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Javier Lizárraga-Iturralde, Rubén Morales Menendez, Ricardo A. Ramı́rez-Mendoza, et al.

Service Robots: Trends and Technology
Reprinted from: Appl. Sci. 2021, 11, 10702, doi:10.3390/app112210702 . . . . . . . . . . . . . . . . 7

Andrius Dzedzickis, Jurga Subačiūtė-Žemaitienė, Ernestas Šutinys,
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1. Introduction

The world of robotics has evolved rapidly in recent years, with groundbreaking
advancements and innovative applications becoming increasingly prevalent. Robots are no
longer limited to traditional industrial environments, and are now being utilized across
different sectors, revolutionizing processes and transforming how humans perceive robotics.
This Special Issue explores the latest trends and challenges in robotic applications, shedding
light on how these technological advances are shaping the future of automation, with
emphasis on robotics in particular.

This compendium of papers focuses on the current research fields, trends and chal-
lenges in robotic applications and includes a set of review papers that allow us to frame
this Special Issue in a general context. Four of the presented articles describe areas of
robotic application and their associated trends and challenges, including service robots [1],
advanced applications in industry [2], multiple object tracking [3] and drone control
and localization [4].

2. Fields of Application

Robots are continuously being introduced to new environments, and are their applica-
tions are becoming more diverse. This Special Issue contains articles from the following
research fields: collaborative robots; service robotics; computer vision; mobile robots; and
other advanced tools in robotics.

2.1. Collaborative Robots

Collaborative robots, or cobots, are designed to work alongside humans, creating safer
and more efficient work environments and enabling the development of new strategic
approaches to problems [5] and alternative technical solutions. Unlike their predecessors,
cobots are equipped with advanced sensors and sophisticated algorithms that enable
them to perceive and respond to human movements. As a result, they can assist in tasks
that require human dexterity and decision making while reducing the risk of workplace
accidents. From manufacturing assembly lines and assembly techniques [6] to healthcare
settings, cobots are being adopted across multiple industries to enhance human capabilities.

The authors of [7] developed a human–robot collaboration system with good path-
tracking accuracy. This enabled the implementation of an industrial robot with enhanced
capabilities to improve system behavior.

2.2. Service Robotics

Service robots [1] are gaining popularity and significantly impacting how businesses
operate and humans interact with technology. In the hospitality industry, robots are now
employed to carry out room service, reception duties and concierge services. In healthcare,
robots assist in patient care, including as nanoelectromechanical devices for medical appli-
cations [8], in rehabilitation support [9,10] and in surgical robotics [11]. Moreover, service

Appl. Sci. 2023, 13, 9131. https://doi.org/10.3390/app13169131 https://www.mdpi.com/journal/applsci
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robots are also making inroads in agriculture [12], retail and public spaces, presenting new
opportunities for automation in areas that previously relied solely on human labor.

Robotic rehabilitation is a challenging field that involves a transversal flow of knowl-
edge with other robotic technologies. For example, the similarity between lower limb
rehabilitation robotics and humanoid auto-balanced walking robotics [13] lies in their
focus on stability and balance. Both lower limb rehabilitation robotics and humanoid auto-
balanced walking robotics prioritize maintaining stability and balance during movement.
In lower limb rehabilitation robotics, ensuring the patient’s safety and preventing falls are
crucial aspects of the rehabilitation process. The robot’s control algorithms and mechanical
design are geared towards providing stable and controlled movements during therapy
sessions. On the other hand, humanoid auto-balanced walking robotics aims to replicate
human-like walking patterns while autonomously maintaining balance. These robots
often have advanced sensors, such as inertial measurement units (IMUs), cameras and
force/torque sensors, to continually assess their orientation and stability during walking.
Advanced control algorithms are employed to adjust the robot’s posture and foot place-
ment in real-time, ensuring balance and stability, even on uneven or challenging terrain.
Technologies and insights developed in one field can potentially inform and improve the
other, fostering cross-disciplinary advancements in robotics research [14].

2.3. Computer Vision and Other Advanced Techniques

Computer vision focuses on enabling computers to interpret and understand visual in-
formation from the world, including objects and humans [15]. It involves the development
of algorithms and techniques that allow machines to process, analyze and extract mean-
ingful insights from images and videos. In recent years, computer vision has undergone
significant advancements, leading to the emergence of new technologies that allow for new
interaction applications; for example, in [16], a moving object is manipulated by means of
batting primitive to play table tennis with a human player.

Pose estimation is a fundamental concept in computer vision that involves determining
the position and orientation of an object or a camera relative to a specific coordinate system.
It plays a crucial role in various applications, such as augmented reality [17], robotics, 3D
scene reconstruction and human–computer interaction. In simple terms, pose estimation
aims to answer the question: “Where is the object or camera located, and how is it oriented
in 3D space?” To achieve this, computer vision algorithms analyze visual data, typically in
the form of images or videos, and extract relevant features or keypoints from the objects
of interest. Similarly, [18] presents an interesting approach to pose computation using
a 3D reconstruction of data obtained using an RGB-D multi-camera. A groundbreaking
piece of technology that is currently attracting attention due to its relatively low cost is
Time-of-Flight (ToF) sensing, and the authors of [19] present a multi-perspective ToF laser
ranging system using prisms and mirrors.

The authors of [20] discuss the significance of 6D pose estimation in industry and its
application in functions like bin picking and autopilot. They highlight the evolution of
various approaches, both learning-based and non-learning-based, and aim to provide an
up-to-date, thorough review of methods for 6D pose estimation, as well as the challenges
and future trends in this field. Their paper compares the performance of different methods
and categorizes them into two types of approach: non-learning-based and learning-based.

Using data from external sensors that measure 3D/6D locations is crucial to determin-
ing robots’ kinematic parameters and the transformation between the world coordinate
frame and the robot base. The study presented in [21] shows that full pose measurements
result in significantly smaller robot orientation errors compared to using 3D data alone,
while the robot position errors remain similar in both cases.

2.4. Mobile Robots

Mobile robots, including autonomous vehicles, are an exciting and rapidly evolving
technology that has the potential to revolutionize robotic transportation. As research

2
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and development in this field progress, several new topics are emerging that address the
challenges and enhance the capabilities of autonomous mobile robots, including swarm
robotics and its tools [22]. Examples of this flourishing field of research include [23], which
is focused on automatically allocating space for parking autonomous and human-operated
vehicles, and [24], which presents a control system developed to achieve mobile robot
formations based on the leader–follower method. In [25], a LiDAR sensor is proposed to
navigate featured environments.

A special case of this technology is robotic navigation inside tunnels and mines. The
authors of [26] present a localization and navigation system for autonomous dump vehicles
in tunnels. This work also presents an autonomous load system for this kind of vehicle [27].

2.5. Other Advanced Tools in Robotics

Advanced tools for robotics applications encompass a wide range of software and
hardware technologies that enhance the capabilities and efficiency of robotic systems. These
tools are designed to streamline development, improve control, and enable robots to carry
out complex tasks with higher precision. For instance, the authors of [28] use robot audition
methods in order to estimate the elevation and azimuth angles of birds’ vocalizations.

In [29], the authors propose a new stochastic method that efficiently tracks the desired
end-effector task-space motions for mechanisms with redundant actuation and is applicable
to industrial and collaborative robots. It utilizes manipulability measures and null-space
configurations to achieve better manipulability, together with a collision-free trajectory
in the task-space, providing a computationally tractable alternative to optimal motion
planning, and demonstrated promising results in simulations and real robot scenarios.

Kinematics is a fundamental aspect of robotics because it deals with the study of robots’
mechanical link motions. The work presented in [30] discusses the challenges in selecting
structural parameters for artificial neural networks, which often relies on trial-and-error
procedures. It presents a design method based on neural networks and Genichi Taguchi’s
approach, which is applied to solving inverse kinematics in a robotic manipulator, leading
to improved result accuracy with a prediction percentage above 90% and a margin of error
under 5%.

3. Conclusions

The future of robotics is exciting and promising, with the discussed trends in robotic
applications continuing to unfold. From collaborative robots enhancing workplace safety to
AI-powered robots driving intelligent automation and service robots revolutionizing indus-
tries, the impact of robotics is becoming increasingly pervasive. As technology advances
and becomes more accessible, we can expect robots to play an even more significant role in
transforming various aspects of human life, contributing to a more efficient, productive,
and innovative world. However, with these advancements also come ethical considerations
and the need for thoughtful regulations to ensure the responsible and beneficial integration
of robots into society.

4. Statistical Data

This Special Issue on “Trends and Challenges in Robotic Applications” focuses on a
wide range of robotics applications. In total, 39 papers were received between 20 August
2020 and 16 February 2023. After the reviewing process, 30 papers were accepted and 9 were
not accepted, indicating an acceptance ratio of 76.9%. The accepted papers originated from
research centers based mainly in Latin America, Europe and China.

Author Contributions: Conceptualization, L.G. and C.P.-V.; investigation, L.G. and C.P.-V.; writing—
original draft preparation, L.G. and C.P.-V.; writing—review and editing, L.G. and C.P.-V.; visualiza-
tion, L.G. and C.P.-V.; supervision, L.G. and C.P.-V.; funding acquisition, L.G. and C.P.-V.; All authors
have read and agreed to the published version of the manuscript.
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Abstract: The 2021 sales volume in the market of service robots is attractive. Expert reports from the
International Federation of Robotics confirm 27 billion USD in total market share. Moreover, the
number of new startups with the denomination of service robots nowadays constitutes 29% of the
total amount of robotic companies recorded in the United States. Those data, among other similar
figures, remark the need for formal development in the service robots area, including knowledge
transfer and literature reviews. Furthermore, the COVID-19 spread accelerated business units and
some research groups to invest time and effort into the field of service robotics. Therefore, this
research work intends to contribute to the formalization of service robots as an area of robotics,
presenting a systematic review of scientific literature. First, a definition of service robots according to
fundamental ontology is provided, followed by a detailed review covering technological applications;
state-of-the-art, commercial technology; and application cases indexed on the consulted databases.

Keywords: robotics; service robots; human–robot interaction; healthcare robots; robot-as-a-service;
smart cities; AGV; AMR

1. Introduction

The objectives of the present review focus on a specific area of robotics: service robots.
Based on information gathering and database analysis, this work highlights definitions,
main product research directions, and commercial technology currently used in the men-
tioned field. This study can provide valuable information for researchers and product
developers to estimate the future value of investments in service robots research and
development.

This work addresses the following research questions:

• What is a service robot?
• What are the main technological trends in the area of service robots?
• What are the most common applications of service robots?
• What are the main commercial technologies on-board of the most recent service robots?

Problem Formulation

The problem formulation for the present work is based on a systems-thinking perspec-
tive to avoid poor problem formulation.

• Undesirable situation: There exists a lack of specialization in trend predictions for
service robots due to the nature of emerging technology.

• Assumptions: The development trends in this research area can be predicted through
a literature review and will be useful among researchers.

Appl. Sci. 2021, 11, 10702. https://doi.org/10.3390/app112210702 https://www.mdpi.com/journal/applsci
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• The Feasible Conceptual Future Desirable Situation: A compendium of actual service
robots and literature trends will encourage technology development.

• The problem: To formulate a methodology that effectively helps to identify relevant
information to provide significant figures and data.

• The solution: The development of a systematic literature review based on existing
methodologies and its effective dissemination of results.

Based on the previous statements, this research problem is classified by its objective
complexity as a Wicked Problem. It has no clear stopping rules since there is no definitive
“problem” and “solution,” and the problem ends with the consumption of the resources
(time, energy, others).

2. Materials and Methods

This study used Scopus (Elsevier’s abstract and citation database, Amsterdam, Nether-
lands), IEEE Xplore (Copyright 2021 IEEE - All rights reserved. A not-for-profit orga-
nization IEEE digital library, New York, NY, USA) and Google Scholar (Bibliographic
database owned by Google LLC Mountain View, CA, USA) to conduct a systematic search
of relevant scientific publications. The literature search presents six sectors: definitions
and classifications, robot technology, state of the art, commercial technology, trends, and
applications.

This study is a systematic review that searches for topics of service robots in scientific
literature. To select and revise relevant papers from each section, the PRISMA approach
was used [1], as well as the following criteria:

1. Recent (2010–2020) literature review ensures a revision of the current state of the art
of the technologies applied to service robotics, prioritizing papers published during
the 2015–2020 period. Figure 1a shows the distribution of the years of publications of
the revised papers for this review.

2. Among the selected literature for each section, the most cited works were revised
extensively. Figure 1b presents the distribution of the number of references with an
increasing number of citations of the revised literature.

3. The search of papers prioritizes journals with high impact factors; most revised papers
were from journals with an impact factor higher than 1.0. Figure 1c shows journal
impact factor of the revised papers in this review.

4. Additionally, Figure 1d shows the type of references (journal, conference proceedings,
books, technical reports, and others) selected and their percentage.
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Figure 1. Statistics of the revised literature. A histogram shows the results of several reviewed references: (a) number of
citations, (b) year of publication, and (c) impact factor. (d) Percentage of literature revised divided into journal papers,
conferences, books, technical reports, and others.

3. Results

3.1. Definitions and Types

As part of robot categorization and definitions, the whole universe of robots can be
divided into conventional and advanced robotics. Conventional robotics is also divided
according to the fixation of the base; thus, one can identify mobile robots and robot
manipulators, and conventional robotics also includes industrial robotics [2]. Following
this idea, service robots belong to the field of advanced robotics. This general definition is
valid but very broad, mainly because the field of robotics is a very vast research area, and
proposing a general and universal definition is not a trivial task [3].

Towards the search of a better standardization, some committees have worked to de-
velop an ontology that unifies entities in the field [4]. The ISO (International Organization
for Standardization) organized an expert committee in 2007 to accomplish this task and
the efforts materialized into the ISO 8373:2012 standard that defines a service robot as a
robot that performs useful tasks for humans or equipment excluding industrial automation
applications [5]. The International Federation of Robotics (IFR) agrees with such definition
and appends that the robot needs to have a semi or fully autonomous behavior [6]. Other
authors consider the incorporation of a natural communication system and the presence
of artificial intelligence (AI) as a must in the category of service robots [7,8] to allow such
robots to adapt to an uncontrollable environment. Moreover, the IEEE RAS (Robotics and
Automation Society) has dedicated efforts in the task of unifying terms using advanced
applied ontological methodologies [9] that aim to validate existing ontologies for consis-
tency. By the time this work is written (2021), some advances exist on the generalization of
definitions, entities, classes, and agents [10,11], but there is still work to be undertaken in
this sense. Some benefits of standardization and generalization are the facilitation of design,
production, knowledge, and technology transfer processes between groups and among
the Research and Development areas to properly determine a paradigm in terminology
and formalism.

9



Appl. Sci. 2021, 11, 10702

The ISO standard, as well as the IFR [12], classifies service robots in two main classes,
as can be observed in Figure 2. The first class mainly includes robots for personal and
domestic use, such as robots that perform domestic tasks, entertainment robots, elderly
and handicap assistance, personal transportation, home security and surveillance, and
other types of domestic robots. The typical applications of these robots include tasks of
non-commercial nature.

Figure 2. Taxonomy of service robots as proposed by the ISO 8373:2012.

Continuing with the classification, the second class is dedicated to service robots
intended for professional use. The main taxonomy threads are field robotics, professional
cleaning, inspections and maintenance systems, constructions and demolition, logistic sys-
tems, medical robotics, rescue and security applications, defense applications, underwater
systems, and other professional service robots not specified above. The typical user for this
kind of robot is an operator that has relevent former education or training in manual work.
Contrary to personal robots, this specification involves commercial activities. The above
classification can be better understood in Figure 3.

Figure 3. Robot categorization.

A complementary and more human-centric taxonomy is proposed by [9,13,14], where
the main robotics definitions fall intro three classes depending on the human–robot interac-
tion (HRI) level:

Class 1 The robot totally replaces the human worker in an environment that can be either
hazardous or dirty and the task is usually of a tedious nature.

Class 2 The robot operates closely in cooperation with a human in order to increase comfort
or minimize discomfort.

Class 3 The robot operates on the human body.

From the previous definitions arise some categorical problems. For instance, as
pointed out by [9], an exoskeleton can be a medical robot when used in rehabilitation

10



Appl. Sci. 2021, 11, 10702

but can be a non-medical robot when used for assistance tasks, and can also be used in
military tasks, contradicting the intended use of the robot. Further work is required to
avoid ambiguous definitions, and ontology engineering provides the required framework
for this disambiguation, as proposed by [15,16].

The technological stack of a service robot must address an uncontrolled environment
and choose a clever combination of sensors in an integration effort to fulfill the required
robot task to ensure a deep integration with humans [2]. Three main technical groups enable
a service robot. These are software layers, contextualization, and human–robot interfaces.
Software layers are primarily responsible for integrating the robotic device, connecting, and
establishing a standard communication system for every component. Artificial intelligence
is an important component of these robotic systems; tools such as TensorFlow or PyTorch
execute machine learning algorithms and related tasks. Robotic systems need to know
where they are and react properly based on their location, that is, to be aware of the spatial
context of the environment [17]. This function is achieved via localization and sensorization.
Finally, some human–robot interfaces implement its integration to the human workflow
generally. Web dashboards, speech recognition, touchscreens, or even mobile device
applications enable these interfaces. This technological stack is presented in a graphical
form in Figure 4.

Software layers

Integration

Computer vision

ROS
ROS2

ZeroMQ
LCM

OpenCV
CUDA

Contextualization

Human-robot
interface

Localization

AMCL
Visual odometry

SLAM

GPS
IMU

Odometry

Sensorization

Speech recognition

Amazon Web 
services

Pocket Sphinx

Local On-cloud

Touch screen

Mobile device application
Android

iOS
Embeded systems

Web dashboard

ML
Tensorf low

 Scikit-Learn
PyTorch

HTML5
JS Frameworks
SQL databases

Service Robot

Figure 4. Common components of a service robot with examples of the technological stack available
as in 2021.

Background

The technological evolution of service robotics is very vast and extensive. Its techno-
logical development will boost economic interest in different areas of growth and future
market niches. There are some emerging visions and opportunities to develop new tech-
nologies and services, such as the Internet of Robotic Things [18] as a merge of pervasive
sensors with robotic and autonomous systems. Another example is Robot Process Automa-
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tion (RPA) as an emergent technology that mimics the steps taken by a human to complete
a task [19]. RPA implies the automation of repetitive processes that involve routine tasks,
structured data, and deterministic outcomes [20]. The optimization of RPA routines uses
different techniques grouped in Robotic Process Mining (RPM) [21]. Its function is to
determine the importance and prioritization of a routine or task, converting the RPM in
a functional tool to RPA routines. Despite the progress made so far, it is important to
state that to keep researching and developing new service robots and automating tasks,
there must be at least one economic reason to do so. Complementing the above, the bank-
ing and financial industry is a fundamental pillar and one of the main drivers of digital
disruption [22]. In the near future, new technologies, trends, and applications of service
robots will emerge. However, is there a way to forecast a service robot’s impact and the
future trends that service robotics will have? To answer this question, we need to look
into technological evolution to predict disruptive innovations and identify which service
robotics technologies are likely to experiment with fast growth and development. Due to
this reason, we are going to look into several theories related to technology evolution.

The theory of technological parasitism for the measurement of the evolution of tech-
nology and technological forecasting [23] aims to measure the evolution of technology. It
takes the ecology of parasites and their evolvement as a reference to estimate technological
growth and its dynamics. This approach foretells which innovations and developments are
likely to have fast progress and an easy society acceptance. This research, to achieve the
measurement of the evolution of technology, takes several approaches (hedonic, RAND,
functional and structural, wholistic and holistic approaches) [23]. It concludes it is possible
to have a measure on the technological evolution, but is challenging and complex to foretell
which technological innovations are going to have fast growth.

A theory of classification and evolution of technologies within a generalized Darwin-
ism [24]. Following the previous theory, the synergy between humans and technologies
propagates and generates a parasitic ecosystem. Thus, this idea implies that all the agents
participating in the ecosystem are supposed to benefit. In this theory, a taxonomy is
presented to differentiate the possible human–technologies interactions (parasitism, com-
mensalism, mutualism, symbiosis, amensalism, or competition) [24]. This classification
between humans and different technologies proposes an explanation of how the technology
evolves, how complex systems are going to be socially implemented, and the impacts the
different interactions are going to have on the economics of innovation.

A theory of the evolution of technology: Technological parasitism and the implications
for innovation management [25]. The adaptive behavior derived by high competition
between firms and nations impels the technology evolution. In this theory, it is stated that
host technologies that have a high number of technological parasites are more likely to have
an accelerated evolution, rather than the ones who have low technological parasites. This
condition results since having more “parasites” involves having more complex systems,
with more interactions between technologies and more benefits driven by those interactions.
It also considers that because a specific technology has more “parasites,” more humans
are focused on developing new operations and uses (could be performed through a host
technology or a parasite technology).

The above can be a very general view of technological development. However, it
allows us to lay the foundations to estimate future disruptive inventions and the impacts of
innovations on social dynamics. Moreover, the change generated by disruptive technologies
highly tends to change competitive advantages that a firm could have in a determined
market. Some examples of firms that implement disruptive technologies are Apple Inc.
(introducing wireless headphones to the market) and AstraZeneca (generating innovative
treatments treat lung cancer) [26]. However, these new technologies imply a change in
industrial behavior, leading companies to destroy (directly or indirectly) older products,
goods, or technologies, to keep their leadership on their market, maximize profits, and/or
protect competitive advantages [27]. Nevertheless, constantly generating innovations can
be a problem for companies if they are not planned incrementally. To solve this, Coccia
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presented a conceptual framework of problem-driven innovation to explain industrial
and technological change and the importance of solving problems by researching and
developing radical innovations, either to maintain competitive advantages, maximize
profits, or stay leaders in their sector [28]. Moreover, firms must consider the behavior that
technologies have in the market since there is an asymmetry in the technological cycle of
disruptive innovations (having a down phase shorter than the up phase) [29]. Empirically
speaking, this behavior depends on the offer and demand on the markets, the grade of
acceptance of a particular product that uses disruptive technologies, and by what firms
want to sell.

Given all the above, it is crucial to consider the impact that service robots will have
on the economics of innovation, its life-cycle, and that they could be a radical innovation
in some fields that destroys or replaces the operation worth of preliminarily established
technologies applied and used in markets [30]. There is a variety of tasks that researchers
must develop for the use and implementation of service robotics, such as object detection,
task/motion planning, activity recognition, navigation and localization, knowledge repre-
sentation and retrieval, and the intertwining of perception/vision and machine learning
techniques [31].

There are many areas of opportunity to apply service robots; however, there may be
countries that have very incipient markets for the use of these new technologies, so one
option may be to resort to foreign markets [32]. Besides, giving robots with cognitive and af-
fective faculties, by working out infrastructures that allow them to establish compassionate
connections with people, is a priority task [33]. Definitively, due to the constantly changing
social mindset and current status quo of humans, the discussion on social, ethical impli-
cations, and concerns of using service robots is open, but the economic impact and social
changes that service robots produce will likely accelerate their technological evolution.

3.2. Robots Technology

An under-studied field of research is the economics of technical change and technol-
ogy management. A theory on the classification and evolution of technology considers the
taxonomic characteristics of the interaction between technologies. The proposed classifica-
tion makes an analogy with the evolution of parasites considering generalized Darwinism:
parasitic technologies, commensal technologies, mutualistic technologies, and symbiotic
technologies [24]. The classification of parasitic technologies is based on parasite–host
relationships, and it has been shown that technologies with a high number of parasites
have a high evolution. This theory provides a new perspective to explain and general-
ize the evolution of technology to sustain the competitive advantage of companies and
nations [23].

The rapid development of service robots is mainly due to the fourth industrial rev-
olution. In our current era, a person can obtain information and technology from the
internet. However, due to the inherent speed of technological changes enjoyed by today’s
society, it is often overlooked and tends to be forgotten. All this technological research and
development would change humankind and how it is and, according to Schwab [34], there
are three main reasons why the ongoing fourth industrial revolution is changing our daily
lives: The velocity in which current technology is evolving (exponential growth rather than
linear growth), the breadth and depth the information has reached in today’s society, and
its impact on entire systems that are changing their paradigms from a micro to a macro
level [7].

Before even starting to explain the new technologies that service robots are bringing
and implementing, we need to go into depth into the levels that society will be affected,
besides the tasks that will be executed by service robots. Taking up what was written
by Wirtz et al. [7], alongside the micro-level, using service robots in different areas would
bring advantages such as personalized service for each person/client, homogeneous quality
service, accelerated learning, interconnection, to mention a few. Along the meso-level,
service robots will become a solution to a market necessity, a commodity instead of a critical
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source, and reduce payroll expenses. Along the macro-level, service robots will reduce the
number of unattractive, time-consuming jobs that imply task repetition and the need to
be present in one place due to the nature of the job (as a receptionist for the hotel), which
would directly lead to a reduction in expenditures in general.

Across the literature reviewed in this paper, and taking into account the classifica-
tion presented by Rubio et al. [35], we can resume the current uses, developments, and
applications of service robots in the different operations areas as shown in Figure 5. This
search used the ScienceDirect and Scopus databases during September 2021. It should be
noted that the research carried out to establish a state of the art (SoA) for this work could
be biased due to the large fields of application that service robots have. We include the
leading research and developments that other researchers and peers have been undertak-
ing; however, there may be more information about other applications not considered in
this paper.

Delving into each area reviewed in the literature, the leading technologies applied to
service robots can be identified. In the area of health, especially in the area of mental health,
chatbots and virtual embodied artificial intelligence (AI)-supported psychotherapeutic
devices are being tested to deal with anxiety and depression [36]. In addition to this,
some of the disruptive technologies applied for the analysis of COVID-19 are the Internet
of Medical Things (IoMT), data science and big data, blockchain, virtual reality (VR),
telemedicine, 5G, AI, drones, and autonomous robots [37]. Nowadays, the creation of a
mobile healthcare robot is possible thanks to AI, machine learning, facial recognition, and
teleportation technologies [38]. There are arising openings for the operation of robotics
to endorse ubiquitous healthcare that may reflect in cheapening medical expenses and
adding the amenity of cases and people in general [39]. Alongside the education field,
educational robots are implementing different learning models to enhance learning student
performance. There is a wide variety of models such as adaptive learning, agent-based
learning, and smart learning [40]. Other implementations are teleoperated, autonomous,
and convertible robots to assist elementary school teachers during classes [41,42].

In the technology and kinetics area, unmanned aerial vehicles (UAV) require a ground
control station (GCS), batteries, fuel cells, or hybrid power sources to work, as well as power
management strategies for real-time monitoring of power consumption (rule-based and
fuzzy logic strategies) [18]. Unmanned ground vehicles (UGV) require the development
of robotic frameworks and platforms. Some of them are the Robot Operating System
(ROS), Middleware for Robotic Application (MIRA), Yet Another Robot Platform (YARP),
Lightweight Communications and Marshalling (LCM), Mission Oriented Operating Suite
(MOOS), and Universal Robotic (Urbi), to mention a few [43]. Moreover, rescue robotics
as autonomous robots should use field-deployable technologies and work in real-world
environments [44]. Some service robots and robotic platforms tested in farms and factories
use IoT, edge, and cloud computing through virtualization and AI technologies, pushing
its commercial adoption [45,46].

There are also great opportunities and growth areas in the field of leisure and recre-
ation, starting with the tourism sector; technologies such as information-centric networking,
cloud computing, big data, blockchain, AI systems, and IoT are essential in the develop-
ment of robotics in tourism [47]. Traditional hotels will have to transform into smart
hotels and implement interconnectivity and interoperability to support business partners’
applications, use big data to forecast revenues more precisely, and use instant translation
devices to avoid miscommunication [48]. Not only will resorts’ experiences change, but the
shopping customer experience will change due to service robots. The implementation of
neuroscience, business process automation, blockchain, digital twins, VR, AI, mobile robots,
location-based wearables, and machine-to-machine interaction through IoT by organiza-
tions are going to provide immersive and personalized environments to consumers [49].
Moreover, the inception of humanoid service robots (HSRs) by companies will generate
competitive advantages against their competitors and trigger compensatory consumer
behavior [50]. However, the use of service robots is not only limited to experiences and
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buildings; direct robot–human interaction will go further due to the use of wearable af-
fective robots that will imitate cognitive competencies. Examples of these service robots
are social robots that recognize emotions, affective robots, and intelligent brain wearables
that recognize electroencephalography (EEG) data. They use natural language processing,
pattern recognition, data mining, and other machine-learning techniques to achieve a
human brain working mode simulation [51]. Lastly, service robots related to sexuality are
no longer a fantasy due to the interest in human–robot interaction focused on sexual robots
programmed with AI [52].

Figure 5. Uses and applications of service robots in different operation areas.

Thinking about smart urban environments, autonomous vehicles (AVs) is a concept
that comes to mind. Technologies related to AVs are vehicles automation, automation, and
electrification of public transportation, and electric propulsion [53]. Moreover, the term
smart home is becoming more relevant, implying the use of cloud servers, cloud learning
services, and machine-learning algorithms. Besides, a home service robot must be capa-
ble of recognizing human body activity, tracking a human position, sound-based human
activity monitoring, and fall detection and rescue [54]. Assistive robots can also be used
as caregivers in smart homes for elderly people [55]. Context awareness is an important
topic related to surveillance. To achieve a context-aware model applied to an intelligent
surveillance robot, techniques such as data mining, Bayesian network, collaborative fil-
tering, and machine learning are applied [56]. People’s economy is an important topic to
consider; therefore, the development of financial technology (FinTech) supported by AI is
vital for the world’s economy [57]. Self-service technologies (SSTs) such as automated teller
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machines, self-checkouts, and self-service kiosks are likely to use and implement service
robots with human-like characteristics such as memory, gaze, and gestures [58].

As shown below, the principal technologies related to service robots are artificial
intelligence, the Internet of Things, human recognition, machine learning, blockchain, and
big data. Table 1 states and summarizes some keywords used by authors.

Table 1. Operation areas, applications, and keywords related to service robots.

Operation Areas Applications Keywords

Healthcare
Interacts directly with humans, handling routine

logistical tasks, disinfecting rooms, helping transport
patients, moving heavy machinery.

Artificial intelligence, ethics, medicine, robotics,
COVID-19, blockchain, Internet of Medical Things

(iomt), Industry 4.0, healthcare, 5G.

Education

Serve as a tutor or a peer in a student’s home.
Teaches and quizzes a student on the topics they are
having trouble with in the classroom, be controlled

by a teacher.

Children’s learning, N-screen, remote control,
robot-based learning, streaming, hardware design,

sign language, social child–robot interaction,
service agent.

Technology and
kinetics

Uses in military, scientific, agricultural, commercial,
policing, surveillance, product deliveries,

distribution and logistics, aerial photography fields,
calculation, and decision making through artificial

intelligence algorithm.

MATLAB, multibody dynamics, robotics, wheeled
mobile robot, extreme environments, IoT,

edge-computing, artificial intelligence, power
supply, energy management, locomotion,

navigation, perception, sensoring.

Leisure and
recreation

Diversified booking method, improved pre-arrival
experience, increased personalized data collection,

new costumer experiences, shopping assistant,
chatbots-as-a-service, exhibitions, and events.

Artificial intelligence, automated tourism,
intelligent automation, service robots, customer

experience challenges, physical and social realms,
emotion cognition, social robot.

Smart cities
Establish the digital model of physical space and

social space, collect data of the environment and its
own operation, respond to various needs in real time.

Assistive technology, elderly care, home service
robot, smart home, IoT, surveillance robot,

intelligent service, context awareness, future
service scenarios, value networks.

Economy

Increase in productivity in service organizations and
their ability to generate insights. Robots can open
spreadsheets and databases, copy data between
programs, compare entries, and perform other

routine tasks.

Artificial intelligence, finance, robo-advisors,
robots, technology adoption, anthropomorphism,

humanoid service robots, human–robot interaction,
public service, trust, turn-taking.

3.3. Commercial Technology

Currently, the technology level in service robots is emerging; that is, the technology
started to be commercialized by some vendors. Industry leaders have pilots and deploy-
ments in commercial service robots such as SoftBank Robotics, Furhat Robotics, Smart
Robotics, and Temi. From a consumer perspective point of view, this level of maturity
implies the very first generation of products, a very high price, and customization. Accord-
ingly, a few firms dominate personal service robots, mainly taken by vacuum cleaners such
as iRobot, approximating the market as an oligopoly.

Within the global market, there are different items of service robots, with some sample
commercial robots presented in Table 2. There are applications on logistic, defense, public
environmental, medical, field, exoskeletons, construction, inspection and maintenance,
professional cleaning, and other uses. It is essential to mention that, for the most part, from
2018 to 2020, the sales of each item doubled. Moreover, the sales value of professional
services robots has increased by 32%, which means 11.2 billion USD from 2018 to 2019
(data taken from EMIS). Furthermore, the COVID-19 pandemic can potentiate this growth.
Robotic disinfection solutions, robotic logistics solutions in factories and warehouses, or
robots for home delivery are examples of this trend, according to the World Robotics
2020—Service Robots report, presented by the International Federation of Robotics (IFR).

A significant sector that is currently adopting service robots is the hotel sector. As
presented in [59], there exists a correlation in positive online reviews of hotel services to
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the use of service robots, and it also happens to increase the motivation of guests to write
a review providing evidence of the service given by the robot. Another example of early
commercial adoption of this technology is the catering and delivery business. According
to [60], malls and university campus cafeterias are adopting delivery robots in order to
reduce queue lines, thus reducing the mean delivery time. Such a study demonstrates an
increase in business profit up to 95.4% when implementing the so-called Contactless Meal
Order and Takeout Service (MOTS).

However, as of today, in 2021, market researchers, [61], have studied the relationship
between the perception of value in consumers and users of service robots. A categorization
presents the relative value of the robot as hedonic or utilitarian (hedonic refers to the value
that enters via emotion or feelings, utilitarian value refers to value selected via rational
behavior or monetary value) in different aspects such as hotels, hospitals, airports, and
other tourism activities. The cited study throws two important conclusions: the utilitarian
value is essential to obtain customers, and the hedonic value will attract more clients and
catch the eye of the new possible users. Such values prompt a design guideline in the future
of service robots. The following main conclusion suggests that, at the current stage, users
are unlikely to pay attention to the utilitarian value of service robots. However, the more
engaged society is with this kind of robot, the more likely it will increase actual utilitarian
value.

The perceived responsibility in case of malfunction of a service robot triggers another
pitfall when developing commercial technology. The work by [62] calculates the degree of
responsibility in the errors that happen on the robot end and on the user end. The results
happen to be inconsistent with the self-serving bias [63], which states that people attribute
their successes but not the failures. In the study context, the adverse outcomes (errors and
undesirable situations) are attributed to the service customer/user, and positive outcomes
are attributed to the service robot.

Table 2. Sample commercial service robots.

Figure Commercial Name Developer Classification Application

UVD Robot [64] Blue Ocean
Robotics

Professional
use—Healthcare—Class 1

Cleaning surfaces using UV on
hospitals.

MyAppCafe—Street
barista [65]

My App Cafe
GmbH Personal use—Food—Class 1

A robotic manipulator is
installed in a cell and serves

coffee with no human help and
using a mobile application

interface.

EksoNR [66] Ekso Bionics Professional
use—Healthcare—Class 3

Exoskeleton that aids and
accelerates therapy among users

that suffer spinal injury.

Nuro R2 [67] Nuro Inc. Personal use—Delivery—Class 1

Autonomous mobile robot that
drives through the city and

delivers goods requested using a
mobile application.

Roomba [68] iRobot Personal use—Cleaning—Class 1 Floor vacuum floor cleaner.
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Table 2. Cont.

Figure Commercial Name Developer Classification Application

Pepper [69] SoftBank
Robotics

Personal use—Multiple
uses—Class 1

Humanoid that recognizes faces
and emotions is currently used

in airports and schools to
provide assistance.

Turtlebot 2 [70] OSRF Professional
use—Education—Class 2

Low-cost robot kit for
prototyping and learning.

3.4. Scientific Literature

Due to the rapid advances in robot technology combined with AI, the creation and
implementation of service robots in different industrial sectors have increased dramatically.
Service robots can be in different forms; they can be virtual, chatbots, humanoids, and
non-humanoids [61]. Thanks to the advances in robotics and the implementation of AI,
machines can perform even more complex and repetitive tasks [59].

Some AI and natural language processing applications emerged as a COVID-19
response to protect and prevent further damage due to the health crisis that emerged in
2020. An example of this technology implementation is the Intelligent Voice Assistant
for Coronavirus Disease Self-Assessment, a deployment that successfully merges natural
language processing and cloud computing to create a virtual service robot that helps to
diagnose symptoms related to COVID-19 [71].

The demand for service robots grew for the attention of social distancing and health-
monitoring protocols due to the COVID-19 outbreak. Therefore, many industries have
opted to include service robots as part of their staff to improve customer experience, service
quality, and efficiency, as well as to reduce labor costs [72]. For example, service robots
can provide more accurate services reducing mistakes and becoming more reliable and
consistent than human employees. More importantly, robots can perform tasks without
stopping, at a faster pace than humans, as well as carry multiple, repetitive, and mundane
tasks without protesting [72].

Human–robot interaction is in constant development; the acceptance of service robots
has flourished. To illustrate this idea, Figure 6 shows a prediction of the near future on
the potential development of service robots. However, since it still is an early stage of
development of the service robots, some groups of persons are open to their use, while
others express concerns related to the negative consequences [61].

The recent and fast development of robotic technologies has inspired tourist corpora-
tions to adopt service robots. An excellent example of this is the service robot “Pepper”.
The benefits of this adoption were a noticeable increase in the customer’s satisfaction, as
well as creating a positive word-of-mouth [73]. For instance, medical robot assistants are
being used to monitor patients and alert the medical staff when needed. Nowadays, the
implementation of robotic medical assistants has increased due to the COVID-19 outbreak,
resulting in a valuable and efficient way to monitor and control highly contagious diseases
patients [74].

An exploratory study reveals that service robots are becoming a popular and more
recurrent feature in tourism. This study suggests the tourism market perceives imple-
mentation of service robots as valuable, not only for interested technological visitors but
also by an increasing number of customers [59]. Other studies have implemented service
robots in restaurant companies to reduce work hours and improve service quality. The
restaurant industry suffers from product losses constantly when the total demand exceeds
the service production capacity. Results demonstrate the robots have reduced 20 work
hours of the service staff, also improving labor productivity (sales per hour) and reducing
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the losses dramatically due to lack of production; with the implementation of service
robots, the service production sustained a higher and more efficient pace [75]. Current
robotics applications will be covered in the next section. Moreover, we wondered about
the terms associated with our search, so we constructed two different word clouds. One
including single keywords used by the authors in the reviewed papers (see Figure 7) and
one including composed keywords (see Figure 8).

Year
2018 2019 2020 2021 2022 2023

0

10

20

30

40

50
Millions of units

Potential Development of Service Robots

for Personal Use

Figure 6. Service robots potential development for personal/domestic use.

Figure 7. Word cloud of simple keywords used by authors in the reviewed literature.

Figure 8. Word cloud of composite keywords used by authors in the reviewed literature.

3.5. Applications

There are several applications where service robots can add value; due to their versa-
tility, the different needs of each industry will lead the design process.

A new frontier entering the market in industrial robotics are new, easy-to-use col-
laborative robotics solutions, where the robot advantages such as precision, speed, and
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repeatability come together with the flexibility and cognitive skills of human workers [76].
In the past years, industrial robots were robust, used to perform a specific task, and
placed into a cage for the safety of others. However, collaborative robots are designed and
prepared to interact and work alongside humans [77].

Recently, the development of collaborative industrial robots for the manufacturing
process has increased. There are automatic guided vehicles (AGVs), as observed in Figure 9,
that are a type of service robots whose primary functionality is to help in the realization
of internal transport processes [78]. Another application is the human–robot interaction
(HRI), which is becoming a new trend thanks to technology and advances in perception,
cognition, and control algorithms. As interest in these robots increases, so do the benefits
of their implementation, such as productivity and production line flexibility [79], resulting
in increased production and demand from industries to integrate them [80].

A significant application for service robots is daily-life assistance. It is very complex
because, for comfortable assistance, the robot must recognize its surroundings, including
the motion of humans, the position of the objects, and obstacles such as stairs [81]. The
principal objective in this application is to reach effective communication between the robot,
its real-world environment, and the people in it [82]. In such a situation, the robot must
have a manipulator that can grasp, transport, and place objects, as these are fundamental
capabilities for this type of service robot [83].

Figure 9. Example of AGV robots [78].

A robot-integrated smart home (RiSH) refers to a house that contains at least one
service robot, a sensor network, a mobile device, cloud servers, and remote caregivers [54],
so the service robot controls everything inside the house from afar. A telepresence robot
system performs assistive functions to improve the well-being of elderly persons. It can
assist them to do daily activities independently, to encourage social interactions to combat
the sense of isolation or loneliness, and to help the professional caregivers in routine
care [84]. However, in this scope, it is crucial to consider the acceptance of service robots
by elderly people considering the psychological variables for proper interaction between
people and technology [85].

Another application where service robots are being incorporated and are considered
the workforce of the future is in operation and management, including the hotel indus-
try [86]. In this case, a bellboy robot performs hotel-related functions such as walking
alongside guests and providing information about the city and the hotel [87]. Depending
on these functionalities and the total interaction with hotel guests, the overall experience of
the visitors will change [88].

In recent years, the primary purpose of developing more robots has been to improve
productivity. However, with the current COVID-19 pandemic, a more urgent purpose has
arrived [89] where robots present significant advantages. We have been involved in the
revolutionary development of mobile healthcare robots as there is a need for people to
avoid physical interaction [38]. It enables the closer analysis of this need in order to ensure
the regulation of social distancing rules [90].

Hand gestures will be the usual method to manipulate human–computer interfaces
(HCIs); however, to assist people with motor disabilities, an HCI must be designed es-
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pecially for them. The help of service robot platforms in communication with three-
dimensional (3D) imaging sensors and a wearable armband explores this solution [91].

As technology advances, society must adapt to new trends. Therefore, students and
teachers have incorporated some of the latest technologies, overcoming many obstacles
in the process. One of these technologies is the NAO humanoid robot that is currently
being used in computer and science classes from elementary schools to university classes
in many countries around the world [92].

Regarding business and financial institutions, there has already been considerable
progress automating specific tasks implementing RPA and RPM concepts. As an example,
Vodafone combines RPA and RPM to identify non-standard orders that require a high
level of human interaction, which helps to reduce the time invested into checking complex
orders before delivering to a supplier [93]. In the banking industry, some cases using RPA
are: automatic report generation, opening an account, audit and compliance, chatbots,
anti-money laundering, among others [94]. The combination of RPA and IA can lead to
improved operational efficiency and increase the impact on the economics of innovation.
However, RPA implementation is limited to business and banking; industries such as
insurance, manufacturing, logistics, government, and public security can also take ad-
vantage of this technology [95], thus, it is of utmost importance to determine the current
degree of automation in an organization’s business processes to correctly identify tasks
and processes that can be automated or improved [96]. RPA is an emerging technology
that will have many applications, but one of the critical challenges to fully take advantage
of this technology is to transfer digital tasks (performed in an environment with a virtual
desktop interface) to cyber-physical tasks and processes [97].

Service robots can navigate through inaccessible or unsafe environments for the Urban
Search and Rescue (USAR), where human teams cannot enter. The principal features that
these types of robots must have are speed, weight, robustness, reliability, affordability,
adaptability to different environments or tasks, and provide excellent two-way audio
and/or video communication [98]. As well as the shown applications in the previous
section, service robots have become a significant worldwide trend. The following section
covers some robotics trends.

3.6. Trends

The revision of the literature on service robots identifies diverse trends in the fields
of healthcare, industry, home service, and multi-purpose indoor environments. Regarding
the type of robots, trends in autonomous navigation [99,100], mobile robots [35], unmanned
autonomous systems [101,102], and imitation learning systems [103,104] were identified.

Healthcare: The current global population trend has shown an increase in elderly
persons, as well as an increase in more populated cities; therefore, there is a higher demand
for healthcare services such as medicine and nursing [105]. According to Archibald and
Barnard [105], three types of service robots oriented to health exist: doctor, nurse, and home
health care robots. Regarding nursing robots, applications have been implemented for
feeding assistance, automated soaping and showering for the elderly, robotic therapeutic
companions, pharmaceutical transporters, pick-and-place patients in bed, and ambulation
assistants [105]. A human action recognition algorithm using depth cameras, object de-
tection, and human joint identification techniques supports patients with mild cognitive
impairment (MCI) at their homes. Assistive living robots could be of use to MCI patients,
as they can identify potential risks due to errors and avoid dangerous accidents [106].

Other studies have implemented physical exercise programs in elderly health centers
with success. In this study case, 41 volunteers underwent a training program with a
humanoid Aldebaran NAO robot and with a human coach [107]. The study results showed
a good response towards the humanoid coach, at least for the training program. When
analyzing a factual information task between robot and human, the human coach was more
efficient. A biomechanical rehabilitation, one degree of freedom (DOF) robotic handle for
post-stroke patients applies an adaptive reinforcement learning (RL) algorithm [108]. By
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constantly adapting the difficulty level of a virtual “nut-catching” game, depending on the
skill level of volunteers, patients can learn at a faster pace while not losing their motivation.

A telemedicine robot (see Figure 10) was developed in [109], composed of a four-wheel
base, a robotic arm, and a tablet, acting as the head of the robot. The robot also includes
an array of ultrasound sensors and cameras. The robot allows automated navigation
combining its sensors and actuators, including obstacle avoidance and object manipulation
tasks (e.g., the floor and shelves). It implements routines such as TakeMedicine, WallFol-
lowing, and Doorpassing. Other applications are also included, such as fetching, providing
reminders, calendar, and interpersonal communication [109].

Figure 10. (a) Autonomous telemedicine robot system for assisted and independent living. (b) Simu-
lated and experimental paths of an obstacle avoidance trial in a real-world scenario (center for the
elderly), executed by the telemedicine robot developed in [109].

Industry: Different applications of service robots have been implemented for the
industrial context. In [104], a machine learning technology enables a chatbot to provide
support to customers in financial-product sales. Using robots to work continuously, text
information from FAQs, call center response manuals, and office documents were used as
input to a machine learning model to generate artificial conversation about bank services to
interested customers. The use of unmanned aerial vehicles (UAV) has been reported in high
risk tasks, such as transmission line inspection in China, Japan, Spain, and Britain [102].
By implementing UAV control and combining image processing and artificial intelligence,
UAVs have performed autonomous inspection. These types of robots use a combination of
visible light and thermal infrared sensing, as well as LiDAR technology [102]. Although
UAVs are useful for safety purposes, manual inspection still outperforms in some scenarios,
and it can also perform repairs, while UAV cannot.

Collaborative robots, usually robotic arms or semi-humanoid robots, represent an
intermediate automation level between manual and fully automated manufacturing. In
this approach, the robot acts as an assistant to a human during specific tasks. Vision-based
collision prediction systems, capacitive sensing (skin detection), and safety design parame-
ters, and routine instrument these types of robots [110]. Another typical application for
industrial robots is object manipulation. An exciting study case is that of the first Ama-
zon Picking Challenge [111], challenging 26 teams (primarily academics). The challenge
involves designing autonomous robots to pick objects from a warehouse shelf. Objects of
different shapes and sizes were used (Oreo cookies, an outlet protector, and a softcover
book are some examples), and the teams used different approaches. Among the most
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common solutions were suction actuators, 3D imaging sensing, and a geometrical and/or
color recognition approach for feature selection.

Home service: Some application trends in home service are in education, entertain-
ment, household, social interactions, gaming, security, and rehabilitation [112]. A home
voice-activated semi-autonomous vehicle robot was implemented in [113]. It consisted of a
modified lawnmower and an IoT control module through voice-activated Alexa commands.
Humanoid robots can help in house chores, grasping and carrying objects, opening doors,
and entertainment [114].

Multi-purpose indoor environments: Positioning systems using sensor fusion for
indoor positioning tasks mainly uses ultrasonic sensors and information from radar and
odometry [115]. A mobile robot using a robust convolutional neural network (CNN)
algorithm for person identification, tracking, and locking followed the identified persons
through different rooms, with great accuracy [116]. The development of a robotic waiter
system integrates different autonomous navigation algorithms and sensing approaches,
such as IMUs, odometry, SLAM, and adaptive Monte Carlo simulation [100]. Artificial
vision methods identify tables in a restaurant as well as persons. Another approach of
indoor positioning, Steady Delivery, makes use of sensor fusion, involving radar, ultrasonic
sensors, and odometry [117]. Table 3 presents the current trends of service robots.

Table 3. Service robots’ current trends.

Field Figure Commercial Name Robot Type Application

Healthcare
Aldebaran NAO

robot [107] Humanoid robot Physical exercise programs in
elderly health centers.

Care-o-Bot [109] Mobile robot
assistant

Implements routines such as
taking medicine, wall

following, and door passing.

Industry

Financial Services Solution
Finplex Robot Agent

Platform (FRAP) [104]
Chatbot Provide support to customers

in financial-product sales.

Yaskawa Motoman [111] Autonomous
robot

Autonomous robot to pick
objects from a warehouse

shelf.

Home service R1 [114] Humanoid robot

Help in house chores,
grasping and carrying objects,

opening doors, and
entertainment.

Multi-purpose
indoor

environments
Festo Robotino [114] Mobile robot Indoor positioning system for

service robot applications.
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Table 3. Cont.

Field Figure Commercial Name Robot Type Application

Pioneer P3-DX [115] Mobile robot
Wall detection and obstacle

avoidance, autonomous
navigation.

Beta-G [115] Mobile robot
Waiter robot (identify tables in
a restaurant, go to the target

table to serve the food).

4. Conclusions

From the presented review, the emerging status of service robots technology in the
world and as a research area becomes more evident. This carries essential opportunities
for early research, development, and investment in commercial technology as a strategic
decision for long-term profit [118]. Despite the fact of the good will of robotics, some
challenges are still present. Some of them are the lack of generalization and formalism
in classifications and taxonomy [10], the current perceived utilitarian value [61], battery
and autonomy modelling and estimation [119], ethics [36], and even design problems
related to gender biases based on the occupation of the robot [120]. These challenges
are opportunities for future research questions or different research groups. Moreover,
a solid field of service robots is healthcare and cleaning robots. Consequently, with the
COVID-19 pandemic, a push in these technologies was observed [37,90] and must be
taken into account when performing research in this area. After the accelerated development
in these technologies (caused by the COVID-19 spread) reaches a plateau, it may be an
interesting research question to study the degradation or improvement in service robot-
related areas. As a final remark, despite the fact of current opportunities and observations
in the field, estimations [50] point that, one way or another, service robots will undoubtedly
be part of our daily life in the near future. This study will help researchers as it provides
valuable information on recent developments of service robots. This work can serve as
a starting point for researchers when studying this field. Moreover, we consider it helps
to estimate the future value of the investment in service robot research and development.
Consequently, the readers will contribute to this work by producing more studies and
expanding the research area.
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Abstract: This review is dedicated to the advanced applications of robotic technologies in the
industrial field. Robotic solutions in areas with non-intensive applications are presented, and
their implementations are analysed. We also provide an overview of survey publications and
technical reports, classified by application criteria, and the development of the structure of existing
solutions, and identify recent research gaps. The analysis results reveal the background to the
existing obstacles and problems. These issues relate to the areas of psychology, human nature, special
artificial intelligence (AI) implementation, and the robot-oriented object design paradigm. Analysis
of robot applications shows that the existing emerging applications in robotics face technical and
psychological obstacles. The results of this review revealed four directions of required advancement
in robotics: development of intelligent companions; improved implementation of AI-based solutions;
robot-oriented design of objects; and psychological solutions for robot–human collaboration.

Keywords: industrial robots; collaborative robots; machine learning in robotics; computer vision

1. Introduction

The industrial robotics sector is one of the most quickly growing industrial divisions, pro-
viding standardised technologies suitable for various automation processes. In ISO 8373:2012
standard [1], an industrial robot is defined as an automatically controlled, reprogrammable,
multipurpose manipulator, programmable in three or more axes, which can be stationary or
mobile for use in industrial automation applications. However, the same standard creates an
exception for wider implementation. It states that the robot’s classification into industrial,
service, or other types is undertaken according to its intended application.

According to the International Federation of Robotics (IRF) [2], 373,000 industrial
robots were sold globally in 2019. In 2020 the total number of industrial robots operating
in factories globally reached 2.7 million. Successful application of industrial robots, their
reliability and availability, and the active implementation of the Industry 4.0 concept have
stimulated growing interest in robots’ optimisation and the research of new implemen-
tations in various areas, especially in non-manufacturing and non-typical applications.
According to one of the biggest scientific databases, ScienceDirect [3], more than 4500 scien-
tific papers were published in 2019 using the term “Industrial robot” as a keyword and,
in 2020, the number of papers with a similar interest and research direction increased to
5300. Figure 1 shows the annual ratio of new robot installations vs. the number of scientific
publications in the ScienceDirect database. Scientific interest in this field is based on a
steady increase in the number of publications, independent of the political, economic, and
social factors affecting the market for new robots.
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Figure 1. The annual ratio of publications to newly installed industrial robots.

This review assesses the recent development trends in robotics, and identifies some of
the most relevant ethical, technological and, scientific uncertainties limiting wider imple-
mentation possibilities. This literature review is focused mainly on the 2018–2021 applica-
tions of industrial robots in fields in which endorsement of robotisation has traditionally
been weak (i.e., medical applications, the food industry, agricultural applications, and the
civil engineering industry). It also includes fundamental issues such as human–machine
interaction, object recognition, path planning, and optimisation.

For this review, main keywords, such as industrial robots, collaborative robots, and
robotics, were used to survey published papers over a four-year period. Because this is a
widely researched and dynamic area, the review focused on a relatively short time period
and encompassed the most recent sources to ensure the analysis conducted was novel.

According to the search request, Google Scholar returned 79,500 results, from which
115 publications were selected. The surveyed articles were selected according to the
direction of the literature review and the indicated criteria (application area, novelty and
significance of achievements, reliability, and feasibility of results).

Despite the ever-growing field of automation in daily life and society’s accustomed
use of smart devices, non-typical applications of robotics are still often viewed with consid-
erable scepticism. The most common myth about robots is that they will occupy human
workplaces, leaving human workers without a source of livelihood. Nevertheless, the
research provided in [4], which aimed to evaluate the public outcry about robots taking
over jobs in electronics and textiles industries in Japan, proved that such a point of view
is incorrect. Evaluation of the use of the robots based on their number and real imple-
mentation price determined that implementation of robots positively affects productivity,
which results in a positive impact for the most vulnerable workers in society, i.e., women,
part-time workers, high-school graduates, and aged persons.

Technological and scientific uncertainties also require a special approach. Each roboti-
sation task is unique in its own way. These tasks often require the use of individual tools,
the creation of a corresponding working environment, the use of additional sensors or
measurement systems, and the implementation of complex control algorithms to expand
the functionalities or improve the characteristics of standard robots. In most applications,
industrial robots form bigger units as robotic cells or automated/autonomous manufactur-
ing lines. As a result, the robotisation of even a relatively simple task becomes a complex
solution requiring a systemic approach.

Moreover, the issue of implementing an industrial robot remains complicated by its in-
terdisciplinary nature: proper organisation of the work cycle is the object of manufacturing
management sciences; the design of grippers and related equipment lies within the field of
mechanical engineering; and the integration of all devices into a united system, sensor data
analysis and whole system control are the objects of mechatronics.

This review focuses on the hardware and software methods used to implement in-
dustrial robots in various applications. The aim was to systematically classify the newest
achievements in industrial robotics according to application fields without strong robotisa-
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tion traditions. The analysis of this study was also undertaken from a multidisciplinary
perspective, and considers the implementation of computer vision and machine learning
for robotic applications.

2. Main Robotisation Strategies

According to the human–robot cooperation type, a review of the most recent trends in
industrial robotics applications indicates two main robotisation strategies: classical and
modern. In industrial robotics, five typical levels of human–robot cooperation are defined
(Figure 2): (i) no collaboration; (ii) coexistence; (iii) synchronisation; (iv) cooperation;
(v) collaboration [5].

 

Figure 2. Human–robot cooperation levels [5]: (a) no collaboration, the robot remains inside a closed
work cell; (b) coexistence, removed cells, but separate workspaces; (c) synchronisation, sharing of
the workspace, but never at the same time; (d) cooperation, shared task and workspace, no physical
interaction; (e) collaboration, operators and robots exchange forces.

The classical strategy encompasses the first cooperation level (Figure 2a). It is based
on the approach that robots must limit humans in their workplace by creating closed robot
cells in which human activity is unacceptable; if a human must enter the robot’s workspace,
the robot must be stopped. This approach uses various safety systems to detect and prevent
human access to the robot’s workspace. The modern strategy includes the remaining four
cooperation levels (Figure 2b–e). This is based on an opposing approach, and states that
robots and humans can work in one workplace and collaborate. Such an approach creates
additional requirements for robot’s design, control, and sensing systems. Robots adapted
to operate in conjunction with human workers are usually defined as collaborative robots
or cobots.

2.1. Classical Robotisation Strategy

Following the issuing of the patent for the first industrial robot to George Devol in
1954, the classical robotisation strategy has indicated that robots should replace human
workers in routine tasks and unhealthy workplaces. This strategy suggests that humans
should be removed from the robot’s workspace (Figure 3a). Direct cooperation between the
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robot and humans is forbidden due to the potential danger for human health and safety.
This approach was later expanded to encompass accuracy, reliability, productivity, and
economic factors.

Figure 3. Comparison of the operating environment: (a) industrial robots (adapted from [6]);
(b) collaborative robots (adapted from [7]).

Research provided in [8] analyses the possibilities of implementing service robots
in hotels from social, economic, and technical perspectives. The authors indicated the
need to evaluate hotel managers’ perceptions regarding the advantages and disadvantages
of service robots, compared to human workers, as the primary goal of their research,
whereas determining tasks suitable for robotisation was of secondary importance. This
approach confirms the assumption that the implementation of robotics in non-traditional
applications is often limited not by technological issues, but by the company managers’
attitudes. Analysing questionnaires completed by 79 hotel managers, it was concluded that
robots have an advantage over human employees due to better data processing capabilities,
work speed, protection of personal data, and fewer mistakes. The main disadvantages of
robots were listed as: lack of capability to provide personalised service; inability to handle
complaints; lack of friendliness and politeness; inability to implement a special request that
goes beyond their programming; and the lack of understanding of emotions.

Despite the common doubts, implementing automation and robotic solutions has a
positively impact in many cases. The study provided in [9] analysed the general impact
of robot implementation in workplaces for packing furniture parts. The analysis focused
on the ergonomic perspective, and found that implementation of robotics eliminates the
risk of work-related musculoskeletal disorders. A similar study [8] analysed the design,
engineering, and testing of adaptive automation assembly systems to increase automation
levels, and to complement human workers’ skills and capabilities in assembling industrial
refrigerators. This study showed that automated assembly process productivity could be
increased by more than 79%. Implementing an industrial robot instead of partial automation
would likely result in an even more significant increase in productivity. Research comparing
human capabilities with automated systems is also described in [10]. The authors compared
human and automated vision recognition system capabilities to recognise and evaluate
forest or mountain trails from a single monocular image acquired from the viewpoint of a
robot travelling on the trail. The obtained results showed that a deep neural network-based
system, trained on a large dataset, performs better than humans.

Neural network-based algorithms can also be used to control industrial robots to
address imperfections in their mechanical systems, which typically behave as non-linear
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dynamic systems due to a large number of uncertainties. The research presented in [11,12]
provides neural network-based methods for advanced control of robot movements. In [11],
a perspective non-linear model-based predictive control method for robotic manipulators,
which minimises the settling time and position overshoot of each joint, is provided.

The classic strategy is well suited to robotisation of mass production processes in
various fields, and its main advantages are clear requirements for work process organi-
sation, robotic cell design, and installation; the availability of a large variety of standard
equipment and typical partial solutions; and higher productivity and reliability compared
to the cases where human workers perform the same tasks. The main disadvantages are
insufficient flexibility, unsuitability for unique production, and high economic costs when
it is necessary to adapt the existing robotic cell to a new product or process. Applying a
modern robotisation strategy can avoid some of these disadvantages (or at least minimise
their impact).

2.2. Modern Robotisation Strategy

The modern robotisation strategy is based on implementing collaborative robots
(cobots). According to [13], the definition of cobot was first used in a 1999 US patent [14]
and was intended for “an apparatus and method for direct physical integration between
a person and a general-purpose manipulator controlled by a computer.” It was the result
of the efforts of General Motors to implement robotics in the automotive sector to help
humans in assembly operations. The first lightweight cobot, LBR3, designed by a German
robotics company, was introduced in 2004 [13]. This has led to the broader development of
a modern robotics strategy and new manufacturers in the market. In 2008, the Danish man-
ufacturer Universal Robots released the UR5, a cobot that could safely operate alongside
the employees, eliminating the need for safety caging or fencing (Figure 3b). This launched
a new era of flexible, user-friendly, and cost-efficient collaborative robots [13], and resulted
in the current situation, in which all of the major robot manufacturers have at least a few
cobot models in their product range.

The fourth industrial revolution—Industry 4.0—significantly fostered the development
of cobot’s technologies, because the concept fitted well with Industry 4.0 content, allowing
human–robot collaboration to be realised and being suitable for flexible manufacturing
systems. Contrary to typical industrial robots, next-generation robotics uses artificial intel-
ligence (AI) to collaboratively perform tasks and is suitable for uncontrolled/unpredictable
environments [15]. Moreover, due to favourable conditions (advances in AI, sensing tech-
nologies, and computer vision), collaborative industrial robots have become significantly
smarter, showing the potential of reliable and secure cooperation, and increasing the pro-
ductivity and efficiency of the involved processes [15]. However, it should be noted that
Industry 4.0 fostered not only the widespread of robotics, but also posed new challenges.
When developing highly automated systems, most of the equipment is related through the
Internet of Things (IoT) or other communication technologies. Therefore, cybersecurity and
privacy protection of processes used to monitor and control data [16,17] must be considered.
The issue of data protection is also becoming more critical due to the latest communica-
tion technologies, such as 5G and 6G [18]. These technologies allow the development
of standardised wireless communication networks for various control levels (single-cell,
production line, factory, network of factories) and, at the same time, makes systems more
sensitive to external influences. The main impact of Industry 4.0 and new communication
technologies on industrial robots is that their controllers have an increasing number of
connections, functions, and protocols to communicate with other “smart” devices.

The study presented in [19] analyses the possibilities of human–robot collaboration
in aircraft assembly operations. The benefits of human–robot cooperation were examined
in terms of the productivity increase and the levels of satisfaction of the human workers.
The obtained results showed that humans and robots could simultaneously work safely
in a common area without any physical separation, and significantly reduce time and
costs compared with manual operations. Moreover, assessment of employee opinions

33



Appl. Sci. 2022, 12, 135

showed that most employees positively evaluated the implementation of collaborative
robots. Nevertheless, employee attitudes depend on their practical experience: it was
noticed that experts felt more confident than beginners. This can be explained by the fact
that experts better understand the overall manufacturing process and are more accustomed
to operating with various equipment.

Compared to traditional industrial robots, cobots have more user-friendly control
features and wider teaching options. A new assembly strategy was described in a previous
study [20], in which a cobot learnt skills from manual teaching to perform peg-in-hole
automatic assembly when the geometric profile and material elastic parameters of parts
were inaccurate. The results showed that the manual assembly process could be analysed
mathematically, splitting it into a few stages and implementing it as a model in robot
control. Using an Elite EC75 manipulator (Elite Robot, Suzhou, CN, an assembly time
of less than 20 s was achieved, ensuring a 100% success rate from 30 attempts when the
relative error between the peg and hole was ±4.5 mm, and the clearance between the peg
and the hole was 0.18 mm.

As a result of the development of sensor and imaging technologies, new applications
in robotics are emerging, especially in human–robot collaboration. In [21], detailed research
focused on identifying the main strengths and weaknesses of augmented reality (AR)
in industrial robots applications. The analysis shows that AR is mainly used to control
and program robotic arms, visualise general tasks or robot information, and visualise the
industrial robot workspace. Results of the analysis indicate that AR systems are faster
than traditional approaches; users have greater appreciation for AR systems in terms of
likeability and usability; and AR seems to reduce physical workload, whereas the impact
on mental workload depends on the interaction interface [16]. Nevertheless, industrial
implementation of AR is still limited by insufficient accuracy, occlusion problems, and the
limited field of view of wearable AR devices.

A summary of the analysed robotisation strategies indicates that they both have their
specific implementation fields. The classical strategy is well suited to strictly controlled
environments. The modern strategy ensures more flexible operation and is suitable for
non-predictable environments. Nevertheless, it is necessary to note that the strict line
between these strategies has gradually disappeared due to advances in sensing technolo-
gies, artificial intelligence, and computer vision. A typical industrial robot equipped with
modern sensing and control systems can operate similarly to a cobot. According to [22], col-
laborative regimes can be realised using industrial robots, laser sensors, and vision systems,
or controller alteration if compliance with the ISO/TS 15066 standard—which specifies
parameters and materials adapted to safe activities with and near humans—is ensured [23].
This standard defines four main classes of safety requirements for collaborative robots:
safety-rated monitored stop; hand-guiding; speed and separation monitoring; and power
and force limiting.

In addition, it is essential to mention that all improvements and advances in robotics
can be classified into two main types: universal and application dependent. The remaining
part of this article reviews and classifies the latest advances in robotics according to the
areas of their implementation.

3. Recent Achievements in Industrial Robotics Classified according to Implementation Area

3.1. Human–Machine Interaction

To date, manual human work has been often replaced by robotic systems in industry.
However, within complex systems, the interaction between humans and machines/robots
(HMI) still needs to occur. HMI is an area of research related to the development of robotic
systems based on understanding, evaluation, and analysis, and this system combines vari-
ous forms of cooperation or interaction with humans. Interaction requires communication
between robots and humans, and human communication and collaboration with the robot
system can take many forms. However, these forms are greatly influenced by whether
the human is close to the robot and the context being used: (i) human–computer context—
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keyboard, buttons, etc.; (ii) real procedures context—haptics, sensors; and (iii) close and
exact interaction. Therefore, both human and robot communication or interaction can
be divided into two main categories: remote interaction and exact interaction. Remote
interaction takes place by remote operation or supervised control. Close interaction takes
place by operation with an assistant or companion. Close interaction may include physical
interaction. Because close interactions are the most difficult, it is crucial to consider a
number of aspects to ensure a successful collaboration, i.e., a real-time algorithm, “touch”
detection and analysis, autonomy, semantic understanding capabilities, and AI-aided antic-
ipation skills. A summary of the relevant research focused on improving and developing
HMI methods is provided in Table 1.

Table 1. Research focused on human–machine interaction.

Objective Technology Approach Improvement Ref.

To improve flexibility,
productivity and quality of a
multi-pass gas tungsten arc
welding (GTAW) process

performed by a collaborative
robot.

A haptic interface.
6-axis robotic arm (Mitsubishi

MELFA RV-13FM-D).
The end effector with GTAW

torch.
A monitoring camera (Xiris

XVC-1000).
A Load Cell (ATI Industrial

Automation Mini45-E) to
evaluate tool force

interactions with work pieces.

A haptic-based approach is
designed and tested in a
manufacturing scenario

proposing light and low-cost
real-time algorithms for

“touch” detection.

Two main criteria were analysed to assess
the performance: the 3-Sigma rule and

the Hampel identifier. Experimental
results showed better performance of the

3-Sigma rule in terms of precision
percentage (mean value of 99.9%) and

miss rate (mean value of 10%) concerning
the Hampel identifier. Results confirmed
the influence of the contamination level

related to the dataset. This algorithm
adds significant advances to enable the

use of light and simple machine learning
approaches in real-time applications.

[24,25]

To produce more advanced or
complex forms of interaction

by enabling cobots with
semantic understanding
capabilities or AI-aided

anticipation skills.

Collaborative robots Artificial intelligence.

The overview provides hints of future
cobot developments and identifies future

research frontiers related to economic,
social, and technological dimensions.

[26]

To strike a balance in order to
find a suitable level of
autonomy for human

operators.

Model of Remotely Instructed
Robots (RIRs.) Modelling method.

Developed model in which the robot is
autonomous in task execution, but also

aids the operator’s ultimate
decision-making process about what to
do next. Presentation of the robot’s own

model of the work scene enables
corrections to be made by the robot, as
well as it can enhance the operator’s

confidence in the robot’s work.

[27,28]

The interaction between humans and robots or mechatronic systems encompasses
many interdisciplinary fields, including physical sciences, social sciences, psychology, arti-
ficial intelligence, computer science, robotics, and engineering. This interaction examines
all possible situations in which a human and a robot can systematically collaborate or
complement each other. Thus, the main goal is to provide robots with various competencies
to facilitate their interaction with humans. To implement such competencies, modelling of
real-life situations and predictions is necessary, applying models in interaction with robots,
and trying to make this interaction as efficient as possible, i.e., inherently intuitive, based
on human experience and artificial intelligence algorithms.

The role of various interfering aspects (Table 2.) in human–robot interaction may lead
to different future perspectives.
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Table 2. Interfering aspects in human–robot interaction.

Objective Interaction Approach Solution Ref.

Frustration Close cooperative work Controlled coordination Sense of control of frustration,
affective computing. [29]

Emotion recognition By collecting different
kinds of data.

Discrete models describing
emotions used, facial expression

analysis, camera positioning.

Affective computing.
Empowering robots to observe, interpret

and express emotions. Endow robots with
emotional intelligence.

[30]

Decoding of action
observation

Elucidating the neural
mechanisms of action

observation and
intention understanding.

Decoding the underlying
neural processes.

The dynamic involvement of the mirror
neuron systems (MNS) and the theory of
mind ToM/mentalising network during

action observation.

[31]

Verbal and non-verbal
communication Interactive communication. Symbol grounding

Composition of grounded semantics, online
negotiation of meaning, affective interaction

and closed-loop affective dialogue, mixed
speech-motor planning, massive acquisition

of data-driven models for human–robot
communication through crowd-sourced
online games, real-time exploitation of

online information and services for
enhanced human–robot communication.

[32]

We can summarise that the growing widespread use of robots and the lack of highly
skilled professionals in the market form clear guidelines for future development in the HMI
area. The main aspirations are an intuitive, human-friendly interface, faster and simpler
programming methods, advanced communication features, and robot reactions to human
movements, mood, and even psychological state. Methods to monitor human actions
and emotions [33], fusion of sensors’ data, and machine learning are key technologies for
further improvement in the HMI area.

3.2. Object Recognition

Object recognition is a typical issue in industrial robotics applications, such as sorting,
packaging, grouping, pick and place, and assembling (Table 3). The appropriate recognition
method and equipment selection mainly depends on the given task, object type, and the
number of recognisable parameters. If there are a small number of parameters, simpler
sensing technologies based on typical approaches (geometry measuring, weighing, material
properties’ evaluation) can be implemented. Alternatively, if there are a significant number
of recognisable parameters, photo or video analysis is preferred. Required information
in two- or three-dimensional form from image or video can be extracted using computer
vision techniques such as object localisation and recognition. Various techniques of vision-
based object recognition have been developed, such as appearance-, model-, template-, and
region-based approaches. Most vision recognition methods are based on deep learning [34]
and other machine learning methods.

In a previous study [35], a lightweight Franka Emika Panda, cobot with seven degrees
of freedom and a Realsense D435 RGB-D camera, mounted on an end effector, was used
to extend the default robots’ function. Instead of using a large dataset-based machine
learning technique, the authors proposed a method to program the robot from a single
demonstration. This robotic system can detect various objects, regardless of their position
and orientation, achieving an average success rate of more than 90% in less than 5 min of
training time, using an Ubuntu 16.04 server running on an Intel(R) Core(TM) i5-2400 CPU
(3.10 GHz) and an NVIDIA Titan X GPU.

Another approach for grasping randomly placed objects was presented in [36]. The
authors proposed a set of performance metrics and compared four robotic systems for
bin picking, and took first place in the Amazon Robotics Challenge 2017. The survey
results show that the most promising solutions for such a task are RGB-D sensors and
CNN-based algorithms for object recognition, and a combination of suction-based and
typical two-finger grippers for grasping different objects (vacuum grippers for a stiff object
with large and smooth surface areas, and two-finger grippers for air-permanent items).
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Similar localisation and sorting tasks appear in the food and automotive industries,
and in almost every production unit. In [37], an experimental method was proposed using
a pneumatic robot arm for separation of objects from a set according to their colour. If the
colour of the workpiece is recognisable, it is selected with the help of a robotic arm. If
the workpiece colour does not meet the requirements, it is rejected. The described sorting
system works according to an image processing algorithm in MATLAB software. More
advanced object recognition methods based on simultaneous colour and height detection
are presented in [38]. A robotic arm with six degrees of freedom (DoF) and a camera with
computer vision software ensure a sorting efficiency of about 99%.

A Five DoF robot arm, “OWI Robotic Arm Edge”, proposed by Pengchang Chen et al.,
was used to validate the practicality and feasibility of a faster region-based convolutional
neural network (faster R-CNN) model using a dataset containing images of symmetric
objects [39]. Objects were divided into classes based on colour, and defective and non-
defective objects.

Despite significant progress in existing technologies, randomly placed unpredictable
objects remain a challenge in robotics. The success of a sorting task often depends on the
accuracy with which recognisable parameters can be defined. Yan Yu et al. [40] proposed an
RGB-D-based method for solid waste object detection. The waste sorting system consists of a
server, vision sensors, industrial robots, and rotational speedometer. Experiments performed
on solid waste image analysis resulted in a mean average precision value of 49.1%.

Furthermore, Wen Xiao et al. designed an automatic sorting robot that uses height
maps and near-infrared (NIR) hyperspectral images to locate the region of interest (ROI)
of objects, and to perform online statistic pixel-based classification in contours [41]. This
automatic sorting robot can automatically sort construction and demolition waste ranging
in size from 0.05 to 0.5 m. The online recognition accuracy of the developed sorting system
reaches almost 100% and ensures operation speed up to 2028 picks/h.

Another challenging issue in object recognition and manipulation is objects having
an undefined shaped and contaminated by dust or smaller particles, such as minerals or
coal. Quite often, such a task requires not only recognising the object but also determining
the position of the centre of mass of the object. Man Li et al. [42] proposed an image
processing-based coal and gangue sorting method. Particle analysis of coal and gangue
samples is performed using morphological corrosion and expansion methods to obtain
a complete, clean target sample. The object’s mass centre is obtained using the centre
of the mass method, consisting of particle removal and filling, image binarization, and
separation of overlapping samples, reconstruction, and particle analysis. The presented
method achieved identification accuracy of coal and gangue samples of 88.3% and 90.0%,
and the average object mass centre coordinate errors in the x and y directions were 2.73%
and 2.72%, respectively [42].

Intelligent autonomous robots for picking different kinds of objects were studied as a
possible means to overcome the current limitations of existing robotic solutions for picking
objects in cluttered environments [43]. This autonomous robot, which can also be used for
commercial purposes, has an integrated two-finger gripper and a soft robot end effector to
grab objects of various shapes. A special algorithm solves 3D perception problems caused
by messy environments and selects the right grabbing point. When using lines, the time
required depends significantly on the configuration of the objects, and ranges from 0.02 s
when the objects have almost the same depth, to 0.06 s in the worst case when the depth of
the tactile objects is greater than the lowest depth but not perceived [43].

In robotics, the task of object recognition often includes not only recognition and
the determinaton of coordinates, but it also plays an essential role in the creation of a
robot control program. Based on the ABB IRB 140 robot and a digital camera, a low-
cost shapes identification system was developed and implemented, which is particularly
important due to the high variability of welded products [44]. The authors developed an
algorithm that recognises the required toolpath from a taken image. The algorithm defines
a path as a complex polynomial. It later approximates it by simpler shapes with a lower
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number of coordinates (line, arc, spline) to realise the tool movement using standard robot
programming language features.

Moreover, object recognition can be used for robot machine learning to analyse humans’
behaviour. Such an approach was presented by Hiroaki et al. [45], where the authors studied
the behaviour of a human crowd, and formulated a new forecasting task, called crowd
density forecasting, using a fixed surveillance camera. The main goal of this experiment
was to predict how the density of the crowd would change in unseen future frames. To
address this issue, patch-based density forecasting networks (PDFNs) were developed.
PDFNs project a variety of complex dynamics of crowd density throughout the scene, based
on a set of spatially or spatially overlapping patches, thus adapting the receptive fields
of fully convolutional networks. Such a solution could be used to train robotic swarms
because they behave similarly to humans in crowded areas.

Table 3. Research focused on object recognition in robotics.

Objective Technology Approach Improvement Ref.

Extended default “program
from demonstration” feature

of collaborative robots to
adapt them to environments

with moving objects.

Franka Emika Panda cobot
with 7 degrees of freedom,

with a Realsense D435 RGB-D
camera mounted on the

end-effector.

Grasping method to fine-tune
using reinforcement
learning techniques.

The system can grasp various objects from a
demonstration, regardless of their position

and orientation, in less than 5 min of
training time.

[35,46]

Introduction of a set of
metrics for primary

comparison of robotic
systems’ detailed

functionality
and performance.

Robot with different grippers. Recognition method and the
grasping method.

Developed original robot performance metrics
and tested on four robot systems used in the

Amazon Robotics Challenge competition.
Results of analysis showed the difference

between the systems and promising solutions
for further improvements.

[36,45,47]

To build a low-cost system for
identifying shapes to

program industrial robots for
the 2D welding process.

Robot ABB IRB 140 with a
digital camera, which detects

contours on a 2D surface.

A binarisation and contour
recognition method.

A low-cost system based on an industrial
vision was developed and implemented for

the simple programming of the
movement path.

[48,49]

The patch-based density
forecasting networks (PDFNs)

directly forecast crowd
density maps of future frames
instead of trajectories of each
moving person in the crowd.

Fixed surveillance camera

Density Forecasting in
Image Space.

Density Forecasting in
Latent Space.

PDFNs.
Spatio-Temporal Patch-Based

Gaussian filter.

Proposed patch-based models, PDFN-S and
PDFN-ST, outperformed baselines on all the
datasets. PDFN-ST successfully forecasted

dynamics of individuals, a small group, and a
crowd. The approach cannot always forecast

sudden changes in walking directions,
especially when they happened in the

later frames.

[45]

To separate the objects from a
set according to their colour. Pneumatic Robot arm Force in

response to applied pressure.

The proposed robotic arm may be considered
for sorting. Servo motors and image

processing cameras can be used to achieve
higher repeatability and accuracy.

[37,50]

An image processing-based
method for coal and gangue
sorting. Development of a

positioning and
identification system.

Coal and gangue
sorting robot

Threshold segmentation
methods. Clustering method.
Morphological corrosion and

expansion methods. The
centre of mass method.

Efficiency is evaluated using the images of
coal and gangue, which are randomly picked

from the production environment. The
average coordinate errors in the x and y
directions are 2.73% and 2.72%, and the

identification accuracy of coal and gangue
samples is 88.3% and 90.0%, respectively, and

the sum of the time for identification,
positioning, and opening the camera for a

single sample averaged 0.130 s.

[41,51,52]

A computer vision-based
robotic sorter is capable of

simultaneously detecting and
sorting objects by their

colours and heights.
Vision-based process

encompasses identification,
manipulation, selection, and
sorting objects depending on

colour and geometry.

A 5 or 6 DOF robotic arm and
a camera with the computer

vision software detecting
various colours and heights

and geometries.

Computer Vision methods
with the Haar Cascade

algorithm. The Canny edge
detection algorithm is used

for shape identification.

A robotic arm is used for picking and placing
objects based on colour and height. In the

proposed system, colour and height sorting
efficiency is around 99%. Effectiveness, high

accuracy and low cost of computer vision
with a robotic arm in the sorting process

according to color and shape are revealed.

[38,53,54]

A novel multimodal
convolutional neural network

for RGB-D object detection.

A base solid waste sorting
system consisting of a server,

vision sensors, industrial
robot, and

rotational speedometer.

Comparison with single
modal methods.

Washington RGB-D object
recognition

benchmark evaluated.

Meeting the real-time requirements and
ensuring high precision. Achieved 49.1%

mean average precision, processing images in
real-time at 35.3 FPS on one single Nvidia

GTX1080 GPU.
Novel dataset.

[40,55]

38



Appl. Sci. 2022, 12, 135

Table 3. Cont.

Objective Technology Approach Improvement Ref.

Practicality and feasibility of
a faster R-CNN model using
a dataset containing images

of symmetric objects.

Five DoF robot arm “OWI
Robotic Arm Edge.”

CNN learning algorithm that
processes images with

multiple layers (filters) and
classifies objects in images.

Regional Proposal
Network (RPN)

The accuracy and precision rate are steadily
enhanced. The accuracy rate of detecting

defective and non-defective objects is
successfully improved, increasing the training

dataset to up to 400 images of defective and
non-defective objects.

[39,56,57]

An automatic sorting robot
with height maps and

near-infrared (NIR)
hyperspectral images to
locate objects’ ROI and
conduct online statistic

pixel-based classification in
contours.

24/7 monitoring.

The robotic system with four
modules: (1) the main

conveyor, (2) a detection
module, (3) a light source

module, and (4) a
manipulator.

Mask-RCNN and YOLOv3
algorithms.

Method for an automatic
sorting robot.

Identification include pixel,
sub-pixel,

object-based methods.

The prototype machine can automatically sort
construction and demolition waste with a size
range of 0.05–0.5 m. The sorting efficiency can
reach 2028 picks/h, and the online recognition

accuracy nearly reaches 100%.
Can be applied in technology for

land monitoring.

[41,58,59]

Overcoming current
limitations on the existing

robotic solutions for picking
objects in

cluttered environments.

Intelligent autonomous
robots for picking different

kinds of objects.
Universal jamming gripper.

A comparative study of the
algorithmic performance of

the proposed method.

When a corner is detected, it takes just 0.003 s
to output the target point. With lines, the

required time depends on the object’s
configuration, ranging from 0.02 s, when

objects have almost the same depth, to 0.06 s
in the worst-case scenario.

[43,60–62]

A few main trends can be highlighted from the research analysis related to object
recognition in robotics. These can be defined as object recognition for localisation and
further manipulation; object recognition for shape evaluation and automatic generation of
the robot program code for the corresponding robot movement; and object recognition for
behaviour analysis to use as initial data for machine learning algorithms. A large number
of reliable solutions have been tested in the industrial environment for the first trend, in
contrast to the second and third cases, which are currently being developed.

3.3. Medical Application

The da Vinci Surgical System is the best-known robotic manipulator used in surgery
applications. Florian Richter et al. [63] presented a Patient Side Manipulator (PSM) arm
technology to implement reinforcement learning algorithms for the surgical da Vinci
robots. The authors presented the first open-source reinforcement learning environment
for surgical robots, called dVRL [63]. This environment allows fast training of da Vinci
robots for autonomous assistance, and collaborative or repetitive tasks, during surgery.
During the experiments, the dVRL control policy was effectively learned, and it was found
that it could be transferred to a realrobot- with minimal efforts. Although the proposed
environment resulted in the simple and primitive actions of reaching and picking, it was
useful for suction and debris removal in a real surgical setting.

Meanwhile, in their work, Yohannes Kassahun et al. reviewed the role of machine
learning techniques in surgery, focusing on surgical robotics [64]. They found that currently,
the research community faces many challenges in applying machine learning in surgery
and robotic surgery. The main issues are a lack of high-quality medical and surgical data,
a lack of reliable metrics that adequately reflect learning characteristics, and a lack of a
structured approach to the effective transfer of surgical skills for automated execution [64].
Nevertheless, the application of deep learning in robotics is a very widely studied field.
The article by Harry A. Pierson et al. in 2017 provides a recent review emphasising the
benefits and challenges vis-à-vis robotics [65]. Similarly to [64], they found that the main
limitations preventing deep learning in medical robotics are the huge volume of training
data required and a relatively long training time.

Surgery is not the only field in medicine in which robotic manipulators can be used.
Another autonomous robotic grasping system, described by John E. Downey et al., intro-
duces shared control of a robotic arm based on the interaction of a brain–machine interface
(BMI) and a vision guiding system [66]. A BMI is used to define a user’s intent to grasp or
transfer an object. Visual guidance is used for low-level control tasks, short-range move-
ments, definition of the optimal grasping position, alignment of the robot end-effector,
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and grasping. Experiments proved that shared control movements were more accurate,
efficient, and less complicated than transfer tasks using BMI alone.

Another case that requires fast robot programming methods and is implemented
in medicine is the assessment of functional abilities in functional capacity evaluations
(FCEs) [67]. Currently, there is no single rational solution that simulates all or many of
the standard work tasks that can be used to improve the assessment and rehabilitation of
injured workers. Therefore, the authors proposed that, with the use of the robotic system
and machine learning algorithms, it is possible to simulate workplace tasks. Such a system
can improve the assessment of functional abilities in FCEs and functional rehabilitation
by performing reaching manoeuvres or more complex tasks learned from an experienced
therapist. Although this type of research is still in its infancy, robotics with integrated
machine learning algorithms can improve the assessment of functional abilities [67].

Although the main task of robotic manipulators is the direct manipulation of objects
or tools in medicine, these manipulators can also be used for therapeutic purposes for
people with mental or physical disorders. Such applications are often limited by the ability
to automatically perceive and respond as needed to maintain an engaging interaction.
Ognjen Rudovic et al. presented a personalised deep learning framework that can adapt
robot perception [68]. The researchers in the experiment focused on robot perception, for
which they developed an individualised deep learning system that could automatically
assess a patient’s emotional states and level of engagement. This makes it easier to monitor
treatment progress and optimise the interaction between the patient and the robot.

Robotic technologies can also be applied in dentistry. To date, there has been a lack
of implementation of fundamental ideas. In a comprehensive review of robotics and the
application of artificial intelligence, Jasmin Grischke et al. present numerous approaches to
apply these technologies [69]. Robotic technologies in dentistry can be used for maxillofacial
surgery [70], tooth preparation [71], testing of toothbrushes [72], root canal treatment and
plaque removal [73], orthodontics and jaw movement [74], tooth arrangement for full
dentures [75], X-ray imaging radiography [76], swab sampling [77], etc.

A summary of research focused on robotics in medical applications is provided in
Table 4. It can be seen that robots are still not very popular in this area, and technological
and phycological/ethical factors can explain this. From the technical point of view, more
active implementation is limited by the lack of fast and reliable robot program preparation
methods. Regarding psychological and ethical factors, robots are still unreliable for a large
portion of society. Therefore, they are only accepted with significant hesitation.

Table 4. Robotic solutions in medical applications.

Objective Technology Approach Improvement Ref.

Create bridge between
reinforcement learning and

the surgical robotics
communities by presenting

the first open-sourced
reinforcement learning

environments for surgical da
Vinci robots.

Patient Side Manipulator
(PSM) arm.

Da VinciR©Surgical Robot.
Large Needle Driver (LND),
with a jaw gripper to grab

objects such as suturing
needle.

Reinforced learning,
OpenAI Gym

DDPG (Deep Deterministic Policy
Gradients) and HER (Hindsight

Experience Replay)
V-REP physics simulator

Developed new reinforced learning
environment for fast and effective

training of surgical da Vinci robots for
autonomous operations.

[63]

A method of shared control
where the user controls a

prosthetic arm using a
brain–machine interface and

receives assistance with
positioning the hand when it

approaches an object.

Brain–machine interface
system.

Robotic arm.
RGB-D camera mounted

above the arm base.

Shared control system.
An autonomous robotic grasping

system

Shared control system for a robotic
manipulator, making control more
accurate, more efficient, and less

difficult than an alone control system.

[66]

A personalised deep learning
framework can adapt robot

perception of children’s
affective states and

engagement to different
cultures and individuals.

Unobtrusive audiovisual
sensors and wearable sensors,

providing the child’s
heart-rate, skin-conductance

(EDA), body temperature,
and accelerometer data.

Feed-forward multilayer neural
networks.
GPA-net

Achieved an average agreement of
~60% with human experts to estimate

effect and engagement.
[68]
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Table 4. Cont.

Objective Technology Approach Improvement Ref.

An overview of existing
applications and concepts of
robotic systems and artificial
intelligence in dentistry, for

functional capacity
evaluations, of the role of ML

in surgery using surgical
robotics, of deep learning
vis-à-vis physical robotic

systems, focused on
contemporary research.

An overview An overview An overview [64,65,67,69]

Transoral robot towards
COVID-19 swab sampling.

Flexible manipulator, an
endoscope with a monitor, a

master device.

Teleoperated configuration for swab
sampling

A flexible transoral robot with a
teleoperated configuration is proposed
to address the surgeons’ risks during

the face-to-face COVID-19 swab
sampling.

[77]

3.4. Path Planning, Path Optimisation

The process known as robotic navigation aims to achieve accurate positioning and
avoiding obstacles in the pathway. It is essential to satisfy constraints such as limited
operating space, distance, energy, and time [78]. The path trajectory formation process
consists of these four separate modules: perception, when the robot receives the necessary
information from the sensors; localisation, when the robot aims to control its position in the
environment; path planning; and motion control [79]. The development of autonomous
robot path planning and path optimisation algorithms is one of the most challenging
current research areas. Nevertheless, any kind of path planning requires information
about the initial robot position. In the stationary robot’s case, such information is usually
easily accessible, contrary to industrial manipulators mounted on mobile platforms. In
mobile robots and automatically guided vehicles (AGV), accurate self-localisation in various
environments [80,81] is a basis for further trajectory planning and optimisation.

According to the amount of available information, robot path planning can be cate-
gorised into two categories, namely, local and global path planning. Through a local path
planning strategy, the robot has rather limited knowledge of the navigation environment.
The robot has in-depth knowledge of the navigation environment when planning the
global path to reach its destination by following a predetermined path. The robotic path
planning method has been applied in many fields, such as reconstructive surgery, ocean
and space exploration, and vehicle control. In the case of pure industrial robots, path
planning refers to finding the best trajectory to transfer a tool or object to the destination
in the robot workspace. It is essential to note that typical industrial robots are not feasible
for real-time path planning. Usually, trajectories are prepared in advance using online or
offline programming methods. One of the possible techniques is the implementation of
specialised commercial computer-aided manufacturing (CAM) software such as Master-
cam/Robotmaster or Sprutcam. However, the functionality of such software is relatively
constrained and does not go beyond the framework of classical tasks, such as welding or
milling. The use of CAM software also requires highly qualified professionals. As a result,
the application of this software to individual installations is economically disadvantageous.
As an alternative to CAM software, methods based on the copying movements of highly
skilled specialists using commercially available equipment, such as MIMIC from Nordbo
Robotics (Antvorskov, Denmark), may be used. This platform allows using demonstrations
to teach robots smooth, complex paths by recording required movements that are smoothed
and optimised. To overcome the limitations caused by the lack of real-time path planning
features in robot controllers, additional external controllers and real-time communication
with the manipulator is required. In the area of path planning and optimisation, experi-
ments have been conducted for automatic object and 3D position detection [82] quasi-static
path optimisation [83], image analysis [84], path smoothing [85], BIM [86], and accurate
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self-localisation in harsh industrial environments [80,81]. More information about methods
and approaches proposed by researchers is listed in Table 5.

Table 5. Research focused on path planning and optimisation.

Objective Technology Approach Improvement Ref.

The position of the
objects—possible trajectory to

an object in real-time.

A robotic system consisting of
an ABB IRB120 robot

equipped with a gripper and
a 3D Kinect sensor.

Detection of the workpieces.
Object recognition techniques

are applied using available
algorithms in MATLAB’s

Computer Vision and Image
Acquisition Toolbox.

The algorithm for finding 3D object position
according to colour segmentation in real-time.
The main focus was on finding the depth of an

object from the Kinect sensor. Kinect could
distinguish colour correctly, and the robot could

accurately navigate to the detected object.

[82]

The combination of
eye-tracking and computer

vision automate the approach
of a robot to its targeted point
by acquiring its 3D location.

Eye-tracking device,
webcam.

Image analysis and
geometrical reconstruction.

The computed coordinates of the target 3D
localisation have an average error of 5.5 cm,

which is 92% more accurate than eye-tracking
only for the point of gaze calculation, with an

estimated error of 72 cm.

[87]

Computer vision technology
for real-time seam tracking in

robotic gas tungsten arc
welding (GTAW).

Welding robot GTAW—the
robot arm, the robot

controller, the vision system,
isolation unit, the weld power

supply, and the host
computer.

Passive vision system.

Passive vision system
image processing.

The developed method is feasible and sufficient
to meet the specific precision requirements of
some applications in robotic seam tracking.

[88]

A higher fidelity model for
predicting the entire

pose-dependent FRF of an
industrial robot by combining

the advantages of
Experimental Modal Analysis

(EMA) with Operational
Modal Analysis for milling

processes.

KUKA KR500-3 6 DOF
industrial robot

Hybrid statistical modelling:
Frequency Response Function

(FRF) modelling method.

A Bayesian inference and hyperparameter
updating approach for updating the

EMA-calibrated GPR models of the robot FRF
with OMA-based FRF data improved the

model’s compliance RMSE by 26% and 27% in
the x and y direction tool paths, respectively,

compared to only EMA-based calibration. The
methodology reduced the average number of

iterations and calibration times required to
determine the optimal GPR model

hyperparameters by 50.3% and 31.3%,
respectively.

[84]

Safe trajectories without
neglecting cognitive

ergonomics and production
efficiency aspects.

UR3 lightweight robot Experimental tasks

The task’s execution time was reduced by 13.1%
regarding the robot’s default planner and 19.6%

concerning the minimum jerk smooth
collaboration planner.

This new approach is highly relevant for
manufacturers of collaborative robots (e.g., for

integration as a path option in the robot pendant
software) and for users (e.g., an online service

for calculating the optimal path and subsequent
transfer to the robot).

[89]

An industrial robot moving
between stud welding

operations in a stud welding
station.

Industrial robot
Quasi-static path

optimisation for an industrial
robot

The method was successfully applied to a stud
welding station for an industrial robot moving
between two stud welding operations. Even for
a difficult case, the optimised path reduced the

internal force in the dress pack. It kept the
dressed robot from the surrounding geometry
with a prescribed safety clearance during the

entire robot motion.

[83]

An industrial assembly task
for learning and optimisation,

considering uncertainties.

A Franka EMIKA Panda
manipulator

Task trajectory learning
approach.

Task optimisation approach.

The proposed approach made the robot learn the
task execution and compensate for the task

uncertainties. The HMM + BO methodology and
the HMM algorithm without optimisation were

compared. This comparison shows the
capabilities of the optimisation stage to

compensate for task uncertainties. In particular,
the HMM + BO methodology shows an

assembly task success rate of 93%, while the
HMM algorithm shows a success rate of only

19%.

[90]

The postprocessing and path
optimisation based on the

non-linear errors to improve
the accuracy of multi-joint
industrial robot-based 3D

printing.

Multi-joint industrial robot
for 3D printing Path smoothing method

Multi-joint industrial robot-based 3D printing
can be used for the high-precision printing of

complex freeform surfaces. An industrial robot
with only three joints is used, and the solutions
of joint angles for the tool orientations are not
proposed, which is essential for printing the

freeform surface.

[91]
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Table 5. Cont.

Objective Technology Approach Improvement Ref.

A comparative study of robot
pose optimisation using static
and dynamic stiffness models
for different cutting scenarios.

KUKA KR 500–3 industrial
robot,

aluminium 6061

Complete pose (CP) and the
decoupled partial pose (DPP)

methods.
Effect of optimisation method

on machining accuracy

A dynamic model-based robot pose optimisation
yields significant improvement over a static

model-based optimisation for cutting conditions
where the time-varying cutting forces approach

the robot’s natural frequencies. A static
model-based optimisation is sufficient when the

frequency content of the cutting forces is not
close to the robot’s natural frequencies.

[92]

The feasibility and validity of
proposed stiffness
identification and

configuration optimisation
methods.

KUKA KR500 industrial robot
Robot stiffness characteristics

and optimisation methods.
Point selection method

The smooth processing strategy improves
optimisation efficiency, ensuring minimal
stiffness loss. According to the machining

results of a cylinder head of a vehicle engine, the
milling quality was improved obviously after

the configuration optimisation, and the validity
of these methods are verified.

[85]

Real-time compensation
setups.

A standard KUKA
KR120R2500 PRO industrial

robot with a spindle
end-effector

Real-time Closed Loop
Compensation method

Real-time metrology feedback cannot fully
compensate for the sudden error spikes caused

by the backlash. The mitigation strategy of
automatically reducing feed rate (ASC) was

demonstrated to reduce backlash error
significantly. However, ASC considerably
increases the cycle time for a toolpath that

involves many direction reversals and leads to
uneven cutter chip load and variation in surface
finish. Backlash, therefore, remains the largest

source of residual error for a robot under
real-time metrology compensation.

[93]

Building Information Model
(BIM)-based robotic assembly

model that contains all the
required information for

planning.

ABB IRB6700-235 robot (6
DOF), a construction plane
(approximately 1.5 m × 0.9

m), a scene modelling camera
(Sony a5100), and a modelling

computer (Dell Precise).

Image-based 3D modelling
method.

Experimental method

A general IFC model for robotic assembly
contains all the information needed for

task-level planning; BIM and image-based
modelling are used to calibrate robot pose for
the unification of the robot coordinate system,
construction area, and assembly task; a simple
conversion process is presented to convert the
3D placement point coordinates of each brick

into the robotic control instructions.
In the process of experimental verification,
task-level planning can maintain the same

accuracy as that of the traditional method but
saves time when facing more complex tasks.

[86]

A model of reversibly
controlled industrial robots
based on abstract semantics.

Robotic assembly Error recovery using reverse
execution

A programming model which enables robot
assembly programs to be executed in reverse.

Temporarily switching the direction of program
execution can be an efficient error recovery
mechanism. Additional benefits arise from
supporting reversibility in robotic assembly
language, namely, increased code reuse and

automatically derived disassembly sequences.

[94]

The control strategies for
robotic PiH assemblies and

the limitations of the current
robotic assembly

technologies.

Robotic PiH assembly Typical peg-in-hole (PiH)
assembly methods

The system outperforms the operator
performing the same task with magnified visual

feedback regarding both completion time and
the number of successful insertions.

The proposed strategies can correctly diagnose
the assembly process’s position errors and

effectively realise error recovery.

[95]

An overview of computer
vision for preoperative,

intraoperative, and
postoperative surgical stages
to assist with planning, tool

detection, identification, pose
tracking, and augmented
reality, for surgical skill

assessment and retrospective
analysis of the procedure.

An overview An overview An overview [96]

3.5. Food Industry

As the world’s population grows, the demand for food also continues to grow. Food
suppliers are under pressure to work more efficiently, and consumers want more convenient
and sustainable food. Robotics and automation are a key part of the solution to this
goal. The food production sector has been relatively slowly robotised compared to other
industries [97]. Robotics is applied in food manufacture, packaging, delivery, and cookery
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(cake decoration) [98]. Although the food industry is ranked fourth in terms of the most-
automated sectors, robotic devices capable of processing nutrients of different shapes and
materials are in high demand. In addition, these devices help to avoid consequences
such as food-borne illness caused directly by the contamination of nutrients by nutrient
handlers [99]. For this purpose, a dual-mode soft gripper was developed that can grasp
and suck various objects having a weight of up to 1 kg. Soft grippers prevent damage to
food [100].

Artificial intelligence-enabled robotic applications are entering the restaurant industry
in the food processing and guest service operations. In a review assessing the potential
for process innovation in the restaurant sector, an information process for the use of
new technologies for process innovation was developed [101]. However, the past year,
particularly due to the circumstances of COVID-19, has been a breakthrough year in
robotisation in the food industry. A more detailed overview of researches focused on
robotising the food industry is provided in Table 6.

Table 6. Research focused on the food industry.

Objective Technology Approach Improvement Ref.

The applications of industrial
robots in the food industry

and their automation
prospects. A 4-step Food

Industrial Robot
Methodology for selecting
industrial robots for food

processing operations.

Articulated robot,
parallel robot,

Cartesian robot

The four steps within the
Food Industrial Robot
Methodology (FIRM).

The FIRM presented in this paper outlined the
ability to classify industrial robot capabilities
and match them to specific characteristics of

foodstuffs and requirements for their processing
based on four steps that navigate eight tasks.
This work also identified many factors that

should lay the groundwork for future research
in the application of industrial robots within

food manufacturing.

[102]

Identification, analysis, and
understanding robotics in one
of the largest sectors, the food

chain.

Robots in the food chain Case study of a Delivery Bot

The emergence of robotics in business is widely
seen across the world. However, the trust in

human–robotic interaction appears to be
underdeveloped. Reducing the number of

repetitive jobs by replacing them with robots is
not replacing jobs but paving the way for more

intelligent jobs.

[98]

Maximise performance by
utilising fewer resources

Dual model soft gripper for
food packaging

Grasp and suck process for
various types of objects

having a weight up to 1 kg

The proposed dual-mode gripper can perform
grasp and suck functions for multiple types of
nutrients. Additional improvements may be

automatic switching of the gripper finger
configuration and distance adjustment.

[100]

Challenges in the application
of industrial robots in the

food industry
An overview An overview An overview [97]

Path planning optimisation
technique in the food

industry

The proposed optimisation
technique is based on the use

of an off-axis tool
EPSON T6 SCARA robot This path optimisation technique shortens the

cycle time and reduces energy consumption. [103]

3.6. Agricultural Applications

Agricultural robots are a specialised type of technology capable of assisting farmers
with a wide range of operations. Their primary role is to tackle labour intensive, repetitive,
and physically demanding tasks. Robots are used in planting, seedling identification, and
sorting. Autonomous tractors perform the function of weeding and harvesting. Drones
and autonomous ground vehicles are used for crop monitoring and condition assessment.
In animal husbandry, robots are used for feeding cattle, milking, collecting and sorting
eggs, and autonomous cleaning of pens. Cobots are also used in agriculture. These robots
possess mechanical arms and make harvesting much easier for farmers. The agriculture
robot market size is expected to reach USD 16,640.4 billion by 2026; however, specific robots,
rather than industrial robots, will occupy the majority of the market. A detailed overview of
research focused on implementing industrial robots in agricultural applications is provided
in Table 7.

44



Appl. Sci. 2022, 12, 135

Table 7. Research focused on agricultural applications.

Objective Technology Approach Improvement Ref.

The potential applications in
agriculture by presenting a
variety of manipulators and

various forms of sensors.

Parallel grippers, angular
grippers, and biologically

inspired grippers
manufactured by Festo.

Various sensors

Application methods.

State-of-the-art robotic grippers, grasping and
control strategies, and their applications in
agricultural robots. Applications of robotic

grippers in food, agricultural, and bio-system
engineering were summarised in detail.

[104]

A scheme that combines
computer vision and

multi-tasking processes to
develop a small-scale smart

agricultural machine that can
automatically weed and

perform variable rate
irrigation within a cultivated

field.

The frames of the machine,
the weeding and watering
mechanism, the image and

soil moisture sensor, the
actuator, and the graphical

user interface (GUI)

Image processing methods
such as HSV (hue (H),

saturation (S), value (V))
colour conversion, estimation

of thresholds during the
image binary segmentation
process, and morphology

operator procedures.
Fuzzy logic,

multi-tasking processes

The system can classify plants and weeds in real
time with an average classification rate of 90% or

higher. This allows the machine to perform
weeding and watering while maintaining the
moisture content of the deep soil at 80 ± 10%

and an average weeding rate of 90%.

[105]

A systematic overview
aiming to identify the

applicability of computer
vision in precision agriculture

to produce the five
most-produced grains in the

world: maise, rice, wheat,
soybean, and barley. Different

approaches to treat disease
detection, grain quality, and

phenotyping.

An overview An overview An overview [106]

3.7. Civil Engineering Industry

In general, the construction industry is relatively inefficient from the perspective
of automation. Robotics are seldom applied [107]. The main identified challenges for
higher adoption of robotics in the construction industry were grouped into four categories:
contractor-side economic factors; client-side economic factors; technical and work-culture
factors; and weak business case factors. Technical and work-culture factors include an
untrained workforce; unproven effectiveness and immature technology; and the current
work culture and aversion to change [108].

The perspective of robotics in civil engineering is significantly better. Here, robotics
provides considerable opportunities to increase productivity, efficiency, and flexibility,
from automated modular house production to robotic welding, material handling on
construction sites, and 3D printing of houses or certain structures. Robots make the industry
safer and more economical, increase sustainability, and reduce its environmental impact,
while improving quality and reducing waste. The total global value of the construction
industry is forecast to grow by 85% to USD 15.5 trillion by 2030 [109]. Robots can make
construction safer by handling large and heavy loads, working in hazardous locations,
and enabling new, safer construction methods. Transferring repetitive and dangerous
tasks that humans are increasingly reluctant to perform to robots means that automation
can help address the labour and skills crisis, and make the construction industry more
attractive [110,111]. Few classic robots are used in the construction process due to the
dynamic and inaccurately described environment; however, work on 3D buildings and their
environmental models reduces this limitation. A detailed overview of related references is
provided in Table 8.
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Table 8. Research focused on implementing robots in the construction and civil engineering industry.

Objective Technology Approach Improvement Ref.

A novel fabrication process
for the assembly of full-scale

masonry vaults without
falsework.

Two industrial robotic arms
(ABB 4600 2.55). The

prototype of the robotically
assembled brick vault.

The fabrication method is
based on a cooperative

assembly approach in which
two robots alternate between
placement and support first
to build a stable central arch.

Cooperative robotic assembly methods can be
applied to constructing a spanning structure
built without a temporary falsework. Where
traditional manufacturing techniques require

geometric guides, this project shows how it can
instead leverage the robots’ precision to

accurately place bricks in bespoke orientations.

[112]

A computer vision for
real-time extrusion quality
monitoring during robotic

building construction.

Laboratory-scale concrete
printer.

Logitech 720p camera to
capture extrusion videos. The

extrusion videos are
processed in real-time by a

Raspberry Pi 3B.

OpenCV library, adopted,
shape-based approach.

Gaussian filter.

The developed system can print up to ten 120
cm long concrete layers. It uses an extrusion
mechanism similar to the Contour Crafting

machine to print layers having a height of 3.81
cm and a width of 2.54 cm, from concrete and

mortar at different linear speeds (up to 10 cm/s)
and deposition rates.

The vision system detected all designed
variation levels (±5 to ±15 L/m3 change in the

water in the mixture).
In terms of accuracy and responsiveness to

material variations, the obtained experimental
results imply the excellent potential for using

computer vision for automated quality
monitoring of construction-scale 3D printing.

[113]

Presents the possibilities of
applying lightweight cobots

to individual tasks in the
construction sector.

Presenting of light robotics
together with 3D printing

technology provides the rapid
advantage of prototyping to
test ideas and applications.

The simplest visual system
was used to follow a

simplified approach, which
can be controlled directly by a

robot controller.

Future research on increasing the dynamics of
torsional tasks using a mobile robot with a

scissor lift could result in the cobot and mobile
platform covering the entire construction area.

[114]

To determine if improved
robotic technologies have also

been used in the building
industry.

An overview An overview An overview [115]

To determine how robotic
automation can help in the

construction industry.

A common framework for
current technological

innovation in this field and a
development plan were

outlined.

The projected impacts on
traditional processes,

construction sites, emerging
technologies, and related

professions are summarised
to identify future implications
and future directions toward

self-sufficiency.

Artificial intelligence must be a successful factor
in the involvement of robotic devices in the

construction industry.
[110]

Provide a systematic
overview of human-robot

interactions concerning
various types of robots

Human–robot interaction,
human–robot cooperation

(HRC).
An overview

Further investigation of multi-function robots,
human–robot interaction in robotic fabrication,

and multipurpose robots.
[116]

The main goal is to fully
describe feedback based on

sensor informed programs for
process monitoring and

fabrication data collection
and analysis.

Additive manufacturing. An overview

Effective robotic production still requires the
communication and management of

progressively improving materials and building
systems.

[117]

Application of a Building
Information Modelling (BIM)

method for efficient and
simple deployment of robot

systems for building
construction and operation

BIM integrative, collaborative
robotics.

The robot is provided with a
priori geometric and semantic

information about the
environment with the help of

the BIM system.

Future improvements consist of the assessment
of the actual applicability of the system on the
construction site and closing the gap between

robotic systems and the construction site.

[111]

4. Discussion

Implementing an industrial robot in practice is a complex procedure that requires
answering many questions about the possibilities of using the robot and the process itself.
The situation varies slightly depending on the industry area. Robots have been used in
some areas for 30 or more years, whereas, in other areas, the implementation of robots is
only beginning. In industrial sectors with a long tradition of robotics, new solutions are
relatively more straightforward. These solutions are typically limited to implementing
new tools, control algorithms, and robotic action quality control systems. Therefore, our
article focuses on areas where traditions of implementing robots do not exist yet, and such
solutions are just beginning to be implemented.

Despite the different application areas, some achievements in robotics can be success-
fully transferred from one industry to another. Furthermore, bypassing limitations in one
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area often ensures advances in robotics in other sectors. For example, the implementation
of computer vision to localise and manipulate randomly placed mechanical parts on a
conveyor fostered the robotisation of sorting processes in all industry fields.

This article provided an overview of the main areas where robots are beginning to be
implemented, and identified the main challenges and limitations they face (Figure 4).

 

Figure 4. Relations between robot implementation areas, typical tasks and limitations.

The conclusion is that tasks performed by the robots and actual limitations are closely
related to each other regardless of the implementation field. In this paper, the tasks for
which robots are most preferred rather than humans were identified. Typically, these
tasks are repetitive and extremely precise operations that require evaluating a considerable
amount of data. For example, the implementation of robots for object recognition has
three main functions in which robots replace humans: (1) extraction of useful information
from massive data flow; (2) accurate movements to manipulate with an object or tool;
and (3) repetitive action (sorting). In addition, the food, agriculture, and civil engineering
industries aim to replace humans involved in repetitive actions. In contrast, medical
applications are mainly related to accurate manipulation and hazardous environments.

Preparation of robots for an operation, particularly in dynamic, varying situations, is
a time- and resource-consuming activity. Therefore, a large amount of research focuses on
enhancing human–robot interaction and path planning/optimisation issues. The goal is to
develop faster and more comfortable methods to operate robots in real time, and to create a
possibility for the robot to react to the operator’s emotional state.

Many different factors limit the implementation of industrial robots in typical tasks.
The seven main limitations in the reviewed application fields were identified. In summary,
the main limitations are the lack of suitable methods, high recognition accuracy, and
performance requirements; varying environmental conditions; an excessive number of
possible situations; and lack of reliable equipment (tools). Notably, these limitations are
unrelated to the robot’s mechanical systems (except the tools). Therefore, most modern
robotic solutions are fostered by the development of additional equipment or control
algorithms. Computer vision, sensor fusion, and machine learning are becoming major
engines driving industrial robots’ wider application. They increase robots’ flexibility and
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enable them to make smart adaptive solutions, although robots were initially designed
only to perform repetitive actions.

As a result of the development of robot control systems, robots’ internal structures
have also been improved. These improvements typically include the implementation of
new mathematical methods for robot control or optimisation of energy consumption [118].
For example, a previous study [119] provided a methodology that allows implementation
of a non-typical Denavit–Hartenberg method for a delta robot.

Nonetheless, despite the recent improvements and smart solutions realised in indus-
trial robots, their widespread use in non-typical areas remains limited. The main limitations
and guidelines for further research are new intuitive control methods, user-friendly inter-
faces, specialised software, and real-time control methods.

5. Conclusions

Analysis of robot applications revealed a number of important issues, and showed
that the current rare applications of robot implementations are not always limited by
technical difficulties.

Some application fields have no tradition in such activities, such as the civil engi-
neering, food, and agriculture industries. Human–robot cooperation in classical industrial
robots and in specialised cobot cases still demands an intensive introduction into these
industries. However, in this case, the introduction involves non-technical aspects such
as human psychology and personal acceptance of the robots in their working place. An-
other aspect of the subjective attitude to robots is limited by their acceptance by managers
and process designers; however, they are also lacking implementation experience and
knowledge of cutting-edge achievements in robotic applications.

Many automation cases are still limited by artificial intelligence (AI) issues related to
object recognition, object position recognition, and decision generation for object grabbing
and manipulating. This issue arises from the process of widening robotic implementation
in existing industries, and therefore many technologies should be redesigned. Nevertheless,
pressure due to the absence of a skilled labour force has led to new solutions. Many general
solutions using machine vision and sensor fusion (camera–lidar scanner, camera–distance
sensors, etc.) have been spontaneously implemented in numerous industrial enterprises.
These approaches are starting to appear in home appliances, but market penetration of
these solutions remains low.

Robot implementations are often subject to systematic difficulties, such as manipula-
tion and orientation of solid objects with non-stable geometrical shapes. These objects are
widely used in industry and home appliances, and include textiles, clothes, and cables. At
present, this area has few publications and technical solutions, and is in the research stage;
presentations of some of the publicly available cases are at the level of scientific publications.
Although clamps and templates are currently used for specific industrial cases, general
solutions have not yet been achieved. This situation requires rethinking processes and
possibly preparing objects for robotic processing, rather than using tremendous computing
and multiplying hardware.

The result of this review points to four evident directions in the field of robotics:

• development of intelligent companion equipment for robots (sensors, grippers, and
servo-applications);

• AI-based solutions for signal processing and decision making;
• the redesign of general objects and the related features for robotic applications;
• provision of psychological solutions for robot–human collaboration and acceptance of

robots in the workplace.
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Abstract: The recent advancement in autonomous robotics is directed toward designing a reliable
system that can detect and track multiple objects in the surrounding environment for navigation and
guidance purposes. This paper aims to survey the recent development in this area and present the
latest trends that tackle the challenges of multiple object tracking, such as heavy occlusion, dynamic
background, and illumination changes. Our research includes Multiple Object Tracking (MOT)
methods incorporating the multiple inputs that can be perceived from sensors such as cameras and
Light Detection and Ranging (LIDAR). In addition, a summary of the tracking techniques, such
as data association and occlusion handling, is detailed to define the general framework that the
literature employs. We also provide an overview of the metrics and the most common benchmark
datasets, including Karlsruhe Institute of Technology and Toyota Technological Institute (KITTI),
MOTChallenges, and University at Albany DEtection and TRACking (UA-DETRAC), that are used
to train and evaluate the performance of MOT. At the end of this paper, we discuss the results
gathered from the articles that introduced the methods. Based on our analysis, deep learning has
introduced significant value to the MOT techniques in recent research, resulting in high accuracy
while maintaining real-time processing.

Keywords: multiple object tracking; MOT; self-driving; autonomous vehicle; autonomous navigation;
SLAM; KITTI; MOTChallenges; MOT15; MOT16; MOT17; UA_DETRAC

1. Introduction

Integrating computer vision and deep learning-based systems in the robotics field
has led to a massive leap in the advancement of autonomous feature. The utilization of
different sensors, such as cameras and LIDARs, and the progress established by the recent
research on processing this data, have introduced multiple object tracking techniques in
autonomous driving and robotics navigation systems. Multiple object tracking has been one
of the most challenging topics researched through computer vision techniques. The reasons
behind this are due to: (1) multiple object tracking (MOT), an essential tool that can be
used in enhancing security and automating robotics navigation, and (2) occlusion, which
is the main obstacle standing in the path of reaching a reliable accuracy and one issue
that is difficult to tackle. In this paper, we aim to survey the different approaches of MOT
introduced recently in autonomous robotics.
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Much research has been done to enhance the performance of tracking in SLAM
applications [1,2]. It is simply difficult to navigate through the environment while the
positions of the robot itself and other objects in the surrounding are neglected. Tracking is
used to estimate the relative location of the robot to other components in the environment.
The most challenging part of this process is the existence of highly dynamic objects [3] such
as people or vehicles. SLAM-based autonomous navigation in robots has been regarded as
essential in development and research primarily because of its potential in many aspects.
One example is the autonomous wheelchair systems reviewed in Refs. [4,5]. The authors
in Ref. [6] provided a survey of the mobile devices that assist people with disability.
Autonomous driving can cause a reduction in the number of accidents that occur due to
fatigue and distractions [7]. Although that might be the case, the public opinion about
autonomous vehicles is hesitant about whether to consider the technology trustworthy.
Providing awareness and understanding of the capabilities of the sensors in autonomous
vehicles to the drivers is vital to reaching the proper employment of the technology in our
daily lives. These sensors should not be disregarded or become entirely dependable on
them [8]. The approach introduced in Ref. [9] aims to reduce the risks firefighters encounter
by deploying a team of UAVs with an MOT system to track wildfires and control the
situation. The authors in Ref. [10] employ MOT to guide a swarm of drones and control
them. Similarly, MOT is utilized with UAV for collision avoidance in Ref. [11]

As has been discussed in Refs. [12–14], the general framework for MOT is shown in
Figure 1. The input frame is subjected to an object detection algorithm. Then, the detections
from the current frame and the previous frames are used to match the similar trajectories
either by motion, appearance, and/or other features. This process would generate tracks
presenting the objects through the sequence of frames. Some data association between
multiple frames is applied to track an object through multiple frames. A reliable MOT
system should be able to handle the new tracks as well as the lost ones. Here, the occlusion
issue is where the lost tracks reappear again because they did not move out of the sensor’s
view but were hidden by other objects.

Figure 1. General framework of MOT systems. Visual and motion features of the detected objects
at frame T are extracted and compared to those detected from previous frames. A robust data
association algorithm would be able to match the features of the same objects. The final output of the
system would be tracked with unique IDs identifying the multiple objects detected and tracked over
the multiple frames.

1.1. Challenges

To effectively perform object tracking, one must develop a robust and efficient model
that the users can effectively use. This section aims to provide a comprehensive overview
of the various challenges facing developing and optimizing such models.
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The first challenge a model must face is the quality of the input video [15]. If the
model cannot process the video properly, it will require additional work to convert it into
a clear form so that it can be used to detect objects. The classification system must first
identify the objects that fall under a particular class. It then gives them IDs based on their
shape and form, which raises the issue that objects of this class come in varying shapes
and sizes [16]. After the objects are detected, they must be assigned IDs with a bounding
box to identify them to ensure that the model can identify multiple similar objects in the
coverage area. The next challenge is to identify the objects that are moving in the ROI of
the camera. This phenomenon can cause the classification system to misclassify the objects
or even identify them as new ones. Aside from the quality of the video input, other factors
that affect the classification of objects are also considered. For instance, the illumination
conditions can significantly influence the model’s accuracy [12–14,16]. The model may not
be able to detect objects that are blunt with the environment or have background conditions.
It also needs to be able to identify them at varying speeds. One of the most challenging
issues in object tracking is the Occlusion issue, where the object movement gets interrupted
by other objects in the scene [12–14,16]. It can be caused by various factors such as natural
conditions or the object’s movement out of the camera’s ROI. Another reason is that other
objects might block the visual of the object if the object is in the camera’s ROI. Therefore,
the system must be trained to identify and track the objects in motion. It also needs to
be able to re-identify the IDs of the captured images with the same ones already used by
the cameras. Figure 2 shows an example of the occlusion issue. The yellow arrow follows
one of the tracks that maintains its ID after experiencing full occlusion. The problem of
occlusion is minimized in bird-eye view tracking [17]. However, other challenges arise,
such as the low resolution of objects and misclassifications. Another obstacle is related to
onboard tracking in self-driving applications. The issue is that the tracking process needs
to be quick and accurate for an efficient assistant driving system. The FPS is one of the
essential factors determining the tracking quality in this case [18].

Figure 2. Preserving the ID during full occlusion. The frames are obtained from the MOT15
dataset [19]. The yellow arrow is pointing towards a track (top image) that experiences full oc-
clusion (middle image). The objective of the MOT system is to preserve the ID of the track (bottom

image) and matches the previously detected object with the reappeared one.
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1.2. Related Work

The authors in Ref. [20] provided a summary of the techniques developed for SLAM-
MOT (combination of SLAM and MOT systems) that utilize the dynamic features to con-
struct 3D object tracking and multi-motion segmentation systems. In Ref. [20], 3D tracking
of dynamic objects techniques was categorized into trajectory triangulation, particle filter,
and factorization-based approaches. The authors in Ref. [20] discussed the data fusion
problem in autonomous vehicles. The perception of data from different sensors such as
RGB cameras, LIDAR, and depth cameras provides more knowledge and understanding
of the surrounding environment and increases the navigation system’s robustness. In
Ref. [20], a survey is conducted on the techniques used for SLAM in autonomous driving
applications and the limitations of the current research. The evaluation in this paper was
done on the KITTI dataset.

The authors in Ref. [12] categorized the MOT approaches into three groups. The first
is the initialization method, which defines whether the tracking would be detection-based
or detection-free. Detection-based tracking or tracking-by-detection is the most common,
where a detected object is connected to its trajectories from future frames. This connection
can be applied by calculating the similarity based on appearance or motion. Detection-free
tracking is where a set of objects is manually localized in the first frame and tracked through
the future. This is not optimal in case new objects appear and is rarely applied. The second
is based on the processing mode, either online or offline tracking. Online tracking is where
objects are detected and tracked in real time. This is more optimal in the case of autonomous
driving applications as offline tracking is where a batch of frames are processed at a low
FPS. The final one is the type of output where it can be stochastic, in which the tracking
varies at different running times, or deterministic, in which the tracking is constant. They
would further define the components that are included in the MOT system. Appearance
model is used to extract spatial information from the detections and then calculate their
similarity. The visual features and representations extracted can be defined either locally
or regionally.

Motion models are used to predict the future location of the detected object and
hence, reduce the inspection area. A good model would have a good estimation after a
certain number of frames as its parameters are tuned towards learning how the object
moves. Linear (constant velocity) and non-linear are the two types of motion models.
Although there has been a rapid advancement in multiple object detection and tracking for
autonomous driving, it is still processing only a few objects. It will be a giant leap forward
to have a system capable of tracking all types of objects in real time. This can be achieved
by generating a great deal of data that tackles the problem at different perceptions such as
camera, LIDAR, ultrasonic, etc. [21]. The issues related to the full deployment of MOT in
autonomous vehicles lie in that its reliability heavily depends on many parameters, such as
the camera view and the type of background (dynamic or static). This leads to difficulty
in being entirely trustful towards MOT in different real scenarios and environments [12].
Tracking pedestrians is a far more difficult task than tracking vehicles whose motion
is bounded by the road compared to the motion of people, which is very random and
challenging for the system to learn. Another issue is the occlusion, which leads to high
fragmentation and ID switches due to losing and re-initializing tracks every time they get
lost. There have been very few systems that comprehensively tackle the problem, which
leaves a huge space for improvements [22].

In Ref. [16], the tracking algorithms are categorized into two groups. The first is
matching-based, which defines how features, such as appearance and motion, are first
extracted and used to measure the similarity in the future frames. The second is filtering-
based tracking, where Kalman and Particle filters are discussed. The authors in Ref. [13]
comprehensively surveyed the deep learning-based methods for MOT. They also provided
an overview of the data in MOTChallenges and the type of conditions included. An eval-
uation of the performance of some methods on this dataset is then listed. In Ref. [14],
the deep learning-based methods for MOT were also reviewed. Similarly, the authors also
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provided an overview of the benchmark datasets, including MOTChallenges and KITTI,
and presented the performance of some methods.

In Ref. [23], the vision-based methods used to detect and track vehicles at road in-
tersections were discussed. The authors categorized those methods depending on the
sensors used and the approach carried out for detection and tracking. On the other hand,
the authors in Ref. [24] presented methods introducing vehicle detection and tracking
in urban areas, and an evaluation was then discussed. UAVs’ role in civil applications,
including surveillance, have been surveyed in Refs. [25,26]. The authors discussed the
characteristics and roles of UAVs in traffic flow monitoring. However, there have not been
many contributions to vehicle tracking methods using an UAV.

The authors in Refs. [7,8], provided a detailed overview of the types of sensors
mounted on autonomous vehicles, such as LIDAR, Ultrasonic, and cameras, for data
perception. They also surveyed the current advancement in the autonomous driving field
commercially and the type of technology associated with that. In Ref. [21], the authors
studied the role of deep learning in autonomous driving including perception and path
planning. In addition to deep learning approaches, a general review was introduced in
Ref. [27]. In Ref. [28], the methods used to extract and match information from multiple
sensors used for perception were reviewed. They also discussed how data association
could be an issue in using multiple sensors to achieve reliable multiple object tracking.
The authors in Ref. [29], surveyed the methods that utilize LIDAR in data perception and
grouped the performance results on the KITTI dataset. Ref. [22] provided a comprehensive
overview of the KITTI dataset’s role in the autonomous driving application. The dataset
can be used for training and testing pedestrians, vehicles, cyclists, and other objects that
can be found on the road. Moreover, the dataset was extended to lane and road marks
detection by Ref. [30].

Although the techniques mentioned above were very thorough in reviewing tech-
niques, we aim in this paper to provide comprehensive research that surveys the techniques
associated with autonomous robotics applications, provides an insight into the different
tracking methods, gathers and compares the results from the different methods discussed
in the paper, and evaluate the current work and find limitations that require future research.
Table 1 lists the recent reviews, the year of publication, and the datasets used for comparing
MOT methods.

Table 1. Recent reviews and the data used for evaluation and comparison.

Review Year Evaluation Dataset

Ciaparrone et al. [13] 2019 MOT 15, 16, 17

Xu et al. [14] 2019 MOT 15, 16

Luo et al. [12] 2022 PETS2009-S2L1

Ours 2022 KITTI, MOT 15, 16, 17, 20 , and UA_DETRAC

Section 2 discusses the state-of-art methods and techniques introduced by the literature.
Section 3 discusses the benchmark datasets and evaluation metrics popularly used by the
research for training and testing. Section 4 presents the evaluation results collected from
the literature and discussion. Finally, Sections 5 and 6 provide the current study challenges
and the future work that is required.

2. Mot Techniques

In this section, we go through the most recent MOT techniques and the common trends
being followed for matching tracks across multiple frames.

Table 2 shows a summary of the components used in MOT techniques. It can be
observed that the appearance cue is rarely neglected. Motion cue also shows presence a lot.
Most approaches depend on deep learning for extracting visual features. CNNs are vital
tools that can extract visual features from the tracks and achieve accurate detections of tracks
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matching [14]. The approaches introduced in Refs. [31,32] use Long Short Term Memory
(LSTM) based networks for motion modeling. LSTM networks are considered in MOT for
appearance and motion modeling as they can find patterns by efficiently processing the
previous frames in addition to the current ones. On the other hand, The authors in Ref. [33]
generated histograms from the detections and used them as the appearance features. As for
data association, the Hungarian algorithm is common with MOT techniques, such as
Refs. [33–36], for associating the current detections with the previous ones, although the
performance of these techniques did not show much potential. Deep learning has rarely
been utilized for data association. However, the best performing technique on MOT16 and
MOT17 datasets relied on a prediction network to validate that the two bounding boxes
are related. For occlusion handling, most approaches rely on feeding the history of tracks
into the tracking system to validate the lost ones. The tracks absent for a specific number of
frames would be considered lost and deleted from the history. This is to avoid processing a
massive number of detections and reducing the FPS.
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The general framework illustrated in Figure 1 is followed by most of the recent MOT
techniques. The most common approach for extracting the visual features of an object is by
using CNN. VGG-16 is very popular for this application, as in Refs. [32,42,48]. The issue
with deploying CNN is the slow computation time due to the high dimensionality output.
Zhao et al. [36] tackled this issue by applying PCA followed by a correlation filter for
dimensionality reduction to the output of the CNN. An encoder with fewer parameters
is introduced in Ref. [49] for faster computation. Another popular network for extracting
appearance features is ResNet-50, as in Refs. [35,41,43], which resulted in a competing
accuracy with fast computation. Peng et al. [43] extracted the appearance features from
different layers of a ResNet-50 network forming a Feature Pyramid Network, which has
the advantage of detecting objects at different scales. The LSTM network is an important
concept for architecture design for processing a sequence of movies. It has been used for
MOT application in multiple approaches such as Refs. [31,32]. The main approach taken
by most current methods is to store the appearance features of the previous frames and
retrieve them for comparison with the ones of the current frame. The important factor that
affects the reliability of this comparison is the updating of the stored features. The object’s
appearance varies through the frames but not significantly between two adjacent frames;
hence, constant updating can lead to a higher matching accuracy.

The second most common feature used for tracking is that related to the object’s
motion. This is specifically useful at full occlusion occurrence. In this case, the object’s
state can change significantly, and the appearance features will not be reliable for matching.
A robust motion model can predict the object’s location even if it disappears from the scene.
The most common approach for motion tracking is the Kalman Filter, as in Refs. [50–52].
The authors in Refs. [34,45] use the relative position between two tracks in two adjacent
frames and decide whether or not the two tracks are of the same object. The authors in
Refs. [31,32,46], use deep learning approaches for motion tracking. The most common
architecture for this approach is the LSTM network. The Kalman filter has a significantly
lower computational cost than the deep learning approaches. The issue with utilizing
only motion models for tracking is the random motion of objects. For instance, motion
models would work better on cars where the motion is limited than on people. Zhou et al.
introduced CenterTrack in Ref. [46] for tracking objects as points. The system is end-to-end,
taking the current and the previous frames and outputting the matched tracks as illustrated
in Figure 3.

Figure 3. The point tracking approach in Ref. [46]. The current and previous frames are passed into
the centerTrack network, which utilize the motion feature to detect and match tracks.
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There are other features used for tracking. The authors in Refs. [56,61], added the IoU
metric between the adjacent frames’ detections to match the two tracks. The tracking of
one object in the scene can be affected by other objects. For this reason, some methods have
introduced the interactivity feature to the tracking algorithm. In Ref. [31], the interactivity
features were extracted from an occupancy map using an LSTM network. The authors in
Ref. [54] used a tracking graph and designed a set of conditions to measure the interactivity
between two objects. Figure 4 illustrates the overview of tracking graph methods. The ap-
proach in Ref. [63], exploited the size and structure as features along with the appearance
and motion for tracking. Increasing the number of features can improve the tracking
process at the cost of computation time. The main issue would be the processing needed to
fuse those features with different dimensionalities. The authors in Refs. [44,68] used IOU
in addition to appearance and motion features to increase the reliability of the tracking.
The authors in Ref. [44] further improved the model by adding epipolar constraints with the
IOU and introduced a tracklenet to group similar tracks into a cluster. Ref. [69] added the
deep_sort algorithm to the extracted features to reduce the unreliable tracks, and Ref. [36]
added a correlation filter tracker to the CNN. Ref. [47] performed a similar approach of
performing feature extraction and matching simultaneously by having affinity estimation
and multi-dimensional assignment in one network. The authors in Refs. [70,71] experi-
mented with 3D distance estimation from RGB frames. In Ref. [70], Poisson multi-Bernoulli
mixture tracking filter was used to perform the 3D projections. In addition to CNN, Ref. [72]
experimented visually with the track’s Gaussian Mixture Probability Hypothesis Density.
The authors in Ref. [37] introduced a motion segmentation framework using motion cues
in addition to the IOU and bounding box clusters for object tracking through multiple
frames. An interesting technique is established in Ref. [33], where one network has the
current and prior frames as inputs and outputs point tracks. Those tracks are given to
a displacement model to measure the similarity. Similarly, another approach to motion
modeling is introduced in Ref. [45] to handle overlapping tracks by using the efficient
quadratic pseudo-Boolean for optimization.

Figure 4. Track tree proposed in Track tree method system overview. The strength of each branch
depends on a score evaluated by the matching algorithm. The green lines indicate matched tracks.
The red circle indicate a lost track.

The features extracted from every detection in the current frame must be associated
with those extracted from the previous frames. The most popular approach taken for data
association in recent years would be the Hungarian algorithm, as in Refs. [50,53,60,63,67].
The advantage of this method is the accuracy accompanied by a fast computation time.
Zhang et al. proposed ByteTrack in Ref. [50], where the Kalman filter is used for predicting
the detection location followed by two levels of association. The first utilizes the appearance
features in addition to the Intersection over Union (IoU) for matching tracks using the
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Hungarian algorithm. The second level of association deals with the weak detections by
utilizing only the IoU with the unmatched tracks remaining from the first level. The authors
in Refs. [31,43,52] use deep learning networks for data association. The authors in Ref. [39]
introduced a model trained using reinforcement learning. The metric learning concept
was used to train the matching model in Ref. [32]. The authors in Ref. [62] take advantage
of the object detection network for feature extraction. This would save computational
costs from applying an appearance feature network on each detection in the current frame.
The approaches in Refs. [43,52] apply the same concept in addition to an end-to-end system
that takes the current frame and previous frames as input and outputs the current frame
with tracks. The hierarchical single-branch network is an example of an end-to-end system
proposed in Ref. [52] as illustrated in Figure 5. The P3AFormer tracker introduced in
Ref. [57] uses the simultaneous detection and tracking framework where a decoder and
a detector extract pixel-level features from the current and previous frames. The features
are passed into a multilayer perceptron (MLP) that outputs the size, center, and class
information. The features are then matched using the Hungarian algorithm. The system
overview of the P3AFormer is shown in Figure 6.

Figure 5. The hierarchical single-branch network proposed in Ref. [52]. The frames from a video
source are passed into the network and outputs detections and tracks.

Figure 6. P3AFormer system overview [57]. The current and previous frames are passed for features
extraction and detection. The extraction module consists of a backbone network, pixel-level decoder,
and a detector, which is illustrated on the right. The features are passed to MLP heads to output the
class, center, and size features.
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The Recurrent Autoregressive Networks (RAN) approach introduced in Ref. [38] de-
fines an autoregressive model that is used to estimate the mean and variance of appearance
and motion features of all associated tracks of the same object stored in the external memory.
The internal memory uses the model generated to compare with all upcoming detections.
The one with the maximum score and above a certain threshold would then be considered
the same object. The external and internal memory would then be updated with the new
associated object. There are two types of independence in this approach. The first is that
the motion and appearance models include different parameters, so they have different
internal and external memories. The second is a new RAN model generated for every new
object detected. The lost tracks are terminated after 20 frames. The visual features are
extracted using the fully connected layer (fc8) of the inception network, and the motion
feature is a 4-dimensional vector representing the width, height, and relative position from
the previous detection. The CTracker framework [43] takes two adjacent frames as inputs
and matches each detection with the other using Intersection over Union calculations.
A constant velocity motion model is used to match the tracks up to a certain number of
frames to handle the reappearance of lost tracks. This approach is end-to-end. It takes two
frames as input and outputs two frames with detections and matching tracks.

The authors in Ref. [33] introduced an approach in which the detections’ dissimilarity
measures are computed and then matched. First is the dissimilarity cost computation. Next,
the histogram of the H and S channels of the HSV colorspace of the previous detections
is compared to the similar histogram of the current detections. A grid structure is used
as in Refs. [73,74]. Hence, multiple histograms are used to match the appearance features.
Furthermore, Linear Binary Pattern Histogram (LBPH), introduced in Ref. [75] and used
for object recognition in Ref. [76], is utilized for computing the structure-based distance.
The predicted and the measured position matching using the L2 norm is added as the
motion-based distance. Finally, IoU calculates the size difference between the current
detections and the previous tracks. The second step is using the Hungarian algorithm [77]
to calculate the overall similarity using the four features calculated in the previous step.

The authors in Ref. [68] proposed V-IoU, an extension of IoU [78], for object tracking.
The objective here is to reduce the number of ID switches and fragmentation by maintaining
the location of lost tracks for a certain number of frames until it appears. A backtrack-
ing technique where the reappeared track is projected backward through the frames is
implemented to validate that the reappeared track is, in fact, the lost one. In Ref. [46],
CenterNet [79] is used to detect objects as points. Centertrack takes two adjacent frames as
inputs in addition to the point detections in the previous frame. The tracks are associated
using the offset between the current and previous point detections. The authors in Ref. [80]
designed a motion segmentation model where the point clusters used for trajectory predic-
tion were placed around the center of the detected bounding box. The approach in Ref. [37]
employs optical flow and correlation co-clustering for projecting trajectory points across
multiple frames, as illustrated in Figure 7.
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Figure 7. Motion segmentation. The trajectory points are projected across multiple frames.

There has been a recent advancement in multiple object tracking and segmentation
(MOTS). This field tackles the issues related to the classic MOT, which are associated with
the utilization of bounding box detection and tracking, such as background noises and loss
of the shape features. The approach introduced in Ref. [81] used an instance segmentation
mask on the extracted embedding. The method in Ref. [82] applies contrastive learning
for learning the instance-masks used for segmentation. An offline approach introduced in
Ref. [83] exploits appearance features for tracking. This method is currently at the top of
the leader board at the MOTS20 challenge [84].

The system can achieve more reliability when utilizing multiple sensors to detect
and track targets in addition to understanding their intentions [28]. The deep learning
approaches are improving and showing promise in the LIDAR datasets. The issue with this
is the bad running time, causing difficulty in real-time deployment [29]. The challenges
facing 3D tracking are related to the fusion of the data perceived from LIDAR and RGB
cameras. Table 3 lists the recent MOT techniques that utilize LIDAR and camera for tracking.

Table 3. Summary of the sensors fusion approaches used in 3D MOT techniques.

Tracker RGB Camera Point Cloud LIDAR Data Fusion Target Tracking

Simon et al. [85] Enet 3D Voxel Quantization Complex-YOLO LMB RFS

Zhang et al. [86] VGG-16 PointNet
Point-wise convolution

+ Start and end estimator
Linear Programming

Frossard et al. [87] MV3D MV3D MV3D Linear Programming

Hu et al. [71] Faster R-CNN 34-layer DLA-up Monocular 3D estimation LSTM Network

Weng et al. [88] ResNet PointNet Addition Graph Neural Network

Sualeh et al. [89] YOLOv3 IMM-UKF-JPDAF 3D projection Munkres Association

Shenoi et al. [90] Mask RCNN F-PointNet 3-layered fully connected network JPDA

Simon et al. [85] proposed complexer-YOLO, illustrated in Figure 8, for RGB and
LIDAR data detection, tracking, and segmentation. A preprocessing step for the point
cloud data input from LIDAR aims to generate a voxalized map of the 3D detections.
The RGB frame is passed into ENet [91], which will output a semantic map. Both maps are
matched and passed into the Complexer-YOLO network to output tracks. The approach in
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Ref. [86] extracts features from the RGB frame and the point cloud data. An end-to-end
approach was introduced in Ref. [87] for dealing with features extraction and fusing from
RGB and Point Cloud Data, as illustrated in Figure 9. Point-wise convolution in addition to
a start and end estimator are utilized for fusing both types of data to be used for tracking.

Figure 8. Complexer-YOLO [85]. Data from RGB frame and point cloud data are mapped and passed
into Complexer-YOLO for tracking and matching.

Figure 9. An end-to-end approach for 3D detection and tracking [87]. The RGB and point cloud
data are passed into a detection network. Matching and scoring nets are then trained to generate
trajectories across multiple frames.
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3. Mot Benchmark Datasets and Evaluation Metrics

In this section, we review the most common datasets that are used for training and
testing MOT techniques. We also provide an overview of the metrics used to evaluate the
performance of these techniques.

3.1. Benchmark Datasets

Most research done in multiple object tracking uses standard datasets for evaluating
the state of art techniques. In this way, we have a better view of what criteria, the new
methodologies, have shown superiority. For this application, everyday moving objects
could be pedestrians, vehicles, cyclists, etc. The most common datasets that provide a
variation of those objects in the streets are the MOTChallenge collection and KITTI.

• MOTChallenge: The most common datasets in this collection are the MOT15 [19],
MOT16 [92], MOT17 [92], and MOT20 [93]. There is a newly created set, MOT20, but it
has not yet become a standard for evaluation in the research community to our current
knowledge. The MOT datasets contain some data from existing sets such as PETS and
TownCenter and others that are unique. Examples of the data included are presented
in Table 4, where the amount of variation included in the MOT15 and MOT16 can be
observed. Thus, the dataset is useful for training and testing using static and dynamic
backgrounds and for 2D and 3D tracking. An evaluation tool is also given with the set
to measure all features of the multiple object tracking algorithm, including accuracy,
precision, and FPS. The ground truth data samples are shown in Figure 10.

