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Land constitutes a fundamental natural asset, vital for the sustenance, advancement,
and ecological balance of human civilization [1]. Through a significant portion of human
history, land has remained intricately intertwined with economic expansion, serving as a
fundamental element of production. Consequently, the governance and utilization of land
frequently become focal points of intense human interactions. The symbiotic connection
between humanity and the land mirrors their interdependence and reciprocal influence.
China has undergone a profound transformation, characterized by unparalleled urban-
ization, industrialization, and globalization, ushering in novel multifaceted challenges
to the dynamics of man-land relationships [2]. Constructing the built environment to
accommodate urban populations and their various endeavors stands as a fundamental
pillar of urbanization. This dynamic places additional strain on food systems that could po-
tentially disrupt livelihoods in vulnerable regions. However, this represents just a fraction
of the evolving interactions between humans and land in China. The intricate interplay
between these two entities spans a broad spectrum of dynamics, encompassing factors
like intensified agricultural practices, land degradation, the abandonment of farmlands,
the emergence of “hollow villages,” land fragmentation, urban renewal, traffic congestion,
housing shortages, and numerous other variables [3-5]. The current body of research
concerning man-land relationships in China is inadequate. It is imperative to employ
diverse perspectives to scrutinize the multifaceted dimensions of human interventions on
land utilization systems, as well as the reciprocal impacts of land-use transformations on
human welfare. Thus, the reevaluation of man-land relationships within the context of this
swiftly evolving era warrants immediate attention and inclusion on the agenda.

This Special Issue aims to reevaluate the transformations in man-land relationships within
transitional China, fostering a fresh perspective on the intricacies of human-environment
interactions in both urban and rural contexts. In doing so, it seeks to contribute to the
advancement of theories in land-use science, a crucial component of both land management
and sustainability science.

The collection of peer-reviewed articles included in this Special Issue comprises twenty
research articles in total (Appendix A). The Special Issue is organized in the following
format: the papers are presented under four major topics, such as (a) human activities
and natural ecosystems, (b) land-use conflicts/trade-offs, (c) man-land coordination and
sustainable development, and (d) man-land system coupling and optimal regulation.

Five papers focus on the human activities and natural ecosystems, from the perspec-
tives of carbon emissions, ecological security, soil erosion, desertification, and natural
resource accounting.

Yan et al. (2022) employed a carbon emissions model to estimate land-use change-
related carbon emissions and utilized the logarithmic mean Divisia index (LMDI) model to
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investigate the key influencing factors. The findings indicated a significant decline in crop-
land area, accompanied by substantial growth in built-up areas due to rapid urbanization.
Additionally, it was noted that the gross domestic product (GDP) per capita exerted the
greatest influence on the rise in carbon emissions within the study area, followed by land-
use structure, carbon emission intensity per unit of land, and population size. Conversely,
the intensity of land use per unit of GDP exhibited a mitigating effect on carbon emissions.

Hu et al. (2022) developed an evaluation system to assess ecological security (ES)
in twenty-five international border counties within Yunnan Province. The researchers
utilized an entropy weight TOPSIS model to analyze changes in ES between 2004 and 2019.
Furthermore, an obstacle degree model was employed to identify the factors impacting
ES. The findings revealed that fixed asset investments, per-capita fiscal revenue, per-capita
GDP, food production, and water regulation posed hindrances to achieving a desirable
level of ES within the study area.

Zhu et al. (2022) employed the revised universal soil loss equation model to determine
the soil erosion modulus and investigated the driving factors and superposition mechanism
of farmland soil erosion in the hilly region of Northeast China. To achieve this, they
introduced the geographically weighted regression model. The findings underscored the
significance of landscape fragmentation as a key driving force behind soil erosion, sediment
yield, and sediment transport.

Jia et al. (2023) employed Landsat images from 2010 and 2020 to extract desertification
information, subsequently constructing the Albedo-NDVI feature space in the Gonghe
Basin. The researchers then utilized Geodetector to analyze the temporal and spatial
evolution of desertification and its driving factors within the basin between 2010 and
2020. The findings demonstrated effective control over desertification in the Gonghe Basin,
thereby offering a valuable foundation for combatting further desertification in the region.

Tan et al. (2023) conducted a comprehensive analysis of literature pertaining to the
evaluation of major functions, natural resource accounting, environmental accounting,
ecosystem services, and asset accounting. Their study employed the equivalent factor
method and input-output method to establish the correlation between major function
accounting and natural resource accounting. The findings highlighted that accounting
for major functions and resources can effectively guide regional sustainable management
through function positioning, resource comparative advantages, and administrative units
closely linked to functional units.

Land-use conflicts, representing the spatial embodiment of human-land contradictions,
exert a significant influence on regional sustainability. Six studies focus on examining the
consequences of land-use conflicts and trade-offs, highlighting economic, social, spatial,
and ecological dimensions of these conflicts.

Wang et al. (2022) employed the propensity value matching technique to assess
the impacts of land transfer on poverty alleviation among farm households, focusing
on the vulnerability expressed as expected poverty (VEP). The findings revealed that
rural land transfers have a notable effect in reducing farm households” VEP, with the
magnitude of these effects influenced by factors such as location, household characteristics,
and household head. This study’s results offer valuable insights for policy formulation
concerning land management and poverty reduction in agricultural communities.

Lv et al. (2022) employed an integrated “spatial-functional” framework to study
the structure and functionality of cultivated land-use transition (CLUT) in a prominent
grain-producing region of southern China. The researchers quantitatively assessed and
visually represented the CLUT, revealing a significant increase in the comprehensive CLUT
index in the middle and lower reaches of the Yangtze River between 2001 and 2019. The
study identified a positive aggregation effect with a 5% significance level during this period,
indicating a strengthening of both spatial and functional transitions. The authors proposed
that differentiated policies should be formulated by the government to promote sustainable
land use through spatial and functional transitions in major grain-producing areas.
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Shi and Wang (2022) utilized a PSM-DID approach to examine the association between
high-speed rail (HSR) infrastructure and cropland abandonment using Chinese labor force
survey data. The findings indicated a significant 20.6% rise in the extent of cropland
abandonment due to HSR projects. Moreover, these effects were more pronounced in hilly
areas but relatively lower in plain regions. Notably, HSR accessibility exerted a “pull” effect,
prompting a shift of rural labor force from agriculture to non-agricultural sectors within
the local vicinity.

Liang et al. (2022) assessed the extent of land-use conflicts (LUCs) through landscape
ecological risk assessment and investigated the spatiotemporal evolution patterns and
potential risks of LUCs in the urban center of Chongging (UCC) over the past two decades.
Employing hot-spot analysis and neighborhood analysis, they found that conversions
between the living-production space (LPS) and other areas exhibited the highest frequency.
Moreover, the out-of-control zone expanded while the controllable zone diminished. The
authors emphasized the need for tailored management strategies and policy recommenda-
tions on a regional scale, targeting different LUC zones in the UCC, both at international
and national levels.

Han et al. (2023) conducted an analysis on the influence of environmental decen-
tralization on the scale of construction land supply by local governments, utilizing panel
data from 30 provinces in China between 2003 and 2015. The findings revealed a positive
impact of environmental decentralization on the expansion of urban construction land
supply. This effect was attributed to the strengthening of land financial dependence and
the distortion of land resource allocation. The study further identified that the impact was
more significant in regions facing high financial pressure, economic growth pressure, and
low environmental protection pressure. In light of these results, the authors provide policy
suggestions to ensure a rational supply of urban construction land within the context of
decentralization in China.

Zhao et al. (2023) conducted an evaluation of the Lanzhou-Xining urban agglomeration
(LXUA) using a multi-dimensional assessment system that incorporated urbanization
quality and ecosystem services. The assessment utilized various methodologies including
the efficacy function model, entropy weight method, and Integrated Valuation of Ecosystem
Services and Trade-offs (InVEST) model to quantitatively evaluate the developmental
state of the subsystems. Additionally, the study employed coupling models (CD) and
coordination degree (CCD) models to investigate the coupling coordination relationship
and spatiotemporal change characteristics of the composite system.

Four papers in this Special Issue address the coordination of man-land systems and
sustainable development:

Zhang et al. (2023) conducted an analysis of the spatial distribution and regional
variations of the human appropriation of net primary production (HANPP) in China
during 2015. The study also examined how HANPP and its components responded to
imbalanced urban-rural development in different regions. The findings shed light on
the impact of unbalanced regional development on human-induced biomass occupation,
comprehensive urban ecological construction, and rural ecological restoration. Importantly,
the study highlights the significance of urban-rural integration development as a means to
address increasing ecological pressures in the future.

Wang et al. (2022) conducted an analysis of the elemental composition, structural
organization, and functional state of China’s northwest arid areas using a human-Earth
system approach. The findings revealed a lack of coupling and coordination among
humans, the economy, resources, and environmental elements in these regions. However,
during the anti-poverty stage, China’s northwest arid areas showed innovative efforts
in establishing a human-Earth coupling mechanism. Additionally, three pathways were
identified to enhance sustainable livelihood, consolidate poverty alleviation achievements,
and achieve rural revitalization. Notably, it is essential to establish an endogenous growth
mechanism for sustainable poverty alleviation and green development.
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Cai et al. (2022) developed an evaluation index system to assess the various func-
tions of cultivated land in oasis areas (OCL), including social, economic, and ecological
perspectives. Using this framework, the study quantitatively evaluated the evolution of
cultivated land functions (CLFs) and their interactions in Xinjiang from 1990 to 2018. The
findings indicated that the evolution of CLFs in Xinjiang initially focused on ecological
and social functions but gradually shifted toward economic functions. Additionally, the
study revealed a weakening in the synergistic relationship between CLFs and an increase
in trade-offs over time. This research expands our understanding of multi-functional
studies related to cultivated land and provides valuable insights for decision-making re-
garding the sustainable utilization and synergistic management of oasis cultivated land in
Xinjiang, China.

Zhang et al. (2023) assessed the rural-urban transition in China from 1980 to 2020
by utilizing socio-economic data and a rural-urban transition coordination model. They
developed a comprehensive rural-urban development and integration index system to
analyze the process. The findings reveal that, since the reform and opening-up, China
has witnessed a gradual expansion of the rural-urban development index (URDI) across
different regions, while the rural-urban integrated index (URII) initially declined before
experiencing subsequent growth. Over the past four decades, the spatial distribution of
URDI exhibited a “south high-north low” pattern, whereas the URII demonstrated a more
balanced distribution. The study also put forth optimization strategies for each type to
further enhance rural-urban integration.

Next, five papers included in this Special Issue discuss man-land system coupling
and optimal regulation.

Gong et al. (2022) conducted an assessment of the multi-functions of cultivated land in
the grain-producing area of Jilin Province’s cultivated black soils over the past three decades.
The study employed an improved TOPSIS model to analyze the data. By utilizing the
obstacle degree model and Geodetector, the researchers also identified the key limiting and
influencing factors of cultivated land’s multi-functions. The findings indicated an overall
increase in multi-functionality from 1990 to 2020. However, the simultaneous improvement
of economic and social functions impeded progress in the ecological function of cultivated
land. The analysis also highlighted spatial variations in the functions across different
counties. Based on the results, the study put forward several policy recommendations,
including reducing regional disparities in cultivated land functions, quantifying the multi-
functional value of cultivated land, and providing subsidies for land cultivation. These
measures aim to strengthen multi-functional planning and design, enhance ecological
utilization, and promote the sustainable use of cultivated land.

Liang et al. (2022) conducted a study on the coupling and coordinated changes of
land-use production, living, and ecological functions (PLEFs) in relation to human activity
intensity (HAI) in Wanzhou District, China, spanning from 2000 to 2020. The researchers
employed the coupling coordination degree (CCD) model to assess the level of coordi-
nated development among PLEFs, while HAI was measured through the equivalent level
of construction land. The synchronous development model was utilized to analyze the
relationship between these factors. The findings revealed significant spatial distribution
variations and evident spatial complementarity among PLEFs in Wanzhou District. Based
on the synchronous development state of HAI and CCD of PLEFs, the district was cat-
egorized into three development types. This highlights the need to propose regulatory
strategies tailored to regions with different development types.

Cheng et al. (2023) employed ecological niche theory, a coupling coordination model,
and a trade-off synergy model to construct an evaluation index system. This system
was utilized to assess the spatiotemporal evolution characteristics, trade-off synergy, and
coupling coordination degree of land-use production, living, and ecological functions
(PLEFs) across 38 counties in Chongging, China. The findings revealed that over the past
two decades, Chongqing’s “living-production” function transitioned from a trade-off model
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to a collaborative development relationship. Additionally, the “living-ecological” function
generally exhibited a collaborative development relationship.

Zhou and Jiang (2022) conducted an analysis of the influence of urban development on
immigration and labor migration trends in Macau from 1992 to 2019. The study reveals that
Macau exhibits a high dependence on short-term migrant workers. Consequently, the paper
suggests several measures to address this issue, including reducing the costs associated
with city expansion, enhancing economic diversity, and fostering closer collaboration
with neighboring mainland cities. Such actions would enable Macau to effectively utilize
resources, attract non-local talent, and ensure sustainable urban development.

Guo and Zhong (2023) conducted an analysis to examine the underlying meaning of
rural transformation development (RTD). They also explored the spatiotemporal patterns
of RTD in the Yanshan-Taihang Mountains and identified the influencing factors through
the use of a geographically and temporally weighted regression model. The findings
indicated that RTD is a dynamic process characterized by qualitative changes in rural
regional systems, which stem from the accumulation of quantitative changes in elements.
The measurement of RTD hinges on the analysis of the coupling coordination degree
between the quantitative changes of these elements.

The evolution of man-land relationships is closely intertwined with socio-economic
development, calling for the application of dialectical thinking and dynamic systems analy-
sis to explore these issues in contemporary China. This Special Issue in the journal Land
encompasses a collection of 20 papers that delve into four main themes, namely human
activities and natural ecosystems, land-use conflicts/trade-offs, man-land coordination,
and sustainable development. Additionally, the studies delve into man-land system cou-
pling and optimal regulation. These research contributions expand the scope and content
of man-land relationship research, providing valuable theoretical and practical insights for
urban-rural integration, regional sustainable development, rural revitalization, and global
poverty reduction in the new era.

Nevertheless, there remains significant potential for advancement in the examination
of man-land relationships in China, especially in the context of the papers featured in
this Special Issue. While current research offers policy recommendations from various
perspectives to enhance regional man-land coordination and sustainable development, a
more comprehensive analysis of the intricate impact of interactions between man-land
systems at the urban-rural and regional levels is still lacking [6]. Therefore, further research
is required to bolster the examination of intricate man-land system coupling, simulation,
and prediction.

Driven by rapid economic and social development, as well as advancements in science
and technology, the scope and scientific implications of man-land relationship research are
expanding. Particularly in the context of economic globalization, there has been a shift in
focus from regional systems to spatial network systems of man-land relationships [7,8].
The study of regional systems aims to coordinate man-land relationships, optimizing and
regulating global, national, or regional systems through considerations of spatial structure,
temporal processes, overall effects, and synergistic complementarity. This provides a
theoretical foundation for effective regional development and management. On the other
hand, studying spatial network systems emphasizes the interconnectedness and long-
distance connections across regions. The increasing interconnectedness brought about by
globalization and urbanization, facilitated by the flow of information, capital, goods, and
population, reshapes traditional man-land relationships into a complex network.

Against the backdrop of globalization and urbanization, it is crucial to reassess and
broaden the theoretical implications of man-land relationship research. Addressing the
conflicts and trade-offs between humans and the environment in the modern era necessi-
tates a systemic outlook, strategic thinking, and interdisciplinary, integrated research across
multiple scales. Future research directions will involve scrutinizing shifts in perspectives,
underlying assumptions, conceptual frameworks, and research methodologies.
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Abstract: Global increasing carbon emissions have triggered a series of environmental problems and
greatly affected the production and living of human beings. This study estimated carbon emissions
from land use change in the Beijing-Tianjin-Hebei region during 1990-2020 with the carbon emission
model and explored major influencing factors of carbon emissions with the Logarithmic Mean Divisia
Index (LMDI) model. The results suggested that the cropland decreased most significantly, while
the built-up area increased significantly due to accelerated urbanization. The total carbon emissions
in the study area increased remarkably from 112.86 million tons in 1990 to 525.30 million tons in
2020, and the built-up area was the main carbon source, of which the carbon emissions increased by
370.37%. Forest land accounted for 83.58-89.56% of the total carbon absorption but still failed to offset
the carbon emission of the built-up area. Carbon emissions were influenced by various factors, and
the results of this study suggested that the gross domestic product (GDP) per capita contributed most
to the increase of carbon emissions in the study area, resulting in a cumulative increase of carbon
emissions by 9.48 million tons, followed by the land use structure, carbon emission intensity per unit
of land, and population size. By contrast, the land use intensity per unit of GDP had a restraining
effect on carbon emissions, making the cumulative carbon emissions decrease by 103.26 million tons.
This study accurately revealed the variation of net carbon emissions from land use change and the
effects of influencing factors of carbon emissions from land use change in the Beijing-Tianjin-Hebei
region, which can provide a firm scientific basis for improving the regional land use planning and for
promoting the low-carbon economic development of the Beijing-Tianjin-Hebei region.

Keywords: carbon emission; carbon neutrality; land use change; Beijing-Tianjin-Hebei; LMDI

1. Introduction

The global increasing carbon emission under high carbon emission mechanisms has
triggered a series of environmental problems, e.g., global climate anomalies, sea level rise,
and frequent extreme weather events, which have greatly affected the production and
living of human beings in recent decades [1,2]. Previous studies suggested that the land
use system serves as a vital link between the human socio-economic system and the natural
ecological environment, and the carbon emissions caused by land use change have been
one of the important influencing factors of global warming [1-3]. In fact, various human
activities, e.g., social construction, economic development, industrial arrangement, urban
expansion, and energy consumption, are all closely related to the carbon emissions, all of
which are ultimately implemented in different land use practices [4,5], and relevant land
use change has been considered as the second most important influencing factor of the
global increasing atmospheric CO; content [6,7]. The 14th Five-Year Plan of China proposed
to achieve the “peak carbon dioxide emissions” by 2030 and “carbon neutrality” by 2060,
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that the low-carbon economy should serve as a new economic growth mode in the future,
and that new green energy sources should be developed to reduce the dependence of
economic growth on the major fossil energy sources such as coal and oil [4]. It is, therefore,
of practical significance to explore the regional carbon emissions from land use change to
achieve low carbon land use, promote low carbon economic development, and establish a
resource-conserving and environment-friendly society in this context [8,9].

