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Affected by global climate change and rapid socio-economic development, China faces
serious water security issues, especially in terms of water shortages, flood disasters, and
water-related ecological and environmental problems. These challenges associated with
China’s water issues have restricted the country’s social and economic development, and
attracted global attention. Due to the complexity of the water-related issues in China, the
solution to these requires comprehensive research across different disciplines.

A series of academic exchanges have been carried out to discuss China’s water issues,
including the well-known “China Water Forum”, which focuses on discussing solutions
to China’s water issues, the “Water Science Development Forum”, which focuses on pro-
moting the multidisciplinary integration of water science and other relevant disciplines to
discuss water issues in China, and the “Water Science Lectures”, which is an open, shared
and non-profit public welfare lecture.

In order to better discuss China’s water issues, the Editorial Department of Water
cooperated with “China Water Forum”, “Water Science Development Forum”, and “Water
Science Lectures” to set up a series of columns. At least one column is planned each year
currently. The column established in 2022, “China Water Forum 2022”, has ended and
the new column set up in 2023, namely “China Water Forum 2023”, has begun. A total
of 11 papers were accepted in the column “China Water Forum 2022”. According to the
papers published in the column, we summarize China’s water security status and issues to
help readers understand the relevant research progress.

Four themes are designed in “China Water Forum 2022”, as follows:
(1) Climate change and hydrology;
(2) Water problems and human–water relationship control;
(3) Water environment and ecology;
(4) Water information technology and modeling.
The eleven papers published in this Special Issue discuss China’s water issues from

different aspects. They were divided into three categories based on their research themes,
including Category A: “the groundwater issues in parts of China” [1,2], Category B: “the
water ecological and environmental issues of rivers and lakes” [3–6], and Category C: “the
sustainable utilization of water resources and human–water sustainable development” [7–11].

For Category A, “The groundwater issues in parts of China”, Wang et al. [1] set up a
numerical model to simulate the saltwater upconing and recovery process in a small coral

1



Water 2023, 15, 1628

island located on the Xisha Islands in the South China Sea to determine the exploitable coef-
ficient of the freshwater lens in the island. They concluded that the exploitable coefficient of
the freshwater lens in the small coral island is smaller than that in inland areas. Wu et al. [2]
compared the performance of data-driven models to predict groundwater level with Hebei
Plain as a case study. Their results showed that the gated recurrent unit model performed
better than other data-driven models such as the support vector machine, long-short term
memory, and multi-layer perceptron. Therefore, the determination of ground water level is
worth exploring further in the future. The combination of data-driven and physics-based
models may help to achieve better results.

For Category B, “The water ecological and environmental issues of rivers and lakes”,
Lu et al. [3] calculated the minimum lake water demand in East Juyan Lake, an inland
desert terminal lake of the Heihe River in northwest China. They found that the area of the
lake has increased over the past 15 years due to artificially ecological water diversion. A
minimum annual water demand of 54 × 106 m3/year was suggested for the lake; however,
it is not currently satisfied. The results of Gao et al. [4] showed that silt contributes the most
to lake sediment in the Hulun Lake, China, followed by sand. Zhang et al. [5] investigated
the characterization of dissolved organic matter of sediments in streams of the Wuhan City.
They showed a considerable impact of heavy metals on the characterization of dissolved
organic matter concentrations and components. Liu et al. [6] proved an annual production
flow reduction of about −28.2% in the Songhua River Basin under climate change and
water use. The contribution of climate change and water use to annual runoff reduction
is 77.0% and 23.0%, respectively. They also found that groundwater recharge increased
by 9.2% and 4.1% during the freezing and thawing periods in the Songhua River Basin.
According to the published papers, water ecological and environmental issues in rivers
and lakes of China are still urgent problems to be solved. In detail, the most popular topics
of discussion are ecological water demand, water pollutions, and streamflow alteration
induced by climate change and human activities.

With regard to Category C, “The sustainable utilization of water resources and human-
water sustainable development”, Zuo et al. [7] proposed a carbon dioxide emission equiva-
lent analysis method to quantify the carbon dioxide emission equivalent in 31 provinces
in China. The results showed that reservoir storage, tap water allocation, and wastewa-
ter treatment are the main contributors to carbon dioxide emissions equivalent for water
resource development, allocation, and protection behaviors, respectively. They suggest
that increasing the proportion of hydroelectric power generation, improving ecological
water security capacity, and strengthening the level of wastewater treatment and reclaimed
water reuse are effective measures to promote carbon neutrality. Liang et al. [8] estab-
lished a green development-level evaluation system to assess the green development of the
Chengdu–Chongqing City Group. They showed that the overall green development level
of the Chengdu–Chongqing City Group is on an upward trend. Li et al. [9] assessed the
harmony degree and adaptive utilization capacity of water resources for sub-systems of
water resources, economy, society, and ecology in the Tarim River Basin. They showed that
the main factors affecting the harmony development and the adaptive utilization of water
resources are per capita GDP, the proportion of non-agricultural output value in GDP, and
the per capita net income of rural residents. Zhang et al. [10] analyzed the water-saving
level in 31 provinces in China using support vector machine model and found that the
water-saving level is high in Beijing City, Henan Province and Zhejiang Province. Overall,
the water-saving level in North China, Central China and Southeast China was higher than
that in Northwest China, Southwest China and Northeast China. Ju et al. [11] discussed the
concept of a happy river. They posit that a happy river should be able to maintain its own
health, support high-quality economic and social development in the river basin and the
region, reflect harmony between humans and water, and provide people in the river basin
with a high sense of security and the ability to gain satisfaction. They further analyzed the
meaning of happy rivers from five levels, including water security, water resources, water
environment, water ecology, and water culture.
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Freshwater Lens Considering the Integrated Effects of Lens
Growth and Contraction
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* Correspondence: lcshu@hhu.edu.cn (L.S.); 20200609@hhu.edu.cn (R.Z.);

Tel.: +86-138-5194-1641 (L.S.); +86-139-1384-0412 (R.Z.)

Abstract: Groundwater on small coral islands (so-called freshwater lens) is an important water
resource for residents and local ecosystems. However, an overexploitation of it may induce a
contamination by saltwater. In this paper, we strive to determine the exploitable coefficient of the
freshwater lens considering the integrated effects of lens growth and contraction and examine the
impacts of well layout schemes on the evolution of the freshwater lens. For this purpose, a numerical
model is setup to simulate the saltwater upconing and recovery process under pumping conditions
during different evolution stages. Our results show that long-term and higher intensity pumping
activities are suggested to be conducted at the latter stage of the lens evolution. Meanwhile, the
seasonal contraction of the freshwater lens caused by the seasonal variation in rainfall is characterized
by a quicker response of center thickness than maximum thickness of the lens, which further impacts
the pumping intensity. The results also indicate that the exploitable coefficient (ρ) of the freshwater
lens in small coral island is generally smaller than that in inland areas, ranging from 0.09 to 0.37 under
different well layout schemes. Additionally, it is also affected by the uncertainty of hydrogeological
parameters. Finally, a safe exploitable coefficient is proposed under the most unfavorable parameter
combination for the studied island. The study has important implications for the protection and
sustainable exploitation of subsurface freshwater resources on island.

Keywords: freshwater lens; small coral island; numerical simulation; sustainable exploitation

1. Introduction

Coral islands are distributed in the tropical and subtropical oceans of the Pacific and
Indian oceans where corals are easy to grow [1]. Because of their extreme geographical
isolation, unique geological structure, and vulnerable water resources, they attracted the
attention of researchers in various fields [2,3]. The freshwater lens is a limited renewable
underground freshwater resource on the coral island, which exists in the form of a floating
“lens” [4–6]. Unlike most marine islands, coral islands have a double-layer aquifer system,
which is composed of Holocene aquifer and Pleistocene aquifer [7]. The Holocene aquifer
is unconformably covered by the Pleistocene limestone [5], and the freshwater lens is
stored in the Holocene aquifer. Due to the high permeability of the soil and weathering
layer of the small coral island, it is difficult to form surface runoff, and the freshwater lens
became the only natural water supply source on the island [5]. Therefore, whether it is
the early development of uninhabited natural islands or the daily life of inhabited islands,
the reasonable development and utilization of the freshwater lens can play an important
role in alleviating the water supply difficulties [1–3], with great economic, military, and
social benefits. The amount of available groundwater is usually obtained by the exploitable
coefficient method, while the exploitable coefficient of small coral islands is closely related
to many factors, such as the hydrogeological conditions, the development of the freshwater
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lens, etc. Therefore, it is necessary to discuss the determination method of the exploitable
coefficient in combination with the formation and evolution of the freshwater lens, the
seasonal variation in precipitation, and the specific pumping well layout, so as to provide
help for the sustainable development and utilization of the freshwater lens in the small
coral island.

In order to scientifically and rationally develop and utilize the fresh groundwater
resources of coral islands, scholars conducted in-depth research on the formation and
internal fluid dynamics of freshwater lenses [8–13]. Zhou et al. [14] and Yao [15] simu-
lated the formation and evolution of the freshwater lens on natural and artificial islands
through numerical models; Li et al. [16] simulated the dynamic process of the freshwater
lens under the conditions of recharge and pumping through physical experiments. Dose
et al. [17] explored the influence of hydrogeological parameters on the flow movement of
the freshwater lens through a physical sand tank experiment and numerical simulation;
Post et al. [18] studied the long-term impact of abstraction on the freshwater lens through
field observation and numerical simulation. These studies show that freshwater lenses are
highly sensitive to climate factors and human activities [19,20], which must be considered
in the sustainable development and utilization of freshwater lenses [21,22].

Although the fresh groundwater in the small coral island is very limited due to the
limitations of natural conditions and technology, it is necessary to exploit freshwater lenses
to meet the water demand at the early stage of island development. Unlike inland aquifers,
the quality and quantity of freshwater available to small island communities depend on the
mixing of seawater and freshwater, seawater intrusion, and human activities [5]. In many
studies, the definition of drinking water in the freshwater lens is 2.5% relative to the salinity
of seawater, or the chloride concentration is about 500 mg/L [11,13,23,24]. Underwood
et al. [11] believed that the exploitable freshwater lens appeared at the place where the
recharge was greater than or equal to 2000 mm/y and the island width is larger than 250 m.
Traditionally, the sustainable exploitation of atolls ranges from 25% to 50% based on the
percentage of recharge [5,25]. Ibrahim et al. [26] used 30% of the rainfall as an approximate
estimate of sustainable exploitation. Pauw et al. [27] and Post et al. [18] suggested that
the numerical simulation for evaluating sustainable exploitation should be conducted at a
decadal scale, even for small islands.

The above-mentioned research provides a rich knowledge background for the research
on sustainable exploitation of freshwater lenses in small islands. However, more factors
should be considered in the estimation of ideal sustainable exploitation, such as the ac-
ceptable salinity limit, the growth stage of freshwater lenses, the seasonal contraction of
freshwater lenses, the well layout plan, and the heterogeneity of media.

This paper discusses a method to determine the exploitable coefficient of freshwater
lenses in small coral islands, and considers the comprehensive effect of lens growth and
contraction and the impact of well layout on the evolution of the freshwater lens. By simu-
lating the growth stage of the freshwater lens and the seasonal contraction of the freshwater
lens caused by the uneven distribution of rainfall in a year, the optimum pumping stage of
the freshwater lens in the coral island was studied. In addition, considering the uncertainty
of hydrogeological parameters, the safe exploitable coefficient under the given well layout
scheme is calculated, which is supposed to provide a reference for the exploitable coefficient
range of freshwater lenses in small coral islands.

2. Study Area

The coral island is located on the Xisha Islands in the South China Sea. It is 1.98 km
long from east to west and covers an area of 2.1 km2. Due to the tropical monsoon and
humid marine climate, the annual average temperature is 26.5 ◦C, and the average annual
rainfall is 1505 mm, most of which falls from June to November. The average elevation
of the island is about 4.4 m, and the depression in the middle is 2–3 m lower than the
surrounding sandbank, which is developed by the lagoon. The sand mat with flat terrain
is the main part of the island, which is slightly higher than the depression. The sandbank

5



Water 2023, 15, 890

formed by clastic sand from coral shells surrounds the islands. The narrow beach slopes
towards the sea. Reefs much larger than islands are hidden under the sea. The island is
covered with tropical plants, such as pittosporum fortunei. The coverage of the vegetation
on the islands and reefs shows that the freshwater is sufficient for the growth of plants.

The coral island is formed by the accumulation or cementation diagenesis of coral
reef fragments, shells, gravel, algae, and other biological debris on the coral reef. Ge-
ological profiles based on 10 boreholes show that the subsurface can be divided into a
Holocene and an underlying Pleistocene unit. Coral islands and reefs have no surface runoff
due to loosened surface structures and strong permeability. Rainfall is the only natural
recharge to the groundwater system. The depth of groundwater in the coral island is about
0.3–2.9 m. The indigenous people on the island are fishermen. Before the completion of the
desalination plant and the sewage treatment plant, the water supply mainly depends on
the groundwater with a withdrawal of about 400 m3/d.

3. Materials and Methods
3.1. Conceptual Model

The main natural recharge source of groundwater is atmospheric precipitation infil-
tration. The underground can be divided into Holocene and underlying Pleistocene units.
The contact between Holocene and underlying Pleistocene sediments, called ‘Thurber dis-
continuity” or “Holocene Pleistocene unconformity” (HPU) [24], occurs at a depth of
15–20 m below sea level. Pleistocene coral reef limestone is characterized by devel-
oped pores and dissolution pores, strong permeability, and easy seawater circulation [14].
Holocene granular sediments are mainly composed of coral clastic medium sand and coral
clastic gravelly sand. The hydraulic properties of the Holocene and Pleistocene units of the
coral island are obviously different. The hydraulic conductivity (K) of Holocene limestone
is obviously higher than that of Holocene sediments. The conceptual sketch of the coral
island is shown in Figure 1. The map includes a simplified geological setting and shows
the dual nature of the water system formed by Holocene sediments overlying Pleistocene
karst limestone.

Figure 1. Conceptual model of small coral island.

3.2. Parameter Setting of Numerical Model

A two-dimensional numerical density-dependent groundwater flow and solute trans-
port model is developed to represent the profile of a coral island using SEAWAT [28,29].
This interpretation model is used to simulate the dynamics of a coral island freshwater lens
under similar hydrogeological conditions; as a result, calibration is not required [30]. The
variable density groundwater flow equation is as follows:

K(
∂2H
∂x2 +

∂2H
∂z2 ) + Kη

∂c
∂z

= Ss
∂H
∂t

+ nη
∂c
∂t
− ρ

ρ0
qs (1)

where K is the hydraulic conductivity (m/d), H is the piezometric head (m), c is solute con-
centration (kg·m−3), Ss is the water storage rate (m−1), t is time (d), n is the medium’s poros-
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ity; η is the density coupling coefficient (kg·m−3), ρ is the mixed fluid density (kg·m−3), ρ0
is the freshwater density (kg·m−3), and qs is the volume of source and sink items entering
unit volume aquifer in unit time (d−1).

The solute transport equation is as follows:

∂c
∂t

+ ui(
∂c
∂xi

) =
∂

∂xi
(Dii

∂c
∂xi

) +
(c∗ − c)

n
qs (2)

where xi is the infiltration direction (m), Dii is the hydrodynamic dispersion coefficient
tensor (m2·d−1), ui is the flow velocity (m·d−1), and c* is the mass concentration of the
source or sink fluid (kg·m3).

The model was running for 100 years, during which the freshwater lens developed.
The model reached a stable state within 50 years (i.e., the shape of the lens remained
relatively stable). The model includes 22 layers with a depth of 50 m to improve the vertical
resolution in the model simulation, and is discretized into 41 columns in the horizontal
direction and refined at the boundary. A constant head boundary is defined along both
sides of the area to simulate sea level. The density is specified as 1025 kg/m3, repre-
senting typical sea water composition. The constant concentration boundary is assigned
to the same grid cell as the constant head boundary, and the chloride concentration is
19,000 mg/L. Assuming that the loose sediment of the coral island is initially saturated
with seawater, the initial chloride concentration in the whole model area is specified
as 19,000 mg/L. The ground of the model is based on boreholes. The model grid is
shown in Figure 2.

Figure 2. The grid of the developed model.

The hydraulic conductivity of main aquifers is determined according to petrology and
previous studies [14,31,32]. The upper model layer represents coral sand, and the hydraulic
conductivity (K) ranges from 60 m/d to 150 m/d. The lower model layer represents coral
reef limestone. Because there are many pores and fractures of different sizes, it has good
permeability, and the hydraulic conductivity (K) is 1000 m/d [33]. The effective porosity
(ne) is 0.25–0.45, and the specific yield (Sy) is 0.1–0.2.

Precipitation is the only recharge of freshwater to the hydrogeological system, so it is
the main mechanism to simulate the development of the freshwater lens in the model [34].
The coefficient of the precipitation recharge (α) is used to calculate the monthly replenish-
ment. Production wells will not be activated until the model reaches a stable state. After
the model reaches the steady state, the production wells are started for 20 years to simulate
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the saltwater coning. Table 1 summarizes the hydrogeological parameters assigned to the
SEAWAT model.

Table 1. Parameter values used in the model for the coral island groundwater system.

Settings Parameter Units Value

Basic setup

Island width m 1980
Thickness m 50

Grid \ 41 × 22
Simulated time step d 36,525

Flow model

Recharge mm/y Monthly average
recharge

Effective porosity \ 0.25–0.45
Holocene K m/d 60–150

Pleistocene K m/d 1000
Specific yield \ 0.1–0.2

Transport model Longitudinal dispersivity m 5

Density-dependent
model

Reference fluid density kg/m3 1000
Seawater density kg/m3 1025

4. Results and Discussion
4.1. Growth and Contraction of Freshwater Lens under Natural Conditions
4.1.1. Growth Characteristics and Stage Division of Freshwater Lens

According to the drinking water standard formulated by the World Health Organiza-
tion (WHO), the chloride (Cl−) ion concentration should not exceed 250 mg/L [35]. In this
study, a 250 mg/L concentration contour was selected as the division between freshwater
and saltwater. The growth of the freshwater lens is a long and slow dynamic process.
The simulation results show that it takes 45 years for the freshwater lens to grow to its
maximum thickness and for the reserve to be basically stable, and the central thickness
will also reach its maximum in the 60th year. The water head distribution shows the basic
characteristics of “high in the middle, low around”. The maximum freshwater head (Hm)
is 0.32 m, forming a hydraulic gradient from the center to the edge, which can ensure that
freshwater is continuously discharged into the sea from the thickest part of the lens. The
shape of the stabilized freshwater lens and the groundwater flow rate are shown in Figure 3.
After being recharged, the water within the freshwater lens flows from top to the bottom
and discharges water around the island. Meanwhile, the seawater moves upward, “lifting”
the freshwater lens so that it floats on the land and the entire groundwater system is in
a dynamic equilibrium. The center of the freshwater lens produces a low velocity area,
forming a stagnation zone (Figure 3). The flow velocity increases from the center to the
boundary of the lens. Due to the difference in seawater density and freshwater density,
which produces larger buoyancy in the center of the lens, the center thickness (Tc) is smaller
than the maximum thickness (Tm) (Figure 3). However, the difference will become smaller
if the lower interface salinity standard increases.

The growth of the freshwater lens can be divided into three stages according to the
temporal variation in the thickness and freshwater storage of the freshwater lens (Figure 4):

• Stage I: 0–20 years, two extremely thin freshwater areas are formed underground on
both sides near the middle of the island. The freshwater lens develops rapidly in the
form of a “doughnut”, but the central thickness increases slowly. During this stage,
the main role of precipitation recharge is to dilute and flush the salinity of the original
groundwater under the island. The groundwater velocity near the middle of the island
is the largest;

• Stage II: 20–40 years, this stage is the main stage for the stable growth of the freshwater
lens. The freshwater on both sides near the middle of the island are combined into
one. The maximum thickness of the freshwater lens increases synchronously with the
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central thickness, and the central thickness increases significantly faster than Stage
I. during this stage, a large great deal of freshwater seeps into the freshwater lens
through the surface as the precipitation continues to recharge the groundwater, the
thickness of the upper freshwater of the lens becomes larger, and the interface between
freshwater and saltwater becomes deeper. Meanwhile, the salinity gradient becomes
larger, the corresponding vertical mixing weakens, and the horizontal range of the
freshwater lens gradually expands;

• Stage III: After 40 years, the thickness of the freshwater lens increases slowly. After
45 years, the maximum thickness of the freshwater lens is stabilized. Later, the
central thickness increases slowly, and reaches the maximum in 60 years. During this
stage, the supply and discharge reach a dynamic balance, the thickness and scope of
the freshwater lens will not increase, and the freshwater lens will enter a relatively
stable status.

Figure 3. Morphology and velocity distribution of the freshwater lens (a: stagnation zone).

Figure 4. Division of growth stages of freshwater lens.
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4.1.2. Seasonal Variation in Freshwater Lens

Precipitation impacts the difference of density and concentration between saltwater
and freshwater, and further regulates the dynamic changes of freshwater lens. Hm increases
continuously from June when the rainy season starts and usually reaches the maximum
value in autumn when the rainy season ends. Although the annual variation in Hm is small,
it is a key control factor for the freshwater lens to reach the maximum depth and plays an
important role in maintaining the thickness of the freshwater lens.

The shape change of the freshwater lens is mainly reflected in its geometric thickness
(Figure 5). The simulation results show that the change in Tm obviously lags behind Tc
(about half a year), and Tm presents a smaller annual variation than Tc. Larger Tm indicates
more recoverable groundwater, and due to the slower response of Tm to precipitation, the
annual maximum Tm usually appears in the winter when the island is most vulnerable to
water shortage in the year, which guarantees the more desired pumping amount during
the dry season.

Figure 5. Seasonal variation in freshwater lens thickness.

The freshwater storage (Wa) of the profile is determined by the specific yield (µ) and
the shape of the freshwater lens. It reaches the maximum value in July and minimum value
in November. The annual variation Wa is only 24.6 m3, accounting for 0.9% of the average
Wa, and the mean precipitation has little effects on Wa (Figure 6).
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Figure 6. Seasonal change of freshwater lens reserves.

The seasonal change of the spatial distribution of the freshwater lens is mainly reflected
in the edge area. Figure 7 is a local enlarged view of region b in Figure 3. In winter and
spring, the edge of the freshwater lens becomes thinner and even discontinuous, leading
to a narrower freshwater lens. In summer, the thickness of the freshwater lens begins to
recover gradually and reaches the maximum in autumn. The seasonal cycle may be related
to the obvious sand dike topography in the east. Therefore, the edge of the freshwater
lens is very vulnerable and could be impacted by droughts, seawater flooding events, and
human activities, which results in a reduction in the freshwater lens.

Figure 7. Seasonal change in the edge of the freshwater lens.

The uneven seasonal distribution of precipitation can also cause the natural contraction
of the freshwater lens in terms of its thickness, storage, and distribution. In general, the
maximum freshwater head is most sensitive to the seasonal change of precipitation, but
because the value is very small, this change is not easy to notice; the second is the central
thickness and the maximum thickness of the freshwater lens, but their changes are not
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synchronous. In contrast, the seasonal change of precipitation has a greater impact on the
central thickness; and the seasonal variation in reserves is the least obvious. The thinning
of the lens edge in spring leads to the reduction in the lens range. These changes mean that
the natural contraction of the freshwater lens should be considered when determining the
exploitable amount of groundwater.

4.2. Degradation and Recovery of Freshwater Lens under Pumping Conditions

In the three different growth stages, the adaptability of the freshwater lens to pumping
is different. To explore the response of the freshwater lens to the pumping process in the
three stages, the pumping will be carried out for 5 years at Stage I, Stage II, and Stage III,
with the pumping volume of 0.2, 0.3, and 0.5 m3/d. Because the freshwater lens in Stage I
is very thin and has a limited distribution range, the pumping well will be quickly broken
down by saltwater, so this stage is not suitable for exploitation.

The change process of the thickness of the freshwater lens in the pumping pro-
cess of Stage II is shown in Figure 8. Compared with Stage I, the freshwater lens in
Stage II has developed to a larger volume, and the effect of short-term exploitation at a low
pumping rate on the freshwater lens thickness can be offset by the natural increase of lens.
However, in the early stage of Stage II, during which Tc is very small, there is a high risk of
the production well being broken down by saltwater. The recovery time is much shorter
(10 years shorter) if the pumping starts in early Stage II rather than late State II (Table 2).

Figure 8. Thickness changes of the freshwater lens in Stage II under pumping conditions
(a) Q = 0.2 m3/d, pumping starts in the middle of Stage II (30), and pumping starts in the late
stage of Stage II (35), (b) Q = 0.3 m3/d, and (c) Q = 0.5 m3/d.
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Table 2. Changes and recovery time of freshwater lens thickness at different stages and pumping
volumes.

Stages
Pumping
Duration

(y)

Pumping
Rates
(m3/d)

Minimum Value (m) Thickness Variation (m) Recovery Time (y)

Tm Tc Tm Tc Tm Tc

II 5(30) 0.2 10.6 5.3 0 0.8 35 35
5(35) 0.2 10.9 6 −0.2 0 25 25

5 0.3 10.4 5 −0.2 0.4 30 30
5 0.5 10 4.5 −0.6 0 35 35

III 5 0.2 11.1 6.8 −0.45 −0.6 35 25
5 0.3 11 6.4 −0.55 −1 35 30
5 0.5 10.5 5.7 −1.05 −1.7 35 35

In Stage III (Figure 9), the freshwater lens is developed and maintains a relatively
stable shape, with large Tm and Tc. Compared with the pumping at the end of Stage II,
the reduction in the thickness of the freshwater lens in Stage III is larger under the same
pumping rates (Table 2). However, because the thickness base of the freshwater lens in this
stage is larger, even if the thickness is reduced, it is still thicker than that in Stage II, which
makes the freshwater lens in Stage III able to withstand greater pumping intensity. The
duration is very long, which means there is a possibility of long-term pumping. In general,
the freshwater lens is more adaptable to pumping in Stage III.

Figure 9. Thickness changes of the freshwater lens in Stage III under pumping conditions
(a) Q = 0.2 m3/d, (b) Q = 0.3 m3/d, and (c) Q = 0.5 m3/d.

If other conditions do not change, the time required for the freshwater lens to recover
to its natural state after pumping suspension is mainly affected by the pumping intensity
and the growth stage of the freshwater lens when pumping starts (Figure 10). In the early
stage of Stage II, the pumping volume is 0.2 m3/d for five years, and the recovery time
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to the natural state after pumping is 30 years. In the later stage of Stage II, the pumping
will be carried out for five years with the same pumping amount, and the impact on the
thickness can last for 25 years. Compared with the pumping in the earlier stage of Stage II,
the recovery time will be shortened by five years. In Stage III, the pumping volume is 0.2,
0.3, and 0.5 m3/d, respectively, and the recovery time after pumping suspension increases
with the increase in pumping intensity, which is 25, 30, and 35 years, respectively.

Figure 10. Recovery process of freshwater lens thickness after stopping pumping ((a): changes in
Tm in Stage II; (b): changes in Tc in Stage II; (c): changes in Tm in Stage III; and (d): changes in Tc in
Stage III).

To sum up, pumping is not recommended in the early stage of Stage II; in the middle
and late stage of Stage II, relatively short and low intensity pumping can be accepted;
and in Stage III, long-term pumping with relatively higher intensity is possible, but it
should be noted that the pumping intensity should not be too large, and the basic require-
ment that the wells should not be broken down by saltwater during the pumping period
should be met.

4.3. Calculation of the Safe Exploitable Coefficient

The sustainable exploitation amount should not exceed the exploitable amount of
groundwater. The exploitable coefficient (ρ) refers to the ratio of the exploitable amount
of groundwater (Q) in an area to the total recharge amount of groundwater (W) in the
same area:

ρ = Q/W (3)
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where ρ is the exploitable coefficient; Q is the exploitable amount of groundwater in the
area, W is the total recharge of groundwater in the same area. Furthermore, ρ should not be
greater than 1. The closer the ρ value is to 1, the better the exploitation condition of aquifer
is, and the smaller the ρ value is, the worse the exploitation condition is.

The assessment of sustainable exploitation must be based on decades of time scale [18].
This paper adopts the concept of total critical pumping rate (QT) (the maximum pumping
rate of all pumping wells without salinization under pumping conditions) for an inverse
calculation of maximum exploitation through numerical simulation [22]. Nine well layout
schemes along a straight line are designed in this study, which include the combination
of different well numbers, well spacing, and the length of screen. Under the premise
of continuous pumping for 20 years without salinization, the maximum total pumping
rates obtained by each scheme have a large difference, reflected by the large variation in
exploitation coefficients ranging from 0.09 to 0.37 (Table 3). This means that on a small
island, the specific layout plan of pumping wells has a huge impact on the exploitable
amount of groundwater.

Table 3. Well layout plan and results of QT, Tc, Tm, and ρ.

Test Number
Well Layout Plan Results

Screen
Length (m)

Number of
Wells

Distance between
Wells (m) QT (m3/d) Tc (m) Tm (m) ρ

1 4 4 100 0.407 4.3 9.2 0.17
2 2 4 200 0.73 1.1 7.4 0.30
3 2 6 150 0.907 0.5 6.1 0.37
4 3 4 150 0.555 2.3 8.2 0.23
5 2 2 100 0.33 2.2 9.8 0.13
6 4 6 200 0.735 1.7 7 0.30
7 3 6 100 0.562 2.8 7.5 0.23
8 4 2 150 0.215 3.3 10 0.09
9 3 2 200 0.33 4.6 9.8 0.13

Max ρ 2 6 150 0.907 0.5 6.1 0.37
Min ρ 4 2 150 0.215 3.3 10 0.09

Due to the uncertainty of hydrogeological parameters, even under the determined well
layout scheme, QT is also uncertain. In this study, the impact of hydrogeological parameter
uncertainty on QT is investigated by conducting simulations under three combinations
of net recharge (R), hydraulic conductivity (K), and porosity (n) (Table 4) in a linear well
layout plan (two wells with a length of 3 m and a spacing of 200 m). The exploitable
amount of groundwater obtained under this scheme is not the largest, but the seasonal
contraction of Tc and Tm of the freshwater lens is comprehensively considered to ensure
that the reduction in Tc and Tm will maximize the benefit of QT increase when the thickness
of the freshwater lens is not less than 2 m. Therefore, the QT and ρ are safe. The pumping
period is 20 years in the growth Stage III of the freshwater lens.

Table 4. Parameter combinations and calculation results.

Parameter Combinations Results

∆R* ∆K* ∆n* Tm (m) QT (m3/d) Tr ρ

Scenario 1: 0 0 0 9.3 0.330 35 0.13
Scenario 2: −30% 30% −30% 6.3 0.174 31 0.1
Scenario 3: 30% −30% 30% 12.6 0.573 37.1 0.18

Notes: ∆R* is the percentage of net recharge change, ∆K* is the percentage of hydraulic conductivity change, and
∆n* is the percentage of porosity change.

15



Water 2023, 15, 890

The simulation results of the three scenarios are shown in Figure 11. Table 4 indicates
that if the extraction volume is used for continuous pumping, as long as the hydrogeological
conditions do not change significantly, the pumping well will not be damaged by saltwater.
Our result reflects that the difference of hydrogeological conditions has a significant im-
pact on the exploitable amount of groundwater, and the uncertainty of hydrogeological
parameters must be considered when determining the safe exploitable quantity.

Figure 11. Pumping simulation results.

The recovery time, exploitable volume, and exploitable coefficient of freshwater lens
under three scenarios are recorded in Table 4, and ρ ranges from 0.1 to 0.18 under different
combinations of hydrogeological parameters. Therefore, under the determined well layout
plan, the safe exploitable coefficient is only 0.1, which is very small, but it can protect
the freshwater lens as much as possible from damage. The smaller exploitable coefficient
corresponds to larger recovery time, which shows that the combination of parameters
conducive to pumping is not conducive to the recovery of freshwater lenses.

5. Conclusions

In this paper, the characteristics of each stage in the formation process of a coral
island freshwater lens is studied, and the most suitable exploitation stage of freshwater
lens is analyzed considering the seasonal contraction of freshwater lens caused by rainfall,
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different well layout schemes, and hydrogeological parameter combinations. Furthermore,
the exploitable coefficient and the partial safe exploitable coefficient under a certain well
layout scheme are calculated.

Water resources assessment, development, and management in small islands should be
conducted considering the specific characteristics of the study island. Our research provides
a reference to determine the recoverable coefficient of other similar small islands around the
world. Previous studies on the sustainable exploitation of islands were conducted based
on the experience of managers [25]. In this paper, QT was used to deduce the exploitable
amount and exploitable coefficient of the freshwater lens on the basis of considering
the exploitation stage, seasonal variation in rainfall, and parameter uncertainty, which
provides numerical solutions for the study of the sustainable exploitation of the freshwater
lens. The recoverable coefficient calculated in this paper varies with different well layout
schemes, generally ranging from 0.09 to 0.37, which is consistent with the results from
previous studies [5,25,26]. However, under a determined pumping well layout scheme,
the calculated exploitable coefficient is determined to be 0.1, which is small but safe, by
considering the lens contraction caused by rainfall and the most unfavorable combination
of hydrogeological parameters.

The exploitability coefficient of small coral islands is significantly lower than that of
inland areas (0.6–0.95). The reason is that the freshwater on the island is constantly mixed
with saltwater and partly discharges into the sea, while the other part maintains a certain
head difference to resist seawater intrusion. In this situation, a large part of the recharge
cannot be exploited. In addition, the pumping conditions on the island are worse than
those in inland areas, resulting in a generally small exploitable coefficient on the island.

The freshwater lens is a valuable freshwater resource in island areas and exhibits
seasonal responses to precipitation under natural conditions. In terms of water supply for
the small coral island, managers should pay attention to the sustainability of the pumping
process and the protection of pumping wells, which requires a deeper understanding of the
island’s hydrogeological conditions. It is necessary to select appropriate pumping methods
according to the characteristics of the island itself, determine the exploitable coefficient sci-
entifically, pertinently, and timely to adjust the pumping plan and pumping plan according
to the development of the island, and finally achieve “one island, one policy”.

Author Contributions: Data curation, Z.L.; funding acquisition, R.Z.; methodology, R.W.; project
administration, L.S.; supervision, L.S.; validation, Z.L.; writing—original draft, R.W.; writing—review
and editing, R.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was made possible by the Key Technologies and Application Demon-
stration of Groundwater Over-Extraction Control and Protection in Huang-Huai-Hai Region (No.
2021YFC3200502) to the second author and the Belt and Road Special Foundation of the State Key Lab-
oratory of Hydrology-Water Resources and Hydraulic Engineering (2021490911) to the third author.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: All authors are very grateful to the editor and the anonymous reviewers for
their valuable comments: which have greatly improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chui, T.F.M.; Terry, J.P. Influence of sea-level rise on freshwater lenses of different atoll island sizes and lens resilience to

storm-induced salinization. J. Hydrol. 2013, 502, 18–26. [CrossRef]
2. Gohar, A.A.; Cashman, A.; Ward, F.A. Managing food and water security in Small Island States: New evidence from economic

modelling of climate stressed groundwater resources. J. Hydrol. 2019, 569, 239–251. [CrossRef]
3. UNESCO. Small Island Developing States—UNESCO’s Action Plan; Ikhlef, K., Nakashima, D., Eds.; United Nations Educational,

Scientific and Cultural Organization: Paris, France, 2016; 32p.

17



Water 2023, 15, 890

4. Gingerich, S.B.; Voss, C.I.; Johnson, A.G. Seawater-flooding events and impact on freshwater lenses of low-lying islands:
Controlling factors, basic management and mitigation. J. Hydrol. 2017, 551, 676–688. [CrossRef]

5. White, I.; Falkland, T. Management of freshwater lenses on small Pacific islands. Hydrogeol. J. 2010, 18, 227–246. [CrossRef]
6. Shuhei, Y.; Satoshi, I.; Tsutomu, K.; Kazuhisa, K.; Takeo, T.; Katsushi, S. Using hydrogeochemical indicators to interpret

groundwater flow and geochemical evolution of a freshwater lens on Majuro Atoll, Republic of the Marshall Islands. Hydrogeol. J.
2020, 28, 1053–1075.

7. Fetter, C. Position of the saline water interface beneath oceanic islands. Water Resour. Res. 1972, 8, 1307–1315. [CrossRef]
8. Bokuniewicz, H.; Pavlik, B. Groundwater seepage along a barrier island. Biogeochemistry 1990, 10, 257–276. [CrossRef]
9. Bryan, E.; Meredith, K.T.; Baker, A.; Post, V.E.; Andersen, M.S. Island groundwater resources, impacts of abstraction and a drying

climate: Rottnest Island, Western Australia. J. Hydrol. 2016, 542, 704–718. [CrossRef]
10. Schneider, J.C.; Kruse, S.E. A comparison of controls on freshwater lens morphology of small carbonate and siliciclastic islands:

Examples from barrier islands in Florida, USA. J. Hydrol. 2003, 284, 253–269. [CrossRef]
11. Underwood, M.R.; Peterson, F.L.; Voss, C.I. Groundwater lens dynamics of atoll islands. Water Resour. Res. 1992, 28, 2889–2902.

[CrossRef]
12. Vacher, H.L.; Wallis, T. Comparative hydrogeology of fresh-water lenses of Bermuda and Great Exuma Island, Bahamas.

Groundwater 1992, 30, 15–20. [CrossRef]
13. Wallace, C.D.; Bailey, R.T. Geohydrologic factors governing atoll island groundwater resources. J. Hydrol. Eng. 2017, 22, 05017004.

[CrossRef]
14. Congzhi, Z.; Li, H.; Qin, Y.; Zhendong, F. Three-dimensional numerical simulation of freshwater lens in coral islands. J. Hydraul.

Eng. 2010, 41, 560–566.
15. Yao, Y.; Andrews, C.; Zheng, Y.; He, X.; Babovic, V.; Zheng, C. Development of fresh groundwater lens in coastal reclaimed

islands. J. Hydrol. 2019, 573, 365–375. [CrossRef]
16. Li, Y.; Shu, L.; Zhen, L.; Li, H.; Wang, R.; Opoku, P. Laboratory Physical Experiments on the Saltwater Upconing and Recovery of

Island Freshwater Lenses: Case Study of a Coral Island, China. Water 2021, 13, 1137. [CrossRef]
17. Dose, E.J.; Stoeckl, L.; Houben, G.J.; Vacher, H.L.; Vassolo, S.; Dietrich, J.; Himmelsbach, T. Experiments and modeling of

freshwater lenses in layered aquifers: Steady state interface geometry. J. Hydrol. 2014, 509, 621–630. [CrossRef]
18. Post, V.E.; Bosserelle, A.L.; Galvis, S.C.; Sinclair, P.J.; Werner, A.D. On the resilience of small-island freshwater lenses: Evidence of

the long-term impacts of groundwater abstraction on Bonriki Island, Kiribati. J. Hydrol. 2018, 564, 133–148. [CrossRef]
19. Fu, W.; Moore, J.K.; Primeau, F.W.; Lindsay, K.; Randerson, J.T. A growing freshwater lens in the Arctic Ocean with sustained

climate warming disrupts marine ecosystem function. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005693. [CrossRef]
20. Sulzbacher, H.; Wiederhold, H.; Siemon, B.; Grinat, M.; Igel, J.; Burschil, T.; Günther, T.; Hinsby, K. Numerical modelling of

climate change impacts on freshwater lenses on the North Sea Island of Borkum using hydrological and geophysical methods.
Hydrol. Earth Syst. Sci. 2012, 16, 3621–3643. [CrossRef]

21. Ling, Z.; Shu, L.; Sun, Y.; Wang, R.; Li, Y. Impact of island urbanization on freshwater lenses: A case study on a small coral island.
Water 2021, 13, 3272. [CrossRef]

22. Wang, R.; Shu, L.; Li, Y.; Opoku, P.A. Pumping Well Layout Scheme Design and Sensitivity Analysis of Total Critical Pumping
Rates in Coral Island Based on Numerical Model. Water 2021, 13, 3215. [CrossRef]

23. Lloyd, J.; Miles, J.; Chessman, G.; Bugg, S. A ground water resources study of a pacific ocean atoll-tarawa, gilbert islands 1. Jawra.
J. Am. Water Resour. Assoc. 1980, 16, 646–653. [CrossRef]

24. Bailey, R.T.; Jenson, J.W.; Olsen, A.E. Estimating the ground water resources of atoll islands. Water 2010, 2, 1–27. [CrossRef]
25. Peterson, F.L. Hydrogeology of the Marshall Islands. Dev. Sedimentol. 2004, 54, 611–636. [CrossRef]
26. Ibrahim, S.A.; Bari, M.R.; Miles, L. Water Management in Maldives with Special Emphasis on Desalination. In Proceedings of the

Pacific Regional Consultation on Water in Small Island Countries, July 29th–August 3rd 2002; Carpenter, C., Stubbs, J., Overmars,
M., Eds.; Asian Development Bank and South Pacific Applied Geoscience Commission: Sigatoka, Fiji; Available online: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.913&rep=rep1&type=pdf (accessed on 17 November 2016).

27. Pauw, P.S.; van der Zee, S.E.; Leijnse, A.; Oude Essink, G.H. Saltwater upconing due to cyclic pumping by horizontal wells in
freshwater lenses. Groundwater 2016, 54, 521–531. [CrossRef]

28. Langevin, C.D.; Shoemaker, W.B.; Guo, W. MODFLOW-2000. The US Geological Survey Modular Ground-Water Model–Documentation
of the SEAWAT-2000 Version with the Variable-Density Flow Process (VDF) and the Integrated MT3DMS Transport Process (IMT); Center
for Integrated Data Analytics Wisconsin Science Center Wisconsin: Madison, WI, USA, 2000; pp. 1258–2331.

29. Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. Modflow-2000, the U. S. Geological Survey Modular Ground-Water Model-
user Guide to Modularization Concepts and the Ground-Water Flow Process; United States Department of the Interior: Washington,
DC, USA, 2000.

30. Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport, 2nd ed.;
Academic Press: Cambridge, MA, USA, 2015.

31. Zhou, C.; Qiao, H.; Du, R. Simulation and exploitation of the freshwater lens in Coral Island. J. Logist. Eng. Univ. 2016, 32, 1–10.
32. Sheng, C.; Xu, H.; Zhang, Y.; Zhang, W.; Rem, Z. Hydrological properties of calcareous sands and its influence on formation of

underground freshwater lens on islands. J. Jilin Univ. 2020, 50, 1127–1138. (In Chinese)

18



Water 2023, 15, 890

33. Oberdorfer, J.A.; Hogan, P.J.; Buddemeier, R.W. Atoll Island Hydrogeology: Flow and Freshwater Occurrence in a Tidally
Dominated System. J. Hydrol. 1990, 120, 327–340. [CrossRef]

34. Holding, S.; Allen, D. From days to decades: Numerical modelling of freshwater lens response to climate change stressors on
small low-lying islands. Hydrol. Earth Syst. Sci. 2015, 19, 933–949. [CrossRef]

35. World Health Organization. Guidelines for Drinking-Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2004;
Volume 1.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

19



Citation: Wu, Z.; Lu, C.; Sun, Q.; Lu,

W.; He, X.; Qin, T.; Yan, L.; Wu, C.

Predicting Groundwater Level Based

on Machine Learning: A Case Study

of the Hebei Plain. Water 2023, 15, 823.

https://doi.org/10.3390/w15040823

Academic Editors: Qiting Zuo,

Fuqiang Wang, Jiaqi Zhai,

Xiuyu Zhang, Dunxian She, Lei Zou,

Rong Gan and Zengliang Luo

Received: 1 February 2023

Revised: 16 February 2023

Accepted: 16 February 2023

Published: 20 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Predicting Groundwater Level Based on Machine Learning: A
Case Study of the Hebei Plain
Zhenjiang Wu, Chuiyu Lu, Qingyan Sun, Wen Lu, Xin He , Tao Qin, Lingjia Yan and Chu Wu *

State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water
Resources and Hydropower Research, Beijing 100038, China
* Correspondence: wuchu@iwhr.com

Abstract: In recent years, the groundwater level (GWL) and its dynamic changes in the Hebei Plain
have gained increasing interest. The GWL serves as a crucial indicator of the health of groundwater
resources, and accurately predicting the GWL is vital to prevent its overexploitation and the loss
of water quality and land subsidence. Here, we utilized data-driven models, such as the support
vector machine, long-short term memory, multi-layer perceptron, and gated recurrent unit models,
to predict GWL. Additionally, data from six GWL monitoring stations from 2018 to 2020, covering
dynamical fluctuations, increases, and decreases in GWL, were used. Further, the first 70% and
remaining 30% of the time-series data were used to train and test the model, respectively. Each model
was quantitatively evaluated using the root mean square error (RMSE), coefficient of determination
(R2), and Nash–Sutcliffe efficiency (NSE), and they were qualitatively evaluated using time-series
line plots, scatter plots, and Taylor diagrams. A comparison of the models revealed that the RMSE,
R2, and NSE of the GRU model in the training and testing periods were better than those of the other
models at most groundwater monitoring stations. In conclusion, the GRU model performed best and
could support dynamic predictions of GWL in the Hebei Plain.

Keywords: groundwater level prediction; data-driven models; gated recurrent units; model perfor-
mance; Hebei Plain

1. Introduction

The Hebei Plain is one of the most water-sensitive areas of China. Its per capita water
resources amount to less than 12.5% of the national total [1], and 70% of the water con-
sumption depends on groundwater [2]. Consequently, the decline in GWL has precipitated
various ecological and environmental issues in the Hebei Plain, such as land subsidence,
soil salinization, the expansion of cones of depression, and aquifer dewatering [3].

Physical and statistical models are the main tools used to predict GWL. Physical
models can describe the groundwater system and reflect changes in groundwater, but
their practical applications are hindered by heavy computational loads and the need
for large volumes of hydrogeological data [4,5]. Conversely, statistical models, such as
machine learning and deep learning models, are an effective alternative that do not require
the specific characterization of physical properties, accurate physical parameters, or the
modeling of the physical processes of a groundwater system [6–9]. Widely used statistical
models include the support vector machine (SVM), long-short term memory (LSTM),
multi-layer perceptron (MLP), and gated recurrent unit (GRU) models. Moreover, the use
of the Gravity Recovery and Climate Experiment (GRACE) gravity satellite and global
hydrological model has been identified as a promising alternative method for predicting
groundwater levels. By utilizing remote sensing data and numerical models, this method
provides valuable insights into the distribution of groundwater resources, allowing for
more informed decision-making and effective management of these vital resources [9–11].
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SVMs are a type of generalized nonlinear model for classification and regression anal-
ysis [12], and their solutions adopt a macro-perspective to solve quadratic constraint opti-
mization [13]. Asefa et al. [14] proposed a solution for groundwater monitoring and predic-
tion networks using the SVM method. Yoon et al. [15] compared time-series models based
on artificial neural networks (ANNs) and SVM to predict GWL. Moreover, Tapak et al. [16]
used SVM to predict the GWL of the Hamadan–Bahar Plain in West Iran. SVMs have also
been used to predict hydrological factors, such as river flow [17,18].

LSTM is an improved recurrent neural network (RNN) that was developed to address
the exploding gradient problem using forget and update gates to regulate gradient [19],
with GWL predictions extensively tested. Vu et al. [20] used LSTM to reconstruct, fill gaps,
and extend existing time-series of GWL data in Normandy, France. Further, Wunsch
et al. [21] compared the LSTM and nonlinear autoregressive networks with exogenous
input and proved the proficiency and accuracy of LSTM for GWL predictions.

An MLP is a type of feedforward ANN consisting of an input layer, single or multiple
hidden layers, and an output layer, and each node (neuron) in a layer is connected to
every node in the following layer [22]. MLPs have been widely used in hydrological
models [23,24] and agricultural pollution models [25–27]. Sahoo et al. [7] combined an MLP
and genetic algorithm to predict GWL changes in agricultural areas of the United States.

GRUs are an optimized version of an LSTM that shorten the model training time and
simplify the gated structure [28]. Jeong et al. [29] predicted GWL sequences using the
LSTM, GRU, and autoregressive with exogenous input models. Zhang et al. [30] used
various models to compare the simulations of the water level of the middle route of the
South-to-North Water Transfer Project and proved that the performance of GRU and LSTM
is similar but GRU has a comparatively faster learning curve. Additionally, Chen et al. [31]
automatically calibrated groundwater parameters by combining the GRU model with
particle swarm optimization.

The GWL in the Hebei Plain exhibits highly nonlinear variability due to various factors
such as precipitation, evapotranspiration, and human activities. This variability may result
in poor model prediction. Additionally, some nonlinear machine learning models may not
accurately process the noise and features that are present in the real situation of the study
area. Therefore, this paper aims to explore the mathematical relationships of the GWL
time-scale data themselves and to perform dynamic prediction of the GWL in the Hebei
Plain by comparing support vector machine (SVM), long-short term memory (LSTM), multi-
layer perceptron (MLP), and gated recurrent unit (GRU) models. We evaluate each model
qualitatively and quantitatively using dynamic fluctuation, dynamic rise, and dynamic fall
types of sites, respectively, in order to obtain a dynamic prediction model applicable to the
GWL in the Hebei Plain. The remaining paper is organized as follows: Section 2 introduces
the research area, data sources, model methods, and evaluation indicators, along with the
technical approach of this study. Section 3 introduces the main findings and discusses the
performance indicators of each model. Section 4 sets out the main conclusions of this study.

2. Materials and Methods
2.1. Study Area

The Hebei Plain is located in North China (114◦33′–119◦42′ N 36◦05′–39◦93′ E)
(Figure 1). Per capita water resources in the region are approximately 386 m3, which
is approximately one eighth of China’s national average, thus making it an extremely
water-scarce region. It lies in the semi-humid, semi-arid climate zone and experiences a
temperate continental monsoon climate. This region has four distinct seasons with rainy
and hot periods coinciding. Annual precipitation is unevenly distributed but mainly falls
in summer, with an annual average of 450–550 mm. Precipitation from June to July ac-
counts for approximately 75% of the annual precipitation, and surface water resources are
relatively scarce. The main water source for irrigation is groundwater, and agricultural
groundwater consumption accounts for 74.5–76.6% of groundwater exploitation.
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Figure 1. Location and hydrogeological profile of the study area in the Hebei Plain.

The North China Plain has complex hydrogeological conditions, but it mainly com-
prises basins of Quaternary (Cenozoic) loose sediment. Quaternary aquifer media are
divided into four groups (from top to bottom): Quaternary Holocene Q4, Upper Pleistocene
Q3, Middle Pleistocene Q2, and Lower Pleistocene Q1. The buried depths of the bottom
boundaries of the aquifer group are 40–60 m, 120–170 m, 250–350 m, and 350–550 m, respec-
tively. Overexploitation of groundwater for many years has resulted in many groundwater
cones of depression in the first, second, and third aquifer groups in the Hebei Plain, causing
nonlinear changes in the groundwater flow direction and GWL height in the region.

2.2. Data Sources

GWL data collected during 2018–2020, with a time interval of 4 h, were obtained
from China’s National Groundwater Monitoring Project. The trends in GWL in the Hebei
Plain during the study period consisted of dynamic fluctuations, increases, and decreases.
In total, six monitoring stations covering these three change types were selected as the study
objects, which provided 32,880 datapoints. The time series of each station was divided, and
any missing series was added so that the data could be converted into a format recognized
by each model. The station data sample formats are shown in Table 1.

Table 1. Data samples in the study area.

Number Type Station City GWL Sequence Length
(Day)

1 dynamic
fluctuations

Huimazhai Qinhuangdao 33.83 5480
2 Hongmiao Xingtai 17.74 5480
3 dynamic

increase
Xiliangdian Baoding −20.23 5480

4 Yanmeidong Baoding 1236.14 5480
5 dynamic

decrease
Wangduxiancheng Baoding −42.33 5480

6 XincunIIIzu Huanghua −44.21 5480

To intuitively reflect the daily changes in the GWL of the three types of selected monitor-
ing stations, line graphs were drawn showing the time scale of GWL for 2018–2020. Figure 2a
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shows a station with dynamic fluctuations, where the GWL was the same at the beginning
and end of the research period. Figure 2b shows a station with a dynamic increase. Although
there were fluctuations during the study period, the GWL at the end of the study period was
higher than at the beginning. Further, Figure 2c shows a station with a dynamic decrease,
wherein the GWL at the end of the study period was lower than at the beginning.

Water 2023, 15, x FOR PEER REVIEW 5 of 21 
 

 

 
Figure 2. Three types of GWL data samples: (a) dynamic fluctuations; (b) dynamic increase; (c) dy-
namic decrease. 

2.3. Methods 

Figure 2. Three types of GWL data samples: (a) dynamic fluctuations; (b) dynamic increase; (c) dy-
namic decrease.

23



Water 2023, 15, 823

2.3. Methods

Data-driven models, such as ANNs, can easily approximate the complex behavior
and responses of physical systems; additionally, they can quickly optimize many case
scenarios with different constraints. Compared with the multiple assumptions, complex
input variables, and parameter calibration of physical models, the input variables of data-
driven models are easier to measure and quantify. In particular, machine learning can
help to predict the GWL in areas that lack hydrogeological survey data. In this study,
SVM, LSTM, GRU, and MLP models were used to predict GWL at the selected monitoring
stations. Each of these models has been described below.

2.3.1. Support Vector Machine

SVM is a linear discriminant classification method based on the maximum margin.
SVMs are the most widely used machine learning models for predicting GWL, as they
can maximize prediction accuracy. They use the linear kernel function, polynomial kernel
function, Gaussian kernel radial basis function (RBF), and sigmoid kernel function, which
greatly optimize the nonlinear prediction capability of the model. Moreover, it is considered
the best theory for small-sample statistical estimations and predictive learning, and can
precisely predict GWL.

RBF has a strong nonlinear mapping capability and is suitable for predicting moment-
to-moment changes in GWL as follows:

k(xi, xj) = exp(−γ(xi− xj)2) (1)

where γ is an artificially determined positive real number parameter and (xi, xj) is the
training sample.

2.3.2. Long-Short Term Memory

The LSTM model processes and analyzes time-series data by selectively extracting
saved information and combining the selected information with subsequently input time-
series data. The network can locally predict each fragmented sequence of GWL data, and
the prediction deviations are passed back, to dynamically predict a GWL sequence.

LSTM is an improved recurrent neural network (RNN). The cycle of an ordinary RNN
passes through the hidden state (H), but the LSTM output has two states: H and memory
state (C). Further, three “gates” are added to the LSTM to process the input information
differently. Figure 3 shows the internal structure of an LSTM cell.
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At the core of LSTM is the objective of controlling the internal state to allow it to
retain and filter information from previous moments. LSTM has three gates (forget gate
Ft, input gate It, and output gate Ot) in the hidden layer to control the signal input and
output. The forget gate uses Ht−1 and Xt as inputs to control how much information needs
to be forgotten in the internal state of the previous moment Ct−1; further, the input gate
selectively memorizes input information and determines the quantity saved to the cell state
Ct in the current moment Xt. The output gate controls how much information the internal
state Ct needs to output to the external state in the current moment. The entire network
equation of the LSTM cell can be given as follows:




∼
Ct
Ot
It
Ft


 =




tanh
σ
σ
σ



(

W
[

Xt
Ht−1

]
+ b
)

(2)

Ct = Ft × Ct−1 + It ×
∼
Ct (3)

Ht = Ot × tanh(Ct) (4)

where σ is the sigmoid activation function, which limits the output to between 0 and 1.
Since each element of the output matrix (or vector) after the sigmoid layer is a real number
between 0 and 1, which is then dot-multiplied with other information, it effectively controls
the passage of information. In this range, “0” indicates that the information does not pass
at all, and “1” indicates that the information passes entirely. This allows the network to
regulate the flow of information through the “gate”.

