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Abstract: In relation to the traditional financial markets, the cryptocurrency market is a recent
invention and the trading dynamics of all its components are readily recorded and stored. This fact
opens up a unique opportunity to follow the multidimensional trajectory of its development since
inception up to the present time. Several main characteristics commonly recognized as financial
stylized facts of mature markets were quantitatively studied here. In particular, it is shown that
the return distributions, volatility clustering effects, and even temporal multifractal correlations for
a few highest-capitalization cryptocurrencies largely follow those of the well-established financial
markets. The smaller cryptocurrencies are somewhat deficient in this regard, however. They are
also not as highly cross-correlated among themselves and with other financial markets as the large
cryptocurrencies. Quite generally, the volume V impact on price changes R appears to be much
stronger on the cryptocurrency market than in the mature stock markets, and scales as R(V) ∼ Vα

with α � 1.

Keywords: blockchain; cryptocurrencies; time series; fluctuations; correlations; multifractality;
market maturity; market impact

1. Introduction

Studying the world cryptocurrency market is welcome for many reasons. Up to now,
it constitutes the most spectacular and influential application of the distributed ledger
technology called the blockchain, which, in the underlying peer-to-peer network, allows for
the same access to information for all participants [1,2]. Research on blockchain technology
is also unique because all related data are publicly available in the form of the history of
every operation performed on the network. Furthermore, the tick-by-tick data for each
transaction made on the cryptocurrency exchange are freely available using the application
programming interfaces (APIs) of a given exchange.

As far as the financial, economic, and, in general terms, social aspects of cryptocur-
rencies are concerned, a basic related question that arises is whether such digital products
can be considered as a commonly accepted means of exchange [3–5]. This is a complex
issue involving many social, economical, and technological factors, such as trust, perceived
risk, peer opinions, transaction security, network size effect, supply elasticity, and so on.
However, also from a dynamical perspective, for this to apply, a certain level of maturity
expressed in terms of market efficiency, liquidity, stability, size, and other characteristics is
required [6,7]. Moreover, the developed markets show several statistical properties that
newly established emerging markets often lack. Among such properties, one can list the
so-called financial stylized facts: heavy tails of the probability distribution functions of
fixed-time returns, long-term memory of volatility, a hierarchical structure of the asset
cross-correlations, multifractality, and a stable (or meta-stable) price impact function [8–11].

Entropy 2023, 25, 772. https://doi.org/10.3390/e25050772 https://www.mdpi.com/journal/entropy
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There is growing quantitative evidence that the cryptocurrency market continuously
advances on a route to maturity understood as sharing its statistical properties with the
traditional financial markets. For instance, the most popular and oldest cryptocurrency,
bitcoin (BTC), has passed through two stages of the shaping of its probability distribution
function (pdf). It started as an extremely volatile asset with pdf tails that used to decline
according to a power law, with the exponent reaching almost the Lévy-stable regime (the
Lévy parameter α ≈ 2) on short time scales over the years 2012–2013, but then, already in the
years 2014-2015, the tails of its pdf became thinner and reached the inverse cubic behavior
that is observed universally in the traditional financial markets [12]. From that moment
on, BTC has maintained this property over the subsequent years [6,13,14]. The difference
between BTC and traditional assets is that the inverse cubic behavior of the BTC pdf tails
was reported to be preserved up to much longer sampling intervals due to their less frequent
trading [12]. Similar effects were seen for other major crypto currencies, such as ETH [12,15].
Since BTC and the other cryptocurrencies are traded on many independent platforms that
differ in trading frequency, the pdf properties of the same cryptocurrency can be different
on different platforms [6]. This is quite a unique trait of the cryptocurrencies not observed,
for example, in the stock markets and Forex. Heavy pdf tails were also found in time series
of volume traded in time units [16,17], even in the case of cryptocurrencies [18,19]. These
two quantities—the log-returns and volume—are related to each other, because the size of a
trade can have a profound impact on price variation: large trades lead to large price jumps
on average (although this relation might be more subtle [20–22]). Some authors argue that
price impact assumes a functional form with a square-root dependence of the log-returns
on volume [23–25] but others are cautious [21,22,26].

The long-term memory of volatility fluctuations is responsible for the effect of volatility
clustering, i.e., periods of a volatile market with large-amplitude fluctuations are interwo-
ven with periods of relatively tranquil dynamics. In addition, the volatility autocorrelation
is of a power-law form [27]. This property has been seen in all financial markets and has
also been found in cryptocurrency dynamics [14]. The range of memory is comparable
in this case with the range for the stock and Forex markets [28,29]. The scale-free form of
the autocorrelation function is connected to fractality, which also requires long-term or
long-range correlations to be self-similar. The log-return fluctuations for all the traditional
financial markets studied so far show multiscaling together with some other quantities,
such as inter-transaction times [30–32]. Consistently, multifractal properties have been
observed in the cryptocurrency market returns and inter-transaction times for different
assets [6,18,33–39]. Apart from univariate multiscaling, its bivariate version has also been
reported between log-returns for different cryptocurrencies: BTC and ETH [40].

Apart from correlations in time, asset–asset cross-correlations play an important role in
the shaping of the financial market structure as they lead to the emergence of the hierarchical
organization of the markets as well as coupling between different markets [41–44]. While
the hierarchical cross-correlations among the assets traded on the same market are a clear
indicator of market maturity, the role of potential couplings between different markets must
be interpreted with care. This is because either the independent dynamics of a market or the
profound coupling of a market with the world’s leading markets, being the two opposite cases,
can potentially be interpreted in favor of market maturity. The former because independence
can be viewed as strength and as a possibility for using the assets traded on such a market as a
safe haven in hedging strategies [45,46], and the latter because it suggests that such a market is
a well-rooted part of global financial markets. However, intuitively, neither of these extremes
seems to represent the notion of maturity well enough. It is more justified to view market
maturity as the ability to switch its dynamics between independence and compliance because
such a behavior can better reflect the complexity that one may expect to be the property
characterizing a developed market. This is why neither the effect of the cryptocurrency
market decoupling from Forex reported in [29] nor the effects of the cryptocurrency market
independence [47–51] and strong coupling between the cryptocurrencies and traditional
financial markets reported in [52–55], respectively, can alone be a signature of maturity. It is
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rather the opposite: only such flexible dynamics swinging between idiosyncrasy and a strong
subjugation of the market to an actual global trend can be a manifestation of market maturity.

In this work, stress was put on the investigation of current statistical properties of
cryptocurrency log-returns and volume from the perspective of how these properties differ
from their counterparts in the traditional financial markets: the stock markets, Forex,
and commodity markets. One has to be aware, however, that the statistical approach
constitutes only a segment of the issues related to market maturity.

2. Methods and Results

2.1. Empirical Dataset

The data set studied contains 1 min quotations of 70 cryptocurrencies that were among
the most actively traded on the Binance exchange [56], which had the largest market share in
2022 [57], over the period from 1 January 2020 to 31 December 2022 (3 years). The quotes are
expressed in USD Tether (USDT), a stablecoin linked to the US dollar, and its value is close to
USD 1 by design [58]. Basic time series statistics corresponding to these 70 cryptocurrencies
are collected in Table 1. For a time series of price quotations Q(ti), i = 1, . . . , T, the equally
spaced logarithmic returns RΔt(ti) = log Q(ti) − log Q(ti−1), where ti − ti−1 = Δt, are
derived. Figure 1 shows the evolution of the cumulative log-returns R̂Δt(ti) = ∑i

i=1 RΔt(ti)
during the whole period covered by the data. In accordance with the actual cryptocurrency
price quotes, in 2021, the whole market experienced a transition from the bull phase to the
bear phase.

Figure 1. Evolution of the cumulative log-returns R̂(t) of the 70 cryptocurrencies over the time period
from 1 January 2020 to 31 December 2022. The colors of two of the most liquid cryptocurrencies and
a few other distinguished ones are indicated explicitly. The bulk of the cryptocurrencies is shown in
the background (grey lines).

3
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Table 1. Basic statistics of the cryptocurrencies considered in this study: the average inter-transaction
time δt, the fraction of zero returns in time series %0, the average volume value traded per minute
W, and market capitalization C on 1 January 2023. For the cryptocurrency name list, see Table A1 in
Appendix A.

Ticker δt [s] %0 W [USDT]
C

[×106

USD]
Ticker δt [s] %0

W
[USDT]

C
[×106

USD]

BTC 0.04 0.003 1,683,710 320,025 LINK 0.41 0.095 84,423 2856

ADA 0.24 0.121 172,891 8621 LTC 0.41 0.142 80,441 5096

ALGO 0.78 0.117 24,320 1267 MATIC 0.32 0.166 100,100 6638

ANKR 1.84 0.195 10,762 151 MFT 5.01 0.425 2436 54

ARPA 2.75 0.165 6082 33 MTL 3.16 0.400 5122 46

ATOM 0.58 0.109 42,048 2710 NEO 1.45 0.194 18,893 451

BAND 2.13 0.175 8285 49 NKN 2.99 0.425 5807 56

BAT 1.53 0.162 10,543 251 NULS 4.44 0.442 2845 12

BCH 0.70 0.140 48,288 1869 OMG 0.83 0.178 24,235 146

BEAM 5.30 0.433 2089 14 ONE 0.97 0.227 21,983 133

BNB 0.17 0.095 276,261 39,052 ONG 5.53 0.482 2297 71

CELR 1.77 0.292 10,843 68 ONT 1.28 0.149 16,136 134

CHZ 0.59 0.232 51,827 672 PERL 5.00 0.431 2406 7

COS 2.63 0.455 3575 18 QTUM 1.58 0.179 14,178 196

CTXC 3.42 0.464 3942 33 REN 2.72 0.207 6232 62

DASH 1.44 0.206 14,543 468 RLC 2.80 0.293 6090 95

DENT 1.24 0.353 16,417 68 RVN 1.82 0.202 9699 232

DOCK 5.39 0.455 2135 12 STX 4.42 0.416 3847 288

DOGE 0.20 0.173 247,343 9317 TFUEL 2.09 0.353 10,411 189

DUSK 2.97 0.441 3994 34 THETA 0.64 0.173 35,023 733

ENJ 1.17 0.225 21,114 243 TOMO 3.84 0.316 3581 24

EOS 0.53 0.147 59,616 948 TROY 3.20 0.381 3347 23

ETC 0.58 0.099 63,736 2188 TRX 0.46 0.142 71,306 5041

ETH 0.10 0.010 853,284 146,967 VET 0.52 0.093 55,362 1163

FET 2.65 0.255 7,909 75 VITE 4.22 0.469 3078 18

FTM 0.50 0.174 63,723 556 WAN 7.24 0.303 1609 34

FUN 3.91 0.538 2911 66 WAVES 1.19 0.177 19,265 144

HBAR 1.57 0.268 11,765 957 WIN 1.01 0.283 26,244 72

HOT 0.96 0.237 22,543 250 XLM 0.78 0.165 33,309 1894

ICX 2.64 0.306 6951 135 XMR 1.62 0.184 14,164 2707

IOST 1.40 0.199 14,551 129 XRP 0.21 0.071 229,976 17,055

IOTA 1.53 0.168 12,077 478 XTZ 1.08 0.137 19,407 663

IOTX 1.52 0.266 11,894 203 ZEC 1.15 0.240 20,010 597

KAVA 1.57 0.155 12,888 198 ZIL 1.03 0.145 20,195 258

KEY 2.83 0.358 4310 15 ZRX 3.04 0.214 5674 128
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2.2. Cumulative Distribution Functions of Returns and Volume

The cumulative distribution function (cdf) P(X > rΔt) can be calculated from the
normalized returns rΔt(ti) = (RΔt(i) − μ)/σ, with μ and σ denoting sample mean and
standard deviation, respectively. A form of this distribution varies among the markets and
assets, but some interesting properties can be observed. There are generally three factors
that shape it: the first one is liquidity, the second one is trading speed, and the third one is
the overall market volatility [59]. If one focuses on a specific market, the most liquid assets
show a faster decline in P(X > rΔt) with rΔt than the less liquid ones for a given Δt [60].
However, most of the assets traded on mature markets reveal a power-law dependence of
P(X > rΔt) for some range of Δt [23,27,60–62]:

P(X > rΔt) ∼ |rΔt|−γ, (1)

with γ ≈ 3. It is observed for short sampling intervals and it is persistent for a range of
Δt due to the existence of strong inter-asset correlations. This inverse cubic power-law
dependence breaks for sufficiently long Δt and the cdf tails converge to the expected normal
distribution. The speed of information processing on a given market also has influence on
the crossover Δt. Since this speed increases with time as new technologies enter the service,
we observe a gradual decrease in the crossover Δt across decades. The speed of market
trading allows for a larger transaction number in time units, so this factor accelerates the
market time even more [60]. The emerging markets, where investment strategies require
the accommodation of significant risk, are thus highly volatile. The cdfs of the asset returns
in this case often show heavy tails with the scaling exponent γ � 3, sometimes even in the
Lévy-stable regime. In such markets, the inverse cubic behavior of P(X > rΔt) may occur
for some assets only, whereas, for the other assets, it cannot be found at all. This is why
such extreme tails are often considered to be an indicator of market immaturity [14].

Based on the average inter-transaction time δt, we categorized the considered cryp-
tocurrencies into three groups: I, the most frequently traded cryptocurrencies (δt < 1s);
II, the cryptocurrencies with the average trading frequency (1s ≤ δt < 2s); and III, the
least frequently traded cryptocurrencies (δt ≥ 2s). Then, we calculated the average cdfs for
the cryptocurrencies belonging to each group. We show these cdfs in Figure 2 (left panel,
dotted lines) together with the cdfs for a few selected individual cryptocurrencies (solid
lines). Their form can be compared with the inverse cubic power-law model denoted by a
dashed line. It can be seen that the average distributions have their tail close to a power
law, with the exponent γ being close to 3. The most liquid cryptocurrencies—BTC and
ETH—develop tails that show a cross-over from the power-law regime to a CLT-like regime
for relatively small values of |rΔt| compared to both the average cdfs and to less frequently
traded individual cryptocurrencies such as FUN, PERL, and WAN. The case of Dogecoin,
which has the smallest slope in the middle of the distribution and, at the same time, does
not have the thickest tail, is special. On the one hand, it can be included among the main
cryptocurrencies due to the high frequency of transactions and capitalization, and, on the
other, it was the subject of possible price manipulation through Elon Musk’s tweets [63,64].

5
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Figure 2. Cumulative distribution functions of the absolute normalized log-returns rΔt (left) and the
normalized volume traded vΔt (right) for Δt = 1 min in units of the respective standard deviations σ

for the selected cryptocurrencies with the highest liquidity (BTC and ETH) or the heaviest tails (DOGE,
FUN, PERL, and WAN). The average cumulative distribution functions for the cryptocurrencies with
the average inter-transaction time fulfilling the relations δt < 1s (Group I, dotted red), 1s ≤ δt < 2s
(Group II, dotted blue), and δt ≥ 2s (Group III, dotted green) are also shown. Power laws with the
scaling exponents γ and β assuming values typical for the financial markets—γ = 3 and β = 3/2—are
denoted by dashed lines. There is also a stretched exponential function fitted to the vΔt distributions
for BTC and ETH on the right (black dotted line).

Another quantity that is frequently observed to be power-law-distributed is normal-
ized volume traded in time unit vΔt(ti) = (VΔt(i)− μ)/σ [16,23]:

P(X > vΔt) ∼ v−β
Δt . (2)

In this case, the exponent is much lower than for the absolute returns and corresponds to
the Lévy-stable regime: β < 2. It was argued that there exists a simple relation between
both the exponents: β = γ/2 [23]. Figure 2 (right panel) shows the cumulative distribution
functions for vΔt for the same individual cryptocurrencies and their Groups I-III as in
Figure 2 (left panel). Now, the cdfs for BTC and ETH do not develop power-law tails.
A model that best fits them is the stretched exponential function P(X > vΔt) ∼ exp σ

−η
v

with η = 0.43. However, in the case of less frequently traded cryptocurrencies, which
belong to Group III, one can observe the power-law relation. What makes the results
obtained here different from their counterparts for, for instance, the stock markets, is that
one does not find any cryptocurrency with its cdf being a power law with the exponent
3/2; the cdf tails decrease considerably faster here.

2.3. Price Impact

At this point, it is worthwhile to consider a possible causal relation between the returns
and the volume despite the fact that no clear relation can be seen between their cdfs. It
revokes the empirically well-documented observation that volume can influence price
changes (both on the level of the order book and the level of the aggregated transaction
volume), which is known in the literature as the price impact [21,23,65–68]. In order to
investigate this issue, for each cryptocurrency, two parallel time series corresponding to
|RΔt(t)| and VΔt(t) were input into the q-dependent detrended cross-correlation coefficient
ρq measuring how correlated two detrended residual signals are across different scales [69].
The definition of the coefficient ρq, which allows one to quantify cross-correlations between
two nonstationary signals, is based on the multifractal detrended cross-correlation analysis
(MFCCA), whose algorithm can be sketched as follows [70].

6
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In this particular case, there are two time series of length T and sampling intervals
Δt: |RΔt(ti)| and VΔt(ti) with i = 1, . . . , T. One starts the procedure by dividing each time
series into Ms = 2�T/s� non-overlapping segments of length s (called scale) going from
both ends (�·� denotes the floor value). In each segment labelled by ν, both signals are
integrated and polynomial trends P(m)

·,s,ν of degree m are removed:

R̂Δt(tj, s, ν) =
j

∑
k=1

|RΔt(ts(ν−1)+k)| − P(m)
R,s,ν(tj), (3)

V̂Δt(tj, s, ν) =
j

∑
k=1

VΔt(ts(ν−1)+k)− P(m)
V,s,ν(tj), (4)

where j = 1, . . . , s and ν = 1, . . . , Ms. The detrended covariance is derived as

f 2
|R|V(s, ν) =

1
s

s

∑
j=1

[
R̂Δt(tj, s, ν)− 〈R̂Δt(tj, s, ν)〉j

][
V̂Δt(tj, s, ν)− 〈V̂Δt(tj, s, ν)〉j

]
, (5)

where 〈·〉j denotes the averaging over j. The detrended covariances calculated for all the
segments ν are then used to determine the bivariate fluctuation function [70]:

F|R|V
q (s) =

{ 1
Ms

Ms

∑
ν=1

sgn[ f 2
|R|V(s, ν)]| f 2

|R|V(s, ν)|q/2}1/q. (6)

Apart from the bivariate form given by the formula above, the univariate fluctuation
functions F|R||R|

q (s) and FVV
q (s) can also be calculated but, in this case, the covariance

functions become variances and do not need to be factorized into the sign and modulus
parts as no negative value can occur.

The above elements of the formalism allow one to introduce the q-dependent de-
trended cross-correlation coefficient ρq(s) defined as [69]:

ρ
|R|V
q (s) =

F|R|V
q (s)√

F|R||R|
q (s)FVV

q (s)
. (7)

By manipulating the value of the parameter q, one can focus on the correlations between
fluctuations in different size: the large fluctuations q > 2 or the small fluctuations q < 1.
For q = 2, all the fluctuations in time series are considered with the same weights. For pos-
itive q, values of ρq are restricted to the interval [−1, 1], with their interpretation being
similar to the interpretation of the classic Pearson coefficient C: ρq = 1 means a perfect
correlation, ρq = 0 means independence, and ρq = −1 means a perfect anticorrelation.
For negative q, the interpretation of the coefficient is more delicate and requires some
experience [69]. Figure 3 presents the coefficient ρq(s) calculated in a broad range of scales s
for the selected individual cryptocurrencies (BTC, ETH, DOGE, FUN, PERL, and WAN) and
the average ρq(s) for Groups I-III. While different data sets are characterized by different
strength of the detrended cross-correlations with Group I cross-correlated the strongest
and Group 3 the weakest, there is an explicit division of scales into the short-scale range
(s < 1000 min), where the correlations monotonously increase with increasing s, and the
long-scale range (s > 1000 min), where one observes a kind of saturation-like behavior.
In the latter, the correlations are characterized by 0.75 ≤ ρq(s) ≤ 0.95, which means that
the cryptocurrency market does not differ from other financial markets and its volatil-
ity |RΔt| and volume traded are strongly correlated. The two distinguished scale ranges
are related to the information-processing speed of the market: it requires some amount
of time for the investors to fully react to the incoming information and to build up the
cross-correlations. One might view this result as a counterpart of the Epps effect for the
detrended volatility–volume data [6,28,71–73]. The main difference between this market
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and the regular financial markets is the relatively long cross-over scale (s ≈ 1000 min),
which can be associated with its worse liquidity.
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Figure 3. The q-dependent detrended cross-correlation coefficient ρq(s) of order q = 1 calculated for
volatility |RΔt(t)| and volume VΔt(t) (with Δt = 1 min) for the selected individual cryptocurrencies—
BTC, ETH, DOGE, FUN, PERL, and WAN—where the cryptocurrency Groups I-III are characterized
by a specific range of the average inter-transaction time: δt < 1s (Group I, dotted red), 1s ≤ δt < 2s
(Group II, dotted blue), δt ≥ 2s (Group III, dotted green). The coefficient ρq(s) has been averaged
over all the cryptocurrencies belonging to a given group.

The next question to be asked is if there exists any functional relationship between
|RΔt| and VΔt. In order to address this question, RΔt vs. VΔt scatter plots for six selected
cryptocurrencies were created; see Figure 4. In general, the cross-correlations identified
by means of ρq(s) can also be confirmed visually on these plots: the larger the volume,
the larger the volatility can be. However, no specific functional form of RΔt(VΔt) can be
inferred from this picture. Therefore, it is instructive to change the presentation to the
conditional probability plots of the form E[ f (|rΔt|)|vΔt], where the expectation value E[·]
can be approximated by the mean 〈·〉. From the perspective of a market with substan-
tially limited liquidity, small price changes correspond to small transaction volumes and
constitute market noise. Thus, one may expect that the most interesting relation between
volatility and volume can be seen for large returns: |rΔt(t)| � 1.
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Figure 4. Scatter plots of the returns RΔt(t) and volume traded VΔt(t) for a few selected cryptocur-
rencies (BTC, ETH, DOGE, FUN, PERL, and WAN). Each point corresponds to a specific 1 min
long interval in the whole 3-year-long period of interest. The vertical dashed lines in each panel
denote the 25th, 50th, and 75th quantile of the volume probability distribution function for a given
cryptocurrency. Note the logarithmic horizontal axis and the varying axis ranges among the panels.

The values of the normalized volume traded vΔt(t) were compartmentalized and, in
each cell vi, a fixed fraction p � 1 of the respective largest conditional volatility values was
preserved for further analysis. A power-law function with the exponent κ is assumed to
model a relation between the two quantities:

vΔt ∼ |rΔt|κ , |rΔt| ∼ vα
Δt. (8)

Figure 5 tests whether any of the relations of the form E[|rΔt|κ |vΔt] ∼ vΔt hold for BTC if the
following exponent values are selected: κ = 0.2, κ = 0.5, κ = 1, and κ = 2. The threshold
value was chosen to be p = 0.1 because, for larger values, the relation becomes blurred
and difficult to identify, whereas, for smaller values, too few data points can be considered,
which amplifies the uncertainty. Looking at the graphs, one can reject the hypothesis
that volatility and volume are related via vΔt ∼ |rΔt|2 (i.e., α = 0.5) for all the sampling
frequencies considered. In the case of the highest sampling frequency (Δt = 1 min), the
data are approximated the best for κ = 1 and, secondarily, for κ = 0.5 and κ = 0.2, over the
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broad volume range 1 < vΔt < 16. For Δt ≥ 10 min, none of the values considered for κ
work well, whereas, for Δt = 5 min, two cases cannot be excluded: κ = 0.5 and κ = 0.2.
This means that the likely functional form of the price impact cannot be inferred based on
the available data. Figure 6 presents the analogous results for ETH. The square-root form
of the price impact (corresponding to κ = 2) can also be rejected in this case. However, it
cannot be decided which of the remaining models (κ ≤ 1) is the most likely.

Figure 5. Conditional expectation E[|rΔt|κ |vΔt] for BTC if only a p-fraction of the largest normalized
returns rΔt is preserved for each value of the normalized volume vΔt. Each panel shows the results
for a specific value of κ together with a corresponding fitted power-law model. Four cases of the
sampling interval are presented: Δt = 1 min, 5 min, 10 min, and 60 min. The error bars show the
conditional standard deviation σ[|rΔt|κ |vΔt].

The fact that κ �= 2 (α �= 0.5) and likely κ ≤ 1 (α ≥ 1) for short sampling intervals
is interesting because it makes the price impact function linear or superlinear (α ≥ 1): a
result that differs from some earlier claims made for the regular financial markets, where the
function was concave, at least for short and moderate sampling intervals [21,23]. There is also
a discrepancy for the long sampling intervals because, in this case, the behavior reported for
the regular markets was effectively linear, whereas here it remains undefined. It is noteworthy
in this context that the superlinear (α > 1) price impact for large Δt in Equation (8) could open
the space for market manipulation [21], which, on the cryptocurrency trading platforms, can
take the form of wash trading [18,74]. According to that, one can view the presented results as
being in favor of the conclusion that full maturity is still ahead of the cryptocurrency market.
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Figure 6. The same quantities as in Figure 5 for ETH.

2.4. Volatility Clustering and Long Memory

It takes some time for a market to completely absorb pieces of information that arrive
there. This is a source of temporal market correlations that can be most easily observed
in the price fluctuation amplitudes. Correlations are responsible for the phenomenon of
volatility clustering, i.e., the existence of prolonged periods of fluctuations with elevated
amplitude that are separated by quiet periods with more tamed fluctuations [75]. Volatility
clustering is observed on all markets and can be quantified in terms of the autocorrelation
function:

C(τ) = 〈rΔt(t)rΔt(t − τ)〉t, (9)

where τ is the lag time. The autocorrelation functions calculated from the absolute log-
returns for several individual cryptocurrencies and the average autocorrelation func-
tions calculated for Groups I–III are presented in Figure 7 on a double-logarithmic scale.
In each case, one can identify at least one range of lags over which C(τ) shows power-
law decay. For BTC, ETH, and FUN, there is only one such range corresponding to
10 min ≤ τ ≤ 500 min with a relatively small upper end. The same refers to WAN but, in
this case, the upper end exceeds τ ≈ 20,000 min (ca. two weeks). On the other hand,
DOGE, PERL, and the average plots show two scaling regimes: the short-τ regime up to
τ ≈ 500–1000 min (less than a day) and the long-τ regime for 1000 min < τ < 20,000 min.
In each case, C(τ) falls to 0 around τ ≈ 100,000 min (more than 2 months). Compared
to a more distant past, the scaling regions for BTC and ETH are shorter now (e.g., in the
years 2016–2018, it reached τ = 1000 min [29]), which is consistent with the market time
acceleration caused by an increased trading frequency. This overall picture for the cryp-
tocurrency market does not depart much from the one observed in other financial markets.
A power-law decaying autocorrelation function expressing the long memory of volatil-
ity is a common property that is a manifestation of the way that the market processes
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information [27,76]. The time lag at which C(τ) reaches a statistically insignificant level
is equal to the average length of a volatility cluster [76]. Due to the alternating character
of market dynamics, where the high-volatility periods are interwoven with low-volatility
periods, for larger time lags, the autocorrelation function becomes negative. Note that, due
to the fact that volatility time series are unsigned, the long-range autocorrelations cannot
be exploited for the related investment strategies.
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Figure 7. Autocorrelation function C|rΔt |(τ) of the absolute normalized log-returns |rΔt(t)| (volatility)
calculated for the selected individual cryptocurrencies—BTC, ETH, DOGE, FUN, PERL, and WAN—
as well as for the cryptocurrency Groups I-III characterized by specific range of the average inter-
transaction time: δt < 1s (Group I, dotted red), 1s ≤ δt < 2s (Group II, dotted blue), δt ≥ 2s
(Group III, dotted green). C|rΔt |(τ) has been averaged for each value of τ over all the cryptocurrencies
belonging to a given group. Note the double-logarithmic scale.

2.5. Multiscaling of Returns

If the bivariate or univariate fluctuation functions can be approximated by a power-law
relation

FAB
q (s) ∼ sh(q), (10)

where h(q) is a non-increasing function of q called the generalized Hurst exponent [77]
and A and B stand for either R or V, the time series under study reveal a fractal structure.
If h(q) = const = H, it means that this structure is monofractal, with H equal to the Hurst
exponent, which is a measure of persistence; otherwise, it is multifractal [77]. Multifractal
signals are governed by processes with long-range autocorrelations, which is why both
properties are often observed together [78–81]. It is the case, for example, in financial data.
If the relation (10) exists, it can be seen in double-logarithmic plots of FAB

q (s). Figure 8
displays FRR

q (s) for six cryptocurrencies, with −4 ≤ q ≤ 4 and 10 ≤ s ≤ 25,000. Out
of these, four cryptocurrencies show unquestionable power-law functions—BTC, ETH,
DOGE, and FUN—for all used values of q and for at least a decade-long range of scales,
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whereas PERL and WAN do not. The same result can be expressed in a different way by
calculating the singularity spectra f (α) from h(q) according to the following relations:

α = h(q) + q
dh(q)

dq
, f (α = q(α − h(q)) + 1. (11)

The Hölder exponents α quantify the singularity strength and f (α0) expresses the
fractal dimension of a subset of singularities with strength α = α0. While many theoretical
singularity spectra are symmetric, in a practical situation, one observes spectra that are
asymmetric [14,28,31,82–85]. The insets in Figure 8 show f (α) calculated from FRR

q (s) in the
scaling regions of s. All the presented spectra are left-side asymmetric (their left shoulder,
corresponding to positive qs, is longer). The origin of such a behavior can be twofold: the
signals can develop heavy tails of the probability distribution functions that are unstable
in the sense of Lévy yet their convergence to the normal distribution is slow [76], and the
signals can be mixtures of processes that have different fractal properties: large fluctuations
can be associated with a multifractal process (e.g., a multiplicative cascade), whereas small
fluctuations can be monofractal. It often happens that the small fluctuations in financial time
series are noise whereas the medium and large fluctuations carry meaningful information.
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Figure 8. (Main plots) Univariate fluctuation functions FRR
q (s) calculated from the log-returns RΔt(t)

with Δt = 1 min for BTC, ETH, DOGE, FUN, PERL, and WAN. The breakdown of scaling for small
scales and negative values of q in some plots is an artifact related to long sequences of zero returns in
time series. (Insets) Singularity spectra f (α) calculated from the corresponding fluctuation functions
in the range denoted by dashed red lines (if possible).

It was reported in the literature that cryptocurrencies can also show such asymmetric
f (α) spectra [6,14]. From the perspective of this study, it is interesting to note that the
spectra for BTC calculated for different historical periods show an elongation of the right
shoulder of f (α) that corresponds to small fluctuations. It can be interpreted as a gradual
building of a multifractal structure in BTC price fluctuations that started from large returns
only in the early stages of BTC trading and were imposed on the smaller returns as the
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cryptocurrency market goes toward maturity. If one looks at Figure 8, BTC, ETH, and, to a
lesser degree, DOGE—that is, the cryptocurrencies that are among the most capitalized
ones—have noticeable right wings of f (α), whereas the more exotic cryptocurrencies, such
as FUN, PERL, and WAN, do not develop the right wing at all. In agreement with what has
been said before, despite various cryptoassets being traded on the same platforms, different
ones can be found at different stages of the maturing process due to the different trading
frequencies. This difference can also be observed in the possible scaling range of the
fluctuation functions in Figure 8. In the case of the two most liquid cryptocurrencies, BTC
and ETH, the FRR

q (s) scaling can be observed almost from the beginning of the scale range,
whereas, in the case of less liquid cryptocurrencies, the range of satisfactory scaling is
significantly shorter and FRR

q (s) even becomes singular on short scales due to the number
of consecutive 1 min bins with zero returns. This is typical behavior in the case of less
liquid financial instruments [14].

2.6. Cross-Correlations among Cryptocurrencies

Information that flows into the market may have the same impact on certain assets that,
for example, share similar characteristics, such as the market sector, the main shareholders,
or, in the case of cryptocurrency, the type or consensus mechanism [86]. This can lead
to the emergence of cross-correlation between such assets and to a certain hierarchy of
cross-correlations (e.g., sector, subsector, and bilateral ones) [87]. The correlation structure
is a dynamical property that can change suddenly and substantially over time as the market
reacts to perturbations [88]. In quiet times, it is well-shaped, elastic, and hierarchical,
whereas, during periods of turmoil, it becomes centralized and rigid. This dual behavior is
characteristic for the developed markets, while a lack of cross-correlations or a persistent
centralization may be attributed to immaturity.

The market cross-correlation structure can be concisely characterized by the matrix
approach. For a set of N time series of log-returns representing different cryptocurren-
cies N(N − 1)/2, the q-dependent detrended cross-correlation coefficients ρ

ij
q (s) can be

calculated, where i, j = 1, . . . , N and ρ
ij
q = ρ

ji
q , which form a q-dependent detrended

cross-correlation matrix Cq(s). Due to the fact that the cross-correlation strength increases

typically with scale for all the asset pairs, the differences in ρ
ij
q (s) are, on average, minimal

for the shortest studied scale of s = 10 min. However, even in this case, it is easy to observe
that different cryptocurrency pairs reveal strong differences. Figure 9 presents the complete
matrix Cq(s) with the cryptocurrencies ordered according to the average inter-transaction
time 〈δt〉t. The ordering allows one to find even by eye a significant cross-correlation
between 〈δt〉t and ρ

ij
q : the shorter this time is, the stronger the cross-correlations are. In full

analogy to other markets, information needs time to propagate over the whole cryptocur-
rency market and the propagation speed is crucially dependent on the cryptocurrency
liquidity, which can roughly be approximated by the transaction number per time unit.
Based on the exact values of ρ

ij
q (s), one can notice that even the least frequently traded

cryptocurrencies from the considered basket develop statistically significant dependencies
among themselves. This, however, might not be true for even less capitalized tokens, which
can have idiosyncratic dynamics.
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Figure 9. The q-dependent detrended cross-correlation matrix entries ρ
ij
q (s) calculated from time

series of log-returns representing 70 cryptocurrencies with q = 1 and s = 10 min. Cryptocurrencies
have been sorted according to the average inter-transaction time δt in increasing order (top to bottom).
The color-coding scheme is shown on the right.

The correlation matrix Cq(s) can be transformed into a distance matrix Dq(s) with the
entries

dij
q (s) =

√
2(1 − ρ

ij
q (s)), (12)

which differs from the former in that its entries d(ij)q are metric. Dq(s) can be used for
constructing a weighted graph with nodes representing cryptocurrencies and edges rep-
resenting distances d(ij)q (s). Next, by using the Prim algorithm [89], one can construct
the corresponding q-dependent detrended minimal spanning tree (MST), which can be
considered as a connected minimum-weight subset of the graph containing all N nodes
and N − 1 edges. The MST topology depends strongly on the cross-correlation structure of
a market. A centralized market corresponds to a star-like MST, whereas a market contain-
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ing idiosyncratic assets shows an MST with elongated branches and no dominant hubs.
Figure 10 exhibits two MSTs created from all 70 cryptocurrencies for q = 1 (left) and q = 4
(right). The former involves cross-correlations between the fluctuations in all magnitudes,
whereas the latter involves only the large fluctuations. For q = 1, the structure is dual-star
with BTC and ETH as its central hubs. This is not surprising as both cryptocurrencies are
distinguished by their fame and large capitalization, which makes them a kind of reference
for the remaining cryptocurrencies. On the other hand, for q = 4, the structure is more
distributed, with a primary hub, BTC, and a few secondary ones: LTC, XMR, and ONT. This
means that the relatively large fluctuations are not collectively correlated, unlike the major-
ity of fluctuations, and more subtle dependencies are present. This is in parallel with the
conclusions based on the multifractal analysis, which were large fluctuations that carried
clearly multifractal characteristics and long-term correlations, whereas the small fluctua-
tions were much more noisy. It is worth mentioning that a similar behavior can be observed
in the stock market, where the cross-correlation structure carried by the large fluctuations
is much richer than that carried by the medium and small fluctuations [90]. However,
in the stock market, the heterogeneous cross-correlation structure is more pronounced
even in the latter case [86,90]. Since there is no clear division into market sectors [91],
the cryptocurrency market appears to be less developed from this particular perspective.

Figure 10. Minimal spanning trees calculated from a distance matrix Dq(s) based on ρq(s) for s = 10
and for q = 1 (left) and q = 4 (right). Within each tree, the size of the vertex is proportional to the
average value of the volume WΔt for Δt = 1 min, while the width of the edge is proportional to
1 − dij

q (s). The vertex sizes cannot be directly compared across the trees, however. Colors represent
Groups I-III in terms of the trading frequency: δt < 1s (Group I, red), 1s ≤ δt < 2s (Group II, blue),
and δt ≥ 2s (Group III, green).

2.7. Cross-Correlations between Cryptocurrencies and Other Markets

Recently, BTC and ETH have been found to be significantly coupled to the traditional
financial markets during the period covering the COVID-19 pandemic and the bear market
of 2022 [55]. This result has essential practical implications in risk management as cryptocur-
rencies cannot serve as hedging assets [92]. It differs from earlier findings that, before 2020,
the cryptocurrency market was detached from the traditional markets [47,52,93,94], but, at
the same time, it remains in agreement with the observations that COVID-19 changed
the safe-haven paradigm and contributed to the correlation of major cryptocurrencies
with traditional risk assets [53,95–98]. So far, only the most capitalized cryptocurrencies
have been studied [55], and this is why cryptocurrencies with smaller capitalization were
also studied here.

The time series of log-returns of 70 cryptocurrencies and 22 traditional financial
instruments were collected from Dukascopy platform [99]. Among the latter, there are
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contracts for difference (CFDs) representing the returns of 12 fiat currencies (AUD, CAD,
CHF, CNH, EUR, GBP, JPY, MXN, NOK, NZD, PLN, and ZAR), 4 commodities (WTI crude
oil (CL), high-grade copper (HG), silver (XAG), and gold (XAU)), 4 US stock market indices
(Nasdaq 100 (NQ100), S&P500, Down Jones Industrial Average (DJI), and Russell 2000
(RUSSEL)), the main German stock index DAX 40 (DAX), and the Japanese Nikkei 225
(NIKKEI). All these instruments except for the non-US stock indices were expressed in USD.
Their quotes cover a period from 1 January 2020 to 30 December 2022. The quotes were
recorded over the trading hours, i.e., from Sunday 22:00 to Friday 20:15 UTC, with a break
between 20:15 and 22:00 UTC each trading day. In order to assess the cross-correlations,
the cryptocurrency time series were synchronized with those from Dukascopy. Cross-
correlations were quantified by ρRR

q (s).
Figure 11 shows the q-dependent detrended cross-correlation matrix Cq(s) entries

for the inter-market pairs consisting of a cryptocurrency and a traditional asset. The first
observation is that the maximum available values of the matrix entries do not exceed
ρRR

q (s) = 0.25, which makes them much smaller than in the case of the inner cross-
correlation among the cryptocurrencies. This is an expected effect because markets are
typically more tightly coupled inside than outside. Among the strongest cross-correlations,
one can point out the coupling of BTC and ETH with the American stock market in-
dices (ρRR

q (s) > 0.2 and with NIKKEI and DAX (0.15 < ρRR
q (s) < 0.2). Considerably

weaker yet still prominent are the cross-correlations between several other cryptocurren-
cies, such as XRP, ADA, LTC, LINK, VET, ETC, EOS, ATOM, and BCH on one side and the
American indices (0.15 < ρRR

q (s) < 0.2). The relations between cryptocurrencies and fiat
currencies remain moderate, with the AUD, CAD, and NZD being the relatively strongest
(0.1 < ρRR

q (s) < 0.15). Contrary to this, the cryptocurrencies are the most decoupled from
JPY, CHF, gold (XAU), and crude oil (CL). A general observation is that the less liquid
a cryptocurrency is, the weaker its cross-correlation with traditional instruments. Here
again, DOGE is somewhat of an exception and has a weaker cross-correlation than its
trading frequency and capitalization would imply. However, it should be noted that the
values collected in Figure 11 correspond to the shortest available scale of s = 10 min. How
these values refer to the maximum cross-correlations for longer scales is documented in
Figure 12. Here, the cross-correlation between the selected cryptocurrencies and their sets
grouped according to the average inter-transaction time (Groups I–III) and NASDAQ 100
is presented. This particular choice of the traditional index was motivated by the fact that
the cryptocurrency market is strongly cross-correlated with it [55]. Indeed, for much longer
s, the values of ρRR

q (s) grow significantly and even reach some saturation level resembling
the Epps effect for s > 500 min, with the average values of ρRR

q (s) in Groups I-III oscillat-
ing around 0.4 (for a given scale, ρRR

q (s) decreases systematically with an increasing δt).
The cryptocurrencies that are the most cross-correlated with NASDAQ 100, i.e., BTC and
ETH, have maximum values of ρRR

q (s) > 0.5.
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Figure 11. The q-dependent detrended cross-correlation matrix entries ρ
ij
q (s) calculated from time

series of log-returns representing selected cryptocurrencies and selected traditional financial instru-
ments with q = 1 and s = 10 min. Cryptocurrencies have been sorted according to the average
inter-transaction time δt in increasing order (top to bottom). The color coding scheme, which differs
from the one in Figure 9, is shown on the right.
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Figure 12. The q-dependent detrended cross-correlation coefficient ρRR
q (s) calculated for the pairs of

log-return time series consisting of NASDAQ 100 and a cryptocurrency (BTC, ETH, DOGE, FUN,
PERL, or WAN) or a group of cryptocurrencies characterized by average inter-transaction time from
a specific range: δt < 1s (Group I, red), 1s ≤ δt < 2s (Group II, blue), and δt ≥ 2s (Group III, green).
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3. Conclusions

The statistical properties of price log-returns and the volume of the cryptocurrencies
were the central points of the present study. The existence of the so-called financial stylized
facts in the cryptocurrency market during the last 3 years was investigated and compared
with the stylized facts observed in the traditional financial markets. Several characteristics
were of particular interest: a tail behavior of the probability distribution functions for the
log-returns and volume traded, the functional form of price impact, volatility autocorrela-
tions, multiscaling, cross-correlations among the cryptocurrencies, and cross-correlations
between the principal cryptocurrencies and selected traditional market assets. Almost all
the analyzed characteristics of the cryptocurrency market were found to be in qualitative
agreement with their counterparts from the traditional markets. It allows one to conclude
that, from this particular perspective, the cryptocurrency market does not differ from the
mature markets.

Despite such a positive conclusion, one still has to be cautious. First, the level of the
maturity of the cryptocurrencies depends on their trading frequency. The most liquid ones,
such as BTC and ETH, to a greater extent, have characteristics corresponding to mature
financial markets, and the least liquid ones do not. Second, the price impact function, while
also of a power-law form, results in being substantially different from its counterparts
reported in the traditional markets (linear or convex here vs. concave there [21]). Third,
while the statistical properties are important from a practical point of view as they can be
exploited in various investment strategies, there are nevertheless many other important
indicators of market maturity that were not investigated here. For example, the number
of cryptocurrencies traded on the largest platforms, such as Binance, is so large that it
already matches the world’s largest markets, such as the New York Stock Exchange and
NASDAQ. On the other hand, even the most recognized cryptocurrencies, such as BTC
and ETH, show extreme volatility, which means that the market is still rather illiquid,
and this property can question its maturity. There is another problem associated with the
fact that the cryptocurrencies are often viewed as speculation toys rather than full-scale
investment instruments. There are also numerous issues related to the limited reliability of
the cryptocurrencies, their weak supply elasticity, etc. These problems, while important,
were beyond the scope of this analysis, which one has to keep in mind when thinking about
the given conclusions. Repeating this kind of analysis in future in order to follow how
the cryptocurrency market changes seems to be a straightforward direction of potential
future studies.
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Appendix A

Table A1. List of cryptocurrencies from Binance.

Ticker Name Ticker Name Ticker Name

ADA cardano FET fetch QTUM qtum

ALGO algorand FTM fantom REN ren

ANKR ankr FUN funtoken RLC iexec

ARPA arpa chain HBAR hedera RVN ravencoin

ATOM cosmos HOT holo STX stacks

BAND band protocol ICX icon TFUEL theta fuel

BAT basic atention token IOST iost THETA theta

BCH bitcoin cash IOTA miota TOMO tomochain

BEAM beam IOTX iotex TROY troy

BNB binance coin KAVA kava TRX tron

BTC bitcoin KEY key VET vechain

CELR celer network LINK chainlink VITE vite

CHZ chiliz LTC litecoin WAN wanchain

COS contentos MATIC polygon WAVES waves

CTXC cortex MFT hifi finance WIN winklink

DASH dash MTL metal XLM stellar

DENT dent NEO neo XMR monero

DOCK dock NKN nkn XRP ripple

DOGE dogecoin NULS nuls XTZ tezos

DUSK dusk network OMG omg network ZEC zcash

ENJ enj coin ONE harmony ZIL zilliqa

EOS eos ONG ontology gas ZRX 0x

ETC ethereum classic ONT ontology

ETH ethereum PERL perl
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Abstract: We analyze the correlation between different assets in the cryptocurrency market through-
out different phases, specifically bearish and bullish periods. Taking advantage of a fine-grained
dataset comprising 34 historical cryptocurrency price time series collected tick-by-tick on the HitBTC
exchange, we observe the changes in interactions among these cryptocurrencies from two aspects:
time and level of granularity. Moreover, the investment decisions of investors during turbulent
times caused by the COVID-19 pandemic are assessed by looking at the cryptocurrency community
structure using various community detection algorithms. We found that finer-grain time series
describes clearer the correlations between cryptocurrencies. Notably, a noise and trend removal
scheme is applied to the original correlations thanks to the theory of random matrices and the concept
of Market Component, which has never been considered in existing studies in quantitative finance.
To this end, we recognized that investment decisions of cryptocurrency traders vary between bearish
and bullish markets. The results of our work can help scholars, especially investors, better understand
the operation of the cryptocurrency market, thereby building up an appropriate investment strategy
suitable to the prevailing certain economic situation.

Keywords: cryptocurrencies; noise and trend effects; tick-by-tick data; network structure; community
detection; COVID-19

1. Introduction

The cryptocurrency market has become an attractive target for many financial investors
in recent years due to its potential for rapid gains. One research topic being explored in this
market is the correlation between different cryptocurrencies. Understanding how different
assets interact with each other can help in portfolio optimization [1], predicting the future
volatility or downturn [2] and also in observing the risk spillover that benefits portfolio
diversification [3], to mention only a few.

Thanks to a network-based methodology, cryptocurrencies’ cross-relationships can be
learned and observed visually [4]. The idea of this method is that it builds up a network of
different objects such that the distance between two objects depends on how similar they
are: the shorter the distance, the more similar the two objects are. Eventually, we can see
the interaction between objects by looking at their network’s structure and analyzing char-
acteristics of the network. Different network construction approaches have been explored
in the literature, from Minimum Spanning Tree (MST) [5], k-Nearest neighbors (kNN) [6],
planar maximally filtered graph (PMFG) [2] to Threshold Weighted-Minimum Dominating
Set (TW-MDS) [7], to name but a few. In financial markets, normally, the similarity between
two assets is measured by comparing the evolution of two corresponding price time series,
one typical method to do this is Pearson correlation metric [8]. The study on correlation of
traditional asset classes such as stocks, bonds, national fiat currencies and commodities has
been developed a long time ago, with varying approaches invented to learn the correlation
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between different entities in the same market but also between different asset classes,
ranging from statistical [9,10] to AI-based methods [11].

Generally, there are two common shortcomings with correlation-related studies. Firstly,
one mainly uses a low-frequency dataset such as daily or monthly, and this might cause
a loss of important information from each time series, hence failing to reflect their true
nature [12]. This appears to be a major concern in the cryptocurrency market, since it is
well-known for its high fluctuations in terms of price movement. For example, in [13],
the authors show that the losses of cryptocurrencies can reach 70% within one day. Recently,
in 2020, by comparing the volatility in the returns between cryptocurrency and stock
markets, the authors of [14] revealed that major cryptocurrencies such as BTC and ETH
have volatilities of 5.68 and 7.10, respectively, which is two-fold higher than that of S&P500
and Euro Stoxx 50 indices. Notably, Dirk et al. calculated the daily price volatility of Bitcoin
from 2001 until 2021 and found that there are extremely volatile days when the volatility
can hit 120% [15]. Thus, using a high frequency means that we are ignoring valuable
information (e.g., the intraday fluctuations of a time series) on purpose. As a result, this can
adversely affect the correlation extracted from the dataset, potentially leading to inaccurate
correlation-using experiments (e.g., portfolio optimization). Secondly, researchers tend
to analyze the inter-relation between different time series by using trading price values
reported on a website (e.g., Coinmarket (https://coinmarketcap.com/), Yahoo Finance
(https://finance.yahoo.com/)). However, this practice deliberately ignores the effects of
noise and trends in financial time series, which we will describe clearly in Section 4.

Another important factor to consider is the recent COVID-19 pandemic which forced
all countries to close off borders and restrict movements for residents as well as busi-
nesses [16]. This had a strong effect on the global downturn which occurred in March
2020 as a response to governments’ efforts to control the disease spreading [17]. These
historical events have been shown to disturb and devalue different financial asset classes
such as stocks, bonds and also cryptocurrencies [18,19]. Instead of looking at the changes
in time-series elements such as volumes, prices, returns and volatilities during the COVID-
19 pandemic, in this study, we will investigate the impact of the pandemic by looking
at the changes in network structures over time. Furthermore, based on these network’s
structures, we show how we can observe the corresponding community structures via
community detection methods. The results from our experiment can be used to learn
behaviours of investors in different periods of time, especially during downturn times in
the financial market.

From the shortcomings of existing studies and utilizing the advantage of network-
based analysis, this study aims to investigate the network structure of cryptocurrencies
without noise and trend effects and how this structure changes under the impact of the
COVID-19 pandemic. Specifically, the research target is to answer these research questions:

• RQ1. Is there evidence of the existence of noise and trend effects in the cryptocurrency
market? If yes, how do noise and trend effects influence the interactions between
cryptocurrencies? What does the network structure of these cryptocurrencies look like
after removing noise and trend effects?

• RQ2. Does the network structure change when the level of granularity changes? If this is
the case, what level of granularity should we use to obtain the true network structure?

• RQ3. Is there evidence that historical events such as the COVID-19 pandemic and the
global downturn in 2020 changed the overall cryptocurrency network structure? If this
is the case, how did they change it? Moreover, is there any possibility that this change
was caused by a change in investors’ investment strategy? In other words, does the
way investors react to a downturn change the interactions between cryptocurrencies?

It should be noted that we are not new to the subject of time-varying cryptocur-
rency network structure, we merely build on work by the team of Drozdz, Watorek,
Kwapien [20,21] as well as, more recently, Nie [22]. However, our work expands the exist-
ing studies since we consider the investment decisions of investors based on the observed
network structure and we acknowledge the negative effect of not only trend but also noise
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presenting in cryptocurrencies. As suggested by Miceli [23], the trend and noise removal re-
sults in a filtered MST that better explains investment strategy and also potentially uncovers
endogenous or exogenous factors that drive the price of cryptocurrencies

To solve these research questions, we use a tick-by-tick dataset which consists of
34 price time series corresponding to 34 cryptocurrencies traded on the HitBTC exchange
during the period between 13 February 2019 and 6 April 2021. When it comes to network
formation, we calculate the correlation between cryptocurrencies by adopting the linear
similarity measurement named Pearson and then construct a Minimum Spanning Tree
(MST) based on these correlation coefficients. The noise and trend removal is carried
out by applying Random Matrix Theory (RMT). Community structure is found by using
community detection methods. In addition, different metrics are used to analyze the
network structures and support our findings.

The remainder of the article is organized as follows: Section 2 presents an overview of
the relevant literature. Section 3 provides a description of the dataset. Section 4 describes
terminologies, methods and preprocessing procedures. Section 5 discusses the experimental
results followed by implications and hypotheses. Finally, the conclusion of this study is
given in Section 7.

2. Related Works

2.1. Correlation-Based Analysis in the Financial Markets

The topic of correlation analysis has a long history in connection with stock markets
throughout various historical economic crises using different correlation-calculating metrics.
In [24], the authors estimated the correlation between 116 S&P500 stocks between 1982
and 2000 using Pearson coefficient. They further used MST to build up a correlation-based
network in order to observe time-varying correlations based on three network measuring
metrics including normalized tree length, survival ratio and mean occupation layer. As a
result, they pointed out a large change in the network structure during Black Monday.
More recently, [6] came up with a Neural Network approach to construct a graph and
found a dramatic difference in the network structure during the downturns in 2008, 2011
and 2020. In [1], a Pearson correlation matrix of 200 and 400 stocks from the CSI 300
and S&P500 index, respectively, was used to find an optimized portfolio following the
Markowitz optimization scheme. Instead of using Pearson method, Liu et al’s paper used
an interesting alternative method Mutual Information to generate a distance metric to take
account of non-linear effects in intra-day S&P stock data [25]. Other methods to estimate
the correlation coefficients (i.e., Wavelet coherence, Fast Fourier Transform) and construct
correlation-based networks (i.e., PMFG, threshold method) were introduced in several
studies [2,11,26].

Different existing approaches to study the correlations in the stock market have
been applied to digital coins. Some common conclusions from existing articles are that
the cryptocurrency network changes over time but Ethereum tends to act as a central
node in the whole network, i.e., it is a densely connected node [5,27,28]. A few works
remedy the problem of dataset shortages that have been concerned in the traditional
markets, i.e ones tended to use low-frequency data to implement their studies such as
daily or weekly. However, they only account for a small portion of the existing literature.
For example, Antonio et al. [29] used small frequency resolutions such as one hour and
four hours and also consider daily data of 25 large market capitalized entities traded
on the FTX exchange to discover the evolution of cryptocurrency network structures
between different time frequencies. By using Pearson correlation-based MST, they found an
increase in the complexity of networks’ shape for coarser time resolutions. In other words,
cryptocurrencies converge into a bigger group as resolution increases. On the contrary,
the authors in [20] using multiple timescales starting at 10 min to 360 min proposed
an opposite statement that low timescales cause the network to be centralized while
it is distributed and more correlated at high timescales. They used the liquidity and
capitalization differences among the assets to explain this result, since cryptocurrencies
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with low capitalization are traded less frequently than those with large capitalization, it
takes more time for a piece of market information to spread over such cryptocurrencies.
Thus, they are more inclined to use longer scales. Notably, this is one of the very few studies
that remove the trend effect from the original dataset. Interestingly, instead of using return
time series like other researchers, a research using hourly realized volatility values was
carried out to observe the risk spillover between 7 high-capitalized cryptocurrencies [3].

Different methods have been introduced to detect communities given a correlation
matrix. The authors in [4] applied Louvain method on the MST of 119 cryptocurrencies to
cluster potential communities. The time-varying dynamics from the community structures
found suggests collective behaviour among these communities. With the communities
found by the same method, the authors in [30] went one step further by using Principal
Component Analysis (PCA) to find an optimal portfolio out of 200 cryptocurrencies in
circulation. Another community detection method that is worth taking into consideration
is Girvan–Newman, which has been adopted widely for multiple purposes such as link
prediction, portfolio diversification, etc. [31,32]. A few other methods are also being used
to grouping similar entities but are less popular such as Clauset algorithm, Stochastic block
model (SBM), Latent Dirichlet Allocation (LDA) and Markov random field (MRF) [33]. One
obstacle from existing studies is that some used a specific community detection algorithm
only, raising a doubt about the robustness of the community structure. To this end, we
first use the Louvain method to detect communities in our dataset and then adopt Girvan–
Newman method to examine the robustness of the communities found earlier.

2.2. How the COVID-19 Pandemic Intervened on the Economy Worldwide

At the beginning of 2020, the economy of China started to be influenced by COVID-19,
earlier than other countries. Moreover, as the world’s hub for global manufacturing and
trade, immediate adverse effects on the Chinese economy resulted in global impacts [16].
Different regulations have been applied to handle the disease, such as closing national
borders as well as stopping business activities across the world, strongly influencing the
global economy [16]. Eventually, the global financial panic in March 2020 took place. In [18],
the authors pointed out that the similarity calculated by ACC and ADCC models between
the US and Chinese markets increased dramatically during the pandemic. Regarding
the stock prices, when the pandemic occurred, the prices of the US and Chinese stocks
decreased but started to recover again since July 2020. This trend is also true for other
emerging and developed stock markets in different countries from different continents such
as Japan, Germany, Australia and Canada [34]. Likewise, even less risky assets such as gold
were adversely affected [35]. The increase in the correlation between different financial
markets in the presence of good and bad news has been observed for some decades. In [36],
the authors stated that stocks are more affected by the presence of bad news, compared to
good news. Moreover, bad news has a stronger correlation in traditional markets. These
results align with what happened during the COVID-19 pandemic. Although the world
continued facing different COVID-19 waves afterwards, its impact on different asset classes
lessened significantly [37], stock prices increased and volatilities decreased again to their
original values before the pandemic [38]. Furthermore, the connectedness between different
assets also experienced a major decline [39].

In [19], the authors investigated the impact of the COVID-19 pandemic on the cryp-
tocurrency market by using daily prices of 45 well-known cryptocurrencies between
September 2019 and April 2020—the majority of which are also used in our present study.
In particular, they measured the stability of cryptocurrency time series using Largest Lya-
punov Exponent and Approximate Entropy. All time series are divided into two parts:
the first part spans September to December 2019, considered normal time, while the sec-
ond spans January to April 2020, considered a pandemic period. They revealed that the
pandemic increases in cryptocurrency market uncertainty as prices fluctuated significantly.
Moreover, the same experiment has also been carried out on the stock market, results
indicating a lower level of price fluctuations in the stock compared to digital currencies.
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Also on the same topic, Drozdz et al. [21] compared the Pearson correlation between the
cryptocurrency market and different asset classes including stocks, fiat currencies and
commodities, revealing that these conventional markets easily influence the cryptocurrency
market when they are in turbulent times, while there is no significant correlation between
digital currencies and other markets in normal times, given the time resolutions they used
are 10 and 360 mins.

Reactions of the general public to the COVID-19 outbreak were also observed to
examine its relationship with cryptocurrencies’ returns. For example, authors in [40]
measured the fear of people by the frequency of occurrence of keywords COVID-19 and
coronavirus on Google Trends (https://www.thinkwithgoogle.com/, accessed on 4 August
2022). Thanks to the vector autoregressive (VAR) models, they compared the evolution
of this fear with the stock market’s expectation of volatility VIX index (the VIX index is
a measure of constant, 30-day expected volatility of the US stock market, derived from
real-time, mid-quote prices of S&P500. Normally, it is calculated using the Black–Scholes
formula) as well as the Bitcoin returns. They found that increases of fear can lead to
Bitcoin crashes, as the correlation coefficient is −0.9. Furthermore, negative sentiment
generated by coronavirus news is associated with market volatility, which is in line with
other findings such as in [41]. Interestingly, some studies on the relationship between
news-based sentiment and cryptocurrencies showed that, although both bad and good
news cause the change in the returns and volatilities of cryptocurrencies, positive news has
more effect on the volatilities and returns of cryptocurrencies in comparison with negative
news [42–44].

Recently, network analysis in the cryptocurrency market during the COVID-19 pan-
demic has been carried out, with the common result being that the pandemic, as well as the
global downturn, actually caused a change in the network structure of the cryptocurrency
market. Specifically, cryptocurrencies tend to form bigger groups during the downtime,
i.e., the number of potential clusters found in the network decreases during the downtime,
with a few cryptocurrencies acting as central nodes. This topic has only been explored
in a few studies to date [21,22,45,46]. Moreover, there are some gaps: (1) the lack of deep
investigation of the network structure as they only consider MSTs; (2) the noise and trend
effects are not removed; (3) data limitation issues.

We will address these shortcomings by doing deeper experiments on the network
structure of the cryptocurrency market before, during and after the COVID-19 pandemic via
a longer dataset with the effect of noise and trend removed. In addition, we will look at the
way cryptocurrencies form a group during turbulent times by considering their rankings
(identified by its market capitalization, the larger its maket capitalization, the higher its
rank). We believe that this research can propose a better understanding of interconnections
between digital currencies during standard and unstable periods. Furthermore, we also
aim at understanding the investment decision of investors in different market states based
on the results of community detection.

3. Data Description

All experiments in this study have been carried out based on a tick-by-tick price
dataset (tick data are the highest resolution intraday data and consist of the sequence of
each executed trade or bid/ask quote aggregated from an exchange) that was collected from
the hitBTC exchange (a platform for digital asset and currency exchange to quickly and
securely trade cryptocurrencies—website address: https://hitbtc.com/) from 13 February
2019 to 6 April 2021. The dataset comprises 34 cryptocurrencies with a hybrid of high
and low rankings. Specifically, the highest rank is 1 (Bitcoin) while the lowest rank is 260
(FunToken), according to the price-checking website Coinmarketcap (https://coinmarketcap.
com, accessed on 4 August 2022) in April 2021; full list in Table 1.
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Table 1. A list of 34 cryptocurrencies used in this study. Abbreviations are put in parentheses.

Cryptocurrencies

Argur
(REP)

Bitcoin SV
(BSV)

Ethereum Classic
(ETC)

MaidSafeCoin
(MAID)

Ontology
(ONT)

Tron
(TRX)

Bancor
(BNT)

Cardano
(ADA)

FunToken
(FUN)

Maker
(MKR)

Ox
(ZRX)

Verge
(XVG)

Basic Attention
Token(BAT)

Decentraland
(MANA)

ICON
(ICX)

Monero
(XMR) QTUM Zcash

(ZEC)
Bitcoin
(BTC)

Dogecoin
(DOGE) IOST Nem

(XEM)
Ripple
(XRP)

Zilliqa
(ZIL)

Bitcoin Cash
(BCH) EOS Lisk

(LSK) NEO Stellar
(XLM)

Bitcoin Gold
(BTG)

Ethereum
(ETH)

Litecoin
(LTC)

OMG Network
(OMG)

Tezos
(XTZ)

3.1. A Note on Data Sampling and Missing Data

Since price values are collected tick-by-tick, there is no fixed timescale for all cryptocur-
rencies leading to an inconsistency between the time series. For this reason, we re-sample
the dataset by using data points at a specific timescale. In particular, we choose four
different timescales, namely 30 min, 6 h, 12 h and 24 h. Each data point of a dataset is taken
to be the price of the last transaction of 34 cryptocurrencies within the considered timescale.
Eventually, we have four datasets corresponding to four different timescales. Table 2 shows
the description of each re-sampled dataset.

Table 2. Characteristics of four re-sampled datasets at four different levels of granularity.

Level of Granularity # Data Points # Missing Values

30 min 37,632 289 (0.8%)
6 h 3136 24 (0.8%)
12 h 1568 12 (0.8%)
24 h 784 0 (0%)

Three out of four datasets have missing values with the same percentage of 0.8%. Note
that a data point of a dataset is considered missing if at least one cryptocurrency does not
have the price value at this data point. For each time series, instead of simply removing
missing values from the time series and values from other time series from the same time,
we replace missing values with the average value of the corresponding time series. This
technique has been adopted in different research topics with good performance [47–49].
Furthermore, we notice that this does not change the statistical properties of the correlation
between time series but, instead, helps to keep more information and thus the results found
from conducting the experiments are more reliable and accurate.

3.2. Aggregational Gaussianity

Aggregational Gaussianity is considered a stylized fact in traditional financial markets.
In [50], the authors observed the evolution of distributions of the IBM stock returns by
looking at different levels of granularity, e.g., 30 min, one day, one week and one month,
finding evidence of Aggregational Gaussianity. Another study on this topic drawing the
same conclusion is described in [51]. However, these authors used different stocks and a
higher set of timescales from one day to one year, showing that this stylized fact is also true
for stocks at coarser time resolutions.

We investigate whether Aggregational Gaussianity exists in our log-return time series
using a set of four timescales: 30 min, 6 h, 12 h and 1 day. We observe this statistical aspect
by implementing three experiments: Firstly, we construct the histogram as well as kernel
density estimation (KDE) for each cryptocurrency time series. Secondly, we generate the
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Q-Q plot, which is a popular approach to test normality for a time series [52]. Lastly, we use
the Lilliefors hypothesis test for normality [53]. We obtained the following findings: firstly,
although the distributions of these cryptocurrency time series have a bell curve shape at
all timescales considered, they are not (from the Q-Q plot and Lilliefors test) normally
distributed; secondly, however, there appears to be evidence to say that Aggregational
Gaussianity exists in all cryptocurrencies used in this present study from the Q-Q plots.
This result is in line with existing findings in the cryptocurrency market such as [54,55].

4. Research Methodology

4.1. Correlation Matrix Based on Pearson Coefficients and Random Matrix Theory

Given xi is the price time series of cryptocurrency i, we use its return values to find
the correlation between cryptocurrencies. This is because Return values are represented
as a percentage, making them scale-free and especially, stationary, which is an important
requirement for many statistical tools, such as Normalization. Thus, we first calculate the
corresponding return time series ri as follows [56]: ri = log

(
xt

i /xt−1
i

)
, where xt

i is the price
value of the cryptocurrency i at timestamp t.

Each of these return time series can be normalized as follows [57]: r̂i = (ri − μi)/σi,
where μi and σi are the average value and standard deviation of time series i, respectively.

We form a m × n matrix G such that each column represents a normalized return
time series of a cryptocurrency and each row represents a timestamp. The corresponding
correlation matrix C can be expressed as follows [56]: C = 1

m GGᵀ. In other words,
each element Cij of C shows the correlation strength between cryptocurrencies i and j by
calculating the dot product of the two normalized return time series, Cij =< r̂i, r̂j >. Such
a correlation matrix is called Pearson correlation matrix.

It should be noted that Pearson correlation has some limitations as described in [58].
In particular, its sensitivity to outliers and inability to capture non-linear relationships both
have the potential to cause misleading results. However, we believe that this correlation
metric is appropriate to use in our study for the following reasons:

• Firstly, we make use of cryptocurrency returns in order to retain the statistical nature
of the associated time series. While some authors have proposed addressing the non-
linearity problem (e.g., Spearman [59] and Kendall [53]), these have the disadvantage
of converting rational numbers into integer rankings, with the potential to lose out on
critical information from financial time series [60]. Moreover, it has been shown that
rank correlation metrics also suffer from the nonlinearity issue in some cases [58].

• Secondly, Pearson has been widely applied in the existing literature, not only in
the cryptocurrency market [21,22,32] but also in markets for more traditional asset
classes [2,6,24]. This strongly reinforces our belief in the applicability of this method
of correlation calculation for our problem.

• Thirdly, rank-based correlation metrics require independent observations. This is a
known weakness of non-linear correlation methods such as Spearman and Kendall [60].
On the other hand, Pearson works well for time series with duplicate observations
(because there is no requirement for independent observations), as is the case in
financial time series. For example, the price of a cryptocurrency can be unchanged for
a period of time.