Table 4. Examples of the types of data included in MOT15 and MOT16.

Dataset Sequences Length Tracks FPS Platform ViewPoint Density Weather

MOT 2015

TUD-Crossing 201 13 25 static horizontal 5.5 cloudy
PETS09-S2L2 436 42 7 static high 22.1 cloudy
ETH-Jelmoli 440 45 14 moving low 5.8 sunny

KITTI-16 209 17 10 static horizontal 8.1 sunny

MOT 2016

MOT16-01 450 23 30 static horizontal 14.2 cloudy
MOT16-03 1500 148 30 static high 69.7 night
MOT16-06 1194 221 14 moving low 9.7 sunny
MOT16-12 900 86 30 moving horizontal 9.2 indoor

Figure 10. Samples from MOT 15-17 ground truth dataset. Samples of MOT15 (top image), MOT16
(middle image), and MOT17 (bottom image).
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• KITTI [94]: This dataset is created specifically for autonomous driving. It was collected
by a car driven through the streets with multiple sensors mounted for data collection.
The set includes PointCloud data collected using LIDAR sensors and RGB video
sequences captured by monocular cameras. It has been included in multiple research
related to 2D and 3D multiple object tracking. Samples of the pointcloud and RGB
data included in the KITTI dataset are shown in Figure 11.

Figure 11. Samples of the KITTI dataset including Pointcloud and RGB. Visual odometry trajectory
(top left), disparity and optical flow map (top right), visualized point cloud data [95] (middle),
and 3D labels (bottom).

• UA-DETRAC [96–98]: The dataset includes videos sequences captured from static
cameras looking at the streets at different cities. A huge amount of labeled vehicles
can assist in training and testing for static background multiple object tracking in
surveillance and autonomous driving. Samples of the UA-DETRAC dataset at different
illumination conditions can be shown in Figure 12.

Figure 12. Samples of the UA-DETRAC dataset showing variation of illumination in the environment
from a static camera.

3.2. Evaluation Metrics

The most common evaluation metrics are the CLEAR MOT metrics, which were
developed by Refs. [22,23]. Mostly tracked objects (MT) and mostly lost objects (ML) in
addition to IDF1 are uses to present the leaderboards in MotChallenges. False Positives
(FP) is the number of falsely detected objects. false Negatives (FN) the number of falsely
undetected objects. Fragmentation (Fragm) is the number of times a track gets interrupted.
ID Switches (IDSW) is the number of times an ID changes. Multiple Object Tracking
Accuracy (MOTA) is given by (1), whereas Multiple Object tracking Precision (MOTP) is
given by (2). Finally, frames per second (Hz) and IDF1 given by (3).

MOTA = 1 − (FN + FP + IDSW)

GT
(1)
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where GT is the total number of ground truth labels.

MOTP =
∑t,i dt,i

∑t ct
(2)

where c is the number of matches in t frame and d is the correctly overlapping detections
and tracks.

Identi f icationF1(IDF1) =
1

1
IDP + 1

IDR
(3)

where identification precision is defined by:

IDP =
IDTP

IDTP + IDFP
(4)

and identification recall is defined by:

IDR =
IDTP

IDTP + IDFN
(5)

IDTP is the sum of true positives edges weights, IDFP is the sum of false positives edges
weights, and IDFN is the sum of false negatives edges weights

The metrics used for evaluating on the UA_DETRAC dataset utilize the precision
recall (PR) for calculating the CLEAR metrics, as introduced in Ref. [96]. In addition to
these metrics, the HOTA metric introduced in Ref. [99] is calculated by the formula in (6).∫

0<α≤1
HOTAα (6)

where √
∑cεTPα

(Ass_IoU)α(c))
|TPα|+ |FNα|+ |FPα| (7)

where

Ass_IoU =
|TPA|

|TPA|+ |FNA|+ |FPA| (8)

where TPA, FNA, and FPA are the association metrics.
There has been a recent advancement in the multiple object tracking and segmentation

(MOTS). This field tackles the issues related to the classic MOT which are associated with
the utilization of bounding box detection and tracking such as background noises and loss
of the shape features. The MOTS20 Challenge [84] proposed metrics for evaluating methods
that tackle this issue. The multi-object tracking and segmentation accuracy (MOTSA) is
calculated using the formula in (9). Similarly, multi-object tracking and segmentation
precision (MOTSP) and soft multi-object tracking and segmentation accuracy (sMOTSA)
are found by the formulas in (10) and (11), respectively.

MOTSA = 1 − (|FN|+ |FP|+ |IDSW|)
|M| (9)

where M is the ground truth masks.

MOTSP =
T̃P
|TP| (10)

where T̃P is the soft version true positives (TP).

sMOTSA =
T̃P − |FP| − |IDSW|

|M| (11)
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4. Evaluation and Discussion

In this section, we compare the MOT techniques based on the dataset used for evalua-
tion. Then, analysis and discussion are conducted to provide insight for future work.

The performance of the most recent MOT techniques on MOT15, 16, 17, and 20 datasets are
shown in Table 5. The ↑ stands for higher is better, and ↓ stands for lower is better. The protocol
indicates the type of detector used for evaluating the results. The dataset provides the public
detector and is typical for all methods. The private detector is designed by the method and
is not shared. In MOT15, the tracker introduced in Ref. [38] has the highest accuracy and the
lowest identity switches (IDs). It also maintained the highest percentage of tracks (MT) and
has the lowest percentage of lost ones (ML). On the other hand, it had a significantly higher
number of false positives and negatives compared to the method introduced in Ref. [42], which
also performed with the highest FPS (Hz). The authors in Ref. [36] evaluated their system
using the private detector protocol and have significantly lower fragmentation than all other
methods. In Ref. [38], the tracker relied on appearance features extracted from the inception
network layer and the position of the detections. The association process was done using
conditional probability. The approach in Ref. [48] has the second best accuracy, where the
motion features and the appearance features were used, as well as a category classifier for
the association. The method with the lowest accuracy [80] only relied on the motion features,
and the slowest performing method [39], where reinforcement learning was applied for data
association. The approach in Ref. [62] has the highest accuracy on the MOT16 dataset using the
private detector protocol. The method in Ref. [53] also used the private detector and has the
highest HOTA. Both methods relied on appearance features for tracking and incorporated the
Hungarian algorithm for matching. Similarly, a significantly faster-performing method [38]
with slightly lower accuracy only used the appearance features and a prediction network for
the association. The method in Ref. [35] used the Kalman filter for motion feature prediction
and the appearance features extracted from the detection network for tracking. This method
has a lower accuracy in comparison to other methods. In MOT17, the approach with the highest
accuracy [57] has a significantly higher fragmentation than the one introduced in Ref. [64],
which only used the motion feature for tracking. The method in Ref. [67] has slightly lower
accuracy but with an acceptable FPS. This method used the appearance and motion features in
addition to the Hungarian algorithm for matching. The approaches in Refs. [56,58] have an
acceptable accuracy where both used Kalman filter for motion tracking and Ref. [56] neglected
the appearance features. The method in Ref. [64] has the lowest number of fragmentation and
only uses the motion features in tracking. The method in Ref. [57] has the highest accuracy
on MOT20, although it has a significantly higher number of fragmentation compared to the
one in Ref. [54]. The approach in Ref. [67] has the highest FPS, followed by the one in Ref. [54].
All of these methods relied on visual and motion features for tracking. The methods in
Refs. [58,67] only used the motion features and had an acceptable accuracy. On the other hand,
the ones that only relied on the visual features, such as Refs. [60,62,63,65] did not perform well
according to the accuracy and other metrics. This evaluation shows that appearance features
are essential for high accuracy, and other cues are used to boost performance. Based on the
results from Table 5 and the summary presented in Table 2, the utilization of deep learning
for data association reduces the processing time, as can be observed from Refs. [43,49]. On the
other hand, including motion cues in the system drops the FPS significantly compared to only
using the visual features as indicated by the results in Ref. [32]. Although adding complexity
to the system drops the FPS, the IDS metric significantly improves when the motion features
are included in the system. It can be concluded from these findings that to improve the FPS
and the accuracy one should use deep learning in all MOT components. Although that might
be the case, the end-to-end approaches introduced in Refs. [32,48] have used deep learning to
extract appearance and motion features and data association, and the performance did not
compete with other approaches. Deep learning approaches are data-driven, which means they
are suitable for specific tasks but unsuitable or expected to perform poorly in real scenarios
due to the variation from the data used in training [13].
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Similarly, the performance of the KITTI dataset is shown in Table 6. The dataset
is divided into multiple sequences: car, pedestrian, and cyclist. The methods are either
evaluated on all of them combined or individually. As it can be observed, the pedestrian
data are the most difficult to process with a good performance. Only methods evaluated on
all sequences are used for comparison, and accordingly, the values corresponding to the
best performance according to the metric are in bold. The rest are listed for observation
and analysis. The approach introduced in Ref. [46] showed superiority. Although it
did not perform well on the MOT15 dataset, it showed a competing performance on the
MOT17 dataset. The authors in Ref. [102] evaluated the proposed technique on each
sequence individually. They have superior performance on all of them. The performance
on the UA_DETRAC dataset is shown in Table 7. Although the UA_DETRAC dataset is
of a static background type and does not include the challenge of dynamic background,
the approach introduced in Ref. [47] performed better on the KITTI dataset. This variation
in the performance of the MOT techniques on multiple datasets may indicate that the MOT
techniques are data driven and difficult to generalize. Similar to 2D Tracking, the deep
learning approach is utilized for visual feature extraction in 3D. For processing point
cloud data, PointNet is the most popular method. The authors in Refs. [85,89] did not
rely on deep learning for techniques for the processing of point cloud data and performed
poorly in terms of accuracy on the KITTI dataset shown in Table 6. The approach with
the highest accuracy in Table 3 introduced in Ref. [86] creates multiple solutions for data
fusion problems. The features extracted from LIDAR and camera sensors are fused by
concatenation, addition, or weighted addition and then passed into a custom-designed
network to calculate the correlation between the features and output the linked detections.
The approaches that depend on deep learning for data fusion, Refs. [85,87,90], have a low
MOTA, although [90] has high accuracy on the car set. The localization-based Tracking
introduced in Ref. [103] has the best accuracy on the UA_DETRAC dataset. Although the
DMM-Net method in Ref. [104] has significantly lower accuracy, it showed superiority in
identity switches and fragmentation.

Table 6. The performance using the KITTI dataset. We have marked the highest scores in bold for
methods evaluated on all categories.

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Type

Chu et al. [47] 77.1 78.8 51.4 8.9 760 6998 123 Car
Simon et al. [85] 75.7 78.5 58.0 5.1 All
Zhang et al. [86] 84.8 85.2 73.2 2.77 711 4243 284 753 All

Scheidegger et al. [70] 80.4 81.3 62.8 6.2 121 613 Car
Frossard et al. [87] 76.15 83.42 60.0 8.31 296 868 All

Hu et al. [71] 84.5 85.6 73.4 2.8 705 4242 All
Weng et al. [88] 82.2 84.1 64.9 6 142 416 Car
Zhao et al. [36] 71.3 81.8 48.3 5.9 All

Weng et al. [102] 86.2 78.43 0 15 Car
Weng et al. [102] 70.9 Pedestrian
Weng et al. [102] 84.9 Cyclist
Luiten et al. [105] 84.8 681 4260 275 Car
Wang et al. [106] 68.2 76.6 60.6 12.3 111 725 All
Sualeh et al. [89] 78.10 79.3 70.3 9.1 21 111 Car
Sualeh et al. [89] 46.1 67.6 30.3 38.7 57 500 Pedestrian
Sualeh et al. [89] 70.9 77.6 71.4 14.3 3 24 Cyclist
Shenoi et al. [90] 85.7 85.5 98 Car
Shenoi et al. [90] 46.0 72.6 395 Pedestrian
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Table 6. Cont.

Tracker MOTA ↑ MOTP ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDS ↓ Frag ↓ Type

Zhou et al. [46] 89.4 85.1 82.3 2.3 116 744 All
Karunasekera et al. [33] 85.0 85.5 74.3 2.8 301 All

Zhao et al. [57] 91.2 86.5 2.3 Car
Zhao et al. [57] 67.7 49.1 14.5 Pedestrian

Aharon et al. [58] 90.3 250 280 Car
Aharon et al. [58] 65.1 204 609 Pedestrian
Wang et al. [107] 90.4 85.0 84.6 7.38 2322 962 Car
Wang et al. [107] 52.2 64.5 35.4 25.4 1112 2560 Pedestrian
Sun et al. [108] 86.9 85.7 83.1 2.9 271 254 Car

Table 7. The performance using the UA_DETRAC dataset.

Dataset Tracker PR-MOTA ↑ PR-MOTP ↑ PR-MT ↑ PR-ML ↓ PR-FP ↓ PR-FN ↓ PR-IDS ↓ PR-FRAG ↓

UA_DETRAC

Bochinski et al. [68] 30.7 37 32 22.6 18,046 179,191 363 1123
Kutschbach et al. [72] 14.5 36 14 18.1 38,597 174,043 799 1607

Hou et al. [69] 30.3 36.3 30.2 21.0 20,263 179,317 389 1260
Sun et al. [42] 20.2 26.3 14.5 18.1 9747 135,978
Chu et al. [47] 19.8 36.7 17.1 18.2 14,989 164,433 617

Gloudemans et al. [103] 46.4 69.5 41.1 16.3
Sun et al. [104] 12.2 10.8 14.9 36,355 192,289 228 674

Messoussi et al. [109] 31.2 50.9 28.1 18.5 6036 170,700 252
Wang et al. [110] 22.5 35.2 15.5 10.1 1563 3186

Navigation and self-driving applications in robotics depend on the online feature.
The system must be able to react in real time. Although most of the techniques discussed can
process video sequences online, their FPS is not showing robust performance, according to
the Hz metric, to be deployed in an application such as self-driving. The method introduced
in Ref. [43] has the highest FPS overall and acceptable accuracy on the MOT16 and MOT17
datasets. However, the research utilizing LIDAR and RGB cameras show potential in
robotics navigation and autonomous driving applications.

5. Current Research Challenges

Through this study, we gained insight into the current trends of online MOT methods
that can be utilized in robotics applications and the challenges faced. The first challenge
would be the online feature. The MOT algorithm should be able to operate in real-time for
most robotics applications in order to be able to react to environmental change. The second
challenge would be the accurate track trajectory across multiple frames. The lack of this
problem can cause multiple identity switches and difficulty keeping a concise description
of the surroundings. In addition, the issue is segmenting the detections at pixel level and
tracking them. The bounding box provides wrong information about the object in shape
and size, along with noises from the background. Finally, the motion feature has proven
its value in tracking, but it is not simple to track random moving objects such as people,
animals, cyclists, etc.

6. Future Work

The final objective of the research done on deploying MOT algorithms in autonomous
robots is to have a reliable system that contributes to reducing accidents and facilitating
tasks that might be difficult for humans to carry out. One aspect that we found the current
research lacks is the generation of a new benchmark dataset that includes data collected
by the standard sensors employed by the current industry. Sensors such as ultrasonic
and LiDar are essential in today’s autonomous robot manufacturing, and it is necessary
to use the same tools to make the research on MOT up-to-date. Moreover, using deep
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learning algorithms for detection and tracking would face a massive problem due to the
risk of meeting a variation that was not included in the training set. Thus, deep learning
should be trained on segmenting the road regions and hence, be trained on any area before
deployment. This is one of the approaches that can be researched to tackle the problem of
dealing with new objects. The current research looks at appearance and motion models as
necessary in MOT. They are further going into learning the behavior of objects in the scenes
and the interactivity between those objects. For instance, two objects moving towards
each other would lead to one of them getting covered, and a track would be lost. As the
MOT system’s complexity increases, it becomes more challenging to work in real-time.
The research on embedded processors that can be utilized in autonomous robots will
significantly contribute to increasing the accuracy while maintaining the online feature.

7. Conclusions

This paper aims to review the current trends and challenges related to the MOT for
autonomous robotics applications. This area of study has been frequently researched
recently due to its high potential and standards, which are difficult to achieve. The paper
has discussed and compared the MOT techniques through a common framework and
datasets, including MOTChallenges, KITTI, and UA_DETRAC. There is a vast area left to
explore and investigate as well as multiple approaches created by the literature that has
the potential to build into reliable and robust techniques. A summary of the components
utilized in the general MOT framework, including appearance and motion cues, data
association, and occlusion handling, has been listed and studied. In addition, the popular
methods used for data fusion between multiple sensors, focusing on the camera and LIDAR,
have been reviewed. The role that deep learning techniques are utilized in MOT approaches
has been investigated thoroughly using quantitative analysis to evaluate its limitations and
strong points.
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Abbreviations

The following abbreviations are used in this manuscript:

MOT Multiple Object Tracking
LIDAR Light Detection and Ranging
KITTI Karlsruhe Institute of Technology and Toyota Technological Institute
UA-DETRAC University at Albany DEtection and TRACking
SLAM Simultaneous localization and mapping
ROI Region of Interest
IoU Intersection over Union
HOTA Higher Order Tracking Accuracy
SLAMMOT Simultaneous localization and mapping Multiple Object Tracking
RTU Recurrent Tracking Unit
LSTM Long Short Term Memory
ECO Efficient Convolution Operators
PCA Principal Component Analysis
LDAE Lightweight and Deep Appearance Embedding
DLA Deep Layer Aggregation
GCD Global Context Disentangling
GTE Guided Transformer Encoder
DETR DEtection TRansformer
PCB Part-based Convolutional Baseline
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Abstract: Unmanned aerial vehicles (UAVs) have emerged as a rapidly growing technology seeing
unprecedented adoption in various application sectors due to their viability and low cost. However,
UAVs have also been used to perform illegal and malicious actions, which have recently increased.
This creates a need for technologies capable of detecting, classifying, and deactivating malicious and
unauthorized drones. This paper reviews the trends and challenges of the most recent UAV detection
methods, i.e., radio frequency-based (RF), radar, acoustic, and electro-optical, and localization meth-
ods. Our research covers different kinds of drones with a major focus on multirotors. The paper also
highlights the features and limitations of the UAV detection systems and briefly surveys the UAV
remote controller detection methods.

Keywords: Unmanned aerial vehicles (UAVs); detection technologies; radio frequency-based (RF);
radar; acoustic; electro optical; hybrid fusion; controller detection

1. Introduction

In recent years, there has been a significant advancement in unmanned aerial vehicles
(UAVs). UAVs are widely used for commercial, civilian, and military applications due to
their low cost, spatiotemporal coverage, and remote sensing capability. They have been
specifically popular for collecting information in remote and inaccessible areas, such as
military surveillance and search and rescue in floods or earthquakes [1–3].

An aircraft without onboard human command and control is called a UAV, also called
a drone. Command and control are achieved autonomously by the embedded autopilot
or remotely by the operators through a ground station [1]. Moreover, autonomous and
remote controls can be integrated as a single UAV control mechanism. Over the years, the
technology and features of UAVs have improved tremendously to address the varying
requirements of different applications. In addition, ongoing research has been successful in
finding ways to improve the performance of the UAV. Various designs and features that
support their assigned missions in different fields and sectors have been proposed, such as
shape structures, take-off, and landing techniques [2,4].

Surveillance applications use UAV technology to be integrated as a standalone, con-
nected platform for information gathering. The human detection system in [4] was achieved
through input from thermal images and videos from a thermal camera connected to a UAV.
These images and videos are categorized by reference to a thermal dataset in the system
and are processed by sequence operations to achieve the final result. In the military, some
geographic areas are difficult to reach for monitoring and detecting unwanted signals or
entities. The proposed system in [5] overcomes this demand.

Moreover, smart farming utilizes UAV technology for real-time monitoring and
data acquisition of crop parameters, e.g., plant height, presence of weeds, or fungus.
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Tsouros et al. [1] discussed different types of UAVs and explored multiple applications
of UAVs in precision agriculture, crop health, and growth monitoring. Moreover, this
work reviews data acquisition technologies and aerial image processing methods. Further,
civil engineering utilizes UAV technologies for seismic risk assessment, transportation
management, disaster response, construction management, surveying and mapping, and
flood monitoring and evaluation [2].

To summarize, UAV technologies have numerous features that enable their usage in
multiple sectors and applications. The benefits of such technologies include: (1) reducing
human risk, (2) lower energy consumption, (3) a lower cost, (4) flexibility, and (5) accuracy
of data collection. The advances in electronics and sensor technology have widened the
scope of UAV applications for their likely invaluable inclusion in police, fire brigades,
and disaster management operations. However, in recent years, UAVs have been used to
perform malicious actions, such as drug smuggling, intelligence gathering, and suicide
attacks [2,3,5]. UAVs also pose a threat to surpassing restricted government or military sites.
In addition, with the prevalence of smaller UAVs, concerns over public privacy are rising.

All these threats warrant an urgent need for research into UAV detection methods. It
becomes strategic to detect and localize UAVs to prevent such malicious actions. Recently,
various detection algorithms have been researched, such as active radar probes, acoustic
recognition, infrared spectrum identification, visual recognition, and radio frequency (RF)
signal detection [1–7]. This study aims to provide a detailed literature review of these
detection methods, identify their strengths, explore various applications where they were
used, and compare these methods for the major relevant studies in the open literature. Our
study scope includes the detection and localization of multirotor and other UAV types.
The study also reviews the techniques for the UAV controller localization of the detected
drones. This review aims to survey the quickly evolving field, record what is notable and
popular within this sector, and provide recommendations for future investigators. Table 1
summarizes the covered topics in different sections of this study.

Table 1. Summary of reviewed topics for drones and their controller detection.

Detection Technologies Ref.

UAV Architecture and Security Concerns [3–8]

UAE Detection Technologies

RF [7–20]
Radar [21–29]

Acoustic [30–40]
Electro-optical [41–46]
Hybrid fusion [40,41,47,48]

Controller Detection and Localization [12,18,49,50]

The rest of the study is organized as follows: Section 2 details the architecture of UAVs
and associated security concerns with drones. A comprehensive review of UAV detection
technologies is outlined in Section 3. The studies about drone controller localization are
reviewed in Section 4. Lastly, Section 5 concludes the findings of the study.

2. UAV Architecture and Security Concerns

2.1. UAV Architecture

UAVs have multiple subsystems integrated to perform various operations, such as
launch, fly, operate, process, transmit, and receive commands from remote or ground
stations [3,5]. Four main UAV subsystems should be considered: (1) a power unit, (2) a
communication module, (3) the main computing device, and (4) a sensor board. The power
unit is designed to provide a longer lifetime for UAV operation without charging it [4].
The high-level architecture of the UAV system is illustrated in Figure 1, including UAV’s
main computer processes commands based on the collected data from other subsystems or
components (GPS, sensors, gyroscopes, accelerometers, antennas, receivers, etc.). These
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data or commands are transferred through a communication link between the UAV and
the ground control station (GCS). This communication is mainly monitored to detect UAVs
based on RF and radar-based technologies (details in Sections 3.1 and 3.2).

Figure 1. High-level architecture of a UAV.

A brief description of the major components of UAE architecture is as follows:

• UAV’s structure/airframe: There are many common features of a UAV’s chassis, such
as lightweight, small size, endurance, aerodynamic flexibility, etc.

• Main computer: The critical part responsible for autonomous functioning and flight
control. The computing subsystem processes sensed information, transmits it back,
manages flight operations, and communicates with the control base.

• Sensors/payloads: UAVs can be equipped with a range of possible lightweight sensors
per the application’s needs, including RGB cameras, thermal sensors, LiDAR sensors,
and multispectral and hyperspectral sensors. All of them are connected to the flight
controller to gather real-time data and process it for the missions’ execution.

• Communication link: UAVs are equipped with a high-quality wireless communication
unit, including 5G, WiFi, Bluetooth, and radio-frequency identification (RFID), to
facilitate communication with the GCS or the internet.

• Ground control station (GCS): This base station is mainly employed to monitor and
control the UAV during its operation. Flight operation is continuously monitored and
can be controlled to alter the mission.

2.2. Security Concerns

Regarding UAV security, two main topics are discussed in the literature: the security
and safety of UAVs and the potential misuse of UAVs against critical infrastructures and
privacy-related issues.

Threats to UAV security are well-researched concerning targeting its hardware, soft-
ware, and communication module. In [6], threats to various components of the UAV system
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are discussed. GCS’s physical, network, and cloud security have been highlighted as vul-
nerabilities that can be exploited. Moreover, threats exist against the UAV communication
according to the communication medium technology or type (WiFi, cellular network, GPS,
and other RF solutions). The possible common attacks are eavesdropping, jamming, replay,
denial of service, hijacking, etc. Other threats include mission disruption and itinerary
tracking [7,8].

Despite promising application benefits using UAVs, threats also exist by their preva-
lence in the public domain. UAV security threats and incidents are mainly caused by
privacy violations of sensitive sites, airplane flight disruption, damage and explosion in
targeted areas, and sensitive data leakage through eavesdropping [7,8].

3. UAV Detection Methods

As mentioned in Section 2, there are many sectors in which UAVs have been explored
and adopted, utilizing their practical and advanced features. The continuous development
and improvement of UAV’s main systems and components, i.e., flight controller, sensors,
gyroscopes, cameras, GPS, etc., increased the demand and reliance on UAVs for accom-
plishing different civilian and military missions. Moreover, they are widely available in the
market at a reasonable cost compared to other solutions.

Research has been dedicated to designing, developing, and implementing systems
for detecting malicious UAVs. Techniques of these systems are classified into passive and
active. RF-based, acoustic, and vision-based techniques are among the passive technologies,
whereas radar-based techniques are defined as active technologies. These technologies
vary in operational conditions, covering range, consistency, accuracy, and many other
parameters. This section focuses on UAV detection technologies and discusses the general
framework and related work.

3.1. RF-Based

RF is used for UAV remote command and control communication. RF-based detection
technologies rely on real-time sensing, capturing, processing, analyzing, and retrieving
data from UAV’s RF-emitted signals. Acquired RF data are intended to identify, track
and classify the detected UAV and localize the controller. RF-based techniques analyze
the captured spectrum between the UAV and operators using circular or linear array
antennas to detect both the drone and its controller in all-weather environments. As
most of the communication between a drone and its controller occurs in the ISM band,
around 2.4 GHz, the implementation cost of such a system is much lower compared to a
radar-based solution [21–28,51].

In RF-based detection technologies, RF and WiFi-based fingerprinting techniques
are major verification systems. RF-based techniques include studying and analyzing the
characteristics of the captured transmitted RF signal from UAVs or UAVs’ controllers.
However, WiFi-based fingerprinting is related to the WiFi links and traffic between the
UAV and its remote controller. The reviewed studies include the analysis of RF spectrogram
(fingerprinting) [7,9,10,19], angle of arrival (AOA) (MUSIC) [12], and direction of arrival
(DOA) [40] methods for the identification and localization of drones using conventional as
well machine learning algorithms [9,10,13–15].

In [7], the technique proposes a complete UAV detection and identification system
framework designed to work in the 2.4 GHz frequency band. The system starts with
capturing the wireless signals in the test area. Then, the captured signal is processed based
on a 4-level Haar wavelet transform analysis. The standard deviation of the processed
signal is calculated to define the UAV detection condition. After the detection of the UAV,
the RF fingerprinting stage is activated, and three main features are extracted: (1) fractal
dimension (FD), (2) square integrated bispectra (SIB), and (3) axially integrated bispec-
tra (AIB). These features are adjusted and weighted using principal component analysis
(PCA) and neighborhood component analysis (NCA) algorithms. The final RF fingerprints
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are stored as the training data for a set of machine learning algorithms used to classify
the UAV.

Based on indoor and outdoor experimental scenarios, the average identification accu-
racy of UAVs is summarized with respect to three fingerprinting features. Furthermore,
in [8], the WiFi network traffic is monitored, and the UAV detection method is based on
WiFi fingerprint analysis. The extracted features are related to the captured traffic’s dura-
tion, behavior, and distribution. Different scenarios are applied to evaluate the system’s
performance in UAV detection, where the average precision is about 96%.

The authors of [15,19,20] fed the extracted time-domain characteristics (shape factor,
skewness, kurtosis, and variance) of recorded RF signals to the machine learning data pro-
cessing units to detect and classify UAVs. In [9], indoor experimental testing is conducted
for data collection using the RF fingerprints of the transmitted signal from the micro-UAV
controller to the UAV for UAV detection and classification. Different micro-UAV controllers
(a total of 14) operating at the 2.4 GHz frequency band were used to create the dataset
(a total of 100 RF signals) and test the proposed detection and classification technique.
Each micro-UAV controller has a different transmitted signal, categorized with its unique
transmitter characteristics, excluding the traditional threshold-based detection technique.
The Markov model algorithm is later used for UAV detection and energy transient signal
approach for feature extraction and UAV classification. The performance and accuracy of
the system were found to be 96.3%.

UAVs use the Industrial Scientific and Medical (ISM) frequency bands, i.e., 2.4 GHz
and 5.8 GHz bands, to communicate with their remote controllers [11]. Multiple passive
RF sensors support these frequency bands and are used for non-invasive surveillance
operations, including UAV monitoring, detection, localization, and tracking. In [11], the
UAV detection system consists of a sensor node, Keysight RF sensor N6841A, operating in
the range of 20 MHz–6 GHz, broadband antenna, and GPS tracker linked with geolocation
software, N6854A. The RF signals are detected and collected within a radius of 2 km from
the sensor node. A GPS antenna also records the time stamps for these collected signals.
The localization of the UAV is performed using a detection algorithm and time difference
of arrival (TDOA) measurements. Extended Kalman filter (EKF) framework and fitting
motion models (MM) address these errors and improve localization performance.

Furthermore, the research work in [10] illustrates a system model and architecture
followed by experimental validation of the proposed direction finding (DF) method of
sparse de-noising auto-encoder (SDAE) for UAV surveillance. This method consists of a
single channel for a receiver and a directional phased array antenna. The mechanism of the
system works as follows. First, the transmitted signal from the drone to its ground controller
gets processed using an RF switching mechanism to measure the received signals output
power at each directional phased array antenna. Next, the acquired output power values
from the N-antennas of the phased directional array are input to the proposed SDAE-based
deep neural network (DNN). The first network layer extracts received wattage values. Then
the remaining network utilizes sparse representation to categorize UAVs’ signal directions.
The system diagram of the proposed method in [10] is depicted in Figure 2. To summarize,
the wattage power values are passed to the proposed deep network, followed by the DF
method, which exploits both the sparsity parameter of the transmitted UAV signal and the
gain variation parameters of the directional antenna array.

89



Appl. Sci. 2022, 12, 12612

Figure 2. Diagram of the system model in [10].

In [16], the authors discuss UAV detection using RF-transmitted signals between UAVs
and their remote controllers. Power spectrum cancellation and multi-hop autocorrelation
are developed to achieve RF passive detection of UAVs and controllers to detect emitted
signals. The multi-hop autocorrelation method can detect the cross-correlation signal if
the Signal-to-Noise (SNR) ratio is small by applying an emitted remote-control signal.
A limitation of the multi-hop autocorrelation is the low accuracy in the case of fixed
frequency in remote-control signals. The calculated parameters significantly depend on
the autocorrelation function, leading to false positives. Hence, the study of [16] used the
power spectrum cancellation technique to eliminate the effect of fixed frequency signals.
Power spectrum cancellation works by first finding the differences between the control
signal power spectrum and fixed frequency signals over time. Once the differences are
identified, the fixed frequency signal is eliminated, and the remote control signal is applied
to multi-hop auto-correlation to finalize the parameters for UAV detection.

Furthermore, [17] stated that the RF passive detection method has the advantage of
low cost, license-free, long-range distance coverage, and early warning capability. They
also illustrated an RF passive system architecture, which analyzes the electromagnetic RF
spectrum emitted from exchanged signals between the UAV and its controller. The passive
RF detection algorithms analyze these signals to sense alternations in the frequency and
time domain RF spectrum.

Various studies have reported promising results utilizing different algorithms and
techniques for RF-based UAV detection. However, the presence of noise affects the accuracy
and detection range. Table 2 summarizes the reviewed papers and tabulates the features
and accuracy of the undertaken methodology for RF-based UAV detection.
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Table 2. Summary of reviewed RF-based techniques for UAV characterization.

Ref. Operating Frequency

Functionalities

Performance
Identification Classification

Localization/
Tracking

[7] 2.4 GHz
√ √

- Average of 97%
[8] 2.4 GHz

√ √
- Greater than 96%

[9] 2.4 GHz
√ √

- Average of 96.3%
[11] 20 MHz–6 GHz

√
-

√
-

[13] 1–6 GHz
√ √

- Average of 99%
[10] 2.401–2.481 GHz

√ √ √
-

[16] 2.4 GHz and 5.8 GHz
ISM bands

√
- - -

[12] 2.4 GHz
√

-
√

-
[18] 2.4 GHz ISM band

√
-

√
-

3.2. Radar

Radar signal processing is among the classical approach for aircraft and drone detec-
tion as it can be used in all weather conditions with 24/7 operation [18,21,52] as compared
to acoustic and visual detection methods. In this approach, the received signal is charac-
terized to detect echo, doppler signature, or radar cross-section (RCS) for detecting and
tracking the target [21,28,29,53]. The conventional radar signal processing techniques have
the limitation of accurate distinction of mini UAVs from birds due to their smaller RCSs.
AI-based techniques are proposed [28,29,53,54] to process the extracted features from the
radar signals to address this issue to some extent.

In radar-based detection, radio energy is used to detect the target and define its
position [21,23,55]. Typically, a radar-based detection system has three main components:
RF radar, data acquisition, and signal processing. In RF radar, the electromagnetic energy
radiates into space and encounters the UAV’s body flying in the monitored area. The
UAV’s reflected wave is returned and received by the system, measured, and processed in
real-time (data acquisition and signal processing). Hence, the UAV is successfully located,
and its flight path is tracked by the system [30,36,55,56].

Frequency-modulated continuous wave (FMCW) and continuous wave (CW) radars
are preferred to be used in UAV detection and identification, especially for their continuous
pulsing, effective cost, and performance [21]. The FMCW radar contains a transmitter and
a receiver antenna. The oscillator and the control signal produce the transmitted signal.
After the backscattering/reflected signal is received, it gets passed to the I/Q demodulator
for filtering. Power is equally distributed into two signals with 90 degrees phase shift to be
forwarded to the low pass filter (LPF). The intermediate frequency (IF) signal, resulting from
in-phase and quadrature-phase components, is directed to the analog-to-digital converter
(ADC) and the digital signal processing (DSP), as depicted in Figure 3. The distance and
velocity of the target can be defined by using the time delay and phase information of both
the transmitted and received signals [21].

The studies of [24,25,28,54,57,58] employed the principal component analysis (PCA) [24],
convolutional neural networks (CNN) [23,28,51,54], long short-term memory (LSTM) [28],
and support vector machines (SVM) [57,58] techniques for the processing of extracted
features from radar signals such as micro-doppler spectrogram [23,28,54,57,58] and range-
doppler signature [24] for the classification of drones. Recently authors in [13] used the
hierarchical learning approach for the detection of the presence, type, and flight trajectory
of a UAV. Due to the smaller size of most UAVs, wideband, high frequency, expensive
radars are required for the accurate detection and tracking of mini UAVs [23,24,52,54],
which increases the overall cost of the detection and localization system.
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Figure 3. Architecture design of FMCW radar [21].

In [55], the authors proposed research and experiments for evaluating the data ac-
quisition and signal processing algorithm in a CW radar system that supports C and X
frequency bands operations. The radar system uses the micro-Doppler principle. The
extracted signatures in the frequency and time domains are used in UAV classification for
calculating the propeller blades’ length and determining the rotation propellers’ speed.
For performance evaluation, the number of UAV propellers varies during the experiments
while fixing the propellers’ rotational speed and a maximum distance of 25 m between the
radar and UAV. The classification and measurement of UAVs become complex with the
increase in propellers.

In another work [56], simulation and analysis of continuous wave radar’s echo signals
are studied and presented in different conditions at an operating frequency of 35 GHz.
Mainly UAV detection is based on the time-frequency characteristics of the Micro Doppler
signal produced by the rotor rotation using singular value decomposition. Discrete wavelet
transform is also used to remove environmental clutter from the radar echo signal, whereas
the support vector machine (SVM) is used as a classifier. The detection accuracy of the
developed system achieved 85%.

Another type of radar-based UAV detection mechanism, cylindrical phased array radar,
was discussed in [27]. The system performs better for UAV detection when comparing
the omnidirectional scanning to planner array radar due to the flexibility of changing the
direction of the beam and illumination time to the target after the phased array was used.
As for the operational norms, the system’s hardware structure and signal processing flow
are designed to get a strong clutter suppression specified in the investigation, and the
result of the experiment shows potential for UAV detection. Authors in [27] developed
a cylindrical phased array radar system and explored signal optimization by specifying
signal processing flow with the moving target detection (MTD) based on the maximum
signal-to-clutter ratio (SCR) criterion.

Tang et al. [24] explained the type x-band, a small phased array radar based on
AD9361, an RF Agile Transceiver. The AD9361 is a highly integrated RF module with a
high-performance agile transceiver for 3G and 4G base station applications. The reported
radar system consists of a control module controlling the antenna beam pointing through
the transmitter/receiver (T/R) module. The signal processor also sends waveforms as
transmitted RF signals to AD9361 within the timing sequence. Then the corresponding
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waveform is generated and established by AD9361. The radar simulation detects a drone
with a radar cross section (RCS) of 0.01 m−2 within the range of 5 km. For radar detection,
enhanced reflected signals are necessary to minimize the effect of noise. An SNR value
greater than 14 dB indicates a highly accurate detection.

In the case of a reliable RCS, the chosen wavelength should not reach half of the
detected object’s dimension. It is critical to use a higher frequency while using Doppler-
based detection. As illustrated in [22], radar is used to detect smaller drones; however, it
has an ill-prepared standard for UAV detection based on low air-velocity aircraft and weak
radar signature. During target detection, the radars would receive reflections from clutter-
like objects, landscapes, and precipitation, posing a challenge in detection. A target can
only be detected if system noise due to clutter is minimized. A 30 × 30 rectangular phase
array used in [22] detects the presence of drones in monostatic radar. It would continuously
scan the predefined surveillance region, with the limitation of a 90-degree azimuth sector,
to achieve 360 azimuth coverage at a low cost. Doppler estimation discussed in [22] can be
described as a spectrum estimation process.

The reference [26] illustrates the new method based on 5G millimeter waves with an
end-to-end network. It further explains the detection method done using 5G millimeter-
wave radar at rotors of UAVs. The high-resolution range profile (HRRP) can identify a UAV
location, while micro-Doppler identifies the UAV. Moreover, the cepstrum method was used
to extract any number and speed information of the detected UAV rotor. Multiple UAVs
can be identified using the sinusoidal frequency modulation (SFM) parameter optimization
method. The proposed method determines the following: the number of detected UAVs,
the number of rotors, the rotation speed of all rotors, and the position of the UAVs. The
proposed radar detection in [26] presents a UAV identification and detection study by
providing a method for UAV tracking using the GPS-independent method, such as GPS
signal failure, GPS signal interference, and satellite occlusion areas. HRRP technology and
micro-Doppler provide a successful solution to detect and localize any rotating targets
regardless of weather conditions. The presented simulated results showed high robustness
and performance of the cepstrum method.

Authors in [59] presented a passive radio drone detection system that uses goodness-
of-fit (GoF) based spectrum sensing and the MUSIC algorithm to detect the transmitted
signal of a drone and its controller and estimate the DOA. Once a signal is detected, the
DOA is estimated at the detected frequency. The MDL algorithm detects the number of
targets and whether the source is a drone or controller. The detection system detected
drones and controllers from different manufacturers with good sensitivity.

A challenge associated with UAV detection is the presence of aircraft and birds in the
background [60–62]. Hence, clutter suppression and target detection algorithms are needed
to overcome this complex issue, as stated in [26]. Rationally, object detection of possible
UAVs comes first, followed by classification to separate UAVs from other detected objects.
In addition, the purpose of these classifications and identifications can be used to extract
many unique features of these UAVs [23]. As stated previously, the effects of Doppler radar
are used to determine the velocity of a distant object more accurately. This is obtained from
the radial component of a target velocity in relation to radar. Using stepped frequency
waveform (SFW), an HRRP can be obtained. Due to HRRP and Doppler information from
a wide-band Doppler radar, detected objects scanned using wide-band are identified and
classified. Millimeter wave base stations and 5G network systems can be used as detection
network channels for UAV detection using the data from the processing center of 5G base
stations. The process includes extracting essential parameters from multipath locations
through 5G bases.

Many factors must be considered during the development to enhance the radar sys-
tems’ performance, such as operating frequency, data acquisition, processing algorithms,
classification techniques, and environmental clutter. The summary of reviewed studies of
this technique is given in Table 3.
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Table 3. Summary of reviewed radar-based techniques for UAV characterization.

Ref.
Detection
Technique Specifications

Functionalities

Performance
Identification Classification

Localization/
Tracking

[21] FMCW/CW radar Doppler effect
principle

√
- - NA

[55] CW radar
C and X frequency

bands, Micro
Doppler principle

√ √
- -

[56] CW radar Operating
frequency: 35 GHz

√ √
- Accuracy 85%

[27] Cylindrical phased
array radar

Operating
frequency: C band

√
-

√ Performed well
under a strong

cluttered
environment

[24] Small phased array
radar Based on AD9361

√
-

√
Reliable and stabile

[22] Rectangular
phased array radar

Operating
frequency: X band

√
- - Mixed up with birds

[26] 5G millimeter wave
radar

Starting frequency
is 25 GHz, which is

in the 5G band

√
-

√ Detected at 300 m
with a speed of

157.9 r/s & at 850.2 m
with a speed of 88 r/s

3.3. Acoustic

Acoustic sensors, such as microphone arrays, capture the generated audio from the
rotors and propellers of the drone and then compare the extracted features, including
mel- frequency cepstral coefficients (MFCC) and short-time Fourier transform (STFT), with
acoustic signature databases for the detection and classification of drones and UAVs using
conventional and AI-based architectures. MFCC is a set of reflected human perception
features of sounds, which is used in audio classification when paired with machine learning
approaches. STFT is considered an intermediate feature compared to MFCC. MFCC
compresses signals while representing them with coefficients set. On the other hand, STFT
features contain more information and noise than MFCC, giving STFT an advantage. Deep
learning models can easily adopt STFT and manage it given more complex data [37].

Authors proposed a machine learning framework in [38], shown in Figure 4, to detect
and classify ADr sounds in a noisy environment, among other sounds. The required
features are extracted from ADr sound using the feature extraction techniques of MFCC
and linear predictive cepstral coefficients (LPCC). Following the feature extraction process,
these sounds are then identified using SVMs. The results show that the SVM cubic kernel
with MFCC outperforms the LPCC technique by detecting ADr sounds with 96.7% accuracy.

Acoustic-based technologies are effective for detecting UAVs since they are not affected
by the UAV’s frequency range, weather fluctuations, e.g., fog, environmental disturbance,
and noise. Hence, such technologies do not block the acoustic sensors’ earshot to detect the
UAV’s acoustic signals. Acoustic signals produced by the engine and propeller blades of the
UAV are collected and processed to classify the UAV and calculate its distance, direction,
and location [33].

Authors in [39] proposed a CNN-based system to detect drones using acoustic signals
received by a microphone. STFT magnitude is used as the two-dimensional feature in the
study since drones’ harmonic properties differ from those of other devices that make a
similar noise. The dataset comprised 68,931 and 41,958 frames of drone and non-drone
sounds collected using DJI Phantom 3 and 4 drones flying outdoors. The proposed approach
has a detection rate of 98.97% for the 100-epoch model and a false alarm rate of 1.28. Figure 5
illustrates the system overview of the proposed approach.
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Figure 4. Overall system diagram of the approach presented in [38].

 

Figure 5. System overview of the method introduced in [39].

An acoustic-based detection system was designed and implemented in [30] to detect
and locate the UAVs efficiently. The acoustic sensor array configuration comprises two
tetrahedron-shaped microphones. The system uses multiple algorithms for data and fea-
tures extraction from the collected acoustic signals: cepstral coefficients (CC) for extracting
the harmonics’ features, SVM to classify and distinguish between the extracted features’
vectors related to UAV or background noise, and TDOA based on Bayesian framework.
Signal processing is concluded with the temporal and dimensional features’ vectors calcu-
lations to acquire the accurate UAV classification and localization path. They also study the
contribution of the SNR in detecting the UAVs against the detection rate.

In [36], multi-label UAV sound classification is examined using stacked bidirectional
long short-term memory (BiLSTM), an advanced, recurrent neural network (RNN) capable
of handling sequence or multiple classification tasks and avoiding long-term dependency
issues. The proposed BiLSTM model is 94.02% successful in UAVs’ sound classification.

Several types of research and studies aim to investigate and evaluate different algo-
rithms used in data acquisition, processing, and classification of the collected acoustic
signals. In [31], the system’s performance level varies using different audio processing
algorithms for characteristic feature vector extraction. The extracted features are inputted
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into concurrent neural network (CoNN) for classification. The results confirm better ac-
curacy when integrating CoNN with the Wigner-Ville dictionary than MFCC and mean
instantaneous frequency (MIF).

The authors in [35] gathered the acoustic data from a local suburban airport for the
five samples of commercial multirotor UAVs to establish the performance based on passive
acoustic detection. The study characterizes the emitted noise of UAVs of different levels
in an anechoic chamber at the airborne time. The microphone array was arranged within
two circular tiers, each 1-m in radius, and separated vertically by 1.6 m to collect data from
the local airports. The generalized cross-correlation (GCC)-based algorithm is used to find
direction by fusing the time difference of both arrivals and steered power response with
phase transform (SRP-PHAT). The smallest UAV with a 294 m detection distance was tested
and demonstrated. Differential Doppler is used to overcome the decorrelation effect for
better accuracy, as stated in [35].

In [32], the authors used classical detection and direction-finding methods using
an array of microphones. There had been a physical investigation of the UAVs through
experiments on acoustic emission with two signal models presented in harmonic signal and
broadband signal for open area and indoor environments, respectively. The spectral signs
are used for detecting and recognizing the UAVs in a noisy environment by incorporating
the effect of noises in urban transport, speech signals, and environment noises. The result
gives the same quality as the MFCC method, where acoustic portraits are unnecessary. The
cross-correlation function is efficient in the direction-finding of the UAV. The study of [32]
concludes with the following points: (1) high-pass filters are effective in the processing
stage of UAV acoustic emission; (2) taking a noisy environment as a background experiment
while detecting and recognizing UAVs by spectral signs performs similarly to the MFCC
method, excluding acoustic portraits; (3) it is suggested to improve the efficiency of the
CCFM algorithm in acoustic signals to filter out low-frequency noise; (4) MFCC and CCFM
can be used to create an effective counter-action system against UAVs.

Yang et al. [37] researched the utilization of acoustic nodes in the UAV detection
system. The proposed system finds the best configuration of the node for deploying the
UAV acoustic detection system using machine learning models. The study was designed to
investigate the best combination of acoustic features, STFT and MFCC, machine learning
algorithms, SVM and CNN, for node optimization. After integrating the sensing nodes
in four different configurations among the test sets, the one that maximizes the detection
range without blind spots is selected. A semi-circle by the STFT-SVM model with a 75-m
distance between the protected area and node has the best performance for configuration
optimization. Demonstrating machine learning in the audio signal domain with different
learning algorithms was used for detection module development. The study [37] focused
on event sound detection using binary classification with MFCC features in an urban area.

A drone acoustic detection system (DADS) is proposed and demonstrated experi-
mentally to detect, classify, and track airborne objects in [33]. They used a Phantom 4
UAV for testing, which reached 350 m with four degrees as an average precision to track a
maneuvering UAV with compact acoustic nodes. This test also implemented the classifica-
tion algorithm to detect a multirotor UAV based on a specific sound inherent in the flight
control mechanism. The Steven Institute of Technology has developed the DADS to detect,
track, and classify anonymous UAVs by propeller noise. The proposed system has three
or more microphone nodes in a tetrahedron configuration. The communication between
the microphone nodes and the central computer is done through WiFi for processing. The
orientation calibration for the DADS system is performed by emitting white noise from a
speaker and tracking the GPS position for several minutes. Based on the difference between
the detected direction and computed ones from the surveyed GPS, the orientation can
easily be corrected in the case of detection and tracking. Establishing a tracking process can
be predicted using collected data and parameters. Node placement, the direction-finding
probability that depends on precision and range for a given target, and ambient conditions
with the tracker association threshold are among the collected data.
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Two main components affecting the system’s overall performance are (1) hardware
specifications, including acoustic sensors and data acquisition tools, and (2) software tools
and algorithms, including acoustic fingerprints and features extraction, classification, and
localization. Table 4 summarizes the recent studies for acoustic-based UAV detection,
classification, and localization.

Table 4. Summary of reviewed acoustic-based techniques for UAV characterization.

Ref. Detection Technique

Functionalities

Performance
Identification Classification

Localization/
Tracking

[30]

Designed for Amateur
Drones (200 Hz), SVM

(Drone sound
identification)

√
-

√
High accuracy

[36] BiLSTM (UAV sound
classification)

√ √
- UAV sounds 94.02%

[31] Concurrent Neural
Networks

√
- - 96.3%

[35] TDoA, SRP-PHAT
√

-
√ SRP-PHAT outperform

TDoA
[32] -

√
-

√
-

[37] MFCC, STFT, CNN, SVM
√

-
√

Noise affects the detection

[33] SRP-PHAT
√

-
√ Drone classification

algorithm to be improved
according to distance

[34] SRP-PHAT
√

-
√

-

Unlike radar and RF approaches, the acoustic solution does not require a line of sight
(LOS). However, this solution has challenges of a short range, the need for an extensive
large signature database, and vulnerability to ambient environmental noise and clutters,
particularly in urban areas [14,30,31,40], and quiet operation of the drone [9,30,38]. The
detection of the drone pilot could be very difficult, too, using acoustic sensors.

3.4. Electro-Optical

The electro-optic sensing system transmits, detects, and examines radiations in the
optical spectrum, including visible light, infrared, and ultraviolet radiation. It can handle
long-range imaging and has reliable results under different illumination levels. The compo-
nents associated include optics, laser, detectors, camera, processing unit, etc. Such systems
have been used for UAV detection, direction finding, and localization continuously and in
all weather conditions.

In [46], the authors proposed using machine learning techniques to automatically
detect and track small moving objects in the airfield from their motion patterns, i.e., the
ways an object moves. The system utilized remote digital towers with high-resolution
cameras covering the 360-degree view of airports to construct a video dataset comprising
aircraft in an airfield and drones. Harris detection and convolutional neural network
followed by optical flow we applied to the dataset to locate and track very small moving
objects in the wide-area scene. The results showed that the system can detect objects with
15 × 15 pixels in 1080p images with a low miss rate. Motion-based features are extracted
from their trajectories, after which a K-nearest neighbor classifier is applied to classify
objects into drones or aircraft, with an accuracy of 93%.
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The proposed approach in [42] performs the detection by integrating a 3D LADAR
sensing system. The study employed voxel-based background subtraction and variable
radially bounded nearest neighbor (V-RBNN) techniques to detect small UAVs up to 2 km.
During the development phase, this integration is supported with augmented data set to
enhance the model’s performance. The developed LADAR scanner can be rotated to cover
a wide range of areas, e.g., 350 degrees for azimuth direction and 120 degrees for elevation
direction. Furthermore, the used clustering algorithm, V-RBNN, has a good impact on the
target UAV classification, which may increase the use of this proposed detection system in
various applications.

In some electro-optic solutions, the detected data transferred to the analysis phase,
including advanced processing, machine vision, or machine learning, are not accurate
enough to track small UAVs effectively. Authors in [44] proposed an electro-optic system
integrated with an all-sky camera system to get a wider view of the monitored area to
improve the detection resolution. Multiple experiments were performed to evaluate the
proposed solution and test its integration with other cues, i.e., acoustic. The combination of
these three systems, electro-optic, all-sky camera, and acoustic cues, is also evaluated.

The study in [41] improved its outcomes’ reliability by using the electro-optical method
for small UAV detection and tracking. The actual video stream was used in real-time, and
a differential method was employed for analyzing and investigating UAV detection and
tracking. The differential method finds the differences in sequenced frames in a video
stream. In the case of hovering UAVs or some axially moving and revealing objects near
the frames, the contrast was selected only for the displaced part of the object to process the
video streams using the DIS algorithm.

The electro-optical detection method needs to consider the following factors: size and
movement in 3D, speed of detected airborne objects, the maximal distance of detected ob-
jects from the camera position, optical lens descriptions, and linear object image resolution.
Since these factors directly relate to image processing methods, detecting distance and
outputs of detections get affected negatively if one of the aforementioned factors contains
faulty or inaccurate information. Detecting moving objects at a maximal distance from a
camera in real-time is the main objective of the method.

A single dynamic vision sensing (DVS) camera, a base station, UAV, and a blinking
marker are used in [45] to detect and locate mobile UAVs. During video streaming, the
differences among the captured frames are computed and filtered to detect UAVs in the
background image using a temporal-filtering algorithm. The triangulation algorithm was
also used to help capture UAVs or drones by extracting spatial localization parameters and
providing details about the physical size of the detected object.

Similarly, in [43], Seidaliyeva et al. developed an algorithm to detect drones from
a video stream. The system overview for the process is illustrated in Figure 6. The
input frames are passed into a moving object detector algorithm. The authors relied on
background subtraction followed by threshold filtering and morphological operations
for detecting moving objects. The background subtraction method describes a model
background image that is subtracted from all frames to extract the foreground. This method
heavily depends on the background remaining static throughout the operation. A CNN-
based classifier is used on the detections to distinguish drones from other objects such
as birds.

The limited detection range can pose a challenge while employing the electro-optic
technique. The detection performance can be enhanced by incorporating other supporting
algorithms. The summary of reviewed studies of this method is depicted in Table 5.
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Figure 6. Proposed UAV detection algorithm used in electro-optical method [43].

Table 5. Summary of reviewed electro-optical sensor-based techniques for UAV characterization.

Ref. Detection Technique

Functionalities

Performance
Identification Classification

Localization/
Tracking

[42]
3D LADAR sensor, 3D

background subtraction,
V-RBNN

√
-

√
Detection Range 2 km

[44] Combination of: EO/IR,
All-sky, and acoustic cues

√
-

√
Line of sight limitation

[41] Real stream detection,
Differential method

√
-

√
-

[45] DVS camera, Temporal
filtering, Triangulation

√
-

√ Accurate Detection range
30 m

[43] Background subtraction,
CNN’s

√
- - Moving Background

dependency

The performance of vision-based solutions becomes poor with no LOS (angle of cam-
era), bad quality of lenses, in foggy, dark, and dusty environments (weather conditions),
and background temperature [9,10,21,63]. The aforementioned limitations could be ad-
dressed to some extent by using an IR camera, i.e., detection based on drone component
heat, but that increases the system cost significantly and limits the detection range and en-
vironment due to the sensibility of the sensors that measure the thermal difference between
the drone and the background [14,63].

3.5. Hybrid Fusion Systems

The hybrid fusion of multiple cues, such as radio frequency, radar, acoustic, and visual
sensors, improves the performance of detection, classification, and localization of both the
drone and its controller. Jovanoska et al. [47] suggested an array of sensors to collect the
detected drone’s data to be fed to a fusion engine for further analysis using the multiple
hypothesis tracker (MHT) techniques, as illustrated in Figure 7. The RF signal is received
and processed to compute the detected drone’s DOA for drone localization. The captured
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signals from the integrated acoustic sensors are filtered to remove unwanted noise. After
identifying and detecting the drone signatures, the coherent broadband beamforming
technique is used to recognize the drone bearing angle and reduce its error by the two-step
filter. Finally, the extracted DOA and bearing angle are referred to by the fusion engine for
localization purposes. Finally, the GSM passive radar [41] is used for UAV detection and
localization, and its output is fed to the fusion engine of the overall system. Combining
all these technologies improved the system performance and enhanced the localization
accuracy.

Figure 7. RF sensor direction finding reported in [47].

In [40], the proposed UAV detection and localization system relies on time delay and
beamforming of the collected acoustic signal from a set of microphones. Acoustic signal
characteristics with such signal processing are used to find the DOA of the UAV’s detected
recorded signal. Furthermore, Kalman filtering is used to improve the UAV’s trajectory. The
system is designed to identify and track the RF signal emitted by portable RF devices [48].
The system consists of two parts: (1) RF signal acquisitions achieved by an antenna array
followed by a Nyquist ADC converter and (2) signal processing. The RF signal from the first
part is passed into FFT to measure the DOA. The DOA is passed into the digital bandpass
filter to measure the TDOA, which is used together with the DOA to estimate the location.
AOA calculated from the DOA, the location, and past tracking information are used for
tracking the drone’s position [40].

3.6. Comparison of Detection Technologies

Earlier sections have discussed different techniques for detecting, identifying, and
localizing UAVs. Each technique’s performance varies according to equipment complex-
ity and cost, coverage range and distance, operation efficiency, accuracy and precision
measurements, etc. Table 6 summarizes the techniques cited in this study with their main
features and affected factors. Combining the different techniques and integrating different
sensors can increase the accuracy and reliability of the UAV detection systems, reduce the
possibility of errors, and improve the system’s ability to adapt.

100



Appl. Sci. 2022, 12, 12612

Table 6. Summary of all reviewed UAV detection techniques.

Detection
Technique

Summary Limitations Ref.

Radio Frequency

Real-time analysis for the detected radio communication
between UAV and its controller. However, it does not apply
to autonomous UAV detection.
Low cost and simple architecture and elements: Antennas,
Processors, RF sensors. Power and sensitivity of each affect
detection system performance and accuracy.
Common frequency bands are around 2.4 and 5 GHz
Covering a long detection range will perform more
efficiently in the less congested RF zones.
Referring to RF datasets and integrating with machine
learning algorithms are advanced ways to enhance
detection, localization, and precise classification.

The RF-based detection
technique applies only if the
UAV is remotely controlled.

[7–20]

Radar

Transmitting radio signals, then receiving and analyzing the
reflection/backscattering/echo radar signals.
UAV’s detection, tracking (Doppler-based), classification,
and localization are based on the analysis of the reflected
radio signal.
Active sensor (Radar) and data processing modules with
high-range detection and accurate localization.
Machine learning algorithms and techniques’ integration for
better performance and results.
Less noise and applicable in different weather conditions
(fog, dust, rain, etc.).
UAVs with small radar cross-sections are difficult to be
identified and classified.

UAVs generally have limited
Radar Cross Sections similar
to birds or pedestrians. The

amount of false positives
remains high and low-RCS
limits the detection range of
the radar, especially X-band

Radars.

[21–29]

Acoustic

Analyze acoustic signals coming from UAV’s engine or
propeller blades.
Acoustic sensors/microphones arrays combined with data
acquisition and signal processing modules
Acoustic fingerprint analysis, features extraction,
classification, and localization
UAV’s identification and distinction from other objects
Effective in a short distance, however, it’s affected by the
nearby noise sources and weather.
Acoustic dataset and Machine learning techniques
integration for higher performance (detection
and classification).

The detection of acoustic noise
emitted by UAVs is low; thus,

the acoustic technique
requires a network of sensors

deployed around sensitive
places.

[30–40]

Electro-optic

Imaging and motion line of sight detection.
High-cost equipment
Ability to track autonomous UAVs.
Controlling false alarms with advanced integration with
other methods/algorithms/machine learning.
Detection performance can vary with different
environmental conditions and weather.

Using different electro-optics
is required, and the fusion of
video streams is required to

cope with UAVs’ environment
and type/size. This increases

the cost of the solution.

[41–46]

4. Drone Controller Detection and Localization

Once UAVs are detected, the detection and localization of the drone controller are
implemented to monitor their communication and limit illegal use.

UAV detection systems differ according to the technologies and functions performed,
such as identification, classification, tracking, localization, interdiction, destruction, and
damage. Technology and functions are selected and implemented based on the main
requirements of the UAV detection system. In this section, some detection systems that
support localization functionality are reviewed.
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The process of locating and positioning a UAV is mainly based on collecting the direct
measurements of the detected UAV and its emitted signals. These direction measurements
and other extracted features are calculated and utilized in the UAV detection system to
estimate the geolocation of the UAV. The computed geolocation parameters for the direction-
finding methods include angle of arrival (AOA) [40], time of arrival (TOA) [64], direction
of arrival (DOA) [18,47], frequency difference of arrival (FDOA) [51], time difference of
arrival (TDOA) [11,35], and received signal strength (RSS) [65].

The proposed system in [12] utilizes a low-cost passive RF-based UAV detection and
localization method. The system computes AOA for the RF-based signal to determine
whether the transmitted signals’ peaks correspond to the UAV or its controller. Then, it
uses the triangulation technique to estimate the location of RF signal peak sources. The
free-space path loss model and triangulation combination is reported in [50] to detect
and localize a stationary drone controller. The proposed system contains two direction-
finding systems for direction identification and localization for the drone and its controller.
Each direction-finding system has an omnidirectional antenna for detecting drone signal
occurrence and a mechanically agile directional antenna for directions identification and
localization of RF signal peaks for UAV and/or its controller signals. The whole system is
depicted in Figure 8.

Figure 8. Diagram of direction finding mechanism in the proposed system [12].

The study [12] discussed that distinguishing between RF signals from the UAV and its
controller from other RF signals in the surrounding area poses a challenge in drone con-
troller localization. The reported direction-finding station consists of two modules: drone
signal analysis to classify drone and remote controller (RC) signals and the direction-finding
module. Each direction-finding station extracts acute parameters from detected RF signals
and uses a mechanical steering antenna for identification and localization. The precision of
the direction-finding function is dependent and affected by the antenna’s directivity and
gain, drone velocity, scanning velocity, and beam width of the used directional antenna.

The reported detection system in [18] employs frequency hopping spread spectrum
(FHSS) to detect and locate UAVs and RCs. The cyclostationarity analysis algorithm is used
to identify the FHSS-type drone RC signals and differentiate them from other background
signals operating in the same frequency band. After the successful classification of the
drone RC signals, STFT and additional re-sampling processing are applied to enhance
the detection accuracy of the reconstructed RC signal. Finally, the direction-finding phase
is achieved by implementing the subspace algorithms to identify the AOA of the FHSS
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drone RC signal. The proposed system [49] utilizes a set of a uniform linear array of
quasi-Yagi antennas in the experimental setup to enhance the precision of the direction-
finding function.

5. Conclusions

This study has reviewed the most recent techniques for UAV/drone and its controller
detection, classification, and localization. Cost-effectiveness, precision, accuracy, reliability,
and real-time processing are among the factors considered while developing UAV detection
systems. After discussing the high-level architecture of UAVs and security concerns, a
comprehensive review of radio frequency, radar, acoustic, electro-optic, and hybrid systems
for UAV detection is presented. The UAV detection systems employ different algorithms
and techniques depending on the applications for detecting, classifying, locating, tracking,
and alerting. To address the challenges, meet market needs, and improve reliability,
employing a hybrid fusion of multiple cues, such as radio frequency, radar, acoustic, and
visual sensors, can enhance detection performance.
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Abstract: This study explored how levels of automation (LOA) influence human robot collaboration
when operating at different levels of workload. Two LOA modes were designed, implemented, and
evaluated in an experimental collaborative assembly task setup for four levels of workload composed
of a secondary task and task complexity. A user study conducted involving 80 participants was
assessed through two constructs especially designed for the evaluation (quality of task execution and
usability) and user preferences regarding the LOA modes. Results revealed that the quality of task
execution and usability was better at high LOA for low workload. Most of participants also preferred
high LOA when the workload increases. However, when complexity existed within the workload,
most of the participants preferred the low LOA. The results reveal the benefits of high and low LOA
in different workload situations. This study provides insights related to shared control designs and
reveals the importance of considering different levels of workload as influenced by secondary tasks
and task complexity when designing LOA in human–robot collaborations.

Keywords: human–robot collaboration; assembly task; user studies; user preferences; quality of task
execution; usability

1. Introduction

Human–robot collaboration (HRC) involves one or more humans working with one
or more robots to accomplish a certain task or a specific goal [1]. Significant research has fo-
cused on interaction aspects for designing robotic systems for use by or with humans [2–6].
This research, which focuses on factors that affect HRC [1,7] at different levels of automa-
tion, specifically evaluates the influence of workload.

The level of automation (LOA) of the system, defined as the degree to which the robot
and the human are involved in the collaborative task [8–11], influences the characteristics
of the dynamics of the collaboration, the behavior of the robots, actions to be taken, as
well as autonomy of the human in the collaboration [12,13]. Workload addresses the
actual and perceived amount of work that the human operator experiences as related to
the effort invested in the task [14,15]. It can be described in terms of the elements that
constitute the cost of accomplishing the goal for the human operator in the HRC [16].
These elements could be task-related (such as mental, temporal, and physical demands [17],
operator-related (such as skill, strategy, experience [18]) or machine-related (such as poorly
designed controls, feedback, inappropriate, or inadequate automation [15]. Workload
consequences could be reflected in the stress, fatigue or frustration experienced by the
human operator [16], depletion of attentional, cognitive or response resources [15], as
well as in performance changes [19]. Workload can also be influenced by task complexity
as characterized in terms of the stimuli involved in the task for inputs, as well as the
behavioral requirements the human operator should emit in order to achieve a specific
level of performance [20]. It could depend on the objective complexity derived from the task
properties and on the subjective complexity which is influenced by the human operator’s
perception [21]. The task properties include the component complexity—number of distinct
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actions that the human operator must execute or number of informational cues that should
be processed (e.g., the number and type of subtasks to be managed, [22]); coordinative
complexity—nature of relationships between task inputs and task products, the strength of
these relationships as well as the sequencing of inputs (e.g., timing, frequency, intensity
and location requirements [23]), and dynamic complexity—changes in the states of the
environment which the human operator should adapt to [20,24].

The influence of LOA on HRC has been intensively investigated [25]. However, there
are limited studies that investigated factors influencing workload in relation to the design
of LOA modes suitable for different HRC collaboration contexts [26]. Moreover, research
has revealed that the alignment between manufacturing strategy and automation decisions
are often ad hoc in nature [27]. The current study therefore aims to examine the influence
of different levels of workload when operating at different levels of automation (LOA) in a
human–robot collaborative system. This is important when introducing robotics in real
life situations.

To evaluate the overall performance and interaction in such HRC contexts, many
different measures are commonly applied for the assessment [22,28–30]. However, by
evaluating each measure separately, a holistic evaluation is lacking. We therefore specially
designed two constructs that compile different evaluation measures. These constructs are
useful in assessing the preferences, performance, and perception of the users regarding vari-
ous aspects of the collaboration with the robot as required in a user-centered design [31–33].
The constructs are quality of task (QoT) execution (the user’s performance aspects) and
usability (performance aspects along with other user perception aspects such as perceived
ease of use). Additionally, user preferences were evaluated.

We design, implement and evaluate LOA modes in a user study involving 80 partici-
pants working at different workload conditions. Section 2 presents the study hypotheses,
system design, LOA modes, task, and experimental evaluations of the design. Section 3 is
devoted to the experimental results. Discussion is presented in Section 4 while Conclusions
and suggestions for future work are discussed in the last section.

2. Materials and Methods

2.1. Experimental System

The experimental system included a 4 degree of freedom DOBOT Magician robotic
arm (https://www.dobot.cc/dobot-magician/product-overview.html, accessed on 30 May
2021) equipped with a suction gripper, user interface (presented on a computer), cubes
to be assembled and the human operator (Figure 1). The DOBOT Magician (135 mm
high, 158 mm wide with a 320 mm radius and 500 g payload) connects to the computer
through a USB connection and was programmed for the two LOA modes using the Python
programming language.

Figure 1. The experimental system.
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The HRC assembly task simulates a work scenario where participants are expected to
assemble blocks made from cubes brought to them by a robot according to a configuration
presented to them through a user interface. The task was performed in two LOA modes,
at four workload levels. The workload levels, detailed below, are composed of different
combinations of a secondary task and task complexity.

The user communicates with the robot through a user interface implemented on a
GUI screen (Figure 2). This was designed to be friendly to promote ease of use as the
human interacts with the robot through the GUI [34–36]. The configuration to be assembled
is displayed on the GUI screen when starting the task. The robot brings the cubes in a
sequence one after another from a predetermined place according to the specific LOA the
robot is operating in. The robot releases the cube when it reaches the front of the participant.
The participants are expected to assemble the cubes when received from the robot and
place these cubes in a marked area on the desk in front of them.

 
Figure 2. The GUI screen.

2.2. Design of the Experimental Conditions
2.2.1. Levels of Automation (LOA) Modes

The automation design focuses on the decision and action aspects of the overall process
taken either by the robot or the user. This specifies the degree of control the user or robot
in the decision of action(s) to be taken and the execution of the actions. It is conditioned in
two levels for this study:

(a) Low LOA—the user has autonomy to select the type and order of cubes. The robot
supports the user by bringing the type of cube the user selected via the user interface.

(b) High LOA—the robot has autonomy to bring the specific type of cube and in the
order preprogrammed in its operation. The user simply demands for a cube through
the user interface and the robot brings the type of cube suitable for the specific
configuration assembled.

2.2.2. Levels of Workload

The workload design focuses mainly on the physical and cognitive workload induced
through the selection of the right cubes to assemble in the minimum possible time. This
is the main task. Workload is increased in two ways: through a secondary task and by
increasing task complexity.

The secondary task influence was depicted through an off-the shelf well known
cognitive game, the “RUSH HOUR” (https://www.thinkfun.com/products/rush-hour/,
accessed on 30 May 2021) thinking game (Figure 3). It involves arranging toy cars in a way
to get a specific car out of a gridlock. There are tabs at each stage showing how to arrange
the cars and finding a way to get the required red car out at different stages.
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The red car  

The game 

 
Figure 3. “RUSH HOUR” game.

In the main task, where cubes are assembled, the default setting is that the cubes for
the assembly differ only by color. The users are required to assemble the cubes to match
particular configurations characterized by differences in color pattern (Figure 4a).

  
(a) (b) 

Figure 4. Sample of cubes configurations in (a) without complexity and (b) with complexity.

The task complexity influence was depicted by introducing the cubes for the assembly
that differ in color and in numbers on a particular side (Figure 4b). The users are required
to assemble the cubes in color patterns as done in the low task complexity condition, but in
addition, they must ensure that the specific numbers on a particular color of cubes match
the required configuration per time. The task complexity is increased by the additional
information cue (presence of numbers) and their spatial consideration (position of the
number in the configuration). It represents component and coordinative task complexity
induced through the number and type of sub-actions to be performed while selecting the
right cubes and assembling along with the coordination of the actions in the secondary task.

Four levels of workload were designed using these factors:

(a) Low workload (LWL)—the users perform only the main task, assembling cubes
(without reference to the numbers on the cubes) to match the specific configuration
required. The workload involves some physical demand of arranging the cubes,
mental demand of thinking about the type of cube that would match the required
configuration and some temporal demand related to completing the task in the
shortest possible time.

(b) Medium workload 1 (MWL1)—the users perform only the main task of assembling
the cubes but with reference to the numbers on the cubes. It depicts the LWL level
with increased task complexity (or high workload without secondary task).

(c) Medium workload 2 (MWL2)—the users perform the main task of assembling (with-
out references to the numbers on the cubes) simultaneously with the secondary task.
It depicts the high workload level without complexity included (or the LWL with a
secondary task).

(d) High workload (HWL)—the users perform the main task of assembling the cubes
(with reference to the numbers on the cubes) along with a secondary task. This
combines both secondary task and increased task complexity.
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2.3. Experimental Design

The experimental design includes two independent variables: LOA and levels of
workload. A between-within participant experimental design was conducted with the
LOA as the within variable while level of workload was the between variable. Four groups
were designed depicting the different levels of workload. Each participant was randomly
assigned to one of the four groups and experienced both LOA modes (Table 1).

Table 1. Experimental design.

Workload

Low Workload
Medium Workload 1

Task Complexity
Medium Workload 2

Secondary Task
High Workload

Le
ve

lo
fA

ut
om

at
io

n
(L

O
A

) L
o

w
L
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A

Condition 1a
The user chooses via a

GUI screen which
color of cube the robot

will bring him.
The user concentrates
only on the main task,
without reference to
the numbers written

on the cubes.

Condition 2a
The user chooses via a GUI

screen which color of cube the
robot will bring him.

The user concentrates only on
the main task, which has

increased complexity
(through the numbers written

on the cubes).

Condition 3a
The user chooses via a GUI

screen which color of cube the
robot will bring him.

The user performs a main +
secondary task

simultaneously, without
reference to the numbers

written on the cubes.

Condition 4a
The user chooses via a

GUI screen which
color of cube the robot

will bring him.
The user concentrates
on performing a main

+ secondary task
simultaneously, with

an increased task
complexity (must refer
to the numbers written

on the cubes).

H
ig

h
L

O
A

Condition 1b
The robot brings the
cubes to the user in a

predefined order.
The user concentrates
only on the main task,
without reference to
the numbers written

on the cubes.

Condition 2b
The robot brings the cubes to
the user in a predefined order.
The user concentrates only on

the main task, which has
increased complexity

(through the numbers written
on the cubes).

Condition 3b
The robot brings the cubes to
the user in a predefined order.

The user concentrates on
performing a main +

secondary task
simultaneously, without
reference to the numbers

written on the cubes.

Condition 4b
The robot brings the
cubes to the user in a

predefined order.
The user concentrates
on performing a main

+ secondary task
simultaneously, with

increased task
complexity (must refer
to the numbers written

on the cubes).

2.4. Study Hypotheses

The model for the study (Figure 5) and the hypotheses describing the proposed
connection between the constructs, user preferences and the study variables (LOA and
levels of workload) along for the rationale for the hypotheses are presented as follows:

We suspect that at all workload levels, high LOA will enable the users to perform
efficiently and effectively since the high LOA involves the robot carrying out most aspects
of the main task which would likely improve performance [37]. Therefore, we propose:

Hypothesis 1. Quality of task (QoT) execution will be higher with high LOA than with low LOA
for all workload levels.

Several meta-studies conducted regarding levels of automation [38], ref. [39] seem to
suggest that the workload experienced by users is influenced by the LOA of the system,
particularly in situations of routine performance. This does not discountenance the effect
of task complexity but seems to point to the effect level of workload may have in low
task complexity. Since a major component of usability is the users’ perception of the
system use [40] along with effectiveness and efficiency, which high LOA will likely increase,
we posit:
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Hypothesis 2. Usability will be higher with high LOA than with low LOA for all workload levels.

Figure 5. Model for the study and hypotheses.

Research has revealed that as automation increases, workload is expected to decrease,
particularly if the automation is properly designed and does not provide new challenges
and tasks related to monitoring or other forms of engagement [39]. Moreover, in the
design of adjustable robot autonomy in human–robot systems, research shows that as task
complexity increases, robot effectiveness is likely to reduce if the robot is operating at higher
autonomy [41]. Users seem to intuitively understand that autonomous systems could
encounter difficulties in more complex situations with high uncertainty [42] Therefore, in
terms of user preferences, we propose:

Hypothesis 3. Participants will prefer high LOA to low LOA for high workload and low LOA to
high LOA when task complexity is increased.

2.5. Participants

Eighty undergraduate industrial engineering third year students (44 females, 36 males,
mean age = 26, SD = 1.4) participated in the study. All students had experience with
both computers and robots. Participation was voluntary and every participant received
compensation in the form of a bonus point contributing to a credit in an academic course.
The participants completed a preliminary questionnaire which included demographics
questions for the participants and the negative attitudes towards robots scale (NARS) [43].

The NARS results revealed that 21.06% of the participants had a negative attitude
towards situations and interactions with robots while 63.65% were neutral about it. 26.58%
had highly negative attitudes towards the social influence of robots, 47.61% had a low
attitude and 25.81% were neutral about it. 65.82% had a highly negative attitude towards
the concept of robots having emotions, 8.87% were indifferent about it while 25.31% had a
low negative attitude towards it.

2.6. Experimental Procedure

Explanation was provided to the participants noting the robot would operate dif-
ferently in the two trials. To avoid bias, the details of each trial in terms of LOA was
not explained to them. They were told that a post-trial and final questionnaire will be
provided to express their observations, assessments, and preferences. Then, the participant
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experienced two experimental trials in which they collaborated with the robot to assemble
the configuration that appeared during the GUI in a specific LOA (high/low) in random
order. After each trial, they completed a post-trial questionnaire regarding their experience
with the robot. At the end of the two trials, each participant completed a final questionnaire
where they indicated their preferred level of automation. The experimental design and
protocol were approved by the departmental ethical committee.

2.7. Dependent Variables
2.7.1. Objective Measures

Effectiveness: Accuracy of the robot during the task—calculated from the number of
times the robot erred in bringing the cubes (e.g., failed to catch a cube, brought an incorrect
cube). These are system errors to portray the context of a system whose performance may
not be absolutely optimum at all times.

Performance in the secondary task was measured as the number of stages they passed in
the secondary task (for the participants that experienced the higher workload).

Efficiency: Total time (in seconds) that it took the participant to complete the task for
each trial. In the higher level of automation, the total time was constant since depended on
robot motions only.

2.7.2. Subjective Measures

The subjective measures were collected through questionnaires that included ques-
tions regarding the participants’ experience with the robot. The post-trial questionnaire
was prepared as a 5-point Likert scale ranging from “1 = strongly disagree” to “5 = strongly
agree” through which participants were expected to express their experience and assess-
ments. The questionnaire included NASA-TLX questions [17] to assess perceived workload
in relation to the system efficiency. The raw NASA-TLX scores were added without the
weights to provide an estimate of the overall workload (RTLX aggregation technique). The
post-trial questionnaire also included questions from the technology acceptance model
(TAM) to assess perceived ease of use [44]. The final questionnaire assessed user prefer-

ences regarding LOA modes and their perceptions as they collaborate with the robot at
specific LOA modes.

2.7.3. Constructs

The dependent variables were defined through two constructs: QoT execution and
usability. These constructs were derived from the objective and subjective measures
explained above (mapping is provided in Figure 6). They were adapted to the context of
human–robot collaboration from the ISO 9241-151 guideline [40,45] as follows:

Figure 6. Mapping of the measures into constructs for assessment. (O—objective measures; S—subjective measures).
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Quality of task (QoT) execution. The extent to which specific goals in a task are
accomplished to a specified degree of accuracy for a specified time period [46]. This
construct involves effectiveness and efficiency of the collaboration. Effectiveness of the
collaboration was evaluated by the accuracy and completeness of the task which the human
and robot cooperate to execute. The efficiency of the collaboration depends on resources
such as time and human effort spent to achieve the required goal [47].

Usability. The extent to which the robotic system can be used to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use (adapted
from [40]). This construct, in this study, is composed of effectiveness, efficiency in addition
to satisfaction derived from the perceived ease of use, perceived workload and perceived
reliability of the system. All these variables could affect the degree to which the human
operator believes that working with the robot will be free of difficulty or great effort. This
is an adaption from [44] in the information technology domain to the context of HRC. They
constitute the user’s perception regarding use of the system and is essential to ensure that
the human can successfully team up with the robot to achieve such collaboration [35]. A
negative user perception could lead to disuse of the support the robot can provide in the
collaboration [48]. In the current study, the usability construct was comprised of the QoT
measures, along with other user perceptions on ease of use, workload, and reliability.

2.8. Analysis

A generalized linear mixed model (GLMM) was applied to analyze the data with the
LOA, and workload as independent variables. To combine variables for the constructs,
multivariate analyses of variance (MANOVA) was used. The analyses considered all the
constituent variables within constructs and combined them into a composite variable.
Tukey’s honestly significant difference (Tukey’s HSD) test were used as the post-hoc test
for multiple comparison. The tests were designed as two-tailed with a significance level
of 0.05. The items in the user preferences questionnaire were analyzed using ANOVA to
assess the effect of workload on their preferences for the LOA mode they experienced.

3. Results

Results of the assessments using the constructs (QoT execution and usability), details
of the user preference regarding the LOA modes and a comparison within the workload
groups are presented below.

3.1. QoT Execution

The interaction of LOA and workload had significant effect (F (3, 152) = 5.198, p = 0.002)
on the QoT execution. The QoT execution was higher at the high LOA when the work-
load was low compared to other LOA-workload combinations, confirming H1. LOA
(F (3, 150) = 45.15, p < 0.001) and workload (F (3, 152) = 18.725, p < 0.001) were also signifi-
cant as main effects on the QoT execution. The high LOA produced better QoT execution
compared to the low LOA. Best results were obtained for low workload as expected. When
the workload is high, the high LOA also produced a better QoT execution compared to
the low LOA. Details of the constituent variables in the QoT execution (effectiveness and
efficiency) are presented below:

3.1.1. Effectiveness

The interaction of LOA and workload did not have a significant effect on accuracy
(F (3, 152) = 0.512, p = 0.675) and neither did the LOA (F (1, 152) = 1.024, p = 0.313) and
workload (F (3, 152) = 0.376, p = 0.77) as main effects. Workload level however, had a
significant effect on the performance in the secondary task (F (1, 32) = 4.23, p < 0.001) with
MWL2 (M = 2.02, SD = 1.239) resulting in better performance compared to HWL (M = 1.93,
SD = 1.047). All of the participants who did the secondary task finished the first stage of
the game. The majority (71/80) reached the second stage of the game, 56/80 reached the
third stage while only 10/80 reached the fourth stage.
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3.1.2. Efficiency

The interaction of LOA and workload had a significant effect on completion time
(F (3, 152) = 4.838, p = 0.003). At high LOA and LWL, participants completed the task at
shorter time compared to the other combinations. LOA also had significant effect on the
completion time (F (1, 152) = 136.565, p < 0.001) with the high LOA (M = 87.3, SD = 0) having
lower completion time compared to the low LOA (M = 107.945, SD = 16.547) as expected,
even though the users had the option to stop the robot’s operation at any point in the high
LOA mode, thereby increasing the completion time. Workload also had significant effect
on the completion time (F (3, 152) = 4.838, p = 0.004) with the LWL (M = 94.62, SD = 9.028)
having less completion time compared to the HWL (M = 103.158, SD = 23.924). Higher task
complexity (MWL1, M = 96.449, SD = 12.766) resulted in less completion time compared to
the workload caused by the secondary task (MWL2, M = 96.595, SD = 11.241).

3.2. Usability

The interaction of LOA and workload on usability was not significant (F (18.137) = 1.615,
p = 0.064). However, the main effects of LOA (F (18, 135) = 7.768, p < 0.001) and level
of workload (F (18, 137) = 11.905, p < 0.001) was significant. At high LOA, the usability
was higher (M = 4.36, SD = 0.83) compared to the low LOA (M = 4.31, SD = 0.773), in
agreement with H2. At LWL (M = 4.37, SD = 0.633), usability was higher compared to HWL
(M = 4.25, SD = 0.742). Higher usability was obtained when task complexity increased
(MWL1, M = 4.45, SD = 0.959) as compared to when there was a secondary task (MWL2,
M = 4.29, SD = 0.835).

There was no difference in the workload groups in terms of the perceived ease of
use. However, workload level significantly influenced perceived workload as measured
through the aggregated raw NASA-TLX scores (F (3, 152) = 11.767, p < 0.001), with the
HWL (M = 14.6, SD = 4.337) resulting in higher perceived workload compared to the LWL
(M = 12.58, 3.796) as expected. Between the medium workload groups, MWL2 (M = 15.33,
SD = 3.318) resulted in higher perceived workload compared to MWL1 (M = 11.18, SD = 2.123).

Workload also had significant effect (F (3, 152) = 3.646, p = 0.014) on perceived reli-
ability as assessed through the questionnaire. The reliability was perceived as higher by
the participants who experienced the LWL (M = 4.53, SD = 0.687) compared to the HWL
(M = 4.5, SD = 0.555). Between the medium workload levels, MWL1 (4.63, SD = 0.628)
resulted in higher perceived reliability compared to MWL2 (M = 4.19, SD = 0.634).

3.3. User Preferences

A one-way ANOVA revealed that there was a significant difference between workload
groups (F (3, 76) = 9.276, p < 0.001). When comparing LWL and HWL, high LOA was
preferred. However, when comparing between MWL1 and MWL2, low LOA was preferred
for the MWL1 (confirming H3). More details regarding user preferences for the LOA modes
between the workload groups are depicted in Figure 7.

3.4. Comparison between Workload Groups for Different LOA Modes

Multiple comparison made between the different workload groups with details on
each LOA mode for groups that were significantly different are presented in Table 2. Results
revealed that at low LOA: QoT execution is higher when workload is lower; usability is
higher when a secondary task is involved, and user preference tended towards low LOA
when complexity increases. However, at high LOA: QoT execution was the same for all
workload types except when complexity is involved; usability was higher when a secondary
task is involved, and user preference tended towards high LOA when a secondary task
is involved.

115



Appl. Sci. 2021, 11, 7340

Figure 7. LOA preference for the different workload levels.

Table 2. Comparison of assessment (with p-values) within the workload groups *.

Groups QoT Execution Usability User Preferences

LWL|MWL1 0.858 0.297 0.038 *
Low LOA > High LOA

LWL|MWL2 0.88
0.03 *

Low LOA: Low < MWL2
High LOA: Low < MWL2

0.089

LWL|High
0.004 *

Low LOA: LWL > HWL
High LOA: LWL = HWL

0.059 0.956

MWL1|MWL2 0.1
0 < 0.001 *

Low LOA: MWL1 < MWL2
High LOA: MWL1 < MWL2

0 < 0.001 *
Low LOA < High LOA

MWL1|HWL
0.042 *

Low LOA: MWL1 > HWL
High LOA: MWL1 < HWL

0 < 0.001 *
Low LOA: MWL1 < HWL
High LOA: MWL1 < HWL

0.008 *
Low LOA > High LOA

MWL2|HWL
0.033 *

Low LOA: MWL2 > HWL
High LOA: MWL2 = HWL

0.782 0.242

* green depicts comparison with statistical significance; similar trends are marked with identical colors.

4. Discussion

The main influences and interacting influences of LOA in HRC in an assembly task
context, considering different levels of workload is summarized in Table 3.

Table 3. Summary of findings.

Metrics Constituent Measures Significant Effects Finding

QoT execution Efficiency; effectiveness
LOA (p < 0.001); workload

(p < 0.001);
LOA*workload (p = 0.002)

LOA and workload had significant effect on
the QoT execution.

The QoT execution was higher at the
high LOA.

Usability

QoT execution measures;
perceived ease of use,
perceived reliability,
perceived workload

LOA (p < 0.001); Workload
(p < 0.001)

The usability was higher at high LOA. The
workload had more influence on the

constituent variables, with the LWL resulting
in higher usability.

User preferences
User choices regarding

LOA modes Workload (p < 0.001)

Most of the participants preferred the high
LOA for both LWL and HWL. In the medium
workload levels, the low LOA was preferred
for the MWL1 where some task complexity

was involved
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4.1. Influence of LOA

In HWL situations, where additional resources are needed to complete the task in the
least possible time and with minimal effort, high LOA is preferred. This corresponds with
the observations made in the meta-analyses conducted in [38,39] where several automation-
related data where analyzed. It also agrees with the characteristics of the suggested
line of solution in workload demands amidst multiple resources as elaborated upon
in [37]. However, in cases where complexity is involved, as seen in the results for the LOA
preference of participants in the medium workload category, a low LOA can be considered.
Most participants seem to prefer a low LOA when the task complexity is high. This confirms
H3, and is also in agreement with previous studies where it was stated that a higher LOA
may not always give a positive outcome in situations where uncertainties, and higher
probabilities of failure exist [38,39]. In high complex tasks where high component and
coordinative complexity increases the probabilities of failure [23,49], humans usually have a
higher potential to better manage unknown or unexpected situations [50,51]. This reinforces
the significance of evaluating LOA modes alongside different workload situations as
emphasized in [52] for various contexts and causes of workload. It also calls for further
assessments using these constructs.

4.2. Workload Considerations

Workload had significant influence on most of the measures. The significant effects
were seen in effectiveness and efficiency leading to reduced QoT execution in situations
where the workload was high. This is consistent with the literature highlighting the
contribution of task-related demands (such as mental, temporal, and physical demands,
including complexity demands involved in the HRC task) to workload, which could
negatively influence resources available to complete task at hand [15].

The medium workload category more clearly reflects some of the differences in addi-
tional workload which can be induced by a secondary task or task complexity. Secondary
task inclusion (depicted in MWL2) seems to produce a higher perception of workload com-
pared to complexity in the task (depicted through MWL1). This could explain the reason
why most users preferred the high LOA (which autonomously executes more aspects of the
task) compared to the low LOA for MWL2. The LOA option seems to provide more mental
space for the users to execute other tasks, particularly when the automation functioned
well, as suggested in [38,39].

This difference in the medium workload category also brings into prominence the
relevance of task complexity, specifically the influence reflected through the perceived
reliability where MWL1 (reflecting higher complexity) condition was perceived more
reliable compared to MWL2 (reflecting secondary task influence). This could be a result
of higher uncertainty and failure probabilities which complexity induces as elaborated
in [53,54]. It is therefore understandable that users preferred low LOA to the high LOA
in this level of workload (where the task complexity exists) where they seem to have an
increased sense of control over the operation [55]. This enables them to better manage
the higher uncertainties in this condition (through the low LOA) compared to relying on
the robot (through the high LOA). The results reveal that both objective and subjective
complexity considerations as noted in [21] should be considered along with the suitable
LOA modes for such HRC assembly tasks. This consequently affects the QoT execution
and usability of the system.

4.3. Limitations

Evaluation was performed with users who had experience with computers and robots.
We expect these results to be amplified with users who have experience in real industrial
setting. We are also cognizant of potential differences in the subjective assessment of
the students in comparison to professionals in an industrial setting since this plays a
role in the perception of the users working alongside a robot in a work setting [56]. We
therefore consider the results obtained with caution, with the perception that these could
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be relatively equivalent to assessment with novice operators and different from expert or
professional assessments.

The LOA and levels of workload design is simplified for research purpose and not
fully representative of the degree of automation, workload levels demanded in more
industrial settings. The results obtained, therefore, serve as building blocks and insights
for further developments where more detailed automation, workload and complexity
conditions are tested in sample industrial settings. Some other social aspects of interacting
(such as verbal [57] and non-verbal communication methods [58]) with the robot for the
collaborative work were not explicitly investigated in this study. However, further research
should also investigate the interplay of the socio-technical aspects of the collaboration
while also considering economic and societal issues to understand fuller dimensions of
improved HRC in industry [56,59,60].

5. Conclusions

This paper presented the influence of LOA on a human robot collaborative assembly
task considering different workload levels. The user study yielded valuable insights into
participants’ preferences and influence of LOA and workload. The study also introduced
two constructs for the evaluation: quality of task (QoT) execution and usability. The
evaluation obtained through these constructs highlighted their potential for use in HRI
studies. The study has served to provide support tools to further align manufacturing
strategies and automation decisions putting into consideration level of workload to further
improve productivity.

The QoT execution construct also pointed to the significance of combining efficiency
and effectiveness together as a single variable. It revealed the influence of the LOA and
workload in the extent to which goal of the task was accomplished under specified degree
of accuracy and duration of the task. The usability construct was significant in revealing the
combined effect of QoT execution and user perceptions of the ease of use, workload, and
system reliability. The interactive effect of LOA and levels of workload on this construct
pointed to the added value which user perceptions contribute when combined with the
QoT measure.

We recommend a high LOA to support the user when the workload is high. A high
LOA could reduce the stress or pressure of additional secondary tasks which the robot
could support in. This was observed in the outcome of the user preferences which tended
towards higher LOA when the workload was high. It also agrees with the observations
of [38] in their meta-analyses considering the influence of LOA on workload. High LOA,
when designed effectively, helps to extend the capabilities of the user to attend to other
tasks concurrently as noted by [42,61]. However, lower LOA is helpful when high task
complexities are involved, for which failure performance may occur as also noted in [39].
An adaptive LOA design that takes these outcomes into consideration is therefore recom-
mended for further investigation.

There may be significant differences in the influence of these variables when observed
in other settings, with different forms of robots, tasks and robot feedback modalities [62]
and with the perception of different users as emphasized in [63]. Future work should
evaluate different forms of increased workload. The workload design can be fine-tuned
to portray distinct types of workload demands such as physical, cognitive and temporal
demands during the task. Evaluation should also be conducted with other forms of
tasks e.g., with a mobile robot delivering items and with other populations. Ongoing
research is aimed at performing studies with older adults for daily living tasks and for non-
professional users, putting into consideration the influence of demographics on the changes
automation brings [64]. LOA has proven to influence performance for older adults [12]. We
expect the effect of the levels of workload to amplify with them. The change of preferences
and the differences in the reaction and performance of the older adults should be examined
with different LOA options for different workload levels.
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Abstract: Assembly tasks executed by a robot have been studied broadly. Robot assembly applica-
tions in industry are achievable by a well-structured environment, where the parts to be assembled
are located in the working space by fixtures. Recent changes in manufacturing requirements, due
to unpredictable demanded products, push the factories to seek new smart solutions that can au-
tonomously recover from failure conditions. In this way, new dual arm robot systems have been
studied to design and explore applications based on its dexterity. It promises the possibility to get rid
of fixtures in assembly tasks, but using less fixtures increases the uncertainty on the location of the
components in the working space. It also increases the possibility of collisions during the assembly
sequence. Under these considerations, adding perception such as force/torque sensors have been
done to produce useful data to perform control actions. Unfortunately, the interaction forces between
mating parts produced non-linear behavior. Consequently, machine learning algorithms have been
considered an alternative tool to avoid the non-linearity. In this work we introduce an assembly
strategy for an industrial dual arm robot based on the combination of a discrete event controller and
Deep Neural Networks (DNN) to solve the peg-in-hole assembly. Our results show the difference
between the use of DNN with one and with two force/torque sensors during the assembly task and
demonstrate a 30% increase in the assembly success ratio when using a double force/torque sensor.

Keywords: robotic assembly; deep neural networks; peg-in-hole; dual-arm

1. Introduction

Due to rapid changes in production demand and to product changes, new challenges
have arisen in the manufacturing of products, a trend that has increased throughout
the years and has affected most of the industry. Therefore, more robots that work in an
unstructured environment for assembly tasks will be required in factories, where fixture-
less operations could be executed, giving high flexibility to the production processes [1].

Considering that current automation systems do not support intelligent solutions for
assembly tasks, a great opportunity arises, that is, to develop practical methodologies to
include machine learning algorithms in assembly problems with robots. When non-desired
contact among objects occurs, the assembly cycle requires assistance from an operator.
Moreover, in automated cells, when such conditions appear, the robot is programmed to
reject the assembled components and start a new cycle. This represents a delay in the
production schedule and additional costs due to scrap generation.

Dual arm robots have already been deployed as research projects. New methods have
been proposed to achieve different manufacturing tasks. However, assembly tasks with
dual arm robots have not yet been broadly studied. They have been reviewed in [2], among
some advantages of using the dual arm configuration and trying to execute more tasks in an
unstructured environment. In previous work, we had presented the study of the assembly
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process of a starter motor using fixtures to position components and applying neural
networks for contact state identification [3]. It also has been pointed out that controlling a
dual arm robot for an assembly task can be very challenging [4]. Research has also focused
on the performance of dual arm systems to assemble an automotive component, trying
to imitate human-like activities [5]. Among the advantages, there is higher manipulation
capability, flexibility, and stiffness [6]. Moreover, stiffness can be controlled or adjusted
when both arms make contact with an object [4]. The advantage of using not only one arm
robot but two arms is presented in [7], even avoiding the use of force-torque sensors in [8].
Tele-operation activities using visual servoing and manipulation of a single object with
both arms is presented in [9]. To process contact states, direct policy search using linear
Gaussian controllers has been proposed in [10]. Regarding the difficulties of programming
the dual arm robots, a framework for task oriented programming that decomposes complex
activities in simpler ones has been proposed [11]. Another matter of study has been human-
like operations and analysis of the peg-in-hole problem, the same way a human executes
this task in [12].

Regarding the peg-in-hole problem, as the most studied research case for an assembly
task, there is extensive literature that presents different points of view and issues. With
regard to how to consider the assembly task, a definition of assembly primitives has been
proposed [13]. It has also been described as “the basis of a wide range of component
assemblies” where two main strategies can be considered, contact model based and contact
model free in [14].

In the case of model free strategies, it is known how reinforcement learning finds
a solution without knowing the models of the robot [15]. Another study proposes skill
acquisition, where low accuracy of conventional methods is compensated by a learning
method without parameter tuning [16]. For the case of peg-in-hole with a dual arm robot,
a three step method inspired by humans operations is designed in [17]. Seed works that
inspired many recent studies such as force/toque maps [18], self-organizing maps [19],
reinforcement learning [20], and event discrete systems [21].

Impedance control and force control methods have been reviewed in [14], but most
industrial setups work on positional control methods [22]. Working with industrial robots
isn’t simple; the lack of easy development tools for programming, integration of perception
technologies, and computational power are some challenges which limit the development
of technical solutions for complex problems in the industry [23].

This paper presents a novel approach to investigate the peg-in-hole assembly with
a dual arm robot. An industrial dual arm robot is programmed to follow a sequence
of steps to achieve a peg-in-hole assembly task. A positional error is defined and an
assembly strategy to error recovery based on classification of contact states is proposed.
Classification is investigated using Deep Neural Networks (DNN) to learn the force/torque
(F/T) patterns of defined contact states. The novelty of the investigation lies on the use
of a double force/torque sensor (F/T sensor), to increase the number of features the
DNN learns.

It also considers the integration of a DNN model as a trigger condition into a discrete
event controller. In order to test the proposed strategy, the dual arm robot system is
integrated with the Robot Operating System (ROS) and two force/torque sensors mounted
on the wrist of each robot arm. To evaluate the performance of the assembly strategy using
two scenarios, the first by training the DNN with one F/T sensor and the second with
double F/T sensors, experiments were executed and the number of completed assemblies
are counted for calculation of Success Ratio for each scenario.

The article is organized as follows: after this introduction, Section 2 presents the
related work and original contribution. In Section 3, the methodology that includes the
description of the test bed is introduced, while the results are explained in Section 4. Finally,
Section 5 provides the conclusions and further work.
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2. Related Work

For solving the peg-in-hole with a dual arm robot, Ref. [17] describes the problem of
insertion as a search problem of the hole, where force/torque (F/T) sensor data was used to
identify the different assembly stages using thresholds. The challenge with thresholds is the
continuous tuning due to changes in the assembly conditions. In this research we compare
the threshold method with machine learning methods for contact states classification.

In [13] is proposed a pool of assembly primitives and maintaining an unilateral contact
constraint, where the need of more advanced force control is needed to prevent the abrupt
changes in contact forces. Our approach considers quasi-static motion and discrete events,
which excludes complex models of the force feedback.

In [7] there is a definition of a master-slave strategy and a cooperative strategy to
evaluate the assembly of the peg-in-hole with one and two arms. The advantage of such
work is the use of a compliant robot with low accuracy, which can manage contact forces
with less risk of damage. It also defines thresholds as trigger functions in the assembly
sequence. In [8] a dual arm robot is also used using a leader-follower strategy and a
sensor-less and active compliance admittance method with real time trajectory generation.

Double F/T sensors in robotics have been reported in [24,25] where two robots are
used for a bi-manual peg-in-hole assembly task. Discrete event systems (DES) are used
to model the assembly process. The F/T data is processed separately for each robot and
compared with defined thresholds of forces and torques; qualitative values are defined due
to the high variability of force/torque signals in every execution. This eliminates the need
of tuning constantly.

Another dual arm system with double sensor is presented in [9], where the main focus
is the manipulation of objects in a coordinated way using the F/T signals as the feedback
for the impedance controller. There, the authors designed their own software platform.
Our approach was using ROS, a developing platform in order to transfer knowledge to
different platforms.

The single arm peg-in-hole assembly has been broadly studied in recent years. In [22]
a safe learning mechanism is used to avoid damage to the system. This idea was taken
for our work to prepare the robot for uncertain and unexpected conditions. In [26] the
authors express their concern about their classical programming methods and how position
control-based methods are not suitable for high precision assembly. In contrast, in this
work we consider that the classical position control-based method can be improved by
integration of machine learning.

In [27] a combination of different methods such as Principal Component Analysis
(PCA), Hidden Markov Models (HMM) and time series for contact state recognition is
used. The authors’ approach of analysing the contact states recognition as a classification
problem is suitable for our project. Expected Maximization and Gaussian Mixture Models
(EM-GMM) for monitoring contact states during the peg-in-hole assembly is presented
in [28], where the authors present a clear notation of the contact state classification problem
that is adopted in this work.

Different searching techniques are proposed such as spiral search [29], attractive
region in environment (ARIE) [30], random search in a plane [7]. Those approaches are not
suitable in our project due to the high stiffness of our robot, which can be unsafe during
constrained motion.

2.1. Problem Definition

Industrial robots usually lack appropriate external programming tools to design a
suitable control system [9] . Moreover, industrial robots programming method is based on
defining a sequence of steps in the position space. The robot is moved to a desired position,
then this position is saved in order to follow a sequence of movements.

An automated assembly process is programmed to repeat a defined sequence. In
case the robot cannot reach the final destination, an error recovery sequence must be
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programmed. In that sense, when the error position is difficult to estimate, there are few
chances that this strategy will work.

When using dual arm robots for a fixtureless assembly process, an uncertain envi-
ronment is produced, hence, a positioning error among the parts is expected to appear
previous to the assembly stage. This positioning error is very difficult to estimate when
using F/T sensors due to noisy signals that make it difficult to classify. Moreover, a robot
with high accuracy and high stiffness abruptly presents changes during contact states. In
such conditions, using F/T data in a qualitative force and moment templates as proposed
in [31], making calculations using transformation matrix as proposed in [23], and requires
continuous tuning, resulting in less successful assemblies.

By applying an appropriate assembly strategy, the automated process can be strength-
ened by including machine learning algorithms that drive better decision making on the
process and avoid assembly failures.

2.2. Original Work

This research work explores the integration of machine learning algorithms into a
discrete event controller as a trigger function in order to accomplish a better performance
in the overall assembly cycle.

Three main challenges have been addressed in this work:

• Incorporation of off-line learning capabilities using DNN to an industrial robot system.
• Investigation of the advantages of using a double force/torque sensor in a bi-manual

assembly task.
• Undesrtanding how to evaluate the effects of deep neural networks in an automated

assembly cycle.

The main contribution of this paper is the methodology for evaluating contact state
classification using one and two force/torque sensors as a single feature vector for a single
controller. Few works use two sensors to feed two separate controllers, meanwhile most
of the literature presents the use of only one sensor. Our approach considers a twelve
component vector to increase the number of features to input data into the DNN classifier.

It has been found that the second sensor helps the systems perform better on contact
state recognition. This methodology also considers the Success Ratio evaluation of the
peg-in-hole assembly cycle. An increase in performance due to the use of machine learning
classifiers was demonstrated. An automated robot cell sequence for assembly was modeled
as a discrete event system. We found that, using this methodology instead of standard
automation logic, the discrete event controller is able to overcome positioning errors in
more assembly cycles.

3. Methodology

The methodology used in this research is based on an automated assembly cycle, such
as a real manufacturing environment. To simplify the investigation, only the final assembly
stage is considered, when the robot has picked up the parts, carried them to approach
closely and executed the final assembly.

The problem to be analyzed assumes the existence of a positioning error or misalign-
ment between the peg and the hole. This error during the attempt to assemble causes a
high force contact state and a stop command to the robot in order to avoid damage.

Therefore, in a traditional automation system, an error recovery sequence must be
programmed to deal with unexpected situations. In this case, when using force/torque
sensors, one of the great issues to address is the nonlinear behavior during the constrained
motion. This makes it difficult to estimate the positioning error.

The methodology is summarized as follows: an error recovery sequence inspired by
human behavior is defined. A positioning error region is defined and selected according
to the force/torque measurements caused by the interaction forces. The contact states
are defined to simplify the experiment. A classification problem is defined where DNN
are proposed.
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To train the DNN, a data set is gathered running the error recovery sequence with a
finite number of positioning errors. The data sets are used to train the DNN models and
other machine learning algorithms for comparison purposes. The DNN trained model
is evaluated using different data sets. Finally, the DNN models are integrated into the
automatic sequence. The methodology is tested by running the assembly cycle a certain
number of times to determine the assembly success ratio.

The error recovery sequence is shown in Figure 1. A similar approach was considered
in [7]. A positioning error is defined empirically as in [23,32]. Considering how a human
would approach recovery form positioning error, the following actions can be described in
six stages:

(a) Move until contact between parts is reached.
(b) Change orientation in the hole center direction.
(c) Move the part until a lateral impact of the peg in the hole edge is reached.
(d) Re-orient the part to align with the hole axis.
(e) Insert the part into the hole.
(f) Insertion with fine adjustment.

Figure 1. Assembly Sequence. (a) Frontal contact. (b) New orientation. (c) Perform lateral search.
(d) Orientation for assembly. (e) Insertion. (f) Adjustment during insertion.

These stages can be represented as an assembly sequence modeled as a discrete event
system (DES). This model simplifies the control strategy that will facilitate the constraint
motion commands [33]. The discrete events are graphically represented based on Petri-Nets
as in [21]. This helps visualize the sequence of actions considered in the control strategy.

3.1. Positioning Error

The positioning error can be described as the sum of positioning inaccuracies during
the initial actions of the process [34]. This can be considered a random positioning error that
in normal circumstances would cause a fatal error in an automated sequence or rejection of
the assembled product. The next equation describes the positioning error:

p̂p = pp + e (1)

where p̂p is the sum of the random error e and the desired position pp. e as a position vector
according to the deviation from the center of the hole can be described as follows:

e = [ex ey ez eα eβ eγ]
T (2)

The error e has an infinite number of values. To simplify the investigation in this
research, a finite number of values are defined. In some works, such as [16] one finds the use
of only four error positions around the hole but of different distances along the orthogonal
axis in the plane. In [23], eight regions are selected based on experimentation. For this
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research, eight defined positioning errors in the orthogonal plane to the assembly direction
are considered. We will use these defined positions to show how the controller decides in
which direction to move after the first impact and classification of the contact state.

The direction of insertion is along the Y axis, so the X-Z plane is where the eight
positioning errors are defined. Then the error vector e is simplified as

e = [ex ez]
T (3)

The eight defined errors can be expressed in polar notation as er = 4mm , θ = i × 45◦,
where er is the magnitude, θ is the angle, and i is a number from 0 to 7 corresponding
to one of the defined error positions. Figure 2a shows a graphical representation of the
error positions around the hole, and Figure 2b shows the representation of the peg with a
positioning error in the +Z axis direction.

Figure 2. X-Z plane (a) Eight locations around the hole. (b) Peg with +Z positioning error.

The simplification of the positioning errors leads one to consider this problem a
supervised learning classification problem where machine learning algorithms can be used.

3.2. Data Set Acquisition

In order to train the machine learning algorithms, a representative data set needs to be
acquired. For this purpose, the error recovery sequence is used to acquire the force/torque
signals on every defined error position.

To safely perform constraint movements with the dual arm robot, considering the
control strategy for a discrete event system, two primitive movement functions are defined
to avoid damage to the system. This can be described as follows:

movemax( f ) =

{
1 f < fmax

0 f ≥ fmax
(4)

movemin( f ) =

{
1 f > fmin

0 f ≤ fmin
(5)

f =
√

f 2
x + f 2

y + f 2
z (6)

where movemax( f ) is a function that starts the robot movement whenever the force f is
less than the maximum limit fmax and the movement stops whenever the force f is greater
than the limit fmax. For the case of the movemin( f ), the function starts or stops the robot
movement according to the conditions based on the limit fmin. These primitive movements
are used for every step of the sequence in Figure 3 according to logic constraints.
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Figure 3. Petri-Net representation of the sequence.

Step 1 moves the robot to the error position as shown in Figure 1a. The error position
is selected randomly. On step 2, the orientation is selected according to the error position
as shown in Figure 1b. In step 3, the peg is moved along the X-Z plane in the -Z direction
until a lateral contact force is reached Figure 1c, step 4 sets the orientation to be aligned
with the hole Figure 1d and, finally, step 5 moves the peg towards insertion Figure 1e.

The sequence is repeated for each error position, gathering contact state information
to make the data set for training, testing, and to make a validation data set.

3.3. Data Set Analysis

In order to analyze whether the data set can be used for learning the contact states,
the t-distributed stochastic neighbor embedding (t-SNE) method is performed. As can be
seen in the results, this graphical representation helps find out whether there are separable
classes. The t-SNE [35] is a nonlinear dimensionality reduction technique that helps in
visualization of data in a low dimensional space.

3.4. Standard Automation Logic Rules

In the case of programming a standard automated program, logic rules are used to
trigger transitions among sequence steps. Variable limits or thresholds to classify F/T data
are presented in [7,23]. To find whether this method can be used for this research, the
data set is analyzed using statistical measures. Thresholds are used as logic conditions to
classify the F/T input values in accordance to the next equation:

Thm =

{
limsup μM + σM

limin f μM − σM
(7)

where μM corresponds to the mean of the momentum in any axis and σM corresponds to
the standard deviation of the momentum in any axis. This defines the value of the superior
and inferior limits: limsup and limin f .
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3.5. Deep Neural Network Definition

Deep Neural Networks can map the force/torque signals to the defined error position
class. These classes can also map the corresponding robot actions. Contact states are defined
as quasi-static motion, which means that velocity of the motion is not taken into account.

For this investigation, the contact states that are under analysis are those that occur
during the first assembly stage: the initial approach between peg and hole. Although
the error position during this stage is unknown, a set of error positions can be defined to
convert the case into a classification problem.

The sensors deliver x, y, z components for the force and momentum. Instead of using
separate sensor signals, a single F/T vector of 12 features is proposed as shown next:

FT = [ fx1 fy1 fz1 mx1 my1 mz1 fx2 fy2 fz2 mx2 my2 mz2] (8)

where FT represents the force/torque vector, and the sub-indexes x1, x2 and so on, repre-
sent the component from sensor 1 or sensor 2.

Then, a DNN model as expressed in the next equations is defined experimentally by
changing parameters and hyper-parameters to reach an acceptable accuracy during the
training and testing.

y = σ(
n

∑
i=0

WiXi) (9)

σ =
ez − e−z

ez + e−z = tanh (10)

Loss(ŷ, y) = −
2

∑
i=1

yi log (ŷi) (11)

S(y)i =
exp (yi)

∑n
j=1 exp (yi)

(12)

where Xi corresponds to the number of features or inputs, y correspond to the number of
outputs or classes, h correspond to the number of hidden layers, and n to the number of
hidden units.

In order to pre-process the data set for training the DNN, a standardization process
corresponding to the following equation is executed.

X̂ =
X − μ

σ
(13)

where X̂ is the normalized sensor features, X is the input feature, μ the mean of each feature
in the data set, and σ the standard deviation of each feature in the data set.

A second DNN model is designed to classify basic contact states such as orthogonal
contacts in all axes X, Y, Z. That means that the second DNN model will have the same
12 input features and 5 outputs corresponding to the actions: move to +X, move to −X,
move to +Z, move to −Z, and move to the insertion position −Y. This model classifies
the contact states during the insertion step. In any case, a small deviation causes a contact
state force f > flimit that commands the robot to stop insertion and align according to the
second DNN model output.

The trained DNN model helps the system classify the contact states caused by the
error position. This classification selects the relative position to which the robot should
move next. Other algorithms are also trained and tested with the same data set to compare
the performance.
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3.6. Dnn Evaluation and Implementation on the Robot Controller

For the purpose of evaluating the DNN performance, different data sets were gen-
erated running the same sequence on different dates. The trained model is packed and
loaded to run an offline validation test.

The DNN model is then packed as a computational library to be integrated into the
robot controller. Thus the robot controller is programmed using the robot operating system
(ROS). The libraries were programmed in python and packed as a Service-Node. The
force/torque vector is received and processed running the DNN model. The result is sent
back to the main control program that processes the data in the sequence logic.

3.7. Error Recovery Sequence

Since the DNN models present misclassifications in a real scenario, the assembly
sequence is strengthened by adding logic constraints in every transition between steps.
Two repetition cycles are added to the sequence. The first is represented as step S7,
which repeats an orientation selection in case that the first DNN model outputs a wrong
class, causing different contact states conditions. This can be identified and then triggers
transition T6 to start this correction cycle.

For the case of the final insertion step S5, in case the insertion forces exceed the defined
limits, the logic conditions will trigger T8 to start the adjustment cycle S8, where the second
DNN model outputs a robot action that moves the peg to a center position.

This is one of the strengths of a discrete event system, that any step can be adjusted
without modifying the whole control strategy. This new sequence program would lead
the system to increase the rate of successful assemblies. Figure 4 shows the petri-net that
represents the recovery sequence.

Figure 4. Modified sequence considering recovery steps.

The rule for trying another orientation after the first contact step is defined as follows:

on+1 =

{
on + 1 f > fmin, oaxis < omax, try = 1
on − 1 f > fmin, oaxis < omax, try = 2

(14)
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The rule for aligning the peg during the insertion step uses a DNN trained with basic
contact states in order to output a reaction movement according to the predicted F/T
pattern. The logic rule is described in the Table 1.

Table 1. Centering Rule for the correction position step.

Pattern Movement in X Movement in Z Movement in Y

1 +X 0 0
2 −X 0 0
3 0 +Z 0
4 0 −Z 0
5 0 0 −Y

The first four patterns consider X and Z axis movements for error correction and for
the pattern # 5; no error correction is commanded in the X-Z plane but there is a movement
in the Y axis to continue insertion.

3.8. Validation Process of the Methodology

A validation process of different data sets is executed and the results are compared
with the training set. A comparison of threshold methodology of single sensor data with
DNN single sensor data, and then DNN with dual sensor data, is also executed.

A counter variable is set to limit the number of iterations or attempts in the assem-
bly sequence.

In order to evaluate the performance of the machine learning algorithms, the Exact
Match Ratio (MR) [36] as presented in the next equation is used to report experimental results.

MR(ŷ) =
1
n

n

∑
i=1

In (15)

In =

{
1 i f ŷ = y
0 otherwise

(16)

where n is the sample number and In is a logic function of the correct classification of the
sample.

Once the DNN models are trained and integrated into the assembly sequence, Success
Ratio (SR) is used to evaluate the effects of using deep neural networks with one sensor
and a double sensor in the automated cycle. SR is defined as follows:

SR =
1
n

n

∑
i=1

SAn (17)

SAn =

{
1 i f ppos ≥ pi_pos

0 otherwise
(18)

where SR is the Success Ratio, SAn is the successful assembly that is true if the peg position
ppos at the end of the cycle is greater or equal than the defined insertion position pi_pos and
n is the sample number.

4. Experimental Results

4.1. TestBed

The robotic testbed is composed of an industrial robot assembly cell that includes a
dual arm robot SDA20D with two 7 DOF articulated arms and 1 rotating base giving a total
of 15 DOF (degrees of freedom) as a whole system Figure 5. The robot controller is a DX100
with Ethernet port.

The maximum payload is 20 kg per arm, and repetitive positioning accuracy ±0.1 mm.
Mounted in each arm are the force/torque sensors in a range with ±300 N and Torque
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±30 Nm with 3 Cartesian components for each magnitude with a maximum data stream
of 100 Hz for all component signals. Noise around 1.2 N and 0.02 Nm. Recommended
threshold 5 N and 0.12 Nm maximum.

Figure 5. Motoman SDA20D Dual Arm Robot.

Both sensors are connected to an RS-485 to USB converter that sends the data to a
Raspberry pi 3 running Robot Operating System (ROS). The parts to be assembled are a
circular peg and hole in stainless steel with diameter of 40 mm and 39.9 mm for the peg
with 50mm length. Both are fixed to the robot arms.

The main PC controller runs on Linux Ubuntu 18, and ROS Melodic is connected
to the robot by the Ethernet 100 MB. A second PC controller runs Linux Ubuntu 20 and
ROS Noetic, which runs the Deep Neural Network model as a service node. The robot has
installed the MotoROS library that allows transfer of data via TCP/IP to the PC controllers
and the Motodriver for ROS. Figure 6 shows a representation of the setup.

Figure 6. Experimental Setup.
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4.2. Sequence Testing

In order to validate the proposed methodology, the previous experimental setup is
used. The first goal in the experiment was to generate the data set of the force/torque
signals from the two sensors. The assembly sequence is programmed in the computer to
follow the 5 stages described in Figure 1.

As described in the graphical representation of the sequence in Figure 3, the robot
arm that holds the peg moves towards the hole at a very slow speed; when the force limit
is reached due to the first contact state, the robot will stop the movement and the contact
forces are stabilized in a range of 1 or 2 s. With stable values of force/torque signals,
the program gathers the information and saves a data file with the values of the error
classification and the force/torque vectors from both sensors.

4.3. Data Set Creation

The database generated had a total of 2056 contact samples. The data set was analyzed
using t-SNE (t- Distributed Stochastic Neighbor Embedded) technique to graphically
visualize the separability of the features as shown in Figure 7, where it shows how the data
can be separated into the 8 classes. As it can be observed, the classes 0, 6 and 7 show very
poor separability characteristics, meaning that most of the misclassifications happen on
these corresponding positions, meanwhile the other features seem to be separable.

Additional databases were generated in order to have validation data sets. The number
of samples for the validation data sets are reported in Table 4 and start from 35 samples to
go to up to 240 samples.

Figure 7. Representation of the data set and the 8 classes (0–7) by applying t-SNE technique.

4.4. Standard Automation Rules Results

For comparison purposes, the threshold is the first classification algorithm, and it
consists of statistics metrics that define thresholds based on momentum Mx and My as
decision constraints for the robot movements during the assembly cycle. Values of the
thresholds obtained are presented in Table 2.
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Table 2. Resulting thresholds of the data set. Values in Nm.

y Mx1low My1low Mx1high My1high

0 −1.22821 −1.168189 −0.90158 −0.882675
1 −0.57804 −1.554708 −0.404512 −1.171961
2 0.296703 −1.591266 0.558239 −1.164399
3 0.582325 −0.478162 1.069566 0.018427
4 −1.578333 0.662668 −1.148375 0.967986
5 −1.684699 −0.551533 −1.203931 −0.171751
6 −1.160531 −1.178287 −0.860481 −0.837394
7 −1.132745 −1.172939 −0.820671 −0.825263

A testing algorithm that runs the data set into the threshold comparisons was used to
define whether the force/torque information corresponds to a certain defined class. The
Equations (10) and (11) defined the threshold limits.

4.5. Deep Neural Network Training and Comparisons

The design of the neural networks was done through iterative testing where the initial
configuration was based on empirical estimations. During the iterative design phase,
different layer sizes and hyper-parameters were tested. The best result was obtained with
the architecture of input layer 12 neurons, 5 hidden layers with unit size of 24, 48, 48, 48,
24 neurons, and, finally an output layer of 8 neurons. All input and hidden layers use an
activation function tanh. For the output layer, So f tmax activation function is selected. The
Loss Function is configured as Categorical Cross-entropy, and, as a learning optimizer, the
Adam algorithm is selected.

The DNN model is programmed using Python libraries and Tensor-flow Keras [37].
Then, the data set is divided into a 70/30 relationship for training and testing in 180 epochs.
The data set contains the force/torque values of the two sensors. It must be considered
that every time the DNN model is trained, even with the same data, different results of
performance are expected.

The performance of the algorithm for training/testing is shown in Figures 8 and 9.
These graphs present the accuracy of the DNN, where the blue line represents the training
data and the orange line the testing data. As seen in the one sensor case, the test data fits
only up to 0.8 of the value during the 180 epochs, while the training data continues to fit
the model. In the case of one sensor, the model implemented in the robot controller will
present at least 20% of errors in classification.

On the other hand, the graph that corresponds to the two sensors shows the training
and testing data with a high accuracy value. These results show a clear advantage to using
two sensors rather than one.

Figure 8. Single Sensor data training results 80% Accuracy.
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Figure 9. Double Sensor data training results 97.4% Accuracy.

Some other machine learning algorithms based on the sci kit-learn [38] were designed
to train/test different classification techniques and compare how well they fit the data.
A list of tested machine learning algorithms with this data set is presented as follows:

• Random Forest
• K-Nearest Neighbors
• Decision Tree
• Multi Layer Perceptron
• Deep Neural Networks

In order to demonstrate the difference between using only one F/T sensor versus
two F/T sensors, the classification model uses either 6 features of the peg sensor or the
12 features of both peg and hole sensors.

To show the results of the training/testing of the machine learning models, a com-
parison of their performance is presented in Table 3. It can be seen that the threshold
algorithms based on statistical metrics performs worst. The best model corresponds to
the Deep Neural Network followed by the Random Forest. The metrics reported in the
table consider the accuracy defined as the number of correct predictions divided by the
total number of predictions. The second metric is the F1-Score that represents the harmonic
mean between precision and recall metrics.

Table 3. Comparison of accuracies and F1-Score on different machine learning algorithms.

Algorithm Acc One Sen F1 One Sen Acc Two Sen F1 Two Sen

Threshold 22% NA 31% NA
Random Forest 80% 80% 94.9% 94.8%
Decision Tree 78% 78% 92% 92%

K Nearest Neighbors 71.9% 72.4% 78.7% 78.4%
Multi Layer Perceptron 79.6% 79.3% 93.5% 93.1%
Deep Neural Networks 91% 91% 98% 98%

4.6. Validating the DNN Models

The model was tested using extra data sets gathered after the main training data set
acquisition. Using the same automated program, these new data sets with fewer contact
samples were used as validation for the trained DNN model. The data sets start from
35 samples to got to 240 samples as shown in Table 4.

The algorithm to validate the trained model considers the same values of mean and
standard deviation of the train data set. The Equation (12) is used to standardize the
validation data sets. Then, the validation data set is used on the python Tensorflow Keras
program to evaluate the correct classifications versus the incorrect classifications according
to the Exact Match Ratio defined in (17).
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Table 4 summarizes the accuracy results for the one sensor and two sensors. As shown
in the results, there is a clear advantage to using two sensors rather than one sensor.

Table 4. Validation results of DNN Accuracy of one and two sensor.

Samples Exact Match Ratio One Sensor Exact Match Ratio Two Sensor

159 63% 93%
130 53% 81%
240 36% 84%
120 30% 85%
35 51% 88%

4.7. Testing on the Dual Arm Robot

In order to test this methodology in a real scenario of operation with the dual arm
robot, the automated recovery program in Figure 5 is executed. Two computers were
used to run the experimental setup, one computer ran the automatic sequence and sensor
acquisition. The whole controller is programmed in C++ running on ROS using Moveit
packages and libraries to perform Cartesian commands on the robot.

The second computer that runs the service node receives the F/T data as an array of
twelve elements that is computed and, at the end, gives back the class prediction. This
prediction ŷ is used in the assembly sequence to define the next orientation angle or
movement in the corresponding direction to find the next contact states of the sequence.
Table 5 shows the corresponding orientation angles according to the predicted class.

Table 5. Classes and angle of movement.

ŷ 0 1 2 3 4 5 6 7
Angle 0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦

The last experiment considers the validation of the full assembly cycle. Logic rules
used as transition constraints between the steps. The full cycle F/T data is presented in
Figure 10 where the different steps and their corresponding F/T pattern can be seen. From
free motion, the sequence evolves to the frontal contact state. The second step changes the
orientation. The next step searches for lateral contact of the peg into the hole. At the end
of the assembly sequence, the insertion phase shows a little deviation that exceeds a force
limit value, which triggers the last DNN model. Reaction motions are selected according
to the F/T data pattern and the DNN output. As the cycle continues, the patterns are
detected and the position adjustment drives the F/T towards minimum values to lead the
final assembly.

For these experiments a very slow motion is considered for safe contacts and to
avoid any possible damage on the mechanical systems of the robot. Therefore, the time
constraints for these experiments are not taken into account.

Finally, in order to compare the differences between the success ratio of assemblies
using one sensor and using two sensors with two DNN’s as classifiers, the complete
assembly experiment is reported in Table 6.

Table 6. Final results and comparison of one vs two sensors.

Sensor Examples Average Steps Success Ratio

One Sensor 40 17.65 68%
Two Sensors 40 14.975 98%
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Figure 10. Forces and torques during one assembly cycle.

These results show that the whole experiment executed 40 assembly insertion attempts,
where the number of sequence steps needed to finish the insertion is counted, after which
the average number of steps for the total of assembly attempts is reported as a comparison
metric. The Success Ratio, is the average of the completed insertions in the experiment, is
also presented.

The graphical representation of the results are presented in Figure 11a, where one can
see a better performance in the Success Ratio and in Figure 11b the Average of steps for the
two sensor configurations.

Figure 11. Experiment results. (a) Success Ratio and (b) Average of Steps.

5. Conclusions

We have presented in this paper a methodology to evaluate the effects of using double
force/torque sensors on the peg-in-hole assembly and deep neural networks. An assembly
strategy was proposed, which was inspired on how a human would solve the positioning
error of a peg-in-hole assembly. A discrete event controller designed to run the assembly
sequence was designed as it would be programmed in an industrial automated robot cell.
The purpose of this strategy is to achieve the assembly task despite the aleatory positioning
error of the peg and hole.

A force/torque signal acquisition program was implemented to generate the data
set for training machine learning algorithms. The automated data acquisition proved
very efficient if different conditions are to be considered. This allows for testing different
parameters before the final experiments. It also ensures that the contact states are gathered
with the same assembly conditions as it would be in a normal automated cycle.
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Off-line learning of the contact states is achieved by using deep neural networks.
It was found that the publicly available machine learning libraries are a great evaluation
solution to integrate in a ROS-based system. Despite the good results using DNN, we
encourage evaluation other machine learning algorithms in the experimental setup. We
noticed how the F/T signals are less separable in a certain geometric region presenting
more false positives. Further investigation of this F/T signal behavior is needed.

Additionally, it is shown that the success ratio of the assembly process improved by the
use of double force/torque sensors and deep neural networks. Although the comparison
between different research works is not simple due to different experimental conditions,
such as robot manufacturer, developing software and perception systems among others,
the findings of this research presents a contribution on the evaluation of dual force torque
sensors for assembly tasks.

The results obtained by using one and two force/torque sensors to classify contact
states showed an improvement of 30% of Success Rate. The assembly strategy was based
on a discrete event controller represented by a Petri-Net sequence diagram. Because this
sequence diagram represents an automation program, we consider it feasible to test the
methodology on industrial scenarios. However, this work does not take into account
the overall assembly time due to safety considerations such as working with slow speed
motions to avoid any damage to the robot. For an industrial application, this needs to
be investigated.

There are still many conditions that need to be taken into account to implement this
strategy in an industrial application. For example, changing shapes of the mating parts, the
effects of adjustments such as speed, force limits and so on. These changes would affect
the performance of the classifier due to the changes in the F/T behavior.

Future work considers different challenging scenarios such as testing different machine
learning algorithms, the evaluation of different assembly parameters such as higher speed
movements, higher force/torque limits, shape of the mating parts, the increase of uncertain
conditions such as the number of aleatory error positions and so on. Evaluation of dual
arm coordination strategies will also be investigated. Moreover, integration of grippers to
manipulate the objects will increase positioning uncertainties that also need to be studied.
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Abstract: In this article, we aim to achieve manual guidance of a robot manipulator to perform tasks
that require strict path following and would benefit from collaboration with a human to guide the
motion. The robot can be used as a tool to increase the accuracy of a human operator while remaining
compliant with the human instructions. We propose a dual-loop control structure where the outer
admittance control loop allows the robot to be compliant along a path considering the projection
of the external force to the tangential-normal-binormal (TNB) frame associated with the path. The
inner motion control loop is designed based on a modified sliding mode control (SMC) law. We
evaluate the system behavior to forces applied from different directions to the end-effector of a 6-DOF
industrial robot in a linear motion test. Next, a second test using a 3D path as a tracking task is
conducted, where we specify three interaction types: free motion (FM), force-applied motion (FAM),
and combined motion with virtual forces (CVF). Results show that the difference of root mean square
error (RMSE) among the cases is less than 0.1 mm, which proves the feasibility of applying this
method for various path-tracking applications in compliant human–robot collaboration.

Keywords: path tracking; compliance control; human–robot interaction; sliding mode controller;
manual guidance

1. Introduction

Guidance constraints are a type of active constraints/virtual fixtures, which have been
studied in the field of physical human–robot interaction (pHRI) by many researchers [1–7].
From the work of Rosenberg [1], the concept of perceptual overlay to increase task per-
formance has been explored in different types of human–machine manipulation systems,
such as telemanipulators and cooperative manipulators [3]. These virtual fixtures are often
used to guide the movement of the robot towards desired targets while avoiding obstacles
and preventing the robot from entering predefined forbidden regions. Although reference
paths for the robot are generated in some applications, the accuracy of path following is
not the focus of these techniques. Instead, compliant behavior of the robot that allows
deviation of the path is the main concern of most pHRI studies. However, accurate path
tracking and compliant behavior are not necessarily antinomies. They can be delicately
tailored to meet the requirements for dedicated purposes and achieve better performance.
For example, rehabilitation patients can benefit greatly from practicing with equipment
that is capable of following a path while still being compliant along the path, because it
allows the patient to closely track an optimal path predefined by medical experts, and
progress in different levels of assistance, which has been shown to improve rehabilitation
progress [8–10]. Another important application is in industrial assembly tasks. Many
efforts have been reported in this area towards efficient human–robot collaboration [11–15].
The authors of [13] presented a force-overshoot-free controller for high-accuracy assembly
tasks using an industrial robot. Furthermore, in [14] a collaborative task for a homokinetic
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joint assembly is performed using admittance control. In [15], a method for robotic fixture-
less approach of large flexible panels assembly using compliance force control is presented
and evaluated with an industrial robot. The aim of these approaches is to relieve the
operator from having to manipulate heavy components during the assembly and instead
being able to focus only with the dexterous part of the assembly. Moreover, an important
factor is that in high-precision assembly tasks static fixtures are necessary to keep in place
the parts being joined and task performance depends on these fixtures. These tasks could
benefit from a compliant path-tracking system. Furthermore, other direct application
of path tracking in human–robot collaboration is for educational and physical training
purposes where the robot system can be used as a tool to teach complex tasks that are best
learned by hand-in-hand demonstration. Examples include practicing calligraphy, assisted
hand–motor skills development, and so on [16,17]. In this sense, the robot system acts as
the coach and the user is guided to follow an optimal path that perfectly accomplishes the
task while obtaining different levels of assistance to trace the path, from completely passive
to completely active. Based on these analyses, we found that in many manual guidance
applications, it is beneficial for the robot to follow a path while being compliant along the
path. Consequently, the goal of this paper is to investigate the related techniques.

Path-tracking is an important feature of most robotic systems. From manipulators to
mobile platforms, the ability to follow a path with high accuracy has been investigated
by many researchers [2,18,19]. Moreover, path-tracking in compliant human–robot col-
laboration has been the topic of recent studies. In [4], virtual fixtures were created and
modified through an iterative method based on kinesthetic teaching and Akima splines.
The approach was evaluated in a simulated sanding task using a 3-DOF collaborative robot
and a user study which showed that virtual guide assistance improves the performance
of co-manipulation tasks. Later, Raiola et al. in [20] defined virtual guides as virtual
mechanisms using Gaussian mixtures model (GMM) from multiple user demonstrations,
which can be refined through incremental training. They proposed to establish a library
of multiple virtual guides which can be created, modified and used by the human opera-
tor. The performance was experimentally evaluated with a compliant 3-DOF robot and
a user study. The algorithms in [4,20] concentrated on virtual guides construction and
how to iteratively modify the nominal path, but there was no treatment of the accuracy of
path-tracking. Wu et al. in [21] optimally reshaped the desired robot trajectory using an
adaptive neural network controller to effectively complete co-manipulation tasks with a
robotic exoskeleton. The experimental validation was demonstrated in a 2-DOF motion
case but did not describe extensibility of the method to higher DOFs or to different types of
manipulators. In other words, the research effort was to conceive an algorithm that allows
the human to modify the desired trajectory using shared control; thus, the contributions
focus on the path generation aspect of human–robot collaboration. However, the challenge
of accuracy in human–robot interaction by regulating robot motion in the predetermined
task direction remains.

Previous works on the accuracy aspect for compliant tasks by the use of virtual fixtures
include [5–7], where virtual fixtures were used together with admittance control to allow
for compliant path tracking tasks. A vision-based virtual fixture algorithm for cooperative
manipulation was designed and implemented in [5], where the authors described how to
create hard and soft virtual fixtures for two types of reference targets—point positioning
and curve following—as well as the extensions to virtual geometries such as tubes or cones
to confine motion to a volume for a cooperative system which uses admittance control.
The experimental setup was validated using the “Steady Hand Robot” [22] in macroscale
and microscale planar tasks. The results showed that the addition of vision-based virtual
fixtures assistance increased performance regarding position error and execution time,
and that there is a trade-off between performance and user control. However, the experi-
mental validation consisted in using different fixed levels of admittance, but as covered
in [23] adaptive admittance control has been proven more effective. Moreover, there is no
distinction between the virtual fixture definition and the admittance control parameter
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tuning. This complicates the definition of the virtual fixtures and directly influences the
achievable tracking performance, as shown in their study. In [6], virtual fixtures were used
to control the robot for robotic-assisted surgery. The task was defined and projected into
a space of orthogonal directions that consisted of preferred directions and non-preferred
ones. The authors of [6] explored and compared two types of error compensation—manual
and autonomous—to reduce the path-tracking task error. The results showed that man-
ual compensation was not sufficient for correction of all deviations, particularly when a
translational virtual fixture was defined and the deviation error for orientation occurred,
and vice versa. This was solved with their proposed autonomous compensation method
where the user had control of the system along the preferred directions through the forces
applied, while the robotic system independently compensated deviations. In [7], a frame-
work for compliant path tracking tasks was proposed. The system used a virtual robot
approach to obtain the desired velocities that were treated as the command to the inter-
nal position controller. Motion constraints and task space constraints can be defined in
this framework. The proposed approach was experimentally evaluated using a 7-DOF
KUKA LWR cobot. The results showed that it is easy to define different constraints in the
framework by adjusting the properties and parameters in their algorithm. However, all
parameters were tuned heuristically and specifically for the evaluated task. The authors
of [24] presented a hybrid position-force control oriented to surface treatment tasks, e.g.,
sanding, deburring, polishing, etc. They used sliding mode concepts for the robot force
control to maintain the orientation of the tool always perpendicular to the surface and to
obtain the desired tool pressure on the surface. The lower-priority tracking controller was
designed to follow the desired trajectory where deviations to satisfy safety constraints are
allowed. Finally, redundancy resolution was also included to keep the manipulator near its
home configuration for safety purposes. The method showed increased robustness and low
computational cost, and experimental validation of the approach using a 7R manipulator
proved its applicability and effectiveness.

The common drawbacks of the cited works are that, in many cases, the accuracy aspect
of path tracking when compliance is combined for co-manipulation tasks was not explored.
Besides, the experimental setup often relies on robots designed to be inherently suitable for
manipulation tasks. Furthermore, kinematic constraints such as singularities, joint limits,
task space limits, etc., if considered, are part of the virtual fixture definition and therefore
task dependent. As a result, the task must be carefully planned to avoid these kinematic
constraints, which imposes restrictions on the task definition. Given these recent references
in the field and considering their contributions and stated drawbacks, we believe the topic
of path tracking is highly relevant to human–robot collaboration applications, and the
study of the associated design strategies is of great importance and value.

In this paper, we aim to achieve compliance of a robot manipulator along a predefined
path, giving the robot the ability to move forward or backward depending on the direction
of an external force applied to the end effector while tracking the path. Figure 1 illustrates
this objective, where a desired path is shown and in the case of an external force is applied,
the robot is compliant only along the path tangential direction, and not compliant along
the normal direction. To accomplish this goal, we propose a dual-loop control structure,
including an inner motion control loop and an outer admittance control loop. A modified
sliding mode controller (SMC) is designed for the inner motion control, which guaran-
tees desirable state tracking performance and robustness while significantly suppresses
chattering. In the outer admittance loop, we define the compliance control problem in the
tangential-normal-binormal (TNB) frame associated with the path to find the projection of
the external force in the tangential direction and develop an atemporal path generation
strategy by parameterizing the path with respect to the arc length to move along the path as
desired by the user. Furthermore, an adaptive admittance law that has been experimentally
verified in [23] is exploited to allow a timely, intuitive, and simple communication between
the human and robot. In addition, the proposed adaptive admittance law considers the
most common kinematics constraints that can appear in manual guidance interaction and
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adapts the admittance parameters appropriately based on the objectives of safety, accuracy,
and comfort. In this approach, kinematic constraints are not task dependent and instead
are configuration dependent, which means that they can be reused in multiple applications.
Furthermore, these constraints are treated simultaneously, considering smooth transitions
among them. Combining the TNB frame projection and adaptive admittance law, the
outer admittance control loop realizes a safe and intuitive human-robot collaboration along
a predefined path while the robust inner motion control loop guarantees that the robot
follows the path accurately.

We validate the proposed approach with two experiments including a linear motion
test to demonstrate the behavior of the robot to the direction of the external force applied
and a general 3D path test. Both tests are performed on a traditional 6-DOF industrial robot
equipped with a force/torque (F/T) sensor on its end effector. No dedicated hardware
is required. We compare three types of motion—free motion (FM), force-applied motion
(FAM), and combined motion with virtual forces (CVF)—to show the performance in both
ends of the assistance range spectrum. FM demonstrates the fully assisted case, where
no force from the user is needed; FAM is the no-assistance case, where the motion of the
robot along the path depends on the force applied by the user; and CVF is the smooth
transition between the previous two cases. To achieve the proposed objective of compliant
human–robot collaboration with accurate path-tracking, the robot follows a reference path
and the tracking error should be small, whether it is subject to external forces or not. Thus,
we evaluate the tracking performance of each type of motion by calculating the root mean
square error (RMSE). The experiments exhibit not only accurate path tracking with desired
compliant behavior but also the applicability of the proposed approach to traditional
industrial manipulators with F/T sensors. Therefore, the main contributions of this work
are as follows:

• Development of a dual-loop control structure that achieves accurate path tracking for
collaborative tasks while maintaining compliance along the path.

• Safe and intuitive human–robot interaction achieved by the outer adaptive admittance
control loop.

• Equivalent path tracking performance guaranteed by the inner modified SMC loop
under various human–robot collaborative scenarios.

• Experimental validation with a traditional 6-DOF industrial robot proving the gener-
ality of the method implementation.

Figure 1. Path tracking for human–robot interaction with compliance along a predefined path.

The paper is structured as follows. Section 2 covers the problem formulation and the
methodology, including the inner motion control loop and the outer admittance control
loop. In Section 3, we describe the experimental setup and tests performed to validate the
proposed approach. Additionally, we present the results and analysis of RMSE, which
is used to evaluate the tracking performance. Finally, the conclusions of the work are
presented in Section 4.
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2. Problem Formulation and Methodology

As we discussed in the previous section, the most effective way to accomplish particu-
lar human–robot collaboration in the fields of rehabilitation, industrial assembly, education,
and physical training is by guiding the user to closely follow an optimal path with robots,
while reserving a certain degree of compliance for safe and smooth human–robot interac-
tion. In these applications, the path is defined in advance by domain experts. The goal of
this paper is to design a controller that confines the end effector of a robot on the path but
allows it to move forward or backward freely along the path depending on the direction
of external forces. If the external force is too weak or null, a virtual force is applied to the
end effector from the controller to track the path autonomously and accurately. In other
words, the proposed control system endows the robot with directional compliance along a
prescribed path, and high stiffness in other directions for accurate path tracking. Moreover,
the degree of compliance is online adjustable according to the applied forces and safety
operation criteria of the robot such that the interaction between the human and the robot is
safe, comfortable, and intuitive.

