denote the price regarding energy
provided through a microgrid at position i passed to node vl of the lth infrastructure. The
decision variable yivl implies the portion of power node vl of infrastructure l obtained from
a microgrid at location i. Given the notation above, the microgrid location problem is to be
expressed as an optimization problem P1 as follows:

P1 : Min α
K

∑
i=1

L

∑
l=1

∑
vl∈Geoi

−Cp(vl)yivl PCivl TWV(vl) + β
K

∑
i=1

Fi ∗ xi (9)

L

∑
l=1

∑
vl∈Geoi

Cp(vl)yivl ≤ Si ∗ xi ∀ i (10)

∑
vl∈Geoi

Cp(vl)yivl ≤ ηlSi ∗ xi ∀ l (11)

K

∑
i=1

xi = 1 (12)

0 ≤ yivl ≤ 1 ∀i, vl ; xi ∈ {0, 1}, (13)

The objective (9) is to find the minimum cost location for the microgrid while pow-
ering the most critical infrastructure nodes. The objective function represents, in the first
term, the expense of transferring power to a node vl from a microgrid placed in Geoi
weighted by the importance TWV(vl) of the node. The TWV(vl) values are conducted
using Equations (5) or (8) depending on the type of infrastructure. The second term in the
objective function is the total microgrid project cost if installed in Geoi. Finally, α and β
in the objective function are weights that can be customized to trade-off infrastructure
importance versus cost of building and operating. The first constraint ensures that the
power transferred to the infrastructure loads is less than or equal to the production of
the microgrid if it is located in Geoi. The second constraint seeks to enforce the commu-
nity/shared nature of the microgrid by ensuring that a single infrastructure can receive
a maximum of ηl percent of the power produced by the microgrid in Geoi. The ηl values
are assumed and could reflect the infrastructure’s financial contribution of infrastructure l
to the cost of constructing and operating the microgrid. The constraint in (12) guarantees
that only a single microgrid is built, and the constraints in (19) ensure the boundaries of the
decision variables.

Note that several alternate formulations and extensions to the optimization model
are possible. For example, one can relax the constraint that a microgrid in Geoi can only
power infrastructure nodes vl in Geoi. Instead, it assumes that the potential location of a
microgrid is the center of each Geoi and definesd the distance from a microgrid placed in
Geoi to node vl as divl . Furthermore, dmax is defined as the maximum distance that a node
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can be located from a microgrid. In this case, the microgrid placement problem can be
formulated as problem P2.

P2 : Min α
K

∑
i=1

L

∑
l=1

Nl

∑
vl=1

−Cp(vl)yivl PCivl TWV(vl) + β
K

∑
i=1

Fi ∗ xi (14)

L

∑
l=1

Nl

∑
vl=1

Cp(vl)yivl ≤ Si ∗ xi ∀ i (15)

Nl

∑
vl=1

Cp(vl)yivl ≤ ηlSi ∗ xi ∀ l (16)

K

∑
i=1

xi = 1 (17)

yivl divl ≤ dmax ∀ i, vl (18)

0 ≤ yivl ≤ 1 ∀i, vl ; xi ∈ {0, 1}, (19)

The cost of the microgrid is minimized while connecting nodes with greater impor-
tance in the infrastructures considered to the microgrid. The first three sets of constraints
serve the same function as in model P1, that is, (12) ensures that the capacity of the mi-
crogrid is not exceeded, (13) limits the fraction of power that a single infrastructure can
use, and (14) requires that only a single location for the microgrid is selected. In addition,
the constraints defined by (15) limit the maximum distance that a node can be from the
microgrid, thereby ensuring a practical geographic span for the system. Lastly, constraints
(16) define the restrictions on the decision variables.

The optimization models P1 and P2 are mixed integer linear programming (MILP)
problems that the bound and branch model can solve for undersized problem instances
using standard optimization software (e.g., CPLEX, Gurobi). The outcomes of the mod-
els show the optimal location for a microgrid and have the benefit of selecting which
infrastructure nodes attach to the pre-selected microgrid. In general, given the regulatory
constraints on the size and ownership of microgrids, we expect that if multiple microgrids
are deployed, they are built sequentially and support different consortia of infrastructure
owners and community groups. In this scenario, the optimization models can be applied
iteratively by re-running the model while modifying the power requirement and value of
TWV, excluding nodes linked to a previously deployed microgrid.