2.3.3. Gated Recurrent Units

GRU optimizes the gated structure of LSTM (Figure 4), and its training process is
easier to converge. Compared with LSTM, GRU has only two gates: the update and reset
gates. The update gate is constructed from the forget and input gates in the LSTM. The reset
gate is recomposed from memory cells and hidden layer states. The GRU network controls
the change in state of hidden units over time through its special gated structure. This
avoids inaccurate parameter training due to the vanishing gradient problem or exploding
gradient problem during long-term propagation.
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In Figure 4, the update and reset gates are denoted by Zt and Rt, respectively, where
Zt is used to control the extent to which Ht−1 is retained in Ht, and Rt is used to control the
extent to which the current candidate set H̃t will be written into Ht−1.

First, the gating state is obtained from the state in the previous moment Ht−1 and the
input Xt in the current moment. Subsequently, using sigmoid nonlinear transformation,
the data are mapped to [0,1], which acts as the gating signal. Once the gating signal has
been obtained, the reset gate is “reset” as a coefficient before the previous moment Ht−1 to
obtain the candidate hidden state H̃t. The equations are as follows:

Rt = σ(Wr · [Ht−1, Xt]) (5)

Zt = σ(Wz · [Ht−1, Xt]) (6)

H̃t = tanh
(
Wh̃ · [Rt × Ht−1, Xt]

)
(7)

where σ is the sigmoid activation function. While calculating a gate’s hidden state, the
sigmoid function is used to obtain a result between 0 and 1, and while calculating a
candidate hidden state, the activation function uses the tanh function. Wr, Wz, and Wh̃
are the reset gate, update gate, and the weight matrix, respectively, for calculating the
candidate hidden state.

2.3.4. Multi-Layer Perceptron

MLP is an ANN used for predictions. It learns the relationships between inputs and
outputs using a large volume of data and can be used for nonlinear modeling. An MLP is
composed of multiple layers of neurons, and each node (neuron) in a layer is connected with
a certain weight to every node in the following layer (Figure 5). The main disadvantage of
this method is that when layers or the nodes in each layer increase, overfitting and model
training issues arise.
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In Figure 5, the output of the MLP hidden layer H node is given as

Hj = g(
n

∑
i=1

ωijxi + bj) (8)
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where ω and b are the weight and deviation, respectively, and g is the activation function,
commonly the sigmoid, tanh, or rectifier linear unit (ReLU) activation function. Because the
ReLU function avoids the vanishing gradient problem and its convergence speed is faster
than that of the sigmoid and tanh activation functions, ReLU was used as the activation
function in this study.

2.4. Performance Evaluation of Models

The performance of the SVM, LSTM, GRU, and MLP models can be evaluated using
the root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe
efficiency (NSE), which are calculated as follows:

R2 =




[
∑ QoQp

]
−
[

∑ Qo ∑ Qp
N

]

√[
∑ QP2 − (∑ QP)

2

N

][
∑ Qo2 − (∑ Qo)

2

N

]




2

(9)

RMSE =

√√√√ 1
N

N

∑
i=1

(
Qo −Qp

)2 (10)

NSE = 1−
[

∑N
i=1
(
Qo −Qp

)2

∑N
i=1
(
Qo −Qo

)2

]
(11)

where Qo is the observed GWL, Qp is the predicted GWL, N is the length of the groundwater
series, and Qo is the mean value of the observed GWL.

2.5. Groundwater Level Prediction Methodology

As shown in Figure 6, we first input missing values and processed outliers in the
original dataset and converted the format into a data type recognized by the model. Subse-
quently, we split the dataset, with the first 70% of the time-scale GWL measured sequence
used as the training set. We converted the one-dimensional training data into a two-
dimensional matrix containing input data and testing data, with a window of 10, i.e.,
GWL0–GWL9 was used to predict GWL10, GWL1–GWL10 was used to predict GWL11, etc.
GWL data of each station were converted into this format. Later, we used the SVM, LSTM,
GRU, and MLP models to build and train the dataset, calculated the loss functions of each
model, observed the consistency between predicted and actual values, and judged the
robustness of each model based on its dynamic changes. The degree of convergence of the
loss function was used as the basis for the training results of each model to continuously
train the model. After training was completed, 30% of the time-scale GWL measured se-
quence for each station was used as the testing set. The testing set data were also converted
into a two-dimensional matrix as described above and input into the trained model. The
R2, RMSE, and NSE evaluation indicators were used to evaluate the performance of the
models, to select the model that was most suitable for dynamically predicting the GWL in
the Hebei Plain.

27



Water 2023, 15, 823
Water 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 6. Running process of the SVM, LSTM, GRU, and MLP models. 

3. Results and Discussion 
The results of the GWL predictions for each station in Hebei Province acquired 

through the machine learning techniques are presented in this section. The Huimazhai 
and Hongmiao stations were the dynamically fluctuating stations. The Huimazhai station 
is located in the urban area of Qinhuangdao, adjacent to the Shi River and Liaodong Bay, 
and it showed an average GWL of 34.36 m. During the study period, its GWL in summer 
was mostly higher than in spring and winter, resulting in dynamic fluctuations. This may 
be due to a reduced need to irrigate crops in the rainy and summer season across the entire 
Qinhuangdao area. Moreover, changes in GWL were consistent with changes in precipi-
tation. The Hongmiao station is located in Xingtai City, where groundwater is exploited 
for crop irrigation. However, Xingtai has conducted a groundwater restoration pilot pro-
ject and promoted the cultivation of drought-resistant winter wheat; additionally, 
groundwater replenishment work has also been conducted. The GWL in this area fluctu-
ated due to the influence of changes in human activities, but it had a mean GWL of −65.09 
m. The dynamically increasing stations were Xiliangdian and Yanmeidong. The Xiliang-
dian station is located in Gaoyang County, Baoding, and had a mean GWL of −19.41 m. 
The GWL in this station was lower in spring and summer than in other seasons, which 
was likely due to the expansive area of water-intensive crops in spring and summer. Nev-
ertheless, because this area is located in the middle route of the South-to-North Water 
Diversion Project, its GWL has been increasing. Further, the Yanmeidong station is located 
in Laiyuan County, Baoding, and showed an average GWL of 1235.67 m, and its GWL 
increased overall during the study period. This was likely due to the station being located 
in a mountainous area that receives relatively high levels of precipitation; moreover, 

Figure 6. Running process of the SVM, LSTM, GRU, and MLP models.

3. Results and Discussion

The results of the GWL predictions for each station in Hebei Province acquired through
the machine learning techniques are presented in this section. The Huimazhai and Hongmiao
stations were the dynamically fluctuating stations. The Huimazhai station is located in the
urban area of Qinhuangdao, adjacent to the Shi River and Liaodong Bay, and it showed an
average GWL of 34.36 m. During the study period, its GWL in summer was mostly higher
than in spring and winter, resulting in dynamic fluctuations. This may be due to a reduced
need to irrigate crops in the rainy and summer season across the entire Qinhuangdao area.
Moreover, changes in GWL were consistent with changes in precipitation. The Hongmiao
station is located in Xingtai City, where groundwater is exploited for crop irrigation. However,
Xingtai has conducted a groundwater restoration pilot project and promoted the cultivation
of drought-resistant winter wheat; additionally, groundwater replenishment work has also
been conducted. The GWL in this area fluctuated due to the influence of changes in human
activities, but it had a mean GWL of −65.09 m. The dynamically increasing stations were
Xiliangdian and Yanmeidong. The Xiliangdian station is located in Gaoyang County, Baoding,
and had a mean GWL of −19.41 m. The GWL in this station was lower in spring and
summer than in other seasons, which was likely due to the expansive area of water-intensive
crops in spring and summer. Nevertheless, because this area is located in the middle route
of the South-to-North Water Diversion Project, its GWL has been increasing. Further, the
Yanmeidong station is located in Laiyuan County, Baoding, and showed an average GWL of
1235.67 m, and its GWL increased overall during the study period. This was likely due to the
station being located in a mountainous area that receives relatively high levels of precipitation;
moreover, because the area under irrigated farmland in the region was small, agricultural
water consumption was low. The dynamically decreasing stations were Wangduxiancheng
and XincunIIIzu. The Wangduxiancheng station is located in Wangdu County, Baoding, and
had a mean GWL of 16.43 m, and XincunIIIzu is located in Huanghua and had a mean GWL of
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−43.13 m. Despite the implementation of groundwater extraction projects at the two stations,
their water levels decreased gradually during the study period due to increases in the area
under winter wheat.

In this study, GWL data were divided into training and validation sets, with the GWL of
the validation set predicted using mathematical relationships discovered in the training set
data. The SVM, LSTM, GRU, and MLP models were used to develop a GWL prediction model,
and time-series scatter plots, relative error, and Taylor diagrams were used to qualitatively
evaluate the performance of the models, while statistical and hydrological model indicators,
such as RMSE, R2, and NSE, were used to quantitatively evaluate their performance.

3.1. GWL Prediction Using SVM Model

Gaussian and linear kernel functions were used for SVM-based runoff modeling. The
former was more effective than the latter; therefore, we established an SVM model with the
Gaussian function as the kernel function to predict the GWL of the six monitoring stations
with the three types of dynamic changes (fluctuations, increases, and decreases). As shown
in Figure 7, the SVM model overestimated the GWL of the dynamically fluctuating stations
and slightly underestimated the GWL of the stations with dynamic increases and decreases.
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Table 2 shows the simulation results. Generally, the simulation results were better
for the dynamically increasing and decreasing stations. For example, the RMSE, R2, and
NSE values of the Yanmeidong station in the testing period were 0.193 m, 0.998, and 0.984,
respectively, indicating that SVM was well suited to these two types of monitoring stations.
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Considering the dynamically fluctuating stations, the RMSE, R2, and NSE values of the
Huimazhai station in the training period were 0.253 m, 0.953, and 0.921, respectively, while
the accuracy in the testing period was markedly lower, with NSE being 24.9% lower in
the testing period than in the training period, indicating that SVM was not effective at
capturing the nonlinear relationship of dynamically fluctuating stations. Overall, SVM was
not suitable for predicting GWL in the Hebei Plain.

Table 2. Results of different performance indicators of the SVM model during the training and testing
periods at each site.

Station
Training Testing

RMSE R2 NSE RMSE R2 NSE

Huimazhai 0.253 0.953 0.921 0.396 0.757 0.691
Hongmiao 2.299 0.98 0.967 3.823 0.867 0.804
Xiliangdian 0.298 0.995 0.994 0.511 0.915 0.908
Yanmeidong 0.204 0.998 0.909 0.193 0.998 0.984

Wangduxiancheng 0.076 0.992 0.985 0.071 0.929 0.808
XincunIIIzu 0.052 0.999 0.998 0.045 0.990 0.940

3.2. GWL Prediction Using the LSTM Model

During LSTM modeling, the model filtered GWL features through the output gate,
saved the useful features, and discarded the useless features to obtain current moment
contextual information, which greatly enriched the information in the vector. This also
implied that the current moment contextual information Ht was only one part of the global
information Ct. Further, we used the LSTM model to simulate the six selected stations. The
GWL in the training and testing periods is shown in Figure 8. The GWL prediction results
were suboptimal for the dynamically fluctuating stations, including another overestimation
of the peak value in the testing period shown in Figure 8a. However, compared with
the SVM model, the results of the dynamically increasing station, shown in Figure 8d,
improved, with the predicted GWL closer to the observed GWL, although the peak value
was overestimated.

Table 3 shows the simulation results. The RMSE, R2, and NSE values of the Yanmei-
dong station in the testing period were 0.116 m, 0.996, and 0.994, respectively. Notably,
the results from the testing period were better than those from the training period for this
station, indicating that the observed and predicted values in the verification period were
highly consistent, thus proving the effectiveness of the LSTM model for the dynamically
increasing stations. The RMSE, R2, and NSE values of the Huimazhai station in the training
period were 0.263 m, 0.868, and 0.868, respectively. Compared to the R2 value of the SVM
model, the R2 value of the LSTM model was 12.7% higher. Nevertheless, for the dynam-
ically fluctuating stations, both the peaks and troughs of the predicted GWL were more
than the observed GWL; therefore, the prediction results were suboptimal. The overall R2

value of the LSTM model was >0.85, indicating that it was a good model for predicting the
GWL in the Hebei Plain.
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Figure 8. Results of the hourly GWL simulation (m) in six stations using the LSTM model during 2018–
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station, (d) Yanmeidong station, (e) Wangduxiancheng station, and (f) XincunIIIzu station.

Table 3. Results of the different performance indicators of LSTM model during training and testing
periods at each monitoring station.

Station
Training Testing

RMSE R2 NSE RMSE R2 NSE

Huimazhai 0.192 0.955 0.955 0.263 0.868 0.864
Hongmiao 1.581 0.985 0.984 1.771 0.958 0.958
Xiliangdian 0.244 0.996 0.996 0.338 0.961 0.96
Yanmeidong 0.053 0.994 0.994 0.116 0.996 0.994

Wangduxiancheng 0.049 0.994 0.994 0.036 0.953 0.95
XincunIIIzu 0.037 0.999 0.999 0.028 0.987 0.976

3.3. GWL Prediction Using the MLP Model

The MLP model includes the input, output, and hidden layers, and each node (neuron)
in a layer is connected to every node in the following layer. We improved the basic three-
layer MLP by adding two linear hidden layers and the ReLU activation function after the
first hidden layer. Subsequently, we simulated the selected stations in the Hebei Plain.
Notably, this model solved the shortcomings of the SVM and LSTM models for dynamically
fluctuating stations (Figure 9a,b). The predicted trend was satisfactory and higher in the
testing period than in the training period. However, in the stations with dynamically
increasing trends (Figure 8c), further improvement in the prediction results of peak and
trough values was not possible.
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Figure 9. Results of hourly GWL simulation (m) in six stations using the MLP model during 2018–2020
during the training and testing periods: (a) Huimazhai station, (b) Hongmiao station, (c) Xiliangdian
station, (d) Yanmeidong station, (e) Wangduxiancheng station, and (f) XincunIIIzu station.

Table 4 shows the simulation results. The RMSE, R2, and NSE values of the Yanmei-
dong station in the testing period were 0.08 m, 0.998, and 0.997, respectively, which were
the best simulation results. The results for the dynamically fluctuating stations (Huimazhai
and Hongmiao) were also satisfactory, especially for the Huimazhai station, with RMSE,
R2, and NSE values of 0.201 m, 0.959, and 0.95 in the training period and 0.128 m, 0.979,
and 0.968 in the testing period, respectively. Thus, the results in the testing period were
better than those in the training period. Overall, the RMSE values of the various station
types were <0.6, and NSE and R2 values were >0.96, thus making this a highly suitable
model for predicting the GWL in the Hebei Plain.

Table 4. Results of different performance indicators of the MLP model during the training and testing
periods at each station.

Station
Training Testing

RMSE R2 NSE RMSE R2 NSE

Huimazhai 0.201 0.959 0.95 0.128 0.979 0.968
Hongmiao 1.419 0.988 0.987 0.514 0.997 0.996
Xiliangdian 0.347 0.999 0.991 0.295 0.987 0.969
Yanmeidong 0.033 0.998 0.998 0.08 0.998 0.997

Wangduxiancheng 0.041 0.997 0.996 0.028 0.969 0.97
XincunIIIzu 0.051 0.999 0.998 0.014 0.995 0.994
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3.4. GWL Prediction Using the GRU Model

Compared with LSTM, GRU has a simpler gated structure and fewer parameters
and faster convergence. The Ct in GRU already contained Ht, and there was a trade-
off between current unit information and previous global information while generating
moment contextual information. Therefore, replacing It with 1-Zt can expose all information
globally. The GRU model for each of the selected stations in the training and testing
periods is shown in Figure 10. The model retained the testing results of the MLP model
for dynamically fluctuating stations, but the testing period results for the dynamically
increasing station (c) were better than the results of the other models.
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station, (d) Yanmeidong station, (e) Wangduxiancheng station, and (f) XincunIIIzu station.

Table 5 shows the corresponding simulation results. The best training period results were
observed in the XincunIIIzu station, with RMSE, R2, and NSE values of 0.081 m, 0.999, and
0.996, respectively, while the best testing period results were observed in the Yanmeidong
station, with RMSE, R2, and NSE values of 0.098 m, 0.998, and 0.996, respectively. The GRU
model results were notably better for dynamically fluctuating stations than those of the first
three models. Furthermore, the model maintained the training and testing results for the other
station types, thus making it the best model for predicting the GWL in the Hebei Plain.
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Table 5. Results of different performance indicators of the GRU model during the training and testing
periods at each station.

Station
Training Testing

RMSE R2 NSE RMSE R2 NSE

Huimazhai 0.182 0.959 0.959 0.08 0.988 0.987
Hongmiao 1.449 0.987 0.987 0.518 0.996 0.996
Xiliangdian 0.229 0.996 0.996 0.123 0.995 0.995
Yanmeidong 0.04 0.998 0.996 0.098 0.998 0.996

Wangduxiancheng 0.041 0.996 0.996 0.033 0.961 0.96
XincunIIIzu 0.081 0.999 0.996 0.027 0.995 0.978

3.5. Model Comparison

The SVM model had the lowest simulation accuracy for the selected stations, which
may be due to the four kernel functions of the SVM. The RBF kernel function selected in
this study could be modified further. When σ is too small, RBF can overfit, and when σ is
too large, the relationship between Xi and Xj will have less overall influence on the model,
causing inaccurate predictions. The LSTM model was the third-best model. It included a
forget gate, which makes the partial derivative of the current memory unit to the previous
memory unit a constant, thereby solving the disappearing gradient problem of RNN.
Nevertheless, several input parameters exist, which increase the likelihood of overfitting.
The second-best model was MLP. Its highly nonlinear global effect resulted in good accuracy
in the training and testing periods, with an NSE value of 0.997 for the Yanmeidong station,
but the model had the slowest learning speed, which was suboptimal in terms of time
consumption for moment-to-moment predictions. Moreover, the GRU model was the most
accurate for the dynamically fluctuating and dynamically increasing stations. As it had a
simple gated structure and fewer input parameters, and as it reduced the risk of overfitting,
it had a shorter training time (Table 6). Thus, it was the most suitable model for predicting
the GWL in the Hebei Plain.

Table 6. Training time comparison of four models with 500 epochs.

Model SVM LSTM GRU MLP

Time (min) 1081 1660 1251 2694

Figure 11 presents the scatter plots for each station during the study period. The GRU
model had the best correlation between the observed and predicted GWL of the four models,
with predicted values near the regression function for almost every station. Although the
MLP model was accurate for most stations, it did not capture the extreme values of the
dynamically increasing sites. Moreover, the SVM and LSTM models only reflected the
GWL trend for dynamically fluctuating stations, and they did not accurately predict the
specific GWL values.

Finally, we evaluated the performance of the models for each of the stations using
Taylor diagrams (Figure 12). The results showed that the GRU model had the best accuracy
for both dynamically fluctuating and dynamically increasing stations, followed by the MLP
model, which had the best accuracy for dynamically decreasing stations. Comparatively,
the SVM model had the poorest performance, as it was the furthest from the “Ref” point
for most stations. It was followed by the LSTM model, which performed reasonably.
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4. Conclusions

GWL is a crucial indicator for evaluating the health of groundwater resources in
the Hebei Plain. This study attempted to model the GWL in the Hebei Plain and predict
dynamic changes in the GWL using SVM, LSTM, MLP, and GRU models, and it qualitatively
and quantitatively analyzed the training and testing datasets in the modeling process.
The main conclusions were as follows:

(1) By comparing the RMSE, R2, and NSE indicators, we discovered that the GRU model
performed the best for dynamically fluctuating and dynamically increasing stations,
while the MLP model performed the best for dynamically decreasing stations. The
update gate in the GRU model acquired previous moment state information in the
current state, which assisted in capturing long-term dependencies in the time series
and solved the problem of overfitting to some extent. Moreover, the GRU model not
only showed good performance in predicting trends, but it was also better than the
other models regarding the training time and capturing extreme values, thus making
it the most suitable model for predicting the GWL in the Hebei Plain.

(2) Apart from the different principles of each model, the differences in the simulation results
can be attributed to factors such as data segmentation during the modeling process, the
length of subsequences, and the uncertainty of model parameters. Moreover, the influence
of the different activation functions on the GWL in the different models should also be
considered. Furthermore, the training frequency of each model in this study was the same,
and adaptive improvements should be made for each model in subsequent studies.
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Abstract: Desert terminal lakes are important signals to discern ecological degradation crises, partic-
ularly in arid areas where an artificial project of ecological water diversion has designated a quota of
river water to prevent lake body shrinkage and protect the ecosystem. Knowledge of the minimum
ecological water demand (EWD) is thus necessary to ensure the basic health of lake ecosystems. This
study analyzed the spatiotemporal evolution of water boundaries using Landsat satellites data via
remote sensing technology from 2002 to 2017 in East Juyan Lake, an inland desert terminal lake
of the Heihe River in northwest China. The minimum lake water demand was determined using
two estimation methods: the lake-evaporation-oriented EWD method and the minimum water level
method. In the latter method, both lake topography (using water-level area curves) and biological
survival demands (using bighead carps as indicators) were considered to derive the minimum lake
EWD. Water diversion to the lake over the past 15 years has increased the lake’s area, but there
are still marked intra-annual seasonal variations. The annual minimum lake water demand was
suggested to be 54 × 106 m3/year by comparing the different methods; however, it was not satisfied,
and the lake survival was endangered when the occurrence frequency of the annual runoff in the
Zhengyixia hydrological station exceeded 65%. This study offered promising directions for inland
lake water resource management.

Keywords: lake area; water diversion; ecological water demand (EWD); minimum water level;
inland river

1. Introduction

Lakes are important territorial freshwater resources, with many functions of regulating
river runoff, providing water sources for agriculture, industry, and domestic development,
and improving the regional ecological environment [1,2]. Due to changing climate and rapid
development of human society, lakes in inland hyper-arid areas face a variety of problems,
such as area shrinkage and ecological degradation [3,4]. To address the aquatic ecosystem
crisis brought about by a shrinking lake, it is necessary to determine the minimum EWD of
lakes [5,6]. Below this threshold, lake ecosystems will be severely damaged.

Lake EWD refers to the water demand to conserve the basic structure and important
functions of the lake wetland ecosystem [7,8]. In recent decades, EWD investigation has
mainly concerned on river ecosystem, researching the hydrology, hydraulics, ecology, and
holistic methods [9,10]. To study the EWD of lakes, the primary methods are the water
balance method, the minimum water level method, the function setting method, and the
water quality target method [11]. Cao et al. [12] determined the optimal EWD and water
level of Baiyangdian Lake according to its ecosystem service value. By studying four
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natural lakes in the Mediterranean Sea, Petriki et al. [13] found that the hydrological and
ecological methods should be combined to evaluate the ecological water regime of lakes.
Maihemuti et al. [14] established a lake water balance model and explored the complex
nonlinear connections in the lake water level, volume, and boundaries.

East Juyan Lake (101◦12′ E–101◦19′ E, 42◦10′ N–42◦20′ N) is an inland terminal
lake [15] of the Heihe River. Due to the continuous increase in industrial and agricul-
tural water use in the upstream and midstream regions, East Juyan Lake had dried up six
times, it completely dried up in 1992, and the oasis shrank [16,17]. In order to avoid the con-
tinuous deterioration of the downstream ecological environment, the national government
implemented an ecological water diversion regulation on the mainstream Heihe River in
2000 [18]. In July 2002, East Juyan Lake received water from the upper Heihe River for the
first time. East Juyan Lake is in the shape of “a shallow dish”, yielding problems, such as a
large water surface area, shallow water depth, and high evaporation [19]. Therefore, it is
important to determine a minimum EWD that can ensure the continued survival of East
Juyan Lake [20].

The primary goals of this study were as follows: (1) to analyze the spatiotemporal
tendencies in the water boundaries of East Juyan Lake from 2002 to 2017 using Landsat
data, which can help identify the impacts of ecological water diversion regulation on
the lake conservation; (2) to estimate the minimum EWD using both hydrological and
ecological methods from the three perspectives of lake evaporation, lake topography, and
biological impacts, which have been rarely explored before in this typical but significant
desert terminal lake; and (3) despite long-term benefits of artificial water diversion, to
determine the minimum condition of annual water diversion to maintain the lake alive
based on the minimum EWD estimations. This study is expected to provide references
for lake management and inland river regulation of ecological water diversion projects in
arid areas.

2. Study Area and Materials
2.1. Study Area

East Juyan Lake is situated 44 km north of the city of Ejina Banner and is the terminal
lake of the Heihe River, China (Figure 1a). This study area has an extremely dry climate
and fragile ecological environment, heavily depending on the water supply from the Heihe
River that springs from the Qilian Mountains. At present, there are about 20,000 permanent
residents in Ejina Banner, who depend on the Heihe River and local groundwater for more
than 97% of their water [21].
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Juyan Lake.
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Ejina Banner has a continental arid climate, with little precipitation and high evapora-
tion [22] and is a typical hyperarid area. According to the calculations by averaging the
observed meteorological data of Ejina Banner over years 2002–2017, the annual average
precipitation was only 35.0 mm, the annual average temperature was 8.6 ◦C, and the annual
average reference evaporation was approximately 3500 mm, which was one hundred times
greater than the annual average precipitation. A project was constructed in the Heihe River
basin in 2002, which delivers runoff water to the downstream area between the Zhengyixia
and Langxinshan hydrological stations. The downstream Heihe River includes the two
tributaries: the West River and the East River at the Langxinshan site, and the East River
flowed into East Juyan Lake in the desert regions. Currently, a number of bird habitats are
found in the center of East Juyan Lake, marking the gradual improvement of the ecological
environment and the continuous enrichment of biodiversity (Figure 1b).

2.2. Data Source

This study was conducted primarily using Landsat remote sensing data and local
meteorological observations. The Landsat series of satellite remote sensing images can
accurately describe the seasonal fluctuations in lake water surfaces [23]. The Landsat series
of satellites includes a total of eight satellites, and the sensors on the Landsat satellites
include a multispectral scanner (MSS), a thematic mapper (TM), and so on [24]. Landsat 5, 7,
and 8 were used to obtain remote sensing image data of East Juyan Lake from 2002 to 2017.
Simple geometric correction and registration preprocessing were performed on the remote
sensing images. The polygonal area of the lake was generated by the visual interpretation
method. The lake area was calculated using GIS technology to project 128 images by
selecting monthly scenes in January and from April to November. The glacial period is
from December to March each year. The quality of the selected images was well controlled
with no cloud cover over the study area. The item attributes and band information of the
selected satellites are shown in Table 1. Landsat data can be freely obtained from online
data sharing from NASA (http://glovis.usgs.gov/) (accessed on 20 August 2021).

Table 1. Properties of each item of the Landsat satellite.

System Launch
Time Sensor Cycle Resolution Number of

Bands

5 1984 MSS/TM 16 days 80/30 7

7 1999 ETM+ 16 days Panchromatic
15/Multispectral 30 8

8 2013 OLI 16 days Panchromatic
15/Multispectral 30 9

Observation data of various meteorological factors, including precipitation and evap-
oration, were collected from the Ejina Banner meteorological station from 2002 to 2017.
The Ejina Banner meteorological station is located southwest of the oasis in Ejina Banner
at 41.95◦ N, 101.07◦ E. The weather station describes the climate conditions of East Juyan
Lake to some extent.

3. Methods
3.1. Lake Evaporation Estimations

East Juyan Lake is a closed lake, and the loss of lake water by evaporation corre-
sponds to the highest share of water consumption [25]. The sum of the lake leakage,
groundwater flows, and precipitation recharge in the study area was less than 1% of
the evaporation [8] and was thus ignored. The lake water demand mainly offsets water
consumption from evaporation.

The lake evaporation is mainly controlled by the lake area, atmospheric pressure,
temperature, wind speed, and saturated vapor pressure lock [26]. According to previous
studies, Li et al. [27] used the Penman–Monteith method to calculate the evaporation of East
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Juyan Lake; Liu et al. [28] calculated the lake evaporation in the lower Heihe River using
E601 pan evaporation. In this study, the empirical formula in Equations (1)–(4) adopted
by [20,29] was used to calculate the lake evaporation, which is suitable for data-lacking
areas, and the results were compared with those estimated from [27,28].

E = Ea·A (1)

Here, A is the lake area (km2) obtained by the interpretation of Landsat satellite
imagery and arranged in descending order to acquire area values under the 50%, 75%, and
95% percentiles for the period of 2002–2017. Ea is the water surface evaporation per unit
area (mm/d), which is further estimated by Equation (2).

Ea =

[
0.1 + 0.24

(
1−U2

)0.5
]
(e0 − e150)V( 0.85V

v+2 ) (2)

Here, U is the relative humidity, V is the local wind speed (m/s), e0 is the saturation
vapor pressure (hPa), and e150 represents the saturated vapor pressure at 1.5 m above the
lake surface (hPa). e0 can be expressed as e0water at the water surface and determined by
Equation (3).

e0water = 6.11× 10
7.45t

235+t (3)

Here, t is the lake surface temperature (◦C). When the lake freezes, e0 can be expressed
as e0ice and determined by Equation (4).

e0ice = 6.11× 10
9.5t

265+t (4)

3.2. Minimum Water Level Method

The minimum water level method [30] estimates the water demand of lakes by de-
termining the minimum water level and area. The ecological water level is the minimum
water level required to sustain the health and basic functions of the lake ecosystem without
serious degradation. Therefore, the lake area A (km2) corresponding to this minimum water
level was taken in the extreme case of 95% percentiles. Considering the basic characteristics
of the lake, the formula for calculating the minimum lake volume W (106 m3/year) needed
to meet ecological processes is:

W = (Hmin − H)·A (5)

where Hmin is the minimum ecological water level elevation (m), and H is the lake bottom
elevation (m) with consideration of the inapparent impacts of sediment deposition.

In this study, the two commonly used estimation methods of lake minimum ecological
water level were used: the lake morphology analysis method and the biological minimum
space requirement method.

3.2.1. Lake Morphology Analysis

The lake morphology method [31] considers that the lake water and topography
subsystems are the most basic parts of the lake ecosystem. To maintain a healthy lake
ecosystem, the lake water level and morphometry, which are closely associated with
changes in lake areas, must not be severely degraded. Lake water level is an indicator
reflecting the fluctuation in the lake hydrological and topographic systems, and the lake
area is an indicator reflecting the lake functions. Because of the nonlinearity between the
water level and the area of lake surface, when the water level varies, the reduction in the
lake area could be different for each unit of reduction in the lake water level.

The first-order derivative of the function that water level changes with lake area can
indicate the fluctuation degree of water level under the impacts of varying lake area, i.e.,
the slope of the function curve of Equation (6). When the lake area decreases by one unit,
both the lake volume and the corresponding water level will decrease. When the curve
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slope reaches its maximum, the corresponding water level is considered to reach its greatest
change with lake area. This sensitive water level to lake area is usually a relatively low
value that could cause negative influences on local biological habitat, species diversity,
and desert eco-tourism resources [25] and is thus artificially set to be the target minimum
water level in this method. The second-order derivative can represent the concavity and
convexity of the fitting functions for water-level area curves f ( · ). When the second-order
derivative in the domain is 0, the corresponding value is the extreme or inflection point in
the domain of the first-order derivative [14,32]. The formula is as follows:

H0 = f (A0) (6)

d2H0

dA02 = 0 (7)

where A0 is the lake area (km2), and H0 is the lake water level elevation (m).

3.2.2. Biological Space Minimum Requirement Method

The lake water level is used as an indicator of the living space of lake organisms. The
ecological water level depends on the living space demand of various biological species in
the lake. The biological minimum space requirement method [32] uses an aquatic organism
as the indicator from the perspective of the minimum biological demand for living space
to determine the minimum ecological water level of the lake. Among many species, fish
are a commonly used indicator to reflect the situation of an aquatic ecosystem given the
advantage of their sensitivity to low water levels and their representability of other types
of organisms [31,32]. Therefore, this method describes the biological space minimum
requirement by taking the minimum ecological water level of fish as the baseline. The
minimum water depth required by the fish plus the elevation of the lake bottom elevation
is the minimum ecological water level [33], which is expressed as follows:

Hmin = H1 + H (8)

where H1 is the water depth (m) threshold for fish to survive in the study area. According
to the comprehensive considerations of both natural water level data [18] and previous
environmental flow records monitored by the local ecological conservation center [21,25],
H1 was chosen from the water depth interval of 1.50 m~2.00 m which meet the survival
needs of fish and most other aquatic organisms in the East Juyan Lake.

4. Results and Discussion
4.1. Temporal Tendencies in Lake Areas

The inter-annual water surface area of the East Juyan Lake showed an obvious uptrend
(Figure 2a). The lake almost dried up briefly from June to August in 2003. Since 2004, East
Juyan Lake has not dried again. In 2002 and 2003, the water surface area of East Juyan
Lake was primarily affected by the amount of water diverted to the lake and did not show
marked periodic changes. After 2004, the lake area began to change regularly. The area
of the lake changed from 17.33 km2 in 2002 to 64.80 km2 in 2017, with an average annual
increase of 2.97%. The maximum lake area appeared in 2017 at 70.11 km2, and the minimum
value appeared in 2004 only 10.8 km2, while the multiyear average area was 45.72 km2.
The three different tendencies in lake areas appeared over time. The marked upward trend
was from 2002 to 2005; then, the trend was smaller from 2005 to 2016, and there was a
major uptick in 2017. Between 2011 and 2015, the average lake area was maintained at
approximately 54 km2, and the average annual water inflow into the lake during this period
(68 × 106 m3/year) increased markedly compared with the previous period from 2002 to
2010 (52 × 106 m3/year). However, the inter-annual variation in the wetland area after
2010 was small, and the overall growth rate was only 0.64 km2/year. In general, the current
annual water inflow can only maintain the existing area to avoid marked shrinkage.
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In terms of the monthly changes in lake areas (Figure 2b), The ice period lasts from
November to March, and the lake area remains stable. After April, the area of the lake
begins to decrease, reaches its smallest value in the year from July to August and reaches
its highest value between October and November. After summer, the weather gradually
becomes warmer, the evaporation on the water surface increases, and the upstream water
does not flow into the desert terminal lake. At this time, the area of the lake gradually
decreases. After autumn, the upper reaches releases water, and the lake area begins
to increase.
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The response of the lake areas to the water diverted into the lake was quite affected
by the scale of the continuous implementation of the ecological water diversion. The lake
area expanded rapidly with runoff into the lake, which was sensitive to the inflow water
volume. In some years, the amount of water diverted to the lake was inversely proportional
to the lake area, which indicated that there was a lag time between water diversion and
lake area change. Figure 2c helps illustrate the time-lag effects by presenting the periodical
variations of the lake area and water diverted into the lake, with a whole calendar year
divided into the three time periods: the period before key water division months (1–6), key
water division months (7–10), and ice season after water division (11–12). For example,
the inflow in 2004 increased to 52 × 106 m3/year, which represented the expansion of the
annual average lake area in 2005. The possible reason might be that most water entering the
lake from the Heihe River is during July to October when the critical water division plan
starts and meanwhile compensates for large lake evaporation loss. The lowest lake area
during July to September in a year gradually increased and reached the highest value of
lake area until the annual key water diversion period was completed in October (Figure 2b).
Then, in November, the inflow begins to freeze, and lake evaporation decreases as the
weather becomes cold [21] with little reduction in lake area. Therefore, despite long-term
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benefits of artificial water diversion increases, an increase in the lake area was not obvious
after a whole calendar year, and risks of lake survival always existed.

4.2. Spatial Variations in Lake Boundaries

From the perspective of the overall shape of the lake (Figure 3), East Juyan Lake did
not dry up throughout the successive years since 2004, and its southern boundary expanded
markedly. In 2009, the boundary expansion on the east and west sides of the lake was larger.
In 2013, the lake boundaries were generally unchanged. In 2017, the shape of the lake
remained basically fixed, and the southern boundary expanded marginally. In the early
stage of water inflow because the lake was dry before, the difference between the largest
and smallest areas of the year was large, and there were marked spatial shape differences.
With the continuous implementation of ecological water diversion projects, the intra-annual
largest area and the smallest area gradually increased, and the small temporary lake was
found in the south, in the recent years, during the high-water levels from 2014 to 2017.
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4.3. EWD Estimation Results
4.3.1. EWD by Lake Evaporation

According to the water surface area calculated under the 50%, 75%, and 95% percentiles
for East Juyan Lake, the corresponding lake evaporation water consumption and EWD are
shown in Table 2.

Table 2. The EWD by lake evaporation in East Juyan Lake under different percentiles.

Percentile
(%)

Lake Area
(km2)

EWD by Lake Evaporation (106 m3)

(1) (2) (3)

Based on Empirical
Formula

Based on E601 Pan
Evaporation

Based on
Penman–Monteith

Formula

50 47.88 77 75 78
75 44.40 71 69 72
95 34.60 54 54 56

The lake evaporation results estimated based on the empirical formula were between
and similar to those converted from the E601 pan evaporation and the Penman–Monteith
formula. In the case of 50%, maintaining a lake surface area of 47.88 km2 required an EWD
of 77 × 106 m3/year. In the case of 75%, maintaining a lake surface area of 44.40 km2

required an EWD of 71 × 106 m3/year. In the case of 95%, to maintain the lake surface area
of 34.60 km2, the EWD was 54 × 106 m3/year.
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4.3.2. Minimum Water Level Method Considering the Lake Morphology

The nonlinear connection in the water level and the surface area of East Juyan Lake
is shown in Figure 4, from which the minimum ecological water level of the lake can be
calculated.
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Figure 4. The fitting results for scatters of the water level and surface area of East Juyan Lake.

The lake water level (H0) and the surface area (A0) was fitted as follows:

A0 = 1.3517× 10−3H0
3 − 2.0185H0

2 + 6.6683× 105 (9)

By solving Equation (9), the minimum ecological water level Hmin elevation of East
Juyan Lake was 1000.08 m, and the lake bottom elevation H was 997.00 m. Based on
the minimum water level method, when the multiyear average area of East Juyan Lake
was 34.60 km2, the EWD was calculated to be 106.57 × 106 m3/year in combination with
Equation (5).

4.3.3. Minimum Water Level Method Considering the Biological Space Minimum Demand

Bighead carps (Aristichthys nobilis) were listed as a protected fish species in East Juyan
Lake and were thus selected as the representative fish indicator in this study. In line with
the findings in the previous reference [33], who compared the water change cycle method
and ecological evolution method, the lowest ecological water level for East Juyan Lake
was chosen to be 1.75 m, which was also consistent with the actual survey of the local
wetland conservation center [21,25]. Using the minimum water level method based on the
biological space minimum demand, the EWD was calculated to be 61 × 106 m3/year.

4.4. Comparison of Different Methods

The minimum EWD values for the three different methods are summarized from the
highest to the lowest as follows: 106.57 × 106 m3/year from the lake morphology method,
61 × 106 m3/year from the biological minimum space requirement, and 54 × 106 m3/year
from the lake evaporation.

The basic principle of the empirical formula is to establish the empirical fitting-curves
between the evaporation and the meteorological elements observed on the ground in the
absence of measured data. The lake morphology method determined the ecological water
level by studying the fitting of the water level and area that belonged to a semiempirical
method. This method showed the advantage in less requirement of detailed ecological
data and containing more specific lake information. The disadvantage of this method was
that it did not reflect the seasonal changes, with a lack of ecosystem mechanisms. This
method is suitable for small lakes with low and relatively stable water levels and no marked
environmental pollution. The biological minimum space requirement method belongs to
the category of the habitat method and has advantages in the ecological mechanism of
lake-related organisms, but the difficulty is in obtaining the required biological data.
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Compared with the other two methods, lake evaporation has a more complete the-
oretical system and has been widely verified to give a good estimation agreement with
observation measurements [34,35]. Therefore, using the lake evaporation method, the
annual minimum EWD of East Juyan Lake was suggested to be 54 × 106 m3/year. Some
comparative results were previously reported. For example, Zhang et al. [36] adopted
the water mass balance model to simulate the impact of ecological water transfer on East
Juyan Lake and found that the annual water inflow should be, on average, maintained
at 61 × 106 m3/year to maintain an annual average lake area, which was lower than the
estimated EWD of 77 × 106 m3/year at the 50% scenario (Table 2). Li et al. [37] indi-
cated that the minimum annual evaporative water consumption in East Juyan Lake was
58 × 106 m3/year, which was close to the results of 54 × 106 m3/year at the 95% scenario
(Table 2) in this study.

The dynamic lake changes are primarily reflected by variations in lake surface areas
or water levels. Compared with manual monitoring methods, remote sensing technology
has overcome the difficulties in field investigation and inconsistencies in data. In recent
years, Landsat has often been used in lake area extraction [24,38]. Therefore, lake area data
obtained from Landsat imagery in this study could be reliable.

4.5. Lake Survival Risk Based on Minimum Lake Water Demand

The annual mean runoff values of the Zhengyixia and Langxinshan hydrological
stations were 1.17 × 109 m3/year and 0.65 × 109 m3/year (Figure 5), respectively. In the
period of 2002–2010, only 33% of the annual runoff from the two hydrographic stations
exceeded the multiyear average annual runoff, while during the period 2011–2017, 71%
of the annual runoff volume exceeded the multiyear average value. Therefore, the Heihe
River was recently in its water-abundant period and enabled the delivery of sufficient water
for the ecological restoration in East Juyan Lake. The annual average precipitation, another
water source in East Juyan Lake, was only 34.15 mm and was generally stable. Thus, the
water supply from local precipitation could be negligible.
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Figure 5. (a) Changes in runoff, precipitation, and area trends. The relationship between the quantity
and the loss rate of water diversion for (b) Zhengyixia and Langxinshan hydrological stations and
(c) Langxinshan hydrological stations and East Juyan Lake.

The average loss rate, which included water delivery losses and water withdrawal
in the study area, decreased from the highest at 54% to 32% from 2002 to 2017 with the
gradual increase in the water delivery volume from the Zhengyixia to the Langxinshan
sections. In the section from Langxinshan to East Juyan Lake, the loss rate increased to an
average of 90%, and the minimum loss rate was 85%, largely due to the intense regional
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evaporation. Although the water delivery continued to increase, the loss rate was still high.
The currently wider lake water boundaries were demonstrated to be attributed to the more
abundant incoming water under inland river water diversion regulation. Thus, with the
change in the hydrological cycle, once the probability of dry or continuous dry weather
increases, the favourable inflow conditions to keep East Juyan Lake from drying up no
longer exist, and the risk of drying up East Juyan Lake likely remains high.

To ensure the minimum EWD of 54 × 106 m3/year for the survival of East Juyan
Lake, the incoming water from the Langxinshan hydrological station would be at least
460 × 106 m3/year, which was estimated by adding both the maximum water delivery
losses and maximum water withdrawal in the river-flowing regions between the Langx-
inshan station and East Juyan Lake for the period 2002–2017. Then, the annual runoff
of Zhengyixia station (as the first controlled hydrological station in the downstream
Heihe River) should discharge at least 930 × 106 m3/year to satisfy this requirement
of 460 × 106 m3/year in the Langxinshan station, according to the well-fitting relationship
between the annual runoff of Zhengyixia and Langxinshan stations from 1980 to 2017
(R2 > 0.96) (Figure 6a). In other words, when the runoff frequency in the Zhengyixia station
exceeded 65%, the East Juyan Lake might encounter again the danger of drying up, as
shown by the Pearson-III type probability distribution curve (Figure 6b), which has been
proved to be suitable in hydrological frequency analysis for most watershed in China [39].
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5. Conclusions

This study used Landsat series data as a primary information source, combined local
meteorological data, and comprehensively used geographic information technologies to
analyze the spatiotemporal tendencies in water boundaries of East Juyan Lake over decades.
Using hydrological and ecological methods, the minimum EWD of East Juyan Lake was
estimated. Since 2002, under river water diversion regulation for East Juyan Lake, the
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lake area has been increasing. In 2017, the lake area had reached 70 km2 and exhibited
marked seasonal changes. The lake area was the largest during the period of October to
November and the smallest from July to August. The shape of the lake continued to change
over time and was still expanding. Based on the results of the lake evaporation methods
used, the minimum EWD of East Juyan Lake was suggested to be 54×106 m3/year. When
the frequency of runoff discharge from the Zhengyixia hydrological station exceeds 65%
based on a Pearson-III type probability distribution fitting, the discharged water from the
Zhengyixia station could not satisfy the minimum water demand of 460 × 106 m3/year in
the downstream Langxinshan station, and finally, the East Juyan Lake might dry up again.

In addition, how to coordinate the ecological needs around East Juyan Lake and
maintain the health of its ecosystem are key problems that must be addressed. Future
research should couple the interactions between the ecological and hydrological factors and
social factors to explore the impact of different inflow schemes on ecological restoration.
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Abstract: The distribution of sediment grain size can record past environmental conditions and
human activity. In this study, radioisotope of 210Pb and 137Cs and a grain size of a 41 cm core in
Hulun Lake were applied to reconstruct the high-resolution sedimentation history. The profiles of
the grain size of the lake sediments show that silt (4–63 µm) was the largest contribution with an
average content of 84.05%, and the second largest contribution was sand (>63 µm) with an average
content of 15.68%. The median grain size and the mean grain size in the whole sediment core was
22.39 µm and 36.85 µm, respectively. Correlations of the sedimentological variables with instrumental
measurements were also analyzed. The peak–trough value of the mean grain size of the sediments
in Hulun Lake can reflect the magnitude of rainfall intensity and river discharge. The clay and silt
contents at a depth of approximately 32–38 cm was different from other depths throughout the core,
which showed continuous maxima with an average content of 0.35% and 94.08%. These changes in
grain size correspond to the period of dam construction in 1963–1970. Therefore, the sediment grain
size of Hulun Lake effectively recorded the dam-building activity.

Keywords: sedimentary grain size; dam construction; precipitation; paleoenvironmental reconstruction;
Hulun Lake

1. Introduction

To better understand past climatic and environmental changes beyond the available
short instrumental record, a high-resolution geological archive of lake sediment can provide
important clues [1–4]. In addition, detailed reconstructions of the history of environmental
changes may improve our understanding of potential future environmental changes.

Lake sediment grain size has been used widely for paleoenvironmental reconstruc-
tions, such as of regional climate change and lake level fluctuations [5], dust storms [6],
and human activities [7], since it provides important information about the depositional en-
vironmental, and migration processes. However, the interpretation of past environmental
conditions from sediment core grain size is difficult because of the complexity of sediment
processes [8]. Numerous studies have shown that the characteristics of sediment grain
size have different interpretations on different time scales [9]. For long-term scales and
low resolution (102 a or 103 a) studies, sediment grain size indicates the history of changes
in lake levels, which can be interpreted as coarser grains being easily transported and
deposited because of a fall in the lake level and the shrinkage of lake area, while finer grains
are difficult to deposit because of the strong hydraulic disturbance at low lake levels during
dry periods. The opposite can be illustrated during wet periods. However, for short time
scales and high resolution (a or 10 a) studies, large coarse sediment grain sizes indicate wet
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years with high regional precipitation, because the increased regional precipitation causes
increases in the erosion intensity of the watershed. In contrast, a decrease in coarse grain
size and an increase in fine grain size indicates drought years with low rainfall [7,10].

In addition, the distribution of sediment grain size in the sediment core can also
reflect information on recent human activity, such as artificial dam construction, water
conservancy projects, and land use changes in the surrounding lake watershed [11,12].
Previous studies have shown that artificial dam construction has a significant impact on
the deposition and transport of grains in water bodies [11,13]. The rivers entering the
lake usually carry grains, including coarse and fine grains. Some of the relatively fine
grains and a smaller amount of the large grains could be carried out with the outflow, and
the remaining coarse and fine grains are deposited at the bottom of the lake. However,
only a small amount of the fine grains could be carried out with the outflow, and most of
the coarse grains and the remaining fine grains were deposited at the bottom of the lake
when the dam was built due to the decreasing sediment transport capacity, which resulted
in a relatively large proportion of the fine grains being deposited at the bottom at this
time. Therefore, the palaeoenvironmental implications of grain size cannot be routinely
applied to palaeolimnological studies, and credible conclusions can be obtained only after
comprehensively analyzing the historical meteorological observations, process-related
information, and the extent of all factors in sedimentary records.

Hulun Lake, situated in a semiarid area in the northeastern part of Inner Mongolia,
China, is an important water body maintaining the grassland ecological environment of
the lake basin. Currently, the lake faces a serious ecological crisis, namely, eutrophication, a
shrinking area, and a gradual impact on the ecological function in the lake ecosystem [14].
However, few studies on the environmental changes of Hulun Lake and its influencing
factors have been performed due to insufficient historical instrumental data, and difficulties
in conducting field experiments because of the cold weather and inconvenient traffic.

A continuous sediment record could preserve in Hulun Lake because there was no
historic dredging. Therefore, the reconstruction and interpretation of the proxies archived
in the lake sediment provide a feasible approach for obtaining a better understanding of the
past climatic and environmental changes in the lake. Previous studies for the reconstruction
of sediment proxy records in Hulun Lake have mainly focused on topics with a long
time scale and low resolution. Hu [15] found that muddy sediments deposited during a
high-water level period (corresponding to a humid climate) have comparatively high κ

(magnetic susceptibility) values in Hulun Lake sediment. In contrast, the sandy sediments
deposited during the low-water level period (corresponding to an arid climate) have low
κ values. Wen [16] described changes in the vegetation and climate of the East Asian
monsoon margin during the Holocene, applied pollen-assemblage data from a sediment
core of Hulun Lake, and revealed that the changes in the monsoon precipitation on the
millennial to centennial scales are related to ocean–atmosphere interactions in the tropical
Pacific. Xiao [17] used a lognormal distribution function fitting method of sediment grain
size distributions, and the results indicated that the lake levels fluctuated in response to
the intensity of monsoonal precipitation. Higher percentages of nearshore components
accompanied by more sand-fraction proportions and coarser median grain sizes reflect
lower lake stands.

Little research has been conducted on lake sediment with high resolution to determine
the past deposition processes and environmental changes in Hulun Lake. In addition,
previous findings on the interpretation of proxies of lake sediment from Hulun Lake
were applied on a long time scale, and with low resolution [15–17]; it is necessary to
advance the determination of whether the results can be used for the reconstruction of lake
environments on short time scales.

The objective of this study was to interpret the proxies of sediment grain size in Hulun
Lake. In addition, we combined the use of radioisotope analyses of 210Pb and 137Cs with
grain size analyses to reconstruct the high-resolution sedimentation history and interpret
the lake deposition process and paleoenvironment. Furthermore, the correlation of the
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sedimentological variables with instrumental measurements (local precipitation and lake
inflow discharge) were analyzed. The results of the proxy interpretation provide insights
into the past and potential future environmental changes in and around the lake.

2. Materials and Methods
2.1. Study Area

Hulun Lake (48◦31′–49◦20′ N, 116◦58′–117◦48′ E), located in the northeast part of Inner
Mongolia, China (Figure 1), is the largest lake in northern China, with a maximum surface
area of 2339 km2 and a maximum water depth of 8 m [18]. The lake adjoins the Greater
Khingan Mountains and the Mongolian Plateau, which is a grassland-type lake wetland
ecosystem with biodiversity and ecological functions found in cold and arid regions across
the world. There are two rivers that control the main input sources of Hulun Lake, in
which the Kherlen River is from Mongolia and the Urshen River is derived from Beier Lake.
Another artificial river named the Xinkai River lies in the northern part of the lake and is an
intermittent river that flows out when the lake elevation exceeds 543.4 m.a.s.l. According
to records, this artificial river was built with the approval of the government due to the
rising lake water level threatening the production of coal mines downstream. A dam was
constructed to block the water outlet from the artificial river started build on 15 June 1965
to drained outward through the river on 8 September 1971 [18]. The lake water could not
be discharged because the dam blocked the outlet of the river during the construction stage
of the project, so that the lake became a closed lake. In addition, the water level was high
during this period.

Since the water level has declined sharply in the last 10 years, Hulun Lake has become
a closed lake without an outlet. The study area is located in a semiarid area, and the climate
around the Hulun Lake basin is controlled by westerly winds and the East Asian monsoon.
Its mean annual precipitation is 247–319 mm, most of which occurs in summer. The mean
annual air temperature is 0.3 ◦C, and the mean annual evaporation reaches 1400–1900 mm,
which is 5–6 times the mean annual precipitation [19].
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2.2. Sampling

A 41 cm-long sediment core was obtained at the deepest site, with a 5.6 m water depth
(Figure 2) in Hulun Lake, China, in July 2015 using a Glew Corer [21]. The core samples
were sliced immediately in 1 cm intervals on board. Then, 41 subsamples were stored in
sealed bags in an ice cooler and transferred to a refrigerator (<4 ◦C) after being transported
to the laboratory.

Water 2022, 14, x FOR PEER REVIEW 4 of 14 
 

 

 
Figure 1. Location of study area: (i) study area on a country-scale map; (ii) whole Hulun Lake basin; 
(iii) core sampling site (black circle indicates the location of the 41 cm core of this study, while the 
green circle indicates the location of the 100 cm core sampled by Liang (2017) from the Inner Mon-
golia water environment group [20]). 

2.2. Sampling 
A 41 cm-long sediment core was obtained at the deepest site, with a 5.6 m water 

depth (Figure 2) in Hulun Lake, China, in July 2015 using a Glew Corer [21]. The core 
samples were sliced immediately in 1 cm intervals on board. Then, 41 subsamples were 
stored in sealed bags in an ice cooler and transferred to a refrigerator (<4 °C) after being 
transported to the laboratory. 

 
Figure 2. Sampling of sediment core in Hulun Lake. 

To compare the results, another sediment core of Hulun Lake was employed as a 
referenced sample core (100 cm), which was sampled northeast of the core sampling site 
in this study in March 2015 by Liang (2017) from the environment group of Inner Mongo-
lia Agricultural University Water [20] (Figure 1). 

Figure 2. Sampling of sediment core in Hulun Lake.

To compare the results, another sediment core of Hulun Lake was employed as a
referenced sample core (100 cm), which was sampled northeast of the core sampling site in
this study in March 2015 by Liang (2017) from the environment group of Inner Mongolia
Agricultural University Water [20] (Figure 1).

2.3. Experiments and Methods
2.3.1. Sediment Core Chronology

To determine the age of the sediment core, 137Cs and 210Pb chronologies were con-
ducted by gamma spectrometry at the Nanjing Institute of Geography and Limnology
Chinese Academy of Sciences. The profile of 210Pb dating was calculated by the constant
initial concentration model (CIC), which was described previously [22,23]. Based on the
constant initial concentration model (CIC), the 210Pbex activity C (Bq/g) in a layer at depth
z′ (cm) can be expressed as:

C = C0· exp
(
−λ

S
Z′
)

(1)

where C0 (Bq/g) is the 210Pbex activity at the top of the sediment core, λ is the 210Pb
radioactive decay constant, 0.031a−1, and S is the sedimentation rate (cm year−1).

Correspondingly, the sedimentary age (t) at a certain depth of the sediment can be
calculated as:

t = λ−1ln(C0/C) = Z′/S (2)

The radionuclide 210Pb (half-life of 22.26 years) is a natural radioactive isotope derived
from 238U decay. The 238U in the Earth’s crust decays to 226Ra and further to 222Rn, which
then escapes to the atmosphere and decays to 210Pb. This fallout fraction derived from the
atmosphere is termed “unsupported” or “excess” 210Pb (210Pbex). In addition, 210Pb also
forms within the sediment itself as a product of the decay of 238U; this fraction in sediment
is termed “supported” 210Pb. 210Pbex concentrations can be estimated by subtracting the
226Ra-supported 210Pb concentrations from the total 210Pb concentrations [24,25].

The artificial nuclide 137Cs (half-life of 30.17 years) is a fission product that was
introduced into the environment as a result of atmospheric nuclear weapons tests conducted
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initially in the early 1950s. The highest 137Cs activity may represent the period of maximum
radionuclide fallout in the Northern Hemisphere, which is associated with the peak of
atomic weapons testing in 1963 [26,27]. In summary, the onset (1950) and peak (1963) of
the 137Cs concentration in the sediment depth profile can be used as validation of 210Pb
dating results.