One issue raised from this type of matrix is the question of how reliable these correla-
tions are, in other words, whether the correlation matrix shows genuine and authentic rela-
tionships between the considered time series. Thanks to the RMT [61], this hypothesis can
be examined. Particularly, given a m × n random matrix N whose elements are distributed
randomly with zero mean and unit variance, the eigenvalue distribution of the correlation
matrix CN = 1

m NNᵀ follows the Marchenko–Pastur probability density function [62] if
the Quality Factor Q = m

n ≥ 1 holds when the number of timestamps m → ∞ and the

number of features n → ∞: P(λ) = Q
2π

√
(λ+−λ)(λ−λ−)

λ , where P is the Marchenko–Pastur
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probability density function, λ is an eigenvalue of CN, λ± = 1 + 1
Q ± 2

√
1
Q are upper and

lower limits, respectively.
From RMT, eigenvalues falling outside of [λ−, λ+] are assumed to deviate from its

expected predictions [63,64]. Hence, we can use this theory to test the reliability of the
relationships in our empirical data [65]. That is, if an empirical correlation matrix actually
has real valuable information, it must have eigenvalues that are outside the bounds of
[λ−, λ+]. Otherwise, the empirical correlation matrix can be taken to contain mainly
random noise. In this study, RMT has been used to test our correlation matrices. The results
show that all correlation matrices are not random and contain valuable information.

4.2. Cleaning Trend and Noise Effects in the Cryptocurrency Market
4.2.1. Noise and Trend

The cryptocurrency market is known to have a higher percentage of noise than other
traditional financial markets. According to [66], the average daily signal-to-noise ratio of
the cryptocurrency market is 36%, which is extremely low compared to well-established US
stock exchanges such as NYSE and NASDAQ, with an average daily signal-to-noise ratio
of 90%, given the considered period between March 2017 and November 2017. The noise in
the cryptocurrency market might come from different sources. For instance, there is no fixed
volume for a transaction to be executed at a time, so investors can freely choose the amount
that they want to trade; however, this issue causes one problem, in that investors can
reduce the transaction costs by splitting their budget into smaller pieces and then buy one
cryptocurrency many times with different amounts of volume and price, a practice which
can trigger unforseen price movements, see [67]. Furthermore, cryptocurrencies’ prices
are vulnerable to “pump and dump” schemes [68], which have become pervasive recently,
and also regulatory news enacted by national authorities [69]. All of these factors might
intervene in the price movements of digital assets. Consequently, the correlation matrix
between cryptocurrencies cannot explain their real connections as it is highly influenced by
these noise factors.

On the other hand, the trend effect found in other correlated systems [70] might be
found in the cryptocurrency market. Briefly speaking, a trend among cryptocurrencies
means that they tend to move together in terms of price values. We notice that the majority
of cryptocurrencies are created based on the protocol of leading cryptocurrencies such as
Bitcoin and Ethereum (e.g., MKR, BNT, ICX, ETC and LTC) [71]. Moreover, cryptocurrencies’
prices readily fluctuate with mass media [72], causing a herding behavior [72]. Similar
characteristics contribute to creating a trend in cryptocurrencies.

Generally, these phenomena might be reasons for a high-value correlation matrix of
cryptocurrencies from our dataset. Thus, it is important to remove of the existing noise and
trend before moving on to further analysis.

4.2.2. Cleaning Method

In recent studies, different approaches have been proposed to remove the noise from
a correlation matrix through modification of the corresponding eigenspectrum, e.g., Lin-
ear shrinkage [73], Eigenvector clipping [74], Non-linear shrinkage [75] and Rotationally
invariant, optimal shrinkage [76]. One common obstacle for most of the existing cleaning
methods is that they have parameters needing definition. This raises an obvious question:
how do we choose these? It is acknowledged that a lot of effort has been made to obtain
the right parameter values, i.e., the noise is removed completely without the loss of data
information [77,78]. However, these optimization approaches have one issue, which is that
they use the Frobenius norm in their formula, so they fail to work with outlier-containing
data, a downside of the Frobenius metric [79]. On the other hand, Eigenvector Clipping
distinguishes itself from others [74] as it does not require any training parameters, making
its outcome robust and more reliable. Furthermore, this cleaning method is straightforward
to implement, with the guaranteed efficiency as it keeps the information part, i.e., after
the cleaning process, the trace of the correlation matrix remains unchanged [80]. This
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method has shown good performance in different studies and has been applied widely to
different topics such as programming education, portfolio optimization and signal process-
ing [70,81,82]. The outstanding performance of the Eigenvector clipping encourages us to
choose this method for our cleaning scheme.

Given eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ λn and corresponding eigenvectors
v1, v2, . . . , vn of our empirical correlation matrix C, we can identify k ≤ n such that λk > λ+

and λk+1 ≤ λ+. The Eigenvector clipping defines the denoised correlation matrix Cdenoised
by [83]:

Cdenoised = Σn
i=1λ∗

i viv
ᵀ
i , λ∗

i =

{
λk+1+λk+2+...+λn

n−k , ∀i ≥ k + 1
λi, ∀i ≤ k

(1)

Equation (1) uses the same eigenvectors as C but modifies their corresponding eigen-
values such that those greater than λ+ remain unchanged while the rest will be replaced
by their average value. Notably, although small eigenvalues are replaced, the trace of the
denoised correlation matrix is equal to its origin.

Regarding the trend effect, it is explained by the first eigenvalue and eigenvector,
referred to as “market component” [83]. The market component is proved to influence the
outcome of the correlation matrix. In particular, it is involved in all interactions observed
from the correlation matrix due to its enormous amount of information, consequently,
lessening the performance of clustering algorithms [84]. Thus, removing this component
is a necessary step to clean the trend effect so that a greater portion of the correlation
can be explained by components that affect specific subsets of the cryptocurrencies and,
hence, facilitate clustering algorithms to find dissimilarities across clusters. A cleaned
correlation matrix Ccleaned is obtained by subtracting the market component from the
denoised correlation matrix:

Ccleaned = Cdenoised − λ1v1vᵀ1 (2)

We found that the connections between cryptocurrencies decrease greatly without noise
and trend effects: large cryptocurrencies such as Bitcoin, Ethereum and Ripple do not see
to affect the cryptocurrency market as they did before the cleaning process, since there
is no strong connection between them and other cryptocurrencies. This result is in line
with [70], where the Eigenvalue Clipping method was also used to clean the education-
related correlation matrix.

4.3. Distance Matrix and Its Minimum Spanning Tree

Although the correlation coefficient can explain some aspects of the relationships
between cryptocurrencies, it is not a metric [85]. Thus, the connections learned from the
correlation matrix lack topological characteristics because they are not placed in a metric
space [85]. To tackle this issue, a concept named Distance Matrix has been introduced to
replace the correlation matrix.

Let D be a distance matrix deriving from Ccleaned, then:

dij =
√

2 ∗ (1 − cij
)

(3)

where dij ∈ [0, 2] is an element of D, with 0 indicates the complete similarity between
2 nodes while 2 indicates the complete difference between 2 nodes. From the Equation (3),
we can prove that: (1) dij ≥ 0, (2) dij = 0 if i = j and (3) dij = dji, i.e., the requirements of a
metric are satisfied [85]. By using the distance matrix, we can derive a network (graph) of
cryptocurrencies (nodes) with a specific topology, where similar cryptocurrencies are close
to each other and cryptocurrencies with different behaviors are far away from each other,
the link (edge) between each pair of cryptocurrencies is their distance value. Thanks to this
topology, different communities of cryptocurrencies can be observed.
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One problem with this type of network is that it is dense. That is, for a set of N
nodes, the corresponding graph deriving from D has N×(N−1)

2 edges such that each vertex
connects to all other vertices. To reduce the complexity of the network, we use a Minimum
Spanning Tree (MST) [86], which refers to a special tree from the graph that links all vertices
together in which its length is minimal. Particularly, it reduces the amount of redundant
information since it only keeps the N − 1 most important edges, i.e., N − 1 shortest edges
that are well connected. MST stems from graph theory and is applied widely to different
fields [4,87,88], especially in financial markets [89–91]. To exploit the useability of MST,
the dynamics of community structures in the stock market are observed by Huang et al. [92]
with the dataset split into consecutive smaller periods and a MST constructed at each
of them. Thus, the characteristics of a financial network can be captured by observing
the evolution of MSTs. More recently, the cryptocurrency market was introduced and
attracted a number of investors, and the demand for exploring the correlation between
cryptocurrencies thereby emerged. However, this topic is rather new and needs more
studies to be implemented [4,93].

There are two famous algorithms to find the MST, namely Prim [93] and Kruskal [94].
While both methods show good performance, Kruskal seems to be better in terms of time
complexity. A comparison between the two from [95] shows that the prior works well with
a big network, while the latter is dominant when the network is small, which is appropriate
for this study as we have only 34 cryptocurrencies. Moreover, Kruskal is used more often
in finance-related topics compared to other approaches [96–98], which strengthens the
reliability of the algorithm. With these advantages, we choose Kruskal for this study.

4.4. Community Detection in the Cryptocurrency Market

Given a MST from the distance matrix D, different communities are formed and can be
recognized clearly, i.e., cryptocurrencies belonging to one community have short distance
edges among them and the distance between two others in two different communities is
longer than any edges of these two communities. However, there are less common cases in
which some nodes are scattered between communities, or it is not visible from the graph
how close the two communities are. This issue motivates us to further analyze the MST
to optimize the clustering result using several community detection methods which have
been developed [99–103]. Of these, the Louvain method is applicable across a wide range
of domains [104–107]. Thus, we apply this method to our MST in order to obtain optimal
communities. Theoretically, Louvain is an optimization problem that uses Modularity to
measure the density of links inside communities compared to links between communities.
The target of Louvain is to minimize the Modularity measure, which means that different
authentic communities are clustered very tightly [108].

However, it is not convincing just to show results from one method only, as the
community structure of a network might be just random. To overcome this issue, we
also adopt another commonly used method named Girvan–Newman, which removes
edges from the original graph one-by-one such that the edge having the highest number of
shortest paths between nodes passing through it is removed first. Eventually, the graph
breaks down into smaller pieces, so-called communities [109].

If the results proposed by these two community detection methods are similar, it im-
plies that the relationship of the cryptocurrencies as well as their corresponding community
structure are reliable and reflects their genuine characteristics. The results after applying
these methods are shown in Section 5.

4.5. Time Window Division

Given the dataset described earlier, one important question about constructing a
network structure in these cryptocurrencies is how to split the dataset into different consec-
utive periods. This is because a network structure corresponding to each period of time
should be able to explain what has happened to the cryptocurrencies throughout that time,
i.e., there must be a reason behind this topological structure. If we divided the dataset
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randomly, we could not capture important historical events at a specific period. As a result,
the topology we found would be meaningless in the corresponding time window. To this
end, we must select time windows rationally. We note that our dataset contains the period
of the COVID-19 pandemic as well as the global downturn 2020. From the literature in
Section 2, we see these historical events actually adversely influenced the financial markets.
Thus, we postulate that the COVID-19 pandemic is a reasonable milestone to separate
our dataset.

To verify the pandemic’s impact on the global economy and thereby choose the
right time windows for the dataset, we consider the movements of four different factors.
Firstly, the attention to the COVID-19 pandemic, as measured by the frequency of COVID-
19-related keywords searched on Google Trends. For this factor, we use two keywords
including COVID-19 and coronavirus disease 19 . Secondly, we use the VIX index to observe
fluctuations of the stock market, this index starts at 0 for no upper bound and a higher
value implies that the stock market has stronger fluctuation. Thirdly, we also observe the
prices of the S&P500 index, representing the US economy. Lastly, the growth rate of the
world’s GDP is used as a proxy for the development of the global economy in general.

Figure 1 visualizes these aforementioned factors. From Figure 1a, people started to
worry about this disease in January 2020. However, it was not until March 2020 that the
COVID-19 pandemic actually caught the attention of people worldwide, as the volume
of searches for COVID-19-related terms quickly peaked. This remained a topic of interest
until July 2020. Furthermore, March 2020 was the month in which a pandemic-induced
economic recession first occurred, seriously affecting the economy of nations worldwide.
This effect is shown in Figure 1b–d. In particular, the GDP’s growth rate decreased by
3.3% in 2020, which is the highest decrease ever, even worse than the Great Recession in
2007–2009 [110]. Simultaneously, the stock market fluctuated dramatically, which can be
seen via the VIX index and the S&P500 index, both of which experienced a significant fall
during March 2020. However, the economy started to recover afterward, the stock market
became less fluctuated and the S&P500 index regained its original pre-pandemic value in
July 2020.

(a) Public attention (b) GDP growth rate

(c) VIX index (d) S&P5000 index

Figure 1. The reaction of general public and global economy to the COVID-19 pandemic. Four factors
are considered: (a) Worldwide attention to the pandemic, (b) Global GDP growth, (c) VIX index,
(d) S&P500 index.
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Consequently, we split the 784 days from 13 February 2019 to 6 April 2021 into three
time windows which correspond to three different stages, including normal time, downturn
time and recovery time. The details for these time windows are shown in Table 3.

Table 3. Three time windows used in this work (time windows split to take into consideration the
COVID-19 pandemic).

Time Window Stage Time Span # Days

1 Normal time 13 February 2019–31 December 2019 322 days
2 Downturn time 1 January 2020–30 June 2020 182 days
3 Recovery time 1 July 2020–6 April 2021 280 days

5. Experimental Results and Discussion

This section sets out our three research questions. We will first examine the impact
of noise and trend effects on the correlation between cryptocurrencies as well as their
corresponding topological structure. Then, we observe the evolution of the structure
according to the levels of granularity. Finally, the results from these two experiments will be
used to construct the right network structure. Consequently, the corresponding community
structure is identified, which is used to learn the investment decisions of crypto investors
during the COVID-19 pandemic.

We note that all calculations in our study are implemented using Python programming
language (version 3.7.14, designed by Guido van Rossum, Centrum Wiskunde & Informat-
ica (CWI), The Netherlands). Regarding network-related calculations (e.g., network con-
struction and network-involved metrics), we utilize the networkx (https://networkx.org/)
package incorporated into Python.

5.1. The Response of Network Structures to Noise and Trend Effects

Given the fact that there are noise and trends in the cryptocurrency market, we
examine whether these factors affect the cryptocurrency network structure. Since we have
four datasets corresponding to four timescales (e.g., 30 min, 6 h, 12 h and 24 h), we use
both metric-related methods and visualization for all available datasets to discover the
discrepancy between original and cleaned (after removing noise and trends) datasets.

To show the difference between two network structures, we choose two such metrics
to measure the connection strength in a network of cryptocurrencies:

• Residuality Coefficient [93]: This compares the relative strength of the connections
above and below a threshold distance value. In this experiment, we use the highest
distance value ensuring connectivity of the MST as the threshold, denoted L:

R =
Σ[dij>L]d

−1
ij

Σ[dij≤L]d
−1
ij

(4)

• MST-based mean distance [111]: this calculates the average distance of the MST:

M =
1

N − 1
Σdij∈MSTdij (5)

An increase in these means that cryptocurrencies are further from each other. By con-
trast, cryptocurrencies are closer to each other if these metrics decrease. Note that although
both metrics are used to examine the connection strength of cryptocurrencies, the Resid-
uality coefficient is known to be more vulnerable to the links between cryptocurrencies
in different groups, i.e., if the connection strength between cryptocurrencies in different
groups increases, the Residuality coefficient will decrease dramatically, and vice versa;
the connections between cryptocurrencies within one group do not affect the Residual-
ity coefficient much [112]. On the other hand, Mean distance is more vulnerable to the
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links between cryptocurrencies belonging to one group, as it mainly uses the connections
within a group to find the average value and ignores the connections between different
groups [111].

Table 4 shows the results of the two metrics using different levels of granularity. It
is clear that both Residuality coefficients and Mean distance values increase significantly
when the effects of noise and trend are dismissed. This phenomenon remains unchanged
in different timescales, implying that this is a genuine characteristic of the cryptocurrency
market. Furthermore, a visualization of network structures before and after cleaning is
shown in Figure 2 to reinforce our finding. As can be seen, the topological structure changes
after the noise and trends are removed. Moreover, what happens in each time window
is that the number of communities decreases after removing these effects. From these
figures and illustrations, we can conclude that the connections between cryptocurrencies
are caused mainly by the noise and trend effects. That is, these factors result in different
cryptocurrencies becoming closer to each other and forming a group. This phenomenon
can be explained by low values for Residuality coefficients and Mean distance values in
the original data compared to the cleaned data. A value less than unity of the prior metric
means that there are few connections greater than the threshold L. Moreover, a small value
of the latter metric means that cryptocurrencies within a group are closer to each other.
In summary, each group of the network is compact with strong links inside, which helps
the community detection algorithm to easily cluster them. In other words, the difference
between different groups is clear because the links between different groups are weak,
i.e., the ones greater than L. However, after cleaning the correlation matrix, cryptocurrencies
that are closely related to each other through noise and trend become further away, i.e., the
strong links between some cryptocurrencies are broken. This causes our metrics to increase
dramatically, which means that the network structure starts to expand, forming a sparse
network. For example, the Residuality coefficient of the second time window in the 30 min
original data is 0.28, while it is 20 times higher after cleaning the effects of noise and
trends. This fact is also true for the rest of our dataset. The result is in line with [20]; these
authors did not consider the noise effect but, with the removal of trends, they found that the
correlation between the 80 most liquid cryptocurrencies from 1 January 2020 to 1 October
2021 decreased.

Table 4. Cryptocurrency network connection strength through three time windows measured by
Residuality Coefficient and Mean Distance. Four different granularity levels are considered, each
with datasets, including original and cleaned dataset after removing noise and trend effects.

Metric Data Type
Time

Window

Granularity

30 min 6 h 12 h 24 h

Residuality

Coefficient

Original Data

1 0.41 0.11 0.16 0.08
2 0.28 0.111 0.06 0.05
3 0.14 0.05 0.07 0.34

Cleaned data

1 1.69 6.66 14.82 14.40
2 5.98 8.90 14.41 15.34
3 2.32 2.99 1.88 1.05

Mean

distance

Original Data

1 1.08 0.82 0.80 0.76
2 0.99 0.71 0.65 0.56
3 0.98 0.57 0.46 0.45

Cleaned data

1 1.29 1.38 1.42 1.42
2 1.40 1.42 1.42 1.42
3 1.29 1.12 1.01 1.22
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(a) Time window 1, original (b) Time window 1, cleaned

(c) Time window 2, original (d) Time window 2, cleaned

(e) Time window 3, original (f) Time window 3, cleaned

Figure 2. Cryptocurrency network structures using daily data. For each time window, Louvain
method is applied to both original and cleaned data to detect existing communities. The illustrations
on the left and right hand side are for the original and cleaned data, respectively, for 3 time windows
referring to normal, downturn and recovery times, respectively.

5.2. Real Network Structures in Different Levels of Granularity: An Experiment on Cleaned Data

In this section, we will construct the network structure of 34 cryptocurrencies removing
the effects of noise and trends. By doing this, we can look at the evolution of network
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structures at each timescale over time and, of greater interest, the differences in the network
structures between different timescales. Note that community detection results found by
using Louvain algorithm are also included in these networks. The results of this experiment
can shed light on the influence of timescales on cryptocurrencies’ connections and what
timescale should be used for cryptocurrency-related analysis.

5.2.1. The Evolution of the Cryptocurrency Network According to Timescales

Figures 3–5 show the results of network structures along with detected communities
using the Louvain method with each figure representing a different time window. For each
window, four network structures corresponding to four different levels of granularity are
displayed. One obvious statement that can be made from the illustrations is that the com-
munity structures at each level of granularity change over time. Additionally, if we consider
different levels of granularity at the same time, the number of detected communities tends
to decrease when the timescale becomes more coarse-grained. For large timescales, such
as 24 h, cryptocurrencies build up big groups with few cryptocurrencies acting as central
nodes that link directly to the remainder. For example, in Figure 3d, MANA acts as a central
node that links all other cryptocurrencies together. This explains why community detection
techniques cannot distinguish several subsets as the network in this case is naturally one
group. Figure 4d shows a similar pattern, while in Figure 5d there are two central nodes
that create two big groups with relatively similar sizes. To this end, with low-frequency
data, we expect we can predict the long-term trend of cryptocurrencies in the future by
looking at the central nodes from their corresponding community structures. If this is the
case, it will be very beneficial for investors who choose a long-term investment. However,
this behaviour requires deeper investigation and will be the subject of further research.

(a) Time window 1, 30 min (b) Time window 1, 6 h

(c) Time window 1, 12 h (d) Time window 1, 24 h

Figure 3. Network structure for the first time window, community detection is applied using Louvain
method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

We notice that the difficulty of detecting communities in this market increases with
the timescale length. In other words, cryptocurrencies are more likely to belong to the
same community if we just look at their price values at a high level of granularity such as
daily. Thankfully, it can be explained based on the nature of the cryptocurrency market.
In particular, the cryptocurrency market is well-known for its high volatility compared to
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other traditional asset classes such as stocks, bonds and commodities [113–116]. In [117],
the authors used 5 min data of Bitcoin prices traded on three different exchanges, Kraken,
Bitstamp and Btcbox, during the period between 2017 and 2021 to calculate the realized
volatility (the assessment of variation in returns for an asset by analyzing its historical
returns within a defined time period) of this most stable and popular cryptocurrency. The re-
sults showed that although Bitcoin is the most valuable and trustworthy cryptocurrency, its
volatility fluctuates from 4.8 to 7.5. By contrast, with the same level of granularity, the stock
market seems to be more stable, as the realized volatility stood at roughly 0.58 during
normal times [118] and increased to just around 1.0 during the COVID-19 pandemic [119].
These facts suggest that the cryptocurrency price fluctuations are dramatic even within a
5 min period. Consequently, using a low-frequency dataset such as 12 h or 24 h appears to
cause a loss of important information that influences the results of analysis. This problem
has also been described in earlier studies such as [12]. However, existing studies mainly
focused on daily data to detect communities in the cryptocurrency market.

(a) Time window 2, 30 min (b) Time window 2, 6 h

(c) Time window 2, 12 h (d) Time window 2, 24 h

Figure 4. Network structure for the second time window, community detection is applied using
Louvain method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

In this study, the loss of information by using large timescales including 6 h, 12 h and
24 h makes judging the correlation between different cryptocurrencies unclear. As a result,
it affects the corresponding MST which can be seen in Figures 3–5. Ideally, we would like
to use a dataset that is as fine-grained as possible. Unfortunately, our experiments show
that for frequencies lower than 30 min, there are a huge amount of missing values as some
cryptocurrencies are not traded frequently [120], thus requiring their removal or imputing
a value. This adversely affects the correlation between time series and impacts our analysis.
Finally, we choose a 30 min dataset for further experiments.
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(a) Time window 3, 30 min (b) Time window 3, 6 h

(c) Time window 3, 12 h (d) Time window 3, 24 h

Figure 5. Network structure for the third time window, community detection is applied using
Louvain method. Four different timescales are used, e.g., (a) 30 min, (b) 6 h, (c) 12 h, (d) 24 h.

5.2.2. Louvain vs. Girvan–Newman for Community Structure Detection

The Louvain method is our main technique for detecting communities but we also use
the Girvan–Newman method to double-check the communities found. The v-measure gives
the similarity between these two methods [121], shown in Table 5. This metric ranges from
0 to 1 such that 0 indicates a complete dissimilarity between two graphs while 1 indicates a
complete similarity. We found that the v-measure in all cases is high with the lowest value of
0.82 from the third time window in the 6 h dataset in Table 5. That is, the Louvain method
proposes similar results as Girvan–Newman. Thus, the communities found by Louvain are
reliable for use in further analysis.

Table 5. v-Measure between Louvain and Girvan–Newman methods.

Granularity

30 min 6 h 12 h 24 h

Time window 1 0.88 1.00 1.00 1.00
Time window 2 1.00 1.00 1.00 1.00
Time window 3 0.87 0.82 0.91 1.00

5.3. Analysis of Investors’ Investment Decisions Based on the Time-Varying Network Structure
5.3.1. The Changes in Crypto Network Structure during Times of Crisis

To observe the growth of the network structure over time, we use Degree Assortativity
Coefficient [122] and Average Betweenness Centrality [3]. However, these metrics fail to tell
us the similarity between two networks. Thus, to statistically compare the topological
change between two networks, we use three more metrics, including v-measure, Degree
centrality [26] and Eigenvalue method [123,124].

Table 6 shows results of Betweenness Centrality and Degree Assortativity. Immediately,
we can see that there is a huge change occurring in time window 2, which corresponds to
the turbulent time caused by the pandemic on both metrics.
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Regarding the Betweenness Centrality, this metric decreases from 0.15 in time window
1 to 0.05 in the next period before going back to its original value prior to the pandemic
outbreak (time window 1). A reasonable explanation for this movement is that the network
structure of the cryptocurency market during normal times appears to have a dispersive
tendency with the whole network divided into multiple small-size groups such that each
group share common characteristics. However, during COVID-19, these synchronize to
form a big group. Thus, the number of groups decreases while the size of each group
increases. This might be a consequence of an increase in the connectedness of cryptocurren-
cies during the pandemic, as shown in many research papers [11,27,45]. In the recovery
time, however, the network started to divide into smaller parts again, perhaps because the
cryptocurrency market overcame the most connected period and started to go back to its
normal behavior.

The Degree Assortativity results strongly support those of the Betweenness Centrality.
In particular, a negative value shows that high-degree nodes are more likely to link to low-
degree nodes, which means that each group in the network has one node acting as a central
node connecting to the rest. While the values in time window 1 and 3 are approximately
the same, time window 2 shows a decline by nearly 50 percent. This indicates that the
number of connections between high-degree nodes and low-degree nodes increases, i.e., the
network forms big groups with a large number of leaf nodes in each group.

We notice that this time-varying structure is similar to what have been shown in works
of Drozdz et al. [20,21], who stated that the market has a distributed-network topology or a
hierarchical-network topology in which no node dominates the network during normal
times. However, it becomes more centralized during the pandemic and started to distribute
as this turbulent time is gone. More recently, another work proposed by Nie also confirmed
the same result [22].

Table 7 shows results of the three similarity metrics for different time periods: normal
time (time window 1), downtime (time window 2) and recovery time (time window 3). Each
values shows the similarity between two time windows. For v-measure, the higher the value
is, the more alike two networks are. On the other hand, for the remaining values, a lower
value indicates that two networks are more similar.

The differences between time window 2 and the other two time windows are very
clear. In particular, the v-measure between time window 1 and 3 is 0.32, meaning that
communities found in time window 3 hold roughly one third of characteristics from time
window 1’s communities. By contrast, v-measure values between time window 1 and 2 as
well as between time window 2 and 3 are negligible, standing at 0.04 and 0.02, respectively.
Additionally, for the topological structures of MSTs, the other two metrics also show the
same principle since time window 1 and 3 share common characteristics and the similarity
degree of other cases are nearly zero. Remarkably, the Eigenvalue method shows a significant
divergence of time window 2 with others, as shown in Table 7.

The severe pandemic and the global downturn of March 2020 together seem to have
actually changed the way cryptocurrencies interact with each other. The changes of these
interactions have created new communities and broken down old ones, i.e., some cryp-
tocurrencies become closer to each other while others moved further away from each other
due to the COVID-19 pandemic and the economic recession. Eventually, the topological
structure during this turbulent time shows completely different patterns compared to the
periods when the global market is stable. Furthermore, we noticed that the community
structure started to recover back to its pre-COVID-19 levels after June 2020, which coincides
with the time the global economy recovered and the COVID-19 pandemic had less impact.
During this time, some characteristics of the network structure reappeared that are similar
to the structure during the normal time (it is obvious that these structures are not fully
similar because they change over time, as proven in previous sections and, in addition,
after June 2020, the global economy started to recover, but not as well as in the past, and
the pandemic still had an impact on the economy worldwide to some extent). This is
why the v-measure between time window 1 and 3 increased significantly and the corre-
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sponding differences measured by Degree centrality and Eigenvalue method are very small.
The community structures for the three time windows are shown in Figures 3a, 4a and 5a.

Table 6. The growth of network structures over time measured by Betweenness Centrality and
Degree Assortativity.

Metrics Time Window 1 Time Window 2 Time Window 3

Betweenness centrality 0.15 0.05 0.16
Degree Assortativity −0.49 −0.72 −0.51

Table 7. Similarity in network structures between different phases of the cryptocurrency market
measured by three metrics. A higher value of v-measure indicates a greater similarity between two
structures, whereas, higher values of degree centrality and eigenvalue method indicate more dissimilarity
between two structures.

Metrics

Time

Window 1 vs. 2 1 vs. 3 2 vs. 3

Degree centrality 0.5 0.09 0.42
Eigenvalue method 844.45 4.59 759.16

v-measure 0.04 0.32 0.02

5.3.2. Learning the Investment Decision of Crypto Traders Based on Ranking Distribution

The ranking of a cryptocurrency is measured by its market capitalization (a multipli-
cation between the number of coins in circulation and the current market price of a single
coin). We obtain cryptocurrencies’ ranking on the https://coinmarketcap.com website
(accessed on 15 August 2022).

We use this characteristic of cryptocurrencies to examine how they are distributed in
each community of the cryptocurrency network. More importantly, we will have a look at
the way cryptocurrencies form groups during different phases of the global economy by
observing the distribution of ranking in each group between different periods of time.

Table 8 summarizes the results of community detection using the Louvain method.
For each period of time, the found communities are listed with a set of cryptocurrencies and
corresponding rankings belonging to each of them. We found that during the normal time,
there is a mix between high-ranking and low-ranking cryptocurrencies in each community.
For example, group 6 has a size of 7 including top-ranking cryptocurrencies such as BTC,
ETH and BCH, while also having very low-ranking ones such as MAID and ICX. We pay
more attention to communities found in the downturn time. At this phase, we recognized
that the community formation of these cryptocurrencies seems to be dramatically different
from the previous period. In particular, there are only two communities found during this
period, while the other has six. More importantly, there seems to be a separation between
high-ranking and low-ranking cryptocurrencies, because the majority of top-ranking cryp-
tocurrencies belong to one group while the majority of low-ranking cryptocurrencies are
in the other. Additionally, by comparing these results with the period of recovery, we no-
ticed that this period shares common characteristics with both normal time and downturn
time. Specifically, after the downturn time, cryptocurrencies started to separate from each
other; this can be seen by looking at the number of communities during this time. There
was an increase from 2 to 6, which is equal to the normal time case. While the majority
of communities show a mix between high- and low-ranking cryptocurrencies, there are
two communities that are similar to the downturn time: group 4 with all high-ranking
cryptocurrencies and group 5 with all low-ranking cryptocurrencies.
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Table 8. Distributions of rankings in each community during different phases of the financial market:
normal time, downturn time and recovery time. The rankings are sorted in ascending order. Bold
values are minimum and maximum ranks in each period.

Group Cryptocurrencies Rankings

N
o

rm
a
l

ti
m

e

1 ADA, XLM, BAT, ZIL 10, 13, 32, 99
2 BTG, IOST, XTZ, ZRX, ETC 12, 21, 45, 57, 83
3 LSK, OMG, REP, FUN, MKR 26,54, 58, 70, 168
4 NEO, MANA, BNT, XVG, XEM, QTUM 19, 31, 41, 86, 117, 184

5 ONT, ZEC, XMR, XRP, EOS, TRX, LTC 3, 6, 7, 11, 16, 29, 35
6 ICX, MAID, DOGE, BTC, BSV, ETH, BCH 1, 2, 5, 9, 34, 84, 130

D
o

w
n

tu
rn

ti
m

e 1
DOGE, ICX, BNT, MANA, ZRX, FUN,
MAID, BAT, XVG, ONT

32, 33, 40, 45, 60, 81,
105, 124, 139, 196

2

ADA, BCH, BSV, BTC, BTG, EOS,
ETH, ETC, IOST, LSK, LTC,
MKR, NEO, OMG, QTUM, REP, TRX,
XEM, XLM, XMR, XRP, XTZ, ZEC,
ZIL

1, 2, 4, 5, 6, 7, 9,
11, 12, 15, 17, 18,
21, 22, 27, 30, 34, 48,
51, 53, 54, 62, 65, 91

R
e
co

v
e
ry

ti
m

e

1 BTG, MANA, BAT, ZEC 56, 62, 67, 107
2 ONT, QTUM, EOS, BSV, MKR 24, 31, 53, 75, 88
3 XVG ,ZIL, XEM, MAID, BTC, ETH 1, 2, 38, 48, 109, 136
4 ADA, DOGE, XRP, BCH, XLM, LTC 6, 7, 9, 15, 16, 20
5 OMG, BNT, IOST, REP, ICX, LSK 68, 78, 85, 100, 101, 140

6 ETC, ZRX, TRX, NEO, XMR, FUN, XTZ 17, 27, 33, 35, 64, 76, 129

Figure 6 shows the distribution of cryptocurrencies’ rankings in three different phases
of time. We use this visualization to show readers the changes of ranking distributions
in a clearer and easier manner. Each community is represented by a circular shape while
the rankings of cryptocurrencies are represented by the intensity of the blue color, i.e., the
darker the blue, the lower the cryptocurrency’s rank. Figure 6b shows that the circular shape
of group 1 is clearly darker than that of group 2. On the other hand, there is a combination
of both bright and dark blue in the majority of cases in two remaining sub-figures. Notably,
Groups 3 and 5 in Figure 6c show a clear difference from the rest.

When it comes to these results, investors’ investment decisions can be considered as
potential explanations for the time-varying community structure. During normal times,
i.e., when the financial market is stable and there is no major event occurring that impacts
wider society, investors show a non-herding behaviour. That is, their decision for investing
in a cryptocurrency is based on their own market analysis and is not influenced by other
investors’ choice. This might push up the vibrancy of the cryptocurrency market where
a large number of coins with both high and low rankings are traded. As a result, there
is a diversification in terms of rankings in each community. Empirically, it is found that
there was no herding behavior before the pandemic. In particular, Larisa et al. in [125]
used hourly price time series of multiple exchanges such as Binance, Bitbay, BitFinex,
Coinbase and major cryptocurrencies including BTC, LTC and ETH to find the existence of
herding before the start of COVID-19. Based on the Cross Sectional Absolute Deviation model,
they found that the herding behavior was free during this time. By contrast, during a
turbulent time, investors are panicked by the fluctuations of cryptocurrencies’ price as well
as being bombarded by bad news that strongly affect their investment. Different studies
have been carried out to investigate the investors’ behavior since the onset of the COVID-19
outbreak. Generally speaking, these reached the same conclusions: that the pandemic
actually increased herding behavior in the cryptocurrency market. In [126], the authors
used 43 cryptocurrencies with large market capitalization between 2013 and 2020; they
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found that investors in the cryptocurrency market follow the consensus and the impact
of coronavirus media coverage is significant on the herding behavior. In particular, news
related to the coronavirus increases fear and affects the behavior of investors reducing
appetite for risk. Consequently, investors disregard their private information and follow
others’ investment decisions. However, the impact of media is reduced when the market
returns to a normal phase. This is in line with different studies that use different datasets
and time periods [125,127,128]. More importantly, the way investors show herding behavior
is that they tended to invest in the major and most-tradable cryptocurrencies [27]. This
can be explained by the fact that high-ranking cryptocurrencies are more mature so they
are more stable than the rest and are more likely to retain value under the uncertainty
of the global financial market, causing a bias from investors [129]. Consequently, major
cryptocurrencies were seen to increase in terms of trading volume and act as a store of value
during the turbulence times [130]. In other words, there was a risk aversion occurring after
the pandemic outburst as described in [72]. Eventually, all high-ranking cryptocurrencies
belonged to one group.

(a) Time window 1 (b) Time window 2

(c) Time window 3

Figure 6. Cryptocurrency’s rankings distributions in three different phases of time. Each community
is represented by a circular shape while the rankings of cryptocurrencies in this community are given
by the blue color intensity, i.e., the darker the blue, the lower the cryptocurrency’s rank.

When it comes to low-ranking cryptocurrencies, we notice that cryptocurrencies with
the lowest rankings in our dataset belong to another group. This might be because they
receive the same treatment from investors during the downturn time, so they have the
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same trend. One possible reason for this is that low-ranking cryptocurrencies are less likely
to be used as an investment option during the downturn time because they have negligible
value and bring more risk to investors. Instead, they are mainly used for other purposes,
such as paying transaction fees, as currency for a smart contract or simply a token on a
cryptocurrency platform used to access applications [27]. This seems reasonable as the
pandemic stopped in-person interactions. Hence, they had to complete all work remotely.
In this case, cryptocurrencies and blockchain technology are extremely useful since they
thrive under the proposed online environment to resume working activities worldwide and
also bring benefits to users. Being used for the same purpose causes a similarity between
these cryptocurrencies.

All findings that we have shown earlier help us to explain the community structure
in time window 3, which corresponds to the recovery period. During this time, the con-
cerns about the pandemic started to decrease, meaning that not only cryptocurrency but
also other traditional assets recovered with investors’ newfound positive attitude bring-
ing them back to normal trading. Crypto traders started to diversify their portfolio by
investing in different low and high market-capitalized assets and making their own deci-
sions [126]. However, one remarkable phenomenon that is worth taking into consideration
is ] risk-taking behavior. A piece of research implemented by Christoph et al. [131] used
100 return time series of risky stocks to conduct a survey related to the investment behavior
of professional market traders. The responses of more than 800 participants revealed that
a number of investors underestimate risk after prolonged exposure to high risk, as they
become accustomed to the uncertainty of the economy. Thus, they go back to investing in
risky assets or even engage in more risk-taking to gain more profits. This tendency explains
the similarity in the community structures between time windows 1 and 3. However, as we
can see, there exists one group with high-ranking cryptocurrencies and one group with
low-ranking ones as a result of the risk aversion of a portion of investors after the great
shock caused by the pandemic.

6. Limitations and Future Works

6.1. Limitations

Although the tick-by-tick dataset used in this study is large, which strengthens the
results of the experiments, the number of cryptocurrencies should ideally be higher so
that we can draw firmer conclusions regarding the cryptocurrency market (e.g., whether
the results generalise for large-cap and small-cap crypto assets). This will be the subject
of future work. Secondly, while 30 min granularity has been found to suffice for our
calculations, it would be better if we could use a lower level, say 15 min or even finer.
Unfortunately, some cryptocurrencies are not traded regularly causing a lot of missing
values at these timescales. This will also be the subject of future work.

There is also a concern with respect to the use of Pearson correlation for clustering
problems. In particular, although this correlation metric has been applied widely in the
existing literature and proposed various findings in the financial markets [2,21,22], it is
sensitive to outliers [58] and cannot capture non-linear relationships that might cause
misleading results [25]. Consequently, this adversely affects the clustering results. In-
deed, these issues are also observed in other correlation metrics such as Spearman and
Kendall [58]. Furthermore, we noticed that the results of clustering vary significantly by
using different correlation measuring methods. Thus, it is necessary to deeply investigate
different methods for a specific research task and analyze the results from each of these
methods. Indeed, the creation of new approaches for calculating correlation coefficients
that overcome the current limitations needs to receive more attention.

6.2. Future Works

Understanding how cryptocurrencies are correlated with each other sheds light on
portfolio optimization. Based on the outcome of this study, we can take one step further by
constructing and comparing the portfolio optimizations at different phases of the market,
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i.e., during bear and bull market periods. Therefore, the unique characteristics of an
optimized portfolio at different market phases can, in theory, be learned and analysed.
Secondly, we have noted that different network structures can be observed for a number of
exchanges. Thereby, a comparison between them can be made. Another future plan which
is worth taking into consideration is to observe the correlation using different techniques.
For instance, we are aiming to use mutual information, which is successfully applied in [25],
to estimate the correlation between two cryptocurrencies. This method can overcome
obstacles from popular linear and non-linear methods since it can measure the non-linear
correlation while allowing the existence of non-monotonic relationships. Lastly, we have
noticed that the network structure of low-frequency data behaves differently to that of
high-frequency data. We remark that we can expect to learn the long-term characteristics of
cryptocurrencies based on this structure which could be potentially beneficial for investors
who choose to make a long-term investment decision.

7. Conclusions

This research aims at answering three questions related to cross-correlations in the
cryptocurrency market: Firstly, how do noise and trends in cryptocurrencies influence
their cross-correlations and then the corresponding network structure? Secondly, what
level of granularity should we use? Lastly, is the dramatic change in the cryptocurrency
network structure during the pandemic caused by investors’ investment strategy? We
firstly analyze the effect of noise and trend in cryptocurrencies on their cross-correlations
and then remove these factors thanks to Random Matrix Theory and Market Component.
Four sub-datasets with different levels of granularity including 30 min, 6 h, 12 h and 1 day
are created from the original tick-by-tick data to examine the importance of choosing the
right frequency resolution. Then, we use MST to construct a correlation-based network and
detect different potential communities by using Louvain and Girvan–Newman algorithms.
We found that the correlations between cryptocurrencies are mainly caused by noise and
trend effects, which might lead to a big problem for the traders’ investment strategy
because investors might be fooled by looking at the counterfeit relationship. It is necessary
to analyze and explore real interactions between cryptocurrencies so that the evolution
of the cryptocurrency market can be learned properly and thus investors can choose a
good strategy for their investment. Moreover, the frequency resolution of our data plays
an important role in the performance of correlation matrix and also community detection.
Specifically, the finer the data, the more precise the community structure. Thus, we use a
30 min dataset, which is the finest available timescale in this study. The dramatic change
in the community structures between bearish and bullish markets reveals a change in the
investment decisions of investors. In particular, investors makes their own investment
decisions based on their personal market analysis and experience during normal times.
Eventually, this causes a diversification in the cryptocurrencies chosen to invest in, since
not only high- but also low-ranking cryptocurrencies are added in the portfolios. On the
other hand, investors tend to only trade cryptocurrencies with high market capitalization
during turbulent times, while smaller cryptocurrencies are mainly used for other purposes,
such as transaction fees, smart contracts tokens or simply used to run a digital platform.
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Abstract: Since its conception, the cryptocurrency market has been frequently described as an imma-
ture market, characterized by significant swings in volatility and occasionally described as lacking
rhyme or reason. There has been great speculation as to what role it plays in a diversified portfolio.
For instance, is cryptocurrency exposure an inflationary hedge or a speculative investment that fol-
lows broad market sentiment with amplified beta? We have recently explored similar questions with
a clear focus on the equity market. There, our research revealed several noteworthy dynamics such
as an increase in the market’s collective strength and uniformity during crises, greater diversification
benefits across equity sectors (rather than within them), and the existence of a “best value” portfolio
of equities. In essence, we can now contrast any potential signatures of maturity we identify in the
cryptocurrency market and contrast these with the substantially larger, older and better-established
equity market. This paper aims to investigate whether the cryptocurrency market has recently exhib-
ited similar mathematical properties as the equity market. Instead of relying on traditional portfolio
theory, which is grounded in the financial dynamics of equity securities, we adjust our experimental
focus to capture the presumed behavioral purchasing patterns of retail cryptocurrency investors.
Our focus is on collective dynamics and portfolio diversification in the cryptocurrency market, and
examining whether previously established results in the equity market hold in the cryptocurrency
market and to what extent. The results reveal nuanced signatures of maturity related to the equity
market, including the fact that correlations collectively spike around exchange collapses, and identify
an ideal portfolio size and spread across different groups of cryptocurrencies.

Keywords: cryptocurrencies; collective dynamics; time series analysis; portfolio optimization

1. Introduction

One of the topics at the heart of complex systems analysis is the study of financial
markets. Financial markets have a diverse range of participants ranging from extremely
sophisticated investors leveraging a technological and information advantage to retail
investors who may purchase securities based on other fundamental intuitions. One asset
class that has seen a significant degree of variance in the sophistication of the investor
base is the cryptocurrency market. Over the last few years, the cryptocurrency market
has gathered meaningful interest from institutional and retail investors alike. Despite
exhibiting tumultuous changes in aggregate assets under management, the overall market
has produced substantial growth in total assets since its inception. Given the relative
immaturity of the cryptocurrency market, it is important to study the underlying dynamics
of the market and contrast optimal trading and portfolio management strategies with that
of more traditional asset classes such as the equity market. The main motivation of this
paper is to investigate the next stage of the cryptocurrency market’s evolution. Although
the cryptocurrency market is young, we feel that it may be coming of age and exhibiting
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signs of maturity, becoming more like the equity market. To assess this, we tactically assess
whether certain phenomena such as collective movement, uniformity and diversification
benefits are similar to that of the equity market.

It is worth commenting more broadly on financial market dynamics and the wealth of
work that has been conducted on that topic before we focus on the cryptocurrency market
most specifically. There are a variety of academic communities that have studied financial
market dynamics and evolutionary changes in structural dynamics such as those in applied
mathematics, complex systems and econometrics [1–3]. A wide range of data scientific
methodologies has been used to study evolutionary dynamics in financial assets such
as linear algebraic-inspired techniques [2,4–6], spectral methods such as random matrix
theory [1,7–10], a variety of unsupervised learning methodologies [11,12], change point
detection [13,14] and a litany of statistical modeling techniques [15].

Another topic of substantial interest to the financial markets community is that of
nonstationarity, regime switching and the time-varying nature of model parameters for
phenomena such as volatility. Such research dates back to autoregressive conditionally
heteroskedastic (ARCH) models [16], generalized ARCH (GARCH) [17] and stochastic
adaptations such as stochastic volatility models [18–20]. Recently, many researchers have
explored adaptions to these fundamental models explicitly capturing dynamics exhibited by
various time series. Some of these models include exponential general autoregressive condi-
tional heteroskedastic models [21], Glosten–Jagannathan–Runkle GARCH [22], Threshold
GARCH [23] and T-SV [24], Markov switching GARCH [25–27] and MS-SV [28]. Many
financial mathematicians have also adopted Bayesian estimation methodologies [29–32],
generally citing the need for uncertainty quantification in estimating model parameters.
These modeling techniques have been widely applied to the study of several asset classes
including equities, cryptocurrencies and fixed income [33–38]. Finally, we would be remiss
not to mention the wide range of techniques in time series analysis that have been used to
study financial problems [39–48], including cryptocurrencies [49–58] and diverse fields in
socio- and econophysics [59–77].

Another topic of great interest across asset classes is the topic of portfolio optimization,
and more generally, the essence of portfolio construction. The quantitative finance and
econometrics communities have studied core issues related to portfolio diversification,
where portfolios are optimized with respect to different objective functions [78–85]. More
broadly, financial market dynamics are universally difficult to model. The seminal work of
Markowitz in 1952 [78] proposed the concept of diversification as a superior framework
for investing in multiple securities at a time. The principle underpinning diversification
is built upon disassociating the risk of an individual and particular financial asset into a
market (systematic) risk component and an asset-specific risk, called unsystematic risk.
Diversification essentially equates to smoothing (or averaging over) unsystematic risk by
investing in an appropriately large number of individual assets, which leads to candidate
investment portfolios’ only exposure being inherently due to market risk.

In recent work, the authors of this work and collaborators [86] perform a thorough
inspection of diversification properties from the perspective of a pure equity portfolio.
Precisely, they explore the changing diversification benefit of various portfolios spread
across a range of industry sectors. While in more recent years investor composition
has broadened to include the likes of quantitative and high-frequency investors, active
investment management has historically been dominated by fundamental investors who
make investment decisions based on the future potential of companies relative to market
valuations (most commonly, the earnings the company produces relative to its share
price). The authors hypothesized that there is more substantial diversification benefit
investing across sectors, rather than within them. Indeed, different sectors exhibit varying
performance during distinct market periods: some sectors may outperform in buoyant
equity markets (such as information technology and often energy), while other sectors
outperform in declining equity markets (such as healthcare, consumer staples and utilities).
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The authors confirmed this hypothesis, producing four primary findings. First, they
use time-varying PCA to highlight that the collective behavior of equities spikes during
market crises, rendering diversification far less effective. Second, they demonstrate that
various community detection algorithms such as modularity are unable to distinguish
between heterogeneous equity sector dynamics during times of crisis. By contrast, during
more buoyant equity market periods, equity sector behaviors are more easily distinguished.
Third, they introduce a new metric to quantify the uniformity of market impact across
equity sectors. There, they show substantial variance across the uniformity of market
impact across independent equity sectors. Finally, they demonstrate that a best value equity
portfolio exists with respect to evolutionary diversification benefits. They show that a
portfolio of size 36, where 4 equities are sampled randomly from 9 different equity sectors,
provides comparable diversification benefit to a portfolio of size 81, where 9 equities are
randomly sampled from 9 equity sectors. Our critical focus is exploring diversification
benefits for cost-conscious retail investors. These are investors who are intelligent, and may
be financially interested but lack the resources to trade frequently in an efficient manner.

With respect to the signature of maturity, the cryptocurrency market is very much
in its infancy when compared to the equity market. Cryptocurrency sectors are not well
defined, and it is often hard to differentiate behaviors between cryptocurrency sectors [14].
If one explores candidate cryptocurrency sector themes online, categories such as wallet,
web3, yield farming, play to earn, energy, decentralized finance, distributed computing
and cybersecurity can be found. However, these categories frequently overlap or differ
from source to source, and it is not necessarily clear how the behaviors of these cryp-
tocurrency sectors relate to the underlying economy. In fact, it is unclear just how often
cryptocurrencies are purchased with the underlying coin sector or thematic within the
digital ecosystem in mind. We suspect that this phenomenon is especially pronounced
among less sophisticated retail investors—where coins may be bought and sold based on
factors such as their recent price and volume movements, and overall macroeconomic
trends. Accordingly, in this work, we turn to the cryptocurrency market and adapt our
experiments to test for alternative diversification strategies among retail cryptocurrency
investors. Rather than testing diversification effectiveness among equity sectors, we use
tranches of cryptocurrency market capitalizations to proxy sectors. We suspect that many
cryptocurrency investors buy securities from platforms where they simply scan a list of
assets that are ordered by market capitalization, and are unaware of many coins’ associa-
tion with a deeper role in the digital economy. We feel that this is an original and suitable
measure of different “classes” of cryptocurrencies. Here, we apply the same fundamental
methodologies to the cryptocurrency market as a means of testing the levels of maturity
and sophistication in the cryptocurrency market.

This paper is structured as follows. In Section 2, we outline the data that we use in this
paper. In Section 3, we study the evolution of the collective dynamics of the cryptocurrency
market. We compare these findings to what has been observed over 20 years in the equity
market and draw conclusions regarding the cryptocurrency market’s signatures of maturity.
In Section 4, we turn to the theme of optimal portfolio construction among cryptocurrency
portfolios. There we study marginal diversification benefits as additional cryptocurrency
sector deciles, and cryptocurrencies within deciles are sequentially added to a portfolio. In
Section 6, we conclude and summarize our findings regarding recent signatures of maturity
in the cryptocurrency market.

2. Data

Our data are chosen as follows. Our window of analysis ranges from 1 July 2019 to
14 February 2023. As of the final day of our analysis window, we drew the top 75 cryp-
tocurrencies by market capitalization from Yahoo Finance [87], and restricted these to
those with a price history dating back to 1 July 2019. This left 42 cryptocurrencies. We
then discarded the two smallest, leaving N = 40 cryptocurrencies and their closing price
data over T = 1325 days. The window of analysis includes periods of major disruption
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for cryptocurrencies, such as the COVID-19 market crash in 2020, the BitMEX exchange
market crash [88], and the collapse of the FTX exchange in late 2022 [89]. We divide the
40 remaining cryptocurrencies into 10 deciles each with four cryptocurrencies based on
market capitalization as of the end of the analysis window. We list all cryptocurrencies
analyzed in this paper in Table 1.

Table 1. Cryptocurrencies, their tickers and decile allocations

Cryptocurrency Ticker Decile

Bitcoin BTC 1
Ethereum ETH 1

Tether USDT 1
Binance Coin BNB 1

USD Coin USDC 2
XRP XRP 2

Cardano ADA 2
Polygon MATIC 2

Dogecoin DOGE 3
Litecoin LTC 3
TRON TRX 3

Wrapped Bitcoin WBTC 3
Chainlink LINK 4
Cosmos ATOM 4

UNUS SED LEO LEO 4
OKB OKB 4

Ethereum Classic ETC 5
Filecoin FIL 5
Monero XMR 5

Bitcoin Cash BCH 5
Stellar XLM 6

VeChain VET 6
Crypto.com Coin CRO 6

Algorand ALGO 6
Quant QNT 7

Fantom FTM 7
Tezos XTZ 7

Decentraland MANA 7
EOS EOS 8

Bitcoin BEP2 BTCB 8
Theta Network THETA 8

TrueUSD TUSD 8
Rocket Pool RPL 9

Chiliz CHZ 9
USDP Stablecoin USDP 9

Huobi Token HT 9
KuCoin Token KCS 10

Bitcoin SV BSV 10
Dash DASH 10
Zcash ZEC 10

3. Collective Dynamics and Uniformity

Let ci(t), i = 1, . . . , N, t = 0, . . . , T denote the multivariate time series of daily closing
prices among our collection of N cryptocurrencies. Let ri(t) be the multivariate time series
of log returns i = 1, . . . , N, t = 1, . . . , T, defined as

ri(t) = log
(

ci(t)
ci(t − 1)

)
. (1)

In this section, we analyze correlation matrices of log returns across rolling time
windows of length τ; in this paper, we choose τ = 90 days. We standardize the log returns
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over such a window [t − τ + 1, t] by defining Ri(s) = [ri(s)− 〈ri〉]/σ(ri) where 〈.〉 denotes
the average over the time window [t − τ + 1, t] and σ the associated standard deviation.
Let R be the N × τ matrix defined by Ris = Ri(s) with i = 1, . . . , N and s = t − τ + 1, . . . , t,
and then the correlation matrix Ψ is then defined as

Ψ(t) =
1
τ

RRT . (2)

Individual entries describing the correlation between cryptocurrencies i and j can be
written as

Ψij(t) =
1
τ

∑t
s=t−τ+1(ri(s)− 〈ri〉)(rj(s)− 〈rj〉)(

∑t
s=t−τ+1(ri(s)− 〈ri〉)2

)1/2(
∑t

s=t−τ+1(rj(s)− 〈rj〉)2
)1/2 , (3)

for 1 ≤ i, j ≤ N. We may analogously define the cross-correlation matrices for each
individual decile by restricting i and j to be chosen from a set of indices corresponding to
that decile.

All entries Ψij lie in the interval [−1, 1]. Ψ is a symmetric and positive semi-definite ma-
trix with real and non-negative eigenvalues λi(t), so we order them as λ1 ≥ · · · ≥ λN ≥ 0.
All the diagonal entries of Ψ are equal to 1, so the trace of Ψ is equal to N. Thus, we may
normalize the eigenvalues by defining by N, to wit, λ̃i =

λi
∑N

j=1 λj
= λi

N . We display the

rolling normalized first eigenvalue λ̃1(t) for both the entire collection of cryptocurrencies
and the 10 deciles in Figure 1.

In Figure 1a, we see particular periods of heightened collective correlation between
cryptocurrencies. In particular, we see extended periods of high correlation in early 2020,
coinciding with COVID-19 and the BitMEX crash, and toward the end of 2022, reflecting
the tumultuous period around the collapse of FTX. These are perhaps the most significant
moments of collective crisis in the cryptocurrency market in the last three years. These
broad trends are reflected on a decile-by-decile basis in Figure 1b, where each individual
decile exhibits a rise in collective correlations in these two periods.

To a nuanced extent, this is a signature of growing maturity in the cryptocurrency
market. Specifically, crisis periods are observed; there is a fairly robust time differential
between crises; collective correlations rise during crises and fall outside these periods; such
effect is seen rather uniformly among different sectors of the market. However, we must
remark that the extent of maturity does not coincide with more established markets such
as the equity market. The time differential between peaks in collective correlations is still
notably shorter than it is for equities; for example, the large time differential between the
Dot-com bubble, the global financial crisis and the COVID-19 crash. Moreover, the strength
of collective correlations between deciles varies significantly, despite their sharing temporal
patterns. Some deciles, such as the third, exhibit significantly higher collective behaviors
than others such as the second, fourth and ninth, whereas these behaviors are much more
uniform for equity indices.

Next, we turn to an analysis of the leading eigenvector v1 to complement our study of
the leading eigenvalue. We analyze its uniformity via the following computation:

h(t) =
|〈v1, 1〉|
‖v1‖‖1‖ , (4)

where 1 = (1, 1, . . . , 1) ∈ R
N is a uniform vector of 1’s. We may compute this for both

the entire collection of cryptocurrencies and individual deciles, analogously to the leading
eigenvalue. We observe that h(t) ≤ 1 with h(t) = 1 if and only if v1 = 1 (up to scalar
multiplication). In this case, all cryptocurrencies carry the same amount of variance in
the “market effect” summarized by λ̃1(t). This can be used to quantify the potential
benefit of diversification: increased values of h(t) indicate increased interchangeability of
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cryptocurrencies in the “market”, and hence less opportunity for diversification or judicious
selection of individual cryptocurrencies.

(a)

(b)
Figure 1. Normalized leading eigenvalue λ̃1(t) of the cross-correlation matrix as a function of time,
for (a) the entire collection of cryptocurrencies and (b) the ten deciles. Like the equity market,
collective correlations spike during market crises, such as COVID-19, and the collapse of exchanges
BitMEX and FTX.

We display the rolling uniformity of the first eigenvector h(t) for both the entire
collection of cryptocurrencies and the 10 deciles in Figure 2. Unlike Figure 1, we observe
a substantial difference compared to the equity market. In the case of the equity market,
the uniformity for each sector and the entire market are consistent with the degree of
collectivity. The degree of uniformity spikes during market crises such as the dot-com
bubble GFC and COVID-19. This spike during market crises occurs for sectors (when
studied independently) as well as across the entire market. The cryptocurrency market
produces dramatically different findings to that of the equity market. Most notably, we see
that there are substantial differences between the uniformity of independent sectors of the
cryptocurrency market with that of the equity market. The cryptocurrency market clearly
exhibits less uniformity during crises (which we see during the COVID-19 market crisis),
and significantly higher variance between sectors of securities throughout our window
of analysis. This is opposite to the finding of the equity market, where industry sectors
exhibited more uniformity during crises. Another point to note is the stark contrast in how
low the h(t) values reach when comparing the two asset classes. In the case of equities,
there is a clear lower bound around the value of 0.75, while for cryptocurrencies we see
two groups of cryptocurrencies reach values below 0.5 (with one reaching less than 0.3)
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during our analysis window. Our analysis, therefore, suggests that we see less persistent
and amplified uniformity among cryptocurrencies when compared to equities.

(a)

(b)
Figure 2. Uniformity h(t) of the leading eigenvector v1 of the cross-correlation matrix as a function
of time, for (a) the entire collection of cryptocurrencies and (b) the ten deciles. The results are
dramatically different compared to the equity market, with numerous deciles exhibiting strikingly
low uniformity scores over time.

4. Portfolio Sampling

In this section, we perform an extensive sampling procedure to explore how diver-
sification benefits depend on the number of cryptocurrencies held in a portfolio and on
the number of decile sectors from which to choose those cryptocurrencies. Motivated by
Section 3, we choose the normalized leading eigenvalue λ̃1(t) to quantify the potential
diversification benefit. We investigate the diversification benefits of portfolios that consist
of mn cryptocurrencies such that n cryptocurrencies are drawn from m separate deciles.
Both the individual cryptocurrencies and the sector deciles are drawn randomly and in-
dependently with uniform probability. We draw D = 500 portfolios for each ordered
pair (m, n).

To quantify the potential diversification benefit for a portfolio consisting of mn cryp-
tocurrencies, we determine the mn × mn correlation matrix Ψ for each draw and calculate
the associated normalized first eigenvalue λ̃m,n(t). Again, we use a rolling time window of
length τ = 90 days when determining the cross-correlation matrix. In particular, we record
the 50th percentile (median) of the D values, which we denote λ̃0.50

m,n (t).
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We analyze this quantity in two experiments. First, we compute the temporal mean of
the median of the normalized first eigenvalue

μm,n =
1

T − τ + 1

T

∑
t=τ

λ̃0.50
m,n (t) (5)

as a measure of the diversification benefit of a portfolio with n cryptocurrencies in each
of m decile sectors. Table 2 records these means μm,n for cryptocurrency portfolios across
values of (m, n) for 1 ≤ m ≤ 10 and 1 ≤ n ≤ 4.

Table 2 shows the mean μm,n of the median normalized eigenvalue λ̃0.50
m,n (t) for various

combinations of cryptocurrency sectors, and randomly sampled cryptocurrencies within
each sector. We also mark in red a “greedy path” to decrease the overall average μm,n (that
is, increase the overall diversification benefit of a portfolio) by greedily increasing either
m or n at each stage. There are several key findings from this analysis. First, the overall
structural finding with respect to optimal portfolio construction strongly resembles that of
the equity market in [86]. We see incrementally greater benefit in diversifying across sectors
rather than within them, and we see a significant reduction in marginal diversification
benefit once a portfolio reaches a critical mass of securities (sampled from different sectors).
This leads to the existence of a “best value” cryptocurrency portfolio, such as that seen in
the equity market. This finding is slightly surprising and may support our hypothesis that
retail cryptocurrency investors diversify across cryptocurrency market capitalization levels.
Indeed, this may occur in the absence of clearly defined sector themes, which may exhibit
different performances during different parts of the business cycle. As investors come to
better understand cryptocurrencies, and cryptocurrencies related to separate aspects of
the digital economy begin to perform differently during various market conditions, this
diversification benefit may slightly alter and amplify. That is, rather than cryptocurrency
market capitalization being a primary discriminator in diversified performance we may see
a closer resemblance to the equity market with cryptocurrency sector themes more closely
resembling equity dynamics.

Table 2. Average μm,n of the median normalized eigenvalue λ̃0.50
m,n (t) for different pairs of m sectors

and n cryptocurrencies per sector. In red we display a greedy path that aims to increase the total
diversification benefit (by decreasing μm,n) at each step. We identify a best value cryptocurrency
portfolio consisting of 4 sectors and 4 cryptocurrencies per sector. This (4,4) portfolio has nearly
the same diversification benefit as the largest possible (10,4) portfolio, as we will also show in the
next experiment.

Number of Cryptocurrencies per Sector

Number of Sectors 1 2 3 4

1 1 0.759 0.668 0.645
2 0.774 0.651 0.598 0.587
3 0.681 0.605 0.581 0.576
4 0.641 0.587 0.572 0.565
5 0.613 0.583 0.565 0.559
6 0.607 0.57 0.565 0.557
7 0.593 0.565 0.559 0.555
8 0.582 0.564 0.557 0.552
9 0.552 0.565 0.557 0.553
10 0.581 0.560 0.554 0.552
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In the second experiment, we investigate which portfolio combinations (m, n) share
the most similar evolution in their collective dynamics. For this purpose, we perform
hierarchical clustering on the distance metric

d((m, n), (m′, n′)) = 1
T − τ + 1

T

∑
t=τ

|λ̃0.50
m,n (t)− λ̃0.50

m′ ,n′(t)|, (6)

which computes the average absolute difference between the median eigenvalues of
two portfolios (m, n) and (m′, n′). This results in a 40 × 40 distance matrix for 1 ≤ m ≤ 10,
1 ≤ n ≤ 4. Hierarchical clustering is a convenient and easily visualizable tool to reveal
the proximity between different elements of a collection. Here, we perform agglomerative
hierarchical clustering using the average-linkage criterion [90]. The algorithm works in a
bottom-up manner, where each ordered pair (m, n) starts in its own cluster, and pairs of
clusters are successively merged as one traverses up the hierarchy.

The results of hierarchical clustering are displayed in Figure 3. The resulting structure
is interesting. The dendrogram consists of four predominant groups of clusters. There
is an easily identified outlier cluster, consisting of the smallest portfolios that provide
the least diversification benefit. This cluster, located at the bottom of the dendrogram,
includes portfolio combinations such as (1,1), (1,2) and (2,1). The second least diversified
cluster is located at the top of the dendrogram and includes portfolio combinations such
as (1,3), (1,4) and (4,1). Below this, is a significantly larger cluster consisting of portfolio
combinations such as (8,1), (3,3) and (4,2). Finally, the largest, most well-diversified fourth
cluster consists of portfolio combinations ranging from (4,3) through to (10,4). The size and
range of portfolio combinations within this cluster have interesting implications for risk
management in cryptocurrency portfolio diversification. The fact that combination (4,3)
is in the same cluster as portfolio (10,4) suggests that comparable risk mitigation can be
realized with a portfolio of size 12 when compared to a portfolio of size 40. This finding
is not dissimilar to that proposed in [86], where a “best value” portfolio (9,4) is shown to
provide comparable diversification benefit to a (9,9) portfolio. Furthermore, the sheer size
of this cluster indicates that one may require a lower cardinality portfolio in cryptocurrency
portfolio management than in equities when trying to attain a “best value” portfolio.

Figure 3. Results of hierarchical clustering applied to (6) between ordered pairs (m, n). A large
majority cluster confirms the finding of Table 2 that the (4,4) portfolio is closely similar to the full
(10,4) portfolio in its diversification benefit over time.
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5. Discussion

This paper has investigated the cryptocurrency market with a focus on collective corre-
lation dynamics and portfolio diversification benefits across different market capitalization
size deciles. We choose to investigate deciles as an analog of industry sectors in the equity
market motivated by the vagueness of existing cryptocurrency sectors and the hypothesis
that many retail investors use size as a primary means of diversifying across highly different
cryptocurrencies. Throughout the paper, we consistently observed signatures of maturity
in the cryptocurrency market with nuanced differences relative to established patterns in
the (much) more mature equity market.

In Section 3, we analyzed the collective dynamics of the cryptocurrency market,
focusing on collective correlation strength and market uniformity summarized in the
leading eigenvalue and eigenvector of the correlation matrix, examining both the full
market and individual deciles. Our first finding is that collective correlations spike during
market crises connected to cryptocurrency exchange crashes; this occurs in every decile and
closely resembles analogous behavior in the more mature equity market. Other findings of
this section portray a more nuanced picture of the differences between the cryptocurrency
and equity markets. While collective correlations spike across every decile during a crisis, it
is not the case that correlations within each decile sector are uniformly higher than collective
correlations across the whole market, as we previously observed for the equity market.
In addition, the uniformity h(t) of different deciles over time exhibited a finding highly
dissimilar from the equity market. This was the most significant difference relative to the
equity market observed in this paper. While the uniformity (measuring the uniformity of
different assets contributing toward the first principle component) was close to maximal 1
for every sector in the equity markets, that finding was not at all observed for the deciles of
the cryptocurrency market. Curiously, it was observed for just two deciles consistently over
time, but not the others. In addition, uniformity within deciles dropped during market
crises, the opposite finding for the equity market.