In this paper, we consider an n-joint robot that carries out tasks in the 3D task space,
where n ≥ 3. An F/T sensor is mounted on the end effector of the robot to measure
external forces. To accomplish the goal of this paper, we propose a dual-loop control
structure as shown in Figure 2. The inner loop is dedicated to precision motion control
in the joint space. Namely, given the desired trajectory in the joint space qd ∈ R

n, the
motion controller in the inner loop calculates the corresponding joint torque such that the
actual joint angle follows qd accurately. qd is determined by the outer admittance control
loop based on the desired task space path and the external force Fext ∈ R

3. The filtered
external force fext ∈ R

3 is projected to the tangent direction of the path and then converted
to the corresponding task space velocity ṙd ∈ R

3 through an admittance function whose
parameters are online adjustable. Then, ṙd is transformed to the joint space to obtain qd. In
the following subsections, we present the details of the techniques used in the proposed
dual-loop control structure.

Figure 2. Block diagram of adaptive admittance control with path tracking.

2.1. Inner Motion Control Loop

The dynamic equation of an n-joint robot is given as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ+ JT(q)Fext (1)

where q, q̇, q̈, τ ∈ R
n, denote the joint angle, angular velocity, angular acceleration, and

torque, respectively. M(q), C(q, q̇) ∈ R
n×n are the inertial matrix, Coriolis, and centrifugal

matrix, respectively. G(q), F(q̇) ∈ R
n are the gravitational torque and frictional torque,

respectively. J(q) ∈ R
3×n is the Jacobian matrix of the end effector, and Fext ∈ R

3 is the
external force applied to the end effector.
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Given the desired joint space trajectory qd ∈ R
n, we would like to design a robust

motion control law that calculates the required joint torque τ for keeping the tracking
error q̃ = q − qd as small as possible, even in the presence of model uncertainties and
external disturbance. It is well known that SMC has desirable robustness with respect to
matched uncertainties, but high-frequency chattering causes degradation of performance
and should be suppressed carefully. Many variations of SMC have been investigated in
the past for alleviating chattering with minor cost in performance deterioration [25–29].
Among all these techniques, we adopt the modified SMC developed and experimentally
verified by our research group in [30].

Let M0(q), C0(q, q̇), G0(q), and Fo(q̇) be the nominal models of M(q), C(q, q̇), G(q),
and F(q̇), respectively. Then, (1) can be rewritten as

q̈ = −M−1
0 (q)[C0(q, q̇)q̇ + G0(q) + F0(q̇)] + (I +ΔM)M−1

0 (q)
(
τ+ JT(q)Fext

)
+ d (2)

where d is the lumped additive model uncertainties resulting from all model parameters in
M(q), C(q, q̇), G(q) and F(q̇). ΔM is the multiplicative model uncertainty of M−1(q). We
assume that ‖ΔM‖ ≤ κ < 1 and ‖d‖ ≤ d for all q and q̇.

Define the sliding variable σ ∈ R
n as

σ = [σ1, · · · ,σn]
T = ˙̃q + C1q̃ + η (3)

where C1 ∈ R
n×n is positive definite and η ∈ R

n is an auxiliary vector which will be
determined shortly. The proposed control law is

τ = [C0(q, q̇)q̇ + G0(q) + F0(q̇)] + M0(q)
(
q̈d − C1 ˙̃q +Λ0u1

)
(4)

u̇1 = −Λ1u1 + η (5)

η̇ = −Λ0u1 − Ksσ− ρ (6)

Note that the control law in (4) cancels the nominal nonlinear terms and introduces
an auxiliary control input u1 to enhance robustness. Λ1,Λ0, Ks ∈ R

n×n are constant gain
matrices and

ρ =
[
sgn(σ1)d̄s1, · · · , sgn(σn)d̄sn

]T (7)

where sgn(· ) denotes the sign function, and d̄si = d̄ + κ‖q̈d − C1 ˙̃q +Λ0u1‖, i = 1, · · · , n, is
the bound of the uncertain terms. Each component of ρ switches its sign across the sliding
surface σi = 0 and is used to suppress the model uncertainty. However, the high-frequency
switching behavior of ρ causes significant chattering if it is directly added to the joint
torque, just as the traditional SMC does.

Let Ks be positive definite, if we substitute (4)–(6) into (2), it can be shown that [30]

σTσ̇ ≤ −σTKsσ (8)

This implies that σ → 0 as t → ∞. In other words, the system will reach and stay on
the sliding surface σ ≡ 0. Moreover, (5) and (6) can be combined into one equation:

ü1 +Λ1u̇1 +Λ0u1 = −(Ksσ+ ρ) (9)

where Λ1,Λ0 ∈ R
n×n are chosen such that the left-hand side of (9) is a stable system. For

example, Λ1,Λ0 can be chosen as diagonal matrices with positive diagonal elements.
From (4) and (9) we see that, unlike traditional SMC, the switching term ρ does not

appear in the joint torque directly. Instead, it is filtered by (9) before being incorporated
into the joint torque. Therefore, the chattering phenomenon is significantly alleviated.
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Once the sliding surface is reached, i.e., σ ≡ 0, the switching term is equivalent to the
lumped effect of model uncertainty and external disturbance, and the closed-loop system
can be expressed as

ü1 +Λ1u̇1 +Λ0u1 = −ρ (10)

˙̃q + C1q̃ = −η = −(u̇1 +Λ1u1) (11)

For ease of illustration, let us temporarily assume that Λ1,Λ0, and C1 are diagonal
matrices, i.e., Λi = diag(λi1, · · · , λin), i = 0, 1, and C1 = diag(c11, · · · , c1n). Then, the
closed-loop system (10) and (11) can be expressed as Figure 3 below. It is clear from Figure 3
that the closed-loop system is stable. In addition, the switching term, which is equivalent
to uncertainty and disturbance in the sliding mode, is filtered by a second-order system

s+λ1j
s2+λ1js+λ0j

and affects the tracking error through a first-order system 1
s+c1j

. Although

the tracking error is not guaranteed to converge to zero, we can choose appropriate gain
matrices Λ1,Λ0, and C1 such that the tracking error is as small as desired.

Figure 3. The jth component of the closed-loop system when the sliding surface σj = 0 is reached,
j = 1, · · · , n.

Besides the chattering attenuation property, another appealing feature of the proposed
modified SMC is that if the initial tracking error is known, we can set η(0) = − ˙̃q(0)− C1q̃(0).
As a result, the system is on the sliding surface as it starts, which eliminates the reaching
phase of the traditional SMC and reduces the transient response time.

Experimental verification conducted in [30] showed that the proposed modified SMC
has the best tracking performance in comparison with traditional first-order SMC (FOSMC),
second-order SMC (SOSMC), and integral SMC (ISMC). Its chattering reduction ability
is much better than FOSMC and ISMC, and similar to SOSMC. However, the proposed
modified SMC does not need to find bounds to the time derivative of uncertainties as
SOSMC does. Therefore, the proposed control law induces less vibration and achieves the
best tracking performance with a simple structure.

2.2. Outer Admittance Control Loop

Suppose that the reference path with respect to an inertial frame in the 3D task space is

rp(s) =
[
xp(s) yp(s) zp(s)

]T (12)

which is parameterized by a single parameter s ∈ [0, 1]. We assume that rp has finite length
and choose the normalized arc length as the parameter s. Thus, s = 0 and s = 1 correspond
to the start point and the end point of the reference path, respectively. Furthermore, we
assume that rp is twice differentiable with respect to s. At any point on rp(s), we can find
the unit tangent vector t(s), unit normal vector n(s) and unit binormal vector b(s) at that
point as follows:

t(s) =
r′p(s)

‖r′p(s)‖
, n(s) =

t′(s)
‖t′(s)‖ , b(s) = t(s)× n(s) (13)

Note that r′p(s) and t′(s) denote the first derivatives of rp(s) and t(s) with respect to s,
and × is the cross product of two vectors. These vectors comprise the TNB frame, which
moves with the end effector along rp. Whenever an external force Fext is applied to the
end effector, they are measured by the F/T sensor equipped on the end effector, and the
measurements are preprocessed to alleviate noise, obtaining fext (see the output of the
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signal conditioning block in Figure 2). If the magnitude of fext exceeds a threshold fth, the
fext is projected to the unit tangent vector of the path. On the other hand, if fext is too weak
or null, i.e., ‖ fext‖ < fth, then a virtual force with magnitude fv > 0 is added along the
tangent direction of the path. In other words,

fproj =

{
( f T

extt(s))t(s), ‖ fext‖ ≥ fth
fvt(s), ‖ fext‖ < fth

(14)

Note that (14) is represented by the mode select block in Figure 2. Then, the desired
velocity of the end effector in the task space, denoted by ṙd, is determined as ṙd = g(t) ∗ fproj,
where ∗ denotes convolution, and g(t) is the impulse response of the desired admittance
function G(s), which has the following first-order form:

G(s) =
1
c

m
c s + 1

(15)

Parameters m and c denote the virtual mass and damping of the end effector, respec-
tively, and they are online adjustable for avoiding common kinematic constraints such as
singularities, joint limits, and task space limits. These constraints are directly related to the
safety of the interaction because it may cause damage to the environment or the nearby
human operators if any of these constraints is violated. Furthermore, providing the robot
with awareness of these constraints and a way to preemptively deal with them relieves the
operator from the mental load required to avoid them, which increases performance of the
task [1,5–7,14,20]. If none of these constraints are going to be violated, the admittance pa-
rameters are adjusted to achieve safe, comfortable, and intuitive human–robot interaction.
The online parameter tuning algorithm will be introduced shortly. Once the desired task
space velocity ṙd is obtained, the desired joint space velocity is calculated by

q̇d = J†(q)[ṙd + K(rd − r)] (16)

where r is the actual position of the end effector and K ∈ R
3×3 is a positive definite gain

matrix which guarantees that r → rd as t → ∞. J†(q) is the pseudo-inverse of J(q). We
assume that the reference path rp does not pass through any singularity of the robot;
therefore, J(q) is full rank and J†(q) exists for all points on rp. Existence of singularities is
an inherent limitation for industrial robots, regardless of the method used. However, one
desirable feature of the proposed method is that it forces the robot to stop before reaching
singularities and allows the robot to retract along the path without getting stuck when
guided by the human operator. This is accomplished by the outer admittance control loop.
Therefore, violation of the no-singularities-on-the-reference-path assumption does not fail
the normal operation of the robot. It just restricts its motion on the portion of the reference
path without singularities.

Note that only the tangential component of fext is used to generate ṙd which is in the
tangent direction of rp. In other words, the robot moves along rp when the end effector
is pushed by an external tangential force. However, if a large force, i.e., ‖ fext‖ ≥ fth, is
applied in the perpendicular direction of rp, then fproj is zero. Consequently, ṙd reduces
to zero exponentially with time constant m

c , and the robot stops almost immediately if
the time constant is very small. In this way, the robot rejects perpendicular forces while
complies with tangential forces based on an adaptive admittance law.

The first-order admittance function G(s) is widely used in many compliance control
problems [31–34], but the appropriate admittance parameters are task dependent and are
often set by heuristics. To deal with this problem, we have proposed an online parameter
tuning approach in [23] that considers the safety, comfort, and intuition of manual guidance.
The underlying idea is to reduce compliance without significantly changing the dynamic
behavior of the admittance function whenever the robot is close to constrained areas such
as singularities, joint limits, and task space limits. If no constraints are going to be breached,
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the compliance varies with the external force, allowing the user to guide the motion of
the robot more comfortably and intuitively. In this paper, the desired task space path rp
is defined in advance and the end effector does not deviate from this path; thus, we can
assume that the robot will not pass through or go near any constrained areas. Therefore,
the admittance parameters are adapted based on the applied forces.

To tune the admittance parameters, we first set up the varying range for the virtual
damping c. The maximum allowable motion speed is considered when selecting the limits
of the range for damping c. This ensures that any motion is below the safety relative
speed limit defined in the Annex A of ISO/TS 15066:2016 [35] for transient and quasi-static
contact. Let c ∈ [cmin , cmax], where cmin and cmax are the pre-established minimum and
maximum limits of c, respectively. Then, the projected force fproj is normalized with respect
to an estimated maximum value f̄ , which could be determined either experimentally or
heuristically. Define

f̂ = min
{‖ fproj‖

f̄
, 1
}

(17)

Therefore, f̂ ∈ (0, 1]. The proposed parameter adaptive law is

c = (cmin − cmax) f̂ + cmax (18)

Notice that the largest force f̂ = 1 is mapped to the minimum damping cmin, which
corresponds to the largest DC gain of G(s), while the smallest force f̂ ≈ 0 is mapped to
the maximum damping cmax corresponding to the smallest DC gain of G(s). Consequently,
the user can guide the robot to move faster and reach the destination quickly just by
applying a larger force. On the other hand, the user slows down the robot to accomplish
fine work with high accuracy when a smaller force is applied. Once the virtual damping
c is determined, the virtual mass m is adjusted accordingly to keep the ratio m

c unaltered.
The ratio m

c is the time constant of G(s), which is related to the response time of G(s). Fixed
time constant gives consistent dynamic behavior of the admittance function and allows the
user to quickly get accustomed to the way for operating the robot.

Experimental verification of the proposed adaptive admittance law and comparison
with other parameter tuning methods were conducted in [23] by implementing a 3D
shape tracing task. The admittance laws in comparison included constant parameters
and adaptive virtual damping with fixed virtual mass. Objective evaluation of the test
results was done by analyzing the path length errors and task execution time. Meanwhile,
a subjective evaluation was also conducted by collecting questionnaires that asked each
test user to score the performance of each parameter tuning method in terms of vibration of
the system, required efforts, and ease of completing the task. The results showed that the
proposed adaptive admittance law has the best performance among all compared methods
for both objective and subjective evaluation.

The outer admittance control loop is summarized as Algorithm 1 below.
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Algorithm 1 Compliant path tracking using force projection
Inputs: fext, fv, s
Outputs: ṙd

1: From path rp(s), calculate t(s), n(s), b(s) using (13)
2: Initialize fth, fv, c and ratio m/c
3: for t = 0 to ∞ do
4: if (s ≤ 1) then
5: Select mode to choose force input and project it to the tangent direction.
6: if (‖ fext‖ < fth) then
7: Update fproj = fv t(s) � fv is the task-dependent constant virtual force
8: else
9: Update fproj = ( f T

extt(s))t(s)
10: end if
11: else
12: Robot at goal, stop motion. fproj = 0
13: end if
14: Obtain ṙd from passing fproj through the admittance law (15).
15: Normalize fproj using (17) to obtain f̂
16: Update c using (18) and calculate m to maintain the fixed ratio m/c
17: end for

3. Experiments and Results

3.1. Experimental Setup

The tests are performed using a HIWIN RA605 6-DOF robot arm with a Robotiq 2F-85
gripper attached to the end effector. An ATI Gamma F/T sensor with analog output sampled
at 1 kHz was used to measure the external force applied to the end effector. See Figure 4.

Figure 4. Experimental setup used for the tests showing the robot equipped with the force/torque
(F/T) sensor and a gripper on the end-effector.

In this section, the two experiments conducted to validate the proposed approach are
detailed. They include a linear motion test and a 3D path test. For these tests, the robot
moves with constant orientation. Furthermore, the robot tool actual position is obtained
from the robot joint encoders. The sliding mode control parameters used are summarized
in Table 1. Regarding the admittance law parameters, the limits for damping c were chosen
as cmin = 300 N·s·m−1 and cmax = 1200 N·m·s−1. From these values, the maximum
speed is 266 mm·s−1, which allows us to comply with the relative speed limits defined in
Annex A of ISO/TS 15066:2016 [35] for applications where contact between body areas
and the robot system is possible. In our case, these body areas include the lower arm and
hand/finger, where the speeds are restricted to 1300 and 650 mm·s−1 for transient and
quasi-static contact, respectively, considering an estimated robot mass of 20 kg. In addition,
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the user has an emergency button at hand throughout the experiments conducted. The
time constant of G(s) is the ratio m

c = 0.0167 s. Finally, fth = 1.2 N and fv = 40 N.

Table 1. Sliding mode controller (SMC) parameters.

Parameter Value

Λ0 diag(1936, 3884, 8100, 1764, 6400, 4900)
Λ1 diag(44

√
2, 62

√
2, 90

√
2, 42

√
2, 80

√
2, 70

√
2)

C1 diag(125, 65, 32, 190, 187, 275)
Ks diag(90, 100, 100, 100, 100, 100)

Illustrated in Figure 5 are all the coordinate frames and their corresponding relations
with each other in the environment used for the experiments. In the linear motion test,
we define a horizontal line in front of the robot to demonstrate the behavior as external
forces are applied to the end effector from different directions. The line is defined from
points A = [0.34, 0.45, 0.15]T to B = [0.0, 0.6, 0.15]T in robot base frame, see Figure 5 and
Figure 6a, and parametrized with respect to s as in (19), where

−→
AB = B − A is the 3 × 1

direction vector from A to B and s ∈ [0, 1].

r(s) = A + s
−→
AB (19)

Figure 5. Coordinate frames description. Force sensor frame in blue, robot base frame in red,
tangential-normal-binormal (TNB) frame in black, and predefined path in green.

For the second test, the 3D path we chose to demonstrate the path-tracking capability
of our system is a helix, defined in (20)–(22) and parametrized with respect to s ∈ [0, 1],
where s = 0 marks the initial point of the path and s = 1 marks the end point of the path.
R = 0.1 m is the helix radius centered at o = [0.24, 0.45, 0.15]T , n = 2 is the number of
rounds for the helix, bo = 0.05 m is the increase in z per round.

x(s) = ox + R cos(2πns) (20)

y(s) = oy + R sin(2πns) (21)

z(s) = oz + nbos (22)

3.2. Linear Motion Test

We performed a linear motion test to show the behavior of the robot to the external
forces applied from different directions. The detailed data are presented in Figure 6,
including the desired and actual 3D paths in the robot base frame, desired and actual
Cartesian positions, path parameter s, desired velocities in the TNB frame, and external
forces in the robot frame and the TNB frame. Each subfigure of Figure 6 is annotated
with labels using numerals from 1 to 5 to separate the data into regions where forces are
applied in different directions: 1 and 5 for free-motion, 2 for force applied along the y-axis
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of the robot frame, 3 for force applied along the x-axis of the robot frame, and 4 for force
applied along the z-axis of the robot frame. The differences between the desired and actual
Cartesian positions in Figure 6a,b are the tracking errors represented in the task space
which demonstrate the performance of the inner loop SMC controller. Figure 6d shows the
evolution of the s parameter, which defines the position of the robot in the path. In region
1, from t = 0 s to t = 16 s, there is no external force applied to the robot, and the robot
moves to the target point B at s = 1 with a constant velocity based on fv as in (14) and
Algorithm 1, (see also Figure 6c–f). Next, in region 2, from t = 16 s to t = 24 s a negative
external force on the y-axis of the robot frame is applied, see Fy in Figure 6c, which is
reflected in the TNB projected force as Ft and Fb in Figure 6f. This causes the robot to move
backward along the line reaching s = 0 in Figure 6d.

Likewise, from t = 24 s to t = 35 s a positive external force on the y-axis of the
robot frame was applied to move the robot forward along the path. During this interval
there was a pause from t = 29 s to t = 31 s where no force was applied, and the slope
of the s parameter changed to the same value as in the previous free-motion interval, see
Figure 6c–f. For region 3, from t = 35 s to t = 59 s, the same tests were repeated but this
time applying the external force on the x-axis of the robot frame showing a similar behavior
in the s parameter, see Fx in Figure 6c and Ft, Fb in Figure 6f. In region 4, from t = 59 s
to t = 78 s, an external force normal to the path along the z-axis of the robot frame was
applied three times with alternating signs, see Fz in Figure 6c and Fn in Figure 6f. As
expected, the applied force was not considered for robot motion because the projection to
the tangent direction of the path is null. This can also be seen in Figure 6d where three stair
patterns are created, meaning the s parameter remained constant during the three periods
where the perpendicular force was applied, see Figure 6c,f. For region 5, from t = 78 s to
t = 84 s, no force was applied to the robot; thus, the robot moved towards the goal with
constant velocity obtained from the virtual force fv until s = 1.

(a)

1 2 3 4 5

(b)

1 2 3 4 5

(c)

1 2 3 4 5

(d)

1 2 3 4 5

(e)

1 2 3 4 5

(f)
Figure 6. Linear motion path tracking test. Numerals 1–5 are used to separate regions where forces are applied in different
directions: 1 and 5—free-motion, 2—force applied along y-axis of robot frame, 3—force applied along x-axis of robot frame,
4—force applied along z-axis of robot frame. (a) Desired and actual 3D path in robot base frame. (b) Desired and actual
Cartesian positions. (c) Forces in robot frame. (d) Parameter s. (e) Desired Velocities in TNB frame. (f) Forces in TNB frame.
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This linear test proves the capability of our proposed method to customize the compli-
ance behavior of the robot for a path tracking task. Furthermore, for clear presentation, the
tracking performance of the modified SMC controller in both the joint space and task space
is summarized in Table 2.

Table 2. Linear motion task tracking root mean square error (RMSE).

Joint RMSE (mrad) Cart. Pos. RMSE (mm)

1 0.4102 x 0.3458
2 0.4793 y 0.4253
3 2.9438 z 1.4255
4 0.7535
5 4.5410
6 2.0088

3.3. 3D Path-Tracking Tests

Three tests were executed using the helix path for comparison to show the behavior
of the proposed algorithm in both ends of the assistance range spectrum, namely, fully
assisted motion or free motion (FM), and not assisted motion, i.e., force-applied motion
(FAM). The combined motion with virtual forces (CVF) is the smooth transition between
FM and FAM. Note that for the FAM test we defined fv = 0 N to test the case of no
assistance individually. This causes that at any instant when there is no external force
applied, the robot stops and maintains the last position, meaning that only the user can
make the robot move in this case. Moreover, the proposed virtual force scheme provides
the means for a smooth transition between FM and FAM. The detailed data of the tests
are shown in Figure 7a–i, including the external forces in the TNB frame, the s parameter
variation throughout the task, and the desired velocity ṙd in the TNB frame obtained from
the constant virtual force fv.

3.3.1. Free Motion (FM)

For this test as shown in Figure 7a–c, the robot follows the defined helix path, without
external forces applied to the end effector as presented in Figure 7a. This demonstrates the
case of fully-assisted interaction because the robot moves from the starting point s = 0 to
the final point s = 1, see Figure 7b. This case serves as the reference to evaluate the error in
the results of Section 3.4. The desired velocities ṙd in Figure 7c, which are used in (16) to
obtain the desired joint velocities, are calculated from passing the constant virtual force
fv projected to the tangent direction of motion of the path through the admittance law as
described in Section 2.

3.3.2. Force-Applied Motion (FAM)

Figure 7d–f illustrates this test, which consists of applying an external force, see
Figure 7d, to the robot end-effector to move it along the predefined helix path. This force is
projected to the tangential direction of the path, which gives the magnitude of the desired
velocity in task space to start or stop robot motion, see Figure 7f. No virtual force is
generated for this case because the magnitude of fv = 0 N. In this test, the robot moves
from the initial point s = 0 to the final point s = 1 in a nonlinear way opposed to the FM
case because the desired velocity depends on the external force applied to the end effector,
as can be seen in Figure 7e,f.

3.3.3. Combined Test Using Virtual Forces (CVF)

In this test, we merge the two previous cases to demonstrate the capabilities of
the proposed algorithm for multiple applications and the smooth transition between
collaborative and non-collaborative interaction. The robot will track the helix path with
constant velocity obtained from fv if no external forces are applied, moving from the initial
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point s = 0 to the final point s = 1. This can be seen from t = 0 s to t = 30 s in Figure 7g–i.
At any point of this free motion towards the goal, the user can apply an external force that
will cause the robot to retract or advance while tracking the path, as seen in Figure 7g,h
from t = 34 s to t = 46 s. If the user stops applying the external force, the robot will
continue to move to the goal in FM case as shown in the same figures from t = 46 s to
t = 49 s. The desired velocity in each step of the test in the TNB frame is calculated
accordingly, see Figure 7i.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
Figure 7. Helix path-tracking test detailed data for free motion (FM), force-applied motion (FAM), and combined motion
with virtual forces (CVF) in the TNB frame. (a) External Forces-FM. (b) Parameter s-FM. (c) Desired Velocities-FM.
(d) External Forces-FAM. (e) Parameter s-FAM. (f) Desired Velocities-FAM. (g) External Forces–CVF. (h) Parameter s–CVF.
(i) Desired Velocities-CVF.

3.4. RMSE Evaluation and Comparison

Following our objective of accurate path tracking in human–robot collaboration tasks,
we evaluate the error between the reference path and the actual recorded path. It is
important for the robot to continue tracking the path accurately, despite forces being applied
or not during the human–robot interaction. In this context, the addition of directional
compliant motion should have as small influence as possible on path tracking accuracy.
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Thus, we must ensure the error difference is small among the proposed cases that represent
the interaction assistance range.

Figure 8 shows the reprojection of the RMSE residuals to the 3D helix path calculated
between the reference helix path rp(s) in black dashed line and the recorded test data r(s)
in red solid line, also green dotted lines connect the points from r(s) to rp(s) to display
the error every 10 samples. Figure 9 presents for each of the three evaluated cases, the
RMSE values in green dashed line and the tracking error between the actual and reference
samples in solid blue line. For every joint position data collected in the test, we find the
shortest distance dp,i⊥rp between the ith point and the reference curve rp(s), which was
sampled from (20)–(22) to have the same number of points as the test data, see (23). Then,
we find the RMSE as in (24), where pj,i is the ith test point of the jth component, j = x, y, z,
and N is the total number of points in the test.

dp,i⊥rp = min
s

(√
(rp,x(s)− px,i)2 + (rp,y(s)− py,i)2 + (rp,z(s)− pz,i)2

)
, s ∈ [0, 1] (23)

RMSE =

√√√√∑i=N
i=1

(
dp,i⊥rp

)2

N
(24)

In Table 3, we can see that the RMSE values obtained between the FM and FAM
motion have a very small difference of 0.021 mm. This shows path tracking has a good
performance even when external forces are applied to guide the motion. In the other case
for the combined test with virtual forces, the error difference with the free motion test is
slightly higher, 0.038 mm; however, it is still less than 0.1 mm, which is the pose accuracy
value reported for commercial robots used in collaborative applications [36–38].

(a) (b) (c)
Figure 8. Helix path tracking. rp(s)-black dashed line, r(s)-red solid line, distance from each point of r(s) to rp(s)-green
dotted line. (a) FM. (b) FAM. (c) CVF.
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Figure 9. RMSE and distance error plot for each test. (a) FM. (b) FAM. (c) CVF.
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Table 3. RMSE error differences among cases: FM vs. FAM, and FM vs. CVF.

Cases Compared Error Difference (mm)

FM vs FAM 0.021
FM vs CVF 0.038

4. Conclusions

We successfully achieved compliant path tracking motion using an industrial 6-DOF
robot manipulator by employing the proposed dual-loop control structure including an in-
ner motion control loop and an outer admittance control loop. The safety of the application
is guaranteed by adhering to the constraints presented in our previous work [23], which
include singularity avoidance, joint limits, and workspace limits. Additionally, the modi-
fied SMC designed and implemented as the inner motion controller showed a satisfactory
tracking performance. A linear motion test successfully demonstrated the system ability to
modify the robot compliance with respect to the external force direction applied to the end
effector. The results from this linear test show the capability of our proposed method to
customize the compliance behavior of the robot for a path tracking task. Furthermore, a
3D helix path was used to test the path-tracking performance and display the generality
to many applications such as rehabilitation, assisted drawing, assisted hand–motor skills
development, and so on. For this test, three cases were compared depending on the level of
the interaction; FM, FAM, and CVF motion. The error difference between cases is less than
0.1 mm, which is suitable for path tracking applications where the user can dynamically in-
teract with the robot. Our future research directions include testing the framework in more
specific applications such as rehabilitation or assisted hand–motor skills development as
well as in different types of robot manipulators, given that our framework implementation
can be easily ported to other manipulators with the addition of an F/T sensor. Moreover,
a user study will be carried out to further explore the perceived performance in each
specific application.
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Featured Application: Nanoelectromechanical systems and nanorobots can be used to treat cancers

associated with the Kv10.1 voltage-gated ion channel activity. The Kv10.1 model was developed

by applying the control engineering theory. Nanoelectromechanical systems play the role of a

PID regulator.

Abstract: The use of nanoelectromechanical systems or nanorobots offers a new concept for sensing
and controlling subcellular structures, such as ion channels. We present here a novel method for
mathematical modeling of ion channels based on control system theory and system identification.
We investigated the use of nanoelectromechanical devices to control the activity of ion channels,
particularly the activity of the voltage-gated ion channel Kv10.1, an important channel in cancer
development and progression. A mathematical model of the dynamic behavior of the selected ion
channel Kv10.1 in the Laplace (s) domain was developed, which is given in the representation of
a transfer function. In addition, we addressed the possibilities of controlling ion channel activity
by nanoelectromechanical devices and nanorobots and finally presented a control algorithm for the
Kv10.1 as a control object. A use case demonstrates the potential of a Kv10.1 controlled nanorobot for
cancer treatment at a single-cell level.

Keywords: nanoelectromechanical system (NEMS); nanorobots; ion channel Kv10.1; mathematical
modeling; system identification; control algorithm

1. Introduction

Nanoelectromechanical systems, nanomachines, and nanorobots represent a challeng-
ing and future-orientated research area in biomedical engineering. A nanoelectromechani-
cal system (NEMS) is a device that combines electrical and mechanical system behavior
at the nanoscale level. The NEMS has electromechanical parts that have been developed
on the nanoscale level, such as sensors, actuators, controllers, and drives [1]. Nanorobots
are nanoelectromechanical or nanomechatronic systems, which are innovative devices
expected to have revolutionary applications in health care, cancer therapy, monitoring,
and drug delivery [2]. These nanoelectromechanical systems and nanorobots represent
miniaturizations of microelectromechanical systems and microrobots that travel in the
human body and can be used in applications to monitor, interact, and control processes at
a cellular level. In particular, these robotic applications involve sensing, control, actuation
and propulsion, communications, interfacing, programming and coordination at macro,
micro, and nano-levels [2].

In the field of biomedical engineering and medicine, microelectromechanical/
nanoelectromechanical systems (MEMS/NEMS) are also called bioMEMS/bioNEMS [3],
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with almost unlimited practical applications, e.g., in surgery, drug delivery, or gene ther-
apy [4–8]. Figure 1 shows a schematic nanoscale comparison of different items in nature,
adapted based on material published in [3,9].
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Figure 1. Scales in nature, ranging from micro-systems to nano-systems.

In this work, we chose a voltage-gated potassium ion channel as an example of a
biological system at a nanoscale. Ion channels are membrane proteins the size of about 4 nm
that enable the passive transport of ions through the cell membrane [10,11]. Based on the
scale depicted in Figure 1, we assumed that the dynamic behavior of the ion channel
could be measured and controlled with MEMS/NEMS and/or nanorobots. Depending on
the gating mechanism, three main types of ion channels are classified as: voltage-gated,
receptor/ligand-gated, and second messenger gated channels [12]. Cells usually express a
variety of ion channel types, e.g., there are more than 300 different ion channels in an inner
ear cell alone [13].

We here selected a single channel from a voltage-gated ion channel family representing
the biological system. Voltage-gated ion channels open (activate) and close depending
on the cell membrane potential. Subtypes of voltage-gated ion channels (Nav, Cav, Kv,
CLC, and Hv) are specifically selective for sodium (Na+), calcium (Ca2+), potassium (K+),
chloride (Cl−), and proton (H+) channels. Voltage-gated potassium channels are referred to
as the giant subtype and denoted as Kv. These Kv channels encode more than 100 human
genes [14]. Potassium channels represent the most complex class of voltage-gated chan-
nels [15] and are found in basically all types of mammalian cells, such as cells in the nervous,
muscular, and immune systems, among others [15–18].

Each ion channel exhibits a specific dynamic behavior with different physiological
and pharmacological properties [15]. In particular, aberrant expression and functionality
of various Kv channels in cancer cells have been associated with tumor development and
progression. The voltage-gated Kv10.1 potassium channel, encoded by the gene KCNH1
(subfamily H member 1, known as EAG1 or Ether-à-go-go 1), is implicated in various
cellular processes, including, for example, cell proliferation [15].
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An analysis of Kv channel expression in human cancer cells [18] revealed an up-
regulation of Kv10.1 in a variety of tumors and can be found in blood, bone, brain, breast,
stomach, colon, cervix cancer, and prostate cancers cells, thus providing a novel biomarker
candidate and potential oncological target for cancer [5,19,20].

For single-channel modeling, we finally selected the Kv10.1 ion channel, as it repre-
sents a significant ion channel in cancer development and progression. The Kv10.1 model
is based on control system theory, which is similarly based on the modeling concept of the
Kv1.1 voltage-gated channel recently presented in [21].

2. Methods

For mathematical modeling of voltage-gated ion channels, the method of system
identification known from control engineering was used. We considered the voltage-gated
ion channel Kv10.1 as a system, object, or process in accordance with the control system
theory. Kv10.1 was treated as a separate object (or system/process) within a space that
can interact or connect with other elements. If a system is interpreted as a combination of
elements that act together and perform specific objectives [22], then a single ion channel
can be considered as a system or, in more precise terms, as an object in a control loop. As
such, the channel can achieve the desired dynamics under nominal conditions and display
acceptable behaviors under random conditions that deviate from the maximum prescribed
boundary conditions.

System identification is a scientific methodology that is used to develop mathematical
models of a dynamical system. This method is based on observed or measured data of
the system [23]. A block diagram of a general system (G(s)) represents a transfer function
with a complex variable s in the Laplace domain, specified with an input c(t), output r(t),
measured disturbances dc(t), and unmeasured disturbances d(t) (Figure 2a). An illustration
of a voltage-gated ion channel as a system is shown in Figure 2b. The block diagram of
the system shows its unilateral property, where system inputs and outputs, in general,
are vectors. If there are multiple inputs and multiple outputs, then the system is called
a MIMO system. In the case of a single input and a single output, however, the control
system is called a SISO system. For example, if a voltage-gated ion channel has a voltage
stimulus as input and a measured current as output, we assume that it can be described as
a SISO system.

 

(a) (b) 

Figure 2. Block diagram of a system (a); illustrated voltage-gated ion channel as a system (b).

Furthermore, we assume that the voltage-gated ion channel Kv10.1 is a linear time-
invariant system based on the experimental results given in the following sections. A linear
time-invariant system is defined by

anr(n)(t) + an−1r(n−1)(t) + . . . + a1
.
r(t) + a0r(t) =

b0c(t) + b1
.
c(t) + . . . + bn−1c(n−1)(t) + bnc(n)(t), n ≥ m.

(1)

where r(t) is the system’s output and c(t) is the system’s input. The transfer function, G(s), is
defined as the ratio of the left Laplace-transformed output and the left Laplace-transformed
input under zero initial conditions, where s is a complex variable in the Laplace (S) domain.
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G(s) = L{r(t)}
L{c(t)} = R(s)

C(s) =
b0+b1s+...+bn−1sn−1+bnsn

ansn+an−1sn−1+...+a1
.
y(t)+a0y(t)

=

= ∑m
0 bmsm

∑ n
0 ansn

(2)

The application of the transfer function concept makes it possible to represent the
system’s dynamics in the form of algebraic equations. If the highest power of s in the
denominator of a transfer function is equal to n, the system is called an nth-order system [22].
The transfer function of a system is thus a mathematical model of this system. If the system’s
transfer function is unknown, we can estimate it based on known inputs and measured
outputs for the system. This resulting transfer function provides a complete description of
the system’s dynamic behavior [22,24,25].

A transfer function can be determined experimentally based on measured input and
output signals if a mathematical model cannot be developed using physical correlations
and equations. Therefore, the process of developing a model from measured input and
output data is known as system identification [23,26]. The main elements in the system
identification process cycle are experimental design, the experiment itself, data preprocess-
ing, fitting the model to the data, testing the model structure, validating and auditing the
model [26].

The process of system identification has been greatly simplified due to the availability
of modern software tools, such as MATLAB or LabVIEW. In this work, we used the System
Identification toolbox provided by MATLAB [27,28]. This toolbox includes tools to identify
a modeling approach and to define the model structure properties. Measured data can
be imported as time-domain or frequency-domain data, and functions for preprocessing,
representing, filtering, and estimating the model can be applied. Furthermore, a model can
be estimated as a transfer function, a state-space, process, polynomial, or nonlinear model
by the System Identification toolbox.

3. Results

We considered experimental patch-clamp data [15] from CHO (Chinese hamster
ovary) host cells, stably expressing rat Kv10.1 channels, which exhibit a highly comparable
electrophysiological behavior to human Kv10.1 channels [29]. The data provided comprises
voltage-clamp measurements at three different temperature levels of 15, 25, and 35 ◦C. The
dynamic behavior of the voltage-gated ion channels displays three main characteristics:
activation, deactivation, and inactivation (Figure 3). In the case of the depolarization of
the cell membrane, the Kv channel transits from the resting (closed) to the active (open)
state. During prolonged depolarization, Kv channels switch to an inactivated state [30].
Figure 3 shows the whole-cell current response to applied voltage-step protocols for the
determination of the activation, deactivation, and inactivation characteristics of the channel.
In developing the dynamic behavior of the system, the three different stimulus signals,
as shown in Figure 3, were used to provoke these activities. In addition, these activation,
deactivation, and inactivation characteristics could also be stimulated alternatively by
ramp, action potential (AP), and recovery protocols [15].

For model development, the dynamic behavior of Kv10.1 was considered at a tem-
perature of 25 ◦C, which corresponds to standard experimental conditions in in vitro
electrophysiological studies. The activation or opening is stimulated with appropriate
depolarizing input voltage step functions. Nevertheless, the Kv10.1 response corresponds
to the transient response of the system. Based on the experimentally measured response
to given stimuli, we concluded that Kv10.1 behaves as a first-order system. We assumed
all initial conditions as equal to zero and at a nominal voltage of 70 mV. It was possible to
obtain an average model based on averaged data for all cells, as given in [21] for the Kv1.1
voltage-gated ion channel. We also considered a randomly chosen active cell with high-
quality recording data from the database available via Channelpedia, a web-based freely
accessible information management network and electrophysiology data repository [15].
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The chosen cell ID is 9514 at 25 ◦C, and the host cell is CHO_FT; the species is rat. Input
and output experimental data from patch-clamp measurements are given in Figure 3.
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ut
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t

Activation Inactivation Deactivation

Figure 3. Dynamic behavior of the voltage-gated ion channel Kv10.1. Created with BioRender.

Figure 4 shows the activation voltage step protocol to determine the opening or
activation of the ion channel and the measured macroscopic ion current as input and
output for system identification. We assumed a nominal operating point at an input
voltage of 70 mV, based on the experimental design and input functions for inactivation
and deactivation. Input-output data from the patch-clamp experiments for the nominal
operating point are shown in Figure 5a. Time-domain experimental data were imported
into the System Identification toolbox in MATLAB. The data were not preprocessed and,
based on the measured output signal and input step signals, we adopted a first-order linear
time-invariant system. A comparison between measured and simulated model output is
shown in Figure 5b.

The transfer function was estimated with one pole and null zeros in the continuous-
time domain, the i/o delay was fixed to zero, and we set the initial condition to zero.
The initialization method implies that the algorithm is used to initialize the numerator
and denominator. Algorithms applicable only for estimating continuous-time transfer
functions using time-domain data are the instrument variable (IV), state variable filters
(SVF), generalized Poisson moment functions (GPMF), subspace state-space estimation
(N4SID), and a combination of all of the preceding (ALL) approaches [27,28]. We chose
to use the initialization method ALL. This method of systems modeling is known as
black-box modeling.
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Figure 4. Input: activation voltage step protocol (above); output: measured macroscopic ion-current
(below) for system identification.
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Figure 5. Input-output data for nominal operating point at 70 mV (a); output: macroscopic ion
current (b) used for system identification.

The estimated transfer function model for the assumed nominal step input of 70 mV
and measured output macroscopic current in nA is given by

G(s) =
3.687

s + 21.22
(3)

where units of the transfer function G(s) are ratio units of output (s)—the output macro-
scopic current (nA), and units of input (s)—the input voltage step (mV).

The model, Equation (3), is written in a general form of a first-order system in the
Laplace domain by

G(s) =
K

Ts + 1
(4)

where K is the gain with K = 0.1738 and T the time constant, T = 0.0471. The system’s gain
is the ratio between the input signal and the steady-state value of the output.

4. Discussion

4.1. System Analysis

The mathematical model of the system is given by Equations (3) and (4) in the Laplace
domain. The unit step response of the system is shown in Figure 6. Besides the gain and
time constant, other essential characteristics of the system are the rise time, transient time,
settling time, and steady-state. These system characteristics are calculated from the transfer
function or are found by plotting the step response in MATLAB.
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Figure 6. Unit step response of the system G(s) with confidence region.

In Figure 6, the rise time is 0.104 s, the transient time is 0.184 s, and the final value
corresponds to a gain of 0.174 nA; thus, the system does not have an overshoot. Experi-
mental output data and the mathematical model indicate that stability is enforced. The
same conclusion was drawn by conducting a pole location analysis. The model has one
pole with a negative real part, and the system was determined to be stable [22,24,25].

The model in the Laplace domain corresponds to the differential equation under the
assumption that all initial conditions are zero [22]. The inverse Laplace transformation
gives a solution of a differential equation in the time domain, and the system described
with the solution to Equation (4) in the time domain is

g(t) = 0.1738
(

1 − e
t

0.0471

)
h(t) (5)

where g(t) corresponds to G(s), representing the unit step response of the system G(s) (see
Figure 6) when all initial conditions are equal to zero, and h(t) is the input function, which
corresponds to the unit step or Heaviside function h(t).

We simulated outputs of the model using Equation (4) with inactivation and deacti-
vation stimuli. The compared results of the measured outputs and simulated outputs are
shown in Figure 7. The model satisfies the dynamic behavior of the Kv10.1 voltage-gated
ion channel based on the adopted assumptions.

Since different cellular mechanisms can affect the opening behavior of ion channels,
we believe that time-dependent transfer functions can be used to provide a more accurate
description of the dynamic characteristics of ion channels. This hypothesis is supported by
the fact that all mathematical systems are non-stationary and that the mathematical origin
of non-stationarity can be proved [31].

4.2. Control Algorithm

The model (Equation (3)) is stable, observable, and controllable because the rank of
the controllability and observability matrix is equal to n, where n = 1, and the system is
a first-order system [22,24,25]. We considered a classical control algorithm for the Kv10.1
model. The controller is designed using the Sisotool in MATLAB. We chose an automated
tuning method for a PID compensator in a feedback loop, the tuning method is a robust
time response, and the controller type is PID. The controller is given by

C(s) = 316.85
(

1 + 0.0026s
s

)
(6)
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Figure 7. Measured and simulated output macroscopic current for the inactivation and deactivation
input stimuli (grey lines). Input stimulus inactivation: measured output (a), simulated output (b);
input stimulus deactivation: measured output (c), simulated output (d).

The unit step response of the controlled Kv10.1 voltage-gated ion channel in a closed-
loop, also called a feedback loop, is shown in Figure 8. The Kv10.1 in the feedback loop
displays a rise time of 0.043 s, a peak amplitude of 1.06 nA, an overshoot of 6.08%, a
transient time of 0.149 s, and a final value of 1 nA. The controlled model has a faster rise
time and transient response, and the final value corresponds to the desired value.

Figure 8. Unit step response of the Kv10.1 model in a control loop.

The feedback control system with the Kv10.1 model, G(s), and controller C(s) in a
loop was implemented in Simulink (Figure 9a). A sine waveform with unit amplitude and
frequency of 1 Hz was chosen as a simulation input. The simulated output is shown in
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Figure 9b. Nevertheless, using this approach of ion channel modeling, the ion channel
could be simulated as a single system or a system in a control loop with any randomly
chosen input, enabling the obtained output to be analyzed.
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Figure 9. Simulink Kv10.1 model in a control loop (a); simulated output for sine input (b).

Microelectromechanical (MEMS) devices and nanoelectromechanical (NEMS) devices
can be designed as MEMS PID controllers and NEMS PID controllers. In a clinical con-
text, nanorobots are already used for the mechanical opening of a cell membrane [32],
microscopic surgical procedures, drug delivery, gene therapy, or selective destruction of
cancer cells [4]. Therefore, our vision is that free-floating and guided nanorobots could
have promising applications in cancer detection and therapy. Research has shown that the
up-regulation of the selected channel Kv10.1 can promote cell proliferation and thus tumor
development in different organs and human body systems [18], whereas the downregula-
tion of Kv10.1 could potentially have the opposite effect, providing a potential oncological
target. However, since the same ion channels are also expressed in normal, healthy cells,
albeit to minor expression levels, one of the biggest challenges is to specifically block or
manipulate them only in cancer cells. Nanorobots could be programmed to target certain
cell clusters, tissues or organs (e.g., prostate, stomach, or breast) and specifically control
the activity of selected ion channels in cancer cells without affecting the same channels
expressed in surrounding healthy cells or other tissues and thus impairing their function.
A controlled down-regulation of the ion channel current in specific cells only would also
allow for a systemic application, such as the use of traveling nanorobots for the treatment
of cancer in various regions of the body or targeted tissues and cell clusters, as shown in
Figure 10, for example.

4.3. Potential Use Case for Treating Breast Cancer Using a Kv10.1 Controlled Nanorobot

Our hypothesis for the use of swimming nanorobots is to control ion-channel activity
to specifically target cancer cells in breast tumors. We know that Kv10.1 channels in
the nervous system contribute to the control of neuronal excitability. However, since
activation requires strong depolarization, a single action potential would not be sufficient
for activation [33]. In contrast, cancer cells are usually depolarized so that the channels are
predominantly open, providing a potential target for pinpoint destruction by nanorobots.
For example, overexpression of Kv10.1 channels is significantly up-regulated in invasive
breast carcinoma, whereas healthy breast tissue shows hardly any expression or activity of
the Kv10.1 channel [30,33–36]. Floating nanorobots applied via the blood circulation can be
guided to the targeted sites and measure and control the Kv10.1 channel activity of the cells
in the area of interest. Since nanorobots act as sensors and actuators, if the sensor interface
detects an altered behavior of Kv10.1 channel activity, as is the case in breast cancer cells,
the channels could be controlled accordingly by the Kv10.1 feedback control system of the
robot (see Figures 9 and 10). Alternatively, after detecting a cancer cell based on aberrant or
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abnormal channel activity, such MEMS/NEMS-based nanorobot devices may also act as a
nano-scalpel that mechanically destroys the targeted cell.

Figure 10. Illustration of possible application of Kv10.1-controlled nanorobots in breast cancer
detection and treatment. The cancerous area will be reached by the nanorobots through the blood
vessel system. Created with BioRender.

Further examples of possible applications are discussed in [34,37–39]. However, al-
though the practical implementation of this use case has not been performed and validated,
this work demonstrates a potential new, forward-looking direction for cancer detection
and therapy.

5. Conclusions

In this work, voltage-gated ion channels were modeled as control objects or systems
by applying the control system theory and a system identification method. The Kv10.1
voltage-gated ion channel exhibits dynamic behavior as a first-order dynamic system. We
presented a classical control algorithm and described how this algorithm could theoretically
be used to control the response of the Kv10.1 voltage-gated ion channel. Other control
algorithms, such as robust control or fuzzy control, could also be used. Research has shown
that controlling the Kv10.1 ion channel under up-regulated conditions plays a vital role
in cancer prevention and treatment. Nanoelectromechanical systems, such as nanorobots,
could be used in the treatment of cancer as they are able to travel through the blood vessel
system to the target cells and bind to the ion channels. The robot’s control unit can then
be activated based on the implemented control algorithm, and the desired ion channel
regulation can be performed to treat channel activity by the down or upregulation of the
targeted channels.

It is, therefore, expected that such models, which could also describe the activity of
multiple ion channels and their interactions, e.g., described by a MIMO system, will enable
the use of nanoelectromechanical systems and nanorobots, as demonstrated for the Kv10.1
voltage-gated ion channel, and for other ion channel families, with the goal of establishing
new tools for cancer detection and treatment at the single-cell level.
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Abstract: The gait and the Foot Placement Estimation (FPE) has recently been extended to 3-D spaces
by adopting a specific form of a spherical inverted pendulum (SIP). The approach is very attractive,
as it does not involve dynamics, but it is based solely on energies and momenta, however the authors
(DeHart et al.) introduced several questionable approximations, in order to reach a manageable
solution. The scope of the present paper is to revisit this spherical inverted pendulum applied to
biped walking, offering an exact solution to the gait and the FPE by using symbolic computation.
This is facilitated by exploiting the Kane’s approach to dynamical modelling, and his software
environment for symbolic manipulation, called Autolev. It generates explicit formulas describing the
energies and angular momenta before/after the impact, along with the mechanics of the impact. As
the resulting equations, function of (measurable) angular positions and velocities, are very compact,
embedded in a numerical nonlinear solver, are suitable to be implemented in real time and used in
practice to control biped robots or lower limb exoskeletons. The two main contributions of the paper
are: the recovery of the balance by stepping, in the presence of a push in an arbitrary direction and
omnidirectional walking. In this last respect, this specific form of SIP emphasizes the expenditure of
energy in the walk. For the first time, at our knowledge, the walk of the SIP, based on energy, has
been compared to the simulation of a 12 degrees of freedom biped robot tracking preview signals
using the Zero Moment Point (ZMP) of the Linear Inverted Pendulum (LIPM). This quantitatively
shows the inefficiency, in terms of energy, of the ZMP-based walk, and the gain due to the recovery
of the collision of the flying foot. Similarity in the sagittal plane and differences in the frontal plane of
the center of mass trajectories of the two approaches are shown, to open the road to an integration of
fully actuated and underactuated controls, for an efficient full-dimensional robot gait to be developed
in a future paper.

Keywords: humanoid and bipedal locomotion; legged robots; passive walking; foot placement
estimation

1. Introduction

1.1. Background

In the last decade, especially driven by the robotic school of the University of Waterloo,
the inverted pendulum model, as an evolution of the passive pantograph walker, has been
proposed for foot placement estimation (FPE) and the related biped gait design. First,
the problem was solved in two dimensions [1,2], with a first extension and test in 3-D
in [3]. More recently, the approach has been transferred to 3-D adopting a specific form
of a spherical inverted pendulum (SIP) and called SFPE [4,5]. However, in order to make
the problem manageable several questionable simplifications were introduced, i.e. the
projections of the central inertia on the two rotation axes of the SIP are considered constant,
the rotation velocity does not change before and after the contact of the swing foot with the
ground, the impact is approached approximatively, so it is the computation of the angles
after the impact.

The solution of the problem depends on three phases: pre-impact, impact and post-
impact of the flying foot. The total energy and the angular moment on the pivot point
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projected on the vertical axis are constant in the periods before and after the impact, the
velocities and loss of energy after the impact can be calculated, finally, the equilibrium is
reached imposing zero to both angular velocities at the erect standing balance point.

Instead of introducing approximations in these three steps, an exact solution is possible
by using explicitly the mathematical equations of all involved variables, and processing
them with a numerical solver, to find a solution.

1.2. Symbolic Computation

The programming of the exact expressions of the previously mentioned three steps is
simplified by adopting a method to describe dynamical systems introduced at the end of the
last century by Prof. Kane of Stanford, known as the Kane’s method [6]. He also developed
a symbolic manipulation software environment, called Autolev (now MotionGenesis) [7],
to support his method and to generate fragments of very efficient code of all needed
mathematical expressions to be embedded into a nonlinear numerical solver. The approach
allows to represent unitarily, either holonomic and non-holonomic systems, and to handle
explicitly kinetic energy, momenta, impact, impulsive forces, and generalized momenta.

1.3. State of the Art of Balance, Stepping and Walking

In humanoid robotics the generality of the techniques covers basic walking (flat-footed)
on flat surfaces in the absence of disturbances. They mostly track for the whole stride a
preview signal based on the ZMP of the LIPM [8–10].

At difference, human-like gait, with its mix of fully actuated and underactuated phases
(where walking during one of the phases is a “controlled falling”) is more complex [11].

Push recovery, walking on rough terrain, and agile footstep control are active research
topics [12].

For push recovery in 2-D, along with [2], using the LIPM, see also [13], and, by adding
a flywheel [14]. In 3-D the concept of “N step-capturabiliy” has been introduced in [15].
However, the LIPM is used, i.e., the hight of the COG is assumed constant, and no inertia
is accounted for.

Ref. [11] discusses theoretically the problems of underactuation and collision in
the walk, applied in practice in this paper. The very recent reference [12] contains a
comprehensive review of the literature in this field and approaches the walk, as is done
here, through foot placement.

1.4. Aims and Organization of the Paper

The novel approach of processing with a numerical solver the basic energy equations
of the SFPE does not involve dynamics and offers several advantages in generating the
walk. It does not follow an a priory trajectory, the gait style can be changed at each step,
so also cadence and step length, allowing aperiodic walk. It is robust to disturbances.
Flat ground has been considered here for simplicity; however, looking one step ahead
(watch your step!), also non-flat ground can be accounted for. Maneuvering has been
demonstrated in the last section.

This paper has not the intention to offer a solution for the control of a complete robot,
but to pave the road, with a motion generation, for a future integration in the gait of three
aspects: a realist stride with finite double stance periods, energy efficiency, and a mixture
of fully actuated and underactuated phases. The idea to add a small energy at each step
to maintain the walk is similar to passive-dynamic walkers [16], and in the line of the
frameworks of hybrid zero dynamics [17–19].

The paper is organized as follows: Section 2 discusses the existing results of the SFPE;
Section 3 introduces the Kane’s method and the symbolic environment Autolev; Section 4
presents the spherical inverted pendulum (SIP) model used in this paper; Section 5 de-
scribes the equations needed to estimate the foot placement to reach the balance point;
Section 6 applies the approach to find the balance point by stepping in the presence of
disturbances in any direction; Section 7 applies the SIP to generate a gait with arbitrary
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trajectory and pace, and compares the gait generated from the SIP with the classical gait
of an equivalent biped robot based on the ZMP of the LIPM and previews signals [20];
Section 8 concludes the paper, and outlines future works to embed the SIP in the generation
of the gait for a complete biped.

2. The Spherical Foot Placement Estimation

Traditionally, the two degrees of freedom of the SIP (sometime three degrees of
freedom are defined, involving, also, the length of the pendulum) were obtained with two
rotations on the horizontal axes of the inertial frame [8]. As the final objectives were the
two projections of the COG trajectory on the ground, this model originated the celebrated
ZMP expressions of the LIPM [9].

In the present case, in order to exploit energies and momenta, rotations along the
vertical and one of the horiziontal axes have been chosen. Indicated with γ and ω the
rotation velocities of the SIP, on the vertical and the horizontal axis on the frontal plane of
the biped, the approach of [4,5] is based on the projection of the angular momentum on the
pivot point of the pendulum on these two directions, and expressing the kinetic energy as
function of these two projections. Cleverly, noting that the total energy and the momentum
projected on the vertical axis remain constant during the periods before and after the
collision of the swing foot with the ground, approaching the collision and the switching of
the pivot foot, the problem is solved by writing the equations of the pre-impact, impact
and post-impact phases.

Discussion

To render the problem manageable the two projections of the angular momentum
are expressed as a function exclusively of γ or ω and the two projections of the central
inertia are considered constants. i.e., the central inertial matrix is assumed diagonal, and
I11 and I33 have identical values (see Appendix A). The impact is solved approximatively.
Moreove, no importance is given to the angle of rotation on the vertical axis.

3. The Kane’s Method and Autolev

In this work, the so-called Kane’s method [6] was adopted to model the spherical
inverted pendulum. This method is particularly interesting in this case because it is equally
applicable to either holonomic and non-holonomic systems and, for non-holonomic sys-
tems, without the need to introduce Lagrangian multipliers. Briefly, the main contribution
of the Kane’s method is that, through the concepts of motion variables (later called gener-
alized speeds), the vectors of partial velocities and partial angular velocities, generalized
active forces and generalized inertia forces, the dynamical equations are automatically de-
termined, enabling forces and torques with no influence on the dynamics to be eliminated
early in the analysis. Early elimination of these noncontributing forces and torques greatly
simplifies the mathematics and enables problems with greater complexity to be handled.

3.1. Generalized Coordinates and Speeds

A multi-body system, which possesses n degrees of freedom, is represented by a state
with a n-dimensional vector q of configuration variables (generalized coordinates) and an
identical dimension vector u of generalized speeds called also motion variables, that could be
any nonsingular combination of the time derivatives of the generalized coordinates that
describe the configuration of a system. These are the kinematical differential equations:

ur = ∑
i=1,··· ,n

Yriq̇i, r = 1, · · · , n (1)

Yri may be in general nonlinear in the configuration variables so that the equations of
motion can take on a particularly compact (and thus computationally efficient) form with
the effective use of generalized speeds.
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3.2. Partial Velocities and Angular Velocities

Partial velocities of each point (partial angular velocity of each body) are the n three-
dimensional vectors expressing the velocities of that point (angular velocity of that body)
as a linear combination of the generalized speeds. Let be vB the translational velocity of
a point B and ωP the rotational velocity of a body P with respect to the inertial reference
frame, then

vB = ∑r=1...n vB
r ur

ωP = ∑r=1...n ωP
r ur

(2)

where vB
r and ωP

r are the rth partial velocity and partial angular velocity of B and P,
respectively.

3.3. Generalized Active and Inertia Forces

The n generalized forces acting on a system are constructed by the scalar product
(projection) of all contributing forces and torques on the partial velocities and partial
angular velocities of the points and bodies they are applied to.

Let us consider a system composed by N bodies Pi, where the torque TPi , and force
RBi applied to a point Bi of Pi are the equivalent resultant (“replacement” [6]) of all active
forces and torques applied to Pi. Then

FPi
r = ω

Pi
r · Ti

Pi + v
Bi
r · R

Bi
r (3)

is the rth generalized active force acting on Pi and

Fr = ∑
i=1,··· ,N

FPi
r (4)

the rth generalized active force acting on the whole system. Identically for the inertia forces,
indicated as F∗

r .
The dynamical equations for an n degree of freedom system are formed out from

generalized active and inertial forces F∗
r

Fr + F∗
r = 0, r = 1, · · · , n. (5)

These are known as Kane’s dynamical equations.
They result in a n-dimensional system of second order differential equations (2n order

state variable representation) on generalized coordinates and speeds

M̄(q)u̇ + C̄(q, u)u + Ḡ(q)− Γ̄(q, u, τ) = 0, (6)

where the parameter definitions are similar but not identical of the classical Lagrangian
form and more efficient computationally [21].

3.4. Non-Holonomic Constraints

When m constraints on the motion variables are added to the model, only n − m
generalized speeds are independents. The system is, then, called a non-holonomic system.
The non-holonomic constraints are expressed as a set of m linear relationships between
dependent and independent generalized speeds of the type

ur = ∑
i=1,··· ,p

Ariui, r = p + 1, · · · , n, (7)

with p = n − m. In this case, selected the independent speeds, the Kane’s method immedi-
ately offers the minimal 2p order state variable representation from

F̃r + F̃∗
r = 0, r = 1, · · · , p, (8)
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where Kane calls F̃r and F̃∗
r non-holonomic generalized active and inertial forces, while

the remaining m original redundant equations resolve themselves in the expressions of
the m reaction forces/torques returned by the constraints. Because the Kane’s method is
fundamentally based on the projection of forces on a tangent space on which the system dy-
namics are constrained to evolve, spanned by the partial velocities, reaction forces/torques
result from the projection on its null-space.

Moreover, it is always possible to handle an holonomic (configuration) constraint
as if it is non-holonomic, that is, to treat it as a motion constraint. This is particularly
advantageous to represents the spherical inverted pendulum with a pantograph during a
step, where in the first phase non-holonomic constrains allow pivoting on the supporting
leg, and in the second phase, releasing the non-holonomic constraints the impact of the
swing leg with the ground can be represented.

3.5. Unilateral Constraints and Collision

As a consequence of switching between different non-holonomic models during gait,
unilateral constraints and collisions cannot be ignored.

Clearly, adopting non-holonomic dynamics assuming points of the feet fixed to the
ground is valid for bilateral constraints (ignoring eventual detachment from the ground and
slipping). In the approaches known as hybrid complementarity dynamical systems based
on forward dynamics [22] the necessary conditions for satisfying unilateral constraints are
directly embedded into the model. Vice versa, a minimalistic view is adopted here, noting
that in a physiological gait, normally, bilateral constraints on the feet are not assumed to be
violated. Hence, we design a priori walking strategies and we test through the simulator
that this effectively occurs, by monitoring, a posteriori, reaction forces for the conditions:

Fz f ooti
> 0, i = 1, 2 (9)

and
|Fjf ooti

| < μFz f ooti
, j = x, y, i = 1, 2. (10)

Obviously, the control we propose cannot adapt itself to pathological conditions, such
as a slipping surface.

For the second point, mechanics of the collision of the swing foot to the ground has to
be considered, when switching to the next step causes the transfer of final conditions of the
generalized speeds of one phase to the initial conditions of the successive. With reasonable
assumptions of non-slipping and anelastic restitution the reaction impulsive force FB at the
impact point B and the initial conditions of the generalized speeds for the new phase u(t+)
can be computed. Also for this aspect, Autolev offers all needed mechanical expressions.

The following analysis is based on two concepts: generalized impulse and generalized
momentum [6,23]. Indicate, as usual, with vB

r the r-th component of the partial velocity
vectors of the point B (the swing foot), the generalized impulse at the point B at the contact
with the ground at instant t− is defined as the scalar product of the integral of the reaction
impulsive force FBδ(t − τ) in the time interval t− ÷ t+ with the corresponding partial
velocities

Ir ≈ vB
r (t

−)T · FB, r = 1, · · · , n, (11)

the generalized momentum is defined as the partial derivative of the kinetic energy K with
respect to the r-th generalized speed

pr(t) = ∂K/∂ur, r = 1, · · · , n, (12)

then, Kane proves that
Ir ≈ pr(t+)− pr(t−). (13)

Indicate the matrices
VB = (vB

1 (t
−) · · · vB

n (t
−)) (14)
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P = {∂pi(t−)/∂uj}, i, j = 1, · · · , n (15)

of vectors of partial velocities, and of partial derivatives of pr(t) with respect to the
generalized speeds, and the vectors

I = [I1 · · · In]
T = VBT · FB (16)

u(t) = [u1(t) · · · un(t)]T (17)

vB(t) = VB · u(t) (18)

[p1(t), · · · , pn(t)]
T = P · u(t) (19)

of generalized impulses, of generalized speeds, of the velocity of point B and of generalized
momenta, respectively.

Then, taking into account from (16) to (19), considering that vB(t−) is known and
vB(t+) is zero, assuming non-slipping condition and inelastic collision, the following
system of equations is solved to derive the unknown FB and u(t+):[−Pu(t−)

0

]
=

[
VB(t)T −P

0 VB(t)

]
·
[

FB

u(t+)

]
(20)

An essentially similar equation was discussed in [11]. At the solution, along with the
velocity u(t+) after the impact, it must be verified that the impulsive force FB satisfies the
conditions of unilateral constraint (9) and (10).

4. The Spherical Inverted Pendulum Model

In describing the spherical inverted pendulum the same notation used in [4,5] was
adopted. In addition, explicitly, θz indicates the angle of rotation with respect to the
vertical axis, and two degrees of freedom of the swing leg relative to the pendulum were
introduced, with the angles αz and α, as shown in Figure 1, with the kinematics of the
joints in Figure 2a. The configuration Figure 2b will be used in special situations, only to
perform side shuffle.

The angle position and velocity of the pendulum on the z and y axes of the inertial
frame, and the two rotations of the swing leg with respect to the local axis z, and y of the
supporting leg are θz, θ, γ, ω, αz, α, respectively. The configuration variables of the model
are θz, θ, x, y, z, as the swing leg is considered without mass and inertia, where x, y, z are the
coordinates of the pivot foot. The motion variables are γ, ω, u1, u2, u3, where imposing a
non-holonomic constraint to the pivot foot, the velocities , u1 = ẋ, u2 = ẏ, u3 = ż, are zero
during the swing phase, but are released at the impact of the swing foot with the ground.

In the next sections the SFPE and the gait based on this model are described.

Figure 1. The spherical inverted pendulum.
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Figure 2. The kinematics of the joints—(a) forward/bacward motion of the flying leg, (b) side shuffle.

5. The Estimation of the Balance Point

Before the impact the motion variables have value γ−, ω−, 0, 0, 0 and after γ+,
ω+, u+

1 , u+
2 , u+

3 . The total energy and the projection on the vertical axis of the angular
momentum, kγ (the notation of [4] is maintained, even if it is shown in Appendix A that in
general both speeds are present in this projection, and here an explicit dependency on γ is
no more needed), are constant before and after the impact, however, they have a reduction
during the impact.

To simplify the computations and to avoid spurious solutions, the next procedure is
started after the pendulum reaches the vertical position and θ > 0. Let us say that at time
t0 the state variables assume the values θz0, γ0, θ0, ω0, the total energy T0, and the moment
on the vertical axis kγ

0 (these last two values are the same, also, at the unknown instant of
the impact t−). This gives the first equation, linking all state variables at the pre-impact.

T0 = T(θz
−, γ−, θ−, ω−) (21)

At the impact the swing foot, indicated with the point B, touches the ground. The
vertical coordinate of B offers the second equation, linking the pre-impact angle θ− to α
and αz

Bz(θ
−, α, αz) = 0 (22)

The constant momentum kγ offers the third equation, linking γ− to the other pre-
impact motion variable

kγ
0 = kγ(γ−, θ−, ω−) (23)

Switching the pivot foot after the impact, the relationship between the angles θz
+, θ+

of the new pivot leg from θz
−, θ−, α, αz is obtained equating the three projections, with

respect to the inertial axes, of swing and support legs (i.e., the swing leg becomes the new
support leg)

SU(θz
+, θ+) = SW(θz

−, θ−, α, αz) (24)

The solution of the impact equation (performed symbolically) (20) gives the motion
variables after the impact, hence the total energy and the angular momentum kγ. The total
energy after the impact can be evaluated before the switching of the pivot foot so it does
not require the value of θ+ and θ+z after switching. The angular momentum is computed
on the new pivot point, so it requires the new value of θ+ and θ+z after the switching. This
gives the third and fourth equations.

TE+ = TE(θz
−, θ−, γ+, ω+, u1+, u2+, u3+)

kγ+ = kγ(θz
+, γ+, θ+, ω+)

(25)

179



Appl. Sci. 2021, 11, 1588

Moreover, by imposing velocity zero of the swing foot, after the impact, angles before
the impact can be related to motion variables after, with a further relationship

[Ḃx, Ḃy, Ḃz]
T
= 0 = F(θz

−, θ−, α, αz, γ+, ω+, u1
+, u2

+, u3
+) (26)

To estimate the foot placement to reach the balance in an erect posture after the impact,
with ω = 0, γ = 0, and θ = 0, noting that kγ+ is zero by the last condition (28), it is imposed
that the total energy after the impact is equal to the maximal potential energy

TE+ = m · g · L (27)

Finally, to impose that γ be zero at the balance point (but not necessarily after the
impact, as it will be seen in the next Figure 4), from the impact the last equation is set

kγ+(θz
+, γ+, θ+, ω+) = 0 (28)

From the previous relationships, the unknown variables θz
−, θz

+, γ−, θ−, θ+, ω−, α, αz
are determined, using non-linear least squares, with some numerical solver such as the
Levenberg-Marquardt algorithm [24,25].

6. Recovering Balance

The first application of the SFPE is to recover balance in the presence of an impulsive
disturbance. It is assumed that the biped is in quiet standing balance, conventionally
oriented in the direction of the x axis. An impulsive horizontal force in an arbitrary
direction generates a velocity of the COG. The biped, in reorienting himself, will react in
two different ways, with a minimal rotation around the z axis, according to the relative
direction of the pulse: if the direction is closer to his sagittal plane he will mostly move the
free leg forward (or backward), if it closer to the frontal plane the motion will be mostly
laterally with a side shuffle. To emulate these two distinct situations if the direction is less
than 45◦ to the sagittal plane the model adopted is the standard one of Figure 2a, otherwise
Figure 2b. When the angle θ falls below a safety value and the direction is detected from the
falling velocity, let say [vx, vy, vz]

T , the model (a) or (b) is selected according to atan2(vy, vx),
and initial velocities are assigned to ω and γ from the inverse of the first two rows of the
matrix of partial velocities (29)

VCOG = [vCOG
ω vCOG

γ ]. (29)

Then, the SFPE algorithm is run. This defines, among other variables, the swing foot
angles α, αz for the impact that allows recovering the balance in one step. The numerical
algorithm does not converge in two cases: when the total energy after the impact is lower
than the maximum potential energy, or when one step is not enough to recover the balance.
In the first case the condition (27) cannot be satisfied. In the second case the bound on the
maximum allowable α is not satisfied.

Two examples are presented using the two models (Figure 3). The situation of a push
perfectly aligned with either the sagittal or the frontal plane is not considered, as it can
be simply solved with the classical 2-D approach. In both cases the initial velocity is of
0.5 m/s and it is detected, at instant 0.5 s, when the falling angle reaches 0.1 rad. The first
example, using model (a), presents the response to a push at an angle of 20◦ from the x axis,
in the second, with model (b), the angle is of 110◦.
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(a) model (a) with α = −0.316, αz = 0.087 rad (b) model (b) with α = −0.32, αz = 0.88 rad

Figure 3. Recovering an impulsive disturbance-COG behaviours.

Apart from a difference in the sign of the angles, and the velocities the two behaviours
are very similar, so the case of model (b) is detailed, only.

The original central inertia matrix of the example, the same of the biped of [20], given
in the Appendix A, had the elements I12 and I23 equal zero, the correct responses of angles
(speeds and positions) in Figure 4a,b are represented with solid lines. To see the differences,
fictitious values different from zero have been assigned to I12 and I23, and the example
rerun. The responses are indicated in the legends with a X, and plotted with dashed lines.

From the SFPE, the flying foot final position can be forecasted and the SIP COG
trajectory used as a reference, knowing the kinematics, to control the joints of a real biped
robot or exoskeleton to recover balance.

(a) model (b) angular velocities (b) model (b) angles

Figure 4. Angle velocity and position behaviours-with the effect of off-diagonal elements different from zero in the
inertial matrix.

7. The Gait

At difference of other works, only some of the expressions of Section 5 are exploited
for generating the gait, the SFPE is only used to impose a halt at the end of the walk.

α is chosen to achieve the desired step length, αz to achieve the COG sway from
−θz Max to θz Max and to control the offset with respect to the baseline of walk. The gait is
initiated giving an initial condition to θz, γ, θ, ω, or, simply, from a standing up balance by
leaving the pendulum to fall forward.

Each step is concluded when the swing foot touches the ground (the vertical coordinate
of point B becomes zero, Equation (22)). From the impact Equation (20) the new motion
variables γ+, ω+, u+

1 , u+
2 , u+

3 are determined, and from Equation (24) the starting values
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of θz
+, θ+ for a new step are computed. The gait is maintained by increasing at each step,

after impact, the resulting ω+ to compensate for the reduction of kinetic energy due to
the impact, controlling, also, the gait cadence, and perturbing γ+ to correct the angle of
direction of the walk.

In the present model, the two legs have no mass and inertia. Therefore, the motions
of the angles α and αz are instantaneous and energy free. The only energy contribution to
maintain the walk is given by proper impulsive forces and torques just after the impact to
modify the velocities ω+ and γ+ resulting from the impact. This emulates, in a real walk,
the contribution given by the biped in the brief double support phase and in the period of
single support when the foot is flat and able to transfer torques.

Five control variables are identified to control the five objectives of the walk: cadence,
step length, distance between f eet, y o f f set with respect to the baseline of walk, and
direction o f walk ( even if interacting each other, each of the five variables predominantly
controls one of the five objectives). After each impact, at the start of step k they are

δω(k) ⇒ ω(k) = ω+ + δω(k)(cadence)
δα(k) ⇒ α(k) = α0 + δα(k)(step length)

δsway(k) · u + δy(k) ⇒ αz(k) = (αz0 + δsway(k)) · u + δy(k)
(spacing between f eet and y o f f set)

δγ(k) ⇒ γ(k) = γ+ + δγ(k)(direction)

(30)

where u assume the values +1,−1 according to the right or left foot support.
It must be noted that no periodic reference is tracked. The whole gait style (cadence,

length of the step, offset with respect to the baseline of walk-through a side shuffle, spacing
between the two feet and direction) can be changed at each step. The energy consumption
of the gait is measured by the difference, after the foot collision, of the kinetic energies
before and after the application of the control (in particular δω(k) and δγ(k)).

The next Figures 5 and 6 show a sample of a typical rectilinear walk, terminating
with a halt. In particular, the Figure 7 show the energy needed at each step to maintain
the gait, provided by δω(k) and how the gait collapses after two steps if no maintenance
is performed.

(a) COG along the x and y axes
(b) Details of the projection of the COG on the ground and pivot
foot posizion

Figure 5. The COG behaviour.
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(a) The angles θ and θz. (b) The velocities ω and γ.

Figure 6. Angle position and velocity behaviors.

(a) The energies when the gait is maintained. (b) The decay of the energies in absence of maintainment.

Figure 7. The energies.

7.1. Comparison between SIP and ZMP Based Gaits

An interesting question is how the SIP gait compares with the classical one based on
the ZMP of a linear inverted pendulum. In previous papers, a 10/12 degrees of freedom
biped model was simulated in rectilinear and curved trajectories [20]. The technique
adopted was classical, by controlling the model to follow a preview trajectory based on
the ZMP.

The total mass, the central inertia and the COG height of the biped were used to model
the SIP. The parameters that control the gait of the SIP were adjusted to synchronize the
two walks. To compare the center of pressure (COP) on the shoes in the two cases, the
SIP is mounted on the ankle of the same foot of the biped (see Appendix A), no torque
is transferred from the joints of the SIP, but the force on the ankle, returned from the
non-holonomic constraint, are balanced by an identical force in the ZMP on the sole. The
comparison is shown in the next figures.

In Figures 8a,b and 9 the two trajectories are superimposed. In particular, the right and
left supports of the SIP and the periods of double support of the preview based simulation
are also indicated.

The COG behaviours along the x a z axes are very similar, but not along the y axis.
In fact, the details of the two COGs projected on the ground, and the relationships be-
tween the COP and the foot support placement, compared in the Figure 10a,b, show
marked differences.
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(a) COGx, comparisons (b) Cogy, comparisons

Figure 8. Comparison of COGx and COGy.

Figure 9. COGz, comparisons.

To achieve a similar sway of the COG on the y direction in the two cases, the SIP keeps
the feet closer than in the preview case. Let consider that the SIP, passed the erect position is
in free fall and the COP jumps suddenly on the new foot. Vice versa, in the preview-based
gait the biped is always controlled to maintain the COP close to the supporting foot, and to
transfer it, almost continuously from single to double support.

Finally, the energies were compared in Figure 11. As expected, the preview based on
the ZMP demands a greater expenditure of energy.

(a) The COG, and the foot support (b) Relationship between COP and foot support

Figure 10. Comparison of COG and COP.
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(a) Kinetic energies (b) Total and Potential energies

Figure 11. Comparison of energies.

7.2. Turning While Walking

This last subsection shows how to generate turning while walking using the SIP model.
The walking trajectory is described in part III of [20]. It is obtained concatenating arcs

of circle, whose ray can be changed at the beginning of each step. The control is based on
a running local reference frame with respect to which the SIP is constrained to maintain
a rectilinear walk. The local running frame, at each instant, rotates along the z axis with
respect to the world space to have its x axis tangent to the trajectory, and moves its origin
to follow an involute of the path curve. Let s(t) and ṡ(t) be the curvilinear coordinate and
its velocity on the path, their values also represent the motion on the abscissa of the local
frame, and Θz(t) the orientation on the z axis of the local frame at each instant t.

At time T(k), immediately before the step k starts, let indicate with Ax L(k), AyL(k),
Bx L(k), ByL(k) the x and y coordinates of the last supporting foot, and of the swing foot at
the contact (it is going to be the next support), in the local frame, respectively, and with
θz(k) = θz

+ the current orientation angle after the contact.
δω is fixed to obtain the desired average cadence of the gait, δα the average step length,

and δsway the average distance between f eet, averaging 1/(T(j)− T(j− 1)), Bx L(j)− Ax L(j),
(ByL(j)− AyL(j)) · u, respectively, over the period 1 ≤ j ≤ k. (ByL(k) + AyL(k))/2 mea-
sures the o f f set of the trajectory with respect to the centerline in the local frame and
(θz(k − 1) + θz(k))/2 the mean direction of walk at time T(k).

From those measures a mild proportional, integral feedback is set to δy(k) and δγ(k) to
maintain o f f set to zero, and direction to follow Θz(k). The result is the following Figure 12.

(a) Trajectory in the local frame (b) Trajectory in the world frame

Figure 12. Trajectory-turn while walking.
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8. Conclusions

Starting from the ideas of [4,5] of using a SIP model that emphasizes energies, the gait
and the SFPE were reviewed with a solution based on the exact computation of the kinetic
energy, the momentum projected on the z axis and the foot collision. Let note, that with
this approach of SFPE the complicate handling of the projection of the angular momentum
on the horizontal axis, contained in the original development, is not any more needed and
arbitrary central inertia matrices are allowed. Consider that the solution of the impact
(Equation (20)) offers the reaction forces at the collision, also. They are not used in this
paper, but they will be in future extensions.

Very compact code for the equations have been obtained adopting the Kane’s method
and using his software environment. The solution of these equations, through a non-linear
least square algorithm such as Levenberg-Marquardt, allows to introduce box bounds of
the variables, to exploit the Jacobian, and to test for the feasibility of the solution. Moreover,
the dependency of these equations on measurable angle positions and velocities and
knowledge one step ahead of the ground level consents a real-time implementation to
control robots or exoskeletons.

The introduction of the angle αz, taking into account the angle θz, has extended the
approach to non-periodic and omnidirectional gait and to recover the balance from a push
in an arbitrary direction.

This paper, originally motivated by the need to help to recover balance, when dis-
turbances are present, in a lower limb exoskeleton [26], is just the starting point. Future
exentions, in order of complexity, are: introducing in the pantograph model the width
of the pelvis in the distance between the two legs, adding a mass to the legs (sometime
balance is recovered by inertia, just extending one leg), running and jumping.

The extension of the real-time control of the gait in the Cartesian space to all five
control variables (30) with Model Predictive Control [27] will be also considered. So far we
did not succeed, and only two variables have been controlled with classical PI techniques.

The approach was tested on a dynamic simulation of the SIP. Moreover, as the final
objective is to offer a flexible Motion Generator for biped robot walking, the results have,
also, been compared with the simulation of a fully actuated 12 DOF of a biped robot. In
the comparison, the similarity of the COG behaviour in the sagittal plane suggests that
actuated and underactuated controls can be intermixed [28], transforming the instantaneous
increment of rotational velocities after the flying foot collision into a proper torque of the
ankle of the supporting foot during double support and in the phase of single support,
when the foot is flat. However, to obtain a nontrivial finite period of double support,
compliance has to be added to the actual anelastic collision. As compliance is essential for
that [11,29].

The behaviour of the COG in the frontal plane, that is consequence of a pure ballistic
trajectory, will require a further investigation, as the resulting sway of the COG in the
frontal plane seems excessive.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. A Kinetic Energy, Projection of the Angular Momentum on the Vertical

Axis and Biped Parameters

The expressions of the kinetic energy and the angular moment on the vertical axis of
the model in Figure 2a are the following

KE = 0.5 · (I22 + m · L2) · ω2

+(I23 · cos(θ)− I12 · sin(θ)) · γ · ω
+0.5 · (I33 · cos(θ)2 + I11 · sin(θ)2) · γ2

−I31 · sin(θ) · cos(θ) · γ2

+0.5 · m · L2 · sin(θ)2 · γ2

(A1)
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kγ = −2 · I31 · cos(θ) · sin(θ) · γ
(I23 · cos(θ)− I12 · sin(θ)) · ω

I33 · cos(θ)2 · γ
I11 · sin(θ)2 · γ

m · L2 · sin(θ)2 · γ

(A2)

The parameters of the model used in this paper, taken from [20], and representing a
patient wearing an exoskeleton are shown in Figure A1.

Figure A1. the biped parameters.
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Abstract: Background: Stroke in childhood presents a serious rehabilitation challenge since it leads
to physical, cognitive and psychosocial disability. The objective of our study was to describe the
effectiveness of robot-mediated therapy (RMT) with Gloreha Sinfonia in addition to a conventional
treatment in the recovery of the sensory-motor capabilities of the paretic hand and the quality of
life in a ten-year-old child after a stroke. Methods: The girl was enrolled to undergo 10 sessions of
RMT with Gloreha Sinfonia. She was evaluated with functional scales and with upper limb kinematic
analysis at pre-treatment (T0) and at the end of treatment (T1). Outcome measures were Fugl-Meyer
Assessment-Upper Extremity (FMA-UE), Visual Analogic Scale (VAS) and Activities and Participation
of Daily Life (ADL). In addition, a Force Assessment System based on Virtual Reality games was
used to assess the force control and modulation capability at T0 and T1. Results: At the end of
treatment, the patient improved in functional scales and in quality of life for greater involvement
in some activity of daily living. Force control and modulation capability significantly increased
after the treatment. Conclusions: This clinical case highlights possible positive effects of a combined
(conventional plus robotic) rehabilitation treatment for the upper limb in pediatric stroke outcomes
from both a sensorimotor and functional point of view, also improving the motivational and affective
aspects of the patient and of family members. Further studies are needed to validate these results
and to identify the most appropriate modalities and doses.

Keywords: pediatric stroke; robotics; upper limb; hand rehabilitation; device; Gloreha Sinfonia;
case report

1. Introduction

Even though stroke has long been accepted as an adult health problem causing sub-
stantial morbidity and mortality, it is also an important cause of acquired brain injury in
young patients, occurring most commonly in the neonate and during childhood. Pediatric
stroke incidence rates, including both neonatal and childhood and both ischemic and hem-
orrhagic stroke, range from 3 to 25 per 100,000 children in developed countries. Newborns
have the highest risk ratio: 1 in 4000 live births [1,2]. The incidence of arterial ischemic
stroke is highest in children aged under 1 year [3]. Children also have a more diversified
and larger number of risk factors for stroke that differ significantly from adults [1,4,5].
The risk factors for AIS in the pediatric population are arteriopathy, cardiac disease, car-
diac surgery/interventions, sickle cell disease, infections, thrombophilia and perinatal
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factors [1,6]. The clinical presentation of childhood stroke varies depending on the age of
the child, and the most common clinic presentations are functional neurological disorders
(20.0%), transient neurological deficits (17.8%), migraine (15.6%) and seizure (11.1%) [6,7].
The recovery of the arm function is one of the main goals of rehabilitation attempts after
childhood stroke; the upper limb function is essential in the performance of everyday
activities and has a significant impact on independent functioning and the overall quality
of life of the affected children. The aim of rehabilitation of the upper limbs is to prevent the
disuse of the impaired side of the body. Many studies in the literature have shown that
therapy involving sensorimotor exercises to simulate meaningful tasks used in daily life
increases the functional recovery of the affected upper limb [8–10]. Realistic contexts of
functional activities, such as reaching or pointing towards an everyday object, help patients
to acquire control strategies to compensate muscle weakness and inaccuracies [11]. In order
to rehabilitate the upper limbs, there are different treatments available. Constraint Induced
Movement Therapy (CIMT) is a rehabilitative methodology widely used currently, even on
infants under one year of age (named baby-CIMT); it is considered feasible and without
adverse effects [12]. Kwakkel et al. demonstrated that high-intensity and task-specificity
are two of the main features of any successful stroke rehabilitation program [13,14]. In
the last few years, therapy aided by a robotic exoskeleton is noted for its capability of
supporting repetitive and high-intensity training tasks [15]; a rehabilitation robot can as-
sist the physiotherapist in administering programmable and customizable rehabilitation
procedures according to the type of treatment required. When combined with interactive
programs such as virtual reality (VR), robot-aided therapy can assign functional meaning to
the therapy, creating a motivating environment [16,17]. Active and very inspiring practice,
with intensive and oriented repetitions, is essential to induce changes in neuroplasticity
within the sensory-motor system and improves performance in motor tasks [17]. The use
of robotics and video gaming within a pediatric population can improve motivation and
attention while focusing on the practice of specifically difficult motor tasks [18,19].

In the pediatric field, it is possible to combine rehabilitative treatments in any stroke
phase, exploiting the potential of innovative technology for sensor-motor and cognitive
recovery and for the continuum of care also at home [8]. In pediatric strokes, studies
currently available are mainly aimed at the use of virtual reality and tele-rehabilitation. The
use of robotic devices in the pediatric population is still under study. In fact, to date, no
studies have investigated the efficacy of Gloreha in the motor recovery of hand functions
in children after stroke. Therefore, this case report aims to describe the feasibility and
the effectiveness of an RMT with Gloreha Sinfonia plus a conventional treatment in the
recovery of the sensory-motor capabilities of the paretic hand and the quality of life in a
ten-year-old child after stroke.

The paper structure is as follows: Section 2 describes the materials, i.e., Gloreha
Sinfonia, the developed rehabilitation exercises, the experimental setup and protocol, the
developed assessment system based on VR and force measurement, and the evaluated
outcome measures; Section 3 reports the results of the experimental validation, which are
discussed in Section 4. Conclusions and future work are provided in Section 5.

2. Materials and Methods

2.1. Trial Design

In this case report, a ten-year-old girl with right hemiparesis following ischemic stroke
caused by probable primary central nervous system angioitis was enrolled to undergo
10 sessions of RMT with Gloreha Sinfonia.

The aim of this study was to provide an account of the efficacy of RMT using Gloreha
Sinfonia in terms of improvements in the range of motion, spasticity, force modulation
capability and functionality of the hemiplegic hand in pediatric stroke patients. This paper
was organized according to CARE guidelines [20]. Figure 1 presents the timeline.
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Figure 1. Timeline.

2.2. Participant

A nine-year and eleven-month-old girl on 24 March 2020, who apparently was in
a state of full wellbeing, fell to the ground and lost consciousness after feeling a severe
headache while she was playing with her brother; then, she had generalized hypertonus,
trismus and emission of noises for about 10 min with apparent resolution. When the
ambulance arrived, the little girl had regained consciousness and was able to carry out
simple orders with her 4 limbs. When she arrived in the Umberto I ER, her speech ap-
peared fluid and there were no evident cranial nerve deficits. Later, the girl complained
of headaches again, and she had a reduced ability to move on the right side, deviation of
the buccal rim and dysarthria. She underwent brain MRI in urgency, which highlighted
“ischemic acute lesion in the left Rolandic area”. Her parents reported a history of mild
and sporadic headache in the previous days. Transferred for competence to the ER of the
Pediatric Hospital Bambino Gesù of Rome, the girl appeared alert, oriented and responsive
to verbal stimulus. The right side was compromised, with deviation of the buccal rim and
a deficit of tone and strength that was greater in the upper limb than in the lower limb;
moreover, she had difficulty in trunk control in sitting positions and had no problems
with dysphagia and desaturation. She started low molecular weight heparin, as per the
hematological prescription and according to Pediatric Stroke Guidelines [8]. As soon as
possible, the child was transferred to the Department of Neurology of the same hospital to
complete the investigations planned for this case. During neurological hospitalization, the
girl underwent another brain MRI, which confirmed recent ischemic lesions. In particular,
they were in the territory of the left Middle Cerebral Artery (MCA) with greater extension
compared to the first MRI examination, associated with a reduction in the left Internal
Carotid Artery (ICA) caliber and left M1 and Al flow profile irregularities (left MCA and
Anterior Cerebral Artery—ACA—arteritis). The baby was subjected to ultrasound of the
neck vessels, evaluation and cardiological examinations, immuno-infectious examinations,
thrombophilia screening, trace oligoclonal bands and platelet aggregation tests. In consid-
eration of the exclusion of secondary causes and of vasculitis alterations in other parts of
the body, the diagnostic suspicion of primary CNS angiitis was conducted, for which, to
complete the diagnosis, and further in-depth examinations were carried out according to
the national protocol for primary vasculitis [8]. By 27 March 2020 to 4 April 2020, the child
had also started treatment with intravenous cortisone. In a short period of time, the child
showed an improvement in clinical conditions, in particular in dysarthria and in the ability
to make minimal movements with the right lower limbs. Upon discharge from neurology,
she was prescribed aspirin, heparin suspension and cortisone scaling. On 4 April 2020, the
child was transferred to the Pediatric Neurorehabilitation Department of the same hospital
located in Palidoro (near Rome) to begin an intensive neuro-motor rehabilitative treatment.
She was admitted to Bambino Gesù Rehab Department from 4 April 2020 to 12 June 2020.

Therefore, after 15 days from the stroke onset, she began intensive rehabilitation
treatment consisting of 5 sessions/week of neuro-motor therapy, 2 sessions/week of speech
therapy and 1 session/week of occupational therapy. In addition to conventional motor
treatments, she performed robotic motor training for the upper limb (Mit Manus). The
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proposals were recognition activities of different textures, heights and shapes to stimulate
the sensitivity of the right upper limb, activate the intrinsic muscles of the hand, and to
improve the pronation–supination of the forearm and coordination of the two upper limbs
in simple gestures of daily life. At the last MRI examinations on 10 April and 19 May 2020,
respectively, there was a reduction in the known ischemic lesions in the left hemisphere
and a reduction in the size of ICA, the M1/M2 sections of the MCA and the A1 section of
the ACA. Upon discharge, the condition of the child improved overall, reached a moderate
static and dynamic control of the trunk and started ambulatory training with the help of an
ankle-foot orthosis, but right hemiparesis and dysarthria persisted.

Followed a period of non-in-patient rehabilitation at the Fondazione Santa Lucia in
Rome, there she performed a neuro-motor rehabilitative treatment of 180 days, 4 times a
week, including speech therapy and occupational therapy as well.

After 180 days of treatment and with respect for the recovery of the right upper limb,
the girl was able to perform movements against gravity flexo-extension and abduction–
adduction of the shoulder with extended elbow and spinal compensation. In addition, she
was able to perform movements against gravity elbow flexo-extension, while hinting at
muscle recruitment at the level of the wrist and hand extensor muscles and first finger
opponent. However, the girl was able to find strategies to solve practical problems of daily
life and involving the right upper limb in base activities.

In January 2021, the child began, in association with the conventional treatment and
in progress at the Fondazione Santa Lucia, a treatment with the Gloreha robotic glove for
the right upper limb at the Campus Bio-Medico University. The objective of the robotic
treatment was to recover the movements of extension of the fingers and wrist and improve
hand-wrist bending and manual dexterity movements. The use of Gloreha aimed also
at recovering the sensory skills of the hand, improving its muscle tone and functionality.
Moreover, the use of non-immersive virtual reality through interactive video games had
the objective of stimulating cognitive abilities, such as attention, visual-spatial analysis,
working memory and executive functions as well.

2.3. Gloreha Sinfonia

The Gloreha Sinfonia is a robotic device for the neuromotor rehabilitation of the upper
limb, which can facilitate the patient in all phases of recovery. It can support the movement
of the finger joints in passive, active-assisted and active modes. It consists of a complete set
of gloves, braces and accessories for finger mobilization; a dynamic support to compensate
the weight of the arm; a stimulating software equipped with 3D animation; a voice guide
and audio video effects; a touchscreen PC and an ergonomic table for performing functional
exercises and to allow the use with a wheelchair.

The device allows the execution of the following exercises:

1. Passive mobilization exercises (the movements are carried out entirely by the device);
2. Active-assisted exercises with graphic interface (the patient trains in flexion–extension

of the fingers thanks to motivating games; the motors support and integrate the
patient’s voluntary movements only to the extent necessary);

3. Active-assisted functional exercises with real objects (the patient trains fine grip);
4. Interactive games (the patient can improve dexterity);
5. All possible combinations of flexion–extension of the fingers;
6. Therapies based on the action–observation approach (the patient performs a task that

he first observed in a preview video, supported by the robot);
7. Exercises with partial or total compensation of the weight of the upper limb, free to

float in space interacting with real objects (the system is able to self-adjust based on
the residual abilities of the patient).

Moreover, the robot allows the performance of therapies on patients who are bedrid-
den or in an upright position or seated in a chair/wheelchair. It also allows a constant
measurement of motor performance and condition of the patient’s hand (active/passive
ROM, movement speed, coordination and improvement in the execution of the various
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tasks). The robotic glove records all data associated with each patient and allows the
operator to monitor the performance of each subject treated. Graphs show the trend of the
obtained results exercise by exercise and session by session so that the patient can have
immediate feedback on the progress achieved.

Since this is a new technology, there are a limited number of studies in the literature on
the use of Gloreha in pediatric and adult stroke patients, which show that the main clinical
benefits related to its use are as follows: the maintenance and improvement of the joint range
of the fingers of the hands; the prevention of adhesions, contractures and damage from
immobilization; the reduction in pain, edema and hypertonia; proprioceptive stimulation,
improvement of joint metabolism and lymphatic and blood circulation; the maintenance of
functional afferences and the perception of the body; the increase in coordination, dexterity
and functional independence; the increase in gripping and gripper strength; and the
improvement of visual-spatial and attentional skills [21].

2.4. Force Assessment System Based on Virtual Reality Games

A Force Assessment System based on VR games was developed to assess the child’s
improvements in grip force control and modulation. The system was composed of force
sensors positioned at the fingertips of the Gloreha Sensor Glove and of custom-designed
VR games in the form of tracking tasks purposely developed to assess different aspects of
force control and modulation.

Previous works in the literature proposed tracking tasks for the assessment and
training of grip force control in mildly to severely affected hemiparetic stroke patients. In
the study of Kurillo et al. [22], the authors presented and tested a grip force training system
that enabled the improvement of grip force control in 8 out of 10 post-stroke patients. In the
study of Lindberg et al. of 2012 [23], the authors proved that the power grip force tracking
tasks developed to assess grip force modulation capability were feasible to quantify the
accuracy of grip force control.

The force sensors to be embedded in the Gloreha Sensor Glove were chosen according
to the following technical specifications: (i) maximum dimension of 2 × 10 −2 m diameter;
(ii) thickness lower than 5 × 10 −4 m; (iii) force range comparable to the one detected
during hand rehabilitation training (0–25 N) [24]. The piezoresistive sensor FSR® Model
402 Short Tail (Interlink Electronics) was selected to meet the specifications. It has a diameter
of 1.83 × 10 −2 m, a thickness of 4 × 10 −4 m, a force sensitivity range of 0.2–20 N and
continuous force resolution. Piezoresistive sensors were selected because they are low cost,
suitable for wearable applications, require a very simple conditioning electronics and have
a good shock resistance.

Three sensors were embedded, respectively, in the fingertips of the first, second and
third finger of the Gloreha Sensor Glove, i.e., the fingers mostly involved in daily life
grasps, as shown in Figure 2. The interface between the sensor and the glove was modified
by fixing a thin 3D printed PLA plate with double-sided tape (1 × 10 −3 m thickness
and 2 × 10 2 m diameter) to uniformly distribute the force on the sensitive area of the
sensor. A 3D-printed PLA support was positioned to interlock the plastic components of
the glove that allow connecting Gloreha Sinfonia flexible transmissions to the glove itself.
The sensors are secured on the fingertips by means of an elastic band fastened at the top of
the PLA support.

The sensors with the developed PLA plate were calibrated using the Instron® testing
machine to relate the force and output voltage.

The VR game was developed with Unity, using Microsoft Visual Studio as the pre-set
editor and C# as the programming language. Attention was paid to provide an intu-
itive, clear and engaging visual feedback to the user. In fact, providing the patient with
biofeedback can improve the outcome of the treatment and promote neuroplasticity [22].

The aim of the VR game in the form of tracking tasks was to assess the patient capability
to finely control the sub-maximal forces exerted when grasping real objects, the ability to
balance and release the grip and the general accuracy of force control.
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The average force exerted by the three fingers was given in input to the VR game to
move the avatar according to the force exerted on the object grasped by the participant
(i.e., a wood parallelepiped 1.35 × 10−1 m × 6.5 × 10−2 m × 4 × 10−2 m). In the proposed
VR game, shown in Figure 3, the patient was asked to move the avatar of the game vertically,
according to the exerted force, in order to track the three proposed waveforms moving
on the screen. The three waveforms were a “Ramp”, a “Square Wave” and a “Sinusoidal
Wave” [25]. Each waveform was developed to assess different aspects of grip force control:
the Ramp aimed at assessing the capability to gradually increase and decrease the grip
force; the Square Wave aimed at assessing the capability to exert discrete force levels and
stabilize the force; and the Sinusoidal Wave aimed at assessing the overall force modulation
capability. “Ramp” and “Square Wave” were composed of 10 discrete force levels to
be reached (and held for the “Square Wave”) and are uniformly distributed between
the maximum and minimum forces recorded at the beginning of the trial, whereas the
“Sinusoidal Wave” had a peak-to-peak amplitude that corresponded to the range between
the minimum and maximum forces.

 

Figure 2. Force sensors positioned at the fingertips of Gloreha Sensor Glove.

To assess the child’s improvements in grip force control and modulation, she was
instructed to move the avatar (i.e., a turtle) and to follow the proposed waveform pattern
in order to collect the maximum number of “bubbles” of the VR game with the avatar. In
the first assessment session (T0), she performed 5 one-minute repetitions of the “Ramp”
and 3 one-minute repetitions of the “Square Wave” and “Sinusoidal Wave” exercises,
respectively. In the second assessment session (T1), she performed 3 one-minute repetitions
of the “Ramp” and 2 one-minute repetitions of the “Square Wave” and “Sinusoidal Wave”
exercises. Before each session, the maximum and minimum forces applicable by the child
were recorded with a custom-made graphical user interface to set the force range in which
the avatar could be moved. Then, the maximum force to be reached was set at 90% of the
maximum recorded value.

 

Figure 3. VR game for force assessment.
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2.5. Intervention

The Gloreha treatment lasted from January to April 2021, and the commitment was
once a week for a total of 10 weeks; each session lasted 60 min. During each session, the
child performed passive, active-assisted and active movements with gradually increasing
complexity exercises supported and stimulated by sensory feedback. In addition, the child
was also offered exercises in bi-dexterity to improve both the quality of the recovery of the
paretic limb and its coordination and functionality in daily activities.

2.6. Outcome Measures

The child was evaluated with functional scales, with upper limb kinematic analysis
and with an ad hoc developed force assessment tool (FSR model 402 Short Tail, Interlink
Electronics) at pre-treatment (T0) and at the end of the treatment (T1).

She was evaluated with Fugl-Meyer Assessment-Upper Extremity (FMA-UE) for
upper-extremity motor impairment and the Visual Analogic Scale (VAS) for pain intensity
and activities and participation of daily life with ADL scale [26].

Improvements in force control and modulation capability were assessed by means of
the Force Assessment System. Two main performance indicators were computed for each
repetition of the three VR exercises: the Root Mean Square Error (RMSE) (N) between the
target force pattern and the exerted force pattern and the Peak Performance (%), computed
as the percentage of reached force peaks, for “Ramp” and “Sinusoid”, and the percentage
of reached and held discrete force levels, for the “Square Wave”. A statistical analysis
was performed to evaluate improvements of the child from one session to the other. The
non-parametric one-way ANOVA test (i.e., Kruskal–Wallis test) was conducted between
RMSE and Peak Performance indicators in the two sessions. The significance level was set
at 5%.

3. Results

Results are reported in Table 1. At the end of treatment (T1), the patient improved
in functional scales: FMA-UE had a percentage variation (Δ%) of 44% from T0 (34/66) to
T1 (49/66). Moreover, at the end of treatment, her quality of life was better for greater
involvement in some little but significative activities of daily living such as food, dress and
undress (ADL scale: 4/6 at T0 vs. 6/6 at T1) and had greater interest in the surrounding
world with less fear of feeling different from others.

Table 1. Results of outcome measurement.

T0 T1

ADL 4/6 6/6

FMA-UE 34/66 49/66

VAS 0/10 0/10
ADL: Activity of Daily Living; FMA-UE: Fugl-Meyer Assessment for Upper Limb; VAS: Visual Analogic Scale.

It is important to highlight that the child had never complained of pain (VAS scale
0/10) during both evaluations.

The Kruskal–Wallis test performed on RMSE and Peak Performance indicators be-
tween sessions at T0 and T1, allowed the assessment of improvements in force con-
trol and modulation. RMSE was significantly reduced from one session to the other
(p value = 0.0018), meaning that training with the Gloreha improved the child’s capacity to
follow target force patterns. Peak Performance significantly increased from the first to the
second evaluation session (p value = 0.0120). Boxplots for the two performance indicators
are shown in Figure 4, where the central mark is the median and the box edges are the 25th
and 75th percentiles.

No adverse events occurred during the entire treatment.
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Figure 4. Boxplots of RMSE and Peak Performance for session 1 (T0) and session 2 (T1).

4. Discussion

The aim of this study is to describe the effects on the range of motion, muscle tone
and functionality of the paretic upper limb, particularly the hand, when Gloreha Sinfonia
combined with conventional therapy was used for rehabilitation treatments in a pediatric
stroke patient. The results revealed an improvement in FMA-UE, a significant reduction in
RMSE and a significant improvement in Peak Performance.

To the best of our knowledge, this is the first study using Gloreha Sinfonia in pediatric
strokes. Previous rehabilitation studies on pediatric stroke patients were mostly dedicated
to the robotic treatment of the proximal portion of the upper limb, while there are still
very few studies on the distal extremity, especially the hand. Gloreha Sinfonia allows the
performance of tasks that combine the activity of the entire upper limb. In fact, unlike
other robots designed exclusively for shoulder and elbow movements, Gloreha permits the
improvement of distal control through the implementation of exercises focused on the use
of hands combined with the involvement of the entire upper limb, reproducing activities of
daily living. As other studies have previously mentioned, when a patient uses the distal
part of the paretic upper limb, at the same time, the proximal segment is also trained, albeit
the upper arm is supported or restrained in the distal group [27]. Furthermore, Gloreha
Sinfonia is well suited for use in combination with other traditional rehabilitation activities
because it can integrate rehabilitation treatments with highly stimulating and interactive
exercises for patients.

Our results show an important enhancement in FMA-UE, with values that proceed
from 34/66 to 49/66 between T0 and T1; they indicate an overall improvement of the
upper limb due to a clinical advance both in the shoulder district, implemented thanks
to reaching exercises, and to the hand control, achieved thanks to manipulation exercises.
These results were significantly higher than the minimal clinically important difference
(MCID) seen in adults by Page et al. [28], but it is not possible to make a comparison with
a pediatric population, because their MCID is not present in the literature. In addition,
FMA-UE results are in line with ADL records, which report improvements in activities of
daily life due to a better use of the upper limb.

From Figure 4, it is evident that the child significantly improved her capacity of
reaching force peaks and holding force levels. Furthermore, the results show that force
control and modulation capability significantly increased after treatment.

We know from the girl’s parents that she has reported a psycho-emotional improve-
ment and presented new interest in socializing with other children without fear of being
judged and perceived less pronounced motor deficits and less disability at the end of
therapy. This statement can be considered as another positive effect of the combined
(robot + conventional rehab therapy) and continuative therapy. It is important to underline
that the girl never complained of pain, demonstrating a good ad safe adaptability of the
robot with respect to the child.

Another aspect that makes this robot an interesting tool in pediatric applications is the
possibility of performing specific repetitive task-oriented exercises, placed in the form of
playing a videogame; as already reported, robot-mediated therapy in children with acquired
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or congenital brain injury appears to be beneficial: enhancing motivation and improving
perception, it incorporates the advantages of the enjoyable game-like experience [15,29].
Furthermore, the use of a virtual and motivational environment in which the patient has
immerged has a positive effect to facilitate motor and sensory and cognitive relearning
by stimulating the patient to challenge himself to perform better and to obtain a higher
score in the game. Moreover, as recorded also by Mirkowski et al. in their systematic
review [18], robotic therapy seems to significantly improve the upper extremity function
and spasticity in children after strokes. This theory is also supported by the study of
Wann et al., which considers motor learning theory and reports how the repetition of motor
patterns is seen as a key factor in improving movement [30]. Moreover, Rizzo et al. reports
how a rehabilitation treatment that uses feedback, either visual or auditory, contributes to
gains made in motor learning [31]. It follows that Virtual Reality is a powerful medium for
providing stimulation in the form of visual and auditory events to increase the motivation
and desire to continue practicing [32].

To date, there are few studies in the literature on this specific population. Most
pediatric upper extremity rehabilitation studies are aimed at patients with cerebral palsy,
spinal cord injury or quadriplegia. As reported also in the case report of Čolović et al. [33],
there is still no clear indication on how robotic therapy can be combined with conventional
therapy and for how many times; however, combining robotic and traditional rehabilitation
can improve the functional motor performance of the arm involved in the chronic recovery
phase after a pediatric stroke.

Our results, being relative to a single case, cannot find a generalization. Further studies
on larger samples, with control and randomization groups and with adequate follow-ups,
are needed in order to reach meaningful conclusions. Furthermore, we have not assessed
patient’s emotional changes and the level of social integration before and after the robotic
treatment with specific and objective measures; the administration of scales that could
quantify these changes could be useful to determine social aspects in further studies.

5. Conclusions

Given the results and given the literature evidence, Gloreha Sinfonia seems to be
suitable for the treatment of post-stroke hand disabilities in the pediatric age, but further
studies on larger populations, with stratification of the sample for clinical characteristics,
as well as clinical scales that are more sensitive to any change are needed to support this
hypothesis. It would be interesting in the future to consider how this type of technology
can also support cognitive difficulties. In addition, this type of rehabilitative approach
facilitates the need for personalized and easily monitored rehabilitation protocols. Clinical
trials with follow-ups and on large populations could confirm the results obtained.
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Abstract: This paper proposes a device of sensing that could be integrated into the instruments of any
surgical robot. Despite advances in robot-assisted laparoscopic surgery, the tools currently supplied to
surgical robots have limited functions, due to the absence of sensorization. With this motivation, we
present a preliminary work based on the design, development, and early stages of experimentation
with smart and multifunctional devices of sensing for surgical tools. The proposed device of sensing
has a proximity sensor, colorimetric sensor, and BLE connection for different surgical instruments
to connect to each other. The proximity feedback allows the surgeon to know the distance of the
instrument from a particular tissue, to operate in conditions of greater safety. With the colorimetric
feedback, on the other hand, we intend to proceed to the identification of specific tissue areas with
characteristics that are not typical of the physiological tissue. The results show that the device is
promising and can be further developed for multiple clinical needs in robotic procedures. This
system can effectively increase the functionality of surgical instruments by overcoming the sensing
limitations introduced by using robots in laparoscopic surgery.

Keywords: robot-assisted laparoscopic surgery; surgical robot; da Vinci Research Kit; IoT

1. Introduction

The past few decades have seen an exponential growth in medical technology, par-
ticularly with regard to the application of robotics to surgery. Robotic surgery, the latest
evolution of minimally invasive surgery, overcoming the limits of traditional surgery, has al-
lowed the broadening of therapeutic horizons and represents the gold standard for various
clinical applications.

Robotics is the center of modern health engineering. The first robot used in the clinical
setting to obtain neurosurgical biopsies was the Puma 560 robot in 1985. Since then, more
and more advanced surgical robots have been developed [1,2]. In general, the use of robotic
surgery increased significantly from 2012 to 2018, with an increase from 1.8% to 15.1% for
all general surgery procedures. Over the same period, the use of both laparoscopic and
open surgery declined. For example, the proportional use of open surgery was 42.4% in
2012, compared to 32.4% in 2018 [3]. It has also been witnessed that the use of robotic
surgery has increased rapidly and spread widely in numerous procedures during the years
following the adoption of this practice in hospitals. Therefore, for most surgeons, it was
already considered a safe and effective approach when clinically feasible.

Current robotic platforms are designed to incorporate advanced features that allow for
increased accuracy by making the execution of operator tasks easier and safer. Additionally,
surgical robots have retained the ability to perform surgical operations through smaller
incisions. These characteristics aim to improve the results compared to those obtainable
through traditional surgical methods. The adoption and diffusion of robotic surgery
shows a positive trend in some geographical areas, especially in countries with advanced
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economies. This is shown by the widespread use of the da Vinci Surgical System (Intuitive
Surgical Inc., Sunnyvale, CA, USA), in a multitude of application areas [4]. Currently,
the da Vinci Surgical System represents the most widespread surgical system, with over
5000 models implemented worldwide, performing over 7 million surgical procedures in
different anatomical areas. The da Vinci Research Kit (dVRK) research platform fits into
this context, developed through a collaboration among academic institutions to address
the challenges in starting research on surgical robotics. This has led to a significant boost in
the development of surgical robotics research over the past decade, and has generated new
opportunities for collaboration and linking of a surgical robot to other technologies.

Among the advantages introduced by robot-assisted surgery are the reduction in
tissue trauma thanks to small incisions, less bleeding, and less need for transfusions, a
reduction in hospital stays and post-operative pain, a reduction in recovery times, and
a quicker recovery rate in carrying out daily activities and greater ease in the execution
of complex surgical tasks, which entails greater safety for the patient. On the other hand,
the disadvantages of robotic surgery are mainly linked to the cost of the robotic system,
the instrumentation, the system maintenance, and to the fact that, to operate the robot,
very high-level skills are required on the part of the surgeon and room staff, to be acquired
through specific training [5].

During an open surgery, surgeons can use their hand to locate and diagnose abnormal
tissue by direct palpation; instead, in laparoscopic surgery, direct palpation is not feasible,
due to the limits of the incision [6,7]. For this reason, one aspect that many studies are
focusing on is the lack of haptic feedback during the surgical procedure, in addition to
visual feedback [8,9]. Nevertheless, surgeons using robotic technologies could benefit from
other types of feedback, such as feedbacks of color, speed, and proximity, to further broaden
the fields of the application of surgical robots [10,11].

In this work, an attempt is made to restore the functions that are lost in robotic
laparoscopic surgery, by using the sensorization of the surgical instrumentation. The design
intention is to develop an intelligent and multifunctional sensing device to improve the
performance of surgical robots, interconnect instruments, and enable, in the future, the
development of AI algorithms.

2. Materials and Methods

2.1. Device Overview

In this section, the overall design of the proposed device of sensing is introduced. For
the implementation, the following needs have been considered and analyzed:

- The design of a compact mechanical concept;
- A circuit that integrates the functional components to detect color and proximity;
- A machine learning model that allows the classification of tissues based on their color;
- A BLE (Bluetooth Low Energy) communication to allow the interconnection of the

various arms and the introduction of the IoT to surgical robotics.

The main purpose of the first prototype proposed in this manuscript is to carry out the
sensorization of the surgical instrument used during procedures with surgical robots, to
ensure a safer interaction with the organs. For the first prototyping phase, an Arduino Nano
33 BLE Sense board is used, due to its compact size and the presence of integrated sensors.
Reference is made to the colorimetric and proximity sensor integrated inside the APDS9960
unit of the Arduino board considered. In particular, the proximity sensor provides feedback
on the distance between the tip of the surgical instrument and the organs, to ensure safe
interaction. In addition, the colorimetric feedback allows, with the implementation of a
simple neural network, to identify specific tissue areas with characteristics that are not
typical of physiological tissue, such as cancerous tissue structures. This kind of recognition
leads the way, in the future, to the classification of healthy tissue and diseased tissue.
A 3D printed mechanical support is used to mount the electronic board to the robotic
instruments, consisting of two main parts held together using a magnetic anchor. The
magnets are integrated into the mechanical structure of the device, and allow for a quick
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alignment of the two parts, and a stable anchoring to the instrument. The dimensions of
the holder are compatible with the size of conventional da Vinci EndoWrist tools; as this
device of sensing is designed for robot-assisted laparoscopic surgery, it can be integrated
into instruments of the Patient Side Manipulator (PSM) of the da Vinci Research Kit (dVRK)
and can be teleoperated by the Master Tool Manipulator (MTM) [12] (Figure 1).

Figure 1. The developed sensing device mounted on the PSM of the dVRK system.

2.2. Design and Implementation of the Sensing Device
2.2.1. Mechanical Design

A mechanical support is created to allow to the Arduino Nano 33 BLE Sense board to
be kept in position on the dVRK instrumentation during the execution of the validation
tasks. It is conceived in two different versions to adapt to the different positioning along
the instruments of the dVRK. The first version of the prototype, shown in Figure 2, allows
the lying positioning on the robot instrument. This arrangement is ideal during BLE
communication between the various robot arms, as there is no need to keep the sensor
integrated on the board in a specific position. Furthermore, the first position is characterized
by a reduced size and a better flexibility during the movements.

Figure 2. The CAD design of the first version of the mechanical support. (a) The housing for the
electronic board. (b) The connection part for the positioning of the device along the EndoWrist tools.

The second version, shown in Figure 3, is designed for cases in which it is necessary
to hold the embedded sensors that look towards the work surface. This is useful in the
experimental validation phases during the detection of the color and proximity of tissues
placed on the work surface.

This support, for both versions, is made up of two main parts. The first part represents
the housing for the electronic board, while the second part connects to the first for the
positioning of the device along the EndoWrist tools, as shown in Figures 2 and 3. The two
structural portions of the mechanical support are held together using four K&J MAGNET-
ICS neodymium magnets (NdFeB), for each side. The magnetic blocks have dimensions
of (0.64 × 0.32 × 0.08) mm and grade N42. The magnetic anchoring enables the quick
alignment of the two mechanical parts and the perfect integration of the sensing device
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with the dVRK instruments. At the same time, this magnetic mechanism makes it possible
to separate the two structural portions of the support after performing the tasks using the
tip of the surgical instrument itself [13,14]. This operation not only saves time, but can be
performed without the assistance of an assistant surgeon.

Figure 3. The CAD design of the second version of the mechanical support. (a) The housing for the
electronic board. (b) The connection part for the positioning of the device along the EndoWrist tools.

2.2.2. Hardware Components

In this research, we employ the Arduino Nano 33 BLE Sense board composed of
embedded sensors to detect color, proximity, motion, temperature, humidity, audio, and
more. The presence of the embedded sensors allows the board to manage numerous IoT
and AI applications without requiring the presence of external sensors. This board is built
upon the nRF52840 microcontroller and runs on Arm® Mbed™ OS. The processor has
other important features such as Bluetooth® pairing via NFC and ultra-low mode energy
consumption. For the sensorization of the device, reference made is to the APDS-9960 unit
built into the Arduino Nano33 BLE Sense board, which features advanced gesture sensing,
proximity sensing, digital ambient light sensing (ALS), and color sensing (RGBC). This
modular unit has dimensions 3.94 × 2.36 × 1.35 mm, and incorporates an IR LED and a
factory-calibrated LED driver.

The proximity detection function provides the measurement of distance via the pho-
todiode sensing of reflected IR energy from built-in LEDs. Detect/release events are
interrupt-driven and occur whenever the proximity result crosses the upper and/or lower
threshold settings. The IR LED intensity is factory trimmed to eliminate the need for
end-equipment calibration due to component variations. The proximity results are further
improved by automatic ambient light subtraction. The proximity results are affected by
three basic factors: IR LED emission, IR reception, and environmental factors, including
distance to the target and the surface reflectivity. The photodiode signal is combined,
amplified, and offset adjusted to optimize performance. The colour and ALS detection
feature provides red, green, blue, and clear light intensity data. Each of the R, G, B, C
channels has a UV and IR blocking filter and a dedicated data converter producing 16-bit
data simultaneously. This architecture allows applications to accurately measure ambient
light and sense colour, which enables devices to calculate colour temperature and control
display backlight.

2.2.3. IoT and Bluetooth Low Energy Connection

In recent years, we have seen a significant advance in digital technologies, which
contributes to the current concept of the Internet of Things (IoT). At the basis of the IoT,
there are “intelligent” objects that are interconnected to the exchange information owned,
collected, and/or processed. The smart object must first be identifiable; that is, with a
unique identifier in the digital world, and then it must be connected to transmit and receive
information. These are smart connected devices that process and share all kinds of data with
each other, and that can be controlled via the Internet. Into this context fit energy-efficient
short-range wireless communication technologies such as Bluetooth Low Energy (BLE) [15].
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This section shows how is possible to exchange information between two Arduino Nano
33 BLE Sense boards. With this communication, the various arms of the da Vinci surgical
robot can be interconnected.

When a Bluetooth® connection is established, the central device will scan the sur-
rounding devices and “listen” for the devices that transmit information, and at the same
time, the device will advertise or transmit its data or information to any nearby device.
As soon as the central device collects information from the peripheral device, an attempt
is made to connect the peripheral device. Once the connection is established, the central
device will interact with the available information to the peripheral device. This infor-
mation exchange takes place using so-called services. By grouping the various device
capabilities into services, central devices allow peripheral devices to quickly find, select,
and interact with the desired services. Any service has a unique identifier called UUID.
This code can be 16 or 32 bits long, for services with Bluetooth® specifications. One of the
two Arduino Nano BLEs is configured as a central device, while the other as a peripheral
device. The information shared between the two boards comes from the proximity sensor
of the integrated APDS-9960 unit of the Arduino Nano 33 BLE Sense board.

For this purpose, the ArduinoBLElibrary library was used, and a service called prox-
imityService was created with a feature called proximity_type, as shown in Figure 4. The
central device tries to establish a connection with the peripheral device, and tries to discover
the service and the feature that we have specified when implementing the code. If the
connection is made successfully, the Nano 33 BLE Sense board’s built-in proximity sensor
is activated. When a proximity value is detected by the sensor, the central device gives
us feedback, through the serial monitor, on the type of distance detected (FAR, MIDDLE,
or CLOSE). The value is written to the proximity_type feature of the proximity service in
the peripheral device. In addition, the on-board LED in the peripheral device lights up
according to the detected value. If a distance is detected that exceeds the threshold set as
FAR, the green LED will turn on; in the case of MIDDLE distance, the blue LED will be on;
finally, if the object is close to the sensor, the red LED lights up.

Figure 4. BLE communication between two Arduino Nano 33 BLE Sense units.

2.2.4. Complete Prototype

All the mechanical parts that make up the sensing device were produced using a 3D
printer. After that, the two mechanical parts and the electronic board described above were
assembled with the use of the magnetic anchor and positioned on the EndoWrist tool of the
dVRK system. Figure 5 clearly shows how the first version of the prototype guarantees a
minimum footprint and better compactness. This support configuration is to be taken into
consideration in cases where there is no need to detect objects placed on the workspace
using the integrated sensors. For example, in the case in question, it is possible to refer to
this first version to demonstrate the potential of the BLE connection between two boards
placed on two arms of the dVRK. Furthermore, during the validation phase of the device on
dVRK instrumentation, it was found that the friction between the surface of the instrument
and the inside of the device prevents any movement of the support; therefore, the stability
of the electronic component is guaranteed.
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Figure 5. Complete prototype of the first version of the detection device connected to the EndoWrist
tool of dVRK system.

The second assembled version of the prototype, unlike the first, allows the board to
be kept parallel to the work surface. The main limitation of this configuration is the larger
footprint, as shown in Figure 6, which could constitute an obstacle for the other tools of the
robotic system during the execution of the tasks. Furthermore, it may seem less stable than
the first configuration, but it has been tested that using magnets, the sensing device remains
perfectly in position during the entire procedure carried out with the dVRK system.

Figure 6. Complete prototype of the second version of the detection device connected to the En-
doWrist tool of dVRK system.

2.3. Experimental Evaluations

This section presents the experiments conducted to verify the possibility of introducing
a proximity and color sensor on the EndoWrist instrument.

2.3.1. Proximity Detection and Experiments with Organs

Proximity calibration was performed using the embedded APDS9960 unit of the
Arduino Nano 33 BLE Sense. The path of the IR receive signal begins with the IR detection
using four photodiodes, and ends with an 8-bit proximity result (256 values) in the PDATA
register. So, we focused on proximity readings, which were based on sensing a tissue on
photodiodes, and were then converted to millimeters within the sensor for our use. The
board has been programmed to print out simple proximity detections and control the RGB
LED accordingly, and to change the colors of the RGB LED according to the proximity of
a tissue to the sensor. To take advantage of the functions of the APDS9960 detection unit,
the <Arduino_APDS9960.h> library was used. In particular, the LED lights up green if
the object is far from the sensor (proximity value >150), blue in the case of intermediate
distance (60 < proximity value < 150), and red if the object is very close to the sensor
(proximity value < 60). The threshold values shown in parentheses have been implemented
in the code. The first test performed concerns the evaluation of the proximity between
the tissues and the sensor. This allows the surgeon to work in a safer environment with
the sensorization of the instrument, which gives a sound or visual feedback based on the
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distance of the instrument to the tissue. This aspect is very important during abdominal
surgery procedures, where the various organs are very close to each other. Before getting
to the heart of the testing phase, a connection was created between the Arduino Nano
33 BLE Sense board and the Matlab software through a serial communication protocol to
manage the data collected by the proximity sensor directly in the Matlab environment.
Subsequently, we moved on to the real-time display of the proximity values read by the
sensor, which allowed for an instant evaluation of the trend of the data collected in relation
to the distance in centimeters. Proximity data acquisition was performed with the MELFA
RV3-SB industrial robot. For the execution of the tests, a support for the Arduino board
to be fixed to the end effector of the robot was designed and built using a 3D printer. The
support was fixed to the robot using two M5 screws, as shown in Figure 7.

Figure 7. (a) Support for the Arduino board fixed to the end effector of the MELFA RV3-SB industrial
robot by means of two M5 screws. (b) View of the support with an integrated board made with a
3D printer.

The robot was programmed to perform movements along the z axis, allowing the
sensor to move away from and approach the tissue sample. Once we acquired the initial
position (minimum distance from the tissue) desired, we decided to make the robotic arm
move by 13 cm by making vertical movements of 0.5 mm intervals. All the positions neces-
sary for the desired movement were implemented manually using the robot programming
language with a structure that is very simple and intuitive; for example, the command MOV
was used to manage the movement of the robot from one position to the next. Slices of
tissues with a thickness of about six millimeters were obtained from the organ. Obviously,
since these are soft and/or spongy organs, it is not possible to consider a precise and
absolute measure of thickness, as the tissue surfaces have protuberances and depressions.
This condition was considered relevant for an optimal and faithful representation of the
operational reality; therefore, no corrections were made. These slices of tissue were placed
on a rigid plate on the workstation below the sensor. As shown in Figure 8, a safety space
was left between the sensor and the surface of the tissues to ensure the cleanliness and
integrity of the detector. During the testing phase, the same environmental lighting condi-
tions were always maintained. Furthermore, the tests on the samples were carried out on
the same day that the tissues were taken from the slaughterhouse; in this way, the freshness
of the sample was guaranteed to preserve its color and consistency, to better respect the
conditions in vivo.
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Figure 8. Tissue samples from the pig, placed on the plate below the sensor for the testing phase with
the robot MELFA RV3-SB. (a) Liver. (b) Gut. (c) Stomach.

2.3.2. Classification of Tissues by Color

This subsection presents the implementation of a TensorFlow model to classify tissues,
based on color detection. The main objective is to be able to distinguish normal tissue from
one with characteristics that are not typical of physiological tissue, evaluating the color
differences that characterize the two types of tissue. For example, it is possible to define the
area of the tissue affected by cancerous manifestations that lead to an alteration of the color,
compared to that of normal tissue.

To demonstrate this concept, we limited ourselves to verifying that it is possible, based
on color, to distinguish two different tissues, i.e., liver and stomach. In particular, the
procedure for the identification and classification of tissues was based on the use of the
TensorFlow Lite Micro library and the Arduino Nano 33 BLE Sense colorimetric sensor.
To do this, a simple neural network was implemented on the board, combining machine
learning with integrated systems to develop an intelligent device. For the first phase of
collecting the color data from the two portions of tissues, the Arduino Nano 33 BLE Sense
board was first programmed. The colorimetric sensor was integrated inside the APDS9960
unit. This allowed the detection of the intensity of the red, green, and blue colors of each
tissue subjected to the sensor. For correct data acquisition, it is advisable to move the sensor
around the surface of the tissue to capture the variations of color, as shown in Figure 9.
RGB color values were captured as comma separated data grouped in CSV format. This
procedure was repeated for both organs, which we were decided to classify by capturing
the color data.

Figure 9. Frames concerning the acquisition of color data from the stomach and liver to detect the
intensity of the red, green, and blue colors of each tissue subjected to the sensor.

Following the data acquisition phase, the model training phase was implemented. The
model training phase represents the process by which a model learns to produce the correct
output for a given set of inputs. This phase involved feeding training data through the
model, making small changes until the most accurate predictions were possible. A model
was a network of simulated neurons represented by arrays of numbers arranged in various
layers. As data are fed into the network, it is transformed by successive mathematical
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operations involving weights and distortions at each level. The output of the model was
the result of executing the input through these operations. Training stopped when the
model’s performance stopped improving. For the training phase of the machine learning
model, reference was made to the Google Colaboratory, an interactive environment that
provides a notepad that allows the writing and execution of code in Python, using the data
collected in the previous phase. Before TensorFlow Lite ran the model that was trained,
it needed to be converted to the TensorFlow Lite format, and then a model.h file would
be generated to be downloaded and included in the final Arduino code, to classify fabrics
based on color. Finally, after loading this code on the Arduino board, it was possible, by
approaching the RGB sensor close to the object to be classified with which the model was
trained, to view the percentage relating to the two classes implemented in the model.

2.3.3. Validation by dVRK

The proposed prototype has been tested on the dVRK system. The experimental
protocol followed for the tasks performed with the aid of the dVRK system, and the various
phases, tools, and objects used are presented below. As shown in Figure 10, an MTM
from the dVRK console was used to teleoperate the instrument mounted on the PSM. The
activities were carried out by three users with the support of the visual feedback of the
dVRK endoscope, designed with two separate optical channels capable of recreating the
most important aspect of stereopsis: binocular disparity. Inside the viewer, therefore, users
followed the operations thanks to the stereoscopic vision that provided three-dimensional
images of the work area [16].

Figure 10. Functionality demonstration. MTM from the dVRK console was used to teleoperate the
instrument mounted on the PSM.

The Arduino board with the integrated proximity sensor was positioned, using the
support made by a 3D printer, on the EndoWrist instrument two centimeters from the tip
of the tool, as shown in Figure 11. The positioning of the board at this distance from the
tip of the instrument was in line with the results obtained during the sensor calibration
phase; from the characterization curve, it is possible to see that the operating area of the
liver sensor occurred after two centimeters, a distance at which the sensor returned the first
non-null value.

Users were asked to perform a simple transfer task; a suitably sized ball was picked
up from the worktable with the ProGaspr tool supplied with the dVRK, and it was brought
within eight centimeters of the liver simulation object. The sequence of images below
shows the steps just mentioned in performing the task (Figure 12). Finally, the user placed
the ball on the object by approaching it slowly (Figure 13). During the execution of the
operations, the user was able to estimate the distance of the instrument from the object
based on what could be perceived by the viewer. During the entire execution phase of the
task, the proximity values read by the sensor were recorded and compared with the values
visually estimated by the users.
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Figure 11. Positioning of the sensing device prototype on the PSM tool of the dVRK system.

Figure 12. Three frames concerning the phases of the performed transfer task, taking the ball from
the workspace and positioning it about 8 cm from the tissue.

Figure 13. Positioning of the ball on the object placed on the work surface.

3. Results

The results related to the proximity measurements on the various tissue samples,
obtained by experimental steps described in the previous section, are shown in this section.
Due to the lack of synchronization between the start signal of the robotic arm and the
Arduino board containing the proximity sensor, it was necessary to proceed with a manual
evaluation of the first useful point at which the sensor returns a non-zero proximity value.
To do this, the tissue sample was positioned on the plate as shown in section III, and
the robotic arm was moved manually to detect the first significant data by acting on the
coordinates of the individual joints. As shown in Figure 14, the sensor returned a series of
null proximity values when it was too close to the sample. Starting from the fixed initial
position P1 (position of the robotic arm closest to the sample), the sensor, positioned at the
end-effector of the robot, was slowly moved away from the tissue sample by taking steps
equal to 0.5 mm. In this way, it was possible to evaluate and display on the real-time graph
relating to the sensor the first non-zero proximity value detected, and the corresponding
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distance of the sensor from the sample. The real distance was known to the user who
programmed the robotic arm. By repeating this experiment for all three types of tissues, it
was possible to precisely define the first useful proximity value for each sample. Regarding
the liver, the first useful proximity value was detected at two centimeters from the sample,
while for the stomach and intestine, the first non-zero proximity value was shown at 3.5 cm.

The characteristic curves for each tissue are shown in Figure 14. In this way, it
was possible to relate the real distance due to the movement of the robotic arm with
the proximity values derived from the sensor. As previously mentioned, the proximity
measurement by the sensor took place thanks to the detection of the IR energy reflected by
the tissue on the photodiode. Consequently, since this measurement was influenced by the
reflectivity of the sample surface, it was reasonable to think that tissues of different colors
could give a different characterization curve. This concept is clearly shown in Figure 14d,
where the stomach and intestines with a very similar color returned the first non-zero value
at the same distance. The liver characterization curve, on the other hand, had a different
trend than that of the stomach and gut. It should be mentioned that for all three types of
tissues, it was possible to note that as the robotic arm moved away from the sample, the
readings of the proximity sensor were accompanied by a part of noise.

Figure 14. Characteristic curves relating to the proximity of the three tissues analyzed. (a) Stomach.
(b) Gut. (c) Liver. (d) Superposition of the curves of the intestine and stomach.

To ensure the repeatability of the experiment, four different tests were carried out
for each of the three tissues examined. For each organ, as shown in Figures 15–17, the
sensor characterization curves were practically the same for the four tests. This allows us
to conclude that it is possible to extend this argument to any tissue sample, and therefore,
to be able to consider the curves obtained as being representative for the tissue to which
they refer in relation to the sensor used.
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Figure 15. The proximity values recorded for the liver during the movement of the robot in four tests.

Figure 16. The proximity values recorded for the stomach during the movement of the robot in
four tests.

Figure 17. The proximity values recorded for the gut during the movement of the robot in four tests.

During the following analysis, the stomach curve was taken as a reference, but similar
results can also be easily extended to the other two tissues. By analyzing the curve, an
initial flat area that describes the locations where the sample was too close to the sensor,
and therefore, was unable to return proximity values, was pointed out. Continuously, a
linear area was highlighted by the green rectangle in Figure 18.
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Figure 18. Characteristic curve relative to the stomach, with highlighted areas.

This linear part just mentioned was well approximated by a first-degree polynomial,
as demonstrated with the help of MATLAB’s Curve Fitting Toolbox (Figure 19). The linear
polynomial model that best approximates this data distribution was from the equation:

f (x) = p1 × x + p2 (1)

where x was normalized by mean 7.667 and std 4.378. The coefficients p1 = 16.88, and
p2 = 27.9 were estimated by the model with 95% confidence bounds.

Figure 19. Fitting of the values of the portion of the graph highlighted by the green rectangle with
the polynomial model.

In the same way, it was possible to highlight and analyze the next portion of the curve
about the stomach, shown by the yellow rectangle in Figure 18. In the second case, it was
possible to make an approximation described by a third-degree polynomial in the form:

f (x) = p1 × x3 + p2 × x2 + p3 × x + p4 (2)

where x was normalized by mean 25.17 and std 14.48. The coefficients p1 = 1.116, p2 = −3.359,
p3 = 6.919 and p4 = 82.15 were estimated by the model with 95% confidence bounds
(Figure 20).
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Figure 20. Fitting of the values of the portion of the graph highlighted by the yellow rectangle with
the polynomial model.

For both portions of the graph highlighted, the goodness of the fitting was evaluated
with appropriate parameters, such as R-squared, to understand how strong the predictive
power of a linear regression model is. These measurements evaluate how much differ-
ence there is between the observed values in the sample and the values that the model
has estimated. The case examined shows small discrepancies between the expected and
observed values, and this indicates that the model fits well with the data. In fact, the value
of R-squared, respectively, for the first and second case examined, was equal to R1 = 0.994
and R2 = 0.997.

4. Discussion

This work aims to design and develop a sensing device that can be integrated with the
EndoWrist instrument of surgical robots, in order to provide the surgeon with colorimetric
feedback and information on the distance between the tip of the instrument and the organs.
This is the first version of our device of sensing, and hence, the aspects are still preliminary.
Despite this, the results obtained allow us to conclude that it is possible to use color to
distinguish two different types of tissue with the final goal of making tumor diagnoses of
tissue portions hidden from the human eyes. At the same time, through proximity feedback,
the surgeon can work in conditions of greater control and safety. Furthermore, thanks to
the integration of BLE communication, a connection between the various robotic arms is
possible for the exchange of information during surgical procedures. These capabilities will
facilitate the opening to the world of IoT applied to the world of surgical robotics, and will
enable the development of AI algorithms for automatic or semi-automatic procedures in
the future.
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Abstract: Multi-robots have shown good application prospects in agricultural production. Studying
the synergistic technologies of agricultural multi-robots can not only improve the efficiency of
the overall robot system and meet the needs of precision farming but also solve the problems
of decreasing effective labor supply and increasing labor costs in agriculture. Therefore, starting
from the point of view of an agricultural multiple robot system architectures, this paper reviews
the representative research results of five synergistic technologies of agricultural multi-robots in
recent years, namely, environment perception, task allocation, path planning, formation control,
and communication, and summarizes the technological progress and development characteristics
of these five technologies. Finally, because of these development characteristics, it is shown that
the trends and research focus for agricultural multi-robots are to optimize the existing technologies
and apply them to a variety of agricultural multi-robots, such as building a hybrid architecture of
multi-robot systems, SLAM (simultaneous localization and mapping), cooperation learning of robots,
hybrid path planning and formation reconstruction. While synergistic technologies of agricultural
multi-robots are extremely challenging in production, in combination with previous research results
for real agricultural multi-robots and social development demand, we conclude that it is realistic to
expect automated multi-robot systems in the future.

Keywords: agriculture; cooperative robots; key technology; control

1. Introduction

With the constant progression of urbanization and industrialization, the mobility
of rural young and middle-aged laborers has intensified [1]. The sustainable transfer of
non-agricultural labor has led to a decline in agricultural labor, and the problem of aging
of the agricultural labor force has become more serious [2]. For example, the proportion of
agricultural production and management personnel aged 55 and over is as high as 33.6%
according to the main data of the Third Agricultural Census Bulletin of China in 2017.
Furthermore, as aging continues, the physical health of the elderly labor force continues
to decline, which results in a significant reduction in the supply of effective rural labor
and an adverse effect on agricultural output [3,4]. Most agricultural production tasks are
labor-intensive and seasonally oriented projects that exacerbate the constraint of seasonal
labor shortages [3–5] and increase the cost of agricultural labor. For example, according
to a survey conducted by Zhen et al. [6], during the rural busy season, the labor cost of
agricultural planting increased from 80 CNY per person per day in 2015 to 90 CNY in 2016
to 100 CNY per person per day in 2017, and the labor cost of technical agricultural labor
is even higher [7]. Some statistics show that the agricultural unit labor cost in developed
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countries such as Germany, Japan, and the United States decreased by 30.17%, 44.22%, and
23.44%, respectively, while agricultural labor productivity increased by 64.78%, 81.22%,
and 34.83%, respectively, from 2005 to 2014. On the contrary, China’s agricultural unit labor
cost increased by 45.17%, and agricultural labor productivity, which is much smaller than
that of developed countries, increased by 50.28% [8]. Therefore, the increasing cost of labor
will lead to an increase in the cost of agriculture, which will result in a relative decrease
in agricultural productivity and international competitiveness [9]. It is urgent to enhance
the innovation of agricultural science and technology and replace extensive and expensive
repetitive manual operations with intelligent agricultural machines or robots [10].

Due to the growing maturity of computer technology, sensor technology, and control
theory, different types of agricultural robots have been developed based on characteristics
of agronomy, such as fruit- or vegetable-picking robots, spraying robots, and harvesting
robots. The agricultural robot can replace traditional human efforts to engage in all kinds of
labor-intensive and complicated agricultural production activities and reduce the decline
of output caused by improper human operation, negligence, inaccurate operation, and
other reasons, as well as major physical injuries and even casualties of operators [11].
However, the operation efficiency of a single agricultural robot is too low and cannot
meet the operation demand in busy seasons without coordination and cooperation by
artificial auxiliary resources or other robots [12]. As early as 2009 and 2012, Johnson
et al. [13], Moorehead et al. [14] and others in the United States replaced a single robot
with a group of agricultural mobile robots to complete mud moss harvesting and orchard
spraying successively with appropriate cooperative operation mechanism, which can
reduce production costs and improve operational efficiency [15]. Therefore, to adapt to
the increasing scale of production, meet the needs of social development, and narrow
the gap with other international world powers with advanced scientific capabilities, it
is necessary to research the relevant technology of agricultural multiple robot systems.
This work focuses on the research progress of the cooperative operation, one of the key
technologies of agricultural multiple robot systems.

There are many types of agricultural multi-robots, and this article mainly focuses on
unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), and unmanned
underwater vehicles (UUVs). This paper summarizes the research progress on syner-
gistic technologies of cooperative operation of the abovementioned multiple robots and
characterizes the expected research of related technologies.

2. Problems with Multi-Robot Applied to Agricultural Environments

Crops are fixed in cultivation season and time, which determines the labor demand
pattern of agricultural production in a year, and agricultural operators need to make
flexible responses and treatments according to the growth pattern of crops, such as plowing,
planting, management, and harvesting [16]. At the same time, to adapt to the development
of agricultural intensification, scale, and industrialization, and to reduce the economic
losses caused by untimely processing, a collaboration of multiple farm machinery operated
by people has widely appeared in agricultural production (as shown in Figure 1).

In Figure 1a multiple rotary tillers are being used to plow rice fields on sloping land
to safeguard food production and mitigate the impact of the phenomena of lack of labor
resources, which is brought about by the New Crown epidemic [17]. In Figure 1b, multiple
corn planters are employed to sow seeds in a large field, which saves labor and ensures
the quality of seeding, and directly improves the yield and quality of corn planting [18].
In Figure 1c, multiple drones are used to spray pesticides in cotton fields, which could
be targeted according to the types of pests and diseases, and also prevented their rapid
spread in the early stages of infestation [19]. In Figure 1d, it has become a trend to manually
operate multiple combines simultaneously during the wheat harvesting season to avoid
the effects of rainfall on wheat quality and yield [20].
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Figure 1. Man-operated farm machinery worked in a large field. (a) Multiple rotary tillers plowing rice fields in spring.
(b) Multiple seeders sowing corn in spring. (c). Multiple drones spraying cotton fields in the summer. (d) Multiple
harvesters harvesting wheat fields in summer.

By manually operating the machines, the quality of operation of the implements relies
heavily on human experience, while the use of robots instead of manual operation can
free up manpower and ensure the quality of operation. However, the topography, soil,
light, and climate conditions of the crop growing environment are different from those of
indoor and urban transportation environments, and these conditions pose a challenge to
the application of multiple robots in agriculture.

Take the example of multiple harvesters harvesting grain in farmland. First, farmland
is an unstructured environment, which means that the road conditions are undulating,
there are various types of obstacles, and there are missing or blurred lane lines on the
ground, and agricultural machines both share the same resource and interact with each
other to become dynamic obstacles to each other. Secondly, agricultural operation tasks
have strong requirements for operation time, such as harvesting grains in a fixed short time
frame. Furthermore, the amount of grain output varies from plot to plot, and the number
of agricultural machines needed and the number of operational tasks assigned to them
is dynamically changing (such as harvesters with large loading capacity should match
the plots with large grain output). Finally, even if the same type of farm machines work
together, the characteristics of the machines are not the same (for example, the harvester
with the same loading capacity, the fuel consumption is different, the harvester with high
fuel consumption should be assigned the operation task more than its work cost, and its
operation path should be as short as possible but the harvesting volume should be as
large as possible). To ensure that multiple machines can cooperate, a multi-robot system is
required to be able to organize multiple robots flexibly, quickly, and efficiently according
to the changes in the environment and tasks, and to fully utilize the capabilities of each
robot to finally complete the given task with high quality [21]. At the technical level, in
addition to being accurately informed of the positioning information of the swarm and the
environmental information of the operation, and solving collision and obstacle avoidance,
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it is also necessary to assign operational tasks to multiple machines, plan operational paths
(such as in areas where multiple robots work together), coordinate the formation control of
multiple robots, and maintain the information interaction between multiple robots.