2.3.2. Grain Size of the Sediment Core

For pretreatment of the 41 sediment samples for grain size analysis, carbonates were
removed by 10% HCl, and organic matter was removed by 30% H2O2. Following the
HCl and H2O2 treatments, the samples were rinsed at least three times with deionized
water. Furthermore, the samples were dispersed by adding 10 mL of 0.05 M sodium
hexametaphosphate as the dispersing agent for treatment in an ultrasonic vibrator for
15 min. Finally, grain size analysis of the bulk sediment was carried out with a Mastersizer
2000 laser particle analyzer detecting a 0.02–2000 µm size range. Each sample was analyzed
twice, and the relative error was no more than 2%. The grain size parameters were
calculated following Folk and Ward (1957). The parameters of grain size (median size and
mean size) and sediment component (%) of sand (>63 µm), silt (4–63 µm), and clay (<4 µm)
were chosen for the analysis.

3. Results
3.1. Sediment Core Chronology

The experimental data for the concentrations of 210Pbex in the Hulun Lake sediment
core is plotted as a logarithmic profile versus depth in Figure 3. Using a least-squares
weighted fit, a straight trend line can be achieved with a coefficient of determination (R2)
equal to 0.80 (Figure 3). Then, a mean sedimentation rate of approximately 0.72 cm year−1

of the core was calculated by Equation (1). Defining the surface sediment as the age of
2015, a chronology frame of the whole core was established, which responded to a 57 years
age series from 1958 to 2015 (Figure 4). The experimental data for the concentrations of
137Cs in the sediment at each depth interval is presented in Figure 4. The 137Cs activity that
reached a “peak” at 37 cm is associated with the 1963 fallout in Hulun Lake sediment, this
mark fits very well with the age series based on 210Pb data, which is at a depth of 37 cm,
corresponding to 1963 (Figure 4).

3.2. Characteristics of the Profile Distribution of Sediment Grain Size in Hulun Lake

The results of the sediment grain component (clay, silt, and sand) of Hulun Lake
are shown in Figure 5. The profiles of the grain size of the lake sediments show that
silt was the component of grain with the largest contribution in the entire sediment core,
with an average content of 84.05%, changing from 72.79% at 24 cm to 95.11% at 35 cm.
The component with the second largest contribution was sand, with an average content of
15.68%, in which the maximum content of 27.00% was at 24 cm and the minimum content of
4.51% was at 35 cm of the sediment core. The clay content was the lowest of the components
in the entire sediment core, with an average of 0.27%.

The contents of different grain sizes in lake sediment reflects different depositional
environments. A high sand content may indicate a strong potentiality of sediment transport,
while a high clay or silt content indicates a stable depositional environment and weak
sediment transport capacity [28]. The sediment core of this study was collected from the
center of the lake, where the potentiality of sediment transport is considered poor. The
contents of clay and silt in the sediment were much higher than the contents of sand in this
study, indicating that the sedimentary environment of the lake was relatively stable in the
center of the lake due to the larger water depth and weak sediment transport capacity.
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Figure 3. Log plots of 210Pbex with its depth and its correlation in the sediment core.
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In particular, it can be seen from the grain component profiles that the contents of the
grain at a depth of approximately 32–38 cm was different from other depths throughout
the core. The clay and silt contents showed continuous maxima with an average content of
0.35% and 94.08%, while the sand contents showed continuous minima with an average
content of 5.57% (gray dotted box in Figure 5). These results may indicate that changes
occurred in the sediment transport capacity or deposition patterns during this period.
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Figure 5. Profiles of the sediment grain components (clay, silt, sand; %) in the 41 core and 100 cm
core of Hulun Lake.

To verify the reliability of the grain size proxy analysis results in this study, a referenced
100 cm core was employed for comparison. The grain size classification results of the 100 cm
core are shown in Figure 5. In the entire sediment core profile, the average contents of clay,
silt, and sand were 0.27%, 91.46%, and 8.27%, respectively. The grain size distribution of
the 100 cm core varied widely, however, the characteristics of the grain size distribution at
sediment depths of 31–37 cm was different from other depths throughout the core, in which
the clay and silt contents showed continuous large values with an average content of 0.30%
and 95.99%, while the sand contents showed continuous small values with an average
contents of 3.70% (gray dotted box in Figure 5). This is consistent with the distribution
characteristics in the range of 32–38 cm of the 41 cm core in this study, and shows that the
sediment transport capacity or deposition process changed at this stage.

The profiles of the median and mean grain size of the 41 cm core are shown in Figure 6,
which shows that the average value of the median grain size in the whole sediment core
was 22.39 µm, with a maximum value of 30.91 µm at a depth of 24 cm and a minimum
value of 14.81 µm at a depth of 35 cm. The average value of the mean grain size in the
entire sediment core was 36.85 µm, with a maximum value of 51.71 µm at a depth of 24 cm
and a minimum value of 22.64 µm at a depth of 35 cm. Compared to the median grain size,
the mean grain size is larger than the median grain size, indicating that fine grains are the
main component in the sediment of Hulun Lake. Similarly, the distribution of grain size at
depths of 32–38 cm showed continuous minima with an average median size of 16.13 µm
and an average mean size of 24.30 µm.
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Figure 6. Profiles of the sediment grain parameters (median size and mean size) in the 41 core and
100 cm sediment core of Hulun Lake.

Compared to the grain size parameters of the 100 cm core (Figure 6), the mean and
median grain sizes are smaller than those of the 41 cm core. This could be related to the
sampling area of the core, where the sediment transport capacity and distance from the
estuary are different. More studies are needed to further demonstrate the result. In addition,
comparing the 100 cm core, it can be found that the characteristics of the mean and median
grain size distributions at 31–37 cm are different, showing continuous minimum values
throughout the core profiles. This is consistent with the distribution characteristics of the
41 cm core in this study.

4. Discussion
4.1. The Relationship between Precipitation and Sedimentary Grain Size

The grain size composition of lake sediments in arid and semiarid regions is mainly
affected by the action of water and wind. As previously discussed, the distribution of the
grain size of lake sediments at a short scale and high resolution is related to the variation
in rainfall in the basin, which mainly depends on the intensity and quantity of the water
source that feeds the lake. The impact of wind and waves may be relatively small due to
the large lake surface and the increasing water depth. To explore the relationship between
the sediment grain size of Hulun Lake and rainfall in the basin, the rainfall data from
meteorological stations in the Hulun Lake basin during the past 60 years were compared to
the changes in sediment grain size.

According to the chronology determined by the 210Pb and 137Cs of the 41 cm core, the
mean grain size of the sediments and the hydrological elements (precipitation and river
discharge) of the lake at the corresponding times are plotted in Figure 7. It should be noted
here that the age of the sediment core was determined based on the calculated average
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deposition rate of 0.72 cm/a. However, the amount of debris entering the lake in different
time periods and the depositional environment were different. Therefore, a discrepancy
of one to two years between the hydrological element data and sediment chronology may
have occurred, which was reported in another study [7].
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Figure 7. Comparisons the mean grain size in the lake sediment with the precipitation and river
discharge records (gray boxes indicate the peaks of precipitation correspond to peaks of the mean
grain size, blue boxes indicate the troughs in the precipitation correspond to the troughs of the mean
grain size, blue horizontal line is the annual average precipitation).

The consistent tendency between precipitation and mean grain size varies in peaks
and troughs, as shown in Figure 7. The peaks of precipitation in 1962, 1974, 1984, 1990,
1998, and 2013 correspond to peaks of the mean grain size of the sediment core in 1962,
1974, 1983, 1990, 1999, and 2013, respectively (gray boxes). Similarly, the troughs in the
precipitation in 1980, 1986, and 1995 roughly correspond to the troughs of the mean grain
size in 1980, 1987, and 1994, respectively (blue boxes). Although the peaks and troughs
of the mean grain size in the sediments do not correspond fully to the peaks and troughs
of precipitation, the errors are within the range of one to two years. As discussed above,
the radionuclides were calculated using the average deposition rate, and a discrepancy
of one to two years of the chronology is acceptable. Therefore, the peak–trough value of
the mean grain size of the sediments in Hulun Lake can reflect the magnitude of rainfall
intensity, indicating that the sediment grain size is affected by regional rainfall changes. In
wet periods, the grains entering the lake water body from the ground may increase due to
the increased erosion intensity on the ground with heavy rainfall. In addition, the coarse
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grains can also reach the center of the lake, resulting in strong sediment transport capacity.
In contrast, the grains entering the lake water body from the ground may decrease due
to low rainfall, and coarse grains may reach the center of the lake with difficulty because
of insufficient sediment transport capacity. Therefore, the grain size of the sediment can
reflect the amount of past rainfall in the lake basin, and then the past climatic conditions
can be interpreted using the lake sediment.

4.2. The Relationship between River Discharge and Sedimentary Grain Size

Similarly, comparing the river discharge over the past 50 years to the changes in
mean grain size indicates that the changes in the peak and trough values are similar to
the corresponding relationship between precipitation and mean grain size. As shown
in Figure 7, the peak values of river discharge in 1962, 1973, 1984, 1990, 1998, and 2013
correspond to the peak values of the mean grain size of sediment cores in 1962, 1974, 1984,
1990, 1998, and 2013, respectively (gray box). Similarly, the trough of river discharge in 1980,
1987, and 1996 corresponds to the valleys of the mean grain size of the sediment cores in
1980, 1987, and 1994, respectively (blue box). This is mainly because the river discharge in
the Hulun Lake basin is related to rainfall, which determines the amount of river discharge.
Therefore, the change in sediment grain size in Hulun Lake can also indicate the amount of
river discharge and allows to interpretation of past climatic conditions.

4.3. A Dam Construction Event Recorded by Sedimentary Grain Size

The stratigraphic distribution of the grain size characteristics of Hulun Lake sediment
shows that intervals between 32 and 38 cm are different from other depths, continuously
presenting the minimum value in the whole core. As shown in Figure 7, the precipitation
and river discharge in this period are nearly equivalent to the annual average precipitation
and average river discharge, but the changes in the mean grain size of the sediment do not
correspond to the precipitation and river discharge here. Therefore, the different changes
in grain size distribution in this period may be controlled by factors other than the change
in hydrological conditions. In addition, the distribution characteristics of the grain size
parameters of the 100 cm core northwest of the lake also continued to show the minimum
values in the whole core at the same depth, indicating that the changes in these two cores
at 32–38 cm were affected by the same factor.

The changes in grain size were found at a depth of approximately 32–38 cm, which
corresponds to the period of approximately 1963–1970. During this period, the dam was
built to block the water outlet from the lake. Construction of the dam may have significantly
affected the sedimentation processes in Hulun Lake. In order to demonstrate the difference
in grain size distribution between the lake with and without a dam, the sediment grain
size frequency curves at 32–38 cm and other depths were selected for comparison, as
shown in Figure 8. The distribution of the 32–38 cm sedimentary section during the period
when the dam was constructed was different, and its peak appeared earlier than at other
sedimentary depths, indicating that the part occupied by fine grains increased. This result
is consistent with the previous findings proposed by Nahm [7], highlighting that large
grains were difficult to transfer due to a lack of hydraulic gradient generated by the flow
when the outlet was blocked by artificial dam construction. In addition, smaller grains
could not be flow out of the lake because there was no outflow, resulting in an increase
in the grain size of the clay content in the sediment while the sand content decreased.
Therefore, the distribution of the sediment grain size of Hulun Lake clearly shows that the
lake was affected by dam-building activities, and the lake sediment effectively recorded the
information of this human activity. It is rather remarkable that not only did the sedimentary
environment of the lake change, but also a large amount of sediment was deposited on the
bottom of the lake due to the building dam.

59



Water 2022, 14, 3878Water 2022, 14, x FOR PEER REVIEW 12 of 14 
 

 

  
Figure 8. The sketch map of sediment grain size frequency curves at 32–38 cm of the 41 cm core 
corresponding to the period of dam construction and other depths corresponding to the period 
without dam. 

5. Conclusions 
In the present study, we combined the use of radioisotope analyses of 210Pb and 137Cs 

with grain size analyses to interpret the lake deposition process and historical environ-
ment. Furthermore, the correlation of the sedimentological variables with instrumental 
measurements were analyzed. The results of the proxy interpretation provide insights 
into the past and potential future environmental changes in and around the lake. The 
grain size of the sediment can reflect the amount of past rainfall in the lake basin and river 
discharge into the lake, and then the past climatic conditions can be interpreted using the 
lake sediment. The changes in grain size at a depth of approximately 32–38 cm correspond 
to the period of dam construction in 1963–1970. Therefore, the sediment grain size of 
Hulun Lake effectively recorded the dam-building activity. The results of this study show 
that the sediments in the lake are well suited for high-resolution paleoenvironmental in-
vestigations. The credible conclusions of the palaeoenvironmental implications of grain 
size in lakes can be obtained by comprehensively analyzing the sedimentation process-
related information. 
Author Contributions: H.G., Y.F. designed and performed research. H.G., R.Z., G.W. wrote the pa-
per. X.Z., J.W., and L.W. assisted experiment and provided comments. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was funded by Natural Science Foundation of Henan province (No. 
222300420106), National College Students’ Innovation and Entrepreneurship Training Program 
(No. 202211765003), Open-ended Fund of State Key Lab. Of Hydrology-Water Resources and Hy-
draulic Engineering, Hohai University (No. 2017490611), Henan Provincial Department of Educa-
tion Key Project (No. 19A210008, 19B570001, 21B610002), Science and Technology Project of Henan 
Province (No. 212102310277), Project of Young Core Instructor of Henan University of Urban Con-
struction (No. YCJQNGGJS202103). 

Data Availability Statement: The data that support the findings of this study are available from the 
authors upon reasonable request. 

Acknowledgments: Comments from the anonymous reviewers are appreciated.  

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

0

1

2

3

4

5

0.1 1 10 100 1000

vo
lu

m
e（

%
）

grain size（um）

grain size frequency curve at 32–38 
cm (dam construction)
grain size frequency curve at other
depths (without dam)

Figure 8. The sketch map of sediment grain size frequency curves at 32–38 cm of the 41 cm core
corresponding to the period of dam construction and other depths corresponding to the period
without dam.

5. Conclusions

In the present study, we combined the use of radioisotope analyses of 210Pb and 137Cs
with grain size analyses to interpret the lake deposition process and historical environment.
Furthermore, the correlation of the sedimentological variables with instrumental measure-
ments were analyzed. The results of the proxy interpretation provide insights into the past
and potential future environmental changes in and around the lake. The grain size of the
sediment can reflect the amount of past rainfall in the lake basin and river discharge into the
lake, and then the past climatic conditions can be interpreted using the lake sediment. The
changes in grain size at a depth of approximately 32–38 cm correspond to the period of dam
construction in 1963–1970. Therefore, the sediment grain size of Hulun Lake effectively
recorded the dam-building activity. The results of this study show that the sediments in the
lake are well suited for high-resolution paleoenvironmental investigations. The credible
conclusions of the palaeoenvironmental implications of grain size in lakes can be obtained
by comprehensively analyzing the sedimentation process-related information.
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Abstract: Urbanization has notably changed the characteristics and functions of watershed ecosys-
tems worldwide, influencing the characteristics of chromophoric dissolved organic matter (CDOM)
and dissolved organic matter (DOM) of sediments in urban streams. In this study, the biogeo-
chemical characteristics of 42 water samples and the optical absorption and excitation–emission
matrix spectra (EEMs) of 14 sediment samples collected from 14 urban streams in Wuhan were
systematically examined. In addition, five water samples and one sediment sample were collected
in Mulan Lake as a reference for non-urban areas. The a254 values of sediments in urban streams
ranged widely (25.7–197.6 m−1), and the mean (116.32 ± 60.5 m−1) was significantly higher than the
reference (51.52 m−1), indicating clear individual differences and a higher concentration of CDOM.
Two humus-like components and one tryptophan-like component were effectively identified by
parallel factor analysis (PARAFAC). The fluorescence index (FI)/biological index (BIX) of DOM
of sediments in urban streams was mostly within 1.4–1.7/0.8–1.0, indicating a compound of both
allochthonous and autochthonous sources. Compared with the reference, lower FI and BIX and
higher humification index (HIX) revealed a higher allochthonous input and humification degree
of DOM of sediments in urban streams. Spearman’s correlation analysis and redundancy analysis
demonstrated that heavy metals and other water quality parameters had a considerable impact on
CDOM concentrations and DOM components. This study could support the use of DOM as an
effective tool to monitor the water environment and provide insights into future water pollution
management strategies.

Keywords: dissolved organic matter; urban streams; EEMs–PARAFAC; water quality; correlation
analysis

1. Introduction

Dissolved organic matter (DOM) is a heterogeneous compound of organic matters,
mainly composed of proteins, humus and other aromatic and aliphatic organic com-
pounds [1,2]. DOM is ubiquitous in surface water, pore water, sediments and other natural
environments [3,4]. DOM is also considered as a tracer in biogeochemical cycling, which
plays an important role in the course of material circulation and energy exchange [5]. DOM
characteristics are associated with their source and environment conditions. In general,
there are two main sources of DOM, including allochthonous inputs and autochthonous
production [6]. Allochthonous DOM represents the terrigenous input materials, and au-
tochthonous DOM predominantly originates from the microbial decomposition of organic
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matter and macrophytes and algae production [7,8]. DOM has been discussed in studies
of biogeochemical processes in estuaries, reservoirs and lakes, due to its importance in
element cycling as well as ecosystem function [9–11]. Chromophoric dissolved organic
matter (CDOM) refers to the fraction of DOM based on the absorption of ultraviolet and
photosynthetically active radiation [12]. In general, light absorption by CDOM can promote
not only the primary production of aquatic ecosystems, but also photochemically induced
transformations in natural waters [13].

During recent years, rapid industrialization and increased urbanization have brought
about a variety of urban water problems, including an impact on aquatic ecosystems and
the deterioration of water quality in urban streams [14]. The increase of impervious surface
in urban catchments changes the hydrological process of urban streams, and enhanced
water disturbance promotes the interactions between sediment and overlying water, es-
pecially under heavy rain conditions [15]. Many pollutants accumulated in sediments
are then released into the overlying waters, among which the speciation, transformation
and characterization of DOM have become a hot topic in water environmental protection
studies [16]. Urbanization also has an effect on the components and characteristics of DOM
in the water environment [17]. Previous studies have explored the interactions between
DOM and water pollutants, such as TN and TP, and revealed the relationship between
DOM in natural waters and water quality indexes [18]. DOM content in water has been
reported to be regulated by sediment release, which provides a perspective on the response
of water quality to sediment characteristics [19]. Previous studies have suggested that DOM
from surface sediments and overlying waters exchanges at the water–sediment interface,
increasing the proportion of autochthonous DOM [2]. Therefore, systematic analysis of
DOM in sediments is helpful to provide scientific basis and management strategy for the
control of water environmental pollution.

Wuhan is a typical city suffering from urban water problems, such as eutrophication,
decreased self-purification capacity and water ecological degradation, which is a threat
to the balance of aquatic ecosystems [20]. Point (mainly domestic sewage) and non-point
pollution sources caused by runoff washing the roads in urban areas lead to spatial distri-
bution differences of water pollution in Wuhan. Previous studies in Wuhan have mostly
investigated the common water quality parameters of urban lakes [21]. Our team has also
studied geochemical and isotopic characteristics of urban streams during the late spring of
2019 and revealed the fragmentation of urban hydrological connectivity [22]. Some studies
have explored the water environment carrying capacity of urban lakes [23], and others
have examined the distribution of organic compounds in the Yangtze River [24]. However,
few studies have focused specifically on DOM of sediments in urban streams, especially
using fluorescence spectroscopy, which can reflect water quality and the characteristics
and variations of fluorescent components simultaneously. Analyzing DOM is a rapid and
effective way to monitor the current situation and source of water pollution, especially
when non-point pollution is hard to detect. The main purposes of this research were to
(1) characterize properties of sediments in urban streams, including the CDOM absorption
properties, DOM components and their abundance, etc.; (2) reveal the effect of urbanization
on CDOM properties and DOM composition; (3) explore the correlations between water
quality, CDOM and DOM in Wuhan.

2. Materials and Methods
2.1. Site Description and Sample Collection

Wuhan (113◦41′–115◦05′ E and 29◦58′–31◦22′ N), the capital of Hubei Province, is
located in central China and the middle reaches of the Yangtze River (Figure 1). Precipitation
is abundant and unevenly distributed within the year, with an annual average rainfall of
1140–1265 mm [25]. As a new first-tier city in China, the resident population of Wuhan
is increasing year by year, reaching 12.45 million in 2020 [26]. The urban core consists
of seven districts and accounts for approximately 57.89% of Wuhan’s population. As
an important national transportation junction, Wuhan is obviously a modern metropolis

63



Water 2022, 14, 3181

with rapid economic development and intense human activities. Wuhan has an inland
area of 2217.6 km2, accompanied by two major rivers (the Yangtze and Han rivers) and
plenty of lakes, reservoirs and urban streams (shallow waterbodies and canals) that are
interconnected [25]. Due to the development of commerce, tourism and industrial activities,
water environment problems, including water pollution, eutrophication and the reduction
of biodiversity, have gradually become serious in the urban streams in Wuhan.
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An urban stream and sediment sampling program was conducted during a rainless
period in mid-August, 2020. For each urban stream, three water samples were sampled
along the stream flow. Owing to the weak fluidity and relative stability of sediments,
only one sediment sample was taken by the grab sampler from each urban stream. In
total, 42 water samples and 14 sediment samples were collected in urban streams of the
central regions, including five districts. In addition, samples from Mulan Lake, far from the
central districts, were also collected as the reference for non-urban areas, totaling five water
samples and one sediment sample. In general, the urban streams in this study were shallow
in depth, ranging from 0.2 m to 2.2 m, averaging 1.15 m. The samples were quickly collected
and then transported to the laboratory in dark and cold conditions.

2.2. Sample Pretreatment and Biogeochemical Parameter Measurement

Water temperature (Temp), pH, dissolved oxygen (DO), turbidity (Turb), salinity (Sal),
chlorophyll a (Chl-a), oxidation-reduction potential (ORP), and electrical conductivity (EC)
were measured in situ using a Hydrolab DS5 multi-probe water quality analyzer (Hach
company, Loveland, CO, USA). Concentrations of heavy metals were determined using
an inductively coupled plasma mass spectrometer (ICP-MS) (Nexion 350, PerkinElmer,
Waltham, MA, USA) using the sample measurement method described in detail in our
previous work [22].

Sediment samples were screened through 100 mesh after natural air drying and grind-
ing. The contents of carbon and nitrogen (C and N) in the sediments were then determined

64



Water 2022, 14, 3181

by an elemental analyzer (Elementar Vario Macro cube, Hanau, Germany). Sediments
DOM were extracted by preparing 200 g/L suspended solution, stirred continuously for
24 h at a velocity of 70 r/min and a constant temperature of 25 ◦C without light. After
centrifuging at a speed of 7500 r/min for 5 min and standing for 30 min, the obtained
solution was then filtered with 0.22 µm polyethersulfone filter membrane [19]. CDOM
and DOM were measured using the filtered supernatant, and the analysis methods are
described in detail in Sections 2.3 and 2.4.

2.3. CDOM Absorption Analysis

A Shimadzu UV-3600 UV-Vis spectrophotometer was used to determine the UV-Vis
spectra of filtered supernatant. The CDOM absorption coefficient a(λ) was expressed as
Equation (1) [13,27]:

a(λ) = 2.303D(λ)/L (1)

where D(λ) is the absorbance after deducting the corresponding absorbance of Milli-Q
water, and L is the cuvette length (m). The absorption coefficient of CDOM at 254 nm (a254)
was used to quantify the content of CDOM, with higher a254 indicating higher concentration
of CDOM.

The spectral slope parameter S was computed by Equation (2) [27]:

a(λ) = a(λ0)e(S(λ0−λ)) (2)

where λ0 is the reference wavelength (440 nm). S275–295 and S350–400 refer to the spectral
slopes of 275–295 nm and 350–400 nm, respectively. The humification signal of CDOM is
inversely proportional to S. The lower the S275–295 value, the stronger the terrestrial humic
acid signal [28].

The calculation formula of the spectral slope ratio (SR) is shown in Equation (3) and
is sensitive to the characteristics of CDOM [27]. A lower SR value indicates higher DOM
molecular weight and greater aromaticity [27,29].

SR =
S275−295

S350−400
(3)

2.4. DOM Fluorescence Measurement

The excitation–emission matrix spectra (EEMs) of filtered supernatant were measured
using a FS5 fluorescence spectrometer (Edinburgh Instruments, Scotland) [30]. The EEMs
of Milli-Q water were measured to remove the interferences of water Raman scattering
peaks. Moreover, the fluorescence intensity of 3D fluorescence spectra was calibrated as
a Raman unit (R.U.) by the ratio of fluorescence integral intensity of Milli-Q water at the
wavelength of 350 nm (Ex) and 371–428 nm (Em).

Three fluorescent indexes, including the fluorescence index (FI), biological index (BIX)
and humification index (HIX), were computed to further distinguish the source of DOM and
quantify humification degree. The calculation formulae are shown in Equations (4)–(6) [31–33]:

FI =
FEx=370nm,Em=470nm

FEx=370nm,Em=520nm
(4)

BIX =
FEx=310nm,Em=380nm

FEx=310nm,Em=430nm
(5)

HIX =
AEx=254nm,Em=435−480nm

AEx=254nm,Em=300−345nm
(6)

where F is the fluorescence intensity and A is the integrated intensity. FI was usually
applied to analyze the source of DOM, with higher FI indicating more autochthonous
DOM from microbial decomposition [34]. BIX was generally used to estimate the relative
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contribution of autochthonous DOM, and HIX was used to characterize the humification
degree [35,36].

2.5. Data Analysis

Three fluorescent components of EEMs of sediments were identified by parallel factor
analysis (PARAFAC) using the “DOMFluor” toolbox on the MATLAB platform, after Raman
and Rayleigh scattering of spectral data were removed. For the accuracy and reliability of
the results obtained, the optimal fluorescence fraction was extracted through half-split veri-
fication and residual examination. Redundancy analysis (RDA) and Spearman’s correlation
analysis were performed on the standardized PARAFAC components, calculated fluores-
cent indexes and biogeochemical parameters, using Canoco5 and R 4.2.0, respectively.

3. Results and Discussion
3.1. Biogeochemical Characteristics

The biogeochemical parameters of water and sediment samples in urban streams and
the reference are presented in Table 1.

Table 1. Biogeochemical parameters of water and sediment samples in urban streams and the reference.

Sampling
Types Parameters

Urban Streams Reference

Min–Max Mean ± SD Min–Max Mean ± SD

Waters

pH 6.53–9.52 7.31 ± 0.65 7.84–8.15 7.99 ± 0.10
Temp (°C) 27.33–35.40 30.10 ± 2.10 31.09–0.31 31.09 ± 0.31

DO (mg/L) 0.00–15.44 4.51 ± 4.00 7.24–7.73 7.49 ± 0.16
Turb (NTU) 6.40–122.20 27.82 ± 20.41 6.30–7.00 6.58 ± 0.28

Sal 0.08–0.74 0.19 ± 0.13 0.20–0.20 0.02 ± 0.00
Chl-a (µg/L) ND–41.25 6.11 ± 10.72 ND ND

ORP (mV) 59.0–409.0 336.4 ± 64.1 333.0–420.0 395.0 ± 31.9
EC (µS/cm) 181.3–1394.0 383.9 ± 243.5 70.2–73.3 71.08 ± 1.13

Sediments
C (%) 0.50–6.26 3.29 ± 1.57 6.4–6.4 6.4 ± 0.00
N (%) 0.15–0.47 0.35 ± 0.10 0.72–0.72 0.72 ± 0.00
C/N 2.00–21.60 9.35 ± 4.41 8.23–8.23 8.86 ± 0.00

Note: ND refers to not detected.

The pH of urban streams ranged from weakly acidic to weakly alkaline. Clearly,
physicochemical parameters of urban streams in Wuhan varied greatly, especially DO, Turb
and EC. The mean concentrations of Chl-a (6.11 ± 10.72 µg/L) in urban streams were rela-
tively low compared with the content of Chl-a of urban lakes previously reported in Wuhan,
with a mean of 114.56 µg/L [37]. Some studies have also shown that Chl-a concentrations
in urban rivers were significantly higher, compared to peri-urban rivers [38], which is in
agreement with our research. Increased impervious surfaces lead to urban rainfall runoff
being discharged into urban streams rather than seeping directly downward [39]. Enriching
nutrients such as nitrogen and phosphorus in urban streams increase the Chl-a content and
contribute to algae bloom. Less than half of urban streams (46.7%) had DO concentrations
higher than 3 mg/L (Grade III surface water quality standards). The concentration of DO in
the non-urban area was higher, with an average close to 7.5 mg/L (Grade I). As confirmed
by the previous study, urban streams that received point source pollution, mainly through
sewage effluent, had a lower value of DO [40]. The impact of domestic sewage, industrial
wastewater and runoff pollution on urban streams may be serious, as water volume of these
streams is not large [39]. The mean ORP in urban streams was 336.4 ± 64.1 mV, slightly less
than the reference water (395.0 ± 31.9 mV), revealing a lower oxidability. Compared with
the EC of the reference water (71.08± 1.13 µS/cm), urban streams were clearly less purified,
with a mean EC of 383.9 ± 243.5 µS/cm. The C/N of sediments was within a wide range,
demonstrating that sediments collected were considerably different in physical properties.

66



Water 2022, 14, 3181

Heavy metal in natural surface water is generally at low values. However, with the
development of agriculture and industries in urban areas, a mass of wastewater derived
from anthropogenic activities has carried lots of heavy metals into surface water, resulting
in severe heavy metal pollution in some urban streams [41]. Therefore, many studies pay
attention to the types and contents of heavy metals when investigating the urban water
environment. In this research, the content of heavy metals has also been examined. The
results demonstrated that concentrations of heavy metals in urban streams were mostly
higher than those in the reference, except for Cr (Figure 2). Overall, urban streams in
Wuhan contain metals at relatively low levels, with the concentrations of Ni, Cu, Cr, Pb
lower than 10 µg/L.
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3.2. CDOM Absorption Characteristics

As demonstrated in Figure 3, absorbance decreases exponentially with increased
wavelength, except for the absorption peaks in 200–230 nm and 260–280 nm. There was
no absorption peak in the CDOM absorption spectra of sediments in most urban streams,
consistent with that of natural waterbodies [27]. The CDOM absorption coefficients of
sediments in most urban streams were apparently higher than the reference, with high
and flat curves for urban streams. It is well known that inorganic ions have significant UV
absorption at wavelengths lower than 230 nm [42]. CDOM absorption spectra of sediments
in some urban streams showed a similar strong adsorption peak. Low intensity absorption
peaks in the 260–280 nm wavelength range may be induced by an unconjugated group
with lone pair electrons, such as carboxyl [42].

Among 15 sediment samples, a254 ranged from 25.7 m−1 to 197.6 m−1, with an average
of 116.32 ± 60.5 m−1 for urban streams and 51.52 m−1 for the reference, demonstrating
that CDOM contents of sediments in most urban streams were significantly higher than
that in the reference. This may be attributed to the large magnitude of conjugated structure
and high degree of humification of CDOM in sediments from urban streams. The vari-
ation of CDOM of sediments in urban streams normally corresponds to those of urban
waters [18]. In a previous investigation, values of a254 of natural waters from rivers were
reported to be higher than those of lakes and coastal marine environments, with means of
50.5 m−1, 13.2 m−1 and 6.4 m−1, although all at a relatively low level [43]. Moreover, a254
of sediments in urban streams exhibited considerable variability, even in the same district.
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A previous study has reported that higher amounts of CDOM were observed in urban
waters, due to high population density, water pollution and an increase of surrounding
artificial surfaces [5]. These were also thought to be the factors leading to the variation and
higher concentration of CDOM of sediments in the study area.
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Figure 3. UV-Vis absorption spectra of CDOM in sediments from urban streams and the reference,
with special curves in the upper left and lower right corner.

The S275–295 varied greatly, from 14.6 µm−1 to 24.9 µm−1, and the mean was
17.88 ± 2.66 µm−1 for urban streams and 18.8 µm−1 for the reference. S275–295 of sedi-
ments in urban streams ranged widely, indicating differences in their content, molecular
weight and sources of CDOM. Since S275–295 was also an indicator of DOM sources, sedi-
ments of urban streams were inferred to contain different amounts of allochthonous DOM
from terrigenous substances (mainly humus-like matter with a large molecular weight) [44].

The mean value for SR (0.93 ± 0.13) of sediments in urban streams was higher than
in the reference (0.88), indicating a lower molecular weight of CDOM. SR, representing
the structural changes of DOM, is inversely correlated with the molecular weight of DOM.
A small SR indicates that DOM is mostly newly generated (photocatalytic oxidation or
microbial activities) or mainly imported from external sources. On the contrary, a larger SR
demonstrates that DOM is mainly endogenous (self-decomposition of microorganisms in
water) or that photobleaching is strong [28]. The fact that SR of sediments in urban streams
ranged extensively apparently indicates enormously different DOM sources, mainly au-
tochthonous and allochthonous, respectively.

3.3. Variations and Characteristics of DOM

Based on the PARAFAC model, three-dimensional fluorescence spectra analysis and
split half validation were carried out on the sediment samples, and three DOM components
were eventually identified (Table 2 and Figure 4).

Table 2. Descriptions of the three fluorescence components identified by PARAFAC analysis.

Component Ex (nm) Em (nm) Type

C1 260, 365 475 Humic-like acid
C2 325 402 Humic-like (fulvic) acid
C3 275 334 Protein-like (tryptophan) component
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Figure 4. Identification of the three components extracted from the PARAFAC model. (a–c): contour
plots of C1, C2 and C3. (d–f): excitation and emission loadings of C1, C2 and C3.

Component1 (C1) demonstrated two fluorescence peaks at an Ex/Em wavelength of
260 nm (365 nm)/475 nm, consistent with humic-like peaks, as previously reported [6,45].
Component2 (C2), with a primary fluorescence peak at an Ex/Em wavelength of
325 nm/402 nm, was similar to fulvic-like acid in the visible region, a humus-like substance
with a relatively small molecular weight. The fulvic acid was considered to be derived from
the degradation and transformation of macromolecular humus-like substances [46]. Compo-
nent3 (C3) showed a primary fluorescence peak with Ex/Em wavelength of 275 nm/334 nm
and was considered as a tryptophan-like matter, related to carboxyl functional groups and
aromatic protein structures generated by microbial degradation [4,47]. C2/C1 is the ratio of
humic-like acid and fulvic-like acid fluorescence peaks, which is often used to characterize
the composition of humus and reflect the degree of humus aggregation to a certain extent.
C2/C1 of sediments in urban streams were in a wide range and mostly lower than the
reference, with means of (1.53 ± 0.36) and 1.88, respectively, accounting for the variation of
the humus aggregation degree and worse quality of sediments in urban streams.

The maximum fluorescence intensity (Fmax) of components extracted, based on the
PARAFAC model, can be used to characterize their abundance (Figure 5a). The total
fluorescence intensity (FT) and component fluorescence intensity of sediments in urban
streams were significantly higher than those in the reference. It is worth noting that FT
of sediments in urban streams was nearly four times that of the reference, with means
of 2.51 ± 0.97 R.U. and 0.65 R.U., respectively, indicating a higher DOM concentration
of sediments in urban streams. A large amount of nutrients and organic matter such as
humus-like substances from runoff input were found to be carried into urban streams by
point source or non-point source pollution, resulting in higher allochthonous organic matter
in waterbodies [48]. Therefore, it is reasonable to believe that the external inputs influenced
by the process of urbanization increase the DOM content of sediments in urban streams.
In general, the concentration of C3 of sediments in most urban sampling sites was the
highest and ranged widely, with a distinct difference in the spatial distribution. Although
slightly lower than C3, the content of C2 was rather uniformly distributed. Moreover,
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the concentration of C1 was clearly the lowest, demonstrating that the humus of DOM of
sediments in most urban streams was mainly composed of micromolecules.
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Figure 5. Distribution of the (a) abundance and (b) relative abundance of three PARAFAC components
of the sediment samples in Wuhan; 1–14 refer to the urban streams, 15 refers to the reference.

The relative abundance of three fluorescence components is displayed in Figure 5b.
The average relative abundance of C2 of sediments in urban streams was highest, C3 was
the next highest and C1 was the lowest. Humus-like substances (C1 + C2) were signifi-
cantly higher than protein-like matter (C3), with means of 66.81% and 33.19%, respectively.
Humus-like components are commonly considered to be mainly related to external inputs,
including runoff input and farmland water regression [49]. Protein-like components are
commonly supposed to be derived from domestic sewage and also probably originate
from microbial degradation of algae or aquatic plant residues [50]. The relative abundance
of humus-like and protein-like components were possibly associated with land use, pop-
ulation density and the economic system, as there were obvious individual differences
in each sampling sediment. Research in Jilin Province has also found that urban waters
have higher relative abundance of humic-like acid (74%), accompanied by lower relative
abundance of protein-like substances (26%) [5]. In this study, more than 71% of sediments
in urban streams were characterized by lower relative abundance of C3 and higher relative
abundance of C1 + C2 compared to the reference, indicating that DOM of sediments is influ-
enced by urbanization, with increasing humus content and decreasing tryptophan content.
The results above indicate that DOM of sediments in urban streams was affected by both
allochthonous and autochthonous origins, with the terrestrial inputs being slightly higher.

FI varied from 1.53 to 1.76, distributed within the range of 1.4–1.9, indicating the
simultaneous presence of terrigenous and biogenic DOM (Figure 6). Most BIX of sediments
in urban streams was within 0.8–1.0, demonstrating the moderate autochthonous inputs.
Nonetheless, BIX of some sediment samples was less than 0.8 or higher than 1.0, indicating
distinct spatial distribution differences and multiple sources of DOM of sediments in urban
streams. The range of HIX was from 1.04 to 5.30, providing evidence of various degrees of
humification, since HIX represents DOM humification degree. Significantly higher HIX
was observed compared to the reference, demonstrating that DOM of sediments in urban
streams were more humified and aromatic. This discovery was consistent with a previous
study, which reported that urban waterbodies had a wide range of fluorescence indexes,
due to differences in land use types [51]. The influence of allochthonous and autogenous
sources on DOM of surface sediments has also been found in a past case study [52]. The
lower FI and lower BIX, along with higher HIX, than the reference indicates that DOM of
sediments in urban streams in Wuhan were more affected by the terrestrial input and less
generated by aquatic organisms with higher degree of humification.
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3.4. Relationship between DOM Optical Parameters and Water Environmental Factors

The degradation of water ecosystems has always been a hot issue in urban rivers
and also a threat to the sustainable development of water resources, making it essential
to monitor and control water quality [14]. In general, surface water varies rather greatly
under different scenarios. As a cumulative environmental medium, sediment could reflect
the situation in past periods and the influence on future water quality. The content and
components of DOM were influenced by the sources and concentrations of some biogeo-
chemical factors, so the relationship among them has been widely studied in some oceans,
rivers and lakes [11,18,53]. The RDA of optical characteristics and biogeochemical factors
is shown in Figure 7. C1 was significantly positively correlated with C2, a254, BIX, Chl-a,
Sal and EC. C2 and a254 share the same correlation with C1. C3 was positively correlated
with both BIX and FI. HIX was significantly positively correlated with Temp, C/N, Turb,
DO, pH and ORP, and negatively correlated with FI and HIX.
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Since C1 and C2 were positively correlated and had similar correlations with other
factors, it could be concluded that they might be obtained from common allochthonous
sources. The strong positive correlation between C1, C2 and a254, and relatively weak
correlation between C3 and a254, reiterated that humic-like acid was the major component
of DOM. The non-fluorescent organic matter in phytoplankton can be transformed and
degraded into humus-like fluorescent substances by bacteria, contributing to the positive
correlation between Chl-a, C1 and C2. Some ions have been shown to be able to com-
plexate or chelate with soil humus, which explains the positive correlation between EC
and C1, as well as C2 [54]. Since Sal and EC are interchangeable, they showed the same
correlation with C1 and C2. The positive correlation between C3, FI and BIX demonstrates
that tryptophan-like substances might be closely associated with the proportion of au-
tochthonous DOM and allochthonous DOM. Protein-like substances with small molecular
weight have lower C/N ratios, which fully explains the negative correlation between C3
and C/N. The inverse correlations between HIX and FI, and between HIX and BIX, indicate
the higher fluorescence intensity, the more allochthonous DOM and the lower the degree
of humification. A previous study has reported that DO was regarded as an oxidant in
accelerating the generation of organic matters in waterbodies [55]. Due to the positive
correlation between HIX and other physicochemical parameters, we can conclude that the
degree of humification of DOM of sediments was partly influenced by overlying water.
Further research is still required to reveal the relationships between DOM of sediments and
water quality.

The relationship between DOM components of sediments and heavy metals was
explored by Spearman’s correlation analysis (Figure 8). The results showed positive
correlations between most heavy metals, indicating that they might be derived from a
similar origin of water pollution. However, Cr was negatively correlated with all other
metals, which might be due to the different source of some industrial wastewater around
the sampling sites. Interestingly, all three components were positively correlated with
most metals, especially Ni, Fe and Pb. A previous investigation has confirmed the toxic
metal (Ni2+, Pb2+) binding affinity of DOM, and that the metal complexing capacity was
influenced by DOM concentrations, structure and components [56]. It is considered that
the existence of DOM in surface waters might reduce the precipitation of heavy metals by
inhibiting the formation of carbonate and hydroxide precipitations, and then enhancing
their migration ability [57,58]. However, when heavy metals and macro-molecular DOM
form insoluble chelates, the migration ability of heavy metals may be decreased instead,
which would lead to the precipitation of DOM as well as metals [59]. Some studies have also
considered that the existence of metals may promote the aggregation of humic substances
by decreasing the intermolecular repulsion [60]. The presence of such processes might be
also influenced by salinity, as it was found in RDA analysis that EC and Sal in surface water
had a significantly positive correlation with three components of sediments. Therefore,
heavy metals in overlying water may enhance the accumulation of DOM in sediments.
Heavy metals, especially Fe and Mn, with relatively higher concentration levels, were
not significantly correlated with FI and BIX, because heavy metals in urban streams were
mainly from allochthonous sources (point and non-point water pollution), while the sources
of DOM included allochthonous and autochthonous inputs. In addition, the relatively
weak negative correlation between Fe/Mn and HIX indicates that heavy metals have a
slight negative influence on the humification process, i.e., the biological transformation
process. Overall, the pollution by heavy metals was not serious and interactions between
heavy metals and DOM were not obvious in urban streams in Wuhan.
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4. Conclusions

In this study, the biogeochemical characteristics of waterbodies and (C)DOM of sedi-
ments in urban streams in Wuhan have been investigated. The results showed that CDOM
and DOM concentrations of sediments in urban streams ranged widely and were at rel-
atively high levels, with a254 (116.32 ± 60.5 m−1) and FT (2.51 ± 0.97 R.U.) nearly twice
and four times higher than the reference (51.52 m−1, 0.65 R.U.), respectively. The fluores-
cence components of sediments in urban streams identified by the EEM–PARAFAC model
included humic-like acid (C1), fulvic-like acid (C2) and protein-like substance (C3). The
calculated results of FI, BIX and HIX demonstrated that DOM of sediments in urban streams
had allochthonous inputs and autochthonous production simultaneously and a high degree
of humification. The relative abundance of humus-like acid (66.81%) was much higher than
that of protein-like matter (33.19%), indicating a higher allochthonous input. Comparison of
the urban and reference samples revealed that urbanization played a remarkable role in the
increase of CDOM and DOM contents and the variation of DOM components and sources.
RDA and Spearman’s correlation analysis showed that DOM optical characteristics of sedi-
ments in urban streams were associated with most heavy metals and other water quality
parameters. This study could support the use of the EEM–PARAFAC method to identify
diverse sources of DOM, and it promotes a better understanding of DOM characteristics of
sediments in urban streams and their relationship with biogeochemical parameters.
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Abstract: Climate change alters hydrological processes in cold regions. However, the mechanisms of
runoff component variation remain obscure. We implemented a WEP-N model to estimate monthly
runoff in the Songhua River Basin (SRB) between 1956 and 2018. All flow simulations were accurate
(NSE > 0.75 and RE < 5%). The annual runoff was attenuated in 1998, and the hydrological series
(1956–2018) was divided into base and change periods in that year. Relative to the BS (base scenario),
annual production flow reduction was −28.2% under climate change and water use. A multifactor
attribution analysis showed that climate change and water use contributed 77.0% and 23.0% to annual
runoff reduction, respectively. Decreases in annual surface and base flow explained 62.1% and 35.7%
of annual production flow reduction, respectively. The base flow increased by 8.5% and 6.5% during
the freezing and thawing periods, respectively. Relative to the BS, groundwater recharge increased
by 9.2% and 4.1% during the freezing and thawing periods, respectively, under climate change
conditions. Climate change was the dominant factor attenuating production flow. The change in
production flow occurred mainly during the non-freeze-thaw period. The decrease in total production
flow in the SRB was caused mainly by the decrease in the surface flow, where the reduction in base
flow accounted for a relatively small proportion. Production flow attenuation aggravated water
shortages. The utilization rate of groundwater resources is far below the internationally recognized
alarm line. Therefore, attention should be directed towards certain areas of the SRB and other regions
with minimal groundwater exploitation.

Keywords: precipitation; temperature; production flow component; Songhua River Basin; runoff
variation; WEP-N model

1. Introduction

Global climate change and human activity significantly affect the hydrological cycle
in cold regions [1–4]. Trends in runoff and the factors that influence them regionally
include runoff trends that are positive in certain cold areas. Runoff may be influenced by
glacier melt in response to increasing temperature. This phenomenon occurs in the Upper
Khovd River Basin of Central Asia [5,6]. Runoff may also be influenced by increasing
precipitation. This process occurs in most of Russia and on the south slope of the Altai
Mountains in Northwestern China [5,7]. Runoff may also be influenced by the increases
in precipitation, glacial meltwater, and permanently frozen soil meltwater that occur with
rising temperatures. These effects are observed in the Yangtze River source region, the
Nagqu River Basin in the southern part of the Qinghai-Tibet Plateau, the north and south
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slopes of the Tianshan Mountains, and the north slope of Qilian Mountain in Northwestern
China [4,5,8–10].

Runoff has been decreasing in response to climate change and human activity in the
alpine mountains of Northern Eurasia, Central Asia, South Africa, South America, and
elsewhere. Runoff has also decreased as a result of high water consumption in areas such
as the inland rivers downstream of the Buqtyrma River Basin in Central Asia [11] and the
midstream region of the Heihe River Basin in the arid inland river basins of Northwestern
China [12]. Runoff into the rivers of cold regions has been decreasing in response to climate
change. Some of these rivers were affected mainly by precipitation. They include the
rivers of Mount Kilimanjaro in Tanzania, the tropical Andes of South America, and the
south slope of the Altai Mountains. In these cases, the proportions of runoff recharge from
glacial meltwater are small [5,13–17]. Certain rivers are affected mainly by temperature,
such as those in the Northern Rocky Mountains, where flow attenuation may be caused
by a reduction in snowpack accumulation at lower altitudes [18,19]. Certain rivers are
affected by both temperature and precipitation, such as those in Northwestern China,
the northern part of the Qinghai-Tibet Plateau, and the Songhua River Basin (SRB) in
Northeastern China [4,5,20,21]. In regions with few glaciers and minimal rainfall, glacial
meltwater decreases and evaporation increases with rising temperature. This phenomenon
occurs in the headwater region of the Manas River, the north slopes of the Qilian and
Kunlun Mountains, the south slope of the Tianshan Mountains in Northwestern China,
and the source regions of the Yellow River Basin in the northern part of the Qinghai-Tibet
Plateau [4,5,22,23].

Earlier studies [11,12] have investigated variations in runoff in response to climate
change and water use in cold regions. Nevertheless, the mechanisms of runoff component
variation are poorly understood. The present study used the Songhua River Basin (SRB)
in Northeastern China as an example. We analyzed the mechanisms of runoff component
variation during the annual freezing, thawing, and non-freeze-thaw periods of the year
based on simulations of the soil freeze-thaw and water cycle processes.

2. Materials and Methods
2.1. Study Area

The SRB is located in Northeastern China between 41◦42′–51◦38′N and 119◦52′–132◦31′ E
(Figure 1). Its elevation is in the range of ~50–2700 m. The SRB covers 557,000 km2 and
spans Heilongjiang, Jilin, Liaoning, and Inner Mongolia Provinces. The Songhua River
is the main tributary of Heilongjiang, and it has two sources to the north and the south.
The Nenjiang River to the north originates from Yilehuli Mountain, which is a branch of
the Daxing’an Mountains. The second source to the south originates from Tianchi Lake in
Changbai Mountain. Precipitation dominates the hydroclimatologic regime of the area, and
there is no glaciation. The SRB is characterized by seasonally frozen soil. The maximum
freezing depth is >200 cm in the basin. The longest freezing period is from October to July
of the following year [24]. The average annual precipitation, temperature, and runoff in the
SRB were 533.18 mm, 2.95 ◦C, and 629.9 billion m3, respectively, between 1956 and 2018.

2.2. Data Collection

Several parameters could be directly measured for each basin. (a) The digital ele-
vation method (DEM) was implemented at an accuracy of 30 m. (b) Daily precipitation,
temperature, humidity, wind speed, and sunshine hours were compiled for 51 national
meteorological stations in the Songhua River Basin. These meteorological data were re-
leased by the National Meteorological Information Center (2019). (c) Land use data for
1990, 2000, and 2005 were measured at 30-m resolution and provided by the Institute
of Geography of the Chinese Academy of Sciences, Xinjiang, China. (d) Soils and their
characteristic properties were derived from the Second National Soil Census (NSCO, 1979).
(e) Water use data for 2000–2018 were acquired from the SRB Water Resources Bulletin
(http://www.slwr.gov.cn/, (10 July 2022)). Water use data for 1956–1999 were extrapolated
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from the data for population (1956–2018), irrigated area (1956–2018), gross domestic prod-
uct (GDP) (1956–2018), and water use (1980–2018). (f) Population, irrigated area, and GDP
data for the SRB (1956–2018) were obtained from the Statistical Yearbooks of Heilongjiang,
Jilin, Liaoning, and Inner Mongolia Provinces (http://tjj.hlj.gov.cn/tjsj, (10 July 2022),
http://tjj.jl.gov.cn/tjsj/tjnj/, (10 July 2022), http://tjj.ln.gov.cn/tjsj/sjcx/ndsj, (10 July
2022), http://tj.nmg.gov.cn/tjyw/jpsj/, (10 July 2022)). (g) Groundwater resources data for
1980–2018 were acquired from the SRB Water Resources Bulletin (http://www.slwr.gov.cn/,
(10 July 2022)).
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Figure 1. Overview of the SRB.

The model was verified using measured flow data for the Jiangqiao, Fuyu (1956–2000,
2006–2018), and Jiamusi (1956–2018) Stations.

2.3. Research Method

The Mann–Kendall trend and Pettitt mutation analyses [25,26] were used to identifying
the trends and detect abrupt changes in the measured runoff. The distributed dualistic
water cycle model WEP-N was used to simulate the water cycle process in the SRB. WEP-N
is driven by multiple factors. A multifactor attribution analysis [27] was used to determine
water use and climate change contribution rates to runoff variation in the SRB.

2.3.1. Principles of the WEP-N Model Hydrological Cycle

The Water and Energy Transfer Processes and Nitrogen Cycle Processes Model in
cold regions (WEP-N) [28] was developed based on the distributed hydrological model in
cold regions known as WEP-COR, which couples simulations of natural hydrological and
water use processes [24]. The model considered the influences of meteorology, underlying
surfaces, and human activity on the water cycle process. The social water cycle simulation
included water storage, intake, delivery, use, consumption, and drainage. Water intake and
drainage connect the natural and social water cycles.

The model was calculated using the contour bands inside sub-watersheds. Each con-
tour band was divided according to the land use of the underlying surface, namely, water
body, impervious area, soil vegetation, irrigated farmland, or non-irrigated farmland [24,29].
The runoff was calculated based on the proportions of the underlying surface area for each
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group. Each unit included seven vertical layers. From top to bottom, they were: vegetation
canopy or building interception layer, surface depression storage layer, root zone comprised
of three layers, transition zone layer, and groundwater layer. The soil below the ground
was divided into 11 layers for the soil water and heat coupling calculations. Simulation of
the natural water cycle process in the watershed included runoff generation and confluence
and comprised the water cycle processes in the surface soil, soil, groundwater, slope ditch,
and river channel. The water cycle in the surface soil included precipitation, snow melting,
evaporation, infiltration, and surface runoff. The snow melting process was calculated
by the temperature-index method [30]. The evapotranspiration values of the surface soil,
soil, and water were calculated using the Penman formula [31]. Evaporation from the
vegetation canopy was calculated using the Penman–Monteith formula [31]. Infiltration
was calculated on the basis of the rainfall intensity and using the Green–Ampt model or the
Richards equation [32]. The surface runoff was calculated by the Hortonian or saturation
overland flow theory when the precipitation intensity exceeded the infiltration capacity [33].
The soil hydrothermal cycle included heat and water transport during the freezing and
thawing periods. Soil heat transport was determined using the basic one-dimensional
vertical heat flow movement equation (Equation (1)). Soil water transport was determined
using the one-dimensional vertical water flow equation (Equation (2)). The movement of
liquid water in the soil was driven by the soil water potential, including pressure, gravity,
temperature, and solute potentials (Equations (4)–(6)). The relationship between water
and heat transport in frozen soil was characterized as the dynamic balance between the
moisture content of the unfrozen water and the negative temperature of the soil. Ground-
water movement was calculated with the Boussinesq equation [34]. The exchange between
river and groundwater was calculated by Darcy’s law and was based on the differences in
the water level and the characteristics of the riverbed material [35]. Soil freezing would
hinder the exchange between the groundwater and river channels when the temperature
exceeds a certain critical value during the freeze-thaw period. The overland confluence
was calculated by the kinematic wave method and from the uppermost to the lowermost
contour zone of each sub-watershed [36]. Each river channel confluence was calculated
using one-dimensional motion waves from upstream to downstream according to the ele-
vation, slope, and Manning roughness coefficient of each contour zone [24]. The influences
of temperature on ice formation and river melting were considered.

The temperature difference between the atmosphere and the surface was the heat
conduction source. The surface temperature was determined, and the heat flux and tem-
perature of each layer were calculated as follows [37,38]:

∂

∂z

[
λs

∂T
∂z

]
= Cv

∂T
∂t
− Liρi

∂θi
∂t

(1)

where z is the soil layer thickness (m), T is the temperature of each soil layer (◦C),
λs and Cv are the soil thermal conductivity (W/[m·◦C]) and volumetric heat capacity
(J/[m3·◦C]), respectively, t is the time (s), and Li, ρi, and θi are the latent heat of ice melting
(3.35 × 105 J/kg), the ice density (920 kg/m3), and the volumetric ice content (m3/m3) in
the soil, respectively.

The soil liquid water movement was calculated using the Richards equation [39].

∂θ

∂t
= − ρi

ρl

∂θi
∂t
− ∂

∂z

[
−K(θ)

∂H
∂z

]
(2)

where ρl and θ are the soil density (kg/m3) and volumetric water content (m3/m3), respec-
tively, K(θ) is hydraulic conductivity of the unsaturated soil (m/s), and H is the soil water
potential (m).

Temperature drives the changes in the water phase. Hydrothermal coupling was
calculated as follows:

θl = θm(t) (3)
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where θm(t) is the maximum liquid water content corresponding to a negative soil temperature.
The soil water potential H was calculated as follows [40]:

H = z + hm + hs + ht (4)

where hm is the pressure potential (m), hs is the solute potential (m), and ht is the temperature
potential (m).

The solute potential is a function of temperature and was calculated as follows [40]:

hs = −
cR
µ

TK (5)

where c is the mass of a solute in the unit volume of the solution (kg/m3), R is the molar
gas constant (8.3145 J/[mol·k]), µ is the molar mass of the solute (g/mol), and Tk is the
thermodynamic temperature (K).

The temperature potential was calculated as follows [41]:

ht = hmGWT
1

γ0

dγ

dt
(6)

where GWT is the gain factor (dimensionless), γ0 (γ0 = 71.89 g/s2) is the surface tension of
the soil at 25 ◦C (g/s2), and γ is the surface tension of the soil (g/s2). Note that γ = 75.6 −
0.1425Tk − 2.38 × 10−4Tk

2.