These findings have significant implications for the alpha generation in the cryp-
tocurrency market. The fact that collective correlations are so pronounced during market
crises implies that alpha-generating opportunities based on systematic market movements
would be more predictable and successful if performed on the short side. During market
crises, correlations translate upward and cryptocurrencies of all sizes tend to decline. This
would suggest that fundamentally-driven investment strategies may be more successful
when implemented during buoyant equity markets, where there is less correlation among
underlying securities. By contrast, during market crises (which are typically coincident
among the equity and cryptocurrency asset classes) the collective strength of the market is
so strong that the weight of underlying security investments driven by bottom-up analysis
may be washed away by the sheer weight of money.

In Section 4, our portfolio sampling experiment investigated the diversification ben-
efit of portfolios of total size mn spread evenly across m separate deciles. In a greedy
experiment, we demonstrated that greater diversification benefit is generally obtained by
increasing the number of decile sectors rather than the number of cryptocurrencies per
decile, a result analogous to that observed for the cryptocurrency market. We followed
this up with a careful experiment clustering different temporal trajectories of median
normalized eigenvalue functions λ̃m,n(t). A large majority cluster showed a similar re-
sult as observed for the equity market, that a portfolio of spread (4,4) had near-identical
diversification benefit as our maximal size (10,4) cryptocurrency collection.

Our findings in this section may drive decision-making for optimal portfolio con-
struction for cryptocurrency investors. First, the emergence of a low-cardinality highly
diversified portfolio implies that retail investors may gain exposure to high-quality di-
versification at low-cost. When contrasting this analysis with that of the equity market,
if we were to assume equivalent transaction costs and equivalent periodicity of portfolio
rebalancing, the cryptocurrency may be a more retail-friendly market for easy access and
portfolio diversification. Of course, given that the equity market is so sophisticated, there
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is a large number of index-tracking and factor-based investment strategies that may benefit
retail investors. This could be an opportunity for asset managers and large investment firms
who are looking to create cryptocurrency investment products and is certainly a signature
of the market’s maturity. Finally, our analysis supports the notion that the cryptocurrency
market may be a suitable environment for skillful stock pickers. We have highlighted
that a portfolio of just 16 stocks produces low correlation and significant diversification
benefits. This would indicate that an investment portfolio built upon a smaller number of
high-conviction ideas could thrive in the cryptocurrency market.

There are several insights contained within concerning the cryptocurrency market’s
levels of maturity. First, the overall structure of the aforementioned hierarchical clustering
is highly similar to that of the equity market. We have identified heterogeneous clusters of
diversification benefit, and highlight the existence of a “best value” cryptocurrency portfolio
where comparable diversification benefit is attained with relatively fewer securities held in
a portfolio. Second, a crucial corollary of this finding is that retail investors with limited
ability to hold complex portfolios of many cryptocurrencies may be sufficiently diversified
with a relatively small portfolio across just 16 cryptocurrencies. However, there are some
key differences in the equity market. First, the link between underlying cryptocurrencies’
business functions (at least those coins that have a business function) and various business
cycles is far less clear than in the equity market. Perhaps when the market becomes
more sophisticated and such technological understanding becomes more mainstream
knowledge, this could change the landscape of cryptocurrency investing. This could lead to
the development of better-understood and widely disseminated cryptocurrency investment
principles, which may drive more predictable investment patterns during different market
cycles. Such dynamics are likely to drive further differentiation in cryptocurrency price
patterns in varying market cycles and may lead to further diversification benefits as the
market approaches greater levels of maturity.

No analysis is without its limitations. There are several limitations in our work. First,
we have only looked at a collection of 40 cryptocurrencies. This could be extended, and
include a much wider variety of cryptocurrency securities. The difficulty here is that many
smaller coins do not have sufficient time windows for us to analyze. However, as time goes
on, doing such analysis on a larger number of coins will become easier and may provide
more robust insights. Furthermore, we could extend our portfolio sampling analysis to
explicitly study diversification benefits during various market conditions. In the near
future, we may be able to compare a short and intense market crisis such as the COVID-19
market crash or the Bitmex crash with that of the Russian financial crisis—or something
more protracted and systemic. At present, the data is most likely insufficient.

6. Conclusions

Overall, we have uncovered nuanced similarities and differences between the cryp-
tocurrency and equity markets. These mathematical properties signal increased signatures
of maturity in the collective dynamics and diversification benefit of different portfolio
spreads and provide concrete suggestions to retail investors seeking a relatively low-
complexity exposure to the cryptocurrency market. Cryptocurrency decile sectors have
been shown to share several properties, but not all, with industry sectors of the equity
markets, and the most relevant findings for small-scale investors interested in limited-size
portfolios are shared.

There are a variety of opportunities for future research building upon the method-
ologies we have developed and the insights highlighted in this paper. First, it would be
interesting to test how the cryptocurrency market compares with other more mature and
better-established asset classes with respect to various statistical properties. A thorough in-
spection of metrics such as drawdowns, peak-to-trough analysis, changepoint propagation,
intra and inter-asset correlations, etc., could reveal information as to how cryptocurrencies
can complement a multi-asset investment portfolio. An additional avenue of future research
could be studying the data at a higher sampling rate than daily data. Given the significant
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composition of day traders in the cryptocurrency market, we may see patterns that deviate
from what we see intra-day within the equity market. In a somewhat-related manner,
studying these securities in a longer time horizon may highlight regime shifts in dynamics
or optimal portfolio construction. One of the key assumptions in this work is our separating
cryptocurrencies into size deciles. Further work could look into alternative bucketing crite-
ria such as sector allocation, volatility or other measures of risk. Finally, given the number
of quantitative investment firms with burgeoning high-frequency cryptocurrency trading
operations, one could examine the effectiveness of frequency-based trading strategies to
see if there is greater “power” with certain trading windows. This could reveal typical
holding periods for investment firms that trade in the cryptocurrency market.
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53. Wątorek, M.; Drożdż, S.; Kwapień, J.; Minati, L.; Oświęcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global

cryptocurrency market. Phys. Rep. 2021, 901, 1–82. [CrossRef]

65



Entropy 2023, 25, 931
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Abstract: In this study the cross-correlations between the cryptocurrency market represented by the
two most liquid and highest-capitalized cryptocurrencies: bitcoin and ethereum, on the one side, and
the instruments representing the traditional financial markets: stock indices, Forex, commodities, on
the other side, are measured in the period: January 2020–October 2022. Our purpose is to address
the question whether the cryptocurrency market still preserves its autonomy with respect to the
traditional financial markets or it has already aligned with them in expense of its independence.
We are motivated by the fact that some previous related studies gave mixed results. By calculating
the q-dependent detrended cross-correlation coefficient based on the high frequency 10 s data in
the rolling window, the dependence on various time scales, different fluctuation magnitudes, and
different market periods are examined. There is a strong indication that the dynamics of the bitcoin
and ethereum price changes since the March 2020 COVID-19 panic is no longer independent. Instead,
it is related to the dynamics of the traditional financial markets, which is especially evident now in
2022, when the bitcoin and ethereum coupling to the US tech stocks is observed during the market
bear phase. It is also worth emphasizing that the cryptocurrencies have begun to react to the economic
data such as the Consumer Price Index readings in a similar way as traditional instruments. Such a
spontaneous coupling of the so far independent degrees of freedom can be interpreted as a kind of
phase transition that resembles the collective phenomena typical for the complex systems. Our results
indicate that the cryptocurrencies cannot be considered as a safe haven for the financial investments.

Keywords: complexity; financial markets; cryptocurrencies; cross-correlations; multiscale; hedge

1. Introduction

From the physics point of view, the financial markets are considered as one of the
most complex systems we observe in our world [1]. Not only they are characterised by all
the properties such systems can typically show, but there is also an important intelligent
component involved that is decisively responsible for their enormous complexity. Among
the well-known features of the financial markets is their flexibility in the transition between
the disordered and ordered phases. Such a transition is the key feature associated with the
market crashes but it is also often observed on the level of whole markets when some so-far
independent markets start to have their dynamics substantially coupled (or vice-versa).
Exactly this kind of phenomenon has recently been experienced by the cryptocurrency
market, which has lost its relative dynamical autonomy and become significantly tied to
the traditional financial instruments. In this work, we present quantitative arguments in
support of this statement.

Since the inception of Bitcoin in 2009, the cryptocurrency market has experienced a
rapid surge. Although it used to be a niche and traded unofficially in its early years [2],
trading takes place now 24/7 on more than 500 exchanges [3]. The current (October 2022)
capitalization of the cryptocurrency market is approximately 1 trillion USD [3], which can
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be compared to the largest US tech stocks. During these 12 years of Bitcoin history, there
were bubbles and crashes [4–6]. In particular, the foundation of Ethereum in 2015, which
allowed for a new application of the blockchain technology in the form of smart contracts,
and the subsequent Initial Coin Offer bubble [7] in 2018 reshaped the cryptocurrency market
and made it appear in the public eye. A recent bubble in 2021, which was related to the
adoption of DeFi (Decentralized Finance) and DEX (Decentralized Exchanges) trading [8],
ended with a peak in November 2021, when the total market capitalization was close to
3 trillion dollars. Although there are more than 10,000 cryptocurrencies [3], Bitcoin and
Ethereum are currently the most recognizable, and their share in the capitalization of the
entire market changed from over 80% in early 2021 to 60% in October 2022 [3].

During these 12 years of development, the characteristics of the cryptocurrency market
have changed significantly [9,10]. The properties of the cryptocurrency price return time
series are now close to those observed in mature financial markets such as Forex [11].
However, it has long been believed that the cryptocurrency market, which itself is strongly
correlated [12–18], especially during the COVID-19 period [19–23], has dynamics that is
separate from the traditional financial markets [24–28] and that bitcoin can even serve as
a hedge or safe haven [29,30] with respect to the stock market, Forex or the commodity
market. The hedging potential of bitcoin was even compared to gold [31–35]. However,
the results of many recent studies have changed this paradigm [36–43]. They reported that
during the COVID-19 pandemic outburst and the related crash in March 2020 [44,45] the
cryptocurrency market and, in particular, bitcoin was highly correlated with the falling
stock markets [46–52]. Some studies even noted that this connection still occurred in the
market recovery phase in the second half of 2020 [15,53].

The studies referenced above brought therefore rather mixed results and have led
to uncertainty as to whether cryptocurrencies can be used for hedging the financial in-
vestments. This uncertainty opens space for further research on this topic and our study
proceeds exactly in this direction. Our aim is to clarify whether the loss of the cryptocur-
rency market independence was temporary and primarily caused by the pandemic turmoil
or it was only a part of a more general trend towards coupling of this market with the
traditional financial markets. We intend to determine how strongly the cryptocurrency
price changes are associated with the price changes in the traditional financial markets.
To achieve that, the detrended multiscale correlation of the two principal cryptocurren-
cies: bitcoin (BTC) and ethereum (ETH) versus the traditional financial instruments: stock
indices, commodities and currency exchange rates are studied based on high frequency
data covering the period from January 2020 to October 2022, which is an extension of the
period before 2020 that was analyzed in our earlier study [47]. The year 2022 is particularly
interesting, because since the BTC price peak in November 2021, there is a joint bear market
on the US tech stocks and the cryptocurrencies for the first time in the existence of the latter.
On the basis of this observation, it is likely that there will be some detectable correlation
between both markets. The year 2022 is also unique in the history of cryptocurrencies
due to the presence of high inflation in the world against which Bitcoin was intended to
protect [54–57].

Compared to the other articles dealing with correlations between the cryptocurrency
market and traditional financial markets, in our research, the main task is to measure these
correlations quantitatively on various time scales and for the fluctuations of various size. It
can broaden the market practitioners’ perspective on the investing and hedging possibilities
by incorporating the fluctuation size as an additional dimension that might be considered
while making investment decisions.

2. Data and Methodology

2.1. Data Sources and Preprocessing

In the present study, a data set of 24 financial time series representing contracts for
difference (CFDs) from the Dukascopy trading platform [58] is considered. Unlike many
other trading platforms, Dukascopy offers freely the high-frequency recordings of many
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financial instruments, which is the main reason it has been chosen as the data source. CFDs
are characterised by the price movements that are close to the price movements of the
original instruments, so we consider them as reliable proxies. Apart from the two highest
capitalized cryptocurrencies, BTC and ETH, it includes the most important traditional
financial instruments: 12 fiat currencies (Australian dollar—AUD, Canadian dollar—CAD,
Swiss franc—CHF, Chinese yuan—CNH, euro—EUR, British pound—GBP, Japanese yen—
JPY, Mexican peso—MXN, Norwegian krone—NOK, New Zealand dollar—NZD, Polish
zloty—PLN, and South African rand—ZAR), 4 commodities (WTI crude oil—CL, high
grade copper—HG, silver—XAG, and gold—XAU), 4 US stock market indices (Nasdaq
100—NQ100, S&P500, Dow Jones Industrial Average—DJI, and Russell 2000—RUSSEL),
German stock index—DAX 40—DAX, and the Japanese stock index—Nikkei 225—NIKKEI.
All these instruments except for the non-US stock indices are expressed in USD (thus there
is no USD in the data set) and their quotes cover a period from 1 January 2020 to 28 October
2022. Each week the quotes were recorded over the whole trading hours, i.e., from Sunday
22:00 to Friday 20:15 with a break between 20:15 and 22:00 each trading day (UTC) [58].

Cumulative log-returns of all the instruments considered are plotted in Figure 1
against time. The original price changes, sampled every Δt = 10 s, were transformed into
logarithmic returns: r(tm) = ln Pi(tm+1)− ln Pi(tm), where Pi(tm) is a price quote recorded
at time tm (m = 1, . . . , T) and i stands for a particular financial instrument. We use this
particular time interval Δt, because such a data set was available from the source. However,
it is satisfactory because it allows us to avoid excessive null returns, which lower reliability
of the detrended analysis (see below). In order to obtain the indicative relationships among
all the time series, the Pearson correlation coefficient C [59] was calculated for the log-
returns r(tm) from January to October 2022, when the joint bear market mentioned above
was observed. A correlation matrix obtained for 24 financial instruments is shown in
Figure 2. While the Pearson coefficient is one of the most widely applied measures of time
series dependencies (and this is why we also exploited it in our study), the results obtained
with it have to be taken with some reserve in our context. This is because the statistical
tests that we carried out, i.e., the Jacque-Bera test for normality and the ARCH test for
no heteroskedasticity, both rejected the respective null hypotheses with high confidence
(p-value < 0.00001), which means that the data under study was both heavy-tailed and
heteroskedastic. Obviously, such a result is not surprising, because fat tails of the return
distributions and volatility clustering are well-known effects observed in the financial time
series [60–62]. Nevertheless, the very long time series that were analysed here and the
statistical significance of the obtained results convinced us that the Pearson coefficient can
still serve as an effective measure of the time series correlations even in such circumstances.
Taking all this into account, a standard naming convention: small (0.1 ≤ C < 0.3), medium
(0.3 ≤ C < 0.), and large (0.5 ≤ C ≤ 1.0) correlation was used to describe the coefficient
values. The strongest cross-correlations (large, C > 0.6) can be seen for the stock indices,
for BTC and ETH, for AUD, NZD and CAD, for XAU and XAG, and for EUR and GBP.
If we consider the cross-correlations between BTC and the traditional instruments, the
strongest ones can be seen for NQ100 and S&P500 (medium, C ≈ 0.32), DJI and RUSSEL
(medium, C ≈ 0.29), DAX (small, C ≈ 0.24) and NIKKEI, (small C ≈ 0.23). The Pearson
coefficient above 0.1 (small), is observed for BTC on the one side and HG, GBP and EUR,
as well as the so-called commodity currencies: AUD, CAD, NZD, MXN, NOK, and ZAR,
on the other side. The cross-correlations between ETH and the other instruments are even
higher: C ≈ 0.38 (medium) for SP500 and NQ100, C ≈ 0.35 (medium) for DJI and RUSSEL,
C ≈ 0.29 (medium) for DAX, and C ≈ 0.27 (small) for NIKKEI. The same is true for the
cross-correlations between ETH and the commodity currencies: C ≈ 0.22 (small) for AUD,
CAD, NZD, C ≈ 0.17 (small) for MXN, C ≈ 0.13 (small) for NOK, and C ≈ 0.12 (small)
for ZAR. Among the commodities analyzed here, ETH is the most correlated with HG
(C ≈ 0.15, small). The statistical significance of the coefficient values presented in Figure 2
has been checked by calculating the range: C̄ ± σC, where C̄ denotes mean and σC denotes
standard deviation of C, from 100 independent realisations of the shuffled time series. The
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statistically insignificant correlation region is very close to 0 (the third decimal place), all
the presented values, except DAX vs. JPY, are thus significant.

Figure 1. Evolution of the cumulative log-returns of the cryptocurrencies Rcum (a), the stock market
indices (b), the fiat currencies (c), and the commodities (d) over a period from 1 January 2020 to
28 October 2022. Periods for which significant correlations between the cryptocurrencies and the US
stock indices are distinguished by grey vertical strips. The most characteristic periods are denoted by
Roman numerals: a COVID-19-related crash in March 2020 and a quick bounce in April–May 2020
(period I), new all-time highs of NQ100 and S&P500 and a September 2021 correction (period II), a
bear phase in the cryptocurrency and stock markets since November 2021 (period III), and another
downward wave of US stock indices after holiday upward correction along with the appreciating
USD and inflation fears (period IV).

Figure 2. Correlation matrix of Pearson coefficients calculated for all possible pairs of the time series
considered in this study (January to October 2022). All the values are statistically significant with
p-value < 0.00001, except DAX vs. JPY, where p = 0.1.
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2.2. The q-Dependent Detrended Correlation Coefficient

Since the Pearson correlation coefficient as a measure has its drawbacks in the case of
heavy tails, heteroskedasticity, and multi-scale nonstationarity (which are observed in the
cryptocurrency market [9]) the cross-correlations will henceforth be determined using an
alternative, better tailored method: the q-dependent detrended cross-correlation coefficient
ρq(s) [63]. The detrended fluctuation analysis (DFA), which forms a basis for defining
ρq(s), was developed with the intention to allow for detecting the long-range power-law
auto- and cross-correlations that produce trends on different time horizons [64]. Therefore,
unlike more traditional methods of trend removal, both DFA and its derivative measures
like the coefficient ρq(s) can successfully deal with nonstationarity on all scales [65]. ρq(s)
enables, thus, considering the cross-correlation strength on different time scales and, if used
in parallel with the multiscale DFA itself, is able to detect scale-free correlations. Moreover,
owing to the parameter q, the correlation analysis can be focused on a specific range of the
fluctuation amplitudes.

The steps to calculate ρq(s) are as follows. Two possibly nonstationary time series
{x(i)}i=1,...,T and {y(i)}i=1,...,T of length T are divided into Ms boxes of length s starting
from its opposite ends and integrated. In each box, the polynomial trend is removed:

Xν(s, i) =
i

∑
j=1

x(νs + j)− P(m)
X,s,ν(i), Yν(s, i) =

i

∑
j=1

y(νs + j)− P(m)
Y,s,ν(i), (1)

where the polynomials P(m) of order m are applied. In this study m = 2 has been selected,
which performs well for the financial time series [66]. After this step 2Ms boxes are obtained
in total with detrended signals. The next step is to calculate the variance and covariance for
each of the boxes ν:

f 2
ZZ(s, ν) =

1
s

s

∑
i=1

(Zν(s, i))2, (2)

f 2
XY(s, ν) =

1
s

s

∑
i=1

Xν(s, i)× Yν(s, i), (3)

where Z means X or Y. These quantities are used to calculate a family of the fluctuation
functions of order q:

F(q)
ZZ (s) =

1
2Ms

2Ms−1

∑
ν=0

[
f 2
ZZ(s, ν)

]q/2
(4)

F(q)
XY (s) =

1
2Ms

2Ms−1

∑
ν=0

sign
[

f 2
XY(s, ν)

]
| f 2

XY(s, ν)|q/2, (5)

where a sign function sign
[

f 2
XY(s, ν)

]
is preserved in order to secure consistency of results

for different qs.
The formula for the q-dependent detrended correlation coefficient is given as follows:

ρXY
q (s) =

F(q)
XY (s)√

F(q)
XX (s)F(q)

YY (s)
. (6)

For q = 2 the above definition can be viewed as a detrended counterpart of the Pearson
cross-correlation coefficient C [67]. The parameter q plays the role of a filter suppressing
q < 2 or amplifying (q > 2) the fluctuation variance/covariance calculated in the boxes
ν (see Equations (4) and (5)). For q < 2 boxes with small fluctuations contribute more to
ρq(s), while for q > 2 the boxes with large fluctuations contribute more. Therefore, by
using this measure, it is possible to distinguish the fluctuation size range that is a source of
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the observed correlations. In the numerical calculations below, we used our own software
in which we implemented the algorithm described above.

3. Results and Discussion

The aforementioned ability of ρq(s) to quantify cross-correlation for various time scales
(s-dependence) and fluctuation size (q-dependence) is documented in Figures 3 and 4,
where the values of ρq(s) calculated for BTC and ETH versus the traditional instruments
(the same as Figure 1) calculated for the log-returns r(tm) from January to October 2022 is
shown. One can immediately notice two properties: (i) the correlation strength increases
with scale s for most financial instruments, and (2) the correlation strength is lower for
q = 4 (i.e., for large fluctuations Figure 4). These properties, observed here for BTC and
ETH versus the other instruments, are typical for the financial markets in general [68,69].
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Figure 3. The q-dependent detrended cross-correlation coefficient ρq(s) between BTC/USD (right)
and ETH/USD (left) versus selected traditional financial instruments for q = 1, which does not favor
any specific amplitude range. ρq(s) for a range of time scales from s = 12 (2 min) to s = 32, 000
(∼4 trading days) is presented based on data from January to October 2022. The statistically insignifi-
cant correlation region (dotted green line) is given as ± standard deviation of ρq(s) calculated from
100 independent realizations of the shuffled time series.
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Figure 4. The q-dependent detrended cross-correlation coefficient ρq(s) between BTC/USD (right)
and ETH/USD (left) versus selected traditional financial instruments for q = 4, which amplifies
the large return contributions. ρq(s) for a range of time scales from s = 12 (2 min) to s = 32, 000
(∼4 trading days) is presented based on data from January to October 2022. The statistically insignifi-
cant correlation region (dotted green line) is given as ± standard deviation of ρq(s) calculated from
100 independent realizations of the shuffled time series.

As in the case of the Pearson coefficient, the strongest cross-correlations measured
by ρq(s) for q = 1 (Figure 3) are BTC and ETH versus the stock indices NQ100 and
S&P500. It is different for DJI, RUSSEL, DAX, and NIKKEI, which are less cross-correlated
with the cryptocurrencies. What is interesting is that these correlations were stronger for
ETH than for BTC, particularly on short time scales. For the shortest scale considered
(s = 12 = 2 min), they started from ρq(s) ≈ 0.5 in the case of ETH vs. NQ100 and S&P500
and from ρq(s) ≈ 0.4 in the case of BTC vs. NQ100 and S&P500. For the longest scale
considered (s = 32, 000 ≈ 4 trading days), the coefficient ρq(s) ≈ 0.75 for BTC and ETH
vs. NQ100 and S&P500. The lowest correlations and the weakest scale dependence are
observed for JPY, where ρq(s) ≈ 0. XAU and CL are slightly more correlated: ρq(s) ≈ 0.1
and 0.2 for the longest scale s. Above them are XAG and CHF for which the correlations
increase with s from 0.1 to 0.3. The cross-correlations for remaining fiat currencies and HG
start from ρq(s) ≈ 0.15 ÷ 0.25 for s = 12 and end at ρq(s) ≈ 0.35 ÷ 0.55 for s = 32, 000.
If we focus on the large fluctuations and apply q = 4 (Figure 4), the cross-correlation
levels are lower and approximately the same for BTC and ETH. Again, the most significant
correlations are observed for the BTC and ETH vs. the US stock indices, but the correlations
between BTC and NIKKEI are higher by ∼ 0.05 than for ETH and NIKKEI. In the range
of scales 4000 ≤ s ≤ 10, 000 the correlations between BTC and NIKKEI are the strongest.
Unlike for q = 1, the cross-correlations for BTC and ETH vs. DAX are on the same level as
vs. AUD, CAD, MXN, NZD, and NOK. Only for s ≈ 20, 000 the negative values of ρq(s) can
be found for BTC and ETH versus XAU. The statistical significance of ρq(s) in each case was
determined by calculating the standard deviation of ρq(s) for 100 independent realizations
of shuffled time series. This quantity is plotted in Figures 3 and 4 by green dotted lines. It
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shows that the detrended cross-correlations are significant for all the instruments in the
case of q = 1, except for the longest considered scales for JPY, while in the case of q = 4, the
results for CL and XAU lack statistical significance for the longest considered scales.

Now, a time-dependent analysis of the cross-correlations measured by ρq(s) for BTC
and ETH versus the traditional financial instruments: AUD, CAD, CHF, CL, DAX, EUR,
HG, JPY, MXN, NIKKEI, NQ100, S&P500, XAG and XAU will be presented. A 5-day rolling
window with a 1-day step was applied on two time scales: s = 12 (2 min) and s = 360
(60 min) in order to calculate ρq(s). A window of this length corresponds to a trading week.
Figures 5 and 6 shows the results obtained for q = 1 and Figures 7 and 8 shows the results
obtained for q = 4. The results for some assets presented in Figures 3 and 4 are omitted
here because they are similar to the ones already shown. Our previous study [47] reported
that before 2020 the cross-correlations for BTC and ETH versus the traditional instruments
were close to 0. In this study, the period starting in 2020 is considered, thus. During these
2.5 unstable years, several important events that affected price changes in the financial
markets could be observed.
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Figure 5. Evolution of the q-dependent detrended cross-correlation coefficient ρq(s) with q = 1
and s = 2 min calculated in a 5-day rolling window with a 1-day step between 1 January 2020 and
28 October 2022 for the price returns of BTC/USD (left) and ETH/USD (right) versus the selected
traditional assets: AUD, CAD, CHF, CL, DAX, EUR, HG, JPY, MXN, NIKKEI, NQ100, S&P500, XAG,
and XAU. The statistically insignificant correlations are in the region ρq(s) = 0 ± 0.001.
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Figure 6. Evolution of the q-dependent detrended cross-correlation coefficient ρq(s) with q = 1 and
s = 60 min calculated in a 5-day rolling window with a 1-day step between 1 January 2020 and
28 October 2022 for the price returns of BTC/USD (left) and ETH/USD (right) versus the selected
traditional assets: AUD, CAD, CHF, CL, DAX, EUR, HG, JPY, MXN, NIKKEI, NQ100, S&P500, XAG,
and XAU. The statistically insignificant correlations are in the region ρq(s) = 0 ± 0.01.

The first event was the outburst of the COVID-19 pandemic that caused a crash in
March 2020 on almost all the financial instruments expressed in USD. Only JPY and CHF
gained in early March 2020, but later on they also lost value against the US dollar. This
price behavior during period I (see Figure 1) resulted in the appearance of a significant
positive cross-correlation for BTC and ETH versus the risky assets such as the stock indices,
CL, HG, and the commodity currencies (AUD, NZD, CAD, MXN, NOK), which can be
seen in Figures 5 and 6. The largest values of ρq(s) for BTC and ETH versus the stock
indices are observed. In the case of q = 1 and s = 2 min, ρq(s) ≈ 0.2 and in the case of
q = 1 and s = 60 min, ρq(s) ≈ 0.4. Such strong cross-correlations observed during the
general meltdown are not that surprising, but still the joint behavior of the cryptocurrencies
and, particularly, the stock indices is noteworthy because it has changed the view that
the cryptocurrency market is independent. What is more interesting is the appearance of
the even stronger positive cross-correlations for BTC and ETH versus almost all the other
instruments except for JPY in the second half of 2020. The strongest cross-correlations are
observed again for the stock indices, but very close were also those for CL, HG, XAG, XAU,
and the commodity currencies. The highest values, ρq(s) > 0.5 for q = 1 and s = 60 min,
were observed at the turn of September and October 2020 after the stock and cryptocurrency
markets peaked and turned down at the beginning of September 2020. The third period
of the significant cross-correlations for BTC and ETH versus the other instruments starts
at the beginning of December 2021 after the November 2021’s all-time highs on both the
cryptocurrency and the US stock markets occurred. ρq(s) grew above 0.5 for q = 1 and
s = 2 min and above 0.6 for q = 1 and s = 60 min in January 2022, when both markets
experienced strong declines. BTC and ETH dropped 50% from their peak price down
to 33,000 USD and 2300 USD, respectively, S&P500 dropped 8% down to 4200 USD and
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NQ100 dropped 18% to 13,700 USD that were their local lows on 22 January 2022. At
that time, there were also significant negative cross-correlations for BTC and ETH versus
JPY, which is typically considered as a safe currency during the market meltdowns. After
local peak of cross-correlations at the beginning of May 2022, when S&P500, NQ100, BTC,
and ETH broke into new lows below 4150, 13,000, 35,000, and 2200 levels, respectively,
the cross-correlations for BTC and ETH vs. the remaining instruments were significant at
approximately the same levels until mid-August 2022, when the holiday upward correction
in the US stock indices ended. From that moment on, one can distinguish period IV, when
another downward wave of US exchange indices took place, which lasted until mid-October.
This was accompanied by a strengthening of the USD, and the EUR/USD exchange rate
fell below 1. During this period, the cross-correlation of BTC and ETH with all instruments
denominated in USD has started to increase. They were even significantly positive in the
case of the least correlated JPY at a level above 0.2 for s = 2 min and 0.4 for s = 60 min. The
cross-correlations peaked in the last week of September, when for NQ100 and S&P500 they
first exceeded the level of 0.6 and in the case of s = 60 min, they were close to 0.8. They
were again slightly higher for ETH.
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Figure 7. Evolution of the q-dependent detrended cross-correlation coefficient ρq(s) with q = 4
and s = 2 min calculated in a 5-day rolling window with a 1-day step between 1 January 2020 and
28 October 2022 for the price returns of BTC/USD (left) and ETH/USD (right) versus the selected
traditional assets: AUD, CAD, CHF, CL, DAX, EUR, HG, JPY, MXN, NIKKEI, NQ100, S&P500,
XAG, and XAU. Higher levels of cross-correlations, associated with the Consumer Price Index (CPI)
readings, are marked (see the event description in Figure 9). The statistically insignificant correlations
are in the region ρq(s) = 0 ± 0.001.
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Figure 8. Evolution of the q-dependent detrended cross-correlation coefficient ρq(s) with q = 4 and
s = 60 min calculated in a 5-day rolling window with a 1-day step between 1 January 2020 and
28 October 2022 for the price returns of BTC/USD (left) and ETH/USD (right) versus the selected
traditional assets: AUD, CAD, CHF, CL, DAX, EUR, HG, JPY, MXN, NIKKEI, NQ100, S&P500,
XAG, and XAU. Higher levels of cross-correlations, associated with the Consumer Price Index (CPI)
readings, are marked (see the event description in Figure 9. The statistically insignificant correlations
are in the region ρq(s) = 0 ± 0.01.

If large returns are considered (q = 4, Figures 7 and 8) the detrended cross-correlations
for s = 2 min remain close to 0 and are statistically insignificant for most of the considered
instruments until November 2021, when ρq(s) for BTC and ETH versus most currencies,
especially MXN, CHF, and, to a lesser extent, for AUD, NZD, EUR and CNH turn negative
for short periods of time. As in the case of q = 1, the cross-correlations versus the US
indices became significantly positive starting from December 2021. What is most interesting
is that from July 2022, the cross-correlation levels in some weekly windows exceed those
obtained for q = 1. For s = 60 min they are even higher than 0.8 in the case of NQ100. There
are also high correlations of BTC and ETH vs. precious metals: gold and silver. Unlike
average fluctuations (q = 1), here BTC is slightly more strongly correlated with traditional
financial instruments.
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Figure 9. Evolution of the cumulative logarithmic returns Rcum of selected financial instruments:
BTC, ETH, AUD, CAD, CHF, CL, DAX, EUR, HG, JPY, MXN, NIKKEI, NQ100, S&P500, XAG, and
XAU on specific dates, around the publication time of the Consumer Price Index (CPI) report in
the US.

After careful checking of the exact start and end dates of the sliding window with
increased correlations for q = 4 and the time of large fluctuations, it turned out that the
correlation of BTC and ETH with traditional financial instruments is (directly or indirectly
via other markets) influenced by the CPI inflation data published every month at 12:30
UTC. Cumulative price changes in days during the CPI publication date 13 July 2022,
10 August 2022, 13 September 2022, 10 October 2022, from 12:29 to 12:35 are presented in
the Figure 9. It can be clearly seen that in all four cases US tech stocks and cryptocurrencies
price changes behave in the same way just after 12:30 UTC. It happened regardless of
whether the surprise with the CPI data was positive or negative. In three cases, inflation
data was higher than expected and surprised markets negatively, leading to declines. This is
especially well visible in the case of 10 October 2022, when apart from US indices, XAG also
follows the same trajectory. In the roling windows containing this day, the correlations were
the strongest: 0.6 for S&P500, 0.79 for XAG and 0.86 for NQ100 vs. BTC and 0.6 for S&P500,
0.72 for XAG and 0.82 for NQ100 vs. ETH for s = 60 min. In one case, 10 August 2022,
the inflation was lower than expectations, which resulted in an increase in all instruments.
This price behavior means that cryptocurrencies have started to respond to readings from
the economy, just like traditional financial instruments. Despite the fact that our analysis
of the cross-correlations was carried out by means of the measures, which were unable to
detect the direction of influence, it seems natural to infer that these were the economical
data releases that had direct or indirect impact on the cryptocurrency market rather than
the opposite. That is why we concluded about the direction above.

4. Conclusions

Based on the multiscale cross-correlation analysis performed for the data covering
almost the last three years, it can be concluded that the cryptocurrency market dynamics
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is substantially tied to the traditional financial markets. Consistently, the most liquid
cryptocurrencies, BTC and ETH, cannot serve as a hedge or safe haven for the stock market
investments, not only during the turbulent periods like the COVID-19 panic, where this
effect is particularly strong, but also during the recent bear market period on tech stocks,
which has been accompanied by the parallel bear market on cryptocurrencies. Many
observations show that the COVID-19 pandemic may have changed the paradigm that the
cryptocurrency market is a largely autonomous market. The recent market developments
and the strong US dollar have additionally increased the strength of the cross-correlations
between BTC and ETH on the one side and the US tech stocks on the other side. These
observations support some earlier findings on the same subject (e.g., [22,70]). In contrast,
as the cryptocurrency market was weakly correlated with other markets during 2021,
our results cannot support directly a recent hypothesis that the quantitative easing could
actually be responsible for these correlations [22]. The existence of links between the global
economy and the cryptocurrency market are further strengthened by the reaction of the
price changes of BTC and ETH to economic data, such as CPI inflation, in a similar way to
traditional financial instruments. These results are able to remove or, at least, to suppress the
uncertainty that recent literature on this topic has brought to the cryptocurrency investors.
Now it is more clear that the cryptocurrencies can no longer serve as a convenient hedging
target for the investors whose purpose is to diversify the risk.

Our study brings a strong indication that the cryptocurrency market has finally become
a connected part of the global financial markets after 12 years of the maturation process.
Whether such a direction of this market evolution remains in agreement with the early
vision of the cryptocurrency creators can be disputed, however. We also face a related
question: does the fact that we have got “just another part of the global financial market”
deserve devoting so huge amounts of energy to it? Sooner or later this question must be
addressed by the policy makers. Nevertheless, what becomes evident now is that it allows
the market participants to broaden the spectrum of their investment possibilities.

Among the limitations that might have influenced our study and, subsequently, our
conclusions, we have to mention that only two principal cryptocurrencies were studied.
Although they are the most influential, the most frequently traded, and widely discussed
cryptocurrencies, they by no means define the entire market. It is possible that an analysis
that included some less important cryptocurrencies would bring different outcomes. This
is especially likely for the marginal cryptocurrencies without any thinkable “fundamental”
value, whose dynamics is driven predominantly by extreme speculation. However, as the
cryptocurrency market is looked at by the most investors through the lens of BTC and ETH
(as their capitalization indicates), this particular limitation does not seem discouraging
to us. Currently, these two assets shape the whole cryptocurrency market and we expect
them to continue doing it in the nearest future. Another limitation of our analysis is the
particular selection of the traditional financial instruments. Indeed, they constitute only a
small fraction of the available ones. We are convinced, though, that they are among the
most observed and the most influential ones in the context of the global economy, which
fully justifies our choice.

A more general observation that the cryptocurrency market has spontaneously cou-
pled to the technological sector of the stock markets by reacting to some trigger provided
by the external data inflow resembles analogous effects of the spontaneous emergence of
order among the so-far independent degrees of freedom in the various complex systems.
However, as complexity allows for flexible reacting of a system to both the external per-
turbations and internal processes, such effects of ordering in the financial markets have
to be eventually counterbalanced by the opposite processes of disordering. Therefore, the
market participants must be aware that the inter-market couplings may not last forever and
they can significantly be weakened or even removed completely at some point in future.
This is why the in-depth studies of the cross-market dependencies have to remain among
the principal directions of the cryptocurrency research. Our future work will also deal with
energy consumption of the cryptocurrency market.
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63. Kwapień, J.; Oświęcimka, P.; Drożdż, S. Detrended fluctuation analysis made flexible to detect range of cross-correlated

fluctuations. Phys. Rev. E 2015, 92, 052815. [CrossRef]
64. Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys.

Rev. E 1994, 49, 1685–1689. [CrossRef]
65. Jiang, Z.Q.; Xie, W.J.; Zhou, W.X.; Sornette, D. Multifractal analysis of financial markets: A review. Rep. Prog. Phys. 2019,

82, 125901. [CrossRef]
66. Oświęcimka, P.; Drożdż, S.; Kwapień, J.; Górski, A. Effect of detrending on multifractal characteristics. Acta Phys. Pol. A 2013,

123, 597–603. [CrossRef]
67. Zebende, G. DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Phys. A 2011, 390, 614–618. [CrossRef]
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Abstract: This article investigates the dynamical complexity and fractal characteristics changes of the
Bitcoin/US dollar (BTC/USD) and Euro/US dollar (EUR/USD) returns in the period before and after
the outbreak of the COVID-19 pandemic. More specifically, we applied the asymmetric multifractal
detrended fluctuation analysis (A-MF-DFA) method to investigate the temporal evolution of the
asymmetric multifractal spectrum parameters. In addition, we examined the temporal evolution
of Fuzzy entropy, non-extensive Tsallis entropy, Shannon entropy, and Fisher information. Our
research was motivated to contribute to the comprehension of the pandemic’s impact and the possible
changes it caused in two currencies that play a key role in the modern financial system. Our results
revealed that for the overall trend both before and after the outbreak of the pandemic, the BTC/USD
returns exhibited persistent behavior while the EUR/USD returns exhibited anti-persistent behavior.
Additionally, after the outbreak of COVID-19, there was an increase in the degree of multifractality,
a dominance of large fluctuations, as well as a sharp decrease of the complexity (i.e., increase of
the order and information content and decrease of randomness) of both BTC/USD and EUR/USD
returns. The World Health Organization (WHO) announcement, in which COVID-19 was declared
a global pandemic, appears to have had a significant impact on the sudden change in complexity.
Our findings can help both investors and risk managers, as well as policymakers, to formulate a
comprehensive response to the occurrence of such external events.

Keywords: COVID-19; bitcoin; cryptocurrencies; forex market; complexity; entropy; multifractal
analysis; complex systems; financial crisis; econophysics

1. Introduction

Financial markets are widely recognized as typical examples of complex dynamical
systems [1]. Asset prices are created by a large number of nonlinear interactions between
heterogeneous agents and complex events occurring in the external environment [2,3].
The properties observed in financial time series such as nonlinearity, long-range depen-
dence [4,5], volatility clustering [6], fat tails [7,8], asymmetry [9], chaos [10,11], fractals and
multifractals [12,13], and self-similarity [14] have attracted the interest of many scientists
from different fields. In the last three decades, physicists have studied and developed
models to understand the behaviors and interactions in financial systems, establishing an
interdisciplinary research field known as Econophysics [15–17]. This term first appeared in
the published article by Stanley et al. [18] when analyzing the Dow Jones index; they found
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that stock returns followed a power law distribution. Since then, significant progress has
been made in the field of Econophysics [19].

The dynamics of financial markets are difficult to understand not only because of the
complexity of their internal elements but also because of the many intractable external
factors acting on them. A recent example of an external factor causing disruptions in global
financial markets is the outbreak of the COVID-19 pandemic. At its roots, the COVID-19
crisis is not a financial or economic crisis, it is a health crisis. Nevertheless, through its
effects on supply and demand conditions, it evolved rapidly to a large-scale financial and
economic crisis. In March 2020, the US stock market hit the circuit breaker mechanism
four times in a period of ten days. Since its inception in 1987, the breaker has only ever
been triggered once, in 1997. At the same time as the US crash, stock markets in Asia and
Europe plunged also. More specifically, Japan’s stock market fell by more than 20%, while
the UK’s main index, FTSE, fell by about 10.87% on 12 March 2020. Additionally, during
the pandemic period, most economies experienced exchange rate volatility and currency
depreciation due to capital outflows and market sentiments. Typical examples are the
Australian dollar hitting a 17-year low of AUD 0.59215 and the New Zealand dollar hitting
an 11-year low of NZD 0.5850. Furthermore, the price of gold dropped about 3.53%. It
is worth noting that although gold is considered a strong safe haven for most developed
markets during financial crises, there are findings showing that during the pandemic it
was a weak safe haven for investors in the stock market [20]. The impact of COVID-19
affected even the newer asset classes such as cryptocurrencies. The declines in value of the
three leading cryptocurrencies (Bitcoin, Ethereum, and Litecoin) exceeded 50% during the
pandemic period.

The exchange rate is crucial for maintaining an economy’s external stability. As ex-
change rate directly associates with foreign debt, capital flows, trade balance, and export
competitiveness, maintaining a stable exchange rate is one of the policymakers’ major
concerns. On the other hand, several researchers argue that specific characteristics of cryp-
tocurrencies, including the independence from monetary policy and the non-correlation
with traditional assets, increase their resilience during crisis periods such as the recent
pandemic crisis [21–23]. However, there is also the opposing view which argues that
monetary policy has a significant impact on the price of cryptocurrencies as well as that
the cryptocurrencies do not have zero correlation with other asset classes. For example,
Chaoqun Ma et al. [24] found a strong response of Bitcoin prices to unexpected monetary
policy actions, while Khanh Quoc Nguyen [25] found that S&P 500 returns significantly
affected Bitcoin returns during the pandemic period. Therefore, it is concluded that under-
standing the pandemic’s impact and the possible changes it caused in the cryptocurrency
and foreign exchange markets is crucial for both investors and risk managers as well
as policymakers.

Particularly useful conclusions about the effects of COVID-19 on financial markets
can be obtained by studying changes in the multifractality and complexity of financial
time series during the period around the COVID-19 outbreak. In the field of Econophysics,
extensive research has been conducted on these topics. For example, Mnif et al. [26] uti-
lized the multifractal detrended fluctuation analysis (MF-DFA) approach to investigate
the degree of cryptocurrency efficiency before and after the COVID-19 outbreak using a
limited time period, until 19 May 2020. Their results indicated that the pandemic out-
break positively affected the efficiency of the five cryptocurrencies that they studied.
Naeem et al. [9] examined the asymmetric efficiency of the cryptocurrencies Bitcoin,
Ethereum, Litecoin, and Ripple, using 1-h data. In their analysis, the authors utilized
the A-MF-DFA and their results showed that the price of cryptocurrencies exhibited sig-
nificant asymmetric multifractality. Moreover, they found that uptrends showed stronger
multifractality than downtrends. Additionally, applying the time-varying deficiency mea-
sure, they found that the pandemic outbreak had a negative impact on the efficiency of the
cryptocurrencies that they analyzed. Kakinaka and Umeno [27], applying the A-MF-DFA,
examined the asymmetric multifractality along with the market efficiency of two main
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cryptocurrencies (Bitcoin, Ethereum) during the pandemic period, taking into consideration
different investment horizons. Their empirical results showed that the outbreak of COVID-
19 affected the efficiency of the two cryptocurrencies differently in the short- and long-term
horizons. More specifically, after the outbreak of COVID-19, Bitcoin and Ethereum in the
short term exhibited stronger multifractality, while in the long term exhibited weaker multi-
fractality. In addition, they studied the asymmetric market patterns between small and large
price fluctuations and between upward and downward trends. These results confirmed
that the outbreak caused a significant change in the level of asymmetry in cryptocurrency
markets. Aslam et al. [28] applied the MF-DFA to study the efficiency of foreign exchange
markets during the initial period of the COVID-19 pandemic. In their analysis, they used
high-frequency data of six major currencies, during the period from 1 October 2019 to
31 March 2020. Before calculating the MF-DFA, they examined the inner dynamics of
multifractality through seasonal and trend decomposition using loess. Their results indi-
cated that efficiency of foreign exchange markets during the COVID-19 outbreak declined.
Mensi et al. [29] examined the effect caused by the COVID-19 crisis on the pricing efficiency
and asymmetric multifractality of major asset classes (US Treasury bond, US dollar index,
S&P500, Brent oil, Gold, and Bitcoin). In their article, they applied the permutation entropy
on intraday data from 30 April 2019 to 13 May 2020. Their results indicated that after the
outbreak of COVID-19, the efficiency of all asset classes that they studied was deteriorated,
and in most cases this deterioration was significant. In addition, using the A-MF-DFA, they
found evidence of asymmetric multifractality in all markets. Drożdż et al. [30] studied the
complexity of the cryptocurrency market in the period around the COVID-19 outbreak
from three different perspectives. Their findings showed that throughout the time period
analyzed, the returns of exchange rates were multifractal with intermittent signatures of
bifractality that can be associated with the periods where the market was more volatile.

Lahmiri and Bekiros [31] investigated the time-varying characteristics of the infor-
mational efficiency in sixteen international stock markets and forty-five cryptocurrency
markets before and during the pandemic period using the approximate entropy and Largest
Lyapunov Exponent. Their results indicated that cryptocurrencies exhibited more irregu-
larity and more instability during the pandemic period compared to international stock
markets. Additionally, Lahmiri and Bekiros [32], applying Rényi entropy, analyzed the
multiscale entropy function in the return time series of S&P500, Brent, WTI, Gas, Silver,
Gold, Bitcoin, and VIX. Additionally, they analyzed the information sharing between these
markets by estimating mutual information. Their results from Rényi entropy showed that
for all market indices, disorder and randomness were more concentrated in less probable
events. In addition, their results from the mutual information indicated that the information
sharing network between markets has changed during the pandemic period. Wang J. and
Wang X. [33] investigated the market efficiency of the S&P 500 Index, Gold, Bitcoin, and
US Dollar Index during the extreme event of the COVID-19 pandemic using a multiscale
entropy-based method. Their results indicated that, at all scales, the four markets’ efficiency
decreased abruptly and persistently during the period from February to March 2020. Mar-
ket efficiency decreased the most in the S&P 500 Index and the least in the Bitcoin market.
Additionally, their results showed that Bitcoin market efficiency was more resilient than
the others during the extreme event. Fernandes et al. [34] investigated the informational
efficiency and price disorder of five main cryptocurrencies (Ethereum, Bitcoin, Cardano,
XRP, and BNB) before and during the pandemic period. In their article, the authors applied
the permutation entropy and Fisher information measure to construct the Shannon–Fisher
causality plane in order to map the cryptocurrencies and their respective locations in a
two-dimensional plane. Their results indicated that all cryptocurrencies exhibited high but
slightly varying informational efficiency during both periods. Additionally, their results
showed that Cardano was the most efficient cryptocurrency. Kim and Lee [35] investigated
the evolution of the complexity of the cryptocurrency market and analyzed the properties
from the previous upward trend market in 2017 against the COVID-19 pandemic. In their
article, the authors used three popular measures of complexity based on the nonlinear
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analysis: sample entropy, approximate entropy, and Lempel–Ziv complexity. They stud-
ied the market complexity/unpredictability for forty-three cryptocurrency prices. They
found that sample entropy, approximate entropy, and Lempel–Ziv complexity metrics of
all markets could not generalize the COVID-19 effect of the complexity due to different
patterns. Nevertheless, market unpredictability increased by the ongoing health crisis.
Olbryś and Majewska [36] applied sample entropy to evaluate changes in the regularity of
returns of thirty-six U.S. and European stock market indices during periods of uncertainty.
Specifically, the authors studied the period of the Global Financial Crisis as well as the
period of the COVID-19 pandemic. Their results showed that entropy decreased during
the periods of turbulence, indicating that the regularity and predictability of stock market
indices returns increased during these periods. In the field of Econophysics, the study
of the complexity and multifractality of financial time series during the pandemic is a
challenging topic. However, to the best of our knowledge, until now there has not been an
in-depth comparative analysis of the effects of the pandemic on the complexity and fractal
characteristics of the returns of two completely different currencies, such as BTC/USD and
EUR/USD, that play a key role in the modern financial system.

In this article, we present a study of the temporal evolution of the multifractality
and complexity of BTC/USD and EUR/USD returns for the period before and after the
WHO announcement that declared COVID-19 a global pandemic (i.e., 11 March 2020). We
chose to analyze and compare the effects of the pandemic on the two most representative
currencies from the cryptocurrency and forex markets, respectively. Although these two
markets are completely different from each other, they play a significant role in the modern
financial system. More specifically, we applied the A-MF-DFA to investigate the temporal
evolution of the asymmetric multifractal spectrum parameters (α0, Δα, A) before and after
the outbreak of the pandemic. Although there are numerous studies that have followed a
similar approach for the study of financial time series (e.g., [37–39]), as far as we are able
to know, this is the first time that the temporal evolution of the specific parameters has
been applied to BTC/USD and EUR/USD returns to study the period before and during
COVID-19. At this point, it is important to mention that the analysis of the multifractal
properties of financial time series has a wide contribution to the field of finance. For ex-
ample, multifractality can be used to obtain better forecasts of tail risk as demonstrated
by Batten et al. [40]. In addition, we examined the temporal evolution of four popular
complexity measures. Although approximate and sample entropies are quite common for
financial time series analysis [31,35,41], we chose to use Fuzzy entropy as it is considered as
an upgraded alternative of approximate and sample entropy for evaluating the complexity,
specifically for short time series contaminated by noise [42]. In combination, we chose to
use the Shannon entropy as the standard information measure and Tsallis entropy as its
non-extensive generalization, very closely related to multifractality. Additionally, we used
another complexity measure, Fisher information. In financial data analysis, the application
of Fisher information is very widespread for the construction of the Shannon–Fisher causal-
ity plane [34,43]. In the present article, we chose to investigate the temporal evolution of
Fisher information as we believe that it can reveal useful elements for the evolution of
the complexity of the dynamical system, providing a “mirror image” of the evolution of
entropies, but also presenting the key difference of its so-called “locality” property (see
Section 2.4). Our study attempts to provide a complete picture of the pandemic’s impact
in terms of the dynamical change of the complexity and the fractal characteristics of the
two currencies. Additionally, our results provide useful conclusions about the behavior
of two very different currencies during uncertainty periods. At the same time, interest-
ing conclusions are drawn about the impact of WHO announcements and the reaction of
investors to external events such as the pandemic. Our findings can help both investors
and risk managers, as well as policymakers, to formulate a comprehensive response to the
occurrence of such external events.
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2. Materials and Methods

This section briefly presents the asymmetric multifractal detrended fluctuation anal-
ysis approach (Section 2.1), as well as key concepts of multifractal spectrum parameters
(Section 2.1.1). Additionally, we present key notions and formulae related to Fuzzy entropy
(Section 2.2), Tsallis entropy (Section 2.3), and Fisher information measure (Section 2.4).

2.1. Asymmetric Multifractal Detrended Fluctuation Analysis (A-MF-DFA)

The A-MF-DFA extends the MF-DFA method by considering positive and negative mar-
ket trends [44,45]. First, the profile time series of each return time series

{
xj : j = 1, . . . , N

}
are calculated as X(t) = ∑t

j=1
(
xj − x

)
for t = 1, . . . , N, where x is the average of the entire

return time series. Then, the profile time series and the return time series are both divided
into Nn = �N/n� non-overlapping segments of length n. In case N is not a multiple of n,
we repeat the division initially from the other end of the time series to take into account
all the available data, making a total of 2Nn segments for both the profile and the return
time series.

Next, the local trend of the profile series X̃v(i), i = 1, . . . , n is calculated for each
segment v = 1, . . . , 2Nn, by fitting a least-square polynomial of degree 2 in order to detrend
the corresponding profile Xv(i), i = 1, . . . , n. For the return time series, the local linear
trend for each segment is also calculated to determine whether the return time series show
an uptrend or downtrend. The different trends depend on the sign of each local slope
bn,v �= 0, where bn,v represents the coefficient of the linear trend for segment v at scale n [27].
If bn,v > 0 (bn,v < 0), the return time series have an upward (downward) trend within
the vth segment.

Then, we define the residual variance as follows:

F2(n, v) =
1
n

n

∑
i=1

(
Xv(i)− X̃v(i)

)2
. (1)

By taking the average over corresponding segments, we can obtain the asymmetric qth
order average fluctuation functions, which are then calculated by taking the average over
the corresponding segments:

F+
q (n) =

{
1

M+

2Nn

∑
v=1

1 + sgn(bn, v)

2

[
F2(n, v)

] q
2

} 1
q

, (2)

F−
q (n) =

{
1

M−
2Nn

∑
v=1

1 − sgn(bn, v)

2

[
F2(n, v)

] q
2

} 1
q

, (3)

where M+ = ∑2Nn
v=1(1 + sgn(bn, v))/2 and M− = ∑2Nn

v=1(1 − sgn(bn, v))/2 are the number of
total segments with directional trends. Note that for all v = 1, . . . , 2Nn, M+ + M− = 2Nn
holds. Therefore, the qth order average fluctuation functions for the overall trend is
written as:

Fq(n) =

{
1

2Nn

2Nn

∑
v=1

[
F2(n, v)

] q
2

}1/q

. (4)

The calculation is repeated to find the fluctuation function for all box sizes n. If long-
range power-law correlations are present, the function will increase with n as a power-law
Fq(n) ∼ nh(q). The scaling exponent h(q), namely, the generalized Hurst exponent, is
calculated by estimating the slope of the linear regression of log

(
Fq(n)

)
versus log(n). The

asymmetric generalized exponents h+(q) and h−(q) are calculated in a similar way from
the relationship F+

q (n) ∼ nh+(q) and F−
q (n) ∼ nh−(q). In this study, we consider n ranging

from 8 to N/4 for the log-log linear regression to estimate the asymmetric generalized
Hurst exponents.
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2.1.1. Asymmetric Multifractal Spectrum Parameters

The multifractal characteristics of time series can be described not only by the gen-
eralized Hurst exponent H(q) but also by the multifractal scaling exponent τ(q), and
their relationship can be expressed as τ(q) = qH(q)− 1. In the case that τ(q) and q are
linearly related, the analyzed time series is monofractal. In the case that τ(q) and q have a
nonlinear relationship, the analyzed time series is multifractal. Additionally, it is signifi-
cant to note that the stronger their nonlinear relationship is, the stronger the multifractal
characteristics are [46].

Moreover, using the multifractal (singularity) spectrum f (α) can also describe multi-
fractional characteristics of time series. The multifractal spectrum is obtained by applying
the first-order Legendre transform [39,46]:

α = dτ(q)/dq, (5)

f (α) = qα − τ(q), (6)

where α is the singularity strength (also known as the Hölder exponent) that characterizes
singularities in the time series. The interpretation of α is as follows: If α = 1, then the
distribution of the time series data is uniform. If α < 1, then the singularity degree is
larger. On the other hand, if α > 1, then the singularity degree is smaller. The multifractal
spectrum f (α) denotes the singularity content [46,47].

To analyze and make a solid understanding of the multifractal characteristics of a
time series, a set of the asymmetric multifractal spectrum parameters (α0, Δα, A) has been
suggested. More specifically, the maximum of the multifractal spectrum f (α) is used to
detect the correlation behavior in terms of persistence and anti-persistence. The spectrum
α0 gives the maximum f (α), i.e., f (α0) = 1. At this spectrum, the measure provides
information about the central tendency of the multifractal spectrum. If α0 < 0.5, then the
correlations in the time series exhibit anti-persistent behavior (i.e., an increase is very likely
to be followed by a decrease), if α0 > 0.5, then the correlations in the time series exhibit
persistent behavior (i.e., an increase is very likely to be followed by an increase, and a
decrease is very likely to be followed by a decrease), whereas if α0 = 0.5, then the time series
displays characteristics of a standard non-correlated sequence [39,47,48]. By looking into
the spectrum width, one can quantitatively detect the time series multifractality. Specifically,
the width of the spectrum is estimated by the equation Δα = αmax − αmin, and it reflects
the degree of multifractality of the time series. The larger values of Δα are, the stronger
the degree is and the more severe the fluctuations in the time series are. On the contrary,
the smaller the values of Δα, the more the time series is close to a monofractal behavior,
indicating less significant fluctuations in the time series. The spectrum width should be
equal to zero for a completely monofractal time series [39,49,50]. The dominance of small
or large fluctuations is also an interesting characteristic of time series. This information
can be extracted from the skew asymmetry of the multifractal spectrum, which is defined
by the equation [51] A = L−R

R+L = −ΔS
W , where R = αmax − α0, L = α0 − αmin, ΔS = R − L,

and W = R + L = Δα = αmax − αmin. If A > 0 (L > R), the spectrum is left-skewed, which
means that the scaling behavior of large fluctuations dominates the multifractal behavior.
On the contrary, if A < 0 (L < R), then the spectrum is right-skewed, where the scaling
behavior of small fluctuations dominates. The case of A = 0 indicates that the shape of
multifractal spectra is symmetric [46,51].

Another multifractal spectrum asymmetry metric is the so-called truncation, defined
as Δ f (a) = f (αmin) − f (αmax) [49,52]. If Δ f (a) < 0, the multifractal spectrum is right-
truncated, i.e., it has a long left tail, indicating that the multifractal structure in the time
series is insensitive to the local fluctuations with small magnitudes. In other words, the
time series is less multifractal, closer to monofractal, for the small fluctuations than for
the large fluctuations. If Δ f (a) > 0, the multifractal spectrum is left-truncated, i.e., it has
a long right tail, indicating that the multifractal structure is then insensitive to the local
fluctuations with large magnitudes. It has to be noted that, very often, truncation and skew
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asymmetries are directly related so that a left-skewed spectrum is also right-truncated, and
a right-skewed is left-truncated. The absolute value of truncation, also known as “C-value”,
C − value = |Δ f (a)| = | f (αmin)− f (αmax)| [49,52], indicates the degree of the truncation
asymmetry, which also provides interesting information as C-values are known to illustrate
the systems’ underlying undulation or instability. The degree of undulation or instability
becomes minimum when the C-value presents the smallest value (≈ 0) [49,52].

2.2. Fuzzy Entropy (FuzzyEn)

Expanding upon the concepts already established with approximate entropy (ApEn)
and sample entropy (SampEn), Chen et al. [53,54] combined elements from Fuzzy sets and
information theory to develop a fuzzy version of the SampEn. Fuzzy entropy (FuzzyEn)
like its ancestors, ApEn and SampEn [54], is a “regularity statistic” that quantifies the
(un)predictability of fluctuations in a time series. For the estimation of FuzzyEn, the
similarity between vectors is defined based on fuzzy membership functions and the vectors’
shapes. The gradual and continuous boundaries of the fuzzy membership functions lead to
a series of advantages, such as the continuity as well as the validity of FuzzyEn at small
values, higher accuracy, stronger relative consistency, and even less dependence on the
data length. FuzzyEn can be considered as an upgraded alternative of SampEn (and ApEn)
for the evaluation of complexity, especially for short time series contaminated by noise [55].

Similar to SampEn, FuzzyEn excludes self-matches. Nevertheless, it applies a slightly
different definition for the employed first N − m vectors of a length of m, by removing a
baseline, si:

si = m−1
m−1

∑
j=0

si+j, (7)

i.e., for the FuzzyEn estimations, we use the first N − m of the vectors:

Xm
i = {si, si+1, . . . , si+m−1} − si, i = 1, 2, . . . , N − m + 1, (8)

Then, the similarity degree, Dm
ij , between each pair of vectors, Xm

j and Xm
i , being within a

distance, r, from each other is defined by a fuzzy membership function:

Dm
ij = μ

(
dm

ij , r
)

, (9)

where dm
ij is, as in the case of ApEn and SampEn, the supremum norm difference between

Xm
i and Xm

j . For each vector, Xm
i , we estimate the average similarity degrees with respect to

all other vectors, Xm
j , j = 1, 2, . . . , N − m + 1, and j �= i (i.e., excluding itself):

φm
i (r) = (N − m − 1)−1

N−m

∑
i=1,j �=i

Dm
ij . (10)

Then, we evaluate

ϕm(r) = (N − m)−1
N−m

∑
i=1

φm
i (r), (11)

and

ϕm+1(r) = (N − m)−1
N−m

∑
i=1

φm+1
i (r). (12)

The FuzzyEn(m, r) is then defined as

FuzzyEn(m, r) = lim
N→∞

[
ln ϕm(r)− ln ϕm+1(r)

]
, (13)
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which, for finite time series, can be calculated by the statistic

FuzzyEn(m, r, N) = ln ϕm(r)− ln ϕm+1(r). (14)

As mentioned above, FuzzyEn is a measure of estimation of the complexity. More specifi-
cally, lower FuzzyEn values demonstrate a larger chance that a set of data will be followed
by similar data (regularity). Hence, lower values demonstrate larger regularity. Conversely,
a greater value of FuzzyEn indicates a smaller chance of similar data being repeated (irreg-
ularity). Thus, greater values convey more randomness, disorder, and system complexity.
Consequently, a low (high) value of FuzzyEn reflects a high (low) degree of regularity [42].

2.3. Tsallis Entropy

In a vast variety of systems that exhibit long-range interactions or long-term memory or
being of a multifractal nature, they have been found to be better described by a generalized
statistical-mechanical formalism proposed by Tsallis [56,57]. Tsallis, inspired by multifractal
concepts, introduced an entropic expression characterized by an index, qTS, which leads to
non-extensive statistics [56,57]:

SqTS = k
1

qTS − 1

(
1 −

W

∑
i=1

pqTS
i

)
, (15)

where qTS is a real number, k is the Boltzmann’s constant from statistical thermodynamics,
pi are probabilities associated with the microscopic configurations, and W is their total
number. It is important to note that there is a remarkable conceptual similarity between
Tsallis’ entropy definition and the notion of Rényi entropies.

The entropic index, qTS, describes the deviation of Tsallis entropy from the standard
Boltzmann–Gibbs entropy. Indeed, using p(qTS−1)

i = e(qTS−1) ln (pi) ∼ 1 + (qTS − 1) ln(pi)
in the limit qTS → 1 , we recover the Boltzmann–Gibbs entropy

S1 = −k
W

∑
i=1

pi ln(pi), (16)

as the thermodynamic analog of the information-theoretic Shannon entropy. From this
point and for the rest of this article, we will refer to the entropy calculated by Equation (16)
as the Shannon entropy.

For qTS �= 1, the entropic index, qTS, characterizes the degree of non-extensivity
reflected in the following pseudo-additivity rule:

SqTS(A + B)
k

=
SqTS(A)

k
+

SqTS(B)
k

+ (qTS − 1)
SqTS(A)

k
SqTS(B)

k
, (17)

where A and B are two subsystems. In case these subsystems have special probability
correlations, extensivity does not hold for qTS = 1 (S1 �= S1(A) + S1(B)), but may occur
for SqTS , with a particular value of the index, qTS �= 1. Such systems are called non-
extensive [56]. The cases qTS > 1 and qTS < 1 correspond to sub-additivity or super-
additivity, respectively. As in the case of Rényi entropies, we may think of qTS as a bias
parameter: qTS < 1 privileges rare events, while qTS > 1 highlights prominent events [58].

It is noted that the parameter, qTS, itself is not a measure of the complexity of the
system but measures the degree of the non-extensivity of the system. In turn, the temporal
variations of the Tsallis entropy, SqTS , for some qTS, quantify the dynamical changes of the
complexity of the system. In particular, lower SqTS values characterize the portions of the
signal with lower complexity [55].
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2.4. Fisher Information Measure (FIM)

In the last decades, Fisher information has been increasingly gaining the interest of sci-
entists of different scientific fields. It was first introduced by Fisher [59] as a representation
of the amount of information in the results of experimental measurements of an unknown
parameter of a stochastic system, or simply the amount of information that can be extracted
from a set of measurements (or the “quality” of the measurements) [60]. Fisher information
is a useful method to study non-stationary and complex time series [61]. It is used as a
measure of the level of disorder of a system, behaving inversely to entropy, i.e., when the
disorder increases, the entropy increases, while the Fisher information decreases. Fisher
information has been successfully applied to many different systems, revealing its ability
in describing the complexity of them [62–64]. Additionally, its use has been suggested to
identify reliable precursors of critical events [65–67]. Moreover, Fisher information presents
the so-called “locality” property in contrast to the “globality” of entropy, referring to the
sensitivity of Fisher information in changes in the shape of the probability distribution
corresponding to the measured variable, not presented by entropy [68,69]. The Fisher
information measure can be expressed as

Ix =
N−1

∑
n=1

[p(xn+1)− p(xn)]
2

p(xn)
. (18)

The discrete probability distribution p(xn) corresponds to the specific values of the un-
known underlying probability density function at the center values of the intervals {xn},
which are not necessarily of equal length. The probability density function is usually
approximated by a histogram, or by the kernel density estimator technique, employing
different kernel functions such as the Gaussian kernel or Epanechnikov kernel [60].

3. Data and Results

The cryptocurrency market is a relatively new and emerging market, meaning that the
trading mechanism is unique and makes it very different from traditional markets. More
than 21, 800 different cryptocurrencies are currently traded around the world with an esti-
mated total market capitalization of over USD 843 billion (see, e.g., https://coinmarketcap.
com/ (accessed on 7 December 2022)). On the other hand, the foreign exchange market
is the largest financial market worldwide, with transactions amounting to trillions of US
dollars daily [70]. In this article, we focused on the analysis of the two most representative
currencies of these two markets, i.e., the BTC/USD and EUR/USD. Our analyses were
applied to the daily logarithmic returns (rt = ln pt − ln pt−1, where pt denotes the price at
time t) of the BTC/USD and EUR/USD during the period from 1 May 2019 to 20 January
2021. In an announcement by the WHO on 11 March 2020, the outbreak of COVID-19
was declared a global pandemic. Therefore, we considered the period from 1 May 2019 to
11 March 2020 as the pre-announcement period, and the period from 12 March 2020 to
20 January 2021 as the post-announcement period. All financial time series were taken
from Yahoo Finance (http://finance.yahoo.com/ (accessed on 7 December 2022)).