2.4. Critical Node Identification

The branch and bound algorithm used to solve P1 and P2 is known to have scal-
ability issues as the fundamental problem is NP-hard. Furthermore, the number of
nodes/components in critical infrastructures can be quite large in a city. For example,
consider the core (9 km × 9 km) area of the Pittsburgh, Pennsylvania metro area, which
has a population of 2.3 million. According to the US Department of Homeland Security,
the core area contains over 2700 critical infrastructure nodes, which include 80 water in-
frastructure nodes and 530 communication infrastructure nodes. Hence, optimizing all
nodes/components in several infrastructures will be computationally complex. Here, the
microgrid location optimization models are scaled by reducing the number of nodes in
each infrastructure to only the most critical nodes determined by the TWV values. In effect,
this reduces the search space over which the optimization models are solved, significantly
speeding up the computation but at the expense of loss of global optimality guarantees.
Various approaches targeting the selection of the most critical or essential nodes in each
infrastructure have been introduced in the literature. For that, two methods are considered,
as follows:
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2.4.1. Combined Metric

In this method, the nodes vl are arranged in descending order based on the TWV(vl)
values. The nodes with the largest TWV(vl) values are considered the highest critical
nodes. For simplicity, a size of 20 nodes has been selected to show the model’s top nodes.

2.4.2. List of Lists

An alternate method is to rank the nodes according to each parameter/metric and
then to combine the lists for an overall ranking. Hence, a prioritized list following descend-
ing order has been generated toward interdependent infrastructures using the values of
Cd, Cb, Cc, and Cp. In the standalone infrastructures, the lists have been generated using
the outcomes value of Parmn for every infrastructure. The positional ranking value in each
list is taken as the score for that list. Next, all positional rank values are summed into a
total score and sorted in ascending order from below to most crucial to discover the critical
nodes (a low score implies a more important node).

2.5. Microgrid Location Heuristics

With subsequent determination of the critical nodes concerning every infrastructure,
the geographic space for the smart city is aligned before the optimization implementation.
Figure 3 illustrates an example where Geoi is taken as a square of 3 km × 3 km. The opti-
mization models P1 or P2 can then be solved over this reduced set of infrastructure nodes.
Note that the set size selection can control the optimization model solution’s computational
run time. The larger the set size, the larger the search space, resulting in longer solution
times and being closer to a global optimal.

Figure 3. Critical node geographic representation.

Alternatively, we propose a simple heuristic based entirely on the TWV values (i.e.,
ignoring the cost). Let TIi denote the total importance value of area Geoi. Then, TIi is deter-
mined by adding the TWV regarding every node positioned inside Geoi as revealed below.

TIi =
L

∑
l=1

∑
vl∈Geoi

(TWVII(vl) + TWVSI(vl)) . (20)

Since node vl is a part of a single infrastructure, just one of TWVII(v) or TWVSI(v)
remains non-zero. Geoi with the most significant TIi value is chosen as the most optimal
microgrid position. If many microgrids happen to be discovered, one reproduces the
heuristic sequentially concerning every microgrid and coordinates the power and TWV
rates in every repetition. Note that the heuristic is computationally simple and can be
solved over the entire set of critical infrastructures nodes.
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3. Results and Discussions

First, the two critical node selection methods of Section 2.4 are compared by developing
a random graph of N nodes and E edges. The edges in this scenario can link to a node using
a probability p. For simplicity in the calculation, parameter values N = 200, E = 238, and
p = 0.01 were selected by drawing on previous work that used random graphs to model
transportation networks and smart power grid networks [32]. The power requirements
CP(v) of each node v were created by sampling a uniform [0, 1] random variable. Table 1
lists the twenty most critical nodes using the combined metric ranking. Table 2 shows
the twenty most important nodes of the same infrastructure employing the list of lists
ranking. As discussed earlier, the z-score normalization method was used for scaling the
terms throughout our numerical results.