2.3.2. Multifactor Attribution Analysis

Multifactor attribution analysis decomposed the impact contribution according to the
fixing-changing method and was calculated as follows [27,42].

∆Xj =
1

2n−1

2n

∑
i=1

αi,j × Si j = 1, · · · , n (7)

A =
n

∑
j=1

∆Xj =
1

2n−1

2n

∑
i=1

βi
n × Si (8)

βi
n =

n

∑
j=1

αi,j (9)

where ∆X j is the influence contribution of the jth factor, αi,j is the weight coefficient of
the jth factor corresponding to the ith scenario, Si is the simulated result corresponding to
scenario i, n is the number of factors considered, A is the sum of the contributions of all
factors, and βi

n is the sum of the weight coefficients of all factors in the ith scenario under
the premise of considering n influencing factors.

The contribution rate of each factor to the change in the water cycle elements was
calculated with the following equation:

ηi =
∆Xi

∑n
j=1 ∆X j

i = 1, . . . , n (10)

3. Results and Discussion
3.1. Model Calibration and Validation

The WEP-N model in the SRB was constructed according to a previously published
method [28]. The SRB was partitioned into 9544 sub-basins and 29,488 contour zones based
on DEM data and river observations. WEP-COR, the predecessor of the WEP-N model,
was verified using the stratified soil temperature and liquid water content of the Qianguo
Irrigation District and the monthly mean discharge between 1956 and 2000 at the Jiangqiao,
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Fuyu, Jiamusi Stations in the main streams of the Songhua River [24]. The WEP-N model
was validated using the stratified soil temperature and liquid water content, the daily
discharge based on the hydrothermal coupling experiment, and the river flow monitoring
experiment during two freeze-thaw periods (2017–2018 and 2018–2019) in the Heidingzi
River Basin [28]. The WEP-N model was calibrated and validated using the discharge
measured monthly between 1956 and 2018 at the Jiangqiao, Fuyu, and Jiamusi Stations
in the main streams of the Songhua River. Data from the Jiangqiao, Fuyu, and Jiamusi
Stations were divided into two parts. The data for the period 1956–1990 were used for
calibration, and those for 1991–2018 were used for validation. The results of the monthly
mean discharge simulations at the Jiangqiao, Fuyu, and Jiamusi Stations are shown in
Figure 2. In general, the WEP-N model performed satisfactorily for the SRB and achieved
efficiency coefficients of NSE > 0.75 and RE < 5 % for the validation period (Table 1). The
simulated flow was suitable for application in the subsequent analyses.
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Table 1. Validation of the WEP-N model at the Jiangqiao, Fuyu, and Jiamusi Stations.

Hydrological Site NSE RE/%
1956–1990 1991–2018 1956–1990 1991–2018

Jiangqiao 0.80 0.77 4.98 4.85
Fuyu 0.86 0.73 4.26 −0.41

Jiamusi 0.81 0.76 4.51 0.83

3.2. Influence of Climate Change and Water Use on the Annual Runoff Variation in the SRB

The trends in measured annual runoff in the SRB were analyzed by the Mann–Kendall
test method and abrupt changes were detected by the Pettitt test method (Figure 3). The
measured annual runoff decreased by 20.3 billion in 63 years A significant abrupt change in
the measured annual runoff appeared ca. 1998 (p < 0.01). To analyze the impact of climate
change and water use on the water cycle, the data series were segregated into two periods
using the abrupt change in measured annual runoff ca. 1998 as the dividing line. The data
for the period 1956–1998 served as the base period, while those for 1999–2018 served as the
change period.
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Figure 3. Trend and mutation analyses of measured annual runoff in the SRB.

Climate change and water use were the main factors contributing to runoff reduction in
the SRB. The influences of climate change and water use on the annual runoff variation were
then analyzed. A base scenario (BS) was created to represent the pre-1998 configuration.
The meteorological and water use data for the base period were replaced with those of the
change period. The other inputs remained unchanged, and four different scenarios were
modeled (Table 2).
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Table 2. Settings of scenarios for the multifactor attribution analysis.

Scenario Description

BS Base scenario
BSW Change base period water use data to that of the change period
BSM Change base period meteorological data to that of the change period

BSWM Change base period water use and meteorological data to those of the change period

Table 3 shows relative changes in temperature, precipitation, and water use. The
annual runoff decreased in response to climate change and water use. Compared with the
BS scenario, the water use was 8.5 billion m3 higher, the precipitation was 26.0 mm lower,
and the temperature was 1.3 ◦C higher in the BSWM scenario.

Table 3. Changes in each impact factor.

Period Temperature
(◦C)

Precipitation
(mm)

Water Use
(Billion m3)

Base 2.5 540.2 19.2
Change 3.8 514.2 27.7

Variation 1.3 26.0 8.5

For the BS and BSWM scenarios, the annual runoff volumes in the SRB were 73.7 billion m3

and 52.9 billion m3, respectively (Table 4). The rate of change in the annual runoff was
−28.2% in the BSWM scenario relative to that of the BS scenario. The contribution rates
of water use and climate change to the annual runoff reduction in the SRB were 23.0%
and 77.0%, respectively. These values were determined by multifactor attribution analysis,
revealing that climate change was the dominant factor attenuating annual runoff.

Table 4. Contributions of various factors to annual runoff reduction in the SRB.

Item Annual Runoff

BS 73.7 billion m3

BSWM 52.9 billion m3

BSWM-BS −20.7 billion m3

Rate of change −28.2%

Contribution rate
Water use 23.0%

Climate change 77.0%

We analyzed the influence of climate change on the reduction in the annual production
flow components. Only climate change sets the scenarios for the comparative analyses
based on the BS (Table 5).

Table 5. Scenario settings for multifactor attribution analysis.

Scenario Description

BS Base scenario
BST Change base period air temperature to that of the change period
BSP Change base period precipitation data to that of the change period

BSTP Change base period air temperature and precipitation data to those of the
change period

The annual average temperature increased by 1.3 ◦C while the precipitation de-
creased by 26.0 mm. Hence, there was a 26.9-mm decrease in annual production flow
(Tables 3 and 6).
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Table 6. Annual production flow influenced by climate change.

Item
Annual Production Flow

Production Flow Surface Flow Soil Flow Base Flow

BS 160.2 mm 131.2 mm 2.8 mm 26.2 mm
BSTP 133.3 mm 114.5 mm 2.2 mm 16.6 mm

BSTP-BS −26.9 mm −16.7 mm −0.6 mm −9.6 mm
Rate of change −16.8% −12.7% −21.4% −36.6%

Annual production flow component
Total annual production flow

100.0% 62.1% 2.2% 35.7%

We then analyzed the annual production flow components (Table 6). Annual surface,
soil, and base flow decreased by 16.7 mm, 0.6 mm, and 9.6 mm, respectively, in the BSTP
scenario relative to the BS scenario. The rate of change in the annual surface flow in the
BSTP scenario was −12.7% to that of the BS scenario, which was the minimal rate of change
in the annual surface, soil, and base flows. Nevertheless, the annual surface flow reduction
accounted for 62.1% of the annual production flow reduction. The rate of change in the
annual base flow was −36.6%, but the annual base flow reduction accounted for 35.7%.
The change in annual soil flow was minimal and accounted for only 2.2%. The observed
decrease in total annual production flow in the SRB was caused mainly by the decrease
in the annual surface flow. The decrease in annual base flow accounted for a relatively
small proportion.

3.3. Effect of Climate Change on Production Flow Variation during Different Periods in the SRB
3.3.1. Production Flow Variation during Different Periods

The non-freeze-thaw was the main annual production flow reduction period. Produc-
tion flow reduction during the non-freeze-thaw period accounted for 80.7% of the annual
total under the influence of climate change (Tables 7 and 8). The production flow reduction
during the thawing period accounted for 20.4% of the annual total. The production flow
during the freezing period slightly increased and accounted for −1.1% of the annual total.

Table 7. Changes in meteorological factors.

Period Meteorological Factor Whole Year Freezing Period Thawing Period Non-Freeze-Thaw Period

Base
Precipitation (mm) 540.1 23.6 71.5 445.0
Temperature (◦C) 2.5 −14.9 4.2 15.5

Change Precipitation (mm) 519.3 29.5 86.5 403.3
Temperature (◦C) 3.9 −13.8 5.8 16.9

Variation
Precipitation (mm) −20.8 6.0 15.0 −41.7
Temperature (◦C) 1.3 1.1 1.6 1.4

Table 8. Production flow variation during different periods.

Item
Production Flow during Different Periods of Year

Whole Year Freezing Period Thawing Period Non-Freeze-Thaw Period

BS 160.2 mm 7.4 mm 37.2 mm 115.6 mm
BSTP 133.3 mm 7.7 mm 31.8 mm 93.8 mm

BSTP-BS −27.0 mm 0.3 mm −5.5 mm −21.8 mm
(BSTP−BS) during different periods

Annual (BSTP−BS)
100.0% −1.1% 20.4% 80.7%

3.3.2. Production Flow Component Variation during Freezing Period

The freezing period temperature/precipitation data series for the base period were
replaced with those for the change period to study the influence of climate change on
runoff component variation during the freezing period. The temperature and precipitation
increased by 1.1 ◦C and 5.5 mm, respectively (Table 7). Hence, there was a 1-mm increase in
the total production flow during the freezing period (Table 9). Relative to the BS scenario,
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the rate of change in the total production flow during the freezing period was 13.9% in the
BSTP scenario.

Table 9. Influences of temperature and precipitation on the runoff component variation during the
freezing period.

Item
Production Flow during Freezing Period

Total Production Flow Surface Flow Soil Flow Base Flow

BS 7.4 mm 0.4 mm 0.1 mm 6.9 mm
BSTP 8.4 mm 0.8 mm 0.1 mm 7.5 mm

BSTP-BS 1.0 mm 0.4 mm 0.0 mm 0.6 mm
Rate of change 13.9% 99.3% 31.2% 8.5%

Variation in production flow component
Variation in total production flow

100.0% 40.0% 0% 60%

The increase in the base flow accounted for most of the increase in the total production
flow. The rate of change in the base flow during the freezing period was 8.5%. Nevertheless,
the increase in base flow explained 60.0% of the increase in total production flow during
the freezing period. The increase in surface flow accounted for 40.0% of the increase in
total production flow during the freezing period. However, the rate of change in the
surface flow was 99.3% during the freezing period. There were minimal changes in the soil
flow, and increases in it explained 0% of the increase in total production flow during the
freezing period.

3.3.3. Production Flow Component Variation during the Thawing Period

The thawing period temperature/precipitation data series for the base period were
replaced with those for the change period to study the influence of climate change on
runoff component variation during the thawing period. Increases of 1.57 ◦C and 10.3 mm
precipitation caused a 3.2-mm decrease in runoff during the thawing period (Table 10).
Relative to the BS scenario, the rate of change in the total production flow during the
thawing period was −8.4% in the BSTP scenario.

Table 10. Influences of temperature and precipitation on runoff component variation during the
thawing period.

Item
Production Flow during Thawing Period

Total Production Flow Surface Flow Soil Flow BASE flow

BS 37.2 mm 31.7 mm 1.0 mm 4.6 mm
BSTP 31.8 mm 28.1 mm 1.1 mm 4.9 mm

BSTP-BS −3.2 mm −3.6 mm 0.1 mm 0.3 mm
Rate of change −8.4% −11.4% 10.0% 6.5%

Variation in production flow component
Variation in total production flow

100.0% 112.5% −3.1% −9.4%

The rate of change in the surface flow was −11.4%, but the reduction in the surface
flow accounted for 112.5% of the total reduction in the production flow during the thawing
period. The reduction in the surface flow explained most of the reduction in the total
production flow during the thawing period. The soil and base flow increased during the
thawing period. The increases in soil and base flow accounted for −3.1% and −9.4% of the
change in the total production flow during the thawing period, respectively.

3.3.4. Variations in Production Flow Components during the Non-Freeze-Thaw Period

The temperature/precipitation data series for the non-freeze-thaw period were re-
placed with those for the change period to study the influence of climate change on runoff
component variation during the non-freeze-thaw period. The temperature increased by
1.4 ◦C while the precipitation decreased by 41.7 mm. Thus, there was a decrease of 17.7 mm
in the total production flow during the non-freeze-thaw period (Table 11). Relative to the
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BS scenario, the rate of change in the total production flow during the non-freeze-thaw
period was −15.3% in the BSTP scenario.

Table 11. Influences of temperature and precipitation on the variation in runoff component during
the non-freeze-thaw period.

Item
Production Flow during Non-Freeze-Thaw Period

Total Production Flow Surface Flow Soil Flow Base Flow

BS 115.6 mm 99.1 mm 1.7 mm 14.8 mm
BSTP 97.9 mm 87.6 mm 1.5 mm 8.8 mm

BSTP-BS −17.7 mm −11.5 mm −0.2 mm −6.0 mm
Rate of change −15.3% −11.6% −11.8% −40.5%

Variation in production flow component
Variation in total production flow

100.0% 65.0% 1.1% 33.9%

The rate of change in the surface flow was −11.6%, but the reduction in surface
flow accounted for 65.0% of the reduction in the total production flow during the non-
freeze-thaw period. The rate of change in the base flow was −40.5%, and the reduction
in the base flow accounted for 33.9%. The changes in the soil flow were minimal, and
the reduction in the soil flow accounted for 1.1% of the total production flow during the
non-freeze-thaw period.

3.4. Effects of Climate Change on Groundwater Recharge

The foregoing analysis demonstrated that under climate change, the surface flow
caused most of the reduction in production flow in the SRB. In contrast, the reduction in
base flow accounted for a relatively small proportion of the reduction in production flow
in the SRB. The base flow increased during the freezing and thawing periods. Relative to
the BS scenario, the rates of change in the groundwater recharge during the freezing and
thawing periods increased by 9.2% and 4.1%, respectively, in the BSTP scenario (Table 12).

Table 12. Influences of temperature and precipitation on groundwater recharge variation.

Item
Groundwater Recharge during Different Periods

Freezing Period Thawing Period Non-Freeze-Thaw Period

BS 6.1 mm 12.2 mm 37.1 mm
BSTP 6.7 mm 12.7 mm 27.9 mm

BSTP-BS 0.6 mm 0.5 mm −9.2 mm
Rate of change 9.2% 4.1% −24.8%

The water use was 27.5 billion m3, the groundwater exploitation was 9.4 billion m3, and
the groundwater exploitation accounted for 34.3 % of water use and 29.1% of groundwater
resources in the SRB between 1980 and 2018. The utilization rate of groundwater resources is
far below the red line for development and utilization of 40%, the internationally recognized
alarm line, which shows potential for development [43]. The groundwater exploitation
was much less in the SRB compared with the Yellow River Basin and Haihe River Basin
in northern China. The attenuation of the production flow aggravates water resource
shortages. Appropriate attention should be given to groundwater utilization in areas with
relatively less groundwater exploitation.

4. Conclusions

The WEP-N model was used to simulate the SRB’s hydrological cycle, and its overall
performance was acceptable. The flow simulation was accurate, NSE > 0.75 and RE < 5 %
for three hydrological stations and close to the actual measurements.

Climate change and water use were the main factors influencing the SRB’s reduction
in the annual production flow. Compared with the BS scenario, the rate of change in the
annual production flow was −28.2% under the BSWM scenario. According to a multifactor
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attribution analysis, the rates of the contribution of climate change and water use to the
reduction in annual production flow were 77.0% and 23.0%, respectively. Thus, climate
change was the dominant factor attenuating runoff. The decrease in annual surface flow
caused a 62.1% reduction in the annual production flow in the SRB. By contrast, the decrease
in annual base flow accounted for only 35.7% of the reduction in the annual production
flow in the SRB.

The change in annual production flow occurred mainly during the non-freeze-thaw
period. The reductions in production flow during the non-freeze-thaw and thawing periods
accounted for 80.7% and 20.4% of the annual reduction in the production flow, respectively.
The production flow slightly increased during the freezing period. The change in the
production flow occurred mainly during the non-freeze-thaw period. The increases in
surface, soil, and base flow accounted for 60.0%, 0%, and 40.0% of the total increase in the
production flow under the influences of increasing temperature and precipitation during
the freezing period. The variations in surface, soil, and base flow accounted for 112.5%,
−3.1%, and −9.4% of the total reduction in production flow during the thawing period.
The reductions in surface, soil, and base flow accounted for 65.0%, 1.1%, and 33.9% of
the total reduction in production flow during the non-freeze-thaw period. The foregoing
analysis showed that surface flow caused the reduction in production flow in the SRB,
where reduction in base flow accounted for a relatively small proportion under climate
change. The base flow increased during the freezing and thawing periods.

Relative to the BS scenario, the rates of change in groundwater recharge during the
freezing and thawing periods increased by 9.2% and 4.1%, respectively, in the BSTP scenario.
The attenuation of the production flow aggravated the water resource shortage. Attention
should be directed towards certain areas of SRB with less groundwater exploitation and
similar areas in northern Eurasia and northern North America.

Author Contributions: S.L. performed the model programming and simulations. Z.Z., J.L. (Jiajia Liu),
P.W., C.L. and J.L. (Jia Li) contributed to the model programming. S.L. and Z.Z. performed the writing.
X.X., Y.J. and H.W. also contributed to the writing of the paper. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (51679257,
51779270) and the National Key Research and Development Program of China (2016YFC0402405).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets and model codes relevant to the current study are available
from the corresponding author upon reasonable request.

Acknowledgments: The authors are grateful to the editors and reviewers; the comments and sugges-
tions have contributed significantly to the improvement of the manuscript.

Conflicts of Interest: The authors have no relevant financial or non-financial interests to disclose.

References
1. Oyler, J.W.; Dobrowski, S.Z.; Ballantyne, A.P.; Klene, A.E.; Running, S.W. Artificial amplification of warming trends across the

mountains of the western United States. Geophys. Res. Lett. 2015, 42, 153–161. [CrossRef]
2. Gao, H.; Li, H.; Duan, Z.; Ren, Z.; Meng, X.; Pan, X. Modelling glacier variation and its impact on water resource in the Urumqi

Glacier No. 1 in Central Asia. Sci. Total Environ. 2018, 644, 1160–1170. [CrossRef]
3. Yang, D.; Ye, B.; Kane, D.L. Streamflow changes over Siberian Yenisei River Basin. J. Hydrol. 2004, 296, 59–80. [CrossRef]
4. Yang, W.; Jin, F.; Si, Y.; Li, Z. Runoff change controlled by combined effects of multiple environmental factors in a headwater

catchment with cold and arid climate in northwest China. Sci. Total Environ. 2021, 756, 143995. [CrossRef]
5. Li, B.; Chen, Y.; Chen, Z.; Li, W. Trends in runoff versus climate change in typical rivers in the arid region of northwest China.

Quat. Int. 2012, 282, 87–95. [CrossRef]
6. Pan, C.G.; Kamp, U.; Munkhjargal, M.; Halvorson, S.J.; Dashtseren, A.; Walther, M. An estimated contribution of glacier runoff to

Mongolia’s Upper Khovd River Basin in the Altai Mountains. Mt. Res. Dev. 2019, 39, R12–R20. [CrossRef]

88



Water 2022, 14, 3170

7. Tang, Q.; Oki, T. Historical and future changes in streamflow and continental runoff. In Terrestrial Water Cycle and Climate Change:
Natural and Human-Induced Impacts; John Wiley & Sons: Hoboken, NJ, USA, 2016; Volume 221, pp. 17–37. [CrossRef]

8. Zhang, Y.; Liu, S.; Xu, J.; Shangguan, D. Glacier change and glacier runoff variation in the Tuotuo River basin, the source region of
Yangtze River in western China. Environ. Geol. 2008, 56, 59–68. [CrossRef]

9. Shiyin, L.; Yong, Z.; Yingsong, Z.; Yongjian, D. Estimation of glacier runoff and future trends in the Yangtze River source region,
China. J. Glaciol. 2009, 55, 353–362. [CrossRef]

10. Yang, Y.; Weng, B.; Man, Z.; Yu, Z.; Zhao, J. Analyzing the contributions of climate change and human activities on runoff in the
Northeast Tibet Plateau. J. Hydrol. Reg. Stud. 2020, 27, 100639. [CrossRef]

11. Rakhimova, M.; Liu, T.; Bissenbayeva, S.; Mukanov, Y.; Gafforov, K.S.; Bekpergenova, Z.; Gulakhmadov, A. Assessment of the
impacts of climate change and human activities on runoff using climate elasticity method and general circulation model (GCM)
in the Buqtyrma River Basin, Kazakhstan. Sustainability 2020, 12, 4968. [CrossRef]

12. Qiu, L.; Peng, D.; Xu, Z.; Liu, W. Identification of the impacts of climate changes and human activities on runoff in the upper and
middle reaches of the Heihe River basin, China. J. Water Clim. Chang. 2016, 7, 251–262. [CrossRef]

13. Thompson, L.G.; Brecher, H.H.; Mosley-Thompson, E.; Hardy, D.R.; Mark, B.G. Glacier loss on Kilimanjaro continues unabated.
Proc. Natl. Acad. Sci. USA 2009, 106, 19770–19775. [CrossRef]

14. Otte, I.; Detsch, F.; Mwangomo, E.; Hemp, A.; Appelhans, T.; Nauss, T. Multidecadal trends and interannual variability of rainfall
as observed from five lowland stations at Mt. Kilimanjaro, Tanzania. J. Hydrol. Meteorol. 2017, 18, 349–361. [CrossRef]

15. Hemp, A. Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob. Chang. Biol. 2005, 11,
1013–1023. [CrossRef]

16. Bozkurt, D.; Rojas, M.; Boisier, J.P.; Valdivieso, J. Climate change impacts on hydroclimatic regimes and extremes over Andean
basins in central Chile. Hydrol. Earth Syst. Sci. Discuss. 2017, 1–29. [CrossRef]

17. Crespo, P.J.; Feyen, J.; Buytaert, W.; Bücker, A.; Breuer, L.; Frede, H.; Ramírez, M. Identifying controls of the rainfall–runoff
response of small catchments in the tropical Andes (Ecuador). J. Hydrol. 2011, 407, 164–174. [CrossRef]

18. St. Jacques, J.M.; Sauchyn, D.J.; Zhao, Y. Northern Rocky Mountain streamflow records: Global warming trends, human impacts
or natural variability? Geophys. Res. Lett. 2010, 37, 1–5. [CrossRef]

19. Arrigoni, A.S.; Greenwood, M.C.; Moore, J.N. Relative impact of anthropogenic modifications versus climate change on the
natural flow regimes of rivers in the Northern Rocky Mountains, United States. Water Resour. Res. 2010, 46, 1–16. [CrossRef]

20. Miao, C.; Yang, L.; Liu, B.; Gao, Y.; Li, S. Streamflow changes and its influencing factors in the mainstream of the Songhua River
basin, Northeast China over the past 50 years. Environ. Earth Sci. 2011, 63, 489–499. [CrossRef]

21. Chu, H.; Wei, J.; Qiu, J.; Li, Q.; Wang, G. Identification of the impact of climate change and human activities on rainfall-runoff
relationship variation in the Three-River Headwaters region. Ecol. Indic. 2019, 106, 105516. [CrossRef]

22. Meng, F.; Su, F.; Yang, D.; Tong, K.; Hao, Z. Impacts of recent climate change on the hydrology in the source region of the Yellow
River Basin. J. Hydrol. Reg. Stud. 2016, 6, 66–81. [CrossRef]

23. Song, C.; Wang, G.; Sun, X.; Hu, Z. River runoff components change variably and respond differently to climate change in the
Eurasian Arctic and Qinghai-Tibet Plateau permafrost regions. J. Hydrol. 2021, 601, 126653. [CrossRef]

24. Li, J.; Zhou, Z.; Wang, H.; Liu, J.; Jia, Y.; Hu, P.; Xu, C. Development of WEP-COR model to simulate land surface water and
energy budgets in a cold region. Hydrol. Res. 2019, 50, 99–116. [CrossRef]

25. Burn, D.H.; Elnur, M. Detection of hydrologic trends and variability. J. Hydrol. 2002, 255, 107–122. [CrossRef]
26. Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. Appl. Statist. 1979, 28, 126–135. [CrossRef]
27. Liu, J.J.; Zhou, Z.H.; Jia, Y.W.; Wang, H. A new method to quantitatively separate the effects of multi-factors on the water cycle

evolution. J. Hydraul. Eng. 2014, 45, 658–665. [CrossRef]
28. Liu, S.; Zhou, Z.; Liu, J.; Wang, K.; Li, J.; Wang, P.; Xie, X.; Jia, Y.; Wang, H. Simulation of water and nitrogen movement mechanism

in cold regions during freeze-thaw period based on a distributed nonpoint source pollution model closely coupled water, heat,
and nitrogen processes at the watershed scale. Environ. Sci. Pollut. Res. Int. 2022. [CrossRef]

29. Flerchinger, G.N.; Saxton, K.E. Simultaneous heat and water model of a freezing snow-residue-soil system I. Theory and
development. Trans. ASAE. 1989, 32, 573–576. [CrossRef]

30. Hock, R. A distributed temperature-index ice-and snowmelt model including potential direct solar radiation. J. Glaciol. 1999, 45,
101–111. [CrossRef]

31. Monteith, J.L. Principles of Environmental Physics; Edward Arnold: London, UK, 1973; Volume 214.
32. Jia, Y.; Tamai, N. Integrated analysis of water and heat balances in Tokyo metropolis with a distributed model. J. Jpn. Soc. Hydrol.

Water Resour. 1998, 11, 150–163. [CrossRef]
33. Jia, Y.; Wang, H.; Zhou, Z.H.; Qiu, Y.Q.; Luo, X.Y.; Wang, J.H.; Yan, D.H.; Qin, D.Y. Development of the WEP-L distributed

hydrological model and dynamic assessment of water resources in the Yellow River basin. J. Hydrol. 2006, 331, 606–629. [CrossRef]
34. Zaradny, H. Groundwater Flow in Saturated and Unsaturated Soil; A. A. Balkema Uitgevers: Rotterdam, The Netherlands, 1993.
35. Hubbert, M.K. Darcy’s law and the field equations of the flow of underground fluids. Trans. AIME. 1956, 207, 222–239. [CrossRef]
36. Ponce, V.M. Diffusion wave modeling of catchment dynamics. J. Hydraul. Eng. 1986, 112, 716–727. [CrossRef]
37. Shang, S. Numerical simulation of soil moisture and thermal regime in winter. Irrig. Drain. 1997, 16, 12–17. (In Chinese)
38. Wang, S.; Prasher, S.O.; Patel, R.M.; Yang, C.; Kim, S.; Madani, A.; Macdonald, P.M.; Robertson, S.D. Fate and transport of nitrogen

compounds in a cold region soil using DRAINMOD. Comput. Electron. Agric. 2006, 53, 113–121. [CrossRef]

89



Water 2022, 14, 3170

39. Wang, A.W.; Xie, Z.H.; Feng, X.; Tian, X.; Qin, P. A soil water and heat transfer model including changes in soil frost and thaw
fronts. Sci. China Earth Sci. 2014, 57, 1325–1339. [CrossRef]

40. Lei, Z.D.; Yang, S.X.; Xie, C.S. Soil Hydrodynamics; Tsinghua University Press: Beijing, China, 1988; pp. 8–12. (In Chinese)
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Abstract: To achieve the global temperature control target under the background of climate warming,
it is necessary to establish a systematic carbon dioxide (CO2) emission accounting method system
in the field of water resources as soon as possible. In this study, the carbon dioxide emission
equivalent analysis (CEEA) method for different water resource behaviors (WRBs) is proposed from
four dimensions of development, allocation, utilization, and protection, and a function table of CEEA
(FT-CEEA) for WRBs is constructed. The FT-CEEA includes CEEA formulae for 16 aspects in four
categories of water resource development, allocation, utilization, and protection. The CEEA method
is applied to 31 provinces in China. The results reveal that: (1) There are significant spatial differences
in the carbon dioxide emission equivalent (CEE) of WRBs in different provinces of China under the
influence of various factors such as water supply structure and natural conditions. (2) Reservoir
storage, tap water allocation, and wastewater treatment are the main contributors to CEE in the
categories of water resource development, allocation, and protection behaviors, respectively. (3) The
water resource utilization behavior category has the most significant CO2 emission and absorption
effects, and industrial and domestic water utilization behaviors are the main sources of emission
effects. (4) The overall CO2 emission effect of WRBs is greater than the absorption effect. Measures
such as increasing the proportion of hydroelectric power generation, improving ecological water
security capacity, and strengthening the level of wastewater treatment and reclaimed water reuse are
effective ways to promote the goal of carbon neutrality in the field of water resources.

Keywords: water resource behaviors (WRBs); carbon dioxide emission equivalent (CEE); equivalent
analysis; carbon dioxide emission equivalent analysis (CEEA); function table of carbon dioxide
emission equivalent analysis (FT-CEEA)

1. Introduction
1.1. Motivation

Since the industrial civilization, under the combined influence of human activities and
natural factors, the global warming trend has become increasingly significant. How to deal
with the challenges posed by climate change to sustainable development has become a
major scientific issue facing mankind [1]. Building a low-carbon future development mode
has gradually become a global consensus. The United Nations Framework Convention
on Climate Change (UNFCCC), as the world’s first international convention to control
carbon dioxide (CO2) emissions, provides a basic framework for international cooperation
on climate change [2]. The 21st United Nations Climate Change Conference (UNFCCC
COP21) held in 2015 formally adopted the Paris Agreement, which sets the global average
temperature increase within 2 ◦C as an explicit goal [3]. However, with the current trend
of CO2 emissions, the temperature control targets of the Paris Agreement will be difficult
to achieve. Deep CO2 reductions in the coming years are key to achieving that goal [4,5].
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Currently, 133 countries have made carbon neutral commitments. China has adopted “car-
bon neutrality” as a long-term national strategy to address climate change. Compared with
developed countries that have achieved carbon peak, developing countries are currently
facing the dual pressures of low-carbon transformation and economic development [6,7].

Water resources are the material basis for human survival and the key support for
social development and ecological protection. The field of water resources is an important
area for implementing the goal of “carbon neutrality” and supporting sustainable devel-
opment. The “2030 Carbon Peak Action Plan” issued by the Chinese government in 2021
regards hydropower generation, water ecological protection, and efficient utilization of
water resources as important ways to promote carbon neutrality [8]. In addition, improving
the carbon emission accounting mechanism in different fields and carrying out research on
CO2 emission accounting methods are also important contents of the action plan. Therefore,
it is of great significance to explore the CO2 emission equivalent analysis (CEEA) method
for different water resource behaviors (WRBs), and to find a reference “ruler” for the ac-
counting of CO2 emission equivalent (CEE) in the field of water resources. This “ruler” also
has certain positive significance for the global control of CO2 emissions.

1.2. Literature Review

The identification of source-sink relationships and the assessment of emission intensity
of CO2 are the basis for scientific research in the field of climate change. Accounting
for carbon emission and sink effects has been a popular research topic in this field. In
terms of carbon emission assessment, most studies have focused on the carbon emission
intensity of human activities and carbon footprint accounting in different fields. Carbon
footprint can be simply defined as the total amount of greenhouse gases (GHG), mainly
carbon dioxide, released directly or indirectly from human activities [9]. Carbon footprint
accounting can be divided into macro and micro levels. The methods involved are mainly
input-output analysis (IOA) [10] and life cycle assessment (LCA) [11]. In recent years,
many scholars have carried out multidimensional accounting of carbon footprints at the
mesoscale and macroscale, such as countries [12], cities [13], and industries [14]. Carbon
footprint accounting research on the microscale such as enterprise [15], product [16], and
technology [17] is also ongoing. For example, Chai et al. [17] used a life-cycle approach
to compare the carbon footprints of three mainstream wastewater treatment technologies
in China. Accounting for CO2 emissions caused by land use change [18] is also a popular
research topic. In addition, some studies have explored the carbon emission effects of lake
wetland [19], reservoir [20], farmland [21], and other ecosystems. For example, Keller et al.
conducted a study on carbon emissions from reservoir fallout zones and concluded that
reservoirs are a source rather than a sink of carbon in the global carbon cycle [20].

In terms of carbon sink effect assessment, relevant studies have mostly focused on
carbon sink effects in terrestrial ecosystems such as forest, grassland, and wetland. The
research methods include ground investigation, eddy covariance carbon flux observa-
tion [22], ecosystem process model simulation [23], etc. It is worth mentioning that in 2019,
the IPCC added the “top-down” atmospheric inversion methodological system to the basic
methodological framework for future global GHG accounting [24]. Atmospheric inversion
methods have received more attention in recent years in the study of ecosystem carbon
sinks. For example, Fernández-Martínez et al. [25] analyzed the trend of global carbon
sinks based on atmospheric inversion and vegetation models and explored the relationship
between CO2 emissions and temperature. The research on the carbon sink effects of ter-
restrial ecosystems has formed a sound theoretical and methodological system. However,
compared to terrestrial ecosystems, research on carbon sinks in marine ecosystems is still
in the developmental stage.

In particular, studies on energy consumption and CO2 emission accounting in the
field of water resources have been carried out by relevant institutions. In 2005, California
released a report on California’s water–energy nexus [26], which systematically studied
the energy consumption of water supply, water transmission, water utilization, and water
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treatment in California. Further, the River Network, a U.S. research organization, released
The Carbon Footprint of Water [27] in 2009 comprehensively assessed the various water-
related carbon footprints in the United States. In addition, the issue of energy consumption
and carbon emissions in the field of water resources has been actively discussed by scholars
from different countries. LCA and IOA are still the most mainstream research methods
under this research topic. The research results basically cover all aspects of social water
cycle and urban water system. Although more research has been done in urban water sys-
tems, the scale of research has involved countries [28], regions [29], cities [30], schools [31],
etc. For example, Wakeel et al. [28] analyzed the energy consumption of different countries
in various segments of the social water cycle and compared different methods for mea-
suring energy consumption in the water sector. Using energy consumption as a bridge to
quantitatively assess the relationship between water and carbon emissions, Rothausen and
Conway [29] systematically explored the GHG emissions in the water sector in different
countries and regions. At the urban scale, Valek et al. [32] quantified the CO2 emissions
associated with the water system in Mexico City based on survey data. Based on the LCA
method, Friedrich et al. [30] assessed the carbon footprint of different parts of the urban
water system (storage, treatment, distribution, collection, and wastewater treatment) in
Durban, South Africa. Similarly, Sambito and Freni [33] used the LCA method to quantify
the carbon footprint of a metropolitan water system in Italy. In addition, Li et al. [31] quan-
tified the water–energy–carbon relationship on a campus in northern China and explored
the spatial distribution pattern of carbon sources/sinks at a small scale.

In addition to the overall study of the carbon emissions from the social water cycle
and urban water system, some scholars have carried out targeted discussions on different
links of the water system (water production and supply, desalination, water utilization,
wastewater treatment, etc.). In terms of water production and supply, relevant studies
mainly focus on carbon footprint accounting of water supply system and water distribution
system. For example, Fang and Newell [34] used the LCA method to assess the carbon
footprint of Southern California’s water supply system, arguing that the carbon footprint
of local reclaimed water is much lower than that of long-distance water supply. Boulos and
Bros [35] proposed a WNEE (Water network energy efficiency) method for measuring the
carbon footprint of energy consumption in a water distribution system, which was applied
in a European city. Moreover, Heihsel and Lenzen [36] constructed a multi-regional input-
output model (MIOA) for measuring GHG emissions from desalination in Australia, which
provides a solution for the calculation of the carbon footprint of desalination at a macro-
scale. In terms of water end-use, the studies mainly cover energy consumption and carbon
emission measurement for domestic and agricultural water use. For example, Siddiqi and
Fletcher [37] summarized the range of energy intensity of domestic water and agricultural
water in the end-use process. Escriva-Bou et al. [38] simulated GHG emissions associated
with domestic water use in California using probability distribution models and emission
factors. Wang et al. [39] evaluated the carbon footprint of agricultural groundwater use in
31 provinces of China based on statistical survey data. In terms of wastewater collection
and treatment, the carbon emission effects and measurement methods of wastewater
treatment plants and municipal wastewater sectors in different countries such as China [40],
the United States [41], and Italy [42] have been deeply discussed. Further, the carbon
emission effects of different wastewater treatment technologies and options have been
studied in comparison [43]. It is worth mentioning that research on carbon emissions
accounting for water saving behavior has also been carried out, covering different scales
such as city [44] and campus [45]. In addition, Wang et al. [46] explored the water footprint
and carbon footprint in hydropower stations in China and made recommendations for
carbon emission reduction of hydropower stations. Some of the studies addressing the
carbon emission effects in the water resources sector are summarized in Table 1.
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Table 1. Selected representative literature of carbon emission effect studies in the field of
water resources.

Author(s) Region(s) Water-Related Activities Methodology

Griffiths-Sattenspiel
et al. [27] United States

Water Supply and Conveyance

Carbon emission estimation based on
statistical survey data and
emission factors

Water Treatment
Water Distribution
Water End-Uses
Wastewater Collection and Treatment
Wastewater Discharge

Friedrich et al. [30] Durban, South
Africa

Water Impoundment

Carbon footprint analysis based on
LCA method

Water Treatment
Water Distribution
Water Collection
Wastewater Treatment
Water Recycling
Bottled Water

Zhang et al. [47]
All cities in
Guangdong
Province, China

Water Extraction and Conveyance
Accounting for CO2 emissions based on
energy intensity and emission factors

Water Purification and Supply
Water Distribution
Wastewater Treatment

Venkatesh et al. [48]

Nantes (France),
Oslo (Norway),
Turin (Italy),
Toronto (Canada)

Water Supply

System analysis method
Water Treatment
Water Distribution
Wastewater Collection
Wastewater Treatment

Bakhshi and
Demonsabert [49]

Loudoun, United
States

Raw Water Extraction and Treatment Carbon emission estimation based on
survey data and Geographic
information system models

Water Distribution
Wastewater Collection
Wastewater Treatment

Stokes and
Horvath [50]

Southern California,
United States

Imported Water

Carbon emission measurement of water
supply system based on hybrid
LCA method

Desalinated Ocean Water
(Conventional pretreatment)
Desalinated Ocean Water
(Membrane pretreatment)
Desalinated Brackish Groundwater
Recycled Water

Valek et al. [32] México City,
México

Water Supply
CO2 equivalent analysis based on
statistical survey data and
emission factors

Water Treatment System

Sambito and Freni [33] Sicily, Italy

Water Supply and Treatment System
Carbon footprint analysis based on
LCA approach

Distribution of Water and
Sewer System
Wastewater Treatment Plant

Presura and
Robescu [51]

Constanta,
Romania

Potable Water Treatment Carbon footprint analysis based on
energy intensity and emission factorsWastewater Treatment

Heihsel and
Lenzen [36] Australia Seawater Desalination Carbon footprint analysis based on

multi-regional input-output model

Wang et al. [39] China Groundwater Use for Agriculture Carbon footprint analysis based on
energy intensity and emission factors

Wu et al. [43] Australia

Wastewater Treatment (Direct emission)

Carbon footprint analysis based on
emission factors

Wastewater Treatment
(Indirect emission)
Wastewater Treatment (Value
chain emission)
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In general, relevant research results provide important reference value for the quan-
titative identification of water-carbon relationship and carbon neutrality in the field of
water resources. However, some of the studies are too targeted, difficult to obtain data, and
the experimental methods are not easily reproducible to meet the demand for systematic
research on CO2 emission accounting in the field of water resources. In addition, carbon
dioxide emissions related to water resource behaviors involve many links and are not
limited to the scope discussed above. How to make a comprehensive and feasible “ruler”
to provide convenience and reference for the estimation of water-related CO2 emissions
is still a problem to be further explored. To facilitate the discussion of CO2 emission or
absorption effects in the field of water resources, this paper is devoted to the study of
water resource behaviors, that is, a series of activities related to the development, allocation,
utilization, and protection of water resources. Different links of the water cycle or water
resources system can be understood as different WRBs. Researching the methodologies
for quantifying the CO2 emission effects of different WRBs is a further refinement and
extension of the carbon source/sink effects accounting in the field of water resources.

1.3. Contribution and Objectives

Based on the literature review, this study proposes a carbon dioxide emission equiva-
lent analysis (CEEA) method for several common water resource behaviors (WRBs) from
four dimensions: water resources development, water resources allocation, water resources
utilization, and water resources protection. The function table of CO2 emission equivalent
analysis (FT-CEEA) of WRBs is constructed for the first time, which provides a method
set for researchers in different regions and industries to evaluate the CO2 emission equiv-
alent (CEE) of WRBs. Compared to existing studies, the contributions of this study are:
(1) The CEEA method is proposed to realize the quantitative calculation of CEE for different
WRBs; (2) the FT-CEEA is developed to provide a convenient and feasible “ruler” for the
measurement of CEE in the field of water resources; (3) based on the FT-CEEA, the spatial
distribution characteristics of CO2 emission or absorption effects of WRBs in 31 provinces
in China are clarified.

This paper is organized as follows: Section 2 is the introduction of the CEEA method
and FT-CEEA; Section 3 is the study area and data description, as well as results analysis
and discussion; Section 4 is the main conclusion and research prospect.

2. Methodology
2.1. CEEA Method Framework of Water Resource Behaviors

Water resource behavior (WRB) is a collective term for a range of activities related to
the development, allocation, utilization, and protection of water resources. The carbon
dioxide emission equivalent (CEE) of water resource behaviors refers to the CO2 emission
or absorption effects directly or indirectly caused by water resource behaviors. In this study,
the method to quantify the CEE generated by WRBs is called the carbon dioxide emission
equivalent analysis method (CEEA) of WRBs. Most WRBs do not emit CO2 themselves
and are not explicitly linked to CO2. However, WRBs are often accompanied by energy
consumption, which in turn leads to CO2 emissions. Therefore, compared to “carbon
dioxide emission”, “carbon dioxide emission equivalent” is more accurate to represent the
CO2 emission or absorption effects of WRBs.

This study proposes the CEEA method and develops the FT-CEEA (the function table
of carbon dioxide emission equivalent analysis), aiming to find a reference “ruler” to
provide methodological reference and technical support for the accounting of CEE related
to WRBs. The general idea of the CEEA method is to develop diversified CEE functions for
WRBs in different dimensions by direct reference, refinement, and innovation, and finally
integrate them into a unified calculation platform to form a relatively complete “ruler”,
namely FT-CEEA. The general idea diagram of the CEEA method is shown in Figure 1.
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The WRBs involve a wide range of fields and factors, and the CEE accounting of WRBs
should have a clear system boundary to avoid the infinite extension of indirect calculations.
The principle of this study for system boundary formulation is to focus on CEE directly
caused by WRBs, with appropriate consideration of indirect CEE that are closely related
to such WRBs. Based on the definition of WRBs, the system boundary of CEE accounting
is determined, as shown in Figure 2. The categories of WRBs can be roughly divided
into water resource development behaviors (WRDBs), water resource allocation behaviors
(WRABs), water resource utilization behaviors (WRUBs), and water resource protection
behaviors (WRPBs). Each category contains a variety of typical WRBs, each WRB has a
corresponding CEEA method.
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2.2. CEEA Method to Water Resource Development Behaviors

Water resource development behaviors (WRDBs) refer to a series of activities related
to water resources development. In this study, WRDBs are preliminarily defined as surface
water lifting (WRDB1), groundwater extraction (WRDB2), reservoir storage (WRDB3), raw
water treatment (WRDB4), and seawater desalination (WRDB5).

(1) Surface water lifting (WRDB1): Surface water resources are extracted from natural
rivers or lakes to higher elevations using water extraction projects to achieve centralized
treatment and unified distribution of “raw freshwater”. The electric energy consumed
by the water lifting project is converted into the mechanical energy needed for water
resources lifting, so the CO2 emissions of this behavior are mainly concentrated in the
energy consumption link of the water lifting project. The CEEA formula of WRDB1 based
on emission factor [52] is as follows:

E1 = Q1 × EI1 × EF (1)

EI1 =
ρ × g × h1

3.6 × 106 × η
(2)

EF =
∑i
(

FCi,y × NCVi,y × EFCO2,i,y
)

EGy
(3)

where E1 is the carbon dioxide emission equivalent of surface water lifting behavior, kg; Q1
is the amount of surface water lifting, m3; EI1 is the energy intensity of WRDB1 (the amount
of electricity required to lift per unit of surface water) kWh/m3; ρ is the density of surface
water (typically 1000), kg/m3; g is the acceleration of gravity (typically 9.8), m/s2; h1 is the
surface water lifting head, m; η is the efficiency of the water lifting project; EI1 is the power
system CO2 emission factor (the amount of CO2 emitted per unit of electricity consumed),
kg/kWh; EG is the total net power generation during the calculation period of the power
system, kWh; FC is the consumption of fuel by the generator set during the calculation
period, in mass or volume units; NCV is the average low-level heat content of the fuel
during the calculation period, in GJ/mass or volume units; EFCO2 is the CO2 emission
factor of the fuel (amount of CO2 emitted per unit of energy) during the calculation period,
kgCO2/GJ; i is the type of fossil fuels consumed to generate electricity; and y is the year.
Power-related departments in different countries will regularly release the EF of the power
system. For example, the Ministry of Ecology and Environment of China has issued EF
reference values for different provinces in China. In China, EI1 is mainly related to the
water head, which can be 0.2 kWh/m3 [53,54] on average. The global level can refer to the
value range given by relevant research: 0.0002–1.74 kWh/m3 [55].

(2) Groundwater extraction (WRDB2): Similar to the principle of WRDB1, groundwater
extraction behavior also needs to convert the electrical energy of pumping equipment
into the mechanical energy required for groundwater rise. CO2 emissions are mainly
concentrated in the energy consumption of pumping equipment:

E2 = Q2 × EI2 × EF (4)

EI2 =
9.8 × ρ × h2

3.6 × 106 × η
(5)

where E2 is the CEE of WRDB2, kg; Q2 is the amount of groundwater extraction, m3; EI2
is the energy intensity of WRDB2 (the amount of electricity required to extract per unit of
groundwater) kWh/m3; h2 is the groundwater depth, m. Other variables have the same
meaning as above. Unlike surface water, the energy intensity of WRDB2 varies considerably
with different groundwater burial depths. The value of EI2 can be obtained according to the
actual situation of the study area, and EI2 in different regions of China can also refer to Table
4 [39]. In addition, the EI2 of different countries is available in studies: 0.18–0.49 kWh/m3

(USA) [56], 0.48–0.53 kWh/m3 (Australia) [57], and 0.37–1.44 kWh/m3 (Global) [55].
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(3) Reservoir storage (WRDB3): The energy consumption of WRDB3 mainly comes
from the daily operation and management of water storage infrastructure [54], such as gate
control, lighting, and monitoring equipment operation. This process also produces CO2
emissions. The calculation formula is as follows:

E3 = Q3 × EI3 × EF (6)

where E3 is the CEE of WRDB3, kg; Q3 is the actual volume of water stored in the reservoir,
m3; EI3 is the energy intensity of WRDB3 (the amount of electricity required to store per
unit of water in the reservoir) kWh/m3. EI3 varies due to differences in reservoir conditions
in different regions. Field visits to reservoirs can be conducted to obtain the value of EI3.
EI3 can also refer to existing research. Studies have shown that the energy intensity range
of WRDB3 in China is [0.07,0.2] kWh/m3 [54], and 0.14 kWh/m3 can be used to study the
average state of China [58].

(4) Raw water treatment (WRDB4): After taking raw water from the water source, it
needs to be treated by the waterworks, including coagulation, sedimentation, filtration, and
disinfection [41]. Each process relies mainly on electricity to maintain the normal operation
of the processing equipment, so WRDB4 also produces CO2 emissions [51]:

E4 = Q4 × EI4 × EF (7)

where E4 is the CEE of WRDB4, kg; Q4 is the volume of raw water treatment, m3; EI4 is the
energy intensity of WRDB4 (the amount of electricity required to treat per unit of raw water)
kWh/m3. EI4 can be determined by the statistical calculation of energy consumption data of
each link of WRDB4. According to the yearbook of Chinese urban water supply, the national
average is 0.31 kWh/m3 [54,59], which can be used for reference. Existing studies have
also given the values of different countries for reference: 0.371–0.392 kWh/m3 (USA) [56];
0.1–0.6 kWh/m3 (Australia) [60]; 0.38–1.44 kWh/m3 (Canada) [61]; 0.11–1.5 kWh/m3

(Spain) [62]; 0.15–0.44 kWh/m3 (New Zealand) [63].
(5) Seawater Desalination (WRDB5): Nine coastal provinces in China have large-scale

seawater desalination capacity. Although the industrialization process of desalination in
China is slow, seawater desalination is an important behavior in the process of sustainable
development of water resources in the future [51].

E5 = Q5 × EI5 × EF (8)

where E5 is the CEE of WRDB5, kg; Q5 is the volume of seawater desalination, m3; EI5 is the
energy intensity of WRDB5 (the amount of electricity required to treat per unit of seawater)
kWh/m3; EI5 should be obtained based on the survey data of desalination plants, and
can also refer to existing studies: 5.9 kWh/m3 (China) [64–66]; 4 kWh/m3 (Australia) [57];
2.4–8.5 kWh/m3 (Global) [55,67].

2.3. CEEA Method to Water Resource Allocation Behaviors

Water resource allocation behaviors (WRABs) refer to a series of activities related to
water resource transportation and distribution. Representative WRABs include urban-rural
tap water allocation (WRAB1) and inter-regional water transfer (WRAB2).

(1) Tap water allocation (WRAB1): The treated water from the waterworks is dis-
tributed to individual water users through the urban and rural water distribution system.
The energy consumption of WRAB1 is mainly the head loss in the water transmission and
distribution process, and the CEE is focused on the power consumption in the pressuriza-
tion process [68]:

E6 = Q6 × EI6 × EF (9)

EI6 =
9.8 × ρ × (h f + hj)

3.6 × 106 × η
(10)
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h f = λ
l

4R
v2

2g
(11)

hj = ζ
v2

2g
(12)

where E6 is the CEE of WRAB1, kg; Q6 is the amount of urban and rural tap water allocation,
m3; EI6 is the energy intensity of WRAB1 (the amount of electricity required to distribute
per unit of tap water) kWh/m3; hf is head loss along the path, λ is the drag coefficient
along the path, l is the length of tap water allocation, R is the hydraulic radius, m; v is
the average velocity of tap water transmission and distribution, m3/s; hj is local head
loss, m; ζ is local drag coefficient; η is the efficiency of the pressurized pump station.
Head loss can be calculated by the Darcy formula. EI6 can be obtained according to the
investigation and statistics of unit water distribution power consumption data of water
supply company. The energy intensity of tap water companies in different regions of China
is quite different [69]. Combined with the China Urban Water Supply Yearbook and related
research [68–70], the recommended value is 0.2 kWh/m3 for reference. Reference values
of EI6 in other countries: 0.2–0.32 kWh/m3 (California, USA) [26]; 0.12–0.22 kWh/m3

(Spain) [71]; 0.1 kWh/m3 (South Africa) [72].
(2) Inter-regional water transfer (WRAB2): Most of the inter-regional water transfer

projects require pumping stations for pressurized delivery to overcome the energy loss
from head loss. The CEE calculation principle of WRAB2 is similar to that of WRAB1. The
difference is that the urban and rural tap water allocation system is mostly pressure pipe
flow, while the inter-regional water transfer is mostly open channel constant flow:

E7 = Q7 × EI7 × EF (13)

EI7 =
ρ × g × (h f + hj)

3.6 × 106 × η
(14)

where E7 is the CEE of WRAB2, kg; Q7 is the amount of water transferred across regions, m3;
EI7 is the energy intensity of WRAB2 (the amount of electricity required to transfer per unit
water resources across regions) kWh/m3; hf and hj are the head loss along the open channel
and local head loss, m; the specific calculation can be referred to the relevant formula of
open channel hydraulics [73]. In the absence of the necessary investigation conditions, EI7
can refer to the value of 0.815 kWh/m3 (China) taken in existing studies [54,74].

2.4. CEEA Method to Water Resource Utilization Behaviors

Water resource utilization behaviors (WRUBs) refer to a series of activities related to
water use. WRUBs include domestic water utilization (WRUB1), industrial water utilization
(WRUB2), agricultural water utilization (WRUB3), ecological water utilization (WRUB4),
and hydroelectric power generation (WRUB5). Many carbon emission studies based on
LCA methods do not consider the end-use process, because the emission effects caused by
end-use are not part of the life cycle [29]. However, some indirect emission effects closely
related to WRBs are generated or caused by these behaviors, and end-use often results in a
high proportion of CEE [27]. Therefore, based on the definition of WRBs, this study also
includes CEE in the end-use process of water resources in the calculation range.

(1) Domestic water utilization (WRUB1): WRUB1 does not include public domestic
water because the end-use purpose of public domestic water is so broad that it is difficult
to achieve a relatively accurate quantification. The main source of CO2 emissions from
WRUB1 is the energy consumption of the heating process [27]. Combined with the actual
domestic water consumption in China, CO2 emissions in the energy-consuming process
of cooking and bath heating can be taken as the CEE of WRUB1, and its CEEA method is
as follows:

E8 = Q8 × EI8 × EF (15)

EI8 = ρ × Rhousehold × (Rheat1 + Rheat2)× Cw × ∆T × 1/η (16)
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where E8 is the CEE of WRUB1, kg; Q8 is the total amount of domestic water consumption,
m3; ρ is the density of surface water (typically 1000), kg/m3; Cw is the heat capacity of the
water (generally 1.162 × 10−3 kWh/(kg·◦C) [74]); ∆T is the temperature difference before
and after heating, ◦C; η is the efficiency of the heating equipment (generally 95% [74]).
Rhousehold is the proportion of residential household domestic water consumption in total
domestic water consumption; Rheat is the proportion of water used for heating in residential
household domestic water consumption, where Rheat1 is the proportion of cooking and
drinking water, and Rheat2 is the proportion of bathing water. Depending on different
research needs, Rhousehold can be obtained according to the actual investigation, or according
to the proportion in the water resources bulletin. In addition, studies have examined
the energy intensity (EI8) of household water use in different regions for reference: 7.43
kWh/m3 (China) [75], 24.6 kWh/m3 (Ontario, Canada) [61].

(2) Industrial water utilization (WRUB2): China has a wide range of industrial sectors,
and the water use processes in different sectors have different CO2 emission characteristics.
The energy consumption of WRUB2 is mainly concentrated in the link of water cooling and
water heating [59], which is also the main source of CO2 emission. There are two ideas for
calculating the CEE of WRUB2:

E9 = Q9 × EI9 × EF (17)

E9 = Cindustry × Rwater × EF (18)

where E9 is the CEE of WRUB2, kg; Q9 is the total amount of industrial water consumption,
m3; EI9 is the energy intensity of WRUB2 (energy consumption per unit of industrial
water) kWh/m3. EI9 can be determined from field surveys, and relevant studies have
concluded that the energy intensity of industrial water use in a typical Chinese city is
5.033 kWh/m3 [76]. Another idea is to calculate CEE by determining the power consump-
tion of WRUB2 through the power consumption structure of the industrial sector [59]. A
study suggests that water-related electricity consumption in the industrial sector in typical
Chinese cities accounts for about 10% [59]. Cindustry is total industrial electricity consump-
tion, kWh; Rwater is the ratio of water cooling and water heating power consumption to
total power consumption in the industrial sector, %.