In our study, we investigated the temporal evolution of complexity and fractal charac-
teristics by using overlapping sliding windows (with window length equal to 512 samples
and slide step equal to 1 sample). First, we investigated the temporal evolution of the mul-
tifractal spectrum parameters (α0, Δα, A) before and after the outbreak of the pandemic.
Then, for the same time period, we extended our analysis by examining the temporal
evolution of Fuzzy entropy, Tsallis entropy, Shannon entropy, and Fisher information.

At this point, we should mention that for the calculation of Tsallis entropy we have
chosen to use the value qTS = 1.8 for the non-extensive parameter, qTS. On one hand, for
financial time series qTS has been found to take values qTS ∼ 1.6 − 1.8 [3], which has been
discussed within the framework of the similarities in scaling properties and universality
related to observables of extreme events from different disciplines (e.g., financial crisis,
earthquake, epileptic seizure, magnetic storm, solar flare) [3,55,60,61]. On the other hand,
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from the time series analysis point of view, the selection of the qTS value for the calculation
of the temporal variation of Tsallis entropy practically only affects the “separation” between
the lower and higher complexity parts of the analyzed time series (e.g., min to max entropy
values ratio, in direct analogy to the signal to noise ratio), while for the herein analyzed
time series it was found that any qTS value in the range ∼ 1.6 − 1.8 leads to approximately
the same results.

Figure 1c,d, depict the temporal evolution of α0 values under different market trends
of the BTC/USD and EUR/USD returns, respectively. By analyzing the overall trend of the
BTC/USD returns, it is observed that the values of the α0 fluctuate around 0.6 (Figure 1c).
These results indicate that the returns time series is characterized by long-range correlations,
both before and after the onset of COVID-19. By analyzing the downtrend markets of the
BTC/USD returns, it is observed that the values of the α0 fluctuate over 0.6 both before
and after the outbreak of the pandemic, indicating persistent behavior. In the uptrend
markets of the BTC/USD returns, the values of α0 fluctuate between 0.5 and 0.65 for almost
throughout the analysis period. An exception is a short period of time after the WHO
announcement, where α0 values fell below 0.5.

Figure 1. Comparative asymmetric multifractal analysis of BTC/USD (left panels) and EUR/USD
(right panels) under different market trends. (a,b): Exchange rates and Returns. (c,d): Tempo-
ral evolution of α0 parameter. (e,f): Temporal evolution of width of the multifractal spectrum.
(g,h): Temporal evolution of the asymmetry parameter A values. The red vertical dash line cor-
responds to the date of the WHO announcement in which COVID-19 was declared a global pan-
demic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020 corresponds to the
pre-announcement period, while the period from 12 March 2020 to 20 January 2021 corresponds to
the post-announcement period.
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Figure 1d depicts the temporal evolution of the α0 values of the EUR/USD returns
under different market trends. In this case, we observe that for the overall trend the α0
values fluctuate around 0.4 during the whole pre-announcement period, while after the
announcement they present a progressive increase approaching very close to α0 = 0.5
at the end of the considered analysis period. This suggests that the time series exhibit a
“different” power-law correlation, such that large and small time series are more likely to
alternate (anti-persistent behavior). It is worth mentioning that the downtrend α0 values
remain at the anti-persistent side except for the very last part of the analyzed period, while
the uptrend α0 values, although < 0.5 for the whole pre-announcement period, present
an alternating behavior after the WHO announcement, taking values α0 > 0.5 for two
two-month-long periods.

Figure 1e,f illustrate the width of the multifractal spectrum under different market
trends of the BTC/USD and EUR/USD returns, respectively. As already mentioned in
Section 2.1.1, the width of the multifractal spectrum Δα is a measure of the degree of
multifractality. If a time series presents a smaller width of the multifractal spectrum, this
indicates that the time series has lower heterogeneity, i.e., lower fluctuations and lower
market risk [58]. The results show that throughout the period analyzed, the width of
the multifractal spectrum receives higher values for the BTC/USD returns compared to
the EUR/USD returns. Therefore, it can be concluded that EUR/USD is relatively more
stable than BTC/USD. In addition, we observe that after the outbreak of the pandemic,
the width of the multifractal spectrum increased for both BTC/USD returns and the
EUR/USD returns for the overall trend. This suggests that after the outbreak of the
pandemic, both currencies reacted similarly in terms of multifractality when observed
from an overall trend point of view. The degree of multifractality increased, and, therefore,
the fluctuations became more intense and the market risk increased. However, in terms
of asymmetric multifractality, this is not always the case. When focused on downside
markets of BTC/USD, the degree of multifractality decreased after the outbreak. More
interestingly, downtrend multifractality was higher than the uptrend multifractality during
the period before COVID-19, but during the pandemic the uptrend multifractality became
higher. These findings reveal that the incremental multifractality in BTC/USD is due to
intense fluctuations and higher heterogeneity during price increases, but not during price
declines. In EUR/USD, it appears that the downside markets play a more important role in
increasing multifractality. Nevertheless, both market trends may have had some impact in
the post-announcement period increase in multifractality. It is important to note that the
increase in multifractality in BTC/USD returns during COVID-19 is consistent with the
existing literature as other studies have reached the same conclusion (e.g., [26,27]).

Figure 1g,h depict the temporal evolution of the asymmetry parameter A values
under different market trends of the BTC/USD and EUR/USD returns, respectively. In the
time period before the onset of the pandemic, the asymmetry parameter A of BTC/USD
returns appears to have been consistently below 0, indicating relative dominance of the
small fluctuations. Immediately after the date of the WHO announcement, there was a
sharp change in the values of A in all market trends. Specifically, for both overall trend
and uptrend markets, the values of A of the BTC/USD returns remain above 0 for the
entire period after the outbreak of the pandemic. This sharp change shows a transition
from a period where small fluctuations predominate (before the pandemic) to a period
where large fluctuations predominate (during the pandemic). In the downtrend markets,
the values of parameter A are almost at 0 for the entire period after the outbreak of the
pandemic, indicating that the spectrum became practically symmetrical (Figure 1g). On
the other hand, the values of the asymmetry parameter A of the EUR/USD returns for
the uptrend markets are almost equal to 0 for the whole period before the outbreak of the
pandemic. This fact indicates that the spectrum is practically symmetrical. On the contrary,
analyzing the overall and downward trends of the market, we observe that the values of
the asymmetry parameter A are below 0, almost for the entire period before the outbreak
of the pandemic. Therefore, it is concluded that in the overall and downward trends of

95



Entropy 2023, 25, 214

the markets, they are dominated by the small fluctuations in EUR/USD returns before the
outbreak of the pandemic. Immediately after the announcement date, the values of the
asymmetry parameter A of the EUR/USD returns exceeded 0 in all market trends. This
result shows that EUR/USD returns after the outbreak of the pandemic are dominated by
large fluctuations (Figure 1h).

Figure 2c,d indicate that the effect of the announcement was, for all cases (for both
BTC/USD and EUR/USD returns and for all three considered market trends), a sharp
change towards right-truncation, which means that after the WHO announcement the
multifractal structure in the time series became more insensitive to the local fluctuations
with small magnitudes. On the other hand, Figure 2e,f show that the behavior of BTC/USD
and EUR/USD returns was different concerning the degree of truncation asymmetry,
indicated by the so-called C − value. Specifically, EUR/USD returns present C − values
quite close to 0 before the WHO announcement, which means that the underlying system
then presented the lowest possible undulation or instability. After the WHO announcement,
the picture changed and for all market trends an increase in the undulation or instability
of the underlying system is observed. In contrast, BTC/USD returns present a general
trend (although with notable fluctuations for the overall and uptrend markets) towards
a decrease in the C − values after the WHO announcement, which means that a trend
for the decrease in the undulation or instability of the underlying system is observed. It
is noted that the downtrend market after the WHO announcement presents C − values
closer to 0, as compared with the uptrend and overall markets, indicating lower undulation
or instability.

Figure 2. Comparative asymmetric multifractal analysis of BTC/USD (left panels) and EUR/USD
(right panels) under different market trends. (a,b): Exchange rates and Returns. (c,d): Temporal
evolution of truncation Δ f (a) = f (αmin) − f (αmax). (e,f): Temporal evolution of the degree of
truncation asymmetry, known as C − value = |Δ f (a)| = | f (αmin)− f (αmax)|. The red vertical dash
line corresponds to the date of the WHO announcement in which COVID-19 was declared a global
pandemic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020 corresponds to the
pre-announcement period, while the period from 12 March 2020 to 20 January 2021 corresponds to
the post-announcement period.
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Moreover, we analyzed the temporal evolution of some complexity measures.
Figure 3c,d illustrate the temporal evolution of the Fuzzy entropy of the BTC/USD and
EUR/USD returns, respectively. As it has already been mentioned in Section 2.2., smaller
values of Fuzzy entropy indicate a greater chance that a set of data will be followed by
similar data (regularity). Conversely, larger values of Fuzzy entropy point to a lower chance
of similar data being repeated (irregularity). As we observe in Figure 3c,d, the values of
Fuzzy entropy dropped sharply in both BTC/USD and EUR/USD returns immediately
after the WHO announcement. This fact indicates that in the pre-announcement period,
both BTC/USD and EUR/USD returns were characterized by a higher degree of disorder
and randomness, i.e., by higher complexity. In contrast, in the period during the pandemic,
the values of Fuzzy entropy decreased, suggesting that the returns were characterized by a
higher degree of order and lower complexity. Therefore, it is concluded that the pandemic
led investors to behave in an “organized” (similar) way that thereby reduced the complexity
of the two markets.

Figure 3. Comparative analysis of BTC/USD (left panels) and EUR/USD (right panels). (a,b): Exchange
rates and Returns. (c,d): Temporal evolution of Fuzzy entropy. (e,f): Temporal evolution of Tsallis
entropy. (g,h): Temporal evolution of Shannon entropy. (i,j): Temporal evolution of Fisher information.
The red vertical dash line corresponds to the date of the WHO announcement in which COVID-19
was declared a global pandemic (i.e., 11 March 2020). The period from 1 May 2019 to 11 March 2020
corresponds to the pre-announcement period, while the period from 12 March 2020 to 20 January 2021
corresponds to the post-announcement period.

Corresponding results are obtained by also studying two quite popular complexity
measures, i.e., the Shannon entropy (Figure 3g,h) and Tsallis entropy (Figure 3e,f). More
specifically, the time variations of the Shannon entropy as well as the Tsallis entropy
(for a given qTS) quantify the dynamical changes of the information content and the
complexity of the system. Smaller values characterize time series with lower complexity
and randomness, as well as higher information content and order. Conversely, larger
values characterize time series with higher complexity, disorder and randomness, as well
as lower information content. As we observe in Figure 3e–h, during COVID-19, the
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values of Tsallis and Shannon entropies were reduced in both BTC/USD and EUR/USD
returns, indicating that the complexity of the two markets was reduced and the information
content was increased. It is important to note that all the entropy measures we applied
quickly adapted to market conditions, showing a sharp decrease immediately after the
WHO announcement, with Shannon entropy being the exception in the case of BTC/USD.
Additionally, it is of particular interest that the entropy values remained at low levels
throughout the pandemic period we analyzed, showing that the effects of the pandemic
were not short-term. Additionally, concerning the study of Lahmiri and Bekiros [32],
although not the main finding of their analyses, it is nevertheless important to note that their
results showed a decrease in Rényi entropy (and consequently a decrease in randomness)
for the BTC/USD market during the pandemic compared to before.

In addition, we applied one more complexity measure, the Fisher information. Fisher
information is a useful method to study non-stationary and complex time series. Fisher
information is used as a measure of the degree of order of a system, behaving inversely to
entropy, i.e., when the order increases, the entropy decreases, while the Fisher information
increases. Moreover, unlike entropy, it is sensitive to changes in the shape of the probability
distribution corresponding to the measured variable. Figure 3i,j illustrate the temporal evo-
lution of the Fisher information of the BTC/USD and EUR/USD returns, respectively. We
observe that immediately after the WHO announcement, the values of Fisher information
increased in both BTC/USD and EUR/USD returns, indicating an increase in the order of
the two markets.

At this point, it has to be mentioned that the observed decrease in randomness after the
WHO announcement, indicated by all the applied complexity measures, is fully compatible
with the corresponding increase of multifractality. Specifically, the more random a time
series is, the more unifractal its scaling is, which means that a more multifractal time series
can be considered as being farther away from “randomness” [71].

From the interpretation of our results in financial terms, useful conclusions are re-
vealed. More specifically, in analyzing the values of α0 for overall trend, as we have already
mentioned, we observe that the BTC/USD returns show persistent behavior, while the
EUR/USD returns exhibit anti-persistent behavior almost throughout the time period we
studied them (Figure 1c,d). A persistent or anti-persistent market return series is character-
ized by a long memory effect. Therefore, what happens today, theoretically, will impact the
future in a nonlinear fashion. For example, if a persistent market return change has been
up (down) in the last period, then the changes will continue to be positive (negative) in
the next period. On the other hand, anti-persistent markets are “mean-reverting.” If the
market return was up (down) in the previous period, it is more likely to be down (up) in
the next period [72]. The long-memory characteristic in asset return is a fascinating topic
for investors, risk managers, and scholars since appropriate return modeling is crucial for
asset allocation and risk control. For example, existence of long memory in asset returns
indicates that historical returns changes could be predictors of future returns changes [73].
Then, analyzing the Δα and A parameters, we observe that in the post-announcement
period, mainly in the case of the EUR/USD, the degree of multifractal returns increased,
and, therefore, fluctuations became more intense and market risk increased (Figure 1e,f). At
the same time, we observe that in the post-announcement period, returns were dominated
by large fluctuations (Figure 1g,h). Therefore, it is concluded that in the post-announcement
period, EUR/USD returns experienced intense and large fluctuations. Similar behavior is
observed for the overall trend and uptrend markets of the BTC/USD returns. Regarding the
downtrend markets of the BTC/USD returns, it appears that during the pandemic period
there were less intense fluctuations compared to the pre-pandemic period without small or
large fluctuations in returns dominating. The analysis of the truncation asymmetry degree
(Figure 2e,f), moreover, revealed that the WHO announcement had different impacts on
BTC/USD and EUR/USD returns concerning the undulation or instability of the underly-
ing system. For EUR/USD returns, the post-announcement period was characterized by an
increase in the undulation or instability of the underlying system, whereas for BTC/USD
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returns, the opposite behavior was generally observed. Analyzing the complexity measures
(Fuzzy entropy, Tsallis entropy, Shannon entropy, and Fisher information) (Figure 3c–j),
we observe a sharp decline in complexity (i.e., increase in the order and information con-
tent, and decrease in randomness) in the returns of both BTC/USD and EUR/USD in the
post-announcement period. This fact, in financial terms, suggests that the pandemic led
investors to behave in an “organized” (similar) way that thereby reduced the complexity of
the two markets. In other words, after the outbreak of the pandemic, it seems that investors
behaved like a herd. Therefore, it is concluded that although the fluctuations were larger
and more intense after the outbreak of the pandemic, this was not carried out in a random
way as investors seem to have behaved in an “organized” way; however, this behavior for
BTC/USD returns was generally followed by a decrease in undulation or instability of the
underlying system, while the opposite happened for EUR/USD returns.

Additionally, it is worth noting that the majority of the measures that we studied
showed a strong change for both BTC/USD and EUR/USD returns immediately after the
WHO announcement (11 March 2020), in which COVID-19 was mentioned for the first time
as a pandemic. This fact indicates that the behavior of the system changed immediately
after the WHO′s announcement, although the discussions about COVID-19 being a public
health emergency of international concern had begun weeks before. Therefore, although
many researchers accept the date of 2 January 2020 as the beginning of the COVID-19
pandemic crisis (e.g., [74–76]), we consider the most suitable start date of the pandemic to
be 11 March 2020.

4. Conclusions

The detection of dynamical complexity in time series originated from various complex
systems, including the disciplines of physics, finance, and medicine, and is one of the
foremost problems in science. The measurement of complexity includes nonlinear statistics
methods to extract hidden patterns as well as exploring multifractality, randomness, and
information flows. Hence, complexity provides important information regarding the order
or disorder states of a system under scrutiny. In the field of finance, the detection of the
dissimilarity of complexity between order and disorder states (e.g., before and after the
occurrence of extreme events) could shed light on the mechanisms associated with investor
reaction to these events.

In this article, we studied the temporal evolution of the multifractality and complexity
of BTC/USD and EUR/USD returns for the period before and after the WHO announce-
ment that declared COVID-19 a global pandemic. In our study, we first examined the
asymmetric multifractality through the analysis of the multifractal spectrum parameters as
obtained by the A-MF-DFA method. Then, we extended our analysis by applying Fuzzy,
Tsallis, and Shannon entropies as well as the Fisher information measure. Our results can
be summarized as follows: (i) For the entire time period that we studied (i.e., before and
during the pandemic), the behavior of BTC/USD returns was persistent in all trends of the
market. On one hand, in the period before the outbreak of the pandemic, the behavior of
EUR/USD returns was anti-persistent in all trends of the market. On the other hand, in
almost the entire period after the outbreak of the pandemic, the returns of the EUR/USD
exhibited anti-persistent behavior in the overall trend and downtrend markets, while the
uptrend market presented an alternating behavior, including short periods of persistent
dynamics. (ii) Throughout the period analyzed, the width of the multifractal spectrum
received higher values for the BTC/USD returns compared to the EUR/USD returns. This
implies that the multifractality of the BTC/USD returns was higher than the multifrac-
tality of the EUR/USD returns. In addition, after the outbreak of the pandemic, in the
overall trend and uptrend markets, the width of the multifractal spectrum increased for
both BTC/USD returns and EUR/USD returns. In the case of BTC/USD, the downtrend
multifractality was higher in the pre-announcement period. In EUR/USD, it appears that
the downtrend markets played an important role in increasing multifractality. Nevertheless,
both market trends may have had some impact on the post-announcement period increase
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in multifractality. (iii) In the pre-announcement period, small fluctuations in BTC/USD
returns for all market trends dominated. In contrast, in the post-announcement period,
large fluctuations in BTC/USD returns for overall trend and uptrend markets dominated,
while in downtrend markets the spectrum became practically symmetrical. On the other
hand, although in the uptrend markets the spectrum of EUR/USD returns was almost
symmetrical, the returns in the overall trend and downtrend markets were dominated by
small fluctuations for almost the entire pre-announcement period. During the pandemic
period, the returns of the EUR/USD were dominated by large fluctuations in all market
trends. (iv) For both BTC/USD and EUR/USD returns and all market trends, a sharp
change towards becoming more insensitive to the local fluctuations with small magnitudes
was observed after the WHO announcement. Nevertheless, the WHO announcement
had different impacts on BTC/USD and EUR/USD returns concerning the undulation or
instability of the underlying system. For EUR/USD returns, the post-announcement period
was characterized by an increase in the undulation or instability of the underlying system,
whereas for BTC/USD returns, the opposite behavior was generally observed. (v) Fuzzy
entropy, non-extended Tsallis entropy, Shannon entropy, and Fisher information showed
a sharp decrease in the degree of complexity immediately after the WHO announcement
for both BTC/USD and EUR/USD. This fact shows that in the post-announcement period,
the order and the information content of the systems increased, i.e., the randomness and
complexity in the returns of the two currencies decreased. Therefore, in financial terms, we
conclude that investors seem to have behaved in an “organized” way, as a herd. In addition,
our analyses show that the date of the WHO announcement (11 March 2020) could be
considered as the most appropriate date for the start of the pandemic. This element could
be useful in future research studies.

The main finding that is revealed from our study is that immediately after the WHO
announcement, the returns of both BTC/USD and EUR/USD presented a decrease in
complexity and corresponding increase in multifractality, both indicating that they became
less random compared to the pre-announcement period. Hence, it seems that although
they are two such different currencies, which both play a key role in the modern financial
system, they reacted in a similar way in response to the pandemic.
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Abstract: Decentralized finance (DeFi) is by far the most popular application of blockchain technology.
Despite the wide acceptance of new financial instruments and services, there are still many unexplored
areas in the field. We dedicate this research to the understanding of one of the most crucial limitations
of decentralized finance—oracles. DeFi protocols, as well as other blockchain applications, function
in a closed environment and regularly need to fetch real-world information (e.g., assets’ prices)—the
tool used for this purpose is called an oracle. We review the existing oracle types in DeFi applications
and focus our research on the least explored one: when another protocol, typically a decentralized
exchange, serves as a price oracle. After explaining the mechanisms behind the decentralized
exchanges, we introduce an algorithmic model that allows one to safely design a decentralized oracle
and adjust crucial parameters. We believe that understanding and implementing the logic presented
in the model can help to reduce the chances of price manipulations attacks, which are the most
frequent incident types in DeFi.

Keywords: DeFi; oracle; automated market makers; decentralized exchange; lending protocol

1. Introduction

Blockchain-based smart contracts have been successfully growing, and their use cases
are quite innovative and have attracted lots of interest valued in the billions of dollars.
However, there is a fundamental limitation of decentralized applications—they execute in
a closed environment and a bridge service (oracle) is needed when obtaining information
outside of the blockchain. As decentralized applications evolve and mature, oracles play an
increasingly prominent role in ensuring the safety across smart contracts. Despite the critical
role that oracles play in decentralized applications, the research is still in its infancy. In [1],
the authors performed a bibliometric analysis and demonstrated the alarming scarcity of the
research dedicated to blockchain oracles. Moreover, in the recent study of DeFi incidents [2],
the authors empirically showed that oracle manipulation attacks are the most frequent
incident types in DeFi. Although there are tools that can detect the price manipulation
attacks [3,4], and identify new vulnerabilities in real time, there is still a need for prevention
measures. The lack of understanding of oracles mechanics and functions concerns not only
academic research but more so the real users of decentralized applications.

Decentralized finance (DeFi) uses blockchain technology to provide financial instru-
ments without intermediaries in a trustless and transparent manner [5]. DeFi covers a wide
range of financial products, offering innovative alternatives to traditional financial products,
such as stablecoins, exchanges, lending protocols, insurance and yield farming protocols.

Here, we provide an overview on why DeFi rests heavily on the use of oracles and
how information from the outside world can be retrieved. Generally speaking, there is
some ground truth information that resides outside of smart contracts, and smart contracts
need it for the proper performance. To obtain such ground truth, smart contracts need
reliable data sources—any entity that stores the ground truth information (databases, sensors
or other smart contracts). Then, data feeders report off-chain data to an on-chain system.
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The systematic explanation on the existing type of oracles in a blockchain is provided in [6].
As for the decentralized financial applications, the ground truth needed is the price of the
assets listed in a smart contract. Although there are many types of oracles with different
functions and characteristics, the oracles currently used in DeFi can be broadly divided
into two main categories—decentralized trust-based oracles and decentralized exchanges
used as oracles.

Decentralized trust-based oracles function as a smart contract and do not rely on
a single source of information. Instead, they query multiple sources and aggregate the
obtained information into a single output. The papers [7–9] provided a detailed review
on the architecture, workflow and weak points of various decentralized oracles, such as
Chainlink [10,11], Provable [12], Oraclize, etc. Some DeFi applications are fetching the
price information directly from the decentralized exchanges by either getting the spot price
or aggregating the prices over a certain window size. Using the spot price can be very
dangerous because the price can be easily manipulated [13–15]. Therefore, more and more
DeFi applications started using the TWAP (time-weighted average price) instead—the
output price is calculated as a weighted average over a certain time period and, therefore,
the cost of price manipulation of the TWAP oracle increases linearly with the length of the
TWAP averaging window, reducing the chance of an oracle hack.

In this paper, we focus on the decentralized exchanges (DEXs) used as oracles for DeFi
protocols. While trust-based oracles have attracted some attention from the researchers,
using DEXs directly as oracles is still not well understood. In [16], the authors analyzed the
cost of TWAP manipulation when an arithmetic mean is used for the aggregation and also
considered the possibility of an MMEV attack. Decentralized exchanges utilize the concept
of automated market makers (to be explained in detail in Section 2). Our main contributions
consist of the following: we systematize the existing knowledge about using automated
market maker (AMM)-based decentralized exchanges as oracles, we derive attack costs
for the most popular cost functions used in DEXs, then we derive the relations between
protocol-specific parameters and oracle-specific parameters that impact the safety of using
the DEX-based oracle and, finally, we develop the algorithmic model that allows to assess
the risks of using oracles in a given protocol. Overall, knowing the mechanics behind the
oracles’ work would give a comprehensive understanding on how attacks can be performed.
Implementing the logic presented in the model below would give the quantitative estimate
on the cost a potential attacker needs for a successful attack. Knowing the mechanism
behind the price oracle and being able to precisely estimate the cost of a potential attack
provides an additional layer of security to the protocols using DEX-based oracles.

The paper is structured as follows. First, we review the most popular AMM-based
decentralized exchanges, demonstrate their logic and the cost functions used for asset
pricing. In the appendices, we derive the cost of the attacks for each type of AMM pricing
function discussed in Section 2. Then, in Section 3, we discuss various aggregation methods
that can be used in DEX-based oracles and show how they can be impacted by the price
manipulation attack. Section 4 aggregates all the information obtained above and provides
a step-by-step algorithm on how to mitigate attacks related to the DEX-based oracles on the
example of a lending protocol. We simulate various attack scenarios to the lending protocol
on two types of AMM cost functions—a constant product and stableswap. Finally, we
conclude all the findings and discuss the future directions of this research in the last section.

2. Automated Market Makers

To understand the safety of using the DEX-based oracle, we need to first be familiar
with how DEXs work and understand the mathematics behind it—the cost function utilized
by the DEX. In this section, we first explain the mechanism of the decentralized exchange
protocol and then review the popular AMM cost functions and demonstrate how they are
used to price assets in a DEX.

An AMM-based decentralized exchange consists of pools of different assets (liquidity
pools). Liquidity to these pools is provided by people who wish to gain income from the
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transaction fees (liquidity providers). Each pool can have few assets (currently most of the
pools have two assets) and users who want to exchange assets (traders) interact directly
with the given pool to swap asset x to asset y.

In centralized exchanges, the price discovery happens by matching the sell and buy
orders from various counterparties. In contrast to it, decentralized exchanges are based on
the automated market-making mechanism (AMM). The AMM utilizes the cost function that
discovers the price algorithmically—this function only allows counterparties to exchange
the assets for the prices along the trajectory determined by the AMM formula and quantities
of the available assets. Although the implementation of AMM functions to price assets in
decentralized exchanges is quite novel, the idea of agents automatically placing bets and
following prescribed rules is not new and has been implemented in many areas to aggregate
the information—the prediction of building openings [17], sport matches [18], etc. Overall,
the idea of automated market making is to define algorithmic rules for agents within the
system to place their bets on a certain subject, aggregate them and derive a single function
(conservation function) from the outcome. In DEXs, this process goes a little different. First,
the conservation function is defined and then agents (traders and liquidity providers)
match their trades, and whenever there is a trade that goes beyond the expectations of the
cost function, it is punished by the algorithm and, therefore, it discourages agents to behave
(trade) differently than prescribed by the conservation function. Although in DEXs agents
are not algorithmic bots but real people, they do act in a way as was expected algorithmic
bots to act to preserve the cost function.

In [19], Othman introduced five desideratas (desirable properties) for cost functions—
monotonicity, convexity, bounded loss, translation invariance and positive homogeneity.
As it was proven by [20], it is impossible for the cost function to satisfy all five properties.
Therefore, all the cost functions utilized by AMMs satisfy only a few properties, while
others are relaxed.

2.1. Logarithmic Market Scoring Rule

The first automated market maker for prediction markets was introduced by Hanson [21,22].
It has been quite popular due to its simple analytical form and satisfying the main desirable
properties for cost functions (convexity, bounded loss and translation invariance).

The Logarithmic Market Scoring Rule (LMSR) conservation function for n assets is
defined as:

C(x) = b log(
n

∑
i=1

exp(xi/b) (1)

where b > 0 is the liquidity parameter, it is strictly positive, constant and it is defined before
the pricing of assets. b parameter controls the liquidity in the market—the higher the b,
the less the price is shifted when assets are added. Moreover, it translates into the bigger
maximum loss because the market maker’s worst-case loss is the function of b which is b
log n.

The derivative of the cost function C(x) is the price function in the LMSR:

pi(x) =
exp( xi

b )

∑j exp(
xj
b )

(2)

The LMSR is used in many settings, such as auctions, prediction markets, rating
markets, etc. In decentralized finance, the LMSR has not been widely used for a few
reasons: first, the LMSR does not satisfy the liquidity sensitivity property; second, it is
quite easy and cheap to compromise the price of an asset when the LMSR is used as a
cost function.

By allowing the parameter b to be the function of the outstanding quantities instead of
being constant, the LMSR becomes liquidity sensitive—the Liquidity-Sensitive Logarithmic
Market Scoring Rule (LS-LMSR), introduced by Othman [23]:
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C(x) = b(x) log(
n

∑
i=1

exp(xi/b(x)) (3)

where function b is as follows:
b(x) = α ∑

i
xi (4)

where α is the parameter that is strictly positive and set before the pricing of assets. The
possible maximum commission (also called vigorish v) depends on the α parameter and
does not exceed v when α is set as follows [24]:

α =
v

n log n
(5)

where n is the number of outcomes (assets in the pool for AMM-based DEX). Depending
on what is the desired maximum commission v, the optimal parameter α can be easily
calculated.

In decentralized finance, the LS-LMSR is used in applications such as Augur [25] and
Gnosis [26].

2.2. Constant Product Market

Constant product AMM (CPAMM) cost function for n assets is defined as follows:

C(x) =
n

∏
i=1

xi (6)

where C(x) set as a constant.
Constant product AMM has many advantages that makes it suitable to be used in

DEXs—it is simple to code into the smart contract, it is a convex function which meets
the principles of supply and demand and it is also liquidity sensitive. Although it has
been shown in [27] that prices in such a DEX can be inaccurate during volatile markets,
this cost function still remains the most popular and being utilized by large DEXs, such as
Uniswap [28,29].

Decentralized exchange pools consist of two tokens and Equation (6) becomes the
following:

x × y = k (7)

where k is the constant, x is the amount of the first token and y is the amount of the second
token.

The price for each token in a pool can be calculated by simply dividing the number
of tokens in one reserve to the number of tokens in another. A more detailed review of
constant product markets is given in [30,31].

2.3. Combination of Constant Sum and Constant Product Markets

In DeFi, there are assets that have the same value, for example, a different version of
USD (USDC, USDT, etc.). Because the ratio between asset x and asset y in such pools is
stable and close to 1, they are called stableswap pools. The pricing formula for stableswap
pools was developed by the Curve team [32]. Essentially, this is a combination of the
constant product market pricing formula xy = k and the linear invariant x + y = C. The
rationale behind adding the linear invariant term to the constant product formula is to
achieve the closer peg 1:1 and allow lower slippage for stableswap pools. When using only
a linear invariant formula, tokens are always traded at 1:1 with zero slippage; however,
this might lead to the depleting of the pool’s one token. Using only a constant product
formula leads to larger slippage and a less stable peg. Therefore, the combination of these
two curves allows to keep the pool balanced while providing a more stable peg.
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The final stableswap curve formula looks as in Equation (8). For the full explanation
and derivation, refer to the paper [33].

22 A(x + y) + D = 22 AD +
D3

22xy
(8)

where A is the amplification factor for the linear invariant curve—the larger the A, the
closer the curve to the linear. D is the total amount of tokens in the pool.

To calculate the price for the token, one needs to express the curve for y from
Equation (8), and the derivative of that expression stands for the price. Stableswap AMM
is widely used in many DEX pools that have the same price for both tokens.

3. Aggregation Methods

In this paper, we focus on oracles for DeFi applications that get price information
directly from the decentralized exchanges by aggregating the output prices over a certain
time period. Every time there is a new swap (trade) in the DEX, the price is updated in oracle
and then the time-weighted average is calculated. To mitigate the possible effect of the
price manipulation within one or a few blocks, one would prefer to use the time-weighted
and/or liquidity-weighted average price.

In this section, we discuss various aggregation methods and show the impact of a
price manipulation attack on each of them.

3.1. Arithmetic Mean Time-Weighted Average Price

The arithmetic mean TWAP over n price updates is calculated as follows:

TWAP =
∑n

i=1 ti pi

∑n
i=1 ti

(9)

where ti is the time elapsed between the price update i and next price update i + 1, and pi
is the price during that period. n is the averaging window.

We estimate the effect of manipulation on the TWAP price when the attacker wants to
consistently manipulate the spot price for m times of price updates within the averaging
window n.

TWAPm =
∑n−m

i=1 ti pi + ∑n
j=n−m+1 tj pj

∑n
i=1 ti

(10)

assuming that attack would happen in the last m blocks. From here, we would like to
estimate the pj—how big should the manipulated price be that the attacker should target
in order to achieve the desired effect on TWAPm.

m

∑
j=0

tj pj = TWAPm ×
n

∑
i=1

ti −
n−m

∑
i=1

ti pi (11)

In the case when the attacker does not want to be exposed to arbitrageurs and wants to
manipulate the price within one block m = 1, the manipulated price will be as follows:

pj =
TWAPm × ∑n

i=1 ti − ∑n−m
i=1 ti pi

tj
(12)

Although using the TWAP instead of a spot price is safer in terms of avoiding the malicious
price manipulations, the output from the averaging might not be accurate.

3.2. Geometric Mean Time-Weighted Average Price

The geometric mean TWAP over n blocks can be calculated as the nth root of the
product of the spot price on each block:
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TWAP = (
n

∏
i=1

pi)
1
n (13)

If the attacker wants to manipulate the geometric mean TWAP by manipulating the
price over m blocks, then the target TWAP will be calculated as follows:

TWAPm = (pn−m × qm)
1
n (14)

An attacker wanting to manipulate the TWAP to some particular oracle price TWAPm
over m blocks will need to know what spot price q they need to move the normal spot price
p to in each of those blocks. It can be calculated by rearranging Equation (14):

q = m

√
TWAPn

pn−m (15)

This equation shows that it is surprisingly difficult to move the geometric mean TWAP
from the wider market spot price when manipulated blocks are few in number relative to
unmanipulated blocks. That is, the spot price must be moved a significant distance from its
wider market price in order to have even a modest impact on the geometric mean TWAP.

3.3. Median Time-Weighted Average Price

Using median time-weighted average prices as oracles has been discussed in [34],
although they have not been widely implemented in practice yet. Theoretically, because the
median is unaffected by the effect of outliers, it could be a solution to avoid single-block
manipulation attacks, especially in pools with small liquidity. For an attacker to influence
the oracle’s final output price, they would need to control the last m block prices for at least
half of the period of the window size.

From the economic point of view, storing price time series over a certain period to
calculate the median could be very expensive in terms of the gas cost in the Ethereum
blockchain. In alternative blockchains with a different technical design and cheaper gas
cost, this could be possible if the pros of using the median TWAP outweigh the cons. In
DeFi, median TWAP oracles have been implemented in the Euler Finance protocol as an
alternative price source to the geometric mean TWAP [34].

4. Algorithmic Model to Estimate the Safety of TWAP Oracle

We have reviewed AMM cost functions in decentralized exchanges that are often used
as price oracles. Moreover, we looked at the most popular methods for price aggregation
in oracles. Now, we would like to systematize everything into the algorithmic model that
allows to estimate the safety of any DEX-based TWAP oracle. Inputs in the model are
parameters of the protocol using TWAP oracle and parameters of AMM that is being used
as oracle. Outputs of the model are the attack cost AC and capital C needed to provide to
the protocol under attack to be able to profit from it. Overall, the model output only tells
how much funds a potential attacker needs to gain the profit from price manipulation. To
assess the economic feasibility of such an attack, one would need to perform additional
independent analysis, for instance, if model output tells that attack would cost 100 USD,
then it is economically feasible for many people and, therefore, it is not safe. If model
estimates AC and C to be big so only a few people can technically perform an attack, then
one can conclude that chances of oracle attack are low. Outputs from the model can serve
as a starting point to decide on the safety of TWAP-based oracle.

We first introduce the general algorithmic model that allows to estimate the feasibility
of price manipulation attack. Then, we explain how the model can be implemented based
on the example of lending protocol—this is the most popular use case of TWAP oracles.
We provide a brief explanation of how lending protocols work, demonstrate how model
can be used and simulate various attack scenarios for constant product and stableswap
AMM-based TWAP oracles.
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4.1. Algorithmic Model

Algorithm 1 shows step by step how to estimate the safety of TWAP oracle. Model
outputs are attack cost AC and minimum collateral C an attacker needs to profit from their
manipulation. Knowing these parameters allows us to estimate the economic feasibility of
such an attack and, therefore, to decide whether it is safe to implement the given DEX as an
oracle. Input parameters needed for the model can be divided as protocol specific, oracle
specific (averaging window size WS) and DEX specific (liquidity L). These parameters
can be easily found in protocol’s web-page and in DEXs page (L). To find values of Δx
(number of tokens needed to move the price to the target value) and Δy (number of tokens
to receive in return after the swap), one needs to know the type of AMM that DEX uses to
price assets. In Appendices A and B, we have derived equation for Δx and Δy for constant
product and stableswap AMMs. Overall, all these parameters can be precisely found and
no assumptions need to be made. There is one more parameter that is crucial to take into
account—the number of blocks m during which attacker will try to manipulate the price.
This can not be known upfront but its value affects the cost of an attack significantly. One
would suppose that the value of m should be small because any deviation from the spot
price would be noticed by arbitrageurs and set back to the real value, not allowing an
attacker to manipulate for many blocks. However, in pools with infrequent trading activity,
the arbitrage opportunity might go unnoticed for longer times. Moreover, there is a chance
of multi-block MEV-style attack, where an attacker could cooperate with the miner to mine
a few blocks in a row. This style of attack combined with the oracle price manipulation
makes the oracle attack cost cheaper. In the examples and simulations below, we assume
no MMEV attack and frequent trading activity in a pool.

Algorithm 1: Model to estimate the safety of DEX-based oracle
Input: Protocol risk parameters, WS, m, Δx, Δy, L
Output: AC, C

1 Calculate minimum deviation from the spot price needed to profit based on
protocol-specific parameters.

2 Calculate target manipulation price from oracle TWAPm.

TWAPm = TWAPs + TWAPs × ε

3 Calculate how big should be the manipulation price pm to achieve needed
TWAPm. For this:
(I) Estimate the oracle window size WS.
(II) Decide on number of blocks m to manipulate the price.
(III) Depending on aggregation method, calculate pm using Equation (12) or
Equation (14).

4 Calculate attack cost AC based on AMM-specific parameters (liquidity L) and pm
found above. Find Δx and Δy according to the AMM type, as shown in
Appendices A and B.

AC = Δx − Δy

5 Calculate the minimum capital needed to obtain profit Pro f it > 0 depending on
protocol’s risk parameters.

6 Estimate the economic feasibility of an attack based on the attack cost AC and
collateral C values.
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4.2. Lending Protocols

Lending protocols (also called money markets, credit protocols or protocols for loan-
able funds) are a market that matches borrowers and lenders—users—who wish to gain
interest on their savings, deposit their funds to the lending protocol and then it allows
borrowers to lend available assets paying certain interest rate. Detailed explanation on how
lending protocols work was provided in the paper [35]. Overall, lending protocols have
attracted a lot of interest and become very popular among DeFi community—Ethereum-
based lending protocols such as Aave [36], Compound [37], dYdX [38] and MakerDAO [39].
Credit protocols are one of the most popular use cases for AMM-based DEX data to be used
as a price feed. Chainlink type of price databases are not always available for relatively
new blockchains. In such cases, DEXs, acting as the only option for nascent chains, are
used as substitutes for more robust oracle solutions. Considering the large TVL (total value
locked in protocol) associated with the popularity of credit protocols and their growing
functionality and complexity, it is vital to understand the safe settings of AMM pools that
are used as a price information source.

In lending protocols, any user can anonymously borrow funds, but to be able to do so,
they first need to provide some collateral asset. To ensure the safety and the solvency of
protocol, the Loan-to-Value (LTV) parameter is used—this parameter shows how much
a user can borrow relative to their collateral value (all loans in lending protocols are
overcollateralized. For example, if user deposited 100 USD worth of collateral C and LTV
parameter is 80%, then they can borrow up to 80% worth of the other asset B. More detailed
explanations of lending protocols and their risk parameters can be found in [35–37,39].

In practice, lending protocols are the most frequent target for oracle manipulation
attacks. An attacker tries to artificially increase their collateral value by compromising the
oracle price information to be able to borrow more.

We assume a scenario where the attacker artificially increases the value of their col-
lateral to be able to borrow more than their actual collateral value allows. In this case,
attacker’s profit can be formulated as follows:

Pro f it = (C × LTV + C × LTV × ε)− C (16)

Here, ε is the target price manipulation fraction and C is the value of collateral—for
convenience and normalization purposes, we consider it not as an absolute value but
relative to the pool liquidity. This normalization allows us to generalize findings and give
parameter recommendations for any pools regardless the size:

C =
Collateral

PoolLiquidity
(17)

Because the attacker would need to give up their collateral in order to realize their
profit from manipulation, we subtract the actual value of their collateral from the profit.
From Equation (16), it is clear that the lower the LTV parameter, the more difficult it is to
get the profit from an attack and the higher the ε should be. We can derive the value of the
target manipulation price from the Equation (16)—we set the Profit = 0 and calculate the
ε as:

ε ≥ 1
LTV

− 1 (18)

Figure 1 shows the minimum manipulation target ε an attacker needs to achieve for
the attack to be profitable given a certain LTV.

Next, after we know the minimum price target needed to make the attack profitable, we
can calculate the total cost of an attack using the equations derived in Appendices A and B.
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Figure 1. Minimum price target needed for given LTV to obtain the profit from the attack.

4.3. Attack Scenarios to Lending Protocol Using Constant Product AMM-Based TWAP Oracle

Knowing both the profit and attack cost equations, it is straightforward to simulate
various attacks to lending protocols that are using any type of AMM as oracle. We looked
at the two most popular types of AMM used in decentralized exchanges—constant product
and stableswap—to obtain the full understanding about attacker’s profits and manipulation
capital needed.

In this section, we demonstrate how to calculate the cost of an attack under certain
conditions using the terms and explanations shown above. Assumptions used in this
example are as follows:

• Loan to Value of the target asset equals 40%.
• TWAP window equals 30 min.
• Time without arbitrage equals 1 min.

Note that we are not making any assumptions regarding pool liquidity given how
Equation (16) was defined, which allows us to make calculations, irrespective of the
pool liquidity.

Using the attack cost formula and simulating scenarios with varying attacker’s collat-
eral C, price target ε and pool’s liquidity L, we arrive at the following profitability matrix
shown in Figure 2, where the space in red indicates a loss (negative profit), the space in blue
indicates a positive profit for the attacker and the white area indicates zero-profit scenarios.

From the results shown in Figure 2, we see that the attacker can theoretically reach
a profit under almost every combination of events. Moreover, we see that an attack can
be profitable by adjusting the requirements to the collateral and the manipulation target
ε. The lower the ε, the higher the collateral the attacker needs to provide for the attack to
become profitable and vice versa. These results make us question whether there is such a
combination of ε and collateral that allows an attacker to obtain profit from an attack with
minimum resources?

Figure 3 shows that, effectively, we can retrieve the attack’s minimum cost through
a specific combination of ε and collateral provided; let us call it an optimal target. For the
example covered in this section, this point happens at collateral being around five times
larger than the pool’s liquidity and manipulation target ε being 4.7. Most importantly,
the figure below shows that the total capital needed for a profitable attack is 9.3 times the
liquidity in the pool used for the AMM.

The optimal target found above and amount of resources needed to reach that point
can serve as a reference when deciding on the safety of an oracle.
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Figure 2. Overview of various attack scenarios in constant product market. The x-axis shows the
amount of an attacker’s collateral in terms of liquidity, and the y-axis is the target manipulation price
ε. The space in red shows the non-profitable attack scenarios (when attack cost exceeds the profit).
Blue areas show profitable attacks, while the space in white shows when Pro f it − AttackCost is close
to zero. LTV = 0.4 for all scenarios.

Figure 3. Attack cost, minimum collateral needed and the total resources needed for the
profitable attack.

4.4. Attack Scenarios to Lending Protocol Using Stableswap AMM-Based TWAP Oracle

In the previous section, we showed how parameters need to be set for the constant
product AMM oracle. In this section, we look at the attack cost and profit when using the
stableswap pool as an oracle.

With the attack cost calculated for the stableswap in Appendices A and B, we can run
simulations as in the previous section and produce the profitability matrix. Note that the
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assumptions used within this section (except for the amplification factor, which is unique to
the stableswap AMM) are the same as those used in the previous section. The following figure
shows the profitability matrix using a stableswap with an amplification factor A of 30.

From Figure 4, it can be seen that the profitability space for an attack is larger in a
stableswap AMM than a CPAMM. In other words, manipulating a stableswap-based TWAP
is cheaper than a CPAMM-based TWAP oracle using the same assumptions.

Figure 5 shows the minimum cost of performing a profitable attack, indicating a
significantly lower point of minimum cost for an attack in a stableswap AMM than in a
constant product AMM. Moreover, another difference is the considerably slower growth
rate of the attack cost as the manipulation target increases, which makes the total cost of
the attack stagnate as the manipulation target increases. In contrast with constant product
AMM, the total cost of an attack keeps increasing. For a stableswap AMM, this results in
relatively cheap attack opportunities.

As a final note, a stableswap pool can be relatively stable (in terms of price) at a very
unbalanced state (in terms of underlying reserves). At the extreme, we could have a situation
where the pool is very close to the “knee” of the pricing curve (where the constant sum (linear)
part of pricing curve meets the constant product part), and manipulation attacks become
increasingly easier to perform given the aggressive nature of the stableswap curve. In other
words, we cannot assume that the attack will take place from a 50:50 state or anything closer to
that. The more unbalanced the pool at the start of the manipulation attack, the less resources
needed to conduct the attack. Therefore, we do not recommend using stableswap pools as an
oracle. Please also refer to Appendix B, where various attack scenarios in stableswap pool
were shown under different LTV values—it is clear that this type of pool is much cheaper
to manipulate comparing with the constant product market. Moreover, as we can see from
Figure 5, once the optimal price target is reached, attacker does not need significantly more
resources to manipulate price higher and to obtain even higher returns from the attack.

Figure 4. Overview of various attack scenarios in stableswap market. The x-axis shows the amount
of attacker’s collateral in terms of liquidity, and y-axis is the target manipulation price ε. The space
in red shows the non-profitable attack scenarios (when attack cost exceeded the profit). Blue areas
show profitable attacks, while the space in white shows when Pro f it − AttackCost is close to zero.
LTV = 0.4 for all scenarios.
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Figure 5. Attack cost, minimum collateral needed and the total resources needed for the
profitable attack.

5. Conclusions and Discussion

DeFi protocols, as well as any other blockchain applications, function in a closed
environment, and for their proper performance, a reliable data source (oracle) is needed.
Currently, there are two different ways to fetch the data about assets’ prices—either by using
trust-based oracles (e.g., Chainlink) or by getting the prices directly from the decentralized
exchange. In our research, we focused on understanding the mechanism of the latter option.
Understanding the safety of a DEX-based oracle starts from the deep understanding on
how DEXs work; nowadays, they function using the automated market-making (AMM)
mechanisms and the asset’s price discovery happens along the curve of the AMM cost
function. We reviewed the most widely used AMM cost functions and derived the cost of
an attack for them. The next step was to look at the various aggregation methods; because
using the spot price directly from DEX can lead to cheap price manipulations, most of the
DeFi applications aggregate historical spot prices over a certain window size to decrease
the chance of an attack. Depending on the method implemented and the window size,
the target manipulation price can be higher or lower. We have provided equations to
estimate the target attack price based on the aggregation method. We then developed
the algorithmic model to estimate the safety of a DEX-based oracle on the example of
a lending protocol. A step-by-step algorithm considers protocol-specific, oracle-specific
and DEX-specific parameters and provides the logic on how to proceed with deciding on
the safety of an oracle. Although we used the lending protocol as an example of a DeFi
application using a DEX-based oracle, the model we introduced can be easily generalized to
other types of protocols by changing the protocol-specific parameter (LTV in our example).

Incidents that happen in the new field of decentralized finance often lead to the crisis of
trust from users and have a large social impact on the entire industry. Despite the crucial role
oracles play in decentralized finance, their underlying mechanics are still under-explored
and poorly understood which resulted in several protocol exploits [13–15]. However, we
see the growing interest from both academia and industry practitioners to improve the
oracles’ resistance to manipulation attacks—new AMM curves are being introduced [40–42],
oracle research is growing and more protocols are aware of price manipulation attacks.
There is still a lot of work that can be done to achieve the goal of a safe decentralized
price oracle in every layer—protocols using oracles can improve their risk management
strategies, the AMM cost function can contribute a lot to the safety of oracles, as we saw in
Sections 4.3 and 4.4, where the different pricing curves result in the different costs of attack.
Finding the optimal AMM cost function that would minimize the chances of manipulation
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is not a trivial task, and new pricing curves are being proposed by academia [40,42] and
implemented in practice [41]. We hope to see more work performed in this direction. More
research can be conducted about information aggregation methods as well—for economic
reasons, currently, protocols are using simple statistical methods such as the TWAP. Finding
an optimal solution that is less sensitive to the outliers and at the same time has a high
price precision and cheap gas cost is still an open question at the moment. Overall, oracles
in decentralized finance remain one of the most important and under-researched topics in
the field with a huge impact on the entire cryptocurrency system.
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Abbreviations

The following abbreviations are used in this manuscript:

LTV Loan to Value
AMM Automated Market Maker
TWAP Time-Weighted Average Price
DEX Decentralized Exchange

Appendix A. Attack Cost Calculation for Constant Product Market

In constant product AMMs, the liquidity is defined as follows:

x × y = k (A1)

If an attacker wants to move the spot price of an asset, they would need to swap
against the pool, depending on whether they want to manipulate the price up or down. If
we assume that they want to increase the price of y, they would need to sell some amount of
x and receive some y tokens in return (adding x tokens from the pool, an attacker decreases
its value). After the swap, the liquidity in the pool will be as follows:

(x + Δx)(y − Δy) = k = xy (A2)

From here, we can express the Δy—how much of token y attacker would receive after
making a swap:

Δy = y(
Δx

x + Δx
) (A3)

Because the attacker wants to increase the price y by adding the Δx tokens and
removing Δy tokens, we can express how big the change of manipulated price pj would be:

pj =
x + Δx
y − Δy

=
x + Δx

y − y( Δx
x+Δx )

=
(x + Δx)2

xy
=

(x + Δx)2

k
(A4)
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From here, we can express the Δx—how many tokens x are needed to get the target pj:

Δx =
√

pj × y × x − x (A5)

Now, when we know both how many tokens x will be needed to make a swap and
how many tokens y we receive in exchange, we can easily calculate the total attack cost by
subtracting Δx − Δy:

AC = (
√

pj × y × x − x)− pj × y
√

pj × y × x − x
x + (

√
pj × y × x − x)

(A6)

Appendix B. Attack Cost Calculation for Stableswap Market

The stableswap formula first introduced by Curve protocol is as follows:

22 A(x + y) + D = 22 AD +
D3

22xy
(A7)

To be able to calculate the cost of an attack, we first need to express the y—how it is
valued in terms of token x. For this, we rearrange Equation (8) in the form of quadratic
equation which allows us to easily obtain the y formula:

y =
(1 − 1

A )× (D
4 − x) +

√
[(1 − 1

A )× D
4 − x]2 + 4D3

16Ax

2
(A8)

The derivative of the function in Equation (A8) would stand for the price:

y′ = 0.5
[−1 + 1

2 (− D3

Ax2 − 2(1 − 1
A )D − x)]√

D3

Ax + ((1 − 1
A )D − x)2

(A9)

To calculate the number of tokens Δx an attacker needs to swap to move the price to a
specific target, we numerically solve for x in the price formula obtained in the previous step.

After we find how many tokens Δx are needed to have the price y′ (or pj to be consis-
tent with Appendix A), we use that number to figure out how many tokens Δy would be in
the pool after the swap by using Equation (A8) with the known x.

Finally, we can calculate the attack cost by subtracting the difference in token numbers
before and after the swap: AC = Δx − Δy.
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Abstract: The popularity of electric vehicles (EVs) is constantly increasing, as they use relatively
greener, sustainable energy. However, it is a fact that the charging stations for EVs are yet to meet the
demand. It could be a great solution if a peer-to-peer (P2P) charging system could be initiated by
anyone who wants to make their garage’s charge points publicly available for commercial purposes,
named a home charging station (HCS). In this work, our idea is to bring interested charging stations
under a network of nodes and a blockchain-based management system, where the blockchain
is responsible for ensuring the authenticity of both the charging stations and charge receiver. A
cryptocurrency-based payment system has also been proposed to ensure transactions’ security,
integrity, transparency, and immutability. A reputation management system is applied to maintain
the quality of service. Miners with high processing power are used to alleviate lagging during
block creation, supported by edge servers. The proposed system has been implemented by using
virtual machines. A theoretical analysis is presented to assess the compatibility and possible cost
requirements to implement the system in a real-world scenario.

Keywords: blockchain; cryptocurrency; edge computing; electric vehicles; Ethereum; P2P charging

1. Introduction

Vehicles with the potential of using renewable energy sources, such as electric vehicles
(EVs), have caught worldwide attention in recent times [1–3]. These vehicles do not depend
on fossil fuels but use other renewable energy sources to reduce gas emissions. As stated
in [4,5], by the year 2040, it is projected that renewable energy is to come to equivalence with
coal and natural gas-based electricity generation. Additionally, the EV stock is expected to
reach at least 140 million by 2030. However, it will take a long period of time to integrate
them efficiently within the infrastructure. At present, EV users are hesitant to use their
vehicles for long drives, and potential customers go through the dilemma of choosing
an EV over a traditional vehicle, as there are so few charging stations. Level 2 charging
equipment can provide a vehicle with 10 to 20 miles of range for every hour of charging.
With the necessary set-up, anyone can make their garage available to charge an EV for
long-distance traveling [6]. This could provide an abundance of charging stations across
the country within the existing infrastructure. Our idea in this setting is that the EVs and
the home charging stations would be two different party nodes under a secure and reliable
system with availability, security, preservation of privacy, and payment facilities.

Malicious operators can seriously threaten EVs’ security and privacy through various
malicious exploitations [7–9], e.g., privacy leakage, falsification, node impersonation, or
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advertising fraudulent charging services. To provide secure charging services for EVs,
many innovative mechanisms have been proposed so far, and some are even implemented
to some extent [10,11]—e.g., trust mechanism and monetary approaches. However, the
trust mechanism is not sustainable and susceptible to Sybil attacks and whitewashing
attacks, and the monetary approach relies on trusted centers. Trusted centers may not only
leak users’ private information for profit, but also may be vulnerable to attacks. In this
context, blockchain [12] offers a unique platform for secure energy transactions within
a distributed network without trusted agents through the use of an immutable ledger,
cryptocurrency, and the execution of smart contracts.

As we know from various recent works and interest shown by a wide range of
researchers, blockchain technology can come in handy for various management systems.
A blockchain is a decentralized, distributed, open ledger, and each node in the network
has a copy of the ledger. It was developed as a peer-to-peer network without third-party
intervention [13]. The blockchain’s integrity is based on strong cryptography and hash
functions that provide validation and chain blocks together on transactions, making it
nearly impossible to tamper with a block or any individual transaction without being
detected [14].

As the number of online systems has increased, we have witnessed that the threats
of various types of cyber attacks have also increased significantly. Among the various
types of attacks, unauthorized entities or malware-based attacks can cause fatal damage to
the system [15]. Thus, a deficiency in the proper authentication process can make a P2P
system vulnerable to various types of attacks. In our proposed system, a blockchain-based
authentication system is used, so that before making an agreement, the entities (EVs and
the HCS) can check the authenticity of each other. Again, while getting services from the
HCS, a proper charging measurement system is essential to calculate the amount of the
electricity that has been exchanged from the HCS to the EV. Moreover, it is also required to
determine the number of bills to be paid. In our system, a smart meter is used to calculate
the amount of charging, and the HCS would share that by using the blockchain.

Due to the popularity of cryptocurrency in the financial sector, researchers have also
started utilizing it in various fields. In fact, the transparency, trustworthiness, worldwide
availability, convenient exchange facilities, ease of access, minimum transaction cost, etc.,
encourage the business world to utilize cryptocurrency [16,17]. Hence, in this study,
a cryptocurrency-based payment system has been used for the system: after calculating the
amount (to be paid), the smart meter requests a transaction in the blockchain. The system
will automatically deduct the amount from the EV, which will be credited to the HCS’s
account. After each transaction, the service receiver, i.e., the EV owner, can provide feedback
about the service received. It will help the server suggest that HCS out of those nearby,
as an HCS with a higher rating will come before one with a lower rating. As generating
blocks for a blockchain requires high computational power, edge computing services have
been used to perform the complex mathematical calculations required for mining.

In this work, we used a combination of multiple protocols, and the main contributions
of this can be summarized as follows:

• A blockchain-based electric vehicle charging management system is proposed where
an EV can receive charging (or recharge) when necessary from anywhere in the world.
HCSs from anywhere in the world can join the network and can earn money by
providing charging services to EVs. Management, searching, etc.—related services—
would be provided by the blockchain.

• To avoid unauthorized access, malware, DDoS (distributed denial-of-service), or any
other security attacks, a blockchain-supported authentication system is employed.
Additionally, the system also preserves the privacy of the members.

• To remove confusion, miscalculations, etc., a smart billing system is proposed in this
paper where two different agents are responsible for measuring the amount of charge
exchanged between EVs and HCSs. Moreover, to avoid the hassle of payment, the
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smart billing system (SBS) automatically calculates the amount to be paid and creates
a transaction in the blockchain after the charging process is finished.

• To ensure safe, secure, transparent, and authentic payment, a cryptocurrency-based
payment system is proposed, which was developed by using the Ethereum blockchain.
The payment system is handled by the blockchain, and currency transfers will happen
automatically.

• To ensure the transparency and quality of service (QoS), a reputation management
system is also proposed, where EVs have the opportunity to express the grade of the
service received.

• The system was developed using the Ethereum blockchain, with which the authenti-
cation, billing, payment, and reputation management system were simulated.

To explain the full system, the paper is organized as follows: Section 2 presents the
motivations for the proposed system, together with notable research. Section 3 gives some
preliminary knowledge on the issues and definitions that could help the general readers get
useful information, and it establishes the importance of this work. Section 4 describes the
system’s architecture with its components and transactions. The implementation details are
provided in Section 5. Then, Section 6 contains the performance analysis, and in Section 7,
challenges and limitations are discussed. The paper concludes with Section 8 with future
research directions.

2. Related Work and Motivation

The energy-sharing method is not new, yet the popularity of using EVs has unlocked
a vast area of research. In this section, we will present some previously published energy-
sharing-related methods.

In [18], Zhang et al. depicted a typical incentive-based approach in the smart grid
environment and explored vehicle-to-vehicle (V2V) scenarios. This is a cloud-based energy
trading process with a contract theory approach. Tushar et al. introduced an incentive game-
based mechanism for distributed renewable energy management in a smart community [19]
to improve the operator’s profit and minimize total energy trading cost. Bera et al. [20]
introduced a novel cooperative energy consumption system within communities in the
smart grid to mitigate energy consumption costs for users and reduce the peak-to-average
ratio. In [21], a global control scheme is proposed for electric energy micro-storage systems
in smart communities to improve the local power quality of demanded and current power
consumption globally.

Sharing energy between two peers requires ensuring the security services, includ-
ing authenticity, privacy, integrity, attack prevention capability, etc. To provide these,
in [22], a token-based decentralized energy trading system was shown that enables peers
to perform transactions anonymously and securely. The system was developed by using
multi-signature and anonymous encryption methods. Li, Z. et al. [23] provided a secure
distributed energy trading market and designed a novel energy blockchain system in
the industrial Internet of things (IIoT) environment. They implemented the system by
using a consortium blockchain. Li, L. et al. [24] presented a novel announcement network
named credit-coin that uses blockchain technology to protect vehicles’ privacy and moti-
vate users to broadcast traffic information. In [25], a pragmatic blockchain utilization case
is introduced for machine-to-machine (M2M) transactions of energy within the housing
society environment. Based on the lightning network and smart contract in the energy
blockchain ecosystem, Huang et al. presented a decentralized security model for the en-
hancement of the security of trading between EVs and charging piles in the peer-to-peer
(P2P) network [26].

A secure way to pay and proper pricing need to be ensured for a P2P EV charging
system. To do that, Zou et al. designed a progressive second-price auction game mech-
anism for resolving large-scale EV charging cooperation problems. They have ensured
incentive compatibility over a finite horizon in their work [27]. Mohammadi et al. depicts a
distributed cooperative charging scheme for plug-in electric vehicles (PEVs) to minimize
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the charging cost for PEV fleets with the integration of a receding horizon method [28]. Liu
et al. [29] proposed a novel renewable energy pricing scheme for smart communities to
reduce the total electricity bill of the residential users utilizing an advanced cross-entropy
optimization method in smart home energy scheduling. A contract game-based direct-
energy trading system is proposed by Zhang et al. [30] for modeling the decision-making
process of electricity operators and consumers in vehicular edge computing networks.
Yang et al. [31] presented a coordinate EV charging mechanism in a microgrid-powered
setting via wind-powered generators through a Markov decision process (MDP) approach.
Utilizing stochastic dynamic programming methods, Wu et al. [32] proposed smart-home
energy management integrated with PEVs (plug-in electric vehicles) to address the problem
of intermittent renewable energy supplies to minimize the electricity cost.

With the popularity of blockchains, some other projects have been found where a
blockchain is primarily utilized for EV charging. For example, in [33], a blockchain was
proposed to ensure a secure and trusted electricity trading solution. The authors of [34]
utilized blockchain to create a trusted distributed environment for charge sharing. In [26], a
blockchain was used for charging management, and in [7], it was used to store the trading
records between EVs and charging stations.

A two-stage autonomous EV charging coordination method implemented on blockchain
was shown by Ping et al. [35] to enable dependable EV charging coordination in the ab-
sence of a third-party coordinator. This mechanism also preserves the privacy of the users.
Wang et al. developed an optimization model on a blockchain framework to manage the
operation of crowdsourced energy systems (CESs) with peer-to-peer (P2P) energy trading
transactions (ETTs) [36]. One of the new paradigms created by the decarbonization, de-
centralization, and digitalization of the energy supply chain (that enables direct exchange
between energy users and producers) is depicted in [37]. Chen et al. proposed an energy
trading framework that marries a blockchain and distributed optimization; the blockchain
enables checks and balances among the participants and disables dishonesty [38].

Consider the above-mentioned papers. Our take is that they provide partial solutions
in terms of P2P charge-sharing systems. A model is required where there will be secure
communication and management, easy and time-saving payment facilities, and reliable
quality of service. Hence, a complete solution is proposed where all the required features
are available for the users. Additionally, in almost all of these previous work, there was no
implementation to show the compatibility and validity of their approaches. Hence, there is
indeed a gap in the existing literature. We brought forth a real-world implementation by
using Ethereum blockchain to show our system’s compatibility, to understand the behavior
of the components and responses, and to collect important data from the system. The
motivations for this work are presented in the next section.

Motivation

Electric vehicles are popular nowadays, and many are embracing the idea of an
electricity-run car with the utmost interest. However, in reality, EV owners are still not
confident enough or are often hesitant to go for long road trips. This is mainly due to
the relatively small number of available charging stations compared to conventional fuel
stations. If the car has a dual mode that runs both on electricity and traditional fuel, the
problem is making a decision of how much fuel is to be always carried (how frequently the
fuel tank needs to be filled up) and how frequently to charge the battery of the EV. This
adds an extra layer of decision making for EV owners. In the usual case, an owner would
like to run the vehicle on electricity, as it is designed to run in that way, which makes it
often significantly costlier than many other regular cars. Thus, the issue we have here is
that we need some kind of efficient charging mechanism or model to support long journeys
by EVs. Some previous works tried to solve this issue in some ways, but as mentioned in
the previous section, almost all of them fall short of the required efficiency, and some have
not even given enough thought to this issue; i.e., models are available, but they are not
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comprehensive or advanced enough. We found a gap in the existing literature on this issue,
and that basically motivated us to devise our mechanism.

P2P systems can be used for this issue of charging, but they would require trust and
security, as complete strangers can come to a charging station. In this case, a good way to
think about getting a solution is that anyone who is registered under the blockchain would
be allowed to get the service. The blockchain makes the system secure and trustworthy,
preventing malicious attacks while recording each transaction. This would create an
increase in the number of charging stations throughout a country, creating a source of
income for charge-point providers without the intervention of a third party.

Furthermore, it can reduce the pressure on expanding the infrastructure for setting
up new charging stations to meet the rising demands of EV charging. This P2P charging
environment will enable an opportunity to see an increase in the frequency of EVs in sectors
such as delivery and medical (ambulance), where EVs are still considered inefficient. As
we aim to move on to a greener future, we need to exploit our infrastructure the most we
can without consuming more areas to set up charging stations.

To minimize the hassles such as platform dependency of the payment system, uncon-
trolled pricing, and delays because of payment confirmation, in the proposed method, all
those issues are solved by using blockchain-based cryptocurrency. A charging management
system is responsible for measuring the transferred energy, and it calculates the price
according to that. Then, the system can directly make a transaction in the blockchain, and
the amount will be automatically deducted from the service receiver’s account. In this way,
the payment will be much easier, easy to handle, and time-saving for both parties.

A reputation management system is added to the proposed method where EVs can
provide a review about the service received, more specifically, about the HCS. Upon
receiving a review, the server will calculate the mean of overall ratings for each HCS, and
while suggesting nearby HCSs to the EVs, HCSs with relatively higher ratings will get
priority on the list. Moreover, as the HCSs have the authority to fix their own pricing, they
can balance the ratings and pricing.

3. Prior Knowledge

3.1. Blockchain

It can be strongly said that blockchain is the future of secure currency management.
Security, integrity, worldwide availability, preservation of privacy, immutability, trans-
parency, etc., are the basic services provided by blockchains [39]. Distributed storage and
decentralized storing system are considered as additional advantages. To understand the
popularity, the amounts of money invested (over the years) by different industries for
blockchain are presented in Figure 1 (adopted from [40]).

Protection from several types of attacks is another special feature of blockchains. Due
to its decentralized and distributed storage technique, many typical attacks, including
Sybil attacks, unknown source attacks, man in the middle (MITM) attacks, unauthorized
entry, and DDoS (distributed denial-of-service), are not possible to perform on a blockchain.
Additionally, consensus protocols put on another level of security on this, which can ensure
the integrity and stability of the information.
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Figure 1. Worldwide blockchain spending by industry.