Table 3 contrasts the results of the two critical node identification methods for an
individual network. Observe the variations within each rank concerning the most critical
nodes; the collection of nodes in the highest twenty possess ≥ 80% equivalent. Since both
ranking methods produce comparable outcomes, the combined metric has been utilized for
the rest of our study.

3.1. Case Study

As a case study illustrating the location problem, critical infrastructures in the city
of Pittsburgh, Pennsylvania, were analyzed, which has a metropolitan area population
of 2.3 million. We concentrate on the center section regarding the metro area, studying a
9 km × 9 km section centered on downtown. In addition, the four infrastructures of water,
cellular communications, healthcare, and emergency shelter were studied and discussed.

Table 1. Top 20 most critical nodes utilizing the Combined Metric approach.

Node ID Cbnorm Ccnorm Cdnorm Cpnorm Sum
Rank
(Sum)

172 2.737 0.525 3.553 −0.023 6.792 1
197 3.874 0.537 2.075 0.130 6.616 2
133 2.881 0.529 2.814 −0.227 5.998 3
49 4.075 0.513 2.075 −0.872 5.791 4
144 2.461 0.493 1.337 1.450 5.740 5
160 1.390 0.465 2.075 1.416 5.346 6

1 2.481 0.548 1.337 0.680 5.046 7
182 1.548 0.496 2.075 0.750 4.870 8
32 2.739 0.502 1.337 0.209 4.786 9
5 1.878 0.533 2.075 0.276 4.762 10

10 1.024 0.455 1.337 1.468 4.284 11
188 1.177 0.450 2.075 0.556 4.258 12
195 1.135 0.442 1.337 1.289 4.203 13
162 1.952 0.500 2.075 −0.532 3.995 14
142 1.287 0.498 1.337 0.735 3.857 15
137 1.249 0.479 1.337 0.699 3.765 16
130 1.412 0.493 0.598 1.150 3.653 17
86 1.350 0.496 1.337 0.358 3.541 18
116 0.284 0.488 1.337 1.384 3.493 19
30 1.084 0.512 0.598 1.244 3.438 20

3.1.1. Healthcare

The healthcare infrastructure data are presented in Table 4, which were normalized
and applied to evaluate the TWVSI from (8). Three parameters were selected to repre-
sent each hospital’s importance: capacity, power consumption, and population using
Equation (6). The table shows that the UPMC Presbyterian, UPMC Shadyside, and UPMC
Mercy Hospitals have the highest total weighted values.
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Table 2. Top 20 most critical nodes utilizing the List of Lists approach.

Node ID Cbnorm R(Cb) Ccnorm R(Cc) Cdnorm R(Cd) Cpnorm R(Cp) Sum
Rank
(Sum)

144 2.461 7 0.493 28 1.337 11 1.450 7 53 1
1 2.481 6 0.548 1 1.337 11 0.680 64 82 2

160 1.390 22 0.465 48 2.075 3 1.416 12 85 3
182 1.548 20 0.496 23 2.075 3 0.750 55 101 4
197 3.874 2 0.537 2 2.075 3 0.130 97 104 5
10 1.024 34 0.455 53 1.337 11 1.468 6 104 5
30 1.084 31 0.512 13 0.598 34 1.244 26 104 5
5 1.878 13 0.533 5 2.075 3 0.276 85 106 8

116 0.284 54 0.488 31 1.337 11 1.384 14 110 9
142 1.287 25 0.498 21 1.337 11 0.735 57 114 10
130 1.412 21 0.493 29 0.598 34 1.150 34 118 11
32 2.739 4 0.502 18 1.337 11 0.209 89 122 12
176 0.758 40 0.500 20 0.598 34 1.202 29 123 13
172 2.737 5 0.525 8 3.553 1 −0.023 110 124 14
50 0.883 37 0.519 9 1.337 11 0.628 67 124 14
195 1.135 29 0.442 63 1.337 11 1.289 23 126 16

4 0.996 35 0.482 35 0.598 34 1.251 25 129 17
133 2.881 3 0.529 6 2.814 2 −0.227 120 131 18
132 0.303 52 0.508 15 0.598 34 1.156 32 133 19
137 1.249 26 0.479 38 1.337 11 0.699 62 137 20

Table 3. Comparison between node ranking in both approaches.