3. Research Progress on Synergistic Technologies of Agricultural Multi-Robots

To solve the above problems, it is necessary to study technologies of collaborative
operation, such as environment perception, task allocation, path planning, formation
control, and communication-based on multi-robot architecture. Since each technology
does not solve the same agricultural problems, this section first classifies the types of
development of these technologies, then describes and reviews each of these cooperative
technologies in terms of research methods or problem solving, and finally summarizes
their research development status and characteristics.

3.1. Architecture of Agricultural Multiple Robot Systems

A reasonable architecture can guarantee information flow and control flow in the
agricultural multi-robot system and make effective cooperation among multiple robots
possible [22]. At present, the architecture of agricultural multi-robots can be divided into
centralized architecture and distributed architecture. It is found that the earliest recorded
structure of agricultural multiple robot systems comes from hay harvesting and transporta-
tion robots in farmland [23,24], for which these multi-robot systems were operated under
the principle of centralized architecture. As shown in Figure 2a, in leader-follower mode, a
relatively powerful robot is selected as the “leader” of the swarm robots, performing spe-
cific motion planning for the remaining robots after analyzing and processing the sensory
information, but these remaining robots are just executors, without the ability to choose
their actions or coordinate with each other. Alternatively, as shown in Figure 2b, in the
central controller mode, each robot can perform tasks independently and is commanded by
a central controller [25]. The advantage of this centralized architecture is that the theoretical
background is clear, and the implementation is intuitive, but the flexibility, fault tolerance,
and adaptability are poor [26].

Figure 2. The centralized architecture of an agricultural mobile multi-robot system. (a) One of the guided following modes,
where the slave robot follows the travel path taken by the active robot [27]. (b) Another of the guided following modes,
where the slave robot is ordered by the master robot to go the other way [27]. (c) The centralized control mode is usually a
back-end computer that monitors, plans, and controls the robot’s tasks and operating paths.

Compared with the operating environment of UGVs, the operating area of UAVs
has the advantage of no obstacles, so these systems generally adopt the distributed struc-
ture [28]. As shown in Figure 3, the three UAVs in the multi-robot system carry out
agricultural situation monitoring in the individual workspaces independently; each robot
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of this system had a high degree of autonomous operation ability and can complete a
given task according to its aims; robots can communicate with each other, exchange infor-
mation, and coordinate their behaviors equally and independently to complete a given
task [28]. This structure has strong scalability and certain advantages in real-time operation,
fault tolerance, and reliability, etc. [29] and is suitable for handling tasks related to spatial
states [30]. However, “it costs a lot in terms of the coordination mechanism, such as task
allocation and motion planning” [29].

Figure 3. The distributed architecture of an agricultural mobile multi-robot system (a) Agricultural multi-robot agricultural
condition monitoring in different areas of the vineyard [28]. And the robots exchange their information for autonomous
work. (b) Distributed structure diagram of a multi-robot. Each robot can exchange information with other robots through
communication and make decisions autonomously [26].

The centralized architecture that can be divided into a leader and follower robots is suit-
able for highly coordinated tasks and is advantageous in a fully known environment. The
distributed architecture, in which there is no affiliation among robots, is suitable for weakly
coordinated tasks and is advantageous in large-scale, complex, and varying environments.

3.2. Environment Perception

Environmental perception is the premise of the cooperative operation of multiple
robots in agriculture. That is, the mobile carrier can use the sensors carried by itself
(these sensors include internal sensors and external sensors [31], where the internal sen-
sors include odometers, magnetic compasses, inertial navigation, and global positioning
systems to determine the speed, position, and direction of the robot in the environment;
external sensors include ultrasound, infrared, laser and vision, used to sense surrounding
information [26]) to obtain the information of the surrounding environment, extract the
effective feature information within the environment for processing and analysis, and fi-
nally establish the environment model [32]. This technology mainly involves collaborative
positioning, data fusion, and environmental construction.

3.2.1. Co-Location Technology

The concept of co-location was originally proposed in 1994 by Kurazume and Nagata
in Japan [33] The concept refers to a robot “sharing” its positioning results with other mobile
robots and to other robots using this shared information to integrate their calculation
results to improve the accuracy of positioning themselves and, in turn, sharing their
positioning results with other mobile robots, repeatedly achieving the precise positioning
of mobile robots [34]. According to the collaborative positioning method, this approach
can be divided into active positioning, passive positioning, and interactive positioning [35].
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However, no research on interactive localization has been reported in the literature of
agricultural multi-robots.

• Active positioning

In the absence of information exchange, the robot relies on its sensors to obtain relative
distances and angles by observing the neighboring robots for self-positioning [35,36]. As
shown in Figure 4, the leading robot guides the follower robot to steer along the leading
robot reference route [37].

Figure 4. Active positioning model.

For example, the black-and-white checkerboard feature board was fixed to the leader
robot as the following feature, and the 3D information of each corner point on the black-
and-white checkerboard feature board was obtained by the binocular vision camera fixed
to the following robot, and the information was analyzed to finally obtain the longitudinal
spacing, lateral offset and heading declination of the following robot relative to the leader
robot. Using this navigation information to realize the automatic following of the following
vehicle, the following system of master-slave orchard operation vehicle is established [38].

• Passive positioning

In an environment where information exchange exists, the robot indirectly obtains
the relative distance and angle through the “observed” data provided by the friendly
neighboring robot to perform its positioning [35]. As shown in Figure 5, the follower robot
dynamically creates a reference heading for itself from the position point of the leading
robot [39].

Figure 5. Passive positioning model [39].

Passive positioning mode is usually used in combination with kinematic control
models and is one of the most used in master-slave robots. For example, GPS positioning
was used for multiple robots, and the travel trajectory of the pilot robot was the main one.
Under the premise of communicable, the pilot robot estimated the motion trajectory of
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other robots using the kinematic model, and the difference between the sensor positioning
and the estimated positioning value was calculated by the other robots or the pilot robot,
and the lateral and longitudinal displacement of each robot was adjusted according to the
difference [40].

However, the above positioning methods are highly dependent on the positioning
accuracy of the leader robot, which requires good stability and robustness. When the leader
robot fails, it is easy to cause the localization accuracy of the whole team to drop, or even
the localization fails. In contrast, the interactive localization approach has an environment
of information exchange, where robots achieve joint localization through these steps of
mutual observation, data exchange, and information fusion [41]. In this case, the robots are
in the same position in the team and there is no master-slave distinction, namely, they do
not depend on the positioning accuracy of a fixed robot, and this type of phenomenon is
reduced. The above co-location methods are summarized as shown in Table 1.

Table 1. Comparison of co-location methods.

Co-Location Methods Active Positioning Passive Positioning Interactive Positioning [41]

Data measurement object Robot itself Neighbors The robot itself; Neighbors

Observation reference object Neighbors Robot itself The robot itself; Neighbors

Measuring object Single Single Mutual observation

Measurement data The distance and angle of the robot itself relative to the reference object

Data exchange None Exists Exists

Data Fusion None None Exists

Advantages Little computation Information interaction Algorithm of high precision
and robustness

Disadvantages

Affected by the environment Affected by the environment A huge amount of information
Lower algorithm accuracy

and robustness Lower algorithm accuracy
and robustness

Large complexity of
the algorithm

No information interaction

Applications Drove in orchards [38]

Drove on farmland [42]

None

Drove on sloping land (11◦) [43]
Plowing [44]

Lawn [45]
Drove in fields [46]

Plowed [47]
Harvested farmland [48]

It can be seen from Table 1 that the cooperative localization technology for agricul-
tural multi-robots mainly adopts active localization and passive localization, which are
computationally small and easy to implement. The real concept of “co-location” should be
interactive positioning; through communication among robots, information sharing can be
realized, and then the robot’s positioning error can be corrected to achieve accurate posi-
tioning. However, this method incurs a large amount of calculation and a large complexity
of the algorithm, making it difficult to implement. No examples have been found in the
literature for agricultural multi-robots.

More practical applications indicate that the cooperative positioning of multiple
robots in agriculture is replaced by a central controller or task manager coordination
mechanism [49,50]. That is, the working area and travel path of each robot are planned by
a task manager or central controller based on the established environment map. The work
areas and work paths of these multiple robots usually do not intersect and each robot only
needs to localize and navigate based on its sensors. For example [27], the vineyard area
was divided into three UAV-monitored vineyard areas using the task manager according to
set rules, and path planning was performed for the sub-areas of individual UAV operations,
with each UAV flying at a different altitude to avoid collisions between the UAVs.
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3.2.2. Data Fusion Technology

A single sensor has certain limitations. For positioning accuracy and reliability, it is
necessary to utilize the advantageous features of each sensor, that is, data fusion of multiple
sensors. Data fusion technology, also known as multi-sensor information fusion technology
(MSIF), essentially involves the comprehensive processing of target information originating
from different sensors at different times or multi-target information simultaneously, to
obtain more accurate positioning, identification information of the measured environment
or object, and comprehensive and timely assessment of the current situation [51,52], thus
facilitating the subsequent planning and decision making of the robot. The strength of
the data fusion capability directly affects whether the robot can effectively achieve mutual
coordination and collaborative work.

The internal sensors in the agricultural robot mainly include a global positioning
system (GPS), inertial measurement unit (IMU), steering angle potentiometer, and encoder,
which are used to provide the robot with the position, heading, and steering angle infor-
mation; the external sensors mainly include various LIDAR and cameras, which are used
to avoid obstacles and collect environmental information, as shown in Figure 10. Among
them, GPS can provide a unified coordinate system and accurate position information for
field robots and is used most frequently [53]. With the promotion of satellite positioning
technology, agricultural robots equipped with GPS positioning and navigation systems
will become increasingly popular. Take the automatic navigation system System150 re-
searched by TOPCON company of Tokyo in Japan as an example [54], the system adopts
GPS-based advanced inertial guidance and terrain compensation technology, which can
realize navigation in complex terrain environments with ±2.5 cm accuracy for straight line
and turn. However, data fusion techniques are still very important for robot localization
when GPS cannot obtain accurate position information in greenhouses or forests [55], or
when the robot is too small to install high-precision sensors.

For example, to obtain information on the ambient temperature, humidity, light,
and CO2 concentration in a greenhouse [56], a human remotely operated UAV was first
operated to obtain a map of the greenhouse environment, and then the ground robot fused
IMU, GPS and odometer information to output the actual location information of the robot
through the extended Kalman filter (EKF) algorithm. In practical applications, because of
the poor GPS signal in the greenhouse, the EKF was used to fuse the odometer and IMU.
EKF is used to linearize the nonlinear system at the reference point using Taylor expansions,
and then Kalman filtering theory is used to achieve the prediction and correction of the
system. But the EKF still cannot solve the global localization problem [57].

Another example is an agricultural spraying multi-robot [58] that used particle filtering
to fuse information from multiple low-cost sensors of the odometer, IMU, wheel encoder
sensors, and GPS, which incorporates the open-source library RTKLIB and correction
signals. The particle filter could also determine robot attitude based on a series of particles
in noisy environments and when the GPS was offline. Particle filtering [59] is a basic
method based on Bayesian filtering theory (the robot can determine the poses with a certain
degree of confidence based on all available information [60]) and differs from Kalman in
using particle sets to describe the probability distribution. However, a large number of
particles need to be maintained for higher localization accuracy, which will consume a
large number of computational resources, especially as the walking distance gets farther,
which will put greater pressure on the computing platform with limited memory resources.

According to the sensor information fusion processing hierarchy, the technique is
divided into three levels, namely the data layer, the feature layer, and the decision layer [61].
Their specific scopes, characteristics, and fusion algorithms are shown in Table 2.

From Table 2, it can be seen that information fusion in agricultural multi-robots
is focused on multi-sensor information fusion of single robots, and there is almost no
research on sensor information fusion between homogeneous or heterogeneous agricultural
multi-robots. To obtain more information, the information collected by different types of
sensors on a single robot is mostly different (e.g., GPS collects position information, IMU
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collects robot heading, odometer, etc.), but some information has a mutual transformation
relationship (e.g., the integration of velocity from odometer can give distance), which can
be regarded as the same kind of sensors at this time. The fusion algorithms are mainly
based on classical EKF and particle filtering.

Table 2. Comparison of multi-sensor information fusion processing levels [62,63].

Fusion Level Data Level Feature Level Decision Level

Processing level Bottom layer Middle layer High level

Sensor types Homogeneous Heterogeneous Homogeneous/Heterogeneous

Degree of dependence on
the sensor Maximum Medium Minimum

Advantages

Less information loss; Takes into account the
advantages of data and

decision;

Less calculation;
Good fault tolerance;

Good anti-interference;

High precision;
Low algorithm difficulty;

Fusion is more convenient; A small amount of
communication data;

Wide range of applications; Good real-time performance;

Disadvantages

A large amount of calculation;
Global decision; A large amount of information

loss;
Poor fault tolerance;

Poor anti-interference;
The algorithm is complex; Strict requirements for sensor

pretreatment;

Low precision;
A large amount of

communication data;
Need to balance constraints
(speed, reliability, cost, etc.);

Poor real-time performance;

Fusion algorithm

Wavelet transform;
Kalman filter; Bayesian theory (Particle filter);Artificial neural networks;

Weighted average;
Production rules, etc. Extended Kalman filter, etc; The statistical decision, etc.;

Applications None Drove in a greenhouse [56] Seeded fields [58]

3.2.3. Mapping

Once the multi-robot has determined its position, it also needs to determine infor-
mation about the multiple robots’ surrounding environment, for instance, the presence of
obstacles. Mapping is the task of accurately describing the spatial position of the robot
working environment and various objects (such as obstacles and road signs) in the envi-
ronment, that is, to establish a spatial model (two-dimensional or three-dimensional) or
map [26]. The purpose of creating this map is to provide path planning for the robot, so
the map must be easy for the robot to understand and computationally manipulate and
accommodate revision when new environmental information is detected [64].

At present, many methods have been developed for constructing environmental
models for multiple robots, which are mainly summarized in the three types of grid-based
model, geometric mode, and topological mode [22]. Probably due to the low environmental
information of the topological model, no literature was found on the use of multiple
robots in agriculture. On the contrary, the grid model and the geometric model provide
abundant information about the agricultural environment, the purpose of multi-robot
operations is clear, and more literature is applied to agricultural operations. And the
detailed environment model facilitates the task allocation to multiple robots, real-time
observation of multiple robots’ motion, effective coordination mechanisms, and detection
of robot motion faults.
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• Grid model

The uniformly distributed grid represents the working environment of the robot, and
each grid corresponds to the position of whether an obstacle exists or not [22]. For example,
if a grid has an obstacle, it is marked as 1; otherwise, it is 0.

As shown in Figure 6, Bouzouita et al. [28] obtained georeferenced pictures through
UAVs and then created a full map of a vineyard. The processing entails first dividing
the UAV workspace into multiple regular grids and defined borders (line segments of
workspace in the grid-based environment) using Bressenham’s linear algorithm (BLA).
Then, the procedure to distinguish the subareas in the grid-based environment is a recursive
flood-fill algorithm that picks an empty cell (not marked as occupied) and floods in four
directions while there are empty cells, and each flooded cell is marked as occupied. This
mapping procedure is repeated until all nodes of the grid are occupied by georeferenced
pictures. However, the drawback of this mapping is a tradeoff between acquiring an
equally sized set of images in cells and inefficient aerial sampling with UAVs.

• Geometric model

Figure 6. Grid model with rasterized areas [28].

Geometric features such as line segments or curves are extracted from the environ-
mental perception information and used by robots to construct an environmental map [22].
As shown in Figure 7, Ball et al. [65] defined the boundary of a 55-hectare sorghum stubble
field by manually selecting appropriate latitude and longitude coordinates but omitted the
headland where the UGVs turned around at the end of each row. Besides, the positions of
multiple robots and obstacle information (human, pole, vehicle, etc.) were periodically sent
to the central controller through sensors of a real robot and 12 simulated robots. Finally,
the central controller constructed a 2D map of the environment surrounding the robot.

Figure 7. Geometric models were constructed with points and lines [65].

A more scientific approach than manually labeling is the Voronoi diagram [66]. For
example, a fruit tree on the robot’s driving path was taken as a point in the orchard map,
and the two-dimensional coordinates of this point were found in the image acquired by
the UAV. At the same time, the data of planting interval and density of fruit trees were
learned from this image, and the two-dimensional coordinates of other fruit trees were
obtained, and then the K-means clustering algorithm was used to find the center of clusters
of multiple fruit trees, and the orchard was divided into multiple sub-regions for robot
operation according to the principle that the fruit tree point is most adjacent to this center.
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But the experimental results after mapping are to be further validated on a real agricultural
spraying multi-robot.

• Topological model

The topological relationship among objects in the environment is represented by the
environment model [21]. The topological model consists of multiple unrelated points and
lines with a simple model. Some researchers proposed to use this model in agricultural
multi-robot path planning, but it is only an idea and has not been applied [67].

The specific application scope and characteristics of the multi-robot environmental
model are shown in Table 3.

Table 3. Comparison of mapping methods [68–70].

Mapping Model Grid Model Geometric Feature Model Topological Model

Algorithm Bressenham’s linear algorithm,
Bayesian; D-S theory, etc.

Voronoi Diagram;
Baum-Welch, etc.Extended Kalman filter;

Particle filter, etc;

Scope of
application

Suitable for processing systems such as
laser radar and sonar priority ranging;

Local area modeling; Large-scale, simple environment;
Specific environment;

Advantages

Simple and intuitive, easy to create
and maintain; More compactness; Model is simple and easy to change,

and motion planning is fast;

Good spatial consistency;
Modeling in local areas

can achieve
higher accuracy;

Better robustness against
position errors;

Better robustness;

Conducive to the
estimation of the position

of the robot and the
identification of the target;

A high degree of abstraction, easy
to store;

Disadvantages
A large amount of calculation;

Difficult to address and
extract irregular

geometric features;
Less information;

Takes up substantial storage space; Image data are processed
cumulatively;

The topology network establishment
process is complicated;Long storage time;

Application

Harvested muddy moss in
farmland [13] Plowed [47]

None

Monitored vineyards [28] Drove in a greenhouse [56]
Environmental monitored [49,50] Harvested farmland [48]

Collected farmland information [71]
Precision irrigation in the

vineyards [72]
Sprayed in the
Orchard [66]

Compared with 2D maps [14,73–75], 3D maps can provide more information. By
fusing the original measurement or small local maps generated from multiple robots
to construct global maps at the same time, or matching the 3D maps constructed by
heterogeneous robots, more and more abundant data are obtained, which is a new research
direction of mapping.

For example [71], the point clouds of the two images acquired by the UAVs and UGVs
respectively were first represented by a grid model, and each cell stored excess vegetation
index information and ground height information. After that, the relative displacement and
rotation parameters between the two grid maps were extracted using the data provided by
GPS and Attitude and Heading Reference Systems (AHRS), and the maps were matched by
these parameters. Then the correspondence of point clouds between the matched maps was
calculated using the Large Displacement Dense Optical Flow (LDOF) system and a voting
scheme was used to select a coherent correspondence dataset with high data similarity
to infer the initial conversion relationship between the maps, and a non-rigid alignment
algorithm was used to eliminate orientation errors. Finally, the input point clouds were
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brought in for a point-to-point alignment, and non-vegetation points were removed to
obtain the 3D maps. The experimental results showed that the constructed maps matched
well, but the time taken to construct each such image was quite long.

As the farming environment is often dynamic, learning specific farming information
while shortening the time to build maps will help improve the efficiency of multi-robot
operations, which should be a direction for further research. For example, simultaneous
localization and composition (SLAM) allows the robot to get information about the image
while localizing it, and this technique is currently used more often for indoor multi-robots,
especially for catastrophic search and rescue where high responsiveness and mobility are
required [76]. In the literature [56] it was mentioned that this technique was used on
a ground robot for heterogeneous multi-robot in a greenhouse and that the robot was
motion controlled using an Augmented Monte Carlo Localization (AMCL) methods. The
experimental results showed that the UGV using SLAM takes less time to construct the map
than the remotely operated UAV. And based on the map, the ground robot can complete
collision-free autonomous movement between the initial and target points. It is obvious
that SLAM technology has great potential for multi-robot mapping [77], and the application
of multi-SLAM on agricultural multi-robots will be one of the future research directions.

3.3. Multi-Robot Task Allocation

Multi-robot task allocation (MRTA) provides evaluation indicators of a multi-robot
system, a task set, and system performance and finds a suitable robot for each subtask to
perform, bringing the benefit of a robot system to perform mostly task collection. Thus, the
quality of the MRTA results directly affects the efficiency of the entire system and whether
each robot of the system can maximize its capabilities [78].

Solve the MRTA problem [79] involves many aspects, such as the capability attributes
of the system members, the structural attributes of the tasks, the robot coordination mech-
anism, and the strategy of task allocation [80]. This approach divides the assignment of
agricultural multi-robots into centralized components based on the decision of the central
controller in this part.

• Centralized Allocation

The centralized allocation means that the leading robot or control center of the system
decomposes the global task and then sends the decomposed subtask to each robot according
to the corresponding allocation method.

In 2012, reference [14] reported the work area division and task assignment of two
UGVs by a person through remote monitoring based on a citrus orchard map. However,
as the number of robots increased, manual task assignment stops when a robot hits a tree
or fails to make a reliable turn. Some scholars [66] solved the manual assignment of tasks
to multiple robots from the perspective of dividing maps, namely, as many sub-regions
as there are robots needed. The edges of these sub-regions are generated from discrete
fruit tree points and K-mean clustering points on the map boundary using an integer
programming approach. However, this view is too ideal and does not consider the case
where the number of robots is less or more than the total number of tasks.

A similar study on the number of robots over the number of tasks is multiple robots
and a small number of refueling stations [81]. In this reference, an approximate arbitrary
time algorithm based on the branch delimitation method was used to obtain the task
sequence of multi-robot collaborative refueling. The limit value of the path length distance
was first calculated and used as the upper and lower bounds of the algorithm nodes based
on the rules for robots walking infield and the total time cost function of refueling and
waiting in the queue. Then the optimal solution was obtained by deleting the sub-nodes
whose lower limits were greater than or equal to the optimal upper limits during iteration.
Simulation experiments showed that the optimal approximate solution on resource utiliza-
tion can be found by this method, but it is difficult to apply the method to other aspects of
agriculture, such as spraying.
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A reinforcement learning-based method (Dyna-Q +) was used to find the optimal
search path from the current point to the endpoint, that is, multiple robots randomly
selected actions (front, back, left, right) and each action was recorded, and the optimal path
was obtained by rewarding and punishing the actions selected by the robots according to
the presence or absence of obstacles [62]. Then a weighted graph was used to represent the
Gird model, including parameters such as the current position of the robot, the set of grids,
and whether there is a path between the grids. The minimum cost time for the UAVs to fly
at different speeds under the optimal path was calculated using Dijkstra’s algorithm, and
finally, the search space was obtained based on the optimal path and time and allocated to
multiple robots in proportion to the size of the space. A reinforcement learning [82] is a
Markovian decision process where the basic idea is all about modeling or fitting a strategy
using a function for more complex decision problems. However, the method requires a
large number of samples and a long time when used.

Also, multiple robots working in an agricultural environment are often subject to
resource-sharing conflicts. For predictable conflicts, relying only on a central task allocation
approach to avoid conflicts, the adaptability of multiple robots is very limited, while
adding a decision support system (DDS) to provide options for multi-robot collaboration,
i.e., identifying problems and building or modifying decision models to avoid resource
conflicts based on explicit goals. For example, as shown in Figure 8, in reference [58], the
authors adopted a central entity (OptiVisor) to build a multi-robot seeding map based
on inputs such as the location of static obstacles in a large field, the seeding method, the
seed density, the location of the central controller, and the number of robots. Based on
this map, the location and density of each seed are precisely located and the sowing task
is assigned to multiple robots. When the robot finished the job, the path from the robot
location to the Central Logistic Unit (CLU) was recorded and the robot was allowed to
return to the CLU. Especially when one or more robots failed, the task of the failed robot
was reassigned to the other robots of the failed robot, and the sowing path was updated for
these replacement robots. OptiVisor could also stop a robot’s motion when a multi-robot
collision is imminent, and define restricted motion areas for the faulty robot. However, this
task assignment method was implemented in a simulation environment and needs to be
further tested in real applications.

• Distributed allocation

Figure 8. A centralized entity was used to plan the seeding task, seeding patterns, and seed densities
for different robots in the simulation environment. At the same time, the centralized entities were
used to monitor the whole seeding process to avoid collisions between robots [58]. The small blue
dots are the locations of the seeds planned to be sown, the yellow dots are the seeds that have been
successfully planted, and the larger red dots are the border seed sowing locations.
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In general, the distributed task allocation method has the feature that each robot does
not have global knowledge of the task but calculates and plans individually according
to the local information obtained by the sensor. The performance of the whole system
not only is closely related to the individual but also depends on the combined effects of
individuals [83].

It was reported in the literature [84] that when the number of tasks is more than the
number of farm machines, the ant colony algorithm can be used to find a suitable task
sequence for multiple robots. First, the distance between plots was calculated based on
the specified coordinate information of each plot, and the relevant parameters of the ant
colony algorithm were set. Then randomly generated the starting points of multiple parcels,
according to the state transfer probability formula for path selection, and put the generated
path parcels into the forbidden table. Finally, the path distance of the plots was calculated,
and the pheromones on the path were continuously updated according to the set rules,
and iterations were repeated until the optimal task planning for multiple robots was found.
The method is mainly used in simulated farmland environments and has not yet seen the
practical application.

In reference [85], researchers adopted Semantic MozartSpaces to describe a task al-
location data model based on a resource description framework (RDF) and SPARQL (a
query language and data acquisition protocol developed by the RDF) in task storage where
the RDF was used to construct nested blank nodes and SPARQL was used for querying,
updating and interactions of the entry. As shown in Figure 9a, a task was mapped to a
nested blank node to generate a semantic tuple (entry) in the task-allocation model. The
entry was stored in the task storage with an internal ID that concluded the URL (uniform
resource locator). Then, the entry could be selected with a URL according to the relation-
ship between the robot’s function and the task requirement. The results of the simulation
experiment suggested that the execution time increases correspondingly with an increasing
number of tasks, followed by a gradual decrease in production efficiency. It would be
necessary to add new robots temporarily to ensure productivity, but the production cost
would also increase, so the tasks need to be set in advance.

Figure 9. Distributed task allocations: (a) An entry was stored in task storage with ID numbers. And robots could select ID
to work according to the relationship between the robot’s function and the task requirement [85]; (b) A task was split into
several subtasks. And each robot proposed the largest possible task allocation initially, then gradually decreased its offers
based on negotiation mechanism until a deal was done [28].
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As shown in Figure 9b, researchers developed market and auction-based approaches
for task subdivision and allocation based on the Rubinstein negotiation protocol [28]. The
advantage of such a protocol was that the auctioneer robot had to split the task into subtasks
during the negotiation. In each round of negotiation, each robot initially started proposing
the largest possible task allocation for itself and decreased its offers based on a negotiation
of cost functions (discount factors) at each round until the other party indicated acceptance.
With distributed task assignment under this protocol, each robot comes with a DDS, and
each robot can dynamically adjust to the actual situation to get a suitable task. However,
the task allocation result was generally an approximate optimal solution because of the
discount factors, such as the area of the mission area, the distance of the robot from the
goal, the area beyond the target, and the overlapping work area.

Combined with the above task allocation technology, the research progress of agri-
cultural multi-robots in task allocation technology in the past 10 years is summarized in
Table 4.

Table 4. Task allocation classification comparison of agricultural multi-robots [86,87].

Classification Centralized Distribution Distributed Distribution

Advantages
Algorithm design is simpler;

Communication is more dispersed, which can avoid
the situation that affects the efficiency of the
algorithm due to communication congestion;

It has the potential to generate globally
optimal solution; Good real-time performance;

Disadvantages

The communication is concentrated and
susceptible to congestion, affecting the

algorithm efficiency;

The solution result can easily fall into a
local optimum;

Poor real-time performance; Consultation increases the communication burden of
the system;

Scope of the application

The task is known and determined in a
static environment;

The task is unknown and uncertainly determined in
the dynamic environment;

The environment model is fully known; The environmental model is partially known
or unknown;

The scale of this system is relatively small; The scale of this system is medium or large

Allocation method

Mixed integer programming
(branch-and-bound); A method based on behavioral motivation;

Heuristic search algorithm
(reinforcement learning);

A market-based approach;
Group intelligence algorithm (greedy algorithm, ant

colony algorithm [84]);

Application

Sprayed and weeding in an orchard
(manned) [14]; Weeded farmland [85];

Seeded in a field [58]; Agricultural monitored in vineyards [28];
Sprayed in the Orchard [66]

Harvested fields (simulation) [88];Refill scheduling [78]

It can be seen from Table 5 that the current task allocation methods for agricultural
multi-robots are mainly centralized, and most of them are implemented in the simula-
tion experiment.

The centralized task allocation mainly adopts the integer programming method, which
describes the nature of the task allocation problem by establishing the objective function and
constraints. Integral programming (IP) and mixed-integer programming (MIP) problems
are an important branch in the field of operations research, which includes branch and
bound method [89], cutting plane algorithm [90], graph theory method, etc [91]. The idea
is to determine the transfer method and transfer relationship from one search point to
another, and the result is a unique optimal solution, which is suitable for small scale; when
the scale is extended, the computation is considerable and the computation time will be
greatly increased [92]. Thus, the computation of the algorithm grows exponentially with
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increases in the number of tasks and robots. In general, it is often difficult to meet real-time
requirements in task allocation issues.

Distributed task allocation mainly uses a method based on behavioral motivation
and a market-based approach. The former applies to multi-robot systems with strong
autonomy, but the method has low system allocation efficiency; the latter has a wide range
of applications based on the resource optimization configuration idea of economics, but
the difficulty of this research method is how to design the negotiation mechanism and
reasonably determine the cost-income models of the task [44].

(a) (b) 

Figure 10. Heterogeneous sensors carried by agricultural multi-robots. (a) Typical sensors for aerial robots: inertial
measurement unit (IMU), Global Positioning System (GPS), and pressure gauge [28]. (b) Typical sensor for ground robots
RT1 and RT2: GPS, Laser, and IMU [45].

3.4. Path Planning

Path planning is the fundamental guarantee for multiple robots to accomplish tasks
together. This technology refers to using the known static environment information, or
the dynamic environment information obtained by the sensor, to autonomously plan a
collision-free optimal path for each robot from a known starting point to a target point,
which requires not only a single robot to avoid obstacle but also a plan to satisfy collision
avoidance among multiple robots [93]. The path planning methods for single robots to
avoid obstacles mainly include traditional methods, intelligent methods, and other meth-
ods. The traditional methods include the construction space method, V-Graphic (visibility
graph), Voronoi diagram, grid method, A* algorithm, and artificial potential field [94].
Intelligent methods include the ant colony algorithm, particle swarm algorithm (PSO),
reinforcement learning algorithm, immune algorithm, genetic algorithm (GA), neural net-
work, and fuzzy logic algorithm [95]. Other methods include dynamic programming (DP)
and optimal control algorithms. Collision avoidance strategies among multiple robots
include the priority method, rate adjustment method, traffic management rule, and consul-
tation method.

The path planning method can be divided into centralized path planning and dis-
tributed path planning according to the ability classification of path planning [96].

• Centralized path planning

The centralized path planning method uses a centralized control unit to plan the opti-
mal path for swarm robots. This method can improve the ability of “close coordination and
optimal coordination” among mobile robots [97]. However, it encounters other problems
such as “dimensions”, “computational complexity”, and “non-deterministic polynomial
problem (NP) difficulties” with the increase in the number of robots, task difficulty, and
space complexity. In particular, the “NP difficulties” problem [98,99], in theory, has not yet
received a simple or fast solution.
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Connecting known path points into a line, which is simulated to a topological model,
and letting multiple robots walk along their respective paths is one of the simplest and
easiest path planning methods to implement. But, this method requires obtaining accurate
known point information in advance, which is a large preliminary job and is not suitable
for situations with a large number of robots or a large operating area. A method similar to
the point-to-point method is the visible map method, which aims to reduce collisions. That
is, the information of the edge projection points of each obstacle is obtained in advance,
and the robot free walking path, path points that can be combined or disconnected are
represented by edges and nodes, respectively. Then the starting node is connected to the
target node, or the starting node is connected to the raised point of each obstacle edge until
it reaches the target node, forming a multi-robot walking path. Finally, depending on the
size of the robot, the path width is increased or decreased appropriately. Similarly, the
workload of measuring points is larger and does not apply when there are more obstacles.

Planning multi-robot paths on mapping is another method of global path planning.
For example, in the grid method, the map was divided into multiple grid cells, and the
paths were extended in eight directions with each grid cell as the center, and the path
segments were formed by connecting the center of the grid vertically and diagonally with
the centers of other grid cells. To get the globally optimal path in the grid, the A* algorithm
was used to search for the path segment with the lowest travel cost, in which the cost of the
free space cell was set to 0, the cost of the cell with obstacles was set to the maximum, and
the travel cost was the sum of all grid cells on the travel path segment, and the globally
optimal path was set when the sum was the smallest.

Since information about the farmland changes dynamically, multiple robots operating
with precision need to re-plan to create multiple paths each time based on different infor-
mation. This multi-robot path planning problem with time windows has also been solved
as a multi-objective optimization problem. As shown in Figure 11, where a multi-robot
system including two aerial robots and three ground robots was jointly developed in
Spain and other countries [49]. This system adopted a centralized control unit to provide
global path planning for the multiple robots on a grid map with weed information, which
divides the sequence of operations for the multiple robots in advance. The No dominated
Sorting Genetic Algorithm II (NSGA-II) algorithm [100,101] was then used to coordinate
the relationship between the distance of the robot travel path, the number of turns, the
number of robots, the amount of weed killer used, and the capacity function to obtain an
approximate optimal solution between the time and money spent by the multiple robots
and the cost of weed treatment. It is a type of genetic algorithm, which mainly focuses
on the simulation of crossover, variation, and hereditary phenomena occurring during
natural selection and genetic inheritance, incorporating the natural law of superiority and
inferiority, and deriving the candidate solutions for each generation based on the results,
and finally deriving the optimal solution from the derived candidate solutions. However,
this method is more computationally intensive and the experimental results are not suitable
for fields that are unstructured or d fields without a fixed column or row lengths.

• Distributed path planning

The distributed path planning method requires little calculation and is robust but
exhibits low efficiency and can provide only a suboptimal solution [102,103]. In a fully
known environment, it is necessary to consider each robot obstacle avoidance method
and collision avoidance strategy among robots [104], that is, selecting a robot for path
planning first, then broadcasting its path to other robots, and finally planning paths of
other robots by themselves. However, this method is difficult to achieve [97] for large
numbers of robots. In an unknown environment, the preferred method is to plan a path
for each robot to avoid static obstacles based on neglecting the movement of other mobile
robots in the environment and then using the multi-robot collision avoidance strategy to
solve the conflict problem among mobile robots.
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Figure 11. The central controller plans the driving path for the unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) [49]: (a) The path planning of two UAVs; (b) The path planning of three UGVs.

Table 5. Research progress of path planning method for agricultural multi-robots.

Planning
Method

Environmental
Circumstances

Head-Turning
Mode

Coordination
Strategy

Obstacle Application

Point-to-point
planner Fully known Right-angle turn; None None

Drove in farmland [42]
Plowed [105,106]

Seeded in farmland
(simulation) [107]

Visibility graph
(V-Graphic)

Fully known
Zigzag; Priority;

Vehicle
Harvested muddy moss in the

farmland [13];U-shape; Rate adjustment;
Right-angle turn Bee pollination (simulation) [108];

Grid method
Partially known Zigzag; Others Pole Seeded in a field [58]

Fully known U-shape; Rate adjustment Human Harvested muddy moss in the
farmland [13];Vehicle

A * algorithm 1 Partially known None Others None Monitored in a vineyard [28]

Ballistic method Unknown None Others None Weeded in a rice field [109]

Breadth-first
search algorithm

(BFS)
Partially known None Others None Monitored in a vineyard [28]

Genetic
algorithm (GA) Partially known U-shape Rate adjustment None Weeded in farmland [101]The light bulb shape

Others Fully known Right-angle turn; Rate adjustment None Drove in a greenhouse [56]
1 The A * algorithm is a direct search method for solving the shortest path in a road network.

At present, there is little research on the distributed path planning of agricultural
multi-robots. As shown in Figure 12, Bouzouita et al. [28] developed UAVs to monitor
agricultural information in the vineyard. The path planning of the UAVs is based on the
grid map and A*. On the map, the UAV path planning function is constructed according
to constraint conditions, such as the number of UAV turns, the number of covered grid
visits, and the time to complete the single partition. And using a heuristic algorithm like
A*, the next best node to be expanded is obtained by partying the generation value of each
node. Then, the breadth-first search (BFS) algorithm is used to find the local maximum
of the function by the distance between the cells. The result is the path from any starting
point in the environment to the target unit. The practice shows that the method can find
the approximate optimal solution, reduce the possibility of repeated access to the same cell,
and facilitate the avoidance of known obstacles. However, it needs to consider the local
environmental conditions to find wide applicability.
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Figure 12. Distributed path planning [28], 1, 2, and 3 are the number of the UAVs, the red line is the
planned path of the robot in the delimited area, and the blue line is the actual flight path of the robot.

Combining the above path planning techniques, we summarize the research progress
of agricultural multi-robots in path planning methods over the past 10 years, as shown in
Table 5.

It can be seen from Table 5 that agricultural mobile robots mainly use ground robots
in farmland, and the number of robots is no more than four. The path planning method
of multi-robots is mainly conducted in fully known conditions, and the grid method and
V-Graphic under centralized planning are the methods most commonly used.

The collision avoidance strategy between agriculture robots usually does not incor-
porate changes in the path [110], and the obstacle avoidance strategy of a single robot
comprises mainly speed adjustment and the priority principle. The path planning of multi-
robot generally does not consider the presence of obstacles in agricultural production.

When the UGVs turn around at the headland, they need to consider the relationship
between the minimum turning radius and the headspace. The general head-turning
method has a bulb shape (as shown in Figure 11b), zigzag or U-shape, etc. The U-shape
predominates in practice. As shown in Figure 13, the zigzag (forward-reverse-forward) is
used in smaller spaces; in contrast, the U-shape turn (turn-straight- turn) is used in larger
spaces. However, the difficulty of robot control is increased with the zigzag turning shape,
and the task allocation and path planning of the multi-robot are prepared for U-shape
turning in advance.

Figure 13. Agricultural ground multiple robot head-turning mode: (a) Multi-robot turned on the ground with a zigzag way,
that is, first forward, then backward, then forward again [47]. (b) Multi-robot turned on the ground with a U-shape (GMU
is the abbreviation for Ground Mobile Unit) [25].
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3.5. Formation Control

Multi-robot formation control technology means that multiple robots maintain a
certain formation to the target while still adapting to environmental constraints such
as obstacle blocking or spatial physical limitations [111]. This technology can improve
the robustness of the multi-robot system, and the robots can complete the task with
higher efficiency and shorter time [112]. At present, the formation control technology of
agricultural multi-robots is divided into forming formation and formation control.

• Formation forming

As shown in Figure 14, the formation of agricultural multi-robots generally has
five types: column, I-shape, linear, V-shape, and W-shape, and the circular nodes in the
formation structure represent robots. Each robot is represented by RID, such as R1 and R2,
and the black arrow indicates the direction of robot movement.

Figure 14. Multi-robot team arrangement, the arrow points to the direction of robot movement, and the circle represents the
robot: (a) The robots of R1 to R5 formed a longitudinal linear queue. (b) The robots of R1 to R5 formed an I-shape queue.
(c) The robots of R1 to R5 formed a transverse linear queue. (d) The robots of R1 to R5 formed a W-shape queue (e) The
robots of R1 to R5 formed a V-shape queue.

It is necessary to achieve the desired formation by determining the formation position
reference point after determining the root formation. There are usually three reference
points: center, neighbors, and leading robot; as shown in Figure 15, the position of each
root node is represented by PID, such as P1 and P2, and the arrows indicate the relationship
between robot dependence and information transfer.

• Formation control

From the perspective of a multi-robot system control framework, formation control
is divided into two types: centralized control and distributed control. The former uses
a centralized control unit to make decisions, optimize robot coordination, accommodate
individual robot failures, and supervise the entire group of robots. The latter does not
have a unified control unit, and a single robot makes decisions based on its local informa-
tion [112,113].

At present, the method of centralized formation control of agricultural multi-robots
includes the virtual structure, graph-theoretic approach [114], and model predictive con-
trol [115,116]. The method of distributing the formation control of agricultural multi-robots
includes leader-follower [34,41,75,117] and the artificial potential field [113].
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Figure 15. Selection of formation reference points: (a) Take the green dot, in the center of P1 P2 P3, as a reference. (b) P1 and
P3 take neighbor P2 as a reference, P2 takes the nearest neighbor P1 as a reference. (c) Take the leading robot P1 of P2 and
P3 as a reference.

Guillet et al. in France [44] adopted the bidirectional control strategy based on the
virtual structure method. As shown in Figure 16a, each robot of the whole queue is a
fixed point on the virtual structure. In this structure, the queue also increases two virtual
leaders’ interaction with the extreme robots and carries the desired global velocity for the
whole fleet. The advantage of this method is simpler communication protocols and lower
communication costs; however, the reaction of the robots is slower because of different
acceleration performances.

Figure 16. Formations of agricultural multi-robots: (a) the head and tail robots in the formation are used to guide UGVs in I-
shape operation. And the robot in the middle of the formation plows with farming tools in the field [44]. (b) Leader-follower
method to control the formation in V-shape operation [105]

Berman et al. in the USA adopted the graph theory approach in bee pollination [108].
When a beehive was opened, the swarm robot flew radially from a moving beacon at a
constant speed. And once it encountered the edge of the graph, it flew eastward at a fixed
speed. As the robot flies over the plant, it acquires at least one flower within its range
through sensors and hovers over the flower with unit time probability to pollinate it and
record the location of the pollinated flower, returning to the hive after pollination and
starting the next flight until complete coverage of the whole field is achieved. However, this
method takes a long time and the model used in the simulation is too idealized. Whether
they can be used for practical production needs to be further explored.

Smith et al. in Korea adopted model predictive control (MPC) and nonlinear feedback
control respectively in fish tracking (simulation) [117]. MPC is a finite-domain rolling
optimal control strategy with three parts: model, prediction, and decision, sacrificing
optimality to some extent [118]. The fish population location was first divided into discrete
points, and the discrete points were clustered to get the vertices of fish population density,
and the transition model was constructed by transforming the movement of the fish
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population into the movement between the vertices. The transition model and nonlinear
feedback were used to obtain the transition matrix, and the underwater robot was guided
to the vertices with high fish population density according to the transition matrix. The
simulation results showed that the model-based control of the underwater robot could
approach the nearest point, while the feedback control made the underwater robot approach
the target point. However, in practice, the underwater robot movement speed is smaller
than the fish population movement speed, and the method needs further improvement
when applied in practice. The leader-follower method [48,105,117,119,120] is also another
classic model and widely used in the formation control of agricultural multi-robots. Japan’s
Zhang et al. [106] used the leader-follower method to control UGV formation. As shown
in Figure 16b, the relative positional relationship between the leader and the follower is
determined according to the lateral and longitudinal safety distances (l−l) between the
robots first, and then the distances are dynamically adjusted with feedback linearization
technology to assemble different formations. Based on the leader-follower model, Bai et al.
in China also combined slide mode control with the harvester swarm [48]. The kinematic
model of the farmland leader-follower harvester swarm was established first, and based
on this model; the asymptotically stable path-following control law and the formation-
keeping control law were designed by combining feedback linearization and sliding-mode
control theory. The advantage of this leader-follower model is that the behavior of the
fleets can be controlled through the determined trajectory of the leading robot. The method
decouples the cooperative navigation control problem into lateral distance keeping control
and longitudinal distance keeping control. The formation control is mainly accomplished
by establishing the location and gesture of the following robot relative to the leading
robot, such as (l−ϕ), (l−l) first, then obtaining the formation information through feedback
linearization, and finally adjusting the formation according to the threshold value. The
leader-follower test results show that the real paths of robots can achieve centimeter-level
average error with the planned path based on the safe distance of the vehicle. But this
method is only applicable for environments involving a single-tasking of agricultural
production and a fixed site. The adaptability to the headland turns is not strong. The
question of how to maintain robot formation in encountering static or dynamic obstacles
is not considered. If the leading robot malfunctions, the formation of the fleets cannot
be maintained. Once the leading robot fails, the multi-robot system is susceptible to
deadlock, and the formation cannot be maintained. The “leader” replacement method
was proposed [121] to overcome this shortcoming, but the method has not been applied to
agricultural multi-robots.

Ju and Son in Korea adopted Ramadge-Wonham theory in supervisory control to solve
the above deadlock problem [122]. Supervisory control is a feedback control theory for
discrete-event systems, where the control goal is achieved by observing the occurrence of
events or states and using allowable or prohibited controllable events. Finally, a time-driven
system is combined with a low-level controller and an event-driven system with a high-
level controller with the criterion of satisfying the behavior specification and maximizing
the allowable events. Time-driven is used when there is no fault, and once the queue
encounters a fault, the control outcome is selected based on event-driven. Simulation
results demonstrate that the method can be used to control complex dynamic systems, but
it has not been tested in practical applications.

The characteristics and formation process of the formation control methods are shown
in Table 6.

From Table 6, it can be found that more complex or hybrid control methods are mostly
used in simple or simulation environments, and the application in actual agricultural
production is still dominated by the leader-follower method, and the research is also
mainly focused on multiple machines traveling in a straight line in a fixed column. Further
research should be conducted on how to continue driving, maintain the formation, or
adjust the formation after multiple robots encounter obstacles.
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Table 6. Comparison of formation control methods [34,41,75,86,104,106,109–111,113,114,117,123,124].

Formation Control
Method

Advantages Disadvantages Steps Application

Bidirectional
Weighted

Constraints
Approach

Simplified description and
assignment of tasks;

Difficult to handle
fault tolerance;

Defining the dynamic model of the
virtual structure;

Plowed [44];
High formation control

accuracy; Poor reliability;
Transforming the overall movement

of the structure into the motion of
the robot;

No complicated
communication protocols,
low communication costs;

Low mobility limits
range of motion;

Obtain the tracking control law of
each robot;

Graph theory
approach

Suitable for large-scale
robot formation; The implementation is

more complicated,
mainly limited to

simulation research;

Define the formation right map
G = (set of points V, edge E,

weight W);
Bee pollination

(simulation) [108];
Easy addition and

deletion of robot nodes; Specify the ideal distance of each
edge in the formation;Easy to change between

different formations;
Seeded in a field (12

simulation robots) [107]

Artificial potential
field

Little calculation;
The design of the

potential field
function is difficult;

Design artificial potential field
(environment and constraints

between robots in the formation);
Precision irrigation in the

vineyards [72]
Easy to implement
real-time control; Problem with local

extreme points;
Establishing a potential field

function;Easy to handle collision
avoidance problems in

obstacle spaces;

Model predictive
control (MPC)

Has a strong theoretical
foundation;

A large amount of
calculation, mostly
used for simulation;

Real-time planning formation retains
the reference center and target
control amount of each robot;

Tracked fish (simulation)
[117]

Adds multiple constraints
in the control process, and

optimizes the control
sequence by online

scrolling optimization
combined with feedback

correction of real-time
information;

Building a linear programming
model with multiple constraints; Harvested farmland [48];

Leader-follower Simplified system control;

The ability to adapt to
a dynamic

environment is not
strong. If the leader

fails, the entire system
crashes;

Identify leading robot and
formations;

Collaborative air-ground
surveillance [122]

A follower follows the leader Drove in a field [46];
Control the spacing between the
leading robot and the following

robot–angle (l −ϕ) or lateral
spacing-longitudinal spacing (l − l);

Lawn [119];

Plowed [106];

3.6. Communication

Communication is the basis of information interaction and collaboration among
multiple robots. In agricultural production, many factors affect the fine operation of
agricultural robots, and to maintain coordination and cooperation among multiple robots
and to gain a more comprehensive understanding of the environment in which multiple
robots perform tasks, robots need to interact with each other through information to
better perform a given task [29]. Balch and Arkin concluded that even a small amount
of communication can improve the performance of multi-robot systems tremendously
through experiments [125].

At present, the communication technology of agricultural multi-robots mainly in-
volves three parts: multi-robot communication mode, communication network, and com-
munication protocol.

• Communication mode

The multi-robot communication mode is divided into three categories from a macro
perspective: explicit communication, implicit communication, and explicit and implicit
communication, as shown in Figure 17. Explicit communication is an interactive mode
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through communication as a medium, requiring a clear communication protocol between
interacting parties. This method is often used for concordant communication among robots,
but it incurs fairly large costs. Implicit communication is the acquisition of the required
information through the external environment and internal sensors without an explicit
exchange of data, so some advanced coordination strategies cannot be used, which affects
the capacity to perform certain complex tasks.

Figure 17. Communication modes of multiple robots.

Since explicit communication and implicit communication have their advantages [120],
explicit communication is used for the integrated control of robots in the upper layer,
and implicit communication is used for integrated control of robots in the bottom level.
Explicit communication means that the robot communicates directly or indirectly with
other robots via wireless networks. For example, robot 1 sends a message to all robots
in the communication range in broadcast communication, that is, without specifying a
particular robot, robot 2, which does not need the message, receives the message. In implicit
communication, the intermediary for inter-robot communication is often the surrounding
environment. For example, the UAV can be informed about the farmland in advance and
build a model of the farmland environment, and the ground robots operate on the ground
based on this farmland model [122]. The combination of both communication modes can be
used to develop their advantages, improve the flexibility to confront the various dynamic
and unknown environments, and complete many complex tasks in agricultural production.

For the implicit communication of multiple robots, you can refer to Section 3.2 envi-
ronment perceptions, here we focus on robot explicit communication techniques.

In literature [25], two aerial drones were equipped with GPS, visible and near-infrared
spectral cameras, which took pictures of the farmland at a set series of ordered waypoints
and uploaded them to the backend, which sends the processed information of weeds
in the farmland to the ground robot. The ground robots were equipped with RTK-GPS,
RGB camera, and LIDAR. RTK-GPS provided accurate heading for the ground robot,
RGB camera detects weeds and crop rows, and LIDAR detects obstacles on the vehicle
trajectory. While the ground robots were safely walking along their respective set paths,
weeding operations start if the weeds detected by the cameras were the same as the weed
information in the farmland. In this multi-robot system, the aerial drones and ground
robots did not communicate directly but completed the cooperative operation through the
interaction of environmental information.
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• Wireless communication net of multiple robots

As shown in Figure 18, the agricultural multi-robots need to adjust their pose in
real-time. Therefore, the data exchange of communication among multiple robots is
mainly based on wireless communication technology in agricultural production. This
technology mainly involves a wireless local area network (WLAN) and a wireless per-
sonal area network (WPAN), such as WI-FI, Bluetooth, ZigBee, and IRDA (infrared data
association). Among them, WI-FI technology has been developed most rapidly in agricul-
tural multi-robots.

• The wireless communication protocol of multiple robots

Figure 18. The computer as the center controller was used to send initial paths for UGVs and UAVs control units through
communication. And perception data were exchanged between multi-robots and computers.UGV.

The wireless communication protocols are primarily used based on wireless commu-
nication standards and the unlicensed band. Taking the WLAN as an example, the IEEE
802.11 series standards and the 2.4 GHz or 5 GHz bands are used in this communication.
The IEEE 802.15 series of transmission technology protocols are selected in WPAN.

Combined with the above communication technology, the research progress of agri-
cultural multi-robots in communication in the past 10 years is summarized, as shown in
Table 7.

Table 7. Comparison of wireless communication technologies of agricultural multi-robots in the past 10 years.

Communication Technology WI-FI Bluetooth ZigBee

Transmission distance [m] 10~300 10~100 10~75

Theoretical transmission
speed [bps] 54~300 M 100 k 10 k

Wireless communication
network

Wireless local area network
(WLAN)

Wireless personal area
network (WPAN) WPAN

Working frequency [Hz] 2.4~5.4 G 2.4 G 2.4 G (global); 868 M (Europe);
915 M (United States);
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Table 7. Cont.

Communication Technology WI-FI Bluetooth ZigBee

Communication protocol

IEEE 802.11 a; 1

IEEE 802.15 IEEE 802.15.4
IEEE 802.11 b 2;
IEEE 802.11 g 3;
IEEE 802.11 p 4;

Advantage

Fast transfer speed; High transmission rate; Low power consumption;
Low cost;

Strong anti-interference
ability; Large transmission range;

Long effective distance; Flexible networking; Good scalability

Reliable connection Low power consumption; Strong anti-interference
ability;

Wide coverage; Small volume; Good security;

Disadvantages

High power consumption; Slow; Low transmission rate;

Expensive; Short distance; Short distance;
Weak networking ability

The mobile phone cannot
communicate directly;Protocol coding complexity; Poor security and

confidentiality;

Application

Plowed in wheat fields or
orchards [126,127];

Plowed [47,105,106];

Monitored vineyards [28];

Plowed [44,48];
Monitored and weeded

farmland [49];
Plowed [46];

1 IEEE802.11a standard, operating in the 5 GHz band, has a data transmission rate of 54 Mb/s. 2 IEEE802.11b standard, operating in the
2.4 GHz band, has a data transmission rate of 11 Mb/s, and is not compatible with IEEE 802.11 a. 3 IEEE802.11g is a standard that increases
the transmission speed of 802.11b from 11 Mb/s to 54 Mb/s. 4 IEEE 802.11p standard is a communication protocol expanded by IEEE
802.11 standard, which is mainly used in wireless communication of automotive electronics.

In addition to the above wireless communication technologies, Albani et al. adopted
a mobile ad hoc (peer-to-peer) network [128,129], which regarded the UAV as a commu-
nication node in the network and used three communication strategies (simple, flooding,
geo-aware) to solve the communication problem of UAVs flying in the field. The sim-
plest communication strategy is a single broadcast mode, that is, the source node sends
information to the nearest node. Flooding constitutes a multi broadcast mode, that is, the
source node sends information to multiple agents. Geo-aware employs a source node with
the highest utilization rate, and this node sends the messages. All three communication
strategies ignore communication errors and focus on the impact of the communication
range and protocol on work efficiency. The simulation results show that the effective
information of weed monitoring can be transmitted with a minimum number of UAVs
under the geo-aware approach. However, the communication strategy discards new in-
formation obtained by UAVs of the distributed architecture, and messages cannot be
effectively transmitted with a wide range of communication (such as over wide areas
of farmland). Agricultural multi-robots working in the farmland often encounter signal
occlusion, atypical weather, etc.

Large agricultural multi-robots working in agricultural fields rarely encounter prob-
lems such as signal occlusion and atypical weather. However, in other agricultural products,
such as greenhouse and orchard, when the size of the multi-robot is smaller than the height
of the crop, its communication signal strength is extremely attenuated by factors such as
crop planting, growth characteristics, planting scale, and weather (natural wind and rain).
Previous references [126,127,130] showed that the test results of the WI-FI communication
system of agricultural multi-robots suffered from WI-FI signal intensity attenuation largely
because of the reflection and scattering effects of crops, and the effective communication
distance was less than 50 m (far less than the theoretical communication distance of 300 m)
in mature wheat fields, cornfields, and peach gardens. Therefore, it is a future research
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direction to select suitable multi-robot communication technology according to the charac-
teristics of crops and to carry out research on multi-robot communication patterns based
on crop shape characteristics.

4. Discussion

In general, in the past 10 years, the synergistic technologies of agricultural multi-robots
have achieved some research results, and multi-robot collaborative operations have been
realized in specific agricultural scenarios. But with the increasing demand for agricultural
operations, the following challenges in the application of multi-robots in agriculture still
exist to be solved:

• Flexible agricultural multi-robot system architecture

Multi-robot architecture is the basis for collaborative operations of multi-robot systems.
In the last decade, agricultural multi-robot systems have mainly focused on centralized
or distributed architectures to accomplish collaborative operations under pre-defined
conditions. Both architectures have their advantages and disadvantages, but as the number
of robots increases (such as multiple aerial robots cooperating with multiple ground
robots) and new agricultural operational needs increase (such as sampling in marine
environments [131], cargo handling in hilly mountainous areas, pest control in orchards,
etc.), it is clear that the scalability and flexibility of multi-robot systems relying on only
one architecture are limited. The advantages of centralized and distributed architectures
are combined to form a hybrid architecture, or the application architecture is dynamically
selected according to the task attributes, which can overcome the low performance caused
by the self-centeredness in the distributed architecture and reduce the lack of control
flexibility in the centralized architecture.

• Fast and precise environmental perception

In environmental awareness, positioning and sensor fusion answer the question of
“where am I” and building a map answers the question of “what’s around me”, and the
answers to these two questions are the prerequisites for robots to start their operations. The
positioning and sensor fusion technologies of agricultural multi-robot are mostly used in
large fields with unobstructed outdoor signals, where the communication between robots
is normal and the robots can get accurate positioning, heading, speed, obstacles, and other
information based on their sensors. However, considering the severe compaction of soil by
large agricultural machines, the compression of application costs, and the promotion of this
concept of refined agriculture, light, and small agricultural robots will be the trend of future
development, which will make multi-robot positioning unable to continue to rely on the
high-precision positioning of a particular robot or a particular sensor (e.g., GPS). Especially
in case of robot failure or communication failure, how to ensure the accurate positioning
of the remaining individuals and make the multi-robot system with good robustness is a
problem that needs to be solved urgently.

Mapping not only can accurately learn the information of detailed agricultural in-
formation, static obstacles, and the location of other robots but also can assign tasks and
plan paths for multiple robots. The more accurate the agricultural information, the more
accurate the operation objects will be, but this contradicts agricultural tasks that urgently
need a fast response, which means that the time spent on the subsequent processing of
information data reduces the real-time and flexibility of multi-robot operations. How to
obtain dynamic agricultural information quickly and accurately and match it with the
precise location of the operation object is another urgent problem in environment sensing.

• Reasonable task assignment in real-time

The task assignment is related to the multi-robot coordination and collaboration
mechanism, and the simple zoning assignment of robots cannot adapt to the dynamically
changing operational tasks. Also, the number of robots, operating time, and cost of robot
operations need to be dynamically adjusted to the operating task. Even for the same type
of robots, items such as fuel or electricity, fertilizers, herbicides, and pharmaceuticals can
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change differently depending on the target of the operation. It is impossible to obtain fast
and reasonable response results based on the changes of these uncertainties even depending
on a priori knowledge. How to enable multi-robots to timely self-adjust to dynamic task
changes and obtain reasonable operational tasks or operational task sequences through
real-time interaction with dynamic environments is an urgent problem for multi-robot task
assignments in agriculture.

• Dynamic and reliable path planning

The path of agricultural multi-robot operations is designed to accomplish dynamic
operational tasks, and the robot’s travel rules are usually fixed. The global path of multi-
robot offline planning only considers fixed travel rules, such as the point-to-point method
and image method, which can avoid static obstacles smoothly, but cannot be extended to be
applied to similar agricultural scenarios. In particular, if the dynamics of the agricultural
environment change rapidly (e.g., weeds are growing in the field after the rainy season) and
the agricultural information is not fully known (e.g., the constructed mapping usually does
not contain dynamic obstacles), fixed path planning cannot meet the needs of complex tasks
(e.g., weeds are not on the planned path). Therefore, how to perform reliable path planning
for multiple robots based on operational tasks with distinct temporal characteristics is a
problem that needs to be solved for multi-robot path planning in agriculture.

• Flexible and robust formation control

Multi-robot formation control currently focuses mostly on robot swarms walking
steadily along a straight line in a fixed formation. However, when a multi-robot system
encounters unexpected events, such as robot failure, communication failure, or stopping
travel due to dynamic obstacles, how to mitigate the impact on other robots, respond
quickly, and adjust the robot formation shape to continue the task is a concern for agricul-
tural multi-robot formations. Although some studies have shown that multiple robots can
be selectively controlled based on time or event drivers, or by replacing the “leader” in the
queue, none have been applied in real production.

• Communication system based on plant characteristics

Communication is the basis of multi-robot collaboration in agriculture, whether it is
multi-robot positioning, collaborative control, or remote supervision, communication is
indispensable. The agricultural environment lacks communication infrastructure construc-
tion, and most of them directly used industrial communication systems do not consider
the relationship between outdoor plant growth and communication signals, and their
communication range and signals will be attenuated to different degrees in the agricul-
tural environment. Therefore, the construction of a communication system adapted to the
agricultural multi-robot operating environment is a problem that needs to be solved for
multi-robot communication.

5. Conclusions

Given the current challenges in agricultural multi-robot research, this paper points
out future research directions in six areas to enhance the application of agricultural multi-
robots in practice. Firstly, to build a flexible and changeable agricultural multi-robot
system architecture based on hybrid architecture so that the multi-robot system has good
environmental adaptability and robustness. Secondly, to develop sensor information fusion
technology among agricultural multi-robots based on mutual positioning methods to
improve the positioning accuracy of multi-robots in agricultural environments without
GPS. Meanwhile, SLAM technology for agricultural multi-robots is studied to rapidly
build environment models to adapt to the dynamically changing agricultural information.
Third, to introduce deep learning mechanisms in agricultural multi-robot task assignment
enables multi-robots to self-identify, evaluate, compare, remember and adjust during their
interaction with the environment, and adjust the way they interact with other individuals
according to specific tasks so that the group as a whole is equipped with the ability to
complete multiple types of tasks. Fourth, dynamic planning of multi-robot paths based
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on a combination of centralized and distributed path planning methods enables multi-
robot systems to adapt to real-time changing operational tasks and avoid obstacles and
other robots promptly. Fifth, to modify the reference points of multi-robot formations
flexibly according to changing events, adjust the distance and direction between formation
members, reduce the impact on other mobile robots, and complete operational tasks. Sixth,
to study the relationship between plant growth characteristics and communication system,
establish a communication signal attenuation model, and design an agricultural multi-robot
communication protocol based on this model to build a communication system.

In summary, the multiple robot system represents the future of robot development.
The synergistic technologies for the research of agricultural multi-robots have a great value
and bright prospects but are also extremely challenging. Therefore, it requires participation
by researchers to combine the former research results, recognize the developing trends,
and use practicality as the ultimate goal to drive forward the coordination technology of
agricultural multi-robots.
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30. Şahin, E. Swarm Robotics: From Sources of Inspiration to Domains of Application. In Proceedings of the 2004 International
Conference on Swarm Robotics, Berlin, Germany, 10–20 July 2004. [CrossRef]

31. Fan, R.F.; Xie, G.M.; He, C.G. Robot Perception and Application; Harbin Engineering University Press: Harbin, China, 2013; p. 197.
ISBN 978-7-5661-0688-9.

32. Wang, D.S.; Wang, J. Research Review of Environmental Cognition Techniques of Mobile Robots in Unknown Environment.
Mach. Tool Hydraul. 2013, 41, 187–191. [CrossRef]

33. Jiang, H.Z. A Review of Collaborative Positioning Technology. Telecom. Power Technol. 2017, 34, 48–50. [CrossRef]
34. Rekleitis, I.M.; Dudek, G.; Milios, E.E. Multi-robot cooperative localization: A study of trade-offs between efficiency and accuracy.

In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), EPFL, Lausanne,
Switzerland, 30 September–4 October 2002; pp. 2690–2695. [CrossRef]

35. Cai, Y.F. Research on Multiple Robots Cooperative Localization and the Architecture. Ph.D. Thesis, Nanjing University of Science
& Technology, Nanjing, China, 2011.

36. Stroupe, A.W.; Balch, T. Collaborative probabilistic constraint-based landmark localization. In Proceedings of the 2002 IEEE/RSJ
International Conference on Intelligent Robots & Systems (IROS), EPFL, Lausanne, Switzerland, 30 September–4 October 2002;
pp. 447–453. [CrossRef]

37. Wang, Z.Q. Design and realization on the autonomous following control system of agricultural vehicles. Master’s Thesis, Nanjing
Agricultural University, Nanjing, China, 2014.

38. Bi, W.P.; Zhang, H.; Qu, Z.L.; Ding, Y.Q.; Yu, H.F.; Wang, B. Design of an autonomous following system for master-slave vehicles
operating in orchard based on binocular stereo vision. J. Hunan Agric. Univ. (Nat. Sci.) 2016, 42, 344–348. [CrossRef]

39. Zhao, M.; Lin, M.S.; Huang, Y.Q. Leader-following Formation Control of Multi-robots Based on Dynamic Value of ϕ. J. Southwest
Univ. Sci. Technol. 2013, 28, 57–61. [CrossRef]

246



Appl. Sci. 2021, 11, 1448

40. Guillet, A.; Lenain, R.; Thuilot, B.; Martinet, P. Adaptable robot formation control: Adaptive and predictive formation control of
autonomous vehicles. IEEE Robot. Autom. Mag. 2014, 21, 28–39. [CrossRef]

41. Wu, X.; Jing, Y.; Sun, F.; Chen, H.; Huang, S. An approach to multi-robot cooperative SLAM. In Proceedings of the 2012 31st
Chinese Control Conference (CCC), Hefei, China, 25–27 July 2012; pp. 4904–4913.

42. Zhu, Z.; Takeda, J.-i.; Torisu, R.; Chen, J.; Song, Z.; Mao, E. Control system for tractor-platooning. Proceedings of 2007 International
Conference on Mechatronics and Automation (ICMA), Harbin, China, 5–8 August 2007; pp. 3173–3178. [CrossRef]

43. Zhu, Z.; Takeda, J.-I.; Xie, B.; Song, Z.; Torisu, R.; Mao, E. Tractor platooning system on sloping terrain at low speed. Trans. ASABE
2009, 52, 1385–1393. [CrossRef]

44. Guillet, A.; Lenain, R.; Thuilot, B.; Rousseau, V. Formation Control of Agricultural Mobile Robots: A Bidirectional Weighted
Constraints Approach. J. Field Robot. 2017, 34, 1260–1274. [CrossRef]

45. Cartade, P.; Braconnier, J.-B.; Lenain, R.; Thuilot, B. Adaptive and predictive control of a mobile robots fleet: Application to
off-road formation regulation. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, 6–10 May 2013; pp. 1836–1842. [CrossRef]

46. Xi, Z.; Marcus, G.; Patrick, O.N.; Ludwig, G. Development of an intelligent master-slave system between agricultural vehicles. In
Proceedings of the 2010 Intelligent Vehicles Symposium(IV), La Jolla, CA, USA, 21–24 June 2010; pp. 250–255. [CrossRef]

47. Chi, Z.; Noboru, N. Development of Leader-follower System for Field Work. In Proceedings of the 2015 IEEE/SICE International
Symposium on System Integration (SII), Meijo University, Nagoya, Japan, 11–13 December 2015; pp. 364–368. [CrossRef]

48. Bai, X.; Wang, Z.; Hu, J.; Gao, L.; Xiong, F. Harvester Group Corporative Navigation Method Based on Leader-Follower Structure.
Trans. Chin. Soc. Agric. Mach. 2017, 48, 14–21. [CrossRef]

49. Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; Lopez-Granados, F.; Brandstoetter, M.; Tomic, S.; Pedrazzi, S.;
Peruzzi, A.; Pajares, G.; Kaplanis, G.; et al. Fleets of robots for environmentally-safe pest control in agriculture. Precis. Agric. 2017,
18, 574–614. [CrossRef]

50. Gonzalez-de-Soto, M.; Emmi, L.; Perez-Ruiz, M.; Aguera, J.; Gonzalez-de-Santos, P. Autonomous systems for precise spraying -
Evaluation of a robotized patch sprayer. Biosyst. Eng. 2016, 146, 165–182. [CrossRef]

51. Zhou, H.M.; Qian, Z. Intelligent Sensing Technology and System (11th Five-Year Plan); Beijing University of Aeronautics and
Astronautics Press: Beijing, China, 2008; p. 301. ISBN 978-7-8112-4366-6.

52. Qing, Z.Q. Data Fusion Technique and Its Application. Ordnance Industry Autom. 2003, 22, 25–28. [CrossRef]
53. Perez-Ruiz, M.; Upadhyaya, S.K. GNSS in precision agricultural operation. In New Approach of Indoor and Outdoor Localization

Systems; Intech: Brisbane, Australia, 2012; pp. 1–25. [CrossRef]
54. High Precision TOPCON Autopilot System for Agricultural Seeding, Land Preparation and Spraying. Available online: http:

//www.app17.com/supply/offerdetail/9628838.html (accessed on 25 January 2021).
55. Juan-Carlos, T.; Rodrigo, M.; Edmundo, G.; Antoni, G. Cooperative monocular-based SLAM for multi-UAV systems in GPS-denied

environments. Sensors 2018, 18, 1351. [CrossRef]
56. Roldán, J.J.; Garcia-Aunon, P.; Garzón, M.; León, J.D.; Cerro, J.D.; Barrientos, A. Heterogeneous Multi-Robot System for Mapping

Environmental Variables of Greenhouses. Sensors 2016, 7, 1018. [CrossRef] [PubMed]
57. Fang, Z.; Tong, G.; Xu, X. Study of Autonomous Robot Self-localization Methods Based on Bayesian Filter Theory. Control

Decis. Mak. 2006, 21, 841.
58. Blender, T.; Buchner, T.; Fernandez, B.; Pichlmaier, B.; Schlegel, C. Managing a Mobile Agricultural Robot Swarm for a seeding

task. In Proceedings of the 2016 42nd Annual Conference of the IEEE Industrial Electronics Society (IES), Florence, Italy,
24–27 October 2016.

59. Dellaert, F.; Fox, D.; Burgard, W.; Thrun, S. Monte Carlo localization for mobile robots. In Proceedings of the 1999 IEEE
International Conference on Robotics and Automation, Detroit, MI, USA, 10–15 May 1999. [CrossRef]

60. Thrun, S. Probabilistic Algorithms in Robotics. AI Mag. 2000, 21, 9–109. [CrossRef]
61. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics (Intelligent Robotics and Autonomous Agents); MIT Press: Cambridge, MA, USA,

2005; p. 668. ISBN 978-0-2622-0162-9.
62. Guan, Y.; Yang, X.J.; Jiang, T. Research Advances on the Multisensor Information Fusion of the Agricultural Robot. J. Anhui

Agric. Sci. 2010, 25, 14127–14128.
63. Yang, L.; Yu, H. Multi-Source Information Fusion Theory and Application; Beijing University of Posts and Telecommunications Press:

Beijing, China, 2011; p. 234. ISBN 978-7-5635-2740-3.
64. Wang, W.H.; Chen, W.D.; Xi, Y.G. Uncertain Information Based Map-Building Of Mobile Robots In Absolutely Unknown

Environment. Robot 2001, 23, 563–568. [CrossRef]
65. Ball, D.; Ross, P.; English, A.; Patten, T.; Upcroft, B.; Fitch, R.; Sukkarieh, S.; Wyeth, G.; Corke, P. Robotics for Sustainable

Broad-Acre Agriculture. In Field and Service Robotics; Springer: Cham, Switzerland, 2015; pp. 439–453. [CrossRef]
66. Kim, J.; Son, H.I. A Voronoi Diagram-Based Workspace Partition for Weak Cooperation of Multi-Robot System in Orchard.

IEEE Access 2020, 8, 20676–20686. [CrossRef]
67. Zhang, H. Research on path planning of multiple agricultural robots based on ant colony algorithm. Digital Technol. Appl. 2017, 6,

147–149. [CrossRef]
68. Moravec, H. High Resolution Maps from Wide Angle Sonar. In Proceedings of the 1985 IEEE International Conference on

Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985. [CrossRef]

247



Appl. Sci. 2021, 11, 1448

69. Kortenkamp, D.; Weymouth, T.E. Topological Mapping for Mobile Robots Using a Combination of Sonar and Vision Sensing. In
Proceedings of the 1994 12th National Conference on Artificial Intelligence (AAAI), Seattle, WA, USA, 31 July–4 August 1994;
Volume 2, pp. 979–984.

70. Mouaddib, E.M.; Marhic, B. Geometrical matching for mobile robot localization. IEEE Trans. Robot. Autom. 2000, 16, 542–552.
[CrossRef]

71. Potena, C.; Khanna, R.; Nieto, J.; Siegwart, R.; Nardi, D.; Pretto, A. AgriColMap: Aerial-Ground Collaborative 3D Mapping for
Precision Farming. IEEE Robot. Autom. Lett. 2019, 4, 1085–1092. [CrossRef]

72. Faryadi, S.; Mohammadpour Velni, J. A reinforcement learning-based approach for modeling and coverage of an unknown field
using a team of autonomous ground vehicles. Int. J. Intell. Syst. 2020, 1–16. [CrossRef]

73. Dong, W.; Zhu, K.; Liang, S.H.; Wen, W.S.; Guo, Y.; Tan, Y. Path planning algorithm of field robot based on topological map and
robot control. China Sci. Paper 2016, 11, 2525–2530. [CrossRef]

74. Shalal, N.; Low, T.; Mccarthy, C.; Hancock, N. A preliminary evaluation of vision and laser sensing for tree trunk detection and
orchard mapping. In Proceedings of the 2013 Australasian Conference on Robotics and Automation (ACRA), UNSW, Sydney,
Australia, 2–4 December 2013; pp. 1–10.

75. Dos Santos, F.N.; Sobreira, H.M.P.; Campos, D.F.B.; Morais, R.; Moreira, A.P.G.M.; Contente, O.M.S. Towards a Reliable Monitoring
Robot for Mountain Vineyards. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems &
Competitions (IROS), Gateway to the Era of Robots, Hamburg, Germany, 28 September–2 October 2015; pp. 37–43. [CrossRef]

76. Wang, H.L.; Zhang, C.J.; Song, Y.; Pang, B. Master-followed Multiple Robots Cooperation SLAM Adapted to Search and Rescue
Environment. Int. J. Control Autom. Syst. 2018, 16, 2593–2608. [CrossRef]

77. Schmuck, P.; Chli, M. CCM-SLAM: Robust and efficient centralized collaborative monocular simultaneous localization and
mapping for robotic teams. J. Field Robot. 2019, 36, 763–781. [CrossRef]

78. Zhang, Y.; Liu, S.H. Survey of multi-robot task allocation. CAAI Trans. Intell. Syst. 2008, 3, 115–120. [CrossRef]
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Abstract: The article aims to describe stages of development of a mobile, anthropomorphic robot.
The individual phases of the bio-inspired model-based design of a two-legged robot are described,
from the analysis of human walking patterns, through the creation of a simulation model and a
control system to the creation and testing the physical model of such a robot. The bio-inspired design
is based on an analysis of the movements of the individual parts of a lower human body during
walking locomotion. Based on this analysis, the chosen motion model is described as a combination
of passive and dynamic walking with a controlled, linear inverted pendulum model. When creating
the simulation model, an open kinematic chain consisting of a base (the frame) and two effectors
(the legs) is used. The simulation of the virtual model is realized using the software tool Matlab
with its toolboxes Simulink and Simscape, and the results confirm the correctness of the design.
The feasibility of the design is confirmed by creation of a physical robot skeleton using 3D printing
and by a commissioning of the control system based on Atmel ATmega2560 and Raspberry Pi Zero
W microcontrollers.

Keywords: bipedal robot; bio-inspired design; simulation; model-based design; LIPM; passive walker

1. Introduction

The trend of using robots in all spheres of life, especially in industry, is constantly
growing. We are witnessing an increasingly massive scale of production processes roboti-
zation in order to relieve people from performing periodic operations or directly creating
processes that are physically impossible for humans. In addition to industrial robotics, we
can currently observe an increase in interest in experimental robotics. Humanoid robots
such as Atlas [1], Digit [2] or many others [3,4] represent the current pinnacle of human
effort and intelligence in this technical field.

More and more progress in the field of human walking emulation also brings the seeds
of practical use in terrain inaccessible to other mobile robots. Apart from uneven natural
surfaces, these are mainly urban and industrial environments designed for the movement
of people, not wheeled, or flying robots.

The area of interest in our contribution is to provide an analytical view of human
walking from a mechanical point of view and, based on it, to design robot models at
different levels of abstraction. The different levels cover models from the most primitive
model—a mathematical graph of the robot, which provides information about the degrees
of freedom of individual joints and the links between them, and this model is a source of
data for the creation of another—a kinematic model. The next one—three-dimensional
model containing the physical and material properties of the future real model, such as
the weight and density of the construction material, can be considered as another level
of abstraction. This model serves as a source of information about specific dimensions
for the kinematic model. Based on these dimensions, a movement model of the robot is
created with utilization of the trajectories of individual joints in space during walking. A
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simulation model is a combination of motion and three-dimensional models. The diagram
of the simulation model represents the physical relationships acting on individual parts of
the robot, as well as the control interface. The final product after the simulation is finished is
the physical model. The key design model is a motion model of the robot, and the model is
designed based on the linear inverse pendulum method. An important part of the design is
the control of the robot and the construction of its physical model, based on which the main
idea—identification and transfer of the key features of human walking into the engineering
design of technical equipment—can be verified.

2. Analysis of the Problem Area

2.1. Dynamic Side of the Problem—Human Walking

Human biomechanics deals with the analysis of gait as part of the movements of
human beings. In order to analyze human gait, the human walking was divided into the
unique atomic periodic movements called step phases (Figure 1). These phases are further
divided into two primary step phases, which are made up of eight secondary step phases,
referred to as BAC 1–8 (Basic Action Concept). A set of two primary or eight secondary
phases constitutes a gait cycle. The cycle can be measured from the start of any phase back
to the start of the same phase of the same leg. A cycle is defined by two basic parameters:
the cycle time and the spatial measures of the step. Based on the parameters of the cycle,
the symmetry, variability and quality of the step are further determined. It is obvious that
the step quality parameters are variable for each individual [5,6].

Figure 1. Visual representation of the gait cycle [7].

Two primary phases of the step are identified as the stance and the swing. During the
stance phase, the tracked leg is in contact with the ground at all times. In the swing phase,
the tracked leg is in the air all the time. In secondary phases, it is possible to observe three
basic events [5].

The weight transfer makes up 12% of the total gait cycle. This event can be observed
in phases BAC 1 (3%) to BAC 2 (9%). During this event, the initial contact of the heel with
the ground takes place and damping also occurs. Damping factors are in ascending order
of total contribution: bending at the knee, rolling over the heel and elasticity of the skin,
muscles and tendons in the leg. During weight transfer, there is an initial increase in the
moment of force M acting on the person’s center of gravity [5,6].

The support of one leg makes up 38% of the total gait cycle. This event can be
observed in phases BAC 3 (19%) to BAC 4 (19%). During this action, there is a movement
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of the upper part of the body and an overall increase in stability. At the end of the BAC 3
phase, the system (human body) acquires the greatest stability during the walking cycle.
At the end of BAC 4, the person’s center of gravity is so deviated that it is not possible to
finish the step stably. In general, single-limb stance as an event is best defined by ankle
rotation [5].

The swing makes up 50% of the total gait cycle. This event can be observed at BAC 5
(12%), BAC 6 (13%), BAC 7 (12%) and BAC 8 (13%) phases. Three sub-events occur during
this event.

• Lifting the heel off the ground while keeping the toe in contact with the ground. This
action is included in the BAC 5 phase. It forms the transition between the one-limbed
stance and the swing itself [5].

• The movement (swaying) of the leg in front of the person’s gravity center is described
in the events of BAC 6 and BAC 7. The distance that the leg travels from the beginning
of the BAC 6 phase to the end of BAC 7 is defined as the step length [5].

• Preparing for impact. During the BAC 8 phase, the center of gravity acquires the
greatest moment of force (while reducing the acceleration) and the system (human
being) prepares to absorb the impact [5,6].

Based on detailed standardized video footage of real human walking cycle considering
previous movement analysis, data were experimentally collected from the figure’s walking
cycle, which describes the movement of the hip, knee and ankle in space and time. A
virtual measurement unit for distance j was involved in this video footage. During one
phase, three measurements were taken, in which the position of the joint was monitored on
the x and y axes (α-plane—side view of the figure) and in the z and y axes (β-plane—front
view of the figure). The beginning of the measurement is in phase BAC 3, because the
measurement also dealt with starting from the rest position, when the joints are located on
one vertical axis.

From the graphical representation of the data in Figures 2 and 3, the critical region
and the damping region were identified. Relatively complicated events take place in these
areas and cause significant deviations from the otherwise simply describable trajectory,
especially in the ankle. The activity in this joint has a direct effect on the stability of the
step. Furthermore, a deviation between the cycle lengths in different parts of the gait was
observed from the data. Based on these deviations, the cycle stability function for the
given figurant was visualized. The observed trajectory forms a set of desired values of
joint positions in time. According to the deviations between the observed trajectory and
the generated trajectory of the robot, it is possible to clearly indicate the complexity of the
created model.

In order to control the gait cycle of the robot, the zero-movement point (ZMP) concept
is implemented in the linear inverse pendulum movement model (LIPM).

The place of operation of the pressure force is directly in the place of contact with
the surface on which the robot walks. Therefore, it is a point on the robot foot that occurs
during the physical interaction of the foot with the ground. The principle of the ZMP
concept is that a new walking cycle is planned based on a reference trajectory. In the case
of uncontrolled passive-walking robots, the ZMP forms the point of contact of the foot
arch with the ground. The position of the ZMP during the stance phase is not stationary,
but changes from heel to toe. This phenomenon causes complications in the simulation of
flat-footed robots because the stability changes by leaps and bounds after the application of
the pressure force moves beyond the tip of the flat edge. From the point of view of control,
movement based on the ZMP concept forms one of several optimal trajectories. Walking
appears visually fluid and energetically efficient [8].
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Figure 2. Ankle trajectory (the first step).

 

Figure 3. Ankle trajectory (the second step).

By default, the robot step is modeled according to the inverted pendulum model
(LIPM). Unlike an ordinary pendulum, an inverted pendulum does not make an oscillating
motion, but tends to fall to a certain side. The moving base of the pendulum tries to
compensate for the fall and keep it in a vertical position. The vertical position is the
unstable equilibrium position of the pendulum [9–11]. The body of the robot represents
the weight of the pendulum, which is supported by the leg, which represents the arm of
the pendulum, and rotates around the ankle, which represents the base of the pendulum.
The step cycle is thus formed by the controlled fall of the robot body in a certain range,
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after exceeding which the second arm of the pendulum—the other leg—hits. A system
modeled in this way is considered passive, since the dynamics of the system depends on
the force of gravity and the momentum of the system. To complete one walking cycle, the
momentum of the system is required to produce forward motion. A system modeled by
LIPM is inherently unstable, but for each input there are initial conditions from which the
system will converge to a stable output. Likewise, there is a stabilization input for all initial
conditions [9,10].

The LIPM model provides some variability in the robot design process, as it is inde-
pendent of the dimensions and kinetic model of the structure, or the number of robot legs.
However, it assumes that the weight of the robot’s body is much greater than the weight of
the legs. In an ideal scenario, the weight of the legs is negligible, which is highly unlikely
with a physical model. The LIPM model does not further limit the robot construction in
the mutual position of the center of gravity and ZMP—the length of the pendulum arm.
The implementation of the model is also possible with a higher weight of the legs, which,
however, significantly reduces the stability of the gait cycle. LIPM limits the physical model
only in the number of degrees of freedom in the leg, which must be at least six [12].

2.2. Static Side of the Problem—Construction Solution

The primary goal of the robot construction was to maintain an anthropomorphic shape
and to copy the original as best as possible in terms of physical properties. For the proper
functioning of the robot, it was necessary that:

• the ratio of the dimensions of the frame and individual arms, including the joints of
the robot, was as similar as possible to the ratio of the dimensions of human limbs,

• the center of gravity of the robot was placed as close as possible to the position of the
human body.

In order to fill the requirement that the construction design describes the shape of the
human body as reliably as possible, one of the proportional models of the human body was
chosen (Table 1). The selected model divides the distances between individual points on
the human body into units of length. By observing the given proportions, it was possible to
design a construction on a different scale while preserving the properties of the original.
Since the shape of the body itself is not important in the LIPM model, but only the position
of the center of gravity, the construction of the entire body of the robot was not absolutely
necessary [13].

Table 1. Proportions of the human body according to the R.B. Hale model [13].

Point 1 Point 2 Number of Units

right hip joint left hip joint 2
hip joint knee 3

knee ground (bottom of heel) 3

Subsequently, based on published information [6,14,15], an analysis of individual
joints in the lower part of the human body was carried out (Table 2). A rotational degree of
freedom was granted to a joint if its angle range exceeded 10◦ [16].

Table 2. Analysis of joints in the lower part of the human body.

Coupling DOF Type of Kinematic Pair

hip joint 3 spherical
knee 1 rotary
ankle 2 two cylindrical

The design of the robot also depends on the level of system control. According to this
criterion, walking robots are divided into controlled and passive walking robots. Controlled
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walking robots are those in which the range of each robot movement is given by a controlled
quantity. Passive walking robots are kinematic chains that move stably with a step without
control and without an energy source. The passive step concept can be applied to both
quadrupedal and bipedal robots. The movement is achieved by an initial impulse relative
to the system and an inclined pad along which the robot moves downwards. A key feature
of passive walking robots is the curved foot. As a rule, the bending radius is equal to the
distance of the center of gravity from the ground when the robot is in a rest state. Some
controlled robots are also based on this concept, where the bending of the foot—completely
or in the position of the heel and toe—improves the energy efficiency of the step and
eliminates a step change in stability. A combination of controlled and passive joints in
walking robots is also frequent. A typical example is the reduction of the knee joint in the
robot’s leg in exchange for a shock absorber. Another example is a robot leg composed
of controlled joints in the hip and knee, or the other knee on the same leg, and a passive
foot containing a spring in the toe. The stiffness of this spring ensures a flat foot shape in
the secondary phases of the gait cycle, BAC 1 to 4 and later in BAC 7 to 8. In BAC phases
5 and 6, the foot bends under its own weight to such an extent that it directs part of the
robot’s weight into the toe, similar to human walking. Of course, both mentioned methods
can be replaced by a controlled process. Usually, a combination of controlled and passive
elements of the robot is used to simplify complicated movements that are more difficult to
control [17,18].

3. Modeling and Simulation of Biped Robot

The modeling process was based directly on the analysis results and involved design-
ing the robot at different levels of abstraction and generating walking trajectories. The
individual levels created a simulation model for which a control system was proposed in
the next stages.

3.1. Design of a Simulation Model of a Bipedal Robot

The starting point for the design of the robot was the kinematic model of the robot,
which can be obtained in different ways depending on the principles used [19,20]. In this
case, the modeling process was dependent on the analyzed walking model LIPM and
ZMP, which was adapted to the number of degrees of freedom of the robot. Since it is a
mobile robot, no part of the robot is firmly attached to the ground, so we cannot talk about
a mechanism, but about a kinematic chain. The kinematic chain was divided into three
main parts.

• The frame is a mobile base on which two manipulators are attached. The center of
gravity of the robot is also located in this part and forms the material part (the head)
of the inverse pendulum. The frame represents the human pelvis.

• The left leg is the manipulator of the robot, one end of which is attached to the left
side of the frame, and the other end is terminated by an effector. The manipulator
consists of four arms and six joints. The manipulator represents the arm of the inverted
pendulum and the human leg, where the effector fulfills the role of the foot.

• The right leg is a manipulator functionally identical to the left leg, but it is fixed on
the right side of the frame.

Based on the movement analysis, it follows that there are two degrees of freedom in the
ankle and up to three in the hip joint. The implementation of several degrees of freedom in
one place—such as in a spherical kinetic pair—was realized by dividing the joint into three
rotary kinematic pairs with the smallest possible arms. These rotation pairs rotate around
different axes of the coordinate system. In this way, the three degrees of freedom of the
spherical pair were preserved with a simpler implementation in practice. One manipulator
has six degrees of freedom, just like the analyzed template. Five degrees of freedom are
controlled and one degree of freedom at both ends of the chain is uncontrolled. The robot
has two arms on a frame with six degrees of freedom. The additional six degrees of freedom
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were granted because it is a mobile robot which can freely move and rotate in space in all
directions. The number of freedom degrees of the kinetic chain

nrobot = 6 + ∑j
i=1 ni = 6 + 12 = 18 ≥ 6, (1)

where ni represents the number of degrees of freedom of the i-th kinematic pair and j is
the total number of kinematic pairs, is greater than the minimum required number for the
LIPM model.

The graph of the robot in Figure 4 shows the relationships between individual kine-
matic pairs. In the vertices of the graph, the number of degrees of freedom in each pair is
indicated. The mobility of the robot is represented by the absence of a link between the
ground and the kinematic chain. Furthermore, it can be observed that the graph of the
robot is acyclic; therefore, we speak of an open kinematic chain.

 

Figure 4. Robot graph based on robot analysis (left), robot graph adapted for robot construction (right).

The kinematic model of the robot was derived from the robot graph (Figure 5). Kine-
matic pairs were defined in space and therefore in this model we are already talking about
rotational joints with one degree of freedom. Relationships between joints are now repre-
sented by arms. This is a model with a combined type of walking (passive and controlled).
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Figure 5. Kinematic model of the robot (left), visualization of LIPM and ZMP principles on the
kinematic model (right).

Denavit–Hartenberg (DH) parameters were determined in the kinematic model (Figure 6).
Conventional DH parameterization uses a uniform method for marking the axes of coordi-
nate systems in individual joints. It uses two rules:

DH1 : xi⊥zi−1 ; DH2 : |xi ∩ zi−1 ∨ 1. (2)

Therefore, in DH, the representation of the homogeneous transformation contains two
parameters less than the usual homogeneous transformation, which facilitates the analysis
of the n-arm manipulator [21].

In the process of identifying the DH parameters, the axes of rotation were first marked
depending on the types of joints. Convention states that the axis of rotation is the z-
axis. Based on the positive direction of rotation, the direction of the axis was determined.
For some opposing joints, the direction of the z-axis was chosen differently to preserve
the natural direction of rotation. Subsequently, two different origins of zero coordinate
systems were chosen, specifically for the right and left leg. In both cases, the origin was
chosen at the joint that connects the leg to the frame. Unlike the rest of the centers of the
coordinate systems, these were not numbered. The center of the coordinate system in
the joint connecting the left leg and the frame was marked O0, and the center in the joint
connecting the right leg and the frame was marked O0’. A different zero-system naming
convention for walking robots led to this decision. After finding the remaining origins
of the coordinate systems, the x and y axes were determined by convention according to
relations (3) and (4).

x = zi−1 × z0 (3)

y = z × y (4)

In effector coordinate systems, the z-axis is generally oriented in the same way as
the axis of the last arm. Thus, the two non-controlled joints at the ends of the kinematic
chain will rotate along the y-axis, not along the z-axis like the controlled joints. In both
cases, the origins of the effectors coordinate systems were chosen at the point created by the
intersection of the axis perpendicular to the ground, passing through the center of gravity,
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and the straight line created when the given effector touches the ground when the robot
is in the starting position. Under ideal conditions, this point is identical to the ZMP. The
analysis of the DH parameters of the robot’s legs is shown in Figure 6. The specific values
of the DH parameters of the kinematic model of the robot are listed in Table 3.

 

Figure 6. DH parameterization of the right (R) and the left (L) legs.

Table 3. DH parameters of the robot kinematic model.

Left ai [mm] 1 αi [deg] 2 di [mm] 3 θi [deg] 4

0 90 L1 θ1
0 −90 L2 θ2 + 90

L3 180 0 θ3
L4 0 L5 θ4
L6 0 0 θ5

Right ai [mm] 1 αi[deg] 2 di [mm] 3 θi[deg] 4

0 90 L1 θ6
0 90 L2 θ7—90

L3 180 0 θ8
L4 0 L5 θ9
L6 0 0 θ10

1 perpendicular distance between axes zi−1 and zi, measured along the axis xi.
2 the angle between zi−1 and zi, measured from zi−1 in a plane perpendicular to xi.
3 perpendicular distance between axes xi−1 and xi, measured along the axis zi−1.
4 the angle between xi−1 and xi, measured from xi−1 in a plane perpendicular to zi−1.

In the DH parameterization, the centers of the coordinate systems and their relative
positions were found. Despite the fact that the effectors seem to fulfill the role of joints in
the kinematic chain, this phenomenon is not included in the DH parameters, since they
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are uncontrolled “joints” between the ground and the robot. The parameterization of the
effector was developed by creating a three-dimensional model of the entire kinetic chain
based on the analyzed kinematic model.

When modeling the effector, knowledge from the materials for the construction of
the foot of a passive walking robot was used. In the starting position, when in contact
with the ground, the effectors create support in the form of two parallel lines. Since the
position of the effector itself is controlled, the length of the foot was designed to be as small
as possible in order to maintain relative stability in the controlled direction of rotation. The
foot width was determined to be as large as possible for the longest arch of its lower part.
The resulting shape of the foot design is shown in Figure 7.

 

Figure 7. Proposal of a robot effector.

Due to the chosen ratio of the weights of the legs together with the effectors, with
respect to the weight of the robot frame, the requirement for the use of the LIPM walking
model for the designed three-dimensional model is fulfilled. The basic parameters of the
robot are listed in Table 4.

Table 4. Parameters of the three-dimensional model.

Property Value Unit

the height of the robot’s center of gravity 445 mm
height of the center of gravity of the frame 645 mm

foot height 30 mm
the length of the foot arch 144 mm

the weight of the robot 2.755 kg

The resulting dimensions from Table 4 were used in motion modeling using the inverse
pendulum model. In the modeling process, the center of gravity of the robot represented
the head of the pendulum in the form of a mass point p defined in space by default as
p = (x, y, z) according to (5)–(7). This position is described in this model as a system of state
variables q = (θr1, θp1, z) in which r represents the length of pendulum arm, or robot leg in
this specific case [22].

x = rSp; Sp ≡ sinθp (5)

y = −rSr; Sr ≡ sinθr (6)

z = rD; D ≡
√

1 − Sr2 − Sp2 (7)

τr, τp and f, as vectors acting on the center of gravity, arm and head of the pendulum
in Formula (8), represent the inputs to the system of equations describing the movement of
the inverse pendulum in space, in the Cartesian right-handed system [22] as

m

⎛⎝ ..
x
..
y
..
z

⎞⎠ =
(

JT
)−1

⎛⎝τr
τp
f

⎞⎠+

⎛⎝ 0
0

−mg

⎞⎠, (8)
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where m is the mass of the center of gravity. Since the arm of the pendulum is considered as
a link, the variable m belongs to the mass point p. The Jacobian J is an antisymmetric matrix
dependent on the current configuration q(t) and for motion analysis, according to [21,22],
has the form

J =
∂p
∂q

=

⎛⎜⎝ 0 rCp Sp
−rCr 0 −Sr
−rCrSr

D
−rCpSp

D D

⎞⎟⎠; Cr ≡ cosθr, Cp ≡ cosθp (9)

A similar Jacobian was later used in the recalculation of joint velocities of the robot in
order to determine the inverse kinematics. In this case, it was used to create the dynamic
equations of the pendulum, and therefore it is multiplied by the vector (

..
x,

..
y,

..
z) from the

left to create a mathematical model of the inverse pendulum in space [21,22] according to
the relation

m

⎛⎜⎝ 0 rCp Sp
−rCr 0 −Sr
−rCrSr

D
−rCpSp

D D

⎞⎟⎠
⎛⎝ ..

x
..
y
..
z

⎞⎠ =

⎛⎝τr
τp
f

⎞⎠− mg

⎛⎜⎝−rCrSr
−rCpSp

D
D

⎞⎟⎠ (10)

In order to use this model to generate step trajectories, restrictions on the movement
of the pendulum along the z-axis were defined. These constraints ensure that the height of
the pendulum head does not change under the influence of the inputs q(t). However, this
height can be changed manually. This restriction is represented in a form of help vector
(kx, ky, −1) of controlled inputs of height of the robot and the intersection zc of the z-axis.
The step width was determined as the length of the arch of the foot; i.e., the maximum
possible. The parameters for the design of the pendulum are listed in Table 5 [22].

Table 5. Three-dimensional model parameters for the LIPM model.

Parameter Model Value Unit

spread of the legs in the starting position Lr + L5 0.091 m
height of the frame in the starting position h 0.644 m

frame height while walking hw 0.570 m
spread of the legs during gait La 0.144 m

step length in walking direction Ls 0.020 m

Step generation took place in three stages. In the first stage, the movement of the center
of gravity and the ZMP in space was identified (Figure 8). According to the limitations of
the model, the height of the center of gravity was anchored. This phenomenon simulated
the fact that the legs are not extended when walking as in a fully passive walking robot. A
step with bent knees reduces the movement of the center of gravity along the z-axis. At
this stage, the pendulum consisted of a head and one arm, which alternately played the
role of the robot’s left and right legs. The weight of the pendulum head is preset to 1 and
the weight of the arm is assumed to be zero.
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Figure 8. Generated trajectories of the center of mass and the position of the ZMP.

In the second stage, the foot trajectory was generated based on the mutual position of
the ZMP and the movement of the center of gravity. Trajectories were generated for eight
cycle runs. The analysis showed that during the first two runs of the cycle, stride length
and movement were less similar than during the rest of the runs. This phenomenon can
also be observed in the first two steps of the model, when the feet in the initial position
are located at a spacing of 91 mm from the robot axis, given by the construction. The
model reaches the predetermined step width of 144 mm and length of 20 mm only during
the third run of the cycle. The trajectories were stored in the data-structure footinfos 1 × 8
(Figure 9), where the column number determined the number of cycle run. One data
element contained a 1 × 200 vector (timevec) with time values sampled for a one-second
period. Furthermore, this element also contained the joint positions in space stored in two
6 × 200 matrices for the left leg (footleft) and the right leg (footright). The joints positions are
represented by the amount of each joint rotation with respect to the defined direction using
DH parameterization.

262



Appl. Sci. 2022, 12, 10058

Figure 9. Data-structure covering the changes of DH parametrization in kinematic, 3D and simula-
tion models.

In the third stage, the trajectories were recalculated to the controlled variables of the
DH parameters using the inverse kinematics task, and the result is the motion model of the
robot made from a 3D material model, which was created with Autodesk Inventor software.

3.2. Simulation of a Bipedal Robot Walking

The simulation model of the biped robot was created by exporting the three-dimensional
model to the Matlab-Simscape simulation environment. The three-dimensional model
was divided into 27 parts, which created links corresponding to the three-dimensional
model in the simulation environment. This process was automated using the Simscape
Multibody Link toolbox. Six degrees of freedom were added to the model for kinematic
chain simulation. Contact forces on the lower part of the effectors were also created. These
forces ensure that the bottom of the foot behaves like an ideal rigid body when in contact
with another object.

The axes of rotation in the joints were adjusted to the z-axis in order to follow the
convention of the DH parameterization and the positive direction of rotation was chosen
according to the kinematic model. The resulting block diagram of the simulation model is
shown in Figure 10.
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Figure 10. Simulation model of bipedal robot walking.

The output of the inverse kinematic task is the required quantity in the unmodified
form W’. The quantity W’ must be filtered before entering the controller, because the
generated trajectory is in the form of a function that the simulation solver cannot process
correctly. Sharp local extremes of the trajectories were evaluated as noise and removed
with a low-pass filter. The filter was implemented using the Filter Design Toolbox as a part
of Matlab R2022a software, which allows the user to design the required filter in a short
time even without expert experience in the field of signal processing.

From the diagram of the simulation model shown in Figure 11, it follows that the
control system is based on the principle of regulating the speeds and positions of the
servomotors. To increase the level of robot autonomy, an ideal orientation sensor was
included in the system. The sensor detects the acceleration and position of the frame in
three axes. The value on the z-axis was monitored at the output of the system. If the
deviation from the planned position is exceeded by 30 mm, the robot will be turned off in
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an emergency. The reason is to prevent damage to the robot due to redundant movements
in an unwanted position on the ground.

Figure 11. Closed control loop for joint number 5.

The result of the simulation at this stage is the fact that the designed model of the
robot can perform all eight planned steps from the starting position. The length and width
of the first three steps contained negligible deviations from the movement model, which
may be caused by using passive joints. The remaining seven steps were identical to the
motion model. Figure 12 shows the simulation model in motion in different design phases
from different perspectives.
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Figure 12. Simulation of walking of the bipedal robot (a) basic kinematic model; (b) static 3D model;
(c) walking 3D model—front view; (d) walking 3D model—side view.

4. Realization of a Physical Model of a Bipedal Robot

The supporting structure of the robot was made using 3D printing technology. This
technology has proven itself as an effective method of manufacturing parts, mainly due to
its sufficient accuracy and speed for prototyping purposes. The advantage of the material
used in printing the parts is the low weight compared to other parts of the robot and the
possibility to modify the parts even after printing. For most parts, the wall thickness was
set to four layers and the material filling between the walls was 70%. The Micro-Electro-
Mechanical Systems (MEMS) storage components and the component for stabilizing the
robot in a seated position were printed with only three layers of wall thickness and 50%
infill, as these components do not represent the load-bearing elements of the structure.
On the contrary, the effectors were printed with a wall thickness of six layers and a filling
of 80%.

4.1. Construction of a Bipedal Robot

The construction of the robot consists of three main parts.
The robot frame is made up of eleven parts and is divided into two floors. The first

floor is intended for energy sources and is closed from above and below. The second floor
is for the robot’s control interface and is open at the top. For this reason, simple handling
of the interface is possible without the need to disassemble the frame. Each floor consists
of two parts that are connected by a detachable joint. After connecting the two floors,
two components were attached to the front and back of the upper floor to hold the two
MEMS systems. In the space on the first floor, there is a part that allows the robot to sit
without support.

The robot’s legs are made up of twelve parts, five of which are unique. The two parts
are used to secure the servos together to create three degrees of freedom for the 3R and 4L
arms. The connection of these three motors simultaneously creates arms 1L, 1R, 2L and 2R.
The rest of the arms are structurally very similar. Each of them is composed of two parts
connected by a detachable joint.
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The effectors of the robot are made of one part, the same for the left and right effector.
The decision, to model the effector as a single part instead of several detachable pieces,
was justified by the fact that the entire effector fits within the scope of the printer and
thus eliminates the possibility of the effector falling apart under pressure at the point of a
potential joint (Figure 13).

 
Figure 13. Final shape of the effector.

4.2. Control Hardware

An Arduino Mega 2560 Rev3 device [23] was chosen to control the operation of
the bipedal robot. This device has 14 PWM channels and thus can control all joints of
the robot. The advantage of the Mega 2560 Rev3 model compared to other models is
mainly a significantly larger number of I/O pins and PWM channels. In general, Arduino
products are considered suitable for prototyping systems due to the low price, the large
number of hardware accessories, and especially the open and freely distributable hardware
architecture. To ensure simple remote control, the control interface was supplemented with
Raspberry Pi Zero W [24]. The advantage of this device is the relatively large computing
capacity and thus the extensive possibilities of expanding control from the current state
to a robust system. Very small dimensions and low weight are also a big advantage of
the device.

The communication linkage between the Raspberry Pi Zero W and the Arduino Mega
2560 Rev3 is possible using the I2C link, as both components contain the necessary bus.
There are two positions in communication: master and slave, while I2C also supports
multi-master mode. In this case, the Arduino microcontroller was chosen as the master.

The simulation model contains a measuring device for the orientation of a material ob-
ject in space (Internal Measurement Unit—IMU), which in our case detects the translational
movement of the robot in three axes. This sensory device is standard in stability control for
biped and other mobile robots and forms the basis of the system’s feedback. In this case, it
is used as a sensor to detect the fall of the robot, when the robot terminates the ongoing
process prematurely. In the physical model, this block is represented by the MEMS system
Bosch BNO055, which contains the three mentioned sensors and its own microcontroller.
The device has the ability to send output data to the master device in the form of quater-
nions which are normally used in robotics when calculating direct and indirect kinematic
tasks. The BNO55 was calibrated in the automatic NDoF FMC mode [14,25].

Due to the fact that the mobile robot carries the power source directly on its structure,
a solution was proposed that is ensured by a source with the smallest possible weight for
the longest possible operating time. Since the energy sources are structurally located on the
first floor of the robot frame, it was necessary that they be rechargeable, and recharging
was possible without the need to disassemble the frame. Because the selected servomotors
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have a different working voltage than the Arduino and Raspberry devices, the decision to
divide the robot power supply into two parts was made. A possible solution is to connect
a voltage stabilizer to 6 V, but in this case the servomotors overheat. Therefore, the first
power source will power all the servo motors and the second power source will power the
rest of the control hardware.

Based on the analysis of the available options, the BH Power 2S 6000 mAh Li-po battery
was chosen to power the servomotors. In order to power the rest of the control interface, it
was necessary to ensure the power supply of the Arduino Mega device, through which the
remaining devices will also be powered. The use of an external battery for smartphones
appeared to be the simplest solution from the point of view of recharging, dimensions, and
weight, and for this reason the AVACOM PWRB-8001K external battery was chosen.

5. Solution Testing and Discussion

Testing of the proposed solution was divided into two parts. In the first stage, all
parameters of the robot affecting walking were measured and their deviation from the
simulation model was calculated. Each property was measured five times and then the
average value was calculated. The results of the first part of the testing process are listed in
Table 6.

Table 6. Results of testing the dimensions of the biped robot structure.

Test No.
Property

[Unit]
Value

(Physical Model)
Value

(Simulation Model)
Deviation

1 weight [kg] 3.06 2.75 0.31
2 length L1 [mm] 16 31 15
3 length L2 [mm] 29 51 22
4 length L3 [mm] 254 252 2
5 length L4 [mm] 263 262 1
6 length L5 [mm] 18 27 9
7 length L6 [mm] 62 25 37

8
step length in
the starting

position [mm]
80 91 11

9
frame height in

the starting
position [mm]

599 570 (644) 26

From the measurement results of the first part, certain differences between the physical
and simulation models can be observed. The weight difference is attributed to neglecting
the weights of the cabling, different fillings of the plastic parts, material inhomogeneity of
the printed parts and also inaccurate weight data of the used electronic parts.

The differences between the measured and the original values of the L1, L2 and L5
lengths were expected and are attributed to the replacement of the servo motor carriers.
The original method designed in a three-dimensional model consisted of a detachable
joint between a printed servo motor carrier and the wall which with the servo motor
was supposed to rotate. In practice, the great flexibility of the carrier, which stood away
from the given wall, was manifested, which was caused by the weight of the entire robot.
This caused the bending of the shoulders, which led to deviations in the positions of the
controlled joints. The chosen modification consisted of replacing the printed carrier with
a standardized one, which was attached to the wall with self-tapping steel screws. These
percentage deviations are large, but the reduction of the distances between the centers of
the coordinate axes in these joints is desired. The deviations between the lengths of L4 and
L5 are negligible and are attributed to either measurement error or plastic extensibility.

The reduction of the step width in the starting position can be attributed to the resulting
deviations in the parameters L1, L2 and L5. The reason is the different starting point of the
measurement of this distance, which was not possible to implement in the physical model.
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Therefore, a new frame height was derived from the simulation model and compared with
the measured value. The resulting deviation is largely attributed to the resulting deviations
between the lengths of L6, L3, L4 and L1.

All the differences identified in this phase of testing can be involved in the next phases
of the spiral model of the engineering design of mechatronic systems in order to achieve an
ideal overlap between the design, simulation and final implementation of the solution.

The second part of the testing was focused on monitoring of stability of the robot at
different step lengths. The measurement in which the robot passed all eight steps from the
generated trajectory was considered successful. Five measurements were taken at each step
length. The robot walked on a horizontal concrete pad in a closed room. The robot walked
independently without physical contact with another object. A successful step is considered
the one after which the walking cycle is completed without falling. The beginning of the
measurement of all cycles was in phase BAC 3. The results of the second part of the test
experiments are shown in Table 7.

Table 7. Functionality testing results of a bipedal robot.

Test No.
Step Length

[mm]

Number of
Successful

Measurements

Number of
Failed

Measurements

The Largest Number of
Steps Taken in a Failed

Measurement (X/8)

1 50 5 0 -
2 60 5 0 -
3 70 5 0 -
4 80 5 0 -
5 90 5 0 -
6 95 5 0 -
7 100 5 0 -
8 105 5 0 -
9 110 5 0 -
10 115 5 0 -
11 120 5 0 -
12 125 5 0 -
13 130 4 1 3
14 135 2 3 3
15 140 1 4 2
16 145 1 4 2
17 150 0 5 2
18 155 0 5 0
- - ∑ = 90 MAX = 3

From the test results it is clearly evident that the first three steps are critical, after
which the gait is stabilized. The test experiments show that the robot is able to walk stably
with steps up to 12.5 cm long. The number of all measurements during the second phase of
testing was 90. The measurements took place without interference and external influences.
It is necessary to emphasize that this testing stage served for verification of control system
design proposal. The correctness of the intended idea in defined form was confirmed,
but at the same time, it is necessary to declare that the designed solution is not ready for
independent continuous infinite walking yet, except for some stable steps. The constructed
and tested prototype of the two-legged robot is shown in Figure 14.
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Figure 14. A tested prototype of bipedal robot MaRoŠ (a) construction parts; (b) partial construction;
(c) final version.

6. Conclusions

The topic of the development of humanoid robots is very extensive. Several possible
approaches to the way of controlling bipedal robots in order to ensure movement as similar
as possible to human walking have been published. This article is focused on one of the
possible methods using the analysis of real human walking. The principle of model-based
design is used, while the bio-inspired design is based on the analysis of the movements
of individual parts of the human body while walking. The control system is designed
based on a combination of passive and dynamic walking with a controlled, linear inverted
pendulum model. Validation of the designed model using the Matlab simulation tool
confirmed the feasibility of the design. The result of this article is the finding that the
proposed concept can be developed further, after fine-tuning the details, as one of the
real options for the design of walking humanoid robots. This statement is based on the
course and results of the final experiments with the physically constructed prototype of the
bipedal robot MaRoŠ. The development of the prototyping solution is constantly ongoing,
inspired by the spiral model of software product development, and the goal is to completely
reconcile the simulation and physical model of the robot, together with the optimization of
energy use in the mechatronic subsystems of the robot.
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Abstract: In this paper, we propose a method that uses the femoral and tibial elevation angles to
quantitatively evaluate the symmetry of lower limb movement during the transition from a sitting
position to a standing position. In kinematic analysis of the transition from sitting to standing, the
angles of the three joints of the lower limb are often measured. However, due to the large number of
variables, it is difficult to evaluate the symmetry of the lower limb movement by comparing data from
the six joints of the left and right lower limbs. In this study, therefore, we measured the femoral and
tibial elevation angles of healthy participants and rehabilitation patients and visually and numerically
evaluated the symmetry and asymmetry of the movement of the left and right lower limbs. We were
able to identify the kinematically major lower limbs in the transition from sitting to standing and
quantify the symmetry of the movement patterns of the left and right lower limbs. Furthermore,
we examined the possibility that the method could be effectively used in the rehabilitation field to
evaluate the motor co-ordination that constitutes the lower limb movement pattern in the transition
from the sitting to standing position, such as the gait plane rule.

Keywords: symmetry; sit-to-stand; elevation angle; coordination

1. Introduction

In our daily lives, we repeatedly travel to and from our destinations to accomplish our
goals, often choosing walking as our means of transportation. However, disabled or elderly
people who cannot walk safely may choose a wheelchair as their means of transportation [1].
When we walk or sit in a wheelchair, we need to perform a standing movement (sitting to
standing (STS)). However, disabled and elderly people may not be able to perform the STS
movement and may not be able to continue to live independently. Therefore, sometimes, the
goal of rehabilitation in hospitals and nursing homes is to ensure that the patient achieves
the STS ability [2]. Post-hip-fracture and post-stroke patients targeted for rehabilitation have
been reported to have asymmetric STS movements due to muscle weakness and impaired
sensory integration in the lower limbs [3,4]. Pao-Tsai et al. reported that post-stroke patients
who had experienced falls had greater asymmetry in the weight distribution to the lower
limbs during the STS movement [5]; the asymmetry of the STS movements is shaped by the
associated muscle forces and joint moments. Previous studies examining weight bearing in
the lower limbs of post-stroke patients have reported that patients often shift their center
of gravity to the nonparalyzed lower limb [6]. However, mechanical asymmetry of the
lower limb during the STS movement may reduce safety when the person is performing an
even more advanced and dynamic gait [7]. Ryoichiro et al. reported an STS rehabilitation
system that improves the functional asymmetry of the lower limb caused by disease [8].
These previous studies indicate that it is important for rehabilitation to improve the muscle
strength, movement, and asymmetric STS movement of the asymmetric lower limb.
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In previous studies on STS symmetry, lower limb joint torque and floor reaction
force were selected as mechanical parameters and joint angle as a kinematic parameter,
parameters that can be observed in measurement experiments [9–11]. These parameters
are observed as a result of the human central nervous system controlling the muscles (the
locomotion organs). In Japan today, cerebrovascular disorders are the leading cause of
the need for long-term care [12] and normalization of muscle activity patterns and center-
of-gravity trajectories during movement through rehabilitation-incorporating robots is
becoming the treatment of choice [13]. In other words, rehabilitation of the central nervous
system, which controls muscle activity temporally and spatially, rather than rehabilitation
to increase motor muscle mass and the force exerted by the muscles, is attracting attention.
Ningjia et al. analyzed muscle synergy during the STS movement in stroke patients [14].
However, this report mentions asymmetry based on the analysis of muscle synergy but does
not propose a quantitative method for evaluating symmetry and asymmetry. Wendy et al.
proposed a symmetry index in their report on STS symmetry evaluation [9]. This method
measures the angles of the right and left (R–L) lower limb joints during the STS movement
and calculates the ratio of the angles as a symmetry index. Michalina et al. selected ankle,
knee, and hip joint angles, joint torque, and floor reaction force as symmetry indices [11].
These previous studies converted the observed information into a single value as an index
of symmetry and cannot represent the motion patterns during the STS movement.

The planar law of gait (PLG) is a well-known evaluation method that allows us to
observe the coordination patterns of the neurophysiological body movement based on
changes in joint angles observed over time during movement [15,16]. The PLG involves the
three-dimensional plotting of the elevation angles (EAs) of three segments (thigh, shin, and
foot) during walking. Gianluca et al. used the PLG of the L–R lower limbs to present the
symmetry of the walking motion as visual information [17]. They evaluated the symmetry;
if the PLG could be applied to the STS movement and the STS movement symmetry could
be quantitatively evaluated, it would be possible to geometrically evaluate the symmetry
of the control by the central nervous system during the STS movement. However, there
are different factors involved in the STS movement and gait. In the gait, the EAs of three
segments (thigh, shank, and foot) are observed, but in the STS movement the EA of the foot
is always constant because the foot is restrained above the floor and only changes in the EAs
of two segments (thigh and shank) are observed. Therefore, the observed changes in the
EAs of the two body segments in the STS movement cannot be plotted on 3D coordinates
as in the gait. Furthermore, since the STS movement is not a periodic motion similar to a
gait, the PLG cannot be directly adapted to the STS movement.

2. Methods

2.1. Participants

This study included 4 healthy participants (22.3 ± 0.5 years) and 4 rehabilitation
patients (82.8 ± 3.1 years). The selection criterion for healthy participants was the absence
of trauma or a disability that would affect the STS motion at the time of participation. In the
case of patients, those who were judged by a rehabilitation specialist to be able to complete
the STS movement unaided were included. The study was conducted after the participants
were informed about the study and after they signed a consent form. Table 1 provides
physical information about the healthy participants and the rehabilitation patients.
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Table 1. Summary of the participants’ physical information.

Group Code Gender Age
Height Weight

BMI

Muscle
Mass

Body Fat

(cm) (kg) (kg) (%)

Health
(N 1 = 4)

H-1 Male 22 169.0 54.0 18.9 42.3 17.3
H-2 Male 22 176.0 81.8 26.4 59.7 23.1
H-3 Male 22 172.0 68.4 23.1 49.8 23.3
H-4 Male 22 177.0 67.6 21.6 49.2 23.2

Mean ± SD 2 22.3±0.5 173.5±3.7 67.9±11.4 22.5±3.1 50.2±7.2 21.7±3.0

Patient
(N = 4)

P-1 Male 86 139.0 48.8 25.2 27.7 40.3
P-2 Female 78 165.5 40.3 14.7 35.6 6.5
P-3 Female 81 156.0 56.0 23.0 33.9 36.0
P-4 Female 86 134.5 33.0 18.2 23.1 27.2

Mean ± SD 82.8 ± 3.1 148.8 ± 11.2 44.5 ± 7.8 20.3 ± 3.7 30.1 ± 4.5 27.5 ± 11.6
1 Number of participants. 2 Standard deviation

2.2. Experiment

In this study, motion capture experiments were conducted with healthy participants at
Kwansei Gakuin University from 20 February 2019 to 24 February 2019 and with rehabilita-
tion patients at Toyonaka Heisei Hospital on 7 March 2020. The 40 motion capture markers
were placed on landmarks throughout the body [18]. In this study, four markers (the lateral
ankle, the lateral 1/3 of the lower tibia, the lateral epicondyle of the knee, and the lateral
1/3 of the lower thigh) were placed on one lower extremity, and participants sat in a chair
with a height of 43.5 cm and without a backrest. Participants were instructed to not allow
their upper limbs to come into contact with their body or the external environment during
the STS movement. The motion capture experiment was conducted as follows (Figure 1).

    

(a) (b) (c) (d) 

Figure 1. STS measurement experiment. The upper extremity did not touch the body or the outside
environment. The plantar was fixed in an arbitrary position that was not interchanged from the
beginning to the end of the STS motion. (a) The start of the STS motion from the stationary starting
posture at the signal, (b, c) the STS motion in progress, and (d) the end of the STS motion when the
ending posture is stationary.
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1. Each participant sat in a chair and maintained their posture to initiate the STS movement.
2. When we judged that the participant’s sitting posture was stationary, we signaled the

start of STS.
3. On hearing the cue, the participant initiated the STS movement.
4. When the participant stood up and we judged that the standing posture was stationary,

we signaled the end of the STS movement.
5. The video images from the cue for the start of the movement to the cue for the end of

the movement were included in the analysis.

A calibration space with an area of 150 cm × 150 cm and a height of 195 cm centered
on the participant’s feet was set up (Figure 2). The captured images were recorded using
Capture-Ex (Library Co., Ltd., Tokyo, Japan) at a sampling frequency of 50 Hz. Move-tr/3D
(Library Co., Ltd., Tokyo, Japan) was used to convert the marker information in the video
into coordinate data, and KineAnalyzer (KISSEI COMTEC Co., Ltd., Nagano, Japan) was
used to measure the EAs of the thigh and shank. A 2 Hz low-pass filter was applied to all
marker data. The EA formed by the shank and the vertical axis was defined as θS, and the
EA formed by the thigh and the vertical axis was defined as θT (Figure 3).

 
Figure 2. Experimental setup. A calibration space (150 cm × 150 cm × 195 cm) photographed with
four CCD cameras.

Figure 3. Definition of EAs for the thigh and the lower leg. The EA was measured using KineAnalyzer.
The angle between the vertical axis and the thigh axis was defined as θT , and the angle between the
vertical axis and the lower leg was defined as θS.
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2.3. Analysis

Data for each of the healthy and rehabilitation patient groups were analyzed, and
statistical tests were performed on the results. Details of the analysis are provided below.

2.3.1. Definition of the EA error

During the STS motion, the shank EA was defined as θS and the thigh EA was defined
as θT . In the first experiment of this study, the L–R errors of θS and θT were calculated. The
indices of the L–R error were the shank EA error SEave, the thigh EA error TEave, and the
overall error Esum. Formulas (1)–(3) provide the calculation of each index.

Esum = SEave + TEave, (1)

SEave =
∑|Right θSi − Le f t θSi|

n
, (2)

TEave =
∑|Right θTi − Le f t θTi|

n
, (3)

where n is the total number of samples for each participant and i is the i-th sample. The
total number of samples was calculated by dividing the STS measurement time for each
participant by the sampling frequency of 50 Hz.

2.3.2. Analysis of Measured EA changes

Two-dimensional Cartesian coordinates C1 were created with the shank EA θS as
the y-axis and the thigh EA θT as the x-axis, and n points Fi (θSi, θTi) were recorded on
these coordinates. Point Fi was recorded on coordinate C1 for the R–L lower limbs. The
position vector norm pointing from the origin to point Fi was then calculated. Another
two-dimensional Cartesian coordinate C2 was created, with the position vector norm ‖aRi‖
of the right lower limb as the x-axis and the position vector norm ‖aLi‖ of the left lower
limb as the y-axis. Thus, a line (the R–L vector line) consisting of n points fi (aRi, aLi) on
the two-dimensional coordinate C2 was illustrated. Finally, a symmetrical reference line y
= x was created on the two-dimensional coordinate C2 and the average error ME and the
average error sum of squares MSE at each point of the target reference line and the R–L
vector line were calculated using Equations (4) and (5):

ME =
∑(‖aLi‖ − ‖aRi‖)

n
, (4)

MSE =
∑
√

ME2

n
. (5)

3. Results

3.1. Symmetrical Comparison Using Measured EAs

Figures 4 and 5 display the changes in shank EA θS and thigh EA θT during the STS
motion. Figure 4 shows the results for each participant in the healthy group, and Figure 5
shows the results for each participant in the rehabilitation patient group.
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(a) H-1 (b) H-2 

 
 

(c) H-3 (d) H-4 

Figure 4. Measured angular changes in thigh and shank EAs in the healthy group. The horizontal
axis is the STS time (in seconds) of each participant. H-1 through H-4 in the figure refer to each
healthy participant in Table 1.

  
(a) P-1 (b) P-2 

Figure 5. Cont.
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(c) P-3 (d) P-4 

Figure 5. Measured angular changes in thigh and shank EAs in the rehabilitation patient group. The
horizontal axis is the STS time (in seconds) of each participant. P-1 through P-4 in the figure refer to
each rehabilitated patient in Table 1.

On the basis of the measured EA changes in the healthy group, the following four
phases were commonly observed in the healthy participants:

- Phase 1: The STS start angle;
- Phase 2: A decrease in the thigh EA and an increase in the shank EA;
- Phase 3: A decrease in the thigh EA and a decrease in the shank EA;
- Phase 4: The STS end angle.

A common characteristic of the healthy group was a small L–R error in the decrease in
the thigh EA corresponding to Phases 2 and 3 but a trend toward larger L–R errors in thigh
and shank EAs for Phases 1 and 4.

The EA changes in the rehabilitation patient group were characterized by two features.
The first was that irregular EA changes occurred with shifting STS phases, making it
impossible to identify the Phases 1–4 observed in the healthy group. The second was that
the R–L thigh EAs were not as close as in the healthy group during Phases 2 and 3, even
though the EA changes were similar in appearance to those in the healthy group (e.g.,
Patients 1 and 3).

Table 2 summarizes the R–L EA errors in the healthy group and the rehabilitation pa-
tient group. In this experiment, the mean and the standard deviation of each EA error SEave,
TEave, and the error sum Esum of the rehabilitation patient group were larger than those of
the healthy group. A two-tailed Student’s t-test (R—4.0.2) at the 5% level of significance for
the above three errors showed no significant difference between the two groups.

Table 2. EA error in both groups.

Group Code
Sample SEave TEave Esum

(n 2) (deg/n) (deg/n) (deg/n)

Health
(N 1=4)

H-1 81 2.1 3.1 5.2
H-2 101 3.2 8.7 11.9
H-3 81 1.7 4.6 6.3
H-4 101 4.1 3.3 7.4

Mean ± SD 91.0 ± 11.5 2.8 ± 1.1 4.9 ± 2.6 7.7 ± 3.0

Patient
(N = 4)

P-1 136 1.7 4.6 6.4
P-2 246 3.6 10.2 13.9
P-3 111 7.5 5.5 13.0
P-4 195 12.6 8.5 21.2

Mean ± SD 3 172.0 ± 60.6 6.4 ± 4.8 7.2 ± 2.6 13.6 ± 6.1
1 Number of participants. 2 Number of samples. 3 Standard deviation. A significance test for the above three
errors showed no significant difference between the two groups.
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3.2. Comparison of R–L Symmetry by the R–L Vector Line

Figures 6 and 7 present the R–L vector lines for the healthy participants and the
rehabilitation patients, respectively. Here, the numbers 1–4 assigned to each participant
refer to the same participant’s results for the measured EAs (Figures 4 and 5). Table 3 shows
the ME and the MSE obtained from the R–L vector line and the symmetric reference line;
the ME is the error in the position vector norm of the R–L lower limbs, which approaches 0
if the motion patterns of the R–L lower limbs are symmetric (‖aRi‖ = ‖aLi‖).

 
(a) H-1 (b) H-2 

 
(c) H-3 (d) H-4 

Figure 6. R–L vector line in the healthy group. The lower limb movement pattern is symmetrical
enough to be drawn near the central symmetry reference line. H-1 through H-4 in the figure refer to
each healthy participant in Table 1.

Table 3. EA errors in both groups.

Sample ME MSE

Health
(N = 4)

H-1 81 −3.1 3.2
H-2 101 −1.5 7.1
H-3 81 −1.1 3.2
H-4 101 −2.5 3.1

Mean ± SD 91.0 ± 11.5 −2.0 ± 0.9 4.2 ± 2.0

Patient
(N = 4)

P-1 136 3.1 3.6
P-2 246 3.8 9.6
P-3 111 −6.9 7.2
P-4 195 −4.1 6.6

Mean ± SD 172.0 ± 60.6 −1.0 ± 5.3 6.8 ± 2.5
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(a) P-1 (b) P-2 

 
(c) P-3 (d) P-4 

Figure 7. R–L vector line in the rehabilitation patient group. The lower limb movement pattern is
symmetrical enough to be drawn near the central symmetry reference line. P-1 through P-4 in the
figure refer to each rehabilitated patient in Table 1.

If ME > 0, then the point fi (aRi, aLi) is distributed more on the y-axis side of the
symmetry reference line, and if ME < 0, then the point f_i is distributed more on the x-axis
side of the symmetry reference line. In the healthy participants, four ME values were
negative, while in the rehabilitation patient group, two were positive and the remaining
two were negative. Next, the MSE is a parameter that quantifies the asymmetry of move-
ment patterns. The MSE of the healthy participants was 4.2 ± 2.0, while the MSE of the
rehabilitation patient group was 6.8 ± 2.5. The MSE of the rehabilitation patient group
was approximately 1.6 times that of the healthy group, but a two-tailed Mann–Whitney U
test (R—4.0.2) at the 5% significance level showed no significant difference between the
two groups.

4. Discussion

In post-total-hip-arthroplasty patients, the weight bearing on the lower limb during
the STS motion is asymmetric because it is biased toward the healthy lower limb. In post-
stroke patients, the center of foot pressure during the STS movement is asymmetric because
it is biased toward the nonparalyzed side. Thus, previous studies have shown that muscle
torque and joint angle changes exerted in the gait and during the STS movement are asym-
metric due to disability or muscle weakness in one lower limb [7,19,20]. It was assumed
that the rehabilitation patient group in this study would also have asymmetric lower limb
joint angle changes during the STS motion due to disability and muscle weakness.

In patients with post-stroke syndrome, the muscle synergy of the R–L lower limbs
is reportedly related to the asymmetry of the lower limb joint angle changes during the
STS motion [21]. It is already known that the muscle synergy in such patients is altered
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compared with normal muscle synergy [22,23], and it was inferred that the patients in
this study also had altered motor synergy of the unilateral lower limb due to disability
and muscle weakness, resulting in asymmetric R–L lower limb movement during the
STS motion. Therefore, we hypothesized that it is important to bring the synergy of the
impaired lower limb of the patient closer to the normal state for the patient to recover
the STS ability [21] and that improving the R–L lower limb coordination during the STS
movement means that the muscle or motor synergy of the impaired lower limb used to
perform the STS movement is closer to the synergy expressed by the healthy lower limb.
We hypothesized that this would be the case. For this reason, we thought that a method for
evaluating the coordination of R–L lower limbs during the STS movement was necessary
and sought a method for evaluating this coordination from the perspective of both EAs
and the R–L vector line in this study.

The R–L differences in shank and thigh EAs were also observed in the healthy partici-
pants. The reason for the observed differences in EAs in the healthy participants, despite
the absence of a functional impairment, is presumably the habitual use of the dominant
leg. Although there is no difference in muscle strength between the dominant and non-
dominant leg [24,25], the dominant leg has priority in postural control [26]. In addition,
placing one leg posteriorly at the start of the STS movement can reduce the external tension
moment of the hip joint [27], which may have caused the difference in EAs in the healthy
group. In the rehabilitation patients, both EA values and temporal–spatial differences
were observed. These temporal–spatial differences were visually complex and difficult to
analyze. Therefore, we performed an analysis using R–L vector lines.

The PLG is a geometric method used to identify the cooperative structure of lower limb
movement patterns in the gait [15,16]. However, the PLG represents the coordinated motion
of one lower limb and it cannot represent the coordinated movement of the R–L lower limbs.
Therefore, in this paper, we proposed a method that presents information on the changes
in the EA of the R–L thighs and tibia as a single line (the R–L vector line). This method
suggests that the closer the drawn R–L vector line is to the symmetry reference line, the
more parallel it is to the target reference line, and the higher is the degree of synchronization
of the EA and the change per time point between the R–L segments. In other words, the
symmetry of the movement pattern can be evaluated as high. The STS movement has
a muscle coordination structure that is reportedly similar to that of walking [28,29], and
the movements of the R–L lower limbs during the STS motion are considered to be the
result of coordination. Therefore, we hypothesized that the symmetry of the coordinated
movements of the R–L lower limbs during the STS motion could be evaluated by the R–L
vector line. The ME of the R–L vector line analysis results provides information that can
be used to identify which motion (left or right) is dominant based on the sign of the value
(positive or negative) and its magnitude. In a previous study analyzing the STS motion
of patients with femoral neck fractures, it was reported that the angular displacement of
the knee joint and the hip joint is greater in the nonaffected lower limb, where the peak
joint moment values are greater [30]. Therefore, by observing the ME, the lower limb that
is the primary source of force used to perform the STS motion can be estimated, helping to
interpret the visually complex information on elevation displacement. Previous studies
have reported asymmetry in the STS motion in patients after a lower limb fracture or a
stroke [4,5,7,19,20]. According to the R–L vector line and the sign of the ME value, two
trends were observed in the rehabilitated patient group. The first is patients with increased
use of one lower limb during STS movements (Figure 7, P-1 and P-3), where the R–L vector
line was also drawn on the side indicated by the sign of the ME value. The second was a
patient with alternating and irregular increases in R–L lower limb use (Figure 7, P-2 and
P-4). In this case, it was difficult to determine whether the predominantly used lower limb
was the right or left one only by observing the R–L vector line, but the direction of the
predominantly used lower limb could be determined from the sign of the ME value. On
the other hand, compared with the rehabilitation patients, the R–L vector line of the healthy
participants passed near the symmetric reference line. In other words, the R–L lower limbs
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of the healthy participants showed the possibility of coordinated temporal and spatial
movement. Chun et al. reported that a robotic rehabilitation intervention for stroke patients
improves the muscle synergy asymmetry between the affected and nonaffected lower
limbs [31]. In the study by Chun et al., the symmetry between R–L lower extremities was
assessed by the correlation coefficient of muscle synergy, but it only provides information
on the similarity of muscle synergy changes between R–L lower extremities, not explicit
symmetry. Another weakness of R–L symmetry evaluation using only muscle synergy is
that the number of synergies must be the same in the R–L lower limb as a condition for
comparison, and the results of muscle synergy analysis vary depending on the number and
types of muscles being investigated [32].

The R–L vector line proposed in this study will clearly demonstrate the symmetry of
STS R–L lower limb movements when the R–L vector line, which plots STS movements,
approaches the symmetry reference line through rehabilitation of the patient. In addition,
since the EAs of the thigh and lower leg are used, the problem of differences in the mea-
surement target affecting the analysis results can be avoided. This makes the determination
of the effectiveness of the rehabilitation of R–L symmetry reliable and easy to perform.

The MSE, which excludes the positive and negative signs of the ME and calculates
the magnitude of the error between the symmetric reference line and the R–L vector line
as a numerical value, is the mean error value obtained by dividing this value by the
measurement time of each participant. Previous studies have reported that hemiplegia
and pain reorganize the cooperative structure of muscles differently from the healthy
side [14,33,34]. The R–L asymmetry of the lower limb movement pattern during the STS
motion in the rehabilitation patient group could be quantified by MSE values. In the
present study, the number of participants in both groups was small (four in each) and there
was no significant difference in the statistical test for the MSE. Therefore, we can only
mention the possibility that the MSE is an indicator that can determine asymmetry. If the
sample size is too small, the power of the test is estimated to be small [35]. In a previous
study on the comparison of peak muscle synergy values, 21 participants, 12 with mild
stroke sequelae and 7 with severe stroke sequelae, were compared [21]. A study examining
the accuracy of the perception of the asymmetry of lower limb weight bearing during
standing movements compared 19 stroke survivors and 15 healthy participants [36]. In
contrast to these previous studies, our study had a short duration, which did not allow us
to have a large number of participants, particularly rehabilitation patients. By increasing
the duration of the study and obtaining the cooperation of several medical institutions, we
could increase the number of rehabilitation patients. If we could increase the number of
participants, it would be possible to study more clearly the magnitude of the MSE error
between healthy participants and rehabilitation patients and to calculate a cutoff value.
If we could calculate a cutoff value for the MSE, we would have an R–L vector line that
would make it easier to visually determine the effectiveness of rehabilitation and treatment,
aiding the staff working in clinical settings.

A limitation of this study is the large age difference between healthy participants and
rehabilitation patients. The typical rehabilitation patient admitted to a medical facility is an
elderly person. To determine the effectiveness of rehabilitation, it is desirable to compare
the STS performance of patients and healthy participants of a similar age. However,
since it cannot be said that elderly patients who are considered healthy do not experience
musculoskeletal or cardiovascular diseases, close attention must be paid to the definition of
STS performance as a normal model. In addition, because this study evaluated R–L lower
extremity coordination during the STS motion based on EAs, the theory was limited to a
kinematic perspective. If we could compare the muscle synergies of the same participants
during the STS motion, errors between the neurological assessment and the kinematic
assessment obtained from the results of this study could be identified.
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5. Conclusions

In this study, we proposed a method for evaluating the improvement in the R–L
synergy of the impaired lower limb during the STS movement, i.e., the measurement
of the EA and the measurement of the R–L vector line, which is a secondary type of
information obtained from the EA. The information obtained from the EAs of multiple
body segments of the R–L lower limbs is complex, with many variables, making it difficult
to evaluate coordination. In contrast, the R–L vector line can be represented by a single
line in two-dimensional coordinates, and the ME and the MSE facilitate comparison with
a symmetrical reference line by a numerical representation. This means that the R–L vector
line utilizes the kinematic synergy of the R–L lower limbs and can visually represent
the difference in the kinematic coordination of the R–L lower limbs. The conventional
assessment of R–L differences using muscle synergy consisting of multiple muscles can be
depicted with fewer variables.

Because of the small number of participants in this study and the fact that the MSE
did not yield useful conclusions from the statistical tests, we were unable to quantitatively
determine the presence or absence of R–L differences using the MSE cutoff values. In
the future, we hope to calculate the cutoff value of the MSE by increasing the number of
participants and establish this method as a symmetry evaluation method. Furthermore,
we would like to apply this method to the PLG, which can be expressed in two degrees
of freedom, to verify whether this method can be applied not only to STS but also to the
symmetry evaluation of the gait cycle of the R–L lower limbs in the gait.
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Abstract: Recently, face recognition became a key element in social cognition which is used in various
applications including human–robot interaction (HRI), pedestrian identification, and surveillance
systems. Deep convolutional neural networks (CNNs) have achieved notable progress in recognizing
faces. However, achieving accurate and real-time face recognition is still a challenging problem,
especially in unconstrained environments due to occlusion, lighting conditions, and the diversity
in head poses. In this paper, we present a robust face recognition and tracking framework in
unconstrained settings. We developed our framework based on lightweight CNNs for all face
recognition stages, including face detection, alignment and feature extraction, to achieve higher
accuracies in these challenging circumstances while maintaining the real-time capabilities required
for HRI systems. To maintain the accuracy, a single-shot multi-level face localization in the wild
(RetinaFace) is utilized for face detection, and additive angular margin loss (ArcFace) is employed
for recognition. For further enhancement, we introduce a face tracking algorithm that combines the
information from tracked faces with the recognized identity to use in the further frames. This tracking
algorithm improves the overall processing time and accuracy. The proposed system performance is
tested in real-time experiments applied in an HRI study. Our proposed framework achieves real-time
capabilities with an average of 99%, 95%, and 97% precision, recall, and F-score respectively. In
addition, we implemented our system as a modular ROS package that makes it straightforward for
integration in different real-world HRI systems.

Keywords: face recognition; face tracking; face detection; face alignment; person identification;
human–robot interaction; intelligent robots; interactive systems

1. Introduction

Robots have an increasing involvement in real-world contexts, such as homes, schools,
hospitals, labs and workplaces. As a result, the field of human–robot Interaction (HRI)
presents new challenges in security, automation, and recognition [1]. Robots need social
intelligence to interact effectively with and assist humans. Furthermore, a reasonable differ-
ence between humans and robots is that humans can recognize and remember individuals
by perceiving their facial features smoothly, while robots pose significant challenges in
perception [2]. This is an essential part of social cognition and represents a key element
for improving human–robot interaction. Moreover, the recent advances in face detection
and face recognition (FR) through deep neural networks make it possible to make robots
rapidly approach human-level performance and handle several challenging conditions, in-
cluding large pose variations and occlusions, difficult lighting conditions, and poor-quality
images with large motion blur [3,4]. However, there are still unresolved challenges for
real-world applications to operate in unconstrained circumstances, including computing
power limitations and the lack of training data for user-wise face identification.
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As the field of HRI advances, the levels of interaction between humans and robotics
become more complex. In order to better understand the critical aspects that influence
the human–robot interaction behavior, we conducted a Wizard-of-Oz study [5] to analyze
common communication intuitions of new human interaction partners. Figure 1 shows the
different interactions between the subjects and the industrial robot.

Figure 1. Previous field study Wizard-of-Oz [5]. A video summary can be found here: https:
//youtu.be/JL409R7YQa0 (accessed on 29 May 2022).

Based on the key results and conclusions of the study, we implemented a multi-modal
robotic system called “RoSA” (Robot System Assistant) [6]. This way “RoSA” tackles the
challenge of intuitive and user-centered human–robot interaction by integrating different
interaction streams such as speech, gesture, object, body, and face recognition.

During the interactions in RoSA, the subjects were not cooperating with the face
recognition module as they needed to look down to do the required tasks efficiently as
illustrated in Section 3, i.e., the face pitch angle is far away from the camera, preventing the
upside camera from capturing the best face pose that fit with the face recognition module.
Moreover, face recognition is viewpoint dependent for rotations about all axes (pitch, yaw,
and roll) and had the worst accuracy for rotations in pitch [7] as shown in Figure 2. To
make the interaction smooth and to increase recognition accuracy for this scenario, we
propose a face recognition system that is improved with a tracking capability to handle
the subjects’ continuous changes in appearance and illumination, in addition, providing
the robot with the capability to learn new faces features and recognize them in real-time to
participate in social cognition.