3.2. Ethereum

Ethereum was selected as the blockchain for the proposed method, which brings
several advantages to the system. Although in terms of popularity, Ethereum loses first
position to Bitcoin, it still has some very exclusive features that make it a popular choice for
industries. The most relevant feature of Ethereum is the smart contract [41], which makes
it a digital asset management system rather than just a money transfer system. Due to
smart contracts, it is possible to manage the full system by using one platform, which is
not possible for other types of blockchain, such as Bitcoin, Zcash, Dash, Peercoin, Ripple,
Monero, and Multichain.

Ethereum supports more transactions per second than most of the other blockchains;
again, Ethereum does not have any coin limit. On the other hand, while most of the
blockchains support the latest scripting language by Bitcoin called Bitcoin Script [42],
Ethereum supports multiple languages that are similar to the most popular languages.
Examples include Solidity, which is similar to Java Script and C; Serpent, which is similar to
Python; and LLL, which is similar to Lisp. Table 1 shows the advantages of using Ethereum
over other blockchains.

Table 1. Comparison of the Ethereum blockchain with others.

Blockchain Symbol Scripting Language
Implementation

Language
Average TPS 1 SC 2 Support

Ethereum ETH Solidity, Serpent, LLL

Go-Ethereum,
CPP-Ethereum,
Py-Ethereum,

EthereumJ, Parity

5.40 Yes

Bitcoin BTC/XBT Bitcoin Script C++ 3.50 No
Zcash ZEC Bitcoin Script C++ 0.06 No
Litecoin LTC Bitcoin Script C++ 0.35 No
Dash DASH Bitcoin Script C++ 0.07 No
Peercoin PPC Bitcoin Script C++ 0.01 No
Ripple XRP N/A C++ 10.75 No
Monero XMR N/A C++ 0.06 No
MultiChain - Bitcoin Script C++ 1000 No

Hyperledger - Go, Node.js, Java, C++,
Python and more Go, Python and More Various Yes

1 TPS = transactions per second. 2 SC = smart contract.
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3.3. Cryptocurrency

Cryptocurrency is a digital currency secured by cryptographic algorithms, and it
provides high security, availability, transparency, etc. It can be said that cryptocurrency is
the future of the economic world. In the proposed method, the payment system is managed
by using Ether, which is a cryptocurrency supported by Ethereum blockchain. It is available
all over the world, decentralized, cost-effective, time-saving transaction-wise facility, and
self-governed; and its convenient money-exchange facilities make it one of the biggest
currencies in the world. The use of Ether in the proposed method makes the payments
automated, secured, easily accessible, time-saving, and hassle-free. In particcular, the EV
does not have to wait after receiving charges, as the SBS automatically sends the billing
information and makes the payment.

3.4. EDGE Computing

Due to consensus management, calculating complex cryptography and hash functions
requires time to generate a block in the blockchain. On the other hand, as the proposed
method would require mobile services, the computational workloads would be handed
over to the edge computing servers. In fact, today’s high-speed Internet, such as 5G and
the upcoming 6G, will be highly efficient for accessing large amounts of data from edge
servers. Thus, rather than arranging and spending a huge amount of money on a physical
server setup, utilizing an edge server is proposed in this system.

4. System Structure

In this paper, a complete solution for an EV charging system is proposed. The system is
comprised of three main protocols, which are: (1) The authentication protocol, (2) the smart
billing system, and (3) the reputation management system. In this section, firstly, there
are short descriptions of the components of the system, followed by detailed information
about the communication, authentication, billing, and reputation management system.

4.1. Components

Four main components participate in this system. These are:

– Electric vehicles (EV).
– Home charging stations (HCS).
– Smart billing system (SBS).
– The blockchain and edge servers.

In Figure 2, visual representations of the components are given.

Figure 2. Components of the system.
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4.1.1. Electric Vehicles (EV)

Vehicles that can utilize electricity (completely or partially) to store and later convert
it to kinetic energy are known as EVs. In the proposed system, any EV can register with
the system and get a charging facility from the registered HCS. To register with the system,
a person with an EV charging facility has to provide their national identity information.
The system will perform verification of the ID, phone number, and email address before
accepting the person as a member. After receiving any service, EVs can send their feedback
related to the service provider, and their ratings will be published publicly, which will help
the EVs select the best service provider nearby.

4.1.2. Home Charging Stations (HCS)

A home charging station (HCS) is a station that is owned by an individual who
may have an EV (or several), and that station is used to charge personal EVs or can be
offered as a charging station (as a service) to other EVs commercially. HCS owners are also
required to register with the system by providing detailed information: identity, charging
equipment, facilities, capabilities, service time, location, etc. All the information is visible
to the potential user before the decision to select the service. All the HCSs can choose their
own pricing per kilowatt (KW), and the EV that selects a particular HCS will agree to that
price. Every HCS will receive a rating point after providing any service, and the rating
points will be available online. It will help the HCSs maintain the quality of service and the
pricing level. Too-costly services may be given poor ratings by the service users (i.e., EVs’
owners who have used the service).

4.1.3. Smart Billing System (SBS)

To calculate the amount of charge transferred from an HCS to an EV, a proper mea-
surement system is used named SBS. SBS calculates the amount of charge in kilowatts (KW)
and determines the amount to be paid according to the price asked by the HCS. In the
proposed system, a smart meter is used to calculate the amount of charging, and the HCS
will share it using the blockchain. As members of the blockchain, all the EVs and HCSs are
connected to the blockchain by using a cryptocurrency. Once all calculations are done and
fixed, the amount will be automatically deducted from the EV’s account and then credited
to the account of the HCS.

4.1.4. Blockchain

To join the proposed system, interested components (EVs, HCSs) are required to be
registered by providing the necessary information and documentation. All the members
will receive a pair of keys (public and private). The public key will be used as the member’s
identity, and all the communications will take place by using that. At the same time, the
public key will hide the real identity of the member, and in this way, it can protect privacy as
well. However, a typical blockchain has to go through a lot of complex calculations because
of block generation and validation, which would require servers with high computational
capabilities. Thus, an edge server is used to perform those calculations to minimize delays
during transactions. With the authentication information, the blockchain is also responsible
for storing all the outcomes of smart billing and reputation management system inside a
transaction to ensure their security, integrity, availability, transparency, etc.

Any EV or HCS can register with the system by providing the required information
and documents. After registration, it becomes a member of the blockchain and is able to
perform transactions anytime over an Internet connection. An EV user that wants to charge
its car can send a request for charging. Then, the system will suggest the nearby HCSs.
Two factors will be applied while suggesting HCSs; one is the distance from the EV, and
the other is the ratings of the HCSs. The EV can select the most suitable HCS among those
on offer. When there is a mutual agreement between an EV and an HCS, the system will
generate an ID for the transaction. In the future, information related to that charging will
be identified uniquely by using that same ID. After receiving the service from an HCS, the
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SBS will calculate the amount of energy (i.e., the amount of charge) transferred and send a
transaction to the blockchain to store the information. At the same time, the system will
deduct the payment from the EV and move it to the HCS’s account. The flow of the system
is illustrated in Figure 3.

Figure 3. Workflow of the proposed system.

4.2. Communication System

To manage all the underlined protocols, several messages are passed among the
blockchain’s components and the servers. The message formats are presented in Figure 4.
All the messages start with the message type field, which informs user about the kind of
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information that resides inside the message and what possible actions are required to
be taken.

Figure 4. Message Formats.

According to the requirements, addresses, i.e., public keys, of EVs, HCSs, and servers,
are added. However, to understand the format more clearly, sender/requester and receiver
are shown on the figure. Completion and termination functions also do similar operations.

Some packet formats are applicable for multiple functions. For example, the same
format is used for the request() and response() functions, where there is a field that informs
the receiver about the type of message (request/response) and the status of the message.
All the messages have a special field called optional data, which can be used for different
purposes. Which function is used by which entity is presented in Table 2.
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Table 2. Smart contract functions in the proposed system.

Responsibility Function Performed By
Name EVs HCSs Server

Registration info. of the components registration() � � -
Request for authentication info. reqAuthInfo() � � -
Verification of Authenticity verification() - - �
Searching for a charge station nearby search() � - -
Nearby HCSs (suggested) suggestion() - - �
Request to an HCS request() � - -
Response to an EV response() - � -
Mutual agreement mutual() � � �
Completion of service completion() � � -
Termination of a service termination() � � -
Amount of charge received by EV chargeReceived() � - -
Amount of charge provided by HCS chargeProvided() - � -
Amount of Ether to be paid amount() - - �
Rating for a service rating() � - -
Request for a block generation transaction() - - �

4.3. Authentication Protocol

In the proposed system, blockchain is used to confirm the authenticity of the members,
i.e., EVs and HCSs. All of them are required to be registered physically before getting
services from the system. They receive a pair of keys after the registration, and later all
the communications will take place with their public keys. Before generating any request
of charging, the system checks the membership status of the EVs, and similarly, before
suggesting nearby HCSs, the system checks the authenticity of the HCSs. Moreover, to
ensure the authenticity of a particular EV or HCS, any of the members can send a request
for authentication information of another component by sending a message to the server
by using reqAuthInfo(). Then, the server will reply with the authenticity of the requested
components. In this way, the authenticity of the components is ensured so that both parties
can initiate a safe and secure connection. Moreover, using the public keys instead of real
identities will protect their original identities and privacy.

4.4. Smart Billing System

The billing system for electric vehicles is a central hub that manages the exchange of
electricity between the charging station and the EV. This proposed smart billing system
(SBS) has two entities: a power management entity and a communication entity. The
communication entity can also exchange information with other entities using wireless
communication. The power management entities reside inside both EVs and HCS. This
entity calculates and reports the amount of power to be charged from both sides. After the
charging is finished, SBS verifies the amount of charge that has been transferred and sends
it to the blockchain server as a transaction. The operational flow of charging and billing is
illustrated in Figure 5.
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Figure 5. Operational flow of the billing system process.

4.5. Reputation Management System

A reputation management system was added to the system to ensure the quality of
service. After receiving the charging service, the EV user can leave feedback about the
received service. A rating from one to five can be provided, where five (5) indicates the best
service and one (1) means the service is the worst possible. The server will calculate the
mean of overall ratings for each HCS, and when suggesting nearby HCSs to the EVs, HCSs
with relatively higher ratings will get priority on the list. Additionally, the EV users will be
able to provide a comment describing the service received. After receiving the feedback
from the EV, all the fields of the transaction are completed, and the server will generate the
block from the transaction.

This will help HCSs to decide on their pricing, as they have the authority to fix their
service rates; an HCS with a higher rating may ask for a higher price, and a newcomer may
ask for a lower price to get good review scores. In this way, the reputation system will also
be useful to create competition between the service providers, i.e., HCSs.

5. Implementation

To emulate the proposed blockchain-based P2P EV charging system, a virtual envi-
ronment was created. Several virtual machines were prepared to represent EV, HCS, and
blockchain servers. It was assumed that a specific amount of charge was transferred from
an HCS to an EV, and the SBS requested a transaction in the blockchain. To simulate the
blockchain, a blockchain testing platform called Truffle was used [43]. This platform pro-
vides a real blockchain with smart contract programming facilities. It provides Ganache [44],
which simulates a real dummy of the Ethereum blockchain and additionally provides pro-
gramming ability, customization, monitoring, debugging facilities, etc. The smart contract
was written in Solidity programming language and deployed using Truffle. To develop the
client side, a lightweight node server [45] was used with Node Packet Manager (NPM) [46].

The target of the implementation was to simulate the transactions, blockchain-based
operations such as block generation, and cryptocurrency-based payment management in a
real-world environment. Thus, the Ethereum blockchain was selected as the blockchain,
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and Ether as the cryptocurrency. However, some of the transactions were not simulated to
simplify the experimental analysis.

5.1. Experimental Setup

The following steps can explain the experimental setup:

• For the experiment, multiple virtual machines were used via VM VirtualBox 6.1. Four
VMs were set up: two of them represented EVs (named EV1 and EV2), and the other
two were HCSs (named HCS1 and HCS2).

• Another one was set up in the blockchain server named BCS. Truffle platform and the
Ganache blockchain were set up in the BCS. Moreover, for web hosting and manage-
ment, a lightweight node server [45] and Node Packet Manager (NPM) were used.

• All the EVs and HCSs were considered as full members of the blockchain, and in
Ganache, they were registered. Before beginning, 100 were assigned virtual Ether,
which is the currency used by the Ethereum blockchain.

• EVs and HCSs use Metamask [47] as an Ethereum wallet, by which they can connect
to the blockchain. Simultaneously, EVs can pay and HCSs can receive money.

• The communication module of the SBS is prepared for the experiment, and to simplify
the experiment, instead of the charge measurement system, the amount of charge
transferred from HCS to EV was assumed.

• The Truffle framework supports multiple smart contract programming languages. In
this experiment, Solidity programming language was used to manage communication,
block generation, and so on. For each and every activity, a function is responsible.
Details of the functions are shown in Table 2. The structure of the transferred messages
is illustrated in Figure 4.

• EVs can provide feedback after getting services from HCSs, which would be helpful
in maintaining the quality of services.

5.2. Deploying the Blockchain

To run the experimental setup, firstly, the Ganache blockchain was deployed in the BCS
machine. By default, Ganache generates some public keys for users, and all the users receive
100 Ether transactions. Each member VM (EV1,2, HCS1,2) got a public key and used that as
its public identity. Then, the members joined the blockchain by using the Metamask wallet.

During development, we kept the amount of charge open to receive manual entry so
that it could receive user input rather than automatic calculation by the charging agent.
After deploying the blockchain, we requested different amounts of charging in KWs
manually. After receiving the entry from the members, the SBS module generated the
amount to be paid and requested a blockchain transaction. Due to the simplification, the
proposed system can generate the block almost instantly after the request and broadcast it
to all the members. During the block generation process, the amount of cryptocurrency, i.e.,
Ether, is deducted from the EV’s account and credited to the HCS’s account. Additionally,
the service receiver EV can provide a rating score (out of 5), and the server will calculate the
mean of all the reputation scores received by each HCS. The rating score will be available
publicly. By using the web interface, all the members can check the global (and also own)
transaction histories, financial statements, and rating points (provided or received).

Multiple transactions were performed to analyze the system. After running the
simulated system, data were prepared manually, and by using smart contracts, information
was added to the transaction() function according to the message structure (presented in
Figure 4). After inserting those data, a transaction was performed in the blockchain. Details
of some of the performed transactions can be found in Figure 6.
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Figure 6. Transactions in the Ganache blockchain.

6. Performance Analysis

Our method aims to implement a blockchain-based P2P charging system where the
payments will be exchanged using the modern money exchange solution called cryptocur-
rency. Due to that, the performance analysis section presents the feasibility analysis and
the advantages that can be achieved from this proposed method.

6.1. Storage Overhead

In a typical Ethereum blockchain, near 2KB are required per transaction, and a block
can accept 512 transactions per block [40]. The average block size for Ethereum is 83.557 KB
[48]. Thus, each 512 charge exchange transaction will require almost 84KB of storage.

6.2. Computational Time

Elliptic Curve Cryptography (ECC) is the algorithm used in Ethereum, which is one
of the strongest algorithms against cryptanalysis [49]. Another factor that consumes time
is the consensus protocol. Ethereum generally uses the Proof-of-Work (PoW) method as
consensus. If the consensus is PoW and the cryptography algorithm is ECC, it requires
about 4 minutes to generate 40 blocks, and the difficulty is 32.49 KH [50]. The average block
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generation times with different difficulties [50] are presented in Figure 7 (n is the difficulty
of the consensus protocol).

Figure 7. Average block generation time (BGT) when the difficulty of the consensus is 32 or 36, and a
comparison.

6.3. Propagation Time

As the proposed method is designed to provide remote support, it requires propa-
gation time to be minimized to maintain the efficiency of the system. However, today’s
high-speed Internet connections are sufficient to provide necessary services, i.e., reasonable
propagation time. For example, by using a 5G internet connection, it is possible to transmit
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50 Mbps to 1 Gbps, but the 6G connection will make it at least 100 times faster than that [51].
Thus, the main two components of the system, i.e., EVs and HCSs, are required to maintain
a high-speed Internet connection to maintain high throughput.

7. Challenges and Limitations

Blockchain was first proposed in 2008, and it was utilized mainly to develop a cur-
rency exchange system for some time [13]. Later in 2014, Ethereum came up with the
concept of smart contracts, which influenced researchers to utilize blockchains in different
fields [52,53]. In fact, that worked like a catalyst for the creation of innovative applications
and areas where they could be used. As a newly developed system, it still requires more
experiments (and convincing proofs) to make it compatible with other systems.

The proposed method can also be considered as an effort to combine the P2P energy
exchange with blockchain technology. Thus, while developing such a system, several
challenges were faced. First of all, it is really difficult to develop a real-world system that
can directly communicate with a blockchain. Thus, a simulation study was performed
where VMs were considered EVs and HCSs. Secondly, there are very few way to learn
and develop smart contracts. Thirdly, rather than popular languages, it supports newly
developed languages such as Solidity, Serpent, and Yul, which makes the development
phase more difficult. However, some simplified code was written using Solidity (which is
an object-oriented, high-level language for implementing smart contracts) to simulate the
proposed method. In spite of our efforts, it still requires improvement and optimization.
Thirdly, to ensure the trustability of the blockchain, our mechanism uses a consensus
protocol which could be highly time consuming (at times), and thus, it is considered a
barrier while developing a system that requires high throughput.

While proposing our system, we have considered this above-mentioned issue about
time consumption, and accordingly developed the system in such a way that the slowness
of the block generation process would not harm the ongoing flow of the system. None of
the components and none of the protocols have to wait for block generation, but rather, they
can just perform the required actions. After all the communications, tasks, and transactions
(starting from searching() and ending with feedback()) are completed, the server initiates the
block generation process. Before the block generation, the charging process and money
calculation are performed. Hence, EVs can leave the site just after receiving the charges. As
the payment is done after the block generation, the HCSs are required to wait. However,
as the system is secure using the blockchain, there is no confusion left regarding receiving
the payment and getting extraordinary services, such as security, integrity, transparency,
and availability; and HCSs can endure the delay and identify the service taker. We have
mentioned the registration system under the blockchain to identify who would be allowed
to get the service. While this gives the solution to this issue, a more efficient method can
be searched for to enhance the performance of the blockchain. In the future, we plan to
also find out more suitable ways to increase the throughput and more optimized outcomes
from the currently designed system.

As blockchain-based systems have become popular recently, they were not developed
to support all kinds of systems (just yet). Hence, there are several practical issues while
adapting blockchain to new systems. Scalability is a critical limitation of the blockchains
because of their decentralized and distributed nature. As all the members store the block
information, the system requires a huge amount of storage space compared to a typical cen-
tralized system. Again, to ensure security, several cryptographic functions are required to
be used for encryption, decryption, hashing, etc., which would require high computational
power, and that would make the blockchain system expensive. Moreover, systems with
low computational power require substantial computational time, which minimizes the
throughput of the system. However, to mitigate these problems, several online solutions,
such as edge/fog computing, would help the blockchain-based system, as they can virtually
provide high computational and storage capacity and can perform complex cryptographic
calculations in short periods of time.
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8. Conclusions and Future Direction

With the gradual increase in environment-friendly electric vehicles, the availability
of charging stations should be ensured. However, it is not an easy task anyway to make
them available everywhere, especially in rural areas. Our proposed method largely solves
this issue, as it uses an approach of enhanced peer-to-peer charging of EVs, which would
increase the availability of charging stations without much change to the existing infras-
tructure. It will use the same areas but will employ a mechanism to make bonds between
the EVs and charging stations anywhere. The rating system can be very useful for keeping
the market prices in check and ensuring the quality of the service.

The transactions without a third party are made safe via integrated blockchain to
secure the environment for the member nodes of the blockchain for trade. Moreover, a
cryptocurrency-based payment system makes the system easy, automated, hassle-free, time-
saving, durable, environment-friendly, immutable, and available worldwide. Furthermore,
enhanced technological support structures, such as edge computing, and high-speed 5G/6G
Internet, can be easily combined with the system to make it more efficient. In the future,
we plan to integrate the proposed system with real EVs and HCSs and collect real-world
data from those, and make necessary arrangements to enhance the quality of service.
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Abstract: The cryptocurrency market is understood as being more volatile than traditional asset
classes. Therefore, modeling the volatility of cryptocurrencies is important for making investment
decisions. However, large swings in the market might be normal for cryptocurrencies due to their
inherent volatility. Deviations, along with correlations of asset returns, must be considered for
measuring the degree of market anomaly. This paper demonstrates the use of robust Mahalanobis
distances based on shrinkage estimators and minimum covariance determinant for observing anomaly
scores of cryptocurrencies. Our analysis shows that anomaly scores are a critical complement to
volatility measures for understanding the cryptocurrency market. The use of anomaly scores is
further demonstrated through portfolio optimization and scenario analysis.

Keywords: cryptocurrency; anomaly score; Mahalanobis distance; minimum covariance determinant;
shrinkage estimators

1. Introduction

Even though investments in cryptocurrencies were initially viewed as risky bets, in-
creased participation by individuals as well as institutions have been transforming those
views, as the cryptocurrency market is now perceived as a new asset class for many in-
vestors. With these revolutions, there have been numerous studies with the overall objective
of understanding the cryptocurrency market [1–3] or, more specifically, cryptocurrencies
as investment assets. Much effort has been put into analyzing diversification effects and
evaluating cryptocurrencies as an asset class [4–8]. Others have focused on diversification
across cryptocurrencies [9] and cross-correlation among themselves [10,11]. Predicting
price movement of cryptocurrencies using social media data [12], the economic and po-
litical uncertainty of the crypto market [13,14], and liquidity of cryptocurrencies [15,16]
have also been studied. Due to large swings in cryptocurrencies, analyses also focus on
the volatility of the market. Many studies have investigated risk factors of cryptocurren-
cies [17–20] and examined models for volatility forecasting [21,22], including forecasts of
daily value-at-risk [23].

In this article, the risk and volatility of the cryptocurrency market are further examined
but from a macro view of observing anomaly scores of market movements. The analysis is
based on viewing cryptocurrencies through anomaly scores measured with Mahalanobis
distance and its robust variations. The analysis has two significant contributions. First,
while cryptocurrencies are generally understood as being more volatile compared to tradi-
tional assets, observing anomaly scores provides a standardized framework for identifying
unlikely or outlier events, where anomaly calculations incorporate mean, variance, and
correlations. Furthermore, anomaly scores are analyzed through cryptocurrency returns
as well as risk factors, and robust formulations are proposed to handle extreme outliers in
cryptocurrencies. Second, anomaly scores can enhance portfolio management and scenario
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analysis of cryptocurrencies. Anomaly scores can act as an indicator of abnormal market
conditions, and they can also portray a statistical picture of historical events that provide
a medium for measuring historical likelihood as well as estimated likelihood of future
scenarios. Performing scenario analyses using risk factors allows a more intuitive and
rational interaction with the crypto market. Overall, the analysis provides a practical
example of analyzing the crypto market from a more macro perspective that is a valuable
complement to volatility analysis of cryptocurrencies.

2. Methodology

Anomaly scores of market movements are measured with Mahalanobis distance (MD),
which is a multivariate extension of z-scores, and it is computed by standardizing the
deviation from mean with the covariance matrix:

MD(r) =
√
(r − μ)TΣ−1(r − μ)

where μ ∈ R
n is the mean vector and Σ ∈ R

n×n is the covariance matrix of a random vector
r ∈ R

n. While it assumes an elliptical distribution, MD has been shown to be effective in
analyzing risks of financial markets [24]. Based on MD, the anomaly score is defined as:

A(r) = MD(r)/
√

n

to correct for an increase in MD caused by a larger number of variables n for measuring
distance [25].

Due to frequent spikes in cryptocurrency movements, MD becomes sensitive to the
choice of investment period; mean and covariance used in the calculation of MD are
highly sensitive to outliers in price movements. Therefore, in this study, robust MDs
were proposed for examining cryptocurrencies. The first proposed robust approach is
taken from portfolio optimization where shrinkage estimators are used for computing MD.
Mean vector was estimated with the Bayes–Stein estimator [26], and covariance matrix
was shrunk using Ledoit and Wolf’s [27] approach with a diagonal target. The second
robust approach employed in this study is minimum covariance determinant for computing
first and second moments without outliers in returns [28]. Even though cryptocurrency
returns are not normally distributed [29], the robust MD methods provide a framework for
comparing robust anomaly scores. In Section 4, the empirical results compare MD when
mean and covariance are estimated from either the entire period (i.e., finding distance
relative to the overall movement) or the most recent 104 weeks (i.e., finding distance relative
to the market condition during the most recent two years, since March 2000).

More importantly, anomaly scores were initially measured with the price movements
of the top cryptocurrencies, and the analysis was repeated with the risk factors of cryptocur-
rencies. Risk factors are especially important for managing investment portfolios because
risk exposure of a portfolio can be effectively measured with underlying factors, whereas fi-
nancial assets often display high cross-correlations [30,31]. Recently, Liu and Tsyvinski [20]
performed a comprehensive empirical asset pricing analysis on cryptocurrencies and found
that cryptocurrency returns are exposed to network factors such as number of transactions
or number of wallet users, but not production factors such as electricity and computing
costs. Thus, network factors were chosen in our analysis to measure anomaly scores of
the cryptocurrency market. Principal component analysis is not included in our experi-
ment because principal components that explain much of the variance in cryptocurrencies
are highly correlated with the more volatile currencies since 2018, such as Dogecoin. In
particular, we found that the top three principal components explained over 70% of vari-
ance, where the first principal component is highly correlated with the equally weighted
return of the cryptocurrencies and the second principal component is highly correlated
with Dogecoin.
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3. Data

Two sets of data were used in our analysis: price data of cryptocurrencies and
data capturing network effects in cryptocurrencies. Closing prices of cryptocurrencies
were retrieved from CoinMarketCap (coinmarketcap.com) [32] and Coin Metrics (coin-
metrics.io). Daily price data denominated in USD were collected from 1 January 2018 to 28
February 2022, and converted into weekly returns (weekly returns were used to mitigate
any inconsistency in time for computing daily closing price). The analysis focused on the
crypto market since 2018 because cryptocurrency funds reveal distinct characteristics in the
post-ICO (initial coin offering) bubble period [33] and the market has generally become
more mature following the ICO bubble [34]. Crypto markets starting from 2018 can be
distinguished as the post-ICO bubble period [33], and ICOs, along with ICO-related events,
such as regulatory bans, are observed to cause sensitivity in the market [35].

Empirical tests were performed with seven different sets of weekly returns that ended
in different days of the week (i.e., the first set of weekly returns end every Monday, the
second set of weekly returns end every Tuesday, and so on). We focused on the top
40 currencies with the largest market capitalization, which account for over 90% of market
capitalization valued in USD of the top 500 cryptocurrencies (as of 27 February 2022).
Filtering the cryptocurrencies with price data available since the beginning of 2018 results
in 15 currencies: Bitcoin (BTC), Ethereum (ETH), Tether (USDT), BNB, XRP, Cardano
(ADA), Dogecoin (DOGE), Litecoin (LTC), Chainlink (LINK), Tron (TRX), Bitcoin Cash
(BCH), Decentraland (MANA), Stellar (XLM), Ethereum Classic (ETC), and Filecoin (FIL).
Since the crypto market contains many more cryptocurrencies, we also used the CCi30
index in our analysis, which is an index of the top 30 cryptocurrencies (the CCi30 index
has been used as a representative index of the crypto market for analyzing liquidity [36],
herding behavior [37,38], and dynamics of cryptocurrencies [39]).

Based on the analysis in [20], four factors of network effect in cryptocurrencies were
collected: number of active addresses (address), number of transactions (transaction),
number of transfers (transfer), and number of unique wallets (wallet). The number of
wallets was obtained from Blockchain.com for its users, and the other three factors were
obtained from data for Bitcoin from Coin Metrics (coinmetrics.io). Weekly growth of
these four metrics were computed to match the weekly return periods of cryptocurrencies
(the descriptive statistics of the 15 cryptocurrencies and the four network factors are
included in the Appendix A, and further details, such as the effect of days of the week, are
presented in [20]).

4. Empirical Results on Anomaly Score

4.1. Volatility of Cryptocurrencies

In this section, the volatility of the cryptocurrency market is observed prior to com-
puting anomaly scores. Figure 1 shows the annualized 30-day rolling standard deviation
of the top 15 cryptocurrencies and the value-weighted CCi30 index. Figure 2 shows the
historical values of the Crypto Volatility index (CVI), which begins in April of 2019, but the
x-axis has been scaled to match other figures. Anomaly score outcomes in the following
sections were compared with these volatility measures to distinguish the additional value
provided by anomaly scores.

4.2. Anomaly Scores of Cryptocurrencies

The first set of anomaly scores were computed directly from the top cryptocurrencies
without the use of factors. In order to resolve sensitivity in MD, shrinkage estimators of
the mean vector [26] and covariance matrix [27] were used. Shrinkage estimators combine
unbiased estimators, such as sample mean, with another component with more structure.
A shrinkage estimator for the vector of expected return can be expressed as:

μ̂shrink = (1 − α)μ̂ + αμ01
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where μ̂ ∈ R
n is the sample mean, μ0 ∈ R is the shrinkage target, 1 ∈ R

n is the vector of
ones, and α is the shrinkage intensity. Similarly, a shrinkage estimator for the covariance
matrix of returns can be written as:

Σ̂shrink = (1 − α)S + αΣ0

where S ∈ R
n×n is the sample covariance matrix and Σ0 ∈ R

n×n is the target. In our
analysis, the shrinkage target μ0 was set as the expected return of the portfolio with lowest
risk (minimum variance portfolio) and Σ0 was set as a scaled identity matrix. Even though
the sample estimates can be sensitive to the estimation period, shrinking them toward a
shrinkage target improves robustness [40].

 

Figure 1. Historical annualized standard deviation (30-day rolling).

 

Figure 2. Historical values of Crypto Volatility index.

These shrinkage estimators are frequently applied in portfolio optimization to mitigate
sensitivity in the performance of optimal allocations [41,42]. Figure 3 shows anomaly scores
when mean and covariance are estimated from the entire period (from January 2018 to
February 2022) or from only the last 104 weeks (from March 2000 to February 2020).

Several observations are noteworthy in Figure 3. For each of the seven figures, anomaly
scores are not sensitive to the estimation period, and the results are very similar between
the scores based on the market condition during January 2018 to February 2022 and the
condition during March 2000 to February 2022. This clearly shows the strength of using
shrinkage estimators (in contrast, Figure A2 demonstrates the high sensitivity of using non-
robust MD for measuring anomaly scores). Moreover, a comparison of the seven graphs
in Figure 3 shows that the overall trend and spikes in anomaly scores are fairly robust to
the choice of weekly return calculations. For all seven graphs, high anomaly scores are
cited between late 2020 and mid-2021, followed by a short spike from around October to
November of 2021. Even though there are spikes between late 2018 and mid-2019, the
overall anomaly scores are relatively low from the beginning of 2018 until late 2020.
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Figure 3. Anomaly scores from top cryptocurrencies (with shrinkage estimators).

When compared with the volatility measures from Section 4.1, anomaly scores show
that the high volatility periods during early-to-mid 2021 are also reflected in the anomaly
scores. However, more importantly, the market movement during March to May of 2020
was rather normal, whereas the condition from October to November of 2021 was abnormal.
It must be clarified that a normal period based on anomaly scores does not necessarily
reflect a less volatile period. Since anomaly scores show squared distances from the mean
that are standardized by the covariance matrix, a cryptocurrency with high volatility on
average will not necessarily have a large anomaly score simply because it deviates much
from the mean. This is the key reason why anomaly scores are not a substitute for market
volatility but an essential complement for analyzing market movements. For example,
high anomaly scores from October to November 2021 were caused by a large spike in
Decentraland (MANA), which increased more than five times in less than two months.
Further analysis shows that the high anomaly was not only a result of large returns but also
due to changes in cross-correlation that were captured by MD. In fact, this was a period
when metaverse cryptocurrencies were soaring and anomaly scores were able to capture
this new wave in the market.

4.3. Anomaly Scores from Risk Factors

Next, anomaly scores of the cryptocurrency market were further observed using the
risk factors of the crypto market. Among several studies on cryptocurrency factors, Liu and
Tsyvinski [20] performed comprehensive experiments to show the significance of network
factors. While network factors do not provide a complete factor model for explaining the
returns and risks of cryptocurrencies, it is worth analyzing with the factors that have been
identified so far as being significant.

Weekly growths of four network factors (address, transaction, transfer, and wallet)
were used for computing anomaly scores, and minimum covariance determinant (MCD)
was chosen for robust MD calculations. The main idea of MCD is to find a sub-sample
without outliers and the sub-sample is used for computing the sample mean and covari-
ance [43]. Shrinkage estimators are often applied when the number of variables is large, so
MCD was used in our experiment for estimating robust anomaly scores when there were
only a few factors [44].

Here, returns were calculated for every week ending Sunday, following [20], and also
because Figure 3 shows no substantial disparity among the seven graphs. In Figure 4,
the anomaly scores either based on the entire period or only based on the last 104 weeks
are almost identical; the robustness of MCD is also evident, similar to the robustness of
shrinkage estimators in Figure 3. Additionally, the high volatility from March to May 2020
in Figures 1 and 2 is not noticeable in Figure 4, which matches the anomaly results in
Figure 3. While there is a large spike in March 2019 in Figure 4, this is due to a sudden
decrease in the numbers of transactions and transfers (see Figure A1). Even though these
factors are not able to fully describe cryptocurrency returns or risks, the main purpose of
the analysis using risk factors is to demonstrate its use in scenario analysis, as demonstrated
in Section 5.2.
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Figure 4. Anomaly scores from network factors (with MCD).

4.4. Further Discussion

One major distinction between measuring risk with volatility and anomaly score is
that anomaly scores based on MD accounts for correlation among assets. Figure 5 plots
cross-correlations among 15 cryptocurrencies for various rolling windows. The average
cross-correlation is greater than 0.4 for most of the period in Panel (a), and a relatively high
cross-correlation seems to be the norm due to inherent similarities among cryptocurrencies.
In Panel (b), which plots the average among the top 50 cross-correlation values among
15 cryptocurrencies, the average cross-correlation is above 0.6 for most of the period.
Nonetheless, there are noticeable drops in early 2021 for all the plots in Figure 5. In other
words, cross-correlations among cryptocurrencies are relatively stable until late 2020 but
inconsistency is observed in early 2021, which coincides with high anomaly scores. Even
though average cross-correlations were more volatile when computed with daily returns
as shown in Figure 6, lower cross-correlations in early 2021 are still observed, and it is
especially evident from Panel (b) that the highest correlations show a significant drop in
early 2021.

 
(a) Average rolling cross-correlation of 15 cryptocurrencies 

 
(b) Average of top 50 rolling cross-correlations among 15 cryptocurrencies 

Figure 5. Rolling cross-correlations of weekly returns (rolling windows = 26, 39, 52, 104 weeks).
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(a) Average rolling cross-correlation of 15 cryptocurrencies 

 
(b) Average of top 50 rolling cross-correlations among 15 cryptocurrencies 

Figure 6. Rolling cross-correlations of daily returns (rolling windows = 30, 60, 90, 120 days).

5. Portfolio Analysis Based on Anomaly Scores

As we have demonstrated so far in this study, anomaly scores provide another dimen-
sion for analyzing the risks of cryptocurrencies. Even though market anomaly provides
valuable insights on its own, it can further enhance portfolio optimization and scenario
analysis for investment in cryptocurrencies.

5.1. Incorporating Anomaly Scores into Portfolio Management

We first demonstrated how anomaly scores can be incorporated into portfolio opti-
mization to form portfolios with lower volatility. Even when forming a diversified portfolio
among cryptocurrencies, its volatility as measured by standard deviation is too high com-
pared to traditional assets, because each cryptocurrency is volatile on its own and the corre-
lation among cryptocurrencies are relatively high, as already discussed in Figures 5 and 6.
However, anomaly scores can help reduce portfolio volatility. Anomaly scores reflect
abnormal market movements, so avoiding these periods reduces portfolio volatility even
when forming a portfolio that only invests in cryptocurrencies.

For this backtest, rolling optimization was performed with weekly re-optimization
and a lookback period of either 52 or 104 weeks. In order to focus on portfolio models
with low risk, global minimum-variance (GMV) and risk-parity (equal risk contribution)
models were used for optimizing portfolio weights. These are two popular models for
forming an investment portfolio based on investment risk rather than expected return.
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The GMV portfolio model finds the optimal weights ω ∈ R
n with the smallest risk in the

mean-variance optimization framework [40,45] and is written as:

min
ω

1
2

ωTΣ ω

where Σ ∈ R
n×n is the covariance matrix of returns for n assets. The risk-parity formulation

can be written as:

min
ω

n

∑
i=1

n

∑
j=1

(
RC(ωi)− RC

(
ωj

))2 where RC(ωi) = ωi
∂σ(ω)

∂ωi

that minimizes discrepancies among risk contributions (RC) of each asset, where RC is
measured with respect to the standard deviation σ of a portfolio [46]. The feasible portfolios
were restricted to non-negative weights that sum to one, which is the most basic setting in
portfolio construction [47].

On each re-optimization date, the portfolio strategy decided not to invest in cryptocur-
rencies (i.e., sell all positions) if the anomaly score was above a certain pre-determined
limit (e.g., 1 or 2), and ex ante anomaly scores with shrinkage were computed each time
from either previous 52-week or 104-week returns. A 52-week lookback period results in
portfolio performance from January 2019 to February 2022, and a 104-week lookback pro-
vides performance from January 2020 to February 2022. Portfolios were constructed with
no-shorting constraints, and USDT was excluded in the backtest because it had negative
expected returns during this period.

Table 1 presents weekly standard deviations, annualized standard deviations, and the
number of weeks over limit for several anomaly limits. The third column shows results
for an equally weighted portfolio of the top 14 cryptocurrencies. The annualized volatility
was above 90% without incorporating anomaly scores, but decreased to below 50% with
an anomaly limit of 0.5. GMV, and risk-parity portfolios had lower standard deviation
compared to the equally weighted portfolio. In particular, GMV had the lowest risk and the
annualized volatility was near 40% when an anomaly limit of 0.5 was imposed. Therefore,
portfolios with annualized volatility above 80% are unreasonably risky for all rational
investors, which is the case without any anomaly limit, but reducing volatility to 40% may
provide a viable investment option for investors with minimal risk aversion.

Table 1. Risk performance of portfolios based on various anomaly limits.

Portfolio Model
Equally

Weighted
Global

Minimum-Variance
Risk-Parity

Lookback period (weeks) - 52 104 52 104

Without anomaly
limit

std 0.128 0.112 0.114 0.125 0.137
std (annual.) * 0.923 0.808 0.825 0.900 0.989

number of weeks over limit 0 0 0 0 0
total number of weeks 164 164 112 164 112

Anomaly limit = 2.0
std 0.123 0.110 0.099 0.120 0.121

std (annual.) * 0.889 0.792 0.712 0.869 0.874
number of weeks over limit 10 10 13 10 13

total number of weeks 164 164 112 164 112

Anomaly limit = 1.0
std 0.104 0.089 0.088 0.101 0.107

std (annual.) * 0.749 0.638 0.632 0.732 0.773
number of weeks over limit 41 41 37 41 37

total number of weeks 164 164 112 164 112

Anomaly limit = 0.5
std 0.068 0.056 0.064 0.067 0.071

std (annual.) * 0.492 0.407 0.462 0.481 0.510
number of weeks over limit 110 110 76 110 76

total number of weeks 164 164 112 164 112

* Standard deviation is annualized by multiplying
√

52.
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5.2. Scenario Analysis of Cryptocurrencies

A major significance of using factors for computing MD is its effectiveness in per-
forming scenario analysis [48]. The two most important components of scenario analysis
are the construction of meaningful scenarios and the probability of occurrence for the
scenarios. Even though it is difficult to construct scenarios directly at the cryptocurrency
level (e.g., it is challenging to form an outlook on short-term returns for a certain currency),
it is more intuitive to form a logical outlook on risk factors such as the growth in total
transactions or users. Furthermore, since the likelihood of a scenario is proportional to
e−MD/2, these values can be rescaled to sum to one when estimating the probability of
several scenarios [48].

Here, an example is presented to demonstrate how scenarios can be formed with
cryptocurrency factors when anomaly scores are computed with robust MD. Table 2 shows
mean and standard deviation of weekly growth for the four factors, and the growth in
weekly transactions appear to be near zero on average since the beginning of 2018. Suppose
scenario analysis is performed based on the view that transactions are going to increase
in the coming week; consider growth in transactions to be realized within the set {0.001%,
0.5%, 1.0%, 1.5%, . . . , 10.0%}. Thus, 11 scenarios are generated where transaction takes
one of the 11 values, whereas the growth of the other three factors are assumed to stay
unchanged (i.e., mean values from Table 2). The advantage of scenario generation from
factors is clearly evident in this case. Expressing market outlook through growth in the
number of transactions is intuitive even for an investor not familiar with the cryptocurrency
market. More rational and detailed views can be expressed with factors.

Next, anomaly scores of these scenarios provide the likelihood (probability) of oc-
currence for each scenario, and Figure 7 plots the likelihood for the 11 scenarios in this
example. The probability of growth in weekly transaction being at least 6% is less than 5%.
Thus, even though scenarios are included for cases with large transaction growth, incorpo-
rating likelihood through anomaly scores controls the influence on future outcome that are
considered outliers. Finally, based on the scenario analysis of traditional assets proposed
by [48], the scenarios for the crypto market can be performed as summarized in Figure 8
by applying machine learning models to identify significant factors for efficiently forming
rational outlook. These scenarios can be combined with anomaly scores for simulating
portfolios invested in cryptocurrencies.

 
Figure 7. Likelihood of example scenarios on transaction.
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Figure 8. Framework for performing scenario analysis of the crypto market.

Table 2. Statistics of weekly growth (from January 2018 to February 2022).

Mean Std

Address 0.00764 0.1173
Transaction 0.00001 0.0896

Transfer 0.00356 0.0806
Wallet 0.00547 0.0040

6. Conclusions

In this article, the use of anomaly scores is illustrated for analyzing the cryptocurrency
market. In addition to analyzing the volatility of the cryptocurrency market, anomaly
scores of the market provide a complement to the analysis because anomalies are measured
by deviation relative to variance and correlation. Specifically, robust Mahalanobis distance
based on shrinkage estimators and minimum covariance determinant are shown to produce
robust anomaly scores of cryptocurrencies that offer details of market anomalies that are
not necessarily explained by standard volatility measures. With the use of anomaly scores
as a complement to traditional volatility analyses, investment in cryptocurrencies can be
further managed through a detailed understanding of normal or abnormal behavior of
cryptocurrencies. Future research can be directed towards analyzing the underlying cause
of the discrepancies between traditional volatility measures and the robust anomaly scores
proposed in this study. One of the current shortcomings is the limited findings related to
risk factors of cryptocurrencies and access to various data. Extended research into risk
factors of cryptocurrencies will contribute to computing anomaly scores. Finally, further
insight into abnormal behavior in cryptocurrencies will not only provide effective tools
for managing investment in the crypto market but also become extremely valuable for
investors expanding their assets with cryptocurrencies.
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Appendix A

Table A1. Descriptive statistics of the top 15 cryptocurrencies (weekly returns ending Sunday from 1
January 2018 to 28 February 2022).

BTC ETH USDT BNB XRP ADA DOGE LTC LINK TRX BCH MANA XLM ETC FIL

mean 0.010 0.016 0.000 0.032 0.011 0.015 0.046 0.007 0.035 0.025 0.007 0.043 0.011 0.017 0.019
std 0.105 0.143 0.006 0.191 0.193 0.175 0.376 0.148 0.216 0.292 0.196 0.299 0.185 0.210 0.211

corr BTC ETH USDT BNB XRP ADA DOGE LTC LINK TRX BCH MANA XLM ETC FIL
BTC 1 0.79 0.08 0.61 0.51 0.64 0.30 0.80 0.59 0.45 0.74 0.41 0.59 0.56 0.44
ETH 1 0.10 0.62 0.53 0.71 0.32 0.78 0.63 0.53 0.76 0.45 0.67 0.67 0.44

USDT 1 −0.02 0.01 0.04 0.01 0.09 0.04 −0.12 0.18 −0.01 −0.04 0.03 0.05
BNB 1 0.45 0.58 0.24 0.60 0.51 0.63 0.50 0.41 0.54 0.51 0.38
XRP 1 0.52 0.38 0.55 0.44 0.41 0.54 0.29 0.69 0.51 0.35
ADA 1 0.34 0.64 0.52 0.46 0.65 0.35 0.72 0.57 0.39
DOGE 1 0.33 0.24 0.28 0.34 0.22 0.29 0.42 0.08
LTC 1 0.59 0.45 0.79 0.38 0.56 0.74 0.42

LINK 1 0.56 0.51 0.39 0.56 0.48 0.33
TRX 1 0.41 0.40 0.58 0.44 0.32
BCH 1 0.35 0.59 0.73 0.40
MANA 1 0.39 0.32 0.24
XLM 1 0.56 0.38
ETC 1 0.33
FIL 1

Table A2. Descriptive statistics of the network factors (weekly growth ending Sunday from 1 January
2018 to 28 February 2022).

Address Transaction Transfer Wallet

mean 0.006 0.004 0.004 0.006
std 0.121 0.109 0.092 0.004

 

Figure A1. Weekly growth of the network factors (initial value: 1).

 

Figure A2. Anomaly scores from top cryptocurrencies (MD).
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Abstract: This study employs the ADCC-GARCH approach to investigate the dynamic correlation
between bitcoin and 14 major financial assets in different time-frequency dimensions over the period
2013–2021, for which the risk diversification, hedging and safe-haven properties of bitcoin for those
traditional assets are further examined. The results show that, first, bitcoin is positively linked to
risk assets, including stock, bond and commodity, and negatively linked to the U.S. dollar, which is a
safe-haven asset, so bitcoin is closer in nature to a risk asset than a safe-haven asset. Second, the high
short-term volatility and speculative nature of the bitcoin market makes its long-term correlation with
other assets stronger than the short-term. Third, the positive linkage between the prices of bitcoin
and risk assets increases sharply under extreme shocks (e.g., the outbreak of COVID-19 in early 2020).
Fourth, bitcoin can hedge against the U.S. dollar, and in the long term, bitcoin can hedge against the
Chinese stock market and act as a safe haven for the U.S. stock market and crude oil. However, for
most other traditional assets, bitcoin is only an effective diversifier.

Keywords: bitcoin; ADCC-GARCH; diversifier; hedge; safe haven

1. Introduction

Digital cryptocurrencies have rapidly entered the public view in recent years, and their
market trading scale continues to expand. As a representative species in the cryptocurrency
market, bitcoin has exhibited dramatic volatility since its inception, and its price fluctuations
have long been a concern for both academia and practitioners. Due to the soaring price of
bitcoin in recent years, more investors around the world are entering the bitcoin market,
expecting to make profits while lacking a deep understanding of the price formation
mechanism of bitcoin and its asset properties, thus, facing huge investment risks. To
establish an analytical framework about the price formation mechanism of bitcoin, it is first
necessary to define whether bitcoin is a risk or a safe-haven asset. Some argue that because
bitcoin is completely decentralized and not controlled by a traditional central bank and
because bitcoin supply is limited by its own protocol design to a fixed total of 21 million
coins, bitcoin has a similar anti-inflation value to gold and is a safe-haven asset. However,
there are also arguments that the bitcoin market is highly speculative and that there is a
clear positive correlation between the prices of bitcoin and various risk assets, thus, making
it more of a risk asset in nature.

Is bitcoin a risk asset or a safe-haven asset? What are the linkages between bitcoin and
major global assets? What are the dynamics of these linkages over time? This paper aims
to explore the asset properties of bitcoin from the perspective of its linkage with traditional
financial assets. We use the asymmetric dynamic conditional correlation (ADCC)-GARCH
approach to examine the dynamic correlations between bitcoin and various traditional
assets in different time frequency dimensions and further explore bitcoin’s diversification,
hedging and safe-haven properties for each asset based on the dynamic correlations be-
tween bitcoin and these assets. Our analysis not only helps to further clarify the price
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formation mechanism of bitcoin and its role in portfolio management and helps investors
to reasonably hold digital cryptocurrencies for investment, but also helps policymakers
improve the dynamic monitoring and risk management of the cryptocurrency market
represented by bitcoin.

The remainder of the paper is structured as follows. Section 2 reviews the relevant
literature. Section 3 uses the ADCC-GARCH approach to quantitatively measure the
dynamic correlation between bitcoin and various traditional financial assets in different
time-frequency dimensions. Section 4 further identifies bitcoin’s risk diversification, hedg-
ing and safe-haven capabilities for each traditional asset. Section 5 concludes.

2. Literature Review

Bitcoin is a digital currency and payment system created by Satoshi Nakamoto [1].
As the first decentralized digital cryptocurrency, bitcoin’s price and popularity have risen
rapidly since its introduction in 2009. With the growing popularity of bitcoin worldwide,
the economic and financial properties of bitcoin have begun to attract the attention of
researchers [2–4]. The relevant literature focuses on whether bitcoin is a currency or an
asset, what kind of asset bitcoin is, and what kind of risk–return properties bitcoin has.

The earlier literature focused on whether bitcoin was a currency or an asset. Undeni-
ably, there are some commonalities between bitcoin and currency, but from the perspective
of monetary function, bitcoin can only be used as a medium of exchange and not as a unit
of account or a storage of value [5]; therefore, bitcoin does not have a complete form of
currency. Glaser et al. [6] focused on the liquidity of bitcoin when it functions as a medium
of exchange, and argued that the convertibility between bitcoin and traditional currencies
gives bitcoin liquidity, but the limited supply of bitcoin limits its liquidity. Böhme et al. [7]
argued that the liquidity of bitcoin can be significantly weakened due to the frequent delays
in bitcoin transactions. However, because of the anonymity of user identities, the bitcoin
protocol does not restrict international transfer operations to countries that are on watch
lists or embargoed, which provides bitcoin with higher flexibility and liquidity than deposit
currencies in supporting international transfers [7]. In terms of the attitudes of bitcoin hold-
ers, since most bitcoin users view bitcoin as an investment tool rather than a transactional
payment tool [6], the market value of bitcoin is much higher than the size of the economic
transactions it facilitates [5], making bitcoin more of a speculative investment tool than a
currency. Luther and Salter [8] examined bitcoin’s ability to replace traditional currencies
based on the increase in bitcoin app downloads after the Cyprus bailout announcement
and found that the rise in bitcoin app downloads was insignificant, suggesting that bitcoin
is not replacing the currencies of those countries whose domestic banks are in trouble.

After determining that bitcoin is more of an asset, scholars began comparing bitcoin
to traditional assets in an attempt to generalize which asset, or class of assets, bitcoin
is more comparable. Bitcoin is often analogized to gold in the literature, and is even
referred to as digital gold or the new gold [9]. The similarities between bitcoin and
gold are that both have a much higher market value than their intrinsic value, and both
derive their market value from scarcity of supply and high mining costs; both have no
national attributes, and their supply is not controlled by the government; gold was used
as a medium of exchange during the gold standard period but was abandoned later due
to lack of liquidity, and bitcoin is likely to face similar problems in the future as the
scale of bitcoin users expands. However, there are also differences between bitcoin and
gold; for example, people use gold mainly because of its function as a store of value,
while the instability of bitcoin prices makes it difficult for it to perform value storage
effectively [10]. Klein et al. [11] compared the return volatility of bitcoin and gold and their
respective correlations with other asset prices and found that while both prices respond
asymmetrically to market shocks, their respective correlations with other asset prices differ
significantly, especially during market downturns. Shahzad et al. [12] compared the safe-
haven, hedging and diversification properties of bitcoin and gold for the G7 stock markets
and found that gold outperforms bitcoin in terms of safe-haven and hedging effectiveness
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and can provide higher conditional diversification benefits for stock investments than
bitcoin, while Thampanya et al. [13] found that neither bitcoin nor gold is a good hedge for
the Thailand stock market. Furthermore, Whelan [14] drew an analogy between bitcoin
and the U.S. dollar, arguing that both are used as a medium of exchange, but the difference
is that the dollar is backed by the government, whereas bitcoin is a private currency issued
by the private sector, and, thus, the supply and governance mechanisms for both assets are
different. Dyhrberg [10] examined whether bitcoin is more comparative to gold or the U.S.
dollar, and found that the behavioral characteristics of bitcoin prices have both dollar- and
gold-like components because bitcoin’s property falls between a pure medium of exchange
and a pure store of value. As such, bitcoin can be classified as an asset that is between the
U.S. dollar and gold, and can be used as an effective tool for portfolio management.

More recent studies have begun to focus on the risk–return properties of bitcoin and
its risk diversification, hedging and safe haven properties for traditional assets. Although
bitcoin has a higher volatility than traditional assets [15], the inclusion of bitcoin in a
portfolio may still improve the portfolio’s risk–return performance [16–19]. Eisl et al. [20]
used a CVaR approach to find that although the inclusion of bitcoin raises the conditional
VaR of the portfolio, this additional risk is fully compensated by high returns, which
ultimately improves the risk–return ratio. Dyhrberg [21] used daily frequency data to test
the hedging effect of bitcoin on U.K. equities and the USD exchange rate and found that
bitcoin can be used as a hedge for the FTSE index as well as the USD/EUR and USD/GBP
exchange rates over the 2010–2015 period. Yang et al. [22] used a time-frequency domain
approach to find that bitcoin has the capability to hedge against the currency market in
the long term. Using a daily frequency sample over 2011–2015, Bouri et al. [23] found that
bitcoin prices are negatively correlated with the Nikkei 225, MSCI Pacific and commodity
indices and, therefore, have the ability to hedge against price fluctuations in these assets.
Chan et al. [24] found that bitcoin can be used as an effective hedge for the U.S., European,
Canadian, Japanese and Chinese stock markets in the monthly frequency dimension over
the period 2010–2017. Wang et al. [25] found that cryptocurrencies are a safe haven rather
than a hedge for most international stock indices, and the safe-haven properties are more
pronounced in developed markets or markets with larger market capitalizations and higher
liquidity. Shahzad et al. [26] showed that the safe-haven role of bitcoin for Chinese, U.S. and
other developed and developing stock markets is time-varying and varies across different
stock markets. Urquhart and Zhang [27] used high-frequency data to examine bitcoin’s
hedging and safe-haven capabilities for foreign exchange and found that bitcoin can be a
hedge for the CHF, EUR and GBP, a diversifier for the AUD, CAD and JPY, and a safe haven
for the CAD, CHF and GBP in times of extreme market turmoil. Wang et al. [28] examined
the mean and volatility spillovers between bitcoin and six major financial assets in China
and found that bitcoin can hedge China’s stock, bond, and monetary markets and can
serve as a safe haven for China’s monetary market. Smales [29] argued that bitcoin’s high
volatility, low liquidity and high transaction costs (in terms of time and fees) compared
to other assets preclude it from being considered a safe haven until its market matures.
Kwapień et al. [3] analyzed detrended cross-correlations between cryptocurrency markets
and some traditional markets (including stock, commodity and forex markets) and found
that the levels of cross-correlations become higher in turbulent periods.

After the outbreak of the COVID-19 pandemic, the price dynamics and portfolio
performance of cryptocurrencies during the pandemic attracted widespread attention [30].
Wątorek et al. [4] pointed out that the COVID-19 pandemic has had a significant impact
on the cryptocurrency market, transforming cryptocurrencies from a hedging instrument
for investors fleeing traditional markets into a part of the global market which is closely
linked to traditional financial instruments including currency, stock and commodity. Using
a network connectedness model, Balcilar et al. [31] found increasing risk spillovers between
cryptocurrencies and global emerging stock markets following the COVID-19 pandemic
outbreak, and that cryptocurrencies cannot serve as a diversifier for emerging stock markets
in both the short and long term. Caferra and Vidal-Tomas [32] used the wavelet coherence
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approach and Markov switching autoregressive model to find that cryptocurrencies have
some hedging properties against stock markets in response to shocks from the COVID-19
pandemic. Using the COVID-19 outbreak as a quasi-experiment, Grobys [33] used a
difference-in-differences approach to test bitcoin’s performance in hedging U.S. stock
market risk and found that bitcoin performs poorly in hedging the tail risk of the U.S.
market. Conlon and McGee [2] evaluated the safe-haven capability of bitcoin against
traditional assets during the sharp decline in global financial markets following the outbreak
of COVID-19, and found that bitcoin is not a safe haven for the S&P 500 and that including
bitcoin in an equity portfolio at this time would substantially increase the portfolio’s
downward risk exposure. Conlon et al. [34] further found that bitcoin is not a safe haven for
most international stock markets except for China’s CSI 300 index. Wen et al. [35] used time-
varying parameter vector autoregression to find that bitcoin is not a safe haven for crude
oil and stocks during the COVID-19 pandemic. Dutta et al. [36] also found that bitcoin is
only a diversifier rather than a safe haven for crude oil during the COVID-19 pandemic.

Although there has been a rich literature on the economic and financial properties of
bitcoin, several gaps still remain. First, the sample of relevant studies does not cover a wide
enough range of asset classes, and, therefore, they fail to provide a comprehensive dissection
of the linkage between bitcoin and various major global assets and the diversification,
hedging and safe-haven properties of bitcoin for these assets. Most of the existing studies
focus on analyzing the linkage between bitcoin and a specific class of financial assets
and bitcoin’s diversification, hedging and safe-haven properties for that class of assets,
including stocks [24–26,31–34], commodities [36], currencies [22,27], etc. Although the
sample selected by Wang et al. [28] covers multiple asset classes, these assets are all Chinese
assets and are not globally representative. Second, most of the existing studies have
examined the risk–return characteristics of bitcoin and its correlation with other assets in a
frequency-specific sample, while few have conducted comparative analyses at different
time frequencies. The high short-term volatility and speculative nature of the bitcoin market
is likely to impair the short-term correlation between bitcoin and other assets, resulting
in the linkage between bitcoin and other assets exhibiting very different characteristics
in different time frequency dimensions, and may even lead to changes in bitcoin’s risk
diversification, hedging and safe-haven properties in different time frequency dimensions.

We selected the prices of bitcoin and 14 major financial assets covering stock, bond,
commodity and currency over the period 2013–2021 as a sample to test the dynamic linkage
of bitcoin with each asset and the linkage’s variation in different time frequency dimensions,
and to further identify the risk diversification, hedging and safe-haven properties of bitcoin
for various assets. We first used the ADCC-GARCH approach to quantitatively measure the
dynamic correlation between bitcoin and other traditional assets. Based on the estimated
dynamic conditional correlation (DCC) series, we further adopted Ratner and Chiu’s [37]
approach to identify the risk diversification, hedging and safe-haven properties of bitcoin
for various types of assets to assess the extent to which bitcoin can be used as a diversifier,
hedge or safe haven for those assets. As a result, we show that: (i) bitcoin is positively
linked to risk assets, including stocks, bonds and commodities, and negatively linked to
the U.S. dollar, which is a typical safe-haven asset, so bitcoin is closer in nature to a risk
asset than a safe-haven asset; (ii) the high short-term volatility and speculative nature of
the bitcoin market makes its long-term correlation with other asset prices stronger than
the short-term correlation; (iii) the positive linkage between the prices of bitcoin and risk
assets increases sharply under extreme shocks (e.g., the outbreak of COVID-19 in early
2020); (iv) bitcoin can hedge against the U.S. dollar, and in the long term, bitcoin can hedge
against the Chinese stock market and act as a safe haven for the U.S. stock market and
crude oil. However, for most other traditional assets, bitcoin is only an effective diversifier.

The contribution of this study is twofold. First, our selected sample covers four major
asset classes—stock, bond, commodity and currency—which specifically include 14 major
representative global financial assets. Based on this sample, we provide a comprehensive
analysis of the linkage between bitcoin and major global assets as well as bitcoin’s diver-
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sification, hedging and safe haven properties for these assets. Second, we also perform
a comparative analysis in different time-frequency dimensions, comparing the dynamic
correlation between bitcoin and each asset in daily, weekly and semi-monthly frequency di-
mensions as well as the differences in bitcoin’s risk diversification, hedging and safe-haven
capabilities for other assets in different time-frequency dimensions.

3. The Dynamic Correlation between Bitcoin and Traditional Assets

3.1. ADCC-GARCH Model

The aim of this study is to examine the dynamic linkages between bitcoin and various
traditional financial assets at different frequencies and to explore the risk diversification,
hedging and safe-haven properties of bitcoin for each asset based on the dynamic link-
ages between bitcoin and them. To capture the time-varying correlation between bitcoin
and other traditional financial assets, we employed the DCC-GARCH approach. The
DCC-GARCH method can estimate the time-varying conditional correlation coefficient
and has the advantage of portraying the dynamic relationship between variables. The DCC
model was first introduced by Engle [38] to allow for time-varying correlation between vari-
ables. Cappiello et al. [39] further introduced an asymmetric version of the DCC-GARCH
(i.e., ADCC-GARCH) to address the effect of asymmetric information on time-varying
correlations. In this study, the ADCC model of Cappiello et al. [39] was used to model the
volatility dynamics and conditional correlation between bitcoin and other assets.

Let rt be a n × 1 vector of asset returns. The AR(1) process for rt conditioned on the
information set It−1 can be written as follows:

rt = μ + ϕrt−1 + εt (1)

The residuals are modeled as:

εt = H1/2
t zt (2)

Ht is the conditional covariance matrix of rt, and zt is a n × 1 i.i.d. random vector of
errors. Engle’s [38] DCC model is estimated in two steps, with the GARCH parameters
estimated in the first step and the conditional correlation in the second step, where:

Ht = DtRtDt (3)

where Ht is a n × n conditional covariance matrix, Rt is the conditional correlation matrix,
and Dt is the diagonal matrix with time-varying standard deviations on the diagonal.

Dt = diag
(

h1/2
1,t , . . . , h1/2

n,t

)
(4)

Rt = diag
(

q−1/2
1,t , . . . , q−1/2

n,t

)
Qtdiag

(
q−1/2

1,t , . . . , q−1/2
n,t

)
(5)

The expression for h is a univariate GARCH. For the GARCH(1,1) model, the elements
of Ht can be written as follows:

hi,t = ωi + αiε
2
i,t−1 + βihi,t−1 (6)

Qt is a symmetric positive definite matrix that can be written in the following form:

Qt = (1 − θ1 − θ2)Q + θ1ztz′t−1+θ2Qt−1 (7)

where Q is the n × n unconditional correlation matrix of the standardized residuals zi,t
(zi,t = εi,t/

√
hi,t). The parameters θ1 and θ2 are non-negative and are related to the
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exponential smoothing process used to construct the dynamic conditional correlations. The
DCC model is mean-reverting as long as θ1 + θ2 < 1. The correlation is estimated as:

ρi,j,t =
qi,j,t√qi,i,tqj,j,t

(8)

Since the above DCC model does not allow for asymmetries and asset-specific news
impact parameter, Cappiello et al. [39] developed the ADCC model to incorporate asym-
metric effects and asset-specific news impact. For the ADDC model, the dynamics of Q is
of the following form:

Qt =
(

Q − A′QA − B′QB − G′Q−G
)
+ A′zt−1z′t−1 A + B′Qt−1B + G′z−t z′−t G (9)

where A, B and G are n × n parameter matrices and z−t is the zero-threshold standardized
error, which is equal to zt when less than zero, and zero otherwise. Q and Q− are the
unconditional matrices of zt and z−t , respectively.

3.2. Data and Descriptive Statistics

We selected daily data of bitcoin and 14 asset prices from 6 June 2013, to 2 August
2021 as the sample, with the number of observations being 1703. Data were obtained from
the Wind and Yahoo Finance databases. These assets cover four categories, namely, stock,
bond, commodity and currency. The stock sample included the MSCI world index, S&P
500, FTSE 100, DAX 30, Nikkei 225 and SSEC. The bond sample includes the US bond index,
non-U.S. bond index and emerging markets bond index, which are measured by the prices
of ETFs that track the three indices. The commodity sample includes the S&P GSCI, CRB
commodity index, Brent oil and gold. The currency sample is the U.S. dollar index.

Figure 1 plots the time series of the prices of bitcoin versus each asset. The correlation
between bitcoin and most asset prices is not stable, with some periods moving in the same
direction and some moving in the opposite direction. For example, bitcoin was positively
correlated with the S&P 500 during 2017–2018 and then became negatively correlated in
2019. This suggests that the linkages between bitcoin and these traditional asset prices are
time-varying, thus, necessitating the use of an (asymmetric) DCC model to more accurately
capture the dynamic correlation between bitcoin and each asset. The daily percentage
returns of all asset prices are calculated based on the following equation:

rt = 100 ∗ (ln Pt − ln Pt−1) (10)

where rt represents the return of each asset and Pt represents the original asset price. Table 1
presents descriptive statistics for the return of each asset. Bitcoin had a much higher mean
return than other assets, which reflected the long-term upward trend in bitcoin prices over
the sample period. Bitcoin also had a much higher standard deviation than other assets,
indicating that bitcoin prices were extremely volatile. The level of skewness in all asset
returns was not high, except for the emerging markets bond index, which exhibited a clear
left skew. Most asset returns had high kurtosis. The Jarque–Bera (J-B) test significantly
rejected the assumption of normality of the distribution for all series.

GARCH modeling requires data stationarity to ensure the validity of the estimation, and
having ARCH effects is also a prerequisite for GARCH modeling. We used the augmented
Dickey–Fuller (ADF) and Phillips–Perron (PP) tests to perform unit root tests on the return
series (i.e., the first-order difference of asset price) and the Portmanteau test to perform an
ARCH effect test on the return series, with the results reported in Tables 2 and 3, respectively.
All return series were stationary at the 1% significance level and had significant ARCH
effects at lags of order 5, 10 and 15, thus, satisfying the GARCH modeling conditions.
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Figure 1. Time series of the prices of bitcoin versus various traditional financial assets. In each graph,
the bitcoin price series is marked with a black line, corresponding to the right axis; the traditional
asset price series is marked with a gray line, corresponding to the left axis.
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Table 1. Descriptive statistics.

Variable Mean Median Max. Min. Std. Dev. Skewness Kurtosis J-B p Value

Bitcoin 0.339 0.224 48.478 −49.397 5.685 −0.20 12.78 6795 0.0000
MSCI_world 0.045 0.083 7.793 −9.642 0.955 −1.44 23.52 30,451 0.0000
S&P500 0.059 0.084 8.968 −12.765 1.159 −1.23 24.35 32,771 0.0000
FTSE100 0.006 0.050 8.667 −11.512 1.114 −0.78 15.36 11,007 0.0000
DAX30 0.038 0.091 10.414 −13.055 1.350 −0.70 13.52 7989 0.0000
Nikkei225 0.045 0.060 7.731 −8.253 1.388 −0.12 6.75 1004 0.0000
SSEC 0.025 0.070 7.548 −8.873 1.499 −0.95 9.49 3249 0.0000
U.S. bond index 0.016 0.023 4.133 −5.592 0.316 −1.51 94.07 589,195 0.0000
Non-U.S. bond index 0.018 0.019 0.897 −2.320 0.213 −1.77 21.48 25,118 0.0000
Emerging markets bond index 0.021 0.049 4.345 −8.381 0.578 −3.93 63.28 262,235 0.0000
S&P GSCI −0.009 0.061 7.115 −12.523 1.461 −0.93 11.82 5772 0.0000
CRB commodity index 0.010 0.000 3.726 −3.192 0.425 0.17 11.60 5255 0.0000
Brent oil −0.020 0.083 21.115 −27.976 2.732 −0.85 21.61 24,769 0.0000
Gold 0.015 0.016 6.287 −6.120 1.044 −0.09 6.79 1020 0.0000
U.S. dollar index 0.006 0.003 2.495 −2.142 0.449 0.13 5.37 403 0.0000

Note: The J-B statistic is used to test the normality of the distribution of variables, and its null hypothesis is that
the variable follows a normal distribution. The p value corresponds to the J-B test.