(3) Agricultural water utilization (WRUB3): Unlike domestic and industrial water,
CO2 emissions from agricultural water utilization are mainly concentrated in the irrigation
process. There are five main sources of carbon emissions from farmland ecosystems:
chemical fertilizers, pesticides, agricultural films, agricultural machinery, and agricultural
irrigation [77]. In this study, CO2 emissions from agricultural irrigation are used as the CEE
of WRUB3. In addition, the carbon sink effect occurs on farmland due to photosynthesis
during crop growth [78]. Therefore, the CO2 absorption effect of WRUB3 should be
considered [79]. The three elements of crop growth are: sunlight, water, and fertilizer, and
the carbon sink effect in farmland is the result of the joint action of these three elements.
Obviously, it is not appropriate to consider the entire amount of CO2 absorbed by the
farmland as the CO2 absorption effect of WRUB3. Therefore, the CO2 absorption effect of
WRUB3 is separated from the overall CO2 absorption effect of farmland by setting weights.
Assuming that the three elements of sunlight, water, and fertilizer are equally important
for the crop growth process [80], the contribution of these three elements to the carbon
sink effect can be distributed by equal weight method. Of course, the weight distribution
scheme can be discussed and adjusted according to the actual situation of crop planting.
The CEE calculation method of WRUB3 is as follows:

E10 = E10emission − E10absorption (19)

E10emission = A × δe ×
44
12

(20)

E10absorption = ω × A × δa ×
44
12

(21)
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where E10 is the CEE of WRUB3, kg; E10emission is the total CO2 emissions of WRUB3, kg;
E10absorption is the amount of CO2 absorbed by agricultural water utilization; A is the actual
agricultural irrigation area, ha; δe and δa are CO2 emission and absorption coefficient per
unit irrigated area, t/ha; ω is the weight, which is initially set to 1/3.

(4) Ecological water utilization (WRUB4): Water resources are the foundation and
core of ecosystem functions. The function of ecosystems such as woodlands, grasslands,
wetlands, and watersheds cannot be performed without the maintenance of ecological
water [81]. WRUB4 refers to artificial ecological water, that is, urban environmental water
and rivers, lakes, and wetland replenishment water supplied by human measures [82].
Different from domestic and production water utilization behaviors, the CEE of WRUB4
cannot be directly quantified by energy as a medium. Therefore, in this study, the CO2
absorbed by four land types closely related to ecological water use, namely, urban garden,
urban green space (excluding garden area), water area within the jurisdiction, and wetland
within the jurisdiction, is roughly taken as the CEE of WRUB4. Of course, the actual process
of CO2 absorption from WRUB4 is far more complicated than described.

E11 = −
n

∑
i

Ai × δi ×
44
12

(22)

where E11 is the CEE of WRUB4, kg; A is the area of ecological water land type, ha; δ is the
CO2 absorption coefficient of ecological water land type (the amount of CO2 absorbed per
unit area of ecological water land), t/ha. i is the type of land. δ can be obtained by field
measurements in the study area, or by referring to existing studies [78].

(5) Hydroelectric power generation (WRUB5): CO2 emissions from hydropower gener-
ation are much lower than those from thermal power [83]. Based on the UN CDM (United
Nations’ Clean Development Mechanism), GHG emissions from hydropower generation
can be disregarded in the calculation of hydropower CDM projects [84]. Therefore, the
relative carbon reduction effect of hydropower compared to thermal power is used in this
study to quantify the CEE of WRUB5.

E12 = −G × CPG × EFc (23)

where E12 is the CEE of WRUB5, kg; G is the total amount of hydroelectric power, kWh;
CPG is the standard coal consumption of power generation unit, tce/kWh; EFc is the CO2
emission coefficient of standard coal, kg/tce. CPG can be obtained from the investigation of
the thermal power industry in the study area. Studies have shown that the average coal con-
sumption of thermal power generating units in China is 3.7 × 10−4 tce/kWh [85]. EFc can
refer to IPCC guidelines for national greenhouse gas inventories [52] or existing studies [85].

2.5. CEEA Method to Water Resource Protection Behaviors

Water resource protection behaviors (WRPBs) refer to a series of activities related
to water resources protection, including water saving (WRPB1), wastewater collection
(WRPB2), wastewater treatment (WRPB3), and reclaimed water reuse (WRPB4).

(1) Water saving (WRPB1): Water saving behavior directly avoids part of the energy
consumed in the development and allocation of water resources, so it can be regarded as a
carbon reduction behavior [32,86]. Its CEEA method is as follows:

E13 = −Q13 × (EPexploitation + EPdistribution) (24)

EPexploitation = (E1 + E2)/(Q1 + Q2) (25)

EPdistribution = E7/Q7 (26)

where E13 is the CEE of WRPB1, kg; Q13 is the total amount of water saved, m3; EPexploitation
is the comprehensive CO2 emission coefficient of water resource exploitation (CO2 emis-
sions per unit of water resource exploitation), kg/m3; EPdistribution is the comprehensive
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CO2 emission coefficient of water resource allocation (CO2 emissions per unit of water
resource allocation), kg/m3. Other variables have the same meaning as above.

(2) Wastewater collection (WRPB2): Wastewater from different sources usually relies on
gravity to converge to the wastewater network, and then is pressurized by the wastewater
network pump to the wastewater treatment plant. Similar to WRAB1, the CEE of WRPB2 is
mainly generated by energy consumption to overcome head loss [49]:

E14 = Q14 × EI14 × EF (27)

EI14 =
9.8 × ρ × (h f + hj)

3.6 × 106 × η
(28)

where E14 is the CEE of WRPB2, kg; Q14 is the total amount of wastewater collected,
m3; EI14 is the energy intensity of WRPB2 (electricity consumption by collecting unit of
wastewater), kWh/m3. EI14 should be obtained based on the investigation and statistics
of the wastewater collection system in the study area, and can also refer to the values in
related studies: 0.013 kWh/m3 (China) [86].

(3) Wastewater treatment (WRPB3): The treatment methods of wastewater treatment
plants in different countries are different, but generally include three stages: primary
treatment, secondary treatment, and tertiary treatment. Each stage has different processes,
and the energy consumption intensity of each process is different. The main CO2 emissions
are concentrated in the secondary and tertiary treatment stages [87]. On the other hand,
untreated wastewater contains more pollutants such as COD and BOD5, which can produce
large amounts of carbon emissions. WRPB3 has a positive CO2 reduction effect by reducing
the concentration of such pollutants [88]. In addition, wastewater treatment plants generally
use sludge in wastewater for power generation [89], and its carbon reduction effect should
also be considered. In this study, the CO2 absorption effect of WRPB3 is considered
based on the concentration difference of major carbon emission pollutants before and after
wastewater treatment and the sludge power generation:

E15 = E15emission − E15absorption (29)

E15emission = Q15 × EI15 × EF − Q15 × Rs × Ps × EF (30)

EI15 = ∑3
i=1 ∑

j
EIij (31)

E15absorption = Q15 × ∆RCOD × EFCOD + Q15 × ∆RBOD5 × EFBOD5 (32)

where E15 is the CEE of wastewater treatment behavior, kg; Q15 is the total amount of
wastewater treatment, m3; EI15 is the energy intensity of WRPB3 (electricity consump-
tion by treating unit of wastewater), kWh/m3. EIij is the energy consumption intensity
of the process j in stage i, kWh/m3. The energy intensity or emission factor of unit
wastewater treatment can be obtained by investigating the energy consumption and
treatment capacity of the wastewater treatment plant [28,29]. EI15 from relevant stud-
ies are available for reference: 0.24 kWh/m3 (China) [74]; 0.8–1.5 kWh/m3 (Australia) [60];
0.177–0.78 kWh/m3 (USA) [56]; 0.41–0.61 kWh/m3 (Spain) [71]; 0.44 kWh/m3 (South
Africa) [72]; 0.38–1.122 kWh/m3 (Global) [55]. Rs is the sludge concentration in wastewa-
ter, generally 0.3–0.5% [90]; Ps is the power generation of unit sludge, and the coefficient in
related research is 14.27 kWh/m3 for reference [89]. ∆RCOD and ∆RBOD5 are the concen-
tration differences of COD and BOD5 before and after wastewater treatment, respectively.
When the measurement conditions are available, the measurement results shall prevail.
When conducting large-scale research, ∆RCOD and ∆RBOD5 can also be determined ac-
cording to relevant emission standards. According to China’s comprehensive wastewater
discharge standard, the concentration difference between COD and BOD5 before wastew-
ater treatment (Level 3 standard) and after wastewater treatment (Level 1 standard) is
0.94 kg/m3 and 0.58 kg/m3. EFCOD and EFBOD5 are the amount of CO2 reduced by re-
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moving unit COD and BOD5, and the units are kgCO2/kgCOD and kgCO2/kgBOD5,
respectively. According to the relevant emission factors released by IPCC [52], EFCOD and
EFBOD5 are 0.69 and 1.65, respectively.

(4) Reclaimed water reuse (WRPB4): Reclaimed water reuse reduces the extraction of
surface water and groundwater, and can therefore be considered as a WRB to reduce CO2
emissions. The calculation formula of CEE is as follows:

E16 = −Q16 × EPexploitation (33)

EPexploitation = (E1 + E2)/(Q1 + Q2) (34)

where E16 is the CEE of reclaimed water reuse behavior, kg; Q16 is the amount of reclaimed
water reuse, m3; EP is the comprehensive CO2 emission coefficient of water resources
exploitation (CO2 emissions per unit of water resource exploitation), kg/m3.

2.6. Function Table of CEEA for Water Resource Behaviors

The above methods and ideas are summarized and all the CEEA formulas are com-
bined to form a table, which is the function table of CEEA (FT-CEEA) for WRBs (Table 2).
In addition, in view of the large regional differences in the grid CO2 emission factor and
the energy intensity of groundwater extraction, the referenceable values (Tables 3 and 4)
for different regions of China are given [54], which can be selected according to the actual
situation of the study area. The instructions for using FT-CEEA are as follows.

Table 2. FT-CEEA for water resource behaviors.

WRBs CEEA Formulas Parameter Reference Values

WRDB1
(Surface water lifting)

E1 = Q1 × EI1 × EF
EI1 = ρ×g×h1

3.6×106×η

EF =
∑i

(
FCi,y×NCVi,y×EFCO2,i,y

)

EGy

EI1: 0.2 kWh/m3 (China);
0.0002–1.74 kWh/m3 (Global)
EF: Table 3 (China)

WRDB2
(Groundwater extraction)

E2 = Q2 × EI2 × EF
EI2 = 9.8×ρ×h2

3.6×106×η

EI2: Table 4 (China); 0.18–0.49 kWh/m3

kWh/m3 (USA); 0.48–0.53 kWh/m3 (Australia);
0.37–1.44 kWh/m3 (Global)

WRDB3
(Reservoir storage) E3 = Q3 × EI3 × EF EI3: 0.14 kWh/m3 (China)

WRDB4
(Raw water treatment) E4 = Q4 × EI4 × EF

EI4: 0.31 kWh/m3 (China); 0.371–0.392 kWh/m3

(USA); 0.1–0.6 kWh/m3 (Australia);
0.38–1.44 kWh/m3 (Canada); 0.11–1.5 kWh/m3

(Spain); 0.15–0.44 kWh/m3 (New Zealand)

WRDB5
(Seawater Desalination) E5 = Q5 × EI5 × EF EI5: 5.9 kWh/m3 (China); 4 kWh/m3 (Australia);

2.4–8.5 kWh/m3 (Global)

WRAB1
(Tap water allocation)

E6 = Q6 × EI6 × EF

EI6 =
9.8×ρ×(h f +hj)

3.6×106×η

h f = λ l
4R

v2

2g ;hj = ζ v2

2g

EI6: 0.2 kWh/m3 (China); 0.2–0.32 kWh/m3

(California, USA); 0.12–0.22 kWh/m3

(Spain); 0.1 kWh/m3 (South Africa)

WRAB2
(Inter–regional water

transfer)

E7 = Q7 × EI7 × EF

EI7 =
ρ×g×(h f +hj)

3.6×106×η

EI7: 0.815 kWh/m3 (China)

WRUB1
(Domestic water

utilization)

E8 = Q8 × EI8 × EF
EI8 = ρ × Rhousehold × (Rheat1 + Rheat2)× Cw × ∆T × 1/η

EI8: 7.43 kWh/m3 (China); 24.6 kWh/m3

(Ontario, Canada)

WRUB2
(Industrial water

utilization)
E9 = Q9 × EI9 × EF

E9 = Cindustry × Rwater × EF
EI9: 5.033 kWh/m3 (China)
Rwater : 10% (China)

WRUB3
(Agricultural water

utilization)

E10 = E10emission − E10absorption
E10emission = A × δe × 44

12
E10absorption = ω × A × δa × 44

12

δe: 0.266 tC/ha (China)
δa: 4.05 tC/ha (China)
ω: 1/3
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Table 2. Cont.

WRBs CEEA Formulas Parameter Reference Values

WRUB4
(Ecological water

utilization)
E11 = −∑n

i Ai × δi × 44
12

δ: Garden 3.81 tC/ha; Green Space 0.948 tC/ha;
Wetland 0.567 tC/ha; Water Area 0.567 tC/ha
(China)

WRUB5
(Hydroelectric power

generation)
E12 = −G × CPG × EFc

CPG: 3.7 × 10−4 tce/kWh (China)
EFc: 670 kg/tce (China)

WRPB1
(Water saving)

E13 = −Q13 × (EPexploitation + EPdistribution)

EPexploitation = (E1 + E2)/(Q1 + Q2)
EPdistribution = E7/Q7

For the parameters of E1, E2, and E7, see WRDB1,
WRDB2, and WRAB2

WRPB2
(Wastewater collection)

E14 = Q14 × EI14 × EF

EI14 =
9.8×ρ×(h f +hj)

3.6×106×η

EI14: 0.013 kWh/m3 (China)

WRPB3
(Wastewater treatment)

E15 = E15emission − E15absorption
E15emission = Q15 × EI15 × EF − Q15 × Rs × Ps × EF
EI15 = ∑3

i=1 ∑j EIij
E15absorption = Q15 × (∆RCOD × EFCOD + ∆RBOD5 × EFBOD5)

EI15: 0.24 kWh/m3 (China); 0.8–1.5 kWh/m3

(Australia); 0.177–0.78 kWh/m3 (USA);
0.41–0.61 kWh/m3 (Spain); 0.44 kWh/m3 (South
Africa); 0.38–1.122 kWh/m3 (Global)
Rs: 0.3~0.5% (China)
EFCOD : 0.69 kgCO2/kgCOD (IPCC);
EFBOD : 1.65 kgCO2/kgBOD5 (IPCC)

WRPB4
(Reclaimed water reuse) E16 = −Q16 × EPexploitationEPexploitation = (E1 + E2)/(Q1 + Q2)

For the parameters of E1 and E2, see WRDB1
and WRDB2

Table 3. Average CO2 emission factor of power grids in different regions of China (kgCO2/kWh).

Provinces EF Provinces EF

Beijing 0.8292 Henan 0.8444
Tianjin 0.8733 Hubei 0.3717
Hebei 0.9148 Hunan 0.5523
Shanxi 0.8798 Chongqing 0.6294
Inner Mongolia 0.8503 Sichuan 0.2891
Shandong 0.9236 Guangdong 0.6379
Liaoning 0.8357 Guangxi 0.4821
Jilin 0.6787 Guizhou 0.6556
Heilongjiang 0.8158 Yunnan 0.415
Shanghai 0.7934 Hainan 0.6463
Jiangsu 0.7356 Shaanxi 0.8696
Zhejiang 0.6822 Gansu 0.6124
Anhui 0.7913 Qinghai 0.2263
Fujian 0.5439 Ningxia 0.8184
Jiangxi 0.7635 Xinjiang 0.7636

Table 4. Energy intensity of unit groundwater extraction in different regions of China (kWh/m3).

Provinces EI2 Provinces EI2

Beijing 0.44 Henan 0.3
Tianjin 0.66 Hubei 0.22
Hebei 0.53 Hunan 0.4
Shanxi 0.62 Chongqing 0.57
Inner Mongolia 0.3 Sichuan 0.3
Shandong 0.47 Guangdong 0.41
Liaoning 0.21 Guangxi 0.34
Jilin 0.35 Guizhou 0.36
Heilongjiang 0.43 Yunnan 0.45
Shanghai 0.39 Hainan 0.41
Jiangsu 0.36 Shaanxi 0.64
Zhejiang 0.43 Gansu 0.5
Anhui 0.32 Qinghai 0.52
Fujian 0.4 Ningxia 0.27
Jiangxi 0.37 Xinjiang 0.6

104



Water 2023, 15, 431

(1) FT-CEEA is a collection of formulas for estimating and cross-sectionally comparing
the CEE of various WRBs. The CEEA formulas for different WRBs in FT-CEEA can be
used selectively depending on the study purpose and study scale. The quantity, type, and
calculation method of WRBs in FT-CEEA are not static and can be updated and improved
according to the changing situation and new research progress.

(2) The results of each formula are not necessarily an absolute measurement of the
emission or absorption effects of CO2, but the idea of each formula is relatively reasonable.
FT-CEEA is equivalent to setting up a “ruler” as a relative comparison of CEE generated
by WRBs calculated by different researchers. FT-CEEA has no scale limitation and can
be applied to different scales with limited accuracy requirements. However, the specific
parameters need to be adjusted according to the actual situation of the research object.

(3) Most of the formulas in FT-CEEA need to be supported by relevant parameters,
but in most cases, it is difficult to carry out field investigations and measurements of the
parameters. Given this situation, some valuable reference values are provided in this
table. Of course, some changes can be made in the selection of parameter reference values
according to different research needs and actual conditions.

3. Case Study
3.1. Overview of the Study Area

China has a vast territory, and there are significant spatial differences in industrial
structure, water use mode, and carbon emission intensity in different regions. In terms
of CO2 emissions in 2019, Shanxi (the province with the highest emission intensity) is
37 times higher than Qinghai (the province with the lowest emission intensity) under
different development orientation [91]. In the past 20 years, under the background of rapid
economic and social development, some provinces in China are facing many challenges
such as the insufficient capacity for sustainable utilization of water resources and prominent
conflict between carbon emission reduction and economic development [92]. Since the
1990s, China has been in a new period of rapid growth in carbon emissions, lagging behind
developed countries in time. Although China’s total carbon emissions ranked first in the
world in recent years, China’s per capita carbon emissions are still far lower than developed
countries. Many traditional industries in China still maintain a production mode with high
consumption and high emission. Promoting the low-carbon transformation of traditional
industries has become an urgent bottleneck to achieving China’s carbon neutrality goal [7].

In this study, 31 provincial administrative regions in mainland of China are divided
into 8 regions [93]. The regional division, elevation distribution, water supply structure,
and CO2 emission intensity of the study area are shown in Figure 3.

3.2. Data source and Description

In addition to the important parameters in FT-CEEA, the data used in the case study
are mainly the data of indicators involved in different WRBs of 31 provinces in China in
2020. The data involved in WRABs include tap water allocation and inter-regional water
transfer. The data involved in WRUBs include domestic water consumption, industrial
water consumption, actual agricultural irrigation area, land area of four kinds of artificial
ecological water utilization, and hydroelectric power generation. The data involved in
WRPBs include water saving, wastewater treatment, and reclaimed water reuse.

The sources of the above data include China Water Resources Bulletin 2020, China
Seawater Utilization Bulletin 2020, Water Resources Bulletin of 31 provinces in 2020, China
Statistical Yearbook 2021, China Water Statistical Yearbook 2021, China Energy Statis-
tical Yearbook 2021, China Environmental Statistical Yearbook 2021, and China Urban
Construction Statistical Yearbook 2021.
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3.3. Results and Discussion
3.3.1. Carbon Dioxide Emission Equivalent Analysis of WRDBs

Based on FT-CEEA and the above data, the CEE of WRBs in 31 provinces and 8 regions
of China in 2020 was calculated. The calculation results of the eight regions are obtained by
summing the included provinces.

The CEEA results of WRDBs are presented in Table 5. In 2020, the surface water
lifting behavior (WRDB1) in eight regions of China generated 63.52 million tons of CEE,
accounting for 29.8% of the total CEE produced by WRDBs. Among them, the WRDB1
in middle Yangtze River and east coast provinces produced higher CEE of 12.63 million
tons and 11.9 million tons, respectively. The three provinces of Shanghai, Jiangsu, and
Zhejiang in the east coast region are dominated by surface water utilization. The surface
water supply of Jiangsu Province in 2020 is 55.6 billion cubic meters, resulting in the CEE
generated by WRDB1 ranking first among 31 provinces (8.18 million tons). The region
with the smallest CEE of WRDB1 is the north coast region (4.64 million tons). On the
other hand, WRDB2 in the north coast region produced the most CEE (8.2 million tons).
In contrast, groundwater extraction in the east coast region produced only 0.12 million
tons of CEE in 2020. The spatial distribution characteristics of CEEA results of WRDB1 and
WRDB2 are closely related to the water supply structure in different regions. Compared
with the southern provinces of China, the northern provinces have a higher degree of
groundwater exploitation and a larger proportion of groundwater utilization, which is
also a manifestation of the uneven spatial distribution of water resources in China [94]. In
addition, Xinjiang is the province with the most CEE generated by WRDB2 in 31 provinces
(5.69 million tons). The reason is that Xinjiang has a large amount of groundwater supply.
In 2020, the groundwater supply in Xinjiang is 12.43 billion cubic meters, second only to
Heilongjiang (12.94 billion cubic meters). Another important factor is that Xinjiang’s higher
altitude means it takes much more energy to extract per unit of groundwater than the
eastern provinces [39].
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Table 5. CEE of WRDBs and WRABs in eight regions of China in 2020 (10,000 tons).

Regions WRDB1 WRDB2 WRDB3 WRDB4 WRDB5 WRAB1 WRAB2

North coast 464.39 819.75 595.18 408.86 193.61 275.50 1062.86
Middle Yellow River 550.14 799.23 943.75 425.88 0.00 268.61 447.79
Northeast 528.18 628.60 983.30 243.08 20.66 157.29 0.00
East coast 1190.44 12.27 468.52 1061.67 61.60 725.56 34.30
Middle Yangtze River 1262.68 103.99 1650.82 793.48 0.00 530.31 40.53
South coast 746.55 39.34 663.31 516.33 16.56 336.86 90.46
Southwest 720.44 44.23 1807.78 385.87 0.00 260.99 6.60
Northwest 889.61 660.88 477.18 119.54 0.00 80.88 12.48
Total 6352.42 3108.29 7589.83 3954.71 292.43 2636.02 1695.02

WRDB3 is the behavior that produces the most CEE in WRDBs, generating 75.9 million tons
of CEE in 2020, accounting for 35.6% of the total CEE produced by WRDBs. Among them,
the CEE produced in middle Yangtze River and southwest regions was significantly higher
than that in other regions, and the CEE produced by WRDB3 in the east coast region was less
(4.69 million tons). Raw water treatment behavior (WRDB4) produced 39.55 million tons
of CEE in 2020. Due to the high proportion of domestic and industrial water, the east
coast, the middle Yangtze River and the southern coastal provinces have become the main
contributors to the CEE generated by WRDB4. In 2020, the CEE generated by seawater
desalination behavior (WRDB5) was 2.92 million tons, accounting for 1.4% of the total CEE
generated by WRDBs. China’s desalination plants are mainly concentrated in 9 coastal
provinces [64], which are Shandong, Hebei, Zhejiang, Tianjin, Liaoning, Guangdong, Fu-
jian, Hainan, and Jiangsu in descending order according to CEE. The proportion of CEE
generated by WRDB5 in the north and east coast provinces exceeded 87%.

3.3.2. Carbon Dioxide Emission Equivalent Analysis of WRABs

The CEEA results of water resource allocation behaviors (WRABs) are shown in
Table 5. WRAB1 produced 26.36 million tons of CEE in 2020, accounting for 60.9% of
the total CEE produced by WRABs. The CEE of WRAB1 is similar to WRDB4 in spatial
distribution. The difference in water resources utilization structure in different regions
of China can explain the distribution characteristics to some extent. Compared with the
eastern provinces of China, the northwest provinces have a higher proportion of agricultural
water and a lower proportion of industrial and domestic water [95]. Tap water supply is
mainly concentrated in industrial and domestic water. Therefore, the water use structure
dominated by agricultural water has led to the CO2 emission effect of WRAB1 in the
northwest region being much lower than that in the eastern region. Cross-regional water
transfer behavior produced 16.95 million tons of CEE in 2020. Due to the existence of
large-scale water diversion projects such as the South-to-North Water Diversion Project
and the Luanhe River Diversion Project, the CEE generated by WRAB2 in the north coast
and the middle Yellow River provinces accounted for up to 89%. This spatial distribution
feature is similar to the research results of Xiang and Jia [54].

3.3.3. Carbon Dioxide Emission Equivalent Analysis of WRUBs

The CEEA results of WRUBs are shown in Table 6. Among the five kinds of WRUBs,
the CEE value of domestic water utilization and industrial water utilization is positive,
resulting in the CO2 emission effect. The CEE value of agricultural water utilization,
ecological water utilization, and hydroelectric power generation is negative, resulting in
the CO2 absorption effect. Among them, the CEE calculation of WRUB2 is based on the
first calculation scheme (energy intensity scheme).
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Table 6. CEE of WRUBs in eight regions of China in 2020 (10,000 tons).

Regions WRUB1 WRUB2 WRUB3
WRUB3 WRUB3

WRUB4 WRUB5Emission Absorption

North coast 4684.22 2643.82 −3600.23 885.44 4485.67 −873.39 −87.73
Middle Yellow River 4514.91 3112.55 −3901.06 959.42 4860.49 −1514.52 −923.25
Northeast 2547.60 1812.01 −2873.56 706.72 3580.28 −1629.72 −452.12
East coast 5229.36 12,308.51 −2085.14 512.82 2597.96 −1188.59 −598.08
Middle Yangtze River 5225.80 8202.69 −4165.40 1024.44 5189.84 −1616.46 −6028.88
South coast 5044.67 3755.17 −1065.50 262.05 1327.55 −858.01 −1472.20
Southwest 4103.96 2716.85 −2855.96 702.39 3558.36 −3286.00 −20,571.24
Northwest 1337.90 802.65 −2635.73 648.23 3283.96 −3439.65 −3461.95
Total 32,688.42 35,354.25 −23,182.59 5701.51 28,884.10 −14,406.34 −33,595.46

In 2020, the CEE of WRUB1 (326.88 million tons) and WRUB2 (353.54 million tons)
in 31 provinces of China are not very different in total, but there are large differences
between regions. The CEE generated by WRUB2 in the east coast and middle Yangtze River
provinces is higher than that generated by WRUB1, especially in the east coast provinces.
The outstanding proportion of industrial and domestic water in Jiangsu Province leads to
the highest CEE generated by WRUB2. The difference in water use structure is the main
reason for the difference in CEE of industrial and domestic water in different regions [96].
The absorption effect of WRUB3 (288.84 million tons) is greater than the emission effect
(57.02 million tons), so the CEE of agricultural water utilization behavior is negative in
total (−231.83 million tons). The WRUB3 of the northwest provinces has produced a
considerable CO2 emission effect (6.48 million tons), which is consistent with the local
water resource utilization structure [97]. The middle Yangtze River provinces have more
agricultural irrigation area, and the CO2 absorption effect produced by WRUB3 is also the
highest among the eight regions (51.9 million tons).

Ecological water utilization behavior (WRUB4) produced −144.06 million tons of
CEE in 2020. The CEE of WRUB4 in southwest and northwest provinces was nearly half
of the total CEE produced by WRUB4. The main reason is that the wetland and water
area of Sichuan, Tibet, Qinghai, Xinjiang, and other provinces is much higher than other
regions. The strong guarantee of ecological water use in the above-mentioned provinces
has played an important role in maintaining the carbon sink function of wetland and water
ecosystem [98]. In 2020, the hydroelectric power generation behavior (WRUB5) in eight
regions of China produced a total of −335.95 million tons of CEE with significant spatial
differences. Southwest provinces have the most abundant hydropower resources [99],
while the proportion of hydropower in the energy structure of the north coast provinces is
very small. The distribution of hydropower resources in China is the main reason for the
CEE spatial difference of WRUB5.

3.3.4. Carbon Dioxide Emission Equivalent Analysis of WRPBs

The CEEA results of WRPBs are shown in Table 7. Among the four WRPBs, only
the CEE value of wastewater collection behavior (WRPB2) is positive, resulting in CO2
emission effect. The CEE values of the other three WRPBs are negative, resulting in the
CO2 absorption effect. Water saving behavior (WRPB1) can undoubtedly provide a positive
impact on reducing CO2 emissions [100]. If only the energy saving effect of WRPB1 on
water resources development and allocation is considered, the CEE of WRPB1 in 2020 is
−2.05 million tons. In general, Shanghai, Guangdong, Zhejiang, Jiangsu, and Beijing are
at the forefront of the construction of water-saving society [101], and there is still a large
room for improvement in the capacity of water-saving and emission reduction in northwest
provinces. The CEE of WRPB2 is the smallest among all WRBs in FT-CEEA (0.5 million
tons). The CO2 absorption effect produced by wastewater treatment behavior (WRPB3) is
significantly greater than the emission effect. The spatial distribution characteristics of CEE
of WRPB3 are directly related to the wastewater treatment capacity of different regions.
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The east coast and south coast provinces have a large amount of wastewater discharge
and a strong wastewater treatment capacity [102], which correspondingly brings a higher
carbon dioxide emission and absorption effect. If only the energy saving effect of reclaimed
water reuse behavior on water resources development is considered, the CEE generated
by WRPB4 in 2020 is −2.68 million tons. The CEEA results of WRPB4 are closely related
to regional water resource endowment and water supply structure. Compared with the
southern provinces, Beijing, Hebei, Shandong, Henan, and other northern provinces are
relatively short of water, so the reuse of reclaimed water has become an effective means to
alleviate the contradiction between local water supply and demand [103]. As a result, the
amount of reclaimed water supplied by these provinces is much higher than that of other
provinces, and correspondingly, more CO2 absorption effect is generated.

Table 7. CEE of WRPBs in eight regions of China in 2020 (10,000 tons).

Regions WRPB1 WRPB2 WRPB3
WRPB3 WRPB3

WRPB4Emission Absorption

North coast −24.69 9.33 −1158.76 131.27 1290.03 −109.55
Middle Yellow River −24.16 5.42 −703.43 76.30 779.73 −67.26
Northeast −12.51 5.73 −809.33 80.63 889.96 −17.91
East coast −57.17 9.61 −1489.48 135.17 1624.65 −22.95
Middle Yangtze River −38.73 6.29 −1255.82 88.55 1344.37 −16.36
South coast −33.13 8.07 −1482.34 113.53 1595.87 −7.12
Southwest −10.26 4.51 −1153.53 63.40 1216.93 −12.19
Northwest −4.62 1.35 −231.80 19.06 250.86 −14.82
Total −205.27 50.31 −8284.47 707.91 8992.38 −268.15

4. Conclusions

In this study, the carbon dioxide emission equivalent analysis (CEEA) method of water
resource behaviors (WRBs) was developed, and a function table of carbon dioxide emission
equivalent (FT-CEEA) was constructed. Based on the FT-CEEA, the CEE of different WRBs
in 31 provinces of China in 2020 was analyzed. Some valuable conclusions are as follows:

(1) Four categories of WRBs in 31 provinces of China produced a total of 0.137 billion
tons of CEE in 2020, of which the emission effect was 1.001 billion tons and the
absorption effect was 0.864 billion tons. There is significant spatial variability in CEE
of WRBs in eight regions of China, and the spatial distribution characteristics of CEE
produced by different WRBs are also different. Water supply/utilization structure,
energy consumption structure, water resources endowment, physical geographic
characteristics, hydropower resources distribution are important reasons for the
spatial differences of CEE.

(2) The WRDBs and WRABs produced a total of 0.256 billion tons of CEE. Among the
WRDBs, reservoir storage and surface water lifting have the most CO2 emission
effect. Among the WRABs, the CEE from inter-regional water transfer is smaller
than that from tap water allocation. Water resource protection behaviors produced
−87 million tons of CEE. The absorption effect of wastewater treatment behavior is
the main contributor to CEE, followed by reclaimed water reuse behavior and water
saving behavior.

(3) The CO2 emission and absorption effects of WRUBs are most significant among four
categories. Domestic water and industrial water utilization are the two main sources
of emission effects, hydroelectric power generation behavior produced the greatest
absorption effect. There is still a certain distance to achieve carbon neutrality in the
field of water resources.

Based on the above conclusions, some targeted measures and suggestions are dis-
cussed for the carbon neutrality goal in the field of water resources. Increasing the pro-
portion of hydropower generation, improving the capacity of ecological water security,
strengthening wastewater treatment and reclaimed water reuse, and promoting the con-
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struction of water-saving society can be considered as effective ways to promote carbon
neutrality in this field.

However, there are still some limitations. The consideration of water resource behavior
categories may not be comprehensive. In this study, the water resource behaviors were
divided into four categories: development, allocation, utilization, and protection. However,
water resource behaviors are not limited to the four categories, and the number of WRBs
is far more than 16. Therefore, FT-CEEA is dynamic rather than static, and needs to be
constantly updated. In addition, many CEE calculations of WRB are completed by using
energy as an intermediate medium, which is the quantitative scheme adopted by most
related studies. Although the energy consumption is the major factor in the generation
of CEE by those WRBs, it cannot be excluded that there may be other potential factors
contributing to carbon emissions. When these potential factors reach a certain scale, the
resulting CEE also needs to be considered. Moreover, for some WRBs, the CEEA method
may not be considered perfect. For example, the CO2 absorbed by the four types of land
closely related to ecological water utilization was roughly used as the CEE of WRUB3. In
fact, the CO2 absorbed by the lands is due to many factors, including ecological water
utilization. How to separate the CEE of ecological water and CEE produced by other
factors? Further exploration and refinement are still needed.
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15. Radonjič, G.; Tompa, S. Carbon footprint calculation in telecommunications companies—The importance and relevance of scope
3 greenhouse gases emissions. Renew. Sustain. Energy Rev. 2018, 98, 361–375. [CrossRef]

16. Henriksson, P.J.G.; Heijungs, R.; Dao, H.M.; Phan, L.T.; De Snoo, G.R.; Guinée, J. Product Carbon Footprints and Their
Uncertainties in Comparative Decision Contexts. PLoS ONE 2015, 10, e0121221. [CrossRef]

17. Chai, C.; Zhang, D.; Yu, Y.; Feng, Y.; Wong, M.S. Carbon Footprint Analyses of Mainstream Wastewater Treatment Technologies
under Different Sludge Treatment Scenarios in China. Water 2015, 7, 918–938. [CrossRef]

18. Zhou, Y.; Chen, M.; Tang, Z.; Mei, Z. Urbanization, land use change, and carbon emissions: Quantitative assessments for city-level
carbon emissions in Beijing-Tianjin-Hebei region. Sustain. Cities Soc. 2021, 66, 102701. [CrossRef]

19. Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg,
C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [CrossRef]

20. Keller, P.S.; Marcé, R.; Obrador, B.; Koschorreck, M. Global carbon budget of reservoirs is overturned by the quantification of
drawdown areas. Nat. Geosci. 2021, 14, 402–408. [CrossRef]

21. Guotong, Q.; Fei, C.; Na, W.; Dandan, Z. Inter-annual variation patterns in the carbon footprint of farmland ecosystems in
Guangdong Province, China. Sci. Rep. 2022, 12, 14134. [CrossRef] [PubMed]

22. Ran, Y.; Li, X.; Sun, R.; Kljun, N.; Zhang, L.; Wang, X.; Zhu, G. Spatial representativeness and uncertainty of eddy covariance
carbon flux measurements for upscaling net ecosystem productivity to the grid scale. Agric. For. Meteorol. 2016, 230–231, 114–127.
[CrossRef]

23. Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration
in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [CrossRef] [PubMed]

24. Thompson, R.L.; Lassaletta, L.; Patra, P.K.; Wilson, C.; Wells, K.C.; Gressent, A.; Koffi, E.N.; Chipperfield, M.P.; Winiwarter, W.;
Davidson, E.A.; et al. Acceleration of global N2O emissions seen from two decades of atmospheric inversion. Nat. Clim. Chang.
2019, 9, 993–998. [CrossRef]

25. Fernández-Martínez, M.; Sardans, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Vicca, S.; Canadell, J.G.; Bastos, A.; Friedlingstein, P.;
Sitch, S.; et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. Chang. 2018, 9, 73–79.
[CrossRef]

26. Trask, M. Water-Energy Relationship; California Energy Commission: Sacramento, CA, USA, 2005.
27. Griffiths-Sattenspiel, B.; Wilson, W. The Carbon Footprint of Water; River Network: Portland, OR, USA, 2009.
28. Wakeel, M.; Chen, B.; Hayat, T.; Alsaedi, A.; Ahmad, B. Energy consumption for water use cycles in different countries: A review.

Appl. Energy 2016, 178, 868–885. [CrossRef]
29. Rothausen SG, S.A.; Conway, D. Greenhouse-gas emissions from energy use in the water sector. Nat. Clim. Change 2011, 1,

210–219. [CrossRef]
30. Friedrich, E.; Pillay, S.; Buckley, C. Carbon footprint analysis for increasing water supply and sanitation in South Africa: A case

study. J. Clean. Prod. 2009, 17, 1–12. [CrossRef]
31. Li, R.; Zhao, R.; Xie, Z.; Xiao, L.; Chuai, X.; Feng, M.; Zhang, H.; Luo, H. Water–energy–carbon nexus at campus scale: Case of

North China University of Water Resources and Electric Power. Energy Policy 2022, 166, 113001. [CrossRef]
32. Valek, A.M.; Sušnik, J.; Grafakos, S. Quantification of the urban water-energy nexus in México City, México, with an assessment

of water-system related carbon emissions. Sci. Total Environ. 2017, 590, 258–268. [CrossRef]
33. Sambito, M.; Freni, G. LCA Methodology for the Quantification of the Carbon Footprint of the Integrated Urban Water System.

Water 2017, 9, 395. [CrossRef]
34. Fang, A.; Newell, J.P.; Cousins, J. The energy and emissions footprint of water supply for Southern California. Environ. Res. Lett.

2015, 10, 114002. [CrossRef]
35. Boulos, P.F.; Bros, C.M. Assessing the carbon footprint of water supply and distribution systems. J. Am. Water Work. Assoc. 2010,

102, 47–54. [CrossRef]
36. Heihsel, M.; Lenzen, M.; Malik, A.; Geschke, A. The carbon footprint of desalination: An input-output analysis of seawater

re-verse osmosis desalination in Australia for 2005–2015. Desalination 2019, 454, 71–81. [CrossRef]
37. Siddiqi, A.; Fletcher, S. Energy intensity of water end-uses. Curr. Sustain./Renew. Energy Rep. 2015, 2, 25–31. [CrossRef]
38. Escriva-Bou, A.; Lund, J.R.; Pulido-Velazquez, M. Modeling residential water and related energy, carbon footprint and costs in

California. Environ. Sci. Policy 2015, 50, 270–281. [CrossRef]
39. Wang, J.; Rothausen, S.G.; Conway, D.; Zhang, L.; Xiong, W.; Holman, I.P.; Li, Y. China’s water–energy nexus: Greenhouse-gas

emissions from ground-water use for agriculture. Environ. Res. Lett. 2012, 7, 014035. [CrossRef]
40. Zeng, S.; Chen, X.; Dong, X.; Liu, Y. Efficiency assessment of urban wastewater treatment plants in China: Considering greenhouse

gas emissions. Resour. Conserv. Recycl. 2017, 120, 157–165. [CrossRef]
41. Zib, I.I.I.L.; Byrne, D.M.; Marston, L.T. Operational carbon footprint of the US water and wastewater sector’s en-ergy consumption.

J. Clean. Prod. 2021, 321, 128815. [CrossRef]

111



Water 2023, 15, 431

42. Marinelli, E.; Radini, S.; Foglia, A.; Lancioni, N.; Piasentin, A.; Eusebi, A.L.; Fatone, F. Validation of an evidence-based
methodology to support regional carbon foot-print assessment and decarbonisation of wastewater treatment service in Italy.
Water Res. 2021, 207, 117831. [CrossRef]

43. Wu, Z.; Duan, H.; Li, K.; Ye, L. A comprehensive carbon footprint analysis of different wastewater treatment plant configurations.
Environ. Res. 2022, 214, 113818. [CrossRef]

44. Zhou, Y.; Zhang, B.; Wang, H.; Bi, J. Drops of Energy: Conserving Urban Water to Reduce Greenhouse Gas Emissions. Environ.
Sci. Technol. 2013, 47, 10753–10761. [CrossRef] [PubMed]

45. Parece, T.E.; Grossman, L.; Geller, E.S. Reducing Carbon Footprint of Water Consumption: A Case Study of Water Conservation
at a University Campus. In The Handbook of Environmental Chemistry; Younos, T., Grady, C., Eds.; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 199–218. [CrossRef]

46. Wang, J.; Chen, X.; Liu, Z.; Frans, V.F.; Xu, Z.; Qiu, X.; Xu, F.; Li, Y. Assessing the water and carbon footprint of hydropower
stations at a national scale. Sci. Total. Environ. 2019, 676, 595–612. [CrossRef] [PubMed]

47. Zhang, L.; Chen, S. Carbon peaks of water systems in Chinese cities under varying water demand dynamics and energy transition
pathways. J. Clean. Prod. 2022, 379, 134695. [CrossRef]

48. Venkatesh, G.; Chan, A.; Brattebø, H. Understanding the water-energy-carbon nexus in urban water utilities: Comparison of four
city case studies and the relevant influencing factors. Energy 2014, 75, 153–166. [CrossRef]

49. Bakhshi, A.A.; Demonsabert, S.M. Estimating the carbon footprint of the municipal water cycle. J. Am. Water Work. Assoc. 2012,
104, E337–E347. [CrossRef]

50. Stokes, J.R.; Horvath, A. Energy and Air Emission Effects of Water Supply. Environ. Sci. Technol. 2009, 43, 2680–2687. [CrossRef]
51. Presura, E.; Robescu, L.D. Energy use and carbon footprint for potable water and wastewater treatment. Proceedings of the

International Conference on Business Excellence. 2017, Volume 11, pp. 191–198. Available online: https://sciendo.com/article/10.1
515/picbe-2017-0020 (accessed on 17 January 2023).

52. Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Institute
for Global Environmental Strategies: Hayama, Japan, 2006.

53. Hu, G.; Ou, X.; Zhang, Q.; Karplus, V.J. Analysis on energy–water nexus by Sankey diagram: The case of Beijing. Desalination
Water Treat. 2013, 51, 4183–4193. [CrossRef]

54. Xiang, X.; Jia, S. China’s water-energy nexus: Assessment of water-related energy use. Resour. Conserv. Recycl. 2019, 144, 32–38.
[CrossRef]

55. Plappally, A.K.; Lienhard, V.J.H. Energy requirements for water production, treatment, end use, reclamation, and disposal. Renew.
Sustain. Energy Rev. 2012, 16, 4818–4848. [CrossRef]

56. Appelbaum, B. Water and sustainability: US electricity consumption for water supply and treatment—The next half century.
Water Supply. 2002, 4, 93.

57. Rocheta, E.; Peirson, W. Urban Water Supply in a Carbon Constrained Australia; UNSW Water Research Centre: Kensington, Australia, 2011.
58. Li, X.; Liu, J.; Zheng, C.; Han, G.; Hoff, H. Energy for water utilization in China and policy implications for integrated planning.

Int. J. Water Resour. Dev. 2016, 32, 477–494. [CrossRef]
59. He, G.; Zhao, Y.; Wang, J.; Zhu, Y.; Jiang, S.; Li, H.; Wang, Q. The effects of urban water cycle on energy consumption in Beijing,

China. J. Geogr. Sci. 2019, 29, 959–970. [CrossRef]
60. Marsh, D. The Water–Energy Nexus: A Comprehensive Analysis in the Context of New South Wales. Ph.D. Dissertation, Faculty

of Engineering and Information Technology, University of Technology, Sydney, Australia, 2008.
61. Maas, C. Ontario’s Water-Energy Nexus: Will We Find Ourselves in Hot Water or Tap into Opportunity? POLIS Project on Ecological

Governance; University of Victoria: Victoria, BC, Canada, 2010.
62. Muñoz, I.; Milà-i-Canals, L.; Fernández-Alba, A.R. Life cycle assessment of water supply plans in Mediterranean Spain: The Ebro

river transfer versus the AGUA Programme. J. Ind. Ecol. 2010, 14, 902–918. [CrossRef]
63. Kneppers, B.; Birchfield, D.; Lawton, M. Energy-water relationships in reticulated water infrastructure systems. Water Supply

2009, 76, 1–27.
64. Lin, S.; Zhao, H.; Zhu, L.; He, T.; Chen, S.; Gao, C.; Zhang, L. Seawater desalination technology and engineering in China: A

review. Desalination 2020, 498, 114728. [CrossRef]
65. Liu, S.; Wang, Z.; Han, M.; Wang, G.; Hayat, T.; Chen, G. Energy-water nexus in seawater desalination project: A typical water

production system in China. J. Clean. Prod. 2020, 279, 123412. [CrossRef]
66. Buonomenna, M.G. Membrane processes for a sustainable industrial growth. RSC Adv. 2012, 3, 5694–5740. [CrossRef]
67. von Medeazza, G.M. “Direct” and socially-induced environmental impacts of desalination. Desalination 2005, 185, 57–70.

[CrossRef]
68. Sharif, M.N.; Haider, H.; Farahat, A.; Hewage, K.; Sadiq, R. Water–energy nexus for water distribution systems: A literature

review. Environ. Rev. 2019, 27, 519–544. [CrossRef]
69. Smith, K.; Liu, S.; Liu, Y.; Guo, S. Can China reduce energy for water? A review of energy for urban water supply and wastewater

treatment and suggestions for change. Renew. Sustain. Energy Rev. 2018, 91, 41–58. [CrossRef]
70. He, G.; Zhao, Y.; Wang, J.; Li, H.; Zhu, Y.; Jiang, S. The water–energy nexus: Energy use for water supply in China. Int. J. Water

Resour. Dev. 2018, 35, 587–604. [CrossRef]
71. Corominas, J. Agua y energía en el riego, en la época de la sostenibilidad. Ing. Del Agua 2010, 17, 219–233. [CrossRef]

112



Water 2023, 15, 431

72. Buckley, C.; Friedrich, E.; von Blottnitz, H. Life-cycle assessments in the South African water sector: A review and future
challenges. Water SA 2011, 37, 719–726. [CrossRef]

73. Sturm, T.W. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 2001.
74. Sousa, V.; Meireles, I. Dynamic simulation of the energy consumption and carbon emissions for domestic hot water production in

a touristic region. J. Clean. Prod. 2022, 355, 131828. [CrossRef]
75. Qiu, G.Y.; Zou, Z.; Li, W.; Li, L.; Yan, C. A quantitative study on the water-related energy use in the urban water system of

Shenzhen. Sustain. Cities Soc. 2022, 80, 103786. [CrossRef]
76. Zhao, R.; Yu, J.; Xiao, L.; Sun, J.; Luo, H.; Yang, W.; Chuai, X.; Jiao, S. Carbon emissions of urban water system based on

water-energy-carbon nexus. Acta Geogr. Sin. 2021, 76, 3119–3134.
77. Duan, H.P.; Zhang, Y.; Zhao, J.B.; Bian, X.M. Carbon footprint analysis of farmland ecosystem in China. J. Soil Water Conserv. 2011,

25, 203–208.
78. Feng, M.; Zhao, R.; Huang, H.; Xiao, L.; Xie, Z.; Zhang, L.; Sun, J.; Chuai, X. Water–energy–carbon nexus of different land use

types: The case of Zhengzhou, China. Ecol. Indic. 2022, 141, 109073. [CrossRef]
79. Wu, H.; Guo, S.; Guo, P.; Shan, B.; Zhang, Y. Agricultural water and land resources allocation considering carbon sink/source and

water scarcity/degradation footprint. Sci. Total. Environ. 2021, 819, 152058. [CrossRef]
80. van Diepen, C.A.; Wolf, J.; van Keulen, H.; Rappoldt, C. WOFOST: A simulation model of crop production. Soil Use Manag. 1989,

5, 16–24. [CrossRef]
81. Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of

prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [CrossRef] [PubMed]
82. Zuo, Q.; Zhou, K.; Yang, L. Study on the quantity of water resources and the water quantity for ecosystem use in water resources

programming. Arid. Land Geogr. 2002, 4, 296–301.
83. Xu, J.; Wang, F.; Lv, C.; Xie, H. Carbon emission reduction and reliable power supply equilibrium based daily scheduling towards

hydro-thermal-wind generation system: A perspective from China. Energy Convers. Manag. 2018, 164, 1–14. [CrossRef]
84. Whittington, R. Hydro and the CDM: The role of hydroelectricity in meeting Kyoto obligations. Refocus 2007, 8, 54–56. [CrossRef]
85. Wu, B.; Chen, Y.; Zeng, Y.; Zhao, Y.; Yuan, C. Evaluation of carbon emission reduction in power generation and shipping of the

Three Gorges Reservoir. Resour. Environ. Yangtze Basin 2011, 20, 257–261.
86. Meng, F.; Liu, G.; Liang, S.; Su, M.; Yang, Z. Critical review of the energy-water-carbon nexus in cities. Energy 2019, 171, 1017–1032.

[CrossRef]
87. Racoviceanu, A.I.; Karney, B.W.; Kennedy, C.A.; Colombo, A.F. Life-Cycle Energy Use and Greenhouse Gas Emissions Inventory

for Water Treatment Systems. J. Infrastruct. Syst. 2007, 13, 261–270. [CrossRef]
88. Qamar, M.A.; Javed, M.; Shahid, S.; Iqbal, S.; Abubshait, S.A.; Abubshait, H.A.; Ramay, S.M.; Mahmood, A.; Ghaithan, H.M.

Designing of highly active g-C3N4/Co@ ZnO ternary nanocomposites for the disinfection of pathogens and degradation of the
organic pollutants from wastewater under visible light. J. Environ. Chem. Eng. 2021, 9, 105534. [CrossRef]

89. Zhang, Q.; Sun, D.; Wang, M.; Yin, C. Analysis of Typical Energy Saving Technology in the Sewage Treatment Plant. Energy
Procedia 2017, 142, 1230–1237. [CrossRef]

90. Peng, L.; Nairuo, Z.; Wei, X. COD and Carbon Emission Reduction in Sludge Deep Dewatering Treatment and Disposal. Environ.
Sanit. Eng. 2012, 20, 9–12.

91. Guan, Y.; Shan, Y.; Huang, Q.; Chen, H.; Wang, D.; Hubacek, K. Assessment to China’s recent emission pattern shifts. Earth’s
Future 2021, 9, e2021EF002241. [CrossRef]

92. Wu, Q.; Zuo, Q.; Ma, J.; Zhang, Z.; Jiang, L. Evolution analysis of water consumption and economic growth based on
Decomposition-Decoupling Two-stage Method: A case study of Xinjiang Uygur Autonomous Region, China. Sustain. Cities Soc.
2021, 75, 103337. [CrossRef]

93. Li, D.; Zuo, Q.; Zhang, Z. A new assessment method of sustainable water resources utilization considering fair-ness-efficiency-
security: A case study of 31 provinces and cities in China. Sustain. Cities Soc. 2022, 81, 103839. [CrossRef]

94. Wang, Y.; Wang, Y.; Su, X.; Qi, L.; Liu, M. Evaluation of the comprehensive carrying capacity of interprovincial water resources in
China and the spatial effect. J. Hydrol. 2019, 575, 794–809. [CrossRef]

95. Liu, X.; Xu, Y.; Sun, S.; Zhao, X.; Wang, Y. Analysis of the Coupling Characteristics of Water Resources and Food Security: The
Case of Northwest China. Agriculture 2022, 12, 1114. [CrossRef]

96. Zhou, Y.; Ma, M.; Gao, P.; Xu, Q.; Bi, J.; Naren, T. Managing water resources from the energy-water nexus perspective under a
changing climate: A case study of Jiangsu province, China. Energy Policy 2018, 126, 380–390. [CrossRef]

97. Shi, Q.; Chen, S.; Shi, C.; Wang, Z.; Deng, X. The Impact of Industrial Transformation on Water Use Efficiency in Northwest
Region of China. Sustainability 2014, 7, 56–74. [CrossRef]

98. Yang, Q.; Liu, G.; Casazza, M.; Hao, Y.; Giannetti, B.F. Emergy-based accounting method for aquatic ecosystem services valuation:
A case of China. J. Clean. Prod. 2019, 230, 55–68. [CrossRef]

99. Li, X.-Z.; Chen, Z.-J.; Fan, X.-C.; Cheng, Z.-J. Hydropower development situation and prospects in China. Renew. Sustain. Energy
Rev. 2018, 82, 232–239. [CrossRef]

100. Shimizu, Y.; Toyosada, K.; Yoshitaka, M.; Sakaue, K. Creation of Carbon Credits by Water Saving. Water 2012, 4, 533–544.
[CrossRef]

113



Water 2023, 15, 431

101. Xu, Y.; Tian, Q.; Yu, Y.; Li, M.; Li, C. Water-Saving Efficiency and Inequality of Virtual Water Trade in China. Water 2021, 13, 2994.
[CrossRef]

102. Chen, K.; Liu, X.; Ding, L.; Huang, G.; Li, Z. Spatial Characteristics and Driving Factors of Provincial Wastewater Discharge in
China. Int. J. Environ. Res. Public Health 2016, 13, 1221. [CrossRef]

103. Yi, L.; Jiao, W.; Chen, X.; Chen, W. An overview of reclaimed water reuse in China. J. Environ. Sci. 2011, 23, 1585–1593. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

114



Citation: Liang, Y.; Zhang, L.; Leng,

M.; Xiao, Y.; Xia, J. System Simulation

and Prediction of the Green

Development Level of the

Chengdu-Chongqing City Group.

Water 2022, 14, 3947. https://

doi.org/10.3390/w14233947

Academic Editor: Bahram

Gharabaghi

Received: 9 November 2022

Accepted: 30 November 2022

Published: 4 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

System Simulation and Prediction of the Green Development
Level of the Chengdu-Chongqing City Group
Yuxin Liang 1, Liping Zhang 1,2,3,*, Mengsi Leng 1, Yi Xiao 1,2,3,* and Jun Xia 1,2,3

1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
Wuhan 430072, China

2 Hubei Key Laboratory of Water System Science for Sponge City Construction, Wuhan University,
Wuhan 430072, China

3 Institute of Water Security, Wuhan University, Wuhan 430072, China
* Correspondence: zhanglp@whu.edu.cn (L.Z.); 00011515@whu.edu.cn (Y.X.)

Abstract: Green development is a low-carbon, sustainable model for the achievement of the harmo-
nious development of the economy and nature. Nowadays, the problems of resource scarcity and
environmental pollution in the process of economic development are pressing, and the promotion
of green development is the general trend. As one of the three growth poles of China’s Yangtze
River economic belt, the Chengdu-Chongqing City Group is an important platform to lead toward
green development in the western region of China. Based on the understanding of the connotation of
green development, this study established a green development-level evaluation system, including
19 indicators in three dimensions: target level, criterion level, and indicator level, and used the
entropy weight method to measure the green development level of the Chengdu-Chongqing City
Group. In view of the dynamic nature of the green development process, this study constructed a
system dynamics model of the green development level of the Chengdu-Chongqing City Group and
simulated and compared it between 2022 and 2050 under five shared socio-economic pathway (SSP)
scenarios so as to provide a reference basis for future development. The results show that the overall
green development level of the Chengdu-Chongqing City Group is on an upward trend, with the
highest green development level under the SSP1 path and the lowest under the SSP3 path, and the
lagging distance tends to increase further. In the next 30 years, the Chengdu-Chongqing City Group
should initially follow SSP2 as the basis for development and then gradually perform a transition
to SSP1 by 2035 to achieve real sustainable development, after which it should continue to develop
according to the SSP1 path until 2050.

Keywords: urban agglomeration; green development; system dynamics; shared socio-economic
pathways; simulation prediction

1. Introduction

Green development theory originated from the green movement in the West. British
scholars first noticed the constraint relationship between socio-economic development and
environmental capacity. In 1662, William Petty recognized that value originates from labor,
whose ability to create wealth is not infinite, being constrained by conditions such as land
and technology [1]. Although the theory of green development has been deeply studied by
international scholars for decades, there is still no uniform definition.

The research on green development theory in China is relatively late compared to
that in Western countries; it focuses on reducing the use of resources and environmental
damage while ensuring economic growth.