In this paper, a typical face recognition framework enhanced with a tracking capability
is built by integrating a light-weight RetinaFace-mobilenet [3] with Additive Angular
Margin Loss (ArcFace) [4]. Furthermore, to improve the processing speed and accuracy, we
propose a tracking algorithm that combines the tracked faces with the actual user identity
to improve the recognition performance and accuracy. Finally, we packaged the proposed
recognition framework as a real-time Robot Operating System (ROS) node for an easy
plugin into other real-world HRI systems.
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Front   Pitch

Yaw

Pi

Y

Figure 2. Influence of yaw and pitch angles variations on the head pose, showing that pitch angle
have the great impact on the face features. Moving away from the front pose resultant on less
distinctive features.

The remainder of the paper is organized as follows: Section 2 reviews recent related
work on face detection, face alignment, face recognition, and face tracking algorithms. The
RoSA system is illustrated in Section 3. Our proposed methodology and framework are
presented in Section 4. Experiments and results are presented in Section 5. Finally, Section 7
concludes this paper.

2. Related Works

Most current deep face recognition systems can be decomposed into three main stages:
face detection, where faces are localized in an input image, face alignment, where the detected
faces are warped into a 2D or 3D canonical face model; and face recognition, where the
aligned faces are classified into different identities. Each part has been actively studied
in the field, and near-human performances have been achieved over many benchmark
datasets [3,4,8]. In the following, we give a brief overview of recent works on each stage.

2.1. Face Detection Algorithms

Face detection algorithms aim to locate the main face area in input images or video
frames. Furthermore, they help robots discriminate between humans and other objects in
the scene.

Before the deep learning era, the cascade-based methods and deformable part models
(DPM) dominated the face detection field with limitations in unconstrained face images
due to considerable variations in resolutions, illumination, expression, skin color, pose,
and occlusions [9].

In recent years, deep learning methods have shown their power in computer vision
and pattern recognition. As a result, many deep convolutional neural networks (CNN or
DCNN)-based face detection methods have been proposed to overcome the limitations
mentioned above [3,10–14]. The CNN-based face detection approaches generally have
two stages: a feature extraction stage by utilizing a CNN-backbone network to generate
the feature map, and a stage for predicting the bounding box locations [15]. They can be
divided into two categories: (1) multi-stage; and (2) single-stage detection algorithms.

Two-stage algorithms: Most two-stage algorithms are typically based on Faster R-
CNN [12] and generate several candidate boxes and then refine the candidates with a sub-
sequent stage. The first stage utilizes a sliding window to propose the candidate bounding
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boxes at a given scale, and the second stage rejects the false positives and refines the re-
maining boxes [16–18]. The advantage of this type of model is that they reach the highest
accuracy rates, on the other hand they are typically slower.

Single-stage algorithms: Most single-stage algorithms are typically based on the single
shot multi-box detector (SSD) [11]. These algorithms treat object detection as a simple
regression problem by performing the candidate classification and bounding box regression
from the feature maps directly in only one stage, without the dependence on an extra
proposal stage [3,13]. The advantage of this type of model is that they are much faster than
two-stage algorithms, but they have lower accuracy rates.

Among the many variants using the single-stage structure, state-of-the-art face detec-
tion performance was achieved by RetinaFace [3]. RetinaFace is the latest one-stage face
detection model, which is based on the structure of RetinaNet [19] and uses deformable con-
volution and dense regression loss. We utilized the lightweight version of RetinaFace based
on the mobilenet backbone to enhance the detection speed to achieve real-time performance.

2.2. Facial Landmarks and Face Alignment Algorithms

Face alignment plays a vital role in many computer vision applications. It is necessary
to improve the robustness of face recognition against in-plane rotations and pose vari-
ations [20]. Meanwhile, facial landmarks are essential for most existing face alignment
algorithms because they are involved in the similarity transformation for finding the closest
shape of the face. So, facial landmark localization is a prerequisite for face alignment.

Face alignment aims to identify the geometric structure of the detected face and
calibrate it to the canonical pose, i.e., determining the location and shape of the face
elements, such as the mouth, nose, eyes, and eyebrows.

From an overall perspective, face alignment methods can be divided into model-based
and regression-based methods [21]. However, the regression methods show superior
accuracy, speed, and robustness when compared to model-based methods [22]. Further-
more, model-based methods show difficulties to express the very complex individual
landmark appearance.

Trigeorgis et al. [23] further optimize regression-based methods by introducing a single
convolutional recurrent neural network architecture that combines all stages’ training
through facilitating a memory unit that shares information across all levels. The importance
of the initialization strategies for face alignment is demonstrated in [24]. Despite that,
Valle et al. [25] handled the sensitivity problem of initialization strategies by introducing
the Deeply-initialized Coarse-to-Fine Ensemble (DCFE) approach. DCFE refines a CNN-
based initialization stage with Ensemble of Regression Trees (ERT) to estimate probability
maps of landmarks’ locations. Cascade of experts is used by Feng et al. in [26] to improve
the face alignment accuracy versus the different face shape poses. Feng et al. proposed
Random Cascaded Regression Copse (R-CR-C) method that utilizes three parallel cascaded
regressions. Furthermore, Zhu et al. [27] used a probabilistic approach to adopt coarse-to-
fine shape searching.

There have been significant improvements in face alignment using deep learning
methods. As in [28], Kumar and Chellapa introduced a single dendritic CNN, termed
the Pose Conditioned Dendritic Convolution Neural Network (PCD-CNN). Furthermore,
they combine a classification network with a second and modular classification network to
predict landmark points accurately. In addition, Wu et al. [28] proposed a boundary-aware
face alignment algorithm that interpolates the geometric structure of a human face as
boundary lines to improve landmark localization.

In a later work, a more efficient compact model has been recently proposed by Guo et al.
named practical facial landmark detector (PFLD) [29]. They used a branch of the network
to estimate the geometric information for each face sample to make the model more robust.
PFLD achieved a size of 2.1 Mb and over 140 fps per face on a mobile phone with high
accuracy against complex faces, including unconstrained poses, expressions, lighting,
and occlusions, which makes it more suitable for HRI applications.
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2.3. Face Recognition Algorithms

A face recognition system is a system that can identify or verify a person in an input
image or a video frame. With the current advances in machine learning, the deep face
recognition systems based on the CNN models have been the most common due to their
remarkable results, and several deep face recognition models have been proposed [4,30–34].
These models work by localizing the face in the input image, extracting the face embeddings,
and comparing them to other face embeddings pre-extracted and stored in a database.
Every embedding creates a unique face signature and the identity of a specific human face.

Taigman et al. proposed a multi-stage approach called DeepFace [30] based on AlexNet
architecture [35]. The faces are first aligned to a generic 3D shape model, and then facial rep-
resentation is derived from a nine-layer deep neural network. In addition, the authors used
a Siamese network trained by standard cross-entropy loss for face verification. Inspired by
the work of DeepFace, Sun et al. introduced a high-performance deep convolutional neural
network called DeepID2+ [36] for face recognition. DeepID2+ achieved a better perfor-
mance by adding supervision to early convolutional layers and increasing the dimension
of hidden representations. Schroff et al. proposed FaceNet [31] based on the GoogleNet
architecture [37]. FaceNet directly optimizes the face embedding by a deep convolutional
network trained using a triplet loss function at the final layer. He et al. proposed a Wasser-
stein convolutional neural network (WCNN) approach [38] that optimizes face recognition
by learning invariant features between near-infrared and visual face images.

Recently, different loss functions for face recognition have been proposed [4,32,33,39,40]
to enhance discriminative feature learning and representation. Sphereface presents the
importance of the angular margin and its advantage in feature separation, but the training
is unstable and hard to converge. CosFace defines the decision margin in the cosine space
by directly adding the cosine margin penalty to the target logit, which results in better
performance than SphereFace with easier implementation and stable training. The ArcFace
or Additive Angular Margin Loss [4] is one of the most potent loss functions designed for
deep face recognition [41–43]. It enhances discriminative learning by introducing an ad-
ditive angular margin. In contrast with SphereFace and CosFace which have a nonlinear
angular margin, ArcFace has a constant linear angular margin.

The evaluation of single face recognition requires high computational power. Fur-
thermore, multiple faces in a single scene need to be recognized and identified in practice.
This makes recognizing multiple faces another challenge, as it requires more computing
power to process multiple faces per scene. The accuracy and processing time are the main
criteria for any face recognition system. Nevertheless, especially for the HRI, accuracy and
real-time recognition are a challenge in scenes with subjects that do not co-operate with the
recognition system.

2.4. Face Tracking Algorithms

Visual object tracking has always been a research hotspot in computer vision, and face
tracking is a special case. Face tracking is primarily a process of determining the position of
the human face in a digital video or frame based on the detected face. This is challenging
as the face is not the same during the time (video frames), but it may vary in pose and view.
Moreover, other factors affected the face tracking in the actual scene and made it more
complex, such as illumination, occlusion, and posture changes. On the other hand, face
tracking has many advantages, such as counting the number of human faces in a digital
video or camera feed and following a particular face as it moves in a video stream to predict
the person’s path or direction. Moreover, it can reduce the processing time needed for face
detection and recognition.

Many visual object tracking algorithms have been presented; however, Kalman fil-
ter [44] and template matching [45] are the most popular methods. In [46], Bewley et al.
proposed simple online and real-time tracking (SORT) for multiple object tracking. SORT is
a simple approach that associates objects efficiently for online and real-time applications by
utilizing the Kalman filter and the Hungarian method. It achieves a favorable performance
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at high frame rates of 260 Hz. In [47], Wojke et al. integrates SORT with the appearance
information by employing a trained CNN to discriminate pedestrians on a large-scale
person re-identification dataset, and called it Deep-SORT. This technique has improved
the performance and reduced the number of identity switches through longer periods
of occlusions.

Recently, deep learning-based face tracking algorithms have been dominant, where
the face tracking problem is solved as a binary classification problem for predicting a face
or a non-face. Lian et al. [48] proposed a multiple objects tracking algorithm that utilizes a
multi-task CNN network (MTCNN) for face detection and fuses multiple features (appear-
ance, motion, and shape features) for tracking. Despite the promising results achieved by
deep learning-based face tracking algorithms, SORT has a higher frame rate with favorable
accuracy due to its simplicity and ease of implementation.

3. Human–Robot Interaction System

We developed RoSA, a multi-modal system for contactless human–machine interaction
based on speech, facial, and gesture recognition [6]. In order to make the interaction smooth
and to increase recognition accuracy in RoSA, we propose a face recognition framework
that is improved with a tracking capability to handle subjects’ continuous changes in
appearance and illumination.

The RoSA setup is illustrated in Figure 3, and has two workstations, workstations 1
(WS1) and workstation 2 (WS2), with different designs and purposes [6]. In addition to
seven modules (face, speech, gesture, attention, robot, cube, and scene) were designed
and implemented. The modules utilize the ROS, ROS network, and ROS messages for
communications with the workstations and each other.

WS1 
Camera Sensor

WS2 
Camera Sensor

WS2 
Registration 
Application

WS1 
Robot

ROS (Middleware)

RoSA Modules

RoSA Workstations

Workstation 1 (WS1) Workstation 2 (WS2)

Kinect Kinect URe5

Proposed framework
integrated here

HRI  
Modules

Face 
Module

Subject Database

Figure 3. The system setup of the Robot System Assistant (RoSA) framework, showing the communi-
cation between the RoSA modules and workstations, is performed via the ROS, and the proposed
framework is integrated as the face module.
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WS1 is dedicated to all the human–robot interactions and collaborative tasks with
the robot. It consists of an industrial robot UR5e provided with a gripper RG6 for easy
handling of the required tasks and securely fixed on a metal table. A top camera sensor is
used for a live stream of all the human–robot interactions; a time of flight (ToF) Kinect V2
camera is selected for this task. A set of black and white cubes with letters are available
for the tasks and under the robot’s gripper control. For visual feedback, a projector was
utilized to illuminate the cubes and the metal table. The primary purpose of WS2 is for
subject registration, and it consists of a smart touch screen with built-in speakers.

In the experiments of the RoSA Study, the subjects enter the required information
through a graphical user interface. At the same time, the face embedding is extracted by
asking the subject to look at WS2 camera in frontal and profile postures. The collected
information and embeddings are stored on the subject database. After the completion
of the registration, RoSA asks the subject to go to WS1 to do the practical experiment
and the collaborative tasks with the robot. Finally, RoSA asks the subject to answer the
questionnaires at WS2. These questionnaires include evaluation questions about RoSA
during the interaction. Furthermore, RoSA assists the subject to collect extra data for
a module assessment and a benchmark.

An active session is required to enable the interaction between the current subject
and the robot. This active session can only be achieved if the face module can effectively
recognize and track the identity of the subject during the experiment. Regardless, due to
the nature of the collaborative tasks and the unrestricted environment, face recognition
is a challenging process and is required to handle the different lighting conditions, pose
angles, partially occluded, and sometimes, completely hidden faces. This would sometimes
lead to the loss of tracking and active session. The proposed face recognition system enables
RoSA to recognize and track subjects robustly.

Using face tracking for user recognition and identification also improves on common
problematic situations when implementing body tracking in multi-user scenarios: body
tracking mix-up and false body detection in inanimate objects. While the coat hangers and
office chairs do sometimes get detected as a person and assigned a body posture for further
processing, it is very unlikely that the false body would also have a valid face that could
also be detected. By fusing the detected faces to the detected bodies—to which we refer
as “fused bodies”—we make sure that each body has a valid face for detection and thus
a unique ID, determined by that face.

This approach also reduces the unintentional mix-up of tracked bodies, which occurs
when two persons are standing close to each other or pass one another while restricting
the view of the body tracker. After the loss of one of the tracked bodies due to occlusion or
ambiguities, the body tracker estimation can jump over to the other subject and continue
under the wrong ID. By constantly checking for integrity, between the user’s skeleton and
face with the help of the fused body, the mix-up can be detected right away and the error
corrected. This way, it is sufficient to track only the face ID for interaction purposes and
sort the detected bodies accordingly. After a mix-up, the information corresponding to the
tracked body would be updated in the user’s fused body entity, so the system would now
be aware of which tracked body and its inputs correspond to the face ID.

4. Methodology and Proposed Framework

The proposed framework is a face recognition system improved with a tracking
algorithm. Firstly, the current frame is fed to the face detection module to localize faces in
each video frame. Then, a face tracker is created for each detected face across the video
frame. Meanwhile, the detected faces are aligned to the canonical face using the detected
landmarks and sent to the face recognition module. Finally, the face recognition module
gets each detected face identity and associates this identity with the face tracker, and then
publishes these identities to the other RoSA modules. The framework is illustrated in
Figure 4 and consists of three main modules: face detection and alignment, multi-face tracking,
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and deep face recognition modules. In the following sections, the details of each module will
be discussed.

Multi-Face Tracking

Face Tracker 
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Figure 4. An overview of the proposed face recognition and tracking framework. The predicting face
locations and identities are published to the ROS network for broadcasting to RoSA workstations
and modules.

4.1. Face Detection and Alignment

For face detection tasks, we use a deep CNN-based face detector by employing
a single-shot, multi-level face localization method, called RetinaFace [3]. RetinaFace unifies
three different face localization tasks together under one single shot framework: face
box prediction, 2D facial landmark localization, and 3D vertices regression. Additionally,
all points for these three tasks are regressed on the image plane. RetinaFace proposes
a single-shot, multi-level face localization model, which consists of three components:
the feature pyramid network, the context head module, and the cascade multi-task loss.
First, the feature pyramid network generates five feature maps of different scales. Then,
the feature map of a particular scale is fed to the context head module to compute the multi-
task loss, i.e., the first context head module predicts the bounding box from the regular
anchor. Afterward, the second context head module predicts a more accurate bounding box
using the regressed anchor generated by the first context head module. Finally, the anchors
are matched to ground-truth boxes if the Intersection over Union (IoU) is greater than
0.7 and 0.5 for the first and second context head respectively, and are matched to the
background if IoU is less than 0.3 and 0.4 for the first and second context head, respectively.
Furthermore, the unmatched anchors are ignored during training. For any training anchor
i, RetinaFace minimizes the following multi-task loss [3]:

L = Lcls(pi, p∗i ) + λ1 p∗i Lbox(ti, t∗i ) + λ2 p∗i Lpts(li, l∗i ) + λ3 p∗i Lmesh(vi, v∗i ), (1)

where ti, li, vi are box, five landmarks and 1k vertices predictions, t∗i , l∗i , v∗i is the corre-
sponding ground-truth, pi is the predicted probability of anchor i being a face, and p∗i is
1 for the positive anchor and 0 for the negative anchor. The classification loss Lcls is the
softmax loss for binary classes (face/not face). The loss-balancing parameters λ1 and λ2
are set to 0.25 and 0.1, respectively.

For the face landmarks and alignment task, we use a deep CNN-based network by
utilizing a practical facial landmark detector (PFLD) by Gue et al. [29]. PFLD employs
a branch of the network to estimate the geometric information for each face in order to
regularize the landmark localization. Moreover, it adds a multi-scale fully connected (MS-
FC) layer to enlarge the receptive field, catch the global structure, and precisely localize
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landmarks on faces. For predicting landmark coordinates, it utilizes the MobileNet network
as a backbone to enhance the processing speed and model size. As a result, it achieved
a size of 2.1 Mb and over 140 fps per face on a mobile phone with high accuracy against
complex faces, including unconstrained poses, expressions, lighting, and occlusions.

In the face detection and alignment module, all the faces in the images or the video
frames are detected with RetinaFace. RetinaFace outputs bounding boxes and five land-
marks (2 eyes, nose, and mouth) with a confidence score. For real-time constraints, we
select MobileNet-0.25 [49] as a lightweight backbone network, which achieves the real-time
speed of 40 fps at GPU for 4K images (4096 × 2160) with outstanding performance.

Next, the filtered faces, i.e., the detection boxes with high confidence scores are sent to
face alignment for calibrating to the canonical view and for cropping it to a size of 112 × 112
to be suitable for the subsequent task of face feature extraction. For the face landmarks and
alignment task, we used the compact model of the PFLD.

4.2. Face Recognition

For the face recognition task, we utilize the additive angular margin loss (ArcFace)
model by Deng et al. [4] to extract the feature embeddings of the faces. ArcFace introduces
an additive angular margin penalty m between the deep feature xi and the target weight
Wyi to simultaneously enhance the intra-class compactness and inter-class discrepancy. It
provides a more clear geometric interpretation due to its exact correspondence to geodesic
distance on a hypersphere. ArcFace is inherited from the most common loss function,
Softmax, and is defined as follows [4]:

Larc = − 1
N

N

∑
i=1

log
es(cos (θyi+m))

es(cos θyi+m)) + ∑n
j=1,j �=yi

es cos θj
. (2)

In Equation (2), n denotes the number of classes in the training database, while N
denotes the batch size. ArcFace model starts with extracting the face features xi by utilizing
a DCNN backbone. The backbone network is the bottleneck in terms of processing speed
and model size; as in the testing, only this branch is involved so we selected the lightweight
MobileFaceNet network [50] as a backbone. Then, based on the feature xi and weight W
normalization, we obtain the logit cos θj for each class as WT

j xi, and get the angle between
the feature xi and the ground truth weight Wyi as arccos θyi . After that, the angular margin
penalty m is added to the target angle θyi . Finally, we calculate cos(θyi + m) and multiply all
logits by the feature scale s. The logits then go through the softmax function and contribute
to the cross-entropy loss. The results of the ablation study by Deng et al. [4] showed that the
performance comparison on the LFW, CALFW, and CPLFW datasets for the Arcface loss
function outperformed others with 99.82%, 95.45%, and 92.08% accuracies respectively. It
was performed against 11 other loss functions, including Softmax, Center Loss, SphereFace,
and CosFace. This is the main reason why we selected Arcface as a loss function for the
face recognition module.

In the face recognition module, after the filtered faces are aligned, a deep face fea-
ture representation network transforms the aligned faces into a feature space. Mobile-
FaceNet [50] was selected as a backbone for this task to handle the real-time constraints.
Loss function optimization is challenging for large-scale face classification, as it is needed
to strengthen the intra-class compactness and inter-class discrepancy for highly similar
individual faces. For that, we used ArcFace as it outperforms the state-of-the-art functions.
In addition, it enhances the discriminative power for learning deep features and maximizes
the separability between face classes.

Finally, the face recognition module outputs a 512-dimensional feature embedding,
and then the predicted identity is calculated by comparing the generated embedding
against the stored embeddings by calculating the cosine similarity [51]. The ArcFace model
is trained on the MS1M database [14]. Given a face image, the image is aligned, scaled,
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and cropped before being passed to one of the models. This preprocessing is performed as
described in [13] for ArcFace.

4.3. Improved Face Recognition Using Face Tracking

For the face tracking task, we build the face tracking algorithm based on a simple online
and real-time tracking algorithm (SORT) [46]. SORT uses a Kalman filter for estimating
the location of the face in the current frame given the location in the previous frame. It
starts with detecting the target face in the initial frame i. After that, predict the future
location i + 1 of the target face from the initial frame using the Kalman filter. Noting that
the Kalman filter just approximates the face’s new location, which needs to be optimized.
Finally, the Hungarian algorithm is used for face location optimization and association.

The main problem we are targeting is the speed/accuracy trade-offs. Continuous face
detection and face recognition processing are time-consuming. Moreover, the quality of the
face features depends on the face pose, where the frontal face pose generates the best facial
features and degrades in a departure from the frontal pose. Therefore, instead of detecting
all faces around all input video frames, we assign only each newly detected face a tracker
and start the tracking instead of detection. Furthermore, for each new tracker only, the face
embedding will be inferred and compared against the stored embeddings by calculating the
cosine similarity to generate the user identity (ID), then add the ID to the tracker metadata
for fast recognition, i.e., retrieve the ID from the tracker in the successive frames without the
need for recognition. These will improve the processing time, recognition rate, and reduce
the recognition errors caused by variations from frontal face poses.

In the proposed tracking Algorithm 1, for each input frame, we are detecting faces
using face detection and alignment in Section 4.1. Initially, a new tracker for each detector
box will be created by applying SORT [46]. SORT analyzes previous and current frames and
predicts face locations on the fly by utilizing the Kalman filter and Hungarian algorithm.
Then, the user ID will be obtained using face recognition in Section 4.2 and assigned with
the face tracker for use in fast recognition in the further frames. Finally, the tracker will
be associated with the detected faces and maintained throughout tracking, and the user
ID is assigned for each face tracker. We update the tracker in each frame to validate if
a face is there inside the box to improve the tracking quality. If not, we are deleting the
tracker to prevent unbounded growth in the number of trackers. Moreover, the actual user
identity is attached to the face tracker instead of a unique face tracker ID to improve the
face recognition speed.

Algorithm 1: The Proposed Face Tracking Algorithm.
Inputs : Video, Detections, KalmanFilter, HeadJoints, SubjectIDs
Output : Recognized Tracked Faces
Initialize KalmanFilterTracker;
foreach frame fi ∈ Video do

Trackers ← Predict();
Trackers ← Assign(Detections, Trackers);
TrackersID ← Attach(Trackers, SubjectIDs);
TrackersID ← Assign(TrackersID, HeadJoints);
Update KalmanFilterTracker;
foreach tracker ti ∈ TrackersID do

ROS ← Publish(ti);
end

end

To improve the proposed face tracking algorithm and minimize the tracking error, we
obtain the head joint from the tracked skeleton provided by the WS1 Kinect V2 camera
and try to assign it with the face center. If the assignment is successful, we update the face
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tracker with the fine location. Otherwise, the tracker will be deleted. Further, this reduces
the number of identity switches through longer periods of occlusions.

5. Experiments and Analysis

The most effective parts of the face recognition and tracking framework are the face
detection and face recognition models. In order to well evaluate the effectiveness of the
introduced tracking approach, we trained and evaluate the two models separately.

5.1. Face Detection

For the face detection, the RetinaFace is trained on the WIDER FACE dataset [52]. It
contains 32,203 images and 393,703 face bounding boxes with a high degree of variability
in scale, pose, expression, occlusion, and illumination. The evaluation is performed on the
WIDER FACE validation set, with Average Precision (AP) of 0.83 for the hard subset.

5.2. Face Recognition

For the face recognition network, the ArcFace is trained on the MS1MV2 dataset [4,53]
for 30 epochs with a batch size of 512, feature scale s of 64, and angular margin m of
0.5. MS1MV2 is a semi-automatic refined version of the MS-Celeb-1M dataset [53] which
contains about 100k identities with 10 million images. The evaluation is performed on
large-pose CPLFW and large-age CALFW datasets and achieved performance of 95.45%
and 92.07% respectively.

5.3. Results

The metrics used to measure the overall system performance are precision, recall,
F-score, and recognition rate. We classify the predictions into True Positives (TP), False
Positives (FP), False Negatives (FN), and True Negatives (TN). A True Positive can be
obtained in recognition when the model correctly predicted the subject class (i.e., subject
ID), which means that it matches the ground truth. Otherwise, the prediction is considered
a False Positive.

A True Negative can be obtained in recognition when the model is not supposed
to predict a subject that is not in the database. Otherwise, the prediction is considered
a False Negative.

Precision is the matching probability of the predicted subject identity relative to the
ground truth identity, which shows the results of a correctly recognized subject. It can be
calculated as follows:

Precision =
TP

TP + FP
. (3)

Recall measures the probability of the subjects that were correctly recognized among
ground truth subjects, which is the total number of true positives relative to the sum of true
positives and false negatives, as follows:

Recall =
TP

TP + FN
. (4)

F-score is evaluated as the harmonic mean of precision and recall to see which model
best performs. It can be calculated as follows:

F-score =
Precision ∗ Recall
Precision + Recall

∗ 2. (5)

The recognition performance can be obtained by the face recognition rate FRR, and it
is the ratio between the total number of correctly recognized faces and the total de-
tected/tracked faces. It can be calculated as follows:

FRR =
TP

Total f aces
∗ 100. (6)
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In order to evaluate the proposed framework, we tested it for two different evaluations:
dataset, and online evaluations.

5.3.1. Dataset Evaluation

We use the ChokePoint dataset [54] to evaluate the proposed framework. This dataset
is a video dataset that was collected and designed for experiments on person identifica-
tion/verification under real-world surveillance conditions. It contains videos of 25 subjects
(six female and 19 male). In total, the dataset consists of 48 video sequences and 64,204 face
images with variations in terms of illumination conditions, pose, sharpness, as well as
misalignment due to automatic face localization/detection.

The experimental results show the performance of tracking for 25 subjects of the
ChokePoint dataset. To show recognition refinements, we have tested the proposed face
recognition framework with tracker-assisted and without. The average results are shown
in Table 1. Furthermore, the Receiver Operating Characteristic (ROC) curve is obtained in
Figure 5, which shows that the tracking approach improves the recognition rate for high
false positive rates and reduces the false classification rate.

Table 1. The average results of precision, recall, and F-score on ChokePoint dataset.

Tracking Precision Recall F-Score

No 0.83 0.79 0.81
Yes 0.96 0.93 0.94
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Figure 5. ROC Curve of ChokePoint Dataset for the Proposed Framework.

5.3.2. Online Evaluation

We employ the proposed framework on a real HRI study [6], to further evaluate the
framework in real-time HRI and show its robustness. During the experiments in the study,
the data for evaluation were collected from 11 subjects (two female and nine male) aged
between 20 and 34 years.

The experimental results show the performance of tracking and recognition rate for
11 subjects during the interactions with RoSA [6]. To show recognition refinements, we
have tested the proposed face recognition framework with tracker-assisted and without.
The proposed framework achieved a face recognition rate of 94% and 76% with tracking
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and without tracking, respectively. Figure 6 shows the impact of tracking on the Precision of
the proposed framework, and the impact of tracking on Recall of the proposed framework
is shown in Figure 7. Furthermore, Figure 8 shows the F-score results of the proposed
framework with tracker-assisted and without tracking.

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 Avg
0.5

0.6

0.7

0.8

0.9

1
P

re
ci

si
o
n

No Tracking With Tracking

Figure 6. Impact of Tracking on Precision of Face Recognition.
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Figure 7. Impact of Tracking on Recall of Face Recognition.
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Figure 8. F-score results of the proposed framework with tracker-assisted and without tracking.
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Compared to the standard face recognition framework, the proposed framework
performance is faster in terms of processing time with frame rates of 25–40 fps. Some
results of the proposed framework during the real HRI in our RoSA system [6] are shown
in Figure 9.

Figure 9. Experimental results of the proposed framework that shows the robustness of the framework
against various head posture and illumination conditions.

To confirm the obtained results, we run the experiments again on the recorded videos
from the Wizard-of-Oz study [5] with the same results. It contains videos of 36 subjects
doing the same tasks on the RoSA study, which were collected on different days with
different lighting conditions. For every subject (video), we selected three exemplar face
images with different poses and added the extracted embedding to the database to match
with video faces. Table 2 shows the precision and recall results for 37 subjects separated by
the top ten results.

Table 2. Result of precision and recall for the proposed framework.

No ID
Precision Recall

Tracking No Tracking Tracking No Tracking

1 4 0.97 0.76 0.81 0.70

2 7 1 0.84 0.92 0.59

3 11 1 0.68 1 0.73

4 16 1 1 1 0.66

5 18 0.96 0.88 1 0.81

6 24 0.98 0.65 0.95 0.77
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Table 2. Cont.

No ID
Precision Recall

Tracking No Tracking Tracking No Tracking

7 25 0.89 0.53 0.92 0.63

8 29 0.98 0.83 0.98 0.79

9 32 0.99 0.68 0.98 0.60

10 36 0.95 0.76 0.97 0.75

5.4. Computational Efficiency Assessment

In general, lightweight face networks provide promising results for face recognition.
They are able to perform comparably to state-of-the-art very deep face models in most
face recognition scenarios. In particular, ResNet100-ArcFace by Deng et al. [4] is one of the
best performing state-of-the-art models in the different evaluated scenarios, however, it
demands high computational resources. For example, the biggest difference in accuracy
between ResNet100-ArcFace and MobileFaceNet (our used network), is 8% in the very
large-scale DeepGlint-Image dataset (one of the most challenging databases), while in the
remaining databases it is less than 3%. However, regarding the computational complexity,
ResNet100-ArcFace requires 19X more storage space and involves 26X more FLOPs and
32X more parameters than MobileFaceNet.

Applying face tracking provides us the advantage of no need to apply face detection
and recognition for all input frames. However, to increase the accuracy of our framework
and minimize the tracking error, we apply the whole recognition process in each fifth frame.

To calculate the computational efficiency assessment of the proposed framework, we
tested it on the collected videos (total of 47 videos) during the RoSA study [6] and the
Wizard-of-Oz study [5] and obtained the average processing time for each face recognition
module. The hardware setting used was a NVIDIA GeForce GTX 1080 Ti Desktop GPU
(12 Gb GDDR5, 3584 CUDA cores). Table 3 shows the average execution time of individual
methods used in the proposed framework. To summarize, the average execution time per
frame for the whole process takes about 6.7 ms, and the average number of frames per
second is ∼35 frames.

Table 3. Average execution time of individual methods used in the proposed framework.

Method Average Time (ms)

Detection 3.2
Alignment 1.4
Tracking 0.8
Recognition (Embedding Inference) 1.3
Identification (Similarity) 0.08
Visualization & Delays 7.5

6. Limitations, and Future Work

The study conducted has a complex setting that contains two workstations (WS1 and
WS2) synchronized together using the ROS operating system. In addition, extracting face
features during the experiments is a challenging task due to the illumination conditions,
extreme deviation in head pose angles, and occlusion. However, the aforementioned
performance evaluation showed the effectiveness of the proposed framework in recognizing
the subject’s identity in a multi-person environment.

Few subjects caused a wrong identification during the experiments due to the lack of
the registration process and good face feature embedding, which lead to the re-registration
of the mentioned subjects.

The advantage of our framework is that it depends on lightweight CNNs for all face
recognition stages, including face detection, alignment and feature extraction, to meet
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the real-time requirements in HRI systems. Furthermore, the developed framework can
simultaneously recognize the faces of the cooperating subjects in various poses, face
expressions, illumination, and other outdoor-related factors. Although two of the subjects
were wearing face masks for the whole experiment, our model succeeded to recognize their
identity with reasonable confidence.

Future work would involve a new study with a large number of subjects with different
human–robot interaction scenarios to effectively assess the performance of the framework
and overcome the limited number of subjects in the RoSA study. In addition future work
would involve designing an end-to-end trainable convolutional network framework for all
the face recognition stages.

7. Conclusions

We propose a face recognition system for human–robot interaction (HRI) boosted
by face tracking based on deep convolutional neural networks (CNNs). To ensure that
our framework can work in real-time HRI systems, we developed our framework based
on lightweight CNNs for all face recognition stages, including face detection, alignment,
tracking, and feature extraction. Furthermore, we implemented our approach as a mod-
ular ROS package that makes it straightforward for integration in different HRI systems.
Our results suggest that the use of face tracking alongside face recognition increases the
recognition rate.

We utilize the state-of-the-art loss function ArcFace for the face recognition task and
the RetinaFace method for face detection combined with a simple online and real-time
face tracker. Furthermore, we propose a face tracker to tackle the challenges faced by the
existing face recognition methods including various illumination conditions, continuous
changes in head posture, and occlusion.

The face tracker is designed to fuse the tracking information with the recognized
identity and associate it with the faces once they are detected for the first time. For the
updated trackers, the last recognized identity will be kept alongside the tracker. Despite
what preceded, a new identity prediction is required for the new trackers. This method
improved the overall processing time and face recognition accuracy and precision for the
unconstrained face.

The proposed framework is tested in real-time experiments applied in our real HRI
system “RoSA” with 11 participants interacting with the robot to accomplish different tasks.
Furthermore, to confirm the obtained results, we tested it on the recorded videos from the
Wizard-of-Oz study, which contains videos of 36 subjects doing the same tasks on “RoSA”
with the same results. The results showed that the framework can improve the robustness of
face recognition effectively and boost the overall accuracy by an average of 25% in real-time.
It achieves an average of 99%, 95%, and 97% precision, recall, and F-score respectively.
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Abstract: To achieve human-level object manipulation capability, a robot must be able to handle
objects not only with prehensile manipulation, such as pick-and-place, but also with nonprehensile
manipulation. To study nonprehensile manipulation, we studied robotic batting, a primitive form of
nonprehensile manipulation. Batting is a challenging research area because it requires sophisticated
and fast manipulation of moving objects and requires considerable improvement. In this paper,
we designed a batting system for dynamic manipulation of a moving ball and proposed several
algorithms to improve the task performance of batting. To improve the recognition accuracy of the
ball, we proposed a circle-fitting method that complements color segmentation. This method enabled
robust ball recognition against illumination. To accurately estimate the trajectory of the recognized
ball, weighted least-squares regression considering the accuracy according to the distance of a stereo
vision sensor was used for trajectory estimation, which enabled more accurate and faster trajectory
estimation of the ball. Further, we analyzed the factors influencing the success rate of ball direction
control and applied a constant posture control method to improve the success rate. Through the
proposed methods, the ball direction control performance is improved.

Keywords: nonprehensile manipulation; robotic batting; high-speed object manipulation; ball recog-
nition; trajectory estimation; motion control; weighted least square

1. Introduction

To date, a variety of robots have been used in automated production lines for object ma-
nipulation tasks in factories, and these robotic technologies have contributed significantly
to the development of modern industry. Recently, with the fourth industrial revolution,
robots have been introduced to provide various services not only in factories but also in
human living environments. Robots used in factories perform simple repetitive operations
such as pick-and-place using specially designed grippers; however, in an environment such
as cafes and restaurants, human-level object manipulation ability is required. Therefore,
to provide a wider range of services in a human living environment, robots must have a
higher level of object manipulation similar to that of humans.

In addition to manipulating objects using grasping, humans can manipulate objects
freely by appropriately utilizing nonprehensile manipulations [1] without grasping, such as
throwing, batting, rolling, pushing, and sliding. Most robots are still limited to prehensile
manipulation using grasping. A robot that performs nonprehensile manipulation is rare
owing to the difficulty of control using nonprehensile manipulations. When nonprehensile
manipulation is performed, the object moves during manipulation. Since the moving
object is not fixed to the robot, it is necessary to plan and control the future behavior
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of the moving object based on the state of the robot and the moving object. Despite
these difficulties, nonprehensile manipulation has advantages such as increased object
manipulation methods, expansion of the robot workspace, and increased manipulation
dexterity [2]. To improve the ability of robots to manipulate objects, the robots must have
nonprehensile manipulation capabilities with these advantages.

Fabio et al. conducted a survey on nonprehensile manipulation of robots to address
the trends and open issues of nonprehensile manipulation studies [3]. According to [3], the
nonprehensile manipulation task is complex and difficult. Because of the complexity and
difficulty of the task, most studies divide the nonprehensile manipulation task into simpler
subtasks called nonprehensile manipulation primitives. The representative nonprehensile
manipulation primitives include throwing [4], catching [5], batting [6], pushing [7], slid-
ing [8], and rolling [9]. Each of these nonprehensile manipulation primitives is selectively
operated by a high-level supervisor depending on the task [10]. Among the nonprehensile
manipulation primitives, batting is challenging because it requires precise and fast ma-
nipulation of the moving objects, and studies on this topic are lacking. In sporting events
such as table tennis, tennis, and baseball, players have a batting ability to send the moving
objects (balls) to the desired position with sophisticated and quick manipulation, while
the batting performance of robots is insufficient. Therefore, this study aims to contribute
to the improvement of the dexterity of robots by conducting research on batting, which
requires more precise and quicker nonprehensile manipulation of moving objects than do
the above-mentioned primitives.

For a robot to perform a batting task, at least four methods are required. First, image
processing is required to recognize a moving ball. Second, estimation of the future trajectory
of the ball is required. Third, the motion of the robot arm must be controlled to affect the
ball direction. Lastly, calibration is required to convert the coordinates between the robot
arm’s coordinate system and the vision sensor’s coordinate system. This implies that the
performance of each method affects the performance of the batting primitive; studies that
can improve the performance of each method are discussed.

Chen et al. [11] developed a vision module for humanoid robotic table tennis. The
vision module contains two stereo vision sensors with a 200 fps and an algorithm for
predicting the rebound trajectory of a table tennis ball. Nakabo et al. [12] developed a high-
speed vision system capable of image acquisition and image processing at 1 kHz for moving
ball recognition. A parallel computation architecture was used to reduce image transfer
and processing time, and an active vision system with moving cameras was developed
to track the moving objects. Tesheng et al. [13] used an aerodynamic model of a ball to
account for the trajectory of the ball before and after collision to improve the performance
of ball direction control. Serra et al. conducted the study of hitting a table tennis ball to the
desired position [14]. To accurately control the arrival position of the ball after hitting, a
more accurate aerodynamic model that that in [13] was applied for the trajectory estimation
of the ball. Although the algorithms were tested via simulations, the implementation of
the algorithms on an actual hardware system was left to be covered under future work.
For accurate ball direction control, a batting algorithm considering impact dynamics was
proposed [15,16]; however, the problem of extending the 2D algorithm to the 3D algorithm
remains due to the computation time required for impact dynamics in 3D.

Schüthe et al. [17] introduced the optimal control with state and soft constraints for
a simulated ball batting task. By utilizing the soft constraints, a motion utilizing the
redundant degree of freedom (DOF) is automatically generated, but there is a limitation in
that a motion exceeding the range of motion of the joint is generated. Pekarovskiy et al. [18]
proposed a motion generation method that can adapt to rapidly changing target points
in consideration of the feasibility and computation time of the motion trajectory. This
method was applied to 2D planar volleyball batting. Kober et al. [19] proposed a method
to generate the trajectory of the robot arm through learning. If the system is changed, the
process of collecting and processing data is required again, and the ball direction control is
not considered. Mori et al. [20] developed a fast and lightweight robotic arm for badminton.
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The use of pneumatic actuators made the robotic arm lighter, enabling high-speed batting.
The position of the shuttlecock was measured using a high-speed motion capture system of
240 Hz, but there was a limitation in that control of the direction of the ball was generated by
a pre-learned feedforward motion. In the realization of a three-dimensional ball direction
control system, the amount of computation in object recognition and trajectory estimation
and the realizable three-dimensional motion generation are important.

Senoo et al. [21] developed a high-speed robot batting algorithm using a high-speed
active vision system developed by Nakabo et al. [12]. The algorithm was extended to
control the direction of the baseball in three-dimensional space [22]. For fast batting and
ball direction control, the authors proposed a hybrid trajectory generator comprising a part
that generates a high-speed batting motion and a part that modifies the motion through
visual feedback. A high-speed image processing system (1 kHz) specially developed for
object recognition was used, and a simple least square method was applied to estimate
the object trajectory because the sampling rate was fast. Without this specially designed
sensor system, it is difficult for other researchers to implement a batting system using this
algorithm.

In this study, we propose a batting framework capable of controlling the three dimen-
sional direction of a moving ball by using an off-the-shelf vision sensor with a relatively
low fps (50 Hz). The proposed batting framework includes object recognition, object tra-
jectory estimation, robot arm motion control, and calibration. In a condition where the
image sampling rate is low, since the importance of one data point is relatively large, the
performance of algorithms for object recognition, trajectory estimation, and motion control
becomes more important. Therefore, we propose ways to improve the performance of each
algorithm at a low sampling rate. Since the proposed methods were developed based on
an off-the-shelf vision sensor, other researchers can easily implement these algorithms.

The specific contributions of this study are as follows. First, in terms of ball recognition,
this study proposes an image processing method for improving ball recognition accuracy
in a more general environment. Previous studies covered noise filtering after applying a
difference image or color segmentation. In the real world, however, various lights affect the
ball recognition accuracy. Further, we applied the method using the geometrical properties
of the ball to improve the recognition accuracy under these lighting conditions. Second,
by applying weighted squares regression considering the positional accuracy according
to the distance of the stereo vision sensor, we improve the trajectory estimation accuracy
of the target object even with a low sampling rate. Third, we analyze the factors that
affect the performance of ball-direction control and propose additional constant posture
control methods to reduce the influence of those factors. Finally, in actual implementation,
calibration between the camera and the robot coordinate system is essential. A simple but
accurate calibration method is introduced.

2. Robot Batting System

We built a robot betting system as shown in Figure 1. The hardware of the batting
system consists of a stereo vision sensor for recognizing the red ball and obtaining positional
information in three-dimensional space, and a six DOF robotic arm for batting the ball to
the target position (Net in Figure 1). The stereo vision sensor (Bumblebee2, Point Gray
Research Inc.) provides 640 × 480 pixels color images at up to 48 frames per second
(fps). The Triclops library included in Bumblebee2 (Point Gray Research Inc.) provides 3D
position coordinates. Bumblebee is shipped with precision calibration at the production
stage, and because the two cameras are structurally fixed, there is no need to perform
additional calibration between the two cameras. A slightly modified version of the arm of a
humanoid robot, Hubo [23], designed by the HUBO LAB of the Korea Advanced Institute
of Science and Technology, was used for batting. Link lengths were changed to extend the
workspace, and the robotic hand end device was replaced with a 0.09 m diameter round
aluminum plate to perform the batting task.
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Figure 1. (a) Robotic batting system. The hardware of the batting system consists of a stereo vision
sensor and a six degree of freedom robotic arm. (b) Robot arm configuration. The base coordinate
system of the robot arm is the first coordinate system.

3. Method

We applied a color segmentation method [24] to recognize the red ball. To improve
the recognition accuracy of the ball under the conditions of illumination, a circle fitting
method [25] using the geometrical characteristics of the ball is employed.

3.1. Ball Recognition
3.1.1. Color Segmentation

The color separation method is used to find pixels with specific color values in the
image. Since we used a red ball in the batting experiment, only red is segmented in the
image by comparing the red component (Ic) and the threshold value (IThreshold) of the pixel
as shown in Equation (1).

Ib(u, v) =
{

1, i f Ic(u, v) ≥ Ithreshold
0, i f Ic(u, v) < Ithreshold

(1)

For improved visualization, the color image is converted to a binary image comprising
pixels (Ib) with only two values. The pixels corresponding to the threshold value or more
are represented by “1” (white), and the other pixels are represented to “0” (black); thus, the
red ball becomes white. However, since the RGB value changes according to the change
in illuminance, not only the ball but also noise are binarized. To remove this noise, the
morphology method [26] is applied. This method is effective for removing the salt-and-
pepper noise or impulse noise between objects and the background. Figure 2 shows the
results of finding the location of the ball on the desk in the lab when color segmentation
and morphology methods are applied. The left side of the figure is a color image, the right
side is a binary image, and only the red ball appears white in the binary image.
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Figure 2. Color image (left) and binary image (right). Green circle of color image represents the
position of the red ball.

3.1.2. Circle Fitting

Figure 3a shows the batting experiment environment captured using a stereo vision
camera. Because the ceiling light creates a shadow on the lower part of the ball, the RGB
value of the lower part of the ball changes. Figure 3b shows a binarized image with color
segmentation applied to the image in Figure 3a. In the binary image of Figure 3b, the
shape of the ball appears as a semicircle rather than a circle because the lower part of the
color change is not properly color segmented. Incorrect color segmentation causes errors
in the center position measurement of the ball. For example, if only the upper part of the
ball is color-segmented, the position error in the vertical direction increases. Threshold
adjustment is limited because the difference between the color value of the lower part of
the ball and the color value of the upper part is large.

To overcome the limitations of color segmentation, we additionally applied a circle
fitting method that uses the geometric characteristics of a circular ball. Figure 3c shows
only the edge of the semicircle shown in Figure 3b. By applying a circle fitting to the edge
of the semicircle, we can estimate the original circle ball shape, as shown in Figure 3d.
Figure 3e shows the center position of the ball before applying the circle fitting (lime green
point) and the center position of the ball after application (blue point). The positions of
the lime green and blue points are (X, Y, Z) = (−0.0416, 1.3299, −0.0888) and (X, Y, Z) =
(−0.0413, 1.3207, −0.0955), respectively. The true position of the ball is (X, Y, Z) = (−0.0414,
1.3187, −0.0985). Prior to the circle fitting method, the error in the z direction was 0.0097 m,
which is approximately 20% of the diameter of the ball at 0.05 m. After the circle fitting
method was applied, the center position of the ball moved by about 0.007 m further down
the Z-axis, and the position error in the Z direction was reduced from 0.0097 m to 0.0030 m.

 
Figure 3. Circle fitting process. (a) Batting experiment environment captured using a stereo vision camera, (b) A binary
image with color segmentation, (c) The edge image of the semicircle, (d) An image with circle fitting applied to the edge of a
semicircle, (e) Center position before (green) and after (blue) circle fitting.
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3.1.3. Calibration

Since the position of the ball measured in the vision coordinate system needs to be
converted to the robot coordinate system, a coordinate transformation between the two
coordinate systems is required. For coordinate transformation between two coordinates,
we attached the red marker shown in Figure 4 to the end-effector of the robot arm and
measured its position in the vision coordinate system and the robot coordinate system.
Coordinate transformation between two coordinates is possible using a homogeneous
transformation matrix representing the relationship between the camera coordinate system
and the robot base coordinate system, as shown in the following equation:[ BP

1

]
= H

[ CP
1

]
(2)

where H =

[ B
CR BPc

0 0 0 1

]
.

Subscripts B and C represent the robot arm base coordinate and camera coordinate
systems, BP and CP represent the positions of the markers (Figure 4) measured in the robot
and vision coordinate systems, respectively, H denotes the homogeneous transformation
matrix, and B

CR and BPc represent the rotation matrix and the distance vector between the
robot coordinate system and the camera coordinate system, respectively. The homogeneous
transformation matrix can be calculated by the least square method as

H = EVT
(

VVT
)−1

,

where E =

[[ BP1
1

] [ BP2
1

]
· · ·

[ BPN
1

] ]
, V =

[[ CP1
1

] [ CP2
1

]
· · ·

[ CPN
1

] ]
. (3)

E and V consist of the position vectors of the markers measured in the robot coordinate
system and the vision coordinate system, respectively, and N is the number of measured
position vectors. From the base coordinate system of the robot, the position data set BP1 . . .
BPN is calculated by forward kinematics. The position data set CP1 . . . CPN is measured
using the stereo vision sensor.

The accuracy of coordinate transformation is improved by calculating a homogeneous
matrix from data measured at various locations as shown in Figure 5. From the measured
data, the homogeneous transformation matrix is calculated as

H =

⎡⎢⎢⎣
−0.9981 −0.0066 0.0054 0.1935
0.0184 −0.9754 0.0026 0.8037
−0.0114 0.0055 0.9906 0.3792

0 0 0 1

⎤⎥⎥⎦. (4)

From B
CR and BPc of the homogeneous transformation matrix, the camera coordinate

system is at a distance of 0.1935 m in the X-axis direction, 0.8037 m in the Y-axis direction,
and 0.3792 m in the Z-axis direction from the robot coordinate system. In the robot
coordinate system, the camera coordinate system is rotated by 0.3188◦ for the X axis,
0.6539◦ for the Y axis, and 178.9466◦ for the Z axis. To evaluate the accuracy of the
calculated homogeneous transformation matrix, the positions of the markers obtained
from the homogeneous transformation of the marker positions measured in the vision are
compared with the positions of the markers measured in the robot coordinate system as
shown in Figure 6. The error is expressed as a norm value for the X, Y, and Z axes. The
mean error is 0.0024 m and the standard deviation is 0.0012 m. Considering that the error is
less than 0.005 m and the diameter of marker is 0.01 m, the calculated homogeneous matrix
is sufficiently accurate.

312



Appl. Sci. 2021, 11, 3920

 

Figure 4. Red marker attached to the end-effector of the robotic arm to calculate the homogeneous
matrix.

Figure 5. Red marker positions measured from the vision sensor. The positions of the markers
measured at various positions are used to accurately calculate a homogeneous matrix.
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Figure 6. Histogram showing the calibration error for 15 marker positions.

3.2. Ball Trajectory Estimation

Considering the limitations of the joint speed, the robot arm should be able to move
in advance by estimating the trajectory of the ball. To estimate the trajectory of the ball,
we used weighted least-squares regression [27]. Each time a new ball position and time
is acquired by the vision sensor, the trajectory of the ball is updated using weighted
least-squares regression.

3.2.1. Least Square Regression

The x and y planes of the robot coordinate system are horizontal planes and the z
direction is perpendicular to the x-y plane. A linear function was used to estimate the
horizontal trajectory of the ball, and a quadratic function was used to estimate the vertical
trajectory. Because the ball moves in a parabolic trajectory, the z-axis trajectory of the ball is
fitted as a quadratic function, unlike other axes. The trajectory function for each of the x, y,
and z axes of the ball is given by ⎧⎨⎩

x = a1t + b1
y = a2t + b2

z = a3t2 + b3t + c
(5)

Whenever three-dimensional position data are newly measured in the stereo vision
sensor, the coefficient of the trajectory function (5) is newly calculated through least square
regression [28]. The position data sampling interval of the ball is 20 ms, which is the image
acquisition period of the stereo vision sensor. Since the flight time of the ball is 0.5 s on
average, approximately 15 to 20 ball position data points are measured. Figure 7 represents
the estimated trajectory of the ball according to the number of data points using least
squares regression. As the number of data points increases, it can be seen that the estimated
trajectory converges to one trajectory.
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Figure 7. Estimated ball trajectory according to the number of sampled data points. As the number of sampled data points
increases, the trajectory estimation becomes more accurate.

3.2.2. Weighted Least Square Regression

Least square regression was applied to the ball trajectory estimation regression de-
scribed in Section 3.2.1, based on the assumption that the data measured by the stereo
vision sensor are accurate. However, the accuracy of the position data measured from the
stereo vision sensor is inversely proportional to the distance between the stereo vision
sensor and the object. This is because the closer the distance, the greater is the number
of pixels representing the object. Figure 8 shows a graph of position accuracy versus
distance between Bumblebee2 and the object. Therefore, it is more appropriate to apply
the weighted least-squares regression than the least-squares regression considering the
accuracy of the measured value according to the distance.

Figure 8. Depth error vs. distance. Depth accuracy of stereo vision sensor according to distance.

Least squares regression minimizes the sum of the squares of the residuals, and the
weighted least-squares regression minimizes the sums (Q) of the squares of the residuals
(yi − bxi) multiplied by the weight (wi); it is given by
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Q = ∑n
i=1 wi(yi − bxi)

2, where wi = wi+1λ (6)

The weights are calculated as a geometric sequence based on the last weight. In several
tests, 0.8 was used as λ of the weighted least square. Figure 9 is a graph showing the RMS
errors for the X, Y, and Z components obtained by applying the weighted least square and
least square regressions. Although there is almost no difference in the RMS error for X
and Y with and without the weighted least square, the RMS error decreases rapidly with
weighted least square for the Z axis. This result is expected because the change in the
trajectory of the ball on the z axis is larger than that on the x and y axes.

 

Figure 9. RMS error vs. sampling data number about the x axis. RMS error of the estimated ball trajectory with and without
weighted least squares method. RMS error for each axis is displayed in the order of X axis, Y axis, and Z axis from the left.

3.3. Motion Control of the Robot Arm

The trajectory of the robot arm consists of two stages: before and after batting. The
speed of the end-effector of the robot arm increases before batting, and after batting,
a trajectory is generated that slows down the increased speed of the end-effector. The
robotic arm used in the experiment has six joints, and, therefore, we need to generate the
trajectories of the six joints. For convenience, the joint trajectory generation method is
described by the notation of one joint, and the same method is applied to the remaining
joints. The trajectory generation method before batting is described first, followed by the
trajectory generation method after batting.

The cubic spline interpolation function for generating the motion trajectory of a joint is:

f (t) = ∑3
i=0 aiti, (7)

where ai is the coefficient of the trajectory function and t is the time. Since coefficients ai in
Equation (7) are four, four constraints are needed to obtain each coefficient. The constraints
of the trajectory function before hitting the ball are as follow:

f (0) = θ0, f (th) = θh,
.
f (0) = 0,

.
f (th) = uh (8)

3.3.1. Trajectory Interpolation

The trajectory constraints of Equation (8) represent the initial joint position f (0), joint
position f (th) to hit the ball, initial joint velocity

.
f (0), and velocity

.
f (th) to hit the ball. θ0

and θh represent the initial position of the joint and the joint position at the moment of
hitting the ball, th represents the time of the moment of hitting the ball, and uh represents
the angular velocity vector at the moment of hitting the ball. Four simultaneous equations
are constructed according to four constraints, and each coefficient can be obtained by
calculating the simultaneous equations.
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After hitting the ball, a joint trajectory has to be generated to reduce the speed of the
robot arm. By calculating the simultaneous equations with the following four constraints,
a joint trajectory is generated to decrease the velocity of robot arm.

f (th) = θh, f
(

t f

)
= θ f ,

.
f (th) = uh,

.
f
(

t f

)
= 0 (9)

The initial joint position is the angle to hit the ball, the final joint position is the angle
in the configuration where the robot arm stops, the initial velocity is uh at the time of the
hit, the final velocity is 0, and t f is the time to stop.

3.3.2. Robot Batting Trajectory

The angular and velocity trajectories of joints 1 and 3 for when the batting task is
performed as generated by the cubic spline function and constraints are shown in Figure 10.
Through cubic spline interpolation, the trajectories of the joints were smoothly interpolated
from the initial position before batting to the stop position after batting. The batting time
is 0.274 s and the time it takes for the robot arm to stop completely after it starts moving
is 0.914 s. The maximum angular velocity is given only to joints 1 and 3 because the
maximum angular velocity of the other joints is limited and has little effect on the speed of
the end-effector. After hitting, the robot arm stops smoothly by imposing a constraint on
the angular velocity of joints 1 and 3 as 0. The velocity of the end-effector is calculated as

VR = J
.

Θ (10)

where J =

⎡⎢⎣
∂PX
∂θ1

· · · ∂PX
∂θ6

∂PY
∂θ1

· · · ∂PY
∂θ6

∂PZ
∂θ1

· · · ∂PZ
∂θ6

⎤⎥⎦,
.

Θ =

⎡⎢⎢⎣
.

θ1
...
.

θ6

⎤⎥⎥⎦
J is the Jacobian matrix of the robot arm, and

.
Θ is a vector consisting of the angular

velocities of the joints of the robot arm. The calculated velocity of the end-effector is
6.2 m/s.

Figure 10. The angular and velocity trajectories of joints 1 and 3. When the robot arm hits the ball, the joint angular velocity
of joint 1 and joint 3 was constrained to −500◦/s, and the rest of the joints to zero.

3.3.3. Ball Direction Control

The ultimate goal of the batting task is to move the object to the desired target position
in a single collision. The orientation of the end-effector of the robot must be controlled
to move the ball to the desired target position. That is, the direction of the ball after the
collision can be controlled by controlling the normal vector perpendicular to the circular
plate of the end-effector. The normal vector can be calculated from the coefficient of
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restitution between the ball and the end-effector, the velocity of the ball and the end-
effector before and after the collision, and some assumptions. Figure 11 shows the velocity
vector of the ball before the batting (VB1 ∈ R3), the velocity vector of the ball after the
batting (VB2 ∈ R3), and the velocity vector of the end-effector of the robot (VR ∈ R3) and
the normal vector (n ∈ R3) perpendicular to the plane of the end-effector.

Figure 11. Vector arrangements representing end-effector velocity (VR), ball velocity before collision
(VB1), ball velocity after collision (VB2), and normal vector (n).

The vector shown in Figure 11 can be expressed as shown in Figure 12 under the
assumption that there is no change in the velocity of the end-effector before and after the
collision, and that there is only energy loss caused by the deformation of the ball in the
collision.

Figure 12. Vector analysis before and after collision.

From Figure 12, the relationship between the velocity vectors and the normal vector
can be defined by the collision coefficient equation

e =
(vB2 − vR) · n
(vB1 − vR) · n

(11)

The collision coefficient (e) is the speed ratio before and after the collision of the ball,
and the material of the ball and the end device has a major influence on the collision
coefficient. Considering the inherent properties between the ball and the end-effector,
we obtained the collision coefficient through collision experiments. The coefficient was
obtained by dropping the ball perpendicular to the end-effector to measure the speed
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before and after the impact. The average collision coefficient obtained from 20 experiments
is 0.6506 and the standard deviation is 0.0448. Based on the assumptions above, the velocity
of the horizontal component before and after the collision of the ball is preserved and can
be expressed as

vB1 − vR − {(vB1 − vR) · n}n = vB2 − vR − {(vB2 − vR)n}n (12)

The above equation can be rearranged as

n =
vB2 − vB1

||vB2 − vB1 || (13)

Note that the normal vector is in the same direction as that of the difference in the
velocity vector before and after the collision of the ball. Therefore, the information of vB1
and vB2 is needed to calculate n. The vB1 is calculated by differentiating Equation (5), and
the direction of vB2 is calculated from the estimated trajectory of the ball and the target
position. Therefore, to calculate the normal vector, it is necessary to calculate the magnitude
of the vB2.

The direction of the velocity vector after the collision is derived from the vector
geometry. The velocity vector after the collision in Figure 12 can be set to one side of
the triangle as shown in Figure 13. ρ is the direction vector of v2, and σ represents the
horizontal relative velocity vector that is preserved before and after the collision of the ball.
The Pythagorean theorem applies to the two triangles �abc and �acd and is represented
by the following two equations:

||vB1 − vR||2 = ||(vB1 − vR) · σ||2 + ||(vB1 − vR) · n||2, (14)

||vB2 − vR||2 = ||(vB1 − vR) · σ||2 + ||(vB1 − vR) · n||2e2 (15)

Figure 13. Vector analysis.
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The difference between the two equations is

||vB1 − vR||2 − ||vB2 − vR||2 = ||(vB1 − vR) · n||2
(

1 − e2
)

(16)

The cosine law is applied to �abd as

||(vB1 − vR) · n||2(e + 1)2 = ||vB1 − vR||2 + ||vB2 − vR||2 − 2||vB1 − vR||||vB2 − vR|| cos θ, (17)

where θ = cos−1 (vB1 − vR) · ρ

||vB1 − vR||||ρ ||
From Equations (16) and (17), we can calculate the relative velocity of the ball after

the collision as

||vB2 − vR|| =
||vB1 − vR||(1 − e) cos θ +

√
(||vB1 − vR||(1 − e) cos θ )2 + 4||vB1 − vR||2e

2
(18)

From Equations (13) and (18), the normal vector perpendicular to the circular plate of
the terminal end-effector can be expressed as

n =
vB2 − vB1

||vB2 − v1 || =
(vB2 − vR)− (vB1 − vR)

||(vB2 − vR) − (vB1 − vR) || (19)

From the calculated normal vector, the orientation of the ball after the collision is
adjusted by adjusting the orientation of the robot end-effector.

4. Experiment

4.1. Batting Experiment

The batting task was performed based on the algorithms proposed in the previous
sections. Snapshots of the robot arm hitting the oncoming ball to the target are shown in
Figure 14. The target position for the ball is a blue net that is 0.57 m in the x-axis, −0.48 m
in the y-axis, and −0.09 m in the z-axis from the robot base coordinate. We performed the
experiment in the same way by changing the position of the target to 0.36 m for the x-axis
and 1.06 m for the y-axis to −0.02 m for the z-axis. We conducted 30 batting experiments
each, the success rate converged to approximately 40%.

 

Figure 14. Successive snapshots of batting task (sequence is horizontal to vertical).
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We conducted two additional experiments to analyze the factors that influence the
success rate. Since the trajectory prediction function of the ball is a function of position
versus time (Equation (5)), the arrival position estimation error of the ball and arrival time
estimation error of the ball are analyzed. If there is a large error in the estimated ball
position or time, this error will affect the success rate of the batting task.

4.2. Experiment to Analyze the Predicted Ball Position Accuracy

We stopped the robotic arm at the predicted ball position without swinging to analyze
the estimated ball position accuracy. We will call this experiment a bunt experiment, similar
the action of the same name in a baseball game. The effect of the time error was separated
by placing the end-effector of the robot arm at the position where the ball arrived. Thirty
experiments were carried out, and the robotic arm was able to touch all the thrown balls
(success rate is 100%). This experiment shows that the estimated ball position is accurate
for ball batting. Figure 15 shows the positions of the batted balls in 30 experiments.

 

Figure 15. Shot group of the batted ball. In this bunt experiment, the robotic arm hit the ball with a
100% success rate.

4.3. Experiment to Analyze the Accuracy of the Predicted Ball Arrival Times

Data acquired from the stereo vision sensor includes time information together with
image data. The time information is measured at the moment the shutter of the camera is
closed, and this time information is called a time stamp. The timer cycle of the camera is 8
kHz, and a time stamp is calculated based on this cycle.

A red marker (Figure 4) was attached to the end-effector of the robot arm, and the
position and time of the marker was measured with a vision sensor. To measure the
time difference between each image, the robot arm drew a circle at a constant velocity of
17 degree/s with respect to the Y-Z plane. While the robot arm moved in a constant velocity
circular motion, time information was measured along with the position of the marker.
Figure 16 shows the marker positions of the end-effector when the robot arm moved
at constant speed. A histogram comparing the time difference between two theoretical
positions caused by constant circular motion and the time difference measured using a
vision sensor is shown in Figure 17. The mean time difference error was −0.00057 s and
the standard deviation was 0.0048 s. If the error pattern is biased, the time difference
error can be compensated; however, in the case of such a random error, it is difficult to
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compensate for the time difference error. Therefore, the following section describes the
proposed method to compensate for the time error.

Figure 16. Marker position from vision sensor.

Figure 17. Time error for randomly selected data. Time error shows a random error pattern.

4.4. Constant Posture Control Method

Time errors change the timing of the hitting. Accordingly, the success rate of ball
direction control is decreased. To compensate for this time error, we propose a method
of maintaining the posture of the end-effector for a predetermined time before and after
the ball hitting, and this method is called the constant posture control (CPC) method. By
maintaining the posture of the end-effector for a predetermined time before and after the
hitting timing, the posture change of the end device due to time error is prevented. We set
the time that the posture of the end-effector should be maintained to a total of 0.3 s with
0.015 s before and after the hit.

We conducted a ball direction control experiment to verify the effectiveness of the
CPC method. Figure 18 shows the posture change of the end-effector with and without the
CPC method while the robot arm swings. Postures are expressed in Euler angles. The solid
line is a change in posture considering the CPC method, and the dotted line is a change in
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posture without considering the CPC method. Since the robot arm strikes the ball while
rotating about the Z axis (refer to the Z1 axis in Figure 1), the Euler angle change about the
Z axis is very large. For a clear comparison, the experimental results are described based
on the Z axis Euler angle. The interval in which the posture should be kept is between
0.222 s and 0.252 s. The red solid Z-axis Euler angle was in the range of −76.79◦ to −77.63◦.
This is a negligible error compared to the Z axis Euler angle of −77.16◦ to be maintained.
On the other hand, the blue dotted line without considering the CPC method shows that
the Z-axis Euler angle was changed from −73.24◦ to −82.81◦. Finally, after 15 experiments,
the success rate was 53.0% when considering the CPC method, and the success rate was
increased by 13% when the CPC method was not considered. The experimental video is
shown in [29].

 

Figure 18. Posture change of end-effector with and without constant posture control (CPC) method.

5. Discussion

In this paper, we designed a ball batting system to perform batting tasks and proposed
algorithms to improve the success rate of ball direction control under low sampling rate
conditions. In a condition where the image sampling rate is low, since the importance of
one data point is relatively large, the performance of algorithms such as object recogni-
tion and trajectory estimation becomes more important. In terms of object recognition,
we applied a circular fitting method that is robust to the influence of illuminance and
improved the 3D position accuracy of the ball by about 60% compared to the conventional
image processing method with color segmentation and noise filtering applied. In terms of
trajectory estimation, while the conventional method uses complex models, we proposed a
weighted least square trajectory estimation method based on a simple model. As shown
in Figure 9, it is possible to accurately estimate the trajectory with a small number of data
points by considering the weight according to the distance. In terms of motion control of
the robot arm, through analysis of the factors affecting the success rate of ball direction
control, a time error, which is a random error, was found as shown in Figure 17, and a
constant posture control method was proposed to overcome this. Through this method,
the ball direction control success rate was improved by about 13%.

The methods proposed in this study can be applied to other research fields. The
ball recognition method using geometric features can be used to improve recognition
accuracy of other objects. Since the ball trajectory estimation method using the weighted
least squares method can overcome the problem of computation time in the conventional
complex model-based trajectory estimation method, this method can be applied not only
at low-speed sampling times but also at high-speed sampling times. In addition to the
trajectory estimation field, the algorithm considering the accuracy of the stereo vision
sensor according to the distance can be easily applied to other stereo vision applications,
and thus can be used as an effective performance improvement method.

Although the current ball direction control success rate is similar to that of research
using high-speed vision sensors, there is a possibility that the success rate will be further
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improved if the algorithms proposed in this study are applied to a batting system equipped
with a high-speed vision sensor. In addition, if the currently used ball model is improved,
the accuracy of ball trajectory estimation is expected to be further improved. We plan to
study the trajectory estimation method that combines the improved ball model and the
weighted least squares method.

6. Conclusions

We conducted research on batting, one of the primitives of nonprehensile manipula-
tion. We designed a ball batting system to perform batting tasks and proposed algorithms
to improve the success rate of ball direction control under low sampling rate conditions.
The recognition accuracy of the ball was improved by applying the color segmentation
method and the circle fitting method to the recognition of the ball. In consideration of the
measurement accuracy according to the distance of the stereo vision sensor, the estimated
trajectory of the ball was predicted more accurately and in a faster manner by applying
weighted least square regression to the ball trajectory estimation. A method of controlling
the posture of the end-effector of the robot arm to control the direction of the ball was
presented, and a smooth robot arm trajectory was generated while satisfying the constraints
and adapting to the target trajectory. Furthermore, we analyzed the factors affecting the
ball direction control and proposed a method of maintaining the end position of the robot
arm to compensate for the time uncertainty. Through this, the posture of the end-effector
was kept constant before and after hitting, and the success rate of the ball direction control
was increased by about 13%.
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Abstract: Teleoperation of bimanual robots is being used to carry out complex tasks such as surgeries
in medicine. Despite the technological advances, current interfaces are not natural to the users, who
spend long periods of time in learning how to use these interfaces. In order to mitigate this issue,
this work proposes a novel augmented reality-based interface for teleoperating bimanual robots.
The proposed interface is more natural to the user and reduces the interface learning process. A
full description of the proposed interface is detailed in the paper, whereas its effectiveness is shown
experimentally using two industrial robot manipulators. Moreover, the drawbacks and limitations of
the classic teleoperation interface using joysticks are analyzed in order to highlight the benefits of the
proposed augmented reality-based interface approach.

Keywords: robot system; augmented reality; robot teleoperation

1. Introduction

1.1. Motivation

There is currently a proliferation of applications based on robotic systems that require
interaction or cooperation with users [1–3]. This is due, on the one hand, to the fact that the
complete automation of such applications is not yet well resolved due to their complexity,
need for adaptability to changes, decision making, etc., and, on the other hand, to the
benefits of human and robot cooperation for certain applications [4].

While many approaches can be found in the literature proposing solutions for complex
applications, where human and robot have to cooperate, many of these solutions do not
take into account that human–robot interaction has to be natural and intuitive for the
human [5–8]. Otherwise, the benefits that such cooperation may bring a priori will be
negatively affected, and the cooperative solution adopted may be rejected.

Based on the complexity presented by the interaction of users with the so-called
bimanual robotic systems, this work develops a novel methodology for the design of
interfaces based on augmented reality so that this interaction is natural and intuitive for
the user.

1.2. Previous Research
1.2.1. Bimanual Robotics

Dual-arm robotic systems are being used in a wide range of domestic, industrial, and
healthcare tasks. The main reason for this is their flexibility and manipulability. In addition,
they have a behavior quite similar to that of the human, which makes it possible for humans
to relate to their movements more intuitively [9–11].

More specifically, bimanual robotics consists of the coordination of two robotic arms
that interact physically in order to achieve a common goal [9]. Many applications of bi-
manual robotics can be found in the literature—for instance, the handling of deformable
objects [12–14], objects with unknown shape [15,16], or objects whose geometry requires
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two grasping points [17–19]; the emulation of human bimanual tasks [20–22]; assistive
robotics [23,24]; assembly operations [25–27]; surgery tasks [28]; and simultaneous manip-
ulation and cutting [29], manipulation and fastening [10], or manipulation and surface
treatment [30,31], which is the case considered in this paper.

The vast majority of contributions in bimanual robotics present fully automated
tasks based, for instance, on artificial intelligence techniques [21,23], motion planing tech-
niques [14,15,26,32,33], or other low-level control approaches [19,24,25,27,28].

However, the presence of the human interacting with the bimanual robotic system
is very interesting due to the possibility of exploiting the human’s natural knowledge of
bimanual configurations and motions in order to improve the task performance [31,34,35].
For this reason, human–robot interaction (HRI), which is the main focus in this work, is
nowadays a trending research topic in bimanual robotics.

Some interesting approaches can be found related to HRI in bimanual robotics. For in-
stance, the authors in [34] proposed to improve the transportation of a large workpiece,
typically performed by two users, by using a bimanual robot attached to a mobile plat-
form. In this approach, the mobile platform moved through a pre-defined trajectory, while
the user was able to arbitrarily adapt this trajectory by means of an impedance control.
The authors in [35] proposed a multi-layered prioritized shared controller to maintain the
robot hands’ orientation and contact with the manipulated surface, while the user was
able to teleoperate the bimanual robot hands on a plane. The authors in [31] presented a
similar approach based on the task priority and sliding mode control techniques to perform
surface treatment tasks using a bimanual robotic system. In this case, the user was able to
teleoperate all six Degrees of Freedom (DoF) of one robotic arm that held the workpiece,
whose movement was limited in the 3D workspace, and to teleoperate two DoF of the other
robotic arm, which held the surface treatment, maintaining the appropriate tool orientation
and pressure. Due to the relevance of this application for this work, more details can be
found in Section 2.

1.2.2. Assisted Robot Teleoperation

The remote control or teleoperation of robots by users has been studied for many
years [36] and still represents a relevant research field in robotics. Robot teleoperation is
required for a wide variety of reasons: when the working environment is dangerous to
humans (e.g., in space [37], radioactive zones [29,38], aerial zones [18,39], or underwater
areas [35,40]); when performing rescue operations [41], and when precision surgeries need
to be performed [42–45], among others.

Nowadays, there are sophisticated artificial intelligence (AI) techniques that allow
the automation of complex tasks that not so long ago had to be performed by means of
human teleoperation. However, despite current advances in AI, there are still many tasks
that cannot be fully automated due to their complexity or subjectivity. However, these
tasks can be partially automated, allowing the cooperation between human and robot,
introducing shared-control architectures [46]. Hence, many recent contributions have
focused on human–robot interaction and, more specifically, on advanced robot teleopera-
tion [16,30,31,47–51], which is also the case of this paper.

Telepresence [36] allows the user to perform the robot teleoperation task by means of
an interface, achieving a result less dependent on their skills. Telepresence is currently a
trending research topic thanks to the introduction of new technologies, such as augmented
and virtual reality [51], visual interfaces [42], haptic devices [52], or a combination of
them [16,30,43], to perform direct control teleoperation. For instance, the authors in [53]
proposed a low-cost telerobotic system based on virtual reality technology and the ho-
munculus model of mind. In this case, the user was able to move both robotic arms
according to the dynamic mapping between the user and the robot developed. In addition,
the user was able to see the real workspace in the virtual environment using feedback
from a camera. Similarly, the authors in [54] proposed a virtual reality interface based on
the three-dimensional coordinates of the shoulder, elbow, wrist, and hand captured by a
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Kinect camera to model the geometry of the human arms and perform the mapping with
the robot arms. As in [53], the user receives visual feedback from a camera placed on the
robot. In both cases, robot manipulation tasks were performed. However, for more complex
tasks (e.g., surface treatment tasks), interfaces developed with virtual reality techniques can
increase the time of completion of the task and worsen the quality of the surface finishing,
compared to that obtained by the human operator using direct teleoperation. This is due
to two facts: on the one hand, when using virtual reality, it is difficult to incorporate all
the necessary information of the task in the virtual world and in real time, and, on the
other hand, the user already has a real notion of the robotic system and, hence, is able to
guide it naturally and intuitively using direct teleoperation. For this reason, in order to
obtain the best of both worlds (i.e., direct teleoperation and teleoperation based on virtual
reality), the present work proposes to use interfaces based on augmented reality to provide
a solution to a greater number of industrial tasks carried out with bimanual robots.

Other approaches try to ease the teleoperation of bimanual robotic systems, such
as in [48], where the authors developed a bimanual robot application in which a robot
arm is teleoperated to grasp the workpiece, whilst the other robotic arm is automatically
controlled using visual servoing in order to keep the workpiece visible for the camera.

Since the performance of robot teleoperation may rely on the user’s skills, some ap-
proaches are focused on incorporating restrictions that prevent the user from commanding
the robot into failure situations. For example, the authors in [44] incorporate Virtual Fix-
tures (i.e, virtual barriers) so that the references provided by the user are automatically
adapted to the allowed region. The authors in [38,52] proposed the use of haptic devices in
order to prevent the user from commanding references beyond the allowed region.

Despite all the above, robot teleoperation by means of interfaces and virtual barriers
is still a subject of study due to the drawbacks it presents, mainly due to direct control
performed by the user [47]. In this sense, this work presents a new methodology based
on augmented reality devices to improve the current assisted teleoperation interfaces for
bimanual robotics.

1.2.3. Augmented Reality-Based Interfaces

Human–machine interfaces are devices that allow the interaction between a human
and a machine [55,56]. If the interface is placed inside the brain or body of the human, it is
known as an invasive or implanted interface [57]. On the contrary, if the interface is external
to the human body, it is known as a non-invasive or wearable interface [58–60]. This work
is focused on non-invasive interfaces and on how to develop this kind of interface for
complex robotic applications.

Technological advances in the creation of holograms have nowadays made it possible
to have devices and software tools that allow augmented reality (AR) applications in indus-
trial sectors [61–64]. In short, augmented reality projects holograms into physical space,
allowing for a more intuitive and natural interaction between human and machine [65].

Some previous works used AR interfaces to improve robot teleoperation for industrial
tasks. For example, the authors in [66] proposed a new AR interface to control a robot
manipulator in order to facilitate the interaction between the user and the robot. The authors
in [66] proposed a mixed reality system in order to move the end-effector of the robot
system. The authors in [67] proposed a mixed reality system to allow the user to visualize
the intended teleoperation command prior to the real robot motion. A similar approach
was developed in [68], where a mixed reality head-mounted display enabled the user to
create and edit robot motions using waypoints. The authors in [69] proposed a multimodal
AR interface coined as Sixth Sense that allowed the user to interact with information that
was projected onto physical objects through hand gestures, arm movements, and, in some
cases, blinking. The authors in [70] proposed a method for using hand gestures and speech
inputs for AR multimodal interaction with industrial manipulators.

Note that most of the AR approaches mentioned above developed solutions for robot–
object manipulation tasks. Thus, to the best of the authors’ knowledge, this is the first work
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that proposes a new AR interface for industrial, complex tasks, such as surface treatment
tasks, involving a bimanual robot system.

In addition, the interaction with the robotic system needs to be natural and intuitive,
not only from the point of view of the visual feedback produced by the AR but also from
the point of view of the means of sending the robot commands. All AR headsets have
interaction elements based on hand tracking. As demonstrated in [5–8], such prolonged
interaction over time can be annoying and not ergonomic enough. This is why, similarly
to [8], this work proposes the use of gamepads, which are devices ergonomically designed
to be used for long periods of time.

To the best of the authors’ knowledge, this is the first work proposing an AR interface
together with a gamepad for bimanual robot teleoperation.

1.3. Proposed Approach

This paper develops an original augmented reality-based interface for teleoperating
bimanual robots. The proposed interface is more natural to the user, which reduces the
interface learning process. A full description of the proposed interface is detailed in
the paper, whereas its effectiveness is shown experimentally using two industrial robot
manipulators. Moreover, the drawbacks and limitations of the classic teleoperation interface
using joysticks are analyzed in order to illustrate the benefits of the proposed augmented
reality-based interface approach.

The content of the article is as follows. Section 2 presents a brief description of the
advanced bimanual robot teleoperation application considered in this work. Then, Section 3
provides a methodology to develop AR interfaces for bimanual robot teleoperation tasks
and, subsequently, develops the specific AR-based interface proposed for the application at
hand. Moreover, the interface functionalities are illustrated through several experiments.
Furthermore, Section 4 shows the performance and effectiveness of the proposed AR-based
interface by means of real experimentation. Finally, Section 5 presents the conclusions.

2. Previous Work

Without loss of generality, this work uses the robotic application developed by the
authors in [31] to demonstrate the benefits of the proposed AR-based interface with respect
to conventional PC-based interfaces. It consists in a surface treatment application carried
out through the cooperation of a bimanual robotic system and a user, who is able to partially
command both robots at distance, i.e., by means of robot teleoperation. Moreover, both
robots are partially automatically controlled to fulfill some 2D and 3D constraints, as well
as to keep constant the force exerted to the workpiece by the tool and the orientation of the
tool at any time during the task.

Next, a description of this application, as well as the problems of using conventional
PC-based interfaces, is detailed.

2.1. Description of the Advanced Bimanual Robot Teleoperation Application

The advanced bimanual robot teleoperation is based on the task-priority strategy [71,72]
and conventional and non-conventional Sliding Mode Controllers (SMCs) [73,74]. As com-
mented before, the goal of this bimanual robotic application is to perform a human–robot
cooperative control loop so that the user operator partially teleoperates two robotic arms
to perform a surface treatment operation, whilst the robots automatically ensure the ap-
propriate tool force and orientation; see Figure 1. Thus, the so-called workpiece robot (WR),
which consists of a 7R collaborative robot with a workpiece of flat methacrylate fixed
to the end-effector using a self-made piece (see Figure 1a), is in charge of holding the
workpiece. Meanwhile, the so-called surface treatment robot (STR), which consists of a 6R
robotic arm with a Force/Torque (F/T) sensor and a cylinder-shaped tool with a piece
of cloth (see Figure 1a), operates with the surface treatment tool on the workpiece. Thus,
the user controls the workpiece position and orientation and, simultaneously, controls the
2D tool motion on the workpiece surface using an interface, which consists of a gamepad
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to command the robots and a visual feedback screen to show the user the robots and the
user reference states; see Figure 1a.
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Figure 1. Bimanual application setup and block diagram (for further details, refer to [31]). (a) Previous
setup used for the real experimentation. (b) Block control diagram for both robots (WR and STR).

Figure 1b shows the block control diagram for both robots, where subscript s stands
for the STR; subscript w stands for the WR; subscript ref stands for the user reference;
subscript c stands for the commanded control action; p =

[
x y z α β γ

]T is the

robot pose, i.e., the linear positions {x, y, z} plus orientation angles {α, β, γ}; ps =
[
x y

]T

is the 2D position of the STR tool on the workpiece surface, i.e., the linear positions {x, y}
relative to this surface; q =

[
q1 · · · qn

]T is the robot configuration, with n the number
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of robot joints; and F is the vector containing the measured forces and torques. Thus,
using the gamepad joysticks, the user is able to send the reference to the WR pose pw and,
simultaneously, the reference to the 2D position ps of the STR tool on the workpiece surface.
Thus, the high-level controllers of both robots compute the corresponding joint commands
qc from the user references, the state {q, q̇, p} of both robots, and the force sensor data F.
These joint commands are then sent to the low-level controllers of both robots, as shown in
Figure 1b, in order to complete the teleoperation task. See [31] for further details on the
high-level controllers of both robots and the related signals.

In addition, some constraints are considered for both robots in order to increase
the safety of the task: (1) the WR is automatically controlled to maintain the workpiece
center inside the allowed region that is modeled as a superellipsoid, which is similar to a
rectangular prism with smooth corners; (2) the STR is automatically controlled to keep the
center of the treatment tool within the allowed region on the workpiece, which is modeled
as a superellipse, i.e., a rectangle with smooth edges.

2.2. Description of the Controllers

The control architecture developed in [31] for each robotic manipulator of the applica-
tion is as follows.

The control of the WR is given by 4 prioritized tasks:

(W1) The highest-priority task is used to keep the workpiece center inside the aforemen-
tioned superellipsoid and is accomplished using non-conventional SMC.

(W2) The medium–high-priority task is used to keep the angular position of the workpiece
within a certain range and is accomplished using non-conventional SMC.

(W3) The medium–low-priority task is used to allow the user to command the WR and is
accomplished using a hybrid SMC.

(W4) The lowest-priority task is utilized to “push” the WR configuration towards a home
(only applies for a redundant WR).

The control of the STR is given by 3 prioritized tasks:

(S1) The highest-priority task is used to keep the center of the treatment tool within the
aforementioned modified superellipse and is accomplished using non-conventional SMC.

(S2) The medium-priority task is used to exert the appropriate pressure with the tool on
the workpiece, as well as to maintain the orientation of the tool perpendicular to the
surface of the workpiece. It is accomplished using conventional SMC.

(S3) The lowest-priority task is used to allow the user to command the STR and is accom-
plished using a hybrid SMC.

2.3. Description of the Conventional PC-Based Interface

The authors in [31] proposed a conventional PC-based interface, which shows a 3D
interface on a screen, that is composed of the following visual elements (see Figure 2):

- STR reference consisting of a yellow sphere. The position of this element is controlled
by the user using the gamepad input.

- STR current tool position consisting of a red sphere.
- STR boundary and WR workpiece orientation consisting of several blue spheres

positioned along the curved define by the modified superellipse. When the tool
collides with the boundary, the color of these spheres changes from blue to green.

- WR reference consisting of a cyan sphere. The position of this element is controlled by
the user using the gamepad input.

- WR current workpiece position consisting of a pink sphere.

Note that the user commands both robots by means of the gamepad.
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(a) (b)

Figure 2. Conventional PC-based user interface: visual references and effects. (a) Video: 0 m 20 s.
(b) Video: 0 m 23 s.

Figure 3 shows several frames for the performance of the described application,
focusing on the interface; see the video at https://media.upv.es/player/?id=15ffabe0-a733
-11eb-a0b0-2fbcb59aaef7 (accessed on 26 April 2022) [75].

(a) (b)

(c) (d)

(e)

Figure 3. Frames of the video showing the functionalities of the conventional user interface. See
the video at https://media.upv.es/player/?id=15ffabe0-a733-11eb-a0b0-2fbcb59aaef7 (accessed on
26 April 2022) [75]. (a) Video: 0 m 20 s. (b) Video: 1 m 00 s. (c) Video: 1 m 24 s. (d) Video: 1 m 33 s.
(e) Video: 1 m 43 s.
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2.4. Discussion of Human–Robot Interaction Using Conventional Interfaces

The conventional PC-based user interface presents several problems that directly affect
the task performance. Next, the three most relevant problems, which were identified from
questions asked to several users that tested the application described above, are discussed.

The first significant problem reported by the users is that their interaction with the
virtual environment was not natural. In particular, the robotic system is teleoperated in the
3D space and, hence, it requires changing the screen view to properly track the task. To do
this, the user has to stop the robot teleoperation and accommodate the interface, affecting
the total amount of time needed to complete the task.

The second significant problem reported by the users is that it was difficult for them
to see the real system at any time. In this sense, Figure 3e shows the user looking at the
real system instead of the interface while performing the task. The reason given by several
users, who exhibited the same behavior, was that they needed to see what the real system
was doing because they did not know if the task was being done correctly or not. This
means that this type of interface does not properly help the user to conduct the real task.

The third significant problem reported by several users is that it was difficult for them
to move the references in the virtual 3D space, wasting a lot of time before resuming the
robotic task.

All these issues and problems show the difficulties of using conventional interfaces
and make evident the need to develop new interfaces allowing a more intuitive user
interaction, especially when working with complex systems such as the bimanual robotic
system considered in this work.

3. Proposed Augmented Reality-Based User Interface

In order to overcome the aforementioned problems of the conventional PC-based
interface, this work proposes the use of AR technology to improve the user ergonomics and
task performance. In particular, the conventional PC-based interface used in the previous
setup (see Figure 1a) is replaced by an AR headset in the new setup—see Figure 4—allowing
the user to see the relevant information in the form of holograms while still seeing at all
times the real elements involved in the task: robots, workpiece, tool, etc. Note that the
remaining elements of the new setup (see Figure 4) are the same as in the previous setup
(see Figure 1a): an STR with an F/T sensor and a cylinder-shaped tool with a piece of cloth;
a WR with a flat workpiece of methacrylate attached to the end-effector using a self-made
piece; and a gamepad to command both robots.

AR headset

Gamepad

F/T sensor
+

tool

Workpiece
Robot

Surface Treatment
Robot

Flat
workpiece

Figure 4. New setup used for the real experimentation.
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Figure 5 shows the methodology considered in this work to develop and validate the
proposed AR-based interface. Although this methodology is used below to design the
AR interface for the specific bimanual robot teleoperation task at hand, it is generic and,
in general, it can be applied to design AR interfaces for other types of applications.
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Figure 5. Flowchart of the methodology proposed in this work for designing the AR-based interface.

Firstly, the requirements of the applications were established based on the opinions of
several users who previously tested the conventional PC-based interface. These require-
ments are summarized in Table 1.

Table 1. Application requirements.

The user should have the option to see the full boundaries when required
The part of the boundary activated should be indicated (e.g., visually, sound, etc.)
STR tool reference direction should be indicated
WR rotation reference direction should be indicated
The new interface should use a similar interaction device to that of the previous PC-based
interface (i.e., gamepad, joystick, or similar)
Alarm sounds should be used to indicate boundary activation
The user should have the option to remove all holograms
Holograms should not disturb the user visibility during the task
The user should have the option to configure, activate, and deactivate the alarm sounds

A mockup design was developed taking into account this information. The designed
AR-based interface has, from a functionality perspective, two kinds of virtual objects: firstly,
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those representing the STR and WR reference indicators; and, secondly, those corresponding
to the boundaries information. In order to develop both kinds of virtual objects, several
tools and strategies related to the mockup design were used. These preliminary designs
were validated by some users before their implementation.

Once the preliminary design was finished, the following step was to study the best
option of AR headset to be used for the application at hand. Several considerations were
taken into account, especially the following: first, the capability of the device to be used in
industrial environments; second, the stability of the holograms, which is important when
working in this kind of application; third, the computational power of the device; fourth,
the sound capabilities; and fifth, the communication capability (i.e., Bluetooth and WiFi).
Note that most AR headsets in the market accomplish the aforementioned requirements.
However, among all of them, Microsoft HoloLens glasses [76] were chosen because the
second generation of this device offers several services that could be added to the final
version of the interface according to the company needs [77].

Once the AR headset was selected, the interface was developed. Using a PC work-
station, the proposed virtual objects were created and assembled in a virtual space using
Blender 2.7 [78] and Unity [79], respectively. This was an iterative design process, where the
main characteristics of the virtual objects (e.g., size, color, shape, etc.) and their interactions
were verified and modified, connecting the workstation with the AR headset in a remote
mode from the Unity editor (note that the perception of the holograms is different when
showing them in a PC screen compared to when projecting them in the real world through
the AR headset), until the result was satisfactory.

Figure 6 shows the holograms designed for the robot references. In the case of the WR,
the user can command the robot through the 3D workspace and modify the end-effector
orientation. For this reason, two different holograms were designed. The translation
reference hologram was modeled by a 3D orange cube; see Figure 6a. This hologram
appears when the user teleoperates the WR translation reference. To reduce the number of
holograms present at any moment, this hologram disappears 3 s after the user has stopped
moving the WR translation reference. The orientation reference hologram was modeled
by an animated arrowed yellow circle; see Figure 6b. This hologram appears when the
user teleoperates the WR rotation reference, and disappears 3 s after the user has stopped
moving the WR rotation reference. It should be noted that, in both cases, the movement
of the references is relative to the position of the user, i.e., the AR headset, making their
use more intuitive and natural. The STR translation reference was modeled by a yellow
arrow attached to a green sphere; see Figure 6b. Note that this hologram is constrained to
the plane of the workpiece surface, allowing a 2D movement. This hologram disappears
3 s after the user has stopped moving the STR translation reference.

Figure 7 shows the holograms designed for the 2D and 3D boundaries.
The 3D boundary is modeled by a superellipsoid—see Figure 7a—which is defined as:∣∣∣ x

W

∣∣∣m +
∣∣∣ y

H

∣∣∣m +
∣∣∣ z

M

∣∣∣m = 1, (1)

where {W, H, M} are the superellipsoid axes and m represents the smoothing parameter
of the superellipsoid, i.e., it is equivalent to an ellipsoid for m = 2, whereas it tends to a
cuboid as m tends to infinity. For the bimanual robot application at hand, it has been chosen
m = 4.

The 2D boundary is modeled by a modified superellipse—see Figure 7c—which is
defined as: ∣∣∣ x

W

∣∣∣m +

(
max(|y| − (H − W), 0)

W

)m
= 1, (2)

where it is implicitly assumed that the value of axis H is greater than that of axis W (the
expression is easily modified for the analogous case H < W). This equation represents a
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rectangle with smooth corners, with 2H for its long side and 2W for its short side, by joining
a 2W × 2(H − W) rectangle to two offset halves of an even-sided 2W × 2W superellipse.

(a) (b)

(c)

Figure 6. Proposed holograms for the robot references. (a) WR: translation reference hologram.
(b) WR: rotation reference hologram. (c) STR: translation reference hologram.

Note that if the proposed boundary holograms were permanently shown, they could
occlude some real elements from the user’s view, affecting the task performance. For this
reason, a new material shader [80] was designed; see Figure 8. This shader computes the
minimum distance between the robot end-effector and the 3D boundary, for the case of
the WR, or the closest point of the robot tool to the 2D boundary, for the case of the STR.
Thus, the shader only displays the affected part of the boundary hologram. That is, as the
WR end-effector and/or the STR tool approach to the 3D and 2D boundaries, respectively,
the part of the boundary hologram affected is progressively displayed; see Figure 7b,d.

In addition to this, and according to the user requirements, two warning sounds
were included in the interface: the first one to indicate that the STR tool is close to the
2D boundary; and the second one to indicate that the WR end-effector is close to the 3D
boundary. Moreover, the user is able to deactivate this warning sound at any time.

Once the main holograms and sound elements were implemented, some commu-
nication protocols were used and programmed. Bluetooth communication between the
Microsoft HoloLens glasses and the gamepad was established to allow the user to provide
commands to the interface. Moreover, in order to avoid non-desired interactions with the
interface, voice and gesture commands were deactivated by default. In addition, the AR
interface and the robot controller communicate via WiFi with Protocol TCP/UDP at 10 Hz.
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(a) (b)

(c) (d)

Figure 7. Proposed holograms for the robot 3D and 2D boundaries. (a) 3D boundary hologram (full).
(b) 3D boundary hologram (local). (c) 2D boundary hologram (full). (d) 2D boundary hologram (local).

Figure 8. Material shader designed for controlling the visibility of the 3D and 2D boundaries
depending on the proximity of the WR end-effector and STR tool, respectively.

4. Results

This section presents four experiments to show the main functionalities of the de-
veloped AR-based interface; the performance of the 2D boundary and the STR reference
hologram; the performance of the 3D boundary and the WR reference hologram; and the
performance of the overall system when the user commands simultaneously both robots
using the proposed AR-based interface.
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Figure 9 depicts several frames of the first experiment, which shows the main func-
tionalities of the AR interface implemented in the Microsoft HoloLens glasses; see the video
at https://media.upv.es/player/?id=a64014f0-8a5a-11ec-ac0a-b3aa330d3dad (accessed
on 26 April 2022) [81]. Figure 9a shows the full 3D boundary hologram, whilst Figure 9b
shows the full 2D boundary hologram. Note that both holograms are hidden by default.
Figure 9c shows the WR end-effector translation reference hologram, whilst Figure 9e,f
show the WR end-effector rotation reference hologram. Note that, in the case of the rotation,
the animated arrows indicate the direction of the commanded angle while the yellow circle
indicates the rotation in the roll, pitch, and yaw angles, or a combination of them. Figure 9d
shows the STR reference hologram.

(a) (b)

(c) (d)

(e) (f)

Figure 9. First experiment: frames of the video showing the functionalities of the proposed AR-based
interface. See the video at https://media.upv.es/player/?id=a64014f0-8a5a-11ec-ac0a-b3aa330d3dad
(accessed on 26 April 2022) [81]. (a) Video: 0 m 20 s. (b) Video: 0 m 23 s. (c) Video: 0 m 30 s. (d) Video:
0 m 36 s. (e) Video: 0 m 43 s. (f) Video: 0 m 57 s.

Figure 10 depicts several frames of the second experiment, which shows the performance
of the 2D boundary and the STR reference hologram; see the video at https://media.upv.
es/player/?id=9504e6f0-8a61-11ec-b7c7-7d27dda7c5d5 (accessed on 26 April 2022) [82].
Figure 10a shows how the user is commanding the STR tool towards one side of the
workpiece and, when the tool approaches the 2D boundary, the boundary region closest to
the STR tool is shown in red and the warning sound is activated; see Figure 10b,c. Note that,
when the user reference exceeds the 2D boundary, the tool is automatically kept within
the allowed region. More details about this aspect can be further analyzed in Figure 11,
which shows the allowed region on the workpiece surface, the trajectory followed by
the user reference, and the trajectory followed by the STR tool. Figure 10d shows how
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the 2D boundary hologram automatically disappears when the STR tool is far from the
2D boundary.

(a) (b)

(c) (d)

Figure 10. Second experiment: frames of the video showing the performance of the 2D boundary
and the STR reference hologram. See the video at https://media.upv.es/player/?id=9504e6f0-8a61-
11ec-b7c7-7d27dda7c5d5 (accessed on 26 April 2022) [82]. (a) Video: 0 m 31 s. (b) Video: 0 m 41 s.
(c) Video: 1 m 5 s. (d) Video: 1 m 46 s.

Figure 11. The 2D trajectory performance for the second experiment, showing the 2D boundary
and the STR reference hologram (see the video at https://media.upv.es/player/?id=9504e6f0-8a61-
11ec-b7c7-7d27dda7c5d5 (accessed on 26 April 2022) [82]): 2D allowed workpiece region in green;
trajectory followed by the user reference in thin red line; and trajectory followed by the STR tool in
thick blue line.
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Figure 12 shows the position followed by the STR tool on the workpiece surface,
which is due to the STR teleoperation, together with the reference values provided by
the user. In particular, it can be appreciated that the trajectory described by the STR tool
corresponds closely to the user reference values, except obviously when the 2D boundary
constraint is active; see the bottom graph in Figure 12. In fact, the maximum deviation of the
actual STR position values compared to the user reference values, when the 2D boundary
constraint was not active, was around 3.2 cm, with a standard deviation of around 0.8 cm;
see Table 2. Note that these teleoperation error values include all the potential sources
of error: communication delays, high-level and low-level robot control, the accuracy of
the workpiece location, teleoperation system, etc. Therefore, it can be concluded that
the accuracy of the proposed AR-based teleoperation of the STR is sufficient for the task
at hand.
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Figure 12. Performance of the STR position teleoperation for the second experiment. First two graphs:
user position references in thin red line, actual position values of the STR tool on the workpiece
surface (coordinates relative to the surface) in thick blue line, and position limits given by the 2D
boundary constraint in dashed lines. Bottom graph: activation of the 2D boundary constraint for the
position of the STR tool on the workpiece surface.

Table 2. Teleoperation errors for the 2D position ps of the STR tool on the workpiece surface.

Position (cm)
x y

Maximum deviation 1.8 3.2

Standard deviation 0.5 0.8

Figure 13 shows several frames of the third experiment, which shows the performance
of the 3D boundary and the WR reference hologram; see the video at https://media.upv.
es/player/?id=17d88200-8f0b-11ec-be22-d786eca82090 (accessed on 26 April 2022) [83].
Figure 13a shows how the user is commanding the WR and, when the WR end-effector
approaches the 3D boundary, the boundary region closest to the WR end-effector is shown
in blue and the warning sound is activated; see Figure 13b–d. Note that, when the user
reference exceeds the 3D boundary, the WR end-effector is automatically kept within
the allowed region. More details about this aspect can be further analyzed in Figure 14,
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which shows the allowed 3D region, the trajectory followed by the user reference, and the
trajectory followed by the WR end-effector.

(a) (b)

(c) (d)

Figure 13. Third experiment: frames of the video showing the performance of the 3D boundary and
the WR reference hologram. See the video at https://media.upv.es/player/?id=17d88200-8f0b-11ec-
be22-d786eca82090 (accessed on 26 April 2022) [83]. (a) Video: 0 m 22 s. (b) Video: 0 m 24 s. (c) Video:
1 m 04 s. (d) Video: 1 m 46 s.

Figure 14. The 3D trajectory performance for the third experiment, showing the 3D boundary and the
WR reference hologram (see the video at https://media.upv.es/player/?id=17d88200-8f0b-11ec-be2
2-d786eca82090 (accessed on 26 April 2022) [83]): 3D allowed region in green; trajectory followed by
the user reference in thin red line; and trajectory followed by the WR end-effector in thick blue line.

Figures 15 and 16 show the position and orientation, respectively, followed by the
workpiece, which are due to the WR teleoperation, together with the reference values
provided by the user. In particular, it can be appreciated that the trajectory described by
the workpiece corresponds closely to the user reference values, except obviously when the
3D boundary constraint is active; see the bottom graph in Figure 15. In fact, the maximum
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deviation of the actual workpiece position values compared to the user reference values,
when the 3D boundary constraint was not active, was around 1.2 cm, with a standard
deviation of around 0.4 cm; see Table 3. Moreover, the maximum deviation of the actual
workpiece orientation values compared to the user reference values was around 1.7◦, with a
standard deviation of around 0.3◦; see Table 3. Note that these teleoperation error values
include all the potential sources of error: communication delays, high-level and low-level
robot control, teleoperation system, etc. Therefore, it can be concluded that the accuracy of
the proposed AR-based teleoperation of the WR is sufficient for the task at hand.
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Figure 15. Performance of the WR position teleoperation for the third experiment. First three graphs:
user position references in thin red line, actual position values of the workpiece in thick blue line,
and position limits given by the 3D boundary constraint in dashed lines. Bottom graph: activation of
the 3D boundary constraint for the workpiece position.

Table 3. Teleoperation errors for the pose pw (i.e., position and orientation) of the WR.

Position (cm) Orientation (deg)
x y z α β γ

Maximum deviation 1.2 0.9 0.1 1.7 1.5 1.7

Standard deviation 0.4 0.3 0.03 0.3 0.2 0.2

Figure 17 depicts several frames of the fourth experiment, which shows the performance
of the overall system when the user commands simultaneously both robots using the
proposed AR-based interface; see the video at https://media.upv.es/player/?id=29330720
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-8a8b-11ec-97cd-ab744f931636 (accessed on 26 April 2022) [84]. Figure 17a–d show how the
user modifies the orientation of the WR while, at the same time, commanding the STR tool
towards one side of the workpiece. Note that, in this situation, when the WR end-effector
is close to one side of the 3D boundary, it is partially shown by the corresponding blue
hologram. Furthermore, Figure 17e shows how the user simultaneously commands both
robots to reach both 2D and 3D boundaries, which are partially shown by the red and blue
holograms, respectively. It is worth noting that, in addition to the mentioned holograms,
the user hears different warning sounds. Figure 17f,g show how the user modifies again
the orientation of the WR while, at the same time, commanding the STR tool towards the
other side of the workpiece. Finally, Figure 17h shows how the STR tool reaches the 2D
boundary while the user is also commanding the WR end-effector.
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Figure 16. Performance of the WR angle teleoperation for the third experiment: user angular
references in thin red line and actual angular values of the workpiece in thick blue line.

(a) (b)

(c) (d)

Figure 17. Cont.
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(e) (f)

(g) (h)

Figure 17. Fourth experiment: frames of the video showing the simultaneous teleoperation of both
robots with the proposed AR-based interface. See the video at https://media.upv.es/player/?id=29
330720-8a8b-11ec-97cd-ab744f931636 (accessed on 26 April 2022) [84]. (a) Video: 1 m 19 s. (b) Video:
1 m 44 s. (c) Video: 1 m 54 s. (d) Video: 1 m 55 s. (e) Video: 2 m 13 s. (f) Video: 2 m 42 s. (g) Video:
2 m 52 s. (h) Video: 3 m 5 s.

For the fourth experiment, Figure 18 shows the complete 2D trajectories followed by
the user STR reference and the STR tool, whilst Figure 19 shows the complete 3D trajectories
followed by the user WR reference and the WR end-effector. In both cases, as in the second
and third experiments, the STR tool and the WR end-effector are automatically kept within
the allowed regions despite the fact that, at some point, the user references exceed the 2D
and 3D boundaries, respectively.

Figure 18. The 2D trajectory performance for the fourth experiment, showing the simultaneous
teleoperation of both robots (see the video at https://media.upv.es/player/?id=29330720-8a8b-11ec-
97cd-ab744f931636 (accessed on 26 April 2022) [84]): 2D allowed workpiece region in green; trajectory
followed by the user reference in thin red line; and trajectory followed by the STR tool in thick
blue line.
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Figure 19. The 3D trajectory performance for the fourth experiment, showing the simultaneous
teleoperation of both robots (see the video at https://media.upv.es/player/?id=29330720-8a8b-11ec-
97cd-ab744f931636 (accessed on 26 April 2022) [84]): 3D allowed region in green; trajectory followed
by the user reference in thin red line; and trajectory followed by the WR end-effector in thick blue line.

The teleoperation errors for the fourth experiment, in which the user commands
simultaneously both robots using the proposed AR-based interface, are similar to those
shown above for the second experiment (STR teleoperation) and third experiment (WR
teleoperation): approximately 0.8 cm standard deviation for the position of the STR tool—
see Table 2—and approximately 0.4 cm and 0.3◦ standard deviation for the WR position
and orientation, respectively—see Table 3. As mentioned above, these teleoperation error
values include all the potential sources of error: communication delays, high-level and
low-level control of both robots, teleoperation system, etc. Therefore, it is concluded that
the accuracy achieved by the proposed AR-based approach for teleoperating the bimanual
robot system is satisfactory.

5. Conclusions

A solution to improve the assisted bimanual robot teleoperation has been developed
in this work using augmented reality (AR) technology and tools. In particular, a new AR
interface using the Microsoft HoloLens glasses has been proposed to mitigate the problems
in terms of user ergonomics and task performance (i.e., completion time and finishing
quality) raised from the use of conventional PC-based user interfaces. In addition, this
work has proposed and followed a new methodology to design and develop AR interfaces
for bimanual robotic systems.

The effectiveness and applicability of the proposed AR interface were shown by means
of real experimentation with an advanced bimanual robot application consisting of two
robotic arms: a 7R cobot and a 6R industrial manipulator.

It is worth noting that several users, who tested both the conventional PC-based
interface and the proposed AR interface, found the latter more intuitive and were able
to conduct the robot teleoperation task faster. Note that when the users teleoperated the
bimanual robot system using the conventional PC-based interface, most of them complained
about the difficulty of checking whether the robots were performing the task correctly or not.
In addition, the users indicated that with the conventional PC-based interface, it was not
easy for them to command both robots simultaneously because they could not pay attention

346



Appl. Sci. 2022, 12, 4379

to so many reference signals shown. These facts negatively affected the performance of the
users in terms of the time required to complete the task. Thus, the mentioned issues were
mitigated with the proposed AR interface, significantly improving the user performance in
the teleoperation task.

Another relevant remark is that the users also indicated that the warning sounds
helped them in the early stages of the teleoperation task but, as the time of use of the inter-
face increased, these sounds were annoying and they preferred only the visual warnings.
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Abstract: Advances in visual sensor devices and computing power are revolutionising the interaction
of robots with their environment. Cameras that capture depth information along with a common
colour image play a significant role. These devices are cheap, small, and fairly precise. The infor-
mation provided, particularly point clouds, can be generated in a virtual computing environment,
providing complete 3D information for applications. However, off-the-shelf cameras often have a
limited field of view, both on the horizontal and vertical axis. In larger environments, it is therefore
often necessary to combine information from several cameras or positions. To concatenate multiple
point clouds and generate the complete environment information, the pose of each camera must
be known in the outer scene, i.e., they must reference a common coordinate system. To achieve
this, a coordinate system must be defined, and then every device must be positioned according to
this coordinate system. For cameras, a calibration can be performed to find its pose in relation to
this coordinate system. Several calibration methods have been proposed to solve this challenge,
ranging from structured objects such as chessboards to features in the environment. In this study,
we investigate how three different pose estimation methods for multi-camera perspectives perform
when reconstructing a scene in 3D. We evaluate the usage of a charuco cube, a double-sided charuco
board, and a robot’s tool centre point (TCP) position in a real usage case, where precision is a key
point for the system. We define a methodology to identify the points in the 3D space and measure the
root-mean-square error (RMSE) based on the Euclidean distance of the actual point to a generated
ground-truth point. The reconstruction carried out using the robot’s TCP position produced the
best result, followed by the charuco cuboid; the double-sided angled charuco board exhibited the
worst performance.

Keywords: pose estimation; robotics; 3D reconstruction; charuco cuboid

1. Introduction

The idea and use of 3D imaging dates back to the 19th century, and laser scanning
to the 1960s [1], but only recently has it been capable of revolutionising the interaction
between robots, the environment and humans. Many advances in computational power,
sensor precision and affordability have made this possible [2–4].

The recent development of RGB-D cameras has provided visual sensor devices capable
of generating pixel-wise depth information, together with a colour image. The technology
behind these cameras has been constantly improving, with developers working to reduce
noise and increase precision, e.g., Microsoft Kinect Azure and Intel RealSense L515 and
D455 [3].
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The depth information from those devices can be used to generate a three-dimensional
projection of the captured object. Understanding the well-known pinhole camera model [5]
is important to understand how the reprojection works, and how it is affected by noise in
the depth data.

The model describes the transformation from the 3D world to the 2D image plane, as
shown in Figure 1 and in the Equation (1) [6]. It can also be used to calculate the inverse
path for reprojecting from 2D to 3D.

Equation (1) has two matrices: one for the intrinsic parameters and another for the
extrinsic parameters. The first contains the camera’s internal parameters, which are constant
for each camera. The second describes where the camera is in the world, i.e., the pose of
the camera in relation to an origin coordinate system.

Figure 1. Pinhole camera’s projective geometry.

The direction vector of the ray from the camera projection centre can be found using
these parameters, but the length of the vector cannot. This information is lost in the
conversion from 3D to 2D. However, when using an RGB-D camera this information is
saved, as a depth that determines where the point lies in the world. The set of points
reprojected from these data is called a point cloud.

Other parameters that are important for reprojection are the distortion coefficients
which are used to correct the radial and tangential distortions of the lens [7]. In this work,
the FRAMOS Industrial Depth Camera D415e, which was built with Intel® RealSense™
technology, was used. The Intel® RealSense module claims to have no lens distortions [8,9].
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The intrinsic parameters of a camera are normally represented as a 3 × 3 matrix, as
shown in Equation (2).

K =

⎡⎣ fx 0 cx
0 fy cy
0 0 1

⎤⎦ (2)

where fx and fy are the focal lengths in the x and y directions, respectively. Furthermore,
cx and cy are the optical centres of the image plane, shown as a solid red line in Figure 1.

As illustrated in Figure 1, the focal length is the distance from the camera lens to the
image plane; since the pixel is not necessarily square, the focal length is divided by the
pixel size in x and y, resulting in the variables fx and fy, respectively, expressing the values
in pixels.

The extrinsic parameters are typically represented by a homogeneous transformation
matrix, shown in Equation (3), and this was well explained by Briot and Khalil (2015) [10].
This contains the rotation matrix R3×3 and the translation vector T3×1, representing the
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camera’s transformation in relation to the origin of the reference coordinate system in the
desired scene.

D =

[
R3×3 T3×1
01×3 1

]
(3)

The distortion coefficients are the parameters used to describe the radial and the
tangential distortion. They are represented as kn and pn, respectively. The most notable
distortion model is the Brown–Conrady model [11].

The term calibration normally refers to methods of estimating the intrinsic parameters,
distortion coefficients and extrinsic parameters.

Quaternions are another way to express rotations in the three-dimensional vector space.
This method has a compact representation and has some mathematical advantages [12,13].
It is commonly used by the robotics industry because it is more mathematically stable and
avoids the gimbal lock phenomenon, where two axes align and prevent the rotation in
one dimension.

The robotic arm used in this work, the ABB IRB 4600, uses quaternions for the orienta-
tion of its TCP. Equation (4) [14] shows the conversion method from quaternions to Euler
angles used in the homogeneous transformation matrix which was used in this work.⎡⎣φ

θ
ψ

⎤⎦ =

⎡⎣atan2(2(q0q1 + q2q3), 1 − 2(q2
1 + q2

2))
asin(2(q0q2 − q3q1))

atan2(2(q0q3 + q1q2), 1 − 2(q2
2 + q2

3))

⎤⎦ (4)

1.1. Point Cloud

Reprojecting the points in 3D using the intrinsic parameters in a pinhole model, as
shown in Equation (1), with no distortion is carried out according to Equations (5)–(7).
For an RGB-D device, Z is the depth information extracted from the depth frame, x is the
column index and y is the row index. In these equations, a point is a 3D structure with
(x, y, z) data representing a point in the camera’s coordinate frame.

point.z = Z; (5)

point.x = ((X − cx)/ f x) ∗ Z; (6)

point.y = ((X − cy)/ f y) ∗ Z; (7)

The origin of the coordinate system for each point cloud is one sensor of the camera,
in this case, the left infrared sensor. To reconstruct the scene from multiple cameras or
perspectives, the camera’s positionin the scene, i.e., the global coordinate system, must
be known.

The global coordinate system’s origin is chosen according to the task. It can be the
optical centre of one of the camera’s sensors, for example. In this work, the chosen origin
was the base coordinate system of an ABB IRB 4600 robot [15].

1.2. Related Work

The problem of scene reconstruction has been well studied in different scenarios. To
solve the challenge of registering two or more point clouds together, the six degrees of
freedom (DoF) transformation between them has to be found. This can be calculated using
the point clouds by either selecting the matching points manually or using algorithms
to find possible matching points. Another method is to calculate a known position for
the sensors.

Chen and Medioni [16] and Besl and McKay [17] proposed one of the most widely
used algorithms for the registration of 3D shapes, the iterative closest point (ICP). It tries
to find the best match between the point clouds by finding the closest points from one
point cloud to the other, then it determines the transformation matrix that minimises the
distance between the points, and finally, it iterates until it converges. Due to fact that it relies
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on the data association of the points between point clouds, a good overlap is necessary
for convergence.

Wang and Solomon [18] proposed a replacement of ICP called the deep closest point
(DCP) method, which uses a three-step approach, first embedding the point clouds into a
common space, then capturing co-contextual information in an attention-based module
and finally using singular value decomposition to find the transformation matrix.

Aoki et al. [19] used the Pointnet [20] method with the Lukas and Kanade (LK) [21]
algorithm to solve the registration problem.

Other methods include that of Stoyanov et al. [22], who used a three-dimensional
normal distribution transform representation of the distance between the models, followed
by a Newton optimisation, and that of Zhan et al. [23], who proposed an algorithm based
on normal vector and particle swarm optimisation. These methods all rely on having a
sufficient overlap between the point clouds to solve the problem. Moreover, these methods
tend to be slow.

Performing an estimation of the position of the sensorprovides a more reliable trans-
formation for the point clouds. Initially, work on camera calibration was focused on
finding the intrinsic parameters of a single camera. Zhang [24] was the first to propose
the solution to this challenge using a chessboard pattern, i.e., a planar target, through
least-square approximation.

With the intrinsic parameters, in theory, it would be possible to calculate the pose
of the camera with four coplanar points that are not collinear, but Schweighofer and
Axel [25], discussing pose ambiguities, proved that two local minima exist, and proposed
an algorithm to solve this problem.

Fiducial markers became popular for camera pose estimations, and several markers
have been proposed, including point-based [26], circle-based [27], and square-based [28,29]
markers, which can determine the pose using the four corners and have the ID in the
middle of the marker.

Garrido-Jurado et al. [28] proposed a system with configurable marker dictionaries,
specially designed for camera localization. The authors developed a marker generator,
as well as an automatic detection algorithm. These ArUco markers form the basis of the
charuco board used in this work.

Other publications have proposed ways to solve the problem of pose estimation using
an arbitrary scene with texture [30–32]. These are not relevant to this project, since it was
designed in a contained environment.

In this work, we propose and carry out a novel evaluation method for multiple camera
perspectives. We used a charuco to identify and label the points on which the metrics
were based, and calculated the errors of three different methods in order to carry out the
transformation of the cameras to the global coordinate system.

2. Materials and Methods

This investigation was part of two projects called Meatable [33] and RoButcher
(https://robutcher.eu, accessed on 15 February 2022). The projects involved research-
ing the design and robotisation of a cell to process pig carcasses, called the Meat Factory
Cell, and proposing a significant deviation from existing meat processing practices. The
process was briefly described by Alvseike et al. (2018) [34,35]. The projects defined con-
straints on the data captured due to the specific data configuration of the scene and the
application requirements.

Due to the inherent characteristics of the projects, precision was a key aspect of the
system; otherwise, the cutting and manipulation of carcasses would be unsatisfactory or
ineffective (e.g., the robot could cut too deep into the carcass, or not cut it at all).

For these projects, a bespoke machine called a carcass handling unit (CHU) was used,
as shown in Figure 2. Its function was to grip a pig’s carcass and present it to the robot,
which would perform automated cutting to segment or dissect the parts.
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Figure 2. Carcass handling unit in the RoButcher laboratory.

The robot needed to have a complete understanding of the environment in the 3D
space. However, the camera had a limited angle of view. To solve this constraint, multiple
camera perspectives had to be transformed to obtain a complete view of the scene.

The robotic arm had a camera attached to the tool centre point (TCP), as illustrated in
Figure 3, to capture the data. It cycled the camera to six positions around the CHU, with
two on the right, two on top, and two on the left side. With this configuration, almost
360◦of the scene could be captured.

Figure 3. FRAMOS D415e Camera and its bespoke support.

The cameras are referred to as left/right/up and front/back. The left/right is defined
in relation to the CHU, not to the pig, which can be rotated once grabbed by the CHU. TThe
left, right, front, and back sides of the CHU were defined as shown in Figure 4.

Figure 4. Carcass handling unit (CHU) with sides labelled.

The FRAMOS D415e has 3 image sensors (2 infrared (IR) and 1 RGB) and one IR
laser projector. It calculates depth based on the disparity between the two IR sensors.
Furthermore, it is stated by the documentation that the infrared cameras have no distortion;
hence, all the distortion coefficients are 0.0 [9]. Furthermore, the cameras come from the
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factory calibrated with intrinsic parameters recorded in the memory and can be easily read
using the appropriate Intel RealSense SDK library.

The Intel RealSense D415 was evaluated in regard to its the accuracy, performance,
and precision by Lourenco and Araujo [36], with an RMSE accuracy distance for an analysis
of 100 images of 0.07927, an average failed points ratio of 0.5414%, and average outliers
(±10 cm) of 0.0667%, measured at 1 m. The repetitive pattern of the board also prejudices
the depth calculation, and consequentially the point cloud, as illustrated in Figure 5.

Figure 5. Charuco board with noise and artefacts due to the repetitive pattern.

The data are recorded in a bag file (http://wiki.ros.org/Bags, accessed on 1 February
2022) using the SDK. The bagfile is a container file that contains the image and the depth
frame, the intrinsic parameters for both sensors, and metadata information. These data are
used to extract the parameters needed to execute the calibration.

The file-naming conventions used in the work used camera positions numbered from
0 to 5, and the sequential take number, with the following relation to the CHU:

• Left/Front: Cam 0
• Left/Back: Cam 1
• Up/Back: Cam 2
• Up/Front: Cam 3
• Right/Front: Cam 4
• Right/Back: Cam 5

2.1. Evaluation Metrics

To quantify the quality of the reconstruction in each method, the root-mean-square
error (RMSE), shown in Equation (8), was used. The error used in the RMSE calculation
was the Euclidean distance in three-dimensional space R

3, and it was calculated after
reprojecting the points in the point cloud, as shown in Equation (9).

rmse =

√√√√√ n
∑

i=0
error2

n
(8)

error =
√
(xo − xr)2 + (yo − yr)2 + (zo − zr)2 (9)

The depth information received from the camera was able to have an error of 2%, thus
increasing the RMSE. However, as this affected all methods similarly, it did not interfere
with the final comparison.

To measure the distance between the correspondents points, these points must be
known, i.e, which point in one point cloud should match which point in the other point

356



Appl. Sci. 2022, 12, 4134

cloud. Since the point cloud from the RGB-D device did not contain information enabling
us to identify which point was which, a method was proposed to label some points.

In this work we used OpenCV [37], as it is a stable and robust library for computer
vision. ArUco markers were used as fiducial markers and a charuco board was used as the
pattern board for the pose estimation, as proposed by Garrido et al. (2014) [28].

The ArUco module in OpenCV has all the necessary functions for pose estimation
using the implemented charuco board [38].

2.2. Labelling Points

The method used to identify and label the points in order to enable error calculation
was based on the unique ID of each ArUco marker. Each ID and the corners of the marker
could be found on the board during the pose estimation process, as shown in Figure 6.

Figure 6. Charuco Board showing the identified ArUco markers.

Equation (10) shows the calculation of the point label values at points on the charuco
board. Each corner receives a label to identify the specific point in the point cloud.

label = (i ∗ 4) + j (10)

where i is the ArUco ID and it is multiplied by 4 because every marker gives four corner
points. j is the index of the ArUco in the vector where it is stored.

2.3. Methodology

The methodology used to measure the reconstruction error was based on a charuco
cuboid with 3 faces, which was used to identify the points and calculate the RMSE. The
chosen charuco boards were 300 mm by 200 mm, with a checker size of 20 mm and a marker
size of 15.56 mm with 14 columns and 9 rows. This was manufactured using precision
technology in aluminium by Calib.io (https://calib.io, accessed on 13 January 2022).

A charuco rectangular cuboid was built, as shown in Figure 7, using three boards.

2.4. Pre-Processing RGB-D Data

The first step was to improve the data by minimising the noise and the artefacts in the
point cloud. To perform this task, some post-processing was applied to the captured frames.

In this work, the chosen post-processing methods were: alignment of colour and
depth frame, sharpening of the colour frame and temporal and spatial filters applied to the
frameset. Although the alignment and sharpening were always applied, the results were
tested with both temporal and spatial filters enabled and disabled.
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Figure 7. Charuco rectangular cuboid.

2.4.1. Alignment of Frames

The FRAMOS D415e camera had its origin reference in the left IR imager sensor and
the RGB imager on the right side, as shown in Figure 8. As the sensors are different, an
alignment between the colour image and the information was performed.

Figure 8. FRAMOS D415e origin reference system.

The alignment was performed in relation to the colour imager, i.e., the depth infor-
mation was aligned to the colour frame. Since the alignment changes the relation of the
pixels in the depth frame to match the colour sensor, the intrinsic matrix used to reproject
the point cloud was also derived from the colour imager.

2.4.2. Sharpening Filter

Besides the alignment, a sharpening filter was applied to the colour image to improve
the ArUco marker identification. The filter kernel used is shown in Equation (11).∣∣∣∣∣∣

−1 −1 −1
−1 9 −1
−1 −1 −1

∣∣∣∣∣∣ (11)

Figure 9a shows the charuco board before the sharpening filter was applied and the
identified ArUco markers. Figure 9b shows the image after filtering, showing a signifi-
cant improvement of the corners and edges. The sharpening filter improved the edges
between the white and the black pixels of the board, increasing the number of identified
ArUco markers.
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(a) (b)
Figure 9. Use of a sharpening filter to improve ArUco recognition. (a) No filter applied. (b) Filter applied.

2.4.3. Temporal and Spatial Filters

To diminish the noise artefacts of the data, two post-processing techniques were
applied to the captured frames, a temporal filter and a spatial filter. Both filters were
implemented in RealSense SDK and these have been well explained by Grunnet-Jepsen
and Tong [39].

The temporal filter performs a time average of the frames to improve the depth
calculation. The filter implements three parameters, those being the alpha, delta, and
persistence filter. The alpha parameters represent the temporal history of the frames. The
delta is a threshold to preserve edges, and the persistence filter tries to minimise holes by
keeping the last known value for a pixel.

The spatial filter implemented in the SDK is based on the work of Gastal and Oliveira [40].
It preserves edges while smoothing the data. It takes four parameters, alpha and delta, which
have the same function as in the temporal filter. This method also involves the filter magnitude,
which defines the number of iterations, and hole filling parameters, which improve artefacts.

2.4.4. The Ground-Truth

After post-processing, the next step for the evaluation of the reconstruction is to
generate a cuboid of reference points, in relation to the robot’s base, to be used as ground-
truth data. This was performed based on the first camera data. The charuco board was
identified and the markers’ corner was extracted from the image, as shown in Figure 6.
Based on the cuboid geometry, the top reference was generated by rotating −90◦ around
the x-axis, followed by a rotation of 180◦ around the y-axis. Then, a translation of 280 mm,
187 mm and −190 mm in the x, y and z directions, respectively, was carried out, as shown
in Equation (12). The backside was generated by rotating 180◦ around the y-axis and
translating 280 mm and −200 mm in the x and z directions, respectively, as shown in
Equation (13).

topTb = T0 ∗cub Tcam0 ∗ transa ∗ rotx−90 ∗ roty180 ∗ (cubTcam0)−1 (12)

where topTb is the transformation from the top of the charuco origin to the robot’s base, T0

is the transformation from TCP to the base, cubTcam0 is the transformation from the first
camera to the charuco, transa is the translation, rotx−90 is the rotation in the x-axis, roty180

is the rotation in the y-axis, and (cubTcam0)−1 is the inverse transformation from the first
camera to the charuco.

rTb = T0 ∗cub Tcam0 ∗ transb ∗ roty180 ∗ (cubTcam0)−1 (13)

where topTb is the transformation from the top of the charuco origin to the robot’s base, and
the other terms have been explained in the previous paragraph.

The final reference cuboid can be seen in Figure 10 with the coordinate system of every
side shown as a visual aid.
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Figure 10. Cuboid with reference points and the coordinate frame of each board.

The camera positions make it impossible to see only one charuco board at a time. To
solve this challenge, the board can be rotated when it can be seen in at least two camera
positions, or two (or more) boards can be used with known geometries.

In this work, two reconstructions were performed using the charuco board and one
using a robotic arm’s position.

2.5. Charuco Cuboid

When using the charuco cuboid, each side is seen in two camera positions. Con-
sequently, the pose estimation is based on the visible board. The defined origin for the
reconstruction was set to be the first camera position. To obtain an optimal reconstruction,
one must perform a rotation and translation on the data from camera positions, where
the camera is facing a different board, based on the cuboid geometry, as explained in
Section 2.4.4.

Notably, to calibrate all camera views (i.e., in all six possible positions), the charuco
cuboid can remain stationary within the environment (i.e., it does not require repositioning
for each camera).

2.6. Charuco Double-Sided Angled Board

Using a double-sided board follows the same principle as the cuboid but is more
simple since the camera can see the same side in 4 positions, and the back of the board in
the other two, as shown in Figure 11a–c.

To perform the transformation, the left and the upper cameras were transformed to
the inverse matrix of charuco to camera transformation (chaTcam), to make the charuco
board origin the same for these cameras. Then, the right cameras had to perform a 180◦
rotation around the y-axis and a translation of 280 mm and 1.2 mm in the x and z directions,
respectively, according to the board geometry.

(a) (b) (c)
Figure 11. Charuco board views from the camera positions. (a) Left view from camera 1. (b) Top
view from camera 3. (c) Right view from camera 5.

2.7. Robot’s TCP Transformation

The robotic arm used in the setup was an ABB IRB 4600 40/2.55. The TCP position
for every robot target position of the arm was recorded with the x, y, z position and the
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rotation q1, q2, q3, q4 in quaternions. A transformation from the camera’s origin to the TCP
was applied.

This transformation was calculated using the hand-eye calibration method proposed
by Horaud and Dornaike [41]. A set of 30 different positions were defined for the calibration.
The result was compared with the holder geometry, as seen in Figure 12.

The transformation found during calibration was the translation of −0.050 mm in
the x direction, −0.0442 in the y direction, and 0.0780 in the z direction, and rotations of
90.9179◦around the x-axis, 1.1774◦around the y-axis, and 0.4859◦around the z-axis.

Figure 12. Camera holder CAD model with dimensions in TCP’s z-axis.

Pair Matching

With the reference points ready, the transformation for each camera pose was solved
based on the chosen methods explained above. The correspondent marker points were
identified, and the metrics were calculated according to the explanation given in Section 2.1.
Figure 13 shows arrows between the reference point and the board points, showing the
correct identification of the pairs in which the error was calculated.

Figure 13. Arrows showing the correct correspondence between measured pair pointsbased on the
labelling method.

3. Results

The results of the reconstruction follow the metrics explained in Section 2.1. The first
step was to identify the two most accurate methods for the 3D reconstruction of the scene.
For this, each system used 1188 points to calculate the reconstruction error for the six
camera views.

Table 1 shows the mean absolute error (MAE), the mean square error (MSE), and the
root-mean-square error (RMSE) of each system, expressed in millimetres. It is interesting to
note that the MAE and the RMSE exhibit a large difference, meaning that there was not a
high discrepancy between the errors.
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Table 1. Summary results with MAE, MSE, and RMSE for one set of data.

Method MAE MSE RMSE

Charuco cuboid 7.5812 5.7475 × 10−2 6.8093
Double-sided Angled 10.12 0.1156 10.75

Robotic Arm 3.9888 1.5886 × 10−2 3.7121

Based on these results, a program was written to run 20 sets of data for each method,
with each set calculating the error between approximately 1188 points, depending on how
many markers were found by the charuco algorithm.

3.1. Charuco Double-Sided Angled Board

The double-sided board with an angle (to enable four cameras to see it simultaneously)
exhibited a poorer performance when compared with the other two methods. The angle
applied to the board made it harder to identify the markers, as shown in Figure 14a,b,
possibly making it less accurate than the other methods.

Visually, it was able to calculate the pose well in the 2D image, but there was a
degradation in the RMSE, which in this case was 10.12 mm.

(a) (b)
Figure 14. Charuco double-sided board marker detection for pose estimation. (a) Camera 1. (b) Camera 2.

Figure 15 shows a detail of the reconstructed image with the double-sided charuco
board, where small gaps between the top and lateral panel can be observed.

Figure 15. Reconstruction view using charuco double-sided angled board.

Due to this method’s less accurate 3D reconstruction compared to the other methods,
we focused more on the other methods discussed below.

3.2. Cuboid vs. TCP Reconstruction Accuracy

The program was written in C++ using the Qt Library (https://www.qt.io, accessed
on 8 February 2022), and it is available at GitHub (Please see “Data Availability Statement”),
together with the dataset captured.

The program iterated over a directory with the files and calculated the RMSE, the
mean squared error (MSE), and the mean absolute error (MAE) for both chosen methods.
In addition, it assisted with the visualization of the point cloud.
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The program was executed with both filtered and unfiltered data, as explained in
Section 2.4.

3.2.1. Unfiltered Data

After running the program for the 20 sets, a total of 23,117 paired points were used to
calculate the error values. Figure 16 shows a screenshot of the program after the calculation
with the reconstruction of the point cloud for both methods, with the TCP method on the
left and the cuboid on the right side.

Figure 16. GUI showing the resulting 3D reconstruction using unfiltered data.

Table 2 summarises the results, showing a smaller error for the TCP method.

Table 2. Summary results for cuboid and TCP reconstruction with MAE, MSE, and RMSE for
unfiltered data.

Method MAE MSE RMSE

Charuco cuboid 1.10809 8.6994 × 10−3 2.6417
Robotic Arm 0.8734 4.8808 × 10−3 1.9651

3.2.2. Filtered Data

For the filtered data, a total of 23,603 paired points were used to calculate the error
values. Figure 17 shows a screenshot of the program after the calculation.

Figure 17. GUI showing the final result of the error measurement of the 3D reconstruction using
filtered data.
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Table 3 summarises the results obtained, again showing a smaller error for the
TCP method.

Table 3. Summary results for cuboid and TCP reconstruction with MAE, MSE, and RMSE for
filtered data.

Method MAE MSE RMSE

Charuco cuboid 1.2708 1.0987 × 10−2 2.9837
Robotic Arm 0.6983 3.1597 × 10−3 1.7432

3.3. Charuco Cuboid

The reconstruction using the charuco cuboid had a low RMSE of 2.9837 mm for the
filtered set, and an RMSE of 2.6417 mm for the unfiltered set, showing a better result for
the unfiltered dataset.

3.4. Robot’s TCP Transformation

The robotic arm ABB IRB 4600 had a payload of 40 kg and a reach of 2.55 m. It had
a position repeatability of 0.06 mm, a path repeatability of 0.28 mm, and an accuracy
of 1 mm [15]. With this precision, the reconstruction showed the best performance with
an RMSE of 1.7432 mm for the filtered dataset and an RMSE of 1.9651 mm for the unfil-
tered. In this method, the filtered dataset showed an improved result in relation to the
unfiltered dataset.

4. Discussion

The accuracy of the reconstruction is vital to robotics tasks when using depth infor-
mation to generate trajectories for a robot in a large scene. The usage of depth stream to
reconstruct the scene, as in Newcombe et al. [42], may not be appropriate if the system is
time-sensitive. It is faster to move the robotic arm to positions at a high speed and then
capture a frame than it is to cycle through at a slower speed to capture the data.

The algorithms currently available for point cloud registration, such as iterative closest
point (ICP) [16,43] and its variants, as well as other methods that try to find the trans-
formation between point clouds, use overlapping, which in this case is minimal due to
the fact that the observed scene is large. Moreover, they are too slow to be used in a
time-sensitive system.

The ABB IRB 4600 has a preset maximum speed of 7000 mm/s, and the axis speed
varies from 175◦/s (axis 1) to 500 ◦/s (axis 6). With these high speeds, the data acquisition
and reconstruction can be sped up through a straightforward mathematical approach, such
as the TCP transformation method. The idea is to have a fast and reliable transformation
for the camera positions.

Further investigations could involve the study of how the trajectory generated for the
TCP is affected by the errors in the reconstructions. Understanding this impact could help
in developing a faster method without having repercussions on the desired output.

This work will assist in developing new designs and understanding one’s options
when responding to reconstruction challenges using multi-camera views and a robotic arm.
It casts light on two different approaches and how to evaluate the reconstruction of the 3D
scene. However, it is not an exhaustive study on the topic.

5. Conclusions

In this study, we evaluated three pose estimation methods for RGB-D (3D) cameras
in the context of 3D point cloud reconstruction. We proposed a method to identify the
point pairs, and performed error measurements. Using a charuco cuboid, we identified
and labeled the corner of the ArUco markers in order to create a pairwise set of points to
measure the error values.
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Two of our developed methods used the charuco board to estimate the pose of the
cameras, whereas the third method used the robots’ TCP position to calculate and transform
the point clouds to reconstruct the scene. The data were captured with a fixed position and
at a distance of around 1 m from the board in each direction.

This distance reduces the resolution of the charuco board and consequently reduces
the camera’s ability to recognise markers on it. To improve the recognition of markers, a
sharpening filter was applied. Further filters were used to mitigate artefacts in the point
cloud, due to the stereo vision system used by the camera.

Two methods, the cuboid and TCP methods, provided a good reconstruction with
low RMSE values, taking into account the often noisy nature of point clouds derived
from RGB-D cameras. The double-sided angled board had the highest RMSE, and it was
excluded from further assessments. The increased error was assumed to be a result of the
combination of the angle and distance from the camera. The robot’s TCP position had a
high accuracy, exhibiting the best overall performance.
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Abstract: This paper investigates the feasibility of redirecting the field of view (FOV) of a light-
based time-of-flight (ToF) ranging device, commonly known as a pulsed lidar, using fixed mirrors
and prisms for possible future use in robotics. The emphasis is on configurations where the FOV
redirection element is positioned beyond the ranging device’s dead zone. A custom made direct ToF
ranging device with time-over-threshold (TOT)-based walk error compensation was used to evaluate
the effects of the FOV redirecting optics on range measurement accuracy and precision. The tests
include redirecting the FOV with a clean prism with anti-reflective (AR) coating on its legs, as well as
with a regular and a first surface mirror in both a clean and dusted state. The study finds the prism to
be unsuitable due to parasitic reflections, which ruin the ranging data. The clean mirrors were found
to have no noticeable effect on ranging accuracy. When they are dusty, mirrors introduce a negative
measurement error. This effect is the most pronounced when a mirror is positioned toward the end
of the partial dead zone of the ToF rangefinder, but loses influence as the mirror is moved farther
away. The error is attributed to the parasitic reflection off dust on the mirror, which reduces the time
of detection of the pulse reflected off the real target, and interferes with the walk error compensation
by widening the detected pulse.

Keywords: time-of-flight; lidar; field of view redirection; passive redirection; clean mirror; dusted
mirror; prism

1. Introduction

In recent years, we have observed a change in the way robots are used in the industry.
The workspaces of robots and humans are beginning to overlap, which is allowed by the
introduction of collaborative robots that are designed so that they cannot harm humans.
Inherent safety mostly stems from monitoring the forces acting on the robot and stopping
the motion when the measured values exceed the calculated expected values. In addition
to using robots designed not to harm humans, speed and separation monitoring (SSM) can
also be used [1]. This approach is becoming increasingly common. In its simplest form, SSM
is implemented using an industrial 2D lidar scanner to monitor the robot’s surroundings.
Further improvements can be achieved by monitoring the robot’s environment with a depth
camera [2,3]. This way, it is possible to determine not only where the operator is standing,
but also whether the operator is reaching in the direction of the robot, allowing for even
more nuanced SSM. A problem with observing the robot’s surroundings form a single field
of view (FOV) is occlusions. To obtain a better representation of the robot’s surroundings,
multiple depth cameras, placed in different locations, can be used [4,5]. Another approach
that may be used to solve occlusion is to mount a complementary depth camera or laser
time of flight (ToF) proximity sensors onto a robot [6,7]. A similar safety system can be
implemented by distributing individual proximity sensors over the robot without using
an external depth camera [8–10]. To reap the full benefits of such a configuration, the
position and orientation of the sensors must be considered to achieve maximum data
throughput while minimizing blind spots [11], as sensors may interfere with one another’s
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operation when their FOVs overlap. Readings from the sensors can be used to implement a
continuous SSM response-slow down or stop when an obstacle is detected-or to implement
an advanced collision avoidance algorithm [12,13].

All of the cited work using ToF proximity sensors relied on mounting them all over
the robot or introduced massive dead zones around the robot where targets could not be
detected. We believe that imitating the effect of distributing a plurality of individual ToF
sensors across the robot is a promising approach. This could be achieved by mounting
a centralized range finder with multiple FOVs on the end of the robot’s segment and
distributing its FOVs across the joint by the means of mirrors or prisms. The use of a
centralized multi-perspective ranging device could allow us to achieve better performance
or lower system cost, since some common components could be reused for all channels.

The redirecting of lidar’s FOV with a mirror, located within its dead zone, is a common
practice in modern lidar scanners [14]. Much less research has been conducted for configu-
rations where the redirection element may be located anywhere within the ranging device’s
FOV. Notable exceptions are researches where mirrors were used to expand the FOV of
a scanning lidar [15–17] and the study that achieved a simulated multiple depth camera
setup for 3D object capture by reflecting parts of the depth camera’s FOV in [18]. The listed
studies proved that mirrors can be used for redirecting light-based ToF ranging device’s
FOV but did not go into detail about how the mirror affects measurement characteristics.
In order to pursue the direction of equipping a robot with a multi-perspective light ToF
ranging device with redirected FOVs, this paper analyzes the effects of mirrors and prisms
in expected real conditions at different distances from the ranging device on its ranging
performance. The direct ToF measurement approach with time over threshold (TOT)-based
walk error compensation was selected as it does not require a long integration time, and
therefore allows a higher measurement rate and introduces only negligible motion blur [19].

This paper is organized as follows: after Section 1, the introduction, Section 2 presents
the underlying principles of ToF measurement. It explains how ToF measurements work,
the difference between direct and redirected measurement, the construction of the ranging
device used in the experiments, and the measurements setup, as well how the data were
gathered and processed. Section 3 presents the experimental results in the form of graphs
for different measurement configurations. That includes direct and reflected ranging with
the ranging device at different distances from the FOV redirection optics. Results are inter-
preted in Section 4. Conclusions and ideas for further work based on said interpretations
are gathered in Section 5.

2. Materials and Methods

In this section, basic functioning and measurement procedures are discussed. This
includes the explanation of the difference between laser ToF-based ranging in direct and
redirected configurations, how the ranging device that was used in later experiments works,
a description of the measurement setup, and the description of the measurement procedure.

2.1. Direct and Redirected Time of Flight Measurement

The oath of light from a laser ToF ranging device may be direct or redirected before
reaching the target surface. A direct measurement is common in laser rangefinders, where
only one dimensional ranging is required. Redirected measurements are common in lidar
scanners, where the FOV of a single device is redirected in multiple directions. The distance
between the device and the reflecting surface that is used for redirection of light in this
configuration is constant and never changes. Redirection may be carried out in one or two
dimensions. The former results in 2D measurements of the surroundings, while the later
generates a point cloud on the surface of observed objects. Both approaches have been
thoroughly explored and are standard in industrial environments. Even though redirection
using mirrors is the most common, beam steering using prisms can be used instead, such
as those detailed in [20,21].
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The comparison of how a direct or redirected laser ToF ranging works is depicted
in Figure 1. Figure 1a shows direct operation, Figure 1b shows how light FOV can be
redirected by using a reflective surface within the devices dead zone, which is commonly
used in industrial lidar scanners, and lastly, Figure 1c shows the operation where the
reflecting surface lies beyond the device’s dead zone. Boxes marked Rx and Tx represent
light transmitters (lasers) and receivers (photodiodes), respectively. The system’s dead zone
ranges from the transmitter/receiver to the dashed line, and partially dead zone extends
up to the solid line. While operation between the first two configurations should not be
critically different, the third one may pose problems, as any imperfections on the reflecting
surface may cause reflections that will interfere with the ranging device’s operation.