Table 2. Unit root test.

Variables
ADF PP

Statistic p Value Result Statistic p Value Result

Bitcoin −21.28 0.0000 I(0) −44.20 0.0001 I(0)
MSCI_world −23.58 0.0000 I(0) −41.42 0.0000 I(0)
S&P500 −27.57 0.0000 I(0) −48.47 0.0001 I(0)
FTSE100 −41.24 0.0000 I(0) −41.26 0.0000 I(0)
DAX30 −40.08 0.0000 I(0) −40.07 0.0000 I(0)
Nikkei225 −42.12 0.0000 I(0) −42.22 0.0000 I(0)
SSEC −39.97 0.0000 I(0) −39.98 0.0000 I(0)
U.S. bond index −18.10 0.0000 I(0) −42.74 0.0000 I(0)
Non-U.S. bond index −41.59 0.0000 I(0) −41.59 0.0000 I(0)
Emerging markets bond index −14.82 0.0000 I(0) −37.19 0.0000 I(0)
S&P GSCI −41.67 0.0000 I(0) −41.83 0.0000 I(0)
CRB commodity index −20.19 0.0000 I(0) −41.53 0.0000 I(0)
Brent oil −40.07 0.0000 I(0) −40.12 0.0000 I(0)
Gold −40.85 0.0000 I(0) −40.86 0.0000 I(0)
U.S. dollar index −41.13 0.0000 I(0) −41.13 0.0000 I(0)

Table 3. ARCH effect test.

Variables
ARCH(5) ARCH(10) ARCH(15)

Statistic p Value Statistic p Value Statistic p Value

Bitcoin 89.13 0.0000 98.218 0.0000 105.45 0.0000
MSCI_world 580.03 0.0000 592.67 0.0000 628.76 0.0000
S&P500 714.77 0.0000 735.71 0.0000 807.19 0.0000
FTSE100 280.37 0.0000 409.82 0.0000 450.28 0.0000
DAX30 174.22 0.0000 298.34 0.0000 331.67 0.0000
Nikkei225 154.97 0.0000 213.87 0.0000 222.62 0.0000
SSEC 183.46 0.0000 193.38 0.0000 217.98 0.0000
U.S. bond index 377.26 0.0000 505.76 0.0000 536.61 0.0000
Non-U.S. bond index 445.02 0.0000 520.17 0.0000 532.95 0.0000
Emerging markets bond index 539.35 0.0000 705.25 0.0000 756.29 0.0000
S&P GSCI 140.46 0.0000 226.2 0.0000 241.21 0.0000
CRB commodity index 132.10 0.0000 134.20 0.0000 137.72 0.0000
Brent oil 117.79 0.0000 265.92 0.0000 311.46 0.0000
Gold 57.90 0.0000 98.66 0.0000 101.70 0.0000
U.S. dollar index 48.41 0.0000 60.45 0.0000 73.482 0.0000

Note: This table reports the results of the ARCH effect test at lags of order 5, 10 and 15. The null hypothesis for
this test is “no ARCH effect”.

Given the extremely high short-term volatility of bitcoin prices, bitcoin’s short-term
correlation with other assets is likely to be disturbed by its sharp short-term volatility. Intu-
itively, the long-term correlation between bitcoin and other asset prices is likely to be more
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stable than the short-term correlation. To this end, we not only performed ADCC-GARCH
analysis on daily frequency data of bitcoin and other asset prices, but also further performed
ADCC-GARCH analysis on weekly and semi-monthly frequency data and then compared
the results at different time frequencies to examine the differences in the linkage between
bitcoin and various assets at different time frequencies. The weekly and semi-monthly
frequency samples were obtained by taking the weekly and semi-monthly end-of-period
values of the daily frequency samples, respectively, and the number of observations for
both samples was 422 and 196, respectively. In addition to the weekly and semi-monthly
frequencies, we also established an ADCC-GARCH model for the monthly frequency sam-
ple. However, since the number of observations for the monthly sample was only 97, the
algorithm could not converge when performing ADCC-GARCH estimation. Therefore, it
was abandoned.

3.3. ADCC-GARCH Estimation Results

The mean equation of the GARCH model was set to be AR(1) with the intercept term
included, and the parameters of the intercept term and AR(1) were denoted by μ and ϕ,
respectively. The variance equation was set to be GARCH(1,1), and the parameters of
its intercept term, ARCH term and GARCH term were denoted by ω, α and β, respec-
tively. The dynamic correlation parameters of the ADCC model were denoted by a, b and
g, and υ denoted the joint distribution parameter of the model. Since all return series
were not normally distributed, the multivariate joint t-distribution was selected for the
distribution function.

Table 4 reports the ADCC-GARCH estimation results for the daily frequency sample
of bitcoin and each asset price. In the variance equation, the coefficients of the ARCH and
GARCH terms for all assets were significantly positive at least at the 5% level, indicating
that the GARCH(1,1) setting was plausible. The coefficients of the GARCH term for
all assets were much larger than the coefficients of the ARCH term, indicating that the
conditional variance was more influenced by its prior period value and less sensitive to
the previous period’s return volatility, which showed that the price movements of these
assets exhibited volatility clustering. From the ADCC estimation results, a was not negative,
indicating that the standardized residuals with one lag had a positive effect on the dynamic
correlation coefficient; b was close to 1, indicating that the dynamic correlation between
bitcoin and other assets had strong persistence; and the sum of a and b was less than 1,
ensuring that the conditional covariance matrix was positive definite and mean-reverting.
ARCH tests were further performed on the residual terms of the ADCC-GARCH estimation
results, and the results showed no significant ARCH effect. The above results indicated
that the ADCC-GARCH estimation results were reliable. In addition to the daily frequency
sample, we also performed ADCC-GARCH modeling for the weekly and semi-monthly
frequency samples.

Table 4. Results of ADCC-GARCH estimation.

Mean Equation Variance Equation ADCC Parameters

μ ϕ ω α β a b g υ

MSCI_world 0.0686 *** 0.1441 *** 0.0374 *** 0.1544 *** 0.7928 *** 0.0063 0.9849 *** 0.0000 4.0000 ***
(0.0006) (0.0000) (0.0063) (0.0001) (0.0000) (0.1662) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0078) (0.9388) (0.0157) (0.0012) (0.0000)

S&P500 0.0996 *** −0.0500 * 0.0733 *** 0.2741 *** 0.6756 *** 0.0066 0.9838 *** 0.0000 4.0000 ***
(0.0000) (0.0698) (0.0004) (0.0007) (0.0000) (0.8233) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0072) (0.9385) (0.0154) (0.0011) (0.0000)

FTSE100 0.0212 0.0458 0.0507 ** 0.1210 *** 0.8338 *** 0.0084 0.9552 0.0000 4.0000 ***
(0.3310) (0.1072) (0.0197) (0.0009) (0.0000) (0.8788) (0.4951) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0081) (0.9390) (0.0162) (0.0011) (0.0000)
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Table 4. Cont.

Mean Equation Variance Equation ADCC Parameters

μ ϕ ω α β a b g υ

DAX30 0.0616 ** 0.0208 0.0375 ** 0.0783 *** 0.9000 *** 0.0078 0.9637 *** 0.0000 4.0000 ***
(0.0243) (0.4427) (0.0164) (0.0001) (0.0000) (0.2637) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0079) (0.9388) (0.0158) (0.0012) (0.0000)

Nikkei225 0.0760 *** −0.0367 0.0882 ** 0.1146 *** 0.8396 *** 0.0030 0.9878 *** 0.0000 4.0000 ***
(0.0069) (0.1783) (0.0318) (0.0001) (0.0000) (0.3440) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0079) (0.9388) (0.0158) (0.0012) (0.0000)

SSEC 0.0314 0.0266 0.0188 0.0778 *** 0.9177 *** 0.0069 0.9780 *** 0.0031 4.0000 ***
(0.2363) (0.3553) (0.1164) (0.0039) (0.0000) (0.1485) (0.0000) (0.5676) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 *** 0.1775 *** 0.7911 ***
(0.0081) (0.9387) (0.0158) (0.0012) (0.0000)

U.S. bond index 0.0193 *** −0.0025 0.0101 ** 0.1479 ** 0.6820 *** 0.0041 0.9383 *** 0.0000 4.1864 ***
(0.0002) (0.9266) (0.0210) (0.0117) (0.0000) (0.4438) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0080) (0.9388) (0.0158) (0.0012) (0.0000)

Non-U.S. bond index 0.0238 *** 0.0388 0.0045 ** 0.1619 ** 0.7337 *** 0.0085 0.9324 *** 0.0000 4.0111 ***
(0.0000) (0.2261) (0.0274) (0.0102) (0.0000) (0.1982) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0080) (0.9389) (0.0158) (0.0012) (0.0000)

Emerging markets bond index 0.0305 *** 0.0491 0.0103 *** 0.2980 *** 0.7010 *** 0.0058 0.9792 *** 0.0000 4.0000 ***
(0.0003) (0.1751) (0.0025) (0.0003) (0.0000) (0.3347) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0079) (0.9387) (0.0158) (0.0012) (0.0000)

S&P GSCI 0.0174 0.0060 0.0333 ** 0.0688 *** 0.9165 *** 0.0000 0.9927 *** 0.0009 4.0000 ***
(0.5484) (0.8154) (0.0386) (0.0000) (0.0000) (1.0000) (0.0000) (0.5566) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0079) (0.9388) (0.0158) (0.0012) (0.0000)

CRB commodity index 0.0054 0.0847 *** 0.0103 * 0.0410 ** 0.9015 *** 0.0024 0.9825 *** 0.0000 4.0000 ***
(0.6288) (0.0028) (0.0999) (0.0262) (0.0000) (0.5244) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0085) (0.9387) (0.0158) (0.0012) (0.0000)

Brent oil 0.0478 −0.0190 0.0952 ** 0.1205 *** 0.8761 *** 0.0000 0.9927 0.0010 4.0000 ***
(0.3078) (0.4767) (0.0247) (0.0000) (0.0000) (1.0000) (0.5850) (0.9954) (0.0000)

Bitcoin 0.2708 ** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0104) (0.9376) (0.0141) (0.0013) (0.0000)

Gold 0.0087 0.0016 0.0076 ** 0.0271 *** 0.9657 *** 0.0066 0.9780 *** 0.0000 4.0000 ***
(0.7094) (0.9521) (0.0265) (0.0000) (0.0000) (0.1151) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0080) (0.9389) (0.0157) (0.0012) (0.0000)

U.S. dollar index 0.0047 −0.0060 0.0012 * 0.0355 *** 0.9589 *** 0.0076 0.9736 *** 0.0000 4.3210 ***
(0.6250) (0.8119) (0.0778) (0.0000) (0.0000) (0.1743) (0.0000) (1.0000) (0.0000)

Bitcoin 0.2708 *** −0.0025 1.7513 ** 0.1775 *** 0.7911 ***
(0.0080) (0.9389) (0.0158) (0.0012) (0.0000)

Note: This table reports the results of ADCC-GARCH estimation for the daily frequency sample. The p values are
in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

Figure 2 shows the trend of dynamic correlation coefficients between bitcoin and
various assets, including daily, weekly and semi-monthly frequencies. The correlation coef-
ficients between bitcoin and each asset all exhibited significant time variability, suggesting
that using an ADCC-GARCH approach was necessary to capture the dynamic correlation
between bitcoin and each asset. We classified these assets into stock, bond, commodity and
currency to further analyze the dynamic correlation between bitcoin and different classes
of assets.
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Figure 2. Daily, weekly and semi-monthly dynamic correlation coefficients between bitcoin and
other assets.
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Figure 2, panels (1)–(6), show the trend of dynamic correlation coefficients between
bitcoin and representative stock indices. Firstly, in the daily frequency dimension, the
correlation coefficients between bitcoin and all stock indices were low and largely fluctuated
around 0, showing no sustained positive or negative correlation. The reason for this may
be that bitcoin’s high short-term volatility undermines its short-term correlation with other
assets. Secondly, as the frequency changed from high to low, bitcoin began to show a
significant positive correlation with most stock indices. In both the weekly and semi-
monthly frequency dimensions, the correlation coefficients between bitcoin and global,
U.S., U.K., German and Japanese stock indices were consistently positive in most periods,
and the magnitude of the coefficients was also significantly higher. In particular, the
dynamic correlation coefficients of bitcoin with global, U.S. and U.K. stock indices showed
a clear “semimonthly frequency > weekly frequency > daily frequency”. This showed
that bitcoin had a weak correlation with major stock prices in the short term, but a more
stable positive correlation in the long term. Thirdly, bitcoin’s linkage with SSEC had
different characteristics from its linkage with stock indices of developed countries. While
the correlation between bitcoin and SSEC in the daily frequency dimension fluctuated
around 0 over the full sample interval, the daily frequency correlation between the two
was negative for most periods before 2017, which was consistent with the findings of
Wang et al. [28]. Furthermore, the dynamic correlation coefficient between bitcoin and SSEC
in the semi-monthly frequency dimension was negative in most periods, indicating that
bitcoin and SSEC are negatively correlated in the long term. Unlike developed countries,
China’s financial markets have long been subject to capital controls, resulting in relatively
limited channels for investors to invest abroad. In this context, when there is a long-term
downward trend in the Chinese stock market, investors tend to enter the cryptocurrency
(e.g., bitcoin) market to hedge their domestic stock investment losses, which is a possible
reason for the negative correlation between bitcoin and the SSEC index in the long run.
Fourth, the bitcoin-stock linkage increased sharply when subjected to exogenous extreme
shocks. This observation was consistent with Kwapień et al. [3], who also found that the
level of correlation between the cryptocurrency market and the stock market becomes
higher during turbulent periods. Following the outbreak of COVID-19 in early 2020, the
dynamic correlation coefficients between bitcoin and all stock indices rose rapidly, with the
weekly frequency correlation coefficients of bitcoin with global, U.S., Japanese and Chinese
stock indices rising sharply to approximately 0.5, 0.35, 0.7 and 0.25, respectively, and the
semi-monthly frequency correlation coefficients with the U.K. and German stock indices
both rising sharply to levels close to 0.8. The epidemic shock has led to a rapid rise in
uncertainty and a sudden drop in investor risk appetite, causing investors to be less willing
to hold not only traditional risk assets such as stocks, but also bitcoin, which has led to a
sharp decline in both bitcoin and stock markets and a sharp increase in the positive linkage
between bitcoin and the underlying stock indices.

Figure 2, panels (7)–(9), show the trend of dynamic correlation coefficients between
bitcoin and representative bond indices. Firstly, similar to the dynamic correlation coeffi-
cient between bitcoin and stock prices, the dynamic correlation coefficient between bitcoin
and bond prices exhibited a gradual increase from the short term (high frequency) to the
long term (low frequency). In the daily frequency dimension, the dynamic correlation
coefficients between bitcoin and the U.S. bond index, the non-U.S. bond index and the
emerging markets bond index all fluctuated in a small range around 0; however, in the
weekly and semi-monthly frequency dimensions, the coefficients were not only consistently
positive but also significantly higher in magnitude. In particular, the dynamic correlation
coefficients between bitcoin and both the non-U.S. bond index and emerging markets bond
index showed a clear “semimonthly frequency > weekly frequency > daily frequency”.
Secondly, in the comparable time-frequency dimension, the correlation between bitcoin and
bond prices was lower than its correlation with stock prices, indicating that bitcoin is more
closely linked to the stock market than its linkage to the bond market. Thirdly, the linkage
between bitcoin and bond prices also exhibited a sharp enhancement in response to extreme
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shocks. The outbreak of COVID-19 in early 2020 caused both bitcoin and bond prices to fall
significantly, resulting in the weekly frequency correlation coefficients of bitcoin with the
U.S. bond index, the daily frequency correlation coefficients with the non-U.S. bond index
and the semi-monthly frequency correlation coefficients with the emerging markets bond
index rising sharply to over 0.5, 0.3 and 0.6, respectively.

Figure 2, panels (10)–(13), show the trend of dynamic correlation coefficients between
bitcoin and representative commodity prices. Firstly, with the exception of gold, the
dynamic correlation coefficients between bitcoin prices and the S&P GSCI, CRB commodity
index and oil prices were positive for all periods and all time-frequency dimensions,
indicating a persistent positive linkage between bitcoin and major commodity prices.
Secondly, similar to the dynamic correlation coefficient between bitcoin and stocks/bonds,
the dynamic correlation coefficients between bitcoin and the three commodities other than
gold showed a gradual increase from the short term (high frequency) to the long term (low
frequency). In the daily frequency dimension, the dynamic correlation coefficients between
bitcoin and the three commodities, although consistently positive, were at a low level of
below 0.1 for most periods, while in the weekly and semi-monthly frequency dimensions,
the positive correlation coefficients were significantly higher. The correlation between
bitcoin and gold on both daily and weekly frequencies fluctuated basically in a small
range around 0. However, the correlation between the two on semi-monthly frequencies,
increased. Thirdly, the bitcoin–commodity market linkage also exhibited a sharp increase
in response to extreme shocks, which was consistent with Kwapień et al. [3], who showed
that the level of correlation between the cryptocurrency market and the commodity market
becomes higher during turbulent periods. Following the outbreak of COVID-19 in early
2020, both bitcoin and commodity prices fell rapidly, with bitcoin’s semi-monthly frequency
correlation coefficients with the S&P GSCI, oil prices and gold prices rising sharply to over
0.6, 0.5 and 0.6, respectively, and its weekly frequency correlation coefficient with the CRB
commodity index rising rapidly to approximately 0.35.

Figure 2, panel (14), shows the trend of the dynamic correlation coefficient between
bitcoin and the U.S. dollar index. At all frequencies, the dynamic correlation coefficient
between bitcoin and the U.S. dollar index was negative in most periods, indicating that
bitcoin price has an inverse linkage to the U.S. dollar index and that bitcoin can be used as
an effective hedge against dollar depreciation. Bitcoin had a weak negative correlation with
the U.S. dollar index on the daily and weekly frequencies, but showed a strong negative
correlation for most periods on the semi-monthly frequency, peaking at nearly −0.4. The
reason for the negative correlation between bitcoin and the dollar index may be interpreted
in two ways. First, since bitcoin is denominated in USD, a dollar depreciation will cause
bitcoin to become cheaper, thus, increasing demand for bitcoin and driving its price upward.
Second, as deduced from the previous results regarding the predominantly positive corre-
lation between bitcoin and stock/bond/commodity prices, bitcoin is closer in nature to a
risk asset, while the U.S. dollar is typically a safe-haven asset, so the two prices naturally
exhibit a negative correlation.

In summary, the linkage between bitcoin and various assets varies by asset class and
time frequency, and can undergo significant structural changes in response to exogenous
shocks in international financial markets. In terms of asset classes, bitcoin was positively
correlated with risk assets including stock, commodity and bond, and bitcoin’s positive
correlation with stock or commodity was stronger than its positive correlation with bond;
bitcoin had a significant negative correlation with the U.S. dollar, a typical safe-haven
asset. As such, bitcoin is closer in nature to a risk asset than a safe-haven asset. In terms
of time frequency, the long-term correlation between bitcoin and various asset prices was
significantly stronger than the short-term correlation, mainly because the short-term high
volatility and speculative nature of the bitcoin market undermine its short-term correlation
with other assets. Finally, the linkage between bitcoin and the risk assets can increase
sharply in response to exogenous extreme shocks. For example, after the outbreak of
COVID-19 in early 2020, the plunge in investor risk appetite led to a sharp decline in the
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prices of bitcoin and risk assets (including stocks, bonds and commodities), at which point
the positive linkage between bitcoin and those risk assets rose rapidly. This also suggests
that the outbreak of the COVID-19 pandemic has accelerated the integration of bitcoin with
traditional financial markets, transforming it into part of a global market that is increasingly
correlated with traditional assets [4].

4. Bitcoin’s Risk Diversification, Hedging and Safe-Haven Properties for Other Assets

The DCC coefficients estimated in the previous section can characterize the dynamic
linkage between bitcoin and other assets and provide a basis for further identifying the risk
diversification, hedging and safe-haven properties of bitcoin for those assets.

4.1. Criteria for Distinguishing an Asset’s Risk Diversification, Hedging and
Safe-Haven Properties

We first established the criteria by which bitcoin is considered a diversifier, hedge
or a safe haven. We followed Baur and Lucey [40] and Ratner and Chiu [37] to define a
diversifier, hedge and safe haven, as these have become standard in the literature. Follow-
ing Baur and Lucey [40] and Ratner and Chiu [37], we then distinguished bitcoin’s risk
diversification, hedging and safe-haven properties. The risk diversification property means
that bitcoin is positively (but not perfectly) correlated with the returns of other assets. The
hedging property includes a weak hedge, which means that bitcoin is uncorrelated with
the returns of other assets, and a strong hedge, which means that bitcoin is negatively
correlated with the returns of other assets. The safe-haven property includes a weak safe
haven, which means that bitcoin is uncorrelated with the returns of other assets in times of
market turmoil, and a strong safe haven, which means that bitcoin is negatively correlated
with the returns of other assets in times of market turmoil. It is worth noting that our
definition of a safe haven is ex post facto; that is, an asset (such as bitcoin) is considered a
safe haven if investors show a preference for it during a market stress, which is of course
only a necessary but not sufficient condition for an asset to be a safe-haven asset.

4.2. Identification Approach

The DCC coefficient between bitcoin and each asset is regressed on the lower quantile
dummy variables of the corresponding asset returns to specifically identify the diversifica-
tion, hedging and safe-haven properties of bitcoin for that asset. The regression equation is
as follows:

DCCt = m0 + m1D(rother assetq10) + m2D(rother assetq5) + m3D(rother assetq1) + εt (11)

where rother asset is the return on the corresponding asset, and D(rother assetq10), D(rother assetq5)
and D(rother assetq1) denote the 10%, 5%, and 1% lower quartile dummy variables for the
return on that asset, respectively. Figure 3 shows the 10%, 5% and 1% lower quartile values
of daily returns for 14 traditional financial assets. The observations below the lower quartile
values comprise the analysis period for our test of bitcoin’s safe-haven properties. For
observations below the 10% lower quantile value, we set D(rother assetq10) = 1; for observa-
tions below the 5% lower quantile value, we set D(rother assetq5) = 1; and for observations
below the 1% lower quantile value, we set D(rother assetq1) = 1.

If m0 is significantly positive, then bitcoin has risk diversification capability for that
asset; if m0 is equal to 0, then bitcoin has weak hedging capability for that asset; if m0 is
negative, then bitcoin has strong hedging capability for that asset. If m1, m2 and m3 are not
significantly nonzero, then bitcoin has a weak safe-haven capability for that asset; if m1,
m2 and m3 are significantly negative, then bitcoin has a strong safe-haven capability for
that asset.
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Figure 3. The 10%, 5% and 1% lower quartile values of 14 traditional asset returns (daily frequency).
The three horizontal lines from top to bottom in each graph indicate the 10%, 5% and 1% lower
quartile values, respectively.
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4.3. Regression Results

We extracted the pairwise DCC series between bitcoin and other assets from the
ADCC-GARCH estimation results and then regressed the DCC series based on Equation
(11) to assess the diversification, hedging and safe-haven properties of bitcoin for each
asset. For example, by regressing the DCC series between bitcoin and the MSCI world
index on a constant (m0) and three dummy variables (m1, m2 and m3), we can assess the
diversification or hedging capability of bitcoin for the global stock market based on the
value and significance level of m0 and the safe-haven capability of bitcoin for the global
stock market based on the values and significance levels of m1, m2 and m3. Tables 5–7 report
the regression results for the daily, weekly and semi-monthly DCC series, respectively.

Table 5. Regression results for the risk diversification, hedging and safe-haven properties of bitcoin
for other assets (daily frequency).

10% Quantile (m1) 5% Quantile (m2) 1% Quantile (m3) m0

MSCI_world 0.0049 0.0052 0.0141 0.0481 ***
(0.4753) (0.6080) (0.3900) (0.0000)

S&P500 0.0146 ** −0.0031 0.0247 0.0455 ***
(0.0229) (0.7416) (0.1046) (0.0000)

FTSE100 −0.0039 0.0067 0.0586 *** 0.0572 ***
(0.4001) (0.3302) (0.0000) (0.0000)

DAX30 0.0030 −0.0031 0.0406 *** 0.0679 ***
(0.5659) (0.6855) (0.0010) (0.0000)

Nikkei225 0.0007 −0.0025 0.0046 0.0390 ***
(0.7960) (0.5561) (0.5064) (0.0000)

SSEC 0.0076 −0.0056 −0.0176 0.0391 ***
(0.1571) (0.4772) (0.1721) (0.0000)

U.S. bond index −0.0009 −0.0023 0.0240 *** 0.0212 ***
(0.6568) (0.4624) (0.0000) (0.0000)

Non-U.S. bond index −0.0051 0.0031 0.0198 ** 0.0184 ***
(0.1968) (0.5963) (0.0363) (0.0000)

Emerging markets bond index 0.0105 * −0.0070 0.0916 *** 0.0532 ***
(0.0632) (0.3981) (0.0000) (0.0000)

S&P GSCI 0.0023 *** 0.0008 0.0043 ** 0.0451 ***
(0.0017) (0.4658) (0.0159) (0.0000)

CRB commodity index 0.0003 −0.0027 −0.0025 0.0671 ***
(0.8803) (0.3298) (0.5879) (0.0000)

Brent oil 0.0022 *** 0.0032 *** 0.0039 ** 0.0445 ***
(0.0086) (0.0073) (0.0461) (0.0000)

Gold −0.0031 0.0091 0.0431 *** 0.0543 ***
(0.5665) (0.2536) (0.0009) (0.0000)

U.S. dollar index −0.0016 0.0060 0.0072 −0.0373 ***
(0.7287) (0.3643) (0.5032) (0.0000)

Note: p values are in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

Table 6. Regression results for the risk diversification, hedging and safe-haven properties of bitcoin
for other assets (weekly frequency).

10% Quantile (m1) 5% Quantile (m2) 1% Quantile (m3) m0

MSCI_world 0.0263 −0.0138 0.0125 0.1357 ***
(0.1283) (0.5845) (0.7494) (0.0000)

S&P500 0.0009 0.0174 *** −0.0206 ** 0.1318 ***
(0.8267) (0.0037) (0.0268) (0.0000)

FTSE100 0.0025 −0.0021 0.0501 *** 0.1314 ***
(0.6155) (0.7775) (0.0000) (0.0000)

DAX30 −0.0005 0.0193 0.0519 * 0.1489 ***
(0.9693) (0.2701) (0.0580) (0.0000)

Nikkei225 −0.0215 −0.0080 0.0473 0.1290 ***
(0.2985) (0.7904) (0.3139) (0.0000)

SSEC 0.0070 −0.0112 −0.0050 0.0743 ***
(0.3758) (0.3320) (0.7807) (0.0000)

U.S. bond index 0.0010 −0.0031 0.0071 0.0491 ***
(0.8678) (0.7188) (0.6011) (0.0000)
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Table 6. Cont.

10% Quantile (m1) 5% Quantile (m2) 1% Quantile (m3) m0

Non-U.S. bond index 3.53 × 10−9 −9.88 × 10−8 4.40 × 10−7 *** 0.0772 ***
(0.9610) (0.3474) (0.0075) (0.0000)

Emerging markets bond index 0.0032 −0.0026 0.0755 *** 0.0665 ***
(0.6917) (0.8243) (0.0001) (0.0000)

S&P GSCI −0.0109 0.0276 −0.0164 0.1805 ***
(0.4083) (0.1503) (0.5828) (0.0000)

CRB commodity index 0.0019 0.0024 0.0691 ** 0.1274 ***
(0.8851) (0.9008) (0.0195) (0.0000)

Brent oil −0.0124 * 0.0141 −0.0066 0.1828 ***
(0.0571) (0.1367) (0.6563) (0.0000)

Gold 0.0034 0.0162 0.0543 ** 0.0303 ***
(0.7694) (0.3356) (0.0395) (0.0000)

U.S. dollar index 0.0058 −0.0041 −0.0084 −0.0182 ***
(0.4148) (0.6935) (0.6027) (0.0000)

Note: p values are in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

Table 7. Regression results for the risk diversification, hedging and safe-haven properties of bitcoin
for other assets (semi-monthly frequency).

10% Quantile (m1) 5% Quantile (m2) 1% Quantile (m3) m0

MSCI_world 0.0025 −0.0006 0.0942 *** 0.1505 ***
(0.8494) (0.9734) (0.0032) (0.0000)

S&P500 −0.0002 0.0100 *** −0.0107 *** 0.1730 ***
(0.8938) (0.0000) (0.0052) (0.0000)

FTSE100 0.0215 −0.0177 0.1584 ** 0.1990 ***
(0.4422) (0.6645) (0.0210) (0.0000)

DAX30 0.0922 * −0.1048 0.3512 *** 0.1428 ***
(0.0881) (0.1836) (0.0079) (0.0000)

Nikkei225 0.0126 0.0064 0.1188 *** 0.1203 ***
(0.4645) (0.7992) (0.0050) (0.0000)

SSEC 0.0726 ** −0.0299 −0.0981 −0.0671 ***
(0.0271) (0.5299) (0.2172) (0.0000)

U.S. bond index −0.0026 0.0098 −0.0110 0.0453 ***
(0.5480) (0.1217) (0.2998) (0.0000)

Non-U.S. bond index −2.44 × 10−9 −5.92 × 10−8 −3.97 × 10−8 0.1307 ***
(0.9245) (0.1166) (0.5259) (0.0000)

Emerging markets bond index −0.0095 0.0956 *** 0.0199 0.1025 ***
(0.5822) (0.0002) (0.6362) (0.0000)

S&P GSCI 0.0166 −0.0015 0.4531 *** 0.1210 ***
(0.5002) (0.9665) (0.0000) (0.0000)

CRB commodity index 0.0028 −0.0067 0.0659 *** 0.0736 ***
(0.7768) (0.6464) (0.0074) (0.0000)

Brent oil 0.0180 −0.0072 0.2724 *** 0.1429 ***
(0.1671) (0.7030) (0.0000) (0.0000)

Gold −0.0393 −0.0011 0.1826 * 0.1183 ***
(0.3131) (0.9847) (0.0551) (0.0000)

U.S. dollar index 0.0506 −0.0428 0.0929 −0.0825 ***
(0.2098) (0.4673) (0.3438) (0.0000)

Note: p values are in parentheses. ***, ** and * indicate significance at the 1%, 5% and 10% levels, respectively.

The regression results for the daily frequency sample (Table 5) show that bitcoin cannot
be considered a strong safe haven for all financial assets, implying that investors holding
bitcoin cannot protect against extreme volatility in the prices of those assets. For the S&P 500,
FTSE 100, DAX30, U.S. bond index, non-U.S. bond index, emerging markets bond index,
S&P GSCI, oil and gold, the coefficients of the dummy variables characterizing the lower
quartile values of their returns (m1, m2 and m3) are all significantly positive in at least one
case, which can only mean that bitcoin is an effective risk diversifier at the corresponding
lower quartile levels of these asset returns. In terms of hedging properties, only the constant
term (m0) of the U.S. dollar index is significantly negative across all assets, implying that
bitcoin is an effective tool to hedge against the movement of the USD exchange rate and
that USD investors in the FX market tend to use bitcoin to hedge their currency portfolios.
This is consistent with the findings of Dyhrberg [21], who also shows that bitcoin can be
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used as a hedge for the USD/EUR and USD/GBP exchange rates. All assets other than the
U.S. dollar have significantly positive m0, so for these assets, bitcoin is only an effective
risk diversifier. The main reason why bitcoin has risk diversification capabilities for most
assets is that the mechanism of bitcoin price formation is more influenced by the bitcoin
market’s own supply and demand and investors’ preferences for cryptocurrencies and less
correlated with global macroeconomic and financial developments.

The regression results for the weekly frequency sample (Table 6) showed that in terms
of hedging properties, only the U.S. dollar index had a significantly negative m0, while all
other assets had a significantly positive m0. This suggests that in the weekly frequency
dimension, bitcoin is still only a strong hedge against the U.S. dollar exchange rate and
only an effective risk diversifier for other assets. In terms of safe-haven properties, m3
was significantly negative for the S&P 500, and m1 was significantly negative for crude
oil, suggesting that bitcoin can be viewed to some extent as a safe haven against extreme
volatility in the U.S. stock market (at the lower 1% quartile) and crude oil market (at
the lower 10% quartile). This also means that investors have a tendency to put their
money into the bitcoin market when there is a crisis in the U.S. stock market and the crude
oil market. A possible explanation for why investors choose bitcoin as a safe haven in
some cases, is that bitcoin operates as a decentralized cryptocurrency that is completely
independent of any central institution. When traditional financial markets are under
downward pressure, investors choose to seek shelter in the bitcoin market, which is
independent of the traditional financial system and its underlying technical architecture.

The regression results for the semi-monthly frequency sample (Table 7) were similar
to those for the weekly frequency samples. However, there were two differences. First,
in terms of hedging properties, on the semi-monthly frequency, bitcoin not only had the
ability to hedge the U.S. dollar index but also had a significant hedging effect on the SSEC.
This suggests that bitcoin has the ability to hedge against declines in China’s stock market
in the long term. Moreover, the observation that bitcoin can hedge the Chinese stock
market in the long term is also mentioned in the literature; for example, Chan et al. [24]
found that bitcoin could serve as an effective hedge for the Chinese stock market in the
monthly frequency dimension over the period 2010–2017. The likely reason is, that due
to the existence of cross-border capital flow controls in China, when its domestic stock
market is under long-term downward pressure, investors may seek to enter the bitcoin
market to hedge against declines in the domestic stock market, as they have limited access
to foreign investment. Second, in terms of safe-haven properties, on the semi-monthly
frequency, bitcoin no longer has a strong hedging effect on the crude oil market but can
still be considered to some extent as a safe haven against the risk of extreme volatility in
the U.S. stock market at the low 1% quartile. Combining the weekly and semi-monthly
frequency regression results, it was found that among the global stock markets, bitcoin had
a significant safe-haven effect only for the U.S. stock market, which echoed the results found
by Wang et al. [25] that the safe-haven properties of cryptocurrencies are more pronounced
in developed markets or markets with larger market capitalization and higher liquidity.

In summary, bitcoin’s risk diversification, hedging and safe-haven properties vary
across time frequency dimensions, so distinguishing the holding period matters to bitcoin
holders. For example, bitcoin does not have hedging ability against the Chinese stock
market on the daily and weekly frequencies, but starts to produce a significant hedging
effect on the semi-monthly frequency. In addition, bitcoin has no safe-haven properties
for all assets on the daily frequency, but is starting to exhibit safe-haven properties for
some assets (i.e., S&P 500 and crude oil) on the weekly and semi-monthly frequencies. One
explanation for the differences in bitcoin’s hedging and safe-haven properties at different
time frequencies is that bitcoin’s high short-term volatility and its strong speculative
properties undermine its hedging and safe-haven properties in the short term and may even
compromise its hedging and safe-haven properties in the long term. Another explanation
is that bitcoin’s hedging and safe-haven properties at different frequencies may be driven
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by different factors, as price formation of bitcoin may be influenced by different factors in
the long and short term.

5. Conclusions

Using bitcoin and 14 global financial asset price data covering stock, bond, commercial
and currency for the period 2013–2021, this study applied the ADCC-GARCH approach to
test the dynamic correlation between bitcoin and each asset at different time frequencies,
and further identified the risk diversification, hedging and safe-haven properties of bitcoin
for those traditional assets. The main findings are as follows:

(i) Bitcoin is positively linked to risk assets, including stocks, bonds and commodities,
and negatively linked to the U.S. dollar, which is a typical safe-haven asset. Therefore,
bitcoin is closer in nature to a risk asset than a safe-haven asset;

(ii) The high short-term volatility and speculative nature of the bitcoin market makes its
long-term correlation with other assets stronger than the short-term correlation;

(iii) The positive linkage between bitcoin and risk assets increases sharply under extreme
shocks (e.g., the outbreak of COVID-19 in early 2020);

(iv) Bitcoin can hedge against the U.S. dollar, and in the long term, bitcoin can hedge against
the Chinese stock market and act as a safe haven for the U.S. stock market and crude oil.
However, for most other traditional assets, bitcoin is only an effective diversifier.

Our conclusions provide useful insights for market participants and policymakers.
First, because bitcoin is closer in nature to a risk asset, investors should allocate to bitcoin as
a risk diversifier for traditional risk assets such as stock, bond and commodity, rather than
as a hedge, especially in times of extreme exogenous shocks. Second, the short-term high
volatility and speculative nature of the bitcoin market leads to great uncertainty in the short-
term price of bitcoin, while also undermining its short-term correlation with major financial
assets, making bitcoin’s diversification, hedging and safe-haven properties vary across
different time-frequency dimensions. This reminds bitcoin holders that it is important
to distinguish between bitcoin holding periods. Investors who enter the bitcoin market
should opt for long-term holdings as much as possible. Short-term speculation could
expose them to significant investment risk and would likely result in large capital losses.
Third, as uncertainties in global financial markets further increase in the post-epidemic era,
policymakers and investors should keep paying attention to potential structural changes in
the linkage between bitcoin and major asset prices under exogenous extreme shocks and the
financial risks they may trigger. Finally, as the market for bitcoin trading is immature and
the price is extremely unstable, individual investors should be discouraged from entering
the cryptocurrency market represented by bitcoin, to protect the safety of their property.
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Abstract: Error-correcting codes form an important topic in information theory. They are used to
correct errors that occur during transmission on a noisy channel. An important method for correcting
errors is bounded distance decoding. The public-key cryptosystem is a cryptographic protocol that
has two different keys. One of them is a public-key that can be known by everyone, and the other
is the private-key only known to the user of the system. The data encrypted with the public-key
of a given user can only be decrypted by this user with his or her private-key. In this paper, we
propose a public-key cryptosystem based on the error-correcting codes. The decryption is performed
by using the bounded distance decoding of the code. For a given code length, dimension, and
error-correcting capacity, the new system allows dealing with larger plaintext than other code based
public-key cryptosystems.

Keywords: public-key cryptosystem; error correcting code; bounded distance decoding

1. Introduction

Public-key cryptosystems or asymmetric cryptosystems have been a subject of study
since 1976. These systems consider two different keys, which are called public-key and
private-key. These keys are not completely independent of each other. There must be
a mathematical relationship as factoring, discrete logarithm, etc. [1,2]. The public-key
cryptosystem was first introduced in 1976 by Diffie and Hellman [3]. Rivest, Shamir
and Adleman’s paper, known as the RSA cryptosystem [4], also present a public-key
cryptosystem. The RSA cryptosystem was based on the factorization integers [5]. Merkle
and Hellman [6] suggested a cryptosystem based on the difficulty of the integer packing
“knapsack” problem.

The first public-key cryptosystem based on the error-correcting codes was presented
by R. J. McEliece in 1978 [7]. He has employed error correcting codes, in particular binary
Goppa codes, with a known decoding algorithm to construct the system. The generator
matrix G plays an important role. The most important property of McEliece’s cryptosystem
is its large key size. Niederreiter suggested another code-based public-key cryptosystem
that is based on the syndrome decoding of linear codes [8]. This system is used for the
parity-check matrix H of a linear code. Thus, it is also the dual version of McEliece’s
cryptosystem. If it is used with exactly the same parameters [9], McEliece’s cryptosystem
and Niederreiter’s cryptosystem offer an equivalent security. Li et al. [10] proposed new
classes of trapdoor functions to solve the bounded distance decoding problem in lattices.
Moreover, a lot of cryptosystems have been presented by using linear codes after McEliece’s
and Niederreiter’s schemes. The use of subcodes of generalized Reed–Solomon codes was
introduced by Berger and Loidreau [11]. Berlekamp et al. [12] studied the complexity of
the decoding of arbitrary linear codes. Krouk [13] proposed a different class of public-key
cryptosystems. Sidelnikov [14] introduced the use of Reed–Muller codes for cryptosystems.
Berger et al. [15] and Misoczki-Barreto [16] proposed using quasi-cyclic and quasi-dyadic
codes to shorten the McEliece key. The original parameters of the McEliece cryptosystem
have been broken [17], but the general system is still considered safe.
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In this study, we propose a public-key cryptosystem based on the error-correcting
codes using a known bounded distance decoding method. We present the encryption and
decryption algorithms by inspiring both McEliece’s and Niederreiter’s cryptosystems.

• McEliece’s system has been constructed based on linear codes over F2.
• Both Niederreiter’s and our system have been constructed based on linear codes

over Fq.
• However, in our cryptosystem, since it is easier to generate the pieces of keys, the

encryption, decryption, and key generation are more effective than Niederreiter’s
cryptosystem.

• Another difference of our system from Niederreiter’s is the use of the bounded distance
decoding method, which corrects errors and guarantees unique decoding.

• It is impossible to find the private-key with public-key by an attacker in our public-key
cryptosystem.

• Similarly, even if an enemy knows the public-key and ciphertext, he/she cannot
calculate the plaintext.

These conditions ensure the new system is safe. Moreover, we consider some possible
attacks in this paper. So, we analyze its security and performance, and we calculate
some important parameters for our cryptosystem. When we compared it with McEliece’s
and Niederreiter’s cryptosystems, we can say that our system performs better as regards
encryption speed.

The rest of the paper is organized as follows. The next section gives the necessary
background on coding theory and cryptography. Section 3 introduces the new public-
key cryptosystem. Section 4 analyzes its security and examines some possible attacks.
Section 5 compares it to the other code-based public-key cryptosystems. Section 6 concludes
the paper.

2. Preliminaries

In this section, we remind of some important topics [18,19] that are necessary for
the paper.

2.1. Linear Codes

Definition 1 (Linear Code). A linear code C of length n and dimension k is a subspace of (Fq)n,
where Fq is the finite field with q elements, q is a prime power, and k and n are positive integers
such that k ≤ n. It is denoted by an [n, k]-code. The error-correcting capacity of C is the maximum
number t of errors that C can skillfully decode. All vectors of (Fq)n that are orthogonal to every
codeword of C consist of the dual code C⊥ which is an [n, n − k]-code.

Definition 2 (Hamming Weight). The Hamming weight w(x) of a vector x in (Fq)n is the
number of non-zero entries of x.

Definition 3 (Generator Matrix). A generator matrix G of C is the rows that are a basis of C. G
is also a k × n matrix.

Definition 4 (Parity-Check Matrix). A parity-check matrix H for a linear code C is an (n − k)×
n matrix which is a generator matrix for its dual code C⊥.

2.2. Coset Decoding

Definition 5. Let C be an [n, k]-code over Fq and u be any vector in (Fq)n. The coset of C is
defined as follows.

u + C = {u + x|x ∈ C}. (1)

Theorem 1 (Lagrange). Suppose C is an [n, k]-code over Fq. Then,

(i) Every vector of (Fq)n is in some coset of C;
(ii) Every coset contains exactly qk vectors;

178



Entropy 2022, 24, 498

(iii) Two cosets either are disjointed or coincided;
(iv) C contains exactly qn−k cosets.

Definition 6 (Coset Leader). The coset leader is the vector having a minimum weight in a coset.
If a coset contains more than one vector which has the minimum weight, then it is chosen at random
as the coset leader.

Definition 7 (Syndrome Decoding). Consider H is a parity-check matrix of an [n, k]-code C. In
this case,

S(y) = yHT (2)

is called the syndrome of y, where y is any vector of (Fq)n, the 1 × (n − k) row vector. Moreover,

S(y) = 0 =⇒ y ∈ C. (3)

Lemma 1. Two vectors u and v are in the same coset of C if and only if they have the same syndrome.

Corollary 1. There is a one-to-one correspondence between cosets and syndromes.

2.3. Public-Key Cryptosystems

A cryptosystem is an application of cryptographic methods and ensures the informa-
tion security services. The cryptosystems can be examined under two titles as the public-key
and private-key. Each person has a pair of keys; one is the public-key, and the other is
the private-key. The public-key is accessible to the other users; however, the private-key
should be stored so that only the owner can access it. Any person can send an encrypted
message using the public-key, but only the private-key, which is a pair of public-keys, can
decrypt the encrypted message. There is always the mathematical relationship between
the public-key and private-key in the public-key cryptosystems. The hardness of two
mathematical problems, as integer factoring and discrete logarithm, are used to generate
these keys. So, it is impossible to obtain the private-key using the public-key.

The Diffie–Hellman cryptosystem [3] and RSA cryptosystem [4] are pioneers of public-
key cryptosystems. However, McEliece [7] and Niederreiter [8] are the first founders of the
code-based public-key cryptosystems.

2.4. McEliece’s Public-Key Cryptosystem

McEliece’s public-key cryptosystem is the first system based on the algebraic block
codes; it was presented in 1978 [7]. In order to construct his cryptosystem, it used a binary
(n, k, 2t + 1) Goppa code C. It is clear that n is the code length, k is the code dimension,
and t is the error-correcting capacity of C. The encryption and decryption algorithms are
as follows.

Private-key: G, S, P; where G is a k × n generator matrix, S is any k × k non-singular matrix,
and P is any n × n permutation matrix.
Public-key: G′ = SGP and t.
Plaintexts: k bit vectors m over F2.
Encryption:

c = mG′ + e, (4)

where e is an n-bit error vector with Hamming weight t. So, c is the n-bit ciphertext.
Decryption:

cP−1 = (mS)G + eP−1 (5)

since
c = mSGP. (6)
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It is used as the fast decoding algorithm for C to correct the error eP−1; then, it is found mS
and therefore m.

2.5. Niederreiter’s Public-Key Cryptosystem

Niederreiter [8] proposed a knapsack-type public-key cryptosystem which is based on
(n, k, 2t + 1) linear code C over Fq.

Private-key: H, M, and P, where H is an (n − k)× n parity-check matrix of C, M is any
(n − k)× (n − k) non-singular matrix, and P is any n × n permutation matrix, all over Fq.
Public-key: H′ = MHP and t.
Plaintexts: n-dimensional vectors m over Fq with weight t.
Encryption: c = mH′T , c is the ciphertext of dimension n − k.
Decryption:

c(MT)−1 = (mPT)HT (7)

since
c = m(MHP)T . (8)

It is used as the fast decoding algorithm for C to obtain mPT and m.

3. The System

The construction of our public-key cryptosystem is based on [n, k, 2t + 1]-code over Fq.
The syndrome-decoding procedure is used for decryption. The public-key and private-key
are constructed by each user as follows.

(1) Select a generator k × n matrix G of a linear [n, k, 2t + 1]-code C over Fq, where t is
the error-correcting capability.

(2) Construct a parity-check (n − k)× n matrix H from G for the code C.
(3) Select any non-zero syndrom vector h which has weight t and dimension (n − k).
(4) Select a random non-singular (n − k)× (n − k) matrix M over Fq.
(5) Calculate n × (n − k) matrix H′ = HT · M, where HT is denoted by the transpose

of H.
(6) The public-key is (H′, h).
(7) The private-key is (G, H, M).

Encryption:

Message: n dimension vector m over Fq with weight t.
Cryptogram: c = mH′ + h
Decryption:

(1) Calculate c′ = cM−1;
(2) Obtain m by syndrome decoding c′ in the code C.

Decryption is correct, since
w(hM−1) = w(h), (9)

it can be computed

c′ = cM−1 = (mH′ + h)M−1 = mH′M−1 + hM−1 (10)

cM−1 = mHT MM−1 + hM−1 (11)

cM−1 = mHT + hM−1 (12)

cM−1 − hM−1 = mHT (13)

and the procedure of syndrome decoding may be effectively used.
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Example 1. Consider an [4, 2, 3]-code C over F3. The generator matrix G and parity-check matrix
H are

G =

(
1 0 2 2
0 1 2 1

)
, (14)

H =

(
1 1 1 0
1 2 0 1

)
. (15)

C = {0000, 0121, 0212, 1022, 1110, 1201, 2011, 2102, 2220}. Select any non-singular ma-

trix M =

(
1 2
2 0

)
. The syndromes and coset leaders of C are as follows.

Syndromes Coset Leaders
(00) (0000)
(11) (1000)
(12) (0100)
(10) (0010)
(01) (0001)
(22) (2000)
(21) (0200)
(20) (0020)
(02) (0002)

The size of different cosets of C is

34−2 = 32 = 9.

So, there are also nine syndrome vectors, which are {00, 11, 12, 10, 01, 22, 21, 20, 02}.
Calculate the matrix

H′ = HT · M =

⎛⎜⎜⎝
1 1
1 2
1 0
0 1

⎞⎟⎟⎠ ·
(

1 2
2 0

)
=

⎛⎜⎜⎝
0 2
2 2
1 2
2 0

⎞⎟⎟⎠ (16)

and

M−1 =

(
0 2
2 2

)
. (17)

Let h be the syndrome vector (20). Since d = 3, C is the corrected t = 1 error. So, the
public-key is

H′ =

⎛⎜⎜⎝
1 1
1 2
1 0
0 1

⎞⎟⎟⎠, h = (20) (18)

and the private-key is

(G, H, M) = (

(
1 0 2 2
0 1 2 1

)
),
(

1 1 1 0
1 2 0 1

)
,
(

1 2
2 0

)
). (19)

Encryption: Let the message vector be m = (1000) and h = (20). The cryptogram is

c = mH′ + h = (1000) ·

⎛⎜⎜⎝
0 2
2 2
1 2
2 0

⎞⎟⎟⎠+ (20) = (02) + (20) = (22). (20)
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Decryption: Calculate

c′ = cM−1 = (22) ·
(

0 2
2 2

)
= (12). (21)

Since
c = mH′ + h (22)

and
H′ = HT · M, (23)

c′ is also equal to

c′ = (mH′ + h)M−1 = mH′M−1 + hM−1 = mHT MM−1 + hM−1 (24)

c′ = mHT + hM−1. (25)

So,

(12) = (m1m2m3m4) ·

⎛⎜⎜⎝
1 1
1 2
1 0
0 1

⎞⎟⎟⎠+ (20) ·
(

0 2
2 2

)
. (26)

(12) = (m1 + m2 + m3, m1 + 2m2 + m4) + (01) (27)

(12)− (01) = (m1 + m2 + m3, m1 + 2m2 + m4) (28)

(11) = (m1 + m2 + m3, m1 + 2m2 + m4). (29)

We get the message m = (1000) by solving the linear system.

Proposition 1. The size of the plaintext is logq (
n
t).

Proof. The plaintext is an n − q tuple word of weight t. These are the integers between 1
and (n

t) to the set of words of weight t and length n. Therefore, the size of the plaintext is
logq (

n
t).

Proposition 2. The size of the ciphertext is (n − k).

Proof. Since the ciphertext is a (n − k)− q tuple word, the proof is clear.

Corollary 2. The transmission rate of the new system is

logq (
n
t)

(n − k)
.

Proof. The proportion of the number of information symbols to the number of transmitted
symbols gives the transmission rate. So, it is

logq (
n
t)

(n − k)
.

Proposition 3. Given a syndrome vector y of weight w, the number of eligible h’s is (w
t )(q − 1)t.

Proof. It is known that the weight of h is t, and h is non-zero. Thus, the number of non-zero
vectors of weight t among the vectors of w is (w

t )(q − 1)t.
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Example 2. Let C be the extended binary Hamming code of parameters [8, 4, 4]. Its packing radius
is 1. We examine some properties of the public-key cryptosystem based on C. The size of the
plaintext is

log2

(
8
1

)
= log2 8 = 3.

The size of the ciphertext is
8 − 4 = 4.

The transmission rate is
log2 (

8
1)

(8 − 4)
= 0, 75.

4. Security Comments

In this section, we examine the security of the new system. We recommend using a
linear [n, k, 2t + 1]-code over Fq. The decryption method is based on the bounded distance
decoding task. In order to be a secure public-key cryptosystem, the following conditions
should be implemented.

• The size of the public-key should be fairly small. In our cryptosystem, this size is
(n − k), which is reasonably small.

• The encryption, decryption, and key generation should be effective. It is computa-
tionally simple to create the public-key and private-key. Thus, the encryption and
decryption algorithms are too efficient.

• It should be impossible to reach the plaintext by an attacker.
• The system should be resistant to all possible attacks. Now, we discuss these attacks

for the new system.

4.1. Algebraic Attack

The security of a public-key cryptosystem depends on the security of the private-key.
So, the first attack will be factorization H′ to find the private-keys G, H, and M. If the code
parameters n, k, d are large enough, this attack is impracticable, because it is difficult to
recover the factors of H′. This means the security is ensured with the private-key. The
security of the new system is also based on decoding in the code H′, while H′ is not only
non-equivalent to the code H in the cryptosystem, but after multiplying HT by M from the
right, the error-correction capability of public-key H′ is unknown. Furthermore, the vector
h is secret. Thus, the best attack may not carry out the complete decoding.

4.2. Generic Attack

The second attack is to reach m from c without using the private-key. The plaintext
is an n-q tuple word of weight t. We require an useful algorithm that matchs the integers
between 1 and (n

t) to the set of words of weight t and length n and vice versa, since the
plaintext is a n-q tuple word of weight t. In this case, the attacker will try to repeatedly
select n bits at random from an (n − k)-bit ciphertext vector and guess m based on the n
selected bits, which is impossible. So, our cryptosystem is strong to all possible attacks.
At the same time, the described system presents a general access, which is not for the
specific cryptosystem.

Moreover, the probability of no error in the constructing of this system is

(1 − t
n − k

)n.

Consider the Goppa code, which has the parameters

n = 1024, k = 524, t = 50.
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In the public-key cryptosystem constructing based on this code, the probability of no
error is

(1 − 50
500

)1024 = (0, 9)1024.

It is a very small number.

5. Comparison with the Other Public-Key Cryptosystems

In this section, we compare our system with the other code-based cryptosystem for
an [n, k, d]-code C over Fq, where d ≥ 2t + 1. We denote by S, R, T, and K, respectively, the
size of plaintext, ciphertext, the transmission rate, and the dimension of the public-key.

The new system is a further development of the McEliece and Niederreiter cryptosys-
tems. McEliece’s system is constructed based on binary linear codes, but both Niederreiter’s
and our new system are constructed based on linear codes over Fq. Especially, we use the
bounded distance decoding to construct our system. In the new system, as the public-key is
smaller than McEliece’s cryptosystem, it is more useful in industry. Moreover, as it is seen
in Table 1, the plaintext is a word of small weight, which is one of the coset leaders, and the
number of operations involved during the encryption is less than McEliece’s cryptosystem.
Furthermore, it is seen that the public-keys in our system and Niederreiter’s system are
equivalent. However, our system is more effective than Niederreiter’s cryptosystem, since
it is easier to generate the pieces of keys. This condition increases the security. It is impossi-
ble to reach the private-key with public-key by an attacker in the new system. In addition,
the plaintext cannot be calculated even if the public-key and ciphertext are known by an
enemy cryptanalyst. When the transmission rates of systems are compared, it is noticed
that the proposed system has the bigger magnitude. That is, the encryption is faster than
the others. So, it is more reliable by means of security.

Table 1. Comparison with other schemes.

System [7] [8] This Paper

S k n n

R k n − k n − k

T k
n

log2 (
n
t)

(n−k)
logq (

n
t)

(n−k)

K k n − k n − k

6. Conclusions

We presented a new public-key cryptosystem based on error-correcting codes in this
study. This system refers to the class of cryptosystems based on the bounded distance
decoding task. The sizes of the plaintext and ciphertext of the system are calculated. There-
fore, the transmission rate is given. The possible attacks are considered. It is determined
that the new system stands well when compared with known systems.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: I would like to thank to Patrick Solé for his valuable comments, which helped to
improve the content of the paper.

Conflicts of Interest: The author declares no conflict of interest.

184



Entropy 2022, 24, 498

References

1. Krasnobayev, V.A.; Yanko, A.S.; Koshman, S.A. A Method for arithmetic comparison of data represented in a residue number
system. Cybern. Syst. Anal. 2016, 52, 145–150. [CrossRef]

2. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 1997.
3. Diffie, W.; Hellman, M.E. New Directions in Cryptography. IEEE Trans. Inf. Theory 1976, IT-22, 644–654. [CrossRef]
4. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 26, 96–99. [CrossRef]
5. Markku-Juhani, O. Saarinen, Linearization attacks against syndrome based hashes. In Proceedings of the 8th International

Conference on Cryptology in India, Chennai, India, 9–13 December 2007.
6. Merkle, R.C.; Hellman, M.E. Hiding information and signatures in trapdoor kanpsacks. IEEE Trans. Inform. Theory 1978, 24,

525–530. [CrossRef]
7. McEliece, R.J. A Public-Key Cryptosystem Based on Algebraic Coding Theory; DSN Progress Report; Jet Propulsion Labaratory:

Pasadena, CA, USA, 1978; pp. 42–44.
8. Niederreiter, H. Knapsack-type cryptosystems and algebraic coding theory. Probl. Control. Inf. Theory 1986, 15, 19–34.
9. Li, Y.X.; Deng, R.H.; Wang, X.M. On the equivalence of mceeliece’s and niederreiter’s public-key cryptosystems. IEEE Trans. Inf.

Theory 1994, 40, 271.
10. Li, Z.; Ling, S.; Xing, C.; Yeo, S.L. On the Bounded Distance Decoding Problem for Lattices Constructed and Their Cryptographic

Applications. IEEE Trans. Inf. Theory 2020, 66, 2588–2598. [CrossRef]
11. Berger, T.P.; Loidreau, P. How to mask the structure of codes for a cryptographic use. Des. Codes Cryptogr. 2005, 35, 63–79.

[CrossRef]
12. Berlekamp, E.; McEliece, R.; van Tilborg, H. On the inherent intractability of certain coding problems (corresp.). IEEE Trans. Inf.

Theory 1978, 24, 384–386. [CrossRef]
13. Krouk, E. A New Public-Key Cryptosystem. In Proceedings of the International Conference on the Theory and Application of

Cryptographic Techniques, Konstanz, Germany, 11–15 May 1997; pp. 285–286.
14. Sidelnikov, V.M. A public-key cryptosystem based on binary reed-muller codes. Discret. Math. Appl. 1994, 4, 191–208. [CrossRef]
15. Berger, T.P.; Cayrel, P.-L.; Gaborit, P.; Otmani, A. Reducing key length of the mceliece cryptosystem. In Proceedings of the Second

International Conference on Cryptology in Africa, Gammarth, Tunisia, 21–25 June 2009; pp. 77–97.
16. Misoczki, R.; Barreto, P. Compact mceliece keys from goppa codes. In Selected Areas in Cryptography; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 376–392.
17. Canteaut, A.; Chabaud, F. A new algorithm for finding minimum-weight words in a linear code: Application to McEliece

cyptosystem and to narrow-sense BCH codes of length 511. IEEE Trans. Inf. Theory 1998, 44, 367–378. [CrossRef]
18. Hill, R. A First Course in Coding Theory; Oxford University: Oxford, UK, 1986.
19. Véron, P. Code based cryptography and steganography. In Proceedings of the 5th International Conference, CAI 2013, Porquerolles,

France, 3–6 September 2013.

185





Citation: Ghosh, B.; Bouri, E. Is

Bitcoin’s Carbon Footprint Persistent?

Multifractal Evidence and Policy

Implications. Entropy 2022, 24, 647.

https://doi.org/10.3390/

e24050647

Academic Editors: Stanisław Drożdż,
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Abstract: The Bitcoin mining process is energy intensive, which can hamper the much-desired
ecological balance. Given that the persistence of high levels of energy consumption of Bitcoin could
have permanent policy implications, we examine the presence of long memory in the daily data of
the Bitcoin Energy Consumption Index (BECI) (BECI upper bound, BECI lower bound, and BECI
average) covering the period 25 February 2017 to 25 January 2022. Employing fractionally integrated
GARCH (FIGARCH) and multifractal detrended fluctuation analysis (MFDFA) models to estimate
the order of fractional integrating parameter and compute the Hurst exponent, which measures
long memory, this study shows that distant series observations are strongly autocorrelated and
long memory exists in most cases, although mean-reversion is observed at the first difference of the
data series. Such evidence for the profound presence of long memory suggests the suitability of
applying permanent policies regarding the use of alternate energy for mining; otherwise, transitory
policy would quickly become obsolete. We also suggest the replacement of ‘proof-of-work’ with
‘proof-of-space’ or ‘proof-of-stake’, although with a trade-off (possible security breach) to reduce the
carbon footprint, the implementation of direct tax on mining volume, or the mandatory use of carbon
credits to restrict the environmental damage.

Keywords: Bitcoin carbon footprint; Bitcoin mining; energy consumption; FIGARCH; MFDFA; long
memory; Hurst exponent; permanent policy

1. Introduction

Bitcoin is a celebrated yet controversial digital currency that continues to attract
much attention from users, investors, and regulators across the globe. It is a completely
decentralised digital currency without a regulator, with transactions recorded in a publicly
distributed ledger called a blockchain [1,2]. New transactions are bucketed into ‘blocks’
and written onto the end of a ‘chain’ of pre-existing blocks representing old transactions,
hence the name ‘blockchain’. Despite wide price fluctuations and periods of booms and
busts, Bitcoin holds a major volume in the cryptocurrency domain. Notably, new Bitcoin
is introduced into circulation via a process called ‘mining’, through which transactions
are validated for a blockchain. Successful miners are rewarded newly minted Bitcoin for
synchronising Bitcoin transactions after solving a complex hashing puzzle. In the process
of such proof-of-work mining, new Bitcoins are issued at intervals of almost 10 min, and
finding a single block of Bitcoin involves approximately 10 hash computations. While less
energy-intensive mechanisms of mining, such as proof-of-space or proof-of-stake, have
recently emerged to secure transactions on blockchain by enabling computer networks to
collaborate, their application cannot guarantee security and raises significant technological
issues. This is why proof-of-work remains the most popular mechanism of mining.

Bitcoin miners operate specialised mining devices with increasingly advanced hard-
ware, such as application-specific integrated circuits (ASICs). They generally use multiple

Entropy 2022, 24, 647. https://doi.org/10.3390/e24050647 https://www.mdpi.com/journal/entropy
187



Entropy 2022, 24, 647

machines to synchronise Bitcoin transactions and optimise their odds of getting the mining
reward, which requires repeatedly running and cooling multiple mining machines. Notably,
enormous energy resources are wasted in the Bitcoin mining process. In fact, the mining
process consumes huge amounts of electricity [3], and the resulting electricity consumption
has been measured at 110.53 TWh per year, exceeding the energy consumption of the
Netherlands, inducing a carbon footprint of 36.95 megatons of CO2 per year, comparable
to that of New Zealand. Rising Bitcoin prices make mining very lucrative and attractive,
which leads to more electricity consumption [1,4] and greater carbon footprints.

Previous studies show that electricity consumption has a direct and positive relation-
ship with CO2 emissions [5], and a study of Chinese and Russian electricity markets finds
that Bitcoin price volatility is positively correlated with the utility market pricing volatil-
ity [6]. The public transaction record (blockchain) is also very energy intensive. However,
proof-of-work consumes significantly more energy than proof-of-stake. The number of
miners may decline over time or move to more energy-efficient machines [7].

In this paper, we contribute to the above debate on the carbon footprint of Bitcoin min-
ing by examining the long memory process in Bitcoin electricity consumption that reflects
the CO2 emissions of the mining process. Specifically, we use daily data on the Bitcoin
Energy Consumption Index (BECI) over the period 25 February 2017 to 25 January 2022
and apply fractionally integrated GARCH (FIGARCH) models and multifractal detrended
fluctuation analysis (MFDFA).

Accordingly, we extend the above literature, which remains silent on whether Bitcoin’s
carbon footprint, measured by energy consumption, exhibits a long memory process.
Interestingly, the true long memory process has many facets, which make its application
to Bitcoin electricity consumption very informative. Its implications matter to the choice
of the most suitable policies that should be applied to address the carbon footprint of
Bitcoin mining. For linking stationary long memory and the types of policy (transitory
versus permanent), Belbute & Pereira [6,8] argue that if emissions are stationary, then
transitory policies (i.e., promotion of energy efficiency, switching from fossil fuel to green
energy etc.) will have only transitory effects and fade away in the long-term. Conversely,
if emissions are non-stationary, then transitory policies will have a lasting permanent
effect [6,8]. Concerns over the energy consumption of Bitcoin mining are indicated by
McCook [9], who includes mining-rig procurement and cooling calculations, and argues
that Bitcoin is less harmful to the environment than gold mining. Bitcoin’s carbon footprint
is comparable to that of Ireland [10], and Mora et al. [11] confirm that the estimated CO2
emissions from Bitcoin could make the globe warmer by 2 ◦C. Howson [12] expresses
concern about the carbon footprint of Bitcoin, while Krause and Tolaymat [10] show that
the mining of 4 cryptocurrencies (Bitcoin, Ethereum, Litecoin, and Monero) generated
3–15 million tonnes of CO2 emissions over the period 1 January 2016 to 30 June 2018.
Sedlmeir [13] points to the huge energy consumption of blockchains, especially on the basis
of the number of transactions they operate.

In fact, a strong statistical dependence of a mean-reverting time series indicates long
memory, long-range dependence or simply persistence [14–16]. Generally, the dependence
becomes weaker with time but not in the presence of long memory. Non-stationary time
series also show evidence of persistence, sometimes even more strongly than stationary
series. Thus, mean reversion holds the key to true long memory. Past and present values are
connected by a fractionally integrating parameter, d, which must be empirically calibrated.
A partially long memory exists when d �= 0, since a significant mean reversion happens at
first difference. For such cases, permanent policy changes are recommended to address
the carbon footprint of Bitcoin mining. However, for pure long memory (d = 0), the effects
generated by transitory policy shocks persist for a long time, and thereby the type of long
memory indicates the preferred type of policy that should be adopted by regulators and
policymakers to address the carbon footprint of Bitcoin mining.

Following this introduction, Section 2 describes the data and methodology. Section 3
presents and discusses the results. Section 4 concludes and offers policy implications.
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2. Data and Methodology

2.1. Data

We used daily data from the Bitcoin Energy Consumption Index (BECI) over the period
25 February 2017 to 25 January 2022, according to the data availability from Digiconomist.
BECI data have been recently used in academia [12,17]. They consist of daily data covering
three series, BECI upper bound (BECI UB), BECI lower bound (BECI LB), and BECI average.
Accordingly, in this work, 1825 daily observations were used for each of the three series.
The plots of the three series are shown in Figure 1, in which an increase in the three series
is observed from around the second quarter of 2021, which coincides with the spike in the
price of Bitcoin.