Previous studies on carbon emissions from land use change at home and abroad
were primarily concentrated on the spatiotemporal variation of different land use types
and their relevant effects on carbon emissions, carbon emission accounting, influencing
factors of land use change, and carbon emissions [10-13]. The Guidelines for the National
Greenhouse Gas Inventories prepared by the Intergovernmental Panel on Climate Change
(IPCC) provided a valuable methodological reference for accounting carbon emissions from
land use change [13,14]. Besides, some scholars also proposed the emission coefficient
method for the carbon emission accounting of cropland, forest land, grassland, and built-up
area and explored the effects of land use change on carbon emissions [14-16]. In addition,
most scholars have generally explored the influencing factors of carbon emissions with
various econometric methods, such as the factor decomposition method [17,18], and some
other scholars explored the drivers of carbon emissions with the Laspeyres decomposition
method [19-21]. Moreover, more scholars carried out decomposition analyses based on the
Logarithmic Mean Divisia Index (LMDI) model to reveal the influencing factors of carbon
emissions in various relevant fields, e.g., carbon emissions per capita, carbon emissions
due to industrial combustion energy, carbon emissions in the manufacturing industry,
and drivers of carbon emissions from energy consumption for different time durations in
China [22,23]. The results of these studies provided valuable methodological references
for exploring a series of issues related to carbon emissions from land use change [24,25].
However, these existing studies focused more on some major land use types, such as
cropland and built-up area, with less consideration of the carbon emissions from some
other land use types [25,26]. In particular, there are relatively fewer quantitative studies on
the influencing factors of carbon emissions from land use change, especially the studies
on the influencing factors of carbon emissions from land use change with the LMDI
model [6,27,28].

The Beijing-Tianjin-Hebei region, as one of the major urban agglomerations in China,
accounted for 11-12% of the national total carbon emissions, which is higher than the
national proportions of both gross domestic product (GDP) and the population of this
region [5,12]. In particular, the goal of peak carbon dioxide emissions and carbon neutrality
has put forward new and higher requirements for the synergistic development of this
region [16,18,29]. This study estimated the net carbon emissions from land use change
in the Beijing-Tianjin-Hebei region from the perspective of land use and decomposed
the influencing factors of carbon emissions from land use change to quantitatively reveal
the effects of these influencing factors on the carbon emissions from land use change,
aiming to provide a firm scientific basis for improving the regional land use planning,
promoting the low-carbon economic development, and guiding the development of the
Beijing-Tianjin-Hebei region into the capital economy circle.

2. Materials and Methods
2.1. Study Area

The Beijing-Tianjin-Hebei region is located in the northern part of China (36°5'—42°40' N,
113°27'-119°50 E), which is one of the three major urban agglomerations in China [18,26,30].
There is very complex terrain in this region, where there are mainly higher mountains
and plateaus in the northern and western parts and flatter plains in the southern and
eastern parts (Figure 1). There is a warm-temperate continental monsoon climate in this
region, with higher temperatures and precipitation in the summer. The Beijing-Tianjin-
Hebei region is the political, economic, cultural, and scientific center of China and plays
a strategically important role in the economic development of China [18]. The Beijing-
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Tianjin-Hebei region takes up approximately 2% of the total national land area, but it
accounts for approximately 8.1% of the total national population and 9.44% of the total
national GDP. However, there is very high energy consumption intensity along with rapid
urbanization in the Beijing-Tianjin-Hebei region, leading to very high carbon emission. For
example, the carbon emission in the Beijing-Tianjin-Hebei region reached 1.085 billion tons
in 2018, accounting for about 1/9 of the total national carbon emissions of China [26,30].
Exploring the long time-series variation of net carbon emissions from land use change can
provide valuable information for addressing the pressure of carbon emission reduction in
the Beijing-Tianjin-Hebei region, especially in the context of the coordinated development
of the Beijing-Tianjin-Hebei region [26,27].
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Figure 1. Location of the Beijing-Tianjin-Hebei region.

2.2. Data and Processing

The spatial data used in this study includes the 1-km land use data extracted from
the Land Use Remote Sensing Monitoring Data of China in 1990, 1995, 2000, 2005, 2010,
2015, and 2020 (http:/ /www.resdc.cn, accessed on 31 October 2021), which were reverted
from Landsat TM/ETM images. The land types were classified into cropland, forest land,
grassland, water area, built-up area, and barren land [12,26], based on which this study
explored the land use transfer matrix of the Beijing-Tianjin-Hebei region during 1990-2020.
Besides, the non-spatial data used in this study mainly included the socioeconomic data
(e.g., population and GDP), regional energy consumption data, and carbon emission
coefficients of the Beijing-Tianjin-Hebei region, which were obtained from various issues of
the China Statistical Yearbook, the China Energy Statistical Yearbook, IPCC reports, and the
relevant literature. Finally, these data in different parts of the study area were combined to
obtain the regional energy consumption amount and the carbon emission coefficients of
different land use types, and these regional data were further summed up to obtain the
relevant total data of the whole Beijing-Tianjin-Hebei region.

2.3. Carbon Emission Accounting Model and Carbon Emission Coefficients

The carbon emissions can be categorized into direct and indirect carbon emissions [27].
The former refers to carbon emissions caused by the processes of maintenance and conver-
sion and specific land types, while the latter refers to carbon emissions generated by the
land serving as a carrier of production and living processes of human beings [28,29]. A
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large number of studies have shown that some land use types may be both carbon sources
and sinks, and the intensity of carbon sources and sinks generally varies greatly among
different land use types [30,31]. This study primarily focused on the carbon emission effects
of land use change caused by human activities, i.e., the amounting of carbon emissions and
the sequestration of cropland, forest land, grassland, water body, built-up area, and barren
land under the influence of human activities, and it finally summarized the carbon emission
amount of different land use types. The major crops in the study area include wheat and
maize, and these crops on cropland can absorb CO; in the air through photosynthesis in
general, but most of the crop biomass is then decomposed in the soil and released back
into the air in the short term, so there are generally insignificant effects of crop biomass
as a carbon sink. Meanwhile, the effects of cropland inputs and soil emissions on the
carbon emissions can also be reflected with the carbon emission coefficient of cropland [30].
By contrast, carbon emissions from energy consumption and industrial activities such as
housing, mining, and manufacturing and transportation are the main sources of carbon
emissions. Thus, the built-up area and cropland generally serve as the carbon sources,
with positive carbon emission coefficients, while the forest land, grassland, water body,
and barren land generally serve as carbon sinks, which are carbon absorbers with negative
carbon emission coefficients. The regional carbon emission can be estimated based on the
carbon emission coefficients according to the guidelines of IPCC as follows:

Ec=Y =) Aixg @

where E, is the total carbon emission (or absorption) amount, e; is the carbon emission (or
absorption) amount from the ith land use type, A; is the area of the ith land use type, and
6; is the carbon emission (or absorption) coefficient of the ith land use type.

The carbon emission (or absorption) coefficients of different land use types, which were
assumed to keep stable during the study period, were determined as follows. The cropland
that provides both carbon emission and carbon absorption serves as both a carbon source
and carbon sink [29,30]. It is therefore necessary to take into account the greenhouse gas
produced during the crop production and CO, absorption of crops during the reproductive
period, and the difference between the two can be used to estimate the net carbon emission
coefficient of the cropland [22,24]. Previous studies have shown that the carbon emission
coefficient and carbon sequestration coefficient of cropland are approximately 0.422 t/hm?
and 0.007 t/hm?, respectively [31,32], so this study took the difference between the two as
the net carbon emission coefficient of cropland, i.e., 0.415 t/ hm?. In addition, the forest land
and grassland are the most important carbon sink and carbon sequestration systems in the
terrestrial ecosystem, and previous studies have shown that the carbon emission coefficients
of the forest land and grassland were —0.623 t/ hm? and —0.144 t/hm?, respectively [33,34],
which were also adopted in this study. In addition, previous studies showed that there
is very limited carbon absorption of the water body and barren land, generally with very
weak impacts on the regional net carbon emissions [27,32]. However, the water body
and barren land accounted for 4% of the total area in the Beijing-Tianjin-Hebei region, so
this study still considered the carbon emission coefficients of the water body and barren
land, which were approximately —0.03 t/hm? and —0.05 t/hm?, respectively, according
to the literature survey results [35-37]. Moreover, there are various types of built-up area,
e.g., urban land, rural settlements, traffic roads, factories and mines, industrial areas, oil
fields, salt fields, and quarries. The built-up area carries a large amount of the energy
consumed in the production and living of human beings, and it is unfeasible to calculate
the carbon emissions of the built-up area according to only the area share of built-up
area [38,39]. It is necessary to estimate the carbon emissions from the built-up area based
on the carbon emissions generated by the energy consumption of human beings on the
built-up area [40,41], which can be estimated according to the carbon emission coefficient
method of the IPCC as follows:

EC:ZmiX,BiXGi (2)
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where EC is the carbon emission from energy consumption on the built-up area, m; is the
consumption amount of various fossil energy sources, f; is the standard coal conversion
coefficient of each energy resource, and 6; is the carbon emission coefficient of each energy
resource. This study used the standard coal conversion coefficient and carbon emission
coefficient of each energy resource published by the IPCC guidelines [32,42,43], which are
shown in Table 1.

Table 1. Standard coal conversion coefficients and carbon emission coefficients of various en-
ergy sources.

Energy Sources Standard Coal Conversion Coefficient Carbon Emission Coefficient
Coal 0.7143 (kgce/kg) 0.7559
Coke 0.9714 (kgce/kg) 0.8550
Crude oil 1.4286 (kgce/kg) 0.5857
Gasoline 1.4714 (kgce/kg) 0.5538
Kerosene 1.4714 (kgce/kg) 0.5714
Diesel oil 1.4571 (kgce/kg) 0.5921
Fuel oil 1.4286 (kgce/kg) 0.6185
Natural gas 1.3301 (kgce/m?) 0.4483
Electric power 0.1229 kg (kgce/kWh) 0.7476

2.4. Decomposition Analysis of Influencing Factors of Carbon Emissions

This study explored the influencing factors of carbon emissions with the LMDI model,
which is one of the most widely used methods to explore the influencing factors of energy
consumption in the field of low carbon economy due to its advantages such as high
operability, full decomposition, no residuals, and unique results [36,37]. Specifically, this
study analyzed the effects of different influencing factors on carbon emissions from land use
change according to the Kaya identity by introducing the land use factor and establishing
the formula of influencing factors of regional carbon emissions from five aspects, i.e., energy
consumption structure, land output intensity, land use structure, economic growth, and
population scale effect, as follows [41,42]:

¢ L L G
C—Zﬂxfxaxﬁxp 3)
where C is the total carbon emissions from land use change (million tons), C; is the carbon
emission amount of the ith land use type (million tons), L; is the area of the ith land use
type (km?), L is the total land area of the study area (km?), G is the GDP (108 CNY), and P
is the regional population size (10* persons).
Then, the regional total carbon emissions can be expressed as follows [40,42]:

Ci L L G
1

where f;, S;, q, g, and P refer to the carbon emission intensity per unit of the ith land use
type, the effect of the land use structure, land use intensity per unit of GDP, GDP per capita,
and population size, respectively. According to this formula, the contribution value and
contribution rate of each factor can be further analyzed with the LMDI model. Assuming the
carbon emission in the base period and the Tth period are C? and C7, respectively, then the
carbon emission change during the study period (0-T) can be expressed as follows [40,43]:

AC:CT—CO:iﬂzz 6fl.T><51.T><qT><gT><PT—i7122 6fl.0><s?><qo><g0><P0 “
= ACj, + ACs, + ACy + ACq + ACp + AC,g
CT
D= 0= D¢DsDqDgDpD;s4 (6)
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where AC is the carbon emission change during the study period, AC fir ACs;, ACy, ACg, and
ACp are the contribution values of f;, S;, g, g, and P, respectively, and AC,; is the decompo-
sition residual. If the obtained contribution value is >0, then the factor has a pulling effect
on the carbon emissions during the study period; otherwise, the factor has a suppressing
effect on carbon emissions. D is the carbon emission change percentage between the base
period and the Tth period; D s Ds, Dy, Dg, Dy, and D, are the contribution rates of fi, Si,
g, & and the residual error, respectively.

The following are the relationships in the additive decomposition mode according to
the LMDI model [40,44,45]:

T_0 T

ACﬁ:;ﬁxln%

ACsi:;%xln%

Acq:lzmg;%?q]xlnj% @)
T_0
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The following are the relationships in the multiplicative decomposition mode accord-
ing to the LMDI model [40,45]:

D¢ = exp(WACy,); Ds = exp(WACs,)
Dy = exp(WAC,); Dg = exp(WACy)
Dp = eXp(WACP);Drsd =1

_ InD
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3. Results
3.1. Land Use Change in the Beijing-Tianjin-Hebei Region

There was remarkable land use change in the Beijing-Tianjin-Hebei region during
1990-2020. There is mainly cropland and forest land in the Beijing-Tianjin-Hebei region,
where the cropland is mainly distributed in the central and southeast parts of the study area,
and the forest land as well as grassland are mainly distributed in the northeast and western
parts (Figure 2). The built-up area is concentrated in the central part and the peripheral
zone of the central towns in the study area. The water body is very limited in the study
area, which mainly includes rivers near towns and lakes in the northwest. More specifically,
cropland as the main land use type accounted for approximately 51.92% of the entire area
in 1990. The forest land and grassland ranked second and third, accounting for about
20.65% and 16.49% of the entire area, respectively, while the built-up area, water body and
barren land accounted for 10.94% of the entire area in total. There was a decreasing trend
of cropland, forest land, grassland, and barren land from 2000-2015, while the built-up
area increased significantly due to the accelerated urbanization process. In particular, the
cropland decreased significantly from 2015-2020, while the built-up area continued to
increase, and other land types only changed slightly.

Table 2 shows the land use transfer in the Beijing-Tianjin-Hebei region from 1990-2020.
A total of 73,072 km? of land was transferred during 1990-2020, among which the transfer-
out area of the cropland ranked first, accounting for about 91.2% of the total transfer-out
area. The cropland was mainly transferred into built-up area, grassland, and forest land,
with the converted areas of which reaching 6726 km? and 4705 km? and 17,621 km?,
respectively. Meanwhile the transfer-in area of cropland reached 19,880 km?, which was
mainly converted from grassland and built-up area, accounting for about 69.4% of the
total transfer-in area of cropland. The transfer-in area of built-up area increased most
significantly during the study area, reaching 20,837 km?, 84.6% of which was transferred
from the cropland. By contrast, watershed and barren land only changed slightly, most
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of which was converted to cropland, accounting for 49% and 51% of their transfer-out
area, respectively.

2010 2015

- Grassland
I:l Cropland
- Water body
- Forest land
- Barren land
- Built-up area

0 50100 200 300 400
km

Figure 2. Spatial pattern of land use in the Beijing-Tianjin-Hebei region from 1990-2020.

Table 2. Land use transfer matrix in the Beijing-Tianjin-Hebei region during 1990-2020 (km?).

2020
1990
Grassland Cropland Built-up Area  Forest Land = Water Body = Barren Land  Total Decrease
Grassland 19,377 7016 1425 6858 538 223 16,060
Cropland 6726 79,738 17,621 4705 2512 302 31,866
Built-up 314 6777 6821 190 996 43 8320
Forest land 6713 3454 836 33,103 251 29 11,283
Water body 486 1778 768 361 2288 489 3882
Barren land 320 855 187 75 224 547 1661
. Total 14,559 19,880 20,837 12,189 4521 1086 73,072
increase
Overall ~1501 ~11,986 12,517 906 639 ~575 —
change

3.2. Evolution of Net Carbon Emissions in the Beijing-Tianjin-Hebei Region

The average annual net carbon emission during 1990-2020 was 313.93 million tons,
and the net carbon emissions of Hebei Province changed most significantly, increasing by
317.71 million tons during the study period, followed by Tianjin and Beijing. From the
perspective of regions within the study area, the changing trend of net carbon emissions of
Hebei Province is similar to that of Beijing and Tianjin. Besides, the evolution of carbon
emissions in the Beijing-Tianjin-Hebei region over these 30 years was divided into three
stages, according to the change of net carbon emissions, the industrial development status,
and energy consumption status in the study area, as shown in Figure 3.
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Figure 3. Changing trends of net carbon emissions in the Beijing-Tianjin-Hebei region from 1990-2020
(million tons).

Phase I (1990-2000) is the stage of slow increase in net carbon emissions, which
increased from 112.86 million tons to 178.54 million tons but was still significantly lower
than the average level of the whole study period. This is mainly due to the fact that
the study area was still in the early industrialization stage during this phase, with a low
urbanization level and low consumption of various energy sources, which led to relatively
lower net carbon emissions.

Phase II (2000-2010) is the stage of rapid growth of net carbon emissions, which
rapidly increased from 178.54 million tons to 436.83 million tons, with the average annual
growth rate reaching 144.66%. This is mainly due to the national focus on the development
of heavy industries and the relatively loose macro production capacity policies during this
period, which led to the lower entry requirement of high energy-consuming, high-emission,
and low-efficiency enterprises into the study area, thus resulting in the rapid increase of
the net carbon emissions.

The third phase (2010-2020) is the stage of steady increase of net carbon emissions,
with the total carbon emissions increasing steadily from 436.83 million tons to 525.31 million
tons. The average carbon emission level during this phase was 1.58 times that of the second
phase, but the average annual growth rate was only 20.25%, which is much lower than that
of the second phase. This is mainly due to the improvement of energy efficiency under the
influence of the national policies on energy saving and emission reduction and application
of advanced technologies. In particular, the implementation of the policies of “peak carbon
dioxide emissions” and “carbon neutrality” imposed important limitations on the increase
of carbon emissions.

3.3. Variation of Carbon Emissions from Land Use Change

The carbon emissions from land use change are shown in Table 3, which were estimated
on the basis of the land use data and energy consumption data of the Beijing-Tianjin-Hebei
region during 1990-2020. The carbon emissions from land use change in the Beijing-Tianjin-
Hebei region showed an overall increasing trend during 1990-2020, with the total carbon
emissions increasing from 112.86 million tons in 1990 to 525.30 million tons in 2020, with an
overall growth rate of 365.46% during these 30 years (Table 3). Among the major sources of
carbon emissions, the carbon emissions from cropland decreased slowly from 4.66 million
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tons in 1990 to 4.15 million tons in 2020, with a total decrease of 0.52 million tons and an
average annual decrease of 17.12 thousand tons in these 30 years, which is mainly due to
the slowly decreasing trend of cropland area in the study area during the study period.
However, the carbon emissions from built-up area as another major source of carbon
emissions increased rapidly from 111.51 million tons in 1990 to 524.51 million tons in 2020,
with an overall growth rate of 370.37% during the study period. In particular, carbon
emissions from built-up area accounted for 95.99-99.22% of the total carbon emissions,
so built-up area served as the main carbon emission source in the Beijing-Tianjin-Hebei
region during the study period. The carbon sinks included the forest land, grassland, water
area, and barren land, the effects of which on the carbon absorption shoed a descending
order. Specifically, the carbon absorption effect of the forest land was the most significant,
accounting for 83.58-89.56% of the total carbon absorption amount of the study area, while
the grassland and water body accounted for 9.62-15.49% and 0.47-0.59% of the total carbon
absorption amount of the study area, respectively. By contrast, the carbon sequestration
effect of barren land was the least significant, accounting for only 0.24-0.35% of the total
carbon absorption amount of the study area. It is particularly notable that the ratio of
the carbon emissions from the built-up area to the carbon absorption from the forest land
ranged between 40.26 and 185 during 1990-2020. In other words, the carbon emissions from
the built-up area were so large that the carbon absorption effect of the forest land failed
to offset the carbon source effect of built-up area, which is the underlying reason for the
continuous increase of the total carbon emissions in the study area during the study period.