The representative one is the “people-oriented” concept of green development, pro-
posed by Hu Angang of the National Research Center of Tsinghua University, which
emphasizes the win–win situation of economic development and ecological environmental
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protection, i.e., the rational exploitation of resources and the reduction in pollution under
the premise of sustained and stable economic growth [2]. In synthesis, green development
is a model of economic development that does not entail damage to the ecological envi-
ronment or over-exploitation and consumption of resources. It differs from the traditional
crude development mode as it is environmentally friendly and entails resource-saving;
moreover, it increases green wealth, allows the realization of a green life, and promotes the
harmonious coexistence of humans and nature.

In recent years, green development, as a transformative development concept, has
gradually achieved global consensus. With the maturity of the green development theory,
scholars have started to conduct research related to the green development level, mainly
focusing on the relationship between the economy, resources, and the environment [3].
More specifically, the related research focused mainly on three aspects: the measurement
and evaluation of the green development level [3,4]; the identification of its influence
factors [5,6]; and its simulation prediction [7,8]. These studies focused on both single cities
and the whole country.

At present, the green development level is measured and evaluated mainly through
the comprehensive evaluation index system method, the TOPSIS model, and the data
envelopment analysis method. At the end of the 20th century, the comprehensive green
development index system was developed and was further improved [9–13] as a compre-
hensive evaluation index system to measure and evaluate the green development level in
specific regional and urban scopes. In 2009, the Economist Intelligence Unit (London, UK)
constructed eight categories of green city indicators to analyze the environmental situation
in 30 European cities [14]. In 2018, Carli et al. constructed a multi-objective integrated
indicator system to analyze the sustainable development of urban energy, water, and envi-
ronmental systems [15]. In 2019, Tian et al. adopted the entropy method to measure the
greening of the Yangtze River Delta city agglomeration in terms of green growth, green
welfare, green wealth, and green governance [16]. In 2021, Hu et al. established an urban
green development evaluation index system for 108 cities in the Yangtze River Economic
Zone to analyze the role of technological innovation in promoting green development [17].

To fully reflect the dynamics of the green development process and the interaction
of its subsystems, as well as to improve the guidance and support for realistic decision
making, scholars introduced the system dynamics approach to study green development
from a system perspective. Founded by Professor Forrester at MIT, system dynamics was
initially called “industrial dynamics” [18]; after the 1960s, he transformed system dynamics
into urban dynamics when he studied the rise and fall of cities. This concept was then
gradually improved and developed by Mass and Alfeld [19,20].

In the field of green development, the research on system dynamics is mostly focused
on future simulation, and system dynamics models have been constructed to analyze
the change trend of the future green development level by setting different simulation
scenarios so as to obtain the optimal development path or countermeasure suggestions.
Rudneva et al. constructed a “green” economic system dynamics model and analyzed
the scenarios of regional “green” economic development [21]. Yang Guangming et al.
used Chongqing city as an example to simulate and predict the sustainable development
of the water resource carrying capacity, based on a system dynamics model [22]. Zhou
studied the optimal path of urban agglomeration development by simulating the system
dynamics of green development in the Beijing-Tianjin-Hebei urban agglomeration under
different paths, putting forward relevant policy suggestions [23]. Wang et al. simulated and
predicted the future scenarios of the ecological security index of the Beijing-Tianjin-Hebei
city agglomeration by constructing a system dynamics model [24]. Li et al. considered three
scenarios of economic development, technological innovation, and government investment
to simulate and predict the industrial green development of the Beijing-Tianjin-Hebei
urban agglomeration [25]. Jing et al. developed a system dynamics model of green low-
carbon development for the Beijing-Tianjin-Hebei urban agglomeration considering four
factors: economy, energy, environment, and urban aggregation, to explore the future system
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effects under different scenarios [26]. O’Keeffe et al. proposed a natural capital system
dynamics model framework to predict and assess the natural capital performance of urban
development in London [27]. Gudlaugsson, B et al. apply a system dynamics approach to
investigate the complexity of energy transition in the Tees Valley region of the UK under
a sustainable transition pathway and make policy recommendations [28]. In synthesis,
a large number of studies have shown the general applicability of system dynamics to
perform simulation and prediction studies in the field of green development.

Through a literature review, it can be found that the simulation and prediction re-
search on green development is relatively mature, although there are still some areas
for improvement:

1. In terms of spatial scope, the majority of the current research scholars on green
development have focused on a single city, a single province, or a more developed
socio-economic urban agglomeration, and there is almost no research on the green
development of urban agglomerations in western China.

2. In terms of temporal span, the current research on urban green development has
focused on a relatively short period, and the future forecast research period is generally
up to 2030.

3. In terms of future simulation and prediction using system dynamics, most scholars
have set up various scenarios for simulation based on the interplay of policies and
indicators based on the construction of system dynamics models, and there is a lack
of prediction and simulation under the different social system scenarios publicly
released by the Intergovernmental Panel on Climate Change.

To address these shortcomings, this study selected the Chengdu-Chongqing City
Group as the study area and divided the whole green development level system into four
subsystems: social, economic, resource, and environmental subsystems. Next, a green
development level system dynamics model was constructed, whose reliability and stability
was verified through a historical test and a sensitivity test. On this basis, a simulation
scheme of the system dynamics model of each city in the Chengdu-Chongqing City Group
from 2019 to 2050 under five shared socio-economic pathways (SSPs) was set to analyze the
change trend of the green development level, select the optimal pathway, and put forward
corresponding suggestions and countermeasures.

2. Materials and Methods
2.1. Description of the Study Area

The Chengdu-Chongqing City Group, the Yangtze River midstream urban agglomera-
tion, and the Yangtze River Delta urban agglomeration are the three major growth poles of
China’s Yangtze River economic belt, and the core areas for the promotion of urbanization
and economic growth. The Chengdu-Chongqing City Group is located in the upper reaches
of the Yangtze River; it spans between 28◦24′ N~32◦27′ N and 101◦56′ E~110◦11′ E, and
it is a region with both development strength and potential in western China. As such,
it is an important basis for the green development of the Yangtze River economic belt.
The core of the Chengdu-Chongqing City Group is represented by the cities of Chengdu
and Chongqing; it includes 27 districts (counties) in Chongqing and parts of Kaixian
and Yunyang and 15 cities in Sichuan Province [29]. The location and extension of the
Chengdu-Chongqing City Group is shown in Figure 1.
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In terms of natural resources, the Chengdu-Chongqing City Group has abundant
precipitation, with an average annual precipitation of about 900~1300 mm and abundant
underground thermal energy and drinking water, such that the groundwater and transit
water can basically meet the residents’ water needs for living and production. At the
same time, there are 12 main streams, including the Minjiang River and the Tuo River, and
dozens of tributaries; hence, there are sufficient natural water resources in the Chengdu-
Chongqing City Group area. According to the incomplete statistics alone, the animal and
plant resources reach 11 classes, 200 families, 764 genera, and more than 3000 species,
including rare animals such as giant pandas, red pandas, and golden snub-nosed monkeys,
which are protected by the state. Thus, it can be seen that the Chengdu-Chongqing City
Group is rich in natural resources such as water resources, mineral resources, land resources,
and biological resources.

In terms of socio-economics, in 2018 the Chengdu-Chongqing City Group had a resi-
dent population of 95 million, accounting for 6.8% of the total population of the country.
This area is rich in human resources and is a multi-ethnic area with more than 50 ethnic
minorities, including Tibetans, Hui, Yi, and Tujia, in addition to the Han Chinese. Moreover,
it is one of the regions with the best economic foundation and the strongest comprehensive
strength in western China. Chengdu was awarded the first batch of national culture and
tourism consumption demonstration cities in 2020; Chongqing has formed the world’s
largest electronic information industry cluster and China’s largest domestic automotive
industry cluster; the Chengdu and Chongqing region has strong strength in electronic
information, equipment manufacturing, finance, and other industries; it has a better envi-
ronment for innovation and entrepreneurship, and the open economic system is gradually
taking shape.

In terms of spatial structure, the Chengdu-Chongqing City Group is located at the
intersection of the horizontal axis along the Yangtze River corridor and the vertical axis of
the Baokun corridor, with the Chengdu metropolitan area and the Chongqing metropolitan
area as the main development axis, complemented by the urban belt along the river and
the cities of Chengdu, Deyang, Mianyang, and Leshan, forming a spatial development
pattern characterized by “one axis, two belts, two cores and three districts” [30]. As such,
this region is key for the rapid development of central and western China and the creation
of new space for economic growth [31].
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2.2. Data Sources

The statistical data used in this article are mainly from the 1995–2018 “China Sta-
tistical Yearbook” (http://www.stats.gov.cn/tjsj./ndsj/) (accessed on 17 February 2022),
released by the National Bureau of Statistics of China; the “Sichuan Statistical Yearbook”
(http://tjj.sc.gov.cn/scstjj/c105855/nj.shtml) (accessed on 17 February 2022); the statistical
yearbooks of 16 cities in the Chengdu-Chongqing City Group; the statistical bulletin of
national economic and social development; the water resources bulletin; and other docu-
ments published in recent years. The interpolation method was employed to fill in the data
gaps for single years.

2.3. The Entropy Weight Method

The entropy weight method is one of the most widely used objective weighting
methods. This method determines the weights through a certain mathematical operation
according to the relationships among the original data. It can avoid the non-objectivity
and bias of the measurement results to a certain extent and has obvious advantages in
calculating the level of green development [32]. The calculation steps are as follows:

Step 1: Data standardization processing
Because of the need to calculate the logarithm of the standardized index values in the

calculation process of the entropy weighting method, in this study the index standardiza-
tion method of non-zero transformation was adopted for data standardization [33]. The
calculation formula is as follows:

Positive indicators:

x′ij =
(xij − xjmin)

(xjmax − xjmin)
× 0.99 + 0.01 (1)

Negative indicator:

x′ij =
(xjmax − xij)

(xjmax − xjmin)
× 0.99 + 0.01 (2)

where x′ij is the standardized value of the j-th indicator in the i-th year; xij is the original
value of the j-th indicator in the i-th year; xjmin is the minimum value of the j-th indicator;
and xjmax is the maximum value of the j-th indicator.

Step 2: Calculation of the specific gravity, as follows:

Yij =
x′ij

∑m
i=1 x′ij

(3)

where Yij is the proportion of the j-th indicator in the i-th year, and m is the number of years
of the study.

Step 3: Calculation of the information entropy, as follows:

ej =
1

− ln m∑m
i=1 (Yij × ln Yij) (4)

where ej is the information entropy of the j-th index.
Step 4: Calculation of the information utility value, as follows:

dj = 1− ej (5)

where wj is the weight of the j-th indicator, and n is the number of indicators.
Step 5: Calculation of the level of green development
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The subsystem of the green development level was calculated as follows:

wj =
dj

∑n
j=1 dj

(6)

where wj is the weight of the j-th indicator, and n is the number of indicators.
Step 6: Calculation of the level of green development
The subsystem of the green development was calculated as follows:

GDL = ∑n
j=1 x′ijwj (7)

where GDL is the overall green development level of the system, with a value range of (0,1).
The larger the value, the higher the overall green development level of the system, and
vice versa.

2.4. System Dynamics Model Theory

System dynamics (SD) is based on the feedback control theory. Through the qualitative
analysis of the research problem, real data and information are used to quantitatively
deduce the coupling relationship between variables, while computer simulation technology
is employed to study the behavior of dynamic social systems [34], ensuring the integrated
application of natural and social sciences [35]. The establishment of an SD model mainly
includes the drawing of a causal loop diagram, a system flow chart, a model equation, and
parameter alignment; the stability of the system is ensured through the historical test and
the sensitivity test [36].

The commonly used software for modeling SD includes Vensim, Ithink, DYNAMO,
and Stella [37]. Vensim is easy to operate, has a friendly interface, uses arrows to connect
variables when building an SD model, and the relationship between the variables is written
in the form of model equations, which allows users to easily modify the content of the
model. Therefore, the Vensim PLE software was selected in this study to model the SD of
the green development level of the Chengdu-Chongqing City Group in the Yangtze River
economic belt.

Model Variables and Equations

The SD model mainly includes four types of variables: level variables, rate variables,
auxiliary variables, and constant variables. The state variables and the rate variables are
the key variables [38].

The four main types of model equations for SD are the state equation, the rate equation,
the auxiliary equation, and the constant equation. A table function can be used when the
nonlinear relationships between the variables are difficult to present through mathematical
operations [39]. The following equations represent the basic mathematical expressions used
by Vensim.

1. State equation:

LvS(t) = St0 +
∫ t

t0

rateS(t)dt (8)

where LvS(t): is the value of the state variable at time t; St0 is the value of the state variable
at initial time t0; and rateS(t) is the rate of change of the state variable. The state equation
can also be written in a discrete form as follows:

LEVEL.K = LEVEL.J + DT × (INFLOW.JK−OUTFLOW.JK) (9)

where LEVEL.K is the value of the state variable at time K; LEVEL.J is the value of the
state variable value at time J; INFLOW is the input rate; OUTFLOW is the output rate; and
DT is the temporal interval from time J to time K.

120



Water 2022, 14, 3947

2. Rate equation:

rateS(t) = g[LvS(t), aux(t), const] (10)

where rateS(t): is the rate of change of the state variable; LvS(t): is the value of the state
variable at time t; and aux(t) is the value of the auxiliary variable at time t.

3. Table Functions:

The table function is a function that describes the relationship between the independent
and dependent variables by means of a list. The table function can be edited in Vensim PLE
software using the “With lookup” function; its mathematical description is as follows:

lookupname([(Xmin, Xmax)− (Ymin, Ymax)], (X1, Y1), (X2, Y2), . . . (Xn, Yn)) (11)

where (X1, Y1), (X2, Y2), . . . (Xn, Yn) are the values of the independent and dependent vari-
ables that have been assigned.

2.5. Shared Socio-Economic Pathways (SSPs)
2.5.1. Overview of Shared Socio-Economic Pathways (SSPs)

SSPs are a powerful tool to describe global socio-economic development scenarios.
This tool was launched in 2010 by the IPCC on the basis of Representative Concentra-
tion Pathways (RCP)s, taking into account factors such as population growth, economic
development, environmental conditions, and technological progress [40–42]. They de-
scribe the possible future development of society without the impact of climate change or
climate policy [43].

Through a comprehensive analysis of existing global development frameworks, the
IPCC has identified five typical SSPs from the perspectives of both climate challenge
adaptation and climate challenge mitigation, namely SSP1 (sustainable development path-
way), SSP2 (intermediate pathway), SSP3 (regional competitive pathway), SSP4 (uneven
pathway), and SSP5 (fossil fuel-based development pathway), as shown in Figure 2. The
mitigation challenge in Figure 2 refers to slowing down the pace of climate change by
multiple means, including carbon dioxide emissions reduction; the adaptation challenge
refers to the adoption of measures to adapt to the various impacts of climate change and
avoid catastrophic consequences.
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2.5.2. Simulation Scheme of the Future Green Development Level of the
Chengdu-Chongqing City Group under the SSPs

The green development of each city in the Chengdu-Chongqing City Group entails
a process of continuous change; accordingly, the indicators that characterize the level of
urban green development are also continuously changing. In order to ensure the validity of
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the SD model, it was necessary to carry out a historical statistical description of the model
parameters of each city in the Chengdu-Chongqing City Group [44]. In this study, the
maximum, minimum, and average values of the six rate variables in each city from 2004 to
2018 were assessed to provide a reference interval for the setting of the model parameters
for each city. The results for Chengdu and Chongqing are detailed in Appendix A.

The SSPs introduced by the IPCC contain almost all the possible future development
trends. A research team led by Jiang Tong conducted a study on the future population and
economy of China under the five SSPs, based on domestic and international population
and economic forecasting studies [45–49]. At present, the research of Jiang Tong’s team
on China’s population and economic future prediction has reached a temporal scale up
to 2100 and has proved to be very mature [45,50]. Therefore, in this study, when setting
the parameters of the model for the prediction of the future green development level of
each city in the Chengdu-Chongqing City Group, the population growth rate and the GDP
growth rate referred to the research results of Jiang Tong’s team. The rate of the increase in
the total energy consumption, arable land area, public green space area, and total water
supply were assumed to be either high, medium-high, medium, or low according to the
characteristics of the five SSPs considered. The details are shown in Table 1.

Table 1. Hypothetical scenarios of model parameters under the shared social economy path.

Path Increase Rate of Total
Energy Consumption

Increase Rate of
Cultivated Land

Increase Rate of
Public Green Space

Increase Rate of
Total Water Supply

SSP 1 Low High High Low
SSP 2 Medium Medium Medium Medium
SSP 3 High Low Low High
SSP 4 Medium-high Medium Medium Medium-high
SSP 5 High Low High High

In synthesis, the following principles were followed to formulate the future simulation
plan of each city in the Chengdu-Chongqing City Group based on the five SSPs. The model
parameters of each city in the Chengdu-Chongqing City Group under the SSP2 path were
mainly based on the development trend of the statistical data in the historical periods and
cities. Moreover, the values of the model parameters under the SSP1, SSP3, SSP4, and SSP5
paths were either higher or lower than a certain level of the SSP2 path, according to the
parameter assumptions and historical data fluctuations.

3. Results and Discussion
3.1. Construction of the Green Development Level Indicator System and Indicator Weights

Based on the understanding of the connotation of green development, this study
constructed an indicator system to evaluate the level of green development of the urban
agglomerations by referring to the evaluation index system used in previous studies on
green development and the 56 green development indicators suggested by the National
Development and Reform Commission of China.

The developed evaluation index system consists of three levels: the target level, which
is the green development level of the urban agglomerations; the guideline level, which
includes the socio-economic, resource, and environment levels; and the quality-of-life level.
It is composed of 19 indicators at the indicator level. The results of the calculation of the
indicator weights are shown in the Table 2.
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Table 2. Evaluation indicator system of green development level of the Chengdu-Chongqing
City Group.

Target Layer Guideline Layer Indicator Layer Unit Attribute w1 w2

Green
Development

Level

Socio-economic
level

Real GDP per capita Yuan + 0.0949 0.2273
Growth rate of regional GDP % + 0.0301 0.0721
Value added of the secondary

industry as a proportion of GDP % - 0.0551 0.1321

Value added of tertiary industry as a
proportion of GDP % + 0.0594 0.1423

Total imports and exports Billions of
dollars + 0.1307 0.3131

Per capita disposable income ratio of
urban and rural households / − 0.0162 0.0389

Engel’s coefficient of consumption of
urban residents % − 0.0310 0.0742

Resource
environment level

Arable land area at the end of the year hm2 + 0.0504 0.1952
Forest coverage rate % + 0.0451 0.1747

Total annual water supply Million tons − 0.0248 0.0963
Decrease in water consumption of

CNY 10,000 GDP % + 0.0322 0.1250

Decrease in energy consumption per
CNY 10,000 GDP % + 0.0224 0.0866

Emission of wastewater per unit of
industrial value added

Tons/million
yuan − 0.0291 0.1127

Industrial solid waste utilization rate % + 0.0541 0.2094

Quality-of life level

Public green space per capita m2 + 0.0592 0.1823
Ratio of good air quality days % + 0.0329 0.1015

Number of medical beds per 10,000
people + 0.1258 0.3875

Road area per capita m2 + 0.0576 0.1775
Sewage treatment rate % + 0.0491 0.1512

w1: weight of the indicator layer relative to the target layer; w2: weight of the indicator layer relative to the
guideline layer.

3.2. Green Development Level SD Model Construction
3.2.1. Boundary Definition and Systematic Analysis

The SD model constructed in this study considered the administrative boundaries of
16 cities in the Chengdu-Chongqing City Group as the spatial boundaries. Considering
China’s national construction goals and the reliability of the historical data, the temporal
limit of the system was set as covering the period 2004–2050; 2004–2018 was set as the
historical data period, while 2019–2050 was set as the model simulation period, and the
time step was set as one year.

The systematic analysis of the green development level of the Chengdu-Chongqing
City Group allowed the identification of the key factors affecting the green development
level. The complex green development level system was divided into four subsystems:
society, economy, resources, and environment. The indicator types of each subsystem are
shown in Figure 3.

After the analysis of the four subsystems, an analysis framework of the subsystem of
the green development level of the urban agglomeration was constructed, and the mutual
influence relationship among the subsystems was clarified, as shown in Figure 4.
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3.2.2. Causal Feedback Relation

A system can be divided into an open system and a feedback system [51]. The SD
model of the green development level of the Chengdu-Chongqing City Group belongs to the
feedback system; accordingly, the feedback loop of this system and the causal relationship
between the variables could be clarified through the causality diagram. Combining the
model index analysis and the green development level system analysis framework, the
causal relationship between the subsystems and the variables was assessed, and the causal
loop diagram of the SD model of the green development level of the Chengdu-Chongqing
City Group in the Yangtze economic belt was drawn using the SD software Vensim PLE, as
shown in Figure 5.
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3.2.3. System Flow Chart

The system flow chart is the core of an SD model. Based on the causal loop diagram
of the green development level of the Chengdu-Chongqing City Group, the system flow
chart was further drawn. It includes 48 variables, including 6 state variables (i.e., total
population, total GDP, total energy consumption, cultivated land area, public green area,
and total water supply), 6 rate variables (i.e., population growth rate, GDP growth rate,
increase rate of total energy consumption, increase rate of cultivated land area, increase rate
of public green space, and increase rate of total water supply), and 36 auxiliary variables,
as shown in Figure 6.
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3.2.4. Establishment of Model Parameters and Equations

The variables of the SD model were divided into four main types: state variables, rate
variables, auxiliary variables, and constants. The variables used in this model and their
properties are shown in Table 3.

Table 3. SD model variables of the green development level in the Chengdu-Chongqing City Group.

Serial
Number Variable Name Type Serial

Number Variable Name Type

1 Total population L 25 Total industrial wastewater discharge A
2 Population increase R 26 Industrial value added A

3 Population growth rate C 27 Wastewater discharge per unit of
industrial value added A

4 Total GDP L 28 Public green space area L
5 GDP growth R 29 Increase in public green space area R
6 GDP growth rate C 30 Increase rate of public green space C
7 GDP per capita A 31 Public green space per capita A
8 Total Import and Export A 32 Arable land area L

9 Per capita disposable income of
urban residents A 33 Increase in arable land area R

10 Per capita disposable income of
rural residents A 34 Rate of increase in arable land area C

11 Per capita disposable income ratio of
urban and rural households A 35 Arable land area per capita A

12 Urban residents’ household
consumption expenditure A 36 Number of medical beds A

13 Urban residents’ food expenditure A 37 Number of medical beds per
10,000 people A

14 Engel coefficient of urban
residents’ consumption A 38 Road area at the end of the year A

15 Output value of primary industry A 39 Road area per capita A
16 Output value of secondary industry A 40 Industrial solid waste utilization rate A
17 Output value of tertiary industry A 41 Forest coverage rate A

18 Secondary industry output value as a
proportion of GDP A 42 Ratio of good air quality days A

19 The proportion of the output value of the
tertiary industry to GDP A 43 Sewage treatment rate A

20 Total energy consumption L 44 Total water supply L
21 Increase in total energy consumption R 45 Increase in total water supply R

22 Rate of increase in total
energy consumption C 46 Rate of increase in total water supply C

23 Energy consumption of CNY 10,000 GDP A 47 Water consumption of CNY 10,000 GDP A

24 Reduction in energy consumption of
CNY 10,000 GDP A 48 Decrease in water consumption of CNY

10,000 GDP A

L: state variables; R: rate variables; A: auxiliary variables; C: constants.

The model equations were established in the following three ways: for variables
with clear mathematical relationships, they were established directly; for variables with
random distributions and no clear mathematical relationships, the dataset was fitted using
fitted regression analysis; for variables without functional relationships, or with functional
relationships that were or difficult to establish, the table functions were created with the
help of the “With lookup” function in the Vensim software. The model equations are shown
in Table 4.
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Table 4. Model equations for explicit mathematical relationships.

Subsystems Variables Variable Equation

Social
Subsystems

Total population INTEG (annual population growth, initial population)
Population increase Total population × Population growth rate

Number of medical beds per 10,000 people Number of medical beds/Total population
Road area per capita Road area/Total population

Per capita disposable income ratio of urban and
rural households

Per capita disposable income of urban households/Per
capita disposable income of rural households

Economy
Subsystems

Total GDP INTEG (amount of GDP growth, initial GDP)
GDP Growth Total GDP × GDP growth rate

GDP per capita Total GDP/Total population

Engel coefficient of urban residents’ consumption Urban residents’ food expenditure/urban residents’
household consumption expenditure

GDP share of output value of secondary industry Output value of secondary industry/Total GDP
The proportion of the output value of the tertiary

industry to GDP Output value of tertiary industry/Total GDP

Output value of primary industry Total GDP—Output value of secondary industry—Output
value of tertiary industry

Resources
Subsystems

Total energy consumption INTEG (total increase in energy consumption, total initial
energy consumption)

Increase in total energy consumption Total energy consumption × Total energy consumption
increase rate

Arable land area INTEG (increase in arable land area, initial arable
land area)

Increase in arable land area Arable land area × Arable land area growth rate
Arable land area per capita Arable land area/Total population

Energy consumption of CNY 10,000 GDP Total energy consumption/Total GDP

Total water supply INTEG (increase in total water supply, initial total water
supply)

Increase in total water supply Total water supply × Total water supply growth rate
Water consumption of CNY 10,000 GDP Total water supply/Total GDP

Environment
Subsystems

Wastewater emissions per unit of industrial
value added

Total industrial wastewater discharge/Industrial
value added

Public green space area INTEG (increase in public green space area, initial public
green space area)

Increase in public green space area Public green space area × Public green space area
growth rate

Public green space per capita Public green space area/Total population

The parameters in the SD model generally include the constant values and the initial
values of the state variables in the model. The constant values in the SD model of the
green development level of the Chengdu-Chongqing City Group refer to six rate variables.
Considering that the various cities were at different stages of development during the
period of 2004–2018, the rate variables were assigned fixed values that were not in line
with the actual situation. Therefore, a time-continuous function was adopted in this study
to represent these variables; the specific functional relationship is shown in Table 5. The
model also includes six state variables, whose initial values were taken from the statistical
data of each city in 2003, as detailed in Appendix A.
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Table 5. Chengdu and Chongqing rate variable time-continuous functions.

City Rate Variables Time-Continuous Function

Chengdu

Population growth rate −0.07843 ln(t) + 5.9833
GDP growth rate −8.3395 ln(t) + 63.5984

Rate of increase in total energy consumption 27.81 ln(t)− 211.51
Rate of increase in arable land area −0.593 ln(t) + 4.519
Growth rate of public green space 0.00264t2 − 10.6277t + 10698.4652

Rate of increase in total water supply −0.000407t + 0.867970

Chongqing

Population growth rate −0.40583 ln(t) + 3.09324
GDP growth rate −15.4244 ln(t) + 117.4724

Rate of increase in total energy consumption −9.8597 ln(t) + 75.0677
Rate of increase in arable land area −2.29896 ln(t) + 17.4902
Growth rate of public green space −51.03124 ln(t) + 388.2950

Rate of increase in total water supply 12.197 ln(t)− 92.722

3.3. Model Validity Test
3.3.1. Historical Test

The historical test aims to verify whether the relative error between the model sim-
ulation results and the historical values is within an acceptable range [52]; the formula
employed in this study is as follows:

Dt =
X′t − Xt

Xt
× 100% (12)

where Dt is the relative error value at time t; X′t is the model simulation value at time t; and
Xt is the historically true value at time t.

Six core indicators in the SD model of the green development level of the Chengdu-
Chongqing City Group were selected to perform the historical test: total population, total
GDP, total energy consumption, total water supply, arable land area, and public green
space area. The passing rate of the historical test of each city in the Chengdu-Chongqing
City Group is shown in Appendix A. The results of the historical test show that the SD
model established in this study can fit the historical data well.

3.3.2. Sensitivity Check

In a stable SD model, the change in its simulation values when the model parameters
change is relatively low, i.e., the SD model has low sensitivity [8,53]. To verify whether
the SD model constructed in this study could operate effectively, six rate variables were
selected to test its sensitivity. The sensitivity of the rate variables of each city in the
Chengdu-Chongqing City Group from 2004 to 2018 was derived based on the sensitivity
formula with a 10% increase and a 10% decrease. The sensitivity check formula employed
is as follows:

SLij =

∣∣∣∣∣
∆Lit
Lit
× Xjt

∆Xjt

∣∣∣∣∣ (13)

SXj =
1
N ∑N

i=1 SLij (14)

where Lit is the value of the i-th state variable L at time t; ∆Lit is the change in the i-th state
variable L at time t; Xjt is the value of the j-th parameter X at time t; ∆Xjt is the change in
the j-th parameter X at time t; SLij is the sensitivity of the i-th state variable L to the j-th
parameter X; and SXj is the sensitivity of the model to the j-th parameter X.

The results of the sensitivity test showed that the average sensitivity of the six rate
variables to the SD model was lower than 0.01 in the two cases of the 10% increase and the
10% decrease. Hence, the structure of the SD model of the green development level of the
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Chengdu-Chongqing City Group constructed in this study was stable and could be used
for the purposes of simulation and prediction.

3.4. Estimation of the Future Green Development Level of the Chengdu-Chongqing City Group
under the SSPs
3.4.1. Analysis of Changes in Green Development Levels in the Chengdu-Chongqing
City Group

The abovementioned model parameters of each city in the Chengdu-Chongqing City
Group were included in the SD model; the values of the various socio-economic indicators
from 2019 to 2050 were simulated, and the entropy weight method was applied to calculate
the green development level and criterion level of each city under the five SSPs considered,
to further analyze the changes in the green development level in the Chengdu-Chongqing
City Group. The simulation results are shown in Figure 7.

Under the five SSPs, the green development level and the guideline level of each
city in the Chengdu-Chongqing City Group will increase overall. Specifically, the green
development level of Chengdu and Chongqing will be significantly higher than that of
other cities in the Chengdu-Chongqing City Group, and the gap will tend to further widen.
Mianyang ranked third for green development level, showing a clear advantage over the
other cities in 2022–2035. However, the gap between the green development level of Leshan
and Mianyang is projected to gradually narrow, while that of Dazhou will be the lowest
among all the cities investigated. In general, the green development level and the guideline
level of each city will have different development growth rates and coordination levels
under different pathways.

Under SSP1, the green development level of each city will have the fastest growth
among all pathways considered; this growth is also expected to be coordinated and stable,
although the gap between Dazhou and other cities will further expand.

Under SSP2, the cities were divided into four echelons according to their level of green
development. Chengdu and Chongqing are in the first echelon and are characterized by
similar levels of green development; the second echelon includes the cities of Mianyang
and Leshan, the latter being expected to have almost the same level of green development
as Mianyang by 2050. The fourth echelon includes only the city of Dazhou, and its gap
with the other cities is projected to further expand. The other cities are in the third tier.

Under SSP3, the growth rate of the green development level will be the slowest among
all the pathways considered; Chengdu and Chongqing will maintain the lead, with a
large gap between them and the rest of the cities. Dazhou will have the lowest level of
green development, although the gap between it and the other cities will first widen and
then narrow.

Under SSP4, the growth rate of the green development level of each city will be stable
overall, with a slowdown and a small plateau period appearing from 2030 to 2040, after
which the growth will accelerate. Chengdu and Chongqing will have significantly higher
levels of green development than the other cities, although this gap will first increase and
then decrease. Mianyang and Leshan will follow in the ranking, and the gap between them
will tend to shrink continuously until 2050, when it is expected to almost disappear.

Under SSP5, the green development level of each city will increase steadily, with
Chengdu and Chongqing recording an almost equal level. Compared to other paths, the
gap between Chengdu and Chongqing and the other cities will be the smallest, while the gap
between Dazhou and the other cities will be the largest and will tend to expand continuously.

Looking at these results from the perspective of each city in the Chengdu-Chongqing
City Group, it can be seen that the green development level of each city under SSP1 will
be the highest and will have an overall steady growth trend; Chengdu will maintain the
leading position, followed by Chongqing, and the gap between the remaining cities will
tend to be stable. Under SSP3, all the cities in the Chengdu-Chongqing City Group will have
the lowest level of green development and the slowest growth rate; moreover, the trend
of growth will be uneven, with Chengdu and Chongqing expected to have a significantly
higher growth trend than the other cities.
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Figure 7. The green development level and the guideline level of each city in the future under 5 SSPs 
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3.4.2. Analysis of the Overall Future Green Development Level of the Chengdu-Chongqing
City Group

Based on the analysis of the future green development level of each city in the
Chengdu-Chongqing City Group and the level of the criterion layer under the SSPs, the
future green development level of the Chengdu-Chongqing City Group as a whole was
calculated; it is shown in Figure 8.

From Figure 8, it can be seen that the future green development level and the guideline
level of the Chengdu-Chongqing City Group as a whole will have a rising trend in all
SSPs, and the growth rate will gradually decrease. In terms of green development, its level
will be the highest under SSP1 and the lowest under SSP3, in which its growth rate will
also be the slowest among all the SSPs considered. Moreover, the gap among the green
development levels of SSP2, SSP4, and SSP5 will be narrow until 2035, with the highest
level in SSP4 and the lowest in SSP2; after 2035, the growth rate under SSP4 will slow down
and will be surpassed by that of SSP5, such that the level of green development under
the latter will exceed that of the former and will be second only to SSP1. In terms of the
socio-economic level of the Chengdu-Chongqing City Group, this will be the highest under
SSP5, followed by SSP1, and it will be the lowest under SSP3. In terms of the resource and
environment level, this will be the highest under SSP1 and the lowest under SSP3 and SSP5,
with a small difference between the latter two. In terms of the quality-of-life level, this will
be the highest under SSP1 and the lowest under SSP3. Moreover, under SSP4 it will be
second only to SSP1 until 2039, after which that under SSP5 will grow relatively fast and
will surpass SSP4.
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From the perspective of individual paths, the green development level, the resource
and environment level, and the quality-of-life level of the Chengdu-Chongqing City Group
under SSP1 will be the highest, and their growth rate will also be the highest. The green
development level will rise relatively steadily, increasing by 1.62 times by 2050, with an
average annual growth rate of about 1.7%. The level of resources and environment will
increase by 1.1 times until 2035, with an average annual growth rate of 0.63%; from 2035
to 2050, the growth rate will slightly accelerate, increasing by 1.14 times, with an average
annual growth rate of about 0.93%. The development advantage of the level of resources
and environment will become increasingly evident under SSP1, and the gap with the other
paths will gradually increase. The socio-economic level of the Chengdu-Chongqing City
Group under the SSP1 path will be second only to that of SSP5 and will be characterized by
an increase of 1.56 times by 2050 and an average annual growth rate of about 1.6%.

Under SSP2, the green development level of the Chengdu-Chongqing City Group
ranks fourth, with an increase of 1.5 times by 2050 and an average annual growth rate of
about 1.5%. Under this pathway, the socio-economic level ranks fourth with an average
annual growth rate of about 2.0% until 2041, after which SSP2 will overtake SSP4 and rank
third, with an average annual growth rate of about 0.6% from 2041 to 2050.Under SSP2,
the resource and environment level will be basically the same as that of SSP4 until 2026;
after 2026, it will rank second after SSP1 and will increase by 1.2 times until 2050, with
an average annual growth rate of 0.66%. In this pathway, the quality-of-life level will be
similar to that under SSP5 until 2030, after which a gap will open up, and it will gradually
lag behind SSP5, ranking fourth, with an increase of 1.9 times by 2050 and an average
annual growth rate of about 2.3%.

The green development level and the guideline level of the Chengdu-Chongqing
City Group under SSP3 will be the lowest, and the growth rate will be relatively slow
and will tend to stabilize. Under this pathway, the green development level will increase
by 1.34 times until 2050, with an average annual growth rate of about 0.99%. The socio-
economic level will grow by 1.35 times by 2050, with an average annual growth rate of
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about 1.1%. Moreover, the resource and environment level will be only slightly lower than
in SSP5; it will increase by about 1.1 times by 2050, with an average annual growth rate
of about 0.44%. The quality-of-life level will increase by about 1.5 times by 2050, with an
average annual growth rate of about 1.5%.

The green development level and the guideline level of the Chengdu-Chongqing City
Group under SSP4 will be at an average level. The former will rank second after SSP1 until
2030; after 2030, it will be surpassed by that of SSP5 and will, thus, rank third; after 2042, it
will be very close to that of SSP2 and will be equal to 0.46 in 2042. Overall, from 2022 to
2050, the green development level under SSP4 will increase by 1.5 times, with an average
annual growth rate of about 1.46%. Under this pathway, the socio-economic level will be
very close to that of SSP1 and SSP5 until 2030, after which it will gradually diverge, ranking
third until 2041. After that, it will be slightly surpassed by that of SSP2, ranking fourth,
with an average annual growth rate of about 1.39% until 2050. The quality-of-life level
under SSP4 will rank second after SSP1 until 2040, after which it will be overtaken by that
of SSP5 and will rank third, with an increase of 1.9 times by 2050 and an average annual
growth rate of 2.4%.

The green development level, the socio-economic level, and the quality-of-life level
of the Chengdu-Chongqing City Group under SSP5 will be the highest among all the
pathways considered, while the resource and environment level will be the lowest. Under
this pathway, the green development level will rank third until 2030, after which it will
overtake SSP4 to rank second, increasing from 0.33 in 2022 to 0.53 in 2050, with an increase
of 1.61 times and an average annual growth rate of about 1.69%. The socio-economic level
will always be the highest, and its gap with that of the other pathways will widen, growing
by 1.67 times by 2050, with an average annual growth rate of about 1.92%, i.e., the fastest
growth rate among the five SSPs. Moreover, the resource and environment level under
SSP5 will be almost the same as that in SSP3 and will be the lowest among the five SSPs
considered, although it will slowly increase by 1.12 times by 2050. The quality-of-life level
under SSP5 will rank third until 2039, after which it will overtake SSP4 to rank second,
right after the SSP1 path, and will increase by 2.1 times by 2050, with an average annual
growth rate of 2.68%.

3.5. Suggestions for the Future Development Path of the Chengdu-Chongqing City Group

The comparative analysis of the green development level of the Chengdu-Chongqing
City Group as a whole and for each city under the shared SSPs considered, showed that
under SSP1 both the green development level and its growth rate will be the highest among
all the SSPs. Moreover, the green development level of the Chengdu-Chongqing City
Group under SSP2 will be very similar to that under SSP4 and SSP5 before 2025, and will
be lower only than that under SSP1. The year 2025 is the closing year of China’s 14th
Five-Year Plan, which calls for the promotion of green development and the acceleration of
the green transformation of the development methods. The period of 2025–2035 will be key
for China to achieve a full modernization; moreover, the peak of carbon emissions is set to
be reached before 2030, after which the steady decrease in carbon emissions will contribute
to the achievement of the goal of building a beautiful China. Therefore, the transition from
SSP2 to SSP1 should be completed by 2035 to achieve real sustainable development, and
the latter pathway should be steadily followed from 2035 to 2050 so as to achieve carbon
neutrality by 2060.

From the socio-economic point of view, the economic development of the Chengdu-
Chongqing City Group will remain very uncoordinated and “polarized” for a long time
in the future. The economic development level of Chengdu and Chongqing is far ahead
of that of the other cities; the fundamental reason is that the regional GDP and the degree
of openness of the other cities are relatively low, and the total import and export amount
of Dazhou and Ya’an is only about 1% of that of Chengdu and Chongqing. Hence, it
is important to narrow the economic differences among the cities in the Chengdu and
Chongqing City Group to improve the overall green development level.
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From the point of view of resources and environment, the resource and environment
condition of the Chengdu-Chongqing City Group will not greatly improve in the future,
which is in line with its development status; moreover, resource consumption and environ-
mental pollution will increase together with the economic development. At present, the
proportion of secondary industries in the Chengdu-Chongqing urban agglomeration is still
very high, with more than 50% of the cities accounting for more than 45% of the secondary
industries. The high energy consumption and pollution emissions of traditional heavy
industries are the key factors hindering the green growth of the entire Chengdu-Chongqing
City Group.

In terms of quality of life, the quality-of-life level of all the cities will steadily increase,
although that of Dazhou will be considerably lower compared to the other cities. Although
the population of Dazhou is gradually declining, its total population is higher than that
of Mianyang, the second largest city in Sichuan, and its population pressure is also high.
Accordingly, the resources at the disposal of each individual, such as medical care, roads,
and green areas, are also relatively small.

4. Conclusions

This study constructed a green development SD model for the Chengdu-Chongqing
City Group and set five simulation scenarios under the SSPs. The future green development
level and the guideline level of each city and of the overall Chengdu-Chongqing City Group
were simulated and calculated, with the comparison and analysis of the changes, obtaining
the following main conclusions:

1. The future green development level of each city in the Chengdu-Chongqing City
Group under the SSPs considered will have an upward trend and will tend to be stable
under SSP3. In SSP2, the green development level of Chengdu and of Chongqing will
be very close, while in the other pathways the former will be the highest, followed
by the latter. The socio-economic level of each city will tend to be stable under
SSP3, while it will slowly increase in the other pathways. In terms of resource and
environment level, the cities investigated will show little change in their resource and
environment level under all the SSPs and only a weak upward trend overall. In terms
of quality-of-life level, all the cities will have a stable upward trend under all the SSPs,
which will gradually stabilize under SSP3.

2. The results of the analysis of the changes in the green development level and the
criterion level of the Chengdu-Chongqing City Group as a whole under the SSPs
considered show that the green development level and the criterion level of the
Chengdu-Chongqing City Group will increase under all of the five SSPs. The green
development level, the resource and environment level, and the quality-of-life level
will be the highest under SSP1 and the lowest under SSP3, and this gap will gradually
increase. The socio-economic level will be the highest under SSP5, followed by SSP1,
and it will be the lowest under SSP3.

Based on these findings, the Chengdu-Chongqing City Group should follow suitable
pathways for future development. Specifically, SSP2 should be used as the basis for
development until 2025, which entails the continuance of the current development trend,
after which a transition should be gradually performed toward SSP1, which should be
completed before 2035 to achieve real sustainable development. Afterwards, the Chengdu-
Chongqing City Group should continue to develop according to SSP1 from 2035 to 2050.
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Appendix A

Appendix A shows the historical statistical descriptions of the parameters and the
initial values of the state variables of the green development level system dynamics model of
the Chengdu-Chongqing City Group constructed in this study, together with the historical
test results of the green development level system dynamics model of each city in the
Chengdu-Chongqing City Group.

Table A1. Statistical description of model parameters in Chengdu and Chongqing.

City Model Parameters Maximum Value Minimum Value Average Value

Chengdu

Population growth rate 0.1222 0.0080 0.0230
GDP growth rate 0.2013 0.0689 0.1337

Rate of increase in total energy consumption 0.1878 −0.1519 0.0158
Rate of increase in arable land area 0.2015 −0.0162 0.0238
Increase rate of public green space 0.2089 −0.0153 0.0477

Rate of increase in total water supply 0.1725 −0.0885 0.0473

Chongqing

Population growth rate 0.0110 −0.0012 0.0059
GDP growth rate 0.2088 0.0412 0.1250

Rate of increase in total energy consumption 0.1369 0.0209 0.0648
Rate of increase in arable land area 0.0595 −0.1096 −0.0032
Increase rate of public green space 0.2655 −0.0578 0.0969

Rate of increase in total water supply 0.1128 −0.0863 0.0500

Table A2. Initial values of state variables of the SD model of the green development level of each city
in the Chengdu-Chongqing City Group.

City Total
Population Total GDP Total Energy

Consumption
Arable Land

Area
Area of Public
Green Space

Total Water
Supply

Chengdu 1044.31 1705.2732 1155.32 362,600 7289.28 48,810
Chongqing 2606.26 2400.2470 2693.21 1,353,200 8053.34 71,100

Dazhou 637.81 239.1671 1259.78 270,540 685.08 2933
Deyang 380.59 328.6206 358.60 194,162 2620.89 14,993

Guang’an 448.54 170.3600 372.66 173,600 1957.75 2400
Leshan 347.63 215.5705 668.07 149,900 2443.84 9823
Luzhou 468.10 204.3567 384.19 211,000 2515.80 8794
Meishan 340.66 171.7821 470.97 176,000 665.53 3200

Mianyang 527.50 396.6000 548.47 283,100 4239.74 7191
Nanchong 717.73 239.3039 315.12 300,519 5155.67 12,017
Neijiang 421.25 182.3293 499.88 164,507 504.60 6000
Suining 376.60 148.4155 166.10 154,891 2564.46 6247
Ya’an 153.15 91.9400 88.22 60,000 1131.37 3100
Yibin 515.01 257.6936 422.67 242,406 792.27 4900

Ziyang 344.77 124.5088 183.24 193,000 340.97 4200
Zigong 315.30 192.4271 735.49 123,100 3244.46 7622
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Table A3. Pass rate of historical test of SD model of the green development level of cities in the
Chengdu-Chongqing City Group.

City
Total Population Total GDP Total Energy Consumption

10% Pass Rate
(%)

20% Pass Rate
(%)

10% Pass Rate
(%)

20% Pass Rate
(%)

10% Pass Rate
(%)

20% Pass Rate
(%)

Chengdu 100 100 100 100 93.3 100
Chongqing 100 100 93.3 100 100 100

Dazhou 100 100 100 100 66.7 80
Deyang 100 100 100 100 86.7 100

Guang’an 100 100 100 100 80 100
Leshan 100 100 100 100 80 100
Luzhou 100 100 93.3 100 60 86.7
Meishan 100 100 100 100 93.3 100

Mianyang 100 100 100 100 86.7 100
Nanchong 100 100 100 100 80 100
Neijiang 100 100 93.3 100 93.3 100
Suining 100 100 100 100 86.7 93.3
Ya’an 100 100 100 100 93.3 100
Yibin 100 100 100 100 80 86.7

Ziyang 100 100 93.3 100 86.7 100
Zigong 100 100 100 100 86.7 100

City
Arable Land Area Area of Public Green Space Total Water Supply

10% Pass Rate
(%)

20% Pass Rate
(%)

10% Pass Rate
(%)

20% Pass Rate
(%)

10% Pass Rate
(%)

20% Pass Rate
(%)

Chengdu 86.7 100 100 100 100 100
Chongqing 100 100 80 93.3 100 100

Dazhou 100 100 73.3 93.3 93.3 100
Deyang 100 100 100 100 86.7 93.3

Guang’an 100 100 93.3 100 80 100
Leshan 100 100 100 100 86.7 100
Luzhou 100 100 93.3 100 80 100
Meishan 100 100 80 93.3 100 100

Mianyang 100 100 86.7 100 86.7 100
Nanchong 100 100 100 100 100 100
Neijiang 100 100 80 100 80 93.3
Suining 100 100 93.3 93.3 93.3 93.3
Ya’an 100 100 73.3 73.3 86.7 100
Yibin 100 100 86.7 100 93.3 100

Ziyang 100 100 66.7 80 86.7 100
Zigong 100 100 86.7 100 86.7 100

Ten percent pass rate: the ratio of the simulated year to the simulated year for which the relative error between
the simulated model value and the historical statistical value is within ±10%; twenty percent pass rate: the ratio
of the simulated year to the simulated year for which the relative error between the simulated model value and
the historical statistical value is within ±20%.
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Abstract: The research on the adaptive utilization of water resources (AUWR) is of great significance
to improve the coordinated development among water resources, economic society, and ecological
environment in complex environments, and to promote the development of adaptive utilization of
regional water resources. Based on the calculation method of harmony theory and the calculation
method of the comprehensive co-evolution model, this paper obtains the harmony degree and
adaptive utilization capacity of water resources (AUCWR) of each subsystem in the Tarim River Basin
(TRB), analyzes the main factors affecting the AUCWR, and finally compares the two methods. The
results show that: (1) From 2004 to 2018, the AUCWR in the TRB has gradually improved (harmony
theory method: from 0.43 in 2004 to 0.56 in 2018, with a growth rate of 30.23%; comprehensive
co-evolution model method: from 0.37 in 2004 to 0.62 in 2018, with a significant increase of 67.57%)
and (2) From the perspective of indicators, indicators such as per capita GDP, the proportion of
non-agricultural output value in GDP, and per capita net income of rural residents have a greater
impact on the AUCWR in the TRB. Using different calculation methods to analyze the temporal and
spatial distribution characteristics of the AUCWR in the TRB has important guiding significance for
the future development and utilization of water resources, economic and social development, and
ecological environment protection.

Keywords: Tarim River Basin; adaptive utilization capacity of water resources; harmony theory;
comprehensive co-evolution model

1. Introduction

Water resources are basic natural resources, which can provide human beings with
clean drinking water, irrigation water, and ecological water [1]. Water is crucial to the
sustainable development of societies [2]. Water resources are the major medium of climate
change impacts on the environment, ecosystems, and humans, and are increasingly affect-
ing the global economic, social and environmental development [3,4], and the accelerated
economic development, population growth, and urban expansion have increased the water
shortage, thus highlighting the global systemic risk of water shortage [5,6]. At the same
time, the changes in the development and utilization of water resources will also affect
the decision-makers’ adjustment of water environment policies [7,8]. However, with cli-
mate change and economic and social development, the properties and functions of water
resources are becoming more diverse, while the linkages with external systems, such as
social, economic and ecological systems, are becoming more complex [9,10]. The adaptive
development of water resources is a manifestation of their sustainability by adapting to
environmental changes, with the increased demand for water resources brought about by
increasing population, which leads to water scarcity, excessive groundwater extraction,
water pollution, and other problems ensuing [11,12]. The International Association of
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Hydrological Sciences (IASH) launched the P.R. (2013–2022) program in 2013, which em-
phasizes the intersection of nature and society to study human-water relationships, explore
the synergistic evolution of human-water systems, and actively promote adaptive research
on human-water relationships [13].

Since the 21st century, water resources adaptation research has become an important
demand and a hot issue for global and national responses to environmental changes. Many
scholars have conducted studies to investigate how water resources systems adapt to the
complex and changing environment and the interactions with the economic and social
environment [14,15]. The study of water resources adaptation involves many aspects,
such as water resources, as well as the economic, social, and ecological environment.
Water resources adaptation can be improved by research on optimal water resources
allocation, developing water resources management strategies, establishing adaptation
models, improving water resources carrying capacity, and reducing water resources-related
risks [16–19]. Zhou proposed an integrated optimal allocation model that provides research
ideas for complex adaptive systems for water resources management, and applied it in
the Dongjiang River Basin in Guangdong Province, China [20,21]. Guided by the idea
of adaptive utilization of water resources(AUWR), H.P. discussed how integrated water
resources management can achieve adaptive water resources in response to environmental
changes, and discuss the specific requirements on how to improve adaptive water resources
management and governance [22]; the environmental adaptation of vulnerable water
resource systems can be improved by assessing the status of regional water resources in the
context of climate change using appropriate models [23].

However, they are all water resources adaptation responses and strategies proposed
in response to environmental changes, without proposing water resources development
and utilization strategies from the general height of the reciprocal feedback between water
resources systems and environmental changes, and have not yet risen to a water resources
adaptation and utilization model. Based on this, Zuo elaborated on the AUWR model,
the theoretical system framework, and its application issues, and defined the concept of
AUWR, the process of water resources development and utilization, following the laws of
nature and social development, adapting to the impact of environmental changes such as
human activities, climate change, and land surface changes, and ensuring the virtuous cycle
of water systems, the chosen water resources utilization [24–26]. On this basis, the concept
of adaptive utilization capacity of water resources (AUCWR) is proposed—under the
guidance of the theory of adaptive utilization of water resources, based on the evaluation
system of AUWR, the effect and overall level of AUWR obtained through quantitative
evaluation method.

On the basis of the gradual improvement of the theoretical system of adaptive use of
water resources, the quantitative study of the adaptive use of water resources has gradually
become a hot issue. Zhang constructed a three-dimensional framework consisting of several
risk factor indicators based on water resources resilience theory and established a set of
water resources resilience assessment methods to evaluate the resilience of Beijing’s water
resources system [27]. Yao proposed a comprehensive co-evolution model, based on the
conditions of the elements and on the mechanism of their interaction, to study the adaptive
development of WRS, it was eventually applied to three rivers in Heilongjiang Province
and Shandong Province [28,29]. Adaptive use of water resources is an efficient way to solve
complex and uncertain ecosystems and compensate for the limitations of the human-water
harmony theory.

In the TRB, artificial oases and desertification processes are increasing [30,31]. As
a result, the area of desert-oasis ecological zones is rapidly decreasing and ecological
problems are becoming more prominent. At the same time, due to the rapid urbanization of
the TRB and the continuous socio-economic development, water demand is also increasing,
leading to an increasing conflict between water resources, economic and social development,
and ecological environmental protection. Therefore, it is necessary to evaluate the current

141



Water 2022, 14, 3820

level of AUCWR in the TRB and to find a reasonable model of water resources development
and utilization.

At present, most studies focus on the allocation and regulation of reservoir water
resources [32], the adaptive management of water resources for reservoir water resources
management [20], and some policies-based water resources management measures are
proposed [14]. However, there is insufficient research on the quantitative evaluation of the
adaptive use of water resources, especially a set of systematic, perfect, and popularized
quantitative evaluation methods. Based on this, this paper uses the team’s harmony theory
method to systematically evaluate the adaptive use of water resources in the TRB by
constructing a system of indicators for evaluating the adaptive use of water resources, and
at the same time conducts a comparative analysis with the comprehensive co-evolutionary
model method to verify the reasonableness of its results with each other.

In this paper, four main parts of work are done: (a) Systematically proposed a the-
oretical system of AUWR; (b) Constructing a systematic and complete index system for
assessing the adaptive use of water resources; (c) Proposing a method for evaluating the
AUCWR in the TRB (harmony theory method), and compared the results with those of
the well-established comprehensive co-evolution model method to verify each other; (d)
Analyzing the main factors affecting the AUCWR.

2. Theoretical System of AUWR
2.1. Theoretical of AUWR

Adaptive utilization of water resources, sustainable use of water resources, and com-
prehensive use of water resources are all water resources development and utilization
modes, the purpose of which is to ensure the virtuous cycle of water systems, in order to
achieve the goal of human-water harmony, but the focus of the three is different. Adaptive
use of water resources is a means to address the impact of environmental change, through
human regulation measures to mitigate the adverse impact of climate change, human
activities, and other water resources, economic, social, and ecological environment.

The theory of adaptive use of water resources takes the human-water system as the
research object, through adaptive use of water resources, to achieve sustainable use of
water resources and achieve the goal of human-water harmony. Human activities, climate
change, and land surface change are the driving factors, which are the source driving
force to promote the adaptive use of water resources and the main factors for scientific
regulation. The dialectical relationship is that water resources development and protection
coexist, the positive and negative impacts of water resources utilization coexist, and the
supply side and demand side of the water system coexist and comply with the two laws,
four principles, three tasks, and four functions. Adaptive use of water resources needs to
consider the balance of human-water relationship transfer, and needs, through a series of
regulatory means, to achieve a harmonious balance of adaptation to environmental change
transfer, towards the direction of human-water harmony. Its theoretical approach includes
a guiding theoretical approach and a basic theoretical approach [25]. As shown in Figure 1.

2.2. Mechanism of AUWR

The core of the mechanism of adaptive use of water resources is the interaction between
the three subsystems of water resources, economy, society, and ecology under the influence
of climate change and human activities.

The impact of climate change on the water resources-economic society-ecological
environment system mainly comes from changes in precipitation, temperature, wind
speed, humidity, radiation, and other basic meteorological factors caused by changes in
atmospheric circulation: on the one hand, it leads to changes in the water cycle process,
which in turn produces changes in the supply side and demand side of water resources, on
the other hand, it changes the total amount of water resources and spatial and temporal
distribution characteristics, thus increasing the risk of extremes. On the other hand, the
change in the total water resources and the spatial and temporal distribution characteristics
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increase the risk of extreme weather events such as floods and droughts, which cause
natural disasters and further affect the stability of the economic, social, and ecological
environments.
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Figure 1. Framework of the theoretical system of AUWR.

The impact of human activities on the water resources-economic society-ecological
environment system is: on the one hand, through the transformation of the natural envi-
ronment to cause changes in water supply potential and natural ecology and environment,
on the other hand, through the change of economic and social patterns to cause changes
in production and lifestyle, which in turn affects the change of artificial consumption and
drainage, resulting in the constant change of water resources and ecological environment
state, leading to the imbalance of the original state of the whole system. As shown in
Figure 2 [33].