Node Ranking Combined List

1 172 144
2 197 1
3 133 160
4 49 182
5 144 197
6 160 10
7 1 30
8 182 5
9 32 116
10 5 142
11 10 130
12 188 32
13 195 176
14 162 172
15 142 50
16 137 195
17 130 4
18 86 133
19 116 132
20 30 137

3.1.2. Cellular Network

Table 6 shows the three parameters selected for measuring the importance of LTE base
stations: coverage index, population, and power consumption. The coverage index has
been assigned to a specific value from the high (3) to low (1). For simplicity purposes, the
base stations were considered from a single operator (i.e., AT&T). The geographic coverage
range of a base station and the population density around that station determine the
population included. Finally, applying the energy model from [33], we measure the power
requirement of each base station. The table displays the data obtained in the specified area
of central Pittsburgh, USA.
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Table 4. Healthcare.

Hospital
Power Consumption

Population
Size TWVSI(kWh) (Beds)

West Penn Hospital 9,510,000 12,915 317 −0.034
UPMC Montefiore 7,500,000 24,080 250 0.976

UPMC Mercy 14,460,000 15,714 482 2.361
Allegheny Hospital 11,430,000 5949 381 −0.402
UPMC St. Margaret 7,470,000 5200 249 −2.078
Children’s Hospital 8,880,000 15,500 296 0.136
LifeCare Hospitals 7,080,000 9555.00 236 −1.529

UPMC Presbyterian 23,850,000 24,080.00 795 7.396
VA Healthcare 4,380,000 14,117 146 −1.854

UPMC Shadyside 15,600,000 15,916 520 2.841
Magee’s Hospital 10,800,000 10,850 360 0.140
St. Clair Hospital 9,840,000 4569 328 −1.249

Children’s Genetics 7,500,000 10,850 250 −1.156

3.1.3. Water System

Table 5 delivers Pittsburgh’s City water treatment plants, using public data, includ-
ing the power consumption for each water treatment facility, as calculated using the
Equation (7). Then, Equation (8) is applied for the total weighted value for standalone
infrastructure. The table shows that two of the five tested water treatment planets are
considered critical: Pittsburgh WTP and Westview WTP.

Table 5. Water treatment plants (WTP).

Facility
Capacity Power Consumption TWVSI(Million G/Day) (kWh)

Pittsburgh WTP 70,000,000 327,600,000 3.029
Brush WTP 1,500,000 7,020,000 −1.387

Plum Creek WTP 2,234,669 10,458,250.9 −1.340
Harmar Twp WTP 1,500,000 7,020,000 −1.387

Westview WTP 39,850,000 186,498,000 1.085

Table 6. LTE base stations.

eNB ID
Coverage Population Power Consumption TWVSIIndex Covered (kWh)

780206 3 4475 25 2.156
780007 2 16,227 20 1.848
780165 2 5338 20 −0.141
780059 3 7119 25 2.639
780213 1 15,500 15 −0.739
780108 2 15,500 20 1.715
780399 1 12,915 15 −1.211
780184 1 5096 15 −2.639
780017 3 843 25 1.492
780527 1 8424 15 −2.032
780037 1 8424 15 −2.032
780364 1 24,080 15 0.828
780154 2 6446 20 0.061
780178 2 6446 20 0.061
780560 3 6446 25 2.516
780225 2 2710 20 −0.621
780163 3 7622 25 2.731
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Table 6. Cont.

eNB ID
Coverage Population Power Consumption TWVSIIndex Covered (kWh)

780032 1 2688 15 −3.079
780540 3 5948 25 2.425
780167 2 4593 20 −0.277
780477 2 4593 20 −0.277
780169 1 3316 15 −2.965
780218 1 6078 15 −2.460

3.1.4. Emergency Shelter

Table 7 lists the TWV regarding every emergency shelter in Pittsburgh city. Power
usage and shelter capacities are the selected parameters, as explained in Section 2, to
measure the shelter’s total weighted value. The table also shows that the Convention
Center has the highest values applying such parameters.