Table 3. Carbon emissions from land use change in the Beijing-Tianjin-Hebei region during 1990-2020
(million tons).

Year 1990 1995 2000 2005 2010 2015 2020
Forest land 277 —3.72 —2.79 —2.79 279 278 284
Grassland —0.51 04 —0.51 05 ~05 ~05 ~0.49
Water body ~0.02 ~0.02 ~0.02 ~0.02 ~0.02 ~0.02 ~0.02
Barren land —0.01 —0.01 —0.01 —0.01 —0.01 —0.01 —0.01
Cropland 4.66 422 455 451 4.49 4.46 4.15
Built-up area 111.51 153.74 177.33 299.91 435.66 487.95 524.52
Carbon sink —3.31 —4.16 —3.32 —3.32 —3.32 —3.31 —3.36
Carbon Source 116.17 157.96 181.87 304.42 440.15 492.41 528.66
Total carbon 112.86 153.8 178.55 301.1 436.83 489.1 525.31

emissions

3.4. Effects of Influencing Factors of Carbon Emissions from Land Use Change

The decomposition of the variation of carbon emissions in the Beijing-Tianjin-Hebei
region during 1990-2020 with the LMDI model revealed the contribution value and contri-
bution rate of five influencing factors of carbon emissions, i.e., carbon emission intensity
per unit of land, land use structure, land use intensity per unit of GDP, GDP per capita,
and population size in Figure 4. The results showed that there was obvious annual varia-
tion trends of these influencing factors of carbon emissions from land use change in the
study area (Figure 4). Besides, Figure 5 shows the cumulative contribution rate of these
influencing factors. There were remarkable differences in the contribution value between
various influencing factors of the carbon emissions from land use change (Figure 5). The
absolute contribution values of each influencing factor to the variation of carbon emissions
from land use change during 1990-2020 in a descending order were land use intensity per
unit of GDP > GDP per capita > land use structure > carbon emission intensity per unit of
land > population size. The land use intensity per unit of GDP was the biggest restraining
factor of the increase of carbon emissions, and the remaining four factors all had positive
effects on the increase of carbon emissions, among which GDP per capita had the greatest
promotion effects on the increase of carbon emissions (Figure 5).
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Figure 5. Cumulative contribution rate of influencing factors to the variation of carbon emissions
from land use change in the Beijing-Tianjin-Hebei region.

This study suggested that the land use factors played an important role in influencing
the carbon emissions. For example, there were extremely unstable effects of the carbon
emission intensity per unit of land on the carbon emissions, which showed a promoting
effect during 1990-2015 and a restraining effect during 2015-2020, indicating uncertainties
of the role of carbon emission intensity per unit of land in influencing the carbon emissions
from land use change. Nevertheless, the cumulative contribution rate of the carbon emission
intensity per unit of land was 89.06% during the study period. Besides, the land use
structure had an overall positive effect on the carbon emissions from land use change
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during the study period, with a cumulative contribution rate of 64.3%. It is notable that the
contribution value of the land use structure showed a significant increase during 2015-2020,
which is mainly because the built-up area expanded rapidly during this period, which led
to the remarkable increase of carbon emissions from land use change. It is therefore of
great significance to the control of carbon emissions to carry out the reasonable layout of
land use structure. By contrast, the land use intensity per unit of GDP was the primary
restraining factor of the carbon emissions from land use change in the study area, which
had a suppressive effect on the net carbon emissions throughout the study period, with a
cumulative contribution reaching —385.47%. This indicates that it is feasible to achieve a
sustainable development status of the land use by promoting the economic development
and adopting some reasonable means.

There was always a positive contribution value of GDP per capita to the increase
of carbon emissions, i.e., GDP per capita had played a positive role in promoting the
increase of carbon emissions from land use change during the study period. In particular,
the cumulative contribution of GDP per capita was the highest among these influencing
factors, indicating that GDP per capita played the most important role in promoting the
increase of carbon emissions from land use change. In fact, GDP per capita represents
the regional economic development level as well as the affluence level, and the rapid
economic development not only brings abundant material achievements but also generates
a large amount of carbon emissions; it is therefore necessary to pay more attention to the
factors of economic development in future research and the practice of carbon emission
reduction. Additionally, the population size always had a promoting effect on the increase
of carbon emissions during 1990-2015, which is similar to GDP per capita. The cumulative
contribution value and cumulative contribution rate of population size reached 1.05 million
tons and 30.61%, respectively, indicating that the population size is also one of the most
important factors promoting the increase of carbon emissions from land use change. This is
primarily because the population growth leads to the increase in energy consumption and
further results in more carbon emissions from energy consumption on the land.

4. Discussion

There is an overall high reliability of the results of this study, which were generally
consistent with previous studies. For example, some previous studies suggested that the
growth of GDP per capita resulting from expansion of coal intensive industries was a major
factor driving carbon emissions in China [44,46], and this study also suggested that GDP
per capita played a dominant role in promoting the increase of carbon emissions in the
Beijing-Tianjin-Hebei region, indicating there was a consistent major driving factor of the
Beijing-Tianjin-Hebei region and the whole of China. On the one hand, the Beijing-Tianjin-
Hebei region and other parts of China both used to heavily depend on coal, with a slight
difference in the technological level of energy utilization among these regions, which led to
a similar pattern of carbon emissions of the Beijing-Tianjin-Hebei region and other parts
of China. On the other hand, the Beijing-Tianjin-Hebei region, as one of the three major
urban agglomerations in China, generally kept pace with the rapid economic development
of the whole of China, leading to a similar change of GDP per capita and subsequently
carbon emissions. More importantly, this study estimated the carbon emissions with the
data extracted from the authoritative statistical yearbooks and carried out a decomposition
analysis of influencing factors of carbon emissions with the relatively mature LMDI model,
which were both generally consistent with previous studies and therefore guaranteed the
reliability of the results of this study.

There are still some uncertainties in the results of this study due to the limitation
of data accuracy, and it is especially necessary to further improve the estimation of the
carbon emission (or absorption) coefficients based on dynamic observation data in the
future. For example, the carbon emission coefficient of the State Grid Corporation of China
has been adjusted from 0.6101 tCO,/MWHh to 0.5810 tCO,/MWh in 2022, according to
the latest “Corporate Greenhouse Gas Emissions Accounting Methodology and Reporting

18



Land 2022, 11,997

Guidelines for Power Generation Facilities (2022 Revised Edition)”. This carbon emission
coefficient has declined slightly by only 4.77% after years of technical progress; it is therefore
still feasible to assume that the carbon emission coefficient of electricity kept constant in
past decades. Nevertheless, it is still necessary to use some dynamic carbon emission
coefficients, according to the specific conditions, to more accurately reveal the effects of
technical progress and other factors on carbon emissions in the future.

Although there are still some uncertainties, this study still successfully revealed the
effects of various influencing factors of carbon emissions from land use change. This study
has accordingly proposed the following policy recommendations, which can contribute
to promoting the improvement of the lower carbon emission of land use and support the
synergetic development of the Beijing-Tianjin-Hebei region.

(1) Optimization of the land use structure and the spatial layout of land use

It is necessary to carry out land use in a more economical and intensive way, making
full use of the barren land and a large amount of idle land by giving priority to turning
the barren land and idle land into cropland, forest land, and grassland. It is also necessary
to carry out a moderate return of cropland to forest land and grass land. It is particularly
urgent to control the proportion of built-up area and increase the area of carbon sinks
by planting trees and optimizing the spatial layout of public green space, which can
contribute to achieving environmental improvement and low-carbon development in the
Beijing-Tianjin-Hebei region.

(2) Adjustment of the energy structure and development of new cleaner energy sources

The current energy consumption of the Beijing-Tianjin-Hebei region dominantly de-
pends on fossil energy, especially coal, while the proportion of cleaner energy is still very
low, and it is therefore very necessary to adjust the energy structure and reduce the depen-
dence on fossil energy. To achieve this end, it is necessary to promote the development of
new cleaner energy sources and to encourage the development of advanced energy-saving
technologies, e.g., the Carbon Capture and Storage technologies, which can effectively
reduce carbon emissions.

(3) Optimization of the industrial structure and promotion of the development of the
tertiary industry

The increase of GDP of the Beijing-Tianjin-Hebei region still heavily depends on the
secondary industry, which plays an important role in the increasing the carbon emissions.
By contrast, the primary and tertiary industries have relatively small carbon emissions. It is
therefore necessary to carry out optimization of the industrial structure by “retreating from
secondary industry and developing the tertiary industries”, which can make a considerable
contribution to the energy saving and carbon emission reduction in the Beijing-Tianjin-
Hebei region.

5. Conclusions

This study estimated the carbon emissions in the Beijing-Tianjin-Hebei region during
1990-2020 based on the carbon emission coefficients, and it revealed the quantitative rela-
tionship between land use change and carbon emissions with the decomposition analysis
of the main influencing factors of carbon emissions from land use change. The major con-
clusions are as follows: (1) the cropland, forest land, grassland, and barren land in the study
area all showed a decreasing trend during 1990-2020, among which the cropland decreased
most significantly and the built-up area increased significantly due to the accelerated urban-
ization. (2) The total carbon emissions in the study area increased from 112.86 million tons
in 1990 to 525.31 million tons in 2020, with a growth rate of 365.46%. Built-up area was the
main carbon source, the carbon emissions of which increased rapidly from 111.51 million
tons in 1990 to 524.52 million tons in 2020, with a growth rate of 370.37%. The forest land
accounted for 83.58-89.56% of the total carbon absorption, but it still failed to offset the
carbon emissions of the built-up area. (3) GDP per capita contributed most to the increase
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of the carbon emissions, resulting in a cumulative increase of carbon emissions by 94.78 mil-
lion tons. While the land use structure, carbon emission intensity per unit of land, and
population size led to the increase of carbon emissions by 18.11 million tons, 22.95 million
tons, and 8.67 million tons, respectively. By contrast, the land use intensity per unit of GDP
had a restraining effect on the carbon emissions, making the carbon emissions decrease
by 103.26 million tons in total. This study accurately revealed the variation of net carbon
emissions from land use change and the effects of influencing factors of carbon emissions
from land use change in the Beijing-Tianjin-Hebei region, and all the conclusions of this
study can provide a firm scientific basis for improving the regional land use planning and
for promoting the low-carbon economic development of the Beijing-Tianjin-Hebei region.
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Abstract: Fewer studies on ecological security (ES) in border areas limit the synergistic development
of border areas in the context of rapid globalization. The study of ES in border areas of southwest
China can enrich the evaluation methods, summarize the knowledge related to ES in border areas, and
provide references for similar areas in the world. Therefore, twenty-five international border counties
in Yunnan Province were selected to establish a system to evaluate ES; an entropy weight TOPSIS
model was used to evaluate the changes in ES from 2004 to 2019. Then, an obstacle degree model
was used to diagnose the factors affecting ES. The state of ES was predicted by a gray prediction
model (GM) (1,1) in 2025 and 2030. The results show that an improving ES situation presented a
spatial distribution pattern of high to low from the southwest to the west and east. Various factors,
including fixed assets investment, per-capita fiscal revenue, per-capita GDP, food production, and
water regulation, created obstacles to a desirable ES in the study area. Although the ES of border
areas will maintain an upward trend under the existing development model, the number of counties
that will reach a secure state of ES in 2025 and 2030 is predicted to only be 1 and 2, respectively.

Keywords: border area; ecological security; spatiotemporal evolution; sustainable development;
Yunnan Province

1. Introduction

Rapid globalization has strengthened the political and economic ties between coun-
tries [1], which has largely changed the previous disadvantage experienced by border areas
of a country [2]. For example, the border areas of the European Union (EU) account for
40% of EU territory, 30% of the EU population, and 30% of the EU gross domestic product
(GDP) [3]. The resources and environmental factors of border areas have a more important
impact on national security and international economic cooperation than in the past [4-7],
and ecologists also pay more attention to the resource management in these regions [8].
Although natural ecosystems are often spatially continuous, the boundary lines indicating
the boundaries between the territories of different sovereign states will objectively lead
to competition between countries for resources and environmental conditions in border
areas [9,10]. As a result, the ecological security (ES) of border areas not only becomes an
important part of a country’s comprehensive national security system but also becomes
the most sensitive part of that system. Because border areas involve political boundaries
where environmental changes are complex and uncertain, the ES of border areas not only
includes the security of development and the environment but also includes the rational
use of resources, border management, ecological maintenance of the area, and geographical
cooperation between countries [11]. In this context, studying the ES of border areas is
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of great significance to promote the cooperation between neighboring countries in the
ecological field and maintain the stability of border areas.

The idea of ES first appeared in the land function and land health evaluation in the
1940s. Its concept is based on the theory of environmental security [12]. In 1989, the
International Institute for Applied Systems Analysis first proposed the concept of ES
when explaining global ecological and environmental problems. With the maturity of
the theoretical framework of ES, the concept of ES has better clarity, that is, ES refers to
maintaining the health and integrity of an ecosystem, ensuring that the human living
environment does not change with the changes in external conditions and states, and
keeping the environment in a stable and sustainable state [13]. In recent years, with the
continuous and increasing change in the global environment and climate [14,15], regional
ES has attracted significant attention and has become an important scientific problem that
countries urgently need to solve [16]. Researchers have carried out much research on
ES assessment in multiple scale areas and achieved many valuable results. By using a
Pressure-State—Response model [17,18], the gray comprehensive evaluation method [19],
and an ecological footprint model [20], researchers have evaluated ES at the national [21],
provincial [22,23], urban agglomeration [24,25], watershed [18,26], and urban scales [27].

Although these studies provide a theoretical basis for ES analysis, some problems
remain. First, existing studies have paid more attention to the ES of inland areas, but
little attention has been paid to the field of ES in international border areas. Moreover,
scholars often study large-scale administrative units such as countries and provinces, while
these studies may not meet the needs of more detailed actual environmental management.
Second, these existing studies have mainly focused on the retrospective evaluation of ES,
which enriches the current situation and phenomena of ES but lacks the ability to predict
the future of ES. Third, most of the existing studies ignore the analysis of the mechanisms
that promote ES and lack a discussion of measures designed to improve the level of ES.

Since the 1990s, China has promoted a series of “geo-cooperation initiatives,” namely
transboundary infrastructure projects such as highways, railways, and oil and gas pipelines [10],
which has effectively promoted the sustainable development of border areas. However,
these projects can also lead to ecological problems such as land use-cover change [28],
landscape fragmentation, and a loss of biodiversity [29] in border areas. To this end, the
Chinese government has adopted a series of ecological restoration projects, such as a
natural forest protection plan [30], designated ecological red lines [31], and mandated
transboundary water resource management [32] and biodiversity conservation [33] to
protect the environment of border areas. There are 110 international rivers and lakes in the
southwest, northwest, and northeast borders of China. These regions are the birthplace of
most Asian rivers, making China the most important upstream country for ES in Asia [34].
In 2015, the United Nations adopted the 2030 Agenda for Sustainable Development and
formulated 17 Sustainable Development Goals (SDGs) [15], in which SDG 6 calls for
sustainable management of water resources and SDG 15 calls for curbing the loss of
biodiversity. Yunnan Province, located in the southwest border of China, is the upstream
of Nujiang, Lancang, Honghe, and Daying rivers [35]. It is also one of the hotspots
of biodiversity in the world [36]. Studying the ES of border areas in Yunnan Province
can promote international cooperation on ES and the sustainable management of water
resources, so as to effectively reduce border conflicts and ensure the safety and stability
of border areas. However, the existing literature has paid little attention to this field.
Considering that counties are the basic administrative unit in China [37] and that they can
fully reflect the characteristics of border areas, this study selected the 25 counties in Yunnan
Province as the case study area.

The security of international borders is becoming more and more complicated. There-
fore, how to reposition the functions of the border areas needs more attention from the
academic community. Based on the above literature review and an analysis of existing
research gaps, the purpose of this study is as follows: (1) Analyze the temporal and spatial
change characteristics of ES in the border areas of Yunnan Province under the background
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of increasingly close international cooperation. (2) Probe into the main obstacles and factors
and factors affecting the ES in border areas. (3) Predict the status of ES in border areas in
2025 and 2030. In addition, policy suggestions on improving the level of ES in border areas
are also put forward.

2. Study Area and Data Sources
2.1. Study Area

The border areas analyzed in this paper are located in Yunnan, China (21°08'-29°15’ N,
97°31-106°11" E) (Figure 1), with a total area of 9.03 x 104 km?. This region borders
Myanmar, Laos, and Vietnam and includes the upstream regions of the Nujiang, Lancang,
Honghe, and Daying rivers [35], as well as plateau wetland and tropical forest ecosystems.
This area has a complex terrain as part of the Qinghai-Tibet Plateau, Hengduan Mountains,
and the Yunnan-Guizhou Plateau where the elevation gradually decreases from northwest
to southeast; the maximum relative elevational difference is approximately 4751 m across
the region. The climate is dominated by plateau mountain climate, subtropical monsoon
climate, and tropical monsoon climate conditions. The average temperature is 15-23.7 °C,
and the annual precipitation falls between 1020 and 3388 mm. The combination of climate
and complex terrain makes the border areas one of the global biodiversity hotspots [36,38].
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Low : 80 —China Boundary ' ¢
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Figure 1. Map of the study area location along the southern and western borders of Yunnan Province.
An inset map shows the study area location within the provinces and other administrative areas of
China. Note: Map was created by authors using ArcGIS 10.7 based on the digital elevation model
(DEM) data from the Resources and Environment Data Center of the Chinese Academy of Sciences
(https:/ /www.resdc.cn/, accessed on 4 January 2022).
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The study area included the following 25 counties (cities): Cangyuan, Fugong, Funing,
Gengma, Gongshan, Hekou, Jiangcheng, Jinping, Jinghong, Lancang, Longling, Longchuan,
Lushui, Lvchun, Malipo, Maguan, Mangshi, Menghai, Mengla, Menglian, Ruili, Tengchong,
Ximeng, Yingjiang, and Zhenkang. This part of China is relatively less developed than
other areas of China and includes areas inhabited by people of various ethnic minorities.
The traditional culture of ethnic minorities and rich tourism resources make tourism the
main industry in border areas [39]. By 2016, the study area had a permanent population of
6.92 million, and a GDP of 158.48 billion yuan, of which income from tourism comprised
85.99 billion, accounting for 54% of the total GDP. In a word, as the border areas of Yunnan
Province are rich in biodiversity and located in the upstream of many international rivers,
it is representative to select these regions to study ES.

2.2. Data Sources

We used a digital elevation model (DEM) and multiple datasets, including land
use, meteorological, normalized difference vegetation index (NDVI), PM 2.5, and socio-
economic data and statistics. The basic data used in this study and the data sources are
listed in Table 1.

Table 1. Data information and sources.