Figure 1. Plots of BECI UB, LB, and average during the study period (25 February 2017 to
25 January 2022).

Considering both BECI upper bound (BECI UB) and BECI lower bound (BECI LB) for
electricity consumptions, we argue the following. The BECI UB is defined as the break-
even point of mining revenues and electricity costs; therefore, it is more sensitive to the
economic parameters. In contrast, the BECI LB is a state where all miners use the most
efficient hardware, which makes it more stable and reliable for our current study [13,14]
examining the long memory traits of the energy consumption series. Therefore, our analysis
emphasises the lower bound results.

Our analysis involved the application of 17 windows to the three series, with the length
of each sliding window being 200 days. Given that each series consists of 3400 (17*200)
daily observations, a total of 51(17*3) windows (with 10,200 total observations, 3400*3) were
considered in our calculation for the sample period 25 February 2017 to 25 January 2022.
The choice of sliding window-based estimation procedure is backed by the academic
literature [18], which points to the suitability of the application of an increasing window
size in a dynamic model for estimating long memory. A sliding window approach to
modelling is suitable and an increasing estimation window leads to an increase in the
estimation accuracy when calibrating the long memory [19].

Each series observation in the BECI indices is expressed in terawatt-hours (TWh), the
standard unit of electricity consumption. The three BECI series are significantly mean-
reverting at first difference. Therefore, all the calculations and analyses were conducted at
first difference (Δ). Long-range dependence or long memory was characterised by a slow,
power law decay of the autocorrelation function (ACF).
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2.2. Methodology

Methodologically, we used a pluralistic approach combining two different methods
to calibrate ‘d’ and ‘H’. The FIGARCH is an extension of the famed GARCH family as
described by Baillie (1996), which is consistent with EMH [20]. The MFDFA is an extension
of detrended fluctuation analysis (DFA) as described by Kantelhardt (2008), which is
consistent with FMH [21,22].

Firstly, we employed a FIGARCH model to uncover evidence of long memory in BECI
indices. FIGARCH considers conditional heteroscedasticity and is comparable to ARCH,
but allows for long memory in the conditional variance. It is preferred over autoregressive
fractionally integrated moving average (ARFIMA) models because it can detect mean-
reverting long memory. Usually, financial time series have d = 1 (fractional integrating
parameter), which is consistent for log closing prices of various tradeable securities. Fur-
thermore, it is perfectly in harmony with the efficient market hypothesis (EMH), which
concludes that closing levels are martingales, and log returns are martingale differences
(usually first difference). Martingales are sequences of random variables with the future
expectation equaling the present value. Squared returns typically carry a fractional value
of d.

Consider a time series, such as the first level difference of each of the three BECI indices:

ΔBECIt = μ + εt with εt = νtσ
2
t (1)

where νt is a serially uncorrelated process with zero-mean and unit variance; σt is a
time-varying measurable function with respect to the information set available at time
t−1 (ψ− (t−1)); and σ2

t is the time dependent conditional variance of ΔBECIt. The FI-
GARCH model of Baillie and his co-researchers [20] is given by:

(1 − β1L)σ2
t = ω0 + [1 − β1L − α1L(1 − L)d ]ε2

t (2)

where, 0 ≤ d ≤ 1 is the fractional differential (long memory) parameter; L is the lag operator;
β(L) is a finite order lag polynomial with the roots assumed to be situated outside the
unit circle; and ∝k represents the autoregressive coefficient of an ARFIMA (1, d, 0) model.
Unlike ordinary ARCH and GARCH, the FIGARCH model does not reach a constant level
quickly. It is reduced to a standard GARCH when d = 0 and to an integrated GARCH
(IGARCH) when d = 1.

Secondly, we used multifractal detrended fluctuation analysis (MF-DFA) to find h(q)
value, where ‘h’ is the Hurst Exponent and ‘q’ is the order [23,24]. To this end, we relied on
Espen Ihlen’s algorithm in MATLAB 13 [25]. It involves a five-step process, as follows:

i. Determining the profile

Y(i) = ∑i
k=1[xk − 〈x〉] (3)

where, xk is the series, and mean subtraction occurs. Further, i = 1, 2, . . . ., N
ii. Dividing the profile: To divide the profile Y(i) N numbers of non-overlapping series

of the same length ‘s’. Since N may not be a multiple of the time scale ‘s’, 2Ns
was considered.

iii. Calculation of the local trend: Local trend finding for each 2Ns segments are carried
out by a least-square fit procedure & finding the variance in this process.

F2(S, v) ≡ 1/s ∑s
i=1{Y[(v − 1)s + i]− yv (i)}2 (4)

where yv (i) is the curve fitting polynomial is segment v.
iv. Averaging across all segments to find qth order fluctuation function:

Fq (S) ≡ { 1
2Ns

∑2Ns
v=1 [F

2(s, v)]
q/2 }1/q (5)
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where q can be any real number, but not zero. It is interesting to note that q = 2 coincides
with the standard DFA process. Research suggests that extremely large q values (−10
or +10) increase the error in the multifractal spectrum tails [26]; therefore, q = 5 was
used to calibrate such series, which is recommended by another research work [27].

v. Determination of the scaling property of the fluctuation function:

Fq (s) ∼ sH(q) (6)

where H(q) represents the generalised Hurst exponent of the underlying series.

To understand this process intuitively, we referred to Mandelbrot’s research, according
to which, scaling exponents are unique in nature and depend upon time. Hence, monofrac-
tal is not a full proof. It depicts an incorrect narrative. Stochastic time series, such as
Bitcoin energy consumption (BECI), have multiple dimensions that add further complexity.
For this reason, multifractal is preferred over monofractal. Asset returns tend to deviate
from the normal distribution. Moreover, they tend to obey Lévy stable condition. In other
words, α ranges from 0 to 2, where α = 2 satisfies the condition for Gaussian distribu-
tion. Thus, [28] reformulate the Rescaled Range Analysis (R/S) approach proposed by
Hurst in 1951. The Hurst exponent expresses H = 1/α; when α = 2, it becomes stochastic;
i.e., it follows a Brownian motion. The legacy of fractals was investigated by a group of
researchers [29] who constructed the mathematical formulae to measure the impact of
multifractality in a noisy time series. Time series with consistent noises can be transformed
into ‘random walk’ series by subtracting the mean value [25]. Ihlen (2012) integrates it
further. According to his process, calculation for the root mean square variation (RMS)
is crucial. RMS values are calculated for the localised areas with clear patterns or trends.
Finally, all these RMS values are summarised. These RMS samples usually exhibit ‘power
law’ characteristics. In technical terms, this process is known as detrended fluctuation
analysis (DFA). The exponent for this relation is the Hurst exponent [29]. Kantelhardt (2002)
formulated MFDFA formally for calibration. Ihlen (2012) extended this calculation to the
qth-order, suggesting the multifractal detrended fluctuation analysis (MFDFA). Multifractal
power law has more than one exponent. Further, Power law relationship and persistent pat-
tern in most cases are two important facets of time series [30,31], such as BECI. The Hurst
exponent and fractal dimensions do change from monofractal to multifractal, with the
latter being more reliable [32].

Since our data points were 200 for each sliding panel, we altered the segments and
scale in the MATLAB code proposed by Ihlen (2012). We took segment = 200 and scale = 4.
In the first loop, samples 0–200 (Window 1) were taken. In the second loop, samples
100–300 (Window 2) were considered; the third loop considered 200–400 (Window 3), etc.
A polynomial trend fit in each loop was conducted. Quadratic and cubic polynomials
were used in this code. We obtained values for the fifth order (q = 5) Hurst exponent, and
considered it for interpretations as suggested by Kantelhardt. It has recently been proved
that a window size of 288, with four sub-windows having 72 observations each, works well
through MFDFA [33]; therefore, our window size qualified for a robust calibration.

3. Results

Looking at Table 1, the first differences in the three BECI indices are non-normally
distributed, as evidenced by the Jarque–Bera statistics, with low kurtosis points to low
volatility and high persistence, which can be confirmed by both the fractional integrating
parameter and the Hurst exponent (H). The results of the augmented Dickey–Fuller (ADF)
test show that a significant level of stationarity is achieved at first difference.

Table 2 gives the ranges of d and H and their interpretation, indicating the difference
between intermediate memory tending towards short and long memory.
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Table 1. Summary statistics of the first difference of BECI indices.

Mean Max. Min. Std. Dev. Kurtosis Jarque-Bera ADF Test

BECI-LB 0.0261 0.818 −0.801 0.200 6.871 124.51 −16.451 *
BECI-UB 0.0349 0.5128 −0.587 0.139 5.892 72.61 −13.017 *

BECI Average 0.0305 0.5293 −0.463 0.131 6.098 86.18 −12.071 *

Notes: The sample period is 25th February 2017 to 25th January 2022. BECI upper bound (BECI UB), BECI lower
bound (BECI LB). * Indicates statistical significance at the 1% level.

Table 2. Ranges of d and H and their interpretations.

Ranges of ‘d’ Ranges of ‘H’ Interpretation

−0.5 < d < 0 0 < H < 0.5 Intermediate memory tending towards short memory

0 < d < 0.5 0.5 < H < 1 Long memory, autoregression decays

Notes: d is the fractional differential (long memory) parameter. H stands for Hurst exponent, which measures the
extent of long memory in time series.

Table 3 shows that all the estimated d parameters are below the 0.5 level. This shows
that there are no cases of non-stationarity (d = 1). At the same time, there is no purely
stationary case (d = 0). All cases are mean-reverting (d < 1), but they have different degrees
of decaying autocorrelations.

Table 3. d and H values for BECI UB, LB and Average- FIGARCH method.

Window
Number

Sliding
Observations

BECI UB d BECI UB H BECI LB d BECI LB H
BECI

Average d
BECI

Average H

1 0–200 0.36 0.86 0.50 1.00 0.43 0.93
2 100–300 0.45 0.95 0.41 0.91 0.43 0.93
3 200–400 0.35 0.85 0.30 0.80 0.33 0.83
4 300–500 0.48 0.98 0.41 0.91 0.45 0.95
5 400–600 0.44 0.94 0.41 0.91 0.42 0.92
6 500–700 0.44 0.94 0.31 0.81 0.37 0.87
7 600–800 0.42 0.92 0.29 0.79 0.36 0.86
8 700–900 0.45 0.95 −0.05 0.45 0.20 0.70
9 800–1000 0.41 0.91 0.13 0.63 0.27 0.77
10 900–1100 0.46 0.96 0.43 0.93 0.44 0.94
11 1000–1200 0.29 0.79 0.48 0.98 0.39 0.89
12 1100–1300 0.50 1.00 0.38 0.88 0.44 0.94
13 1200–1400 0.33 0.83 0.47 0.97 0.40 0.90
14 1300–1500 0.43 0.93 0.40 0.90 0.42 0.92
15 1400–1600 0.41 0.91 0.48 0.98 0.45 0.95
16 1500–1700 0.43 0.93 0.43 0.93 0.43 0.93
17 1600–1800 0.43 0.93 0.37 0.87 0.40 0.90

Note: This table shows evidence of more observations having long memory using FIGARCH, but of various
degrees. d is the fractional differential (long memory) parameter. H stands for Hurst exponent, which measures
the extent of long memory in time series. BECI (Bitcoin Energy Consumption Index), BECI UB (BECI upper bound),
BECI LB (BECI lower bound), and BECI Average. The sample period is 25 February 2017 to 25 January 2022.
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3.1. Results from the MFDFA

The results from the MFDFA investigation revealed evidence of mean-reverting
long memory process across BECI UB, LB, and average (see Table 4). Further, no
pure short memory was detected (d = 0). The effect of long memory was found to
be consistent across most sliding windows, barring one (window 10). The persistent
pattern was observed for 17/17 (100%) cases in BECI UB and 16/17 (94%) cases in
BECI LB. Most importantly, all these cases recorded a Hurst exponent significantly
larger than 0.5, indicating a consistently higher intensity of long memory. Extremely
strong long memory (H > 0.85) was found in more than 90% cases through this method.
Multifractal or singularity spectrum was used to describe the fractal dimension (d)
having the same HÖlder exponent. Here, all of the empirical values of ‘d’ ranged
between (−0.07 to +0.50). Both Figures 2 and 3 (chosen randomly out of 51 Windows
in consideration), exhibit similar multifractal spectrums, peak around Hq = 1.1 to
1.3. This is more consistent with FMH rather than EMH, which would suggest a
peak around Hq = 0.5. The spectrum in each case ranges from 0.6 to 0.8 on the lower
side and from 1.6 to 1.7 on the higher side. Small fluctuations are clearly persistent
from these two figures. The lower limit of the spectrums in most cases (barring one)
ended around Hq > 0.5, indicating the presence of long memory throughout. Another
interesting observation is related to the width of the multifractal spectrum. In all
51 windows the width (multifractal) was around 1, exhibiting clear asymmetry (more
for BECI LB). This indicates that the degree of complexity in BECI is quite high. This
finding remains consistent with existing research [34]. However, future research
may further investigate the differences between the left side (small fluctuations from
individual cascades reaching white noise faster) and the right side (contracts far sooner
to monofractal) [35].

Table 4. d and H values for BECI UB, LB and Average- MFDFA method.

Window
Number

Sliding
Observations

BECI UB d BECI UB H BECI LB d BECI LB H
BECI

Average d
BECI

Average H

1 0–200 0.40 0.90 0.27 0.77 0.34 0.84
2 100–300 0.40 0.90 0.35 0.85 0.38 0.88
3 200–400 0.48 0.98 0.45 0.95 0.47 0.97
4 300–500 0.45 0.95 0.34 0.84 0.40 0.90
5 400–600 0.35 0.85 0.39 0.89 0.37 0.87
6 500–700 0.34 0.84 0.44 0.94 0.39 0.89
7 600–800 0.32 0.82 0.09 0.59 0.21 0.71
8 700–900 0.49 0.99 0.45 0.95 0.47 0.97
9 800–1000 0.48 0.98 0.41 0.91 0.45 0.95
10 900–1100 0.35 0.85 −0.07 0.43 0.14 0.64
11 1000–1200 0.40 0.90 0.12 0.62 0.26 0.76
12 1100–1300 0.21 0.71 0.09 0.59 0.15 0.65
13 1200–1400 0.47 0.97 0.27 0.77 0.37 0.87
14 1300–1500 0.32 0.82 0.2 0.7 0.26 0.76
15 1400–1600 0.50 1.00 0.02 0.52 0.26 0.76
16 1500–1700 0.39 0.89 0.26 0.76 0.33 0.83
17 1600–1800 0.47 0.97 0.27 0.77 0.37 0.87

Note: This table shows evidence of more observations having long memory using MFDFA (q = 5th order), but of
various degrees. d is the fractional differential (long memory) parameter. H stands for Hurst exponent, which
measures the extent of long memory in time series. BECI (Bitcoin Energy Consumption Index), BECI UB (BECI
upper bound), BECI LB (BECI lower bound), and BECI Average. The sample period is 25 February 2017 to
25 January 2022.
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Figure 2. BECI UB window 1 exhibiting the Multifractal Spectrum.

Figure 3. BECI LB window 14 exhibiting the Multifractal Spectrum.
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3.2. Results from the FIGARCH

Both BECI UB d and BECI LB d indicated a completely stationary process with long
memory (see Table 3). The BECI average likewise exhibits a long memory process. However,
no cases of short memory (d = 0) were detected. Logically, the effect of long memory changes
with the sliding window. The results are consistent in terms of the Hurst exponent (except
for one instance, where BECI LB showed anti-persistence). BECI UB displayed a persistent
pattern in 17/17 cases, whereas BECI LB showed persistent values in 16/17 cases. The BECI
average showed a clear persistent pattern in 17/17 cases with the H value being higher
than 0.5. A notable 88% of the BECI UB indicated extremely long memory (H > 0.85),
whereas BECI average stood second, with 82%, followed by BECI LB, with 76%. Given
that hardware costs are substantial and electricity prices are not constant (globally), upper-
bound-based calibration is sensitive to various cost matrices [13]. Accordingly, the BECI
UB cannot be taken too seriously when making policy decisions. The BECI LB can be
considered a better proxy of electricity consumption, and thus suitable for measuring the
carbon footprint of the Bitcoin market.

3.3. Overall Results Analysis

It can be concluded that Bitcoin energy consumption (represented by the BECI LB)
exhibits strong traces of long memory, with 90% of the feature (i.e., Hurst exponent) scoring
over 0.85 with the same argument. Both the fractional integration parameter, d, and the
measurement of long memory, H, provide enough evidence of true long memory with
mean-reverting traits in the Bitcoin carbon footprint (as represented by BECI LB). Hence,
Bitcoin’s electricity consumption-led carbon footprint has an overall persistent pattern, with
varying degrees across different window sizes. These findings complement the existing
literature [36–39], and provide evidence for the suitability of applying permanent policy
implications to address the carbon footprint of Bitcoin mining. The MFDFA findings were
consistent with FMH and were found to be more realistic; they uncover a higher degree of
long memory over FIGARCH (the traditional model in accordance with EMH).

4. Conclusions and Policy Implications

In this paper, we examine the long memory process of the three series of the Bitcoin
Energy Consumption Index (BECI) from a pluralistic viewpoint (using FIGARCH and
MFDFA) to make inferences regarding the carbon footprint of Bitcoin mining and the
possible long-lasting impact of various energy efficiency programs.

Using daily data from 25 February 2017 to 25 January 2022 and FIGARCH model,
the results show evidence for the presence of long memory in most series, although with
varying degrees. Since the three BECI indices are stationary at first difference (d < 1 across
all windows), transitory policy changes to reduce the carbon footprint cannot be sus-
tained in the long-term, given that intuitively random policy shocks do not sustain for
a longer period in any mean-reverting time series (stationary). Conversely, a permanent
policy implementation would have a much longer-lasting effect. Accordingly, permanent
policy implementation becomes an evident course of action. Furthermore, finding alter-
native energy sources, or applying carbon-footprint reduction policies to Bitcoin mining,
becomes imperative.

Some policy alternatives emerge in the light of these findings. Specific types of low-
energy-consuming hardware for mining Bitcoin using proof-of-stake should replace the
energy-consuming proof-of-work scheme by way of a declared policy. Accordingly, se-
lective miners with proof of low energy usage could be allowed to conduct the mining.
Proof-of-space, requiring a defined amount of memory, can be put to use by policymakers,
which might be far less energy consuming than even proof-of-stake. However, security
issues remain for both proof-of-space and proof-of-stake, indicating a clear trade-off. Al-
though some researchers argue that private or consortium blockchains could be used
instead of a public blockchain, it is worth noting that if the major participants reach such
an agreement, private or consortium blockchain transactions would become perfectly
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editable (if they use proof-of-stake or proof-of-space). This presents a major drawback
from a security perspective (especially for financial and other sensitive cases) but would
make the blockchain system more energy efficient. Permanent environmental policies are
crucial in this regard since they would be more effective due to the persistent pattern of the
carbon footprint. Accordingly, green energy could be made mandatory for Bitcoin mining.
Alternatively, direct tax could be levied on mining volume to further restrict or contain it.

As Bitcoin is contributing to the production of an environmental crisis, future research
could consider whether the entire cryptocurrency universe, including major cryptocur-
rencies other than Bitcoin, is also responsible for high energy consumption and a large
carbon footprint. Carbon credits could be made mandatory (they are voluntary as of now)
for cryptocurrency miners, forcing responsible mining. Intuitively, efficient and relatively
mature markets have seasoned underlying energy efficiency, which propels them to stay
afloat in the long term. Currently, most cryptocurrencies suffer from excess energy con-
sumption. Potentially, an alternate technology other than blockchain may be needed to
take Bitcoin to a truly mature stage, given that blockchain seems to suffer from extreme
consumption of energy, inability to correct its protocol midway (thus abandoning the entire
chain), and relatively low performance (5 transactions/second compared to 1700 transac-
tions/second by Visa) [40]. Moreover, the movement of Bitcoin too is not consistent with
the EMH [41], making it even more difficult to predict. Hopefully, the tight competition for
Bitcoin mining rewards will spur a technological evolution and thereby a genuine solution
to the energy-intensive mining process of Bitcoin.

5. Limitations & Future Scope of Study

We found some limitations and future scope of study during our investigation. First,
there is a need to modify Ihlen (2012) code, in order for Fq to remain well within the
segment. Second, conclusive evidence behind the selection of qth order (2 or 5) must be
sought. Third, the asymmetry coefficient could be calibrated separately for both sides, as
they have different meanings.
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Abstract: Bitcoin (BTC)—the first cryptocurrency—is a decentralized network used to make private,
anonymous, peer-to-peer transactions worldwide, yet there are numerous issues in its pricing due
to its arbitrary nature, thus limiting its use due to skepticism among businesses and households.
However, there is a vast scope of machine learning approaches to predict future prices precisely. One
of the major problems with previous research on BTC price predictions is that they are primarily
empirical research lacking sufficient analytical support to back up the claims. Therefore, this study
aims to solve the BTC price prediction problem in the context of both macroeconomic and microeco-
nomic theories by applying new machine learning methods. Previous work, however, shows mixed
evidence of the superiority of machine learning over statistical analysis and vice versa, so more
research is needed. This paper applies comparative approaches, including ordinary least squares
(OLS), Ensemble learning, support vector regression (SVR), and multilayer perceptron (MLP), to
investigate whether the macroeconomic, microeconomic, technical, and blockchain indicators based
on economic theories predict the BTC price or not. The findings point out that some technical indica-
tors are significant short-run BTC price predictors, thus confirming the validity of technical analysis.
Moreover, macroeconomic and blockchain indicators are found to be significant long-term predictors,
implying that supply, demand, and cost-based pricing theories are the underlying theories of BTC
price prediction. Likewise, SVR is found to be superior to other machine learning and traditional
models. This research’s innovation is looking at BTC price prediction through theoretical aspects.
The overall findings show that SVR is superior to other machine learning models and traditional
models. This paper has several contributions. It can contribute to international finance to be used as
a reference for setting asset pricing and improved investment decision-making. It also contributes
to the economics of BTC price prediction by introducing its theoretical background. Moreover, as
the authors still doubt whether machine learning can beat the traditional methods in BTC price
prediction, this research contributes to machine learning configuration and helping developers use it
as a benchmark.

Keywords: AI; business development; information processing; volatility; precision; financial
development

1. Introduction

Cryptocurrency is a private system that enables trades between individuals without a
central and intermediate agency. In early 2009, Bitcoin (BTC) was valued for the first time at
US$0.08. The currency fluctuated for more than four years until the price touched $1110 in
2013. Due to high volatility and massive fluctuations in prices in cryptocurrencies, accurate
price predictions are a complex and challenging task. That is mainly because the costs of
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cryptocurrency move unpredictably and chaotically. Machine learning techniques may
help bring in some methodology that will lead to better solutions to the problem. In the last
several years, there has been an increasing interest in using machine learning techniques
in different areas of science [1,2], particularly cryptocurrency price forecasting [3]. For
instance, Dutta et al. [4] used macroeconomic indicators, including interest rates, S&P500
market returns, US bond yields, and gold price level as predictive variables for daily BTC
prices. The results show that macroeconomic indicators have short-term predictability
power. Wang and Vergne [5] investigated macroeconomic indicators, namely supply
growth, defined as BTCs in circulation, to see their effect on BTC return. They found that
an increase in supply is positively associated with weekly returns. Conrad et al. [6] found
that S&P500 volatility has a significantly positive effect on long-term BTC volatility.

Jang and Lee [7] investigated the effect of blockchain information, including average
block size, miner revenue, mining difficulty, and hash rate, on BTC prices. Their results
proved that the recent volatility in BTC prices stems from the blockchain information
indicators. Wang and Vergne [5] investigated blockchain information indicators, including
several unique collaborators contributing code to the project, the number of proposals
merged in the core codebase, the number of issues raised by the community about the
code, and fixed the developer’s number of forks on BTC returns. They found a positive
and significant relationship between blockchain information variables and weekly returns.
Therefore, the first research question arises: (1) What are the significant variables as short-
term or long-term BTC price predictors? In addition, much previous research on BTC price
predictions with machine learning is conducted either using machine learning techniques
or conventional statistical analysis without enough theoretical and analytical support. This
study investigates whether the macroeconomic, microeconomic, and blockchain informa-
tion indicators based on economic theories predict the BTC price. According to these
considerations, the second research question is: (2) What are the underlying economic
theories of BTC price predictors?

There is not enough available literature on BTC price prediction on Google Scholar
compared to stocks: around 400 papers about BTC price prediction problems with ma-
chine learning algorithms. There are almost 5500 papers about stock price prediction with
machine learning algorithms. Also, according to the existing literature, some research on
the BTC price prediction problem shows that machine learning outperforms conventional
statistical analysis. At the same time, some still believe that traditional models can predict
the BTC price better. For instance, Chen et al. [8] applied machine learning techniques
models, including random forest, XGBoost, quadratic discriminant analysis, SVM, and
LSTM, and statistical methods, including logistic regression and linear discriminant analy-
sis, to predict high-frequency BTC price. They found that Statistical methods achieve an
accuracy of 66%, outperforming more complicated machine learning algorithms for daily
BTC price prediction. However, machine learning for BTC’s 5-min interval price prediction
is superior to statistical methods, with accuracy reaching 67.2%. Pang et al. [9] compared
neural network models, sentiment data models, and conventional technical indicators and
decision trees to predict BTC prices. The analysis found that the robust neural network
models offer better accuracy in predicting BTC prices. Therefore, more research should
show whether machine learning algorithms are superior to statistical analysis. Hence, the
third research questions are: (3) Are machine learning algorithms superior to traditional
methods for BTC price prediction? What machine learning model performs better? What
are the best feature selection techniques?

The research innovation herein is looking at BTC price prediction through theoretical
aspects. The overall findings show that SVR is superior to other machine learning models
and traditional models. This paper has several contributions. It can contribute to interna-
tional finance to be used as a reference for setting asset pricing and improved investment
decision-making. It will be helpful for central bankers, traders, investors, and portfolio
managers. Also, it contributes to the economics of BTC price prediction by introducing its
theoretical background. Moreover, as the authors still doubt whether machine learning can
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beat the traditional methods in BTC price prediction, this research contributes to machine
learning configuration and helping developers to use it as a benchmark. The rest of the
paper is as follows. In the literature review section, there is an overview of existing work
and differences from the current work. After that, the methodologies used in this research
are briefly explained. Subsequently, the results and discussion are presented. In the end,
the paper is concluded.

2. Literature Review

The interaction between demand and supply, which determines the price, is critical in
economic theory. The theory contrasts the supply side, i.e., the number of coins available in
the market, with the demand side, i.e., investors willing to buy. It is the investors or the
consumers who are considered the key player. It is assumed that trading in BTC is a reseller
market. Reselling to generate profit is the most important in the market. The investors who
buy the asset, keep it for a while, and then sell it at a later date are the ones who represent
the demand side of this market. BTCs are known for their decentralization as the nodes
in the markets are anonymous. Miners are rewarded with BTCs instead of their service
for making available the computing power. The miners manage the supply side of BTC,
and hence they can be terms as the suppliers as per the whitepaper and the blueprint for
BTC, the total supply of BTC will be restricted to 21 million. It is ensured that the mining is
gradual and not with large influxes.

In addition, Antoniou et al. [10] describe technical analysis as “part of how traders
learn about fundamentals.” The technical analysis predicts future market behavior by
studying past market data, such as volume and price. It is based on the premise that
historical data can assist in giving future directions. Similarly, Wang and Vergne [5] found a
positive correlation between the volume of BTC trading and returns generated. The stated
study results concur, proving that technical analysis affects BTC prices.

2.1. Underlying Theory of the Macroeconomic Indicators: Demand and Supply Theory

The quantity theory of money is a concept in monetary economics that holds that
money’s supply and demand determine the price level. Using this paradigm, Buchholz
et al. [11] highlighted how the forces of supply and demand are the main factors influencing
the price of Bitcoin. Additionally, utilizing the Keynesian theory of speculative demand for
money framework, NaiFovino, et al. [12] and Ciaian et al. [13] highlighted the association
between macrofinancial indicators and Bitcoin prices. According to the hypothesis, people
who trade in currencies do so to avoid suffering a capital loss on their investments in bonds
and other financial assets. A rise in interest rates lowers the value of economic assets,
resulting in a loss on the investment of financial assets [14].

Kristoufek [15] extended the research to study the impact of some macroeconomic
indicators on the BTC price prediction. He found that Bitcoin appreciates in the long run if
it is used more for trade, i.e., non-exchange transactions.

2.2. Underlying Theory of the Microeconomic Indicators: Microstructure Theory

The theoretical frameworks of the microstructure approach developed by Lyons [16]
imply that the market information structure is asymmetric, which means not all market
participants know about the market information. Some agents have their private informa-
tion, not necessarily about fundamentals. Lyons found that order flow is the most critical
determinant of exchange rate determination in the short run. According to Lyons [16],
order flow can be measured as the number of buyer-initiated orders minus the number of
seller-initiated orders in the market. In microeconomics, supply and demand is an economic
market price determination model [17,18]. Theory and empirical evidence suggest that,
for an asset with a given cash flow, the higher its market liquidity, the lower its expected
return (e.g., [19,20]). Market liquidity affects asset prices and expected returns. In the
Bitcoin market, the bid–ask spread factor as a proxy for market liquidity. As more and
more buy and sell orders are placed, overall supply and demand become more and more
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apparent. Some empirical studies also showed the short-term predictability of the Bitcoin
microstructure. For example, Dyhrberg et al. [21] investigated the liquidity and transaction
costs of Bitcoin markets as a microstructure analysis of Bitcoin. Scaillet et al. [22] showed
the bid–ask spread has significant predicting power over jumps in Bitcoin price. In another
study, Guo et al. [23] made a short-term prediction of BTC price fluctuations (measured
with volatility) using buy and sell orders.

The private information in the BTC market is different from the stock market. In stock
market trading, private information is referred to an improved understanding of a firm
or company’s prospects and provides a better evaluation of a potential cash flow. When a
particular group of traders is made accessible to private information, it helps to create a
clear-cut distinction between a BTC market and a stock market. However, it is essential
to note that, like the stock market, BTC entertains an uninformed group of traders who
enter the market for liquidity only. The questions here follow: What if there remains no
future cash flow available for discounting or there remains no asset for valuation? In such
a scenario, what exactly would private information provide?

It is indicated that the valuation of BTC is strongly dependent on the level of confidence
of its traders. Hence, private information announces great estimation and prediction of the
value that a BTC can potentially gain. These types of evaluations are dependent on the
consumption of BTC and their usages. Private information like this adds to the prices of
BTC and stimulates its demand. Since BTC has a fixed supply, private information helps
increase the demand, increasing the prices in the global market. Data provided by the
order book covers all the causes of demand and supply conditions of an asset in the form
of bids and asks, which are implemented as trades ultimately. The data here provide an
insight into the market’s microstructure and an internal overview, which might not be
easy to comprehend otherwise. Bid and ask price are two essential components of private
information. The bid price refers to the highest price that a potential buyer of BTC is willing
to pay. It is also referred to as the buying price for the exchange. When demand for BTC is
high, the bid price increases, which means trading volume affects the bid price.

Ask price is the lowest price a seller wants to accept BTC. If the demand falls, there
is a fall in the asking price as well. Ask prices are generally higher in comparison to bid
prices. Therefore, the difference between these two prices, called the spread, is precisely the
profit extracted in these exchanges. BTC prices are highly volatile, which causes extreme
fluctuations along with the spreads, which is why sellers enter this market after a great deal
of negotiation with the investors and traders to initiate a bidding war. Once that happens,
this buying pressure will force an increase price.

2.3. Underlying Theory of Blockchain Information Indicators: Cost-Based Pricing Theory

According to Noble and Gruca [24], the cost price of any service or product can be
computed based on a predefined profit margin percent calculated over the total cost. The
primary focus of the cost-based pricing theory focuses on the variable cost and fixed cost
components classified as part of the internal cost. This pricing theory is crucial to BTCs
miners as it helps them compute from which cost price is the mining activity more profitable.
Blockchain information is one of the critical considerations of BTC’s cost price, as per Wang
and Vergne [5]. The mining hardware efficiency can be improved significantly using the
right technology resulting in a reduced cost of mining the BTC and a lower price. The lower
cost and lower price will lead to increased demand, resulting in ultimately improved return
on the overall investment in BTC. Extra hashing power can be achieved for the global
mining network on blockchain information which contradicts the lower cost of mining as
the difficulty level increases leading to higher mining costs and higher prices for BTCs,
resulting in reduced demand and lesser returns.

By developing a cost-of-production model for valuing Bitcoin, Hayes [25] showed that
the three factors of computational power, rate of coin production, and mining difficulty
used might account for more than 84% of relative value formation. Increasing the difficulty
will result in fewer units produced for a given amount of hash power, increasing the relative
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cost of production. Similar to this, reducing the block reward will result in fewer units. The
marginal cost of production is reduced with improved mining hardware energy efficiency,
drop-in electricity charges globally, or reduced mining difficulty. With improvement in
technical processes, the efficiency of the mining process also improves, which leads to a
reduction in the cost of production, which in turn puts downward pressure on prices. In
another study, Hayes [26] back-tests a marginal cost of production model applied to value
Bitcoin. The author applied vector autoregression (VAR) and traditional regression models
on the historical data from 29 June 2013, through 27 April 2018, when the mining difficulty
changes, i.e., every two weeks. Results demonstrate that the marginal cost of production
is important in explaining Bitcoin pricing in the long run (considering every two weeks a
long run prediction).

The block size limits the number of transactions verified with each block, resulting
in more computation power for verifying larger blocks. This increased need for more
computational power will increase the cryptocurrency price in line with what has been
discussed. By definition, hash rate means the quantum of processing and computing power
that the mining process contributes to the network. The value of hash rate is referred to
provide the value of the network power. Thus computed, this value is used to correct the
mining difficulty, i.e., to increase or decrease it and thereby correspondingly increase or
decrease the BTC price.

The average block time of the network is evaluated after n number of blocks, and if
it is higher than the expected block time, then the level of difficulty of the proof of work
algorithm is declined. On the contrary, if the average block time is less than expected, the
difficulty level will increase, which is in line with the concept of economics called the law
of diminishing marginal utility. The speed with which the things are made available, then
the value decreases over time. In terms of BTC terminology, the faster the rate of unit
formation, the lower the price of the coin goes.

Difficulty is changed based on the time it took to discover 2016 previous blocks. If
a block is found every 10 min (finding 2016 blocks will take exactly 2 weeks). The more
(or less) time was spent on finding the previous 2016 blocks the more will difficulty be
lowered (raised). Because mining is still lucrative despite the difficulties adjusting higher
and the margins becoming somewhat slimmer, more miners are encouraged to join. more
miners joining the effort means that the network is growing, which is good for Bitcoin’s
price in the long run. This cycle keeps going until a sizable part of the miners can no longer
keep up. Some are compelled to sell a growing proportion of the newly created Bitcoins,
which finally depletes their treasuries. This causes an increased supply of Bitcoins for sale
on the market. They eventually give up and cease mining. The difficulty is then adjusted
downward when the hash rate declines.

2.4. Application of Machine Learning in Real-World Problem Solving

Artificial intelligence (AI) is a relatively new trend in science that wants to bring about
fundamental changes in people’s lives. AI is a little challenging to define, but it can be
said that it combines different sciences to make machines more intelligent. One of the
most popular subfields of artificial intelligence is machine learning, which is hotly debated.
Everyone feels the impact of the learning machine every day in daily life. Simply machine
Learning is a science that teaches machines how to learn new things from themselves.
Machine learning is one of the modern human inventions that has contributed to the
progress of various industries and businesses and has also been very influential in the
individual lives of human beings [27]. Machine learning is a subset of artificial intelligence
that focuses on learning from the database to build intelligent computer systems. At
present, machine learning has been used in various fields and industries. For example,
machine learning has been used to diagnose and treat diseases [28], image processing [29],
classification [30], and more. Support vector regression can be used in many areas, such as
dynamic response prediction of magnetorheological elastomer base isolator [31], thermal
spring back of hot press forming [32], text classification [33], etc.
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2.5. Related Work and Research Gap

Thus far, empirical studies do not demonstrate a clear advantage for the emerging
techniques of using machine learning algorithms to predict the BTC price. Research in
this area is insufficient [34,35]. Therefore, this study will help to show the significance
of machine learning methods in BTC price prediction problems. Also, some research
shows machine learning outperforms statistical analysis, and some still believe in the
superiority of conventional statistical analysis. Table 1 presents some related work on
the BTC price prediction problem. The current research differs from previous studies
in terms of completeness and comprehensiveness, and the comparative analysis in the
current study has not been conducted before. In addition, a variety of indicators, including
macroeconomic indicators, microstructure indicators, blockchain information, and technical
indicators, have been used to analyze the significant variables as BTC price predictors.

Table 1. Overview of research published on BTC price prediction.

Reference Year Methodologies Data Categorization Findings

Chen et al. [8] 2020

Logistic Regression
and Linear

Discriminant Analysis,
Random Forest, XGBoost,
Quadratic Discriminant

Analysis, SVM, and Long
Short-term Memory

Blockchain Information,
Macroeconomic

Indicators

Statistical methods outperform
machine learning for BTC

daily price prediction, while,
Machine learning for BTC’s

5-min interval price prediction
is superior to

statistical methods,

Aggarwal et al. [36] 2020 SVM and
decomposition (CEEMD) technical indicators

The proposed method for
short-term, midterm, and long

term-prediction has a
predictability power

Dutta et al. [4] 2020 Gated Recurring Unit, simple
neural network (NN), LSTM

Blockchain Information,
Macroeconomic

Indicators, Technical
Indicators

GRU outperforms the NN and
LSTM for daily
price prediction

Jiang, X. [37] 2019 MLP, LSTM, Gated
Recurrent Network Technical Indicators

Munim et al. [38] 2019 ARIMA and neural network
autoregression (NNAR) Technical Indicators ARIMA outperforms NNAR in

daily price prediction

Huang et al. [39] 2019 A tree-based predictive mod
buy and-hold strategy Technical Indicators,

A tree-based predictive model
for daily return outperform a

buy and-hold strategy

Shen et al. [40] 2019 GARCH model, SMA, RNN Technical Indicators

RNN method outperforms the
GARCH model and SMA

model for daily
return prediction

Mangla et al. [41] 2019 Logistic regression, SVM,
RNN, and ARIMA Technical Indicators

ARIMA is better for next-day
prediction, RNN better

for weekly

Siami-Namini and
Namin [42] 2018 ARIMA, long short-term

memory (LSTM) Technical Indicators LSTM is superior to ARIMA
for daily prediction

Jang and Lee [7] 2017
Bayesian neural networks

(BNNs), SVR, and
linear regression

Blockchain Information
and macroeconomic

indicators

BNN outperforms SVR and
linear regression
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Table 1. Cont.

Reference Year Methodologies Data Categorization Findings

Pichl and Kaizoji [43] 2017 Multilayer Perceptron Technical Indicators

HARRVJ neural network
captures well the dynamics of

daily Realized Volatility as
aggregated on
the 5-min grid.

Indera et al. [44] 2017 MLP-based NARX Technical Indicators NARX has predictive power
for daily price

Current Work 2022 OLS, MLP, ENSEMBLE,
and SVR

Technical indicators,
macroeconomic

indicators,
microstructure
indicators, and

blockchain information
indicators

SVR beats the other models
Macroeconomics and

blockchain information have
long term predictivity power

There is no feature selection to
improve the model

In the existing literature, there is no comprehensive work in which almost all categories
of indicators are investigated. Most of the works regarding BTC price prediction are
empirical analyses. However, the current study first looks at the BTC price prediction
problem from the perspective of economic theories, including demand and supply theory,
microstructure theory, and Cost-based pricing theory. It then identifies the associated
variables affecting the BTC price. After that, we empirically prove the predictability power
of the attributes through emerging machine learning models and traditional methods.

3. Materials and Methods

This research applies a traditional OLS method [45] and some machine learning
methods for the BTC price prediction problem, including Ensemble learning, SVR, and
MLP multilayer perceptron, which are briefly explained.

3.1. Multilayer Perceptron

Rosenblatt [46] introduced a multilayer perceptron (MLP) concept with a single per-
ceptron in 1958, consisting of the input layer, middle layers, and output layer. The input
layer is a connection between outer space with the network. The middle layers are called
hidden layers. Because there is no connection with the outside world, its values are not
observed in the training set. The number of neurons in the input layer corresponds to the
number of input parameters. Neurons in the hidden layer can be determined by the “trial
and error” method. The output layer includes neurons according to our desired output,
e.g., the forecasted value in the forecasting problems. A set of weights connects the neurons
(see Figure 1).
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Figure 1. The structure of the three-layer perceptron.

The output value y of a three-layer perceptron can be formulated as:

y = ϕ2(
N

∑
j=1

vjzj + b0) (1)

where N is the number of neurons in the hidden layer, vj is the weight of the second layer,
zj is the output of neuron j, b0 is the bias of the output neuron and ϕ2 is the activation
function of the output neuron. Several activation functions have been used in MLP models,
such as scaled conjugate gradient (SCG), Levenberg–Marquardt (LM), gradient descent
with adaptive learning rate (GDA), gradient descent with momentum (GDM), and others.
The output value of neuron j in the hidden layer is given by:

zj = ϕ1

(
M

∑
i=1

wijxi + bj

)
j = 1, . . . , N (2)

where M is the number of inputs, wij are the weights of the first layer, xi are inputs and bj
is the bias of neuron j, and ϕ1 is the activation function of hidden layers. The reason behind
choosing MLP is that they are fast to train and can afford hidden layer size 256 instead of
32–64. Also, colossal variance gives a strong ensemble with a single model type.

3.2. Support Vector Regression

Support vector regression (SVR) is an emerging nonlinear regression method based
on statistical learning theory having a more stable solution than traditional neural network
models. Adopting the structural risk minimization principle in SVM reduces overfitting
and local minima issues. In SVR, the nonlinear regression problem is transformed into a
linear regression problem by mapping the input data into a high dimensional feature space
by applying kernel functions [47]. Consider a set of data (xi, yi)

m
i=1 ⊂ R

m ×R where xi
is a vector of inputs, yi represents the scalar output. In the nonlinear regression case, the
linear estimation function can be formulated as f (x) = 〈w, φ(x)〉+ b where, w ∈ R

m is
weight vector, φ(x) is the mapping function, 〈·, ·〉 denotes the dot product in the feature
space, and b is a constant. Several cost functions can be used in SVR, including Huber’s
Gaussian, ε-insensitive, and Laplacian. The robust ε-insensitive loss function introduced
by Vapnik [48] is the most frequently used function, which can be formulated as follows:

Lε( f (x)− y) =
{| f (x)− y| i f | f (x)− y| ≥ ε

0 otherwise
(3)
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where ε is the tube radius around the regression function f (x), affecting the number of
support vectors used to construct the regression function. The cost of errors on the points
inside the tube is zero. Figure 2 shows a schematic diagram of the nonlinear regression
by SVR.

Figure 2. A schematic diagram of the nonlinear regression by SVR based on the ε-insensitive loss
function in the feature space.

The SVR performs linear regression in the feature space using the ε-insensitive loss

function by minimizing the empirical risk Remp = 1
n

n
∑

i=1
Lε( f (x)− y) as well as minimizing

the regularization term, ‖w‖2 to reduce the model complexity (flatness). The slack variables
ξi and ξ∗i represents the deviation of training samples out of the ε-insensitive zone. The
optimal regression function can be obtained [47]:

min
1
2
‖w‖2 + C

k

∑
i=1

(ξi + ξ∗i ) (4)

s.t.yi − 〈w, φ(xi)〉 − b ≤ ε + ξi (5)

〈w, φ(xi)〉+ b − yi ≤ ε + ξ∗i (6)

ξi, ξ∗i ≥ 0 (7)

where C is the regularization constant determining the trade-off between the empirical risk
and the regularization term. The above optimization problem can be solved by using La-
grangian multipliers α∗i and αi and Karush–Kuhn–Tucker conditions as the following form:

max − ε
n

∑
i=1

(α∗i + αi) +
n

∑
i=1

(α∗i − αi)yi − 1
2

n

∑
i,j=1

(α∗i − αi)(α
∗
j − αj) K〈xi, xj〉 (8)

s.t.
n

∑
i=1

(α∗i − αi) = 0 (9)

0 ≤ αi ≤ C, i = 1, . . . , n (10)

0 ≤ α∗i ≤ C, i = 1, . . . , n (11)

where K〈xi, xj〉 is the kernel function which is defined as the inner product of φ(xi) and
φ(xj) in the feature space. After solving the optimization problem, the optimal form of the
regression function can be obtained as [47]:

f (x) =
n

∑
i=1

(αi − α∗i )K 〈x, xi〉+ b (12)
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By setting the parameters C and ε and the kernel parameters, the estimation accuracy
can be obtained. The reason for choosing SVR is that it is robust to outliers. The decision
model can be easily updated. It has excellent generalization capacity with high prediction
accuracy, and its implementation is straightforward.

3.3. Ensemble Method

Various experiences show no specific training algorithm in machine learning methods
that can be the best and most accurate for all applications. Each algorithm is a partic-
ular model based on certain assumptions. Sometimes these assumptions are met, and
sometimes they are violated. Therefore, no algorithm alone can succeed in all situations.
Ensemble methods have been introduced to solve this problem. The primary motivation
for developing the Ensemble method is to reduce the error rate. Forecasting error using the
Ensemble approach, a group of techniques is much lower than using a single model. When
combining independent and different classifiers, the likelihood of making the right decision
is strengthened since each of these classifiers will perform better than a random guess.

Hansen and Salamon [49] presented deploying multiple models on regression. They
proved that someone could show that the overall error E decreases uniformly concerning
N with the N independent classifier with a probability of error e < 0.5. Also, the overall
performance is significantly reduced if someone uses dependent categories. The method-
ology consists of two consecutive steps: The training and testing phases. As shown in
Figure 3, several predictive models are produced using training samples in the training
phase. Predictive models would combine to predict the next step or the testing phase.

Figure 3. Ensemble method flowchart.

Some popular ensemble methods are Boosting, Bagging, and Blending, of which the
Bagging approach will be used in this research. There are two main reasons to choose
an Ensemble model: performance and robustness. The Ensemble model can make better
forecasts and do better than any single model. An Ensemble model reduces the spread or
distribution of the estimates and model accuracy.
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3.4. Feature Selection Methods

Feature selection, variable selection, or attribute selection plays an essential role in
classification problems. It reduces the number of attributes by excluding the irrelevant
and redundant ones to achieve the lower complexity model (see Figure 4). The more
uncomplicated and faster models with fewer variables are desirable in machine learning
models. Feature selection is an essential part of the machine learning process, leading to
overfitting. Overfitting happens when the model learns details and noises made by too
many variables, and then the model will not generalize well when presented with new data.

Figure 4. Feature selection in one glance (each color is representing one feature).

In this research, some feature selections, such as principal component analysis (PCA),
particle swarm optimization (PSO), evolutionary search, genetic search, best-first search,
and variance inflation factor (VIF), are used.

3.5. Model Evaluation

A model evaluation metric quantifies a predictive model’s performance, typically
involving training a model on a dataset, using the model to make predictions on a “test
dataset” not used during training, then comparing the predictions to the expected values
in the test dataset. Different authors use different metrics to compare their models. Table 2
shows the evaluation metrics used in this study. In all formulas, yt ŷt T is the target value,
output value, and the size of a test dataset in out-of-sample or out-of-fold prediction.

Table 2. Common types of evaluation metrics.

Accuracy Metrics Formula

R2 [50] R2 = 1 − T
∑

t=1
(ŷt − yt)

2/
T
∑

t=1
ŷt

2

T is the size of a test dataset in out of sample prediction

Pearson’s r r =
T
∑

t=1
ŷtyt/

√
T
∑

t=1
ŷt2√yt

Root Mean Square Error (RMSE) [51] RMSE =

√
T
∑

t=1
(ŷt − yt)

2/T

3.6. Model Validation

One of the more used statistical analyses, cross-validation, helps assess and validate
the machine learning model’s performance. The key intention behind evaluating the model
is to see whether or not one can check if the trained model is generalizable. As part of
the K-fold cross-validation process, the entire data set is first split into several folds. After
that, the model is trained on all folds but one and the test model on the remaining fold.
The test is reiterated multiple times until the model tests all the folds. Finally, the average
scores obtained in every fold are taken as the final metrics. Predictions are made on the test
sets that were not used to train the model during the process. These predictions are called
‘out of fold predictions,’ a type of ‘out of the sample’ forecast. In contrast to the simple
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train-test, the method discussed prevents overfitting and helps in a more robust model
evaluation form.

Cross-validation on a rolling basis is a method that is used for cross-validating the time
series models. According to Kuhn and Johnson [52], the value of k = 10 is expected. The
repeated K-fold cross-validation method replicates the entire process multiple times. For
instance, if ten-fold cross-validation were repeated five times, it would result in 50 times out-
of-fold predictions, estimating the model’s efficacy. The ten times K-fold cross-validation
is a prevalent method to Kuhn and Johnson [52]. As depicted in Figure 5, the process
starts with a small subset of data for training. Subsequently, the forecast for the later data
point finally, the data point is for checking the accuracy. The same forecasted data point is
included in the following training data set basis on which the next data points are predicted.

 
Figure 5. Cross-validation on a rolling basis.

4. Results and Discussion

This section consists of three parts. In the first part, a multilinear regression model is
built for the BTC price prediction problem on monthly BTC prices from 18 August 2010 to
17 September 2018. Data includes macroeconomic and blockchain information indicators.
The second part presents two comparative approaches: feature-based and category-based
comparative analysis consisting of OLS, Ensemble methods, SVR, and MLP for the BTC
price prediction problem on a daily data set from 11 October 2016 to 12 June 2017. Data is
composed of macroeconomic, microeconomic, and technical indicators. All predictions in
this part are out-of-fold predictions.

During the k-fold cross-validation process, predictions are made on test sets comprised
of data not used to train the model. These predictions are called out-of-fold predictions, a
type of out-of-sample predictions. Another analysis similar to the second part is described
in the third part on different BTC datasets, including macroeconomic, microeconomic,
blockchain information, and technical indicators from 1 January 2018 to 5 June 2018. For
validation of results in this research, three metrics, namely RMSE, R2, and Pearson r, have
been used to compare the out-of-sample and out-of-fold predictive models under the
T-test at the significance level of 0.05. The k-fold cross-validation with k = 10 (so-called
cross-validation on a rolling basis) is used to construct a high-performance model and have
robust results. Results are averaged on 100 prediction trials.

4.1. The BTC Price Prediction Problem Using OLS

According to the theoretical analysis regarding demand and supply theory, macroe-
conomic indicators have long-term predictability power on BTC prices. For the empirical
analysis, a multilinear regression model is built for the BTC price prediction problem
(model 1 in the Appendix A) on monthly BTC prices from 18 August 2010 to 17 September
2018, including macroeconomic and blockchain information indicators.
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4.1.1. Data Description

Monthly BTCUSD transactions occurring on the significant BTC exchanges, avail-
able at blockchain.com from 18 August 2010 and ending on 17 September 2018, including
24 variables, have been examined. Dependent variables can be categorized into Macroe-
conomic indicators and Blockchain information indicators obtained via provided API
at blockchain.com (see Table 3). Some descriptive statistics, including minimum, maxi-
mum, mean, and standard deviation, have been calculated and shown in Table A1 in the
Appendix A.1 to describe or summarize the data.

Table 3. Data categorization.

Indicator Category Indicator Name

Macroeconomic indicators
Market capitalization, BTCs in circulation, US federal funds rate, S&P500 stock market
index, Nasdaq composite, DJIA stock market index, WTI, gold-fixing price, breakeven

inflation rate,

Blockchain information indicators
Hash rate, mining difficulty, number of transactions per block, block size, average block

size, median confirmation time, orphan blocks, cost per transaction, transaction fees,
estimated transaction value (BTC), estimated transaction value (USD), total output value

4.1.2. Feature Selection

First, data cleaning, including estimating outliers (extreme values) and missing values,
has been applied to the raw data to build a better data set. After that, VIF is applied to
the data set to deal with multicollinearity. Table A2 in the Appendix A.1 shows variables,
namely, market capitalization, transactions per block, Hash Rate, mining difficulty, cost per
transaction, total transactions per day, Nasdaq Composite, Dow Jones Industrial Average,
and S&P 500, which have a VIF greater than 10. Instead of dropping variables, the entire
sample period has been tested in nine models with different combinations of variables.

4.1.3. OLS Regression for BTC Price Prediction

Table A3 in the Appendix A.1 shows the results of nine regression models built to
avoid multicollinearity. The variables in quotes are the variables with a high correlation.
They are added to the rest of the variables to build a new regression model. The response
variable in each model is the BTC price. The value in parentheses represents the results
of the t-test for the null hypothesis-rejecting variables, based on a p-value of 0.05. The R2

from regression models is relatively high, suggesting that, for example, approximately 73%
of the variation in BTC prices in model “9” is determined by the variables in the model.
Due to the t-statistics and p-value, all models are statistically significant. By looking at the
coefficients, which are not tiny, it is evident that all variables are economically significant
for the models.

The regression analysis showed that the significant macroeconomic indicators in
all models for monthly BTC price are market capitalization, Nasdaq Composite, Dow
Jones Industrial Average, and S&P500. Therefore, macroeconomic indicators have long-
term predictive power on BTC prices as expected a priori and the t-statistic indicates the
significance of the results. Also, blockchain information indicators, including the block size,
cost per transaction, mining difficulty, hash rate, transaction fees, and estimated transaction
value, verify that the supply and demand theory is the underlying theory of predictors.
Therefore, blockchain information indicators have a long-term predictive power on BTC
prices as expected a priori. The t-statistic indicates that it is highly statistically significant
that blockchain information indicators influence the price confirming that the cost-based
pricing theory is underlying the predictors. Empirical results answer the first and second
research questions. (1) What are the significant variables as short-term or long-term BTC
price predictors? (2) What are the underlying economic theories of BTC price predictors?
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4.2. Proposed Comparative Analysis for Dataset 1

According to the theoretical analysis regarding demand and supply theory, macroe-
conomic indicators do not have short-term predictability power on BTC prices. For the
empirical analysis, a comparative machine learning model, including OLS, Ensemble meth-
ods, SVR, and MLP for the BTC price prediction problem on data sets from 11 October
2016, to 12 June 2017, including macroeconomic, microeconomic, and technical indicators.
Feature selections, namely Best First Search, PSO Search, and Evolutionary Search, are
applied to the data. The price prediction model is described in the Appendix A (model 2).

4.2.1. Data Description

Daily BTC/USD transactions occurring on the Bitfinex exchange, obtained via pro-
vided API at bitfinex.com (accessed on 2 October 2019) from 11 October 2016, to 12 June
2017, including 22 independent variables, have been examined. Dependent variables can
be categorized into three groups; Macroeconomic indicators, obtained at fred.stlouisfed.org,
and microeconomic and technical indicators extracted from bitfinex.com. Table 4 shows
the specification for each group. Some descriptive statistics, including minimum, maxi-
mum, mean, and standard deviation, have been calculated and shown in Table A4 in the
Appendix A.2 to describe or summarize the data.

Table 4. Data categorization.

Indicator Category Indicator Name

Macro-Economic Indicators Trade-weighted US Dollar Index, gold-fixing
price, DJIA Index, Brent Crude oil price, WTI

Microeconomic Indicators Trades per minute, bid/ask sum, bid–ask
spread, buy/sell signals,

Technical Indicators volume, MTM, CCI, SMA

4.2.2. Feature-Based Comparative Analysis

This section applies the comparative analysis to different datasets containing the
indicators chosen by different feature selection techniques, including VIF, genetic search,
evolutionary search, and best-first search. Table A5 in the Appendix A.2 shows the different
features chosen by various methods. The comparison is conducted under the T-test at the
significance level of 0.05 by WEKA software (version 3.9.4, developed at the University of
Waikato, New Zealand). To evaluate the predictive machine learning models’ performance
and have robust results, the 10-fold cross-validation on a rolling basis evaluation technique
is used, and each model is repeated ten times. Therefore, the average results of 100 predic-
tion trials, including the forecasting ability of models, namely RMSE and Pearson’s r, are
shown in Tables 5 and 6. The standard deviation is shown in parenthesis.

Table 5. RMSE of different models on different data sets.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All indicators 8.86 (2.36) 9.04 (1.97) 8.68 (2.48) 9.30 (2.20)
PCA Reduction 8.79 (1.98) 11.45 (2.48) 8.59 (2.09) 11.67 (2.31)

VIF 15.97 (3.03) 13.92 (3.00) 16.01 (3.18) 15.28 (4.57)
Genetic Search 8.77 (2.23) 9.45 (2.05) 8.67 (2.27) 10.11 (2.39)

Evolutionary Search 8.72 (1.98) 9.00 (2.06) 8.68 (2.13) 9.56 (2.39)
Best First 8.80 (2.23) 9.40 (2.07) 8.68 (2.26) 10.08 (2.49)
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Table 6. Pearson’s r of different models on different indicators.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All Indicators 0.88 (0.08) 0.88 (0.07) 0.89 (0.08) 0.89(0.07)
PCA 0.88 (0.06) 0.88 (0.07) 0.89 (0.07) 0.80(0.09)
VIF 0.56 (0.15) 0.68 (0.17) 0.55 (0.15) 0.72(0.15)

Genetic Search 0.88 (0.07) 0.87 (0.07) 0.88 (0.07) 0.87(0.07)
Evolutionary Search 0.88 (0.07) 0.88 (0.07) 0.89 (0.07) 0.88(0.06)

Best First Search 0.88 (0.07) 0.87 (0.07) 0.88 (0.07) 0.87(0.07)

According to Tables 5 and 6, the SVR performs better on the attributes made by PCA.
Thus, one can use a combination of SVR and PCA to boost the model. No feature selection
can improve the models. The VIF method is the worst feature selection method among the
mentioned feature selection methods due to the poor prediction results. Different models
are compared to identify the best model for each data set, except for VIF data (due to the
not promising forecasting results). Table 7 summarizes the model’s comparisons, showing
that the SVR model has the best accuracy and the MLP has the worst accuracy.

Table 7. Order of the models in terms of the accuracy.

Indicators Models

All Indicators SVR, OLS, Ensemble methods, and MLP
PCA SVR, OLS, Ensemble methods, and MLP

Genetic Search SVR, OLS, Ensemble methods, and MLP
Evolutionary Search SVR, OLS, Ensemble methods, and MLP

Best First Search SVR, OLS, Ensemble methods, and MLP

4.2.3. Category-Based Comparative Analysis

This section applies the comparative analysis to different datasets containing different
categories such as macroeconomic, microeconomic, and technical indicators. Comparison is
conducted under the T-test at the significance level of 0.05 by WEKA software. To evaluate
the predictive machine learning models’ performance and have robust results, the 10-fold
cross-validation on a rolling basis evaluation technique is used, and each model is repeated
ten times. Therefore, the average results of 100 prediction trials, including the forecasting
ability of models, namely RMSE and Pearson’s r, are shown in Tables 8 and 9. The standard
deviation is represented in parenthesis.

Table 8. RMSE of different models on different indicators.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All indicators 8.86 (2.36) 9.04 (1.97) 8.68 (2.48) 9.30 (2.20)
Macroeconomic indicators 19.27 (3.55) 18.54 (3.97) 19.25 (3.79) 20.74 (4.42)
Microeconomic indicators 18.42 (3.76) 16.04 (2.83) 18.76 (3.99) 17.35 (4.02)

Technical indicators 8.72 (2.10) 9.05 (2.14) 8.68 (2.17) 9.61 (2.39)

Table 9. Pearson’s r of different models on different indicators.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All Indicators 0.88 (0.08) 0.88 (0.07) 0.89 (0.08) 0.89 (0.07)
Macroeconomic Indicators 0.06 (0.19) 0.25 (0.29) 0.09 (0.27) 0.25 (0.22)
Microeconomic Indicators 0.33 (0.19) 0.53 (0.23) 0.27 (0.21) 0.61 (0.20)

Technical Indicators 0.88 (0.07) 0.88 (0.07) 0.88 (0.07) 0.88 (0.07)
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According to Tables 8 and 9, technical indicators impact prediction results in OLS
and SVR models. The Ensemble methods and MLP models have the best accuracy on the
data, including all variables. Prediction using technical indicators or using all indicators
has nearly the same accuracy. In addition, all models applied on the macroeconomic and
microeconomic indicators have bad accuracy with a very low Pearson’s r and high RMSE.
Therefore, it is not recommended to be used. The order of indicators according to their
impact on prediction is shown in Table 10. Models applied to all attributes, and technical
indicators are compared in Table 11. In both cases, the SVR model outperforms other
models. Also, MLP is considered the worst model.

Table 10. The order of indicators according to their impact on prediction.

Models The Order of Indicators according to Their Impact on Prediction

OLS Technical indicators, all indicators, microeconomic indicators,
macroeconomic indicators

Ensemble methods All indicators, technical indicators, microeconomic indicators,
macroeconomic indicators

SVR Technical indicators, all indicators, microeconomic indicators,
macroeconomic indicators

MLP All indicators, technical indicators, microeconomic indicators,
macroeconomic indicators

Table 11. The order of the models in terms of accuracy.

Indicators Models

All Indicators SVR, OLS, Ensemble methods, and MLP
Technical Indicators SVR, OLS, Ensemble methods, and MLP

The category-based comparative analysis showed that macroeconomic indicators
(trade-weighted US dollar index, gold fixing price, DJIA index, Brent crude oil price, and
WTI) are not significant predictors for short-term BTC price. Microeconomic indicators are
also not significant except for the MLP model. In addition, technical indicators, namely
volume, MTM, CCI, and SMA, predict the price with nearly the same accuracy as the
prediction model using all indicators. Therefore, the recommendation is to use technical
analysis to predict the short-term BTC price. These empirical results answer the first and
second research questions. (1) What are the significant variables as short-term or long-
term BTC price predictors? (2) What are the underlying economic theories of BTC price
predictors? To answer the third research question (What machine learning model performs
better? What are the best feature selection techniques?), empirical results showed that the
SVR model in feature-based and category-based comparative analyses outperform other
models. Also, in terms of data preparation, no feature selection improved the model, and
VIF turned out to be the worst feature selection.

4.3. Proposed Comparative Analysis for Dataset 2

According to the theoretical analysis regarding demand and supply theory and cost-
based pricing theory, macroeconomic and blockchain information indicators do not have
short-term predictability power on BTC prices. For the empirical analysis, a compara-
tive machine learning model, including OLS, Ensemble methods, SVR, and MLP for the
BTC price prediction problem on datasets from 1 January 2018 to 5 June 2018, including
macroeconomic, microeconomic, technical indicators, and blockchain information indica-
tors. Feature selections, namely best first search, PSO search, and evolutionary search, are
applied to the data. The price prediction model is described in the Appendix A (model 3).
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4.3.1. Data Description

Daily BTCUSD transactions occurring on the Bitfinex exchange obtained via provided
API at bitfinex.com from 1 January 2018, to 5 June 2018, including 17 independent vari-
ables, have been examined. Dependent variables can be categorized into macroeconomic
variables, extracted from macrotrends.net (accessed on 2 October 2019), microeconomic,
technical indicators, and Blockchain information indicators obtained from data.BTCity.org.
Table 12 shows the specification for each group. Some descriptive statistics, including
minimum, maximum, mean, and standard deviation, have been calculated and shown in
Table A6 in the Appendix A.3 to describe or summarize the data.

Table 12. Data categorization.

Indicator Category Indicator Name

Macroeconomic indicators S&P500 index, Nasdaq Composite, DJIA index, CAC 40
Index, WTI, gold fixing price

Microeconomic indicators Bid–ask spread (10BTC), ask sum (10%), bid sum (10%),
trades per minute

Technical indicators Volatility, volume, SMA

Blockchain information indicators Hash rate, mining difficulty, number of transactions per
block, block time

4.3.2. Feature-Based Comparative Analysis

This section applies the comparative analysis to different datasets containing the
indicators chosen by different feature selection techniques, including best-first search,
evolutionary search, PSO search, and PCA dimension reduction methods. Table A7 in the
Appendix A.3 presents the different features chosen by other methods. For the analysis,
machine learning models, including OLS, Ensemble methods (bagging), SVR (with a
polynomial kernel), and MLP (with one hidden layer and nine neurons), have been applied
to different datasets, which include the indicators selected by other feature selections. The
aim is to specify the best feature selection method and determine the best machine learning
method. To evaluate the predictive machine learning models’ performance and have robust
results, the 10-fold cross-validation on a rolling basis evaluation technique is used, and
each model is repeated ten times. Therefore, the average results of 100 prediction trials,
including the forecasting ability of models, namely RMSE and Pearson’s r, are shown in
Tables 13 and 14.

Table 13. RMSE of different models on different datasets.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All Indicators 157.36 (30.24) 160.06 (36.52) 154.49 (31.53) 163.37 (44.62)
Best First 161.36 (34.57) 162.85 (38.69) 158.87 (36.20) 164.16 (40.37)

PCA Reduction 160.48 (34.38) 178.77 (40.04) 160.26 (33.52) 179.77 (45.12)
PSO Search 160.70 (29.31) 162.90 (37.43) 158.06 (34.26) 175.40 (43.50)

Evolutionary Search 161.03 (31.97) 162.43 (34.99) 160.00 (38.76) 169.70 (49.65)

Table 14. Pearson’s r of different models on different data sets.

Model Indicators OLS
Ensemble Methods

(Bagging)
SVR MLP

All Indicators 0.77 (0.13) 0.74 (0.14) 0.76 (0.13) 0.77 (0.12)
Best First Search 0.74 (0.16) 0.72 (0.16) 0.74 (0.14) 0.77 (0.16)
PCA Reduction 0.76 (0.13) 0.65 (0.17) 0.74 (0.13) 0.76 (0.12)

PSO Search 0.75 (0.14) 0.72 (0.16) 0.75 (0.13) 0.73 (0.17)
Evolutionary Search 0.74 (0.15) 0.74 (0.13) 0.74 (0.14) 0.77 (0.16)
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According to Tables 13 and 14, all models applied to all indicators have the best
accuracy than those applied to the other datasets. Therefore, it can be concluded that no
feature selection improves the model’s accuracy. Compared to those applied to the different
datasets, all models applied to data reduced by PCA have the lowest accuracy. Therefore,
it can be concluded that the PCA reduction method is not a promising feature selection
method for this research data. Different models are compared together for each data set to
identify the best model. Table 15 summarizes the model’s comparisons, showing that the
SVR model has the best accuracy for all datasets, and the MLP has the least accuracy.