Figure 1. Diagrams of different areas of operation for light-based ToF distance measuring devices are
shown for (a) direct method, (b) redirected method, where reflecting surface is entirely within the
ranging device’s dead zone, and (c) for when the reflecting surface is located beyond the ranging
device’s dead zone. Boxes marked Rx and Tx represent light transmitters (lasers) and receivers
(photodiodes), respectively. The system’s dead zone ranges from the transmitter/receiver to the
dashed line, and the partially dead zone extends up to the solid line.

This article addresses a similar approach to redirecting the FOV as described previ-
ously, with the major difference that the device used to redirect the FOV is stationary and
immovable, with respect to the ranging device. The idea is to transmit a laser beam along
the length of the robot’s joint and redirect it perpendicularly outwards when it hits the
redirection device. The light, reflected from a target, then travels essentially the same path
back to reach the receiver. Multiple optical paths are established along the robot’s segment,
leading to a multi-perspective view of the surroundings. A multi-perspective view might
provide a significant advantage in monitoring the robot’s surroundings, enabling enhanced
safety features. The principle of operation is depicted in Figure 2, where orange bands
represent individual light paths.

Figure 2. The principle of operation of a robot proximity monitoring system based on one centralized
ranging device per robot’s segment and individual fields of view redirected by mirrors. The robot
segment lengths are usually from 0.2 m to 0.8 m, and the detection range from the robot’s segment
to the potential obstacle should be in compliance with the SSM mode of operation, as specified in
ISO/TS 15066:2016. In a real application, the field of view redirection optics would be located as close
to the robot’s surface as possible.
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2.2. Laser ToF Ranging Device Device

Many commercial ToF-based ranging devices are available on the market as either off
the shelf products or as development kits. Those offerings, however, do not offer much
insight into what is going on with the measurement. For that reason, we opted to use
a custom direct time of flight ranging device, which not only allows us to measure the
distance to the target, but also to indirectly observe the amplitude of the return signal. This
section discusses the laser ToF ranging device, its construction, and principles of operation.

The laser ToF ranging device that was used has a 905 nm laser diode as a light source
and an avalanche photodiode (APD) connected to a transimpedance amplifier (TIA), with
the gain of 25 kV/A on the receiving end. The receiver APD is also masked with an
optical low pass filter to eliminate much of the ambient illumination. The model used is
the Optolite IR filter that cuts off light with wavelengths below approximately 750 nm.
For outdoor use, a band pass filter would be more appropriate but is unnecessary for
indoor use, as modern lights produce little to no light in the IR spectrum [22]. Both the
transmitters and the receiver are equipped with focusing optics to achieve a narrow FOV
of 5◦. Time of flight measurement is taken care of by a pair of TDC7200 time to digital
converters (TDC). This model has a resolution of 55 ps (8.8 mm) and a standard deviation
of 35 ps (5.2 mm). This is improved by using a running average of eight samples. Both
TDCs start the measurement on the positive front of the signal to emit a light pulse but
their stop signals are different. One TDC stops the measurement when the current through
the laser diode, as measured on a shunt resistor, exceeds the threshold. The other TDC
measures both the time of detecting the reflected pulse and its width. This is achieved by
passing the signal from the TIA through a comparator with a selected threshold voltage,
and then passing the resulting waveform through a pulse generator for both the falling
and rising front from the first comparator. The described setup eliminates measurement
error that comes from the temperature dependent delay between triggering the transmitted
pulse and the laser actually turning on. The system can select between three different
illumination channels, all of which trigger the same stop signal for the reference TDC.
Ranging is controlled with an external microcontroller. A simplified schematic is shown in
Figure 3. The dashed line encircles components of each of the three equal transmit channels
and the dotted line encircles components on the laser ranging device’s printed circuit board
(PCB), which comprise the analog front end. Throughout the experiment, only one channel
1, which is located 2 cm from the receiver, was used. The remaining two channels will
allow the same ranging device to be used in later research.

Figure 3. Block diagram of laser ToF ranging device. Dotted line encircles the crucial components
that are mounted on the same PCB. The dashed line encircles the components of one of three transmit
channels, constructed in the same way.
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The microcontroller, which controlled the ranging, was an ATmega328P on an Arduino
Nano development board. It was used for generating appropriate transmit pulses and
controlling TDCs, which includes initialization, arming, and reading measurement data.
The later was sent over to the PC with minimal additional processing carried out on
the microcontroller.

2.3. Walk Error

When transmitted light is focused in a parallel beam, the amount of the returned light
follows an inverse square law with increasing distance to the target. Total received power
for diffuse targets may be estimated using a modified radar Equation (1) [23], where PRx is
received power, GRx is receiver gain, GTx transmitter gain, PTx power of the transmitted
signal, r is the radius of receiving lens (πr2 is its area), and d the distance between measuring
device and the target. 2π in the equation represents the solid angle, at which the light is
reflected. In this case it is assumed that the target behaves as a perfect point source that
reflects light evenly in the hemisphere towards the light source.

PRx =
GTxGRxPTxπr2

2πd2 (1)

The equation does not take into account the target’s albedo, which provides informa-
tion on what portion of light is reflected off of the target. This factor could be added to the
equation as a multiplicative factor in the fraction’s numerator. The possibility for the target
to be non-Lambertian is omitted as well. In such a case, another orientation dependent
factor that addresses the material’s physical reflective properties should be added to the
equation. Since real materials rarely have a uniform reflection pattern, Equation (1) is only
good to obtain a rough estimate for diffuse targets, which remains valid so long as the
target’s orientation in regard to the illuminator and the observer is fixed. To summarize the
main takeaways, the further the target or lower its albedo, the less signal is captured by the
receiving diode. For real signals with finite rise and fall times, the reduction in amplitude
effectively shrinks the pulse width after the comparator. Figure 4a shows the return signal,
captured after TIA with the target at different distances. It should be noted that TIA is
saturated for signal responses from targets at 80 cm or closer. To make the effect more
pronounced, a dark target with low albedo was selected when gathering data for Figure 4a.
Traces of different colors represent return signals for measurements with targets at different
distances. Which color corresponds to which distance can be read from the legend. For
strong return signals, the pulse width can exceed 150 ns, which is notably wider than the
transmitted pulse, set at 100 ns.

The returned signal’s amplitude plays a huge role in when and if the signal will cross
the detection threshold, which introduces the walk error. Ideally, neighboring traces in
Figure 4a would cross the threshold, set at 1.68 V, 667 ps apart, the same time it takes the
light to traverse the roundabout distance between subsequent measurements. In our case,
spread between traces was greater than this and varied by signal strength, as observed
in Figure 4a. Walk error is a systemic error, inherent to ToF based ranging devices [24].
Some laser ToF ranging devices are constructed so that they do not need additional walk
error compensation. More often than not, that is due to having an analog compensation
built into the receiver or having a design that is inherently less sensitive to walk error.
When that is not the case, walk error compensation has to be implemented to obtain
accurate measurements. Common methods for measurement correction for systems with
PIN photodiode or APD receivers are based on the signal’s time over threshold (TOT) or
rise time. The TOT-based compensation function relies on detected pulse width [25], and
the later one is based on signal’s rise time, measured by the time it takes for the received
signal to rise from first threshold to the next [26]. The ranging device used in this article
used TOT-based walk error compensation.
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Figure 4. (a) Reflected pulse after TIA at different target distances, measured after receiving TIA. All
pulses are synchronized to the rising edge of the transmitted pulse. (b) Pulse shape of the transmitted
pulse, as measured on the shunt resistor (blue), reflected pulse, as measured after TIA (orange),
pulse shape after the first comparator (green, and the pulse pair after the pulse shaper (red). The
comparator’s and the pulse shaper’s waveforms were attenuated by 50%.

The measured pulse width is a systemic parameter that only depends on the target
reflectivity and distance to the target, assuming that the ranging device’s operating param-
eters, such as supply voltage and temperature, are fixed. TDC7200, the TDC used on the
selected ranging device, has the ability to measure time from the start pulse to multiple
stop pulses if a sufficient amount of time passes between individual pulses. However, all
stop pulses must have the same direction (rising or falling edge). By transmitting a 100 ns
light pulse and converting the returned signal into two 10 ns pulses, one for rising and one
for the falling edge of the return signal after passing through a comparator, we ensure that
the condition for measuring time to multiple stop pulses is met. Figure 4b shows the pulse
shape of the transmitted pulse, as measured on the shunt resistor (blue), reflected pulse, as
measured after TIA (orange), pulse shape after the first comparator (green, and the pulse
pair after the pulse shaper (red). The comparator’s and the pulse shaper’s waveforms were
attenuated by 50% to make the graph more comprehendible.

To obtain the compensation function, multiple measurements were taken off of a
spinning color wheel with varying albedo, set at multiple different known distances. Both
the time to the first stop signal and TOT were recorded for all samples. The difference
between measured distance and the expected value (error) versus TOT was plotted, and
a piecewise linear (PWL) function was fitted to the resulting data cluster, as shown in
Figure 5. The yellow points correspond to single measurements, the green points are for the
data captured with running averages on eight samples, and the solid blue line represents
the manual PWL fit. Beyond calibration range, linear continuation with the same coefficient
as the last segment within the calibration range is assumed.

After the time from the transmitted to received pulse and the corresponding TOT are
measured, walk error compensation is applied. As observed in Figure 5, a wider pulse
means that less time is subtracted from the first stop signal and vice versa. Walk error
compensation has to be applied either immediately on the microcontroller or afterwards
on the master computer. The later was chosen for our experiments, as we wanted to obtain
raw as well as compensated measurements.
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Figure 5. Walk error vs. pulse width for raw data (yellow), average of eight samples (green) and
piecewise linear function fit (blue).

2.4. Measurement Setup

This section discusses the tools and procedures used in experiments for this article. It
is split into three subsections. In them, measurement hardware, measurement software,
and measurement procedure are discussed respectively.

2.4.1. Measurement Hardware

Ranging was carried out using a direct ToF laser ranging device, which was thoroughly
discussed in the previous sections. The device was validated in advance to achieve sub
centimeter accuracy on the range of zero to eighty centimeters for a range of targets with
different albedos. The ToF ranging device was mounted on a stand that allowed for some
minor height and angle adjustments.

For ranging through an FOV redirection device (mirrors and prisms), a special jig
was devised. The jig comprises a linear actuator, and an acrylic snap-in plate, fixedly
mounted on a solid particle board baseplate. They were mounted in a way that their axis
intersected at a right angle. The FOV redirection device was mounted on a pedestal at the
desired height, angle and position. Mirrors were angled at 45◦ to both the linear rail and
the optical axis of the ranging device. This was the same with the prism, when observing
the hypotenuse. Minor adjustments could be made before fixing the stand in place to
ensure the desired orientation. That means that experiments were repeatable so long as the
redirection device was not changed. The measurement setup is shown in Figure 6.

Optics for redirecting FOV were Thorlabs’ first surface protected aluminum mirror
(ME2S-G01), a generic aluminum back coated mirror from Duratool (S5003), and Knight
Optical’s right angle prisms made of N-BK7 glass with AR coated legs (PTK4001). It was
known from our previous experiments that using an uncoated prism does not work, as
too much light is reflected off of the first surface back into the receiver diode; thus, we did
not test that configuration. Mirrors and prism were large enough such that the entire laser
beam was safely within the bounds of mirrors or the prism. The target was covered with
multiple layers of white office paper. During the aligning process, we made sure that the
entire transmitted pulse was hitting the target.

To control for errors rising from variable system parameters, such as temperature and
varying voltage levels, all power supplies were left to warm up and then left powered for
the entire duration of experiments. The ranging device was left ranging for at least one
day before the experimental data were gathered. The walk error compensation curve was
recorded on a warmed up system, which was not powered off until all data were collected.
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Figure 6. Measurement setup as used in the experiments. Photographed configuration depicts a state
during testing of effects of a clean first surface mirror on ranging where distance between the ranging
device and the mirror was 40 cm.

2.4.2. Measurement Software

The ranging device was set in autonomous ranging mode and was continuously send-
ing measurement data to the master PC through a USB serial data link. The microcontroller,
connected to the ranging device, was only used to initiate the measurement, gather time
of flight data, calculate the running average, and send data over to the master PC with
minimal additional processing. Walk error compensation and time to distance conversions
were carried out on the PC.

The linear actuator waited for commands to go to the home position, detected by a
microswitch, or to move to a desired location. Once the command was executed, the PC
was informed that linear actuator is finished with moving.

The master PC was running a python script that took care of setting the linear actuator
and saving the ranging data. Data were captured on a span of 800 mm in 10 mm increments.
For each set distance, 128 raw samples were taken and saved to a file.

2.4.3. Measurement Procedure

For each FOV redirection optic and its configuration, we conducted the same experi-
mental procedure. The ranging device was mounted on the furthermost position (55 cm)
and the target on the linear actuator was set to its furthermost distance as well. Optics,
mounted onto a stand, were placed into the ranging device’s FOV such that the laser spot
was redirected onto a correct spot on the target. It was ensured that all the transmitted light
was hitting either the mirror or the prism, and that all reflected light was hitting the target.
Following that, autonomous ranging commenced.

The linear actuator was instructed to move to the home position (5 cm from the optics)
and the system started ranging. The target moved one centimeter further away each time,
for the total of 80 set distances with 128 raw samples collected at each one.

When data for the entire range were collected, the ToF ranging device was manually
moved one position (5 cm) closer to the redirection optics, and the procedure was repeated
for a total capture of eleven datasets per redirection optics configuration.

For the experiments with clean optics, they were thoroughly cleaned using nonwo-
ven cotton wipes (Webril Handi-Pads) damped in isopropanol. When the solvent had
evaporated, an optical inspection was conducted. If any streaking or imperfections were
observed, the cleaning process was repeated.
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2.5. Measurement Data Processing

Data for each optics configuration and each distance between them and the ranging
device were saved in individual files. After measurements were completed, data for optics
configuration were pooled together and individual datasets were plotted with Python
and Matplotlib.

For error plots, all 128 raw samples for each set distance were averaged and the
expected measurement was subtracted. Standard deviation was calculated for each distance
individually as well. Raw and compensated measurement data were plotted against non-
discarded measurement number. Plots for same optics configuration but different distances
between them and the optics were overlaid.

3. Results

This section contains measurement results for different configurations of ranging. First,
measurement data for a direct measurement method are provided for reference. This is
followed by the measurement data for setups where light was reflected by a mirror, and
the data for ranging by redirecting FOV by a prism.

3.1. Reference Measurements

The characteristics of the ranging device without FOV redirection were first measured.
Results of those measurements are shown in Figure 7. Figure 7a shows uncompensated and
walk error compensated measurements with orange and blue lines, respectively. Figure 7b
shows uncompensated errors plotted against distance, and Figure 7c shows TOT mea-
surement in regard to distance to the target. Lastly, Figure 7d shows the measurement
errors between expected and measured distance in blue, and calculated standard deviations
in orange.

Figure 7. (a) shows raw and compensated measurements, (b) depicts errors of uncompensated
measurements, (c) reflected pulse width, and (d) errors and standard deviations of compensated
measurements in blue and orange, respectively.
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3.2. Reflecting Off of Mirrors

Measurement errors for the configurations where light is reflected off of a mirror are
shown in Figure 8. Figure 8a shows data for a clean first surface mirror, Figure 8b for the
dusted first surface mirror, Figure 8c for clean regular mirror, and Figure 8d for a dusted
regular mirror. Different traces show measurement errors for configurations with different
distances between the ranging device and mirror, ranging from 5 cm, shown in blue, to
55 cm, shown in magenta, and other configurations in 5 cm increments in between.

Figure 8. Measurement error measured on a clean (a) and dusted (b) protected first surface mirror,
and clean (c) and dusted (d) regular mirror. Different traces correspond to configurations with
different distances between ranging device and mirror’s reflecting surface. Blue trace corresponds
to the configuration where this distance is 5 cm, and magenta trace for when it is 55 cm all other
distances are displayed in the legend key.

The blue (5 cm) traces in all graphs in Figure 8 show a significant positive measurement
error in the first few data points. Even larger errors appear in setups with a dusted mirror at
15 cm or further from the ranging device. There the measurement error grows increasingly
negative as the target is moved away. The effect is less noticeable when the mirror is
positioned further from the ToF ranging device and becomes unnoticeable beyond 40 cm.

To help explain the disparity between the error plot for clean and dusted mirror,
Figure 9 shows the shape of the reflected pulse on a system with a dusted mirror without
a detectable target in sight (blue) and with a weak reflection from a target (orange). The
signal is sampled after the TIA. One can notice that some signal is present even when there
should be none (ranging at an infinitely distant target).

378



Appl. Sci. 2022, 12, 7121

Figure 9. Shape of return signal for the configuration with a dusted protected silver first surface
mirror. Return signal with no target in the detection range of the ranging device is shown in blue.
Return signal with a poorly reflective target in sight is shown in orange. The root cause of the presence
of the unwanted signal, and the consequent waveform’s changes are presented in the discussion
section, where Figure 9 is referenced.

3.3. Reflecting from a Prism

Measurements with the AR-coated prism behaved quite differently than the mirrors.
Figure 10a shows the compensated measurement error for the entire suite of measurements,
from 5 cm to 55 cm distance between the ranging device and the prism. Figure 10b shows
the compensated measurement data for the same dataset. Measurements for all but the
first configuration (blue, 5 cm) plateau at some distance.

Figure 10. (a) Measurement error for the entire suite of measurements, from 5 cm to 55 cm distance
between the ranging device and prism. (b) Compensated measurement data for the same datasets
where x-axis is the measurement number. Which line corresponds to which configuration can be read
from the legend. The explanation for the presented data is in the discussion section, where Figure 10
is referenced.

4. Discussion

This section discusses the meaning of measured data. Firstly, the direct measurement
method is discussed where the importance of walk error compensation is illustrated.
Following that, redirecting FOV with mirrors and reasons for the trend of measurement
becoming increasingly negative for only some distances between the ranging device and
dusted mirror is explained. Our results are also compared to similar data from preexisting
studies. Lastly, we take a look at what measurement results for redirecting light with a
prism suggest.
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The importance of walk error compensation is observed in Figure 7a. It shows uncom-
pensated and compensated measurements with orange and blue lines, respectively. It can
be observed that the uncompensated measurements show a target at significantly greater
distance than expected. Beyond the partially dead zone, the error increases with distance,
as best illustrated in Figure 7b. It shows the uncompensated measurement error versus the
set distance. Figure 7c shows the reflected pulse’s width, which decreases with distance
beyond the partially dead zone, extending to approximately 17 cm beyond the sensor.
In this zone, not all transmitted light is in the receiver’s FOV, as illustrated in Figure 1.
Figure 7d provides a reference for further ranging methods, as it shows the measurement
error and the standard deviation of measurements for the direct ranging. A trend observed
here and in all remaining measurements is that standard deviation increases slightly with
distance but does not vary greatly between different configurations, as it can be observed
in Table 1. It provides an overview of the maximal measurement standard deviations. The
values are gathered only from data points where the total distance between the ranging
device and target is greater than 13 cm, as to eliminate the data points just beyond the
ranging device’s dead zone, which shows a large deviation from the expected values even
in a direct measurement configuration.

Table 1. Maximal measurement standard deviations in various configurations.

Distance to
Mirror (cm)

Maximum Measurement Standard Deviation (mm)

First Surface
Mirror (Clean)

First Surface
Mirror (Dusted)

Regular Mirror
(Clean)

Regular Mirror
(Dusted)

without Mirror

/ / / / / 3.0
5 2.8 2.7 2.7 3.7 /
10 2.7 2.7 2.6 2.9 /
15 3.0 3.4 2.9 3.7 /
20 2.8 4.5 2.8 3.3 /
25 3.0 3.5 3.3 2.9 /
30 2.8 3.6 3.2 3.0 /
35 3.8 3.5 3.6 3.4 /
40 3.3 3.4 3.2 3.5 /
45 3.7 3.5 3.8 3.7 /
50 3.5 3.9 3.8 3.9 /
55 3.4 4.1 3.6 3.9 /

min 2.7 2.7 2.6 2.9 /
max 3.8 4.5 3.8 3.9 /
avg 3.2 3.5 3.2 3.4 /

A more or less direct comparison between direct measurements and the ones reflected
by a mirror at 5 cm can be made. This is because the minimal distance between the ranging
device and target in both cases was 10 cm in both cases. By comparing Figure 8a to Figure 8c
(FOV redirected by a clean first surface and a regular mirror), any differences are within the
margin of measurement error and show outstanding similarity in shape. When Figure 7d
(direct measurement) is taken into consideration as well, some minor differences can be
observed among the three datasets, but those are once again below the designed accuracy
threshold. The rest of the measurements with FOV redirected by a clean mirror were still
very similar to the ones obtained directly in the overlapping measurement range.

Worse results were expected for the configurations with dusted mirrors. When com-
paring measurement results for clean mirrors to their dusted counterparts in Figure 8b and
Figure 8d for the dusted first surface and regular mirror, respectively, essentially no differ-
ences can be observed up to the 300 mm mark. From that point on, traces for configurations
with the mirror set closer than 150 mm from the ranging device continue the same way as
in Figure 8a or Figure 8b, but the remaining traces trend downwards. The effect diminishes
as the distance between the mirror and the ranging device increases. Measurements with
the mirror 40 cm or further from the ranging device seem effectively unaffected by the
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phenomenon. An explanation for the effect can be found by examining the reflected pulse’s
shape, as shown in Figure 9. When ranging at an infinity, no return signal should be
observed, but when ranging at an infinity while redirecting the FOV with a dusted mirror,
some weak return signal can be detected (blue trace in Figure 9). This is a reflection off the
dust on the mirror’s surface. It is below the detection threshold on its own, but when rang-
ing on a target is carried out with such a setup, reflections off the target and dust combine
into a single pulse (orange trace in Figure 9), resulting in a measurement error. It comprises
two effects, moving the ranging result towards lower measured time, and pulse widening.
In a direct time of flight ranging system with TOT-based walk error compensation, those
effects work in opposing directions. The first lowers the compensated ranging result, and
the other increases it. This study finds that moving the measurement towards lower time
has more influence on the ranging, which results in a negative measurement error. As the
target moves further away, the desired reflection grows dimmer, but the reflection off the
dust remains unchanged. This means that the error will grow in magnitude, which can be
observed in error plots in Figure 8b,d. The effect will be the most pronounced when the
mirror is positioned around the end of the partially dead zone, as there the most parasitic
reflection will be coupled into the receiver. As observed in Figure 8b,d, the amount of
light from the parasitic reflection is negligible when the mirror is positioned at 10 cm from
the ranging device or closer. With increasing distance, the parasitic reflection’s intensity
decreases alongside its influence on the measurement. Therefore, ranging with a dusted
mirror 40 cm from the target or further is hardly affected by the parasitic reflection.

The data about the effects of mirrors on ranging characteristics, presented in Figures 7 and 8,
cannot be directly compared to other researches. In spite of that, some relatable data are
found by taking multiple separate researches into account simultaneously. It has been
found in [18] that redirecting Microsoft Kinect 2.0’s FOV with mirrors results in an RMS
error ranging between 4 mm and 8 mm for raw data, which was reduced to roughly 2.5 mm
to 7 mm after the enhancement algorithm was applied. The data have to be read from the
provided graph, as no numerical data were provided. It can be compared to the results
of [27], where a camera’s raw performance was evaluated. The mean measurement error
has been found to be within 10 mm on the entire advertised measurement range of the
Microsoft Kinect 2.0 (4.5 m). Even though the data cannot be compared directly because
the distance to the object in the first study was not disclosed, it can be observed that the
performance of the camera with reflected FOV was close to the study with direct measure-
ments. This confirms our findings that clean mirrors do not have a large influence on the
camera’s performance. Another study that can be used for comparison used a movable
mirror to redirect a portion of VLP-16’s FOV [16]. It obtained measurement errors that
ranged from comparable to significantly worse than the reference measurements obtained
by direct measurements in [28]. Five of the twelve provided error measurements where
FOV was redirected by a mirror that exceeded the advertised measurement tolerance of the
lidar, which was in itself twice the expected amount according to [28]. A large contributor
to this discrepancy may have been the tolerances for mirror positioning, as we found
measurement results for direct ranging and ranging through a clean mirror to be effectively
indistinguishable from one another. The alternative explanation is that the mirror used
in [16] was not clean in at least some parts of the experiments.

In our tests, the use of prisms has proven to be more problematic than mirrors. When a
prism is placed within the ranging device’s dead zone, its influence is rather small, although
still observable. This can be observed in Figure 10a, where the blue trace (prism 5 cm from
the ranging device) trends towards increasingly negative measurement errors as the target
moves away. Since the prism’s first leg was in the ranging device’s dead zone, this reflection
likely did not contribute much. Therefore, internal reflections are the likely culprit.

When the prism is positioned 10 cm from the ranging device or further in our setup,
both of its legs rest within the ranging device’s partially dead zone. This means that
reflections off of both surfaces may be coupled straight back into the receiving photodiode.
When the target is nearby, the signal’s strength is strong enough to dominate the parasitic
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reflection; thus, the measurements are accurate. As the target moves further away, its
influence slowly diminishes until eventually, the parasitic reflections take over entirely.
When this happens, the measurements plateau, which can be clearly observed in Figure 10b.

The discussed results were obtained with a clean prism with AR coated legs, which is
the best-case scenario for redirecting FOV of a light ToF ranging device with a prism. With
that in mind, it can be concluded that prisms are inappropriate for redirecting the FOV
when the reflecting surfaces are beyond the ranging device’s dead zone.

5. Conclusions

In this article, we explored the influence of first surfaces and regular mirrors, as well
as AR-coated prisms, on the performance of a light ToF ranging device with TOT-based
walk error compensation. This was carried out for eleven distances to mirrors or prisms,
while the target was moved in 1 cm increments. It has been determined that there is no
significant difference between direct measurements and the ones where the FOV was with
clean mirrors. Furthermore, there was no significant difference between a first surface or a
regular mirror. When the mirror is dusted, the measurements are essentially the same as
with direct measurements, so long as the reflecting surface is within the partially dead zone
or closer. Beyond that, light reflecting off dust introduces a negative measurement error that
is more pronounced when the target is further away. This effect is more noticeable when the
mirror is closer to the ranging device. Beyond a certain distance, between the redirection
optics and ranging device, dust’s influence on the measurements becomes undetectable.
A method for detecting and compensating for the reflection off lint on a mirror might be
explored in the future to determine whether redirecting FOVs with mirrors shows potential
for use in industrial environments.

This study has also examined the usability of prisms for redirecting FOV of a direct
ToF ranging device. As long as the entire prism is well within the ranging device’s partially
dead zone or closer, a strong correlation between the set and measured distance can be
observed, even though parasitic reflections have some influence on measurements. When
the prism is placed further, parasitic reflections quickly exceed and overpower the strength
of reflections off the target when the target moves away, at which point the measurements
plateau. This was observed in the best-case scenario for the prisms—a clean prism with
AR-coated legs. The results of this study show that the prisms in general are not a feasible
option for achieving the set goals, unless transmitted and received light paths could be
separated entirely.
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Abstract: 6D pose estimation is a common and important task in industry. Obtaining the 6D pose
of objects is the basis for many other functions such as bin picking, autopilot, etc. Therefore, many
corresponding studies have been made in order to improve the accuracy and enlarge the range of
application of various approaches. After several years of development, the methods of 6D pose
estimation have been enriched and improved. Although some predecessors have analyzed the
methods and summarized them in detailed, there have been many new breakthroughs in recent
years. To understand 6D pose estimation better, this paper will make a new and more detailed review
of 6D pose estimation. We divided these methods into two approaches: Learning-based approaches
and non-learning-based approaches, including 2D-information-based approach and 3D-information-
based approach. Additionally, we introduce the challenges that exist in 6D pose estimation. Finally,
we compare the performance of different methods qualitatively and discuss the future development
trends of the 6D pose estimation.

Keywords: 6D pose estimation; learning-based approach; 2D-information-based approach;
3D-information-based approach; textureless and reflective objects; foreground occlusion; background clutter

1. Introduction

1.1. Overview

6D pose refers to the posture of an object, specifically on the basis of a translation
vector and a rotation vector. 6D pose estimation is an important step in many industrial
fields highly related to another challenge—problem tracking [1]—such as bin picking [2–6],
autonomous driving [7–9], augmented reality [10–12], SLAM (Simultaneous Localization
and Mapping) [13–15] and so on (Figure 1). There have been an increasing number of
applications of pose estimation developed in recent years. Autonomous vehicles use the
technology of 6D pose estimation to recognize roads and obstacles. In the factory, the robots
use the technology of 6D pose to recognize and grab objects. In the field of augmented
reality, 6D pose estimation is used to measure the pose of objects in the real environment
and add the virtual objects onto them in a correct pose. Some previous approaches could
only detect the object and ensure its position, as is the case for GPS (Global Positioning
System) [16] and radar detection [17]. These methods cannot measure the 6D pose of objects
accurately. In industrial developments, higher demands are made for new application
scenarios. Therefore, 6D pose estimation has become a hot topic in industry in recent years.
6D pose estimation uses a number of kinds of information to solve problems. It obtains
texture information, geometric information, and color information to measure the 6D pose
of objects. Due to the development of hardware in recent years, depth information is also
used frequently in 6D pose estimation. However, 6D pose estimation is faced with many
challenges, such as background clutter and inadequate information. Many methods have
been proposed to improve the performance and enlarge the range of applications of 6D
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pose estimation, and many new methods have been proposed in recent years. Additionally,
there are many challenges in the 6D pose estimation field. A deeper comprehension of these
challenges will also help arrive at more practical methods. To understand these methods
and challenges more deeply, more detailed classification and performance evaluation need
to be carried out. This review summarizes some relevant studies published in recent years
and divides these methods into three categories. At the same time, we also analyze the
advantages and disadvantages of these categories and challenges in 6D pose estimation.

Figure 1. 6D pose estimation applied in bin picking and augmented reality.

1.2. Classification

In this paper, the 6D pose estimation approaches are divided into two categories: 1. Learning-
based approach, and 2. Non-learning-based approach. The non-learning-based approach
is divided into two categories: 1. 2D-information-based approach, and 2. 3D-information-
based approach. The classification in this paper is mainly based on the core principle and
the input information of the various methods: Learning-based approaches mainly use
CNN, regression or some other methods based on deep learning to train a learning model
with adequate training data and then obtain the 6D pose estimation result on the basis
of these models. Approaches that do not use deep learning belong to the following two
categories. 2D-information-based approaches mainly use the 2D information of the scene,
such as RGB images. 3D-information-based approaches mainly use the 3D information of
the scene, such as point clouds and RGB-D images. Both 2D-information-based approaches
and 3D-information-based approaches convert the 6D pose estimation into image retrieval.
The two types of approach both calculate the key points or key features and match the
input image with the most similar image in the dataset according to the key points or
key features. However, they also have some obvious differences, which will be covered in
following sections.

The main purpose of learning-based approaches is to train a proper model to mea-
sure the 6D pose of an unknown situation according to the training data. Many kinds of
model can be used to measure the 6D pose, such as regression models and CNN mod-
els. There are many classification methods for learning-based approaches, and those widely
accepted among them are introduced in this paper. Keypoints-based approaches adopt
a two-step category to measure the 6D pose, which is easier to implement than other
approaches. Meanwhile, the aim of holistic approaches is to train an end-to-end network
to measure the 6D pose of an object. It sees the image as a whole and tries to predict the
location and orientation of the object in a single step and discretize the 6D space, converting
the pose estimation task into a classification task. However, holistic approaches are more
complex and time-consuming than keypoints-based approaches.
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As for 2D-information-based approaches, the main purpose is to find the correlation
between the input image and one of the template images through the 2D information
contained in the image. Actually, 2D-information-based approaches converts the pose
estimation into an image-matching problem. The matching results have a great influence
on the results of the pose estimation. 2D-information-based approaches can be divided
into real-image-based approaches and CAD-image-based approaches according to the kind
of template used. When the approach uses real images as a template, it belongs to the
real-image-based approaches. If the approach uses images generated by CAD model, it can
be regarded as a CAD-image-based approach. In general, CAD-image-based approaches
are more accurate than real-image-based approaches because the images generated by CAD
models contain little noise. However, sometimes CAD models cannot be easily obtained,
so real images are used as a template in such situations.

3D-information-based approaches also focus on the matching between the input and
the dataset; however, they use the 3D information of the object, such as point clouds
and RGB-D images. 3D-information-based approaches can be divided into two categories.
The main idea of matching-based approaches is to match the input image and the template
directly and to take the 6D pose of the matched template as the pose estimation result
of the input image. Local descriptor-based approaches measure the 6D pose using the
correspondence between the descriptor of input images and templates. Matching-based
approaches require large storage to save enough templates to ensure the accuracy of pose
estimation, and the more templates it has, the more accurate the pose estimation result
will be.

1.3. Challenge

Although great progress has been made in the research of 6D pose estimation in
recent years, there are still some challenging problems to be solved in practical application.
When the background is messy, the viewpoint and illumination change greatly, or the
scene has less texture, the accuracy and the robustness of 6D pose estimation needs to be
improved. Learning-based approaches are relatively robust in these conditions. However,
2D-information-based approaches and 3D-information-based approaches do not perform
well. However, for learning-based approaches, adequate training data and training time
are required, and challenges related to the requirement of offline training and practicality
are also problems to be solved.

1.4. Structure Layout

As shown in Figure 2, the rest of this paper can be divided into four parts: First, we in-
troduce some research contributions in recent years in the three approaches and describe
the advantages and challenges they are faced with in detail. We introduce learning-based
approaches in the second section, 2D-information-based approaches and 3D-information-
based approaches in the third section. Next, we focus on the challenges of 6D pose estima-
tion. Then we compare the three approaches qualitatively. Finally, we give some views on
the future development of the 6D pose estimation.

Figure 2. Structure layout of the review.
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2. Learning-Based Approaches

In recent years, machine learning-based algorithms have become a hot topic due to
new concepts’ emergence, such as deep learning and neural networks. Many scholars
have applied machine learning-based methods to 6D pose estimation and achieved good
results. Posenet [18] is a monocular 6D relocalization system that trains a convolutional
neural network (CNN) to regress 6D poses. The network transformed the problem of 6D
pose estimation into a regression problem for which the input is a single RGB image and the
output is the camera’s 6D pose by using an end-to-end approach. To address the limitation
of the lack of training data, a method was proposed that could generate large regression
datasets of camera pose automatedly based on structure from motion. Crivellaro [19] also
trained a CNN (Figure 3) to predict the 6D poses of objects that are partially visible. The
key idea of the method was to predict the 3D-2D projections of feature points on each part
of the object. When the test image is partially visible, the method could measure the 6D
pose according to the feature points of visible part. When the test image is fully visible,
the method is able to achieve more accurate results by combining all the feature points of
the part. Particle Swarm Optimization (PSO)-based methods [20,21] demonstrate superior
performance compared to Iterative Closest Point (ICP) algorithms. Hoang et al. [22] com-
bined CNN with Simultaneous Localization and Mapping (SLAM), which improved the
method [23] by adding a 6D object pose detector and measuring the 6D pose from different
viewpoints to achieve a robust object detector system. However, there is a special problem
for 6D pose estimation methods based on deep learning.

Figure 3. Architecture of the CNN predicting the projections of the control points.

Symmetrical objects’ 6D poses (Figure 4) are difficult to measure correctly using
normal deep learning methods [24], because the 6D pose of an object does not change
from a fixed point of view when it is rotated 180 degrees. However, their actual ground
truth is obviously different. For instance, if a network is trained to predict the pose using
the squared loss between the ground truth poses and the predicted poses, it will con-
verge to a model predicting the average of the possible poses for an input image, which
is of course meaningless. Pitteri et al. [25] proposed an efficient method combined with
Faster-RCNN, which relies on the normalization of the pose rotation. Manhardt et al. [26]
proposed a method that was able to detect the rotation ambiguities and characterization of
the uncertainty in the problem without further annotation or supervision. Zhang et al. [27]
used the rigid transformation-invariant point-wise features of the point clouds as input fea-
tures and used a hierarchical neural network that combined global point cloud information
with the local patches to predict the key point coordinates.

2.1. Keypoint-Based Approaches

Keypoint-based approaches establish 2D-3D correspondences between images and
then measure the pose according to these correspondences [28–30]. The procedures for
keypoint-based approaches can be divided into two steps: 1. extract the 2D feature points
in the input image; and 2. regress the 6D pose results using a PnP algorithm. BB8 [31]
leveraged CNN to predict the 2D projections of eight vertices of the 3D bounding box of
the object (Figure 5). To solve the challenges presented by textureless symmetrical objects,
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BB8 restricted the range of the rotation angle of the training data and used a classifier to
predict the rotation angle during the estimation step. However, when the object is partially
invisible, BB8 may not obtain the correct 3D bounding box, which would have an adverse
influence on PnP. To solve this problem, Hu [32] et al. proposed a method that segmented
the image into several patches and made them predict both to which object they belonged
and where the 2D projections were. Then, all the patches belonging to the same objects
would be combined to measure the 6D pose based on PnP. Because each patch of the
object is used to measure their respective local pose, this method was able to perform
well when faced with occlusion. PVNet [33] predicted the direction of each pixel to each
keypoint; thus, the spatial probability distribution of 2D key points can be obtained in
a manner like RANSAC. According to the distribution, uncertainty-driven PnP could be
used to measure the 6D pose. Predicting the direction of pixels and keypoints makes the
local features more prominent. Even if one feature point is invisible, it can be positioned
by means of another visible part. Jeon et al. [34] proposed a method involving learning
orientation-induced primitives, rather than employing 3D bounding boxes, and calculated
the rotation and translation vector in different modules. The methods mentioned above are
all two-step-based; however, Hu [35] revealed the weakness of this kind of method. First,
it is not an end-to-end system. Additionally, the loss function of the neural network cannot
represent the accuracy of 6D pose estimation. Therefore, Hu et al. proposed a single-stage
6D pose estimation method that could directly regress the 6D pose on the basis of groups
of 3D-to-2D correspondences associated with each 3D object keypoint.

Figure 4. Symmetrical objects.

Figure 5. The red bounding boxes for the pose estimation results using BB8.
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2.2. Holistic Approaches

Unlike keypoint-based approaches, holistic approaches are an end-to-end architecture
that can be faster than keypoint-based approaches. Kendall et al. [36] proposed PoseNet,
which firstly applies the CNN architecture to 6D pose estimation, and found that it was able
to adapt well to the environment. Liu et al. [37] proposed SSD, which was the first method
to associate bounding box priors with the feature maps of different spatial resolutions in
the network that was able to detect objects in images using a single deep neural network.
This method improved accuracy and retained a low time cost. Kehl et al. [38] proposed
SSD-6D, which extended the SSD method to 6D pose estimation and allowed for easy
training and handling of symmetries. Do et al. [39] proposed the deep-6DPose network, the
detection and segmentation in which leverage the Region Proposal Network (RPN) [40]
based on Mask R-CNN [41]. In pose estimation, it decouples the parameters into translation
and rotation so that the rotation can be regressed via a Lie algebra representation. However,
because the network uses the ROIs from RPN as inputs and predicts the 6D pose of the object
in ROIs, the network was not able to work well when measuring the 6D pose of small or
symmetrical objects. To overcome this problem, Xiang et al. [42] proposed a new network
PoseCNN. This method calculated the translation vector by ensuring the center of the
objects in the image and estimating the distance between the center and the camera. Then it
calculated the rotation matrix by regressing to a quaternion representation. Additionally,
it especially employed a novel loss function for symmetric objects. The method was able to
handle occlusion and symmetric objects in cluttered scenes with RGB or RGB-D images
as input.

2.3. RGB-D-Based Appraoches

Compared with the learning-based approaches mentioned above, which only use
the RGB information, RGB-D-based learning approaches combine color information and
depth information to measure the pose of objects, and are able to solve the problem of
insufficient information in approaches that only use color information. Additionally, due to
the emergence of lots of RGB-D datasets, an increasing number of studies on RGB-D-based
learning approaches are being performed. In [43], Wang et al. proposed a novel method
named DenseFusion that provided a two-stage method for measuring the 6D pose. In the
first stage, DenseFusion uses a heterogeneous network to deal with the RGB data and point
cloud data, and to save their original structure. In the second stage, a full convolutional
network is used to map each pixel in RGB crop to colored feature space and uses a network
based on PointNet to map each point in the point cloud to geometrical feature space. Then it
merges the feature points in the colored feature space and the geometrical feature space and
outputs a 6D pose estimation result. In addition, it finally refines the result by loop learning.
In [44], Chen et al. proposed a 6D pose estimation framework named G2L-Net. Firstly,
it extracts the coarse point cloud from RGB-D images. Then, the point cloud is added
into the network to achieve 3D segmentation and object translation predictions. Finally,
the fine point cloud is transferred into a local canonical coordinate to estimate initial object
rotation. In [45], PVN3D was proposed, in which the method based on 2D key points was
extended to 3D key points, making full use of geometric constraint information of rigid
objects and improving the accuracy of the 6D estimation significantly. In [46], a method
named CosyPose was proposed, which used multiple cameras to estimate 6D pose. Firstly,
it estimates the 6D pose of objects in each image and then matches the individual 6D
object pose hypotheses across different input images in order to jointly estimate the camera
viewpoints and 6D poses of all objects in a single consistent scene.

2.4. Conclusions

In this section, we introduced learning-based approaches and classified the appraches
into three categories: keypoints-based approaches, holistic approaches, and RGB-D-based
approaches. Keypoints-based approaches are two-step approaches that extract 2D-3D point
pairs and then use PnP to calculate the 6D pose of the object. Holistic approaches use an end-
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to-end structure to measure the 6D pose, which is faster and more robust than keypoints-
based approached. RGB-D-based learning approaches combine color information and
depth information to achieve a more accurate and robust 6D pose result.

The comprehensive performance of learning-based approaches is better, as can be seen
in the Amazon Robotic Challenge. The first Amazon Robotic Challenge was held in 2015 in
the USA [47]. The competition presents a challenging problem that integrates many fields,
including pose estimation. Many teams use learning-based approach and obtain robust
results. In [48], the researchers presented a method for multi-class segmentation from
RGB-D data. Objects were segmented by computing the possibility of each pixel belonging
to each object by using a network. However, learning-based approaches still have some
weaknesses. They require plenty of storage for storign training data and enough time to
train the model. In conclusion, there are three challenges facing learning-based approaches.
Firstly, the approaches require plenty of training data to train the model. Secondly, they
require plenty of time to train the model before online use. For some complex objects that
need much training data, this may take serval hours or even several days to train the model,
thus restricting the possible applications of such approaches. Finally, these approaches
cannot perform well when measuring poses that do not exist in the dataset.

3. Non-Learning-Based Approaches

3.1. 2D-Information-Based Approaches

Compared with 3D information, 2D information can be obtained more easily by
simpler devices such as Charge-Coupled Device (CCD) cameras, Complementary Metal
Oxide Semiconductor (CMOS) cameras, or even color cameras that can obtain the color
information of objects. There is much 2D information that can be used to measure the 6D
pose of objects, for instance, geometric information, texture information, color information,
and so on. Scale-invariant feature transform (SIFT) features [49] and speeded up robust
features (SURF) [50] are the early and classical features for pose estimation based on
the texture of objects. SIFT and SURF features are both reliable and can achieve precise
matching; however, they rely on the texture information of objects. Therefore, they cannot
be used to solve the pose estimation of textureless objects. Zhang et al. [51] used geometric
information, which does not rely on texture, to solve the pose estimation problem of
textureless objects. E. Miyake et al. [52] combined the color information in the 6D pose
estimation to improve accuracy and robustness. 2D information is extracted for the matching
of the template. According to the dimensions of the template, approaches based on 2D
information can be divided into two categories: 1. CAD image-based methods; and 2. real
image-based methods.

3.1.1. CAD Image-Based Approaches

In contrast to real image-based approaches, CAD image-based approaches are more
suitable for industrial products. The virtual images (used as templates) generated by CAD
models are more accurate than real images, as the render process is not affected by il-
lumination or blur. Moreover, CAD models can be obtained in industrial applications.
Therefore, many methods based on 3D CAD model have been proposed. A hierarchi-
cal model [53] has been proposed (Figure 6), combining a coarse-to-fine search with
similarity scores [54] calculated between a template and a real image or between tem-
plates. In [55], a perspective cumulated orientation feature (PCOF) was proposed based
on the orientation histograms extracted from randomly generated 2D projection images
using CAD models. Muñoz et al. [56] proposed the use of edge correspondences to esti-
mate poses, with a similarity measure encoded using a pre-computed linear regression
matrix. The Fine pose Parts-based Model (FPM) [57] was introduced to localize objects
in an image, and to estimate their fine pose using the given CAD models. Pei et al. [58]
proposed a robust method that only used one pair of vanishing points and one structural
line to estimate the relative pose between image pairs. Peng et al. [59] proposed a method
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which used several cameras to detect geometrical features and then combined their results
to obtain the final result.

Figure 6. Object recognition using the hierarchy of views.

In [60], the Epipolar Geometry method and direct estimation method were used to
estimate the 3D parameters, which were then used to construct the transformation ma-
trix. In [61], 6D pose estimation was used in augmented reality. A local moving edge tracker
was used to provide real-time tracking of points normal to the object contours. In addition,
an M-estimator was used, integrated with a robust control law, to obtain good robust-
ness. Straight lines and curves were both used in this method to complement the virtual
visual servoing. In [62], 6D pose estimation was used for end effector tracking in a scanning
electron microscope to aid in enabling more precise automated manipulations and measure-
ments. Visible line features were also used to update the pose results. Kemal et al. [6] pro-
posed a CAD model-based tracking method for visually guided microassembly. They used
multiple cameras to track objects and find feature points along the edges of objects. Then,
the 3D-3D for each feature point was built, and the 6D pose was calculated.

Whether real images or CAD models are being used as the template, the performance
of the matching step determines the accuracy of pose estimation. Improving the efficiency
and accuracy of template matching has become an important problem to ensure the results
of pose estimation.

Additionally, the number of templates influences the accuracy of the pose estimation.
The more templates there are, the more accurate the pose estimation will be. However, a large
number of templates requires lots of storage and search time. In [63], a part-based efficient
template matching method was proposed which was able to accelerate the matching step
and improve the accuracy of pose estimation. Each of the templates leveraged a different
forest and independently encoded similarity function.

3.1.2. Real Image-Based Approaches

Although it is possible to achieve precise results when using 3D CAD models, some-
times accurate 3D CAD models cannot be obtained. Therefore, real images are used as
the template under these conditions. The histogram of gradients (HoG) [64] is a popular
method that is computed on a dense grid with uniform intervals for better performance.
Guo et al. [65] used multi-cooperative logos to measure 6D pose. Hinterstoisser [66] pro-
posed a method including a novel image representation for template matching designed
to be robust to small image transformations. It used the gradient orientation of the edges
of objects to create templates. The method was able to be extended if 3D information was
available. However, because obtaining adequate real image templates is time-consuming
and challenging, and generating the images by CAD model is becoming easier, there is not
much research on real image-based approaches.
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3.1.3. Conclusions

In this part, we introduced 2D-information-based approaches and classified the ap-
proaches into two categories: CAD image-based approaches and real image-based ap-
proaches. The difference between them is which type of template is used. CAD image-based
approaches require a CAD model of the object, but templates can be generated conveniently.
Real image-based approaches use real images as templates, but if there is clutter in the real
images, the information may be extracted incorrectly.

Compared with 3D-information-based approaches, 2D-information-based approaches
are less robust, because these approaches use 2D information, which has less data than
3D information. Additionally, complex scenes have a bad influence on the performance
of these approaches. The biggest weakness for 2D-information-based approaches is that
they are not able to adapt to some special scenes, such as scenes with strong changes in
illumination, large numbers of repeated structures, textureless scenes, and so on.

3.2. 3D-Information-Based Approaches

Although there are many kinds of 2D information, it is difficult to use 2D information
to measure the 6D pose under some special conditions, or the method requires complex
algorithms to obtain precise results. With the development of hardware, more and more
devices that can record 3D scene information are appearing, such as depth cameras [67] and
3D scanners [68]. Compared with 2D information, 3D information preserves the original
appearance of the object, which is more useful for measuring 6D pose [44,69]. Combined
with 3D information, the method is more robust and can obtain more accurate results.
Mainstream methods can be broadly divided into the following two categories.

3.2.1. Matching-Based Approaches

The aim of matching-based approaches is to search for the most similar template in the
dataset and return the 6D pose of the template. Because the 3D original data is always too large,
processing these data directly can be computationally expensive. Therefore, many preprocess-
ing methods have been proposed to reduce the complexity of the task. Zhang et al. [70]
proposed two methods for solving this problem. One was to use a 2D/2.5D object detector
for scene point clouds. YOLO was used to segment the scene point cloud with 2D bounding
boxes due to their lower time consumption. The other preprocessing method was to extract
the keypoints in the template point clouds. Points with more information, such as the
points on edges, were preserved and points on surfaces were removed in order to compress
the point cloud. Konishi et al. [71] combined PCOF-MOD (multimodal PCOF), balanced
pose tree (BPT), and optimum memory rearrangement into 6D pose estimation to optimize
data storage structure and lookup speed. To improve the accuracy of matching, Park [72]
et al. proposed a novel multi-task template matching (MTTM) framework that finds the
nearest template of a target object from an image while predicting segmentation masks
and a pose transformation between the template and a detected object in the scene using
the same feature map of the object region. In [73], research was carried out on tracking
and control for micro-electro-mechanical system (MEMS) microassembly. The correlation
between the real-time 3D vision tracking method and the control law based on 3D vision
was demonstrated, and a pose-based visual servoing approach was used to to enable
a precise regulation toward zero of 3D error.

3.2.2. Local Descriptor Approaches

Approaches based on the local descriptor define and calculate a global descriptor on
the model offline. The global descriptor should be invariant with respect to rotation and
translation. Then, the local descriptor is calculated and matched with the global descriptor
online. The iterative closest point (ICP) [74,75] algorithm is a classical one that is able to
calculate the pose relation between two coordinates according to two sets of point clouds. 6D
pose can be measured by the correspondence between them or as the result of voting. Guo
et al. [76] proposed a global method named Super Key 4-Points Congruent Sets (SK-4PCS),
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combined with invariant local features of 3D shapes, thus reducing the amount of processed
data. Akizuki et al. [77] proposed a method aimed at everyday tools that does not rely
on the 3D model of the measured object. It assumed that the same kinds of tools possess
the same part-affordance. Therefore, using the 3D models for similar kinds of object, the
method was able to measure the pose of objects belonging to this kind on the basis of
the spatial relationships of part-affordance. Yu et al. [78] used the improved Oriented Fast
and Rotated Brief (ORB) [79] feature and rBRIEF descriptor (a descriptor developed based
on binary robust independent elementary features (BRIEF) [80]) to obtain a coarse match,
and then culled mismatches to retain more correct matches. They also proposed a hybrid
reprojection errors optimization model (HREOM) to improve the accuracy of the result by
minimizing 3D-3D and 3D-2D reprojection errors. To measure the 6D pose of large-scale
objects that are partially visible, David et al. [81] proposed a method based on semi-global
descriptors. They used semi-global descriptors for scene segments and model views in
combination with up-sampling and segment label merging techniques and obtained more
reliable results than with other descriptors.

3.2.3. Conclusions

In this part, we introduced 3D-information-based approaches and classified the ap-
proaches into two categories: matching-based approaches and local descriptor approaches.
Matching-based approaches are more computationally expensive; however, local descriptor
approaches require some preprocessing oofline.

The biggest weakness for approaches based on 3D information is that they do not
perform well when the object is reflective, which is due to how the approaches work. When
measuring the 6D pose of reflective objects, these approaches are not able to obtain the
depth information (or accurate point clouds) of the object. Additionally, another weakness
is that the efficiency of this approach is relatively low, because point clouds and depth
images include a lot of data, causing computational burden.

4. Comparison

In this section, we will compare these approaches in detail according to their perfor-
mance in Table 1. Specifically, the accuracy, the storage cost, the robustness, the time cost,
online performance and range of application will be discussed. The mentioned indicators
are compared qualitatively in Table 1 according to the information in these papers, where
A represents the best performance and C represents the worst performance.

Table 1. Comparison of three kinds of approaches.

Accuracy
Storage

Cost
Robustness Time Cost

Online
Performance

Range of
Application

Learning-based
approaches

Keypoint-based approaches B B B C C B

Holistic approaches C B B B B B

RGB-D-based approaches A C A C C C

Non-learning-based
approaches

2D-information-based approaches B A C A A A

3D-information-based approaches A B B B B C

Accuracy: The accuracy of holistic approaches is worse than that of 2D-information-
based approaches and 3D-information-based approaches. This is because holistic approaches
transform the problem of 6D pose estimation into a problem of classification. The accuracy
of classification decides the accuracy of 6D pose estimation. However, RGB-D-based ap-
proaches use more comprehensive information. The depth information is able to provide
the overall morphology of a rigid body, while the color information is able to describe the
position of keypoints. Therefore, RGB-D-based approaches that combine depth information
and color information are able to improve the accuracy. 2D-information-based approaches
and 3D-information-based approaches convert the 6D pose estimation problem into a tem-
plate matching or coordinate transformation problem. Both of them are able to measure the

394



Appl. Sci. 2021, 11, 228

6D pose more specifically. 3D-information-based approaches use more information than
2D-information-based approaches, so they perform better on accuracy.

Robustness: Robustness in this paper mainly refers to the anti-interference performance
of approaches to noise and environmental changes. Plenty of data is used to train a network
in learning-based approaches. The model adequately considers the information and situation
in the input scene, so learning-based approaches have better robustness than the other two
approaches. Additionally, using only color information may lead to missing keypoints,
while depth information provides some global pose information and is complementary to
color information. After a long period of training, learning models are able to distinguish
object features and environmental noise. Although the other two approaches are also able
to distinguish information from the environment efficiently, some wrong information may
be taken into consideration under some complex situations where background clutter and
foreground occlusion are present.

Storage cost: Learning-based approaches need the most storage because the training
process of the learning models needs plenty of data. The other two approaches need to
store templates. However, the number of templates is lower than the training data required
for learning-based approaches. In particular, for coarse-to-fine methods, which just need to
match a basically similar template with the input image, much fewer templates are needed.
In terms of a comparison between 2D-information-based approaches and 3D-information-
based approaches, the former needs less storage, because 2D information is smaller than
3D information.

Time cost and real-time performance: Because the time an approach takes determines
the real-time performance of the approach, the two indicators are discussed together in
this part. Learning-based approaches can be divided into two steps: offline training and
online measuring. The offline step is time-consuming because it needs to train a model using
plenty of data, which means that repeated calculations are necessary, although a GPU could
accelerate the training process. However, in the online step, the 6D pose can be measured
directly by the trained model, which costs very little time. 2D-information-based approaches
and 3D-information-based approaches an also be divided into an offline step and an online
step. In the offline step, many templates are generated from different angles (however,
there are also some methods that do not need a lot of templates). Meanwhile, in the online
step, the proper template needs to be retrieved from template dataset, which is a little
time-consuming. Therefore, in the online step, the real-time performance of learning-based
approaches is the best. 2D-information-based approaches cost less time than 3D-information-
based approaches because the retrieval of 3D information is more time-consuming.

Range of application: Due to their principle, 3D-information-based approaches are not
able to handle the problem of 6D pose estimation of reflective objects. However, such objects
are common in industry, such as metal parts. Learning-based approaches need plenty of
time to train a network, which may not satisfy the requirements of real-time performance.

In this section, we compared the approaches with respect to six different aspects. In gen-
eral, learning-based approaches have the best robustness, but these approaches need lots of
storage to save training data and plenty of time to train the model. 3D-information-based
approaches achieve the most accurate results, but they cannot be used on reflective ob-
jects. The range of application of 2D-based approaches is the widest; however, 2D informa-
tion is easily affected by the environment. Therefore, the three approaches all have their
advantages. In different situations, different approaches are needed.

5. Challenges

5.1. Textureless and Reflective Objects

As a special case in pose estimation, the pose estimation of textureless objects is
challenging. Due to the lack of reliable texture information on the surface of such objects,
it is difficult to extract feature points on them. Therefore, many methods based on the
surface texture information of objects cannot effectively measure the 6D pose of such objects.
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However, textureless objects are common in industry. Therefore, the pose estimation of
textureless objects is very important.

Zhang et al. [82] transformed sliding windows to scale-invariant RGB-D patches and
applied a hash voting-based hypothesis generation scheme to compute a rough 6D pose
hypothesis and then employed particle swarm optimization to improve the result, which
achieved high precision and good performance on three datasets. Pan et al. [83] coarsely
segmented the object in the point cloud and precisely measured the pose results in the gray
image using a view-based matching method.

The methods mentioned above used a depth camera or 3D scanning device to obtain
the depth image or the point cloud of objects. However, for objects with reflective surfaces,
such as metal parts, depth information is hard to acquire. Therefore, some other kinds
of information are used in pose estimation. Geometrical information is a reliable kind
of information for textureless objects. Based on the above perspective, He et al. [84] pro-
posed a new method (Figure 7) making full use of the geometrical information of objects.
It used geometric features, such as straight lines, to generate descriptors of the objects,
and proposed the GIIBOLD algorithm for matching the input image and the template
image. Furthermore, accurate 2D-3D point pairs were acquired on the basis of the matched
geometric features. Finally, the 6D pose was measured using the PnP-RANSAC algorithm.
This method leveraged simple geometrical information, achieving fast matching and accu-
rate measurement without the requirement for plenty of storage and time. Zhang et al. [85]
first detected the object in the RGB image using a 2D bounding box and then measured the
pose result in the edge image. Pan et al. [86] used multiple appearance features including
color, size and aspect ratio to distinguish objects from environmental clutter and measured
the 6D pose. Zhang et al. [51] proposed a novel method for measuring textureless objects
on the basis of RGB images. It followed a coarse-to-fine procedure, using only the shape
and contour information of the input image. Several template images with poses similar
to the input image were selected to match with the input. Then the contour and shape
information, specifically the ORB features, were used to establish 2D-3D correspondence
and finally to calculate the 6D pose. On the basis of the studies above, without reliable
texture information, there are many kinds of information can be leveraged, such as con-
tour, color, shape, and so on. Accurate results can be obtained through the proper use of
this information.

Figure 7. The overall workflow chart.

5.2. Foreground Occlusion

In complex industrial scenes, the condition of object occlusion appears frequently.
Because the target is obscured by other objects, the recognition of the target’s features is
disturbed. In addition, due to part of the object information being missing, it is difficult to
calculate accurate pose results. As a common condition, object occlusion has been studied
by many researchers.
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Crivellaro et al. [19] proposed a method for representing the pose of each part on the
basis of the 2D reprojections of a small set of 3D control points. It was able to predict the 6D
pose of the object by predicting the pose of the visible part through the reprojections of 2D
control points. Even if the object was only partially visible, the method was able to calculate
the 6D pose of the object. If the object had several visible parts, the method was able to com-
bine all the information and obtain more accurate results. Distinct from the method above,
Dong et al. [87] used 3D information as input and chose an end-to-end strategy. They pro-
posed a novel network named Point-wise Pose Regression Network (PPR-Net). For each of
the points in the point cloud, the network regressed a 6D pose of the object instance that the
point belonged to. In the pose space, a clustering method was adopted in order to segment
multiple instances from the clutter point cloud, and an instance’s pose can be computed
by averaging each subsidiary point’s pose prediction. Essentially, the method used the
information of visible parts to predict the pose of the object. The more parts of an object that
could be seen, the more reliable the results obtained. Chen et al. [88] proposed a network
which took the point cloud as input and regressed the point-wise unit vectors pointing
to the 3D keypoints. Then the vectors were used to generate keypoint hypotheses from
which 6D object pose hypotheses were computed. Tekin et al. [28] predicted the 2D image
locations of the projected vertices of the object’s 3D bounding box and used a PnP algorithm
to estimate the object’s 6D pose. Taking RGB-D images as input, Zhang et al. [89] combined
holistic and local patches to measure the 6D object pose and obtained high precision and
good performance under conditions of foreground occlusion and background clutter.

In conclusion, the principle of the method for dealing with object occlusion is to use
the information of any visible parts to predict the 6D pose of the whole object. Generally,
the number of methods to achieve this based on 3D information is greater than the number
of those based on 2D information. In addition, among the methods based on 2D information,
it is more appropriate to use outer information such as bounding boxes and contours.
Because inner information, such as the texture, is occluded by other objects, the extraction
of the information is affected to a great extent.

5.3. Background Clutter

Background clutter is also a challenge in 6D pose estimation. Because the target is
surrounded by much useless information, it is difficult to measure the 6D pose directly.
However, due to the complexity of practical scenarios, there are many conditions under
which it is necessary to measure the 6D pose of objects in clutter.

He et al. [41] proposed Mask R-CNN, which efficiently detected objects in an image
while simultaneously generating a high-quality segmentation mask for each instance.
It extended Faster R-CNN by adding a branch for predicting an object mask in parallel
with the existing branch for bounding box recognition. Mitash et al. proposed a method for
measuring the 6D pose of objects in clutter. A global optimization process was employed to
improve candidate poses by taking into account scene-level physical interactions between
objects. Then, the combinations of candidate object poses were searched using a Monte
Carlo Tree Search (MCTS) process that used the similarity between the observed depth
image of the scene and the rendering of the scene given the hypothesized pose as a score,
guiding the search procedure. Li et al. [90] proposed a two-step method for measuring
the 6D pose. The first step was few-shot instance segmentation to segment the known
objects from RGB images. Chen et al. [91] proposed a method based on point clouds that
detected objects in an end-to-end manner. They introduced a point cloud-based 6D target
object detection method that used segmented object point cloud patches to predict object
6D poses and identity. It used a point cloud segmentation procedure that was easier to
visualize and tune in order to overcome the problem caused by background clutter.

5.4. Deformable Objects

The 6D pose estimation of deformable objects is a huge challenge in the field, because
the posture of the objects is unpredictable and there are many ways for the objects to
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deform. Thus, lots of conditions need to be taken into consideration, resulting in pressure
on the algorithm and calculation.

Li et al. [92] proposed a novel method that was able to classify and estimate the
categories and poses of deformable objects. They simulated the deformable objects and
obtained the depth images from different viewpoints in different postures as a dataset.
By extracting features and using deep learning, they set up a codebook for the object, which
could be used in training process. This method uses learning-based approaches and sets up
a two-layer framework to solve the problem of 6D pose estimation. Lots of storage space is
needed, but the method would be robust in such complex situations. In [93], a predictive
and model-driven approach was proposed to solve this problem. A dataset was built up by
using the picked-up garments in multiple poses under gravity. The dataset was orginized in
an efficient way, increasing the speed of the searching process. The proposed method con-
structed a fully featured 3D model of the garment in real time and used volumetric features
to obtain the most similar model in the database in order to predict the object category and
pose. Accurate model simulation could also be used to optimize the trajectories of the ma-
nipulation of deformable objects. Caporali et al. [94] proposed a four-step method to solve
this problem of grasping clothes by using a point cloud. Firstly, the instance segmentation
was performed, and then a wrinkledness measure was implemented to robustly detect
the graspable regions of the cloth. Next, the identification of each individual wrinkle was
accomplished by fitting a piecewise curve, and finally a pose for each detected wrinkle
was estimated.

5.5. Conclusions

In this section, four challenges were discussed. For reflective objects, 3D-information-
based approaches cannot accurately measure their pose. For textureless objects, only the
geometrical features can be extracted for calculating the 6D pose of objects. Faced with
foreground occlusion, many methods use the visible part to describe the invisible part
of objects and measure their 6D pose. For background clutter, instance segmentation is
used to separate the object, and then the 6D pose is measured. For deformable objects,
images of the objects are captured in different poses in different views and a dataset is set
up. The best matching is found in the dataset when measuring the pose of objects.

6. Conclusions

This paper divided solutions of 6D pose estimation into three kinds of approaches and
made some detailed introductions to their advantages and disadvantages. Then, this paper
focused on the challenges in 6D pose estimations, introducing the difficulties of these
problems and summarizing some feasible solutions. Finally, some approaches were quali-
tatively compared with respect to several different indicators. Learning-based approaches
achieved the best robustness. However, they are time-consuming and require lots of stor-
age. 2D-information-based approaches are easy to implement and can be applied online.
3D-information-based approaches can achieve higher accuracy than 2D-information-based
approaches, but they require more information (depth information) to be collected and
dealt with, and they cannot measure the 6D pose of reflective objects. Generally, the meth-
ods presented have already satisfied the requirements of industrial application for the 6D
pose detection of general objects. However, these methods cannot maintain their excel-
lent performance under some challenging conditions. In future research, learning-based
approaches should be further developed. On one hand, their robust performance should
be retained. On the other hand, the offline training time should be decreased. These ap-
proaches can also be combined with 2D-information-based and 3D-information-based
approaches to obtain more accurate results.
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Abstract: To ensure smooth robot operations, parameters of its kinematic model and a registration
transformation between robot base and world coordinate frame must be determined. Both tasks
require data acquired by external sensors that can measure either 3D locations or full 6D poses.
We show that use of full pose measurements leads to much smaller robot orientation errors when
compared with the outcome of calibration and registration procedures based on 3D data only. Robot
position errors are comparable for both types of data. The conclusion is based on extensive simulations
of 7 degrees of freedom robot arm and different levels of pseudo-noise perturbing both positional
and rotational components of pose.

Keywords: robot calibration; robot remastering; calibration uncertainty; part probing; uncertainty
reduction; sensor feedback

1. Introduction

The topic of robot calibration is well-established, yet it is still a significant factor
identified by end-users as being negatively impactful for robot usability and utility [1].
Calibration is followed by registration of robot frame to world frame so the accurate
encoder angles can be obtained from inverse kinematic and fed to the robot’s controller.
Both procedures have a profound impact on robot performance and, as pointed out in [2],
“it is impossible to distinguish the end-effector error contributed either by” incorrect model
parameters or by inaccurate registration transformation.

Various methods of calibrating a robot’s kinematic chain have been developed (e.g., [3–5]).
Many of these methods rely on intrinsic kinematic models (e.g., [6–9]), which minimize
complicated, nonlinear error functions (unless only linearized error models are considered,
which may exchange uncertainty for mathematical simplicity) in at least N-dimensional
space, where N is the number of controllable joints in the serial kinematic chain. Calibra-
tions based on extended modeling (i.e., beyond rigid kinematics) include compensating for
thermal effects [10], and elastostatic [11] and higher order errors [12]. Likewise, examples
of non-kinematics-based calibrations can be seen in [13,14]. There are also compensation
techniques that can handle both kinematic and non-kinematic errors, but they require
steady calculations and application of corrections during on-line operations [15–17], or
dynamically selected pre-calculated, hand–eye calibrations from a table [18].

Robot calibration procedures depend on theoretical models of the mechanical system’s
forward kinematic. For a serial open chain robot, the Product of Exponentials (POE)—
based on screw theory—is thought to be one of the most versatile models that can handle
singularities in the popular Denavit–Hartenberg (DH) parameter model [19]. For robots
with revolute joints only, each joint is parametrized by a three-dimensional (3D) unit vector
indicating axis of rotation, and a 3D vector of any point on the axis line. Calibration
procedures for such models rely on Circle Point Analysis (CPA) applied to 3D data acquired
with laser tracker or other sensor: positioning the robot into a zero-reference configuration
(i.e., where all joint angles are set to zero), and then rotating each joint one by one while
keeping all other joints fixed at zero [20,21]. Unfortunately, POE-based models do not
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explicitly include zero offsets of encoder angles. Accurate estimating of zero offsets is
critical because the largest contribution to the robot positioning error (97%) comes from
incorrect zero offsets [22]. Performing the zero offsets calibration in CPA causes that errors
in registration transformation and in the individual offsets accumulate. This may lead to
inconsistent calibration results. For some poses, the calibration process reduced robot pose
error seven-fold; for others, it actually increased error twofold [23].

A desired outcome of calibration is the error reduction in full pose of robot end-
effector, i.e., in its position and orientation. However, both components belong to two
different spaces: position is a vector in 3D space and its components have length units,
like millimeters, while orientation matrix is parameterized by three angles in degrees. This
causes a fundamental scaling problem when a full pose error is minimized (as discussed
in [24], ad hoc introduced scaling factors put more weight either on linear or angular part
of pose error and push optimizer towards different solutions). This may become a problem
in commercial applications where not only position but also orientation of end-effector is
important. For example, in automated drilling, a parallelism between the spindle axis and
the normal axis of the drilling plate surface should be below 0.2◦ [25]. Small orientation
error 0.05◦ required for automated riveting, drilling and spot welding was demonstrated
by applying online pose corrections in [26]. Automated fiber placement is another example
of industrial application where the orientation of robot end-effector is important [27].

The approach that we introduce in this paper avoids the pitfall of minimization of
unbalanced 6D error. First, link twists are determined in the CPA-like procedure from 3D
data. Then, using full 6D poses measured by sensors, encoder zero offsets are determined
in a separate minimization. The error function used in this minimization does not depend
on linear DH parameters (link lengths and linear offsets) nor on the position components
of noisy 6D poses acquired by sensors. Once twists and zero offsets are known, they are
inserted into another error function, which depends only on position components of sensor
data. The remaining linear DH parameters are determined by minimizing this second error
function. For comparison, robot calibration based on only 3D sensor data is also performed.
Obtained results clearly show that orientation errors of end-effector are smaller when
orientation part of 6D data is used. At the same time, the position errors are comparable
for both methods.

2. Background

The frame FTCP associated with the robot’s Tool Center Point (TCP) coordinate system
can be expressed as a 4 × 4 homogeneous transformation consisting of a 3 × 3 rotation
matrix R and a 3 × 1 translation vector t:

FTCP =

[
R3×3 t3×1
01×3 1

]
(1)

For a serial, open-chain collaborative robot arm with N revolute joints, the frame FTCP
in the robot’s base coordinate system can be determined using a forward kinematic model:

FTCP(θk) = F1F2 . . . FN FT (2)

where

θk = [θ1,k, θ2,k, . . . , θn,k, . . . , θN,k] (3)

and θn,k is the encoder angle of the n-th revolute joint for the k-th robot configuration, Fn is
the homogeneous transformation associated with the n-th joint, n = 1, . . . , N, and FT is a
transformation from the robot’s flange frame to the TCP. Using the nominal DH parameters,
the rotation component of each Fn can be written as

Rn,k(θn,k, εn, αn) = Rz(θn,k + εn)Rx(αn) (4)
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where Rz and Rx are rotations around z and x axis, respectively. Two angular DH param-
eters in (4) are αn (the link twist) and εn (the zero offset angle for the n-th encoder). The
translation component of Fn can be expressed as

tn =
[

rn cos(θn,k + εn) rn sin(θn,k + εn) dn
]T , (5)

where rn and dn are two linear DH parameters (link length and offset), and [. . .]T denotes
the vector transpose.

From (2) and (4) it can be seen that the rotation part RTCP of the FTCP frame depends
only on the rotation components

RTCP(θk) = R1,kR2,k . . . RN,kRT . (6)

This is a general property of serial chain manipulators with revolute joints, and is not
dependent on a particular kinematic model (here, we use the DH model for illustration
purposes only). In the remainder of this paper, we use the notation

Rk = RTCP(θk, α, ε) (7)

where α = [α1, α2, . . . , αN ] and ε = [ε1, ε2, . . . , εN ] are the vectors of the DH angular
parameters. Note that the positional component tk of the FTCP(θk) frame depends on joint
angles and all four vectors of the DH parameters:

tk = tTCP(θk, α, ε, r, d). (8)

3. Determination of Link Twist

To ensure that forward kinematics correctly predict the tool pose in the robot coor-
dinate frame, the DH parameters must be determined first during the robot calibration
process. Once calibrated, they remain fixed during robot on-line operations. Calibration
may be performed by installing a spherically-mounted retro-reflector (SMR) at the robot’s
TCP, and tracking it with a laser tracker. From four vectors of DH parameters (α, ε, r, d),
the twist angles α can be determined independently of other DH parameters by using 3D
data acquired for CPA procedure. The twist angle αn is defined as the angle between two
consecutive joint axes of rotation, un and un+1 (the last twist αN is, by definition, set to zero).
If Cn,K denotes a set of K 3D points tk calculated in (8) and acquired for n-th joint in CPA
procedure, then these points are distributed along an arch (section of a circle) on a plane in
3D space. Thus, for each joint n = 1, ..., N, a unit vector cn normal to the fitted plane can be
calculated. While the exact locations of Cn,K points depend on all DH parameters (ε, α, r, d),
vector cn is parallel to the axis of rotation un and, therefore, αn can be determined from
the scalar product of two consecutive axes, αn = arccos (cn · cn+1). If Bn,K is the set of 3D
points measured by laser tracker which correspond to Cn,K, then a unit vector bn normal to
the plane fitted to Bn,K can be calculated and the angle between two consecutive bn and
bn+1 is used as the estimate of αn.

To get correctly estimated twist angles αn, two important steps must be followed. First,
since arccos () is an even function, a sign of estimated angle must be equal to the sign of the
default (i.e., theoretical) twist angle, sign(α0,n). Second, plane fitting procedure provides
only a normal to the plane, its particular direction (up or down) depends on a bounding
box containing the points. To remove this ambiguity, fitted normal b̃n must obey the right
hand rule together with acquired 3D points Bn,K, which are located on a section of a circle.
Thus, the estimated corrected twist angle α̃n is determined as

α̃n = sign(α0,n) arccos
(
b̃n · b̃n+1

)
. (9)
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4. Robot Calibration Based on 3D Measurements

Once the twist angles α̃ are estimated, they can be inserted in (4) and the remaining DH
parameters (ε, r, d) can be found in traditional calibration procedure using 3D data. Given
K configurations of the arm (i.e., “poses”) defined by θk (k = 1, . . . , K), the SMR is moved
to K positions gk = [xk, yk, zk] in 3D Cartesian space. Since gk and tk in (8) are determined
in different coordinate frames, the error function Errpos in the calibration process is based
on relative distances between two 3D points to avoid a dependence on a registration. For
convenience, the whole set of K points can be divided in two halves and then

Errpos(α̃, ε, r, d) =
1

K/2

K/2

∑
k=1

(Lk(α̃, ε, r, d)− hk)
2 (10)

where
Lk(α̃, ε, r, d) = ‖tk − tk+K/2‖ (11)

and tk, tk+K/2 are determined in (8), ‖. . .‖ is the Euclidean norm and hk = ‖gk − gk+K/2‖
is a distance between two points measured by laser tracker.

Thus, the fitted DH parameters
(
ε̃, r̃, d̃

)
can be estimated by minimizing Errpos(

ε̃, r̃, d̃
)
= min

ε,r,d
Errpos(α̃, ε, r, d). (12)

providing the vector of link twist angles α̃ is known. The actual dimension of search space
is 3N − 2 since the distance between two points in (11) does not depend on d1 and ε1 (the
two parameters may have arbitrary values which only affect the registration transformation
between robot and sensor). In the remainder of this paper, we call this procedure Method 1.

5. Calibration Based on 6D Measurements

Such data were used for robot calibration using different procedures [14,28,29]. The ap-
proach we propose calculates zero offsets ε̃ in a separate minimization based on orientation
components of 6D poses and determined earlier twist angles α̃.

In the remainder of this paper, we assume that, for each robot configuration defined by
θk, there is a corresponding 3 × 3 rotation matrix Gk provided by an external sensor. Both
Gk and Rk in (7) are determined in different coordinate frames. If Ω denotes the rotation
component of registration matrix then, for each k-th robot orientation Rk in (7) and the
corresponding Gk measured with the external sensor, the following relation holds:

Gk = Nk Ω Rk (13)

where Nk is a small, random rotation accounting for noise in the orientation part of 6D data
acquired by sensors. For a pair of orientations Gk and Gk′ (where k′ = k + K/2), matrix Dk
can be defined as

Dk = GkR−1
k Rk′G

−1
k′ = NkN−1

k′ (14)

and its angle of rotation ψk ∈ [0◦ 180◦] is calculated as

ψk = arccos
(

1
2
(trace(Dk)− 1)

)
. (15)

Matrix Dk and its angle ψk depend on the measured joint angle vectors θk and θk′ ,
the twist angles α̃ estimated earlier, and all zero offsets εn for n = 2, . . . , N, which can be
obtained by minimizing the error function Errrot

(ε̃2, . . . , ε̃N) = min
ε2,...,εN

Errrot(α̃, ε2, . . . , εN), (16)

where

Errrot(α̃, ε2, . . . , εN) =
1

K/2

K/2

∑
k=1

ψk(α̃, ε2, . . . , εN). (17)

406



Appl. Sci. 2022, 12, 3680

Once the zero offsets ε̃ are estimated, they can be inserted in (12) and the linear DH
parameters r and (d2, . . . , dN) can be found by minimizing Errpos(α̃, ε̃, r, d) in (10). In the
remainder of this paper, we call this procedure Method 2.

To show a scaling problem when both position and rotation errors are simultaneously
minimized, robot calibration was attempted by minimizing the following error function:

Err f ull(α̃, ε, r, d) = Errpos + wErrrot, (18)

where Errpos is defined in (10), Errrot in (17) and positive scaling factor w ensures correct
dimensionality of Err f ull . In the remainder of this paper, we call this procedure Method 3.

6. Registering Robot Frame

When all robot model parameters are known, i.e., estimated ε̃2, . . . , ε̃N , α̃, r̃, d̃2, . . . , d̃N
and arbitrary values are assigned to d1 and ε1, then a registration transformation (rota-
tion Ω and translation τ) between the coordinate systems of robot and laser tracker can
be determined.

There are many registration techniques, one of the commonly used was developed
in [30] and is based on 3D data. For calibration Method 1 described in Section 4, where
only 3D data acquired by sensor are available, there is only one possible registration
transformation (Ω, τ). When 6D data are available, the registration transformation can
be calculated in two ways. In the first (which we name Registration (1)) Ω1 is calculated
using only the 3D positional parts of full poses, as in [30]. In the second (named hereafter
as Registration (2)), the rotation matrix Ω2 is calculated as the mean rotation Ω calculated
properly [31] from the individual matrices GkR−1

k in (13). Once Ω1,2 are known, the
translation vectors τ1,2 can be determined as

τi = gs − Ωi tr , i = 1, 2 (19)

where tr and gs are the centroids of the collected 3D positions in the robot and the external
sensor frame, respectively.

7. Simulation

All calculations were performed in Matlab. Built-in nonlinear least-square (NLS)
optimizer lsqnonlin with default input parameters was used to minimize the error function
Errpos in (10), Errrot in (17) and Err f ull in (18). As a starting point for all optimizations,
default DH parameters were used.

To test the proposed calibration method, a kinematic model of a 7 degrees-of-freedom
(DoF) industrial robot arm KUKA LWR 4+ was used. The robot’s default DH parameters
(ε0, α0, r0, d0) are provided in Table 1 (all angular parameters are in degrees and all linear
in millimeters). Ground truth (GT) parameters used in simulations were defined as a sum
of the defaults and deviations, for example εGT = ε0 + Δε. Deviations from the default
DH parameters are provided in Table 2. Two sets of arbitrarily chosen deviations were
used in simulations: small deviations (Δα1, Δr1, Δd1) and large deviations (Δα2, Δr2, Δd2).
GT parameters were used to generate noisy sensor data Gk from (7) and gk from (8)

Gk = Nk Ω Rk(θk, αGT , εGT) (20)

and

gk = Ωtk(θk, αGT , εGT , rGT , dGT) + τ + ζk (21)

where (Ω, τ) is arbitrarily selected transformation between robot and sensor frame, ζk is
3D positional Gaussian noise with standard deviation σp, and ξk is 3D angular Gaussian
noise with standard deviation σa, which was used to generate small random rotations.

Nk = RZYX(ξk). (22)
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Table 1. Default DH parameters.

1 2 3 4 5 6 7

ε0 180 90 0 0 0 0 0
α0 −90 −90 −90 90 90 −90 0
r0 0 0 0 0 0 0 0
d0 310.5 0 400 0 390 0 78

Table 2. Deviations of DH parameters.

1 2 3 4 5 6 7

Δε 0 −1.4 0.68 0.24 0.54 1.37 0.85
Δα1 0.15 −0.1 0.07 −0.04 0.02 −0.06 0
Δα2 3.35 −4.1 2.7 −3.4 4.2 −3.6 0
Δr1 0.25 0.4 0.09 0.3 0.28 0.17 0.06
Δr2 0.8 1.3 0.65 1.4 0.86 0.38 0.55
Δd1 0 0.06 −0.14 0.12 0.27 0.08 0.3
Δd2 0 0.27 −1.45 0.4 1.26 0.3 0.35

In Figure 1a, examples of histograms for x component of vectors ξk are shown (his-
tograms for y and z components look similar). In Figure 1b, histograms of corresponding
angles of rotation β of small random rotations Nk are plotted. Note that histograms of
ξk are well approximated by a Gaussian distribution while non-symmetric histograms
of β are well approximated by a Fisher–Bingham–Kent (FBK) distribution [32]. Similar
histograms of angles were observed for experimental data acquired with a marker-based
pose measuring system, see Figures 1 and 3 in [33].

Tool transformation FT needed in (7) and (8) was arbitrarily chosen with the caveat
that the TCP center is not located on the last axis of rotation so that 3D data acquired for
CPA procedure are located on a circle.

For each n-th join, Kα = 40 vectors of encoder angles θn,k were created such that their
components were all zero except θn,k

θn,k = θmin,n + kδθ , k = 1, . . . , Kα (23)

where θmin,n and δθ were such that all θn,k were within a valid range of n-th encoder angles.
These angles were then inserted in (21) to generate 3D sensor data from which the twist
angles α̃ were estimated as described in Section 3. In order to estimate the remaining DH
parameters

(
ε̃, r̃, d̃

)
and calculate registration transformation (Ω, τ), another set of K = 100

joint angle vectors θk was selected in such a way that corresponding poses FTCP(θk) in (1)
were randomly scattered in the workspace that is accessible to the robot arm. In computer
simulations, this is the only restriction for selection of tool poses, but additional limitations
may arise in lab experiments due to a use of a line-of-sight sensor for pose acquisition.

In addition, a separate batch of J = 50 joint angles θj was selected for evaluation of
calibration and registration procedures. These test poses were used neither in calibration
nor registration. To test the performance of all three procedures, the robot kinematic model
FTCP

(
θj
)

in (1) was used with the parameters
(
ε̃, α̃, r̃, d̃

)
estimated by Method 1, 2 and 3.

For Method 1, the registration transformation (Ω, τ) was calculated using 3D data. For
Method 2 and 3, both registrations (Ω1, τ1) and (Ω2, τ2) were calculated, as described in
Section 6. For each tested arm configuration θj and selected m-th noise levels

(
σa, σp

)
m, the

corresponding rotation Gj and position g j were calculated in (20) and (21) to simulate noisy
6D measurements acquired by sensor. Then, the mean of J angles 〈ηj〉 of rotations Qj and
the mean of J relative distances 〈qj〉 were calculated, where

Qj
(
ηj
)
= G−1

j ΩRj, qj = ‖Ωt j + τ − g j‖ , (24)
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and the transformation (Ω, τ) was appropriate for each of the three calibration procedures
and (for Method 2 and 3) the appropriate Registration 1 or 2. Both calculated means 〈ηj〉
and 〈qj〉 were used as metrics to gauge a performance of tested procedures.

These steps were repeated for each of the selected noise level m = 1, . . . , Mn and
both sets of GT parameters corresponding to two deviation vectors: small (Δα1, Δr1, Δd1)
and large (Δα2, Δr2, Δd2), as shown in Table 2. Mn = 16 noise levels were equally spaced
between zero and 0.15 (degrees for σa and millimeters for σp). In order to estimate a
variability of the calculated metrics, all the above calculations were repeated for Nrep = 25
different realizations of noise (different sequences of pseudo-numbers). Thus, for each i-th
instance of noise and each m-th pair of noise levels

(
σa, σp

)
m, the end-effector errors were

calculated: vm,i = 〈qj〉 for positional error and ρm,i = 〈ηj〉 for angular error. As the final
results, the averages and standard deviations from all repeats Nrep were stored for each
m-th noise level:

ρm =
1

Nrep

Nrep

∑
i=1

ρm,i, δρ2
m =

1
Nrep

Nrep

∑
i=1

(ρm,i − ρm)
2 (25)

and similarly for positional errors vm and δv2
m .

To test a performance of the three error functions Errpos, Errrot and Err f ull used in
calibration, for a few randomly selected noise repeats and strengths, minimization was
restarted from 300 randomly scattered initial points (i.e., starting DH parameters) and the
final optimized parameters were analyzed. In addition, for Method 3, minimization of
Err f ull was repeated for a few scaling factors w in (18).

In all simulations performed in this study, the distal variant of DH parameters was
used [34]. Alternatively, the proximal variant could be used, which would affect derived
from it homogeneous matrix FTCP. However, not every kinematic model is suitable for
describing any robot: a well-known example is a robot with two consecutive joint axes
that are parallel to each other. In such a case, the DH model is not continuous and must
be replaced by another model, e.g., POE [20], and parameters specific for a given model
must be determined. Whichever kinematic model is selected, it is important to consistently
use it in a calibration process along with other basic definitions (like use of a right-hand or
left-hand coordinate system). With all procedural steps clearly defined and consistently
followed, there is no ambiguity in the calibration process.
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Figure 1. Characteristics of simulated small random rotations Nk in (22): (a) histograms of x com-
ponent of angle vectors ξk; (b) histograms of angle of rotation β of rotation matrix Nk. Blue lines
correspond to weak noise with σa = 0.05◦ and black lines correspond to strong noise with σa = 0.15◦.

8. Results

Fitted DH parameters revealed different amounts of variations for different simulated
conditions. The twist angles α̃ estimated from 3D data generated for the CPA procedure
showed moderate variations. The largest absolute deviation δαmax from the GT value
over all N joints and all simulated conditions (Mn noise levels, Nrep repeats and both
deviations Δα1,2 from the default values α0) was 0.3◦. Zero offsets ε̃ revealed larger
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deviations: the largest absolute deviation δεmax = 1.18◦. The largest link length deviation
was δdmax = 4.7 mm and the largest link offset deviation was δrmax = 4.2 mm. Such large
differences between the fitted and the GT parameters were observed mostly for large noise
levels σp and σa.

Figure 2 shows an example of robot end-effector errors at J = 50 test poses. Position
errors qj and orientation errors ηj were calculated in (24) for robot DH parameters calibrated
with Method 1 and Method 2. Presented errors were calculated for simulated sensor poses
perturbed by i = 14 noise realization (selected arbitrary from Nrep repeats) and m = 7 noise
levels

(
σa, σp

)
m. These

(
qj, ηj

)
m,i errors were then used to calculate (vm,i, ρm,i) and then,

mean errors vm and ρm in (25) and the corresponding standard deviations δvm and δρm for
each m-th noise level. These means and standard deviations were then used to create the
plots in the remaining Figures 3–6.
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Figure 2. Robot end-effector errors calculated at J = 50 test poses for fixed sensor noise σp = 0.055 mm,
σa = 0.055◦ and one, arbitrary selected noise realization: (a) positional errors qj; (b) orientation errors
ηj. Robot was calibrated with Method 1 (black lines) and Method 2 (blue lines).

Figure 3 shows the outcomes of two registration transformations (Ω1, τ1) and (Ω2, τ2)
described in Section 6. In both cases, robot was calibrated with Method 2. GT parameters
used in simulation of 6D data, i.e., end-effector poses and noisy poses as measured by
sensor, were obtained by modifying the default DH parameters with deviations shown in
Table 2. For both registrations, mean errors were calculated at the same values of sensor
noise (σp in Figure 3a,c and σa in Figure 3b,d). In each subplot, two graphs are slightly
shifted horizontally only for better visualization. Error bars δvm in Figure 3a,c and δρm in
Figure 3b,d are the corresponding standard deviations calculated in (25) from Nrep repeated
simulations of noisy sensor data.

Figure 4 shows the outcomes of two registration procedures applied after robot was
calibrated using Method 3 and the error function Err f ull defined in (18) with the scaling
factor w = 1. Presented results were obtained for 6D data generated with GT values of DH
parameters deviating from their default values by (Δα2, Δr2, Δd2) shown in Table 2.
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Figure 3. Comparison of two registration procedures for robot calibrated with Method 2 and data
generated using: (a,b)—small deviations from the default DH parameters (Δα1, Δr1, Δd1); (c,d)—
large deviations (Δα2, Δr2, Δd2). Dependence of the mean positional error v of robot end-effector on
positional noise σp in sensor 6D data in (a,d); dependence of the mean orientation error ρ of robot
end-effector on angular noise σa in sensor 6D data in (b,d).
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Figure 4. Comparison of two registration procedures for robot calibrated with Method 3 and data
generated using large deviations from the default DH parameters: (a) dependence of the mean
positional error v of robot end-effector on positional noise σp in sensor 6D data; (b) dependence of
the mean orientation error ρ of robot end-effector on angular noise σa in sensor 6D data.
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Figure 5. Comparison of three calibration methods: (a) dependence of the mean positional error
v of robot end-effector on positional noise σp —Registration 1 was used in Method 2 (blue line);
(b) dependence of the mean orientation error ρ of robot end-effector on noise (σ = σp for Method 1
and σ = σa for Method 2)—Registration 2 was used in Method 2 (red line); (c) dependence of error v
on positional noise σp—Registration 1 was used in both methods; (d) dependence of error ρ on noise
σa—Registration 2 was used in both methods.
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Figure 6. Comparison of robot calibrations using two different scaling factors w in error function
Err f ull in Method 3: (a) dependence of the mean positional error v of robot end-effector on positional
noise σp in sensor 6D data—Registration 1 was used; (b) dependence of the mean orientation error ρ

of robot end-effector on angular noise σa in sensor 6D data—Registration 2 was used. Data generated
using large deviations from the default DH parameters.

Figure 5 shows the outcomes of three calibration procedures: Method 1 based on 3D
sensor data, and Method 2 and 3 based on 6D sensor data (in Figure 5b,d noise σ = σp in
mm for Method 1 and σ = σa in degrees for Method 2 and 3). Two different registration
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procedures were used in robot calibration with Method 2 and 3: for positional error v,
Registration 1 was used (blue line in Figure 5a,c, the same as in Figure 3c for Method 2
and the blue line with triangle markers in Figure 5c, the same as blue line in Figure 4a
for Method 3). For angular error ρ, Registration 2 was used (red line in Figure 5b,d, the
same as in Figure 3d for Method 2 and the red line with triangle markers in Figure 5d, the
same as red line in Figure 4b). Error bars δvm in Figure 5a,c and δρm in Figure 5b,d are the
corresponding standard deviations calculated in (25) from Nrep repeated simulations of
noisy sensor data. On each subplot, the two graphs are slightly shifted horizontally for
a visualisation effect. Robot GT parameters used in simulation of 6D data were obtained
by modifying the default DH parameters with large deviations (Δα2, Δr2, Δd2) shown in
Table 2. Similar results for v and ρ were obtained when small deviations (Δα1, Δr1, Δd1)
were used in simulations.

Figure 6 shows outcome of robot calibration for Method 3 with two different values of
the scaling factor w in Err f ull in (18). Results for Method 3 presented in Figures 4 and 5c,d
were obtained for w = 1.

For each of the selected cases where the minimization of the error function was
repeated from 300 different starting points, all initial DH parameters led to the same
solution. Fitted DH parameters depended on noise strengths, choice of error function and
GT values of DH parameters.

9. Discussion

In this study, an open-chain robotic manipulator with N revolute joints was calibrated
using three different methods and two different sets of data: 3D positions only, and full
6D poses. All three methods share the same strategy for determining link twists α̃. Then,
in Method 1, the error function Errpos in (10) was minimized, and the remaining DH
parameters

(
ε̃, r̃, d̃

)
were found by using 3D data only. In Method 2, a search for the zero

offsets ε̃ was performed separately by minimizing Errrot in (17), which depends only on
the orientation part of full 6D data. Once the zero offsets were known, the remaining DH
parameters

(
r̃, d̃

)
were found by minimizing Errpos(r, d) in (10) using only the positional

part of 6D data. Such an approach reduces the dimensionality of the search space when
compared with minimization of Errpos in Method 1. In addition, by using angles ψk of
relative rotations Dk in error function Errrot in (17) and relative distances Lk between
pairs of 3D points in error function Errpos in (10), the proposed strategy decouples robot
calibration from registration of the robot frame to the world frame. Different calibration
strategies yielded different sets of fitted DH parameters which, in turn, led to different
end-effector errors. This is expected, as the optimizer which uses different error functions
and different sensor data usually converges to different solutions for the same kinematic
model. It should be noted that both Methods 1 and 2 are equally valid and it is a matter of
practicality which one is more useful.

In Method 2, two different approaches to registration were used. Rotation Ω1 from
the first approach minimizes distances between the sensor’s 3D positions and robot’s TCP
points for K robot arm configurations [30]. Rotation Ω2 is calculated as the mean rotation Ω

of K relative rotations GkR−1
k and, thus, minimizes angular distances between orientations

of TCP frame and orientations provided by sensor. Therefore, one may expect that Ω2 is
better than Ω1 in aligning robot orientations with sensor orientations. Indeed, end-effector
angular errors ρ shown in Figure 3b,d are smaller for Ω2 in Registration 2 (red line) than
for Ω1 in Registration 1 (blue line).

When it comes to the positional errors v, the situation is exactly opposite. Both transla-
tion vectors τ1 and τ2 are calculated in (19). Since Ω2 does not depend on positional data,
the transformation (Ω2, τ2, ) does not minimize (in the least-square sense) the distances
between sensor 3D positions and robot TCP points for K robot arm configurations. Trans-
formation (Ω1, τ1, ) does minimize the distances, and therefore is expected to better align
the sensor 3D positions with the robot TCP. Indeed, end-effector position errors v shown
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in Figure 3a,c are smaller for Ω1 in Registration 1 (blue line) than for Ω2 in Registration 2
(red line).

Analysis of the plots in Figure 3 suggests the optimal strategy: instead of choosing
either the first (Ω1, τ1, ) or the second (Ω2, τ2, ) registration, take the best part from both.
Use Ω2 to transform orientations Rk of robot end-effector and use (Ω1, τ1, ) to transform
robot TCP tk. Outcome of such strategy is displayed in Figure 5a,b: note blue line for
positional errors v and red line for angular error ρ indicating a use of different registrations
in Method 2.

Another advantage of using Ω2 to transform the TCP orientations rather than Ω1 is
that there is a much smaller dispersion of orientation errors ρ for different noise realizations.
The error bars in Figure 5b are much smaller for Method 2 (which leverages Ω2) than for
Method 1. This implies that orientations from the world coordinate system can be fed into
an inverse kinematic solver more consistently and accurately.

It may appear counter intuitive that mean position errors v
(
σp
)

and mean orientation
errors ρ(σa) calculated for the same m-th pair of noise strengths

(
σp, σa

)
m but different GT

values of DH parameters are almost the same, as Figure 3 shows. However, it should not be
a surprise since we used NLS optimizer with exact error function. Scale of deviation from
the default DH parameters may become an issue when the calibration is performed using
approximated, linearlized errors and the Jacobian is calculated at the default DH values.

Results of robot calibration obtained with Method 3 clearly reveal the consequences of
scaling problem when simultaneous minimization of both position and orientation errors
in one optimization is attempted, as demonstrated in Figure 6. While the mean orientation
errors ρ are almost equal for two selected values of w, the corresponding position errors
v differ substantially. This method, similarly as Method 2, uses 6D data and, therefore,
two registration procedures are available. In Method 3, similarly to Method 2, smaller
position errors are obtained when Registration 1 is applied to the position data and smaller
orientations errors are observed when Registration 2 is applied to the orientation data, as
results in Figure 4 clearly indicate. Even as both Method 2 and 3 share a possibility of
using different registrations for position and rotation components of a full pose, a direct
comparison between the two methods clearly points to Method 2 as a better procedure, as
demonstrated by the results shown in Figure 5c,d. Thus, a use of Method 3 is discouraged.

The calibration strategy outlined in this paper was tested on a kinematic model of a
serial open chain robot with revolute joints only. A question can be asked if the strategy can
be applied to a more complex kinematic model when a serial chain has both revolute and
prismatic joints. Acquisition of full 6D poses enables calculation of two registrations defined
in (19): one of them minimizes a position error and the other minimizes an orientation error.
Therefore, as long as full 6D poses are acquired, the outlined calibration strategy could in
principle be used for robots with a mixture of revolute and prismatic joints. However, a
presence of prismatic joints complicates the error function Errpos in (10) by increasing a
number of search variables and it requires further study to verify whether the strategy is
beneficial also for robots with revolute and prismatic joints.

The simulation results presented in this paper raise an important, practical question
about the characteristics of 6D pose measuring sensors which are used for robot calibration.
Commercially available sensors allow quick acquisition of many repeated measurements,
which enables the noise in recorded data to be substantially reduced by calculating mean
poses. The mean position error of robot end-effector v calculated by Method 2 is increasing
with sensor position noise σp, as Figure 5a shows. If the three sigma rule is followed
and approximate relation v ≈ 4σp holds, then the upper bound σ̂p for sensor position
noise should satisfy 12σ̂p < tolp, where tolp is the acceptable robot position tolerance.
For orientation data, due to the strong non-symmetric FBK-like distribution of angles β
(which accounts for deviation of noisy, instantaneous rotations from the mean rotation),
the three sigma rule can be replaced by calculating quantile β̂997 of angles β at 0.997 level.
Assuming the mean orientation error of robot end-effector ρ is four times larger than
sensor’s orientation noise (as shown in Figure 5b for Method 2), the upper bound for sensor
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orientation noise should satisfy 4β̂997 < tola where tola is the acceptable robot orientation
tolerance. For different robot, the dependence of end-effector error on sensor noise may be
different from that shown in Figure 5a,b. Then, the estimates for upper bounds of position
noise σ̂p and orientation noise β̂997 need to be updated.

The proposed calibration strategy reduces both the position and orientation errors of
the robot end-effector. Recommended procedure for serial robot calibration consists of: (1)
acquiring the full 6D poses; (2) getting link twists in CPA-like procedure; (3) getting encoder
zero offsets using orientation data only; (4) getting link lengths and offsets using position
data only. Then, use two separate registrations to transform position and orientation
component of a pose from a world to the robot frame. In summary, the dilemma of
having only the position or the orientation error of the robot’s end-effector minimized
can be avoided and a pose with both optimized components can be fed into inverse
kinematic solver.
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Featured Application: This paper presents the development of a longitudinal mode dynamic model

via experiments of insect-like tailless flapping-wing micro air vehicles (FWMAVs).

Abstract: In this paper, model parameter identification results are presented for a longitudinal mode
dynamic model of an insect-like tailless flapping-wing micro air vehicle (FWMAV) using angle and
angular rate data from onboard sensors only. A gray box model approach with indirect method was
utilized with adaptive Gauss–Newton, Levenberg–Marquardt, and gradient search identification
methods. Regular and low-frequency reference commands were mainly used for identification since
they gave higher fit percentages than irregular and high-frequency reference commands. Dynamic
parameters obtained using three identification methods with two different datasets were similar
to each other, indicating that the obtained dynamic model was sufficiently reliable. Most of the
identified dynamic model parameters had similar values to the computationally obtained ones,
except stability derivatives for pitching moment with forward velocity and pitching rate variations.
Differences were mainly due to certain neglected body, nonlinear dynamics, and the shift of the center
of gravity. Fit percentage of the identified dynamic model (~49%) was more than two-fold higher
than that of the computationally obtained one (~22%). Frequency domain analysis showed that the
identified model was much different from that of the computationally obtained one in the frequency
range of 0.3 rad/s to 5 rad/s, which affected transient responses. Both dynamic models showed that
the phase margin was very low, and that it should be increased by a feedback controller to have a
robustly stable system. The stable dominant pole of the identified model had a higher magnitude
which resulted in faster responses. The identified dynamic model exhibited much closer responses
to experimental flight data in pitching motion than the computationally obtained dynamic model,
demonstrating that the identified dynamic model could be used for the design of more effective pitch
angle-stabilizing controllers.

Keywords: system identification; flapping-wing micro air vehicle; longitudinal mode; model refinement;
gray box model; onboard sensors

1. Introduction

Nature provides investigators with abundant insights and inspirations that aid in
solving engineering problems and creating new inventions [1,2]. With the advancement of
science, engineering, and technology, a growing number of robots have been designed in
different shapes and sizes to mimic biological systems [3,4]. These biomimetic robots mimic
animals, such as four-legged animals (quadrupeds) [5], monkeys [6], snakes [7], fish [8,9],
bats [10,11], and various birds and insects [12–14]. These robots have diverse potential

Appl. Sci. 2022, 12, 2486. https://doi.org/10.3390/app12052486 https://www.mdpi.com/journal/applsci
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applications, ranging from simple toys to exploration robots in dangerous and hazardous
environments. They have the potential to perform tasks that conventional robots cannot
accomplish, such as climbing steep surfaces [15,16], maneuvering through rubble [17], and
walking on uneven terrains [5]. These unique capabilities that only animals can perform
have motivated many researchers to develop biomimetic robots.

The flapping-wing micro air vehicle (FWMAV) is one such type of robot. It has been
popular for more than a decade [12,18–20]. With birds and insects as the main source of
inspiration for designing robots, FWMAVs are typically categorized into bird- or insect-
inspired FWMAVs. Alternatively, they are differentiated into tailed or tailless FWMAVs
based on the existence of the control surface on their tails, by which the differentiation
agrees with the physical configurations of birds or insects, respectively [21–25]. In general,
birds and insects have unique flight characteristics, which can be observed from the manner
in which their wings are manipulated and modulated. Compared to birds, insects normally
flap with higher flapping frequency and larger stroke amplitude to produce sufficient force
to fly. The flapping stroke plane of insects is nearly horizontal, which causes similar lift force
to be produced during a downstroke and an upstroke, whereas the flapping stroke plane
of birds is practically vertical, which causes most of the lift force to be produced during
downstroke [23,24]. These flight characteristics are mimicked by FWMAVs using various
approaches and engineering designs, especially for producing wing flapping motion and
other kinematics to generate force and moment [19,20,26].

Unlike tailed FWMAVs, tailless FWMAVs can exhibit steady hover and high maneu-
verability during a flight [27], indicating their potential applications in restricted spaces. To
date, several tailless FWMAV designs have successfully performed stable flight, including
the Nano Hummingbird [27], RoboBee [28], Delfly Nimble [29], KUBeetle [30–35], robotic
hummingbird [36], Colibri [37], NUS-Robobird [38], and Purdue Hummingbird [39]. There
are some similarities between each design. Nano Hummingbird, KUBeetle, robotic hum-
mingbird, and Colibri use only one DC motor to generate thrust through one pair of wings
and a few servos to manipulate the wing kinematics for control moment generation. They
are mainly different in system integration and various transmission mechanisms, such
as combination of string and crankshaft [27], combination of 4-bar linkage and pulley-
string [30], and combination of slider-crank and 4-bar linkage [37]. In comparison, Delfly
Nimble and NUS-Robobird use two DC motors to manipulate the flapping of two pairs
of wings to generate thrust and roll moments. Servos are used to adjust the relative angle
of two flapping mechanisms for pitch and yaw moment generation. A different control
strategy was found in Purdue Hummingbird where each wing, one left and one right, is
controlled by a DC motor to realize fully decoupled and independent wing kinematics
manipulation. In this way, no servos are needed because control moments are generated by
changing the wing flapping range and speed. While most tailless FWMAVs with successful
flights use DC motors and servos, RoboBee uses piezoelectric actuators driven with high
voltage. Stabilizing tailless FWMAVs is a significantly important objective in the develop-
ment of tailless FWMAVs for flying. Owing to the inherent instability of tailless FWMAVs,
feedback controllers are required to stabilize them during flight. In comparison, tailed
FWMAVs, such as the Microbat [40], Delfly II [41], TL-Flowerfly [42], Konkuk University
Biomimetic Ornithopter [43], H2Bird Ornithopter [44], and Robird [45], have an inherent
stability [46] so that they can maintain equilibrium without any active manipulation of wing
or tail kinematics. Recent findings on Hawkmoth [47] have indicated that the vibration
of flapping wings potentially contributes to the improved stability of large insects and
FWMAVs through a passive vibrational stabilization mechanism.

Owing to their feasibility and simplicity, proportional–integral–derivative (PID) feed-
back controllers and their simple variants are often implemented, particularly during the
early development of tailless FWMAVs [19,30,37,38]. More complex variants of PID feed-
back controllers incorporating different strategies (such as neural network [48], particle
swarm optimization [49], and dominant pole placement [50]) and autotuning algorithms
(such as optimal approach [51,52] and fuzzy adaptive [53]) are being developed for various
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applications. As with many biomimetic robots, tailless FWMAVs have less complicated
body structures and control mechanisms than their biological counterparts. Thus, they
can be considered as simplified versions of insects. However, owing to the nonlinear,
time-varying, and periodic nature of these systems, describing the mechanics of tailless
FWMAVs is still a considerable challenge. In addition, as tailless FWMAVs have different
wing configurations [54–57], actuators, and control mechanisms [19,27–39], they cannot
be fully generalized. Many efforts have been made to model the flapping kinematics,
aerodynamics, and flight dynamics of flyers and FWMAVs. They are derived computa-
tionally or experimentally with various assumptions, ranging from time-invariant linear to
nonlinear time-periodic models [58–60]. One of the main purposes of obtaining a dynamic
model is to design a flight controller with various control techniques and schemes, such
as PID [34,61], linear–quadratic–Gaussian [62], state feedback [63,64], nonlinear [65–67],
sliding mode [68,69], robust [70,71], adaptive [72], adaptive neural network [73,74], and
model-free [75]. While many dynamic models and controllers have been successfully devel-
oped, only a limited number have been implemented on tailless FWMAVs because some
tailless FWMAVs cannot generate sufficient lift to perform free flight for implementation
and verification.

In this study, the system identification of a tailless FWMAV called KUBeetle was con-
ducted to improve the previously derived longitudinal mode extended dynamic model [34]
and obtain a more accurate dynamic model to design a controller. The fabrication of tail-
less FWMAVs with successful flight makes it possible for system identification based on
measured input and output data to be conducted [65,76–82]. This approach can potentially
identify real dynamics and address the design changes of tailless FWMAVs to obtain a
dynamic model with a high degree of similarity to actual systems. In a previous study [65],
three single-axis closed-loop system identifications of the robotic hummingbird were con-
ducted using a gimbal system and a Vicon motion tracking system with step reference
command as the input. A second-order system was used to describe the pitch, roll, and
yaw dynamic. A theoretical linear model for the piezo actuator positioning of Robobee
wings’ [76] was developed using an off-board displacement laser sensor. The identified
model had an error of around 5%, but it was restricted to the wing driving system. A
longitudinal gray box model system identification using open-loop system identification
procedures was conducted on Delfly Nimble [77]. Data were obtained using the OptiTrack
motion tracking system and the onboard system with doublet input as a reference com-
mand. The obtained linear time-averaged longitudinal dynamic models for hover and
forward flight up to 1 m/s showed more than 80% fit.

The majority of system identification research uses high-speed camera systems with
high data rates to obtain experimental flight data. High-speed camera systems are very
expensive. In addition, the camera marker balls are relatively heavy compared to the small
mass of the KUBeetle (only 17.7 g), which could affect the dynamics. Moreover, there
exists little difference between the angle measured by a high-speed camera system and
that obtained by an onboard sensor, due to misalignment, scale factor errors, and added
measurement noises. So, the model obtained using the high-speed camera system should
be modified to be used in a real feedback control system, while the dynamic model obtained
using onboard sensors can be used directly without modification.

Many system identification methods have been developed. They are available for open-
loop and closed-loop system identification [78–82]. Because KUBeetle flight is unstable,
a closed-loop system identification was chosen. Considering prior knowledge of the
dynamics of the KUBeetle and the PD feedback controller, a gray box model approach
with indirect methods [79,82] was utilized. The longitudinal mode extended dynamic
model of KUBeetle, categorized as a linear, time-invariant, and single-input multiple-
output system with state space model structure, was refined with the help of system
identification tools in MATLAB®. Several variations of input and output data pairing and
different identification methods on model refinement were investigated and compared. By
investigating dynamic model parameters and time-domain responses, the most appropriate
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refined dynamic model was obtained. The main contributions of this paper are: (1) dynamic
model parameters for the new KUBeetle using only low-cost onboard sensors outputs;
and (2) stability and frequency domain analyses, which could be used for designing a
closed-loop feedback controller.

The remainder of this paper is organized as follows. Section 2 describes the design
and longitudinal mode dynamic model of the KUBeetle. Section 3 presents experimental
flight, system identification setups, and the results. Finally, Section 4 provides conclusions
and indicates towards future research topics.

2. KUBeetle

2.1. KUBeetle Design

Figure 1 shows the KUBeetle [30–35,83,84], a tailless FWMAV used for parameter
identification in this study. The design of the KUBeetle in this study slightly differed from
that of a previously developed KUBeetle [34]. They were mainly different in their flapping
mechanisms and the location of the control board. One pair of wings of the KUBeetle were
modulated by a DC motor using a rack and pinion mechanism to perform a high-amplitude
flapping motion for thrust generation [85], whereas previous models used a pulley-string
mechanism [30,31]. In the current KUBeetle, the control board was placed between the yaw
servo motor and battery, which could lower the center of gravity (CG) position compared
with the older version of the KUBeetle. The control board was designed to receive the
reference command to control the FWMAV and transmit flight data in real time through a
wireless communication RF module extension. A previous study [34] explains the detailed
design and specifications of the control board. Figure 1b shows that the flight stability and
control are maintained by manipulating the wing stroke plane using three servo motors to
generate control moments for pitch, roll, and yaw.

 
(a) (b) 

Figure 1. A flight model of the KUBeetle: (a) detailed construction components used in the KUBeetle;
(b) principle of the stroke-plane-change mechanism for control moment generation.

2.2. Dynamic Model

System identification using a gray box model requires an initial dynamic model with
starting parameters. The longitudinal mode dynamic model of the KUBeetle used in this
study was based on Newton–Euler equations of motion at near-hover conditions [86–89].
The dynamic model was extended to include filters and servo motor dynamics [34]. Param-
eters (specifically, the moments of inertia and filter parameters) were updated according to
the latest KUBeetle design. Table 1 shows the stability and control derivatives obtained
from the computational fluid dynamics (CFD) analysis and force and moment measure-
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ments. Figure 1 shows the body frame of the KUBeetle. The extended longitudinal mode
dynamic model is described below [34,86–89]:

.
xext = Aext xext + Bext uext, (1)

yext = Cext xext, (2)

xext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u
w
q
ϑ

q̂lp f
ϑ̂lp f

ϑ̂k f ,angle
ϑ̂k f ,bias
uservo

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3)

where u and w are velocities along the x- and z-axis, respectively; q is the pitch rate (rad/s);
ϑ is the pitch angle (rad); uext is the control input in the form of pitch servo angle; yext is
the output or response of the KUBeetle; q̂lp f is the low-pass filtered pitch rate; ϑ̂lp f is the
low-pass filtered pitch angle; ϑ̂k f ,angle and ϑ̂k f ,bias are the pitch angle and bias estimation
of the Kalman filter, respectively, and uservo is the servo output. The system and input
matrices of the extended dynamic model are given below [34,86–89]:

Aext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu
m

Xw
m

Xq
m g 0 0 0 0 Xγp

m
Zu
m

Zw
m

Zq
m 0 0 0 0 0 Zγp

m
Mu
Iyy

Mw
Iyy

Mq
Iyy

0 0 0 0 0 Mγp
Iyy

0 0 1 0 0 0 0 0 0
0 0 204.3 0 −204.3 0 0 0 0
0 0 0 10.13 0 −10.13 0 0 0
0 0 0 0 1 0.329 −0.329 1 0
0 0 0 0 0 −0.05 0.05 0 0
0 0 0 0 0 0 0 0 −30.67

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

Bext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

30.91

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (5)

where X and Z are aerodynamic forces along the x- and z-axes, respectively, and M is
the aerodynamic pitching moment about the CG. Subscripts u, w, and q indicate their
aerodynamic derivatives with respect to u, w, and q. The subscript γp implies control
input by the pitch servo. m is the mass of the KUBeetle (17.7 × 10−3 kg), Iyy is the pitching
moment of inertia (12.43 ×10−6 kg m2), and g is the gravitational acceleration

(
9.81 m s−2).

The first four rows of the system matrix consisted of parameters of the basic dynamic
model [34]. In the fifth and sixth rows, parameters of low-pass filters for pitch rate and
pitch angle were included, respectively. The seventh and eighth rows included Kalman
filter parameters for pitch angle and bias estimation. Finally, the last row contained servo
motor dynamic parameters. The output matrix of the extended dynamic model, Cext (open-
loop) or Cext,cl (closed-loop), can be adjusted according to the number of available outputs
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for system identification. For pitch angle and pitch rate outputs, the output matrix is given
as follows:

Cext1 = Cext,cl1 =

[
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

]
. (6)

For pitch angle output only, the output matrix was given as:

Cext2 = Cext,cl2 =
[

0 0 0 0 0 0 1 0 0
]
. (7)

Table 1. Stability and control derivatives.

Xu [N s m−1] Xw [N s m−1] Xq [N s rad−1] Zu [N s m−1] Zw [N s m−1] Zq [N s rad−1]

−2.39 × 10−2 2.79 × 10−4 6.22 × 10−4 1.06 × 10−3 −1.34 × 10−2 1.15 × 10−4

Mu [N s] Mw [N s] Mq [N s m rad−1] Xγp [N rad−1] Zγp [N rad−1] Mγp [N m rad−1]

−8.3 × 10−4 −1.6 × 10−5 −6.2 × 10−6 1.32 × 10−1 −2.03 × 10−2 1.38 × 10−2

In general, it is not feasible or practical to identify an unstable system. Therefore, a
simple PD feedback controller was added to the unstable system to obtain a stable closed-
loop control system. The same PD gains in a previous study [34] were used as the starting
reference. They were then slightly tuned through experimental flight. Figure 2 shows the
data acquisition structure of system identification with a PD feedback controller. Pitch
rate estimation was obtained after the pitch rate output of the dynamic model was filtered
by a low-pass filter [34]. Considering real time implementation, a first order low-pass
filter (cutoff frequency 32 Hz) was used to reduce the high-frequency noise because of its
simplicity which took a small calculation time and memory of the microprocessor. Pitch
angle estimation was obtained by combining low-pass filtered pitch rate output and pitch
angle estimated from acceleration outputs using the Kalman filter [34]. The KUBeetle
showed stable flight performance with the current filters, especially on hovering, although
there were some oscillating motions, indicating that the current setup was sufficient for an
experimental flight.

 
Figure 2. Data acquisition structure of system identification with a PD feedback controller.

A closed-loop system identification is more challenging than an open-loop system
identification due to existing feedback. The feedback can affect system identification
performance by making the closed-loop system less sensitive to parameter changes in
an open-loop system [79]. In addition, the natural dynamic of the KUBeetle toward the
reference command might be regarded as a disturbance that needs to be damped and
minimized by the controller [77,78]. However, the feedback also allows for more input in
a specific frequency range without increasing the output magnitude [79]. Two different
methods [79,82], direct and indirect, were tested to identify the longitudinal mode dynamic
model of KUBeetle. According to Figure 2, the direct method used sets of control input and
output data to obtain the open-loop dynamic model, while the indirect method used sets of
reference command and output data to obtain the closed-loop dynamic model. It is possible
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to use the indirect approach, because the structure of the state space of the closed-loop
extended dynamic model is fully known.

A simple PD controller with reference command is given bellow [34]:

upd = KP

(
ϑre f − ϑ̂k f ,angle

)
− KDq̂lp f , (8)

where upd is the control input, ϑre f is the angle reference command, KP is the proportional
controller gain, and KD is the derivative controller gain. The system matrix and input
matrix of the closed-loop extended dynamic model can be expressed as follows:

Aext,cl =

[
Aext(1 : 8, 1 : 9)

0 0 0 0 −30.91KD 0 −30.91KP 0 −30.67

]
, (9)

Bext,cl =

[
Bext(1 : 8, 1)

30.91KP

]
. (10)

The addition of a PD controller to the extended dynamic model only changed the last
row of the state space matrix where the control input was given to the servo. Either an open-
loop or a closed-loop extended dynamic model could be used as the starting reference in
system identification with the gray box model approach. The open-loop extended dynamic
model could be retrieved simply by setting controller gain parameters on the last row of
the system matrix to zero and changing the last parameter of the input matrix to 30.91,
according to Equations (4) and (5). Moreover, it should be noted that velocities along the x-
and z-axes were not measured. They could not be used for system identification, which
makes the system identification more challenging.

Parameters of the filters, servo motor, and PD controller were fixed, because their
values were already known and verified [34]. The gravity, integrator, and zero constants
were also fixed. Thus, only nine stability derivatives and three control derivates were
refinable in system identification. Each parameter had different physical characteristics
and an effect on the dynamic of the KUBeetle [87–89]. Based on CFD analysis [89], Xu,
Zw, and Mu should be negative and have relatively large magnitudes; Xw, Zu, Zq, and
Mw should be close to zero; and Xq and Mq should have relatively small magnitudes.
Overall, Xu, Xq, Zw, Mu, and Mq, the five parameters of stability derivatives, and Xγp,
Zγp, and Mγp, the three parameters of control derivatives, were mainly focused on for
system identification. During system identification, these eight parameters were refined
with a relatively wide range of restriction. Conversely, non-focused parameters of stability
derivatives were kept close to zero with a narrow range of restriction. Restrictions were
adjusted considering computational fluid dynamics (CFD) results [87–89] and current
KUBeetle design specifications to maintain the integrity of the identified dynamic model
in relation to the physical system. While relaxing parameter restrictions might improve
the result of system identification, some refined parameters might not match the real
physical system.

3. Experimental Flight and System Identification

In this study, the system identification process was performed in the following steps:
(1) experimental flight setup; (2) data acquisition for system identification via experimental
flight; (3) linear model refinement in system identification using the gray box model
approach; and (4) dynamic model analysis and verification.

3.1. Experimental Flight Setup

Figure 3 shows the experimental flight setup to obtain flight data for system iden-
tification. This setup consisted of a remote control, the KUBeetle, and a ground station.
The remote control was used for throttle adjustment for taking off, hovering, and landing
the KUBeetle. It was also used for adjusting and maintaining trim conditions during the
experimental flight. The flight was conducted indoors without wind disturbance. All exper-
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imental flight data were obtained and processed with an onboard control board equipped
with an inertial measurement unit (MPU-9250, InvenSense, San Jose, CA, USA). Flight data
were then transmitted via wireless communication (NRF24L01+, Nordic Semiconductor,
Trondheim, Norway) to the ground station. Considering that the bandwidth of the longitu-
dinal mode dynamics with the PD controller was less than 20 rad/s, the sampling rate was
set to be 100 Hz. Recorded data consisted of time, pitch reference command, pitch angle,
and pitch rate. In addition, the control input was calculated from the reference command
and output data with known control gains.

Figure 3. Experimental flight setup for data acquisition.

3.2. Data Acqusition for System Identification via Experimental Flight

Initially, the KUBeetle was manually kept in a hovering condition with minimum drift
via a remote control. In hovering condition, the preprogrammed command in the control
board was triggered through the remote control to automatically apply reference com-
mands to the KUBeetle. Preprogrammed command was used to ensure the repeatability
and consistency during each experimental flight. The reference command is a very impor-
tant component of the system identification because it affects entire aspects of the system
identification process. The reference command should be able to excite as many dynamic
modes of interest and natural dynamics as possible to provide comprehensive data for sys-
tem identification [77–80]. With the dynamic of the KUBeetle in consideration, two different
reference commands were used in the experimental flight. The first reference command was
in the form of a regular square signal with a relatively long and constant period (amplitude:
±17◦ (0.3 rad); period: 6 s) to analyze transient and steady state responses of the KUBeetle
(Supplementary Materials Video S1). The second reference command consisted of an irreg-
ular square signal with varying periods (amplitude: ±17◦ (0.3 rad); period: 0.2 to 1.4 s) to
cover the frequency bandwidth of interest (Supplementary Materials Video S2). The sec-
ond reference command was generated using a pseudo-random binary signal, which was a
periodic and deterministic signal with properties such as white noise [79]. The amplitude
and period of the reference command were chosen considering the operating range of the
KUBeetle. Assuming the same amplitude and frequency range, the square signal covered a
similar range to that of a chirp signal, as indicated by the frequency spectrum of reference
commands shown in Figure 4:

For clarity, the extended dynamic model with parameters obtained from CFD and
force and moment measurements, later used as the initial dynamic model in system identi-
fication, is called the CFD dynamic model. Figure 5 shows experimental and simulation
results of the KUBeetle with a regular square command for pitch. Together with the
preprogrammed command, the constant trim control input from the remote control was
applied to the KUBeetle. The constant trim command was subtracted to obtain the refer-
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ence command from the actual command input applied. Small noises were added while
the trim control input was being read from the pulse-width-modulated signal. The ref-
erence command was the summation of the preprogrammed command and the added
trim command noise. Figure 5a shows that the closed-loop KUBeetle has a relatively slow
response, high overshoot, and large steady state error. After the reference command was
provided, the KUBeetle attempted to follow the reference command in the beginning by
responding quickly according to the stroke plane change via the servo motor. However, it
was gradually stabilized to a low pitching angle, which maintained the large steady state
error. This phenomenon was mainly caused by the position of the CG that affected the
force and the moment generated by the gravity force during flight. The CG was located at
a relatively large distance below the aerodynamic center (AC). Figure 5b presents the pitch
rate responses to a regular square reference command, showing that the measured pitch
rate still had a large periodic and high-frequency noise due to wing flapping.

Figure 6 demonstrates experimental and simulation results of the KUBeetle with an
irregular square reference command. Figure 6a shows the pitch angle responses. In some
intervals, the pitch angle response misleadingly looks as if it is following the command
signal well, although some phase delays exist. This is due to overshooting responses at the
beginning of step inputs. However, as the frequency of the reference command increased,
it could not follow the reference command. Figure 6b illustrates that the pitch rate was
contaminated with large noise, as in the regular square reference command case shown in
Figure 5b. The high-frequency noise was still very large on the angular rate signal, although
it was low-pass filtered (cutoff frequency 32 Hz). However, it was not easy to remove it
without invoking much phase delay, which degraded the closed-loop stability. Thus, the
current setup was kept for the experimental flight.

Figure 4. Frequency spectrum of reference commands.
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(a) 

(b) 

Figure 5. Experimental flight data and simulation results for system identification with regular square
reference inputs: (a) pitch angle responses, and (b) pitch rate responses.

(a) 

Figure 6. Cont.
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(b) 

Figure 6. Experimental flight data and simulation results for system identification with irregular
square reference inputs: (a) pitch angle responses, and (b) pitch rate responses.

3.3. Linear Model Refinement in System Identification

System identification processes were performed with the help of system identification
tools in MATLAB®. The dynamic model generated from the system identification using
the black box model approach was found to be very complex. It could not be matched with
real physical parameters of the KUBeetle. Thus, this research only focused on the system
identification using the gray box model approach. The gray box model approach with
direct and indirect methods was tested to refine open- and closed-loop dynamic models.
Two different pairings were considered for the direct and indirect methods, respectively.
Firstly, the control input was given as input, while the pitch rate and pitch angle were given
as outputs. Secondly, the reference command was given as input, while the pitch rate and
pitch angle were given as outputs. Equations (4) and (5) present the structure of the system
and input matrices of the dynamic model as fixed for the open-loop dynamic model, while
Equations (9) and (10) present those for the closed-loop dynamic model. In addition, given
values of parameters in Equations (4)–(10), obtained from computations and measurements,
were used as the initial values for system identification. The pitch angle output was given
higher weighting, because it had smaller noise compared to the pitch rate output which
had larger high-frequency noise that could affect the accuracy of the identified dynamic
model. According to the experimental flight setup and data, the obtained dynamic model
mainly represented the dynamic of KUBeetle during hover and forward flights with pitch
angle under 0.3 radian. Adaptive Gauss–Newton (GNA), Levenberg–Marquardt (LM), and
gradient search (GRAD) methods were utilized for model refinements. Table 2 summarizes
the general characteristics of each identification method [90–92]:

The total iteration for each search method was limited to 2000 iterations, as further
iterations provided negligible improvement. Results from each search method were com-
pared and evaluated. One of the indicators used was the fit percentage of the responses of
the identified dynamic model to the experimental flight data. It was defined as:

Fit Percentage = 100

⎛⎝1 −
√

∑N
i=1(ymeasured − ymodel)

2√
∑N

i=1(ymeasured − ymeasured)
2

⎞⎠, (11)

where, N was the number of samples, ymeasured was the experimental flight data measured,
ymodel was the simulated response of the dynamic model identified, and ymeasured was the
mean of experimental flight data measured.
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Table 2. General characteristics of each identification method.

Identification Method Characteristics

GNA The adaptive subspace Gauss–Newton search method.
This minimizes the objective function, which is the sum of squared errors that is

approximately quadratic in the parameters near the optimal solution.
Convergence is not guaranteed, and it might converge only to a local optimum, depending on

the starting parameters.

LM The Levenberg–Marquardt least square search method.
This updates the parameters by adaptively combining the Gauss–Newton and gradient

descent approaches, depending on the parameter errors.
This is a refinement to the Gauss–Newton search method that improves the chance of local

convergence and prevents divergence.
This method is more robust than the Gauss–Newton and gradient descent search methods.

GRAD The Steepest descent or Gradient descent search method.
This updates the parameters towards the largest directional derivative or negative gradient

direction of the objective function to reduce the sum of squared errors.
When close to minimum, the iteration process becomes relatively slow.

Firstly, system identification using the gray box model approach with the direct
method was conducted. Closed-loop system identification with the direct method is
often used, because it works regardless of the complexity of the regulator. In addition,
it does not require knowledge of the characteristic of the feedback [79]. However, the
system identification result depended on the quality of the disturbance model, which
should also be identified during model refinement. The open-loop CFD dynamic model in
Equations (4) and (5) was used as the initial dynamic model. However, the direct method
was found to be unsuitable for the system identification of the KUBeetle using the current
experimental flight data as the disturbance model could not be identified well, which
caused responses of the identified model not to match experimental flight data. Note that
some working identification methods for open-loop system identification may fail when
they are applied to a closed-loop system identification [79].

Secondly, considering that the open-loop dynamic model could easily be retrieved
from the closed-loop dynamic model, system identification using the gray box model
approach with the indirect method was conducted. In the indirect method, the system
matrix of the closed-loop CFD dynamic model in Equations (9) and (10) was used as
the initial dynamic model. Through system identification with several different methods
and various restriction settings, several identified dynamic models were obtained. The
criteria to select the identified dynamic model were: (1) the fit percentage should be high
enough; (2) time-domain responses of the closed-loop dynamic model should have similar
characteristics to the experimental flight data; and (3) the open-loop dynamic model should
have similar stable and unstable poles and zeros to those of the computationally calculated
dynamic model, whereas the closed-loop dynamic model with the PD feedback controller
should be stable.

3.4. Dynamic Model Analysis and Verification

Single or a combination of multiple sets of experimental flight data were tested to
obtain the best identified dynamic model. This was completed to evaluate the consistency
of the identification results and sensitivity of the identification methods. It was found that
identified parameters related to velocities along the x- and z-axes had relatively larger devi-
ations because they were not available using onboard sensors. In addition, high-frequency
noises and nonlinear body dynamics not included in the model also affected identification
results. By following all the selection criteria, six identified dynamic models were consid-
ered. Table 3 shows parameters of the identified dynamic model with the indirect method.
Each of the selected dynamic models was named based on the identification method used
to refine it and numbers represent datasets used for the identification. Fit percentages of

428



Appl. Sci. 2022, 12, 2486

identified models obtained using irregular and high-frequency reference signals were much
lower than those obtained using regular and low-frequency reference signals. Thus, they
were discarded. The fit percentage of the dynamic model from CFD was only about 22%.
This low fit percentage was mainly because only wing parts were considered to obtain the
stability derivative-related parameters, instead of using the whole body of the KUBeetle.
The whole body of the KUBeetle, including the wings, was considered to obtain mass
and moments of inertia. The average fit percentage of the identified dynamic models was
approximately 49%, which was more than double that of the CFD dynamic model. Most
parameter values obtained from the three different identification methods and CFD were
quite similar to each other. The CG of the new KUBeetle design, being lower than the CG of
the previous KUBeetle design, increased the magnitude of Mu. This was in accordance with
the shift of the CG position due to the relocation of the control board and RF module from
the top of the flapping mechanism to under the motor. The increase in Mq showed that
the system had higher damping than that initially given from CFD. This indicated that the
body of the KUBeetle greatly affected system stability. According to system identification
results, aerodynamic forces along the x- and z-axes, Xγp and Zγp, had larger magnitudes
than that previously measured. When measuring the control derivative, only the wings
and frames near the wing were included. Because of a mounting problem, the lower body
of the KUBeetle could not be included, which could be one of the possible reasons for the
difference. Other parameters maintained similar values to CFD values.

Table 3. Refined parameters of identified dynamic models using an indirect method.

Parameters CFD (Initial)
Identified Dynamic Model

GNA 1 LM 1 GRAD 1 GNA 2 LM 2 GRAD 2 Average

Xu/m −1.351 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Zu/m 0.060 0.001 0.000 0.000 0.000 0.028 0.000 0.005

Mu/Iyy −66.755 −79.656 −79.870 −75.722 −87.300 −99.508 −83.732 −84.298

Xw/m 0.016 4.237 4.237 4.237 4.237 4.237 4.237 4.237

Zw/m −0.756 −1.464 −1.742 −1.645 −1.268 −1.113 −1.646 −1.480

Mw/Iyy −1.287 −1.126 −1.126 −1.126 −1.126 −1.227 −1.126 −1.143

Xq/m 0.035 0.294 0.560 0.347 −0.044 −0.058 −0.002 0.183

Zq/m 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Mq/Iyy −0.499 −7.715 −1.532 −3.622 −6.470 −7.467 −4.460 −5.211

Xγp/m 7.458 16.553 20.746 21.329 12.767 9.796 18.457 16.608

Zγp/m −1.147 −11.333 −14.579 −14.826 −8.953 −7.405 −13.671 −11.795

Mγp/Iyy 1109.171 1015.702 1092.554 1108.319 1016.950 1058.045 1107.437 1066.501

Fit Percentage 21.982 49.090 48.640 49.920 45.110 43.180 46.520 48.300

Using the current flight data and dynamic model structure, it was not easy to obtain
dynamic model parameters with high fit percentage, even using the black box model
approach where there were no parameter restrictions. Moreover, it was found that the
parameters obtained were a little sensitive to the datasets used for system identification.
The possible reasons for this were: (1) velocities along x- and z-axes were not measured,
which degraded the accuracy of the related parameters, Xu, Xw, Xq, Zu, Zw, and Zq; (2) high-
frequency noise also contributed to accuracy degradation; and (3) there were nonlinear
coupling dynamic terms not included in the model. It has been reported that accuracy
can be improved if velocities along the x- and z-axes are available and nonlinear coupling
terms are included [77].

Although all dynamic model candidates showed similar fit percentages, GRAD1
was chosen for analysis and evaluation since it had the highest fit percentage. Identified
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parameters were evaluated in the basic form of the dynamic model [34], where filters and
servo dynamics were not included. The basic dynamic model is described as follows:

.
xbasic = Abasic xbasic + Bbasic ubasic, (12)

ybasic = Cbasic xbasic, (13)

xbasic =

⎡⎢⎢⎣
u
w
q
ϑ

⎤⎥⎥⎦, (14)

Abasic =

⎡⎢⎢⎢⎢⎣
Xu
m

Xw
m

Xq
m g

Zu
m

Zw
m

Zq
m 0

Mu
Iyy

Mw
Iyy

Mq
Iyy

0
0 0 1 0

⎤⎥⎥⎥⎥⎦, (15)

Bbasic =

⎡⎢⎢⎢⎢⎣
Xγp
m

Zγp
m

Mγp
Iyy

0

⎤⎥⎥⎥⎥⎦, (16)

and Cbasic was set as
[

0 0 0 1
]

to describe the pitch angle measurement.
Figure 7 shows the open-loop frequency responses and a Nyquist diagram of the

GRAD1 and CFD dynamic models. When the frequency was under 0.01 rad/s, the low-
frequency gain of the identified GRAD1 dynamic model was similar to that of the CFD
dynamic model. As the frequency increased to higher than 0.3 rad/s, the gain of the
GRAD1 dynamic model was smaller than that of the CFD dynamic model. Moreover, at
mid-frequency, the GRAD1 dynamic model had a local minimum point. As the frequency
further increased to higher than 5 rad/s, both dynamic models had similar characteristics.
Poles of the GRAD1 were (2.86 ± 8.46i, −9.35, −1.64), while those of the CFD model were
(3.69 ± 7.58i, −9.22, −0.76). The unstable pole locations did not move much. However,
the magnitude of the stable dominant pole of the GRAD1 dynamic model was larger than
that of the CFD dynamic model. Thus, it is expected that response of the GRAD1 dynamic
model is faster than that of the CFD dynamic model. Both basic dynamic models encircle
the (−1, 0) point two times in the Nyquist diagram, meaning that if the loop is closed, the
two systems will be stable. However, Figure 7b shows that both models have very small
phase margins, with less than 8 degrees.

The simulation was used to analyze and compare extended dynamic models as shown
in Figure 8. Gain and phase margins of the GRAD1 dynamic model were 17.2 dB and 39.0◦,
respectively, while the gain and phase margins of the CFD dynamic model were 16.5 dB
and 30.3◦, respectively. In the Nyquist diagram, both extended dynamic models encircled
the (−1, 0) point two times. Both dynamic models had small gains in the low-frequency
range, which resulted in a large steady state error. To reduce the steady state error, the loop
gain should be increased. However, this may decrease the stability margins.

Figure 9 shows experimental flight data and simulation results of the GRAD1 dynamic
model using the PD feedback controller. As shown in Figure 9a, the pitch angle response of
the GRAD1 dynamic model was closer to the pitch angle from the experimental flight data
compared to that of the dynamic model from CFD. The peak and valley points predicted
using the GRAD1 dynamic model were more accurate than those of the CFD dynamic
model. Figure 9b also shows that the GRAD1 dynamic model was better than the CFD
dynamic model in following the pitch rate from the experimental flight data, neglecting the
high-frequency noise. The high-frequency noise was due to wing flapping, which degraded
the performances of system identification and control.
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(a) (b) 

Figure 7. Frequency responses (basic dynamic models only): (a) Bode plot; (b) Nyquist diagram.

(a) (b) 

Figure 8. Frequency responses of extended dynamic models with a PD controller: (a) Bode plot;
(b) Nyquist diagram.
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(a) 

(b) 

Figure 9. Experimental flight data and simulation results of the GRAD1 dynamic model using a PD
feedback controller: (a) pitch angle, and (b) pitch rate for the provided reference command of the
square signal with long period and constant frequency.

4. Conclusions

In this study, we identified a dynamic model of the KUBeetle with several identification
approaches and methodologies using angle and angular rate data from onboard sensors
only. The gray box model approach was preferred to the black box model approach, because
the structure and integrity of parameters of the dynamic model could be maintained. Higher
weighting was given to the angle output because it had much lower noises compared to
angular rate output. It was found that dynamic models with high fit percentage were
obtained using datasets which included the data obtained using regular and low-frequency
reference commands. In addition, obtained parameters were slightly sensitive to the quality
of the dataset. GNA, LM, and GRAD identification methods showed similar results to each
other for two different datasets, while GRAD1 showed the highest fit percentage. These
consistent results indicate that the dynamic model was quite reliable and could represent
the main dynamic of the KUBeetle, although nonlinear dynamics were not fully identified.
Compared to that of the CFD dynamic model, the fit percentage was improved from 22%
to 49%. Increases in Mu complied with the lower CG of the KUBeetle. In addition, the
increases in Mq indicated higher damping caused by the body dynamics of the KUBeetle
that were not considered previously. The obtained dynamic model mainly works for
predicting hover and forward flight responses with pitch angle reference command under
0.3 radian, which is used in an experimental flight. The obtained dynamic model described
the pitch angular motion quite well, while the linear velocity-related parameters needed
more improvement. This is because there was no onboard speed sensor.
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From frequency domain analysis, it was found that the open-loop GRAD1 model
had a small phase margin indicating that KUBeetle stability could be easily affected by
the angular rate feedback gain changes. Moreover, the GRAD1 dynamic model had a
faster response because its stable dominant pole had a larger magnitude than the CFD
dynamic model. In addition, it showed a similar response to the experimental flight
data, neglecting high-frequency noises. It is expected that if the high-frequency noise
due to flapping could be reduced and the velocity could be estimated, the fit percentage
could be further improved. The time-domain and frequency responses of the identified
dynamic model were considerably closer to experimental flight data than those obtained by
numerical computation. Further studies are needed to reduce the high-frequency noise due
to flapping, to better estimate forward and vertical velocities, and to improve the accuracy
of identification.
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Abstract: As fully automated valet parking systems are being developed, there is a transition period
during which both human-operated vehicles (HVs) and autonomous vehicles (AVs) are present in
the same parking infrastructure. This paper addresses the problem of allocation of a parking space to
an AV without conflicting with the parking space chosen by the driver of a HV. A comprehensive
assessment of the key factors that affect the preference and choice of a driver for a parking space is
established by the fuzzy comprehensive method. The algorithm then generates a ranking order of
the available parking spaces to first predict the driver’s choice of parking space and then allocate a
space for the AV. The Floyd algorithm of shortest distance is used to determine the route for the AV to
reach its parking space. The proposed allocation and search algorithm is applied to the examples of a
parking lot with three designed scenarios. It is shown that parking space can be reasonably allocated
for AVs.

Keywords: automated parking system; fuzzy comprehension evaluation; Floyd algorithm; human-
operated vehicle; autonomous vehicle

1. Introduction

According to the International Parking Institute (IPI), the number of vehicles on
the road will reach 2.5 billion in 2050 [1]. With this projected increase in the volume of
vehicles, parking has become an emerging issue that affects not only drivers looking for
parking spaces, but also city governments in their planning, particularly in urban areas
where land resources are limited and constrained. It has been reported that about 30%
of traffic backup in a typical downtown area is caused by drivers searching for parking
spaces [2]. The expected increase in the number of vehicles likely implies more new
drivers and drivers who are unskilled in parking, thus leading to more road congestion
and increased waste of valuable manpower-hours and resources. In recent years, with
the continuous advancement and development in computer and control technologies,
automated parking has become feasible and various strategies have been proposed to help
alleviate the unskilled parking problem [3,4]. Advances in V2X technology have also led
related researchers to develop a more robust system of automated parking, namely the
Automated Valet Parking System [5].

Compared with the automated parking system, the concept of automated valet parking
system is based on V2X communication technology, which enables self-driving vehicles to
interact and collaborate with an intelligent parking infrastructure during the entire parking
space search process, from the entrance to the self-parking space [6]. Existing intelligent
parking administration systems can detect the status of the parking spaces in real time
through camera recognition, infrared sensing, and other technologies [7,8]. According to
SAE (Society of Automotive Engineers) classification for autonomous driving levels, the
automated valet parking system is classified as L4 autonomous driving, that is, under
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certain scenarios, an equipped vehicle can complete all the driving tasks autonomously
without the participation of a driver. Although self-driving cars are gaining popularity,
related research and testing are far from the level of completion required to bring automated
valet parking to fruition. Even if L4 level self-driving cars were to enter the market in the
short term, there is likely going to be a long transition period during which both human-
operated vehicles (HVs), i.e., with drivers, and autonomous vehicles (AVs), i.e., self-driving
or driverless, co-exist, and augmented search strategies need to be developed for the AVs.
Self-driving vehicles execute well-defined algorithms based on sensor information, while
drivers make cognitive decisions based on perception and surveying of the surrounding
environment. The objective of this paper is to investigate parking space allocation and
route selection (i.e., path planning to the allocated space) for self-driving vehicles during
such a transition period in which significant interactions between the two types of vehicles
are expected.