Data Type

Time Data Sources

Land use data

Meteorological data

Administrative boundary

Digital Elevation Model (DEM)

Normalized Difference Vegetation

Index (NDVI)

Atmospheric Particulate Matter
content with a diameter of

<2.5 um (PM 2.5)

Socio-economic data

Land use type was classified into cropland, forest, shrub, grassland, water,
snow and ice, barren, impervious, and wetland, with a spatial resolution of

2004-2019 30 m based on Yang and Huang [40]. The data were obtained from
https://doi.org/10.5281/zenodo.4417810 (accessed on 4 June 2021).
2004-2019 Derived from the National Science and Technology Infrastructure dataset

(http:/ /www.cma.gov.cn/, accessed on 17 July 2021).

Obtained from the National Basic Geographic Information Center

2015 (http:/ /www.ngcc.cn/, accessed on 6 January 2022); described basic
geographic information at a scale of 1:4,000,000.
A DEM with a spatial resolution 90 m was provided by the Resources and

/ Environment Data Center of the Chinese Academy of Sciences

(https:/ /www.resdc.cn/, accessed on 4 January 2022).

NDVI data were provided by the Resources and Environment Data Center of

2004-2019 the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on
14 July 2021).
2004-2019 Data were publicly available as vers. V4.GL.03 via the Atmospheric

Composition Analysis Group website at Dalhousie University [41].

Data obtained from the Yunnan Statistical Yearbook, county-level
2004-2019 socioeconomic statistical yearbooks (China), Chinese agency government
work reports, and social development statistical bulletins of each county.

3. Material and Methods
3.1. Research Framework

This study was conducted within a framework of four steps (Figure 2): the first step
introduces the realistic needs, theoretical basis, and literature gaps related to ES. Then, the
paper describes the study area and data sources, constructs an evaluation index system for
ES, and introduces the methods. The third step analyzes the results. The last step expounds
the conclusions and policy implications.
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Figure 2. The research framework used in this study.

3.2. Construction of the Index System

Ecological security is a complex system involving nature, the economy, and human
society [20,42]; the level of ES in any area is constantly changing [30,43]. In the past,
the assessment of ES generally involved the construction of an index system from the
perspective of ecosystem structure and function [12], but it did not consider human beings
as external factors. In reality, human beings have already become an indispensable part of
the Earth’s ES system. Supporting the sustainable development of the economy and society
is an important reason to study ES [43]. Therefore, the present study evaluates the state of
ES in border areas from five subsystems: economy, society, environment, landscape pattern,
and ecosystem service value (ESV). The process of calculating the landscape patterns and
ESVs is as follows:
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(1) Selection and calculation of landscape metrics.

The evolution of landscape pattern leads to spatial changes in the landscape results,
which directly reflect the changes in ecosystem structure and composition and finally affect
ES [18]. A landscape index can describe the change in landscape pattern. Landscape
indices are used to determine the relationship between landscape pattern and the process
of landscape change [36]. In this study, the number of patches (NP), patch density (PD),
largest patch index (LPI), edge density (ED), landscape shape index (LSI), splitting index
(SPLIT), Shannon’s diversity index (SHDI), and aggregation index (AI) were selected to
reflect the level of landscape pattern subsystem [44,45]. The selected landscape index was
calculated using FRAGSTATS 4.2 software.

(2) Calculation of ESV.

Ecological security depends on the level of ecosystem services provided by an ecosys-
tem to human beings [46]. At present, ES has become an important research topic de-
signed to bring ecosystem services into the evaluation of ES systems [46,47]. In 1997,
Costanza et al. [48] put forward the method of evaluating global scale ecosystem services
with ESV, and Xie, a Chinese scholar [49], summarized an equivalent factor of ESV per unit
area according to the actual situation of China. In this study, we referred to their methods
and modified the above-mentioned equivalent factor. For the border areas analyzed here,
the following standards were used: cropland corresponds to dry land; the equivalent factor
for forest is taken as the average value of coniferous, mixed, and broad-leaved forests;
grassland corresponds to prairie; snow/ice corresponds to glacier and snow [50]; and
impervious areas were assigned “0” [51] (Table S1).

The economic value of one ecological service equivalence factor is 1/7 the grain output
value per unit area [49], and the economic value of the equivalent factor in border areas
was calculated according to Equation (1). To eliminate the impact of crop price fluctuation
on the total value, the area, yield, and average price of the three main crops (rice, corn, and
wheat) were selected as the basic data. The calculation process is as follows:

VG =

n
mipiqi
n=12,3 1
ST ) M)

N =

According to Equation (1), the economic value of one equivalent factor of ESV in
border areas is 1817.76 yuan/ha, and the ESV coefficient per unit area of land use type was
obtained (Table S2). Referring to the method of Hu et al. [36], the sensitivity index of the
ESV coefficient for all land use types was obtained (Table S3). The sensitivity index of the
ESV coefficient was all less than 1, which indicates that the estimated total ESV in the study
area is not elastic to the equivalent factor.

The index system of ES is shown in Table 2.

Table 2. The index system of ecological security evaluation in border areas.

Target  Elements Index

Layer Layer Layer References
X1: Annual GDP growth rate (%) [52]
X2: Per-capita GDP (yuan) [22]
Economic X3: Secondary industry as percentage of GDP (%) [53]
subsystem X4: Tertiary industry as percentage of GDP (%) [25]
ES X5: Fixed assets investment (10% yuan) [18]
X6: Per-capita fiscal revenue (yuan) [25]
X7: Population growth rate (%) [24]
X8: Population density (person/square kilometer)  [24,52]
Society subsystem  X9: Per-capita food production (tons/person) [22]
X10: Number of medical beds per 10,000 persons [25]
(pieces/ten thousand people)
X11: Urbanization level (%) [43]
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Table 2. Cont.

Target  Elements Index

Layer Layer Layer References
X12: Annual average temperature (°C) [43]
X13: Annual precipitation (mm) [43]
. X14: PM2.5 (ug/m3) [24]
f&‘g;;‘;lﬁem X15: NDVI (/) [18]
X16: Forest cover (%) [25]
X17: Proportion of construction land (%) [26]
X18: Proportion of cultivated land (%) [25]
X19: NP (/) [54]
X20: PD (/) [12,43]
X21: LPI (/) [43]
Landscape X22: ED (/) [12]
pattern subsystem  X23: LSI (/) [54,55]
X24: SPLIT (/) [12,43]
X25: SHDI (/) [12,43]
X26: AL (/) [54,55]
X27: Food production (10* yuan) [24,50]
X28: Raw material (10* yuan) [24,50]
X29: Water supply (10* yuan) [24,50]
X30: Air quality regulation (10* yuan) [24,50]
X31: Climate regulation (10* yuan) [24,50]
ESV subsystem X32: Waste treatment (10* yuan) [24,50]
X33: Water regulation (10* yuan) [24,50]
X34: Erosion prevention (10* yuan) [24,50]
X35: Soil fertility maintenance (10* yuan) [24,50]
X36: Habitat services (10* yuan) [24,50]
X37: Cultural services (10* yuan) [24,50]

3.3. Entropy Weight TOPSIS Model

The entropy weight method is an objective weighting method, which uses entropy
to indicate the information’s size. Generally, the larger the gap between feature values,
the larger the size of information it possesses [56]. The technique for order preference by
similarity to ideal solution (TOPSIS) is a multi-objective decision-making method. The
principle is to rank the evaluation objects according to the closeness of positive and negative
ideal solutions. At present, the combination of entropy weight method and TOPSIS method
has been widely used in land use planning, sustainable development assessment, and other
fields [57,58]. This study selected entropy weight TOPSIS model to evaluate the level of the
ES in border areas. The calculation process is as follows:

(1) Data standardization was completed using the following equation:

@

L yij_ymin 1 P . .
{ gij = r”_yﬁ””ﬂ where g;; is a positive indicator
L max — Yij
8ij =

Ymax —Ymin

,where g;; is a negative indicator

where ¢;: is the normalized value; and v, and v,,,;,, represent the maximum and minimum
ij min

values of the j index, respectively.
(2) The information entropy of each index was calculated using the following equation:

H] = TInn <2fl] lnfq) 3)

where fl] = (1 +g1])/ ['il(l +gl])] .
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(3) The index weights were determined using the following equation:

1- H;
— @)
j=1

(4) The weight normalization matrix was constructed using the following equation:
Cij = 8ij * Wj ©)

where cij is the weighted normalized decision matrix; and wj is the weight value of the
" index.

(5) The positive and negative ideal solutions, C* and C~, respectively, were calculated
using the following equation:

Ct = {maxcij|i =12, ,m} ={at, ot ,cj+}
1<i<m

(6)
C = {minclﬂi— 1,2,--- ,m} = {C17,C27,' .- ,Cji}

1<i<m

where C* and C™ refer to the optimal and the least considered decision schemes, respectively.
(6) The distance from the index value of each evaluation object to C* and C~ was
calculated using the following equations:

+ L 2.
S] = ;1(Cj _Cij) ,1:1,2,~~~,m

]‘,
@)
Zri: 1/2/"' ,m

S~ =,/ L (¢ —cy)

j=

where ;" and S, refer to the distance of the assessment vector to the positive and negative
ideal solutions, respectively.

(7) The closeness of each evaluation object to the ideal solution was calculated using
the following equation:

R = S (8)
St 4S5

where R; is the closeness of the evaluation object to the optimal solution, and the range of
R;is 0-1. The greater the value of R;, the higher the ES level. Referring to the research of
Cui et al. [59], we divided the level of ES into five levels (Table 3).

3.4. Trend Surface Analysis

Trend surface analysis is a method that can be used to simulate the spatial distribution
law and change trend in geographical elements with a smooth mathematical surface [60].
The actual surface is divided into two components: a regional trend and residual values.
The regional trend is calculated by using a polynomial surface with continuous power, and
the residual values are the arithmetic difference between the original data and the trend
surface, indicating local fluctuations. This study used this method to analyze the spatial
differentiation trend in ES [61], as follows:

Zi(xi,yi) = Ti(xi, yi) + € )

where Z;(x;, y;), Ti(x;, y;), and ¢; represent the observed, trend, and residual values of
variable Z at location (x;, y;), respectively.
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Table 3. Evaluation criteria of ecological security.

Range Status Characteristics

The pressure on the ecosystem is very large, the ecosystem
[0,0.25) Critical structure is very imperfect, and the ecosystem has a very
large risk of collapse.
The pressure on the ecosystem is large; the ecosystem
structure has defects and is in an unstable state.
The pressure on the ecosystem is large and close to the
[0.45, 0.55) Sensitive threshold; the ecosystem structure is relatively complete
and can play the basic function of the ecosystem.
The ecosystem has relatively little pressure and perfect
functions, and the ecosystem is in a relatively stable state.
The pressure on the ecosystem is very small, the ecological
[0.75,1] Secure function and structure are in excellent condition, and the
ecosystem is in a very stable state.

[0.25, 0.45) Unstable

[0.55, 0.75) Good

3.5. Obstacle Degree Model

Based on the ES evaluation of border areas, identifying the key factors that directly
influence the ES can help to present adaptation measures designed to help land managers
preferably maintain the ES in border areas and promote sustainable regional development.
Therefore, our study used an obstacle degree model to analyze the factors creating obstacles
and influencing ES. The calculation process is as follows [62]:

Pj=1-gj (10)
ij = 11— x 100% (11)
L RijPj
ij=1

where M;; represents the obstacle degree of the i" indicator in year j, and Pjj is the degree
of deviation for indicator i in year j.

3.6. GM (1,1) Gray Prediction Model

The gray system theory was first put forward by Deng [63]. A gray prediction model
(GM) (1,1) adopts the basic concept of the gray system theory and has been widely used in
the fields of ecology and social economics [64,65]. It has unique advantages in predicting
and analyzing objects and process systems with small amounts of data, no obvious change
law of data, has an unclear structural relationship, and has an operation mechanism. The
prediction calculation process is simple and accurate. Considering that the change in ES
has fuzzy and uncertain characteristics [43], and predicting its change is a typical gray
evaluation process, GM (1,1) is selected to predict the ES level of border areas in 2025 and
2030. The calculation process is as follows:

(1) Preprocess the data. The original sequence Y;(©) of all data from 2004 to 2019 is set
as follows:

YO = [%001),%0@),, %0 (16)] (12)

Use Equation (13) to obtain a new sequence Y; V) (k):

Y =y, (k—1)+ YO (k) (13)

on

I
—

Y, (k) =

Y = {Yi(l)(l)/Yi(l)(z)" . ,Yi(l)(16)} (14)
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(2) Set up the gray differential equation:
(1) _ |y _ ], —ak b
Yi (k+ 1) = Yi — — e + E (15)

where the values of parameters a and b are calculated by the least squares method [66].
(3) Predict the data. Based on Equation (16), the ES level of border areas in 2025 and
2030 is predicted as follows:

1)
VO®E) =¥+ 1) -V (K) (16)

A
(4) Test the accuracy of the prediction data. After the fitting value Y;(0) of ES is
obtained using Equation (16), the correctness of the model needs to be tested according to

A
the original Y;(©) and fitting Y;(0) sequences. The mean absolute percent error (MAPE) is
usually used to test the accuracy of the model:

0w -1 K
1LY —y,

MAPE = — ! L
”k; Y;(0) (k)

(17)

We referred to the studies of Wang et al. [66] and Wang and Li [67]; when the MAPE is
less than 10%, the forecasting is highly accurate. After calculation, the MAPE of all the data
that were predicted in this paper was less than 10% (Table 4), which meets the requirement
needed to verify prediction accuracy.

Table 4. Mean absolute percent error (MAPE) for each county, which was used to test the accuracy of
the model; a MAPE > 10% indicates that the predicted results are highly accurate.

County Mape County Mape County Mape
Cangyuan 3.47% Lancang 0.52% Mengla 2.26%
Fugong 1.51% Longling 4.47% Menglian 1.91%
Funing 0.80% Longchuan 1.41% Ruili 4.25%
Gengma 3.28% Lushui 2.03% Tengchong 2.23%
Gongshan 1.43% Lvchun 2.81% Ximeng 1.59%
Hekou 5.93% Malipo 1.69% Yingjiang 0.80%
Jiangcheng 0.74% Maguan 3.14% Zhenkang 2.98%
Jinping 1.87% Mangshi 1.45%
Jinghong 2.71% Menghai 1.46%
4. Results

4.1. Temporal Changes in ES

Based on an entropy weight TOPSIS model, we calculated the ES of each border
county. From 2004 to 2019, the ES of all border counties showed a positive upward trend
(Figure 3). Tengchong, Jinghong, and Ruili ranked among the top three counties in terms
of the increase in ES. Among them, the ES of Tengchong increased from 0.4124 in 2004 to
0.6417 in 2019, an increase of 0.2294. The ES of Jinghong increased from 0.4798 in 2004 to
0.6882 in 2019, an increase of 0.2084. The ES of Ruili increased from 0.1994 in 2004 to 0.3537
in 2019, an increase of 0.1544.
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Figure 3. Evaluation scores for temporal changes in ecological security and subsystems (economic,
social, environmental, landscape pattern, and ecosystem service value (ESV)) in 25 border counties of
Yunnan Province, China.

We also analyzed the time trend in five subsystems, namely, the economic, social,
environmental, landscape pattern, and the ecosystem service value subsystems (Figure 3).
All border counties generally showed an upward trend for their economic and social
subsystems, with the economic subsystem of Tengchong rising the most, from 0.1186
in 2004 to 0.6871 in 2019, an increase of 0.5685. The social subsystem of Mangshi rose
the most, from 0.3296 in 2004 to 0.7634 in 2019, an increase of 0.4338. The counties of
Cangyuan, Fugong, Funing, Gengma, Jinping, Jinghong, Longchuan, Lvchun, Malipo,
Menghai, Mengla, Menglian, and Yingjiang showed a fluctuating upward trend in their
environmental subsystems, while the level of the environmental subsystems of other
counties generally decreased. Jinping experienced the largest increase in terms of landscape
pattern subsystem, from 0.3966 in 2004 to 0.5095 in 2019, an increase of 0.1128. the ESV
subsystem of all border counties changed little during the study period.

4.2. Spatial Changes in ES

Our results show the spatial changes in ES in border areas in 2004, 2009, 2014, and
2019 (Figure 4). In 2004, the ES level of all border counties was lower than the good level,
among which Lincang, Jinghong, and Mengla had the highest ES level and were classified
as being in a sensitive state. In 2009, the level of ES in Mangshi changed from critical to the
unstable state. In 2014, the level of ES in Jinghong first reached the good state. Tengchong
changed from the unstable to the sensitive state, while Longling, Zhenkang, and Lvchun
changed from the critical to the unstable state. In 2019, the number of border counties in
the critical state had decreased, with only Ximeng, Menglian, and Malipo in the critical
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state, showing that the ES level in the southwestern part of the study area was higher than
that in the west and east.

}N\ (a) 2004 }N\ (b) 2009
I Critical I Critical
00 Unstable [ Unstable
Sensitive Sensitive
| Good Good
I Secure [ Secure

N (c) 2014 (d) 2019
I Critical I Critical
[ Unstable [ Unstable
Sensitive Sensitive
~ Good [ Good
I Secure [ Secure

‘f 0 200km 0 200km

Figure 4. Spatial change in ecological security in 25 border counties in Yunnan Province, China for:
(a) 2004; (b) 2009; (c) 2014; and (d) 2019. Note: Maps were created by authors using ArcGIS 10.7.

Based on the evaluation of ES in 2004, 2009, 2014, and 2019, the Geostatistical Analyst
tool in ArcGIS 10.7 was applied to visualize the spatial representation of ES conditions.
A spatial change trend map of the ES was obtained thereby (Figure 5). The X and Y axes
indicate the east and north directions, respectively, while the Z-axis indicates the size of the
ecological safety assessment value. The green and blue lines in Figure 5 represent the fitting
curve of ES in the east-west and north-south directions [68]. In the east-west direction, the
trend lines of the four years analyzed here remained stable, and all showed an “inverted
U-shaped” distribution (Figure 5), characterized by the central part being higher than the
western and eastern parts, while the western part was higher than the eastern part. In the
north-south direction, the trend line changed from a “U-shaped” distribution to a “straight
line,” characterized by higher values in the southern and northern parts than in the central
part, while the gap has become significantly narrow; the ES of the northern part has always
remained lower than that of the southern part. These results are consistent with the spatial
distribution pattern of high in the southwest and low in the east and west.
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Figure 5. Spatial change trend in ecological security in 25 border counties in Yunnan Province, China
for: (a) 2004; (b) 2009; (c) 2014; and (d) 2019.

4.3. Diagnosis of Obstacle Factors for ES
4.3.1. Analysis of Obstacle Factors at the Index Level

Based on the degree of obstacle model, the factors creating obstacles that affect ES
in the studied border areas were determined (Figure 6; however, only the factors in 2004
and 2019 are listed). By analyzing the degree of obstacles for each factor [69], the five top
obstacle factors were found to be the following: fixed asset investment (X5), per capita
fiscal revenue (X6), per capita GDP (X2), food production (X27), and water regulation (X33).
In 2004, the average obstacle degree of X5, X6, X2, X27, and X33 was 14.11%, 8.86%, 7.90%,
4.74%, and 4.21%, respectively. In 2019, the average obstacle degree of X5, X6, X2, X27, and
X33 was 11.10%, 7.07%, 6.31%, 5.42%, and 4.73%, respectively.