2.3. Framework of Application Rules for AUWR

Adaptive use of water resources involves complex systems and rich contents, so it is
necessary to follow certain rules to solve the problems faced by the adaptive use of water
resources. In the literature [24], Zuo first proposed a framework of application rules for
water resources adaptive use theory, which requires that when applying water resources
adaptive use theoretical methods to solve practical problems, it should follow two major
laws, conform to four major principles, shoulder three major tasks and have four major
functions, as shown in Figure 3.
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2.3. Framework of Application Rules for AUWR 
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3. Materials and Methods
3.1. Study Area

The TRB is located in the northern Tarim Basin of Xinjiang Uyghur Autonomous
Region. It originates from the Tianshan Mountains and the Karakorum Mountains, with a
total length of 2179 km, making it the longest inland river in China and the fifth-largest
inland river in the world [34]. The TRB is composed of three major headwaters, the
Hotan River, the Yarkant River, and the Aksu River [35], with a basin area of 1.02 million
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square kilometers, including 42 counties in five prefectures and 45 regiments in four corps
divisions, with a population of more than 12 million people living in the basin. The average
annual natural runoff of the TRB is 39.83 billion cubic meters, and the total water resources
of the basin are 42.9 billion cubic meters, the main source of runoff in the TRB is glacier
melt, accounting for nearly 50% of the runoff, while the remaining runoff sources include
precipitation from rain and snow and river base flow [36,37]. The irrational exploitation
of water resources has caused a certain impact on the ecological environment and the
sustainability of economic development in the TRB. To meet the demand for water for
economic and social development and agricultural irrigation (the demand for water for
agricultural irrigation is very high, accounting for about 96% of the total water consumption
in the TRB) [38], the water resources in the main-stream of the TRB are over-exploited, which
has affected the tributaries and the lower streams of the ecosystem, further compressing
water for the ecological environment, leading to ecological degradation. The population
of the TRB accounts for 46.85% of Xinjiang, the total GDP accounts for 27.68% of Xinjiang,
the GDP per capita is far below the average level of Xinjiang, the urbanization level is low,
and the economic and social development is generally backward. The study area is mainly
composed of five prefectures in the basin, namely Aksu, Bayingol Mongolian Autonomous
Prefecture (BMAP), Kizilsu Kirgiz Autonomous Prefecture (KKAP), Kashgar Prefecture
(KP), and Hotan Prefecture (HP) (Figure 4).
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3.2. Constructing the Framework of the Element System

The assessment of AUCWR is the basis for rational development and the utilization
of regional water resources, sustainable economic and social development, and ecological
environmental protection. To assess the AUCWR, it is necessary to build a set of assessment
index systems from the two laws, four principles, three tasks, and four functions of the
adaptive utilization theory of water resources [24]. Taking into account the water resources
endowment conditions, economic and social factors, and the ecological environment of
the TRB, 25 evaluation indexes are finally selected, and the AUCWR is used as the target
layer to build a system covering the assessment element system of AUCWR covering
three guideline layers of water resources, economic society, and ecological environment is
constructed, as shown in Table 1. In the table, (+) represents positive indicators and (−)
represents negative indicators.
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Table 1. Evaluation element system of AUCWR.

Target Sub-Problem
Domain Element Unit

Adaptive
utilization
capacity of

water
resources
(AUCWR)

Water
Resource

Precipitation depth (I1) (+) mm
Water yielding modulus (I2) (+) 104 m3/km2

Average per capita water resources (I3) (+) m3/person
Exploitation rate of water resources (I4) (−) /

Per capita water consumption (I5) (−) m3/person
Water consumption per 10,000 yuan of GDP (I6) (−) m3/104 CNY

Water consumption per 10,000 yuan of industrial added value
(I7) (−) m3/104 CNY

Average irrigation water consumption per unit area of
farmland (I8) (−) m3/hm2

Per capita domestic water consumption (I9) (−) L/person

Economic
Society

Per capita GDP (I10) (+) 104 CNY/person
Proportion of non−agricultural output value in GDP (I11) (+) /

Grain production per cubic meter of water (I12) (+) kg/m3

Per capita disposable income of urban residents (I13) (+) CNY/person
Per capita net income of rural residents (I14) (+) CNY/person

Urbanization rate (I15) (+) /
Population density (I16) (+) person/km2

Natural population growth rate (I17) (+) /
Water popularization rate of urban population (I18) (+) /

Ecological
Environment

Forest coverage rate (I19) (+) /
Green coverage rate of built-up area (I20) (+) /

Ecological environment water consumption rate (I21) (+) /
COD emission per capita (I22) (−) t/104 person

Ammonia nitrogen emissions per capita (I23) (−) t/104 person
Per capita discharge of sewage and wastewater (I24) (−) m3/person

Fertilizer application intensity (I25) (−) kg/hm2

3.3. Methods
3.3.1. Calculate Element Weights

The methods of determining the weights of the index system can be generally divided
into two categories: subjective assignment method and objective assignment method. The
objective assignment method includes such methods as the mean square difference method,
principal component analysis method, entropy method, representative calculation method,
etc. The subjective assignment method includes the subjective weighting method, expert
survey method, hierarchical analysis method, comparative weighting method, multivariate
analysis method, fuzzy statistics method, etc. In this paper, the entropy weighting method
is used to determine the weights in the evaluation study of the effect of demonstration [39].

The entropy weighting method is used to calculate the objective weights [40]. Gener-
ally speaking, if the information entropy of an index is smaller, it indicates that the greater
the degree of variation of the index value, the more information it provides, the greater the
role it can play in the comprehensive evaluation, and the greater its weight. The steps to
determine the weights by the entropy method are as follows.

1. The data are standardized and normalized.

Yij =
Xij −min

(
Xij
)

max
(
Xij
)
−min

(
Xij
) (1)

Zij =
Yij

∑n
1 Yij

(2)

2. Seek the information entropy of indicators
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Ej = − ln(n)−1
n

∑
1

ZijlnZij (3)

3. Determine the weight:

Wj =
1− Ej

∑ 1− Ej
, j = 1, 2, . . . , m (4)

where, Wj is the weight.

3.3.2. Harmony Methods

Through the evaluation of using the harmony methods [41], we can reflect the harmony
degree on the whole, the state, and level, as well as the spatial and temporal changes, and
provide the basis for the evaluation of harmony problems and the search for harmony
strategies. It mainly adopts the evaluation method of “single indicator quantification—
multiple indicators synthesis—multiple criteria integration”, as follows:

1. Single-indicator quantification: It includes quantitative and qualitative indicators,
and each indicator has a harmonious degree (called SHD) with the value range of
[0, 1]. In order to facilitate calculation and comparative analysis, the quantitative
description of single indicator harmony can be quantified by using segmented linear
affiliation function quantification method for positive indicators, negative indica-
tors, and bidirectional indicators respectively, and mapping each indicator to [0, 1]
uniformly. Among them, the harmony degree of positive and negative indicators is
calculated as follows [42].

SHDk =





0 xk ≤ ak

0.3( xk−ak
bk−ak

) ak < xk ≤ bk

0.3 + 0.3( xk−bk
ck−bk

) bk < xk ≤ ck

0.6 + 0.2( xk−ck
dk−ck

) ck < xk ≤ dk

0.8 + 0.2( xk−dk
ek−dk

) dk < xk ≤ ek

1 ek < xk

SHDk =





1 xk ≤ ek

0.8 + 0.2( dk−xk
dk−ek

) ek < xk ≤ dk

0.6 + 0.2( xk−xk
ck−dk

) dk < xk ≤ ck

0.3 + 0.3( bk−xk
bk−ck

) ck < xk ≤ bk

0.3( ak−xk
ak−bk

) bk < xk ≤ ak

0 ak < xk

(5)

where, SHDk is the harmony degree of the k-th index, k = 1, 2, . . . , n, n is the number of
indicators; ak, bk, ck, dk, ek is the worst value, poor value, pass value, better value and best
value of the k-th index.

2. Multi-indicator synthesis: it can be calculated by multi-indicator weighting method,
according to the single indicator affiliation weighted by the weight.

HD =
n

∑
j=1

wjµj∈ [0, 1] (6)

where, µj is the harmony of the kth indicator SHDj, wj is the weight. It can also be calculated
according to the single indicator affiliation weighted by exponential weights.

HDt =
n

∏
j=1

(µj)
wj∈ [0, 1] (7)

where, wj is the weight.

3. Multi-criteria integration: It can be calculated using a weighted average or index
weighting method.
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AUCWR =
T

∑
t=1

wtHDt or AUCWR =
T

∑
t=1

(HDt)
βt (8)

where ωt, βt are the weights of the t-criteria,
T
∑

t=1
ωt = 1,

T
∑

t=1
βt = 1, and the other symbols

are the same as before.
On the basis of the constructed index system for assessing the adaptive capacity of

water resources, the problem of adaptive use of water resources is understood as a dynamic
and harmonious balance of water resources-economy-society-ecology-environment system.
The goal is to maximize the harmony of the water resources-economic-social-ecological
environment system. The overall harmony degree is calculated by using the comprehensive
evaluation method of “Single Indicator Quantification—Multi-Indicator Integration—Multi-
Criteria Integration” (SMI-P method) of the harmony theory. Firstly, we quantify each
indicator and calculate the individual indicator harmony degree, then we assign and weight
each indicator to calculate the harmony degree of each criterion layer, and finally, we weight
each criterion layer to calculate the harmony degree.

3.3.3. Comprehensive Co-Evolution Model Methods

According to the comprehensive co-evolutionary model proposed in each
reference [28,29], the adaptive capacity of the influencing factors to environmental changes
is measured by calculating the absolute adaptability, and the relative adaptability is used
to describe the adaptability of the interaction between the influencing factors, based on
the characteristics of mutual adaptation between different influencing factors or indica-
tors in the theory of adaptive use of water resources. The combination of absolute and
relative adaptability is used to evaluate the AUCWR. The method is divided into the
following steps.

1. Division of criterion layers and determination of weights

According to the index system established above, the criterion layer is divided into
three aspects: water resources, economic and social factors, and ecological environment.
The weights are determined using the entropy weighting method above to ensure that
the weights of the influencing factors are consistent between the harmony theory and the
comprehensive co-evolutionary model approach.

2. Calculation of absolute adaptability of factors

In order to effectively reduce the influence brought by the uncertainty of the rela-
tionship between factors, the gray correlation analysis method is first used to determine
the correlation degree between individual factors; the gray correlation degree method is
as follows.

αij =

min
i

min
j

∣∣Xoj − Xij
∣∣+ ρmax

i
max

j

∣∣Xoj − Xij
∣∣

∣∣Xoj − Xij
∣∣+ ρmax

i
max

j

∣∣Xoj − Xij
∣∣ (9)

where ρ denotes the resolution factor, usually taken as 0.5 [43] where Xoj represents the
optimal value of the jth factor.

αij as the average value of each point between Xij and Xoj, α = 1
n

n
∑
1
αij; εij = αij − αij;

where εij is used to represent the fluctuation value between the factors αij, the system
adaptation, and finally the absolute adaptation of the factors is derived as follows:

f C
j = 1−

√
(
αij − 1

)2
+

n

∑
I=1

εij
2 ∗Wj (10)

where: f C
j represents the absolute factor fitness; Wj represents the factor weights.

3. Calculation of the relative fitness of factors
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f R
j =

0.5 + HDj − AHD
0.5 + HDj

∗ f C
j (11)

where: f R
j represents the absolute suitability of the factors; HDj represents the Hemming

distance between the actual and ideal values in the evaluation matrix; AHD represents the
average of the hemming distance of each element; 0.5 represents the smoothing factor. HD
and AHD are calculated by the formula between the original literature.

4. Factor adaptation calculation

The article combines the absolute and relative fitness of the factors with the weights to
calculate the fitness of the factors with the following formula.

f S
j = Wj ∗ f C

j +
(
1−Wj

)
∗ f R

j (12)

where: f S
j represents the adaptation of the factors.

5. Calculation of AUCWR

Based on the results of the factor adaptability, the calculated data are standardized to
obtain the standard value X∗I j for each indicator and consequently the survival adaptability
of the target layer. In order to maintain consistency with the Harmony Theory approach,
the target layer is here designated as the AUCWR, and thus the formula for calculating the
AUCWR is obtained as:

Di =
m

∑
j=1

f S
j

∑m
j=1 f S

j
∗ X∗I j (13)

where Di represents the AUCWR of the ith evaluation object, where i represents the
calculation year (2004–2018); m represents the number of factors.

3.3.4. Obstacle Degree Model Methods

The obstacle degree model can assess the degree of influence of each factor on the
final goal by analyzing the magnitude of the obstacle effect of different indicators in the
assessment index system [44]. Obstacle degree models are widely used in assessing land
use impact factor assessment, ecological security assessment, and other fields. In this paper,
the obstacle degree model is introduced to analyze the degree of contribution of impact
factors in order to better regulate the AUCWR. The specific steps are as follows.

The obstacle degree Qi (the degree of influence of each subsystem or each indicator
on the AUCWR is calculated by introducing the factor contribution degree wj (the weight
of a single indicator on the total target) and the indicator deviation degree Ii (the distance
between the actual value of each indicator and the optimal value, expressed as the difference
between 1 and the standardized value Xij of each indicator), which is calculated as follows:

Qi =
Ii × wi

(
m
∑

i=1
I × wi)

(14)

where Ii = 1 − Xij, Xij is the normalized value of the indicator.

3.4. Data Sources

The data used in this paper are all from Xinjiang and the Aksu, BMAP, KKAP, KP, and
HP regions yearbooks from 2005–2019, and the statistics are from 2004–2018.
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4. Results
4.1. Element Thresholds and Weights
4.1.1. Element Thresholds

According to the single indicator quantification in the harmony theory method, the
thresholds of 25 indicators in the evaluation index system are divided, and the thresholds
are divided into five nodes according to the single indicator quantification calculation
formula, which are optimal, better, medium, worse and worst in order, and the final 25
indicator thresholds are divided in Table 2.

Table 2. Element threshold division table.

Element
Threshold Division

Element
Threshold Division

Worst Poor Moderate Better Best Worst Poor Moderate Better Best

I1 39 150 400 600 850 I14 1000 4000 7000 10,000 13,000
I2 3 6 9 12 15 I15 0.2 0.4 0.6 0.8 1
I3 1000 6000 12,500 19,000 25,000 I16 5 11 17 24 30
I4 1 0.8 0.6 0.4 0.2 I17 3 6.5 10 20 30
I5 7000 5500 3500 2000 500 I18 0.2 0.4 0.6 0.8 1
I6 10,000 7500 5000 3000 1000 I19 0.005 0.02 0.04 0.1 0.16
I7 1000 700 400 200 50 I20 0.2 0.4 0.6 0.8 1
I8 1200 950 700 450 200 I21 0.005 0.01 0.02 0.035 0.05
I9 150 125 100 75 50 I22 200 150 100 75 50
I10 0.5 1.75 3 5 7 I23 20 15 10 6 2
I11 0.2 0.4 0.6 0.8 1 I24 100 65 30 17.5 5
I12 0.1 0.2 0.3 0.4 0.5 I25 100,000 75,000 50,000 30,000 10,000
I13 5000 12,500 20,000 30,000 40,000

4.1.2. Element Weights

According to the entropy weighting method, a total of 25 indicators in three subsystems
of TRB, namely, water resources, economic and social factors, and ecological environment,
are weighted as shown in Table 3.

Table 3. Water resources subsystem element weights.

System Element Weight

Water Resources
subsystem

Element I1 I2 I3 I4 I5 I6 I7 I8 I9 Total

Weight 0.043 0.038 0.049 0.036 0.032 0.035 0.027 0.037 0.028 0.325

Economic and Social
subsystem

Element I10 I11 I12 I13 I14 I15 I16 I17 I18 Total

Weight 0.075 0.055 0.042 0.028 0.050 0.043 0.045 0.041 0.045 0.424

Ecological Environment
subsystem

Element I19 I20 I21 I22 I23 I24 I25 Total

Weight 0.039 0.044 0.056 0.027 0.026 0.027 0.032 0.251

Among them, the economic and social subsystem weight is larger, accounting for
0.424, the water resources subsystem has the second largest weight, accounting for 0.325,
and the ecological environment subsystem has the smallest weight of 0.251. Among the
indicators, the per capita water resources in the water resources subsystem has the largest
weight of 0.049, in the economic and social subsystem, the per capita GDP has the largest
weight of 0.075, and in the ecological environment subsystem, ecological environmental
water use rate, the largest weight is 0.056.
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4.2. Evaluation of AUCWR
4.2.1. Temporal and Spatial Variation Characteristics of AUCWR in TRB

The results obtained based on the harmony theory method are shown in Figure 5a.
In general, the AUCWR in the TRB demonstrates a fluctuating upward trend, the results
show that this trend is in line with the current development situation of the Tarim River
Basin [45]. The AUCWR in the TRB increased from 0.43 in 2004 to 0.56 in 2018, with a growth
rate of 30.23%. The AUCWR is mainly concentrated in the range of 0.40–0.60, with an
annual average value of 0.497, which indicates that the adaptability among water resources,
economic and social, and ecological environment subsystems is in the near-adaptation
stage, and the level of adaptive development in the basin is moderate. The adaptive use
capacity levels of water resources from 2004 to 2018 are all in the near-adaptation stage.
According to the growth rate of the AUCWR, the development of the AUCWR in the basin
demonstrates an increasing trend from 2004 to 2006 (average annual growth rate of 2.57%);
during the period of 2006–2010, the AUCWR in the basin reveals a fluctuating, increasing
trend (average annual growth rate of 1.38%); from 2010–2012, the AUCWR in the basin
indicates a fluctuating downward trend (average annual decrease rate of 2.25%); from 2012
to 2018, the AUCWR in the basin verifies an upward trend (average annual growth rate of
1.17%). The adaptive development level of AUCWR in the basin has increased during the
period 2004–2018 (average annual growth rate of 0.08%), but the rising level is low.
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The results obtained based on the comprehensive co-evolutionary model method are
shown in Figure 5b. On the whole, the AUCWR in the TRB also shows a fluctuating upward
trend, and the fluctuation state is more intense. The AUCWR in the TRB has a large value
of change. As a whole, it increased from 0.37 in 2004 to 0.62 in 2018, with a significant
increase of 67.57%. The annual average value of the AUCWR is 0.526, with a moderate level
of adaptive development of the system. The year 2004 has the lowest AUCWR, and the
adaptive level is at the basic non-adaptive stage; 2015–2009 and 2011–2015 are at the near
adaptive stage, while 2010 and 2016–2018 are at the AUCWR. The AUCWR in 2010 and
2016–2018 are all at the basic adaptive stage. Based on the magnitude of changes in adaptive
capacity, the harmony theory method calculations show similar trends: a gradual increase
during 2004–2006 (with an average annual increase of 5.93%), a fluctuating increase from
2006–2010 (with an average annual increase of 4.04%), a gradual decrease from 2010–2012
(with an average annual decrease of 9.89%), and a fluctuating up (with an average annual
increase of 1.91%), and 2014–2017 gradually up (with an average annual increase of 5.91%).
By and large, the level of adaptive development of the AUCWR in the basin increased
during 2004–2018 (average annual growth rate of 0.2%), but the level of increase is limited.
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The AUCWR in the TRB is assessed by the harmony theory method and the com-
prehensive co-evolutionary model method, and the results of both calculation methods
show that the AUCWR in the TRB is not high during 2004–2018 (mean value of the har-
mony theory method: 0.497; the mean value of the comprehensive co-evolutionary model
method: 0.526), but the development trend is good and the capacity gradually improved.
The adaptive use of water resources in the TRB is limited, and the AUCWR is around
0.6 after improvement (calculated by the harmony theory method: 0.56; calculated by the
comprehensive co-evolutionary model method: 0.62), which is near the passing level. The
current problems should be addressed, and solutions should be proposed to improve the
overall AUCWR in the TRB.

The results of the AUCWR assessment of the TRB calculated by the two methods are
shown in Figure 6a,b. The analysis reveals that the calculated overall change trends of the
TRB and each prefecture are consistent and demonstrate an increasing trend; secondly, the
average value of the AUCWR in the TRB from 2004 to 2018 calculated by the harmony
theory method is 0.497, and the result calculated by the integrated coevolutionary model
method is 0.526, which is basically similar to the water resources of each prefecture. The
results are similar to the AUCWR in each state. In general, the results of the two calculation
methods are consistent, and the results of the two methods can be combined to make a
comprehensive assessment of the AUCWR in the TRB and each state. Therefore, in the
following assessment of the AUCWR in each state, in order to focus on the analysis of
the changes between the states, the calculation results are averaged using the calculation
results of the two methods (Figure 6c).
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Figure 6. AUCWR and changes of various prefectures in the TRB. (a,b): calculation results of the
harmony theory and the comprehensive co-evolutionary model method. (c): average of the results
calculated by the two methods.

Using the two methods, by analyzing the AUCWR in the five prefectures (Aksu, BMAP,
KKAP, KP, and HP regions) belonging to the TRB from 2004 to 2018, we obtained the trend
graph of the AUCWR in each prefecture, as shown in Figure 6a,b, and combined the results
of the two calculations to obtain the trend graph of the AUCWR in each prefecture, as
shown in Figure 6c.

The results verify that, in terms of temporal trends, the AUCWR in all states of the TRB
has similar trends, with all five regions showing fluctuating upward trends. The growth
rates of Aksu, BMAP, KKAP, KP, and HP regions are 14.01%, 24.45%, 28.87%, 24.76%, and
14.81%, respectively, with the largest increase in the KKAP region and the smallest increase
in the Aksu region. The fluctuation of the KKAP region is more dramatic, and its standard
deviation of AUCWR from 2004 to 2018 reaches 0.056, which is larger than the remaining
four prefectures. At the same time, there is little difference in the mean value of AUCWR in
each prefecture. The average AUCWR of the TRB from 2004 to 2018 is 0.52. The average
AUCWR of the BMAP and KKAP regions is larger than that of the TRB, 0.54 and 0.55,
respectively, while the average AUCWR of the Aksu, KP, and HP regions is smaller than
that of the TRB, 0.49, 0.50, and 0.49, respectively. By analyzing the trends and average
values of the AUCWR in the TRB as a whole and in each state, we found that the AUCWR

152



Water 2022, 14, 3820

in each state is not high at present and still has great potential for development. The trend
of fluctuating growth is the same as that of the TRB, but the growth rate is not large.

4.2.2. Temporal and Spatial Variation Characteristics of System Adaptability in TRB

The system adaptability of the three subsystems of water resources, economic and
social factors, and ecological environment in the TRB and the five prefectures is obtained
according to Equation (5) to Equation (8), as shown in Figure 7.
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Figure 7a confirms the adaptability of each subsystem in the TRB, which ranges from
0.4 to 0.6, indicating that the adaptability of each subsystem is at a medium level in the
study area. From 2004 to 2018, the change in the adaptability of the water resources system
is small (average annual growth rate of 5.2%), and although the water resources subsystem
reveals an upward trend, the trend is not obvious, and by 2018, the adaptability of the
water resources subsystem is significantly lower than that of the economic and social and
ecosystem subsystems. It can no longer meet the needs of economic and social development
and ecological protection. During 2004–2018, the economic and social subsystem adaptation
degree indicates a rapid upward trend (average annual growth rate of 24%), and the level
of economic and social development steadily increased during this period, but after 2014, it
decreased, which may be due to the fact that with the increase of ecological environmental
protection, the development of certain environmentally crude enterprises is restricted to
a certain extent, which caused the growth of economic and social development certain
impact, but generally speaking, the momentum of economic and social development is
good. During the period of 2004–2014, the adaptability of the ecological and environmental
subsystem indicates a decreasing trend (the average annual decrease rate is 21%), but
during the period of 2014–2018, the adaptability of the ecological and environmental
subsystem indicates an upward trend and an obvious upward trend (the average annual
growth rate is 26%). It indicates that before 2014, the economic and social development of
the TRB might be to a certain extent at the expense of the ecological environment. Strongly
affected by human activities, the ecological environment is damaged to some extent, the
ecological environment is becoming worse and worse, the ecological carrying capacity is
gradually increasing [46], and the research shows that the changes in human activities
and climate have a significant impact on the ecological environment and oasis changes in
the TRB [47]. With the introduction of the policy of ecological protection, the ecological
environment is obviously improved and implies a good development trend after increasing
ecological protection and management.

Figure 7b–f show the changes in the adaptability of each subsystem in the five prefec-
tures, among which, the adaptability trends of each subsystem in BMAP, Aksu, KP, and HP
regions are consistent with those of the TRB, all showing a decreasing trend of the adapt-
ability of the ecological environment subsystem, and an increasing trend of the adaptability
of the water resources and economic and social subsystems, while the adaptability of the
water resources, economic and social, and ecological environment subsystems in KP. The
adaptation of water resources and economic and social subsystems in the KKAP regions
shows an increasing trend, which indicates that the KKAP region is better than the other
four states in environmental protection. Relevant research results also show that this trend
is in line with the actual situation [48,49].

4.3. Element Analysis
4.3.1. Analysis of Element Change Characteristics

The adaptability of the subsystems is influenced by the changes in their internal
elements. Figure 8 shows the average growth rate of each subsystem index, and the results
show that the main factors affecting the adaptive development of the water resources,
economic and social, and ecological environment subsystems are water consumption per
10,000 yuan of industrial added value (I7), per capita domestic water consumption (I9),
water consumption of 10,000 yuan of GDP (I6), per capita net income of rural residents
(I14), per capita GDP (I10), per capita disposable income of urban residents (I13), ecological
environment water consumption rate (I21), and fertilizer application intensity (I25).

Since the increase in per capita domestic water consumption (I9, growth rate 7.57%) is
significantly higher than the annual precipitation depth of the water resources subsystem
(I1, growth rate 1.04%), it may lead to the crowding out of a large amount of ecological
and environmental water and a significant decrease in the ecological environmental water
consumption rate (I21, decrease rate 5.97%), together with the inadequate environmental
protection measures, all these combined effects may lead to the adaptation of the ecological
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and environmental subsystem declining. Additionally, to solve these problems, while
developing and utilizing water resources and promoting economic development, we should
strengthen ecological environmental protection and promote the integrated development
of water resources, society, and ecology.
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With industrial upgrading and progress in water conservation technology, rapid eco-
nomic development can also be driven without affecting basic domestic water consumption,
which is mainly reflected in the water consumption per 10,000 yuan of GDP (I6, decline
rate 7.01%), water consumption per 10,000 yuan of industrial added value (I7, decline rate
7.78%) and average irrigation water consumption per unit area of farmland (I8, decline
rate 0.43%), per capita GDP (I10, growth rate of 26.32%), per capita disposable income of
urban residents (I13, growth rate of 22.69%), and per capita net income of rural residents
(I14, growth rate of 31.38%) on the indicators, which are also the main reasons for the
improvement of the economic and social subsystem adaptation.

Due to the western development strategy, the arable land area has been expanding
while the economy is developing rapidly, with an increased rate of 83.8% in 2018 compared
to 2004, which has increased the water demand to some extent. Although the amount of
water resources in the TRB has increased, the water resources development and utilization
rate remain high (72.64% on average), which is already higher than the internationally
accepted limit of 40% and has reached a bottleneck. Therefore, it is necessary to improve
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water use efficiency, strengthen water conservation measures and improve water saving
efficiency. The changes in water consumption per 10,000 yuan of GDP (I6, decline rate
7.78%), water consumption per 10,000 yuan of industrial added value (I7, decline rate
7.78%), and average irrigation water consumption per unit area of farmland (I8, decline rate
0.43%) are precisely the expression of water use efficiency improvement and the increase in
the adaptation of water resources subsystem. However, the increasing water demand and
the unreasonable allocation of water resources are also the main reasons for limiting the
further improvement of the water resources subsystem.

In order to promote the coordinated development of water resources, economy, society,
and ecological environment, it is necessary to actively carry out economic restructuring
while developing and utilizing water resources, taking into account the endowment con-
ditions of water resources, and driving the sustainable and stable development of the
economy. At the same time, it is also necessary to focus on protecting the ecological envi-
ronment, limiting unreasonable development of arable land, accelerating the construction
of grassland and other ecological projects, reasonably allocating and dispatching water
resources, realizing the healthy development of rivers, and coordinating the coordina-
tion between economic development and ecological protection. From the root cause, the
water resources management system should be strengthened to coordinate the harmo-
nious relationship between economic development and ecological environment, source
and tributaries, upstream and downstream, based on water resources development and
utilization, and improve the management system and system to realize the rational use of
water resources.

4.3.2. Element Sensitivity Analysis

Using the barrier degree model to calculate the barrier degree of impact factors, the
barrier degree of each subsystem and each indicator in the TRB from 2004 to 2018 is
obtained, and the results are shown in Table 4. From Table 4, it can be concluded that there
are differences in the barrier degrees of water resources, economic and social, and ecological
environment subsystems on the AUCWR. In terms of temporal changes, the barrier degree
of the water resources system increases year by year, but the growth rate is small, with
an average annual growth rate of only 0.105%; the barrier degree of the economic and
social subsystem gradually decreases, with an average annual reduction rate of 0.081%; the
barrier degree of the ecological environment subsystem fluctuates more, first decreasing
and then increasing, with an overall upward trend, but there is a large decrease in 2018.
From the analysis of the three major subsystem barrier degree values, the economic and
social subsystem has the largest barrier degree with an average value of 51.45%, followed
by the water resources subsystem with an average barrier degree of 30.37%, while the
ecological environment subsystem has the lowest barrier degree with an average value of
only 18.18%. This shows that the economic and social subsystem is the main constraint
subsystem affecting the improvement of the AUCWR in the TRB. Therefore, in order to
further improve the AUCWR in the TRB, we should focus on the economic and social
subsystem, further consider the development and utilization of water resources, ecological
and environmental protection and economic and social development, effectively improve
the level of coupled and coordinated development among water resources, economic
and social factors, and the ecological environment, promote the healthy and sustainable
development of the basin, and continuously improve the AUCWR.

Taking the 2018 data as an example, the barrier degree of each indicator to the overall
system of the basin is analyzed, and the results are obtained as shown in Table 5. In terms of
the barrier degree values of each indicator, the top indicators are mainly the economic and
social subsystem indicators, and the top five indicators in the barrier degree of this system
are per capita GDP (I10), the proportion of non-agricultural output value in GDP (I11), per
capita net income of rural residents (I14), population density (I16), and water penetration
rate of the urban population (I18); the top three indicators in the barrier degree of the water
resources system. The top three obstacles in the water resources system are average per
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capita water resources (I3), precipitation depth (I1), and water yielding modulus (I2); the
top three obstacles in the ecological environment subsystem are ecological environment
water consumption rate (I21), green coverage rate of built-up area (I20), and forest coverage
rate (I19). On the whole, the indicators with a higher barrier degree have a greater impact
on the AUCWR. Therefore, when analyzing and regulating the AUCWR in the future, the
indicators with a higher barrier degree can be regulated.

Table 4. Subsystem level barriers to AUCWR in 2004–2018 (%).

Year Water
Resources

Economic
and Social

Ecological
Environment Year Water

Resources
Economic
and Social

Ecological
Environment

2004 29.51 52.30 18.19 2012 30.53 51.24 18.23
2005 29.74 52.32 17.94 2013 30.60 51.14 18.25
2006 29.95 52.18 17.88 2014 30.86 50.79 18.35
2007 30.08 51.84 18.08 2015 30.70 51.00 18.30
2008 30.32 51.51 18.17 2016 30.57 50.98 18.45
2009 30.36 51.51 18.13 2017 30.60 50.94 18.46
2010 30.31 51.46 18.23 2018 30.98 51.17 17.86
2011 30.51 51.31 18.18

Table 5. Subsystem level barriers to AUCWR in 2018 (%).

Element Obstacle Element Obstacle Element Obstacle Element Obstacle Element Obstacle

I1 4.04 I6 3.42 I11 6.72 I16 5.53 I21 3.69
I2 3.65 I7 2.68 I12 5.06 I17 5.19 I22 1.97
I3 4.69 I8 3.53 I13 3.28 I18 5.46 I23 1.91
I4 3.40 I9 2.51 I14 5.80 I19 2.80 I24 1.98
I5 3.04 I10 8.76 I15 5.36 I20 3.24 I25 2.26

5. Discussion

The AUCWR in the TRB is calculated by the harmony theory method and the com-
prehensive co-evolutionary model method, and the results are compared and analyzed as
shown in Figure 9. According to Figure 9, the range of AUCWR in the TRB calculated by
the two methods is not very different, with the range of 0.4–0.6 for the harmony theory
calculation and 0.33–0.67 for the coevolutionary model method. The results calculated by
both methods show a fluctuating upward trend from the overall time period of 2004–2016,
followed by a consistent trend every two years, such as a gradual increase from 2004–2006,
a fluctuating trend from 2006–2011, and then a gradual increase from 2012–2016. Taken
together, the results of AUCWR calculated by the two methods can corroborate each other
and increase the reliability of the results. Further, from the viewpoint of the magnitude
of change, the harmony theory method has a small change and shows a steady upward
trend overall, with the largest change in the two time periods of 2007–2008 and 2009–2010,
with a change of 10.9% and 9.7% respectively. The comprehensive co-evolutionary model
method has a larger change, and overall, the change from 0.34 in 2004 to 0.58 in 2016 is
0.22, which is much larger than the change value of 0.11 for the harmony theory method.
Among them, the comprehensive co-evolutionary model method has the largest change
before and after 2010, and the change before and after is 48.8% and 22.6%, respectively.
Continuing to analyze the calculation results of the two methods in each region of the TRB,
the mean values calculated by the comprehensive co-evolution model method are both
higher than those calculated by the harmony theory, but the calculations are closer and
the differences are not significant. While the fluctuation ranges are both larger than those
calculated by the harmony theory method.
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A comparative analysis of the calculation results for the two algorithms can verify the
reliability of the calculation results. From the calculation process of the two methods, in
which the establishment of an evaluation index system, the determination of index weights,
and the determination of evaluation index thresholds are the basic contents of the two
methods. The indicator system proposed in the paper takes into account the indicators of
the three dimensions of water resources, economy and society, and ecological environment.
There are many types of indicators selected, which are more representative [46]. Among
them, the harmony theory method uses the index quantification and criterion integration
method to calculate the AUCWR, and the algorithm is relatively simple and easy to
calculate; the coevolutionary model method has clear ideas, but the calculation formula
is more complicated compared with the harmony theory, in which the whole calculation
process involves the gray correlation method and the calculation of Hemming distance,
which increases its calculation volume [50]. The evaluation index system and index weights
are consistent in the two methods, and the evaluation index threshold method is used
to a different extent in the two methods. In the harmony theory method, as long as the
quantification of each index relies on the index threshold, the final weighting is integrated
to obtain the final results, so the division of the index threshold has a greater impact on
the calculation results of the harmony theory to a certain extent; the comprehensive co-
evolutionary model method in which only the optimal value of the index threshold is used.
Therefore, the division of indicator thresholds has relatively less influence on the calculation
results of the comprehensive co-evolutionary model. Through comprehensive comparison
and analysis, the two calculation results are basically reliable, and each calculation method
has its own advantages. This paper evaluates the AUCWR in the TRB based on the two
methods, and the evaluation results are also basically in line with the reality.

6. Conclusions

The AUCWR in the TRB and its five prefectures is assessed using the harmony theory
method and the comprehensive co-evolutionary model method, and the key factors affect-
ing the AUCWR are analyzed, finally, the applicability of the two assessment methods are
discussed at the end. The following conclusions were drawn:

(1) The AUCWR in the TRB demonstrates a fluctuating upward trend from 2004 to 2018
(the harmony theory method assessment results: from 0.43 in 2004 to 0.56 in 2018,
with a growth rate of 30.23%; the comprehensive co-evolutionary model method
assessment results: from 0.37 in 2004 to 0.62 in 2018, with a significant increase of
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67.57%). The development trend is good, but the current level of AUCWR in the TRB
is still not high, and there is a lot of room for improvement.

(2) There are differences in the adaptability of subsystems in the TRB, mainly in that
the adaptability of the water resources subsystem changes less, the economic and
social subsystem increases significantly, and the ecological environment subsystem
indicates a decreasing and then increasing trend. The trend of subsystem adaptations
in BMAP, Aksu, KP, and HP is consistent with that of TRB, the adaptations of water
resources and economic and social subsystems are increasing, while the adaptations
of ecological environment subsystems are decreasing. While the adaptations of water
resources, economic and social subsystems, and ecological environment subsystems
in KP are increasing.

(3) By analyzing the factors, the change characteristics of each factor and the degree
of influence on the AUCWR are obtained. Among them, the indicators with large
changes from 2004 to 2018 are mainly: water consumption per 10,000 yuan of indus-
trial added value (I7), per capita domestic water consumption (I9), water consumption
of 10,000 yuan of GDP (I6), per capita net income of rural residents (I14), per capita
GDP (I10), per capita disposable income of urban residents (I13), ecological environ-
ment water consumption rate (I21), and fertilizer application intensity (I25). While the
analysis of the barrier degree model obtained that the economic and social subsystem
had the largest barrier degree with a mean value of 51.45% at subsystem level. From
the perspective of indicators, indicators such as per capita GDP (I10), the proportion
of non-agricultural output value in GDP (I11), per capita net income of rural residents
(I14), population density (I16), and water popularization rate of urban population (I18).
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Abstract: The evaluation of regional water-saving level can provide scientific theoretical support
for steadily promoting the implementation of a national water-saving priority strategy. Referring to
the water consumption statistics of 31 provinces (except Hong Kong, Macao and Taiwan) in China
in 2018, 14 easily accessible and comprehensive indexes were selected to establish an index system
of regional water-saving level and a water-saving level evaluation model based on support vector
machine optimized by genetic algorithm (GA-SVM) was constructed to analyze the national regional
water-saving level from different perspectives. The results showed that the water-saving level in
China presented a spatial distribution characteristic with Beijing City, Henan Province and Zhejiang
Province as the center and gradually decreased outward. From the perspective of regionalization,
the water-saving level in North China, Central China and Southeast China was higher, while the
water-saving level in Northwest China, Southwest China and Northeast China need to be improved.
Therefore, the national water-saving level is generally at a medium level and effective water-saving
work and water-saving schemes should be carried out according to different regions and industries.

Keywords: genetic algorithm; support vector machine; index system; water-saving level

1. Introduction

Water, as a resource, is an indispensable and irreplaceable natural resource for individ-
uals, society and even the whole earth. However, with the development and progress of
human society and science and technology economy, available water resources are decreas-
ing. Since the 1980s, China’s urbanization construction and social economic development
process have been restricted by the shortage of water resources. Water saving and emission
reduction are the only ways to reduce the consumption of limited water resources and
maximize the benefits of available water resources [1]. In 2014, General Secretary Xi Jinping
proposed “water saving priority” as the primary theoretical content in the 16-character new
period water control work idea [2]. The evaluation of water-saving level is a basic link in
the national priority water-saving strategy. Carrying out research on regional water-saving
level evaluation can provide a theoretical basis and technical support for the scientific
guidance of water-saving priorities and steady promotion of water-saving measures [3].

In foreign countries, initial studies on water-saving evaluation did not carry out com-
prehensive evaluations, but evaluated water-saving level from different fields, including
efficient farmland irrigation, total water consumption control for industrial production, ur-
ban domestic water and water-saving management. American scholars Ben and Sammis [4]
evaluated agricultural water-saving potential and regional evapotranspiration under a drip
irrigation system through comparative experiments in 1975. In 1988, Thompson et al. [5]
studied and analyzed the level of industrial water saving by using the industrial water
consumption index and concluded that increasing the reuse rate of industrial wastewater
could improve the reuse rate of industrial water. In 2016, French scholar Rinaudo [6]
proposed the tradable water-saving certificate system to improve the efficiency of water
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resource allocation among drinking-water enterprises in the basin. Although this model
still has some improvements, it has a certain promotion effect on the development of urban
water saving.

The evaluation of water-saving level in China began at the end of the 20th century.
Some scholars carried out research on urban water saving in terms of water consumption
index, water-saving efficiency and water shortage [7]. Meanwhile, some achievements have
also been made in efficient farmland irrigation, total water control for industrial production
and water-saving management [8–10]. There are not only regional water-saving level
evaluations for provincial, municipal and county administrative regions [11], but industry
(product) water-saving level evaluation for enterprises, communities, schools, products
and other specific water users [12]. The evaluation method evolved from the original single
index evaluation method, including mean multi-variable index evaluation, single variable
index evaluation and subjective index evaluation to multi-index comprehensive evaluation
method, including “pressure state response” (PSR) model, analytic hierarchy process, order
relation analysis, fuzzy comprehensive evaluation and technique for order preference by
similarity to ideal solution (TOPSIS) method [13,14]. Traditional evaluation methods have
certain subjectivity and cumbersome calculations and the evaluation factors are relatively
limited. When the data are too complicated, it is difficult to reflect the comprehensive
characteristics of high-dimensional data, while machine learning theory, such as support
vector machine, has good learning ability and generalization in dealing with nonlinear,
nonlocal and nonconvex high-dimensional problems by constructing scientific and objective
general function [15]. At present, the evaluation research on water-saving level mainly
focuses on the analysis of water-saving level of a single industry or a single region. On
the contrary, there are few studies on the water-saving level of a national region as well as
water-saving level research models.

On the basis of the existing research, a representative, independent, comparable and
operable evaluation index system was constructed in this paper. Taking the machine
learning model and intelligent algorithm as a theoretical basis, a national regional water-
saving level evaluation method based on a genetic algorithm optimized by support vector
machine is proposed, and the water-saving level is analyzed from different regions, different
indexes and factors affecting the water-saving level. The research results are expected to
provide new theoretical ideas for the scientific research and development of regional
water-saving level evaluation.

2. Methods
2.1. Establishment of Evaluation Index System

China’s water-saving problems can be mainly divided into five categories, including
comprehensive problems, industrial water-saving problems, agricultural water-saving
problems, domestic water-saving problems and water-saving management problems [16].
In accordance with the requirements of total amount control, efficiency control and emis-
sion reduction control, the library of alternative indexes for water-saving evaluation was
established based on scientific and systematic principles.

To screen the water-saving level evaluation indexes suitable for this paper from the li-
brary of alternative indexes, we first consulted the relevant national, industry, and collective
standards and regulations, including “The 13th Five-Year Plan for Building a Water-saving
Society” [17], “National Festival Water Action Plan” [18] and “Water-saving Society Evalua-
tion Index System and Evaluation Method” [19] to ensure the authority and reliability of the
indexes. Secondly, quantitative indexes are adopted as far as possible to make qualitative
evaluation on water-saving problems that cannot be easily quantified. Finally, combined
with the requirements of representativeness, independence, comparability and operability,
the evaluation indexes of water-saving level were sorted out and simplified from the five
perspectives of comprehensive water saving, industrial water saving, agricultural water
saving, urban water saving and water-saving management. Fourteen evaluation indexes
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that have great influence on regional water-saving level are obtained and the constructed
water-saving level evaluation index system is shown in Table 1.

Table 1. Comprehensive evaluation index system of regional water-saving level.

Index Type Index Unit Evaluation
Direction

Comprehensive
evaluation index

of regional
water-saving level

Comprehensive
water-saving

indicators

Total water consumption
control degree (A1) % The smaller the better

Water consumption per ten
thousand yuan GDP (A2) m3/ten thousand yuan The smaller the better

Decline rate of water
consumption per ten thousand

yuan of GDP (A3)
% The bigger the better

Ratio of unconventional water
resource consumption (A4) % The bigger the better

Industrial
water-saving

indicators

Water consumption per ten
thousand yuan of industrial

added value (B1)
m3/ten thousand yuan The smaller the better

Utilization rate of water for
irrigation (B2) % The bigger the better

Agricultural
water-saving

indicators

Efficient utilization coefficient
of irrigation water (C1) Dimensionless The bigger the better

Proportion of high-efficiency
water-saving

irrigation area (C2)
% The bigger the better

Water-saving
indicators for urban

life

Leakage rate of urban public
water supply

pipe network (D1)
% The smaller the better

Penetration rate of
water-saving appliances (D2) % The bigger the better

Centralized rate of urban
sewage treatment (D3) % The bigger the better

Water-saving
management

indicators

Plan water rate (E1) % The bigger the better
Installation rate of metering

facilities (E2) % The bigger the better

Standard quota timeliness (E3) Dimensionless The bigger the better

2.2. Evaluation Method of Water-Saving Level Based on Genetic-Algorithm-Optimized Support
Vector Machine

In 1995, support vector machine (SVM) was proposed by Vapnik and other scholars to
analyze nonlinear regression and classification problems [20] and was later widely used
in industrial production, health care, urban development and other fields. The core of
support vector machine is support vector and its basic principle is to construct an optimal
hyperplane in the high-dimensional space as the boundary of sample classification to
ensure the distance from each sample to this boundary can be maximized and then the
global optimal solution can be obtained [21].

In this paper, the 68 data samples collected were randomly divided into 37 training set
samples and 31 test set samples. The input of the SVM model is the sample set xi of each
water-saving index and the output of the model is the water-saving classification level yi.
The two-dimensional sample set xi is converted into the high-dimensional space ϕ(x) for
processing and the classification function is constructed as follows:

f (x) = sign(ω∗·ϕ(x) + b∗) (1)

where ω∗ is the weight vector and b∗ is the classification threshold.
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Considering the maximization of the interval between the sample set and the classi-
fication hyperplane and the fitting error, the problem of maximization for the interval is
transformed into the problem of minimizing objective functions ω∗ and b∗ by introducing
penalty factor C, relaxation factor ξi and relaxation factor ξ∗i .





min
{

1
2‖ω∗‖2 + C

l
∑

i=1

(
ξi + ξ∗i

)}

s.t.





f (x)−ω∗·ϕ(x)− b∗ ≤ ξi
ω∗·ϕ(x) + b∗ − f (x) ≥ ξ∗i

ξi, ξ∗i ≥ 0





(2)

By adopting Lagrange multiplier method, the dual form of the objective function
is obtained:





min

{
l

∑
i=1

yi
(
αi − α∗i

)
− 1

2

l
∑

i,j=1

(
αi − α∗i

)(
αj − α∗j

)
K
(
xi, xj

)
}

s.t.
l

∑
i=1

(
αi − α∗i

)
= 0, 0 ≤ αi, α∗i ≤ C, i = 1, 2, 3 . . . l





(3)

where αi and α∗i are Lagrange multiplier factors ad K
(
xi, xj

)
is the RBF kernel functions.

K
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
= exp

(
−γxi − xj

2
)

(4)

where γ is the kernel function parameter γ = 1
2σ2 and ‖xi − xj‖ is the Euclidean norm.

The value of the model parameters will affect the results and accuracy of the model
and the penalty factor γ and the kernel parameter γ are important parameters in SVM
classifier. Since the learning function of SVM does not have a clear functional relationship
with model parameters, traditional support vector machines adopt cross-validation or
reliance on experience to determine relevant parameters, but the effect is not ideal and
there is a certain degree of subjectivity and blindness. To make SVM achieve the highest
mathematical analysis accuracy, genetic algorithm is applied to optimize the important
parameters to improve the accuracy of SVM classifier. Genetic algorithm was first proposed
by Professor Holland in 1975. It is an intelligent algorithm based on Darwinian evolution
theory to obtain the optimal solution of the problem by simulating the biological evolution
process [22]. The main process is to transform the mathematical solution process into an
artificial evolution model, including individual selection, crossover, mutation and other
operations [23]. Through continuous iterative calculation, the goal is comprehensively
searched and then the optimal solution for the model is obtained.

The steps of water-saving level classification based on genetic-algorithm-optimized
support vector machine are as follows and a flow chart is shown in Figure 1:

(1) Extraction of sample data.

The data for 14 indexes from 68 groups of the samples were extracted to obtain the
distribution of the same index from different samples and the samples of training set and
test set were selected.

(2) Data preprocessing.

Different indexes have different dimensions. To achieve the standardization and
practicability of the sample data, normalized calculations were made on the original data.

x∗ =
x− xmin

xmax − xmin
(5)

where x is the measured value and x∗ is the processed value.

(3) Genetic algorithm optimization.
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In the training process of water-saving level classification based on support vector
machine, genetic algorithm was introduced to obtain the optimal parameters. The new
population group is obtained by selecting, crossover, mutation and other operations for each
individual population. When the fitness of the new population group or the classification
accuracy meets the stop condition, the iteration process is stopped and retreated and the
optimal penalty factor and the kernel parameters with the highest fitness are obtained.

(4) Classification of the test set based on optimal parameters.

The optimal parameter [C, γ] was substituted into RBF kernel function and GA-SVM
water-saving level classification model. The output classification results included the
actual classification of test set and the optimal classification based on GA-SVM and the
classification accuracy was calculated.

Figure 1. Genetic-algorithm-optimized support vector machine water-saving level classification
flowchart.

3. Case Analysis
3.1. Data Sources

The data in the paper are extracted from the “China Water Resources Bulletin”, “China
Statistical Yearbook”, “China Urban and Rural Construction Statistical Yearbook” and
“China Water Statistics Yearbook” and the most stringent water resource management sys-
tem assessment and publication statistics of each province (region, city) in 2018, from which
the relevant data of 14 indexes in 31 provinces (autonomous regions and municipalities)
in 2018 are obtained to carry out the example application of regional water-saving level
evaluation.

3.2. Evaluation Index Analysis

To intuitively analyze the commonality and difference in indexes in different provinces,
a scatter distribution diagram of each indicator data is drawn in Figure 2.

As can be seen from Figure 2, the distribution of the five indexes, including total
water consumption control degree (A1), the decline rate of water consumption per 10,000
yuan of GDP (A3), water consumption per 10,000 yuan of industrial added value (B1),
water consumption per 10,000 yuan of GDP (A2) and leakage rate of urban public water
supply pipe network (D1), is relatively concentrated, with average values of 87.3%, 22.3%,
43.4 (m3/10,000 CNY), 94.9 (m3/10,000 CNY) and 14.9%, respectively. The five indexes of
most provinces (autonomous regions, municipalities) are at a better level. The distribution
of the proportion of high-efficiency water-saving irrigation area (C2), the reuse rate of
industrial water (B2), the penetration rate of water-saving appliances (D2), the installation
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rate of metering facilities (E2), the planned water consumption rate (E1) and the centralized
treatment rate of urban sewage (D3) are scattered. The differences in the indexes between
the maximum value and the minimum value are large. For example, the maximum value
of industrial water reuse rate is 95.8%, the minimum value is 18.3%, the maximum value of
efficient water-saving irrigation area is 95.54%, the minimum value is 2.51%, the maximum
value of planned water use rate is 97.26%, the minimum value is 1.2%, indicating that there
are great differences in water-saving work in industry, agriculture and urban life among
provinces (regions, cities). It is worth noting that the utilization ratio of unconventional
water (A4) and the effective utilization coefficient of farmland irrigation water (C1) are
relatively concentrated, with an average value of 2.7% and 0.54, respectively, but both of
them are at a low level.

Figure 2. Scattered distribution chart of each indicator (The explanation of A1–D3 is shown in
Table 1).

Referring to the standards for building water-saving societies in counties (Water
Resources [2017] No. 184), “Technical Guidelines for Evaluation of Water-saving Commu-
nities” and “Urban Water-saving Evaluation Standards” [24], the threshold division of the
indexes at each level is determined (Table 2) and then a quantitative distribution diagram
of provinces (autonomous regions and municipalities) at different levels of each index is
obtained (Figure 3).

Figure 3. The number of provinces (regions, cities) at different levels of each index.
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Table 2. Threshold division of each indicator at each level.

Index
Value Distribution of Each Level

High Level Higher Level Medium Level Lower Level Low Level

Total water consumption
control degree (%) 60~80 80~85 85~90 90~100 100~120

Water consumption per ten thousand
yuan GDP (m3/ten thousand yuan) 10~40 40~70 70~90 90~200 200~520

Decline rate of water consumption per
ten thousand yuan of GDP (%) 30~35 25~30 20~25 10~20 0~10

Ratio of unconventional water resource
consumption (%) 10~30 2.0~10 1.0~2.0 0.6~1.0 0~0.6

Water consumption per ten thousand
yuan of industrial added value (m3/ten

thousand yuan)
7~20 20~40 40~50 50~100 100~120

Utilization rate of water for irrigation (%) 90~100 80~90 60~80 40~60 15~40
Efficient utilization coefficient of

irrigation water 0.7~0.8 0.6~0.7 0.55~0.6 0.5~0.55 0.4~0.5

Proportion of high-efficiency
water-saving irrigation area (%) 70~100 40~70 20~40 10~20 0~10

Leakage rate of urban public water
supply pipe network (%) 0~13 13~14 14~15 15~20 20~30

Penetration rate of water-saving
appliances (%) 90~100 70~90 60~70 50~60 0~50

Plan water rate (%) 80~100 60~80 40~60 20~40 0~20
Installation rate of metering facilities (%) 90~100 80~90 70~80 50~70 0~50

Standard quota timeliness 2020 2019 2018 2016~2017 2014~2015
Centralized rate of urban sewage

treatment (%) 97~100 95~97 93~95 90~93 80~90

The results show that most of the provinces (autonomous regions and cities) are at the
medium or above level in terms of the eight indexes, including total water consumption
control degree (A1), the decline rate of water consumption per CNY 10,000 of GDP (A3),
water consumption per CNY 10,000 of industrial added value (B1), water consumption
per CNY 10,000 of GDP (A2), centralized rate of urban sewage treatment (D3), leakage
rate of urban public water supply pipe network (D1) and the installation rate of metering
facilities (E2). More than half of the provinces (autonomous regions and municipalities
directly under the central government) are at or below the primary level in terms of the
proportion of high-efficiency water-saving irrigation area (C2), the penetration rate of
water-saving appliances (D2) and the timeliness of standard quotas (E3). However, the
effective utilization coefficient of farmland irrigation water (C1) and the utilization ratio
of unconventional water sources (A4) are at a low level in most provinces (autonomous
regions and municipalities).

3.3. Evaluation Model Parameter Optimization Results

By searching, collecting and sorting out the relevant database information, a total
of 25 papers was queried and 22 groups of index data were sorted out. The relevant
research results covered six typical water-saving cities (region, city), which can be used
as an effective supplement to the water-saving-level evaluation data. Taking the collected
22 groups of index data and 15 groups of provincial (region, city) index data, a total of 37
sets of samples as the training set samples province (region, city) index data and 31 groups
of provincial (autonomous regions, municipalities) index data as the test set samples, the
relevant research in this paper was carried out.

The input of the model is water-saving index xi and the output of the model is
water-saving classification level yi , so the training sample set of 37 groups is
D = {(xi, yi)|i = 1, 2, . . . , l, l = 37}. In the water-saving-level evaluation model of GA-
SVM, the maximum genetic times of the population were set as 100, the population size
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was set as 20 and the variation range of parameters C and γ was between 0 and 100. In the
iterative process of genetic algorithm, the fitness of individual population is the classifica-
tion accuracy [25]. When the classification accuracy is the highest, 1 and 2 are the optimal
parameters. As can be seen from Figure 4 for the genetic algorithm iteration, the optimal
accuracy rate has been improved four-times and finally stabilized at 97.2973%. In this case,
the optimal parameter value is obtained, C = 3.7053, γ = 0.61817.

Figure 4. Genetic algorithm iteration graph.

3.4. Results Discussion
3.4.1. Analysis of Water-Saving Level in Various Provinces

The normalized data for 31 test sets were substituted into the algorithm program of
GA-SVM to complete the classification and evaluation of water-saving level in provinces
(regions, cities), as shown in Figure 5.

Figure 5. GA-SVM algorithm program result graph.
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According to Figure 5, the classification results for water-saving levels in provinces
(autonomous regions and municipalities) can be obtained. In China, there are 3 higher-level
provinces (autonomous regions and municipalities), 10 high-level provinces, 6 medium-
level provinces, 11 lower-level provinces and 1 low-level province. The spatial distribution
characteristics of water-saving levels in all provinces (regions and cities) are shown in
Figure 6.

Figure 6. Spatial distribution characteristics of regional water-saving levels in China.