Table 7. Emergency shelter.

Facility
Power Consumption Size

Occupancy TWVSI(kWh) f t2

Petersen Center 224,000 16,000 12,508 −0.198
PPG Paints Arena 10,080,000 720,000 19,758 −0.017

Convention Center 21,000,000 1,500,000 109,445 2.225
Irish Centre 168,000 12,000 315 −0.503

Sigmas Center 140,000 10,000 150 −0.507
Sherwood Center 252,000 18,000 500 −0.499

Given the infrastructure data above in Tables 4–7, we made an initial analysis of the
city, considering a grid of 3 km × 3 km squares as Geoi. Figure 4 displays heat maps of
the top significant nodes in each infrastructures. Figure 5 exhibits the heat map when all
four infrastructures are overlain and considered a group. The results present the outputs of
applying the proposed heuristic and optimization models to the data.

3.2. Heuristic

Table 8 shows the overall importance TIi value for each Geoi. The table also shows the
fifth, sixth, and third squares are in the top of the list with the highest values at 16.3046,
7.6456, and 4.3614. In Table 9, the power demand of each square is broken down by
individual infrastructure. Note that the power is included in scaled form in the TI values
of Table 8. Interestingly, when the squares are ranked by power requirements only, they do
not match the ranking based on total importance score except for the first and last position
(squares 5 and 4, respectively). Considering both tables, the fifth, sixth, and third squares
are the most important compared to the rest and thus are the most desirable for locating
a microgrid.

3.3. Optimization Model

The optimization models P1 and P2 require estimating the total cost Fi for microgrid
to construct and operate in a specfic location Geoi. HOMER design software [34] was used
to determine the cost of a 4 MW microgrid consisting of a mix of diesel generators, DC/AC
converters, flat panel photovoltaic cells, 1.5 kW wind turbines, and 1 kW lithium acid
batteries for storage. Furthermore, the cost of real estate assuming a greenfield deployment
of the microgrid was estimated for each Geoi Considering a lifetime of 23 years and a net
present cost value of Fi covering the capital cost, replacement, salvage, operating and fuel,
and repair, a discount value of 6% was found as Fi = {6, 6.2, 7.4, 7.2, 11, 11.5, 5.4, 5.6, 4.4}.
The difference in Fi values is the real estate cost. The additional P1 optimization model
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variables were Si = 4MW ∀i and α = β = 0.5. Table 10 shows the outcomes of solving opti-
mization model P1 and the heuristic based on TIi while varying the number of sequentially
built microgrids. Table 10 clearly shows that Geo5 is the preferred location for a microgrid
due to the high number of critical nodes in that geographic space. Furthermore, Table 10
shows that both the optimization model and heuristic implemented sequentially favor the
critical squares with high total weight value, even in the case of multiple microgrids.

Table 8. Total importance value for every zone.

Geoi Healthcare Water Cellular Shelter TI Rank

1 0.5793 0.5598 0 1.1171 2.2562 5
2 0 0 0 0.0527 0.0527 8
3 0.3497 1 3.0117 0 4.3614 3
4 0 0 0 0 0 9
5 8.7257 0 3.5511 4.0278 16.3046 1
6 3.2216 0 4.3177 0.1063 7.6456 2
7 0.5609 0 0 0 0.5609 7
8 0 0 1.2411 0 1.2411 6
9 0 0.0107 2.9535 0 2.9642 4

Table 9. Total power demand for every zone (kWh).