4.3.2. Analysis of Obstacle Factors at the Element Level

Based on the calculations of the obstacle degree of each indicator, the obstacle degree
of factors at the element level was also obtained (Figure 7). The obstacle degrees at
the element level in border areas varied between 2004 and 2019. In 2004, the economic
subsystem was the main obstacle to improving the ES in Jinghong, Lancang, and Mengla,
while the ESV subsystem was the main obstacle to improving the ES in the other 22 border
counties. In 2019, the obstacle degree of the economic subsystem increased in Langcang,
while the obstacle degree of the economic subsystem of all the other 24 border counties
decreased. The obstacle degrees of social, environmental, and landscape pattern subsystems
changed little.

4.4. Prediction of Changes in ES for the Period 2025-2030

According to the respective ES level of each border county from 2004 to 2019, predicted
values for ES in 2025 and 2030 were obtained (Figure 8). The ES of border areas is predicted
to maintain an upward trend. In 2025, Jinghong would first reach a secure state; Lancang,
Mengla, and Tengchong would reach a good state; and Menghai, Ruili, Gengma and
Funing would reach a sensitive state. Ximeng would maintain a critical state, and the
other 16 counties would be in an unstable state. In 2030, Jinghong and Tengchong would
reach a secure state; Lancang, Mengla, and Ruili would reach a good state; and Funing,
Gengma, Hekou, Longling, Menghai, Yingjiang, and Zhenkang would reach a sensitive
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state. Cangyuan, Fugong, and another 10 counties would be in an unstable state. However,
Ximeng would remain in a critical state.
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Figure 6. The obstacle degree of each indicator of ecological security in 25 border counties in Yunnan
Province, China in: (a) 2004 and (b) 2019 (%).
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Figure 7. The obstacle degree of each element of ecological security in 25 border counties in Yunnan
Province, China for economic, social, environmental, landscape pattern, ecosystem service value
(ESV). Note: 04 and 19 indicate the years of 2004 and 2019, respectively.
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Figure 8. Prediction of the ecological security in 25 border counties of Yunnan Province, China in
2025 and 2030.

5. Discussion
5.1. Discussion of Change in ES

The main objective of this study was to analyze the ES of 25 counties with international
borders in Yunnan Province, China. First, we selected these 25 counties as the case study
area and constructed an index system to evaluate the ES from the five subsystems of
economy, society, environment, landscape pattern, and ESV. We found that human and
natural systems interact to affect the ES, which is consistent with previous studies [30].
Efforts related to ecological protection need to be coordinated with social and economic
development, which can provide more comprehensive guidance for land management
by environmental decision makers [70,71]. Second, we found that the ES of border areas
showed a spatial distribution pattern of high in the southwest and low in the west and east.
Jinghong had the highest level of ES, because Jinghong has adhered to the implementation
of a project designed to return rubber plantation land to forest and has delimited an
ecological red line, resulting in the ES of Jinghong ranking first among the border counties.
Third, we found that from 2004 to 2019, the ES of border areas showed an overall upward
trend, indicating that remarkable achievements have been made in ecological protection
in Yunnan Province. However, on the premise of maintaining the existing development
mode, we predicted the ES status of border areas in 2025 and 2030. We found that only one
county will reach the classification of secure status in 2025 and two counties will reach the
secure status in 2030, which is still a certain distance from the goal of establishing an ES
barrier. Therefore, local governments should continue to pay more attention to the ES in
border areas and formulate environmental policies according to the natural endowment
and economic development of border areas.

5.2. Discussion on Obstacle Factors

In China, significant differences in socio-economic development and natural con-
ditions among regions have caused the factors influencing ES in different regions to
vary [12,17,22,26,72-75] (Figure 9). For the border areas in Yunnan Province, we found
that the fixed asset investment, per capita fiscal revenue, per capital GDP, and food produc-
tion are the main factors creating obstacles to improving the level of ES, which is consistent
with previous research results [73]. Fixed asset investment plays a major role in promoting
both the economy and the upgrading of industrial infrastructure, so as to reduce the pres-
sure of industrial development on the environment. The higher the per-capita GDP and
fiscal revenue, the more capable people are of protecting the environment. In addition, the
border areas are located in the upstream regions of the Nujiang, Lancang, and other rivers.
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This region serves as an important area for supplying and regulating water resources in
Asia [10]. Therefore, the capacity to regulate water availability significantly affects the ES in
border areas. In short, economic development and the provision of water-related ecosystem
services are the main factors creating obstacles that affect the ES in border areas.
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Figure 9. Spatial distribution of influencing factors of ecological security in China. Eight regions
are labeled as follows: (I) Border areas in Yunnan Province, (II) Yunnan Province [73], (III) Qinghai
Province [22], (IV) the Pearl River Delta Urban agglomeration [12], (V) the Chaohu Lake Basin [17],
(VI) the East-Liao River basin [26], (VII) Gansu Province [74], (VIII) the Beijing—Tianjin-Hebei Re-
gion [72]. Note: Map was created by authors using ArcGIS 10.7 based on the digital elevation model
(DEM) data from the Resources and Environment Data Center of the Chinese Academy of Sciences
(https:/ /www.resdc.cn/, accessed on 4 January 2022).

5.3. Limitations and Implications

This study has several limitations and can be improved in future research. First,
biodiversity is an important embodiment of ES, especially in border areas of Yunnan
Province, a global biodiversity hotspot. However, biodiversity data are difficult to obtain
at the county scale. In the future work, the indicators for measuring biodiversity need
to be further considered. Second, when predicting the ES of border areas, this study
only considered the state that the border areas are predicted to reach in 2025 and 2030
under the situation of maintaining the existing development mode, but did not consider
multiple scenarios, such as models of existing development and priorities in economic and
environmental development, to simulate the future ES of border areas. Future research
should make up for these shortcomings.

In the process of national development, as the border areas were far away from the
political and economic center of the country in the past, previous studies often ignored the
border areas [76]. With the acceleration in globalization, the border areas have changed
from the original inferior states to the area with increasingly close international cooperation.
The border areas of Yunnan Province, China, border on Myanmar, Laos, and Vietnam, and
belong to the upstream area of many international rivers [35]. The situation in this area is
relatively complicated. Selecting this area as the research case can provide reference for
researchers to study the ES of border areas. This study finds that the Chinese government
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has effectively improved the level of ES in the border areas by implementing a series of
environmental protection policies [77]. Therefore, other countries can also achieve the
purpose of protecting the ecosystem by continuously increasing their attention to the ES in
the border areas. However, the national boundaries divided by administrative units are
not necessarily the boundaries of natural ecosystems. Carrying out mutual cooperation
among countries is also an important way to improve the ES of border areas. In terms of
specific implementation, first, it is essential to pay attention to the ecological restoration
and protection measures in the most valuable areas [78]. By distinguishing the differences
in the level of ES in different regions of the study area, it helps the local government to
choose the priority of policy implementation. Second, when implementing environmental
protection policies, the local government should identify the obstacle factors affecting
the ES in advance, so as to implement environmental policies pertinently. Third, as an
important basis for a comprehensive national security system, the amount of research on the
ES of border areas needs to be increased, so as to provide reference for local environmental
decision making.

6. Conclusions

Improving the ES of border areas is of great significance to local sustainable develop-
ment [10]. However, few studies have addressed the status of ES in border areas, especially
on the county scale [79]. Therefore, 25 border counties in Yunnan Province were selected as
the study case. We used an entropy weight TOPSIS model to evaluate the ES conditions
of border areas from 2004 to 2019 and used trend surface analysis to evaluate the spatial
differentiation trends. Then, we diagnosed the factors creating obstacles that affect ES and
used a GM (1,1) model to predict the state of ES in both 2025 and 2030. The results show
the following patterns:

(1) From 2004 to 2019, the level of ES in all border counties showed a positive upward
trend. Tengchong, Jinghong, and Ruili counties ranked among the top three in terms of
the improved ES, with increases of 0.2294, 0.2084, and 0.1544, respectively. In terms of
five subsystems (economy, society, environment, landscape pattern, and ecosystem service
value), the 25 counties had obvious differences. The levels of the economic and social
subsystems showed an overall upward trend; the levels of environmental and landscape
pattern subsystems fluctuated continuously; and the overall change in the ESV subsystem
was small.

(2) The ES of border areas presented a spatial distribution pattern of high in the
southwest and low in the west and east. The level of ES in Lancang was the highest in
2004 and 2009 and that of Jinghong was the highest in 2014 and 2019. The trend of spatial
change in ES in border areas generally presented the characteristics of remaining stable in
the east-west direction and changing in the north-south direction.

(3) In terms of index level, fixed asset investment, fiscal revenue, per-capita GDP, food
production, and water regulation are the top five obstacles to improving the ES in border
areas. In terms of element level, the economic subsystem is the main factor creating an
obstacle to improving the ES in Jinghong, Lancang, and Mengla, while the ESV subsystem
is the main factor affecting improvement in the ES in the other 22 counties.

(4) The gray prediction model GM (1,1) can effectively predict the future situation of
border areas in both 2025 and 2030. The level of ES in border areas is predicted to maintain
an upward trend. In 2025, the ES in Jinghong will reach 0.84 and will be in a secure state. By
2030, the number of border counties with a secure state of ES will increase to two, namely
Jinghong and Tengchong. Their ES level will reach 0.98 and 0.86, respectively.

Our research provides reliable information on the ES of 25 border counties in Yunnan
and puts forward targeted policy suggestions based on the research results, which will be
necessary if China desires to implement sustainable development planning and manage-
ment at the smallest administrative scale. In addition, this study can provide a reference
for other countries to improve the level of ES in border areas.
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Abstract: The black soil region in Northeast China is one of the major grain-producing areas of China.
Soil erosion in the black soil region caused by natural factors and anthropic activities has attracted
much attention, especially in a rolling hilly region. Compared with natural factors, the land use factor
of cropland encompasses the most easily optimized measures. Jiutai County of Changchun City,
located in the hilly areas of Northeast China, was taken as an example to calculate the soil erosion
modulus using the Revised Universal Soil Loss Equation model. The overall soil erosion status
of cultivated land in the study area was mainly slight and light, the proportion of cultivated land
affected by extremely intensive and severe erosion was relatively small, and the average soil erosion
modulus was 7.09 thm~2-a~! in 2019. In view of spatial distribution characteristics of soil erosion
revealed by the spatial aggregation and hot spot analysis, the most serious soil erosion intensity
was concentrated in the southeast and northeast sloping farmland over 8°. With the increase in
elevation and topographic slope, the proportion of slight and light soil erosion gradually decreased,
which was closely related to the increase in soil erodibility caused by the space-time migration of soil
organic carbon caused by the interaction of hydraulic and tillage erosion in complex topographic
areas. The Geographically Weighted Regression model was introduced to explore the driving factors
and superposition mechanism of farmland soil erosion in the hilly region of Northeast China. Based
on the relationship between soil erosion and landscape fragmentation, landscape fragmentation was
an important driving force promoting soil erosion, sediment yield, and sediment transport. This
paper is committed to providing a basis for accurately deploying regional soil and water conservation
measures and formulating macro land management policies.

Keywords: agricultural land; land use; soil erosion; RUSLE; hilly region

1. Introduction

Soil erosion has become a major factor driving soil degradation processes [1], affecting
soil and nutrient loss at original sites and accumulation at deposition sites [2,3]. Soil erosion
results in nutrient loss through the denudation of surface soil and soil organic matter, which
not only leads to land degradation and fertility loss but also influences the corresponding
biogeochemical cycles (the siltation and eutrophication of water environment, enhancement
of flooding, and decrease or increase in CO, emissions) [4]. For example, Hancock and
Wells using a flume experiment suggested that soil organic carbon (SOC) is enriched
in eroded sediment [5]. Soil erosion alters the biological process of SOC mineralization
resulting in the loss of C from the soil to the atmosphere [6]. The disturbance of soil
erosion in the terrestrial carbon cycle also restricts the buffering effect of the soil ecosystem
on climate change and further affects the global ecosystem security [7,8]. China is one
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of the countries with the worst soil erosion phenomenon in the world [9], according to
the Ministry of Water Resources, which issued the second national soil erosion remote
sensing survey results showing that the national soil erosion area reached 3.56 million km?.
Moreover, the problem of soil erosion in the black soil area of Northeast China has attracted
extensive attention [10,11].

Soil erosion is derived from the joint effect of natural and human influencing fac-
tors [12]. Land use is the most important predictor of soil erosion susceptibility, which
can slow down or speed up soil erosion, depending on the specific situation [13]. Irra-
tional land use is one of the substantial factors that accelerate regional soil erosion [14].
Understanding the impact of land use changes on soil erosion is crucial for exploring
the mechanism of regional erosion and identifying the driving forces of anthropogenic
controllable erosion [15-17]. Most studies regarding the response of soil erosion to land
use change focus on the estimation of soil erosion of different land use types [18,19], but an
exploration of the response of land use intensity and landscape fragmentation to soil ero-
sion is lacking. Therefore, building on the spatial characterization of soil erosion patterns
and the identification of erosion hotspots, the impacts of land use intensity and farmland
landscape fragmentation on the spatial differentiation characteristics of arable land soil
erosion were identified, and scientific land management methods were adopted to control
regional soil erosion and improve soil quality, which is conducive to the sustainable use of
land resources and achieving regional sustainable development.

The inherently fertile black soils (Mollisols) account for nearly 6.9% of the Earth’s land
area. Tremendous black soils all over the world are suffering soil erosion and soil degra-
dation due to unreasonable management and prolonged agricultural production [20,21].
However, black soil is also an abundant organic carbon (OC) pool; thus, any loss of black
SOC due to global climate change is likely to produce considerable feedback [22]. The black
soil region of Northeast China is crucial for grain production in China but has been threat-
ened by intensive and extensive soil erosion due to long-term intense cultivation activity
after the transformation from forest to cropland. Therefore, this paper selected the Jiutai
District of Changchun City, which is located in the rolling hilly region of Northeast China.
In the past few decades, although it is an important commodity grain production base in
China, it has experienced severe degradation in physical [23], chemical [24], and biological
properties [25], which provides a platform for examining the separated effects and influence
mechanism of land use change on soil erosion, and is vital for the subsequent sustainable,
optimal management of black soils in Northeast China.

In this paper, Jiutai County of Changchun City, located in the black soil region of
Northeast China, was taken as an example area to carry out the soil erosion modulus using
the Revised Universal Soil Loss Equation (RUSLE) and then to recognize the erosion hot
spots. The Geographical Weighted Regression (GWR) model was introduced to discuss
the key driving factors and superposition mechanism of farmland soil erosion in the hilly
region of Northeast China and to analyze the control mechanism of land use intensity
and landscape fragmentation index on farmland soil erosion. This paper is committed to
providing a basis for accurately deploying regional soil and water conservation measures
and formulating macro land management policies.

2. Materials and Methods
2.1. Study Area, Soil Sampling and Analysis

Jiutai County of Changchun City is located in typical low mountain and hilly ter-
rain, roughly between 43°50' N—44° 31’ N latitude and 125°24’ E-126°29’ E longitude.
The coverage area of Jiutai County has reached about 3 km? and belongs to the monsoon
climate zone. The soil in the study site is classified as Mollisols with a texture of clay loam
(USDA, Taxonomy).

As the SOC data used in the calculation of the soil erodibility factor in the RUSLE
model used in this paper were obtained through remote sensing inversion, to ensure
accuracy, the collection range of soil samples was expanded (Figure 1). A total of 240 soil
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plots were collected by a shovel with depths of 0-30 cm. At each sampling plot within a
radius of 2 m, five sites, four sampling points at the corners, and one sampling point at the
center of the sampling plot, were selected. The soil samples within the five sampling sites
were mixed and placed in a sealed plastic bag to indicate the soil properties of each plot
while the spatial coordinates of the plot center were recorded in GPS (Garmin Etrex32X,
Bern, Switzerland).

Figure 1. Distribution map of sampling points.

The collected soil samples were dried continuously in an oven at 60 °C for 72 h until
constant weight and ground through a 2 mm sieve. The next steps were removing the
plant roots and other substances from the sample and further grinding it through a 100 um
screen to determine the SOC content. The determination method of the total carbon content
of the soil samples was the dry firing method using a VarioMax CN analyzer (Elementar
GmbH, Berlin, Germany). For the soil samples with evident reactions under the treatment
of 10% HCI solution, the inorganic carbon content was determined by the pressure calcium
meter method. Finally, the SOC content was obtained by subtracting the inorganic carbon
content from the total carbon content.

2.2. Data Sources

The Sentinel-2 (S2) remote sensing image data used in this paper were from the
European Space Agency and the United States Geological Survey website during 2018-2020.
L1C multispectral image data with good quality and less than 10% cloud cover were selected
and the Sen2Cor plug-in (ESA released to produce L2A data) was used for atmospheric
correction to determine the range of bare cultivated land and SOC inversion. A seamless
mosaic tool was employed to merge the multispectral images through Environment for
Visualizing Images software. The NDVI is utilized in numerous studies due to its simple
estimation, easy availability, and cancellation of noise that is caused due to solar angle,
topographic illumination, and clouds [26-28]. In this paper, the normalized difference
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vegetation index (NDVI) was computed by the S2 remote sensing image dataset established
above to represent the vegetation cover condition.

NDVI = (Band8 — Band4)/(Band8 + Band4) )

The time node representing 2019 was selected to calculate the erosion triggering factors
and amounts of soil erosion. The rainfall from 1986 to 2015 was provided by WorldClim
with a spatial resolution of 5 km. Soil texture data were obtained from the 250 m x 250 m
rasterized SoilGrids dataset with soil depths of 0-30 cm. The soil data at depths of 0-30 cm
were estimated via the weighted depth average method. To determine the terrain factor
in the RUSLE model, ALOS DEM data, which have a spatial resolution of 30 m and are
derived from NASA EARTHDATA, were selected. On this basis, topographic raster data
such as slope gradient, slope length, and slope aspect in the study area were obtained by
QGIS 3.10 software.

Based on the first national detailed land survey in 1996 and the unified land survey
database in 2019, the land use maps were visually interpreted by using the images from
the United States Geological Survey. The accuracy of land use classification was above
90%, and the Kappa coefficient was approximately 0.85. The land use data of the above
two years provided the basis for social and economic data, such as the proportion of
residential area and road network density, and land use conditions, such as land use
intensity and land use landscape fragmentation in the GWR model. The land use intensity
mentioned above refers to the efficiency of land resource utilization. In this paper, land use
intensity was quantitatively described as four different grades according to land use types
(Table 1). Considering the possibility of multiple land use types distributed in the same
grid cell, multiple values of land use intensity are in the same grid cell. Therefore, the land
use intensity analysis model should be adopted to calculate the comprehensive land use
intensity index of the grid cell as follows:

Q; = 100 x (Z qi X Pi) (2)
i—1

where Q; refers to the comprehensive index of land use intensity of the jth grid unit, n is
the number of land use intensity grading, g; refers to the Grade I land use intensity index in
the grid unit, and p; is the ratio of the Grade I land use intensity to the total area of the grid.

Table 1. Land use intensity assignment of different land use types.

Land Use Types

Unused Land Forest, Grassland and Water Arable Land Construction Land

Land use intensity grading index 1 2 3 4

In this paper, “construction land” refers to the land used for building buildings, structures, land as a production
base, and living place.