From Figure 6, more than half of China’s provinces (autonomous regions and cities)
are above the medium level, accounting for 61.3% of the total, and few provinces (au-
tonomous regions and cities) reach the low level or high level. Generally speaking, the
water-saving level in China presents the spatial distribution characteristics with Beijing,
Henan and Zhejiang Province as the center and gradually decreases outward. Beijing, as
a super-large city with a high economic level, and Henan Province, as a province with
a large population in China [26], have made great progress in water saving by further
strengthening water-saving management, implementing the national priority policy of
water saving, promoting the development of water saving and vigorously achieving the
sustainable utilization of water resources [27]. Zhejiang Province, located in the southeast
coastal area, with abundant rainfall and sufficient water resources per capita, attaches
great importance to water saving and pollution control and develops non-traditional water
resources to improve water-saving level. There are many rivers in Tibet, but most of the
rivers are intermittent [28]. The utilization rate of water resources in Tibet is extremely
low and the waste phenomenon is extremely serious; the area is vast but the population is
sparse and water-saving technologies and funds are scarce, making it the only low-level
water-saving area.
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3.4.2. Analysis of Water-Saving Level by District

According to the “13th Five-Year Plan” for the construction of water-saving society [29],
the national water-saving work is divided into six regions, including Northeast, Southwest,
North China, Central China, Northwest and Southeast. Based on this, the water-saving
level in the six regions is determined (Figure 7).

Figure 7. Spatial distribution of regional water-saving levels by district.

As a whole, North China, Central China and Southeast China have high economic
levels, dense population and a large amount of water resources. Therefore, all provinces
and autonomous regions should insist on giving priority to conservation [30], aiming
at promoting water saving through structural adjustment to improve water-saving effi-
ciency and keep the water-saving level at medium or above. In Southwest China, Guangxi,
Chongqing and Yunnan provinces have complex terrain structure and abundant regional
water resources [31]. However, the economic and social development is relatively backward
and the water-saving level is low, so there is great potential for water saving. In view of
the characteristics of regional resources and the disadvantages of water-saving work, it is
necessary to strengthen the promotion of water-saving work to promote the sustainable de-
velopment of water resources. Due to the impact of geographical environment, Northwest
China is faced with the problems of water shortage and ecosystem imbalance [32] and the
backward economy also restricts water-saving management. Compared with the North-
west regions, Jiangsu, Jiangxi and Hunan provinces in the Southern region have abundant
water resources, but the regional and seasonal drought and water pollution problems are se-
rious. Therefore, there is a lot of room for improvement in the construction of water-saving
society in the south. Different regions have different priorities for promoting water-saving
work, so each region should summarize the restrictive factors in the process of promoting
water-saving work and formulate water-saving work implementation plans in combination
with natural geographical conditions and socio-economic development characteristics.

3.4.3. Analysis of Factors Affecting Water-Saving Level

According to the analysis of evaluation indexes, it can be seen that the utilization
ratio of unconventional water sources and the effective utilization coefficient of farmland
irrigation water have a great impact on regional water-saving level, as illustrated in Figure 8.
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From the perspective of the proportion of unconventional water sources, only North China
has a high water-saving level, while the water-saving level in the rest of the regions is
at a lower level. In case of a shortage of conventional water resources, most provinces
(autonomous regions and municipalities) must pay attention to the theoretical research and
engineering construction of unconventional water resources to increase the total utilization
of unconventional water resources. In terms of effective utilization coefficient of farmland
irrigation water, the vast majority of regions are at a low level, which indicates that most
regions in China have high water-saving potential for agricultural water use. Due to the
low cost of farmland irrigation at present, farmers’ awareness of water conservation is weak
and agricultural water-saving irrigation projects have not covered the whole country [33],
so water-saving benefits are always at a low level. Therefore, it is necessary to develop a
perfect legal system and implement high-efficiency water-saving irrigation technology to
promote the development of agriculture.

Figure 8. Low-level indicators district statistics chart.

4. Conclusions

Evaluation of the water-saving level is basic work in water resource planning, devel-
opment, utilization, protection and management. Scientific and objective evaluation results
can provide a decision-making basis for the sustainable utilization of resources and provide
technical support to steadily promote the implementation of water conservation. This
paper takes 31 provinces (region, city) in China (except Hong Kong, Macao and Taiwan) as
the research object, establishes an evaluation index system of water saving, constructs an
evaluation model of water-saving level based on the support vector machine optimized by
genetic algorithm and discusses the water-saving level in provinces (region, city) and the
factors affecting the water-saving level. The following preliminary conclusions are obtained:
in 2018, the water-saving level in China presented spatial distribution characteristics with
Beijing, Henan and Zhejiang Province as the center and gradually decreases outward; in
terms of regions, the water-saving level in North China, Central China and Southeast China
is relatively high, while the water-saving level in Northwest China, Southwest China and
Northeast China needs to be improved. However, the effective utilization coefficient of
farmland irrigation water and the proportion of unconventional water use have a relatively
high impact on regional water-saving level, so each province (autonomous regions and
municipalities) still needs to strengthen the water-saving level of unconventional water use
and high-efficiency agricultural irrigation. Considering natural resource conditions and
economic development, different regions should formulate water-saving construction plans
suitable for their own regions and strengthen the construction of water-saving supervision
systems and mechanisms to achieve the improvement in the level of water-saving in the
whole region.

172



Water 2022, 14, 2615

In terms of methods, the evaluation method of genetic algorithm optimization support
vector machine has good performance in water-saving level evaluation and it is applied in
China, a country with large regional differences in water-saving level, with high precision,
which can be used as a reference for water-saving level evaluation in other countries. In this
paper, only 14 evaluation indexes for 31 provinces (regions and cities) in 2018 are selected
for analysis. They are greatly influenced by sample time series and spatial sequence. In the
follow-up study, index data of different levels of multiple time series can be selected and
the regions refined to make the evaluation results more specific and effective.
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Abstract: How to better harmonize the relationship between humans and rivers is a global issue
of widespread concern at home and abroad, and science-based and integrated evaluation of rivers
themselves is crucial to river management. Based on Maslow’s hierarchy of needs and according to
the World Happiness Report and the 2030 Agenda for Sustainable Development, this paper argues
that a happy river is a river that can maintain its own health, support high-quality economic and
social development in the river basin and the region, reflect harmony between humans and water,
and give people in the river basin a high sense of security and the ability to gain and satisfaction.
This paper also analyzes happy rivers at five levels, including water security, water resources, water
environment, water ecology, and water culture, and develops the River Happiness Index (RHI) and
its indicator system, as well as assesses the overall river happiness in China’s 10 first-grade water
resource zones. The results show that China’s RHI is at a medium level, with flood control capacity
at a near-good level. On the grounds of the RHI evaluation results, the paper puts forward targeted
measures for river basin governance, and provides a systematic solution to national river protection
and governance.

Keywords: hierarchy of needs; connotation; RHI; indicator system; systematic solution

1. Introduction

Rivers nurtured material and spiritual civilizations of mankind, as well as played a
decisive role in the origin, spread, and development of the world’s civilizations [1]. As
the ecological health of rivers is closely linked to society, economy and environment, river
protection and restoration is a hot area of domestic and international research. What is the
relationship between humans and rivers, how to evaluate it, and how to better harmonize
the relationship between human and rivers is a global issue of widespread concern at home
and abroad.

European and American countries were the first to realize the importance of river
governance in the middle of the 20th century. The United States set up the River Restoration
Centre in the 1990s [2], which proposed the evaluation criteria for successful ecological
restoration of rivers [3]. European countries established the European Centre for River
Restoration (ECRR) and carried out a lot of work for river improvement and restoration,
such as in the Rhine, the Mississippi, and the Colorado [4–6]. The 2030 Agenda for
Sustainable Development, adopted in 2015, sets the goal of “ensuring availability and
sustainable management of water and sanitation for all”, calling on countries to take action
to protect and restore water-related ecosystems including rivers and lakes.

The Chinese government also attaches great importance to river basin governance and
ecological protection and restoration. China fully implemented the river and lake chief
system, and achieved initial results in six areas, including water resource conservation,
water shoreline management, water pollution control, water environment management,
water ecology restoration, and law enforcement [7–10]. On this basis, Beijing voiced

175



Water 2022, 14, 2568

the call to “make the Yellow River a happy river that benefits the people” in September
2019 [11]. The “Happy River” call, which builds itself upon a major national strategy
and takes into account the bigger picture, has higher requirements and rich connotations.
It is a new direction and requirement for river and lake governance in China, and also
the outcome of China’s long-standing experience, practices, theories, and techniques in
water management. It is not only of special importance to the Yellow River, but also of
significant reference value for other river basins [12]. The call is a Chinese approach to the
sustainable development agenda and a new path for river governance under the guidance
of sustainable development.

Most of the studies on rivers at home and abroad focus on the evaluation of river
health [13,14], and the indicators characterizing the health of rivers mainly measure water
quality, aquatic life, and water environment. At present, the main methods for river health
evaluation are predictive models and multimetrics. Predictive models, such as the River
Invertebrate Prediction and Classification System (RIVPACS) [15] and the Australian River
Assessment System (AUSRIVAS) [16], are river status evaluation models that monitor
the biodiversity and functionality of river invertebrates. As for multimetrics, the US
Index of Biological Integrity (IBI) [17] evaluates river health based on 12 indicators of
river fish species, such as richness, diversity, and nutrition types; the Index of Stream
Condition (ISCO) [18], developed by the Australian Department of Natural Resources
and Environment, evaluates river health and the long-term effectiveness of restoration
using 19 specific indicators in five categories, namely hydrology, physical form, riparian
zone, water quality, and aquatic life; the UK River Habitat Survey (RHS) [19] evaluates
the characteristics and habitat quality of a river by investigating channel data, the type of
vegetation structure, riparian zone characteristics, land use, and other indicators based on
the physical structure of the river. However, few of the indicators for river health evaluation
involve socioeconomic dimensions, and the evaluation criteria can hardly be determined.
Based on the concept of river health, the idea of building harmony between humans and
water was gradually formed in the research on Chinese river evaluation starting in 2004,
which posits that the human-water harmony is a well-coordinated virtuous cycle, and these
two systems influence and adapt to each other over time, and jointly promote the overall
harmonious development of human-water system [20]. Furthermore, an indicator system
following the Health-Development-Harmony (H-D-H) principle was developed to measure
the Human–Water Harmony Degree (HWHD) [21] and evaluate the effectiveness of river
governance by integrating water resources with economic and social indicators.

Therefore, the objective of this paper is to establish a more integrated river evaluation
system and clarify the complex relationship between human happiness and rivers. To this
end, based on the existing river evaluation methods, the paper analyzes the happy river
from the five levels of security, resources, environment, ecology, and culture, clarifies the
scientific connotation of the happy river, develops the River Happiness Index (RHI) and
its evaluation system, evaluates the overall situation of river happiness in 10 first-class
water resource zones in China, and puts forward suggestions for the popularization and
application of the RHI.

2. What Is a Happy River?

According to Maslow’s hierarchy of needs, humans have five levels of needs, namely
physiological needs, security and safety needs, social belonging needs, esteem needs, and
self-actualization needs, ranked from low to high [22]. A happy river is a river for the
benefit of the people, which matches the hierarchy of human needs (Table 1).
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Table 1. Hierarchical framework of a happy river.

Happy River
Indicators

Happy River Objectives Hierarchy of
Needs

Maslow’s Hierarchy
of NeedsVision Target

river of security A peaceful life with
secure rivers

Low disaster losses, strong defense
and high resilience

Basic level

Security and safety
needs

river of prosperity An affluent life with
reliable water supply

Good water resource endowment,
effectively guaranteed water use,

development not restricted by water
shortage, an affluent life

Physiological needs

river of livability
A livable environment
with clear waters and

green banks

Improving the water environment of
natural rivers and lakes;

increasing the environmental quality
of urban and rural water Higher level Social belonging needs

river of ecology
A symbiotic harmony
with fish swimming in

shallows

Maintaining river health;
achieving human–water harmony

river of culture
A spiritual homeland

with river civilizations

Respecting and protecting rivers;
promoting the prosperity, flourishing

and development of water culture,
passing on historical water culture,
and enriching the connotation of

modern water culture

Highest level

Esteem needs

Self-actualization needs

In the light of factors influencing and measuring human happiness in the first World
Happiness Report [23] released by the United Nations in 2012, the definition of a happy
river, which is “a river that can maintain its own health, support high-quality economic
and social development in the river basin and the region, reflect harmony between human
and water and give people in the river basin a high sense of security, gain and satisfaction”,
imposes stricter and more requirements on rivers [24]. A happy river is a river that meets
the five needs of the people, including flood security, quality water resources, livable water
environment, healthy water ecology, and advanced water culture, as well as achieves the
unity of security, prosperity, livability, ecology, and culture [25,26].

In 2015, the United Nations Sustainable Development Summit officially adopted
Transforming our world: the 2030 Agenda for Sustainable Development [27]. The agenda is
composed of 17 Sustainable Development Goals (SGDs) and 169 targets, among which
Goals 6, 9, 11, 13, and 15 are related to rivers (Table 2). As an integrated program for
sustainable development in the area of river protection and restoration, the happy river
indicator system is essentially consistent with the agenda.

Based on natural conditions and human needs, rivers that make humans happy should
be people-centered and observe the concept of respecting, living in harmony with, and
protecting nature; in other words, these rivers can maintain their own health, support high-
quality economic and social development in corresponding river basins, reflect harmony
between humans and water, and give people a high sense of security, gain, and satisfaction.
The RHI evaluation system is more integrated than previous river evaluation indicators
and theoretically innovative.

177



Water 2022, 14, 2568

Table 2. A comparison between happy river indicators and the SDGs.

Happy River
Indicators

SDGs

Goal Target

river of security

Goal 9. 9.1 Develop quality, reliable, sustainable, and resilient infrastructure.

Goal 11.
11.5 Significantly reduce the number of deaths and the number of people
affected and substantially decrease the direct economic losses caused by
disasters, including water-related disasters.

Goal 13. 13.1 Strengthen resilience and the adaptive capacity to climate-related hazards
and natural disasters.

river of prosperity Goal 6.

6.1 Achieve universal and equitable access to safe and affordable drinking
water for all.

6.4 Substantially increase water use efficiency across all sectors and ensure
sustainable withdrawals and supply of freshwater to address water scarcity
and substantially reduce the number of people suffering from water scarcity.

6.5 Substantially increase water use efficiency across all sectors and ensure
sustainable withdrawals and supply of freshwater to address water scarcity
and substantially reduce the number of people suffering from water scarcity.

river of livability Goal 6.

6.3 Improve water quality by reducing pollution, eliminating dumping, and
minimizing the release of hazardous chemicals and materials, halving the
proportion of untreated wastewater and substantially increasing recycling and
safe reuse globally.

river of ecology

Goal 6. 6.6 Protect and restore water-related ecosystems, including mountains, forests,
wetlands, rivers, aquifers, and lakes.

Goal 15.

15.1 Ensure the conservation, restoration and sustainable use of terrestrial and
inland freshwater ecosystems and their services, in particular forests, wetlands,
mountains, and drylands.

15.5 Take urgent and significant action to reduce the degradation of natural
habitats, halt the loss of biodiversity, and protect threatened species

A river of culture
Goal 6. 6.b Support and strengthen the participation of local communities in

improving water and sanitation management.

Goal 11. 11.4 Strengthen efforts to protect and safeguard the world’s cultural and
natural heritage.

3. Materials and Methods

Figure 1 shows the calculation process of the River Happiness Index evaluation system.

3.1. Indicator System

A happy river is a river of security, prosperity, livability, ecology, and culture. Hence,
this paper develops evaluation indicators from these five perspectives to give a more
complete and accurate evaluation of rivers, and proposes state indicators that characterize
human experience of happiness and river health, as well as indicators of capacity for
achieving or maintaining a good state (Figure 2).

1. Flood Control Capacity (FCC): FCC means the extent to which water disasters are
prevented and controlled. In line with the vision of “a peaceful life with secure rivers”,
FCC is characterized by state indicators, such as Flood-induced Mortality Rate (FMR),
Economic Loss Rate (ELR), and engineering and management capacity indicators,
such as Rate of flood control Works with Accepted capacity (RWA) and post-Disaster
Recovery Capability (DRC).

2. Water Resources Reliability (WRR): WRR means the capacity of water resources for
supporting sustainable economic and social development. In line with the vision of
“an affluent life with reliable water supply”, indicators such as Available Water volume
Per capita (AWP) and Water Supply Reliability (WSR) are selected to characterize the
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condition of water resources and the availability of water resources; indicators such
as Capacity for Supporting high-quality Development (CSD) and the Life Satisfaction
Index (LSI) are selected to characterize the extent to which development and happiness
are constrained by water resources.

3. Water Environment Livability (WEL): WEL refers to the degree of protection and
improvement of the water environment of natural rivers and lakes in urban and rural
areas. In line with the vision of “a livable environment with clear waters and green
banks”, WEL is characterized by state indicators, such as the Water Quality Index
(WQI), Qualification rate of surface centralized Drinking water Source (QDS), and the
Groundwater Protection Index (GPI), and experience indicators, such as the Water
Entertainment Index (WEI).

4. Aquatic Ecosystem Health (AEH): AEH refers to the extent to which the health of river
ecosystems is maintained and the quality and stability of river ecosystems is improved.
Given the vision of “a symbiotic harmony with fish swimming in shallows”, shrinking
rivers and lakes, wetland degradation and biodiversity decline remain weak links.
In this sense, AEH is characterized by indicators, such as the Rate of major rivers
and lakes with accepted Ecological Flow (REF), Natural aquatic Habitat Retention
rate (NHR), Index of Biological Integrity (IBI), and Soil and Water Conservation rate
(SWC) in terms of flow, habitat, biology and land area, respectively.

5. Water Culture Prosperity (WCP): WCP means the extent to which water culture is
promoted. In line with the vision of “a spiritual homeland with river civilizations”,
WCP is characterized by capacity indicators, such as the water Culture Protection and
inheritance Index (CPI) and the Modern water culture Creation and Innovation Index
(MCI), as well as human experience indicators, such as the Water Landscape impact
Index (WLI) and Public Awareness and Engagement in water governance (PAE).
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Figure 1. Flowchart of the RHI evaluation system.

In summary, indicators in the five dimensions, such as water security, water resources,
water environment, water ecology, and water culture are broken down into 20 second-
level indicators and 18 third-level indicators. See Table 3 for the framework of the RHI
indicator system.
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Figure 2. Framework of the RHI.

3.2. Assessment Criteria

The River Happiness Index (RHI) is an integrated index that reflects the capacity and
level of rivers and lakes to stay in good condition, meet human needs, or provide services,
and is specifically measured by five indicators, namely water security, water resources,
water environment, water ecology, and water culture. The RHI is calculated through the
following formulas:

RHI =
5

∑
i=1

Fiw
f
i (1)

Fi =
4

∑
j=1

Si,jws
i,j (2)

Si,j =
K

∑
k=1

Ti,j,kwt
i,j,k (3)

where, RHI means River Happiness Index; Fi is the score of the first-level indicator i, i is
the subscript of the first-level indicator, which ranges from 1 to 5, indicating FCC, WRR,
WEL, AEH, and WCP, respectively; w f

i is the weight of the first-level indicator i; Si,j is
the score of the second-level indicator j of the first-level indicator i, j is the subscript of
the second-level indicator, which ranges from 1 to 4; wS

i,j is the weight of the second-level
indicator j of the first-level indicator i; Ti,j,k is the score of the third-level indicator k of the
second-level indicator j of the first-level indicator i, and k is the subscript of the third-level
indicator, which ranges from 1 to K; and wt

i,j,k is the weight of the third-level indicator k of
the second-level indicator j of the first-level indicator i.

The RHI is scored on a 100-point scale. A RHI score of 85 points or above indicates
a “happy river/lake” (Table 4). If indicators at all levels score 85 points or above, then a
river/lake is in a good state (Table 5).
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Table 3. Indicator system of the RHI.

First-Level
Indicator Second-Level Indicator Third-Level Indicator

Nature of Indicator

State Indicator
Capacity
IndicatorRiver

Health
Human

Experience

Security of Flood
Control (SFC)

1. Flood-induced Mortality Rate
(FMR) -

√

2. Economic Loss Rate (ELR) -
√

3. Rate of flood control Works with
Accepted capacity (RWA)

Rate of Accepted Dikes (RAD)

√Rate of Accepted Reservoirs
(RAR)

Rate of Accepted flood detention
Basins (RAB)

4. post-Disaster Recovery
Capability (DRC) -

√

Water Resources
Reliability (WRR)

5. Available Water volume Per
capita (AWP) -

√

6. Water Supply Reliability (WSR)
Water Supply Coverage (WSC) √
Rate of actual Irrigated Areas

(RIA)

7. Capacity for Supporting
high-quality Development (CSD)

Water resources Utilization Rate
(WUR) √

GDP Output per cubic meter of
Water use (GOW

8. Life Satisfaction Index (LSI)

GDP Per Capita (GPC)
√

Engel’s Coefficient (ENC)

Average Life Expectancy (ALE)

Water
Environment

Livability (WEL)

9. Water Quality Index (WQI)
(River water Quality Index (RQI) √

Rate of Eutrophic Lakes and
reservoirs (REL)

10. Qualification rate of surface
centralized Drinking water Source
(QDS)

-
√

11. Groundwater Protection Index
(GPI) -

√

12. Water Entertainment Index
(WEI) -

√

Aquatic Ecosystem
Health (AEH)

13. Rate of major rivers and lakes
with accepted Ecological Flows
(REF)

-
√

14. Natural aquatic Habitat
Retention rate (NHR)

Retention Rate of Waters (RRW) √
River longitudinal Connectivity

Index (RCI)

15. Index of Biological Integrity
(IBI) -

√

16. Soil and Water Conservation
rate (SWC) -

√

Water Culture
Prosperity (WCP)

17. water Culture Protection and
inheritance Index (CPI)

water Heritage Protection
capacity Index (HPI)

√

Historical water culture
Communication Capacity (HCC)

18. Modern water culture Creation
and Innovation Index (MCI) -

√

19. Water Landscape impact Index
(WLI) -

√

20. Public Awareness and
Engagement in water governance
(PAE)

public Awareness Rate of Water
(ARW) √

public Engagement Rate in
Water governance (ERW)
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Table 4. Grading standard for the RHI.

RHI Grade

RHI ≥ 95 Very happy

95 > RHI ≥ 85 Happy

85 > RHI ≥ 60 Medium

85 > RHI ≥ 80 Medium high

80 > RHI ≥ 70 Middle medium

70 > RHI ≥ 60 Medium low

RHI < 60 Unhappy

Table 5. Grading standard for evaluation indicators of the RHI.

Score of Indicator V * Grade

V ≥ 95 Excellent

95 > V ≥ 85 Good

85 > V ≥ 60 Medium

85 > V ≥ 80 Medium high

80 > V ≥ 70 Middle medium

70 > V ≥ 60 Medium low

V < 60 Poor
60 > V ≥ 30 Poor

V < 30 Very poor
* V indicates Fi, Si,j or Ti,j,k.

3.3. Indicator Weight Calculation and Evaluation Method

The evaluation method involves five steps:

1. Determine the benchmark value of each indicator. The benchmark values are deter-
mined in line with national policies, economic and social development plans, spatial
plans of national land, and technical standards; comprehensive and special plans for
river basins; advanced levels at home and abroad; and research results of authoritative
organizations and research institutes at home and abroad.

2. Calculate the value of each indicator. The values are calculated according to relevant
statistical yearbooks, field survey data, and plans.

3. Determine the weight of each indicator. The weights are determined by taking into
account the characteristics of river basins, socioeconomic conditions, and the opinions
of the people. Weights of first-level and second-level indicators are listed in Table 6,
which are mainly determined by the expert comprehensive evaluation method. The
weights were initially determined by 24 experts and scholars present through a
questionnaire, then validated by another 35 experts.

4. Produce the RHI score. The score of each indicator is calculated by multiplying the
value of each indicator by its weight and the sum of the scores of all indicators is the
RHI score.

5. Determine the grade of the RHI according to the grading standards for the RHI.

3.4. Data

With 2019 selected as the research year, this paper studies China’s 10 first-grade
water resource zones, including the Songhua River, the Liaohe River, the Haihe River, the
Yellow River, the Huaihe River, the Yangtze River, the Taihu Lake, southeastern rivers, the
Pearl River, southwestern rivers, and northwestern rivers, and calculates the values of
the indicators by reference to relevant statistical yearbooks, field survey data, and plans
(Table 7).
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Table 6. Weights of first-level and second-level indicators of the RHI.

First-Level Indicator Second-Level Indicator Weight

Security of Flood
Control (SFC)

1. Flood-induced Mortality Rate (FMR)

0.25

0.30

2. Economic Loss Rate (ELR) 0.30

3. Rate of flood control Works with Accepted capacity (RWA) 0.30

4. post-Disaster Recovery Capability (DRC) 0.10

Water Resources
Reliability (WRR)

5. Available Water volume Per capita (AWP)

0.25

0.20

6. Water Supply Reliability (WSR) 0.30

7. Capacity for Supporting high-quality Development (CSD) 0.25

8. Life Satisfaction Index (LSI) 0.25

Water Environment
Livability (WEL)

9. Water Quality Index (WQI)

0.20

0.30

10. Qualification rate of surface centralized Drinking water Source
(QDS) 0.30

11. Groundwater Protection Index (GPI) 0.20

12. Water Entertainment Index (WEI) 0.20

Aquatic Ecosystem
Health (AEH)

13. Rate of major rivers and lakes with accepted Ecological Flows
(REF)

0.20

0.30

14. Natural aquatic Habitat Retention rate (NHR) 0.25

15. Index of Biological Integrity (IBI) 0.20

16. Soil and Water Conservation rate (SWC) 0.25

Water Culture Prosperity
(WCP)

17. water Culture Protection and inheritance Index (CPI)

0.10

0.25

18. Modern water culture Creation and Innovation Index (MCI) 0.25

19. Water Landscape impact Index (WLI) 0.25

20. Public Awareness and Engagement in water governance (PAE) 0.25

Table 7. Indicator calculation methods and sources of data.

Criterion
Layer Indicator Layer Calculation Method Source

FDS

FMR The number of flood-induced deaths and missings/total population, ppm
Bulletin of Flood and

Drought Disasters in ChinaELR Direct economic losses from flood disasters/regional GDP during the
same period, %

RWA

RAL The length of main stream dikes that meet flood control standards set forth
in relevant plans/total length of planned main stream dikes, %

Reports on comprehensive
planning for river basins

PAR The number of reservoirs working well in flood control/total number of
planned reservoirs, %

PAD
The number of flood detention basins working well in flood discharging,
storage and detention/total number of planned flood detention basins in

the river basin, %

DRC The capacity for restoring post-disaster production and life to an orderly
state according to experts River basin authorities

RWR

AWP Water resources per capita, m3/per China Water Resources
Bulletin

WSR
WSC The number of population having access to tap water/total population, %

China Urban-Rural
Construction Statistical

Yearbook

PIA Actual irrigation area/farmland irrigation area, % China Water Statistical
Yearbook

CSD
WER Water supply/total water resources, %

China Water Resources
BulletinGOW GDP/water consumption, RMB/m3
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Table 7. Cont.

Criterion
Layer Indicator Layer Calculation Method Source

LSI

GDP GDP in the river basin/population in the river basin, %

ENC Total food expenditures/total personal consumption expenditures, % China Statistical Yearbook

ALE The average age at death of the entire live-born population, year China Health Statistical
Yearbook

LWE

WQI
RQI The length of rivers with Class III water quality and above/the length of

rivers evaluated, %

China Water Resources
BulletinPEL The number of eutrophic lakes and reservoirs/the number of lakes and

reservoirs evaluated, %

QDS The number of qualified surface centralized drinking water sources/total
number of surface centralized drinking water sources, %

GPI Total regional shallow groundwater withdrawal/total regional allowable
groundwater withdrawal, %

Data from national water
resources survey and

evaluation

WEI The number of national water parks per 100,000 km2 of area

HAE

REF The number of control sections (points) meeting the ecological flow
target/the number of sections (points) evaluated, %

Comprehensive planning of
water resources

NHR
SAR Water space area/historical reference area, % Results of remote sensing

interpretation of land use

LCI Barrier coefficient × position correction factor/the length of the river Outcomes of national water
censuses

IBI Index of Biological Integrity (IBI)/the number of cases National river and lake
health assessment

SWC Land area of mild soil erosion or below/land area evaluated, %
National dynamic

monitoring of water and
soil loss

PWC

CPI

HPC
(The number of provincial heritage sites + 2 × the number of national

heritage sites + 5 × the number of world heritage sites)/drainage
area/100,000 km2

Relevant heritage lists

CDC
(2 × the number of national museums or bases + the number of provincial

museums or bases)/drainage area/100,000 km2

MCI
(2 × the number of national (laws and regulations + standards + awards +
patents for invention) + the number of provincial (laws and regulations +
standards + awards + patents for invention))/drainage area/100,000 km2

WLI
(5 × (the number of world-class) + 2 × (the number of national) natural

heritage water parks + the number of provincial (wetland parks + national
parks))/population in the river basin

Natural heritage lists

PAE

ARW public Awareness Rate of Water (ARW)/reference value Public water awareness
questionnaires

PER public Engagement Rate in Water governance (ERW)/reference value
Special survey reports on

public engagement in water
governance

4. Results
4.1. Flood Control Capacity (FCC)

FCC scores 84.9 points nationwide, which is at a medium-high level. The overall
flood control capacity nationwide is: the overall RWA reached a medium-high level, and
although DRC is still at a medium level, the impact of floods on the security of lives and
properties of the people along the rivers was significantly reduced. Nationally, the sense of
security of the people along the rivers was effectively guaranteed, laying a foundation for
achieving the vision of “a peaceful life with secure rivers”.

FCC evaluation results for the first-grade water resource zones are shown in Figure 3.
Specifically, FCC scores for the Taihu Lake, the Yellow River, the Huaihe River, the Songhua
River, and the Yangtze River all exceed 85 points, reaching a good level, and exceed
80 points for the Pearl River, the Haihe River, the Liaohe River, southeastern rivers, and
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northwestern rivers, staying at a medium-high level. Southwestern rivers score less than
80 points on FCC, representing a medium level.
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Figure 3. FCC evaluation results for China’s first-grade water resource zones.

4.2. Water Resources Reliability (WRR)

WRR scores 77.1 points nationwide, which is generally at a medium level. The overall
water resource reliability nationwide is: AWP stands at a medium-high level against
the international warning line for water shortage, WSR is at a good level, and WUR is
well below 40%, but water resources are unevenly distributed across regions, which is
incompatible with population distribution and allocation of productive forces; the level of
water conservancy is yet to be further improved, and there is a clear gap in GDP Output
per cubic meter of Water use (GOW) compared with high-income countries; and CSD is
generally at a medium-low level. Continuing to play the basic role of happy rivers and
lakes to achieve the vision of “an affluent life with reliable water supply” is still on the way.

WRR evaluation results for the first-grade water resource zones are shown in Figure 4.
In general, scores in the north are lower than in the south. Specifically, scores for the Yellow
River, the Haihe River, the Huaihe River, northwestern rivers, and the Liaohe River are all
below 70 points, at a medium-low level. Scores for southeastern rivers and the Taihu Lake
are higher than 80 points, reaching a medium-high level.

4.3. Water Environment Livability (WEL)

WEL scores 70.4 points nationwide, which is generally at a medium level. The overall
water environment livability nationwide is: the water quality of rivers generally reaches a
good level and QDS is at a near-good level, but groundwater resources are poorly conserved,
lakes and reservoirs are seriously eutrophic and there is a gap between the environment of
urban and rural waters closely related to people’s daily life and their water entertainment
demand. The vision of “a livable environment with clear waters and green banks” is still
far away.

WEL evaluation results for the first-grade water resource zones are shown in Figure 5.
Specifically, southeastern rivers score 90.7 points, performing best and reaching a good level;
both the Yangtze River and southwestern rivers score 80+ points, staying at a medium-high
level; the Pearl River and northwestern rivers score 70–80 points, at a medium level; the
Taihu Lake, the Yellow River and the Huaihe River score 60–70 points, at a medium-low
level; while the Songhua River, the Haihe River, and the Liaohe River score less than
60 points, at a poor level.
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Figure 4. WRR evaluation results for China’s first-grade water resource zone.
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Figure 5. WEL evaluation results for China’s first-grade water resource zones.

4.4. Aquatic Ecosystem Health (AEH)

AEH scores 74.1 points nationwide, which is generally at a medium level. The overall
aquatic ecosystem health nationwide is: owing to fruitful water and soil conservation
efforts, SWC reaches a good level, and under the support of steady guarantee for ecological
flows and management through the river/lake chief system, REF generally improved to a
medium level; however, both NHR and IBI are still at a medium-low level. The quality and
stability of river and lake ecosystems should be systematically improved before the vision
of “a symbiotic harmony with fish swimming in shallows” can be achieved.

AEH evaluation results for the first-grade water resource zones are shown in Figure 6.
Southwestern rivers and the Songhua River score 85+ points, the highest among the first-
class water resource zones, reaching a good level; scores for the Taihu Lake, the Pearl
River, the Yangtze River, southeastern rivers, the Huaihe River, and northwestern rivers
fall between 70 and 80 points, all at a medium level; the Liaohe River and the Haihe River
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score 60–70 points, both at a medium-low level; the Yellow River scores 56.8 points, the
lowest, at a poor level.
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Figure 6. AEH evaluation results for China’s first-grade water resource zones.

4.5. Water Culture Prosperity (WCP)

WCP scores 77.0 points nationwide, which is generally at a medium level. The overall
water culture prosperity nationwide is: China boasts a profound historical background of
water culture, which represents a precious treasure for achieving the vision of “a spiritual
homeland with river civilizations”; however, both CPI and MCI are low, and PAE, which
indicates the respect for and protection of rivers, is generally low and still at a medium
level relative to people’s increasing demand for cultural life, which is yet to improve.

WCP evaluation results are shown in Figure 7. Scores for the Yangtze River, the
Yellow River, the Huaihe River, southeastern rivers, the Pearl River, and the Taihu Lake all
exceed 80 points, reaching a medium-high level; the Haihe River, southwestern rivers, and
northwestern rivers score 70–80 points on WCP at a medium level; scores for the Songhua
River and the Liaohe River are relatively low, which are 68.8 and 67.5 points, respectively,
at a medium-low level.

4.6. Overall Evaluation

In 2019, the FCC score was the highest nationwide, reaching a near-good level, while
scores of WRR, WEL, AEH, and WCP fell between 70 and 80 points, all at a medium level
(Figure 8).

In 2019, China’s RHI scored 77.1 points at a medium level. On the whole, among the
secondary indicators, the mortality rate, water supply rate, and soil and water conservation
rate of flood disaster were relatively the highest, reaching a good grade. The economic
loss rate of flood disasters, the standard rate of flood control projects, the per capita water
resources availability, and the river and lake water quality index scored the second highest,
which belonged to the medium-high grade. The degree of protection of groundwater
resources and the degree of water entertainment score was low, and the evaluation grade
was poor. The score for water resources supporting development ability, natural habitat
retention rate, and aquatic biological integrity was the second lowest, which was medium-
low level. The conditions of rivers and lakes in China calculated by RHI are consistent with
the actual situation. The overall RHI evaluation results are shown in Figure 9. Specifically,
RHI scores for southeastern rivers and the Taihu Lake were the highest, at a medium-high
level, and RHI scores for the Yangtze River, southwestern rivers, and the Pearl River were
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79.9, 79.4, and 79.3 points, respectively, all at a medium level. RHI scores for these southern
first-grade water resource zones were higher than the national average. In the north, the
Songhua River had the highest RHI score, which was 75.8 points (close to the national
average), while the Yellow River, the Huaihe River, and northwestern rivers scored a little
more than 70 points, indicating a medium level of river happiness. Scores for the Liaohe
River and the Haihe River lay between 60 and 70 points, indicating a medium-low level of
river happiness.
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Figure 9. RHI evaluation results for China’s first-grade water resource zones.

4.7. Evaluation of a Typical River Basin

The Yellow River, having nurtured and bred the Chinese civilization, is also an im-
portant economic zone in China, with the Huang-Huai-Hai Plain, the Fenwei Plain, and
the Hetao Irrigation Area being major agricultural production areas, which contribute
to around one third of the country’s food and meat production. The Yellow River Basin,
also known as the “Energy Basin”, boasts abundant coal, oil, gas, and nonferrous metal
resources, with coal reserves there accounting for more than half of the national total. It is
an important base for energy, chemicals, raw materials, and basic industries in China.

The RHI scores 71.0 points in the Yellow River Basin, staying at a medium level and
putting the river basin in eighth place among the 10 first-grade water resource zones
nationwide. The evaluation results of the first-level indicators of the RHI are listed in
Table 8. As shown in the table, the FCC score is the highest, reaching a good level; WCP is
at a medium-high level; the AEH score is the lowest, at a poor level; and other indicators
are at a medium-low level.

FCC. FCC scores 88.9 points in the Yellow River Basin, generally at a good level. Rate
of Accepted Dikes (RAD) is 87.7%, the Rate of Accepted Reservoirs for medium-sized and
large reservoirs (RAR), and the Rate of Accepted flood detention Basins (RAB) are 100%
and RAR (for small reservoirs) is 98%, so RWA scores 94.7 points, reaching a near-excellent
level. FMR (0.4 per million people) scores 91.9 points and ELR is 0.22%, which scores
85.3 points, both at a good level. DRC scores 73.7 points, at a medium level, indicating
relatively weak resilience.

WRR. WRR scores 64.6 points in the Yellow River Basin, generally at a medium-low
level. Water Supply Coverage (WSC) is 91.3% and the Rate of actual Irrigated Areas (RIA) is
79.9%, so WSR scores 86.3 points, reaching a good level; LSI scores 77.0 points, at a medium
level; AWP is 620.2 m3, scoring 44.8 points, and as Water resources Utilization Rate (WUR)
exceeds 70% and GDP Output per cubic meter of Water use (GOW) is RMB 180.5/m3, CSD
scores 42.0, both at a poor level that is still a long way from the medium level.

WEL. WEL scores 66.2 points in the Yellow River Basin, generally at a medium-
low level. To be specific, the groundwater exploitation coefficient is 1.04 and GPI scores
26.0 points, staying at a very poor level; WEI scores 69.8 points, standing at a medium-low
level; QDS scores 74.5 points, at a medium level; the length of rivers with Class I~III water
quality accounts for 80.3% and that of rivers with water quality inferior to Class V accounts
for 9.2%, and the Rate of Eutrophic Lakes and reservoirs (REL) is 25%, so WQI scores
82.2 points, at a medium-high level.
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Table 8. RHI evaluation results for the Yellow River Basin.

Criterion Layer Indicator Layer Benchmark Value Status Quo Value Score Weight Subtotal

FDS

FMR 0% 0.40% 91.9 0.30

88.9

ELR 0% 0.22% 85.3 0.30

RWA

RAL 100% 87.5% 87.5 0.12

PAR 100%
Medium-sized and large
reservoirs: 100%, small

reservoirs: 98%
99.2 0.12

PAD 100 100.00 100.0 0.06

DRC 100 73.7 73.7 0.10

RWR

AWP 10,000 m3/per 620.21m3/per 44.8 0.20

64.6

WSR
WSC 100% 91.31% 91.3 0.17

PIA 100% 79.86% 79.9 0.13

CSD
WER 40% 70.76% 50.6 0.12

GOW 509 m3 180.51 m3 34.0 0.13

LSI

GDP 132,400 (RMB) 59,502.17 (RMB) 43.1 0.08

ENC 25% 26.58% 94.1 0.09

ALE 81 74.16 91.6 0.08

LWE

WQI
RQI

The proportion of
the length of river

with Class I~III
water quality
≥ 90%

The proportion of the
length of rivers with

Class I~III water quality:
80.3%, the proportion of
the length of rivers with
water quality inferior to

Class V: 9.2%

87.1 0.18

66.2

PEL 0% 25.00% 75.0 0.12

QDS 100% 74.50% 74.5 0.30

GPI 0.3 1.04 26.0 0.20

WEI 100 14.90 69.8 0.20

HAE

REF 100% 25.00% 25.0 0.30

56.8
NHR

SAR 100% 79.02% 79.0 0.125

LCI - 0.61% 75.4 0.125

IBI 1 0.429 42.9 0.20

SWC - - 85.7 0.25

PWC

CPI
HPC 10 9 90.0 0.15

80.6

CDC 6 4.92 82.0 0.10

MCI 6 4.86 81.0 0.25

WLI 6 3.84 78.4 0.25

PAE
ARW - - 0.00

PER 100% 76.3% 76.3 0.25

AEH. AEH scores 56.8 points in the Yellow River Basin, generally at a poor level. SWC
scores 85.7 points, at a medium-high level, the highest among the second-level indicators,
followed by NHR, which scores 77.2 points, at a medium level; IBI scores 42.9 points, at a
poor level; and REF scores 25.0 points, at a very poor level.

WCP. WCP scores 80.6 points in the Yellow River Basin, generally at a medium-high
level. CPI scores 86.8 points, reaching a good level; MCI scores 81.0 points, at a medium-
high level; and PAE scores 76.3 points and WLI scores 78.4 points, both at a medium level.

The RHI evaluation results for the Yellow River Basin suggest that the main problems
are in the following areas: first, inadequate post-disaster recovery capability is the main risk
affecting water security in the Yangtze River Basin; second, an inherent shortage of water
resources and a high rate of water resource exploitation and utilization remain the biggest
restrictions on high-quality economic and social development; third, serious groundwater
overdraft in some areas and heavy pollution of tributaries are major problems to be solved
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as early as possible in order to create a livable water environment in the river basin; fourth,
the low rate of rivers with accepted ecological flows is a weak link to be addressed in order
to maintain healthy water ecology; and fifth, the brand effect of water culture is yet to be
enhanced and the water landscape impact is yet to be improved.

5. Discussion
5.1. Uncertainty of the Evaluation Method

Happiness is a subjective feeling for people, and rivers that make people feel happy
should have common objective characteristics in terms of water security, water resources,
water environment, water ecology, and water culture. Based on the five dimensions, the
RHI is composed of altogether 30 indicators, including five first-level indicators, namely
FCC, WRR, WEL, AEH, and WCP, each of which consist of four second-level indicators
and corresponding third-level indicators. In the process of evaluation, the determination
of weight coefficients is crucial. At present, research on evaluation indicators more often
employs entropy weight, standard deviation, and Criteria Importance Through Intercriteria
Correlation (CRITIC) methods, which can calculate indicator weights through mathematical
methods based on original data, but render the scope of application limited, as they fully
reflect the characteristics of selected data. Since the degree of flood control construction,
water environment protection, utilization, and demand varies greatly from river to river
due to the complexity of each river, selecting a universal indicator system that takes into
account the characteristics of different rivers is vital to the evaluation of rivers.

5.2. Applicability of the Evaluation Method

Current evaluation of rivers mainly deals with the hydrological condition of natural
attributes, ecosystems, and social functions of rivers, with focus on the health of rivers and
different indicator systems established for different rivers. For instance, the Upper Mis-
sissippi River Restoration Program (UMRRP) assessed the ecosystem health of the Upper
Mississippi River using seven categories of indicators, such as hydrology, sedimentation,
water quality, land cover, aquatic vegetation, invertebrate and fish, and 25 specific monitor-
ing indicators. The status and trend reports published indicate that most indicators remain
relatively stable, with ecosystems being healthy in the north and relatively unhealthy in
the south [28,29]. With a growing demand for quality of life, healthy evaluation of a river’s
happiness should adopt a people-centered approach that not only assesses the general
social and economic functions of the river by systematically measuring its water security,
water supply, and water environment services, but also scientifically examines its aquatic
ecosystem quality and water culture prosperity in the light of the natural endowments and
cultural background of the river basin [30]. Therefore, in the case of the Mississippi River,
the RHI scores 80.1 points, at a medium-high level. To break it down, FCC scores 90+ points,
which is at a good level; WRR and WEL score 80+ points, both at a medium-high level; and
AEH and WCP score less than 80 points, both at a medium level. The evaluation results
show the following characteristics of the Mississippi: first, the river basin is generally well
managed and reaches a medium-high level in terms of water security, water resources,
and water environment, indicating that the long-term systematic governance of the river
basin produced desirable results and a high level of public awareness and engagement in
water governance; second, low scores on the eco-hydrological process variation index and
the longitudinal connectivity index imply the great impact of human activity on natural
habitats and a high rate of water resource development; and third, historical and cultural
inheritance and protection is inadequate in the river basin. From the perspective of the
evaluation results, the RHI performs better in comprehensively describing the overall
situation of a large river.

5.3. Policy Recommendations

River health, as a comprehensive concept, is increasingly embodied in domestic and
foreign water resource management systems, but there are no specific rules for the imple-
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mentation of river evaluation indicator systems, and the indicator systems selected for a
single river may vary. In order to scientifically assess the status of rivers and lakes in differ-
ent regions, an international guideline for river and lake evaluation should be introduced,
which can take into account the differences and commonalities of river ecosystems and
provide a unified, standardized technical system for evaluation. This requires a unified
indicator system, under which proper adjustments can be made to indicators according to
the situation of a specific river basin, but such adjustments should meet scientific cognition,
assessment standards, and other requirements. Major rivers and lakes should be assessed
on a regular basis. In response to underperforming indicators, such as RWA, GPI, and REF,
the problem of unbalanced spatial distribution of water resources should be addressed as
early as possible. For underperforming indicators, such as AWP and WUR, the principle of
giving priority to saving water must be put into practice. For underperforming indicators
such as WEI, IBI, and CPI, scientific sector-specific decisions should be made.

6. Conclusions

As social and economic development needs and anthropogenic threats grow, countries
around the world are suffering from numerous river and lake problems, such as altered
hydrological processes, damaged physical structures, polluted water, and declining aquatic
biodiversity, and the evaluation of rivers and lakes is changing from purely water quality
evaluation to a more comprehensive one. This paper gives a new definition of a happy river,
which enriches the new connotation of water management. A happy river refers to a river
that can maintain its own health, support high-quality economic and social development in
the river basin, as well as reflect human–water harmony, thus give people a high sense of
security, gain, and satisfaction. The RHI method is based on Maslow’s hierarchy of needs
theory and draws lessons from the World Happiness Report and SDG Report. Compared
with the previous studies, the study insisted on a people-centered approach, and takes the
river culture into consideration. This paper develops evaluation indicators, such as FCC,
WRR, WEL, AEH, and WCP in terms of water resources, security, ecology, environment,
and culture, and assesses the overall river happiness of major rivers and lakes nationwide
by examining the situation of China’s 10 first-grade water resource zones and the Taihu
Lake Basin in 2019.

The analysis of the evaluation indicators suggests that China’s RHI scores 77.1 points,
which is at a medium level, with FCC at a near-good level and WRR, WEL, AEH, and WCP
all at a medium level. Meanwhile, the RHI in first-grade water resource zones in southern
China stands above the national average, in contrast to the situation in the north, mainly
because WRR and WEL are lower in the north than in the south.

The analysis of the river basins evaluated supports that WEL for the Songhua River, the
Liaohe River, and the Haihe River in the north is at a poor level, restricting the quality and
stability of aquatic ecosystems; AEH for the Yangtze River, the Taihu Lake, and southeastern
rivers in the south is at a below-average level, indicating the poor condition of important
aquatic organisms, which is a major problem that requires attention in order to maintain
healthy aquatic ecosystems in these regions. Problems in the Yellow River Basin, which
involves 340 counties (county-level cities, districts, or banners) in 66 prefectures (prefecture-
level cities, autonomous prefectures, or leagues) in nine provinces and autonomous regions,
are more complex, with FCC reaching a good level, WCP at an above-average level, AEH at
a poor level, and WRR and WEL at a below-average level. Based on the evaluation results,
we therefore propose targeted basin governance measures: more attention should be paid
to the intensive and economical use of water resources in northern China, and ecological
flows of rivers must be effectively ensured in southern.

On the whole, happy rivers should be built in a way that seeks to maintain the health
of rivers while pursuing greater benefits for the people by following the basic principle
of human–water harmony on the premise of maintaining river health. With regard to
the perspective of the future work, except the expert comprehensive evaluation method
applied in the current study, the index weights can also be determined by the Analytic
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Hierarchy Process (AHP), considering the characteristics of the river basin, social and
economic conditions, or people’s opinions. Secondly, at present the model may not include
all aspects of a river, such as its hydrodynamics, transport, and species migration, so more
relevant aspects can be supplemented and studied in subsequent work. Furthermore,
building happy rivers and lakes is not only applicable to those in China, but also in the
rest of the world. To this end, a guideline must be developed as soon as possible to
provide technical support for the building of happy rivers and lakes. We will continue to
select more representative world rivers to verify the accuracy and adaptability of the RHI
evaluation method.

Author Contributions: Conceptualization, C.L.; methodology, C.L. and S.J.; formal analysis, C.L. and
Q.J.; writing—original draft preparation, Q.J.; writing—review and editing, C.L. and S.J.; visualization,
Q.J.; supervision, C.L.; All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National High Technology Research and Development
Program of China (No.2021YFC3200205); and the Cooperation Project of Shandong Water Transfer
Operation and Maintenance Center (No.37000000025002920210100001).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the finding of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The happy river research group of the China Institute of Water Resources and
Hydropower Research is involved in relevant work.

References
1. GE, J.X. Rivers and Human Civilizations. Folk. Stud. 2021, 6. 5–13+158. (In Chinese)
2. Carpenter, D.; Schwartz, J.; Slate, L.; Sinha, S.; Brennan, K.; MacBroom, J. The Status of Urban Stream Restoration in the United

States. In Critical Transitions in Water and Environmental Resources Management; American Society of Civil Engineers: Reston, VA,
USA, 2004; pp. 1–13.

3. Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alexander, G.; Brooks, S. Standards for Ecologically Successful River
Restoration. J. Appl. Ecol. 2005, 42, 208–217. [CrossRef]

4. Denneman, W.D.; De Pree, A.; Reininga, G.A.O.; Van Der Braak, J. Environmental Aspects of the Restoration of River Ecosystems
in the Netherlands. Water Sci. Technol. 1995, 31, 147–150. [CrossRef]

5. Chick, J.H.; Ickes, B.S.; Pegg, M.A.; Barko, V.A.; Hrabik, R.A.; Herzog, D.P. Spatial Structure and Temporal Variation of Fish
Communities in the Upper Mississippi River System; Geological Survey La Crosse Wi Upper Midwest Environmental Sciences Center:
La Crosse, WI, USA, 2005.

6. Gloss, S.; Lovich, J.E.; Melis, T.S. The State of the Colorado River Ecosystem in Grand Canyon: A Report of the Grand Canyon Monitoring
and Research Center 1991–2004; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2005; Volume 1282.

7. Zuo, Q.T.; Han, C.H.; Han, C.H. Study on the Theoretical Basis and Support System of River Governor System. Yellow River 2017,
39. 1–6+15 (In Chinese)

8. Peng, H.; Han, Q.; Cao, J.P. Study on Evaluation Index System of River Chief System and Lake Chief System for Taihu Basin.
China Water Resour. 2019, 06. 11–15+5 (In Chinese)

9. Yu, X.B.; Tang, D.S. Comprehensive Implementation of River Chief System Effectiveness Evaluation in Jiangsu Province Based on
AHP-EVM. Yellow River 2020, 42. 63–68+73 (In Chinese)

10. Wang, G.J.; Liu, Z.; Lang, M.X. Performance Evaluation of River-Lake Chief System and its Implications. China Water Resour. 2021,
02, 15–18. (In Chinese)

11. Speech at the Symposium on Ecological Protection and High-Quality Development of the Yellow River Basin. Available online:
http://www.gov.cn/xinwen/2019-10/15/content_5440023.htm (accessed on 2 August 2022).

12. To Write a New Chapter in River Protection and Management in the New Era. Available online: http://www.mwr.gov.cn/xw/
slyw/201912/t20191205_1373783.html (accessed on 2 August 2022).

13. Wu, E.N.; Yang, K.; Che, Y.; Yuan, W. Characterization of Rivers Health Status and its Assessment. Adv. Water Sci. 2005, 16,
602–608.

14. Scrimgeour, G.J.; Wicklum, D. Aquatic Ecosystem Health and Integrity: Problems and Potential Solutions. J. N. Am. Benthol. Soc.
1996, 15, 254–261. [CrossRef]

15. Wright, J.F.; Sutcliffe, D.W.; Furse, M.T. Assessing the Biological Quality of Freshwaters: RIVPACS and Other Techniques; Freshwater
Biological Association: Ambleside, UK, 2000; pp. 1–24.

193



Water 2022, 14, 2568

16. Smith, M.J.; Kay, W.R.; Edward, D.H.D.; Papas, P.J.; Richardson, K.S.J.; Simpson, J.C. AusRivAS: Using Macroinvertebrates to
Assess Ecological Condition of Rivers in Western Australia. Freshw. Biol. 1999, 41, 269–282. [CrossRef]

17. Karr, J.R. Assessments of Biotic Integrity Using Fish Communities. Fisheries 1981, 6, 21–27. [CrossRef]
18. Ladson, A.R.; White, L.J.; Doolan, J.A.; Finlayson, B.L.; Hart, B.T.; Lake, P.S.; Tilleard, J.W. Development and Testing of an Index

of Stream Condition for Waterway Management in Australia. Freshw. Biol. 1999, 41, 453–468. [CrossRef]
19. Raven, P.J.; Holmes, N.T.H.; Dawson, F.H.; Everard, M. Quality Assessment Using River Habitat Survey Data. Aquat. Conserv.

Mar. Freshw. Ecosyst. 1998, 8, 477–499. [CrossRef]
20. Zuo, Q.T. Human-Water Harmony Theory: From Idea to Theory System. Water Resour. Hydropower Eng. 2009, 40, 25–30.

(In Chinese)
21. Zuo, Q.T.; Zhang, Y.; Lin, P. Index System and Quantification Method for Human-Water Harmony. J. Hydraul. Eng. 2008, 4,

440–447. (In Chinese)
22. Maslow, A.H. Motivation and Personality, 3rd ed.; China Renmin University Press: Beijing, China, 2012. (In Chinese)
23. Helliwell, J.F.; Layard, R.; Sachs, J. World Happiness Report 2012. New York: UN Sustainable Development Solutions Network.

Available online: https://worldhappiness.report/ed/2012/ (accessed on 2 August 2022).
24. Research Group of the Happy River. Analysis of the Connotation and Index System for the Happy River. China Water Resour.

2020, 23, 1–4. (In Chinese)
25. Liu, C.S.; Wang, J.H.; Jiang, Y.Z.; Qiu, Y.Q.; Zhang, H.T.; Guan, X.Y. River Happiness Index: The Evaluation System of River to

Enriching the People. J. China Inst. Water Resour. Hydropower Res. 2021, 19, 441–448. (In Chinese)
26. China Institute of Water Resources and Hydropower Research. China River Happiness Report 2020; China Water Resources and

Hydropower Press: Beijing, China, 2021. (In Chinese)
27. Transforming our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda

(accessed on 2 August 2022).
28. Upper Mississippi River Restoration Program. Available online: https://www.mvr.usace.army.mil/Missions/Environmental-

Stewardship/Upper-Mississippi-River-Restoration/ (accessed on 2 August 2022).
29. Johnson, B.L.; Hagerty, K.H. Status and Trends of Selected Resources of the Upper Mississippi River System: A Synthesis Report of the

Long Term Resource Monitoring Program; US Geological Survey, Upper Midwest Environmental Sciences Center: La Crosse, WI,
USA, 2008.

30. Pietrucha-Urbanik, K. Assessment Model Application of Water Supply System Management in Crisis Situations. Global NEST J.
2014, 16, 893–900.

194



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

www.mdpi.com

Water Editorial Office
E-mail: water@mdpi.com

www.mdpi.com/journal/water

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are

solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s).

MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from

any ideas, methods, instructions or products referred to in the content.





Academic Open 
Access Publishing

mdpi.com ISBN 978-3-0365-8638-0


	Cover-front.pdf
	Book.pdf
	blank page.pdf
	Book.pdf

	Cover-back.pdf