1.1. Motivation for Research

In this paper, as shown in Figure 1, we define an intelligent parking infrastructure
(which refers to either a parking lot or a parking structure) as one that is equipped with
a central command station that receives information from all sensors and interacts with
autonomous vehicles in real time. In an automated valet parking system, the central
command station is capable of determining the number of available parking spaces through
geomagnetic sensors and obtaining the locations of these parking spaces through a pre-
stored layout of the parking infrastructure. After an AV enters the parking infrastructure,
the central command station utilizes information from multiple cameras to provide a road
map to the allocated parking space, enabling the self-parking to be efficient. However, as
development and implementation of automated parking systems move forward, there will
be a transition period to fully automated valet parking unless the city government phases
out HVs and mandates purchase of AVs, which is very unlikely, or designates parking
spaces only for AVs. Thus, in an intelligent parking infrastructure, there will generally
be both self-driving and human-driving vehicles. Self-driving vehicles can interact with
the parking infrastructure in real time based on V2X communication. Human-driving
vehicles are limited by non-intelligent devices that disengage any interaction with the
central command station.

Figure 1. Flowchart of the entire process of parking space allocation and route selection for an autonomous vehicle.
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Consider the scenario when both a HV and an AV are looking for parking spaces. In
order for the central command station not to allocate the same parking space for the AV as
the driver would choose, the station must be able to predict with high probability the choice
of parking space that the driver would make. Liang et al. proposed four preference factors
that could affect the choice of parking spaces for an individual driver [9]. Logit models,
based on fuzzy logic theory, were established to describe driver preference selection, which
were then used to improve parking experience and alleviate difficulties in parking [9,10].
Although fuzzy evaluation methods have been widely employed with proven success to
determine factors, which are otherwise difficult to quantify, and make optimal choices
incorporating expert opinions, there are only few published studies related to parking
choice preference. In this paper, by adopting the fuzzy evaluation method, a preference
ranking method of parking spaces in an intelligent parking infrastructure is established
based on four representative factors that would affect the parking space selection of drivers.

In an automated valet parking system, route selection is also a key enabling tech-
nology [11,12]. Since the AV might not know a priori the overall layout of the parking
infrastructure, it is necessary for the central command station to guide the self-driving
vehicle to the allocated parking space according to the current conditions of the intended
route. In general, in searching for a parking space, the shorter the path distance, the
better. There are several methods to find the shortest path, such as the Dijkstra and Floyd
algorithms [13,14]. Shi et al. [15] studied the shortest path planning problem of mobile
robots based on the Floyd algorithm, focusing on the node selection problem for mobile
robot path planning and determination of the weighting factor of each passable road. Ex-
periments have also illustrated that the Floyd algorithm has the advantage of providing the
shortest path selection for mobile robots [15]. Based on a known layout of the environment,
Dijkstra algorithm can also efficiently find the shortest path between two points. Although
the Floyd algorithm is slightly more time-consuming than the Dijkstra algorithm, it is
a dynamic programming algorithm aimed to solve the shortest path problem between
multiple source points. In a complex environment such as parking, the Floyd algorithm
appears to be more suitable for our current problem of interest.

1.2. Organization and Contributions of This Paper

In this paper, state-of-the-art research of automated parking space allocation and route
selection is reviewed in Section 2. Section 3 describes the four factors that affect the choice
of parking space for drivers. In Section 4, a fuzzy comprehensive evaluation method is
proposed to evaluate and score (i.e., rank) the available parking spaces in an intelligent
parking infrastructure [16]. The fuzzy algorithm is based on first predicting which space
the driver would select and then allocating one of the remaining spaces to the autonomous
vehicle. In Section 5, the Floyd algorithm is introduced to provide path navigation for
autonomous vehicles [14] according to the nodes of available parking spaces and road
information in the parking infrastructure. Section 6 provides three examples of a parking
lot on the campus of Jiangsu University to illustrate the step-by-step implementation of the
proposed algorithm via Python. Concluding remarks of this work are given in Section 7.

The contributions of this paper are listed as follows:

1. In this paper, a fuzzy comprehensive evaluation method is used to first predict the
parking preference of a driver based on four main factors that influence their choice
of parking spaces. This procedure prevents conflict of allocation of parking space to
the AV with that chosen by the HV.

2. Based on the node information in a parking infrastructure, the Floyd algorithm is
used to provide path navigation for the AVs.

3. The proposed methodology, combining fuzzy theory and the Floyd algorithm, pro-
vides a novel scheme for a central command station to assign parking spaces for AVs
in the presence of HVs. The merit of this work thus provides a foundation for future
work to investigate the problem of automated parking for multiple vehicles.
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2. Review of Related Work

In 2007, the DARPA (Defense Advanced Research Projects Agency) Urban Challenge
(DUC) initiated numerous research projects to address challenges of autonomous driving.
Since then, a great deal of research has been conducted in related topics. In addition to
highway and urban driving, automated valet parking is also of major interest to relieve
drivers from the stress of parking [17].

In 2012, a parking information acquisition and release system was designed by Dou
et al. based on the dynamic allocation algorithm of parking spaces in the parking lot [18].
The main idea is to optimize among the distribution of parking spaces arranged in a
tabulated format and driving paths/distances. However, the algorithm can obtain the
availability of parking spaces only after the human-operated vehicles have completed their
parking. Thus, if there are more than two vehicles, at least one HV and one AV, choosing
the same parking space and converging near that space, this scenario could lead to traffic
congestion and the wasting of time and fuel consumption.

In 2012, Audi Corporation developed a parking guidance system that could assist
and orchestrate the entire parking process [19]. The approach of the system includes three
steps: scanning, positioning, and arranging parking [20]. The distance to the obstacle
is detected by eight ultrasonic sensors installed in the bumper and the parking space is
detected by 10 ultrasonic sensors. This parking system can only be executed if the speed of
the vehicle is below 30 km/h. While this is an excellent demonstration of an automated
valet parking system, during the transition period to fully autonomous driving, HVs will
also be represent; the guidance system cannot allocate parking spaces to the HVs with no
communication devices equipped and hence cannot complete the space allocation task for
the AVs.

In 2016, Kotb et al. [21] proposed a system to reduce the time wasted in looking for
parking spaces by offering guaranteed parking reservations with the lowest possible cost
and searching time for drivers and the highest revenue and resource utilization for parking
managers. However, they did not include other important factors that influence how
drivers choose parking spaces, such as the safe locations of the parking spaces and the
distance to reach the parking space.

In 2018, Tcheumadjeu et al. [22] presented an architecture for Automated Valet Parking
(AVP) connected to cloud-based IoT services and mobile user interfaces. Autonomous
vehicles can share information and data via the phones of their occupants. Moreover, under
this communication architecture, some functions of the AVs, such as drop-off and pick-up,
can be activated by phones. However, the paper only considers the interactions between
users and AVs. In an actual scenario, many vehicles will be present at the same time,
making efficient planning of traffic flow in the parking lot not possible by just integrating
the shared information provided by the users.

In 2019, a new path planning system based on the Dijkstra algorithm was designed by
Yu et al. [23]. The road occupancy factor is calculated and added to the path weight of the
Dijkstra algorithm, and a shortest path is selected by comparing the weight of each path.
However, the traffic situation in the parking lot is complex, and each section of the path
may be occupied at any time. Hence, the optimal path planning in the parking lot requires
a dynamic planning.

In 2020, a parking guidance system based on the multi-objective point A* algorithm
was designed by Xiao et al. [24], which combines the distance factor between the entrance
and the parking spaces and path planning using a heuristic function of the A* algorithm to
quickly generate multiple driving paths and select the most efficient path. However, the
heuristic function of the A* algorithm cannot take into consideration traffic congestion. If
congestion happens, the time loss on queuing will reduce the efficiency of the system and
subsequently increase the fuel consumption.

Therefore, in an intelligent parking infrastructure with both HVs and AVs involved,
it is important to have a central command station to schedule the overall traffic flow and
interface with autonomous vehicles. Moreover, it is necessary to consider in detail the fac-
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tors that would affect parking space selection by the drivers and efficiently guide/allocate
potentially available parking spaces for the AVs.

3. Factors for Choosing Optimal Parking Spaces

In an automated valet parking system, AVs are assumed to be able to interface with
the central command station in an intelligent parking infrastructure. However, under
the scenario in which there are both HVs and AVs in a parking infrastructure, no matter
how intelligent the parking infrastructure is, the central command station cannot allocate
parking spaces for the HVs which are not equipped with any communication devices.
Based on this scenario, we consider the problem of a HV looking for a parking space in
an intelligent parking infrastructure when an AV enters at the same time. The central
command station, before allocating a parking space for the AV, must predict which parking
space that the driver of the HV would choose and then allocate one of the remaining
parking spaces to the autonomous vehicle. When a driver enters a parking infrastructure,
his choice of parking space is often affected by his perception of various factors in the
parking environment. Chen et al. [25] proposed six major factors that influence drivers
to choose parking spaces: the walking distance from the parking spaces to the exit of the
parking facility, the distance to the parking space from the entrance, the status of the path
to the parking spaces, the status of the available parking spaces, parking safety, and shade
under sunlight when parked outdoors. Since parking safety is somewhat implied in the
status of the path for the AVs and the test case considered in this paper (see Section 6) is an
outdoor parking lot with no shaded area, the last two factors will not be discussed in this
paper. Thus, this paper focuses on the following four factors.

• Walking distance

Walking distance is the distance between the parking space and the exit of the parking
infrastructure. For drivers, they likely prefer to arrive at their destination as quickly as
possible after parking. Therefore, the shorter the walking distance, the more likely the
parking space will be chosen.

• Distance to parking

Distance to parking is the distance between the entrance of the parking infrastructure
and the parking space. For drivers and occupants, they generally prefer to arrive at their
vehicles as quickly as possible, particularly when they forget something (e.g., phones,
wallets) or need to place something back in the vehicle. Therefore, the shorter this distance,
the more likely the parking space will be chosen.

• Status of the path to the parking spaces

Vehicles that break down (e.g., dead batteries) may block the path to some available
spaces. Generally, lanes in parking infrastructures are narrow and often only one vehicle
can pass through the lane. Lane occupancy increases traffic congestion and reduces traffic
efficiency in the parking infrastructure. Thus, drivers are concerned with the status of the
path leading to the available parking spaces and will likely choose those parking spaces
that have clear paths.

• Status of available parking spaces

Ma [26] hypothesized that, in general, particularly new drivers are more inclined to
choose available parking spaces with spaces on both sides unoccupied. The order of the
priority of choice is followed by those spaces with one adjacent space unoccupied, those
adjacent to the road, and finally those with spaces on both sides occupied.

Characteristics of parking spaces can be grouped into two main types: the cost type
and the benefit type. For the four factors mentioned above, walking distance and distance
to parking are cost types. Status of the path lane to parking spaces and status of available
parking spaces are benefit types. The lower the value of the cost type factor, the higher the
priority of the parking space would have. Contrarily, the higher the value of the benefit
type factor, the higher priority of the parking space. Walking distance and distance to

441



Appl. Sci. 2021, 11, 855

parking can be described by measurable values based on the layout of the entire parking
infrastructure. Fuzzy factors such as the status of lanes and available parking spaces can
also be represented by quantitative values. Following [27], a value of three is assigned when
the lane is occupied; nine when the lane to the parking space is clear; eight to available
parking space whose both sides are unoccupied; seven to an available parking space with
one adjacent space unoccupied; six to an available parking space adjacent to the road; five
to an available parking space with spaces on both sides occupied. Note that these numbers
are relative and their absolute values are irrelevant.

4. Optimal Parking Space Selection Model

For a driver, parking space selection is a decision based on his perception and assess-
ment of the parking environment. As it is difficult to quantify these fuzzy concepts for
humans, fuzzy theory is introduced to solve these types of problems. The concept of fuzzy
theory was put forward by Professor Zadeh in 1965, aiming to quantify the uncertainty of
issues [28]. Based on the fuzzy theory, the four factors affecting driver’s choice of parking
space selection, discussed in Section 3, are quantified. In this section, we will introduce
how to assign and sort the weights of available parking spaces based on the Fuzzy Compre-
hensive Evaluation (FCE) method [28]. As a result, the order of parking space preference
will be displayed with different weights.

Procedure for Model Construction Based on FCE:

(1) Establish a factor vector U = (u1, u2, . . . , um) where ui is the i − th factor that affects
the parking selection. These factors usually have varying degrees of fuzziness. In
this paper, the factor vector for evaluating parking preference is U = (u1, u2, u3, u4),
where u1 represents “walking distance”, u2 “distance to parking”, u3 “status of lane
to the parking spaces” and u4 “status of available parking spaces”.

(2) Establish an evaluation matrix A whose i-th row, (ai1, ai2, . . . , aim), is the evaluation
vector for the i-th available parking space, and aij is the evaluation value for the
j−th factor in U. In this paper, the evaluation vector for evaluating each factor in the
vector U is (ai1, ai2, ai3, ai4) for the i-th parking space, where ai1, ai2 are defined as the
actual values of “walking distance” and “distance to parking” for evaluating u1 and
u2, respectively; ai3 and ai4 are the scores under the evaluation standard discussed in
Section 3 for evaluating the “status of lane to the parking spaces” u3 and “status of
available parking spaces” u4, respectively.

(3) Establish the fuzzy comprehensive evaluation matrix R =
(
rij
)

n×m by normalizing A,
where n is the total number of targeted parking spaces that need to be evaluated and
m is the number of factors.

R =

⎛⎜⎜⎜⎝
r11 r12 · · · r1m
r21 r21 . . . r2m
...

...
. . .

...
rn1 rn2 · · · rnm

⎞⎟⎟⎟⎠ (1)

The purpose of this normalization is to eliminate the impact caused by the differences
in the orders of numbers of the physical measurements in the decision making process. For
example, distance of “walking distance” maybe several meters while there is no particular
unit for “status of parking spaces”; the orders of these numeric values are very different.
The normalizations are:

rij =
min

(
aij
)

aij
, i ∈ (1, 2, . . . , n), j ∈ I1 (2)

rij =
aij

max
(
aij
) , i ∈ (1, 2, . . . , n), j ∈ I2 (3)

where, I1 and I2 represent the cost type factors and benefit factors, respectively [25].
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(1) According to [29], to eliminate a potentially large number of combinatorial compar-
isons due to a large dimension of the factor vector, it is necessary to evaluate the
independent relationship between every two factors by the pair-wise comparison
matrix B =

(
bij
)

n×m which is defined by drivers with different driving experiences,
where bii = 0.5, bij + bji = 1, and bij ≥ 0. bij represent the value of factor i compared
to the preference to factor j, bii represents the value of a factor compared to the prefer-
ence to itself. In this paper, we have collected opinions from twenty drivers to form
the pair-wise comparison matrix. Our sample included five males and five females,
with ages varying from 20 to 55 years old and with driving experiences ranging from
less than one month to more than 35 years. This set of samples represents sufficiently
broad variability.

(2) Define the weight vector of the factors: w = (w1, w2, . . . , wn), where wi can be
calculated by the least variance method (LVM) for further ranking priority of the
factors based on the pair-wise comparison matrix. [30]:

wi =
1
n

(
n

∑
j=1

bij + 1 − n
2

)
, i = (1, 2, . . . , n) (4)

(3) According to Equations (1)–(3) we established a priority vector zi(w), which can be
described as follows:

zi(w) = WAAw(ri1, ri2, . . . , rin) =
n

∑
j=1

Rn×mwi (5)

where, WAAw(ri1, ri2, . . . , rin) is the weighted arithmetic average operator. The
higher the weight value of a certain parking space in zi(w), the more likely it would
be selected by the driver [31].

5. Optimal Route Selection

Shortest path planning is very important in path navigation. Traffic efficiency can
be improved by planning the shortest path based on the distance information between
locations. Floyd algorithm is a classic dynamic programming algorithm that uses dynamic
programming to find the shortest path between multiple source points in a given weighted
graph. The algorithm aims to find the shortest path from one point to another [32].

Assume that the shortest path from a node i to another node j has no more than two
possibilities, one is directly from i to j, and the other is from i through node k to j. Hence,
the dynamic transfer function of this algorithm is: dis(i, j) = min

(
Di,j, Di,k + Dk,j

)
, where

dis(i, j) represents the shortest distance between node i and node j. The specifics of our
proposed algorithm is shown as follows:

(1) Number each parking location in the map as a node;
(2) Initialize an adjacent matrix Dp×q, where Di,j represents the distance between node i

and j; if i and j are not adjacent, Di,j will be assigned with ∞; if i = j, the value of
Di,j will be 0.

Dp×q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 D1,2 D1,3 · · · D1, q−1 D1,q
D2,1 0 D2,3 · · · D2,q−1 D2,q
D3,1 D3,2 0 · · · D3,q−1 D3,q

...
...

...
. . .

...
...

Dp−1,1 Dp−1,2 Dp−1,3 · · · 0 Dp−1,q
Dp,1 Dp,2 Dp,3 · · · Dp,q−1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(6)

(3) Update the transfer function. For example, consider three nodes i, j, and k in the
map, where k is an intermediate node of i and j, and i and j represents the start
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point and the end point, respectively. The transfer function dis(i, j) is updated by
dis(i, j) = min

(
Di,j, Di,k + Dk,j

)
to select the smaller of the two distances from i to j

and from i to k to j. The Floyd algorithm finds an intermediate node k to determine
whether there is a shorter distance through this node k.

6. Example: Results and Discussion

The example we consider is a single-entrance parking lot, see Figure 2. The layout of
the parking lot has been redesigned according to the Engineering Construction Industry
Standard JGJ100-98 and the layout of the example parking lot is shown in Figure 3. Since
the entrance is located in the lower right of the entire layout, we define the coordinate
system with the origin at the lower right corner, as shown in Figure 4.

 

Figure 2. Aerial view of the parking lot of our example problem.

 

Figure 3. Layout of the parking lot (distance unit in meter).
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x

y
 

Figure 4. Layout of nodes in the parking lot and reference to a coordinate system.

As shown in Figure 4, in order to design the route selection, we denote each parking
space and each turning intersection as a node (1–24) and a number (T1–T8). Additionally,
considering the differences in sizes of vehicles entering the parking lot, we define the
coordinates of each of the nodes and intersection numbers as the centered position of the
parking space and the central line of the route at the turning. The coordinates of all nodes
are listed in Table 1.

Table 1. Coordinates in metric units of all nodes in test graph

T1 (2.1, 17.0) 1 (9.7, 17.0) 9 (13.0, 17.0) 17 (8.0, 39.5)

T2 (2.1, 28.5) 2 (12.2, 17.0) 10 (15.5, 17.0) 18 (10.5, 39.5)

T3 (2.1, 39.5) 3 (14.7, 17.0) 11 (5.5, 28.5) 19 (13.0, 39.5)

T4 (2.1, 50.4) 4 (17.2, 17.0) 12 (8.0, 28.5) 20 (5.2, 50.5)

T5 (15.7, 50.4) 5 (19.7, 17.0) 13 (10.5, 28.5) 21 (7.8, 50.5)

T6 (19.7, 39.5) 6 (5.5, 17.0) 14 (13.0, 28.5) 22 (10.4, 50.5)

T7 (19.7, 28.5) 7 (8.0, 17.0) 15 (15.5, 28.5) 23 (13.1, 50.5)

T8 (19.7, 17.0) 8 (10.5, 17.0) 16 (5.5, 39.5) 24 (15.7, 50.5)

In this section, we have designed three specific parking scenarios to test our proposed
algorithm via Python. In the following, we will take scenario 1 as an example to explain
the application of our method in detail. As shown in Figure 5, red nodes represent the
parking spaces that are occupied, brown ones are those that are currently available, and
the light blue node (node 11) represents the parking space that is being parked by a vehicle.
A blue vehicle, which is an AV, is just entering into the intelligent parking lot and sending
a parking request to the central command station. Meanwhile, an orange vehicle, which is
a HV and cannot communicate with the central command station, is seeking an available
parking space. Under this situation, the problem is to allocate an available parking space
for the blue autonomous vehicle by the central command station.

In order to solve this problem, we need to first determine which parking space that the
driver of the orange vehicle would choose and offer the shortest path between the entrance
and the allocated parking space. The overview scheme is described as a flowchart (Figure 6).
The specific steps in the parking spaces selection and the shortest path planning are shown
as follows:
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Figure 5. Example of a parking scenario 1.

 

Figure 6. Flowchart for parking space selection and the shortest path planning.
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Step 1: Set the properties table of all available parking spaces currently in the example
parking lot. As shown in Table 2.

Table 2. Properties of the available parking spaces in the parking lot of scenario 1.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

5 51.0 36.7 clear adjacent to the road

9 44.3 30.0 clear both sides are occupied

12 27.8 36.5 occupied both sides are occupied

18 41.8 27.5 clear both sides are occupied

23 11.1 63.6 clear both sides are occupied

For the walking distance and distance to parking, distances in metric units are used in
evaluating the values in matrix A, as defined in Section 4. For the status of lane and status
of available parking spaces, fuzzy evaluation is assigned with values proposed in Section 3.
Based on the values from Table 2, the evaluation matrix A is:

A =

⎛⎜⎜⎜⎜⎝
51.0 36.7 9.0 6.0
44.3 30.0 9.0 5.0
27.8 36.5 3.0 5.0
41.8 27.5 9.0 5.0
11.1 63.6 9.0 5.0

⎞⎟⎟⎟⎟⎠
Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation

matrix R =
(
rij
)

n×m according to Equations (2) and (3):

R =

⎛⎜⎜⎜⎜⎝
0.217 0.749 1.000 1.000
0.250 0.917 1.000 0.833
0.399 0.753 0.333 0.833
0.266 1.000 1.000 0.833
1.000 0.432 1.000 0.833

⎞⎟⎟⎟⎟⎠
Step 3: Establish the pair-wise comparison matrix by the comparison method, based

on the opinions of our sample set of twenty drivers with a range of driving experiences, as
described in Section 4. The following shows the response from one of the drivers:

Bi =

⎛⎜⎜⎝
0.5 0.8 0.9 0.4
0.2 0.5 0.1 0.4
0.1 0.9 0.5 0.9
0.6 0.6 0.1 0.5

⎞⎟⎟⎠
where, i = 1, . . . , 10 for our data set. As shown in Bi, all diagonal values are 0.5 as each
factor complements itself. The values of b12 = 0.8 and b21 = 0.2 indicate that in the view
of this driver, the factor “walking distance” is more important than “distance to parking”.
“distance to parking” is still a factor that the driver would consider when choosing a
parking space, but it is just less important.

Step 4: Obtain the weight vector for the pair-wise comparison matrix in Step 3 accord-
ing to Equation (4):

wi = (0.40, 0.05, 0.35, 0.20)
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Applying Equation (4), the pair-wise comparison matrix from the twenty drivers is
converted into the following weight matrix:

w =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.400 0.050 0.350 0.200
0.200 0.325 0.450 0.275
0.500 0.125 0.175 0.175
0.175 −0.050 0.625 0.750
0.150 0.375 0.250 0.225
0.225 0.125 0.250 0.400
0.125 0.550 0.350 0.350
0.375 0.100 0.350 0.175
0.125 0.225 0.375 0.250
0.225 0.200 0.400 0.225
0.250 0.075 0.475 0.200
0.425 0.075 0.475 0.200
0.425 0.075 0.325 0.175
0.125 0.125 0.425 0.325
0.050 0.275 0.225 0.450
0.175 0.250 0.275 0.300
0.300 0.125 0.250 0.325
0.325 0.175 0.100 0.425
0.300 0.000 0.450 0.250
0.150 0.150 0.425 0.325
0.100 0.300 0.325 0.275

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
To make the above matrix representative of the preference of most drivers, we remove

the largest and smallest values of each factor in the above matrix and average the remaining
values to obtain an average weight vector:

w̃ = (0.233, 0.170, 0.336, 0.286)

Step 5: With the average weight vector and Equation (5), the priority vector that
contains the weights of every available parking space in the given situation can be obtained:

zi(w) = (0.799, 0.788, 0.571, 0.806, 0.881)

Step 6: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z23(w) > z18(w) > z5(w) > z9(w) > z12(w).

Based on step 6, parking space 23 has the highest priority for the driver of the orange
vehicle. Thus, parking space 18 will be allocated to the blue autonomous vehicle by the
central command station. By analyzing the preferences of the human driver, the algorithm
is able to provide the optimal parking space for the autonomous vehicle. Since an intelligent
parking lot system cannot influence the choice of the driver, a suboptimal parking space,
which is space 18, is allocated to autonomous vehicle in this situation.

Step 7: Establish the adjacent matrix with all the road intersection nodes and the
node of parking space 18 for route selection based on the adjacent matrix assignment rule
according to Equation (6) in Section 5:
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 11.5 ∞ ∞ ∞ ∞ ∞ 17.6 ∞
∞ 0 11.0 ∞ ∞ ∞ 17.6 ∞ ∞
∞ ∞ 0 10.9 ∞ 17.6 ∞ ∞ 8.4
∞ ∞ ∞ 0 13.6 ∞ ∞ ∞ ∞
∞ ∞ ∞ 13.6 0 ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ 11.6 0 ∞ ∞ 9.2
∞ ∞ ∞ ∞ ∞ 11.0 0 ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ 11.5 0 ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
As shown in matrix D, there is only one passable path from T1 to parking space 18:

starting from T1, go through T2, subsequently arrive at T3, then turn right to parking
space 18, which is also the shortest path, with a total distance of 30.9 m. Through this
method, under the scenario of the presence of one HV and one AV in this example, we
simultaneously predict the parking space preference of the driver and allocate a parking
space to the AV through V2X communication based on the driver preferences. Moreover, a
parking lot may be constrained with traffic rules (e.g., one way road) and limited space, the
adjacent matrix D can, in addition to providing the shortest route navigation, also reflect
the constraints of the traffic rules and other conditions.

Using the same approach as used in scenario one, we can also solve the similar issues,
such as in the following two scenarios:

Scenario 2:
Step 1: Set the properties table of all available parking spaces currently in the example

parking scenario (Figure 7). As shown in Table 3.

 
Figure 7. Example of a parking scenario 2.
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Table 3. Properties of the available parking spaces in the parking lot of scenario two.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

2 43.5 29.2 clear both sides are occupied

9 44.3 30.0 clear both sides are occupied

12 27.8 36.5 clear both sides are occupied

19 21.8 42.5 clear adjacent to the road

20 3.2 55.7 clear adjacent to the road

23 11.1 63.6 clear both sides are occupied

Based on the values from Table 3 and assignment rule in Section 3, the evaluation
matrix A is:

A =

⎛⎜⎜⎜⎜⎜⎜⎝

43.5 29.2 9.0 5.0
44.3 30.0 9.0 5.0
27.8 36.5 9.0 5.0
21.8 42.5 9.0 6.0
3.2 55.7 9.0 6.0

11.1 63.6 9.0 5.0

⎞⎟⎟⎟⎟⎟⎟⎠
Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation

matrix R =
(
rij
)

n×m according to Equations (2) and (3):

R =

⎛⎜⎜⎜⎜⎜⎜⎝

0.074 1.000 1.000 0.833
0.072 0.973 1.000 0.833
0.115 0.799 1.000 0.833
0.147 0.687 1.000 1.000
1.000 0.524 1.000 1.000
0.288 0.459 1.000 0.833

⎞⎟⎟⎟⎟⎟⎟⎠
Step 3: With the average weight vector calculated in scenario one and Equation (5),

the priority vector that contains the weights of every available parking space in scenario
two can be obtained:

zi(w) = (0.761, 0.756, 0.737, 0.773, 0.944, 0.719)

Step 4: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z20(w) > z19(w) > z2(w) > z9(w) > z12(w) > z23(w).

Based on Step 4, parking space 20 has the highest priority for the driver of the orange
vehicle based on scenario two. Thus, parking space 19 will be allocated to the blue
autonomous vehicle by the central command station.

Scenario 3:
Step 1: Set the properties table of all available parking spaces currently in the example

parking scenario (Figure 8). As shown in Table 4.
Based on the values from Table 4 and assignment rule in Section 3, the evaluation

matrix A is:

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

51.0 36.7 9.0 6.0
41.8 27.5 9.0 5.0
25.3 34.0 9.0 6.0
27.8 36.5 9.0 7.0
21.8 42.5 9.0 6.0
3.2 55.7 9.0 6.0

11.1 63.6 9.0 5.0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Figure 8. Example of a parking scenario three.

Table 4. Properties of the available parking spaces in the parking lot of scenario two.

Parking
Space

Walking
Distance (m)

Distance to
Parking (m)

Status of
Parking

Status of Available
Parking Spaces

5 51.0 36.7 clear adjacent to the road

8 41.8 27.5 clear both sides are occupied

11 25.3 34.0 clear adjacent to the road

12 27.8 36.5 clear one adjacent space
unoccupied

19 21.8 42.5 clear adjacent to the road

20 3.2 55.7 clear adjacent to the road

23 11.1 63.6 clear both sides are occupied

Step 2: Normalize the evaluation matrix A to form the fuzzy comprehensive evaluation
matrix R =

(
rij
)

n×m according to Equations (2) and (3):

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.063 0.749 1.000 0.857
0.077 1.000 1.000 0.714
0.126 0.809 1.000 0.857
0.115 0.753 1.000 1.000
0.147 0.647 1.000 0.857
1.000 0.494 1.000 0.857
0.288 0.432 1.000 0.714

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
Step 3: With the average weight vector calculated in scenario one and Equation (5),

the priority vector that contains the weights of every available parking space in scenario
three can be obtained:

zi(w) = (0.723, 0.728, 0.748, 0.777, 0.725, 0.898, 0.681)
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Step 4: Ranking the priorities of the available parking spaces in this example parking
lot according to zi(w) gives: z20(w) > z12(w) > z11(w) > z8(w) > z19(w) > z5(w) >
z23(w).

Based on step 4, parking space 20 has the highest priority for the driver of the orange
vehicle based on scenario two. Thus, parking space 12 will be allocated to the blue
autonomous vehicle by the central command station.

As can be seen from the above three test examples, people are more inclined to choose
the available parking space near the exit of the parking lot.

In this paper, to validate of the proposed algorithm, we have collected opinions from
fifty drivers on their most preferred parking spaces to check against the data from the
twenty drivers mentioned in Step 3. Figure 9 shows that, in addition to the preferred choice
of space 23, 20 and 20 in designed scenarios one, two and three, respectively, there are only
four, six and four other choices among the fifty drivers who are surveyed. The accuracy of
the prediction of the proposed algorithm is thus, 92%, 88% and 92%, respec-tively, in the
three test cases.

 
Figure 9. Cont.
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Figure 9. Comparison between the predicted parking space preference and the opinions of the most
preferred parking space from fifty drivers in three example scenarios.

7. Conclusions and Future Work

In this paper, we studied the problem of automated parking space allocation during the
transition period when both human-operated vehicles (HVs) and autonomous (driverless)
vehicles (AVs) are present simultaneously in an intelligent parking infrastructure. Since
not all vehicles will be autonomous in a near foreseeable future and fully automated
parking systems are still being developed, the problem of interest, thus, has important and
relevant applications. Based on four key factors that affect the choice of parking spaces
for drivers, the fuzzy comprehensive evaluation (FCE) method is used to first predict
the driver’s choice of parking space, since a HV cannot communicate with the central
command station. This prediction then allows an intelligent parking system to allocate
the remaining available parking spaces to the AVs without conflict arising with the HVs.
Furthermore, by incorporating information of the parking spaces and road map of the
parking facility, an adjacent matrix in the Floyd algorithm is then developed to determine
the shortest feasible paths to arrive at the parking spaces safely. The proposed algorithms
are applied to three parking lot scenarios in which both a HV and an AV are entering. It is
shown that a parking space can be reasonably allocated to the AV after a prediction of the
driver’s choice of parking space.

This work lays the foundation for future investigation into the automated parking
problem with multiple HVs and AVs. Moreover, since the test parking lot discussed in
this paper is not very large, it is likely that drivers can observe the entire layout and the
situation from the entry point. More complexities of the parking infrastructure, such as
multiple entrances, exits, and levels, can be considered in the future. A faster and more
robust dynamic planning method needs to be developed.
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Abstract: The problem of leader-follower formation of a platoon of differential-drive wheeled mobile
robots without using attitude measurements is addressed in this paper. Contrary to the position-
distance approaches existing in the literature, the formation and collision avoidance is achieved by
introducing a state-dependent delay in the desired trajectory. The delay is obtained as the output of
a dynamical system and its magnitude will decrease/increase depending on the distance between
the robots. To guarantee trajectory tracking and to overcome the lack of orientation measurements,
an output feedback control and attitude observer are proposed based on the kinematic model of
the robots. The attitude observer is designed directly on the special orthogonal group SO(2) and
it can be used in open-loop schemes. The proposed control-observer scheme ensures asymptotic
convergence of the tracking and observer errors. Finally, experimental results are presented to show
the performance of the proposed approach.

Keywords: mobile robot; formation; motion coordination; attitude observer; trajectory tracking

1. Introduction

In recent years, autonomous mobile vehicles have attracted interest from the sci-
entific community, mainly due to the wide range of applications in which they can be
implemented; ranging from searching, surveillance and exploration applications to cargo
transportation and cooperative manipulation [1,2]. Cooperative formation control focuses
more on the efficiency and fault tolerance that a single mobile robot could not provide [3].
A particular problem of multi-robot coordination that has received much attention in the
last decades is formation control. The objective of formation control of multiple mobile
robots is to achieve a desired formation pattern while guaranteeing that the multiple robots
as a group accomplish a given task cooperatively [4].

The formation control approach has been implemented in different types of vehicles,
this in order to perform the tasks, with greater ease and robustness. For example, in [5]
this approach was used for underwater vehicles, where the follower tracks a reference
trajectory based on the leader position and predetermined formation without the need
for leader’s velocity and dynamics. This is desirable in marine robotics due to weak
underwater communication and low bandwidth. In order to tackle the harsh conditions of
underwater environment, in [6] the authors drive unmanned underwater vehicle using a
deterministic artificial intelligence approach. This technique is based on self-awareness
of the robot and relies on the dynamic of the vehicle and linear regression instead of
stochastic or traditional control theory methods. Another application of this technique
is presented in [7], where the authors address formation control for a team of quadrotor
UAVs in which the robots follow a specified group trajectory while safely changing the
shape of the formation according to the specifications of the task. On the other hand, in [8]
the formation control of a group of unicycle-type wheeled mobile robots at the dynamics
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level with a little amount of inter-robot communication is investigated. Another interesting
approach arises from bio-inspired control techniques. The robotic swarm control is a new
paradigm of multi-robot control system aiming to achieve task in collective way using
low level interactions between the members of the swarm. For instance, in [9] the authors
proposed to employ a variation of the particle swarm optimization (PSO) algorithm to
achieve formation in a swarm of agents while tracking a dynamic target. This techniques is
inspired on the pheromone based communication of the ant colonies.

Several formation control approaches have been proposed in the literature, and they
are mainly divided in three categories: behavior-based methods, leader–follower and
virtual structure methods [10,11]. The behavior-based approach is inspired by the emerging
behaviors in nature such as flock of birds, random walks of ants and school of fish [12].
In this case, a group behavior (or mission) comprises some low-level actions (or sub-tasks)
and is constructed to achieve the global objective, where the individual robot needs to
perform low-level actions to accomplish the group behavior [13]. In the leader-follower
formation [14,15], one robot is chosen as the leader which decides the whole formation
group’s moving trajectory, the other ones are the followers which are tasked to follow the
leader, and the desired relative separations and bearings are expected to be maintained [16].
This strategy is easily implemented by using two controllers only and is suitable to describe
the formation of robots, but it is hard to take into account the functioning capabilities of
different robots, i.e., ability gap of a robot [17]. Finally, in the virtual structure formation,
robots behave like particles embedded in a rigid virtual structure [18].

Some very interesting works where the leader-follower formation is used are, for ex-
ample [19], in which the formation problem is converted to a trajectory tracking problem,
where each follower robot tracks its corresponding generated reference trajectory such that
the whole group forms and maintains the desired shape. In this work, some experiments
were successfully conducted and reported using a group of four TURTLEBOTs. In [20],
the authors tackle the leader-follower formation control problem of non-holonomic mobile
robots. In this case, the trajectory tracking control for a single non-holonomic mobile robot
is extended to the formation control for two non-holonomic robots in which one is the
leader and the second is the follower. The controllers proposed by the authors are based
on the PI control technique. Simulation results are presented to demonstrate the good
performance of the proposed controller.

In this work, we addressed the leader-follower formation control problem for a group
of nonholonomic wheeled mobile robots (WMRs). We do not follow the common distance-
based approaches where the follower tracks the trajectory generated by the leader with an
offset to avoid a collisions. In our approach, the followers track the delayed desired trajec-
tory of the leader. The time delay is not arbitrary, on the contrary, it is obtained as the output
of a dynamical system whose inputs are the position of the robots. The aforementioned
dynamical system is designed in such way that, when the distance between the robots
increases, the magnitude of the delay decreases and vice versa. The proposed methodology
allows to achieve a convoy formation or platooning without collisions. Another advantage
of the proposed approach is that the followers do not deviate from the leader’s path during
cornering [21] like the distance-based approaches. Moreover, the distance between robots
can be modified by simple tuning the parameters of the delay’s dynamical system. To track
the desired trajectory, a novel control is proposed that exploits the cascade structure of the
robot’s kinematic model.

On the other hand, one of the most common problems during the implementation
of controllers is the lack of state measurements such as velocity, acceleration, orientation,
to name a few. This absence of information could be treated by using different sensors
to mediate it. However, this would make the system more complex and above all more
expensive. Another factor, for example, is that accurate velocity measurements can be
difficult, and actually, may be contaminated by the noises in real environments, which can
deteriorate the control performance [22].
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One of the alternatives to solve the problem of lack of information, is the design of
state observers to estimate the measures that the controller needs. There are many works
that use observers to estimate information of a system. In [23], the Cartesian position and
the kinematic model is employed to design nonlinear observers to estimate the orientation
angle and the linear velocity of a mobile robot. On the other hand, in [24] a state-feedback
controller for the non-linear error dynamics of the robot is combined with an observer that
estimates the orientation error based on available trajectory information and measurement
of the position coordinates. Furthermore, in [25] kinematic and dynamic models of the
WMR are described, and an output feedback controller is proposed using adaptive sliding
mode controller and a high gain observer is designed for velocity estimation to obtain
WMR trajectory tracking.

In this paper, we assume that only the Cartesian position and its time derivative are
available from measurements. To overcome the lack of attitude measurements a nonlinear
observer is proposed based on the kinematic model of the robot. The orientation observer
is designed directly on SO(2) and can be used in either open and closed loop schemes.
The stability analysis is carried out by means of Lyapunov theory.

The rest of the paper is organized as follows: In Section 2 the kinematic model of a
unicycle mobile robot is presented. The design of the attitude observer and its stability
analysis is presented in Section 3, and in Section 4, the control algorithm for Leader-follower
formation is described. In Section 5 the stability analysis for the complete closed-loop
system is presented. Experimental results with a group of three wheeled mobile robots
are presented in Section 6. Finally, conclusions and future research directions are stated
in Section 6.

2. Kinematic Model

Consider a group of differential-drive mobile robots as it is shown in the Figure 1.
According to the figure, the Cartesian position and orientation of each robot are denoted by
xi = col(xi, yi) ∈ �2 and θi ∈ �, respectively. The posture of each robot can be described
by the unicycle kinematic model as follows

ẋi = Θiνi, (1a)

θ̇i = ωi, i = �, fj, j = 1, ..., n, (1b)

where Θi � col(cos(θi), sin(θi)) ∈ �2 represents the direction of the Cartesian veloc-
ity and n is the number of slave robots. Finally, νi and ωi are the linear and angu-
lar velocities, respectively. The orientation angle and the Cartesian velocity satisfy the
nonholonomic constraint

ẏi cos(θi)− ẋi sin(θi) = 0 (2)

or equivalently,

tan(θi) =
ẏi

ẋi
. (3)

The nonholonomic constraint (3) implies that the velocity in the direction of wheel
axis is zero, i.e., the robot cannot move in the lateral directions.
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Figure 1. A group of nonholonomic mobile robots with one leader and n followers.

3. Attitude Observer

In order to develop the attitude observer, first notice that an equivalent representation
of the kinematic model (1) is the following

ẋi =νiRie1, e1 = col(1, 0) (4a)

Ṙ =ωiSRi (4b)

where Ri =
[

Θi SΘi
] ∈ SO(2) = {R ∈ �2×2 | R�R = I, de(R) = +1} is the rotation

matrix and S ∈ �2×2 is a skew-symmetric matrix given by

S =

[
0 −1
1 0

]
. (5)

For the case of SO(2) the rotation matrix Ri and skew-symmetric matrix S commute,
i.e., SRi = RiS. On the other hand, from (1a) the rotation matrix Ri can be reconstructed in
an algebraic way as follows

R =
[

vi Svi
]
, vi �

ẋi
‖ẋi‖ (6)

as long as ‖ẋi(t)‖ � 0 for all t ≥ 0. Based on the foregoing equation, the attitude
observation error is defined as

R̃i = R̂
�
i Ri (7)

where R̂i =
[

Θ̂i SΘ̂i
] ∈ SO(2) and Θ̂i are estimates of Ri and Θi, respectively.

With the previous definition the objective is to design an attitude observer such that
R̃i(t) → I as t → ∞ where I ∈ �2×2 is the identity matrix. Motivated by the work reported
in [26] the following attitude observer is proposed

˙̂Ri = ω̂iSR̂i (8a)

ω̂i = ωi + kaiv�
i SΘ̂i (8b)

where kai ∈ � is a positive constant and vi ∈ �2 is given in (6). Notice that the proposed
attitude observer can be used in open-loop schemes. Now we can establish the first result
of the paper.
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Theorem 1. Assume that the angular velocity ωi and the Cartesian velocity ẋi are available.
Moreover, assume that the robot’s motion satisfies ‖ẋi(t)‖ � 0 ∀ t ≥ 0. Then, the attitude observer
given in (8) guarantees that R̃i → I as t → ∞.

Proof. By taking into account (4b) and (8) the time derivative of the attitude observation
error (7) is given by

˙̃Ri =
˙̂R
�
i Ri + R̂

�
i Ṙi

=(ωi − ω̂i)R̂
�
i SRi

=(ωi − ω̂i)R̃iS. (9)

where RiS = SRi has been used. Now consider the positive scalar function

VRi =
1
2

tr(I − R̃i) (10)

whose time derivative along (9) is given by

V̇Ri = −1
2
(ωi − ω̂i)tr(R̃iS)

=
1
2

kai

(
v�

i SΘ̂i
)
tr(R̃iS). (11)

By taking into account (6), the elements of R̃i can be expressed as

R̃i =

[
v�

i Θ̂i −v�
i SΘ̂i

v�
i SΘ̂i v�

i Θ̂i

]
. (12)

Therefore, the trace of the matrix R̃iS is given by

tr(R̃iS) = −2v�
i SΘ̂i. (13)

Substituting the previous result in (11) yields

V̇Ri = −kai

(
v�

i SΘ̂i
)2

< 0 (14)

Therefore VRi converges asymptotically to zero, this in turn implies that R̃i → I as
t → ∞. This completes the proof.

4. Formation Control Algorithm

The kinematic model (1) is an underactuated nonlinear system. To overcome this
problem, consider the auxiliary control input

ui = νiRde1 = νiΘdi (15)

where Rdi =
[

Θdi SΘdi
] ∈ SO(2) represents the desired orientation with Θdi =

col(cos(θdi), sin(θdi)). Therefore, the kinematic model can be written as

ẋi = ui + νi(Θi − Θdi) (16a)

θ̇i = ωi. (16b)

In this case, the translational subsystem given by (16a) can be analyzed as a completely
actuated system perturbed by the coupling term νi(Θi −Θdi) which relates the translational
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subsystem with the attitude subsystem (16b). On the other hand, given the control input ui
the desired vector Θdi and νi can be computed as

Θdi =
ui

‖ui‖ , νi = ‖ui‖. (17)

The proposed formation control strategy is based on the leader-follower approach
and delayed reference signals. Contrary to the conventional distance-based leader-follower
approach, where the follower robot follows the trajectory generated by the leader, in our
proposed approach, the followers track the delayed desired trajectory of the leader robot.
To avoid collisions, the time delay depends on the distance between the robots. The time
delay becomes larger when the follower is closed to the leader and vice versa. The control
objective can be stated as follows: design the control inputs ui and ωi such that the position
and attitude tracking errors defined as

x̃� = xd(t)− x�, θ̃� = θd�(t)− θ� (18a)

x̃fi = xd(t − τi)− xfi, θ̃fi = θdfi(t − τi)− θfi (18b)

converges asymptotically to zero without using attitude measurements. In (18), the sub-
scripts � and f denote the leader and follower robots and xd(t) ∈ �2 and θdi(t) are the
desired Cartesian trajectory and desired orientation, respectively. Finally, τi denotes the
time delay (i = 1, . . . , n) which is obtained as the output of the system

ṡi = −γisi + ai(1 − exp(bi/‖ρ̃i‖)), si(0) = si0 (19a)

τi = si + si−1, (19b)

where ai, bi and γi are positive parameters and s0 = 0. For the first leader we have
ρ̃1 = x� − xf, and for i > 1 we have ρ̃i = xfi−1 − xfi. The second term in (19a) increases or
decreases the magnitude of the time delay depending on the distance between the robots.

4.1. Leader Robot Controller

Before presenting the leader’s controller, let us introduce the following auxiliary
error variable

η� = x̃� + β� (20)

where β� ∈ �2 is the state of the following auxiliary linear system

β̇� = −Kβ�β� − Kη�η� (21)

where Kη� = KT
η� > O ∈ �2×2 and Kβ� = KT

β� > O ∈ �2×2. Based on (20) and (21) the
proposed leader’s controller is given by

u� = ẋd(t) + Kβ�β� (22a)

ω� = ωd� + ko�Θ
�
d�SΘ̂� (22b)

where ko� ∈ � is a positive gain, Θ̂� is extracted from R̂� and Θd� is computed according
to (17). Regarding ωd� can be computed as

ωd� = ΘT
d�S

−1Θ̇d�. (23)
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4.2. Follower Robot Controller

The next step is to design the tracking controller for the follower. The proposed
position and attitude control laws for the followers have a similar structure to the leader’s
controllers and are given by

ufj = ẋd(t − τi) + (1 − τ̇i)xd(t − τi) + Kβfiβfi (24a)

ωfi = ωdfi + kofiΘ
�
dfiSΘ̂fi (24b)

where Kβfi = K�
βfi > O, kofi > 0 are the control gains and βfi ∈ �2 is obtained as the

solution of

β̇fi = −Kβfiβfi − Kηfiηfi (25)

with Kηfj = K�
ηfj > O and ηfj = x̃fj + βfj.

To avoid complex calculations, the time-derivative of Θdi can be approximated by

a low-pass filter, Θ̇di =
s

λs + 1
Θdi with λ > 0 is the cutoff frequency. It is important to

point out that the attitude control laws (22b) and (24) does not explicitly use the orientation
error θ̃i.

5. Stability Analysis

Once the leader and follower control laws and attitude observers have been presented
we can state the following theorem which summarizes the main result of the paper.

Theorem 2. Consider a group of nonholonomic mobile robots described by (1) in closed loop with
the control laws (22) and (24) in combination with the attitude observer (8). Furthermore, assume
that |θ̃i(0)| < π and ‖ẋi(t)‖ � 0 for all t ≥ 0. Then, the leader-follower formation is achieved, i.e.,

lim
t→∞

x̃i(t) = 0, lim
t→∞

θ̃i(t) = 0

with i = �, fj.

Proof. First, we develop the closed loop dynamics of the position and attitude tracking er-
rors. By taking into account (16a), (18), (20)–(22), (24) and (25), the position error dynamics
is given by

β̇i = −Kβiβi − Kηiηi (26)

η̇i = −Kηiηi − νi(Θi − Θdi). (27)

By using trigonometric identities, the term νi(Θi − Θdi) can be written as

νi(Θi − Θdi) = ψi(t, θ̃i)θ̃i = νiRi

[
(1 − cos(θ̃i))/θ̃i
− sin(θ̃i)/θ̃i

]
θ̃i. (28)

On the other hand, by taking into account the attitude observer (8) and attitude control
laws (22b) and (24b), the attitude error dynamics is given by

˙̃θi = −koi sin(θ̃i) + koiΘ
�
diSRi(I − R̃

�
i )e1 (29)

˙̃Ri = (ωi − ω̂i)R̃iS (30)

where the equalities Θ�
diSΘi = sin(θ̃i) and Θi − Θ̂i = Ri(I − R̃

�
i )e1 have been used.
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Finally, by defining zi =
[

β�
i η�i

]� ∈ �4 the whole closed-loop dynamics can be
written as follows

Σ1 :
{

żi = Aizi + Ψi(t, θ̃i)θ̃i (31a)

Σ2 :

{
˙̃θi = −koi sin(θ̃i) + koiΘ

�
diSRi(I − R̃

�
i )e1

˙̃Ri = (ωi − ω̂i)R̃iS
(31b)

where

Ai =

[ −Kβi −Kηi
O −Kηi

]
, Ψi(t, θ̃i) =

[
0

ψi(t, θ̃i)

]
.

Clearly, the complete closed-loop system presents a cascade structure between the
position and attitude error dynamics. If R̃i = I, then, R̂i = Ri which implies that Θ̂i = Θi.
In this case, the term ωi − ω̂i becomes

ωi − ω̂i = kaiv�
i SΘi =

kai
‖ẋi‖ ẋ�i SΘi = 0 =⇒ ˙̃R = O

The result follows from the nonholonomic constrain (2). The previous result shows
that the equilibrium point of (31) is (z�i , θ̃�i , R�

i ) = (0, kπ, I) with k = 0, 1, 2, . . ..
Now let us analyze the subsystem Σ2 which is independent of the state zi and has

a cascade structure with koiΘ
�
diSRi(I − R̃

�
i )e1 as an interconnection term. This term is

bounded and according to Theorem 1 vanishes since the attitude observer error R̃i → I as
t → ∞. Moreover, the equilibrium point θ̃i = 0 of the unperturbed system

˙̃θi = −koi sin(θ̃i) (32)

is locally asymptotically stable with Lyapunov function Vθi = 1 − cos(θ̃i) ∀θ̃i ∈ (−π, π).
Furthermore, θ̃i = 0 is locally exponentially stable since the linear approximation of (32)
is given by ˙̃θi = −koi θ̃i. Therefore, according with Lemma A1 (see Appendix A) the

subsystem ˙̃θi = −koi sin(θ̃i) + koiΘ
�
diSRi(I − R̃

�
i )e1 is Input-to-State Stable (ISS) with

input (I − R̃
�
i )e1. Clearly, the attitude subsystem Σ2 satisfies the condition of Theorem A1

given in Appendix A, thus, it is concluded that the equilibrium point (θ̃i, R̃i) = (0, I) is
uniformly asymptotically stable.

The position subsystem Σ1 can be analyzed using similar arguments. It is straight-
forward to show that the matrix Ai is Hurwitz. Therefore, the equilibrium point zi = 0

of the unforced subsystem żi = Aizi (with θ̃i = 0) is exponentially stable. This implies
that the subsystem Σ1 is ISS with input θ̃i. The closed loop system Σ1 and Σ2 satisfy the
conditions of Theorem A1. As a result, it is concluded that (zi, θ̃i, R̃i) → (0, 0, I) as t → ∞.
The convergence of zi to zero implies that ηi and βi also converge asymptotically to zero.
Then, it follows that the position tracking error x̃i = ηi + βi → 0 as t → ∞. This completes
the proof.

6. Experimental Results

In this section, experimental results are presented to validate the performance of the
attitude observer and control laws developed in Sections 3 and 4. The testbed is composed
of three Khepera III mobile robots from K-Team and six infrared Optitrack cameras which
measure the Cartesian position of the robots (see Figure 2). Although the infrared cameras
can also measure the orientation of the robot, This measurement is used only for comparison
purposes and do not influence the behavior of the controller. The control laws and the
observer were programmed in Matlab with a sample time of 20 [ms]. The control signals
were sent to the robots via WIFI communication channel. Table 1 summarizes the parameter
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values of the control law and the orientation observer employed in the experiments. It is
worth to notice, that the initial postures of the robots are selected arbitrarily in every case.

(a) (b)

Figure 2. Experimental testbed: (a) Differential drive Khepera III mobile robot, and (b) Optitrack
infrared camera.

Table 1. Observer, controller gains and delay parameters.

Robot kai Kηi Kβi bi γi λi κi ζi

Leader 3 4I 3.5I - - 10 20I 5I
Follower 1 3 4I 3.5I 1 1 10 20I 5I
Follower 2 3 4I 3.5I 1 1 10 20I 5I

The control algorithms together with the attitude observer were tested using two
desired trajectories, a circular path and a lemniscate curve. The parametric equations of
both desired trajectories are shown below

xdm1 =

⎡⎢⎢⎣
0.3 cos

( π

15
t
)

0.3 sin
( π

15
t
)
⎤⎥⎥⎦[m], xdm2 =

⎡⎢⎢⎢⎢⎣
0.35 sin

(
2π

45
t
)

0.35 sin
(

4π

45
t
)
⎤⎥⎥⎥⎥⎦[m] (33)

The Cartesian velocity ẋi can be computed by means of numerical differentiation.
However, we obtained better results with the following velocity observer [27]

˙̂xi = κi(xi − x̂i) + μi

μ̇i = ζi(xi − x̂i)

where κi, ζi ∈ �2×2 are positive definite matrices and x̂i ∈ �2 is an estimate of the Cartesian
position xi.

The observer, controller gains and the parameters of the delay dynamic equation are
shown in Table 1. Regarding the parameter aj, for the first trajectory was set to a1 = 3 and for
the second one we have a2 = 5. All other parameters were the same for both trajectories.

The trajectories of the robots obtained during the two experiments with the desired
Cartesian trajectories are shown in Figures 3 and 4, respectively. The figures also shown
the robots’ positions at the time instants t = 0 [s], t = 13 [s] for the first experiment and
t = 0 [s] and t = 20 [s] for the second experiment. In both cases, after the transient response
the robots successfully achieve the convoy formation.
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Figure 3. Trajectory of the robot group following the circular path: Robots at the time instants t = 0
and t = 15 s.

Figure 4. Trajectory of the robot group following the lemniscate curve: (a) Robots at t = 0 s,
and (b) Robots at t = 30 s.

In order to assess the performance of the attitude observer and control laws we
compute the orientation errors θ̃i = θi − θdi and θ̄i = θi − θ̂i where θi is the angle measured
by the cameras and the estimated angle θ̂i is extracted from Θ̂i as follows

θ̂i = atan2(Θ̂2i, Θ̂1i)

where atan2(·, ·) is the two argument arctangent function and Θ̂i = col(Θ̂1i, Θ̂2i). The
time evolution of the position and attitude tracking errors obtained in each experiment
are shown in Figures 5 and 6. It is observed in the Figures that despite the unmodeled
dynamics and discretization of the control laws, a good tracking was achieved. The time
evolution of the time delays are shown in Figures 7 and 8. Notice that for the circular path
the delays converge to a constant value while for the second trajectory the time delays
change slowly while their magnitude increases at the points of the curve with greater
curvature (see Figure 4b). This behavior was expected since at this points the robots come
closer to each other.
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In order to assess the performance of the proposed algorithm, the RMS error is
computed for the distance and orientation of each robot to its desired trajectory, additionally
to the RMS error of the estimation of the orientation observer is presented. Table 2 collects
the results for the circular desired trajectory while Table 3 shows the results corresponding
to the lemniscate curve desired trajectory experiment. On both cases it is observed that the
RMS distance error is bellow 0.04 m, while RMS orientation error is under 0.155 radians.

Figure 5. Time evolution of the position and attitude errors in the first experiment (circular path):
(a) Norm of the position error x̃i, (b) orientation error θ̃i = θdi − θi, (c) observation error θ̄i = θi − θ̂i.

Figure 6. Time evolution of the position and attitude errors in the second experiment (lemniscate
curve): (a) Norm of the position error x̃i, (b) orientation error θ̃i = θdi − θi, (c) observation error
θ̄i = θi − θ̂i.
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Figure 7. Time evolution of the delay for the first trajectory.

Figure 8. Time evolution of the delay for the second trajectory.

Table 2. RMS errors of distance, orientation and observed orientation of the robots in the circular
trajectory experiment.

Robot Distance [m] Orientation [rad] Observation [rad]

Leader 0.0330 0.1533 0.2115
Follower 1 0.0336 0.0806 0.1217
Follower 2 0.0367 0.1416 0.1949

Table 3. RMS errors of distance, orientation and observed orientation of the robots in the lemniscate
trajectory experiment.

Robot Distance [m] Orientation [rad] Observation [rad]

Leader 0.0360 0.1221 0.1814
Follower 1 0.0365 0.0654 0.1862
Follower 2 0.0397 0.0775 0.2060

Finally, Figures 9 and 10 show the control inputs. Notice that νi(t) � 0 for all t ≥ 0
this implies that the assumption ‖ẋi(t)‖ � 0 is satisfied in both experiments.
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Figure 9. Control inputs obtained in the first experiment: (a) νi, (b) ωi.

Figure 10. Control inputs obtained in the second experiment: (a) νi, (b) ωi.

7. Conclusions

In this paper, we proposed kinematic control laws in combination with an attitude
observer that solve the problem of convoy formation for a group of nonholonomic mobile
robots without using attitude measurements. The proposed control approach is based
on the leader-follower scheme but contrary to other works, we used delayed reference
signals for the follower robots. The time delays depend on the distance between the
robots and are obtained as the outputs of a dynamical system that couples the leader and
follower dynamics. As result, collisions between the members of the group are avoided.
The kinematic control laws were designed by exploiting the cascade structure of the robots’
kinematic model. The proposed controllers are decentralized since only require its own
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position and the position of the nearest leader. On the other hand, the attitude observer
was designed directly on SO(2) and it can be used in open and closed loop schemes.
Finally, real-time experiments are presented to show the effectiveness of the proposed
control-observer approach.
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Appendix A

In this Appendix A, we recall some results regarding the stability of interconnected
systems and Input-to-State stability (ISS) [28].

Lemma A1. Consider the system ẋ = f (t, x, u) where f (t, x, u) is locally Lipschitz in (x,u) and
uniformly in t. If the unforced system ẋ = f (t, x, 0) has a uniformly asymptotically stable stable
equilibrium point at x = 0, then the system is locally ISS.

Theorem A1. Consider the interconnected system

ẋ = f (t, x, y) (A1a)

ẏ =g(t, y) (A1b)

if the subsystem (A1a) with y as input is ISS and y = 0 is a uniformly asymptotically stable
equilibrium point of the subsystem (A1b), then, the origin (x, y)=(0, 0) of the interconnected
system (A1a) and (A1b) is uniformly asymptotically stable.
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Abstract: In the industrial environment, Autonomous Guided Vehicles (AGVs) generally run on a
planned route. Among trajectory-tracking algorithms for unmanned vehicles, the Pure Pursuit (PP)
algorithm is prevalent in many real-world applications because of its simple and easy implementation.
However, it is challenging to decelerate the AGV’s moving speed when turning on a large curve
path. Moreover, this paper addresses the kidnapped-robot problem occurring in spare LiDAR
environments. This paper proposes an improved Pure Pursuit algorithm so that the AGV can predict
the trajectory and decelerate for turning, thus increasing the accuracy of the path tracking. To solve
the kidnapped-robot problem, we use a learning-based classifier to detect the repetitive pattern
scenario (e.g., long corridor) regarding 2D LiDAR features for switching the localization system
between Simultaneous Localization And Mapping (SLAM) method and Odometer method. As
experimental results in practice, the improved Pure Pursuit algorithm can reduce the tracking error
while performing more efficiently. Moreover, the learning-based localization selection strategy helps
the robot navigation task achieve stable performance, with 36.25% in completion rate more than only
using SLAM. The results demonstrate that the proposed method is feasible and reliable in actual
conditions.

Keywords: path planning; pure pursuit controller; trajectory tracking; deep learning; robot kidnap-
ping detection

1. Introduction

In recent years, due to the dramatic development and evolution of technology, an
increasing number of industries have turned to automation. The AGV plays a significant
role in the automation and is widely used in various other fields.

1.1. Path Planning and Trajectory-Tracking Algorithms

In unmanned vehicle navigation, path planning is essential to search for an optimal
path from one point to another point in the environment. Researchers have adopted
different methods to solve the problem of AGV path planning, two of which are grid
search-based methods and intelligent-based methods. Grid Search-based methods include
the A* algorithm and its variants. Chang et al. [1] proposed an improved A* path planning
algorithm based on a compressed map to reveal actual narrow areas the robot cannot reach
although this approach produces some precision loss, leading the path to be conservative.
To reduce the redundant points in A* algorithm pathfinding process, Zeng et al. [2] used
Jump Point Search to obtain jump points in the raster map and speed up the A* algorithm
based on obtained jump points, though the search time fluctuates in different practical
scenarios. For intelligent-based methods, Huang et al. [3] proposed an improved genetic
algorithm under a global static environment, which improved the slow convergence and
precocity problems. Meanwhile, Zhang et al. [4] refined inertia weights and acceleration
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factors in Particle Swarm Optimization to prevent local minimum value falling and increase
convergence speed.

Following path planning process, trajectory tracking is required so that the AGV can
track the movement according to a set trajectory path. With the development of technology,
various trajectory-tracking methods have been proposed. Wu et al. [5] introduced a local
linear Model Predictive Control (MPC) to track the nonlinear vehicle model velocity and
path simultaneously. In [6], a reference trajectory is predefined using a sigmoid function.
Then the trajectory is adjusted dynamically by a nonlinear MPC when an obstacle appears
in the predictive horizon. Besides MPC, Yang et al. [7] proposed a Fixed-Time Control
method and a Fixed-Time Sliding Mode Controller to trajectory-tracking control while
meeting the predetermined performance and disturbance suppression. Furthermore, an
adaptive trajectory-following strategy was proposed in [8] that constructs a knowledge
database through the Particle Swarm Optimization (PSO) algorithm to optimize the con-
troller parameters set according to various vehicle speed and heading error combinations.
Meanwhile, Yan et al. [9] proposed a hybrid visual trajectory strategy in which a 2.5D
visual servo framework was used to enhance trajectory-tracking behavior.

Although non-geometric controllers such as MPC can be applied to linear or nonlinear
models with multiple constraints, their limitations are heavy computation and an inability
to provide a closed-form solution when the model is sophisticated. On the other hand,
the Pure Pursuit (PP) algorithm is a popular trajectory-tracking algorithm because of
its simplicity, efficiency, and low computational requirements, even in limited resource
conditions. It computes angular velocity to move the robot from its current position to some
look-ahead point in front of the robot. However, the tracking performance is poor due to
improper selection of the look-ahead distance. Chen et al. [10] combined the PP algorithm
with Proportional Integral (PI) Controller to smooth the final output steering angle through
a low-pass filter and verify its feasibility through simulation experiments. By analyzing the
vehicle speed and the shortest distance between the GPS trajectory and the current vehicle
position, Wang et al. [11] proposed an algorithm that can reduce the lateral error when the
vehicle tracks the ideal path. Meanwhile, a Pure Pursuit algorithm based on the optimized
look-ahead distance (OLDPPA) [12] introduced an adaptive random motion mechanism of
particles in the Salp Swarm Algorithm to improve mining and exploration capabilities.

1.2. AGV Localization Algorithms

To navigate autonomously and safely, the AGV needs to be able to locate its posi-
tion in its environment. Consequently, the localization problem has been studied and
various techniques are proposed to solve the localization problem [13]. The simple form
for localization is to use odometry methods, which provide the current position from
odometry information estimated by velocity and rotation of wheels (wheel odometry), in-
ertial measurement units (IMU odometry), laser source (laser odometry) or images (visual
odometry), etc. For instance, a free-sensor LiDAR-based odometry method [14] integrated
the LiDAR-only odometry (LOAM) algorithm to estimate odometry then segment the
local map by Convolutional Neural Network (CNN) before using a two-stage RANSAC
for verifying the position matches in the local map. Moreover, Zhao et al. [15] proposed
a multi-model sensor fusion framework that uses different tightly coupled and loosely
coupled optimization methods around the primary IMU odometry factors and can work in
several challenging environments.

In contrast, the Simultaneous Localization And Mapping (SLAM) technology consists
of the map building process and the localization process. In [16], the authors enhanced
the localization method using least square-based geometric matching to compensate for
the predicted position. Using 2D LiDAR scan, Millance et al. [17] use a Determinant of
Hessian-based detector to find points of high curvature on the Signed Distance Function
(SDF) for place recognition. Although the LiDAR-based SLAM method provides helpful
information to determine free-space regions and characterizes places for localization, it
seems inefficient in structure-less environments, e.g., long corridors, tunnels, dusty or
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foggy areas, etc. On the other hand, the Sensor-based odometry method proves their
accuracy and robustness in various scenarios, even in challenging environments.

Currently, modern image classification systems based on deep neural networks, in-
cluding Inception V3 [18] and YOLO V3 [19], are more accurate than traditional machine
learning classification methods. In general, mobile robots are usually equipped with LiDAR
for robot localization due to its accuracy, speed, and 3D reconstruction ability. Therefore, a
deep neural network can extract the features of the LiDAR point-cloud data. For example,
Chen et al. [20] extracted 2D LiDAR features and used SVM to recognize front pedestrians
and track them. However, in the repetitive pattern environment, e.g., in the long corridor,
where LiDAR point clouds are sparse to collect. As the result, it is challenging to localize
precisely the AGV position, leading to mislocalization or the kidnapped-robot problem.
When a mobile robot fails to localize itself due to sparse LiDAR point-cloud, some methods
are developed to relocate AGV’s position. In the SLAM localization system, it localizes
AGV’s position through Monte Carlo Localization (MCL) method, which takes a long time
and is not helpful in broad-space scenarios. Therefore, Wi-Fi fingerprinting was proposed
to solve the problem of robot kidnapping [21], and MCL was integrated with the Fast
Library for Approximate Nearest Neighbors (FLANN) machine learning technology to
solve this problem [22].

1.3. Contributions

Motivated by discussion above, this paper focused on control movement ability of the
AGV on curve path and localizing the AGV on the localization system in the structure-less
environment (long corridor). The main contributions of our work are as follows:

• For trajectory tracking, we adopt the PP algorithm and improves it. The traditional
PP algorithm often causes errors when it encounters a turn because it is overdue to
decelerate speed. Therefore, an improved PP algorithm is proposed that incorporates
turning prediction-based deceleration to reduce the impact caused by late attempts
at deceleration.

• To solve the kidnapped-robot problem, we combine 2D LiDAR point-cloud features
with a deep convolutional network-based classifier to distinguish the current situation
for selecting SLAM or odometry localization system. Thus, if the AGV is in a situation
where SLAM fails to determine robot position, the task can still be continued.

• In addition, practical experiments in the long corridor terrain are carried out to verify
the feasibility of the proposed system.

The remain of this paper is organized as follows. In Section 2, the hardware platform
and vehicle kinematic of robot system are described. In Section 3, the improved Pure
Pursuit algorithm using turning prediction-based speed adjustment is introduced. the deep
learning-based selection strategy using 2D LiDAR point-cloud features for localization task
is discussed Section 4. In Section 5, the practical experimental results and verification of
the proposed method is reported. Finally, in Section 6, the conclusions are presented.

2. Robot System

The mobile robot has four differential wheels that use two motors on both left and
right sides. In addition, the hardware platform is equipped with two LiDAR systems
that can obtain 360-degree point-cloud information in the front and back of the robot
for SLAM [23]. The schematic diagram of our mobile robot hardware platform is shown
in Figure 1.
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Figure 1. The schematic diagram of mobile robot hardware platform.

3. Design of Trajectory-Tracking System

The mobile robot in this paper is driven in a differential-wheel mode. The left and
right wheels are related to the overall velocity and angular velocity of the mobile robot. The
coordinate system of the mobile robot is shown in Figure 2, where (x, y) is the location of
the mobile robot, L is the distance between the left and right wheels, θ is the angle between
the mobile robot and the X-axis, υR is the velocity of the right wheel, υL is the velocity of
the left wheel, υ is the velocity of the mobile robot and ω is the angular velocity of the
mobile robot. The kinematic model of the differential wheel is as follows:

x = υ cos θ (1)

y = υ cos θ (2)

ω =
υR − υL

L
(3)

υ =
υR + υL

2
(4)

υL = υ − Lω

2
(5)

Figure 2. The schematic diagram of the differential-wheel model.

3.1. Introduction of Pure Pursuit (PP) Algorithm

In the PP algorithm, the target point g in tracking path is the target point between
the forward-looking distance of the center of the vehicle body and the path. As shown in
Figure 3, the target point g belongs to one of the points along the entire travel path. The
forward-looking distance L f is calculated using Equation (6):

L f = k f ∗ υ + L f m (6)
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where k f is the custom speed weight, υ is the linear velocity of the mobile robot and L f m is
the minimum forward-looking distance limit.

Figure 3. The definition of the target point g (blue circle) in Pure Pursuit algorithm.

The algorithm uses the PD controller to follow the path calculates the angle deviation
according to the current position of the robot and the forward-looking distance point g,
and then keeps the robot moving on the trajectory through the PD controller. The control
structure block diagram of the PD controller is shown in Figure 4. In the PP algorithm, the
forward-looking distance can impact to path tracking accuracy and may cause the mobile
robot to oscillate, shown in Figure 5.

Figure 4. The control structure block diagram of PD controller.

Figure 5. The impact of forward-looking (foresight) distance on generating the tracking error in the
Pure Pursuit algorithm. A longer forward-looking distance represents smoother path tracking, and a
shorter forward-looking distance give accurate tracking, but the PD controller is more challenging
to adjust.
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3.2. Improved Pure Pursuit Algorithm

In the original Pure Pursuit algorithm, the shorter the forward-looking distance, the
higher the trajectory-tracking accuracy. As Equation (6) is adopted, the forward-looking
distance L f is longer when the velocity υ is high; by contrast, L f is shorter when υ is
slow. This leads that the turning time can be predicted when the angular velocity ω is
large. However, the long forward-looking distance decreases trajectory-tracking accuracy,
making it impossible to slow down the turn in time (Figure 6).

Figure 6. The impact forward-looking distance in trajectory-tracking.

To improve the PP algorithm, this paper adopts a fixed short forward-looking distance
to increase the trajectory-tracking ability at any time. Then the proposed method judges
the current turn to decelerate it and keeps the angular velocity ω as a deceleration basis
at a certain level so that the mobile robot can better track the path when the path is more
rugged, shown in Figure 7.

Figure 7. The turning decision strategy of the proposed improved forward-looking distance tracking. (a) Predict Turn:
Predicting a front turn or not. (b) Turn Now: Making the turn action. (c) Rugged Route: Making a turn in the case of
rugged route.

We separate the turning decision strategy into three steps. First, we predict the turning
distance using an angle a between two vectors created from the current robot center to the

478



Appl. Sci. 2021, 11, 5963

two next forward-look points (shown in Figure 7a). Assume that two vectors
∣∣∣∣ ⇀V1

∣∣∣∣,∣∣∣∣ ⇀V2
∣∣∣∣ of

angle a in the ideal situation (shown in Figure 8) as the following definition:∣∣∣∣ ⇀V2
∣∣∣∣ = 2 ×

∣∣∣∣ ⇀V1
∣∣∣∣ (7)

where
∣∣∣∣ ⇀V1

∣∣∣∣ is the predicted distance, and the ideal angle α is 60
◦
. When the ideal situation

is encountered, the AGV will decelerate. However, when the route has a radius of gyration
R, the angle a will never reach α value and the AGV cannot decelerate. Without considering

R, the maximum value of α can be obtained from
∣∣∣∣ ⇀V1

∣∣∣∣ and
∣∣∣∣ ⇀V2

∣∣∣∣ as below:

α ≤ cos−1

⎛⎜⎜⎝
∣∣∣∣ ⇀V2

∣∣∣∣∣∣∣∣ ⇀V1
∣∣∣∣
⎞⎟⎟⎠ (8)

Figure 8. The curve prediction in the ideal case and the actual case.

From Equation (8), we can clearly define the predicted turning distance with the
corresponding radius of gyration R:

cos−1

⎛⎜⎜⎝
∣∣∣∣ ⇀V2

∣∣∣∣∣∣∣∣ ⇀V1
∣∣∣∣
⎞⎟⎟⎠ > tan−1

⎛⎜⎜⎝ R∣∣∣∣ ⇀V1
∣∣∣∣
⎞⎟⎟⎠ (9)

α ≤ cos−1

⎛⎜⎜⎝
∣∣∣∣ ⇀V2

∣∣∣∣∣∣∣∣ ⇀V1
∣∣∣∣
⎞⎟⎟⎠− tan−1

⎛⎜⎜⎝ R∣∣∣∣ ⇀V1
∣∣∣∣
⎞⎟⎟⎠ (10)

In the following step (shown in Figure 7b), to make a turn action, we define a current
turning angle b between two vectors created from the current robot center to the next and
the previous forward-looking points and ensure b ≤ β value, where β = 135

◦
in ideal

case. When the vehicle is traveling on rugged terrain (shown in Figure 7c), this paper
uses γ = 0.1 (rad/s) as the threshold to indicate that the angular velocity ω is too high if
exceeding γ, helping the mobile robot can increase the tracking accuracy.

4. The Localization Switching Method in the Structure-Less Environment

4.1. Two-Dimensional (2D) LiDAR SLAM

2D LiDAR SLAM technology uses LiDAR sensors to collect point-cloud data and
scan matches. The SLAM technology then uses algorithms to optimize and loop closure
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detection for map building (Figure 9) and localization. However, in a structure-less en-
vironment as a long corridor, SLAM cannot determine its position on the map, leading
to cause unexpected accidents easily. To avoid the mislocalization problem, we use the
characteristics of 2D LiDAR data to recognize where the mobile robot is lost.

Figure 9. The environment map constructed by 2D LiDAR; black indicates obstacles (e.g., walls); white indicates no obstacles
and gray represents unknown areas.

In scan matching, SLAM will match the point clouds with the map features. If the
localization is successful, the point clouds are superimposed on the black edge of the SLAM
map. At this time, we can use all point clouds and the point clouds superimposed on the
black edge of the map to determine whether the AGV is mislocalized as follows:

mr = 1 − pmatch
pall

(11)

where mr represents the missing rate (ranged from 0 to 1). If mr is greater than 50%, most
of the point clouds are not superimposed on the map features. In this case, it can be judged
that the mobile robot is getting lost; otherwise, it represents localization success. pall
represents the number of all point clouds in a frame, and pmatch represents the number of
point clouds in a frame superimposed on the map features.

However, this judgment method cannot detect the localization status under all condi-
tions. when the surrounding environment has s repetitive pattern, the map features will be
too consistent despite the point-cloud is superimposed on the map features. This makes
SLAM localization impossible to confirm. For example, in the corridor part of the map
(Figure 9), the point clouds extracted from the walls on both sides are too sparse, making it
impossible to determine where the mobile robot is in the corridor.

4.2. Deep Learning-Based Corridor Recognition for Switching Localization Systems

To avoid the corridor effect, this paper proposes to use deep learning to identify where
is corridor area to switch the localization system. Because we need to know whether the
current environment belong to corridor area or not, we will define the corridor recognition
problem as the binary classification problem. The process will be following as below:

1. First, to collect images that represent the current area, we need to convert the LiDAR
point-cloud data into 2D images by the following formula:

ppic = r
[

cos picθ − sin picθ

sin picθ cos picθ

]
︸ ︷︷ ︸

Rpic

plidar +

[
picx
picy

]
︸ ︷︷ ︸

tpic

(12)
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where ppic is the position of the point-cloud on the picture, plidar is the position of
the point-cloud on real world, Rpic is the transfer matrix from the LiDAR point-cloud
position to the image point-cloud position and tpic is the offset of the LiDAR point-
cloud position from the image point-cloud position. To convert the real scale to image
pixels, and we set a pixel equal to 0.05 m with r is the image resolution. The point-
cloud range is set within a square of 10 m × 10 m with the center of the mobile robot
as the base, as shown in Figure 10a. Finally, the point-cloud information is drawn on
the two-dimensional picture with the map coordinates (100, 200) as the center of the
mobile robot through a conversion matrix, as shown in Figure 10b.

2. When putting the 2D point-cloud image into the deep neural network for recog-
nition, it is found that if there are people in the image, this will cause noise, and
the recognition performance of the corridor is poor. Therefore, image edge detec-
tion is used to empirically determine the Region of Interests (ROI) of x ≥ 100 and
90 ≤ y ≤ 110 in the range of the image. The ROI content then is filtered noise, as
shown in Figure 11. After image preprocessing, it is put into a deep neural network
to determine corridor area.

3. For the corridor recognition network, we use 2 different InceptionV3 [18] and LeNet-
5 [24] architectures. Despite having impressive performance in classification tasks,
most deep neural networks require powerful hardware support for their heavy com-
putation, leading to difficulties deploying the deep learning method into edge devices
such as AGV. In this paper, we choose the lightweight deep neural networks, which
have a small number of parameters but still give a good performance, to implement
on our system. In the Inception V3-based corridor classification model, we apply the
fine-tuning approach to adopt ImageNet for speeding up the training phase and the
model accuracy. Moreover, we also define a lightweight model, inspiring by LeNet.
The proposed LeNet-inspired model, shown in Table 1, has fewer parameters than
the InceptionV3-based model but keeps a good classification performance.

4. When a long corridor area is detected by the trained deep neural networks, the AGV
avoids the mislocalization problem by switching the SLAM localization system into
the IMU-based Odometer localization system.

Table 1. The LeNet-inspired architecture for corridor recognition.

Layer Kernel Size Input Size

Conv 5 × 5 128 × 128 × 1
Batch norm - 124 × 124 × 8
Avg Pooling 2 × 2 124 × 124 × 8

Conv 5 × 5 62 × 62 × 8
Batch norm - 58 × 58 × 16
Avg Pooling 2 × 2 58 × 58 × 16

Conv 5 × 5 29 × 29 × 16
Batch norm - 25 × 25 × 32
Avg Pooling 2 × 2 25 × 25 × 32

Linear - 4608 × 1
Linear - 256
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Figure 10. (a) Mobile robot receives point-cloud range. (b) Point-cloud is drawn on picture.

Figure 11. The preprocessing for 2D LiDAR images.

5. Experimental Results

This paper includes three main experiments to verify the performance of the improved
Pure Pursuit algorithm and the effectiveness of the LiDAR point-cloud feature-based deep
learning classifier for switching localization systems. The first part is a trajectory-tracking
accuracy experiment. The second part is a trajectory-tracking speed experiment. The third
part verifies the deep learning-based classifier to recognize long corridor terrain using the
LiDAR point-cloud feature for switching localization systems.

5.1. Trajectory-Tracking Accuracy Experiment

This experiment will verify the trajectory-tracking accuracy of the proposed method
in this paper. The experimental method sets two preset paths. The first is the Double-
L-shaped path, as shown in Figure 12a, and the second is the S-shaped path, as shown
in Figure 13a. The coordinates reached by the mobile robot during navigation and the
trajectory errors of the preset paths are recorded. The experiment is repeated 10 times
on each path from the same starting point. The Model Predictive Control (MPC) and the
original Pure Pursuit (PP) are used to compare in this paper, as shown in Table 2. Because
the starting point is joystick migration, there is a slight artificial error at the starting point,
and the error data are calculated after 5 s. The results verified that the maximum error of
the improved Pure Pursuit is within 45 mm, with a 77% improvement rate compared to the
original Pure Pursuit, while our method has a similar error rate as the MPC method.
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Figure 12. The path error comparison between MPC (purple), original PP (blue) and proposed improved PP (green) methods
in Double-L-shaped path (red): (a) Trajectory comparison chart. (b) MPC trajectory error path. (c) Original PP trajectory
error graph. (d) Improved PP trajectory error graph.

Figure 13. The path error comparison between MPC (purple), original PP (blue) and proposed improved PP (green) methods
in S-shaped path (red): (a) Trajectory comparison chart. (b) MPC trajectory error path. (c) Original PP trajectory error graph.
(d) Improved PP trajectory error graph.
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Table 2. Results of Trajectory-Tracking Accuracy Experiment. MPC stands for Model Predictive
Control method, PP stands for Pure Pursuit method.

Trajectory-Tracking
Algorithm

Maximum Error
(mm)

Average Error (mm)
Standard Deviation

of Error (mm)

Double-L-shaped path (14.9 m)
MPC 35.959 14.644 ±0.131

PP 160.215 48.158 ±0.289
Our improved PP 35.967 14.892 ±0.223

S-shaped path (8.2 m)
MPC 34.282 19.329 ±0.449

PP 202.026 91.625 ±0.885
Our improved PP 44.609 15.742 ±0.330

5.2. Trajectory-Tracking Speed Experiment

Besides accuracy, speed is also an essential factor. Thus, the verification experiment
was conducted. According to Figures 14 and 15, and Table 3, the average speed, task time
and speed standard deviation of the improved PP are better than those of the original PP.
The speed performance of the Double-L-shaped path increases by 11.2% and the speed of
the S-shaped path increases by 5.6%. The performance of the improved PP is similar MCP
method. This experiment proves that the improved PP performs tasks more efficiently.

Figure 14. The speed comparison between MPC, original PP and proposed improved PP methods in Double-L-shaped path:
(a) MPC speed curve. (b) Original PP speed curve. (c) Improved PP speed curve.

Figure 15. The speed comparison between MPC, original PP and proposed improved PP methods in S-shaped path: (a) MPC
speed curve. (b) Original PP speed curve. (c) Improved PP speed curve.
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Table 3. Results of Trajectory-Tracking Speed Experiment. MPC stands for Model Predictive Control
method, PP stands for Pure Pursuit method.

Trajectory-Tracking
Algorithm

Average Speed (m/s) Task Time (s)
Standard Deviation

of Speed (s)

Double-L-shaped path (14.9 m)
MPC 0.396 40.31 ±0.070

PP 0.322 48.42 ±0.125
Our improved PP 0.358 44.63 ±0.078

S-shaped path (8.2 m)
MPC 0.287 22.92 ±0.060

PP 0.248 25.93 ±0.118
Our improved PP 0.262 25.43 ±0.064

5.3. Verifying the Deep Learning-Based Localization Switching Method to Solve Corridor Effect

The location of the experiment is a corridor at the National Taiwan University of
Science and Technology, as shown in Figure 16. The red line is the ground truth of the
experiment. Marks are spaced every 5 m, and the total length is 88 m.

Figure 16. The practical corridor environment for experiments.

5.3.1. Evaluation of the Deep Learning-Based Corridor Recognition Method

Because we consider the corridor recognition problem as the binary classification
problem, we collect two types of point-cloud data: the data of corridor area and the data of
non-corridor data. Then we preprocess the collected 2D LiDAR images as mentioned in
Section 4.2 and split the training/test dataset in a ratio of 9:1. Furthermore, due to small
amount of 2D LiDAR data, we apply some data augmentation operations, such as flip and
rotation, to enrich training data. As shown in Table 4, compared to the traditional Support
Vector Machine (SVM) [24] classifier, the deep learning-based.

Table 4. Results of corridor recognition models.

Models Accuracy (%) Number of Parameters

SVM [25] 80% -
InceptionV3-based model 100% ~22 million

LeNet-based model 100% ~1.1 million
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Models have better accuracy results in the test dataset. The LeNet-based model
has only about 1.2 million parameters for the model size comparison, while its accu-
racy is similar to the bigger InceptionV3-based model. This guarantees that our pro-
posed deep-learning-based model can be deployed on AGV and give a reliable and
effective performance.

5.3.2. Verification of the Localization Switching Method in Practice

On the experimental corridor, we first manually move the mobile robot along the
ground truth to record the trajectory of SLAM localization. Simultaneously, the deep
learning-based classifier also is used to detect the long corridor regions. As the experimental
results (shown in Figures 17 and 18 and Table 5), it is impossible to complete the trajectory
tracking and localization task if using SLAM only. Otherwise, by switching between SLAM
and odometry localization system using our proposed method, the AGV can complete the
trajectory tracking even in sparse LiDAR feature environment. Our experimental results
proved the effectiveness of the deep learning-based localization switching method that
involve improved Pure Pursuit robustness and feasibility.

Figure 17. The tracked trajectory comparison. The red line is the ground truth, The blue line is the SLAM method, and the
green line is our method’s trajectory method.

Figure 18. The complete trajectory tracking of our proposed method in practice.

Table 5. Results of corridor recognition models.

Experiment Track Length (m)

Ground Truth 88
SLAM 54.4

Our Method 86.3

6. Conclusions

To improve the trajectory-tracking accuracy of the original Pure Pursuit algorithm
when following the turning path, we propose an improved Pure Pursuit algorithm that
adds the functions of predicting the next turn and adjusting speed in the current turn. In
structure-less environment AGV localization, this paper introduces a deep-learning-based
corridor area classifier using 2D LiDAR data to select a suitable localization system to solve
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the corridor effect. The practical experimental results verified that the maximum error of
the modified Pure Pursuit is within 45 mm, with a 77% improvement rate compared to
the original Pure Pursuit. The improved Pure Pursuit algorithm also increased the speed
by more than 5.6%. Moreover, the proposed localization switching method using deep
learning helps to increase 36.25% of completion rate higher than that only using SLAM
localization, prove the robust effectiveness of the proposed method in practice.
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Abstract: Mobile robots are no longer used exclusively in research laboratories and indoor controlled
environments, but are now also used in dynamic industrial environments, including outdoor sites.
Mining is one industry where robots and autonomous vehicles are increasingly used to increase the
safety of the workers, as well as to augment the productivity, efficiency, and predictability of the
processes. Since autonomous vehicles navigate inside tunnels in underground mines, this kind of
navigation has different precision requirements than navigating in an open environment. When
driving inside tunnels, it is not relevant to have accurate self-localization, but it is necessary for
autonomous vehicles to be able to move safely through the tunnel and to make appropriate decisions
at its intersections and access points in the tunnel. To address these needs, a topological navigation
system for mining vehicles operating in tunnels is proposed and validated in this paper. This system
was specially designed to be used by Load-Haul-Dump (LHD) vehicles, also known as scoop trams,
operating in underground mines. In addition, a localization system, specifically designed to be
used with the topological navigation system and its associated topological map, is also proposed.
The proposed topological navigation and localization systems were validated using a commercial
LHD during several months at a copper sub-level stoping mine located in the Coquimbo Region in
the northern part of Chile. An important aspect to be addressed when working with heavy-duty
machinery, such as LHDs, is the way in which automation systems are developed and tested. For this
reason, the development and testing methodology, which includes the use of simulators, scale-models
of LHDs, validation, and testing using a commercial LHD in test-fields, and its final validation in a
mine, are described.

Keywords: autonomous navigation; topological mapping; field robotics; mining automation

1. Introduction

The development of robotic applications has increased significantly in the last decade,
and currently, robotic systems are being utilized for many purposes, in various environ-
ments. Mobile robots are no longer used exclusively in research laboratories and indoor
controlled environments, but are now also used in dynamic industrial environments and
outdoor sites. Moreover, the efforts for developing autonomous cars and drones have had
the effect of strengthening the development and use of other autonomous machines and
vehicles in various industries.

Mining is one industry in which autonomous vehicles have been in use for at least
13 years. Industrial use of autonomous hauling trucks started in 2008 in the Gabriela Mistral
copper open-pit mine, located in the north of Chile. Currently, the use of autonomous
mining equipment, mainly vehicles, is an important requirement in the whole mining
industry. This is because mining operations need to increase the safety of the workers, as
well as to augment the productivity, efficiency, and predictability of the processes. Safety is,
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without doubt, a key factor, and has been the top priority of mining companies in recent
years. This is true, especially, in underground mining operations with their hazardous
environments in which workers are constantly exposed to the risks of rock falls, rock
bursts, and mud rushes, and where the presence of dust in the air can result in a number of
associated occupational diseases in the workers [1].

In an underground mine, autonomous vehicles navigate inside tunnels. This kind
of navigation has different precision requirements from those where they are navigating
in an open environment. First, tunnels are GNSS-denied environments and thus vehicles
cannot use any GNSSs (Global Navigation Satellite Systems) to self-localize. Secondly,
when driving inside tunnels, it is not relevant to have an accurate localization system,
but it is essential to be able to move safely through the tunnel, and to make appropriate
decisions at its intersections and access points. This is completely different from most
robotic applications, where safe navigation requires an accurate determination of the
robot’s position and orientation at every moment.

To address this need, a topological navigation system for mining vehicles operating
in tunnels is proposed and validated in this paper. This system was specially designed
to be used by Load-Haul-Dump (LHD) vehicles, also known as scoop trams, operating
in underground mines. An LHD is a four-wheeled, center-articulated vehicle with a
frontal bucket used to load and transport ore on the production levels of an underground
mine (See Figure 1). These machines are a key component in the extraction of ore from
underground mines because the ore extraction rate from the mine depends directly on the
efficiency of the LHD. The proposed system permits a commercial LHD, which is a very
large vehicle, to navigate inside tunnels that are just a couple of meters wider than the
LHD. In addition, it allows bi-directional navigation and so-called inversion maneuvers,
both required in standard LHD operations inside productive sectors of underground mines.
(See an example in Figure 2). In addition, a localization system, specifically designed to
be used with the topological navigation system and its associated topological map, is also
proposed.

Figure 1. LHD and sensors for the Autonomous Navigation System.

An important aspect to be addressed when working with heavy-duty machinery, such
as the LHDs, is the way in which automation systems are developed and tested. In order
to address this important issue, we use a development process for autonomous systems
for mining equipment, which is comprised of the following four-stages: (i) development
using specific simulation tools, which are fed with real data from mining environments,
(ii) development using scale-models of the actual machines, (iii) validation and testing
using real machines in test-fields, and (iv) validation and testing using real machines in
actual mine operations. This development process was used for achieving autonomous
navigation of LHDs. The proposed topological navigation and location systems were
validated using a commercial LHD, during several months at a medium-scale sub-level
stoping mine, located in the Coquimbo Region of Chile.
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Figure 2. Example of inversion maneuver.

The main contributions of this paper are the following:

• A topological navigation system for mining vehicles operating in tunnels, which can
be used in any tunnel network by any articulated vehicle.

• A novel localization system specifically designed for tunnel-like environments, which
estimates the vehicle’s global and local pose using the topological map.

• A development and testing methodology that can be used in the development process
of heavy-duty machinery.

• Full-scale navigation experiments using a commercial LHD on a productive level of a
sublevel stoping mine.

This paper is organized as follows: First, related work on autonomous LHD navigation
is presented in Section 2. The proposed topological navigation system for LHD is described
in Section 3. Then, in Section 4, the development and testing methodology is described,
and in Section 5, validation results achieved in an actual mine are presented. Finally,
conclusions of this work are drawn in Section 6.

2. Related Work

Autonomous navigation of LHDs has been a subject of scientific research since the
late 1990s [2–4]. The main objectives have been to improve productivity and increase safety
for the personnel, but simultaneously to benefit from reduced machine maintenance due to
less wear of components. The theoretical development, and experimental evaluation, of a
navigation system for an autonomous articulated vehicle is described in [4]. This system is
based on the results obtained during extensive in-situ field trials and showed the relevance
of wheel-slip for the navigation of center-articulated machines. In [5], one of the earlier
industrial automation implementations is reviewed. It is mentioned there, that the use of
automation in day-to-day operations offers flexibility and convenience for the operators.
The development of what would become the first commercially available solutions for
autonomous navigation of LHD machines followed shortly thereafter.

The work of Mäkelä [6] set the basis for the AutoMine software of the LHD manufac-
turer Sandvik, while the work of Duff, Roberts, and Corke [7–9] set a similar precedent
for the software MINEGEM of Caterpillar. Only a few years later, the work by Marshall,
Barfoot, and Larsson [10–12] configured what would become Scooptram Automation of
the company Atlas Copco (now Epiroc). These companies have applied their automation
solutions directly to their articulated vehicles [13]. Because of their commercial applica-
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tion, only the initial work on the development of the autonomous systems from LHD
manufacturers is available in the literature. For instance, autonomous navigation from the
manufacturer Sandvik is based on an absolute localization paradigm, i.e., it relies on odom-
etry and detection of natural markers of the tunnel network [6]. Localization is achieved
by taking a profile of the tunnel in a 5 [m] long section and comparing it to a known map.
Caterpillar, on the other hand, initially based its system on mainly reactive techniques
(wall following), in conjunction with a topological map with information about loading
points, dump points, intersections, and other markers that are used in an opportunistic
location scheme [9]. Finally, Epiroc made use of a hybrid navigation paradigm [11]. A set
of behaviors was programmed under a fuzzy logic scheme to form the reactive part, while
a higher level (deliberative) planner was used at intersections or open spaces.

Despite its success in delivering a product to market, research in autonomous naviga-
tion for underground tunnels continues to be a relevant topic. In [14], a review is given
on the performance of automated LHDs in mining operations. It also mentions some
issues and challenges that remain. The dynamic and highly variable nature of mining
operations underlines the need for flexible and quickly deployable systems, features that
earlier commercial solutions lacked [15,16]. These shortcomings are also known to LHD
manufacturers, who continue to improve their systems [17].

Automation in mining is, most certainly, a widespread trend that has already shown
corporate benefits, and it will continue to drive the modernization of the mining indus-
try [18]. Cost, productivity, and safety are still the driving forces for investments in
automated systems. Recent publications in the field also suggest the increasing interest of
China in the application of automation technologies [19–21]. Particular attention has been
paid to modeling, and control techniques.

The autonomous navigation system presented in this paper is based on topological
navigation, and model predictive control (MPC). Underground mining environments have
been shown to be suited for the extraction of features needed to build topological maps [22],
and a mixture of topological and metric maps has been used successfully to map and
navigate in large environments [23]. MPC has also been proven to perform well in the
high-speed control of vehicles with nonlinear kinematics [24–26].

3. Topological Navigation and Localization for LHD

3.1. General System Overview

LHD are large vehicles used in underground mining. In this work a LHD model
LF-11H, from the GHH Fahrzeuge manufacturer, is used. The vehicle’s size is 9.71 [m]
in length, 2.45 [m] in width, and 2.45 [m] in height. The LHD’s navigation is based on
the data provided by two laser scanners (2D LIDARs), one pointing towards the front of
the machine, and the other pointing towards the back. For supervision and occasional
teleoperation, two cameras give the front and back images to the control station [27].
All on-board processing is done on an industrial computer running Linux OS, while the
direct machine control is handled by an internal PLC unit. The LHD and the hardware
components mentioned above can be seen in Figure 1.

In order to navigate autonomously inside the network of tunnels of an underground
mine a proper representation of the mine is required, in this case a navigation map that
includes the topological structure of the mine, tunnels, and intersection, as well as LIDAR
measurements. The LHD, therefore, builds a map of the operation area during the system
setup, using measurements from LIDAR sensors, as it navigates the tunnels. This map is
then linked to a topological representation, thus giving names to all the relevant locations,
henceforth referred to as “nodes”. The map, once built, allows for route planning and self-
localization of the machine. The latter is carried out by means of scan matching between
current LIDAR measurements and the LIDAR landmarks stored in the map. The scan
matching is implemented using the ICP (Iterative Closest Point) algorithm, and the final
pose estimation is the result of applying a Kalman Filter.

492



Appl. Sci. 2021, 11, 6547

Every time a new mission in which the LHD is requested to move to a target node in
the mine is executed, a topological route composed of nodes is defined, and then target
poses inside each node are calculated. Afterwards, the path required to reach each target
pose is computed, and a reactive control algorithm is put in charge of following the path,
keeping the vehicle away from colliding with the walls of the tunnel. A model predictive
control strategy is implemented because of the complexity of following the path with this
articulated machine, which normally moves at a speed of between 12 and 24 km per hour
inside the mine.

3.2. Topological Map and Physical Representation

The main component of the representation of the mine is the “Topological Map” (TM).
Two types of nodes are defined on this map: (i) tunnel nodes and (ii) intersection nodes. A
tunnel node is a section of the mine that can be traversed back and forth, i.e., it corresponds
to a single path or trajectory between two physical points. Topologically, a tunnel node
has two edges, connecting it with two intersection nodes. An intersection node may have
multiple edges that connect it to other nodes, and it can also traverse back and forth. An
example would be a fork in the tunnel, where the vehicle must choose one of the possible
path alternatives.

Each topological node contains a number of access points (APs) and waypoints (WPs),
which are represented by a 2D pose within the node’s coordinate system. APs connect
different topological nodes; they signal the transitions between map nodes. WPs, on the
other hand, correspond to specific poses within the topological node, each one containing
relevant information for the navigation system, such as maximum driving speed. Examples
of waypoints can be a location for dumping ore, a place to park the vehicle, or a location
the vehicle must go through when traversing the node.

As an example, Figure 3 shows a portion of a real mine, where a TM has been created.
In this scenario, four main tunnels, T6, T7, T9, and T10, and one intersection, I0 (in green),
define the map. It can also be seen that T9 contains a number of waypoints throughout its
path, shown by arrows.

 
Figure 3. Example of a topological map of a real mine.

Besides their associated 2D pose, APs and WPs have a defined heading. APs always
face the outer side of the node they are in, but WPs always face in the predefined direction
of the node. Because of this, APs and WPs can be connected in 4 different ways: front-to-
front, front-to-back, back-to-front, and back-to-back (see Figure 4, the orange arrow is the
default direction of the node). In Figure 5, a TM with 2 tunnel nodes, 1 intersection node,
and its AP, WP, and the connections between them, is shown.
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Figure 4. Types of connection between AP and WP.

 

Figure 5. TM example showing one intersection node (Intersection 1), two tunnel nodes (Tunnel 1 and Tunnel 2), and the
corresponding APs, WPs and connections between them.

One of the problems that articulated vehicles face while traversing an underground
mine is that they sometimes need to change their direction of movement, using a maneuver
known as inversion. (See Figure 2). To tackle this problem, a Topological Movement’s Map
(TMM) is built automatically from the TM. To do this, for each AP and each WP in the TM,
6 nodes are created in the TMM. These 6 nodes represent how the vehicle would move
through an AP or WP in the TM:

(i) Vehicle going towards the AP/WP moving forward (bucket facing the AP/WP).
(ii) Vehicle going towards the AP/WP moving backwards (rear bumper facing the

AP/WP).
(iii) Vehicle going away from the AP/WP moving forward.
(iv) Vehicle going away from the AP/WP moving backwards.
(v) Vehicle standing on the AP/WP facing in its same direction.
(vi) Vehicle standing on the AP/WP facing in its opposite direction.

These new nodes in the TMM are then connected using the information on the topo-
logical map and a predefined set of rules that reflect how a vehicle would move between
two different pairs of nodes in the TM. These rules are presented on Tables 1 and 2. Rules
are slightly different when considering the special case of connecting APs from different
TM nodes (see Table 2), because as these APs connect different TM nodes, they have the
same physical location, and then connections between “stopped” nodes must be allowed.
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Table 1. TMM’s connection rules for connections within the same TM node.

Origin Node’s Type
Destiny Node’s Type of Connection for Different AP/WP Connection Types

Front-to-Front Front-to-Back Back-to-Front Back-to-Back

(i) - - (i) & (vi) (iii) & (v)
(ii) - - (ii) & (v) (iv) & (vi)
(iii) (i) & (vi) (iii) & (v) - -
(iv) (ii) & (v) (iv) & (vi) - -
(v) (i) (iii) (i) (iv)
(vi) (ii) (iv) (ii) (iii)

Table 2. TMM’s connection rules for connections between different TM nodes.

Origin Node’s Type
Destiny Node’s Type of Connection for Different AP/WP Connection Types

Front-to-Front Front-to-Back Back-to-Front Back-to-Back

(i) - - (i) & (vi) (iii) & (v)
(ii) - - (ii) & (v) (iv) & (vi)
(iii) (i) & (vi) (iii) & (v) - -
(iv) (ii) & (v) (iv) & (vi) - -
(v) (i) & (vi) (iii) & (v) (i) & (vi) (iv) & (vi)
(vi) (ii) & (v) (iv) & (vi) (ii) & (v) (iii) & (v)

It is important to note that these connections are directional, and it is required to
go through a “stopped” node ((v) or (vi)) to change the vehicle’s direction of movement.
Therefore, these rules must be applied in both directions of each connection. Nodes (v) and
(vi), with the same origin AP/WP, are always connected. An example of the TMM creation
from the TM of Tunnel 1 (in Figure 5) is shown in Figures 6 and 7. For clarity of purpose,
only half of the connections are shown in each figure. In Figure 6, only connections in the
direction of the tunnel are shown, while in Figure 7, only connections against the direction
of the tunnel are shown. Each node in the TMM is represented by a blue arrow. Each node
has an associated LHD heading and movement direction. The heading is represented by
the LHD image and the movement direction by the orange arrow next to the LHD.

 

Figure 6. TMM construction example. Connections heading in the same direction of the Tunnel are shown.
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Figure 7. TMM construction example. Connections heading in the opposite direction of the Tunnel are shown.

An example is shown in Figure 8 for the inversion maneuver. Relevant TMM nodes
involved in the inversion movement are highlighted.

 
Figure 8. Representation of an inversion maneuver in the TMM.

Once the TMM is set up, topological paths can be calculated upon demand. When
a new request is received, the vehicle’s current state is pushed to the TMM as a starting
point, and then the optimal route to the desired destination is calculated using Dijkstra’s
algorithm [28]. Traveling costs between TMM nodes are set up initially based on the
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distance between AP/WP, but can be fined-tuned with additional considerations such as:
the change in the vehicle’s movement direction, the feasibility of the movement (sometimes
a curve is too sharp for the vehicle to turn in a certain direction), and unwanted paths for
other reasons such as road repairs, narrow spaces, or uneven tracks.

Path planning using the TMM is extremely fast. Its execution in a very large mine
layout was simulated in a layout similar to that of the new Chuquicamata underground
mine, with eight parallel streets, each one having 19 intersections. Under these conditions,
the TMM contained 5378 nodes and 8760 vertices, and path planning using the TMM took
less than 5 [ms] on an i7 Intel processor [27].

Each node contains so-called LIDAR-landmarks that are stored when the map is built,
and are used for the LHD self-localization. In regard to tunnel nodes, the LIDAR-landmarks
correspond to LIDAR point clouds acquired at certain selected positions of the tunnel. In
the case of intersection nodes, the LIDAR-landmark corresponds to an integration of the
point clouds acquired inside the intersection.

Map Building—Determination of LIDAR-Landmarks

For map building the LHD needs to visit all the tunnels of the mine in one direction.
In order to achieve this, the LHD is teleoperated. At the end of this process the LIDAR-
landmarks need to be determined.

The following procedure is followed for the tunnel nodes:

1. LIDAR point clouds are stored at fixed positions inside each node (e.g., every 2 [m]
in our current implementation). Each of these point clouds are built by joining the
LIDAR scans acquired using the front-facing and the rear-facing LIDARs. Then, a
filtering process is applied: points colliding with the LHD’s body are removed, points
that are located too far (>10 [m]) to the center of the LHD are also removed, and
finally, the density of the point cloud is normalized. This final point clouds will be the
LIDAR-landmarks.

2. The similarity among all pairs of stored LIDAR-landmarks is computed using the
ICP algorithm, generating a similarity matrix. The ICP’s fitness value is used as
a measurement of the geometric similarity between two LIDAR-landmarks (a low
fitness value means that ICP managed to fit both landmarks correctly).

3. Using the similarity matrix, representative/key LIDAR-landmarks are chosen. The
selected representative LIDAR-landmarks have two important characteristics: (i) They
can be matched with their local neighbors using the ICP algorithm (a radius is used
for determining the local neighbors); (ii) they are different from other representative
LIDAR-landmarks, guaranteeing that two different representative LIDAR-landmarks
cannot be mistaken. This selection process is done by the following algorithm:

• For each LIDAR-landmark:

� The values of similarity with other LIDAR-landmarks are ordered from
lowest to highest.

� A delta threshold and a radius are defined:

� The last LIDAR-landmark for which the next highest similarity
value does not belong to one of the current LIDAR-landmark’s local
neighbors is selected (searching from lowest to highest similarity
value).

� This similarity value between the current LIDAR-landmark and the
selected LIDAR-landmark is stored as the threshold of this LIDAR-
landmark. This value represents the minimum ICP’s fitness value
that must be met for a valid geometric fit.

� The difference between the threshold and the next similarity value
is stored as the delta threshold of this LIDAR-landmark. This value
represents how different the current LIDAR-landmark is from the
other LIDAR-landmarks that are not its neighbors.
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� The distance to the selected LIDAR-landmark is stored as the ra-
dius index of the current LIDAR-landmark. This value represents
the distance (in LIDAR-landmark measurement/sample distance
units) from which a valid geometric fit can be achieved.

� An empty list is created for the LIDAR-key-landmarks.
� The LIDAR-landmark with the largest radius among the first 10 LIDAR-

landmarks is added to the list.
� The LIDAR-landmark with the largest radius among the last 10 LIDAR-

landmarks is added to the list.
� The remaining LIDAR-landmarks are ordered by highest to lowest radius,

and highest to lowest delta threshold (if they have the same radius).
� For each of these sorted LIDAR-landmarks with radius greater than 2

LIDAR-landmark measurement distances (4 [m] in this case):

If it is not near an existing LIDAR-key-landmark (farther than 5 LIDAR-landmark
measurement distance) then it is added to the LIDAR-key-landmark list.

In the case of an intersection node, the LIDAR point clouds obtained in the intersection
are integrated and stored as a single cloud point. This cloud point is the LIDAR-landmark
of the intersection.

3.3. Self-Localization

Self-localization is composed of two modules: a global topological localization esti-
mation, and a local node localization estimation. The topological localization estimates
the location of the LHD inside the TMM (and also the TM, because each node in the TMM
has an equivalent in the TM), as well as the distance between its current location and the
closest AP/WP. The intra-node localization estimates the localization inside the current
tunnel or intersection node.

3.3.1. Localization Inside Tunnel Nodes

Inside tunnels the LHD’s pose is defined as the one-dimensional distance or trajectory
ρ, measured from the beginning of the tunnel. This distance is updated incrementally as:

ρt+1 = ρt + vt·dirt·Δt (1)

where vt is the current linear speed of the LHD, and dirt is the current direction of move-
ment, with the value 1 meaning that the LHD is oriented to the tunnel orientation and −1
if it is not. The values of ρt, vt, and dirt are estimated using a standard Kalman filter. The
filter is updated using two different observations sources: first, using the LHD wheel’s
odometry obtained directly from the LHD encoders, and second, using the LIDAR point
cloud. In the latter case, the ICP algorithm is used to match the current LIDAR point
cloud with the LIDAR-landmarks that are near the current LHD position and the key
LIDAR-landmarks within 50 [m] of distance. The result of the ICP matching is the distance
to the most similar LIDAR-landmark, which is then used to estimate the relative position
of the LHD in the node’s coordinates, and its orientation. Both the wheel’s odometry, and
the ICP-estimated position and orientation, are used in the corrective stage of the Kalman
filter asynchronously, i.e., every time they arrive.

It is important to mention that the ICP matching is local, not global, meaning that the
matching is made only with LIDAR-landmarks that are near the current position of the
LHD. The main reasons for this decision are time efficiency and to avoid wrong matching
due to the similarity that different LIDAR-landmarks may have. (Mining tunnels have
regular surfaces and LIDAR-landmarks computed in different tunnels may be similar). This
also prevents the self-localization from changing drastically in its localization estimation.
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3.3.2. Localization Inside Intersection Nodes

Inside intersections, the LHD’s pose is defined as its 2D position and orientation.
Considering that intersections are small, of just a few meters, the wheel’s odometry, and
the results of the ICP matching between the LIDAR point cloud and the LIDAR-landmark
that describes the intersection node are used directly to update the LHD pose.

3.3.3. Global Localization

This module knows in each moment the node in which the LHD is located. The
module also receives the current LHD’s pose in the current node’s coordinate frame. Using
this information it evaluates if the LHD is still in the current node, or if it has moved to
a neighbor node. If this is the case, then the estimation of the LHD’s pose is transferred
into the neighbor node’s coordinate system. Each node has the geometric transformation
to adjacent nodes so the transition is smooth.

3.4. Navigation

The navigation scheme is composed of two layers of nodes that enable the path
planning and autonomous hauling through the underground tunnels of the mine: the high
level and the low level. The high level encompasses two modules: “Navigation Control”
and “Deliberative Path Planning”, while the low level is comprised of another two modules:
“Guidance” and “Command Executor” (see Figure 9).

 

Figure 9. Diagram of the navigation system.

3.4.1. Navigation Control

This module receives a target for the LHD navigation, which could be a relevant
location within the mine, such as an extraction/draw point or a dumping point. This target
is usually defined by a dispatch system, or in some cases by a human operator. It consists
of a destination node and a topological route, which is computed using the TMM as is
explained in Section 3.2. This path is represented as a sequence of TMM nodes, each one
containing information about the position, orientation, heading direction of the vehicle,
and an indication of whether the vehicle must go through the node or come to a full stop
on it.

Given that the topological route is composed of TMM nodes that are originated from
tunnel and intersection nodes, this module has two navigation modes: tunnel tramming,
used inside tunnels, and path-following, used inside intersections. In tunnel tramming mode,
the navigation modules follow the path of the tunnel’s walls, while in path-following mode,
the navigation modules follow a trajectory in an area were more than a single path can
be taken. In addition, inside tunnel nodes, intermediate sub-goals may be generated
depending on the defined waypoints (See Section 3.2).
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To achieve a smooth navigation across TMM nodes, transitions between different
goals must be seamless. A naive implementation to identify when a goal has been reached
would be to check when the global localization estimation equals the current goal, but this
often makes the movement of the vehicle not continuous and clumsy. A better approach
requires that Navigation Control anticipates when the LHD is going to reach a certain goal.
In order to do this, a set of conditions are applied in addition to monitoring the global
localization estimation:
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|θLHD − θT | < ΔθMAX (4)

where:
→
x LHD = 2D position estimation of the LHD.
→
x T = 2D position of the current navigation target.
σ = 2D Self-localization estimation variance (without orientation estimation).

P
(→

x LHD =
→
x T

)
MIN

= Minimum 2D target reached likelihood threshold.
.
d = Euclidean distance function derivative with respect to time.
.
dMIN = Minimum Euclidean distance function derivative threshold.
θLHD = LHD orientation (heading) estimation.
θT = Current target orientation (heading).
ΔθMAX = Maximum orientation difference threshold.

The condition (2) is the probabilistic estimation of actually reaching the desired target
position. Condition (3) measures if the LHD is actually getting closer to the target and
condition (4) measures the difference between the LHD’s orientation and the current target’s
orientation. When navigating in tunnel tramming mode, only condition (2) is used, but
when navigating in path-following mode, conditions (2)–(4) must be met. This way, lower
values for P

(→
x LHD =

→
x T

)
MIN

on condition (2) can be used (which helps to anticipate
transitions and obtain a smooth movement), because conditions (3) and (4) indicate that
the vehicle is going to the target goal (often a tunnel entrance) in an intersection.

In tunnel tramming node, Navigation Control also checks that the LHD does not miss
the tunnel end, checking the following conditions:

dODOM(t)− dTUNNEL > eODOM
MAX (5)

dODOM(t)
dTUNNEL

> eODOM
MAX % (6)

where:

dODOM(t) = Accumulated linear odometry of the current tunnel.
dTUNNEL = Total length of the tunnel.
eODOM

MAX = Maximum odometry error magnitude threshold.
eODOM

MAX % = Maximum odometry error percentage threshold.

If both of these conditions are true, Navigation Control stops the vehicle and asks for
assistance to the operator/supervisor of the system. Both conditions are required because,
for short tunnels, condition (6) can trigger false alarms, while for long tunnels, condition (5)
can trigger false alarms.

Other important information stored in the TMM is the maximum speed at which a
node should be transited, and an indicator forcing the vehicle to drive closer to one of
the walls of the road (instead of trying to remain in the center of the road). Both of these
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parameters can be manually tuned to optimize the way the vehicle approaches certain
curves or traverses through the mine.

3.4.2. Deliberative Path Planning

This module receives the next target position, which needs to be reached with a certain
speed, as a relative pose from Navigation Control. Then, it calculates the path to be followed
between the current pose and the desired destination, as a spline S(t) =

[
Sx(t), Sy(t)

]
.

The desired steering speed (ω) and speed limit (vMAX) are then computed, and sent to
Guidance (See Figure 9).

In order to calculate the spline’s coefficients, the following border conditions are used:

S (t = 0) = X0; S

(
t = t∗ = d̃

v

)
= X1 (7)

.
X0 = (v cos γ, v sin γ);

.
X1 = (v cos θ, v sin θ) (8)

where:

X0,
.

X0 = Position and speed of the front bumper of the vehicle (See Figure 10).

X1,
.

X1 = Position and speed at the desired target destination (See Figure 10).
d̃ = Estimated distance between X0 and X1.

 

X0

X1

Figure 10. Graphic representation of the kinematic variables of the vehicle.

Using the calculated derivative of the spline, and the vehicle’s kinematic model, given
by (10) and (11), the desired steering rate γ can be calculated as:

.
γ =

(
L f cos γ + Lr

) .
α(t = 0)− vi sin γ

Lr
(9)

with
.
α(t = 0) the calculated angle derivative of the spline, evaluated in t = 0; Lr the length

from the LHD’s pivot to the rear wheel axis; L f the length from the LHD’s pivot to the
front wheel axis; vi the linear speed of the LHD; γ the steering angle in the LHD’s pivot;
ω =

.
γ the steering speed in the LHD’s pivot.

3.4.3. Guidance

This module performs the task of selecting the appropriate commands for the ma-
chine’s actuators, given the high-level general directives of the expected motion and, at the
same time, ensuring that the LHD will not hit any obstacles or mine infrastructure. For
that purpose, a model-based predictive control (MPC) scheme was implemented using
the vehicle’s kinematic equations and a cost function that simultaneously considers the
following: the high level reference commands, the distance to the walls of the tunnel, and
the smooth variation of the actuator commands over time.
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The kinematic model of a center-articulated vehicle has been presented in a number of
previous publications, such as in [11]. Equations (10) and (11) show an incremental model
for the machine’s pose.

Δ[x, y, θ] = Δt ·
[
v cos(θ), v sin(θ), (v sin(γ) + Lrω)/

(
L f cos(γ) + Lr

)]
(10)

Δγ = Δt·ω (11)

where:

[x, y, θ] = pose of the LHD (2D position and angle).
Δt = sampling time of the discrete model.
v = linear speed of the LHD.
γ = steering angle in the LHD’s pivot.
ω =

.
γ = steering speed in the LHD’s pivot.

Lr = length from the LHD’s pivot to the rear wheel axis.
L f = length from the LHD’s pivot to the front wheel axis.

The previous model is used in the MPC to predict the trajectory of the machine over
a predefined timespan. Then, the optimization process is carried out, in which the best
actuator command (u = [uv, uω ]) for each time step is selected to minimize the following
cost function:

Q = Qmap + Qsteering + Qsmooth (12)

This equation shows that the cost function is composed of three parts: one for keeping
the vehicle away from the tunnel walls (Qmap), another (Qsteering) for following the high-
level reference commands, and a final one to smooth the optimization result over time
(Qsmooth).

In Equation (13), it can be seen that the cost associated with keeping the machine
away from the walls relies on maximizing the distance between certain key points of the
vehicle and the closest data point in the registered point cloud of the environment. These
key points are the corners of the front and rear vehicle bodies.

Qmap =
n

∑
i=1

RF
|DFL,i − DFR,i|

D2
FL,i D2

FR,i
+ RM

|DML,i − DMR,i|
D2

ML,i D2
MR,i

+ RR
|DRL,i − DRR,i|

D2
RL,i D2

RR,i
(13)

With DFL,i the distance between the front left corner of the machine and the closest
point of the tunnel walls, predicted at time step i of the optimization process. Similarly,
DFR, DML, DMR, DRL, and DRR, refer to the distances from the front right, middle left,
middle right, rear left, and rear right corners of the vehicle, respectively. The cost function
weights, RF, RM, and RR, are selected to obtain proper behavior.

Equation (14) details the cost related to following the command directives issued from
the high-level software modules. Here, only the reference for the steering speed (ω) is
considered, since the reference for the machine’s maximum speed (vMAX) is directly set as
an upper bound restriction for the optimization function. Again, the cost function weight
Rω is selected to obtain proper behavior.

Qsteering =
n

∑
i=1

Rω |ωi − ω| (14)

Finally, the smoothing component of the cost function (Qsmooth), is intended to ensure
that the command has a controlled variation (i.e., limits the change in the command
between time steps), and that a newly computed optimal command vector has some degree
of continuity after the time span for which it was selected. Namely, the Qsmooth component
comprises, in turn, two other terms, as stated above.

Qsmooth = Qacc + Qproj (15)
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The first term assigns an additional cost to commands that cause a linear or steering
acceleration above predefined limits, as stated in Equation (16), while the second term,
shown in Equation (18), rewards commands that, when maintained past their time horizon,
for up to twice as long as originally intended, will not cause a collision with a tunnel wall.

Qacc =
n

∑
i=2

Rδω · f (ωi − ωi−1, Δωm, ΔωM) + Rδv· f (vi − vi−1, Δvm, ΔvM) (16)

f (x, xmin, xMAX) =

⎧⎪⎨⎪⎩
x − xMAX i f xMAX < x
0 i f xmin < x < xMAX

xmin − x i f x < xmin

(17)

Qproj =
m

∑
j=1

Rp
Δ
[
xj, yj, θj

∣∣vn, ωn
]·crash

(
xj, yj

)
Δ
[
xj, yj, θj

∣∣vn, ωn
] (18)

crash(x, y) =

{
1 i f position (x, y) is in collision
0 i f position (x, y) is not in collision

(19)

where Rδω , Rδv, and Rp are the cost weights, selected for proper behavior; Δωm, ΔωM, Δvm
and ΔvM are the parameters for the minimum and maximum steering acceleration and
linear acceleration, respectively; Δ

[
xj, yj, θj

∣∣vn, ωn
]

are the displacement caused by the
kinematic model of the machine, at time step j when the last optimization command of the
previous process is applied.

The outcome of the former process is a command vector for every time step in the
selected timespan (

⇀
u =

[
ut0 , . . . , ut f

]
), in which each element (uti = [uv, uω, ti]) represents

a speed and steering command pair, alongside the timestamp on which this command is to
be executed.

3.4.4. Command Executor

In opposition to the traditional philosophy of an MPC, the result of the Guidance
module is not directly fed to the machine’s actuators. It is first filtered and merged with
previous results of the optimization process in order to always keep a consistent queue of
commands that will sustain the operation of the vehicle for a short period of time. This
filtering is carried out by the Command Executor module. The goal of this module is to
ensure that the signals sent to the actuators will be appropriate, both for avoiding long-term
damage of the devices involved and also for keeping the operation running as expected.

The Command Executor’s input is a “trajectory” of commands to be executed at specific
times. Each command of the trajectory is inserted in a command queue. The queue
insertion process entails finding the time at which the current command is to be inserted,
erasing any command previously queued from that moment onwards. Then, the new
command is appended at the end of the queue, effectively overriding outdated directives.

Before the Command Executor issues a new command to the machine actuators, the
upcoming command is filtered. The velocity command uv is limited to a maximum value
uv,max and a “dead zone” is applied to the steering command uω, namely:

uv =

{
uv i f uv < uv,max

uv,max i f uv,max < uv
(20)

uω =

{
uω i f uω < −uω, min or uω, min < uω

0 i f − uω, min < uω < uω, min
(21)

where uω, min is a predefined constant value for the steering command “dead zone” and
uv,max is a value computed, so that if the machine were to be commanded to stop at the
present time, it would effectively stop before the last queued command. That is, given a
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command queue with a total duration of Qdt seconds and a machine deceleration of Dv
meters per second squared, then: uv,max = Dv·Qdt, where Dv is the mean deceleration of the
machine when a full brake is applied, a parameter that can be determined experimentally.

A diagram of the described process is shown in Figure 11 for a single command of the
input command trajectory. As mentioned, the same steps are executed for all elements.

 
Figure 11. Command management process of the command executor node.

4. Development and Testing Methodology

The methodology used for the development and testing of the proposed navigation
system consists of four steps. The first is the development of the automation system in
a simulated environment, which is a safe and cost efficient platform for that purpose.
The second is the use of scale models to verify the behaviors that are too complex or
impractical to be tested on a simulated environment. The third is validation and testing in
real equipment, using a safe location intended for that purpose. Fourth is the validation
and testing in a real operation environment under controlled conditions before moving on
to production. Details are discussed further in the following section.

4.1. Development in a Simulated Environment

The system was initially developed and tested in a simulated environment using
Gazebo [29] and integrated with ROS [30]. At first, an underground scenario with wide
tunnels and perfect self-localization, using the real position from the simulator, was used as
a testing environment. When the system could perform reasonably well, the wide tunnels
were substituted by realistic tunnels, using laser scans acquired in a real underground mine.
The realistic tunnels were much narrower and had irregular shapes. Finally, when the
challenges of the new scenario were solved, the system was tested with a functional self-
localization module, and with other factors that added complexity, such as a simulation
of the LHD’s controller, in order to validate all low-level communication and security
schemes.

4.2. Development Using Scale Models

Not all of the functions of the system can be tested in a simulated environment,
either because of the complexity of the problem, which makes the simulation approach
impractical, or because not enough data is available to simulate certain interactions between
the equipment and the environment. To address this issue, a scale model can be built in
order to validate some of the design assumptions before implementing the solution on
a commercial vehicle. The scale models need to have a certain similarity in the aspects
related to the phenomena that needs to be validated. In the case described here, a 1:5 scale
model was built based on a commercial 5 [yd3] LHD, shown in Figure 12, with an electric
power train and hydraulic actuation for the steering and bucket movements, mimicking
real equipment. A scaled-down ore extraction point was built, including ore from an actual
mine. The scale model was used to perform navigation in the laboratory before installing
the control system in the commercial LHD.
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Figure 12. 1:5 scaled LHD built for testing and validation.

4.3. Validation in Test-Fields

The LHD automation navigation was installed in a GHH’s LF11H LHD (GHH
Fahrzeuge). The installation required mechanical and electrical modifications of the equip-
ment to place the system’s sensors, processing units, and wireless communication equip-
ment. All the automation software runs in an industrial fan-less computer equipped with
an Intel i7 processor and with 4 logical cores. The interface between the automation and
the machine was implemented on the machine controller (IFM mobile mini controller),
based on GHH’s factory program (implemented in Codesys).

After the system was installed and all basic control, communications, and safety
functions were thoroughly tested, the equipment was moved to a test-field nearby the OEM
(Original Equipment Manufacturer) facilities in Santiago, Chile. The test-field emulated
an underground tunnel by using light material to mimic the walls of the mine (Figure 13),
which was enough to trick the system. It also had a dummy loading point, a dumping
point, and a truck loading point. These tests were used to calibrate the system controller’s
parameters and the kinematic characteristics of the vehicle’s model, such as the acceleration,
steering, and breaking response to different operation inputs.

 

Figure 13. Test-field close to GHH facilities in Santiago de Chile.

Because the test-field was located just outside the city where our development team
is based (Santiago, Chile), it was possible to make a short trip to test new versions of
the software, which contained bug fixes or improvements to the system. Usually a team
of developers would go to the test-field two or three times a week to try out different
modifications in the algorithms of the automation system.

The last milestone of this stage was to validate the reactive navigation algorithm. In
order to do this in a safe manner, a hybrid operation mode was used, in which the speed of
the LHD was remotely controlled by an operator while the autonomous navigation system
handled the steering of the vehicle in an assisted tele-operation mode. To ensure safety
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precautions, an onboard operator who could shut down or override the automation system
commands was on the vehicle for every test.

4.4. Validation in a Real Mining Operation

In order to carry out the final stages of development, the equipment had to be tested in
its real operation environment, where the last design assumptions and algorithms needed
to be validated, and the presence of personnel from the operation site were required.

In the case of the automation system described here, after test site validation, the LHD
was transported to a real sublevel stopping mine in the north of Chile, where the develop-
ment team, the OEM, and the mine personnel coordinated the final system validation and
tests.

5. Results and Discussion

The validation in the test-field was executed from March to June of 2017, requiring
approximately 300 h of work. On-site tests were carried out in a medium-scale sublevel
stoping mining operation called the Mina 21 de Mayo (21st of May Mine), the property of
Compañía Minera San Gerónimo, located in the north of Chile. The tests were comprised of
two phases:

• During the first batch of tests in 2017, approximately 2300 work-hours were needed
to test the system, of which about 800 were on-site; 600 were for remote support and
system troubleshooting; 800 were with OEM remote support on-site; 100 h were spent
traveling from the nearest city, La Serena, Chile, to the mine. The first batch included 66
days of testing, including installation of hardware on the LHD, network infrastructure
on the tunnel, tele-operation station, and CCTV cameras. First underground tele-
operation tests were done on day 32, which were followed by assisted tele-operation
and self-localization tests.

• During the second batch of tests, performed in 2018, about 2900 work-hours were
required, including 1000 on-site, 1000 with OEM support onsite, 750 with remote
support, and 150 spent traveling from the nearest city to the mine. This second batch
of tests lasted for 77 days. First, autonomous navigation tests took place on day 32.
Further tests included approximately 150 h of autonomous navigation. It is important
to note that the LHD was also used to test an autonomous loading system, so not all
on site test were for the autonomous navigation system.

Between the first and second phases, several upgrades were made to the system in
order to improve its robustness, consistency, and performance. The most important im-
provement was on the self-localization system, because the first batch of tests proved that
the initial method (not described here) could not maintain the self-localization estimation
along the test tunnel. Assisted tele-operation tests during the first phase were mainly used
to tune the parameters of the Guidance module for the tunnel and intersection navigation
modes (Equations (13), (14), (16), and (18)). Once the autonomous navigation was oper-
ating properly, further adjustments were made to all system’s parameters, including the
parameters for the Command Executor module (Equations (20) and (21)). Parameters of the
map were tuned, such as the maximum speed for certain segments of the tunnel, 2D poses
of APs/WPs, and navigation modes for different parts of the tunnel.

On-site, at the mine, two validations were carried out: surface level tests, and un-
derground tests. Surface level tests were done to test all the modules before entering the
mine, and to visualize any problem that the LHD or the implemented automation system
could have. After the arrival of the machine at the mine site, all sensors, antennas, and
communication modules were re-installed and tested. The first teleoperation tests were
carried out on the surface, on one of the dump sites of the mine, to verify that the operation
of the LHD was correct.

The second validation was done inside the mine in a production tunnel. The system
was tested incrementally from teleoperation to full autonomous operation. A network
infrastructure was installed inside the test tunnel, and an operating station, consisting of a

506



Appl. Sci. 2021, 11, 6547

computer, screens, and controls, was installed inside the mine. Communication tests were
carried out between the LHD inside the mine and the computer in the operation center.
Teleoperation and assisted teleoperation modes were the first functionalities tested. In the
first mode, the operator drives the equipment just as would be done aboard, and in the
second mode the operator mainly indicates the direction of movement and the system
keeps the LHD away from the walls keeping it from colliding with them. The system was
successful in avoiding collisions between the equipment and the inner walls of the tunnel,
and the general performance of the operation was similar to manual navigation.

The autonomous navigation tests showed that the system allowed tramming along a
180 [m] tunnel from its entrance to the loading point. The LHD took approximately 2 [min]
to go from one point to another, which is comparable to the performance achieved by an
experienced human operator. Some of the difficulties that were found included the tunnel
being too narrow for the LHD (sized according to the manufacturer’s specifications), and
the floor having a large number of irregularities, pot holes, and varying inclinations. Of
these factors, only the narrowness of the tunnel was included in the simulated environment.
A view of the operator’s control interface is shown in Figure 14.

 
Figure 14. Operator’s graphical interface of the navigation system.

Because of time constraints in the mine, testing, development and parameter tuning
were done simultaneously. Because of this, most datasets of the tests in the mine are
from a work-in-progress version of the navigation system. Results presented in this
section are from 14 datasets (labeled 1, 2, 3, etc.), taken on a single afternoon two weeks
before the end of on-site tests. 4 manual operation datasets (labeled M1, M2, M3, and
M4) are also presented to have a reference for the performance of an experienced human
LHD operator. These manual operation datasets were compiled a week later than the
autonomous navigation datasets.

An important problem during tests was roaming between different Wi-Fi access
points inside the tunnel. For safety reasons, the system stops accelerating the LHD if
communication with the operation station becomes unstable, generating an emergency
stop if the loss of communications is longer than a few seconds. Because of this, and a
wireless network that did not have fast roaming capabilities, the system often stopped
when switching from one access point to another. This can be seen in Figure 15, where
stops produced by roaming, and by unstable communications, are shown. The Figure 15
also shows the instant speed of the vehicle (in km/h), the operation mode (with a value of
10 for autonomous navigation, 0 for idle, and −10 for tele-operation), distance traveled (in
decameters), the Wi-Fi channel of the access point, at which the LHD is connected (different
channels are used for faster roaming), and, finally, the RSSI and Noise values reported by
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the wireless modem of the vehicle. All the scales have been selected to fit in a single figure,
to show the relation better between these variables.

 

Figure 15. Instant speed, operation mode, distance traveled, wireless communication channel, RSSI,
and noise for dataset 1. It can be seen in the selected areas that the LHD comes to a stop when
switching between different access points, or when the communication network becomes unstable.

Another consideration for these datasets, since the navigation map was still being
tuned, is the intervention of the operator through tele-operation (or assisted teleoperation)
to help the LHD go through some narrow passages, or to get back and try again to pass
autonomously through a given part of the tunnel. This is shown in Figure 16, as the vehicle
needed to stop, then go back a couple of meters (with teleoperation assistance), to later
reengage in the autonomous navigation mode, this time getting to the desired destination
without further intervention.

Taking these factors (stops because of communication problems and tele-operation)
into account, a series of performance indicators were computed for all the datasets. The
mean and max speed of the LHD are presented in Table 3. When analyzing the results, it
is important to consider that some datasets were compiled with the LHD having a fully
loaded bucket, and others with an empty bucket. In some of these datasets, the LHD
is moving forward, towards the draw point of the tunnel, and in others, it is moving
backward, towards the dump point of the tunnel. To better understand the performance of
the system, and the effects of roaming and tele-operation, other indicators are presented,
such as the length of the dataset, the total distance of the movement, and the total distance
that the LHD was driven by the autonomous system. With an empty bucket, the seasoned
operator drove through the tunnel at an average speed of 6.4 [km/h], while the autonomous
system did the same at 5.8 [km/h], thus slightly underperforming. The maximum speed
achieved by the autonomous system was 11.3 [km/h] with a loaded bucket, while the
seasoned operator achieved a maximum speed of 10.6 [km/h] with an empty bucket.
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Figure 16. Instant speed, operation mode, distance traveled, and wireless communication channel
for dataset 5.

Table 3. Mean Speed, Maximum Speed, Navigation Time, and Navigation Distance for autonomous navigation and manual
operation datasets. ID: Dataset Identifier. T.Op Time: Tele-operation Time. TD: Total Distance. TAD: Total Autonomous
Distance. E/L B: Empty or Loaded Bucket. H F/B: Heading Forward or Backwards.

ID
Mean Speed

[km/h]
Max Speed

[km/h]
Length [s]

Nav. Time
[s]

Stop Time
[s]

T.OpTime
[s]

TD [m] TAD [m] E/L B H F/B

1 6.01 9.50 127.4 109.3 18.1 0.0 182.6 182.6 E F
2 4.80 10.80 189.7 139.4 38.1 12.2 184.4 185.8 L B
3 6.06 9.80 215.6 112.1 21.6 81.8 183.2 188.7 E F
4 4.23 9.60 300.8 154.2 117.1 29.5 187.2 181.7 L B
5 5.91 9.90 150.8 109.5 41.3 0.0 179.6 179.6 E F
6 4.58 9.00 169.0 105.6 63.4 0.0 134.4 134.4 L B
7 5.98 9.70 143.6 111.4 25.3 6.9 191.0 185.4 E F
8 4.15 10.50 336.0 192.2 69.0 74.8 174.8 221.8 L B
9 5.54 9.40 172.9 126.1 25.7 21.1 182.1 194.6 E F

10 4.94 10.20 205.6 134.5 46.6 24.5 172.8 184.6 L B
11 5.33 9.70 323.9 159.0 84.7 80.2 174.3 235.1 E F
12 4.44 10.80 165.9 147.5 18.4 0.0 181.8 181.7 L B
13 6.04 9.50 122.9 109.2 13.7 0.0 183.7 183.3 E F
14 4.93 11.30 147.6 133.3 14.3 0.0 182.9 182.9 L B
M1 5.84 7.80 124.8 124.6 0.2 0.0 200.6 - L F
M2 6.39 8.70 116.7 116.5 0.2 0.0 205.7 - E B
M3 6.37 9.20 120.9 119.8 1.0 0.0 208.0 - E F
M4 6.44 10.60 109.8 109.6 0.2 0.0 195.0 - E B

μ(1–14) w/E 5.84 9.64 179.6 119.5 32.9 27.1 182.3 192.8 E F
σ(1–14) w/E 0.29 0.18 71.0 18.4 24.4 37.5 5.0 19.3 E F
μ(1–14) w/L 4.58 10.31 216.4 143.8 52.4 20.1 174.0 181.8 L B
σ(1–14) w/L 0.32 0.79 72.8 26.3 35.2 27.0 18.2 25.4 L B
μ(M2–M4) 6.40 9.50 115.8 115.3 0.5 0.0 202.9 - E -
σ(M2–M4) 0.04 0.98 5.6 5.2 0.5 0.0 7.0 - E -

The Navigation time is either an autonomous navigation time or a manual operation
time, depending on the dataset. Stop time is the time the machine was stopped, which
includes the time at the start and the end of each dataset. Tele-operation time is the amount
of time spent tele-operating the LHD so that it is able to resume autonomous tele-operation,
usually because the autonomous navigation system didn’t approach a curve appropriately,
and reached a point where it didn’t know how to proceed. The LHD was able to go through
the tunnel without remote assistance in only 6 datasets, but it is important to remember
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that these were done during development, and small tweaks and adjustments, some of
them that worked and some of them did not, were made in between.

To further assess the driving abilities of the autonomous system, the smoothness of
its operation is considered. For this, two different metrics are used. The first measures
the change between two consecutive command inputs (propel and steering), as is shown
in equation (22). The second, in a similar way, measures the difference between two
consecutive measures of the dynamic state of the LHD, namely, its speed and the angle of
its articulation, as is shown in Equation (23).

Eu(k) = (uv(k + 1)− uv(k))
2Δt + (uω(k + 1)− uω(k))

2Δt (22)

ELHD(k) = (v(k + 1)− v(k))2Δt + (γ(k + 1)− γ(k))2Δt (23)

The average and maximum values of both metrics for all datasets are presented in
Table 4. Again, the human operator shows a better performance than the autonomous
system. The consistency of the human operator is quite remarkable, and it shows its
expertise and knowledge of the machine and the tunnel. The autonomous system is also
quite consistent on these metrics, but that is usually expected of an automation system.
In order to have a better idea of the difference between them, Figures 17–20 show the
machine inputs (propel and steering) as well as the instant speed and steering angle of
the LHD. Figures 17 and 19 show dataset 14, while Figures 18 and 20 show dataset M1.
For clarity, Steering command and steering angle have been plotted separately from and
propel command and LHD’s speed. Both were made with the LHD having a fully loaded
bucket, and with the vehicle moving backward, towards the dump point of the tunnel.
Straight lines can be seen in Figure 16 on the propel command line, showing a constant
output by the autonomous system. Looking at both figures, it can be seen that the human
operator uses fewer steering commands, perhaps showing a better understanding of the
LHD kinematics, and, therefore, greater abilities to predict the behavior of the vehicle.

Table 4. LHD input difference, state difference and distance to the walls for autonomous navigation and manual operation.
ID: Dataset Identifier. ACD: Average Command Difference (Eu). MCD: Max Command Difference (Eu). ASD: Average State
Difference (ELHD). MSD: Max State Difference (ELHD). H F/B: Heading Forward or Backwards. ADLW: Average Distance to
Left Wall. MDLW: Minimum Distance to Left Wall. ADRW: Average Distance to Right Wall. MDRW: Minimum Distance to
Right Wall.

ID ACD MCD ASD MSD ADLW [m] MDLW [m] ADRW [m] MDRW [m]

1 0.0060 0.2776 0.0451 5.0400 0.62 0.19 0.67 0.16
2 0.0053 0.3941 0.0358 3.4820 0.84 0.10 0.47 0.10
3 0.0066 0.2510 0.0380 4.7157 0.62 0.12 0.64 0.19
4 0.0043 0.3777 0.0347 6.8018 0.71 0.10 0.43 0.10
5 0.0068 0.2184 0.0484 5.4908 0.62 0.20 0.61 0.23
6 0.0058 0.2607 0.0323 1.9258 0.55 0.10 0.46 0.10
7 0.0059 0.3070 0.0309 5.3291 0.61 0.10 0.64 0.12
8 0.0058 0.2110 0.0558 5.8182 0.68 0.10 0.41 0.10
9 0.0071 0.3096 0.0514 7.8898 0.63 0.17 0.65 0.11

10 0.0056 0.2268 0.0717 6.1329 0.71 0.11 0.50 0.10
11 0.0059 0.2157 0.0583 5.7393 0.56 0.10 0.65 0.17
12 0.0056 0.2526 0.0361 3.4673 0.73 0.10 0.51 0.10
13 0.0072 0.3440 0.0359 4.3288 0.64 0.16 0.63 0.11
14 0.0048 0.1749 0.0383 4.5030 0.78 0.13 0.49 0.10
M1 0.0018 0.0406 0.0076 0.1779 0.60 0.10 0.56 0.10
M2 0.0016 0.0339 0.0090 0.1044 0.47 0.10 0.63 0.11
M3 0.0016 0.0452 0.0091 0.2017 0.48 0.10 0.69 0.10
M4 0.0013 0.0260 0.0070 0.1617 0.44 0.10 0.70 0.12

μ(1–14) 0.0053 0.2711 0.0435 4.5901 0.66 0.13 0.55 0.13
σ(1–14) 0.0006 0.0834 0.0147 1.7500 0.08 0.04 0.10 0.04

μ(M1–M4) 0.0016 0.0364 0.0082 0.1614 0.50 0.10 0.65 0.11
σ(M1–M4) 0.0002 0.0083 0.0010 0.0414 0.07 0.00 0.06 0.01
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Figure 17. Autonomous System steering commands and LHD steering angle on dataset 14.

 
Figure 18. Human operator steering commands and LHD steering angle on dataset M1.
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Figure 19. Autonomous System propel commands and LHD speed on dataset 14.

 

Figure 20. Human operator propel commands and LHD speed on dataset M1.

The average and minimum distances to both tunnel walls are also shown on Table 4.
In this regard, the system and the human operator have similar performance, with the
human operator preferring to be slightly closer to the left wall (since the cabin is on that
side, therefore the operator has better visibility on that side), while the autonomous system
is usually closer to the right side of the tunnel.
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6. Conclusions

The proposed topological navigation and localization system for LHDs was developed
and tested in simulation, field trials, and finally, in a production tunnel of a copper,
underground, sublevel stoping mine. Using this system, the LHD was able to navigate
safely inside the mine, maintaining a safe distance between the LHD and the tunnel’s walls
at all times.

Parameterization of the navigation conditions for each individual TM node was cru-
cial for achieving the desired behavior on the underground industrial tests. The software
modularization allowed the development of specific software components for tackling the
different challenges of the autonomous navigation. The Navigation Control module man-
ages the mission requests and the overall navigation behavior. Deliberative Path Planning
generates local driving trajectories for the Guidance module to follow, while avoiding the
tunnel walls and obstacles. Command Executor maintains a queue of consistent and smooth
commands to guarantee short-term operation, while simultaneously maintaining system
safety. Finally, global and local localization allows maintaining an estimation of the pose of
the LHD inside the mine.