Landscape fragmentation is an index of landscape fragmentation in the landscape
pattern index, which can reflect the complexity of landscape spatial structure and the
degree of human interference to the landscape to a certain extent. In this paper, patch
density, edge density, and aggregation index were calculated by Fragstats 4.2 software.
The comprehensive index of cultivated land landscape fragmentation degree was obtained
after the weight of three indices was calculated by the analytic hierarchy process.

2.3. RUSLE Model

RUSLE, which has been widely applied in multiple previous studies [29-31], is a
statistical relationship model for predicting the amount of soil erosion, which can correlate
the amount of soil erosion and its influencing factors (such as climate condition, soil
properties, topography conditions, vegetation cover, and human activities), and can be
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flexibly modified in terms of the local conditions of influencing factors [32]. Five factors are
used in the RUSLE model to estimate the annual average soil loss [33] as follows:

A=RxKxLSxCxP 3)

where A indicates the annual average soil erosion modulus (thm=2 a~1!), R is the rainfall
erosivity factor (MJ mm hm~2 h~! a=1) linked to the amount of rainfall, and K is the soil
erodibility factor (t hm? h hm~2 MJ~! mm™1), which is closely related to soil properties.
L and S are the slope length and the slope gradient factor, respectively, C is the vegetation
cover management factor, and P is the erosion control practice factor. Many researchers in
the Northeast Black Soil Region have established local applicable methods for calculating
the factors of the RUSLE model [34,35].

2.3.1. Rainfall Erosivity Factor (R)

R characterizes the source power of the rain to create erosion. R was calculated
using the method of Zhang and Fu (2003) [36], which is defined using daily rainfall data
as follows:

R =eX* 4)

where R indicates the mean rainfall erosivity factor (MJ] mm hm=2 h™! a™!); X indicates the
average annual rainfall (mm); € and o are model parameters, € = 0.0668, « = 1.6266; and the
determination coefficient is 0.828.

2.3.2. Soil Erodibility Factor (K)

K represents the soil vulnerability to erosion, which indicates the soil sensitivity to
denudation separated under raindrop splash, fluctuation, and transportation by runoff.
K is sensitive to the texture, structure, OC, hydraulic properties, and wettability of the soil.
Many methods for calculating K are available, but the most generally used is the EPIC
model based on the soil texture and SOC data [37-39]:

1-SIL SIL 03 0.25C 0.751
K= {O’HO'B‘”‘” {_0'02565/“\] 100 ” * <CLA+SIL> x <1 - C+exp(3.7272.95C> 8 (1 " Su +exp(—551 +22.9sn1) ®)

where SAN, SIL, and CLA indicate the sand (0.05-2.0 mm), silt (0.002-0.05 mm), and clay
(<0.002 mm) contents (%), respectively, and C is the SOC content (%), S,,; =1 — SAN/100.
By multiplying by the coefficient 0.1317, K can be expressed as an SI metric (t hm? h hm~2
MJ~ ! mm~1).

SOC data: S2 remote sensing image data during 2018-2020 were used to construct
the bare cropland SOC inversion model. Ten bands covering visible bands (Band2, Band3,
and Band4), red-side bands (Band5, Band6, and Band?), near-infrared bands (Bands,
Band8A), and shortwave infrared bands (Band11, Band12) were used as an explanatory
variable for SOC prediction. The SOC data were the dependent variable in spectral mod-
eling. Coordinate information was used to link soil SOC data from sampling sites with
remote sensing spectral information. Model calibration and validation were carried out
in R 4.0.3. To evaluate the uncertainty of SOC prediction, different datasets were used
for model calibration and cross-validation in 100 repeated simulations. The coefficient of
determination (R?) and root mean square error (RMSE) of the measured and predicted
values were used to evaluate the performance of the model.

2.3.3. Slope Length and Steepness Factor (LS)

LS is an acceleration factor that reflects the effects of slope length and slope gradient
on soil erosion. The estimation method proposed by McCool (1989) [40] and Liu et al.,
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1994 [41] was comprehensively adopted and applied in the black soil area of Northeast
China. The calculation formula is as follows:

16.8sin — 0.5, 5° < 0 < 10° (6)

10.8sin6 + 0.03, 6 < 5°
S pr—
21.9sin6 — 0.96, 6 > 10°

where 6 denotes the slope angle (°).

)\ m
L= (22.13> @
0.2, 6 <0.5°
o) 0305 <0<15° ®)
) 04,15°<60<25°
0.5, 6 > 2.5°

where m and A are the slope length index and the slope length (m), respectively. Among
them, 22.13 is the slope length of the standard plot. The LS factors were calculated by the
DEM data, and the specific calculation process was achieved by using ArcGIS 10.3 software.

2.3.4. Cover and Management Factor (C)

C represents the erosion control ability of different surface cover types [42]. In the
RUSLE model, C is calculated from various subfactors, namely, prior land use, canopy
cover, surface cover, surface roughness, and soil moisture [43]. In this paper, the following
calculation method was selected for estimating C factor using vegetation cover value [44]:

NDVI — NDV L,

V= NDVIym = NDVI,, ©)
C=1,0<V <0001
C = 0.6508 — 0.34361log V,0.001 < V < 0.783 (10)
C=0,V>0783

where V is the vegetation cover, calculated by retrieval NDVIs derived from the S2 images;
NDV I;5x is the maximum value (NDVI value of pure vegetation pixel), and NDV I,,,;;, is
the minimum value (NDVI value of pure bare soil pixel).

2.3.5. Support Practice Factor (P)

P represents an inhibiting factor that reflects the effects of support practices (such as
terracing and contour tillage) on soil erosion [45]. Based on previous research results and
the actual situation of the research area, the p value of the whole research area was set to
1 in this paper.

2.4. GWR Model

First, before regression weighted analysis, the need for soil erosion risk research and
land use factor analysis were considered, and spatial grid units were taken as the basic unit
of the study to achieve the purpose of information space statistics. Now, the whole research
area was divided into 3 km x 3 km grid cells, and each grid cell was assigned a unique
identifier, totaling 445 spatial grid cells.

GWR analysis was first presented by Brunsdon [46] and has been widely used by
society and natural scientists [47-49]. The GWR model has been mostly applied in urban
planning [47,50], environmental science studies [49], geological and geographical remote
sensing [51], agricultural sciences [52], and geosciences in some cases [53].
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GWR offers better spatial variation as a local function among dependent and indepen-
dent variables compared with OLSR as a general trend in the entire study area. The general
GWR is defined by the following equation [46]:

p
Z; = aop(x;,y;) + Z ap(x;, yi)wi +€,i=1,2,...,n (11)
k=1

In this paper, Z; is the explained variable and represents the soil erosion risk index
of the ith grid unit. The coordinate of the target region i is (xi,y;), which represents the
coordinate of the center point of the ith grid cell. ay(x;,y;) is the intercept term, K is the
explanatory variables value, and oy (x;, ;) is the first K regression parameter of the ith
sampling point and represents the regression parameter of the ith grid cell. wy is the
observed value of explanatory variable wy at position (x;,y;), ¢; is the random error of the
ith sampling point.

In the GWR model, the calculation of the spatial weight matrix is the core content,
which represents the spatial dependence of data. The calculation of the weight matrix is
closely related to the type and bandwidth of the kernel function. In this paper, Bi-Square
function, which has more computational advantage when facing regression analysis with a
high degree of data dispersion, was selected. The calculation formula is as follows:

(d;;/)?
Wij =e 2 (12)
d;/0)%)’
wy = { (= @?)" oy (13)
0, dl] >b

where b is the bandwidth, that is, the parameter for calculating the weight value based
on the spatial distance; d;; is the actual spatial distance between observation point j and
sampling point i.

In terms of optimal bandwidth selection, this paper adopted the AIC criterion with
a higher optimization degree but a relatively complex calculation compared with the
cross-validation method. The calculation formula is as follows:

AIC.(b) —2nln&+nln2ﬂ+n<m> (14)
where 7 is the number of sample points; ¢ is the maximum likelihood estimate of the
variance of the random error term, o0 = - ftsr ‘?S). The predicted amount of soil erosion in
2019 was used as the dependent variable with a spatial scale of 3 km x 3 km. The selection
of explanatory variables considered the three aspects of nature, social economy, and land
use that affect soil erosion. Finally, nine explanatory variables were selected to construct
the explanatory index system, namely, elevation (X1), slope (X2), precipitation (X3), SOC
content (X4), vegetation coverage (X5), change in the proportion of residential areas (X6),
change in road network density (X7), change in land use intensity (X8), and change in
landscape fragmentation degree of cropland (X9). X6-X9 indicators indicate the change
values, which refer to those change values from 1996 to 2019. The impact of land use
intensity and land use landscape fragmentation on the spatial distribution of soil erosion
was further studied from the perspective of land use.

In this paper, SPSS 22.0 software was used to conduct preliminary data tests on the
nine explanatory variables through the tolerance and variance inflation factor (VIF), and the
calculation formula is as follows:

1

VIF=——
1-R?

(15)

where R? is the square value of the determination coefficient. The larger the VIF is,
the smaller the tolerance between explanatory variables.
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3. Results and Discussion
3.1. SOC Inversion Based on Multi-Temporal S2 Remote Sensing Image and Composite Soil Pixels
3.1.1. Determination of the Scope of Bare Cultivated Land

NDVImax and NDVImin composite data were established using S2 remote sensing
image series data. To determine the critical threshold of bare soil, the NDVI characteristics
of farmland, forest, and construction land were statistically calculated. According to
the 2019 land use type map, 2000 validation points were randomly selected from each
land use category, and the NDVI values of these sampling points were extracted from
the NDVI composite data. For the NDVImin combination, the NDVI value representing
farmland was between 0.10 and 0.24, which can be clearly distinguished from the forest
area. The NDVImax value of construction land was generally lower than that of farmland
and forest. Therefore, “NDVImax > 0.75” excluded the construction land area and the range
of bare soil was delimited by combining “NDVImax > 0.75” and “0.10 < NDVImin < 0.24”
(Figure 2).

Figure 2. Spatial distribution of bare cultivated land in the study area. (a) map is the effect diagram
of bare cultivated land identification in part of (b) map.

To determine the optimal time window, the first step was to use the planting period of
the main crops in the study area determined in the FAO crop calendar. In the second step,
according to the investigation of 100 bare croplands in the study area, an NDVI threshold
of 0.10-0.24 was set and used to remove green vegetation pixels, which was consistent with
the study of Shi et al., 2020 [54]. The third step was that NDVI alone was not sufficient
to extract bare land pixels, and the Natural Burn Ratio 2 (NBR2) [55] threshold was used
to remove soil pixels contaminated by crop residues. The time evolution map of the
NDVI in 2019 was plotted with the 2000 cultivated land sampling points mentioned above.
Considering that although a similar NDVI distribution occurred in April and October,
corn straw remained in the field after the crop harvest in October, so determining the
NBR2 threshold was necessary to remove soil pixels further contaminated by crop residue.
By comparing the distribution of NBR2 values in the two periods, the NBR2 threshold
of 0.075 was used. Castaldi et al., 2019 showed that an NBR2 value of 0.075 was the
most appropriate threshold for building a good SOC prediction model [55]. In addition,
a study in northern Germany found that this threshold guaranteed a relatively high bare soil
coverage, indicating that the NBR2 = 0.075 threshold was suitable for various environments.
The above study proved that NBR2 = 0.075 was practical for removing noise pixels affected
by environmental pollution. In this paper, NDVI and NBR2 thresholds were combined to
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perform the extraction of bare cropland for each single-date data image in a predetermined
optimal time window. Then, the processed single-date images were filled into the range of
bare farmland, and the multitemporal bare soil composite data were obtained by averaging
the reflectance of bare soil repeatedly occurring in each pixel.

3.1.2. SOC Inversion

A scatter plot was made by a one-to-one correspondence of the “GGplot2” function
in R4.0.3 software, as shown in Figure 3. Figure 3c reveals the verification results of the
PLSR model based on bare soil composite data developed by the multitemporal S2 remote
sensing spectrum improved compared with the PLSR model based on single-date S2 re-
mote sensing data, and the SOC prediction model developed by multitemporal bare soil
composite data performed better. R? = 0.53 (2018), 0.59 (2019), and 0.51 (2020) increased to
0.62 (multitemporal), and the RMSE remained almost unchanged. In this paper, the mathe-
matical relationship between spectral information and soil composition was used, but the
effects of agricultural activity factors on the modeling effect were ignored, which is also
an aspect where further research needs to be improved. Figure 3c,d reveal that compared
with the modeling training dataset, the accuracy test results obtained from the independent
validation dataset decreased, R? decreased from 0.62 to 0.49, and RMSE increased from
0.17 to 0.23, possibly due to the decreased sample numbers and narrow range of SOC
content. Therefore, the prediction results were affected to a certain extent.

(a) Distribution map of organic carbon in the study area (b) Standard deviation
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Figure 3. PLSR model validation results and spatial distribution of SOC based on multi-temporal
52 remote sensing spectral data set. (a) Spatial distribution map of SOC; (b) Spatial distribution of
standard deviation of SOC; PLSR model validation results based on (c) modeling training data sets;
(d) independent validation data sets; (e) the complete data set.

A total of 80 soil samples (including 35 independent validation sampling points) were
collected in the study area. After evaluating the model performance using the complete
soil spectral dataset of 80 groups, Figure 3e shows that the prediction accuracy improved
with the increase in the number of sampling points (R? increased from 0.49 to 0.61, RMSE
from 0.23 to 0.21). Compared with the best performance evaluation result (R = 0.32,
RMSE = 0.68) in Nascimento et al., 2021 [56] of digital SOC mapping based on remote
sensing images, the SOC prediction based on multitemporal S2 remote sensing images in
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this paper had a more accurate prediction accuracy. Furthermore, the practicability of SOC
prediction based on multitemporal remote sensing pixels was illustrated.

3.2. Spatial Mapping of Soil Erodibility Factor and Soil Erosion Risk

The soil texture was fine, and the calculated value of the soil erodibility factor was
small (0.0168-0.0203 t hm? h hm 2 MJ~! mm™!). Clearly, the southeastern region of the
study area had a higher SOC content and lower predicted results of soil erodibility factors
than the northwestern region.

The SOC spatial distribution data based on S2 high-resolution remote sensing images
can improve the spatial resolution of the soil erodibility factor map (Figure 4). Based on
the amplification effect of the spatial distribution of the K value (Figure 4), the K value
calculated by the SOC data inversion based on S2 can reflect the spatial heterogeneity
characteristics of the K value, which is important for refining the spatial difference char-
acteristics of soil erosion. Additionally, proper agricultural practices would maintain
sufficient SOC and aggregate structures to help control the development of soil erosion [57].

Figure 4. Spatial distribution of soil erodibility factors in the study area. (a) map shows the magnified
effect of the local area of (b) map.

Using the remote sensing inversion techniques, erosion factor calculation equation,
and RUSLE model, soil erosion and the interfering factors in the study area in 2019 were
assessed and mapped, which provided available information to serve as a primary reference
for soil and water conservation management. Based on the soil erosion classification
standard in the Technical Standard for Comprehensive Control of Soil and Water Loss in
Black Soil Area (SL446-2009) promulgated by the Ministry of Water Resources of China,
the soil erosion degree was divided into six grades (Table 2 and Figure 5). From the size
of the area eroded, the soil erosion of bare farmland in the study area was mainly slight
and light, which accounted for 31.99% and 51.25% of the total area of cultivated land,
respectively. Moderate erosion followed, accounting for 11.14% of the total area of bare
cultivated land. The proportion of cultivated land with extremely intense and severe
erosion was 2.83%. In terms of spatial distribution, the cropland with serious soil erosion
was mainly distributed in the sloping farmland with higher elevation and more gullies
(southeastern and northeastern hilly areas). In the flat area (central and western regions)
where the river flowed, the soil erosion of cultivated land was light, mainly with slight
erosion and light erosion. Soil erosion maps can be used as a basic document for rational
land planning to avoid potential water and soil losses effectively. The sloping grasslands in
the low mountain and hilly area had a high risk of soil and water loss, which required the
implementation of effective management and control measures.
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Table 2. Statistical results of different soil erosion intensities of cropland.

Soil Erosion Soil Erosion Modulus/ Proportion of Total

2
Intensity Grade thm—2a-1 Area/km Arable Land/%
1. Slight <2 697.44 31.99
2. Light 2-12 1117.43 51.25
3. Moderate 12-24 242.93 11.14
4. Intense 24-36 60.70 2.78
5. Extremely Intense 36-48 24.18 1.11
6. Severe >48 37.51 1.72

Figure 5. Spatial distribution of soil erosion modulus (a) and intensity grade (b) in the study area.

Xu and Zhang (2020) [29] showed that the spatiotemporal characteristics in soil ero-
sion could only be uncovered more accurately by spatially quantifying different change
methods of triggering factors and their relative importance. Figure 6 shows that topo-
graphic factors have the greatest influence on the spatial distribution of soil erosion, and the
spatial distribution of topography factors would help explain the change in soil erosion,
so the relationship must be determined. According to statistics, with increasing altitude,
the proportion of slight and light soil erosion gradually decreased, while the proportion of
extreme intensity and severe erosion gradually increases. With the increase in terrain slope,
the proportion of slight and light soil erosion gradually decreased, while the proportion
of extreme intensity and severe erosion gradually increases. The most serious soil erosion
intensity was concentrated in the southeast and northeast sloping farmland over 8°. Finally,
overall, soil erosion on the sunny slope was slightly more serious than that on the shady
slope possibly because the sunny slope was the windward slope of the southeast monsoon,
and the soil water evaporation was larger than that on the shady slope, resulting in a lower
soil water content, which reduced the vegetation coverage and made soil erosion more
likely. LS was the leading factor of regional soil erosion. Therefore, better spatial optimal
allocation of land use is needed to avoid steep areas prone to erosion [29,58]. Arable land
was widely distributed in the flat regions with much lower LS factors than in grasslands
and forests. The cultivated land distributed around the forestland faced the soil erosion
risk due to the terrain and became unstable cultivated land. When the study area was
larger, future soil erosion risk from spatial and temporal changes in precipitation should be
considered and evaluated by using the future climate change prediction models. The K
at the field scale can be calculated by more accurate soil attribute data, which would be
needed in water and soil conversation planning.
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Figure 6. Proportion of soil erosion grades of cultivated land at different altitudes, slopes, and aspects.

3.3. Land Use Factor Analysis of Cropland Soil Erosion Based on the GWR Model

Table 3 shows that the VIF of the independent variables was less than 5 and the
condition index was less than 30, which proved that the nine explanatory variables selected
passed the multicollinearity test.

Table 3. Multicollinearity test results of independent variables.

Collinearity Test Results

Type Layer Explanatory Variables
P y P R Tolerance VIF
Elevation (X;) 0.94 1.07
Slope (X7) 0.67 1.49
Natural conditions Precipitation (X3) 0.44 2.27
SOC content (Xy) 0.50 1.99
Vegetation coverage (Xs) 0.79 1.27
Socioeconomic Chang.e in the proportion of 0.92 1.09

dit; residential areas (Xg)

conditions Change of road network density (X7) 0.88 1.14
Change of land use intensity (Xg) 0.93 1.08
Land Use conditions =~ Change of landscape fragmentation 0.98 1.02

degree of cropland (Xo)

The preliminary statistics of the regression coefficients of each explanatory variable of
soil erosion in the GWR model (Table 4) showed that the plus or minus statistical values of
the regression coefficients proved the existence of both positive and negative correlations
between the explanatory variables and the soil erosion of cultivated land in different
grid cells.