Geoi Healthcare Water Cellular Shelter Total

9 0 3285 15 0 3300
8 0 0 45 0 45
7 27,333.3 0 0 0 27,333
6 94,416.7 0 95 44,467 138,979
5 189,000 0 90 88,336 277,426
4 0 0 0 0 0
3 20,750 98,280 75 0 119,105
2 0 0 0 389 389
1 33,000 55,949 0 22,400 111,349

Total 364,500 157,514 320 155,592 677,926

Table 10. Optimization vs. Heuristic represented by square numbers.

Microgrid Quantity 1 2 3

Heuristic Geoi 5 5, 5 5, 5, 6
P1 Optimization Model Geoi 5 5, 5 5, 5, 6

The trade-offs were also investigated through the infrastructure and cost weight by
modifying the value of α and the value of β considering one microgrid, with the results
presented in Table 11. The table shows that geographical zone number five is again selected,
excluding the case where α = 0 shows that the cost is only minimized.

Table 11. Optimization outcomes varying weights.

Geoi 5 5 5 5 5 5 5 5 5 5 9

α 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4. Critical node heat map for each individual infrastructure.

Figure 5. Heat map of critical nodes across all infrastructures.
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The solution of optimization model P2 was studied next. As noted earlier, P2 allows a
microgrid to supply important power nodes outside of the Geoi it is located in, as long as
the distance to the node is less than a given maximum (e.g., 6 km). The results of solving
P2, using the same cost values Fi as discussed above, to place three microgrids sequentially
are shown in Figure 6. In Figure 6, the squares identify the microgrid locations, and the
circles denote the nodes connected to the microgrid. Notice that the microgrid in Geo5
powers two nodes (cellular base stations) in Geo1. Similarly, the microgrid in Geo6 connects
to nodes in Geo5 and Geo3 as well as nodes in Geo6. Table 12 shows how the power created
by each microgrid is shared among the four infrastructures for each microgrid. Notice that
it varies with location. Comparing the solution of P2 with the results of problem P1, the
total cost of three microgrids will be less than P2 (29.9 vs. 33.5 million).

Figure 6. Microgrid locations from solution of P2.

Table 12. Percentage of power generated.

Geoi Hospital Water Cellular Shelter Total

5 68.13% 0.00% 0.03% 31.84% 100.00%
6 99.41% 0.00% 0.10% 0.49% 100.00%
3 17.42% 82.52% 0.06% 0.00% 100.00%

Furthermore, the effects of varying the capacity of the microgrids Si in the optimization
models were considered. Specifically, we varied the microgrid capacity over 3, 4, 5, and
10 MW and determined each case’s corresponding cost Fi. The Pittsburgh case study’s
solution to both optimization algorithms does not change. For the solution to problem P2,
the location of three microgrids is Geo5, Geo6, and Geo3, regardless of the microgrid capacity.
Similarly, the solution to P1 is Geo5, Geo5, and Geo6 for the location of three microgrids for
all microgrid capacities considered.

For this paper, which focuses on showing the applicability of shared Microgrid among
interdependent infrastructure, we did not consider the existence of emergency generation
assets required by regulation at critical infrastructure. However, such work can be extended
in future work by addressing all the possible scenarios and applying all required policies.

4. Conclusions

In this work, it has been proven that emerging smart critical infrastructures will need
disaster resilience that includes continuity of power and ICT support in addition to tradi-
tional infrastructure-specific methods. Furthermore, we advocated for using community-
based, multi-ownership microgrids and studied where to locate microgrids to enhance the
resilience of smart critical infrastructures. The suggested method takes a holistic view of
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considering multiple critical infrastructures and incorporates several factors, such as the
component importance within critical infrastructure, the geospatial placement of infrastruc-
tures, power requirements, and microgrid cost. Furthermore, optimization models were
proposed to determine the microgrid location to optimize a weight combination of cost
and infrastructure node criticality. Additionally, a heuristic for determining the microgrid
location based on infrastructure node importance was proposed. A case study demon-
strating our method was presented for the city of Pittsburgh. From a resilience viewpoint,
quantifying and perceiving which geographic zones in a city would most benefit from a
microgrid will help provide a community-wide justification for microgrids. Future avenues
of work include studying economic and regulatory models to improve the microgrid cost.
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