When comparing the automation system with a seasoned human operator, it shows a
slightly slower performance (about 10% in terms of average instant speed), which is not
that serious when taking into consideration all the safety and operational benefits of the
system. Besides being faster, the human operator showed smoother driving and more
control of the LHD, but this did not necessarily reflect on the performance of the system, or
at least it was not noticeable when supervising the operation. It needs to be considered
that the tunnel was very narrow and the system needed to be tuned to drive very near to
the walls, at a distance of about 10 [cm], in order to be able to drive through some parts of
the tunnel (the LHD manufacturer recommends a minimum distance of 50 [cm] to each
side of the tunnel).

One of the major problems during testing on site was the lack of a wireless communi-
cation infrastructure with the capabilities of high speed roaming. This caused preemptive
stops and/or speed reductions while going through the tunnel, hindering the optimizing
process of the system and hurting the overall performance. A video showing the operator’s
graphic interface while the system is driving the LHD autonomously through the tunnel
can be found at https://youtu.be/4Q34N25XjpA (accessed on 14 July 2021).

The system is now being installed and tested in a room and pillar mine in Germany,
where a more robust, and better performing, network infrastructure will be used.
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Abstract: This paper describes an autonomous loading system for load-haul-dump (LHD) machines
used in underground mining. The loading of fragmented rocks from draw points is a complex task
due to many factors including: bucket-rock interaction forces that are difficult to model, humidity that
increases cohesion forces, and the possible presence of boulders. The proposed system is designed to
integrate all the relevant tasks required for ore loading: rock pile identification, LHD positioning
in front of the ore pile, charging and excavating into the ore pile, pull back and payload weighing.
The system follows the shared autonomy paradigm: given that the loading process may not be
completed autonomously in some cases, it takes into account that the machine/agent can detect
this situation and ask a human operator for assistance. The most novel component of the proposed
autonomous loading system is the excavation algorithm, and the disclosure of the results obtained
from its application in a real underground production environment. The excavation method is based
on the way that human operators excavate: while excavating, the bucket is tilted intermittently
in order to penetrate the material, and the boom of the LHD is lifted on demand to prevent or
correct wheel skidding. Wheel skidding is detected with a patented method that uses LIDAR-based
odometry and internal measurements of the LHD. While a complete loading system was designed,
the validation had to be divided in two stages. One stage included the rock pile identification and
positioning, and the other included the charging, excavation, pull back, and weighting processes.
The stage concerning the excavation algorithm was validated using full-scale experiments with a
real-size LHD in an underground copper mine in the north of Chile, while the stage concerning the
rock pile identification was later validated using real data. The tests showed that the excavation
algorithm is able to load the material with an average of 90% bucket fill factor using between three
and four attempts (professional human operators required between two and three loading attempts
in this mine).

Keywords: autonomous loading system; field robotics; mining automation

1. Introduction

The automation of mining equipment is an important requirement in the mining
industry. This is because mining operations need to increase the safety of the workers, as
well as to augment the productivity, efficiency, and predictability of the processes. Safety
is, without doubt, a key factor, and has been the top priority of mining companies during
the past decades. This is particularly true for underground operations, with hazardous
environments where workers are exposed to constant risks of rock falls, rock bursts, and
mud rushes, and where the presence of dust in the air can result in a number of associated
occupational diseases in workers [1]. All of these hazards have been steadily increasing as
mine operations have gone deeper, and geomechanical conditions therefore become more
extreme. As a consequence, great effort has been invested in increasing the automation
level of underground mining machines, especially those that operate in high-risk areas [1],
one of them being load-haul-dump (LHD) machines (also known as scoop trams).

Appl. Sci. 2021, 11, 8718. https://doi.org/10.3390/app11188718 https://www.mdpi.com/journal/applsci
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An LHD is a four-wheeled, center-articulated vehicle with a frontal bucket used to
load and transport ore on the production levels of an underground mine (see Figure 1). The
automation of the transport phase has been covered in many previous publications [2–6]
and is currently commercially available. However, although the loading part has also
been a subject of scientific research, [7–17], its application in mining environments is not
as widely used as other types of automation solutions such as autonomous navigation,
assisted tele-operation, or collision avoidance. The slower-paced progress in this area could
be due to the complexity of the addressed problem: during excavation, the interaction
between the bucket and the material is difficult to model, because the bucket-material inter-
action forces may vary greatly depending on the properties of the material (e.g., humidity,
hardness, fragmentation), the rock pile geometry, and the LHD dynamics (mass, speed,
etc.). For this reason, the development of autonomous loading solutions requires full-scale
experiments under conditions that can be found only in real mining environments, since
physical interactions between the machine and the fragmented rock cannot be easily repro-
duced elsewhere. This adds to the fact that loading maneuvers and techniques are mostly
developed and perfected through the experiences of human operators.

Figure 1. Full-scale LHD machine used during the test of the excavation algorithm.

In this paper, a complete system for the automation of the loading process using
LHDs is proposed. This system is designed to integrate all the relevant tasks required
for ore loading: rock pile identification, the LHD’s positioning in front of the ore pile,
charging, excavation, pull back, and payload weighing (see Figure 2). Assuming that
in some cases the loading may not be completed autonomously, the system can detect
this situation and request the help of a human operator (by tele-operation). Thus, the
proposed system falls under the shared autonomy paradigm. In the mining exploitation
context, fleets of LHDs are normally supervised by humans, so providing assistance to
an autonomous equipment is not an unusual requirement, especially considering that the
most common practice is for LHD automation systems to rely on tele-operators to handle
the loading task. It must be noticed that providing assistance on demand, i.e., only in the
few cases that the autonomous system is not able to load, is much more efficient than the
current semi-autonomous operation used in most commercial systems, where navigation
is executed autonomously but loading is teleoperated.

Figure 2. Steps of the proposed autonomous loading system.

The core of the autonomous loading system is the excavation algorithm, which is
based on the way that human operators excavate: the bucket is tilted intermittently while
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excavating in order to penetrate the material, and the boom of the LHD is lifted on demand
to prevent or correct wheel skidding. Wheel skidding is detected with a patented method
that uses LIDAR-based odometry and internal measurements of the LHD’s actuators [18].
The excavation algorithm was validated in an underground mine (a sublevel stoping
copper mine located in Chile), using full-scale excavation experiments with a real LHD
and a typical production rock pile. The validation process in a productive area of a real
mine and the lessons learned are fully disclosed here. The 2D-pile modeling was validated
afterwards with data from these tests.

It is also important to mention that commercial solutions to the problems of au-
tonomous loading need to be compatible with the 24 × 7 operation of mines, where
production throughput is one of the main requirements. That means that the LHD needs
to be able to load without stopping during the transition from navigation to loading. The
proposed automation framework considers this requirement, and it is able to characterize
the rock pile, without stopping the LHD, while it approaches the pile.

The main contributions of this paper are:

• A system that models and implements the whole loading process required in under-
ground mining operations, from rock pile identification to payload weighing. The
system is based on the shared autonomy paradigm, which allows the system to obtain
assistance on demand from a human operator.

• An excavation algorithm that is based on the way that human operators excavate,
and that uses a patented method for detecting wheel skidding, which is required for
successful excavation of fragmented material in draw points.

• Full-scale rock excavation experiments using a commercial LHD in a production level
of a sublevel stoping mine.

This paper is organized as follows: Section 2 presents the background and related
work on loading automation for LHDs. Section 3 describes the proposed autonomous
loading system. In Section 4, results of the full-scale experiments are shown and discussed.
Finally, in Section 5, the main conclusions of this work are drawn.

2. Background and Related Work

2.1. Problem Description

Autonomous loading of fragmented rock involves a sequence of steps: As the LHD’s
operator approaches the draw point, a swift assessment of the condition of the rock pile
is made. The bucket of the LHD is tilted downwards until the tip is pressed against the
ground. Next, the machine is commanded to charge at the rock pile. After the LHD makes
contact, it buries the bucket in the rock pile, and bucket tilt and lift movements are issued
as it advances through the fragmented rock. When sufficient penetration is achieved, the
bucket is fully retracted, and the vehicle is withdrawn with a reverse motion. Then, the
operator shakes the bucket briefly and assesses whether or not enough ore has been loaded.
If necessary, a new loading maneuver is carried out.

The step in which the machine is being controlled to dig into the rock pile will herein
be referred to as the excavation process. During excavation, bucket-rock interaction forces
affect the bucket motion through the material, and ultimately define the amount of ore
loaded. Granular material inter-particle forces, as well as bucket-rock interactions, have
been studied previously, but their complexity has led only to stochastic modeling [19]. In
consequence, an analytical approach to bucket motion control is not possible, and accurately
replicating these interactions to develop a system in simulation is highly unlikely. Hence,
only a real environment offers suitable conditions for development of, and experimentation
with, an excavation procedure. Furthermore, fragmented rock, unlike piled sand or gravel,
is much more difficult to load. This is aggravated due to the environmental conditions
in underground mining. Depending on the mining method, the column of blasted rock
might exert large compression forces on the open face of the draw point (see Figure 3).
Humidity can also increase cohesion forces, making the overall process more difficult [20].
Moreover, large rocks can be present in the draw point. For this reason, the operator needs
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to detect the presence of large rocks while approaching the draw point, and, depending
on their size, could be forced to change the goal of the maneuver from filling the bucket
to just loading one large rock. If the rock is too big to be loaded, the task is aborted.
Furthermore, other conditions, such as narrow tunnels, uneven or unprepared terrain,
and/or significant amounts of water and mud near the draw point, can make the loading
process very challenging. An autonomous system should be prepared to handle all these
situations in addition to performing certain processing and steps that a human operator
deals with while driving the LHD, such as detecting an accurate enough position of the
rock pile before charging at it, making sure not to hit the tunnel while pulling back from
the rock, and estimating if the bucket is full enough.

Figure 3. Sublevel stoping draw point.

2.2. How Human Operators Excavate

The excavation process is the core of the loading maneuver; it is the crucial step and,
since bucket-rock interactions cannot be predicted in advance, there is no optimal method
for performing this operation. Nevertheless, human operators have had to deal with this
situation by learning the loading technique from experience and shared good practices. It
is natural, therefore, to analyze which ideas can be borrowed from them. Through several
interviews with LHD operators of Chilean block caving and sublevel stoping mining
companies, and discussions and analysis of data from mining operation manuals, some
common points in their practices were identified:

• Before engaging with the rock pile, the bucket must be fully extended.
• Forward motion is selected for maximum traction (first gear).
• Intermittent tilt commands are the basis of the excavation process.
• Lift commands are mainly issued to prevent or correct wheel skidding.

Figure 4 shows a graphical representation of an excavation maneuver. First, the LHD
engages with the rock pile, then the bucket is tilted in order to excavate on the muck
pile. When the wheels lose traction, the boom is lifted to regain traction. After filling the
bucket, the LHD pulls back. Figure 5 shows a graphic of some of the relevant variables
during a line-of-sight remote-controlled loading maneuver. As mentioned, bucket tilting
(“tilt command”) is activated intermittently. Its duration and shape vary among operators
and loading attempts. Techniques also using negative tilt commands (downwards tilting
of the bucket) were also encountered in combination with positive lift commands (“lift
command”). The common factor in all of them was the intermittency of the commands. As
for the lift command, its use was seen to be highly variable, which correlates with the notion
of using it mainly to prevent wheel skidding. In the example of Figure 5, the lift command
was not used at all. The “pedal command” is the one used for machine acceleration and
thus, in turn, engine revolutions per minute (RPM). “Tilt angle” and “lift angle” are the
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bucket tilt and boom lift angle values, estimated through the encoders installed in the
machine. “Transmission pressure” is the hydrostatic transmission pressure of the machine,
a variable that can be associated with the engine’s power output. “Skidding factor” is an
estimated skidding factor that is explained in Section 3.3.

Figure 4. Excavation method diagram. (a) LHD engages with the rock pile. (b) Bucket tilt used to
excavate. (c) Boom lift used to control wheel traction. (d) End of the excavation phase.

2.3. Related Work

Mikrived analyzed the interaction forces in excavation processes and proposed that
measurements of the resistive forces could be used for controlling them [21]. Hemami stud-
ied the LHD loading process and dealt with theoretical formulations on bucket trajectory
and resistive forces during a scooping motion [7,8,10]. Other work has addressed the load-
ing problem using laboratory-scale prototypes, under less realistic conditions [9,11,12,22].
Research on autonomous loading showed scarce progress up until the past decade. In [13],
full-scale experiments with a real LHD were performed using a proposed admittance-
based controller for bucket commands. This work was further extended in [15–17] with
support from the LHD original equipment manufacturer (OEM) Atlas Copco (now Epiroc),
a study that led to a patented method [23]. It should be noted that this method addresses
only the problem of ore excavating once the bucket is inside the rock pile. On the other
hand, our approach comprehends the complete loading process, while also benefiting from
human experience.
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Figure 5. Relevant variables during the loading maneuver: Lift/Tilt command: manual bucket
lifting/tilting command. Pedal command: manual machine acceleration command. Transmission
Pressure: hydrostatic transmission pressure of the machine. Tilt Angle: tilt angle of the bucket. Lift
Angle: lift angle of the boom. Skidding factor: estimated skidding factor. See the definitions of these
variables in Sections 3.3 and 3.4.

Caterpillar, another LHD OEM, is known to have been working on technical solutions
for the autonomous loading problem, as demonstrated by patents [24–26]. While their
patents show that they have tackled different issues of the autonomous loading problem, a
general system has not been described, and their research has not been made available to the
scientific community. However, it is uncertain if either of these solutions are able to handle
the loading problem in block/panel caving draw points, which is significantly harder than
loading from an ore pile or from draw points originated by other mining methods. As
mentioned, loading from draw points is difficult due to many factors including: bucket-
rock interaction forces that are difficult to model, humidity that increases cohesion forces,
and the possible presence of boulders.

According to the public information shared on the web sites of LHD OEMs, only
Epiroc, Sandvik, and RCT Global have commercially available products that focus on the
autonomous loading task. However, specific features, limitations, and applicability for
block/panel caving or sublevel stoping underground mining are not publicly disclosed,
and therefore no comments can be made on them. At least in Chile, where all major mining
companies operate and where one third of the world’s copper is produced, no autonomous
loading system for LHD is in use.
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Work associated with standard front-end loaders was not considered in this analysis,
because they operate on the surface, where the difficulties associated with underground
draw points are not present. In addition, these types of vehicles usually deal with material
that has already been processed by milling equipment.

Our previous work on the topic of autonomous loading with LHDs was focused on
laboratory-scale trials [27]. While useful for an initial approach to an experimental setup,
laboratory experiments are limited due to the large deviation between real-world operating
conditions and data from a small-scale and controlled environment. Other laboratory
work is presented by Shi [22], which has some similarities with the here-presented method,
as excavation is modeled after the experience of human operators. However, since their
experiments are carried out using a robotic arm, it is difficult to apply those findings to a
four-wheeled machine such as an LHD.

As can be seen, little work has been published on the particular case of autonomous
loading with LHD machines in real underground mining environments, and, as far as we
know, no previous method has validated an excavation technique using human operator
experiential knowledge under real underground mining conditions.

3. Proposed Autonomous Loading System

3.1. Methodology Overview

The hardware used in this work included a full-scale LHD machine (a GHH LF11H
with 11-ton tramming capacity and hydraulic powertrain) retrofitted with two 2D laser
scanners (SICK LMS511), encoders in all joints (IFM RN7012), pressure sensors along the
bucket’s tilt and the boom’s lift hydraulic lines (manufacturer specific, 600 bar), and an
onboard industrial computer (Advantech ARK-2151-59AIE) (see Figure 1). All components
are of industrial grade, suitable for the rigorous environment of underground mining, and
readily available as off-the-shelf components used widely in a broad range of commercial
applications. In order to better integrate the system with commercial autonomous naviga-
tion solutions for LHDs, which only use 2D scanners, 3D laser scanners were not used in
the current version of the proposed system. The software implementation was performed
using ROS as the central middleware [28], CABSL library [29] for state-machine codifica-
tion, and ROS actions to interface with the main processing function in each state. The
system was initially developed and tested in a simulated environment using Gazebo [30].

An autonomous loading routine can be thought of as a sequence of several steps
that perform specific actions, as presented in the diagram of Figure 2. There, rock pile
identification is the process of finding the draw point’s location and status (whether it is
suited for loading or not). Positioning refers to orienting the LHD machine to ensure that a
forward thrust will end in a collision with the rock pile. Charging is the step that considers
lowering the bucket and accelerating towards the pile. Excavation is the machine control
that performs the digging action. Pull back comprises the backward motion of the vehicle
and bucket shake. Finally, Payload weighing estimates the amount of ore loaded. Most
of the mentioned steps could fail due to the highly variable environment in underground
mining. It is possible that the onboard sensors fail to find the rock pile accurately or that the
machine positioning cannot avoid colliding with a tunnel wall. The collision between the
machine and the rock pile might not be detected, and the LHD’s bucket could become stuck
during excavation. In any of these cases, human assistance would be required to overcome
the problematic situation. In fact, human interaction with automated mobile machines for
mining operations is needed in the state-of-the-art systems, at the very least to supervise a
fleet of machines. Since large-scale operations have a fleet of vehicles, it is common for one
or more operators to supervise and assist multiple semi-autonomous machinery, as each
machine does not require constant attention. For these reasons, in our view, it is imperative
that this human interaction is considered at the design stage of the autonomous loading
system and, thus, included in the formulation of the agent’s behavior. Figure 6 shows the
proposed state machine for the autonomous loading process with the human in the loop.
There are two assistance states: positioning assistance allows the operator to take control
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of the machine to position it in front of the rock pile, while loading assistance provides
the operator with full control of the LHD to perform the remaining parts of the loading
maneuver up until payload weighing, which is needed to record the performance of the
task. The positioning assistance is called either when the rock pile identification cannot
characterize the rock or when positioning is not able to place the LHD to start the charging
procedure, while loading assistance is called when the charging, the excavation, or the pull
back procedures cannot be successfully completed.

Figure 6. Finite state machine formulation for the autonomous loading with human operators
in-the-loop.

3.2. Environment Modeling and Rock Pile Identification

Of the six steps of the autonomous loading routine, the first one, rock pile identification,
is the one that most strongly relies on the processing of data acquired from the environment.
The aim of this step is to find the location and status of the draw point accurately, in real
time, and without the need of extra steps or delays. This means that the LHD is required
to continue moving while scanning the pile. The characterization of the rock pile is
performed through integration of consecutive laser scans from the frontal 2D LIDAR sensor
mounted on the LHD. The integration of the laser scans relies on a LIDAR-based odometry
method [31], and the output of the machine’s inclinometer data, which is filtered and
integrated in the local coordinate frame in order to benefit from the natural tilting of the
LHD while moving across uneven terrain. The aforementioned odometry method consists
of an adaptive frame rate modification of the range-flow based odometry (RF2O) [32].
While RF2O computes displacement by comparing two scans, using the “range flow
constraint equation”, the adaptive frame rate implements a control over the processing
frequency, increasing it at higher machine speeds.

A block diagram for the pile identification step is presented in Figure 7. The LIDAR
odometry enables the integration of 2D laser scans into a 3D point cloud of the environment.
Then, the rock pile is segmented, and its features are computed (center, limits, and slope).

Figure 7. Rock pile identification block diagram. LIDAR odometry and machine’s inclinometer data
are used to register 2D laser scans into a 3D model of the environment. A segmentation of the rock
pile is then carried out, and its center, limits, and slope are extracted.

A conceptual diagram of the complete pile identification process is shown in Figure 8.
The succession of images (a, b, and c) illustrates how the integration is carried out. For
each new scan (colored circles), the data is registered in an accumulated point cloud, using
the computed odometry. It is important to note that the whole process must be executed in
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real time without stopping, or even slowing down, the LHD. Moreover, the fact that the
LIDAR reaches the bottom of the pile from a long distance away, because it is tilted down
2.5 degrees, results in the point cloud having very low density, all of which increases the
complexity of the problem.

Figure 8. Rock pile reconstruction process through laser-scan integration. As the machine approaches
the pile (images (a–c)), the new laser scans are merged with the previous ones using the computed
odometry. A slightly tilted LIDAR is used for this purpose.

Once enough scans have been integrated, the rock pile is segmented using the normal
vectors of the surface, a curvature filter, and neighbors count in a small radius. The
normal vectors provide information about the points belonging to the walls or to the pile
(normal ny is negative on the left wall, near zero on the pile, and positive on the right wall).
The curvature provides a rotation-invariant description of the points, which can be used
for further segmenting the pile. Finally, neighbor counts provide information valuable
for rejecting outliers (points that are isolated from all others). Once a pile is segmented
successfully, its mean slope is estimated and is used to classify the status of the pile: a
too shallow slope indicates there is not enough ore to perform a loading, and a too steep
slope signals the presence of a tunnel wall instead of a rock pile, or even a rock pile in a
“hang-up” state, a condition that can arise in certain underground mining methods, such
as block caving, in which the fragmented rock stops flowing, generating an unstable and
hazardous condition. The determination of the status of the pile is performed by a simple
thresholding of its slope.

For clarity purposes, the described algorithm for segmenting and characterizing the
pile is detailed in Figure 9.
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Figure 9. Pseudo code of pile segmentation and characterization algorithm.

Besides the pile status, the locations of the horizontal bounds are needed for the next
step of the loading routine, the machine positioning. The left (EL) and right (ER) limits of
the rock pile are required to be able to direct the machine without colliding with the tunnel
walls. Using the information available from the pile segmentation algorithm, the limits are
estimated as EL = max_y, and ER = min_y (see definitions in Figure 9).

The normal vectors of the points provide valuable information for segmenting the
pile, as shown in Figure 10. In this figure, low values of the normal component ny are
colored in blue, while high values are colored in red.

Oversized rock detection can also be performed in this identification step; however,
the description of the functionality is outside the scope of this paper (see, for example, the
detection system described in [33]).

Figure 10. Point cloud showing pile reconstruction (point color corresponds to the ny component of
the normal).
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If the identification of the rock pile has not finished by the time the LHD is closer
than a certain predetermined distance to the pile (in the experiments, a threshold of
15 m was used), a transition to the positioning assistance state is forced in the behavior
state machine from Figure 6. In the experiments, a threshold of 15 m was used as the
predetermined distance. This value was deemed sufficient for the LHD to successfully
achieve the following positioning in front of the rock pile. The overall loading routine
is, nevertheless, not sensitive to small variations of the selected parameter, and its value
should be selected based on the particular conditions of the operating environment.

3.3. Positioning and Charging

After the draw point location and status have been determined, the loading routine
continues with the positioning of the machine. Here, the LHD is continued to be driven
forward using a “guidance” algorithm [34] until the machine’s reference point (in this case
its central articulation joint) is at a set distance from the center of the pile (computed as the
center of gravity of the segmented points). Once this distance is met, small corrections to
the steering angle are issued to ensure that the projected path lands within the limits of the
rock pile. Finally, the bucket is lowered until a tight contact with the ground is achieved. A
block diagram of this process is shown in Figure 11.

Figure 11. Positioning block diagram. The machine is driven by a guidance system until a predefined
distance to the rock pile is achieved. The steering angle of the LHD is then adjusted to ensure collision
with the pile, and the bucket is lowered.

The projected path for the machine aligning procedure (see Figure 12) is computed us-
ing the LHD’s kinematic equations, reported in several previous publications, such as [35]:

∂[x, y, θ]/∂t =
[
v cos(θ), v sin(θ), (v sin(γ) + Lrω)/

(
L f cos(γ) + Lr

)]
(1)

∂γ/∂t = ω (2)

where [x, y, θ] is the pose of the LHD, v is the linear speed, γ is the steering angle of the
LHD’s pivot, ω =

.
γ is the steering speed of the LHD’s pivot, Lr is the length from the

LHD’s pivot to the rear wheel axis, and L f is the length from the LHD’s pivot to the front
wheel axis.

Since the next step of the autonomous loading routine, the charging against the rock
pile, does not involve steering commands, a fixed steering angle (constant γ, ω = 0) can be
considered, which simplifies the model:

∂[x, y, θ]/∂t = [v cos(θ), v sin(θ), v · K] (3)

where K is a constant value that depends on the LHD dimensions and the fixed steering
angle. Equation (3) shows that an LHD charging against a rock pile will follow a circular
trajectory, characterized by a center (C) and a curvature radius (R). Because the rock
pile identification step computed the left (EL) and right (ER) pile edges, the problem of
determining if the LHD will collide with the rock pile simplifies to checking if the line
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between EL and ER intersects with both the circular path of the left and right sides of the
LHD. Figure 12 shows a diagram of the described scenario.

Figure 12. Intersection of the predicted trajectory with the detected pile limits. Left and right pile
limit points denoted as EL and ER, respectively (with the face of the pile between them in a red
segmented line). LHD’s left side circular trajectory center and curvature radius denoted with C and
R, respectively. In a blue dotted line both sides of the predicted LHD’s trajectory is presented.

The solution for the intersection between a circle and a line segment is well known in
the common literature and it involves computing the following discriminant value:

Δ =

(
2
⇀
E ·

⇀
EC

)2
− 4

∣∣∣∣⇀E ∣∣∣∣2
(∣∣∣∣ ⇀EC

∣∣∣∣2 − R2

)
(4)

where
⇀
E is the vector going from ER to EL and

⇀
EC is the vector going from ER to C. If Δ

results in a negative value, then the infinite line defined by the points ER and EL never
intersects the given circular path. On the other hand, if Δ is positive, a solution exists. Let
S1 and S2 be solutions to the intersection between the infinite line defined by ER and EL
and the circle of center C and curvature radius R:

S1 = −2
⇀
E ·

⇀
EC−√

Δ

2
∣∣∣∣⇀E ∣∣∣∣

S2 = −2
⇀
E ·

⇀
EC+

√
Δ

2
∣∣∣∣⇀E ∣∣∣∣

(5)

then, if 0 < S1 < 1 or 0 < S2 < 1, the circular path intersects the segment ELER. Otherwise,
if min(|S1|, |S2|) < min(|S1 − 1|, |S2 − 1|), the circular path passes to the right of the
segment ELER. If none of the previous conditions is met, then the path passes to the left of
segment ELER.

The above process is executed for the circular paths defined by the left and right side
of the LHD. If one of them does not intersect the pile, the steering angle is adjusted in the
appropriate direction until both paths land within the rock pile limits. During this steering
adjustment, a simple collision check is computed periodically over a bounding box for
each body of the LHD. Figure 13 shows a diagram of the collision check for the front body
of the LHD. A bounding box is defined for the front body. Then, vectors going from the

bottom left corner to the top left corner (
⇀
S f ) and to the bottom right corner (

⇀
Bf ) are defined.
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In order to check if point P of the detected tunnel wall is inside the bounding box (and
hence causing a collision), the following condition is evaluated:

0 <
⇀
S f ·

⇀
d f <

∣∣∣S f

∣∣∣2 ∧ 0 <
⇀
Bf ·

⇀
d f <

∣∣∣Bf

∣∣∣2 (6)

where
⇀
d f is the vector going from the bottom left corner of the bounding box to point P. If

the condition is true, then point P is inside the collision bounding box.

Figure 13. Simple collision check between the front body of the LHD and point P of the detected
tunnel wall. Vectors Sf and Bf (in blue) of the collision bounding box are used alongside vector df (in
red) to determine if point P is inside the bounding box.

Once the machine’s steering angle has been adjusted so that its projected path lands
within the rock pile limits, the bucket of the LHD is lowered using the tilt hydraulic cylinder.
The tilt cylinder is commanded to extend until the pressure in its hydraulic line rises over
a predefined threshold, signaling a tight contact between the bucket tip and the ground.
An example from full-scale experimental data is shown in Figure 14, where a threshold of
23 bars was selected.

Figure 14. Cylinder pressure increase as the bucket is tightly pressed against the ground in prepara-
tion for the charging maneuver.
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If the above positioning process is not completed within a predefined time limit (in
the experiments, a threshold of 30 s was used), an operator assistance request is generated,
effectively putting the system in the positioning assistance state from Figure 6. Otherwise,
once the vehicle is in position and with the bucket down, it is commanded to drive forward
in first gear. The transition to the excavation phase occurs as the collision with the rock
pile is detected by a patented method that analyzes the machine’s transmission pressure
(engine load) and a skidding factor, estimated from the LIDAR odometry and the machine’s
tachometer data [18]. A block diagram is shown in Figure 15.

Figure 15. Charging block diagram. The machine is driven forward while a collision detection
routine analyzes the machine’s transmission pressure and an estimated skidding factor.

The skidding estimator from Figure 15 computes the skidding factor with the
following formula:

skid = (vT − vL)/vMm (7)

where skid is the skidding factor; vT is the speed measured from the machine’s tachome-
ter; vL is the speed estimated with the LIDAR-based odometry method mentioned in
Section 3.2., and vMm is a normalizing factor, computed as the maximum between vT and
vL in a fixed time window.

Simultaneously, the collision detector module monitors the pressure of the hydrostatic
transmission system (for the used LF11H LHD, this variable correlates with the engine’s
power output). If either the skidding factor or the transmission pressure rises above a
predefined threshold, a collision detection event is flagged. Figure 16 shows a plot of
the skid factor and the transmission pressure signals, alongside the tilt command, for a
teleoperated loading maneuver. The collision with the rock pile happens just before the
human operator activates the tilt command. As mentioned above, a significant rise in the
transmission pressure, and of the skidding factor, can be seen at that point. Extensive
analysis of experimental data, such as shown in Figure 16, led to transmission pressure
threshold to be set at 300 bar, and the skidding factor threshold at 0.5.

If a collision detection is not generated within a predefined time limit (in the experi-
ments, a threshold of 10 s was used), an operator assistance request is issued, forcing the
system into loading assistance state from Figure 6.

3.4. Excavation Algorithm

The excavation algorithm is based on the techniques used by experienced human
operators from block caving, panel caving and sublevel stoping operations (which are the
most common type of underground operations in Chile). From a control theory point of
view, the proposed method acts as a traction controller during the excavation process. A
diagram is shown in Figure 17. The pregenerated commands is simply a module in charge
of generating precomputed commands for the pedal and tilt signals. These commands are
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similar to the commands observed during manual operation. Specifically, the acceleration
pedal is maintained at a constant output value and the bucket tilt is intermittently activated
in the form of a ramp function. A ramp function was only selected in order to have an extra
parameter, although a parameter sensibility analysis could not be performed in the full-
scale experiments due to time constrains. The traction controller acts on the lift command
in order to suppress wheel skidding, a variable that is estimated from Equation (7), as
explained in Section 3.3. In practice, a simple “on/off” controller was implemented, where
the lift command was set at the maximum value if the estimated skidding factor raised
over a predefined threshold. This choice was made to keep the methods simple in favor of
achieving a validation of the complete system.

Figure 16. Detection of the collision with the rock pile. Through analysis of the manual operation
data, the transmission pressure signal and the estimated skidding factor were selected and used in a
threshold detector.

Figure 17. Control diagram of the excavation method. Tilt and pedal commands are predeter-
mined from the human operator control method. The lift command is adjusted depending on the
detected machine skidding, which is in turn estimated from the LIDAR odometry and machine
tachometer data.
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The implementation of the excavation method was carried out using a two-state
machine. In the first state, called Stilt, a fixed acceleration and a ramp-shaped bucket tilt
command are selected. In the second state, called Spush, the fixed acceleration command
persists, and wheel skidding is analyzed. If the wheel-skidding factor rises above a
predefined threshold, the boom lift command of the machine is activated in order to
compensate for it. A machine-specific option, named “full RPM”, is also activated during
this state. This option forces the engine to maximize its power output, providing additional
penetration force. Formally, the following equations apply for the machine commands:

pedal = P0

tilt =

⎧⎨⎩
R0(t − ttilt)
1
0

i f state = Stilt ∧ b(t − ttilt) ≤ 1
i f state = Stilt ∧ b(t − ttilt) > 1
i f state = Spush

li f t =

{
0
1

i f state = Stilt ∨ skid < skidmax
i f state = Spush ∧ skid ≥ skidmax

f ullRpm =

{
0
1

i f state = Stilt
i f state = Spush

(8)

where P0, R0, and skidmax are predefined constant values; ttilt is the start time of state Stilt,
and skid is the skidding factor. As for the output commands, pedal is the signal sent to
the machine’s internal control unit that regulates acceleration (similar to the signal sent
when pressing the physical pedal in the machine’s cabin), tilt is the signal sent to retract
(positive values) or extend (negative values) the cylinder that controls the movement of
the bucket of the LHD machine, and li f t is the signal that commands the “boom” cylinder
of the machine, that is, the arm that can lift (positive values) or lower (negative values)
the bucket. Finally, the f ullRpm signal is, as mentioned, a machine-specific command
that forces the engine’s RPM to the maximum, temporarily increasing the force of the
hydraulic mechanism. It should be noted that analysis and correction of wheel skidding
is only performed during the Spush state. This decision was made based on the empirical
observation that wheel skidding is much less likely to occur during bucket retraction and
the fact that activating the lift cylinder effectively reduces the power available for the
tilt hydraulics. In Figure 18, a flow chart of the excavation process is presented, where
EP represents engine power (a variable observed, in this case, through the transmission
pressure of the machine).

Both states, Stilt (tilt state) and Spush (push state), have upper and lower bounds to their
execution time, so it is guaranteed that their execution alternates during the excavation.
Besides the time limit of Spush, the system can transition back to Stilt if the hydrostatic
transmission pressure (or, more generally, the engine power output) climbs over a threshold
value, meaning that the resistive force from the rock pile is too large, and the bucket is
not able to penetrate further without a scooping motion. This alternation between states
continues until any of the following stop criteria are met: the bucket is fully retracted,
the bucket is lifted over a maximum angle, or the machine has advanced further than a
maximum displacement value. This method was patented as reported in [36]. For clarity
purposes, a pseudo code of the described algorithm is shown in Figure 19. Table 1 shows
the value of the parameters used for the full-scale validation experiments reported in
Section 4. The numerical values were selected based on operation data.

In the case that the described excavation process is not completed within a predefined
time limit (in the experiments, a threshold of 30 s was used), an operator assistance request
is generated, thus putting the system in the loading assistance state from Figure 6.
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Figure 18. Flow chart of the excavation algorithm.

3.5. Pull Back and Payload Weighing

Once the excavation is finished, the bucket gets fully retracted and the vehicle is
driven backwards, using the same “guidance” navigation module from the positioning
step. A predefined time limit is assigned to this step (in the experiments, 60 s were used).
If a timeout occurs, the system is put in the loading assistance state from Figure 6.

After a predefined distance has been covered within the aforementioned time limit,
the bucket is commanded to perform short downward and upward tilting movements,
known as the “bucket shake”. Then, the bucket is lifted up to a fixed angle (βweigh), and the
pressure sensors in the boom hydraulic line are used to estimate the bucket fill factor. A fill
factor is used instead of the mass weight, since it simplifies calibration, while providing
the same information for the evaluation process. The relationship between the lift cylinder
pressure (P) and the fill factor was found experimentally and corresponds to the following
affine model:

f f ill = mP − n (9)

where f f ill is the relative fill factor (0 for an empty bucket and 1 for a full bucket), and
m and n are the constants to be calibrated through experimentation. Table 2 shows the
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parameters used for the particular conditions of the field trials presented in this work
(machine and rock characteristics).

Figure 19. Pseudo code of the excavation algorithm.

Table 1. Excavation method parameters used for the full-scale validation.

Parameter Value

P0 0.5

R0 1.2

skidmax 0.2

βmax 0.5 [rad]

αmax 0.0 [rad]

dmax 2.0 [m]

Δtmax 1.0 [s]

Δtmin 0.5 [s]

EPmax 300 [bar]
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Table 2. Weight model parameters used for the full-scale validation.

Parameter Value

βweigh 0.2

m 0.0207

n 1.0774

4. Experiments and Analysis

Full-scale experiments with a GHH LF11H model LHD (see picture in Figure 1) were
carried out in a production tunnel of a sublevel stoping mine located in the Coquimbo
Region (Chile), facilitated by the Chilean mining company, CMSG. Pictures of the mine site
and the LHD inside its tunnel are shown in Figure 20. Figure 20a shows the mechanical
workshop just outside the mine’s main entrance, and Figure 20b shows the LHD during
surface tests. Figure 20c shows the LHD outside the test tunnel with an almost fully
loaded bucket.

Figure 21 shows the layout of the tunnel where experiments were carried out. The
LHD traveled from the “start–end point” shown in the figure to the end of the red line,
where the stope was originally located. A stope is a large open underground space that
is produced by the sublevel stoping mining method. The LHDs load ore inside the stope
from a large pile of material, also sometimes referred to as the loading point or draw point.
Once the LHD has a fully loaded bucket, it has to travel back to the “start–end point” to
dump the ore.

Figure 20. LHD machine and mining facility. (a) Mechanical workshop just outside the mine’s
main entrance; (b) LHD during surface tests; (c) LHD outside the test tunnel with an almost fully
loaded bucket.

535



Appl. Sci. 2021, 11, 8718

Figure 21. Layout of the mine’s tunnel where experiments were carried out.

The experiments reported here were carried out in a fully functional tunnel of the
mine, i.e., a tunnel used for extracting mineral. In fact, the experiments took place during
day hours, while the mine’s night shift used the LHD in manual mode for production. As
a result of this, the shape and location of the stope and the draw point changed every day
(as the ore runs out, the inner wall of the stope is blasted as part of the mining process).

Because of this, and since in situ experimentation was time-limited, experiments were
separated in two parts. First, the field trial experiments regarding charging and collision
detection of the LHD and the pile, and the LHD’s excavation and payload weighing, are
reported in Section 4.1. Then, pile identification experiments from an offline processing of
the collected field data are presented in Section 4.2.

The mining tunnel was narrower than recommended by the LHD manufacturer, so
the LHD’s positioning was more complex than initially expected. This also contributed to
dividing the experiments into the two groups described above. Figure 22 shows a picture
of the draw point as seen from the teleoperation system cameras.

Figure 22. Operator’s point of view of the loading point used for onsite experiments.
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4.1. Full-Scale Rock Excavation Experiments

Since the pile identification method was not fully optimized at the time of the onsite
tests, and time for executing the experiments in the mine was limited, the development
team divided the loading procedure in two stages in order to maximize the total number
of full-scale rock excavation experiments and evaluate each stage separately. One stage
included rock pile identification and positioning, and the other included the charging,
excavation, pull back, and weighting processes. To perform this, loading experiments
required a human operator to position the machine five to ten meters in front of the draw
point, effectively bypassing the rock pile identification and positioning stages, and starting
the system’s state machine in “positioning assistance”, as described in Section 3.

A total of 30 complete loading experiments were carried out. Similar to in manual
operation, multiple loading attempts were required in order to fill the bucket during each
experiment. Manual operation of LHD in sublevel stoping mines usually needs two or
three attempts to achieve a proper bucket fill factor, since the procedure is performed using
line-of-sight radio control with limited visibility behind the LHD (safety regulations forbid
operators to enter the stope area). In some attempts, the tip of the bucket was lowered too
much, causing high resistive forces from the ground during charging, and thus triggering
the collision detection too early. A total of 81 loading attempts were performed in order
to fulfill the 30 complete loads. Of these, 7 failed (early collision trigger) and 74 were
successful, resulting in the 91% success rate of the charging and collision detection method.

For each experiment, a fixed value of 0.5 was used for the pedal command. An
operator monitoring the system’s behavior during the complete loading process from
a remote-control station decided when the bucket was full enough, and hence if a new
attempt was needed. The operator relied only on the visual input of the machine’s forward
camera to make this decision.

Figure 23 shows an example of the relevant variables in an autonomous loading
attempt, which has some resemblance to the operator-controlled loading shown in Figure 5.

Table 3 shows the number of experiments carried out, classified by the number of
attempts to achieve a full bucket, and the average fill factor for each category. It can be seen
that most experiments required three loading attempts, and that the operator continued
to reattempt loading until the fill factor was about 90%. This can be seen more easily on
Table 4, where the average fill factor and average number of attempts for all experiments
are shown. It must be noted that while the fill factor at the end of each experiment met the
criteria for manual operation (since it was the same operator deciding when the bucket
was full), the average number of attempts was found to be higher than that in manual
operation, which, according to manual operators was between two and three attempts.

Table 5 and Figures 24 and 25 show more detail about progressive filling of the bucket
through loading attempts for the 30 loading experiments. Table 5 shows the average
durations of the excavation step and the resulting fill factor, classified according to the
progressive sequence of attempts, as well as the total number of experiments in each case.
On average, the first attempt managed to fill 62% of the bucket capacity; then, the second
attempt achieved 77%; the third attempt achieved 82%; and for the six experiments that
needed a fourth attempt, the average that resulted was a 90% fill factor. The average
excavation duration was about 10–12 s, which comprised the time between the collision of
the LHD with the rock pile and the end of the excavation algorithm. The required time for
positioning, charging, and weighing was not taken into account in this measurement. It
can be seen that the average duration of the excavation in the first attempt is slightly longer
than the others.

Figure 24 shows a box plot of the excavation step duration for all loading attempts.
The time taken for the excavation ranges from 6 to almost 20 s, depending on the conditions
of the rock pile and the specific interaction between the bucket and the rock pile. Figure 25
shows a box plot of the fill factor that was obtained progressively through loading attempts.
It can be seen that the biggest jump in performance happened in the second loading attempt.

537



Appl. Sci. 2021, 11, 8718

Some outliers with performance above 100% are also depicted for the second and third
attempts and appear as a consequence of loading a large boulder.

Figure 23. Relevant variables in an autonomous loading attempt.

Table 3. Loading experiments and average fill factor per number of loading attempts. N-Attempts:
number of attempts required to fill bucket. N-Exp: number of experiments. Total-Attempts: total
number of performed attempts. %-Experiments: % of the experiments. Fill-Factor: average fill factor.

N-Attempts N-Exp Total-Attempts %-Experiments Fill-Factor

1 attempt 9 9 30% 88%

2 attempts 4 8 13% 107%

3 attempts 11 33 37% 87%

4 attempts 6 24 20% 90%

TOTAL 30 74 100% -

Table 4. Total average number of attempts and fill factors.

Total Average Number of Attempts Total Average Fill Factor

3.6 90%
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Table 5. Duration and fill factor in consecutive attempts. P-Attempts: progressive sequence of
attempts. N-Exp: number of experiments. Duration: average duration. Fill-Factor: average fill factor.

P-Attempts N-Exp Percentage Duration Fill-Factor

First attempt 30 100% 12.7 s 62%

Second attempt 21 70% 10.2 s 77%

Third attempt 17 57% 10.8 s 82%

Fourth attempt 6 20% 10.7 s 90%

Figure 24. Excavation step duration per loading attempt. Red “+” signs represent outliers.

Figure 25. Progressive fill factor across loading attempts. Red “+” signs represent outliers.
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During experimentation, the value of accurately placing the bucket of the machine
against the ground, prior to the charging against the rock pile, was recognized. A bucket
tilted too far down would cause an early trigger of a collision detection, while a bucket
tilted just slightly upwards has a relevant impact on how far the machine can penetrate
into the rock pile. An even more relevant factor that affects the performance of the loading
maneuver is the status of the rock pile. Newly blasted ore is far easier to load than draw
points that have had more time to settle and compress due to the weight of the rock. Draw
points with large amounts of ore are also easier to load than those that have little material
left. Despite these relevant factors, the proposed method was able to extract full buckets
each time, at the expense of the operator having to perform more than the usual number of
reattempts required under manual operation.

It is important to note that in a real mining operation, the efficiency of an LHD is
measured in the amount of ore that it is able to haul from the extraction point to the
dumping point (usually in tons/hour). Therefore, the percentage of bucket filling is not
the only relevant factor when evaluating the system, but also the amount of time it uses
to load the bucket. This is especially important when deciding if the system should make
another attempt at the excavation procedure to achieve a fuller bucket. This criterion varies
among different operations, as the dumping and haulage time is different.

4.2. Offline Results Using Field Data: 2.5D Modeling of the Extraction Point

Personnel cannot be inside a stope as it is forbidden for security reasons (i.e., rock can
fall from the ceiling of the stope), so it was not possible to obtain accurate measurements
of the ore pile characteristics. However, an accurate modeling of the ore pile is not really
necessary, as it only needs to be detected, as well as having its width and inclination
roughly estimated in order for the excavation algorithm to work.

To obtain the datasets required to characterize our 2.5D modeling algorithm, the LHD
was driven from a fixed distance of about 50 m from the loading point to the entrance of
the stope, while all sensor and machine data was recorded. These datasets were captured
at different times so the drawing point was not located in the same place, nor did the ore
pile have the same shape. First, in each case the point cloud was computed and then the
pile’s width and inclination estimated. Figure 26 shows an example of the point cloud
obtained while the LHD is approaching an extraction point, after registering the position
of the points using the LIDAR-based odometry and the inclinometer data (see details in
Section 3.2). The color of the points represents the distance to the LHD (in the x-axis) at the
time of registration. In the case of the rock pile at the end of the tunnel, red indicates that
the machine was further away when that reading was taken.

Figure 26. Example of the scanning obtained while the LHD is approaching an extraction point.
(a) Top view of the pile reconstruction. (b) Isometric view of the pile reconstruction.
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The results of several modeling attempts where the pile’s width and inclination were
estimated are summarized in Table 6. They consider ground truth width, predicted width,
ground truth inclination, and predicted inclination. Both ground truth width and ground
truth inclination were determined manually from the integrated point clouds. The average
absolute error in the predicted width is 0.58 m, while the average absolute error in the
inclination is 1.7 degrees. The precision achieved by the characterization procedure is
sufficient for the task of autonomous loading.

Table 6. Results of modeling extraction points.

Modeling
Attempt

Ground Truth
Width (m)

Predicted
Width (m)

Ground Truth
Inclination (◦)

Predicted
Inclination (◦)

1 3.25 2.89 −53.0 −52.6

2 3.10 5.27 −50.1 −48.7

3 3.10 3.16 −52.4 −50.5

4 3.44 3.29 −50.6 −50.5

5 3.20 3.72 −50.0 −53.4

6 3.03 3.25 −49.5 −46.5

5. Conclusions

A complete autonomous loading system for LHD machines for underground mining
was presented. The loading system considers identification of the rock pile, positioning
of the machine in front of it, charging against the rock pile, excavating, moving away
from the draw point, and estimating the bucket weight or fill factor. Despite that the
proposed system was fully implemented (including the necessity for a human operator to
be involved in the process in order to complete the task when the system fails), it could not
be tested as a whole. The proposed system which implements the whole loading process,
the excavation algorithm, and the tests in a real production environment are the most
important contributions of this work.

The experimentation phase was divided between onsite execution and validation
of the excavation algorithm, and offline data processing for the rock pile identification
method. In the onsite experiments, identification and positioning were bypassed in fa-
vor of teleoperation by a human operator. It was also the operator’s choice whether or
not to perform multiple loading attempts in order to fill the bucket. A total number of
30 excavation experiments were carried out, most of them requiring multiple attempts to
achieve a full bucket. An average of 3.6 attempts per experiment was needed in order to
obtain a bucket fill factor of 90%. By comparison, manual operation usually needs two
or three attempts to achieve this bucket fill factor. This performance may seem inferior
to previous published work: however, there are other factors involved that prevent di-
rect comparison of the results. Equipment, type of ore, and mining method should be
considered. Thus, comparison to the human operators of the specific mining site should
be preferred. It is important to mention that the main driver for automating the loading
process is to increase the safety of workers rather than obtain higher efficiency. In this
regard, the proposed excavation algorithm fulfills our expectations.

Since these experiments are time-consuming in an industry where time is an expensive
resource, only enough experiments needed to validate the excavation algorithm were able
to be executed. Part of our future work will be to carry out new experiments in an
underground mine in order to validate the complete autonomous loading system, and
to measure its performance more accurately. Despite this, the problem remains relevant
and mining companies are looking forward to integrating autonomous loading to LHDs
in their operations, as it would enable them to close the loop for a fully autonomous
production cycle.
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A video showing the operator’s graphic interface while the system is autonomously
performing an excavation procedure can be found in https://youtu.be/Oa11kTBJf2Y
(accessed on 7 September 2021).

The system is now being installed and tested in a room and pillar mine in Germany,
where it will be tested as a whole system.
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Abstract: Songbirds are one of the study targets for both bioacoustic and ecoacoustic research. In
this paper, we discuss the applicability of robot audition techniques to understand the dynamics of
forest bird vocalizations in a soundscape measured in azimuth and elevation angles with a single
16-channel microphone array, using HARK and HARKBird. First, we evaluated the accuracy in
estimating the azimuth and elevation angles of bird vocalizations replayed from a loudspeaker on a
tree, 6.55 m above the height of the array, from different horizontal distances in a forest. The results
showed that the localization error of azimuth and elevation angle was equal to or less than 5 degrees
and 15 degrees, respectively, in most of cases when the horizontal distance from the array was equal
to or less than 35 m. We then conducted a field observation of vocalizations to monitor birds in a
forest. The results showed that the system can successfully detect how birds use the soundscape
horizontally and vertically. This can contribute to bioacoustic and ecoacoustic research, including
behavioral observations and study of biodiversity.

Keywords: bird song; soundscape; ecoacoustics; sound source localization; robot audition; HARK

1. Introduction

Songbirds are one of the study targets for the purpose of ecoacoustic research [1,2]:
an interdisciplinary science that investigates natural and anthropogenic sounds and their
relationship to the environment across multiple scales of time and space [3], as well as
bioacoustic research. This is because their vocalizations (1) can tell us a suite of useful
information about the environment for monitoring, (2) have rich and complex variety
of structures [4], which are used as benchmark problems for classification tasks (e.g.,
BirdCLEF [5]), and (3) enable bird individuals to interact in complex ways, behaving as
complex systems [6].

There are several approaches for using microphone arrays to localize bird vocal-
izations. Rhinehart et al. recently surveyed applications of acoustic localization using
autonomous recording units in terrestrial environments [7], and pointed out that ecologists
will make better use of acoustic localization; it can collect large-scale animal position data
with minimizing the influence on the environment if recording hardware and automated lo-
calization and classification software are more available, and their algorithms are improved
for outdoor measurement.
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Some of these studies focused on both azimuth and elevation estimation [8–10]. Hed-
ley et al. developed a 4-channel microphone array unit by combining two stereo micro-
phones and evaluated the accuracy to estimate azimuth and elevation angles of replayed
songs of a few species [9]. The results showed that most of sounds were estimated within
12 degrees of the true direction of arrivals (DOA) in the azimuth angle and 9 degrees in
the elevation angle within a range of at least 30 m. It was also discussed that the DOA
estimation may improve the ability to assess abundance in biodiversity surveys. However,
the experiment was conducted in an open space, and the elevation angle was limited to
−10 to 15 degrees from horizontal. As a different approach, Gayk et al. constructed a micro-
phone array system to estimate 3D position of flying songbirds with a wireless microphone
array. The system was consisted of four 7-m poles arranged in a 25 m square, and each
pole had two microphone channels that are placed on top and bottom of the pole. They
adopted a triangulation method based on time-of-arrival differences of a sound recorded at
these microphones to cross-correlate and estimate sound position. They showed that both
broadcasted bird calls and calls of natural migratory birds were successfully triangulated
with the accuracy and estimated accuracy of less than 3 m. In addition, there is increasing
interest and development for sound event localization and detection (SELD) of various
environmental sounds using microphone arrays and ambisonic microphones [11]. We
expect that practical experimental analyses of natural sounds such as bird vocalizations in
forests can further contribute to better use of such microphone array-based techniques in
natural fields.

We have been proposing that robot audition techniques [12], especially an open source
software for robot audition HARK (Honda Research Institute Japan Audition for Robots
with Kyoto University), can contribute to bioacoustics and ecoacoustics. It not only provides
the DOA estimation of sounds, but also allows us to separate them and perform further
signal processing on them, even in real time. We developed HARKBird, a collection of
Python scripts for localizing bird songs in fields using HARK [13]. Previously, we confirmed
the effects of playback of conspecific song on song or call responses by measuring the
changes in their localized direction [14] and changes in their 2D position using a set of
microphone arrays [15].

It is recognized that data characterizing the vertical structure of vegetation are becom-
ing increasingly useful for biodiversity applications as remote sensing techniques such as
radar and lidar become more readily available [16]. We believe that direct observation of
the vertical and horizontal soundscape of vocalizations among birds would also contribute
to this field, as well as to bioacoustic analysis of bird behavior. There is initial work on 3D
localization of bird songs using multiple microphone array units [10] and observation of
nocturnal birds with a single microphone array unit based on the azimuth-elevation estima-
tion [17]. However, we still need to investigate how HARK or HARKBird can estimate both
azimuth and elevation angles of bird songs to capture the dynamics and structures of the
soundscape of bird songs. In particular, a systematic evaluation of the localization accuracy
of elevation angles and an estimation of the structure of soundscape in a realistic situation
where multiple bird species are vocalizing are important for the practical use of the system.

This paper aims to demonstrate a systematic evaluation of the localization accuracy
of azimuth-elevation angles of replayed bird vocalizations in a practical forest environ-
ment, and show an example field observation of the structure and dynamics of birdsong
soundscape. For this purpose, we use a self-developed 16-channel microphone array, called
DACHO, using HARK and HARKBird. Suzuki et al. [18] used the same microphone array
to conduct spatiotemporal analysis of acoustic interactions between great reed warblers
(Acrocephalus arundinaceus). They conducted a 2D localization of their vocalizations using
multiple arrays and estimated the location of two individuals’ song posts with mean error
distance of 5.5 ± 4.5 m from the location of observed song posts. They then evaluated the
temporal localization accuracy of the songs by comparing the duration of localized songs
around the song posts with those annotated by human observers, with an accuracy score of
average 0.89 for one bird that stayed at one song post. However, the localization accuracy
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of songs in the elevation angle was not evaluated, and thus a systematic analysis of the ac-
curacy of elevation angle estimation in field conditions would supplement and strengthen
our knowledge about the application of robot audition techniques to ecoacoustic research.

We used a single microphone array unit because it is a minimal system and its cost is
low for field deployment. We think that sound source localization is useful to passively
monitor auditory behaviors of rare or nocturnal birds. Localized results can be used to
estimate the abundance and the distribution of those birds. The high portability and low
deployment cost are both essential in such a case.

First, we evaluated the accuracy in estimating the azimuth and elevation angles of bird
vocalizations replayed from a loudspeaker on a tree, 6.55 m above the height of the array,
from different horizontal distances in a forest. The results showed that the localization
error of azimuth and elevation angle was equal to or less than 5 degrees and 15 degrees,
respectively, in most of cases when the horizontal distance from the array was equal to or
less than 35 m. We then conducted field observation of vocalizations to monitor birds in
a forest. The results showed that the system can successfully capture how birds use the
soundscape horizontally and vertically. This can contribute to bioacoustic and ecoacoustic
research, including behavioral observations and study of biodiversity.

The organization of the paper is as follows: We firstly introduce two cases of ex-
perimental trials: a speaker test and field observation of soundscape dyamics of bird
vocalizations, and introduce the sound source localization method based on HARK and
HARKBird in Section 2. Then, we show experimental results of the two trials in Section 3,
and finally summarize and discusses the significance of the findings and their implications
for further contribution to ecoacoustics and related fields in Section 4.

2. Methods

2.1. Speaker Test

We conducted a speaker test to investigate whether and how bird vocalizations can be
localized in a forest environment using azimuth and elevation angles. The experiment was
conducted at Nagano park, Kawachinagano, Osaka, Japan on 3 December 2018 (Figure 1).
Figure 2 shows a schematic diagram of two experimental setups. In Experiment 1, we
placed a loudspeaker on a tripod (height = 1.3 m). A 16-ch microphone array DACHO
(WILD-BIRD-SONG-RECORDER; SYSTEM IN FRONTIER Inc., Tokyo, Japan) was also
placed on a tripod. The array was specifically developed for bird observations in the field.
It consists of 16 microphones, arranged within an egg-shaped frame, which is 17 cm in
height and 13 cm in width. It records using a 16-channel, 16 bit, 16 kHz format. Recorded
raw data are stored in SD cards and can be exported in wave format for further analysis.
One can schedule a recording by preparing the time settings in a micro-SD card. See [18]
for more detail and an example of using this microphone array in open fields. We changed
the distance between the loudspeaker and the microphone array from 0 to 65 m, with an
interval of 5 m, by moving the microphone array along a straight path. This is because
the maximum length of the ridge that could be considered straight was 65 m around the
loudspeaker. Within this distance, a spacing of 5 m was chosen as it was sufficient to
measure the effect of the difference in loudspeaker height and the horizontal difference
between the array and the loudspeaker.

We replayed a sound file containing four vocalizations of Scaly Thrush (Zoothera
dauma) at each location as shown in Figure 3. The distance between the loudspeaker and
the microphone was 30 m (Experiment 1). In this figure, four vocalizations of the replayed
songs were localized successfully, and at the same time, other sound sources were localized
around 1 and 8 s. This species is known to sing this type of songs mainly at night. In this
experiment, we adopted this vocalization as the playback sound, to simulate observations
of such nocturnal vocalizations, which are not easily observed by other methods such as
video recordings.

In Experiment 2, we attached the loudspeaker on a tree, 6.55 m above the height of
the microphone array. This is because it was the maximum height at which we could
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safely place the loudspeaker and at which we could study the effect of the height of the
loudspeaker on the localization accuracy of the replayed sound. We performed the same
speaker experiment as in Experiment 1.

Figure 1. A snapshot of the experiment. We used DACHO, a 16-ch microphone array, for recording
replayed songs from a loudspeaker.

Figure 2. A schematic image of the experimental condition.

 

Figure 3. An example of the recording of a replayed sound (top) and the localization results (bottom).
We used the latter part of a replayed sound that include four vocalizations of Scaly Thrush, which is
shown in the top figure. The bottom figure shows a heat map of the MUSIC spectrum, whose value
represents the strength of sound existence in the corresponding direction. Each black line represents
the duration and direction of a localized sound.

2.2. Field Observation of Soundscape Dynamics of Bird Vocalizations

We also conducted a field observation with the same microphone array set up in
the Inabu field, the experimental forest of the Field Science Center, Graduate School of
Bioagricultural Sciences, Nagoya University, Japan. The forest is mainly a conifer plantation
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with small patches of broad leaf trees. We placed a DACHO on a path around a patch of
broad leaf trees as shown in Figure 4.

Figure 4. A panorama (A) and 360 degree (B) photos around the microphone array.

Recording was conducted from 4 April to 7 May 2018. Common bird species actively
vocalized during the breeding season here. In particular, Blue-and-white Flycatchers
(Cyanoptila cyanomelana) tend to sing, advertising their territories, on top of tall trees in their
territories. We focused on a 1000-s recording from 8:00 AM on 3 May (Figure 5), where
such a typical pattern of bird vocalizations was observed.

Figure 5. A spectrogram of the whole recording and 5 time slots on which we focus in the analysis.

2.3. Bird Song Localization Using HARKBird

We used HARKBird 2.0 [13], a collection of Python scripts for bird song localization,
to estimate the DOA of sound sources in recordings, using sound source localization and
separation functions in HARK.

The employed sound source localization algorithm is based on the multiple signal
classification (MUSIC) [19] using multiple spectrograms obtained by short-time Fourier
transformation (STFT). The MUSIC method is a widely used high-resolution algorithm,
and is based on the eigenvalue decomposition of the correlation matrix of multiple signals
from a microphone array. We adopted the standard eigenvalue decomposition (SEVD)
MUSIC method implemented as one of the sound source localization methods in HARK.
All localized sounds are separated the sounds as wave files (16 bit, 16 kHz) using geometric
high-order decorrelation-based source separation (GHDSS) method [20], which is also
implemented in HARK. For more details on HARKBird (http://www.alife.cs.i.nagoya-u.
ac.jp/~reiji/HARKBird/), accessed on 25 December 2022, see [13,21] and on HARK, see
Nakadai et al. [12]. In order to optimize localization performance, we can adjust some
parameters of HARKBird, such as the source tracking and the lower bound frequency for
MUSIC, to reduce noise, etc.
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We used a transfer function of the microphone array created from a numerical simu-
lation based on the geometry of the channels of the microphone array using HARKTool5,
assuming that there no effects of the body of the array unit on sound transmission. The res-
olution of DOA for azimuth angle was 5 degrees. The resolutions for elevation angles were
5 and 15 degrees for a speaker test and a bird observation, respectively.

For the DOA estimation of replayed vocalizations in the speaker test, we used the
limited frequency range (1800–5000 Hz) for sound source localization, which included
the replayed songs. We found that the amplitude of the replayed vocalizations became
weaker the farther as the microphone array was from the speaker. Therefore, we gradually
decreased the threshold parameter (THRESH), which determines the minimum value of
the MUSIC spectrum to detect a sound source, from 29 to 20 with increasing distance. we
determined these threshold values empirically according to the acoustic condition around
the microphone array. However, this resulted in HARKBird localize vocalizations of other
bird species more frequently. Therefore, we manually selected the localized sounds that
were detected as replayed vocalizations, and excluded other localized sounds from the
analyses. We also lowered the threshold in degree to distinguish multiple sound sources
in different directions when there were other sound sources in closer directions to the
replayed songs. This is to avoid recognizing them as a part of the replayed vocalizations.
We used default values for the other parameters of HARKBird.

For the field observation, we focused on five 100-s time slots (A–E) during which a
Blue-and-white Flycatcher (Figure 5) sang on top of tall trees, along with other species such
as Varied Tit (Sittiparus varius) and Coal Tit (Periparus ater). We focused on the behavioral
changes in the individual of Blue-and-white Flycatcher, and chose the durations that well
illustrated his different behavioral patterns.

We adjusted parameters of HARKBird to localize their songs and exclude other sound
sources. We plotted the distribution of songs in the polar-coordinate system representing
the azimuth-elevation space for each slot. We then calculated the elevation and azimuth
variations of the localized sounds to see if such statistical metrics could reflect the sound-
scape structures of bird songs.

3. Results

3.1. Speaker Test

Figure 6 shows the estimated azimuth (left) and elevation (right) of the replayed
vocalizations in Experiment 1 (top) and 2 (bottom). A red line represents the expected value.
Each box plot represents the distribution of localized values when the microphone array
was placed x m from the loudspeaker. In Experiment 1, the expected azimuth and elevation
angles were 0 degrees. The errors of observed azimuth were equal to or less than 5 degrees
when the distance was equal to or less than 50 m. The errors of observed elevation were
equal to or less than 10 degrees except in the case of 15 m distance. The slightly larger error
when the distance = 15 m was expected to be due to the vocalization of another species
(Brown-eared Bulbul (Hypsipetes amaurotis)). The large error when the distance = 0 m is
expected to be due to that the DOA substantially became different among localized sounds
because they can change drastically even with small noise if the microphone is right under
the loudspeaker. Thus, both the elevation and azimuth angles of replayed vocalizations
were successfully estimated in this experiment.

In Experiment 2, the expected azimuth was 0 degrees, while the expected elevation
decreased inversely proportional to the distance of 90 degrees, as shown in Figure 6 (bottom
right). The errors of the observed azimuth were equal to or less than 5 degrees until the
horizontal distance was equal to or less than 35 m, while it became larger than Experiment
1. This result was expected because the net distance between the microphone and the
loudspeaker was larger. This was also expected because other species were vocalizing in
the same direction as the speaker, causing the localization of replayed sounds to deviate
from the expected value, which was sometimes observed in Experiment 2.
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The observed elevation also reflected well the expected value; it decreased inversely
proportional to the distance and errors were less than 15 degrees, except in some cases (e.g.,
15 or 40 m away). We expect that the errors can be reduced if we adopt a transfer function
with a higher resolution of elevation angles.

Overall, we were able to correctly estimate both the elevation and azimuth of bird
vocalizations even when the songs were far away from the microphone array, if there were
no other vocalizations or sounds in the similar direction as the target sounds.
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Figure 6. An estimated azimuth (left) and elevation (right) of replayed songs in Experiment 1 (top)
and 2 (bottom).

3.2. Field Observation of Soundscapes of Bird Vocalizations

Figure 7 shows the song distribution on polar coordinate of azimuth (angle) and
elevation (radius) in each time slot (A–E) in Figure 5. Each plot represents the direction
of localized bird song (with annotations for species names). We mainly observed songs of
Blue-and-white Flycatcher (Cyanoptila cyanomelana), Varied Tit (Sittiparus varius) and Coal
Tit (Periparus ater). When we focus on a Blue-and-white Flycatcher, the individual tended to
sing at much higher positions than other species, repeatedly moving to other high positions
and singing a few times over B to C and returning to the starting position (A) in D. This
reflects the fact that this species tends to sing on high trees along streams in his territory.

In contrast, the songs of the other two species tended to be localized at lower elevation
angles, suggesting that they tend to sing at lower positions around the microphone. We also
see that the localized positions formed multiple clusters, indicating they tended to move
slightly. Thus, we could quantitatively observe the spatial structure of the soundscape
in which one species tended to occupy the high elevation range, while the other species
occupied the lower range.

Table 1 shows some indices on the localized sounds in each time slot. We observe
see several changes in the soundscape structure of bird songs. The number of localized
songs gradually increased over the time slots, indicating that actively singing individuals
(i.e., Varied Tit) entered this acoustic scene. Elevation angle variation became smallest at
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C, indicating that the Blue-and-white Flycatcher was probably at a relatively distant tree,
considering this species tends to sing on top of a tree. The high values of azimuth variation
in B and C reflect that the Blue-and-white Flycatcher moved during the period and other
species sang in the opposite direction. Thus, we can grasp the dynamics of the soundscape
structures around the microphone array by looking at the changes in these types of indices.

Figure 7. A song distribution on the polar coordinate of azimuth (angle) and elevation (radius) in
each time slot (A–E) in Figure 5.

Table 1. The variations in azimuth and elevation of localized sounds in each time slot.

Time Slot (s) # of Localized Songs Azimuth Variation (rad2) Elevation Variation (rad2)

A (0–100) 37 0.87 0.07
B (550–650) 31 1.15 0.10
C (650–750) 46 0.81 0.04
D (750–850) 57 0.76 0.06
E (900–1000) 45 0.48 0.09

4. Discussion and Conclusions

We discussed the applicability of robot audition techniques to understand the sound-
scape dynamics of bird vocalizations in forests. We focused on the elevation information
of localized bird songs in addition to azimuth information. A speaker test for DOA esti-
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mation of replayed vocalizations showed that the observed DOA of a distant target sound
matched well with expected values in both azimuth and elevation angle when no other
bird vocalizations were present near the target. A field observation of several individuals
reflected well the ecologically plausible structures of the soundscape of bird species in the
experimental forest, showing vertical species structures of bird vocalizations. Several statis-
tical indices of localized songs can also summarize the detailed changes in the structures of
the soundscape.

The localization of bird vocalization is based on various components including both
hardware (i.e., microphone arrays) and software (i.e., HARK). Finer resolution of the
estimated DOA would be an important factor for this purpose because many sound sources
other than those of the target species or individuals always coexist in fields. Improving
the resolution of the MUSIC spectrum by increasing the number of steering vectors (i.e.,
candidate directions for DOA estimation) would be useful, but requires a great deal of
computational cost, especially for azimuth-elevation estimation. The interpolation of the
MUSIC spectrum used for finer 2D localization of bird vocalizations with two microphone
arrays [22] would be efficient in this case. The balanced settings of DOA resolution along
with interpolation would be beneficial for long-term analyses for biodiversity surveys.
Further consideration of the effects of microphone channel geometry on the localization
accuracy of bird vocalizations is part of our future work.

A systematic comparison of other sound source localization and separation techniques,
including adaptive filtering, is important for more practical applications of robot audition
techniques to bird behavioral observations. In this study, we employed the simplest and
most standard methods (SEVD-MUSIC and GHDSS) employed in HARK, expecting that it
will provide a baseline result because the method has been shown to be applicable to field
observations of birds in previous studies as introduced in Introduction. We also expected
that using such a simple method would be appropriate to examine the basic effects of
acoustic noise in the natural environment, and advanced methods can improve the results
(e.g., the MUSIC based on generalized singular value decomposition (GSVD-MUSIC) for
better speech recognition [23], and the MUSIC method based on incremental generalized
eigenvalue decomposition (iGEVD-MUSIC) for drone audition [24]).

Also, this research has an experimental rather than a theoretical aspect. Still, we believe
it is important for considering the trends and challenges in robotic applications to show
an example of the application of robotics to field observations of natural sounds. At the
same time, we believe that a report on sound source localization in both elevation and
azimuth angles is particularly important for birds that can fly. The report will contribute to
the practical application of related techniques to ecoacoustics, as microphone arrays are
expected to be used more frequently in this field.

The spatial localization of bird songs using multiple microphone arrays (i.e., an array of
arrays) is a promising approach to determine the precise location of vocalizations. A system
with three microphone array units estimated the location of two color banded Great-Reed
Warbler’s song posts in a reed marsh with a mean error distance of 5.5 m from the location
of the observed song posts [18]. Also, various types of animal vocalization systems based on
many microphone units deployed over fields have been proposed recently [25]. Gayk et al.
successfully 3D triangulated, using a time difference of arrival (TDOA) approach, calls of
warblers using a large microphone array unit system in which channels were far apart from
each other [26]. However, it could be costly to deploy and calibrate multiple units in field
observations. Our approach based on a single but multi-channel array unit, showing good
accuracy of azimuth-elevation angles of bird vocalizations, suggest another possibility to
better capture bird vocalizations while keeping deployment costs low.

Our results show how our observation method could be used to noninvasively monitor
rare birds in the field. For example, Matsubayashi et al. evaluated the practical effectiveness
of localization technology for auditory monitoring of endangered Eurasian bittern (Botaurus
stellaris) which inhabits wetlands in remote areas with thick vegetation, using a 8-ch
microphone array unit [27]. They successfully localized booming calls of at least two males
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in a reverberant wetland, surrounded by thick vegetation and riparian trees. In addition to
the non-invasiveness to the ecosystem where the target birds inhabit, our recording system
has lower deployment cost for field observers. We believe that our monitoring system,
given advantages and limitations presented in this study, offers a practical tool for field
ecologists, e.g., to estimate abundance and distribution of rare species.

However, estimating the distance of sound sources from microphones and two-
dimensional (spatial) localization of them are important or essential for more detailed
ecological surveys. We think that extracting any complementary information about their
distance from separated sounds (e.g., relative amplitude [28]) would be a novel direction to
better capture the structure of the soundscape with a single microphone array unit.

From another perspective, there is increasing interest and development of sound event
localization and detection for various environmental sounds using microphone arrays.
For example, the workshop on detection and classification of acoustic scenes and events
(DCASE) provided a dataset (STARSS22) for sound source localization and classification of
domestic sounds in indoor environments [29]. A competition of sound source localization
and classification has been conducted, and participants discuss issues arising from the
task (e.g., [11]). Experimental reports on the sound source localization of distant and
elevated calls in a forest environment where many species of birds coexist, which was
investigated in this study, could contribute to further progress in these fields because it may
provide different insights into sound localization in harsher conditions unique to natural
acoustic environments.

Although camera trap-based animal monitoring combined with object detection algo-
rithms is widely used [30], it is challenging to capture small animals, such as songbirds,
because they are basically far distant from the device, and there exists the problem of back-
lighting. This experiment shows that it is possible to quantitatively extract the dynamics of
the use of niches among species, which could only be described verbally or roughly before,
even when the method is based only on azimuth and elevation angle information.

The increasing interest and popularity of 3D audio in public has made portable 3D
recording equipment more accessible (e.g., Zoom H3-VR; Zoom Inc., GoPro MAX; GoPro
Inc.). It is worth mentioning that these microphone units (or cameras with multiple
microphones) are inexpensive, portable and easily affordable, even with the significant
disadvantage of poor sound source localization performance due to their small size. This
study also suggests the possibility of using this type of portable and easily available
microphone array in ecoacoustics, which can contribute to citizen science of ornithology [31]
in addition to the recent development of bird song extraction apps based on deep learning
techniques (e.g., BirdNet [32]). One of the problems in the application of these approaches
is the low accuracy in detection of vocalizations overlapped with each other or with other
environmental sound sources. The robot audition techniques can resolve this problem
by separating sound sources by making use of spectogram information from multiple
channels, as discussed in this paper.

The future work includes practical comparisons of the efficiency of bird song local-
ization and separation between the microphone arrays adopted in this study and such
commercially available ones in order to further explore the applicability of robot audition
techniques to ecoacoustic research.
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Abstract: This brief proposes a novel stochastic method that exploits the particular kinematics of
mechanisms with redundant actuation and a well-known manipulability measure to track the desired
end-effector task-space motion in an efficient manner. Whilst closed-form optimal solutions to
maximise manipulability along a desired trajectory have been proposed in the literature, the solvers
become unfeasible in the presence of obstacles. A manageable alternative to functional motion
planning is thus proposed that exploits the inherent characteristics of null-space configurations
to construct a generic solution able to improve manipulability along a task-space trajectory in the
presence of obstacles. The proposed Stochastic Constrained Optimization (SCO) solution remains
close to optimal whilst exhibiting computational tractability, being an attractive proposition for
implementation on real robots, as shown with results in challenging simulation scenarios, as well as
with a real 7R Sawyer manipulator, during surface conditioning tasks.

Keywords: manipulator motion planning; manipulability; stochastic planner

1. Introduction

Mapping the path of an end-effector onto a configuration trajectory for the robot to
accomplish a desired collision-free task is a well-known problem in robotics [1]. The consid-
eration of redundancy, where the actuated degrees of freedom of the manipulator exceed
the end-effector variables defining its functionality in the task space, adds an interesting
dimension to the planning problem. It effectively facilitates a scheme where additional
objectives can also be incorporated along the way. Beyond obstacle avoidance, constraints
such as minimal energy, jerk-free paths, anthropomorphism and so forth can thus be
considered. A particularly attractive scenario in motion planning is the avoidance of unde-
sirable singularities in joint space [2], which limits the ability to move in certain task space
directions. Increasing the manipulability of the robotic system at each time step is regarded
as an effective means of moving away from the neigborhood of such configurations [3],
thus reducing the hazardous condition whereby small task space movements may translate
to large joint velocities. Avoiding near-singular regions is also a particularly concerning
situation when the manipulator might be operating in close proximity to human operators.
Moreover, operating away from singularity regions also relaxes the effect of undesirable
dynamics that otherwise impose additional perturbances to the robot controllers, hence
permitting superior end-effector precision whilst executing the desired task.

This brief proposes a stochastic method that exploits the particular kinematics of
closed-chain mechanisms with redundant actuation and a well-known manipulability
measure [4] to track the desired end-effector task-space motion in an efficient manner.
The approach departs from global solutions with high computational costs, or optimal
formulations that can only be solved numerically, without any guarantee of success except
for simple obstacle-free problems. The approach has been tested through simulation on
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a number of redundant multibody topologies, and via experimental deployment on the
Rethink Robotics 7R Sawyer arm.

The rest of the paper is organised as follows: Section 2 provides broad coverage
of techniques in relation with this motion planning for redundant manipulators in the
presence of obstacles. Next, Section 3 describes the kinematics of redundant manipulators
and the exploitation of the null space. The stochastic algorithm to generate collision-free
trajectories is described in Section 4. Section 5 presents a set of experiments carried out
both in simulation and with a real platform. Finally, the main conclusions are described in
Section 6.

2. Related Work

A robotic manipulator is considered to be redundant when it exhibits more degrees
of freedom than those needed to perform the task. Typical examples of these redundant
robots include serial manipulators with seven or eight degrees of freedom, mobile robots
equipped with serial arms, humanoid robots and many others.

Several authors have formulated strategies to exploit the redundant degrees of free-
dom to improve the quality of the task being carried out. In this manner, a main task can be
accomplished by the robot while the other redundant degrees of freedom are used to solve
other sub-tasks [3,5] that may include: avoiding joint limits, eluding kinematic singularities
and preventing the collision with obstacles in the workspace [6].

Kinematic singularities are often avoided by trying to maximize the volume of the
end-effector’s velocity ellipsoid [4]. When the robot is placed at a kinematic singularity,
the volume of this ellipsoid is zero and the robotic manipulator loses one or more degrees
of freedom. Maximizing the volume of this ellipsoid is regarded as an effective means to
avoid singularities and expand on the robot’s motion capabilities at a given configuration.
Moreover, the optimization of the manipulability allows for faster end effector velocities
(linear and angular speed), which in turn benefits the applicability of the chosen control
strategies and, given the reciprocity between manipulabity and force ellipsoids, it also
procures access to more precise forces and contacts. On the other hand, sub-optimal
reduced manipulability often means that the contact of the end effector with the surface
cannot be assured.

A global optimal control of redundancy is formulated in [7] based on Pontryagin’s
maximum principle. The method employs the redundant degrees of freedom to optimize
manipulability or joint smoothness while attaining the same position and orientation
along a trajectory. However, though reliable and fast, the method cannot be applied if the
gradient of the cost function with respect to the obstacles cannot be computed. Another
off-line technique along a given path is presented in [8],where a novel combination with a
smoothing interpolation based on Bezier curves is proven able to avoid sharp edges and
high accelerations. The method also confers the robot with the ability to avoid collisions,
by accounting for the velocity of dynamic obstacles and previewing its next position in
order to plan the optimal correction of the trajectory. This method was further extended to
the case where redundant manipulators operate in a spatial workspace, with the added
capability of avoiding sphere-like obstacles [9]. Finally, [10] deals with an optimization
problem in the case where the robot is redundant along the end effector’s tool axis. The
technique allows the finding of a sequence via points in order to minimize the time between
target points whilst avoiding obstacles.

A number of authors have proposed planning algorithms based on the discretization
of the workspace. This discretization usually implies that kinematic constraints cannot be
exactly satisfied and often lack in the quality of the paths produced. In [6], a deterministic
approach to path planning is presented. The solution is based on the discretization of
the Jacobian null-space and a backtracking strategy to prevent the incursion into kine-
matic singularities.

A technique based on gradient descent is presented in [11]. The method relies on
computing a gradient for a cost function based on smoothness and obstacles. The trajectory
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of the robot inside the workspace is free and the planned position and orientation is based
on a potential-based cost function.

Stochastic optimization is presented in [12]. The planner is based on a stochastic
method that iteratively optimizes non-smooth cost functions, most distinctly when they
cannot be easily represented by closed functions. The algorithm defines a cost function as
the sum of obstacle and torque costs, plus errors in the position and orientation of the end
effector. Being a sum of factors, however, entails that the optimization of the cost function
cannot ensure that the end effector achieves a given position and orientation exactly.

A significant branch of stochastic planners is based on Rapidly-exploring Random
Trees (RRTs) [13]. These efficient algorithms usually work by building two trees rooted
at the beginning and end configurations of the trajectory. A simple greedy heuristic is
presented in [14,15] to grow the trees and explore the high dimensional space while trying
to connect both trees. The planner has been successfully applied to a variety of path
planning problems for the computation of collision-free grasping and manipulation tasks.
The growing phase of the tree considers a random generation of new samples in order to
explore new solutions in the joint space, but does not include any feature that enables the
optimization of the generated trajectories that are, essentially, random. A problem that
arises in some of these RRT-based planning algorithms is that, often, a continuous cyclic
path in task space does not correspond to a closed path in joint space. As a result, the
behavior is not predictable and constitutes a risk if, for instance, a human agent is operating
in the vicinity of the robot. In [16,17], a variation of an RRT-based planning algorithm is
proposed that satisfies the constrains of the path and, additionally, ensures the attainment
of joint trajectories that are cyclic.

The method presented here presents the following characteristics:

• Handles kinematic restrictions on the end effector exactly and does not rely on a
discretization of the task space or configuration space;

• Exploits the null-space at each configuration along the path to maximize the manipu-
lability of the robot while avoiding obstacles;

• Produces smooth trajectories that can be directly commanded to the robot without the
need for a posterior smoothing phase;

• Delivers a fitting experimental performance for challenging motion problems.

3. Kinematics of Redundant Manipulators

A task generally requires a given number of degrees of freedom to be described
and solved. In this sense, a manipulator is considered redundant when it possesses
more degrees of freedom than those required to complete the task. For example, placing
the robot’s end effector at a given position and orientation inside the robot’s workspace
typically require six degrees of freedom. This is a main requirement, for example, during
polishing applications, where the tool must keep close contact with the surface being
treated [18]. As a result, two different spaces can be defined:

• The task space IRm: In our case we have six Degrees of Freedom (DoF) in our polishing
application;

• The join space IRn, as the number of DoF of the robotic manipulator. In this case we
have 7DoF.

The degrees of redundancy of the manipulator is n − m, which means that infinite
solutions q allow reaching the same position/orientation in space. Thus, in a polishing ap-
plication, 6DoF are needed to place the end effector at a particular position and orientation,
while controlling the pressure on the surface. The usage of a robot with additional DoF (in
our case is n − m = 1) may be justified by the need to avoid obstacles in the workspace
when performing the task or attaining specific poses.

The inverse kinematic problem in a redundant manipulator possesses, in general,
infinite solutions. This means that, if we require the end-effector to be placed at a given
position and orientation inside its workspace, a self-motion of the kinematic chain can
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be performed. This implies that the arm joints can be reconfigured while the end effector
maintains the same position and orientation in space. This fact gives these kinds of
manipulators the ability to find different poses that attain dissimilar characteristics, while
still complying with the task requirements. Well-known examples include, for instance,
the Rethink Robotics Sawyer robot or the Willow Garage PR2 arms, with 7DoF available
through a set of seven rotational joints. Additionally, combinations of robotic arms with
mobile platforms can be considered within this category of redundant manipulators.

The relationship between the position and orientation of the end effector can be
expressed as:

x = f(q), (1)

where x is the (m × 1) vector of task variables defining the position and orientation of the
end effector, f represents a known nonlinear transformation vector and q is the (n × 1) vec-
tor of joint variables. The robot must then reach a set of goals defined as G = {x1, x2, . . . xN}
sampled from the desired surface to be tracked defined in the task space.

The above Equation (1) can be differentiated with respect to time as:

ẋ = J(q)q̇, (2)

where J represents the (m× n) manipulator Jacobian matrix (also defined as ∂f/∂q). The up-
per dot denotes time derivative. For simplicity J(q) is written as J. As a result, Equation (2)
defines the direct kinematics of the manipulator in terms of the end effector’s velocity.

Our particular path planning problem can be posed as follows. Considering a given
trajectory x(t) as known in the task space, find a joint space trajectory q(t) that satisfies
f(q(t)) = x(t) for any t. In our case, we try to find a set of joint vectors Q = {q1, q2, . . . qN}
such that f(qi) = xi for any of the points of the trajectory G. In this sense, finding an optimal
trajectory with respect to the manipulability index can be stated as in Algorithm 1, which
essentially proposes the optimization of the manipulability along the whole trajectory,
considering that the manipulability can be expressed in a differential form with respect to
the joint coordinates. Solutions to this problem have been proposed ([7,19]) at significant
computational expense, becoming intractable in the presence of complex obstacle settings.

Algorithm 1 Global Manipulability Optimization.

1: Optimize: ∑N
i=1 ωi = ∑N

i=1 det(Ji JT
i )

2: s.o. qi+1 = qi + q̇i ∗ Δt.
3: s.o. q̇i = J†

i ẋ + ki ∗ (I − J†
i Ji)q̇0

4: RETURN Q = {q1, q2, . . . , qN} the joint path

A well-known solution to invert the kinematic Equation (2) is:

q̇ = J†ẋ, (3)

where J† is the Moore–Penrose pseudo-inverse [20], defined as J† = JT(J JT)−1. This
pseudo-inverse has nice properties, since it minimizes the norm |q̇Tq̇|. Thus, given an
initial joint position qr, the length of the computed joint trajectory is, by nature, minimal.
This equation allows us to compute the joint positions required to reach a set of positions
and orientations G = {x1, x2, . . . , xN} of the end effector. This minimum square solution
is represented in Algorithm 2. The algorithm, for each time step, generates a joint speed
that brings the solution x closer to the desired goal xi. The final solution of the algorithm
depends on the initial seed used qr, thus, infinite solutions can be obtained by initializing
qr randomly. However, this solution may produce a path that includes kinematic singu-
larities [3] or collides with obstacles in the environment. This simple planner makes use
of Algorithm 3, computing at each time step the inverse kinematics solution from a given
random joint position qr along the initial trajectory.
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Algorithm 2 Simple Planner (G, qr)
INPUT: G = {x1, x2, . . . xN}, set of positions and orientations
qr, an initial random seed for joint positions
OUTPUT: {q1, q2, . . . , qN}, the joints configuration path

1: function SIMPLE_PLANNER(G)
2: q = qr
3: for i = 1, 2, . . . , N do
4: xi = G{i}
5: qi = Inverse_Kinematics(xi, q)
6: q = qi
7: end for

return Q = {q1, q2, . . . , qN} (the joint path)
8: end function

Algorithm 3 Inverse Kinematics(xi, qr)
INPUT:
xi, the position and orientation of the end effector
qr, the initial seed of the algorithm
OUTPUT:
q, joint positions

1: function INVERSE_KINEMATICS(xi, qr)
2: qi = qr

3: while x �= xi do
4: ẋ = Compute_VW(xi, x)
5: Ji = Jacobian(qi)
6: q̇i = J†

i ẋ
7: q = q + q̇i ∗ Δt
8: x = f (q)
9: end while

10: return q
11: end function
12: function COMPUTE_VW(xi, x)
13: //Computes linear and angular speed
14: //to reduce the error in x − xi
15: ẋ = (x − xi)/Δt return ẋ
16: end function

A more general solution to (3) can be written as:

q̇ = J†ẋ + (I − J† J)q̇0, (4)

where I is an (n × n) identity matrix and q̇0 is an arbitrary (n × 1) joint velocity vector.
This solution includes the projector operator (I − J† J), which allows us to project a vector
q̇0 on the null space of the initial solution provided by J†ẋ. Gradient projection methods
exploit this property and compute a joint speed vector q̇ as:

q̇ = J†ẋ + (I − J† J)
∂p0

∂q
(5)

p0 being an arbitrary cost function that needs to be optimized and ∂p0
∂q its gradient.

Equation (5) indicates that the redundant degrees of freedom can be used to attain ad-
ditional constraints, such as obtaining greater manipulability along the trajectory or avoid-
ing collisions with the environment. Usually, manipulability is measured with the index
introduced by Yoshikawa [4]:

ω =
√

det(J JT) (6)
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Additionally, using the manipulability has a strong impact when trying to avoid
kinematic singularities. In particular, that situation happens whenever the matrix J, at
some joint position q, has a rank less than m. This situation can be easily detected, since
the manipulability index ω becomes null and the manipulator loses, at least, one degree of
freedom, which jeopardizes its ability to complete the task.

4. Trajectory Tracking Optimisation

The manipulator task studied in this work corresponds to a tracking problem, whereby
an end-effector task space trajectory needs to be mapped to a corresponding joint space tra-
jectory. Given xi, representing the position and orientation of the end effector with respect
to a base reference system, the proposed methodology can be regarded as a trajectory opti-
misation problem for the set of N waypoint goals G = {x1, x2, . . . xN} defining the contact
surface that the robot must follow with precision. Maximising the manipulability index
along the trajectory whilst avoiding obstacles allows us to move away from singularities
whilst facilitating the desired motion along the desired surface for the contact/visiting task
being pursued.

The method starts by generating a set of K hypotheses on the path:

Qk = {q1, q2 . . . qN}. (7)

Each hypothesis K of the path ensures that the robot’s end effector reaches the goal
xi for i = 1, . . . N, and utilises an inverse kinematic method based on the Moore–Penrose
pseudo inverse as described in Algorithm 2. The initial joint positions qr of the manipulator
are initialized randomly and, as a result, the resulting K paths Qk = {q1, q2 . . . qN} are
completely random with the property of |q̇Tq̇| being minimal for each different trajectory
at each time step.

This set of K joint paths form a set of hypotheses that start from different and arbitrary
initial q1 joint configurations. Each of the generated trajectories is optimized at each time
step i = 1, . . . N in order to increase its manipulability index indicated in Equation (6) and,
at the same time, avoid obstacles. For each of the K hypotheses over the trajectory, our
method performs a sampling on the null space at each step i of the trajectory. The sampling
is achieved by generating H samples around each joint configuration qi. To generate each
new sample, we compute a vector belonging to the null space as:

q̇h = (I − J† J)q̇0, (8)

where q̇0 represents an arbitrary vector that generates a sample of the null space. Next, H
random movements are generated as:

qh = qi + α · q̇hΔt. (9)

Any of these new samples qh around each joint configuration qi does not alter the
position and orientation of the end effector since q̇h is only a self-motion and thus Jq̇h = 0.
The variable α is chosen from a normal distribution and Δt is an integration time. The time
integration step Δt and α are parameters of the algorithm.

At each time step, each of the new qh (for h = 1, . . . H) is a self motion around the joint
positions qi that can potentially improve its manipulability index while avoiding obstacles.
For each qh, we then compute a weight that accounts for the manipulability:

ω =
√

J JT (10)

c = 1/(ω + δ) (11)

Wω = e
−c

ωmax , (12)

where ωmax is the maximum observed manipulability of the mechanism. The parameter δ
avoids the division by zero if the mechanism incurs in a singularity.
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In order to consider the presence of obstacles, for each sample qh, we compute the
closest distance d of all the points of the robot arm to obstacles and with itself. The
distance d is negative whenever any point of the manipulator lies inside an obstacle. We
then compute:

x = max(ε − d, 0) (13)

Wo = exp(−x/λ). (14)

ε is the minimum required distance to the obstacles and λ is a parameter that smooths the
computed weights. During the experiments we have used ε = 0.2 m and λ = 0.5 m.

A weight is computed that accounts for the manipulability index and the distance to
obstacles as:

Wqh = Wω · Wo. (15)

Finally, a sample qh from the null-space is selected that maximizes the weight Wqh .
The final path of the robot is obtained by selecting the path with the higher weight Wqh .
The complete algorithm is described in Algorithm 4.

Algorithm 4 Stochastic Planner(G, O)
INPUT:
G = x1, x2, . . . xN , set of positions and orientations.
OUTPUT:
Q = q1, q2, . . . qN , path of the robot.

1: function STOCHASTICPLANNER(G, O)
2: //Build K initial random paths.
3: for k = 1, 2, . . . , K do
4: qr = uni f orm(1, m)
5: for i = 1, 2, . . . , N do
6: qi+1 = InverseKinematics(xi, qi)
7: end for
8: //Store a random path for the K particle.
9: Qk = {q1, q2, . . . , qN}

10: end for
11: while convergence of ∑ Wk do
12: for k = 1, 2, . . . , K do
13: pk = Gk
14: for i = 1, 2, . . . , N do
15: qi = SampleFromNullSpace(Gk,i)
16: wh = ComputeWeights(qh)
17: //Find q that maximizes W = {w1, . . . wH}
18: q̂ = argmaxqh(Wh)
19: //Add q̂ to the path
20: end for
21: end for
22: end while
23: return Q = {q1, q2, . . . , qN}, the joint path
24: end function
25: function SAMPLEFROMNULLSPACE(Gk,i) INPUT: Current joint position i at path k.

OUTPUT: H samples qh from null space.
26: for h = 1, 2, . . . , H do
27: q̇h = (I − J† J)q̇0
28: qh = qi + ε · q̇hΔt
29: end for

return qh = {q1, q2, . . . , qH}, samples from null space.
30: end function
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5. Results

The proposed approach is hereby demonstrated through both simulation with a 4DoF
planar manipulator, and experimentally on a real robot—the 7R Rethink Robotics Sawyer
manipulator. The simulations have been performed in Matlab using the ARTE toolbox
(freely available at https://arvc.umh.es/arte, last accessed on 11 November 2021).

5.1. Preliminaries

During all the experiments, the robot’s end effector must be able to achieve a given
position and orientation inside the workspace thus ensuring a precise contact with the sur-
face that allows us to complete a hypothetical surface treatment task (polishing, deburring
etc.). The details of the two different robots are given next.

• A simulated 4DoF planar robot (shown in Figure 1 in the three simulated workspaces
first considered): This robot is composed of four rotational joints and four links
of lengths l1 = l2 = l3 = 1 m and l4 = 0.3 m. The robot is used to track a line
defined in the workspace. The robot end effector must thus reach a set of goal points
in the workspace xi = (xi, yi, φi) with i = 1, . . . , N representing the different task
goals (xi, yi), and a given orientation φi set to remain always perpendicular to the
1D surfaces (lines) to be traced. Since the robot has 4DoF, there exists a free degree
of freedom. At each step i, our proposed algorithm will compute the robot’s path q
exploiting the null space of the previous task point as described in Section 4.

• A real 7DoF manipulator: The Sawyer robot, by Rethink Robotics, is composed of
seven rotational joints. The manipulator is made to follow a virtual straight path that
lies exactly on a surface. Thus, the robot end effector must be capable of visiting a
set of positions defined by xi with i = 1, . . . N that sit on the surface, and do so with
an orientation of the end effector perpendicular to the surface. Since the robot has
7DoF, there exists a free degree of freedom. Again, at each time step i, our proposed
algorithm will compute the robot’s path qi, exploiting the null space of the previous
task point just visited.

During the experiments, our proposed algorithm will be used to find a trajectory that
is able to complete the required task while, at the same time, optimising the manipulability
at each time step and avoiding collisions.

(a) (b) (c)

Figure 1. Workspaces for simulation experiments. Experiment I (a), Experiment II (b) and Experiment III (c). The
manipulator fixed base is located at the (0, 0) coordinates. The dark grey sections define the obstacle walls, with its surface
identifying the contact line to be tracked by the manipulator end effector.
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5.2. Simulation Study

Three different case studies have been carried out in simulation with the same 4DoF
planar manipulator. The workspace has been made to be increasingly challenging to test
the effectiveness of the scheme under controlled but demanding conditions:

• Case study I: In order to complete the task, the robot must follow a trajectory per-
pendicular to the given surface shown in Figure 1a. During the trajectory the robot
must not collide with the surface or with itself. This restriction imposes that any point
belonging to links 1, 2 and 3 must be at a distance higher than δ = 0.2 m to the surface.
In addition, any joint in the robot must be at a distance higher than δ = 0.2 m from
any other joint center;

• Case study II: In this simulation, the same restrictions considered in case study I apply.
However, the surface path to be tracked is made more demanding, as can be seen in
Figure 1b. The changes in the normal to the surfaces are accomplished by a set of
smooth changes;

• Case study III: As above, but a workspace with a near-full overhang around the robot
makes tracking particularly challenging for collision checking during the surface
following task, almost encroaching the robot fully by its surroundings and severely
limiting its mobility, as depicted in Figure 1c.

An extensive set of runs has been carried out in order to compare the outcome
of our proposed approach. For each trajectory produced by the algorithm, the mean
manipulability value is computed as ω̂ = (1/N)∑ wi, considering that the trajectory has
N different waypoints. In addition, the whole trajectory is computed to check for collisions
with the environment and self-collisions. The success rate accounts for the number of
generated trajectories that do not collide with any obstacle.

Figure 2 presents the results in terms of manipulability at each time step along the
single line environment (case studies I, II and III). For all graphs, the blue line represents
the joint trajectory that possesses the higher mean manipulability that the algorithm
can achieve. The trajectory with minimum mean manipulability is also shown in red,
whilst green presents a trajectory that lies in the mean value of all the manipulabilities
obtained. We compare the results of the proposed Stochastic Constrained Optimization
(SCO) method on the right (Figure 2b,d,f) with the output of Algorithm 2 on the left
(Figure 2a,c,e), representing the path solution recovered from an inverse kinematic solution
based on the Moore–Penrose pseudo inverse. The initial position qr used for this algorithm
is selected randomly. It is clearly apparent how SCO is able to consistently produce
trajectories that attain a higher degree of manipulability along the trajectory, while, at the
same time, accomplishing the task at hand. Please, note also the low dispersion achieved
in the manipulabilities represented in Figure 2b,d,f, indicative of the dependable ability of
SCO to produce high manipulability regardless.

Table 1 presents the results of case studies I, II and III. The first row of each sim-
ulation, named “Simple Planner”, represents the results obtained using Algorithm 2
when applied to each of the workspaces represented in Figure 1. The following rows,
represent the results of the SCO algorithm with varying number of samples K. In order
to evaluate the success rate, we check that the robot does not collide with obstacles or
derives in self-collision during the resulting trajectory. As expected, the success rate
of this algorithm is low during the three simulations. In addition, it also produces
trajectories that exhibit low manipulability overall along the path. The first row of
simulation IB uses the proposed SCO Algorithm 4 using a single hypothesis on the
path (K = 1). In this case, the planner is able to produce a significantly higher success
rate (76%) compared to Algorithm 2 (simple planner). In addition, the trajectory is
optimized, both avoiding obstacles and increasing the mean manipulability. As the
number of hypotheses K increases, we observe a higher success rate, while, at the same
time, increasing the manipulability along the whole trajectory. It is worth noting that,
for K = 10 hypotheses, the proposed algorithm achieves a success rate of 100%. Further
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increasing K = 20, 50 hypotheses maintains the same success rate and allows us to obtain
an even higher manipulability index along the trajectories.

(a) (b)

(c) (d)

(e) (f)

Figure 2. A comparison of the manipulability metric evolution for case studies I, II and III. Cases IA, IIA and IIIA were
carried out over a total of N = 2000 sample waypoints along the desired task-space trajectory. The blue line represents the
trajectory that presents the maximum value in terms of mean manipulability along the line that the algorithm is able to
achieve, red is the minimum and green the mean value across all the runs. The corresponding simulations IB, IIB and IIIB
were obtained by using SCO with K=20 samples. (a) Case study I A, (b) Case study I B, (c) Case study II A, (d) Case study II
B, (e) Case study III A, (f) Case study III B.
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Table 1. Results of case studies I, II and III.

Case K N
Success
Rate (%)

Manip.
Mean ω̂

Manip.
Max.

Comp.
Time (Sec.)

I A
( Simple_Planner) - 2000 44 1.64 ± 0.48 1.95 0.99 ± 0.01

I B 1 30 76 1.96 ± 0.16 2.04 4.32 ± 0.11
I B 5 30 90 1.98 ± 0.11 2.04 13.38 ± 0.17
I B 10 30 96 2.01 ± 0.05 2.04 24.27 ± 0.62
I B 20 30 100 2.02 ± 0.03 2.04 45.92 ± 2.13
I B 50 30 100 2.03 ± 0.02 2.28 114.18 ± 2.25

II A
( Simple_Planner) - 2000 26 1.29 ± 0.21 1.41 0.56 ± 0.01

II B 1 30 56 1.47 ± 0.12 1.52 4.99 ± 0.12
II B 5 30 80 1.49 ± 0.13 1.52 17.18 ± 0.19
II B 10 30 100 1.50 ± 0.06 1.52 34.66 ± 0.74
II B 20 30 100 1.52 ± 0.02 1.53 64.74 ± 3.33
II B 50 30 100 1.53 ± 0.006 1.53 156.64 ± 4.62

III A
( Simple_Planner) - 2000 12 1.20 ± 0.43 1.61 0.77 ± 0.01

III B 1 30 33 1.58 ± 0.05 1.60 6.37 ± 0.18
III B 5 30 80 1.58 ± 0.06 1.61 23.63 ± 0.66
III B 10 30 97 1.60 ± 0.05 1.61 44.85 ± 0.77
III B 20 30 100 1.60 ± 0.03 1.61 88.99 ± 3.15
III B 50 30 100 1.61 ± 0.009 1.61 219.88 ± 4.68

Table 1 also presents the results of case study II. As before, the “Simple Planner” in the
first row refers to the results of the path obtained with Algorithm 2, where the simulation
samples the path at a total of N = 2000 and, for a successful run, collisions with itself and
the environment for a given trajectory must be avoided. The success rate of this algorithm
is, again, very low. Given the increased complexity of the task when compared to run
IA, the success rate is even lower. The results with SCO are collected under case study
IIB, and as below different cases are investigated with varying initial hypotheses along
the path: K = {1, 5, 10, 20, 30}. It can be observed how the proposed SCO is successful in
producing a 56% of feasible solutions for K = 1 and 80% for K = 5, a marked improvement
over the “Simple Planner” even with these low number of hypotheses. Moreover, as
the number of hypotheses K increases, so does the success rate, while, at the same time,
increasing the manipulability along the length of the trajectory. It is worth noting that,
for K = 10, the proposed algorithm is able to achieve full success (rate of 100%). Further
increasing K to 20 or 50 maintains flawless success and allows us to obtain even marginally
higher manipulability along the trajectories. Table 1 also collects the results of case study
III. As before, “Simple Planner” in the first row refers to the results of the path obtained
with Algorithm 2. The success rate of this algorithm is, again, very low. The task in
case study III is more demanding, which explains the low success rate, compared to case
studies IA and IIA. Again, the results with SCO are collected under simulation IIIB with
K = {1, 5, 10, 20, 30}. Following the same trends observed before, the proposed SCO
produces a 33% of successful solutions for K = 1 and 80% for K = 5. The proposed
algorithm also succeeds in this more demanding scenario, and as the number of hypotheses
K increases, the success rate and the manipulability are increased. It is worth noting that for
K = 20 the proposed algorithm is able to achieve full success (rate of 100%). As observed
earlier, further increasing K beyond this point (to the maximum of 50 hypotheses in this
case) only slightly increases the optimized manipulability while maintaining the same
success rate.
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Table 1 also presents computation times of each simulation carried out on an Intel™

Core i7 CPU @ 2.90GHz × 16 running Ubuntu 20.04 and Matlab™ R2018a. Mean computa-
tion times (seconds) and 2σ intervals are collected. As expected, a linear trend is observed
in the computational effort.
5.3. Real Experiments

An experiment has been conducted on a physical manipulator to verify the per-
formance of the proposed method under realistic settings. Figure 3 presents the real
experimental setup with the 7R Rethink Robotics Sawyer cobot. The experiment consists
of tracking a reference linear path on a flat surface whist keeping the tool in an orienta-
tion perpendicular to the surface throughout the motion. A force controller developed to
maintain contact with the surface was implemented [18] to aid with the task at hand of
simulating a surface conditioning assignment such as polishing, whilst the pose adopted
along the path is set by the proposed SCO path planning strategy. The experimental setup
is depicted in Figure 3a, consisting of a 7R Rethink Robotics Sawyer cobot, a force sensor
Nano25 SI-25-25 attached to the robot end-effector, a small polishing tool proxy attached to
the sensor (a cylinder of 43 × 43 × 10 mm), and a target flat surface to polish.

As per the test methodology adopted in the simulation cases to show the capabilities
of the proposed method, the routine undertaken includes a comparison with the standard
“Simple Planner” derived from the the Moore–Penrose solution (Algorithm 2). The initial
conditions are set to be the same in both cases: an obstacle-free initial pose with average
manipulability established prior. This was the initial condition fed to both trajectory plan-
ners. A video is supplied (https://arvc.umh.es/arte/AppliedSciences21.mp4, accessed on
11 November 2021) to visualise the full experimental setting and resulting motion, with
several stills depicting the starting, mid- and end-points of the test trajectories also being
collected in Figure 3. It can be observed how the optimality in manipulability being sought
out by the SCO proposed planners derives configurations that keep the elbow link down,
whereas in the “Simple Planner” case that is not the case, ultimately even compromising
stability by traversing near-singular regions. The reader is referred to the video linked in
the manuscript where the undesirable dynamic disturbances induced in the controller are
clearly apparent with vibrations at compromised locations along the path, most notably at
the mid-point (Figure 3e).

The final manipulability attained in both instances, shown in Figure 4, corroborates
the ability of the algorithm to seek areas with higher manipulability, hence permitting oper-
ations with manipulator configurations away from singularity regions, ultimately leading
to superior end-effector precision, less energy expenditure and overall safer trajectories
whilst seeking to abide by the desired end effector path during execution.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Sawyer polishing task experiment: (a) setup: 7R manipulator with a force sensor attached to the robot end-effector,
a tool consisting of a cylinder of 43 × 43 × 10 mm attached to the sensor and a flat surface target, (b) initial pose with
minimal manipulability for both tests, (c,d) proposed SCO algorithm, (e,f) “Simple Planner” case.
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(a)

(b) (c)

Figure 4. Real polishing experiment with the Sawyer robot: (a) Manipulability comparison: attained manipulability
evolution of the traversed path illustrated in Figure 3, with the proposed SCO scheme shown in red (top line), and the
“Simple Case” Moore–Penrose solution depicted in blue (bottom line). Corresponding (b) “Simple Planner” trajectory
evolution, and (c) Evolution of joint trajectories using the SCO algorithm.

6. Conclusions

An efficient stochastic algorithm able to produce obstacle-free configuration trajecto-
ries for a given workspace has been proposed. The random process exploits the particular
kinematics of closed-chain mechanisms with redundant actuation to increase manipulabil-
ity along a desired end-effector task-space motion in an iterative process. The stochastic
solution remains close to optimal whilst affording computational tractability, being an
attractive proposition for implementation on real robots. Results from tests in challenging
simulation scenarios, as well as with a 7R manipulator constrained to undertake surface
treatment tasks, have been presented to show the suitability of the proposed Stochastic
Constrained Optimization (SCO) trajectory planner for redundant manipulators to be
able to track arbitrary task-space paths. The challenging aspect of planning trajectories,
where the robot must remain in close contact with non-smooth irregular surfaces whilst
optimizing the manipulability index at each time step, represents an on-going research
effort continuing with the line of work presented in this manuscript.
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Abstract: The choice of structural parameters in the design of artificial neural networks is generally
based on trial-and-error procedures. They are regularly estimated based on the previous experience
of the researcher, investing large amounts of time and processing resources during network training,
which are usually limited and do not guarantee the optimal selection of parameters. This paper
presents a procedure for the optimization of the training dataset and the optimization of the structural
parameters of a neural network through the application of a robust neural network design methodol-
ogy based on the design philosophy proposed by Genichi Taguchi, applied to the solution of inverse
kinematics in an open source, six-degrees-of-freedom robotic manipulator. The results obtained
during the optimization process of the structural parameters of the network show an improvement in
the accuracy of the results, reaching a high prediction percentage and maintaining a margin of error
of less than 5%.

Keywords: backpropagation; optimization methods; inverse kinematics; robotics

1. Introduction

One of the main problems in the design of neural networks is the selection of the
structural parameters of the network and their corresponding values before performing the
training. In this work, the robust design artificial neural network (RDANN) methodology is
used. The main focus of this methodology is based on reducing the number of experiments
that can be carried out using the factorial fractional method, a statistical procedure based
on the robust design philosophy proposed by Genichi Taguchi. This technique allows one
to set the optimal settings on the control factors to make the process insensitive to noise
factors [1,2].

Currently, the selection of the structural parameters in the design of artificial neural
networks (ANNs) remains a complex task. The design of neural networks implies the
optimal selection of a set of structural parameters in order to obtain greater convergence
during the training process and high precision in the results. In [1], the feasibility of
this type of approach for the optimization of structural parameters in the design of a
backpropagation artificial neural network (BPANN) for the determination of operational
policies in a manufacturing system is demonstrated, where it is shown that the Taguchi
method allows designers to improve the performance in the learning speed of the network
and the precision in the obtained results.

Most designers select an architecture type and determine the various structural pa-
rameters of the chosen network. However, there are no clear rules on how to choose those
parameters in the selected network architecture, although these parameters determine the
success of the network training. The selection of the structural parameters of the network
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is generally carried out through the implementation of conventional procedures based
on trial and error, as shown in Figure 1, where a significant number of ANN models are
generally implemented in comparison with other unconventional procedures [3–6].

Figure 1. Trial-and-error procedure.

In this case, if a desired level of performance is not maintained, the levels in the previ-
ously established design parameters are changed until the desired performance is obtained.
In each experiment, the responses are observed in order to determine the appropriate levels
in the design of the structural parameters of the network [7].

A drawback in the use of this type of procedure is that one parameter is evaluated,
while the others are kept at a single level, so the level selected in a variable may not
necessarily be the best at the end of the experiment, since it is very likely that most of the
layout variables involved will change their value. A possible solution could be that all
the possible combinations in the parameters are evaluated, that is, to carry out a complete
factorial design. However, the number of combinations can be very large due to the
number of levels and previously established design parameters, so this method could be
computationally expensive and time-consuming.

Due to all these limitations, the scientific community has shown special interest in
the implementation of new approaches and procedures applied to the optimization of
structural parameters in the search to generate better performance in ANNs [8–13].

Currently, ANNs can be trained to solve problems that can be complex for a human or
a conventional computer, since they allow obtaining results with a high degree of precision
and a significant reduction in error in real-time applications. In recent decades, the use
of ANNs has been successfully applied in different fields, including pattern recognition,
classification, identification, voice, vision, control systems, and robotics, the latter of which
has raised special interest among researchers in the field, particularly the solution of the
inverse kinematics in manipulators with six or more degrees of freedom, due to the great
flexibility of control that they present for the execution of very complex tasks [14–17].

In [18], a BPNN algorithm is proposed, optimized by Fruit Fly Optimization Algorithm
(FOA), to find the solution of the inverse kinematics in a four-DOF robot, obtaining an
output error range −0.04686–0.1271 smaller than that obtained by a BPNN. In [19], a BPNN
algorithm, optimized by means of particle swarm optimization (PSO), is studied to solve
the inverse kinematic problem in a six-DOF UR3 robot applied in puncture surgery, where
convergence in the precision of the results, as well as the speed and generalization capacity
of the proposed network, is improved. In [20], a deep learning approach is proposed to solve
the inverse kinematics in a seven-DOF manipulator. The approach used allows it to be fast,
easy to implement, and more stable, allowing less sensitivity in hyperparameters. In [21], a
combination of swarm intelligence (SI) and the product of exponentials (PoEs) is used to
solve the inverse kinematics in a seven-DOF manipulator, where they are compared with the
conventional inverse kinematics and standard PSO algorithms. In [22], the main approach
is based on a redundant manipulator inverse kinematic problem that is formulated as a
quadratic programming optimization problem solved by different types of recurrent neural
networks. In [23], an approach is proposed to address the complexity of solving the inverse
kinematics in a seven-DOF serial manipulator through an algorithm based on the Artificial
Bee Colony (ABC) optimization algorithm, where two control parameters are used in order
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to adjust the search to optimize the distribution of the sources. In [24], an optimization
approach is shown in the planning of the trajectories applied in a five-bar parallel robot for
real-time control, minimizing the trajectory time and avoiding singularities in the parallel
manipulator, achieving an error of less than 0.7◦ at the joints.

Factorial experimental design is a statistical technique used to identify and measure
the effect that one variable has on another variable of interest. In 1920, R. A. Fisher
studied multiple factors in the agricultural field to determine the effect of each factor on the
response variable, as well as the effect of the interactions between factors on this variable.
This method is known as the factorial design of experiments. Factors are variables that
determine the functionality of a product or process and significantly influence system
performance and can usually be controlled. To evaluate the impact of each variable, the
factors must establish at least two levels; therefore, given k factors with l levels, a complete
factorial design that includes all the possible combinations between these factors and levels
will produce a total of lk experimental runs. Obviously, as k or l increases, the number
of experiments may become unfeasible to carry out, since a significant number of factors
would imply a large number of experiments. For this reason, fractional factorial designs
have been introduced, which require only a fraction of a run, unlike a complete factorial
design, and which allow estimating a sufficient number of effects [25,26].

Genichi Taguchi is considered to be the author of robust parameter design through
a procedure focused on reducing variation and/or sensitivity to noise in the design of
products or processes, which is based on the concept of fractional factorial design. Through
the implementation of orthogonal arrays (OA) and fractional factorial design, it is possible
to analyze a wide range of parameters through a reduced number of experiments, ensuring
a balanced comparison between the factors involved and the interaction with their different
levels [2,27,28].

The Taguchi method is applied in four stages:

1. Selection of design and noise variables. In this stage, the most important parameters for
the product/process are considered, taking into account the quality characteristics.
Generally, there are variables that can be controlled by the user and others that cannot.
These types of variables are known as design and noise factors, respectively, which
have an important influence on the operation of the product/process. They can be
determined mainly by answering the following questions: What is the optimal design
condition? What factors contribute to the results and to what extent? What will be the
expected result?

2. Design and experimentation. An OA is established, which contains the organization of
the experiment taking into account the levels established for each of the factors in order
to minimize the effects produced by noise factors. In other words, the adjustments
made to the factors must be determined in such a way that there is the least variation
in the response of the product/process, and the mean is established as close as possible
to the desired objective. The OA allows the implementation of a balanced design in
the weighting of the pre-established levels for each factor involved since it is possible
to evaluate various factors with a minimum number of tests, obtaining a considerable
amount of information through the application of few tests. The mean and variance of
the response obtained in the OA configuration are combined into a single performance
measure known as the signal-to-noise ratio (S/N).

3. Analysis of results. The S/N ratio is a quality indicator by which the effect produced
on a particular parameter can be evaluated. The variation in the response obtained in
dynamic characteristics, the S/N ratio, is shown below in the following equation:

S/N = 10·log10

(
βi

MSEi

)
, (1)

where βi is the square of the largest value of the signal, and MSEi represents the root
mean square deviation in the performance of the neural network, or in other words,
the mean square of the distance between the measured response and the best fit line.
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A valid robustness measure is related to obtaining the highest values in the S/N ratio,
because the configurations of control factors that minimize the effects on noise factors
can be identified.

4. Execution and confirmation of tests in optimal conditions. In this stage, a confirmation
experiment is carried out by performing training with optimal design conditions in
order to calculate the performance robustness measure and verify if this value is close
to the predicted value.

Inverse Kinematics with ANNs

During the last decade, robotics had an outstanding development in the industry,
particularly in aerospace, military, and medical areas, among others, especially in manipu-
lators with a large number of degrees of freedom (DOF), due to their high flexibility and
control to perform complex tasks [17,29,30].

Modern manipulators, usually kinematically redundant, allow complex tasks to be
solved with high precision in the results. These types of manipulators have at least six
DOF, allowing greater flexibility and mobility to perform complex tasks. The complexity
in manipulator control design based on an inverse kinematic solution approach can be
computationally complex, due to the nonlinear differential equation systems that are
usually present. Traditional methods with geometric, iterative, and algebraic approaches
have certain disadvantages and can often be generically inappropriate or computationally
expensive [16,31].

The ANNs present major advantages related to nonlinearity, parallel distribution,
high learning capacity, and great generalization capacity, and they can maintain a high
calculation speed, thus fulfilling the real-time control requirements. Consequently, various
approaches have been proposed by the scientific community in the use of intelligent algo-
rithms applied to the control of robotic manipulators such as the use of ANNs [19,20,32,33],
genetic algorithms [31,33–38], recurrent neural networks (RNNs) [37], [38], optimization
algorithms [18,23,39,40], and the use of neural networks and optimization methods for
parallel robots [24,41].

The organization of this work is as follows: In Section 2.1, the kinematic model of
the Quetzal manipulator is established. Section 2.2 describes the procedure for generating
the training and testing dataset. Section 2.3 describes the implementation of the RDANN
methodology for the optimization of structural parameters in the BPNN. In Section 3, the
results obtained are subjected to a reliability test stage through the use of a cross-validation
method to verify that the dataset is statistically consistent. The results of training in the
optimized BPNN show a significant improvement in the accuracy of the results obtained
compared with the use of conventional procedures based on trial-and-error tests.

2. Materials and Methods

In this paper, a robust design model is presented through a methodological and
systematic approach based on the design philosophy proposed by Genichi Taguchi. The
integration of optimization processes and ANN design are methodological tools that allow
the performance and generalization capacity in ANN models to be improved. In this study,
an RDANN methodology was used, which was initially proposed for the reconstruction of
spectra in the field of neutron dosimetry by means of ANNs [7].

The RDANN methodology was used to estimate the optimal structural parameters in
a BPNN to calculate the inverse kinematics in a six-DOF robot, where the main objective
was the development of accurate and robust ANN models. In other words, it was sought
that the selection of the structural parameters of the proposed model allows us to obtain
the best possible performance in the network.

2.1. Kinematic Analysis

The robot called Quetzal is based on an open source, 3D-printable, and low-cost
manipulator [42]. The modeling and representation were carried out using the Denavit–
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Hartemberg (D–H) parameters to obtain a kinematic model through four basic transforma-
tions that are determined based on the geometric characteristics of the Quetzal manipulator
to be analyzed [43]. The D–H parameters are shown in Table 1.

Table 1. D–H parameters of the Quetzal manipulator.

i
Link Offset di

(cm)
Joint Angle θi

(rad)
Link Length

ai−1 (cm)
Twist Angle

αi−1 (rad)

1 20.2 θ1 0 π/2

2 0 θ2 16 0

3 0 θ3 + π/2 0 π/2

4 19.5 θ4 0 −π/2

5 0 θ5 0 π/2

6 6.715 θ6 0 0

The basic transformations represent a sequence of rotations and translations, where the
reference system of element i is related to the system of element i − 1. The transformation
matrix is given by Equation (2).

i−1
i T = RZ(θi)DZ(di)DX,(ai−1)RX(αi−1) (2)

Carrying out the multiplication of the four matrices, Equation (3) is obtained:

i−1
i T =

⎡⎢⎢⎣
cθi −sθicαi−1 sθisαi−1 ai−1cθi
sθi cθicαi−1 −cθisαi−1 ai−1sθi
0 sαi−1 cαi−1 di
0 0 0 1

⎤⎥⎥⎦ (3)

where i−1
i T is the D–H transformation matrix from coordinate system i to i − 1. RZ(θi) is

the rotation matrix representing a rotation θi around the Z axis, DZ(di) is the translation
matrix representing a translation of di on the Z axis, DX,(ai−1) is the translation matrix
representing a translation of ai−1 on the X axis, RX(αi−1) is the rotation matrix representing
a rotation αi−1 around the X axis, cθi is shorthand for cos cos(θi), sθi is shorthand for sin(θi),
etc. The transformation matrices of each of the joints are multiplied to obtain the initial
position of the end effector in the base reference system, as shown in Equation (4).

0
6T = 0

1 A · 1
2 A · 2

3 A · 3
4 A · 4

5 A · 5
6 A =

[0
6R3×3

0
6P3×1

0 1

]
=

⎡⎢⎢⎣
nx ox ax px
ny oy ay py
nz oz az pz
0 0 0 1

⎤⎥⎥⎦ (4)

Therefore, the equation of the forward kinematics of the Quetzal manipulator can be
expressed as shown in Equation (5).

Ff orward_k(θ1, θ2, θ3, θ4, θ5, θ6) =
(

px, py, pz, nx, ny, nz, ox, oy, oz, ax, ay, az
)

(5)

As shown in Equation (5), the position of the end effector of the manipulator can be
obtained from the angular values of the six joints of the manipulator. However, in practice, it
is necessary to obtain the angles at each of the joints through a given position, so it is necessary
to calculate the inverse kinematics, which can be expressed as shown in Equation (6).

Finverse_k
(

px, py, pz, nx, ny, nz, ox, oy, oz, ax, ay, az
)
= (θ1, θ2, θ3, θ4, θ5, θ6) (6)
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Solving (4) gives the orientation and position of the final effector in regard to the
reference system, as shown in Equation (7), where the position vector [p] = {42.215, 0, 20.2}
and the orientation vector [n o a] = {0, 0, 1, 0,−1, 0, 1, 0, 0}.

T6
0 =

⎡⎢⎢⎣
0 0 1 42.215
0 −1 0 0
1 0 0 20.2
0 0 0 1

⎤⎥⎥⎦ (7)

The graphic representation of the initial position of the Quetzal robotic manipulator is
shown in Figure 2 through a simulation carried out with the Robotics Toolbox for MATLAB
software [44].

Figure 2. Representation of the initial position of the Quetzal manipulator.

2.2. Training and Testing Datasets

The dataset was generated from the equations obtained in the forward kinematics of
the Quetzal manipulator. The variables involved in the proposed dataset were the orienta-
tion vector [n o a] =

{
nx, ny, nz, ox, oy, oz, ax, ay, az

}
, the position vector [p] =

{
px, py, pz

}
,

and the vector of joint angles [θ] = {θ1, θ2, θ3, θ4, θ5, θ6}, for a total of 18 variables.
Table 2 shows the ranges of movement established for each of the joints in the

workspace of the manipulator. Dataset X was generated with a spatial resolution of
25 × 25 × 25 × 25 × 25 × 25 × 25 in a six-dimensional matrix with 18 variables involved.
The total size of the dataset was 4,394,531,250 data, occupying an approximate physical
memory space of 32.74 Gb due to the data class of type Single − precision used in the study,
where the data are stored as 4-byte (32-bit) floating point values.

Table 2. Range of motion and step size at each of the joints.

Description θ1 θ2 θ3 θ4 θ5 θ6

Min 0 0 2π 0 2π 0

Max 2π π π/2 2π π/2 2π

Step π/12 π/24 π/24 π/12 π/24 π/12

Total steps 25 25 25 25 25 25
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Figure 3 shows a graphical representation of the workspace using a 3D data scatter
plot corresponding to the position vector [p] based only on the joints θ1, θ2, θ4, θ5 and θ6,
where it is possible to appreciate the workspace of the robotic manipulator without taking
into account joint θ3. The illustrated workspace was generated from the forward kinematic
equations as a function of the six joints.

Figure 3. Position vector [p] =
{

px, py, pz
}

in function of joints θ1, θ2, θ4, θ5 and θ6.

In order to process the enormous volume of data in a conventional processor, a data
reduction filter (DRF) based on linear systematic sampling (LSS) was applied to reduce
the set to a size of 190.7 Kb in memory [45]. The data were processed on an 8-core AMD
Ryzen 7 5000 series processor with a base clock of 1.8 GHz, 16 GB of RAM, and integrated
Radeon 16-thread graphics with a maximum clock of 4.3 GHz [46]. The dataset and code
are available in Supplementary Materials.

Figure 4 shows the scatter matrices corresponding to the position dataset before and
after applying the FRD filter, where a reduction of 99.99% of the data was obtained with a
size of 24,410 data. In Figure 4b, it is shown that the data maintain a constant and uniform
distribution with respect to the dataset of Figure 4a.

The data were normalized with a mean of zero in the range from −1 to 1 using Equation (8),
where data is the data to normalize, min is the minimum value of the dataset, range is a
value established by the difference between the maximum value and the minimum value of
the dataset, h and l are the maximum and the minimum desired values for normalization.

DataNorm =

(
data − min

range
× (h − l)

)
+ l (8)

2.3. Robust Design Methodology

Figure 5 shows the RDANN methodology based on the Taguchi philosophy that
consists of four stages. The designer must know the problem and choose an appropriate
network model, as well as the parameters involved in the design of the network for its
optimization (planning stage). By implementing an OA and systematically training a
small number of ANN models (experimentation stage), the response to be analyzed is
determined using the S/N relationship of the Taguchi method (analysis stage). Finally,
through a confirmation process, the best performance values of the model are obtained
(confirmation stage).
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Figure 4. Scatter matrix of the position dataset: (a) before applying the reduction filter; (b) after
applying the data reduction filter.

Figure 5. Robust design methodology for the optimization of structural parameters.
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The graphic representation of the BPNN used in this work is shown in Figure 6,
with 12 input variables and 6 output variables that correspond to the position vector
[p] =

{
px, py, pz

}
and orientation vector [n o a] =

{
nx, ny, nz, ox, oy, oz, ax, ay, az

}
as input

and the vector of joint angles [θ] = {θ1, θ2, θ3, θ4, θ5, θ6} as output.

Figure 6. BPNN network topology used in this study.

2.3.1. Planning Stage

In this stage, the design variables, noise, and the objective function are identified. The
objective function is defined according to the purpose and requirements of the system. In
this work, the objective function is related to the prediction or classification errors between
the calculator data and the data predicted by the ANN model during the testing stage.
The performance at the output of the ANN or the mean square error (MSE) is used as the
objective function and is described in the following equation:

MSE =

√√√√ 1
N

N

∑
i=1

(
θPREDICTED

i − θORIGINAL
i

)2 (9)

In this case, N represents the number of attempts, θPREDICTED
i represents the set

of joint values that are predicted by the BPANN, and θORIGINAL
i represents the set of

joint values.
The design variables correspond to those that can be controlled by the user, such as

the number of neurons in the first layer, the number of neurons in the second layer, the
momentum constant, and the learning rate. By contrast, the noise variables are commonly
not directly controlled by the user in most cases, such as the initialization of synaptic
weights that are generally assigned randomly, the size of the training sets versus test
sets, and the random selection of training and test sets. According to the requirements
of the problem, the user can choose the factors related to variation in the system during
the optimization process. Four design variables and three noise variables were selected
because they were directly involved with the performance of the ANN, as described below
in Table 3 with their respective configuration levels.
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In terms of variables, A is the number of neurons in the first hidden layer; B is the
number of neurons in the second hidden layer; C is the momentum constant, which allows
the stabilization of the updating of each of the synaptic weights taking into account the sign
of the gradient; D is the learning rate, which allows us to define the cost that the gradient
has in updating a weight because the increase or decrease in the synaptic weight is related
to the magnitude of the proposed value, so it may or may not affect the convergence of the
MSE, causing instability and divergence [47]. X is the initial set of weights, Y is the size in
proportions of the dataset, and Z is the random selection from the training and testing set.

Table 3. Design and noise variables.

Variables Level 1 Level 2 Level 3

A L1 L2 L3

B L1 L2 L3

C L1 L2 L3

D L1 L2 L3

X L1 L2 L3

Y L1 L2 L3

Z L1 L2 L3

Once the variables and their respective levels were chosen, a suitable OA was chosen
to carry out the training sessions. An OA is described as Lr(Sc), where r represents the
number of rows, c represents the number of columns, and s represents the number of
levels in each of the columns. In this experiment, the columns of the OA represent the
parameters to be optimized, and the rows represent the tests carried out by combining the
three proposed levels.

2.3.2. Experimentation Stage

The success in this stage depends on an adequate choice of the OA because, in this
process, a series of calculations are carried out in order to evaluate the interaction and the
effects produced between the variables involved through a reduced number of experiments.
For the implementation of a robust design, Taguchi suggests the use of a configuration in
two crossed OAs with L9

(
34) and L4

(
32), as shown below in Table 4.

Table 4. Recording of responses in trials using crossed OAs with L9
(
34) and L4

(
32) configurations.

Trial No. A B C D G1 G2 G3 G4 Average S/N

1 1 1 1 1 Resp1,1 Resp2,1 Resp3,1 Resp4,1 Avg1 SN1

2 1 2 2 2 Resp1,2 Resp2,2 Resp3,2 Resp4,2 Avg2 SN2

3 1 3 3 3 Resp1,3 Resp2,3 Resp3,3 Resp4,3 Avg3 SN3

4 2 1 2 3 Resp1,4 Resp2,4 Resp3,4 Resp4,4 Avg4 SN4

5 2 2 3 1 Resp1,5 Resp2,5 Resp3,5 Resp4,5 Avg5 SN5

6 2 3 1 2 Resp1,6 Resp2,6 Resp3,6 Resp4,6 Avg6 SN6

7 3 1 3 2 Resp1,7 Resp2,7 Resp3,7 Resp4,7 Avg7 SN7

8 3 2 1 3 Resp1,8 Resp2,8 Resp3,8 Resp4,8 Avg8 SN8

9 3 3 2 1 Resp1,9 Resp2,9 Resp3,9 Resp4,9 Avg9 SN9
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2.3.3. Analysis Stage

Through the S/N ratio, a quantitative evaluation is carried out, where the mean and
the variation in the responses measured by the ANN with different design parameters are
considered. The unit of measure is the decibel, and the formula is described as follows:

S/N = 10·log10(MSD) (10)

In this case, MSD is the root mean square deviation in the ANN performance. The
best topology is considered when more signals and less noise are obtained; therefore, a
high S/N ratio at this stage allows us to identify the best design values in the BPANN with
the help of statistical analysis with the JMP software.

2.3.4. Confirmation Stage

In this stage, the value of the robustness measure is obtained based on the specifications
and optimal conditions of the design. A confirmation experiment is carried out using the
optimal design conditions that were previously chosen, in order to verify if the calculated
value is close to the value predicted by the BPANN.

3. Results

In this work, the RDANN methodology was used for the optimal selection of the
structural parameters in a feed-forward backpropagation network, known as BPNN, to
find the solution to the inverse kinematics in a Quetzal robot. For the BPNN training,
the “resilient backpropagation” training algorithm and mse = 1E−4 were selected. In
accordance with the RDANN methodology, an OA corresponding to the design and noise
variables, respectively, was implemented in configurations L9

(
34) and L4

(
32) to determine

the response to the tests during the 36 training sessions carried out.
The results obtained after applying the RDANN methodology are presented in the

next sections.

3.1. Planning Stage

Table 5 shows the design and noise variables with their respective assigned values for
the different levels proposed during the experiment.

Table 5. Design and noise variables with their assigned levels.

Variables Level 1 Level 2 Level 3

A 80 100 120

B 30 60 90

C 0.1 0.2 0.3

D 0.01 0.1 0.2

X Set1 Set2 Set3

Y 7:3 8:2 9:1

Z Tr1/Tst1 Tr2/Tst2 Tr3/Tst3

The values for the three levels established in each of the tests regarding the number of
neurons for the first hidden layer were A = 80, 100, and 120, respectively; for the number
of neurons in the second hidden layer, they were B = 30, 60, and 90, respectively; for the
constant momentum, they were C = 0.1, 0.2, and 0.3, respectively; and for the learning
rate, they were D = 0.01, 0.1, and 0.2, respectively.

The values for the initial sets of weights X were randomly determined at all three
levels. The values set in the proportions of the dataset for level 1 were Y = 70% training
and 30% testing; for level 2, they were 80% and 20%, and for level 3, they were 90% and
30%, respectively; finally, the random selection of the training and testing set for level
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1 was Z = Training1/Test; for level 2, it was Training2/Test2, and for level 3, it was
Training3/Test3.

3.2. Experimentation Stage

A total of 36 training sessions were carried out by implementing the OA in L9
(
34) and

L4
(
32) configurations, where the network architectures were trained and tested, obtaining

the results shown in Table 6.

Table 6. Responses measured during the implementation of the crossed OA.

Trial No. G1 G2 G3 G4 Average S/N

1 0.0825789 0.08150994 0.08200742 0.08102935 0.0817814 −41.797957

2 0.0651544 0.06734919 0.06683558 0.0666657 0.0665012 −36.960574

3 0.0568985 0.05618239 0.05984281 0.05778079 0.0576761 −31.219083

4 0.074502 0.06984874 0.07645081 0.07592863 0.0741825 −27.856466

5 0.0618532 0.06118982 0.06071765 0.05706847 0.0602073 −28.973660

6 0.0525082 0.05237245 0.05415778 0.05406061 0.0532747 −34.832469

7 0.070358 0.06704642 0.06866684 0.07036554 0.0691092 −32.761969

8 0.0549823 0.04965534 0.05378926 0.05494074 0.0533419 −26.523630

9 0.0465695 0.04604935 0.04942250 0.05026433 0.0480764 −27.302767

For the analysis of the S/N ratio, an analysis of variance (ANOVA) was performed
using the statistical software program JMP. The S/N ratio and the mean value of the
MSE are two of the specific criteria for determining the appropriate levels in the variables
involved in network design, and their choice is determined through a series of validation
procedures carried out in the next stage, as described below.

3.3. Analysis Stage

Figure 7a shows the best network topology obtained through the normal profile;
Figure 7b describes the best topology through the desirable profile, and Figure 7c describes
the best network topology using the maximized desirable profile. The three network
profiles were obtained through statistical analysis in the JMP software to identify the
optimal values in each of the proposed profiles. After performing the analysis of the S/N
ratio, the values in which the levels for each of the variables involved were nearest to the
average and S/N ratio red lines on the X axis were chosen, which are described in Table 7.

Table 7. Best design values with normal desirable and maximized profiles.

Profile A B C D

Normal 80 30 0.01 0.1

Desirable 80 30 0.01 0.1

Maximized 100 30 0.2 0.2

For the choice of the best network profile obtained, three training sessions were carried
out for each of the three profiles in order to contrast them based on the size of the training
and test data and their generalization capacity, estimating the percentage of correct answers
in the prediction of the data, obtaining the results shown in Table 8.

The best topology corresponds to the maximized desirable profile, with the percentage
of obtained hits being 87.71% with a margin of error of less than 5% in the tests. Once the best
topology was chosen, the statistical tests of correlation and chi-square were performed, showing
the best and worst prediction of the network, as shown in Figures 8 and 9, respectively.
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Figure 7. S/N analysis for the determination of the optimal parameters of the network: (a) normal
profile; (b) desirability profile; (c) maximized desirability profile.
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Table 8. Comparison of density and percentage of hits in the three best profiles.

Training Profile Density
Training time

(m)
% of Hits

χ2<5%

1 Normal 70:30 13.2649 85.72

2 Normal 80:20 16.1627 85.83

3 Normal 90:10 18.3473 86.40

4 Desirable 70:30 13.4989 87.39

5 Desirable 80:20 16.1765 85.32

6 Desirable 90:10 18.5385 85.50

7 Maximized 70:30 16.3393 87.71

8 Maximized 80:20 17.7275 86.30

9 Maximized 90:10 19.5463 86.86

 
(b) 

Figure 8. Trajectory of the manipulator with the best prediction and correlation test: (a) best predicted
values; (b) correlation test.
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Figure 9. Trajectory of the manipulator with the worst prediction and correlation test: (a) worst
predicted values; (b) correlation test.

To determine if the predicted data are statistically reliable, the cross-validation method
was used by splitting the training and testing datasets. The set was split into five subsets of
the same size, as shown in Figure 10. The validation subset in each training session was
used to measure the generalization error, in other words, the misclassification rate of the
model with data dissimilar from those previously applied during the training procedure.
The cross-validation procedure was implemented on the training and testing datasets, and
the average value of MSE and the standard deviation obtained were very close to those
obtained in the confirmation stage [48].

Table 9 shows the results obtained in the cross-validation process, where it is observed
that the average training value was equal to 17.5099, the average percentage of hits con-
sidering an error of less than 5% was equal to 87.86%, and the average value of MSE was
equal to 17.5099, with standard deviations of 1.5848, 1.8974, and 0.0059, respectively.
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Figure 10. Cross-validation model.

Table 9. Cross-validation results.

Profile Training Time (m) % of Hits χ2<5% MSE

1 14.6750 85.17 0.0757

2 18.2350 86.95 0.0690

3 18.2165 87.93 0.0669

4 18.2044 89.75 0.0633

5 18.2189 89.51 0.0603
Average 17.5099 87.86 0.0670

Standard deviation 1.5848 1.8974 0.0059

In relation to the three profiles analyzed, the choice of the appropriate levels for
the structural parameters of the best network topology were those corresponding to the
maximized desirable profile with 100 and 30 neurons, respectively, a momentum of 0.2,
and a learning rate of 0.2.

Figure 11 shows the layered surface diagram of the neural network used in this work.
The training was performed using MATLAB software. The ANN was composed of an
input layer with 100 neurons, a hidden layer with 30 neurons, and an output layer with
6 neurons. All three layers used the activation function. The training algorithm used to
adjust the weighting of the synaptic weights was resilient backpropagation.

Figure 11. Best maximized desirable topology used in this study.

3.4. Implementation Results Compared with Simulation Results

Table 10 shows the measurement of the 10 trajectories predicted by the Quetzal
manipulator and the error generated in comparison with the calculated trajectory. To
analyze the data, 10 trajectories were chosen from the training dataset, and the simulation
of each of them was carried out in order to obtain the distance traveled from the initial
position to the final point.
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Table 10. Trajectory comparison.

Trajectory
Calculated Final

Position (cm)
Calculated Measure Predicted Position (cm)

Measured
Distance (cm)

Error %

6 [−0.93, −3.81, 59.34] 4.9862 [5.51, 4.22, 58.91] 5.2 4.2

13 [−4.56, −19.98, 52.47] 22.78 [−8.78, −17.90, 52.97] 22.5 1.2

161 [−11.32, −35.76, 22] 55.13 [−27.17, −25.88, 18.96] 54.5 1.1

216 [−22.27, −26.95, 28] 48.97 [−27.18, −23.14, 28] 51.5 5.1

236 [−14.97, −25.94, 25.77] 47.33 [−28.22, −13.01, 20] 51 7.7

317 [14.32, −27.56, 8.46] 62.25 [14.58, −24.46, 4.94] 63.5 2

663 [4.36, −18.87, 46.35] 25.16 [5.12, −19.25, 46.33] 26 3.3

988 [30.75, −12.49, 33.98] 43.70 [26.63, −20.93, 29.13] 45.5 4.1

1025 [−12.41, 1.87, 57.09] 13.63 [−11.11, 4.18, 58.39] 14 2.7

1216 [23.41, 24.49, 37.90] 41.82 [19.59, 28.94, 34.78] 43.5 4

Average 3.5

The greatest error observed was in trajectory number 236, with a value of 7.7% com-
pared with the calculated one, while for trajectory number 6, the error was 1.1% compared
with the calculated one. A mean error of 3.5% was obtained for the implementation of the
10 physically realized trajectories using the low-cost (approximately USD 1500) 3D-printed
Quetzal manipulator.

3.5. Comparative Analysis

Table 11 shows the values obtained in the design of the optimized BPNN in comparison
with the BPNN based on trial and error and other methods used in the optimization of the
structural parameters in ANN. As can be seen, the conventional BPNN method based on
trial and error shows a greater difficulty in determining the optimal parameters, whereas
the optimized BPNN results in a shorter time in the training process than the other methods;
in addition, it involves noise parameters that are necessary to generate greater robustness
in the network design.

Table 11. Comparison of results with other methods.

Method Iterations Training Time Total Tested Networks Prediction Error

BPNN trial and error Often millions Several hours 100 in several hours Undetermined

PSO conventional [49] 5000 Not specified 10 0.00913

PSO [11] 100 03:51:38 10 in 39 h 0.0456

This study 10,000 00:17:30 36 in 178 min 0.0171

4. Conclusions and Discussion

Various approaches and powerful learning algorithms of great value have been in-
troduced in recent decades; however, the integration of the various approaches in ANN
optimization has allowed researchers to improve performance and generalizability in
ANNs. The results of this work revealed that the proposed systematic and experimental ap-
proach is a useful alternative for the robust design of ANNs since it allows simultaneously
considering the design and the noise variables, incorporating the concept of robustness in
the design of ANNs. The RDANN methodology used in this work was initially proposed in
the field of neutron dosimetry, so it was adapted for implementation in the field of robotics,
allowing us to improve the performance and generalization capacity in an ANN to find the
solution to the inverse kinematics in the Quetzal manipulator.
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The time spent during the network design process was significantly reduced compared
with the conventional methods based on trial and error. In the methods that are generally
proposed by the previous experience of the researcher, the design and modeling of the
network can take from several days to a few weeks or even months to test the different
ANN architectures, which can lead to a relatively poor design. The use of the RDANN
methodology in this study allowed the network design to be carried out in less time, with
approximately 13 h of training, due to the orthogonal arrangement corresponding to the 36
training sessions performed using a conventional AMD Ryzen 7 5700 series processor with
an integrated graphics card.

Depending on the complexity of the problem, the use of this methodology allows
handling times ranging from minutes to hours to determine the best robustness parameters
in the network architecture. Therefore, it is possible to streamline the process and reduce
efforts, with a high degree of precision in network performance. The use of the RDANN
methodology allowed the analysis of the interaction between the values in the design
variables that were involved, in order to consider their effects on network performance,
thus allowing a reduction in the time and effort spent in the modeling stage and speeding
up the selection and interpretation of the optimal values in the structural parameters of the
network. The quality of the data in the training sets, without a doubt, can significantly help
to increase the performance, generalization capacity, and precision of the results obtained.
Although the proposed method was implemented and tested in a low-cost manipulator in
this study, in future work, we plan to implement it in an industrial-type robot controller.
The implementation of the proposed method in parallel robotic manipulators, where the
solution of the kinematics is more complex, is also considered.
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