Table 4. Statistical result of regression coefficients of explanatory variables.

. .. Upper . Lower . Standard
Explanatory Variables Minimum Quartile Median Average Quartile Maximum Deviation
Elevation —1.89 —0.05 0.08 —0.01 0.20 1.01 0.45
Slope 4.03 5.54 5.94 6.18 6.46 9.04 1.09
Precipitation -1.76 —0.92 —0.55 —0.56 -0.17 0.63 0.51
SOC content —2.56 —0.72 —0.47 —0.56 —0.30 0.29 0.49
Vegetation coverage —0.57 0.06 0.16 0.24 0.41 1.54 0.35
Change in the proportion of —142 0.17 0.83 0.69 119 3.01 0.69
residential areas
Change in road network density —0.67 0.00 0.11 0.10 0.20 1.46 0.30
Change of land use intensity —1.98 —0.68 0.49 0.46 0.62 1.39 0.37
Change of landscape -1.92 —037 ~0.16 —0.17 0.25 1.04 0.59

fragmentation degree of cropland
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Chaplot et al., 2005 [59] found that the influence of land use change on soil erosion is
greater than that of climate factors, especially in regard to rill erosion. Simonneaux et al.,
2015 [60] showed that the increase in soil erosion caused by land use change is much greater
than that caused by climate change in Morocco. Compared with forests, farmland has a
lower interception rate, resulting in a higher runoff [61].

In this paper, the changes in the proportion of residential area, road network density,
and land use intensity, for which the median and mean regression coefficients were positive,
explained that the relationship between the above three indices and the cropland soil ero-
sion degree was positively correlated in most grid cells (Figure 7), that is, the increase in the
proportion of residential area had a positive influence on the soil erosion severity. The me-
dian and mean values of the regression coefficients of farmland landscape fragmentation
change were both negative, indicating that the soil erosion degree of farmland decreased
with the increase in the explanatory variables of farmland landscape fragmentation change
in most grid cells.

Figure 7. Spatial distribution of regression coefficients of explanatory variables of socioeconomic and
land use factors in the GWR model.

The increase in the proportion of residential area, the intensity of land use, and the
fragmentation degree of the cultivated land landscape all had a remarkable impact on the
soil erosion pattern of surrounding cultivated land to varying degrees (Figure 7). Among
them, the proportion of residential area and the fragmentation degree of the cultivated
land landscape had the widest impact on the areas with high erosion risk. Therefore,
optimizing the development and protection pattern of territorial space with appropriate
land regulation means avoiding the further aggravation of soil erosion is necessary.
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An increase in residential areas and land use intensity meant an increase in imperme-
able surface area. In the construction, a large number of materials, such as cement, asphalt,
and concrete, were used to cover the soil surface to form an impermeable surface. Accord-
ing to the research, under the conditions of runoff and precipitation, the runoff coefficient
of a completely impermeable surface was more than 0.9, that is, almost all precipitation
was transformed into surface runoff. The intensification of surface runoff under rainstorm
conditions increased the pressure of urban drainage, and the capacity of drainage pipelines
usually had difficulty meeting the discharge of a large amount of surface runoff in a short
time, resulting in serious surface ponding, especially in low-lying areas. In the area where
the land use degree increased, the proportion of impermeable surfaces increase, resulting
in an increase in the overall surface runoff in the area. The degree of soil and water loss
was more serious in summer with heavy rainfall because the study area is in the monsoon
climate area [12]. Wang et al., 2022 found that compared with the western region of the
black soil region, the eastern region where the study area is located has a humid climate,
and water is the main erosive agent [62].

The area selected in this study belonged to a rolling hilly region with a small area of
suitable cultivated land in low mountain and hilly areas, and the overall uphill cultivated
land showed the characteristics of high spatial dispersion. To obtain the minimum survival
guarantee, only by continuously expanding the cultivated land area, which leads to more
barren mountains that are not suitable for farming being reclaimed into cultivated land,
accelerates the dispersion and fragmentation of farming space. Compared with natural
factors, the land use factor of cropland encompassed the most easily optimized measures.
The degree of landscape fragmentation played a positive role in soil erosion. Therefore,
to control soil and water loss, the land use pattern can be optimized by enhancing the
control effect of the dominant landscape, improving patch uniformity, enriching landscape
types, reducing the physical connection between patches, strengthening the aggregation
degree of landscape patches, and reducing fragmentation. On a deeper level, as a typical
social dominant area, the low hilly agricultural area should always pay attention to the
balance/synergy between social services and ecological functions, so as to lay a foundation
for sustainable land use in the black soil area [63].

4. Conclusions

In 2019, the overall soil erosion status of cultivated land was mainly slight and light,
the proportion of cultivated land affected by the extreme intensity and severe erosion was
relatively small, and the average soil erosion modulus was 7.09 t-hm~2-a~!. The spatial
distribution characteristics of soil erosion based on the results of spatial aggregation and
hot spot analysis found that the most serious soil erosion intensity was concentrated
in the southeast and northeast sloping farmland. With the increase in elevation and
topographic slope, the proportions of slight and light soil erosion gradually decreased
while the proportions of extreme intensity and severe erosion gradually increased, which
was strongly linked to the increase of soil erodibility caused by the space-time migration
and erosion of SOC caused by the interaction of hydraulic and tillage erosion in complex
topographic areas.

Based on the relationship between soil erosion and landscape fragmentation using the
GWR model in a rolling hilly region, the findings revealed that landscape fragmentation
was an important driving force promoting soil erosion, sediment yield, and sediment
transport. On this basis, sloping farmland with a high fragmentation degree was effectively
integrated to prevent soil erosion in marginal farmland. The prevention and control of
soil erosion in hilly areas should be based on the premise of rational utilization of land
resources, and the situation of “governing and destroying at the same time” should be
completely changed. The finding of this paper can be used as a basis for decision-making
in a rolling hilly region, and provide useful information for designing land use planning to
regulate the effect of land use change and other soil erosion factors. Land use planning and
water and soil conservation planning should be combined to provide a scientific basis for
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the sustainable land use of land resources and the coordinated development of man-land
relationships in hilly areas.
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Abstract: Desertification is one of the most severe environmental and socioeconomic issues facing
the world today. Gonghe Basin is located in the monsoon marginal zone of China, is a sensitive area
of climate change in the northeastern of the Qinghai-Tibet Plateau in China, desertification issue has
become very severe. Remote sensing monitoring provides an effective technical means for deserti-
fication control. In this study, we used Landsat images in 2010 and 2020 to extract desertification
information to constructed the Albedo-NDVI feature space in the Gonghe Basin. And then analyzed
temporal and spatial evolution of desertification and its driving factors using Geodetector in the
Gonghe Basin from 2010 to 2020. The main conclusions are as follows: (1) Albedo-NDVI feature
space method can accurately classify desertification information with accuracy of more than 90%,
which was benefit to quantitative analysis of desertification. (2) The desertification situation in the
Gonghe Basin had improved from 2010 to 2020, especially in the west of the basin, desertification
land area decreased by 827.46 km?2, and desertification intensity had been obviously reversed. (3) The
changes of the desertification in the Gonghe Basin from 2010 to 2020 was affected by both natural
and human factors, and the influence of human activities on desertification reversal had increased
gradually. The results indicate that the desertification status in the Gonghe Basin had been effectively
controlled, and can provide useful basis for the desertification combat in the Gonghe Basin.

Keywords: desertification; Albedo-NDVTI; feature space; climate change; human activity; Gonghe Basin

1. Introduction

Desertification is defined as land degradation mainly characterized by aeolian activity
in arid and semi-arid areas, due to the inharmonious man-land relationship [1]. Desertifi-
cation has become one of the most severe ecological environmental issues, which causes
economic losses of up to 540 billion RMB annually in the world [2—4]. The Gonghe Basin is
one of the centralized distribution regions of desertification in the northeast of the Qinghai-
Tibet Plateau [5], in which the ecological environment is fragile. Desertification has become
increasingly prominent in the Gonghe Basin due to global climate change and unreasonable
human activities, which not only affect the lives of local people but also pose a huge threat
to the safety of the Longyangxia Reservoir, has hindered socioeconomic development [6,7].
Thus, it is urgent to strengthen research on desertification in this area.

Gonghe Basin is affected by the Asian monsoon circulation and the mid-latitude
westerly circulation, and it is a part of the boundary between the deserts and loess in
China [8]. Its unique geographical location provides an ideal research site for exploring
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the formation and changes of the aeolian activity environment. So far, multiple time
scales research had been conducted on the formation, evolution, and driving mechanism
of the aeolian activity in the Gonghe Basin [6,9,10]. The studies of desertification of the
Gonghe Basin during its geological history mainly focused on geomorphological evolution,
sedimentary strata, the history of aeolian activity, and the driving mechanisms [11,12].
Previous studies have shown that the oldest formation age of aeolian sand is 33.5 4= 2.1 ka
BP in the Gonghe Basin, dune fields developed in the early and middle Holocene, and fixed
in the late Holocene [10]. The formation of the aeolian sand environment in the Gonghe
Basin is influenced by multiple factors, such as the evolution process of the geomorphology,
regional climate, and wind strength, the main control factors were different in different
periods [13,14].

The research about the modern process of desertification in the Gonghe Basin mainly
includes different aspects such as aeolian landforms [15], wind conditions [16], spatial distri-
bution and dynamic monitoring of desertification, driving mechanism of desertification and
countermeasures for land desertification prevention and control [6,17-19]. Remote sensing
images provide an effective data source for desertification monitoring and information
extraction [20,21]. Collado et al. assessed the desertification process in the crop-rangeland
boundary of Argentina by using remote sensing data [22]. Qi et al. analyzed the spatiotem-
poral changes of desertification from1986 to 2003 through supervised classification method
in the agropastoral transitional zone of northern Shaanxi Province in China [23]. In the
Gonghe basin, Yan et al. used Landsat data from 1975 to 2005 through visual interpretation
to explore aeolian desertification trends and driving factors in the Longyangxia Reservoir
next to the Yellow River [24]. Ma et al. used TM data from the three periods of 1990,
2000, and 2010 in the Gonghe Basin, it was concluded that the desertification situation was
worsening from 1990 to 2010 [25]. However, previous monitoring methods were mainly
based on visual interpretation and supervised classification, resulting in low utilization rate
and classification accuracy of remote sensing information [24,26,27]. In recent years, many
studies have used single indicator (e.g., NDVI, EVI, MSAVI) to assess desertification [28,29].
Nonetheless, due to the complex causes of desertification evolution, using a single index
cannot comprehensively reflect desertification information [30]. The Albedo-NDVI feature
space basing on the negative correlation between Albedo and NDVI established by Zeng
et al. provides an efficient approach for quantitative analysis of desertification [31], which
has been used in many desertified land, such as Moulouya basin in Morocco [32], central
Mexico [33], Mongolian plateau [34], source region of Yellow River in China [35]. For
the Gonghe Basin, there is lack of study on the desertification evolution process over the
past 10 years, and short time scale desertification research is of practical significance in
assessing the effectiveness of desertification prevention. There is relatively little research
on desertification monitoring in the Gonghe Basin compared to other typical desertification
regions, and only part of Gonghe Basin was studied, such as around the Longyangxia
Reservoir, Gonghe county, and Guinan county [24,36-38]. Additionally, the research on
the driving mechanism of desertification evolution in the Gonghe Basin mainly focuses on
qualitative research [24,25,38], while quantitative research can better reveal the potential
impact factors of desertification process.

In this study, we obtained two desertification monitoring indicators, Albedo and
NDVI, to constructed Albedo-NDVI feature space basing on Landsat images. Additionally,
we quantitatively explored the spatiotemporal evolution patterns of desertification and the
underlying causes of desertification from 2010 to 2020 using Geodetector model, which
provided a theoretical basis for desertification combat.

2. Materials and Methods
2.1. Study Area
The Gonghe Basin is surrounded by mountains on three sides, including the Qilian

Mountains, Kunlun Mountains and Qinling Mountains (Figure 1), geographic coordinates
are 35°27'-36°56’ N, 98°46'-101°22’ E, with an elevation of 2400-3200 m. It is administra-
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tively subordinate to Qinghai Province, including Gonghe county, Guinan county, Xinghai
county and Wulan county. The dune fields in the Gonghe Basin are mainly spread in
the central and eastern parts of the basin, such as Talatan Plain and Mugetan Plain, with
moving dunes, sand ridges, and sand belts [9].

99°E 100°E 101°E

50°N F

kazakhstan

40°N b

30°NF

20°N F

90°E 105°E 120°E

Figure 1. Geographical location of the Gonghe Basin.

The climate type in the Gonghe Basin is a typical alpine and semi-arid climate, the
annual average temperature is about 3.7 °C and annual precipitation is about 300 mm. 80%
of the precipitation in the Gonghe Basin is mainly concentrated from May to September,
accompanying high evaporation. Strong winds prevail in the Gonghe Basin, and the
maximum wind velocity reaches 40 m s~ ! in spring [39]. Aeolian activities are common in
this area, resulting in wide dune fields and severe land desertification [10].

2.2. Data Sources

We used the Landsat TM/OLI images to monitor land desertification in the Gonghe
Basin in our study, and the images were obtained from the geospatial data cloud platform
(http:/ /www.gscloud.cn/ (accessed on 10 February 2023)). A total of 8 images for 2010
(2009-2011) and 2020 were collected during the vegetation growing season (especially in
June and August) with cloud coverage of less than 10%. These images were preprocessed
mainly using ENVI5.3 software, including radiometric calibration and atmospheric cor-
rection. The vector boundary data of the Gonghe Basin was used to clip and mosaic the
Landsat images to obtain the entire Landsat image of the Gonghe Basin.

The annual average temperature, annual precipitation and annual average wind ve-
locity data from 2010 to 2019 were calculated basing the ERA5 data set on the Google Earth
Engine (GEE) platform. Annual interpolation data for meteorological data and relevant
regional socio-economic data included datasets of land use (1:100,000), population density
(1 km) and GDP density (1 km) were downloaded from the Resource and Environment
Science and Data Center (RESDC, https://www.resdc.cn/ (accessed on 5 March 2023)).

2.3. Methods
2.3.1. Normalized Difference Vegetation Index (NDVI)

NDVlIis an important biophysical parameter that reflects the state of surface vegetation,
with a range of —1 to 1, and the higher the vegetation coverage, the closer NDVI value is to
1. NDVI can be used to indicate vegetation growth status and reflect vegetation coverage,
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and we can calculate it using the reflectance of the following two bands in remote sensing
images [40].
NDVI = (pnir — Pred)/ (Pnir + Pred) 1

where ppir, Pred represent near infrared band and the red band, respectively.

2.3.2. Land Surface Albedo

Land Surface albedo is a physical parameter that reflects the reflection characteristics
of the surface to solar shortwave radiation. With the aggravation of desertification, surface
vegetation is severely damaged, and surface roughness increases, manifested as an increase
in Albedo values in remote sensing images. The value of Albedo is between 0 and 1. In this
study, we calculated Albedo using the calculation method proposed by Liang [41].

Albedo = 0.356 X ppjye + 0.130 X prag + 0.373 X ppir + 0.085 X pgwir1 + 0.072 X pgwirz — 0.0018 2)

where ppjue, Preds Pnirs Pswirl and Pswir2 represent blue band, red band, near infrared band
and the shortwave infrared bands, respectively.

2.3.3. Data Normalization

The dimensions of NDVI and Albedo are different, so that Albedo-NDVI feature space
cannot be directly established, we normalized the values of NDVI and Albedo to between
0 and 1. The NDVI and the Albedo values were normalized using following equations.

N = (NDVI — NDVIpin)/(NDVImax — NDVInin) @)

A = (Albedo — Albedopin)/ (Albedomax — Albedomin) @)

For NDVI, NDVInax, NDVI i refer to maximum and minimum values, respectively,
N was the normalized value; For Albedo, Albedomax and Albedop;, refer to maximum and
minimum values, respectively, A was the normalized value.

2.3.4. Albedo-NDVI Feature Space

Zeng et al. [31] conducted research on the feature space composed of NDVI and
Albedo, and summarized the desertification situation under different vegetation coverage
conditions in an ideal feature space (Figure 2). A, B, C, and D points represent the extreme
states in the Albedo-NDVI feature space, respectively. A represents areas with severe
drought and no vegetation cover, B represents areas with high water content and no
vegetation cover, C represents areas with low water content and high vegetation cover, and
D represents areas with high water content and high vegetation cover. The upper boundary
AD represents a high albedo line, reflecting drought conditions, the bottom BC is the low
albedo line, representing the condition of sufficient surface water. And the distribution of
different land cover types presented by NDVI and Albedo has a significant distribution
rule in the feature space, which can well distinguish water, high vegetation coverage land,
low vegetation coverage land and completely bare land [42]. Overall, there is a significant
negative correlation between Albedo and NDVI in the feature space.

Based on the ROI function of ENVI5.3 version, 900 sample points were randomly
selected from different degrees of desertification land in the study area [30], extracting the
NDVI and Albedo values after normalization in 2010 and 2020, respectively. And then
selecting the NDVI values as independent variables, Albedo values as dependent variables,
we can construct a linear regression equation between them.

Then the linear regression equation represents negative correlation between Albedo
and NDVI was calculated using the following formula:

Albedo =k x NDVI + b ()

where k refers to the slope of the linear expression, and b refers to the parameter.
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Figure 2. Albedo-NDVI feature space [31].

2.3.5. Desertification Difference Index (DDI)

Based on previous research findings [43], dividing the Albedo-NDVI feature space in
the vertical direction representing the trend of desertification change can effectively distin-
guish different types of desertification land, represented by the Desertification Difference
Index (DDI). we can use the following two formulas to calculate the DDI index for 2010
and 2020.

kxa=-1 (6)

DDI =a x NDVI — Albedo @)

where a represent the slope of DDI linear expression.

2.3.6. Accuracy Verification

Confusion matrix is also called error matrix, is an effective method for evaluating the
accuracy of classification results. In the confusion matrix, each row represents the real cate-
gory of desertification degree, and each column represents the prediction category [44]. We
obtained evaluation indicators, including the overall accuracy (OA), producer’s accuracy
(PA), user’s accuracy (UA), and Kappa coefficient, which can be used to verify the accuracy
of the desertification classification results using Albedo-NDVI feature space method. The
specific calculation formulas are as follows:

i=5
OA =) X;/N (8)
i=1
PA = X;i/ Xy 9
UA = X;i/ Xy (10)

i=5 i=5
{N x Y Xii— ( X+i+X+i>]

i=1 i=1

Kappa = (11)

i=5
N2 — '21 Xpi+ Xy
=
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where N refers to the total number of samples; X;; refers to the sample quantity in row i
and column 7, that is, the number of sample points correctly identified for a certain type of
desertification degree; X;, refers to the sample quantity in row i, is the total real sample
size of a certain type of desertification; and X,; refers to the sample quantity in column i, is
the predicted total sample size of a certain type of desertification.

2.3.7. Desertification Land Transfer Matrix

The land transfer matrix has been widely applied in land use change. The land
transfer matrix can reflect the transformation area from one degree of desertification land
to another degree of desertification land within a certain period of time, and can reflect the
transformation relationship between different degrees of desertification land [45]. In this
study, we used the land transfer matrix to calculate the conversion areas between different
grades of desertification land basing ArcGIS 10.8. The formula used is as follows:

S11 S12 ... Su
sj= [ 2 )
Snl SnZ <o Sun

where i and j represent different grades of land desertification, S;; represents the transition
area from the grade i to j (km?), and n represents the number of desertification grades.

2.3.8. Dynamic Degree of Desertification Land

The dynamic degree indicates the area change of one grade of desertification land
within a certain specific time range in a certain research area [46]. The formula is as follows:

K:uz—ulx 1

x 100% (13)
Uy th —t1

where K represents the dynamic degree from 2010 to 2020, u; refers to the initial area (km?),
uy represents the final area (km?), t; and t, represent the starting and end time, respectively.

2.3.9. Changes in Desertification Degree

The degree of desertification development was divided into five categories [30]: se-
vere deterioration (desertification degree increased by more than one level), deterioration
(desertification degree increased by one level), no change (desertification degree remained
stable), restoration (desertification degree decreased by one level), obvious restoration
(desertification degree decreased by more than one level).

2.3.10. Geodetector Model

The Geodetector is a widely used statistical model that reveal spatial variability
and potential driving forces. Geodetector can detect the spatial heterogeneity of a single
factor, and can also reveal possible causal relationships between two factors through
calculating their consistency of spatial distribution [47]. This study takes the degree of
desertification as the dependent variable Y, and selects independent variable indicators
including temperature, precipitation, wind velocity, population density, GDP, and land
use. The factor interpretation power in Geodetector is represented by the q value. The
expressions used are as follows:

L
N, 2
—1—’51 - _p W (14)
1= NeZ 8ST
L
SSW = Y Ny03,2, SST = No? (15)
h=1
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where & refers to the stratification of the independent variable; Nj, and N represent the
number of units within layer & and the entire area, respectively; ;2 and ¢ represent
the discrete variances of layer & and the entire area, respectively; SSW refers to the sum
of intralayer variances; SST refers to the regional total discrete variance; q refers to the
explanatory power of the independent variable to the degree of desertification, the range of
q is between 0 and 1, the larger the q value represents the stronger the explanatory power
of the selected factor.

The purpose of interaction detection is to assess whether interaction between two
factors can increase the explanatory power of the degree of desertification or whether the
impact of these factors on the degree of desertification is independent [48].

3. Results
3.1. Desertification Classification

The scatterplots of Albedo and NDVI in 2010 and 2020 are shown in Figure 3, there
was presented a trapezoidal shape in the Albedo-NDVI feature space [46]. The R? values of
the linear regression equations were 0.7106 and 0.7044, respectively, the results indicated
there was a significant negative correlation between Albedo and NDVI. Using Equation (6)
to calculate the k value to obtain the final expression of the desertification difference index
(DDI) in 2010 and 2020, as shown in Table 1.

0.40 0.40 -
035 y=—0.4119x+0.5349 035 y=—0.2438x+0.3513
030 F R*=0.7106 030k R?=0.7044
o 025F o 025
T 2
2020} 3 2020
<015} » <015
0.10 F 0.10 |
0.05 F 0.05 |
0.00 ! ! : ! 0.00 L L L !
0.5 0.6 0.7 0.8 0.9 0.5 0.6 0.7 0.8 0.9
NDVI NDVI
(a) 2010 (b) 2020

Figure 3. Albedo-NDVI linear regression analysis.

Table 1. Linear relationship of desertification difference index (DDI) in 2000 and 2020.

Year Linear Relationship
2010 DDI = 2.4278 x NDVI — Albedo
2020 DDI =4.1017 x NDVI — Albedo

DDI can be used to obtain the desertification classification, we used the natural breaks
(Jenks) method combined with field survey data and Google Earth map to classify the
desertification intensity into 5 categories, including extremely severe desertification, severe
desertification, moderate desertification, slight desertification, and non-desertification.
Finally, the spatial distribution maps of desertification degree in 2010 and 2020 were made
by using ArcGIS 10.8 (Figure 4).
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Figure 4. Spatial distribution of desertification in the Gonghe Basin.

To test the accuracy of desertification land classification results, we used Landsat true
color image and Google Earth map as reference data, randomly selected 20 sample points in
different desertification types (100 points in total) to construct the confusion matrix through
visual interpretation. The accuracy evaluation results are shown in Table 2, the overall
evaluation accuracy was 94%, and Kappa coefficient was 0.93 in 2010. In 2020, the overall
accuracy was 95%, Kappa coefficient was 0.94. The phenomenon of misclassification mainly
occurred in slight desertification areas. Overall, the Albedo-NDVI feature space method

has certain feasibility and applicability to evaluate desertification level.

Table 2. Classification accuracy of desertification.

Extremeol y Severe (%) Moderate (%) Slight (%) Non-Desertification (%)
Year Severe (%)
Coefficient
PA UA PA UA PA UA PA UA PA UA
2010 95 95 94.74 90 94.74 90 86.36 95 100 100
2020 9524 100 95 95 94.74 90 90.48 95 100 95
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3.2. Temporal Distribution Characteristics of Desertification

Table 3 shows the area, proportion, and dynamic changes of different desertification
levels in the study area. As shown in Table 3, extremely severe desertification land areas
had decreased by 2335.32 km? from 2010 to 2020, with the proportion decreasing from 17.4%
to 5.6% and the dynamic degree of 6.8%. Severe desertification, moderate desertification,
and slight desertification have a slight increasing trend, with the area increasing 592.13 km?,
687.33 km? and 227.40 km?, respectively, and their proportions had increased 3.0%, 3.5%
and 1.1%, respectively. Meanwhile, the non-desertification land areas accounted for 19.9%
in 2020, and the area increased by 827.46 km?. The dynamic degrees of the severe, moderate,
slight and non-desertification land area were 1.3%, 1.5%, 0.5% and 2.7%, respectively.

Table 3. Dynamic changes of desertification land area in the Gonghe Basin from 2010 to 2020.

2010 2020 2010-2010
Catego
8oy Area (km?) % Area (km?) % Annual Rate of
Change (%)
Extremely severe 3434.27 17.4 1098.95 5.6 —6.8
Severe 4436.59 225 5028.72 25.5 1.3
Moderate 4595.28 23.3 5282.61 26.8 15
Slight 4153.31 21.1 4381.71 22.2 0.5
Non- 3086.06 15.7 3913.52 19.9 2.7
desertification

In the past 10 years, there existed a certain upward trend in the non-desertification
area. The moderate desertification had always accounted for a large proportion of the
total study area, which was the main type of desertification in the Gonghe Basin. It can be
concluded that the desertification status in the Gonghe Basin had generally improved from
2010 to 2020, and the degree of desertification had been mainly reversed from extremely
severe to other degrees of desertification.

3.3. Spatial Distribution Characteristics of Desertification

According to the spatial distribution maps of desertification in the Gonghe Basin
(Figure 4), we analyzed the dynamic changes in the spatial distribution pattern of deser-
tification in the Gonghe Basin from 2010 to 2020. As shown in Figure 4, desertification
was widespread in the Gonghe Basin, the lowlands in the central part of the basin were
a concentrated distribution area of desertification, non-desertification areas were mainly
spread in the south and southeast areas or on the mountains around the basin.

As shown in Figure 4a, there were large areas of extremely severe desertification
around the Shazhuyu River, Mugetan, Talatan and other areas around the Longyangxia
Reservoir in 2010. And in the periphery of extremely severe desertification, there were large
areas of severe desertification, such as in the center of the basin or around the Longyangxia
Reservoir. Moderate desertification was mainly spread in the east of Longyangxia Reservoir,
such as Shagou Town, Longyangxia Town, etc. Slight desertification land was spread mainly
in the southern and southeastern parts of the study area, such as the northern part of Heka
Town and the northwest part of the mobile dunes in Mugetan. Non-desertification was
distributed mainly in the Heka Town, Taxiu town, and Senduo town. Which were in the
southern edge and southeast of the basin.

Compared with 2010, the overall desertification area had obviously reduced in 2020
(Figure 4b). The extremely severe desertification land spread in the western of the basin
had been reduced significantly, mainly reversed to severe or moderate desertification.
Meanwhile, the slight desertification and non-desertification land in the Gonghe Basin
expanded to the south and southeast, and the non-desertification areas distributed around
the northern marginal region increased during the study period.
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3.4. Changes in Desertification Intensity

We obtained the transition matrix of desertification in this study from 2010 to 2020, as
shown in Table 4. During the research period, the transformation of desertification intensity
occurred between different levels of desertification. The conversion area accounted for
83.69% of the total land area, which was 8959.19 kmZ2. The main desertification transforma-
tions were mainly from extremely severe to severe, from severe to moderate, from mod-
erate to slight, and from slight to non-desertification, covering land areas of 2213.94 km?,
1736.12 km?, 1418.13 km?, and 1256.56 km?, respectively, accounting for 24.71%, 19.38%,
15.83% and 14.03% of the land area. Extremely severe desertification significantly de-
creased by 2335.32 km?2, and severe, moderate, slight and non-desertification increased by
592.13 km?, 687.33 km?, 228.4 km?, and 827.46 km?, respectively. This showed that the
overall desertification condition in the Gonghe Basin had a great improvement from 2010
to 2020, and sand prevention and control achieved effective results.

Table 4. The transition matrix of desertification in 2010-2020.

2010 0 ExSt:\e:lZly Severe Moderate Slight Dese:tlioﬁf:ation (R;rgflile!d)
Extremely severe 827.92 2213.94 335.75 27.56 29.11 3434.27
Severe 185.30 2402.03 1736.12 85.14 28.00 4436.59
Moderate 35.58 355.75 2675.32 1418.13 110.51 4595.28
Slight 25.53 35.19 484.33 2351.70 1256.56 4153.31
Non-desertification 24.62 21.82 51.09 499.18 2489.35 3086.06
Total (increased) 1098.95 5028.72 5282.61 4381.71 3913.52 19,705.51

As shown in the changes in desertification intensity from 2010 to 2020 (Figure 5), the
degree of desertification development was divided into five categories. The desertification
grade unchanged land was sporadically scattered, mainly in the mobile sand dunes of
Mugetan and Talatan, accounting for 42.6% of the land in basin (Table 5). The deterioration
areas were primarily spread in the southwest, southeast, and northeast of the Gonghe Basin.
The restoration and obvious restoration areas were mainly distributed around Chaka Salt
Lake and the east of Longyangxia Reservoir. Additionally, the proportion of desertification
deterioration and restoration areas were 6.8% and 50.6%, respectively. Desertification
restoration areas were 11,067 km? larger than desertification deterioration areas.

N

Legend 3
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| No change
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Figure 5. Changes in desertification intensity from 2010 to 2020.
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Table 5. Area and proportion of changes in desertification intensity.

2010-2020 Seyere . Deterioration = No Change Restoration Obv101}s
Deterioration Restoration

Area (km?) 193.83 1524.56 10,746.31 6624.75 6160.63

Perc(ff)tage 0.8 6.0 26 262 24.4

3.5. The Influencing Factors of Desertification

In this research, we selected temperature, precipitation and wind velocity as natural
factor indicators, population density, GDP, and land use as human factor indicators, used
Geodetector for single factor and interactive factors analysis to explore the explanatory
power of different factors on desertification in the Gonghe Basin.

3.5.1. Singer Factor

As shown in Figure 6, for single factor analysis, the order of explanatory power of
different factors on desertification in 2010 was precipitation > land use > GDP > population
density > wind velocity > temperature. The precipitation was the main interfering factor
of desertification, followed by human activities such as land use, GDP, and the impacts
of the population density, wind velocity and temperature were relatively weak. The
explanatory power of the q value on precipitation reached 0.29, but the explanatory power
of temperature was only 0.03. In 2020, the explanatory power of q values on different factors
was precipitation > land use > temperature > wind velocity > population density > GDP.
The precipitation factor still had the greatest explanatory power on desertification, with
a value of 0.22. The explanatory power of temperature and land use increased relatively,
with values of 0.18 and 0.21, respectively. The q value of GDP had decreased to 0.02.

0.40 -
--=-2010
035+ —e—2020
0.30 -
0.25 oo

0.20

q value

0.00

Temperature Precipitation  Wind Population GDP Land use
Singer factor

Figure 6. Comparisons of q value for different factors (2010 and 2020).

3.5.2. Interactive Factors

In this study, the influence between two factors was non-linear enhanced after inter-
action (Figures 7 and 8). In 2010, the order of explanatory power of interaction factors
on desertification was precipitation N land use > precipitation N wind velocity > pre-
cipitation N population intensity > temperature N precipitation > precipitation N GDP
intensity > GDP intensity N land use > population density N GDP intensity. The dominant
interactive factor was precipitation N land use (0.392), followed by precipitation N wind
velocity (0.365) and precipitation N population intensity (0.345). The q value of temperature
N population density was the smallest, which is 0.079. In 2020, the order of explanatory
power of interaction factors on desertification was precipitation N land use > temperature
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N land use > temperature N precipitation > precipitation N wind velocity > temperature N
population intensity > precipitation N population intensity > precipitation N GDP intensity.
Among them, the precipitation N land use also had the greatest explanatory power on
desertification evolution, the q value increased to 0.447, followed by temperature N land
use and temperature N precipitation, their q values were 0.351 and 0.340, respectively. All
in all, the precipitation N land use was the essential factor influencing the spatiotemporal
distribution of desertification in the Gonghe Basin during the study period.

0.392
Temperature
0.027
Precipitation
I’
=
= .
b1 Wind 0.365
S velocity
on
A
g Population
£ intensity
=
=
—
il 0.174 0.196
intensity
Land use 0.392 0.194 0.163 0.220 0.131
Temperature Precipitation ~ Wind Population ~ GDP Land use
velocity  intensity intensity
Infulencing factors
Figure 7. The q values of interactive factors in 2010 (P < 0.01).
P<0.01 0.447
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i
] .
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=
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GDP | 0220
intensity
Land use 0.447 0.272 0.231 0.266 0.210
Temperature Precipitation  Wind Population  GDP Land use
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Infulencing factors

Figure 8. The q values of interactive factors in 2020 (P < 0.01).
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4. Discussion

Previous studies have shown that desertification evolution is influenced by natural
factors and human activities [26,27,49]. For natural factors, the terrain of the Gonghe Basin is
flat and open, providing a good deposition site for the aeolian activity. The basin contained
a large amount of Quaternary loose sediments, such as fluvial-lacustrine sediments and
ancient aeolian sand [9], which are easily eroded by wind [26], which provided material
sources for aeolian activity, causing widespread distribution of desertification land [12].
Among all natural factors, climate change has an essential impact on the development
of desertification, temperature, precipitation and wind velocity are the main influencing
factors [50,51]. The explanatory power of precipitation factors on desertification was
highest among all factors in 2010 and 2020, the explanatory power of temperature and
wind velocity on desertification evolution increased between 2010 and 2020, with q values
increasing by 0.15 and 0.02, respectively. In northwestern China, the climate is arid all
year with scarce precipitation [15], so the precipitation factor played a vital role in the
desertification evolution. As shown in Figures 9 and 10, in the Gonghe Basin, we can
see a fluctuating downward trend in the annual average temperature from 2010 to 2019,
but there was an upward trend in the annual precipitation, which revealing that the
climate had become colder and more humid over the past 10 years. The decrease in
temperature could effectively reduce evaporation, while accompanied by the increase of
precipitation, the improvement of hydrothermal conditions was conducive to the vegetation
recovery, affecting the efficiency of sand material acquisition, which reduced aeolian
activity [12,52-55]. The annual mean wind velocity also presented a relative downward
trend (Figure 11), and reduced wind strength led to the weakening of aeolian activity [56].
In general, these favorable natural factors changes were beneficial to the desertification
reversal. Among the changes in human factors, the q values of land use and population
density increased by 0.08 and 0.03 respectively, while the value of GDP density decreased
by 0.06. From this, it can be seen that the impact of human activities gradually increased
during the desertification evolution of the Gonghe Basin from 2010 to 2020.
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Figure 9. Average annual temperature in from 2010 to 2019.
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Figure 10. Annual precipitation from 2010 to 2019.
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Figure 11. Average annual wind velocity from 2010 to 2019.

However, the interaction between two different impact factors will increase the ex-
planatory power on desertification compared to single factors [57]. The dominant inter-
active factor in 2010 and 2020 was precipitation N land use, with an increase of 0.055. In
2020, The explanatory power of temperature N land use on desertification had significantly
increased, with an increase of 0.17 compared to 2010. In 2010 and 2020, the q values of
temperature N precipitation were relatively high, both greater than 0.3. The results showed
that the natural factors such as precipitation N temperature played a fundamental role in
the desertification change. Furthermore, the improvement of desertification conditions
was the combination consequences of natural and human factors, the impact of human
activity intensity had been increasing over the past 10 years. This is consistent with pre-
vious research on the Qinghai Tibet Plateau [26,27], the source of the Yellow River [35],
and the surrounding areas of Qinghai Lake [30]. However, the highest explanatory power
of precipitation and land use on desertification in this study is only 0.447, which may be
related to the specific geological environment in the Gonghe Basin and the limited factors
selection [35,58]. Since 1991, numerous measures have been applied to combat desertifi-
cation. Tree planting and return the grain plots to forestry reforestation projects can help
increase vegetation coverage and improve ecological diversity [59,60]. The photovoltaic
power generation base and closed protection zone were established in Talatan [61,62], it is
conducive to prevent wind and fix sand, thereby reducing local aeolian activities.

5. Conclusions

In this paper, we used the Albedo-NDVI feature space method based on Landsat
images to explore the spatiotemporal evolution of desertification and its driving mechanism
in the Gonghe Basin over the past 10 years, and then provide some scientific references for
desertification prevention. The main conclusions are as follows:

(1) Desertification in the Gonghe Basin was divided into 5 categories by constructing
the Albedo-NDVI feature space. There was high accuracy in the desertification classification
by using the feature space method, reaching 94% in 2010 and 95% in 2020.

(2) From 2010 to 2020, the desertification situation in the Gonghe Basin generally
improved, especially in the western part of the basin. The proportion of desertification area
decreased from 84.3% in 2010 to 80.1% in 2020. The transformation from extremely severe
desertification to severe desertification is the main form of desertification reversal.

(3) The improvement of desertification in the Gonghe Basin from 2010 to 2020 is a
result of the combined effects of natural and human factors. In natural factors, precipitation
played an important role in desertification evolution, and the impact of human factors was
gradually increasing.

However, our study still has some limitations. Due to limited data in this study,
there are some errors in the classification results of desertification. It is crucial to explore
the dominant driving mechanism of desertification on different time scales, and provide
targeted suggestions for desertification control in the Gonghe Basin.
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