Table 15. Order of the models in terms of accuracy.

Datasets Models

All Indicators SVR, OLS, Ensemble methods, and MLP
Best First Search SVR, OLS, Ensemble methods, and MLP
PCA Reduction SVR, OLS, Ensemble methods, and MLP

PSO Search SVR, OLS, Ensemble methods, and MLP
Evolutionary Search SVR, OLS, Ensemble methods, and MLP

4.3.3. Category-Based Comparative Analysis

OLS, Ensemble methods, SVR, and MLP are applied to economic and technical indica-
tors. The aim is to see which indicators can be selected as better predictive indicators. Also,
different models are compared on the same data to find a more accurate model. To evaluate
the predictive machine learning models’ performance and have robust results, the 10-fold
cross-validation on a rolling basis evaluation technique is used, and each model is repeated
ten times. Therefore, the average results of 100 prediction trials, including the forecasting
ability of models, namely RMSE and Pearson’s r, are shown in Tables 16 and 17.

Table 16. RMSE of different models on different indicators.

Model Indicators OLS Ensemble Learning SVR MLP

All indicators 157.36 (30.24) 160.06 (36.52) 154.49 (31.53) 174.37 (44.62)
Blockchain information

indicators 242.29 (46.77) 243.07 (48.78) 248.09 (51.72) 281.13 (60.84)

Macroeconomic
indicators 251.56 (46.90) 230.01 (43.84) 249.30 (47.05) 262.18 (59.76)

Microeconomic
indicators 198.61 (36.65) 193.00 (36.62) 197.99 (37.74) 205.60 (48.95)

Technical indicators 173.07 (41.11) 161.97 (38.69) 172.72 (40.78) 191.32 (52.98)

Table 17. Pearson’s r of different models on different indicators.

Models Indicators OLS Ensemble Learning SVR MLP

All indicators 0.75 (0.13) 0.74 (0.14) 0.76 (0.13) 0.77 (0.12)
Blockchain information

indicators 0.11 (0.27) 0.10 (0.24) −0.01 (0.25) −0.04 (0.26)

Macroeconomic
indicators −0.00 (0.25) 0.23 (0.34) 0.07 (0.32) 0.21 (0.31)

Microeconomic
indicators 0.57 (0.23) 0.58 (0.21) 0.57 (0.22) 0.60 (0.23)

Technical indicators 0.68 (0.16) 0.73 (0.14) 0.69 (0.16) 0.69 (0.16)

According to Tables 16 and 17, all models applied to all indicators have the best ac-
curacy. Therefore, it is recommended that the combination of technical, microeconomics,
macroeconomic, and Blockchain information indicators work better for price prediction
than each indicator category alone. Moreover, technical indicators are also considered
good predictors. However, prediction slightly improves by combining with other variables.
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Blockchain information and macroeconomic indicators are considered bad predictive indi-
cators due to the very low Pearson’s r and high RMSE. The order of indicators according
to their impact on prediction is shown in Table 18. Models applied on all indicators and
technical indicators are compared in Table 19. In both cases, the SVR model outperforms
other models. Also, MLP is considered the worst model.

Table 18. The order of indicators according to their impact on prediction.

Models Order of Indicators according to Their Impact on Prediction

OLS All indicators, technical indicators, microeconomic indicators,
blockchain information indicators, macroeconomic indicators

Ensemble methods All indicators, technical indicators, microeconomic indicators,
macroeconomic indicators, Blockchain information indicators

SVR All indicators, technical indicators, microeconomic indicators,
Blockchain information indicators, macroeconomic indicators

MLP All indicators, technical indicators, microeconomic indicators,
macroeconomic indicators, Blockchain information indicator

Table 19. The order of the models in terms of accuracy.

Indicators Models

All indicators SVR, OLS, Ensemble methods, and MLP
Technical indicators SVR, OLS, Ensemble methods, and MLP

The results of the category-based comparative analysis showed that macroeconomic
indicators (trade-weighted US dollar index, gold-fixing price, DJIA index, Brent crude oil
price, and WTI) are not significant predictors. Also, the Blockchain information indicators,
including hash rate, mining difficulty, number of transactions per block, and block time,
are not significant predictors for short-term BTC price. Also, microeconomic indicators,
including trades per minute, bid/ask sum, bid–ask spread, and buy/sell signals, are not
significant for the BTC price prediction except for the MLP model. Since the technical
indicators have nearly the same results as all indicators, the recommendation is to use the
technical analysis to predict the short-term BTC price. These empirical results answer the
first and second research questions. (1) what are the significant variables as short-term or
long-term BTC price predictors? (2) What are the underlying economic theories of BTC
price predictors? To answer the third research questions (What machine learning model
performs better? What are the best feature selection techniques?), empirical results showed
that the SVR model in feature-based and category-based comparative analyses outperform
the other models. In terms of data preparation, no feature selection improved the model,
and PCA dimension reduction turned out to be the worst feature selection.

5. Conclusions

Today, international finance is a multi-trillion-dollar sector that needs a secure and
stable mechanism that cryptocurrencies are currently inching. Cryptocurrencies were
developed under Blockchain technology. In contrast with the traditional central authority
systems wherein the sole control lies under one organization, Blockchain technology
has a diversified approach. This paper applied several machine learning models to the
BTC price prediction model on different data sets to verify the theoretical analysis and
answer the research questions. A multilinear regression model to monthly BTC prices
showed that macroeconomic and Blockchain information indicators are significant long-
term predictors. That verifies that supply and demand and cost-based pricing theory are
underlying BTC price predictors. These empirical results answer the first and second
research questions. (1) What are the significant variables as short-term or long-term BTC
price predictors? (2) What are the underlying economic theories of BTC price predictors?
In addition, the empirical results showed that SVR is the best machine learning model, and
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no feature selection technique is proven to be the best, which answers the third research
questions (Are machine learning algorithms superior to traditional methods for BTC price
prediction? What machine learning model performs better? What are the best feature
selection techniques?).

The conclusions are relevant to central bankers, investors, asset managers, etc., who
are generally interested in information about which indicators provide reliable, accurate
forecasts of BTC price. The study can be used to set asset pricing and improve invest-
ment decision-making. Therefore, it provides a significant opportunity to contribute to
international finance since the results have significant implications for the future deci-
sions of asset managers. In time series prediction, the correlation between independent
variables and dependent variables differs from time to time. Consequently, reestimating
prediction models is not unlikely. This study has used many data categories composing
macroeconomic, microstructure, Blockchain information, and technical indicators to make
a wide-ranging work.

In this study, attributes are selected based on economic theories. Macroeconomic
indicators are chosen based on the supply and demand theory. Microstructure theory is the
underlying theory of microeconomic indicators. Also, Blockchain information indicators are
selected according to the cost-based pricing theory. Previous studies are mostly empirical
research in which the focus is on the prediction methods. After describing the price
movement from the perspective of economic theories, the empirical results confirmed
the theoretical analysis. This study compared methodologies to predict short-term and
long-term BTC prices. The conclusion is also helpful for machine learning developers
to understand the configuration of machine learning prediction models and use it as
benchmarks. According to the literature review, the authors still doubt whether machine
learning can beat the traditional methods for BTC price prediction. Therefore, this study is
evidence of the superiority of machine learning.

This research has some suggestions for future work, which are as follows. In this
research, only a few critical feature selection methods have been applied to data sets. Many
other attribute selection techniques, including ranker search, Tabu search, and many more,
can be examined to improve the model. Other research can compare trending models, such
as recurrent neural networks (RNN) to SVR. According to this research, a correct prediction
of BTC prices can be profitable; therefore, it can diversify a portfolio. Further studies can
be conducted to examine the portfolio return by adding BTC to a portfolio to determine
the right amount of BTC to keep. Future research can predict other cryptocurrencies,
including Ethereum and Ripple. In addition, some other indicators, such as “news,” can be
investigated in other studies.
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Appendix A

Appendix A.1 Model 1. OLS Model Description

The purpose is to find a model that can approximate a target function, which can be
written as:

ri+1 = α + β1Xi,1 + β2Xi,2 + . + βN Xi,N + εi (A1)

where ri is the BTC price at month i + 1. Xi,1 to Xi,N are attributes at day/month i which is
described as follows:

Xi,1: BTCs in Circulation in month i is the total number of mined BTC currently
circulating on the network.

Xi,2: Market capitalization in the month i is calculated by multiplying the total number
of BTCs in circulation by the BTC price.

Xi,3: Block size in month i imposes a limit on the number of transactions that can
be verified on each block. As a result of such a mechanism, larger blocks require more
processing power and longer extraction time.

Xi,4: Average block size in month i.
Xi,5: Orphaned blocks in the month i are blocks that are not accepted into the

blockchain network, which is created due to the delay in receiving a block, at which
point another miner responds to the same block. Orphan blocks are valid, but do not
register any transaction and have been rejected by the chain.

Xi,6: Number of transactions per block in month i are the transactions that happen in
a block, and as soon as a block is solved, it is not possible to extend the block by adding
more transactions.

Xi,7: Median confirmation time in month i is the median time for dealing with miners’
fees enclosed in a mined block and superimposed to the public ledger.

Xi,8: Hash rate in day/month i is the speed at which computational operations are
completed to mine a BTC block.

Xi,9: Mining difficulty in month i is a measure of how difficult it is to mine a BTC
block, or in more technical terms, to find a hash below a given target.

Xi,10: Transaction fees in month i are paid when cryptocurrencies are transferred to
another wallet. Processing transactions on the blockchain takes effort, and these fees are
used to compensate the miners and validators who help keep things running smoothly.

Xi,11: Cost per transaction in month i is calculated as miners’ revenue divided by the
number of transactions.

Xi,12: Unique addresses in month i are installment addresses that have a non-zero adjust.
This metric is one way of understanding day-by-day utilization of the BTC arrangement.

Xi,13: Total BTC transactions in month i.
Xi,14: Transaction volume excluding popular addresses in month i is the total number

of transactions excluding those involving the network’s 100 most popular addresses.
Xi,15: Total output value in month i is the total value of all transaction outputs,

including coins, returned to the sender as change.
Xi,16: Estimated transactions value in month i is the total estimated value in BTC

transactions on the blockchain, which does not include coins returned as change.
Xi,17: Nasdaq Composite is a stock market index of the common stocks and similar

securities listed on the Nasdaq stock market.
Xi,18: Dow Jones Industrial Average (DJIA) index in month i is a stock market index

that measures the stock performance of 30 large companies listed on stock exchanges in the
United States.

Xi,19: S&P500 stock market index in month i is a stock market index that measures the
stock performance of 500 large companies listed on stock exchanges in the United States.

Xi,20: Gold-fixing price in month i is the setting of the gold price that takes place via
a dedicated conference line. The price continues to be set twice daily at 10:30 and 15:00
London GMT in US dollars.
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Xi,21: West Texas Intermediate crude oil (WTI) prices or Texas light sweet in month i is
a benchmark in oil pricing, refined mainly in the Midwest and Gulf Coast regions in the
United States.

Xi,22: US federal funds rate in month i is the interest rate at which depositors trade
federal funds with each other at night. When a depository institution has a surplus in its
reserve accounts, it can lend to other banks that need those funds. In other words, a bank
with extra cash can lend it to another bank with a liquidity problem, and thus the cash
balance of a bank with a problem with cash increases rapidly.

Xi,23: Breakeven inflation rate in month i is a measure of expected inflation, the difference
between a nominal bond’s yield and an inflation-linked bond with the same maturity.

Table A1. Descriptive statistics.

Indicators Min Max Mean Std. Dev

BTCs in Circulation 4,002,626.667 17,213,768.33 12,440,527.97 3,742,297.323
Market Capitalization 280,390.572 2.55 × 1011 23,117,501,754 49,243,267,354

Block Size 1 179,101.0913 47,145.66415 54,242.32369
Average Block Size 0.01 1.054375 0.409168031 0.354286668

Orphaned Block 0 2.071428571 0.361061508 0.556278003
Transactions Per Block 1.625 2208.7575 760.5240094 666.8726595

Median Confirmation Time 6.201875 16.96133333 9.397754898 2.300005847
Hash Rate 0.01 49,050,545.4 3,657,003.427 9,072,465.431

Mining Difficulty 797.7186667 6.32 × 1012 4.79166 × 1011 1.18908 × 1012

Transaction Fee 0.056875 591.31625 62.77254092 105.0417027
Cost Per Transaction 1.242 117.1433333 20.31455332 25.94717866
Unique Addresses 513.6666667 825,390.9375 224,455.5763 207,905.1755

Total Transactions Per Day 464.0666667 358,831.0625 11,5921.8508 100,973.4369
Transaction Volume Excluding

Popular Addresses 464.0666667 341,004.75 107,356.0276 101,413.1972

Total Output Value 63,281.56267 11,338,010.91 1,650,410.836 1,539,818.478
Estimated Transaction Value 27,539.66667 997,305.9375 209,259.0939 130,674.3663

Nasdaq Composite 2286.248 7882.400667 4435.937597 1480.271196
Dow Jones Industrial Average 10,576.508 25,807.52933 16,784.42003 3980.41153

S&P 500 1119.546667 2855.994 1880.952363 472.923476
Gold Price Index 1072.293333 1773.213333 1361.324703 184.7161172
Crude Oil WTI 30.485 110.3573333 74.41217956 23.3697773

US Federal Funds Rate 0.067142857 1.915333333 0.392972284 0.491999589
Breakeven Inflation Rate 1.302857143 2.586666667 2.011131634 0.298349738

Table A2. VIF for choosing attributes.

Variables VIF

BTCs in Circulation 7.98
Market Capitalization 27.44 *

Block Size 7.68
Average Block Size 5.07

Orphaned Block 1.5
Transactions Per Block 39.11 *

Median Confirmation Time 1.73
Hash Rate 52.36 *

Mining Difficulty 51.45 *
Transaction Fee 3.53

Cost Per Transaction 33.88 *
Unique Addresses 9.75

Total Transactions Per Day 48.67 *
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Table A2. Cont.

Variables VIF

Transaction Volume Excluding Popular Addresses 8.44
Total Output Value 2.4

Estimated Transaction Value 2.49
Nasdaq Composite 11.86 *

Dow Jones Industrial Average 23.71 *
S&P 500 44.93 *

Gold Price Index 2.32
Crude Oil WTI 2.16

US Federal Funds Rate 1.99
Breakeven Inflation Rate 2.97

‘*’ VIF greater than 10.

Table A3. OLS regression results.

Variables Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

BTCs in Circulation

Block Size 0.268 **
(0.039)

0.521 *
(0.164)

0.418 *
(0.196)

0.408 **
(0.038)

0.443 **
(0.021)

0.436 **
(0.024)

Transaction Fees 0.131 ***
(0.001)

0.167 **
(0.05)

0.158 **
(0.049)

0.166 ***
(0.002)

0.155 **
(0.003)

Unique Addresses 1.021 ***
(0.184)

Total Number of
Transactions

−0.023 .
(0.012)

Estimated
Transaction Value

−0.096 **
(0.03)

−0.192 **
(0.071)

−0.179 *
(0.070)

−0.149 *
(0.062)

−0.242 **
(0.071)

−0.213
***

(0.004)

Cost Per
Transaction

0.781 **
(0.07)

Mining Difficulty 0.327 *
(0.124)

Market
Capitalization

1.00 ***
(0.002)

Hash Rate 0.397 **
(0.126)

Nasdaq Composite 0.809 .
(0.1)

Dow Jones
Industrial Average

0.277 **
(0.024)

S&P500 0.081 **
(0.038)

Adjusted R2 0.91 0.67 0.81 0.73 0.68 0. 67 0.73 0.78 0.73

Residual Standard
Error 0.044 0.1 0.001 0.023 0.087 0.10 0.099 0.089 0.089

p-value <2.2 ×
10−16

5.56 ×
10−11

<2.2 ×
10−16

<2.2 ×
10−16

1.073 ×
10−14

7.28 ×
10−10

<2.2 ×
10−16

<2.2 ×
10−16

<2.2 ×
10−15

‘***’ Significant at the 0.001 level, ‘**’ Significant at the 0.01 level, ‘*’ Significant at the 0.05 level, ‘.’ Significant at
the 0.1 level.

Appendix A.2 Model 2. Model Description

The purpose is to find a model that can approximate a target function by navigating
the space of possible hypotheses (e.g., for ANN models, the space of hypotheses includes
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the network topology and hyperparameters) to predict the price changes for one day ahead.
The target function can be written as:

Δ̂pi+1 = f (ΔXi1, ΔXi2, ΔXi3, . . . , ΔXin) (A2)

where Δ̂pi+1 are the BTC price changes at day i + 1. ΔXi1 to ΔXin are attributes at day i
that might affect the price changes, which are described as follows:

Xi1 : Trade-weighted US dollar index or broad index (TWEXB) on day i is a measure
of the value of the United States dollar relative to other world currencies.

Xi2 : Gold-fixing price on day i is the setting of the price of gold that takes place via
a dedicated conference line. The price continues to be set twice daily at 10:30 and 15:00
London GMT in US dollars.

Xi3 : Dow Jones Industrial Average (DJIA) index on the day i is a stock market index
that measures the stock performance of 30 large companies listed on stock exchanges in the
United States.

Xi4 : Brent Crude oil price on day i is a primary trading classification of sweet light
crude oil from the North Sea that is an important benchmark that defines the prices for
oil worldwide.

Xi5 : West Texas Intermediate crude oil (WTI) prices or Texas light sweet, on day i is
a benchmark in oil pricing, refined mainly in the Midwest and Gulf Coast regions in the
United States.

Xi6 : Trades per minute on the day i is the number of BTCs traded in a minute.
Xi7 : Ask sum (5%) on day i, calculated as the amount of BTC on the order books

waiting to be sold within a 5% range from the BTC price.
Xi8 : Bid sum (5%) on day i, calculated as the amount of USD on the order books

waiting to buy BTC within a 5% range from the BTC price.
Xi9 : Bid–ask spread (10BTC) on day i is spread with 10 BTC slippage, i.e., with 10 BTC

worth of orders removed from bids and from asks, which is calculated as askmin−bidmax
askmin

× 100.
Xi10 : Bid–ask spread (100BTC) on day i, i.e., with 10 BTC worth of orders removed

from bids and from asks, which is calculated as

askmin − bidmax

askmin
× 100.

Xi11 : Buy0BTC on day i, defined as buy orders with an amount of less than 1 BTC.
Xi12 : Sell0BTC on day i, defined as sell orders with an amount of less than 1 BTC.
Xi13 : Buy1BTC on day i, defined as buy orders with an amount of 1 BTC.
Xi14 : Sell1BTC on day i, defined as sell orders with an amount of 1 BTC.
Xi15 : Buy5BTC on day i, defined as buy orders with an amount of 5 BTC.
Xi16 : Sell5BTC on day i, defined as sell orders with an amount of 5 BTC.
Xi17 : Buy10BTC on day i, defined as buy orders with an amount of 10 BTC.
Xi18 : Sell10BTC on day i, defined as sell orders with an amount of 10 BTC.
Xi19 : Momentum (MTM) (10 days) on day i is the difference between the price of BTC

on day i and the BTC price on i − Nth day which is N = 10 in this model.
Xi20 : Commodity Channel Index (CCI), on day i, compares the price of BTC against

its simple moving average and mean deviation of the price.
Xi21 : Volume on day i is the number of BTCs traded during a given period, which is

one day in our model.
Xi22 : Simple moving average (SMA) on day i, calculated by adding recent prices and

then dividing that by the number of periods, is five days for this model.
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Table A4. Descriptive statistics.

Indicators Min Max Mean Std. Dev

TWEXB 91.45 96.87 93.90 1.25
Gold Fixing Price 1130.55 1304.55 1228.23 42.67

DJIA 17,888.28 21,271.97 20,055.42 951.69
Brent Crude Oil Price 41.61 56.34 51.27 3.57

WTI 43.29 54.48 50.13 2.84
Trades Per Minute 0.92 63.17 11.71 10.43

Ask Sum (5%) 750.97 6067.64 2737.32 1065.50
Bid Sum (5%) 567.64 5667.86 2378.06 989.71

Bid–Ask Spread (10BTC) 0.04 0.66 0.17 0.11
Bid–Ask Spread (100BTC) 0.30 2.90 0.78 0.45

Buy0BTC 767.00 41,552.00 8257.62 7121.62
Sell0BTC 559.00 49,411.00 8630.88 8091.82
Buy1BTC 160.00 7583.00 1820.29 1436.78
Sell1BTC 179.00 9272.00 1781.89 1600.48
Buy5BTC 35.00 2055.00 332.16 301.08
Sell5BTC 25.00 2553.00 354.77 365.67

Buy10BTC 1.00 685.00 94.53 86.32
Sell10BTC 2.00 838.00 93.58 109.68

Momentum 85.96 120.56 97.87 5.60
CCI −351.04 524.63 87.53 111.17

Volume 1,538,729.58 134,500,681.52 22,138,504.67 22,622,391.54
SMA 631.17 2867.59 1150.82 508.79

Table A5. Chosen attributes by different feature selection techniques.

Attributes VIF Genetic Search
Evolutionary

Search
Best First Search

TWEXB � �
Gold-Fixing Price �

DJIA �
Brent Crude Oil Price � � �

WTI
Volume

Trades Per Minute �
Ask sum (5BTC) �
Bid Sum (5BTC)
Bid–Ask Spread

(10BTC) � � � �
Bid–Ask Spread

(100BTC) � � �
Buy0BTC
Sell0BTC �
Buy1BTC
Sell1BTC �
Buy5BTC
Sell5BTC

Buy10BTC � �
Sum5BTCPrice � � �

Sell10BTC � �
MTM �
CCI � � � �
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Appendix A.3 Model 3. Model Description

The purpose is to find a model that can approximate a target function, which can be
written as:

Δ̂pi+1 = f (ΔXi1, ΔXi2, ΔXi3, . . . , ΔXin) (A3)

where Δ̂pi+1 are the BTC price changes at day i + 1. ΔXi1 to ΔXin are attributes at day i
that might affect the price changes, which are described as follows.

Xi1 : S&P500 stock market index on day i is a stock market index that measures the
stock performance of 500 large companies listed on stock exchanges in the United States.

Xi2 : Dow Jones Industrial Average (DJIA) index on day i is a stock market index that
measures the stock performance of 30 large companies listed on stock exchanges in the
United States

Xi3 : CAC 40 stock market index on day i is a stock market index representing a
capitalization-weighted measure of the 40 most significant stocks among the 100 most
oversized market caps on the Euronext Paris.

Xi4 : West Texas Intermediate crude oil (WTI) prices or Texas light sweet on day i is
a benchmark in oil pricing, refined mainly in the Midwest and Gulf Coast regions in the
United States.

Xi5 : Nasdaq Composite on day i is a stock market index of the common stocks and
similar securities listed on the Nasdaq stock market.

Xi6 : Gold-fixing price on day i is the setting of the gold price that takes place via
a dedicated conference line. The price continues to be set twice daily at 10:30 and 15:00
London GMT in US dollars.

Xi7 : Bid–ask spread (10BTC), on day i is spread with 10 BTC slippage, that is
with 10 BTC worth of orders removed from bids and from asks, which is calculated
as askmin−bidmax

askmin
× 100.

Xi8 : Ask sum (10%) on day i, calculated as the amount of BTC on the order books
waiting to be sold within a 10% range from the BTC price.

Xi9 : Bid sum (10%) on day i, calculated as the amount of USD on the order books
waiting to buy BTC within a 10% range from the BTC price.

Xi10 : Trades per minute on day i are the number of BTCs traded in a minute.
Xi11 : Volatility on day i is the changes in market prices over a specified period. The

faster prices change, the higher the volatility. It can be measured and calculated based on
historical prices and can be used for trend identification.

Xi12 : Volume on day i is the number of BTCs traded during a given period, which is
one day in our model.

Xi13 : Simple moving average (SMA) on day i, calculated by adding recent prices and
then dividing that by the number of periods, which is five days for this model.

Xi14 : Hash rate on day i is the speed at which computational operations are completed
to mine a BTC block.

Xi15 : Mining difficulty on day i is a measure of how difficult it is to mine a BTC block,
or in more technical terms, to find a hash below a given target.

Xi16 : Number of transactions per block on day i are the transactions that happen in a
block, and as soon as a block is solved, it is not possible to extend the block by adding in
more transactions.

Xi17 : Block time on day i is an average time to mine a block in minutes.
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Table A6. Descriptive statistics.

Data Min Max Mean Std. Dev

S&P500 Index 2581.00 2872.87 2711.50 63.73
Nasdaq Composite 6777.16 7637.86 7246.83 186.26

DJIA Index 23,533.20 26,616.71 24,842.04 676.33
CAC 40 Index 1425.12 5640.10 5297.19 527.43

WTI 59.19 72.24 65.03 3.34
Gold Fixing Price 1285.85 1360.25 1324.94 16.97

Bid/Ask Spread (10BTC) 0.21 0.68 0.36 0.12
Ask Sum (10%) 5.62 × 106 2.32 × 107 1.21 × 107 3.62 × 106

Bid Sum (10%) 9.71 × 106 2.65 × 107 1.49 × 107 3.34 × 106

Trades Per Minute 10.50 94.21 31.59 14.22
Volatility 7.80 154.64 39.35 25.15
Volume 3144.45 70961.37 3144.45 8830.17

SMA 1498.466429 14,907.4622 9030.497881 2036.55495
Hash Rate 1.63 × 1018 9.42 × 1018 3.89 × 1018 1.12 × 1018

Mining Difficulty 1.93 × 1012 4.94 × 1012 3.30 × 1012 7.27 × 1011

Number of Transactions Per Block 1.35 × 105 4.25 × 105 2.10 × 105 5.16 × 104

Block Time 7.48 12.22 9.34 0.86

Table A7. Attributes selected by different feature selection methods.

Attributes Best First Search
PSO

Search
Evolutionary Search

S&P500 Index �
Nasdaq Composite

DJIA Index �
CAC 40 Index � � �

WTI � �
Gold Fixing Price � �
Bid–Ask Spread

(10BTC) � �
Ask Sum within

(10BTC) �
Bid Sum within

(10BTC)
Trades Per Minute � � �

Volatility � � �
Volume

SMA � � �
Hash rate

Mining Difficulty
Number of

Transactions
Block Time � � �
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Abstract: The large-scale application of blockchain technology is an expected to be an inevitable trend.
This study revolves around published papers and articles related to blockchain technology, relevance
analysis and sorting through the retrieved documents with six core layers of blockchain: Application
Layer, Contract Layer, Actuator Layer, Consensus Layer, Network Layer and Data Layer. Based on the
analysis results, this study found that China’s research is more towards the preference and application
of landing and industry and smart cities with blockchain as the underlying technology. International
research is more focused on the research of finance as the underlying technology of blockchain and
tries to combine crypto assets with real industries, such as crypted assets and payment systems for
traditional industries. This paper studies the impact of monetary entropy on cryptocurrencies in
smart cities and uses the monetary entropy formula to measure the crypto-economic entropy. We use
Kolmogorov entropy to describe the degree of chaos in the cryptocurrency market in a smart city. The
study illustrates the current status of blockchain technology and applications from the perspective
of cryptocurrency in a smart city. We find that smart cities and cryptocurrencies have a mutually
reinforcing effect.

Keywords: blockchain technology; cryptocurrency; Kolmogorov entropy; DAO; metaverse

1. Introduction

Since Nakamoto published ‘Bitcoin: A peer-to-peer electronic cash system’ in 2008, the
development of Bitcoin has been up and down, but its underlying blockchain technology
has received more and more attention in recent years. In 2019, China decided to take
blockchain as an important breakthrough for independent innovation of core technologies,
and to accelerate the development of blockchain technology and industrial innovation in
smart cities with blockchain technology. The main application scenarios could be found
in areas like people’s livelihood services, urban governance, industrial economy, and
ecological livability. The most eye-catching international use of blockchain technology
is the rapid development of cryptocurrencies. This study will analyze the development
direction of cryptocurrency from the perspective of world political economy, Bitcoin futures
ETF, NFT, DAO, Web3.0. At the same time, along with the rising inflation in the United
States and the impact of the COVID-19, the American public’s attention to encrypted assets
has increased and global encrypted assets have reached the level of trillions of dollars.
The international application of blockchain is more focused on the financial field and
focused on the virtualization industry. This study uses two scenarios of smart city and
cryptocurrency to correspond to China’s and other countries’ concerns, respectively, to
describe the development of blockchain technology in China and other countries, and
they can get useful inspiration by comparing different development paths to promote the
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development of industry and blockchain technology. This paper uses entropy to analyze
the performance of cryptocurrency. The cryptocurrency market and smart city represent a
chaotic state, and we introduce Kolmogorov entropy to measure the degree of chaos, which
is the direction of our future research. The study is a qualitative study, and we will do more
quantitative studies in the future to measure specific monetary entropy, crypto-economic
entropy, urban entropy, Kolmogorov entropy etc.

The rest of this article is: Section 2 Entropy in cryptocurrency markets; Section 3
Study of blockchain technology; Section 4 Solutions about blockchain technology; Section 5
Cryptocurrency and entropy; Section 6 Discussion; Finally, Section 7 Concludes this work.

2. Entropy in Cryptocurrency Markets

Thermodynamics-related theories in physics have driven the development of eco-
nomics in the past 100 years, especially when the theory of ‘entropy’ in thermodynamics
emerged, which greatly promoted the development of modern economic theories. For
example, entropic economics, complex economics, and quantum economics, etc. This
shows that ‘entropy’ has bridged the gap between economics and physics and has had a
dramatic impact on mainstream economic theory. The concept of ‘entropy’ originated in
the 19th century, and first indicated that part of the energy of a steam engine could not be
transformed into useful work due to friction and other reasons, and ‘entropy’ measured
the missing energy in this part. The first mathematical definition of ‘entropy’ is shown
below [1].

C =
1
T

q (1)

Δc =
(

1
T2

− 1
T1

)
q (2)

where Δc represents the change in entropy and q is the heat transferred from an object
with temperature T1 to other object with temperature T2. A slightly different definition
of entropy, being a measure of the molecular disorder of the system, was formulated by
Boltzmann. It has the following form:

C = K ln(m) (3)

where K is the Boltzmann constant, while m is the number of microscopic states.
‘Entropy’ in thermodynamics can be used in the social sciences as a general measure

of the disorder in a system. For example, the concept of ‘corporate entropy’ is used in
management and organizational sciences, and should be understood as a loss of productive
energy. The entropy in an organization is always growing, just like the thermodynamic
entropy in the universe. As the concept of ‘entropy’ continues to evolve, the various
definitions of entropy can be made more specific and applied to specific financial scenarios.
John Bryant in his book provides a careful mathematical description of ‘entropy’ in the
economy with the following expression shown in, it has the following form:

c = ln
( v

L

)
(4)

where v represents the volume of economic activity and L represents the constrained level
of that activity. The change in the entropy of the economy per unit of time can be expressed
in a more precise formula.

dC = (w − wn + 1)
dv
v

=

(
1 +

1 − n
r

)
dv
v

(5)

where dv/v represents the growth rate of volume flow, w is the lifetime factor, n represents
the elasticity index, and r is the natural rate of return. The factor (w − wn + 1) is called the
marginal entropy index, and the integration of Equation (5) yields the entropy generation
per unit time using the following mathematical form:

c = (w − wn + 1) ln(v) + c0 =

(
1 +

1 − n
r

)
ln(v) + c0 (6)
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Equation (6) can be used to describe the monetary entropy, in which case the rate of
return approximates the long-run average or natural level of the velocity of money circulation.

Kolmogorov entropy is an important quantity to characterize chaotic systems. In
different types of dynamical systems, the value of K is different, and in systems with
chaotic motion, the value of K is greater than zero. the larger the value of K, then the greater
the rate of loss of information. the formula for Kolmogorov entropy is shown below [2].

k = − lim
τ→0

lim
ε→0

lim
d→∞

1
dτ ∑

i1,...,id

p(i1, . . . , id) ln p(i1, . . . , id) (7)

where p(i1, . . . , id) is the joint probability and ε and d are fixed values. Equation (7) can
portray the degree of chaos of cryptocurrency and smart cities. Samet Gunay andand
Kerem [3] showed that cryptocurrency markets are not random but chaotic. In the present,
this means that the short-term prediction of the cryptocurrency market may be achievable,
but it is completely unpredictable in the long-term prediction.

R. Fistola and R. A. La Rocca [4] studied the measurement of urban entropy, which
is a complex system, and divided the urban system into five subsystems, each of which
contains several influences that are used to measure the entropy of the city. In addition, it
is beneficial to keep the entropy of a city within a reasonable range, but when the entropy
is too low or too high, this can lead to a ‘fragile’ city or reduce the ability to sustain
development. Dehouche [5] uses an approximate entropy approach to verify the reasons
for the exponential and persistent fluctuations of the bitcoin price, using data such as
the daily price of bitcoin, the price of gold, and the SandP 500 index, and calculating
their standard deviations. Pele, DT and Marinescu-Pele [6] used the entropy of bitcoin’s
daily returns to predict the daily value-at-risk of bitcoin and demonstrated that entropy
outperforms the classical GARCH model, and the following conclusions are drawn: There
is a strong positive correlation between the daily log price of bitcoin and the intra-day
return entropy, indicating that entropy has predictive power for bitcoin price. Grilli and
Domenico [7] introduced the concept of Boltzmann entropy into cryptographic digital
currencies and used Boltzmann entropy to predict the price change trend of cryptographic
digital currencies.

The entropy of the cryptocurrency market and the traditional currency market will be
affected by various factors, as shown in Table 1 such as inflation rate, fiscal deficit level,
interest rate volatility, and high cost of currency management in the traditional currency
market. For the cryptocurrency market, the basic blockchain peer-to-peer and decentralized
technology of cryptocurrency saves a lot of operation and management costs, meanwhile,
along with the emergence of NFT, Dao, Web 3.0, metaverse in the cryptocurrency market,
they are constantly optimizing the ecological environment of the crypto market.

Table 1. The factors of influencing the entropy values.

Traditional Monetary Market Cryptocurrency Market

The factors of influencing the
entropy values

Inflation rate NFT

Fiscal deficit level DAO

Interest rate volatility Web 3.0

The cost of currency management Metaverse

In economic reform, ‘entropy’ can be used as a tool for future monetary reform, in
this paper mentioned cryptocurrency and smart city, in which includes a large number
of ‘entropy’, such as: ‘monetary entropy ‘, ‘education entropy’, ‘transportation entropy’,
‘ecological entropy’, etc., when cryptocurrencies appear in the monetary market as well
as transforming the urban governance model to ‘smart city’ mode is transformed, it is
in reducing the degree of chaos within the original system, reducing the lost part of
the system operation, improving the operation efficiency, and then introducing ‘entropy’

231



Entropy 2022, 24, 557

into the currency market and city construction for the global crypto market and city
governance model.

In this paper, we introduce the concept of Kolmogorov entropy to smart cities and cryp-
tocurrency, and use Kolmogorov entropy to measure the degree of disorder in the monetary
market of smart cities as a way to speculate whether the smart cities are developing stably.

3. Study of Blockchain Technology

This study on blockchain technology focuses on the six layers of the blockchain, which
are: Application Layer, Contract Layer, the Actuator Layer, Consensus Layer, Network
Layer and Data Layer. Detailed technical research of studies is shown in Table 2.

Table 2. Different science and technology concerns for each layer at China and outside China.

Blockchain Architecture Research in China Research Outside China

Application layer

Programmable
currency Tokenized Open Finance [8] Investment [9]

Trading account traceability [10] Payment [11,12]

Anti-money Laundering [13]

Identity [14]

Programmable
finance Trading System [15] Business Economy [16]

E-commerce platform [17–19] Finance [20,21]

Sharing Economy [22]

Programmable
society Supply Chain [23] Social Governance [24,25]

Social Governance [26–34] Identity management [35]

Education [36–40] Business Process [41]

Taxation [42–45]
Medical [46]
Rights Protection [47]
Intellectual Property [48,49]

Contract layer

Smart Algorithm
State Machine Network [50]
Domain State Machine
Vector clock state machine

Business process modelling
notation [51]
Reparo Protocal [52]

Smart Contract Double auction pricing contract E-Bidding [53]

Smart Scripts Smart scripts incorporating machine
learning [54] Picture Hash [55]

Incentive layer

Game model Reputation model based on multiple
games Reputation incentive model [56]

Incentives Stochastic equity proof mechanism [57]
Authoritative participation and
internal drive incentive
mechanism [58]

Consensus layer

PoS
DPoS

Multi-group proxy consensus
mechanismMG-DPoS

Improving consensus in proof of
stake protocols [59]

PoW estPoW Proof-of-Trust (PoT) [60]

Zero-determinant strategy based on
game theory [61]

Randomly Elected Blockchain
(REBC) [62]

PBFT Dynamic consensus mechanism Open Business
Environment-PBFT [63]
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Table 2. Cont.

Blockchain Architecture Research in China Research Outside China

Network layer

P2P
Network

Network layer node configuration
trading subsystem [64] IoT trust management [65]

Spread mechanism Blockchain network protocol based on
IPv6 [66]

Dual-Channel Parallel Broadcast
model (DCPB) [67]

Trusted service quality model [68]

Authentication
mechanism

SDN control layer security mechanism
construction method [69]

Network is under the influence of
such attacks [70]

Data layer

Data Block
Asymmetric
encryption

BigchainDB [71] Health data based on an extension
of permissioned blockchain [72]

Block chain data safe transmission
method based on SCTP protocol [73]

Graphic data encryption solution
based on private blockchain

Chain Structure Two-layer blockchain user trust
negotiation model [74]

Complex networks modelling
framework [75]

Timestamp
Hash
Merkle Tree

Attack detection model based on Merkle
hash tree structure [76]

Data Structure of Streaming
Authentication Based on Merkle
Tree [77]

For the Application Level, the China’s studies focus on social industries such as e-
commerce, education, taxation, medical care, intellectual property and social governance.
This paper [78] believes that the introduction of blockchain, edge computing and other
technologies under the distributed architecture computing network can provide digital
power for smart earth applications. International studies focus more on the economic
and financial fields such as investment, payment, identification, anti-money laundering,
business process re-engineering, finance, etc. For the Contract Layer, the Chinese studies
focus on tying up the industrial chain through the contract state machine, to implement its
designed smart contract into the industry. This paper [79] studies a new type of decentral-
ized threshold signature protocol. By combining distributed the key generation protocol
and BLS signature, a set of threshold signature protocol with fixed signature length that can
be participated by multiple parties is designed. The international studies focus more on the
blockchain smart contract itself, through the design of the contract layer protocol to serve
the blockchain network. For the Actuator Layer, both Chinese and international studies
focus on the design of reputation-based game model. In terms of preferences for technical
scenarios’ landing. This paper [80] proposes a two-party elliptic curve digital signature
algorithm suitable for blockchain. Through the mathematical logic of the given signature
algorithm and its security model, it is integrated into the blockchain for evaluation, which
proves the feasibility of the scheme. Chinese studies focus on the integration of actuation
and data sharing scenarios, while international studies focus on the blockchain network
improvements. For the Consensus Layer, both Chinese and international studies prefer the
improved consensus algorithm for existing PoW, (D) PoS and PBFT. Few new consensus
algorithms have been proposed. For the Network Layer, China preferences is for efficiency
improvements through external software and services, while the international preference is
more focused on technical improvements to the blockchain network layer. For the Data
Layer, Chinese preference is to apply data in the security field, while the international focus
is more on research and improvements of the blockchain data layer, such as data structure,
data expansion and chain structure improvement. For example, in the case of ensuring
data security and credibility with the help of the blockchain double-chain structure, the
endogeneity is improved [81]. The problem of low efficiency of data interaction between
middle and platform, etc.
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To sum up, based on the six levels of analysis mentioned above, we can clearly see
the similarities and differences between Chinese and foreign research directions: At the
Application Level, China’s attention is paid more to the application of actual scenarios,
while international attention is paid to the application in the financial field; at the Contract
Layer, China’s focus on the application of smart contracts in the industrial chain, while
the international research on the contract itself has been strengthened; in Actuator Layer,
both Chinese and international studies focus on the design of game model; in Consensus
Layer, both are researching How to improve the consensus mechanism; in Network Layer,
China attaches great importance to external software and services, while the international
community pays more attention to improving the blockchain network itself; In Data Layer,
domestic data is used more in the field of security, while the international community pays
more attention to the research of the data layer itself.

4. Solutions about Blockchain Technology

Based on the research differentiation in China and internationally, we can condense
the following table conclusions on the six-layer structure of the blockchain, as shown in
Table 3.

Table 3. Differences Between China and International Research using blockchain technology.

Blockchain Technology
Differences between Chinese and International Research

In China Outside China

Application Layer Focused on the real economy Focused on the virtual economy

Contract Layer Linked to the industrial chain Blockchain contract protocol
improvements

Actuator Layer Reputation-based game model design

Consensus Layer Improved consensus algorithm based on existing PoW, PoS,
DPoS, PBFT

Network Layer Improvements through
external software and services

Improvements of the network
layer itself

Data Layer Application to Security Improvements of the data
layer itself

By analyzing the domestic and international research of blockchain, we can make
relevant references. Considering that Chinese blockchain research is more linked to the
industrial chain and rooted in the real economy applications. In terms of the core algorithms,
we can learn more from international research of improvements of the contract, consensus
and network layers. We can also take full use of China’s achievements in the security and
privacy design. Thus, by combining the advantages of both to achieve and implement
the whole.

5. Cryptocurrency and Entropy

Cryptocurrency is one of the most important scenarios for the application of blockchain
in the smart city, and with the development of DEFI and cryptocurrency, which the rela-
tionship will become closer and closer, and cryptocurrency may play an important role in
the international financial market of the smart city. As shown in Figure 1, which analyses
the factors that affect the development of cryptocurrencies.
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Figure 1. Development of cryptocurrency.

5.1. The Global Epidemic and Inflation Will Accelerate People’s Interest in Encrypted Assets

The COVID-19 epidemic in 2020 and the recession that came with it hit individuals,
small businesses and governments in a short period of time, but the consequences of this
are also complex, providing opportunities for innovation on the one hand, causing social
unrest and economic hardship on the other hand. In terms of monetary policy, the Federal
Reserve is moving constantly and its balance sheet is expanding at a very fast pace. The
Fed’s fiscal deficit reached $3.1 trillion in 2020 and is expected to reach $3 trillion in 2021,
creating insecure expectations for the population. The rapid changes in society as a whole
during this period forced investors to react accordingly and new investment trends are
developing. Based on this, our survey shows a significant increase in interest in safe-haven
assets compared to the results of 2019, and among the safe-haven assets are cryptocurrencies
such as Bitcoin, a phenomenon that is within the forecast range. During the COVID-19
epidemic in 2020, which set back the entire traditional financial market. Cryptocurrencies
played a role as a hedge against risk, with Bitcoin being ideal for risk averse individuals
in the face of downward pressure in financial markets [82]. Further studies found that
bitcoin in both domestic and cross-border entities served to achieve diversification benefits
and risk mitigation, acting as a ‘safe haven’ [83–85]. The cryptocurrency market shows
higher levels of cross-correlations with the others during the COVID-19 periods, in which
it is strongly cross-correlated itself [86]. From these results, it can be concluded that the
COVID-19 promoted bitcoin investments, 63% of the bitcoin investors were influenced by
the COVID-19 epidemic in the past year, and it has boosted the price of bitcoin [87].

Based on the analysis of the socio-political and economic status quo, the traditional
financial market is vulnerable to severe shocks, and the market is unstable. The Fed
accelerates money printing and inflation, and the issue of asset preservation has received
more and more attention. Cryptocurrency has quickly attracted attention due to its excellent
properties such as security, limitedness, and easy liquidity. Once investors make profits
in the encrypted market, they will attract more investment. This is based on the external
unstable financial environment make cryptocurrency investment market boom.

5.2. Bitcoin Futures ETF

Several Bitcoin ETF applications have been rejected since 2013, citing market manipu-
lation, fraud and failure to protect consumers. On 19 October 2021 at 9:30 am EST, the SEC
approved the issuance of a bitcoin futures ETF, which will probably lower the investment
threshold for bitcoin after the adoption of the bitcoin futures ETF. With the caveat that the
purchase of a bitcoin futures ETF is an indirect investment in bitcoin, not a direct invest-
ment. The purchase here is simply a futures contract, which is less effective at tracking the
price of bitcoin. For better tracking of the price of bitcoin, a spot ETF would be a better
option, but is not available at this time as the liquidity of bitcoin may not be sufficient for
the liquidity required by institutions. Bitcoin futures ETFs are regulated to track the spot
bitcoin price using CME regulated futures contracts, which can be regulated by traditional
exchanges for added security. However, there are two disadvantages to bitcoin futures
ETFs: one is that futures have a premium and discount problem that if the bitcoin price
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changes by 1% in an hour, the bitcoin futures ETF may drop by 2%, which is a significant
deviation, meaning that futures ETFs do not track the bitcoin price well enough; the other is
that investment costs are high, as futures contracts have an expiry date, and near the expiry
date. This is the cost of shifting the futures ETFs, which can eat up some of the profits, so
bitcoin futures ETFs are not suitable for long-term holdings, and can be used for short-term
investments. In reality, Bitcoin also requires the retention of an associated Bitcoin wallet
as well as registration with a cryptocurrency exchange, which remains unknown to those
unfamiliar with the space and requires a degree of self-education. With a Bitcoin futures
ETF, investors do not need to worry about private keys, storage or security. They own
shares in the ETF, just like their shares, and have access to the cryptocurrency market
without having to buy and hold cryptocurrency. Bitcoin futures ETFs are managed by
companies that buy and hold actual bitcoins, with prices linked to the bitcoins held in the
fund. The company lists the ETF on a traditional stock exchange and we, as investors, can
trade the ETF just like any other stock.

In conclusion, for investors who are reluctant to invest in bitcoin directly due to
price, security and regulation. buying a bitcoin futures ETF is an opportunity to invest in
cryptocurrencies, which adds to the focus on cryptocurrencies in the traditional financial
markets, which is why I believe that bitcoin futures ETFs are an important option for some
investors in the future.

5.3. NFT

The NFT market has been very popular in the past two or three years. The concept
of NFT originated from Ethereum. NFT is a form of cryptocurrency [88]. NFT can also
be regarded as the ownership certification for identifying virtual assets. They can be
largely subdivided into several small parts. NFT is a subdivision that cannot be carried
out. Such tokens can be bound with virtual or digital assets to form their unique identifiers.
After forming NFTs, they can be freely traded in the market, which greatly promotes the
development of virtual currencies and stimulates the prosperity of the DAPP market. By
using NFT on smart contracts, creators can easily prove ownership including ‘picture’,
‘video’, and ‘artwork’, so that intellectual property rights can be properly protected. NFT
no matter the transaction many times, its original creators have drawn royalties, which
has also spurred the development of digital artworks in disguise. The real-time data as of
the time when the author wrote the paper shows that the current total transaction value of
NFT are close to 16.4 billion US dollars as shown in Figure 2 (Data from: nonfungible.com
(accessed on 30 December 2021), and its growing market and large returns have attracted
people’s attention.

1 × 10 

Figure 2. Total NFT transaction volume.
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In the past 24 h, the transaction volume of NFT was US$49,858,590.46 [89], and the
transaction volume of cryptocurrency was US$102,099,049,616 [90]. The transaction volume
of NFT accounted for about 0.05% of the transaction volume of cryptocurrency. It can be
seen that NFT is still developing at the initial stage of 2020, but there is a significant increase
compared to the same period in 2020, and its growth can also be seen from other indicators.
In April 2020, the number of initial transactions was 25,729, the number of secondary
transactions was 8589, and the current number of initial transactions is 14,852,246 times,
and the number of secondary transactions was 13,359,460 times. In addition, the active
level of investment can also be seen from the number of active wallets. As shown in
Figure 3 (Data from: nonfungible.com (30 December 2021), the number of wallets investing
in NFT-related products in the past three months has increased from about 97,000 to about
200,000 now, which also reflects given the latest investment trends in cryptocurrencies,
NFT-related products will continue to attract a large influx of cryptocurrencies.

Figure 3. The number of active wallets related to investing in NFTs.

In addition, the concept of the ‘metaverse’ rises in 2021, and 2021 is also known as
the first year of the ‘metaverse’. With the renaming of Facebook and the listing of the
Roblox game company, the concept of the Metaverse instantly aroused thousands of waves,
leading to the influx of other Internet giants, which also led to the accelerated development
of the industry and the entry of capital, and it would quickly integrate human resources.
This further stimulated the market to have a high valuation for the Metaverse, and finally
formed a market outlet industry. This way, investment and speculation in the market
will come one after another. Now the total value of the Metaverse-related industries has
reached about 714 million USD. In the future, running the metaverse will need to include
a large number of NFTs, cryptocurrencies and NFT-related products will be used in the
future virtual world. It can be used, leased and bought and sold in the metaverse, which
requires a large amount of cryptocurrencies to promote the market’s investment interest
in cryptocurrencies.

In a word, NFT will enhance the development of the entire encrypted market [91],
such as: existing encrypted games; one can continue to buy and sell NFT products in the
game; protect digital collectibles, protect digital assets and intellectual property rights;
finally, prosper the entire metaverse. From the current point of view, NFT-related products
are similar to the process of re-enclosure. Redistributing resources and wealth will attract a
large number of people to participate, which also requires the use of cryptocurrencies, and
it will be one of the investment directions of cryptocurrencies in the future.

5.4. DAO

DAO is a decentralized autonomous organization. The decision of the organization is
made by the group. The organization will also issue its own tokens (but not necessarily
every organization will issue it), some of tokens held or those participating in the DAO.
The project, which determines the size of the voting power, DAO can be a company
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where everyone is the boss, both consumers and owners, which actually shortens the
distance between the market and the organization, and through DAO efficient voting,
decision-making. It can shorten the mechanism of decision-making and execution, thereby
improving the efficiency of the organization. The business model of DAO can be very
promising in the future. NFT is used to illustrate that the current NFT market has a
phenomenon of oversupply and lack of development potential. If DAO appears at this
time, its development can be promoted. For example, Party-DAO, which focuses on
investing in NFT projects, its goal is to gather the power of retail investors to obtain funds
through crowdfunding to buy NFTs. After the purchase is successful, the internal tokens
will be distributed proportionally to record the NFT purchase share. If you want to sell
NFTs, you need to initiate a vote within the organization. If the support exceeds 50%, a
public auction will be held, and the proceeds will be divided equally according to the
proportion. This not only promotes the trading of NFTs, but also promotes more cash
flow into the cryptocurrency market, so DAO is a “good medicine” to improve the entire
decentralized finance.

As shown in Table 4 DAO companies are divided into eight categories according to
their functions and business. DAO-operating systems: The main task is to help users create
DAO; Investments DAOs: To raise funds to invest in projects recognized by DAO internal
members, if there is profit, it will be divided proportionally, otherwise the risk will be
shared; Grants DAO: If you want to improve the internal DAO, you need to initiate a
proposal as a member. If the proposal is passed, you can get a bonus to complete your
own ideas; Collector DAOs: It belongs to the collection DAO, that is, only invests in NFT
projects, and the profits are divided proportionally, otherwise you need to share the risk;
protocol DAOs: Mainly do cryptocurrency lending business on the blockchain; Service
DAOs: Provide services to DAO, such as fundraising to buy NFT, or analyze data; Social
DAOs: Mainly do online discussions and interactions; Media DAOs: Blockchain news.

Table 4. DAO Landscape around world.

DAO Landscape Examples

DAOoperating systems DAOStack, colony, Orca etc.
Investments DAOs theLao, BitDao, Metacartel etc.

Grants DAO Uniswap Grants, Aave Grants etc.
Collector DAOs PleasrDao, herstoryDAO etc.
protocolDAOs Curve, AAVE, Sushi etc.
SerivceDAOs partyDAO, metaverseDAO etc.
SocialDAOs FWB, seedclub etc.
Media DAOs GCR etc.

If you want to join any of the above organizations, you need to hold some of the cryp-
tocurrencies specified by the organization or participate in the project together. These are
two main ways to join the organization. No matter which method is used, it is inseparable
from cryptocurrencies. It is also an important choice in investing in cryptocurrencies.

5.5. Web 3.0

Web3.0 is a newly proposed technical means; it is based on the blockchain technology
to develop the next generation of a brand-new and efficient network world. In the era of
web 1.0, that is, the early Internet, you could only browse information related to web pages;
In the era of web 2.0, mobile phone terminals appeared, allowing users to interact with
the platform a lot. Absolute management and supervision rights; In the future web3.0 era,
there is no central agency for review, smart contracts are cornerstone of web3.0 operation,
users have absolute control over the privacy of data, and users can combine their own
actual situation. Data are sold for profit. Web3.0 is not a direct invest cryptocurrency;
it is more like participating in the maintenance of the network together. As a part of
it, the cryptocurrency reward obtained by contributing one’s own strength, which will
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mobilize the power of global netizens to jointly the future network world created. Although
cryptocurrency investment is not directly reflected here, as long as you participate in it,
you can get the corresponding governance token rewards, which is another way to invest.

For example: ‘brave’ browser, which now has 42 million users worldwide, is based on
the concept of web3.0, and its focus on privacy protection, which will not be interfered by
any advertisements. One can also choose to watch advertisements, you will be rewarded
with bat tokens. This can form a win-win situation for users, advertisers and the platform.

The emergence of Web3.0 will be of significant epoch-making, it will change the
operation mode of the entire encrypted economy and the development and profit model of
the entire Internet company. Based on blockchain technology in the era of web3.0, every
user’s attention has been mobilized. This way of operation will also be more private, secure,
and efficient.

5.6. Metaverse

In the science fiction “Snow Crash“ published in the 1990s, a virtual world was con-
structed, which is a concept of “metaverse” in today’s view. In 2021, the concept of
“metaverse” will rise. Metaverse’ first year. There are many definitions of the metaverse
now, it is necessary to build a virtual world with a strong sense of experience. The future
Metaverse will not disappear with the collapse of an Internet company, and the economic
system in the metaverse will not disappear. To be interconnected with the economic system
of the real world, more and more internet giants are optimistic about the development
potential of the Metaverse. With the renaming of Facebook and the listing of the Roblox
game company, the concept of the Metaverse instantly aroused thousands of waves. Lead-
ing to other Internet Giants are also pouring to speed up the layout of the Metaverse,
which will lead to the accelerated development of the industry and the entry of capital,
and it will further accelerate the integration of manpower and resources, which will further
enhance the market’s value expectations for the Metaverse, and then form a market outlet
industry. In this way, investment and speculation in the market will continue to flow, and
the total value of the industry related to the Metaverse has now reached about 714 million
US dollars. In the future, running the metaverse will probably need to include a large
number of NFTs, cryptocurrencies and NFT-related products will be used in the future
virtual world. It can be used, leased and bought and sold in the metaverse, which requires
the use of a large number of cryptocurrencies to promote the market’s investment interest
in cryptocurrencies.

Since many companies do not currently have data related to each other, the entire
data will be integrated in the future metaverse. This step may become a revolution in the
“interface” between the real world and the digital world. Since the current metaverse is
still in the early stage of development, there will be huge changes in the future. Metaverse-
related projects are also being explored in the industry. At present, NVIDIA has created
the NVIDIA Omniverse platform, which can use digital twin technology to build a virtual
factory in a virtual world, and real products can be tested. Its data can be Synchronized
with the real factory, which can liberate productivity, reduce costs and increase efficiency.

The metaverse must bring about drastic changes, which require continuous innovation
of a large number of technical means. At the same time, virtual currency is booming, which
also promotes the development of the virtual world. However, since the construction of
the metaverse and the entire virtual world is still in its infancy, it should be subject to the
supervision of relevant international organizations. It is possible to explore the use of legal
digital currency as the transaction currency of the metaverse.

Based on the monetary entropy formula, this study gives the concise measurement
Equation (8). The six influencing factors, such as inflation, Bitcoin futures ETF, NFT, DAO,
Web 3.0 and Metaverse, are measured separately in Equation (8). Cei represents the entropy
value of the 6 influencing factors, w is the lifetime coefficient, N represents the elastic index,
V stands for the volume of economic activity, Co is a constant.

Cei = (Wi − Wi Ni) ln(Vi) + Co (8)
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Equation (9), Ce represents the measurement of the overall development of crypto-
economy in smart cities under the combined effect of six factors such as NFT, DAO, WEB3.0,
etc. After we get the crypto-economy entropy, we can infer the financial market operation
in the smart city.

Ce = C(Ce1 . . . Cen) (9)

After analyzing the changes in the world’s political economy, NFT, DAO, WEB3.0,
bitcoin futures ETF, Metaverse, it can be seen the entire traditional financial market is
changing, online world is also undergoing restructuring. At the same time, with the
development of communication technology, it will reshape a new economy patterns and
social formations. Blockchain technology enables everyone to have the opportunity to
integrate into economic and social development. However, because of it is still in the early
stage of development and the development rules are not perfect, it is necessary to improve
supervision capabilities to meet the challenges of the ever-changing encrypted economy in
the future of smart city.

6. Discussion

In this paper, we introduce a smart city as a scenario and use Kolmogorov entropy
to calculate the degree of chaos of cryptocurrency and smart city. Smart cities applying
cryptocurrency can introduce monetary entropy, which may be one of the future research
directions. In addition, smart cities can also use entropy to measure the development of the
whole urban system. The following are the main development directions of smart cities.

The construction of smart cities is the development direction of major cities in China
in these years, along with the rapid development of information and communication
technology (ICT) such as artificial intelligence, 5G, blockchain and Internet of Things,
which make the technical means of building smart cities more and more perfect, but at
the same time, cities generate a large amount of data and huge data transmission tasks,
which leads to the problem of information security, and blockchain technology can rebuild
trust in society and solve the sharing problem. However, the application of blockchain
technology in smart cities is a difficult system project, requiring the construction of a secure
and credible smart city data infrastructure, a city-level multi-level blockchain public service
platform, and a breakthrough with a focus on government service innovation to promote
the gradual implementation of blockchain applications. In the subsequent development of
blockchain technology applications in smart cities, importance should be attached to the
construction of blockchain underlying architecture and infrastructure, putting the building
of blockchain basic service platforms in the first place, deep integration with technologies
such as big data, artificial intelligence and the Internet of Things, and further improvement
of regulatory and standard systems. What we want to solve the openness, exchange,
integration, sharing and security of data resources that are isolated and segregated because
of category, industry, sector and geography. Based on the analysis of blockchain technology
in Part II III, as shown in Figure 4, we can divide the development of smart cities into
four directions—people’s livelihood services, urban governance, industrial economy and
ecological livability.

6.1. People’s Livelihood Services

The main application scenarios of blockchain technology in the field of livelihood
services include: smart healthcare and smart education, as shown in Figure 5.

In recent years there have been numerous problems in the medical field and the
masses have not been able to get better solutions to their medical problems. The use of
blockchain technology can-to a certain extent, improve the current system construction in
the medical field-enhance its efficiency and further promote the application of Internet+
medicine. As an important industry application scene, the medical field has seen a year-
on-year increase in the proportion of major enterprises, government departments and
investment institutions in China, and outside China making strategic investments in its
layout, constantly accelerating the application of blockchain technology in the medical
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industry. Smart healthcare which includes electronic health cases, information sharing,
anti-counterfeiting of drugs, and digital currency payments. We use technology to promote
the development of medical informatization and ensure the storage and sharing of medical
data, which includes all aspects of hospital and patient information. For example, policy
data storage and sharing, medical and health records storage on the chain, etc.

Figure 4. Smart city construction based on blockchain technology.

Figure 5. People’s livelihood service structure diagram.

Education has come a long way in the last 20 years, but there is still a long way to
go before education is fully modernized. Technologies like blockchain can accelerate the
process of modernizing education. Distributed ledgers, artificial intelligence, and electronic
devices are slowly becoming the future direction of choice for educational tools. When
blockchain is used in education, blockchain technology can enhance the transparency of
education, such as submitting assignments and checking grades and learning progress,
and it can improve the motivation of students to learn, and scholarships can be awarded
using cryptocurrency. The main focus of smart education is to preserve information data
of teachers, students and educational institutions, and to share resources, and to build
efficient online learning communities through smart contracts, so that a series of tasks
such as uploading, authenticating, flowing and sharing educational resources can be
executed automatically, and reducing the cost of sharing resources, improving the efficiency
of resource sharing and monitoring the community ecosystem in real time. The new
ecosystem of ‘blockchain + education’ is formed based on the characteristics of blockchain
technology such as efficiency and transparency, and it helps to innovate the education
industry [92], as shown in Figure 6.
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Figure 6. A new ecology of education based on blockchain technology.

Blockchain technology can be used in education as a record for storing distributed
learning; it can provide a trusted certificate system for online education; it can be used as a
smart contract to complete educational contracts and depository; blockchain technology can
be used as a copyright tool to mark academic achievements; and it can be a decentralized
global knowledge base, and a knowledge currency [93]. In terms of practical applications,
the MT Media Lab (MIT Media Lab) has released ‘Blockcerts’, a blockchain certificate
project, an open standard for digital academic certificates based on the Bitcoin blockchain.
‘Blockcerts’ provides a decentralized authentication system. Because it relies on the most
secure Bitcoin blockchain, its credentials are tamper-proof and verifiable. In addition,
‘Blockcerts’ can be used to issue any type of credentials, including professional certificates,
transcripts, credits, or degrees [94]; the Holberton School, a software education institution
in San Francisco, uses blockchain technology to record academic credentials for its schools
and will start to share information on academic credentials on the blockchain starting in
2017. In addition to providing evidence of academic achievement, blocks can be used as a
basis for measuring an individual’s intellectual wealth [95]. By analogy with Bitcoin, a block
that records one’s academic achievements can also be used as a “knowledge currency”. In
other words, the concept of “Learning is Earning” is used to promote education [96], and
the above knowledge currency will also become a token (cryptocurrency) within the DAO
organization, where students can earn cryptocurrency in the form of questions, answers,
and posts, which will also motivate students to learn. This also proves the argument that
‘learning is earning’.

6.2. Urban Governance

The key application scenarios of blockchain technology in the field of urban gover-
nance include: smart government, smart transportation, as shown in Figure 7.

Figure 7. Urban governance structure diagram.

So-called smart government is an e-government based on blockchain, cloud com-
puting and other technologies. In these years, the development of e-government has
encountered various problems that still need to be solved, such as low efficiency, data
cannot be shared and so on. The first is to define the concept of e-government, which is
understood by academics as the use of advanced information technology for collaborative
governance of society and the provision of new and efficient services to the public to meet
the changing social needs [97,98]. The second, how to develop from traditional government
to e-government, which research shows can be developed in steps development and finally
reach the level of e-government [99]. The third, how to build smart government specifically,
some scholars have proposed a new government service system using GIS and cloud
computing technology, which can visualize the operational information of the city [100].
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This concept has been expanded, and some scholars have combined the concept of border-
less with e-government to form, whose goal is to efficiently meet the needs of the public,
means to integrate the process of government affairs across borders, and to collaborate
organizations and information across borders weakening the organization of government
functions. The goal is to efficiently meet the needs of the public by integrating government
affairs processes across boundaries, collaborating organizations and information across
boundaries, and weakening the organizational boundaries of government functions so
that the entire government functions are truly integrated under the perspective of public
services [101]. Borderless wisdom government is supported by blockchain technology,
and the information of each department is stored in a distributed manner, and the mutual
trust problem is solved between the nodes using consensus mechanisms, which finally
forms a borderless government service system and improves the security and efficiency of
government services.

Smart transportation, as one of the cores of smart cities, involves many integrated
technologies such as Internet of Things, cloud computing, and big data, which enable
the coordinated operation of people, vehicles, and roads [102]. With the characteristics
of blockchain technology such as polycentricity, security and trustworthiness, and smart
contracts, it can realize the construction of a more efficient transportation network, and
solve the government, enterprise data sharing and Intelligent management of infrastructure
and other issues. On the basis of ensuring open and transparent data circulation, data secu-
rity is ensured to improve the efficiency of intelligent transportation operation. However,
policy failure and control hijacking caused by information security have become major
hidden dangers for the promotion and application of new technologies. The application
of blockchain in Telematics technology can achieve more secure, reliable data storage and
authentication through data encryption and consensus mechanisms. Providing sustainable
information services and effective manner, ensuring data security to safeguard telematics
technology security. At the same time, through the establishment of alliances and contracts,
the effective and seamless integration of information collected by smart transportation
field terminals, intelligent vehicle information, manual control commands, and road infras-
tructure information can be realized. Thus, effectively solving traffic congestion, parking
difficulties, and other traffic hotspot problems [103].

Take electric car charging piles as an example; at present, all countries in the world
advocate reducing carbon emissions and using more clean energy, and the demand for
electric cars is gradually increasing, but the number of charging piles is limited and the
configuration is unbalanced. How to let users choose the right one for charging from the
limited number of charging piles with uneven space distribution is an urgent problem to
be solved. Users can log into the APP to check the distribution of available charging piles
and then make a choice according to their own wishes. The whole transaction process
is completed by a central processing entity in the background. Such an approach does
not consider the variability of individual travelers’ needs. Therefore, by introducing the
concept of blockchain and adopting a decentralized smart charging contract, we can ef-
fectively help users select the most convenient parking/charging location and choose the
service completely independently. The specific architecture includes four layers: user layer,
in-vehicle information interaction layer, smart contract layer, and target layer [104]. The
figure below shows a new management model for new transportation, where multiple
types of blockchains are managed collaboratively, as shown in Figure 8. For example,
German energy giant Innogy and IoT platform company Slock.it have partnered to launch
a blockchain-based peer-to-peer charging project for electric vehicles. Instead of signing
any power supply contract with the power company, users can simply install the Share and
Charge APP on their smartphones and complete user verification to charge at Innogy’s
charging posts across Europe, with tariffs automatically determined by a backend program
in real-time based on the prevailing and local grid load. Thanks to blockchain technology,
the entire charging and tariff optimization process is fully traceable and searchable, thus
significantly reducing trust costs. When charging is needed, an available charging station
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nearby is found from the app and payment is made according to the price in the smart con-
tract. However, this type of charging is not yet popular, even in Germany, where Ethereum
wallets are only an option for some people, but it will still accelerate the connection between
cryptocurrencies and real life

Figure 8. Blockchain collaborative traffic information management framework.

6.3. Industrial Economy

The key application scenarios of blockchain technology in the industrial economy
include: intelligent Internet of things, intelligent industry, as shown in Figure 9.

Figure 9. Industrial economy structure diagram.

As an emerging technology, IoT has gradually penetrated into every aspect of life. The
security of blockchain technology makes IoT + blockchain be more and more attention.
Using blockchain technology can solve the original problems of IoT such as no standard-
ization, information security. Internet of things is an Internet-based and can make all the
ordinary physical objects connected to the information carrier. After the development of
wired and wireless networks, especially to the 5G era, it can realize the network intercon-
nection of people and people, people and things, things and things. With the development
of artificial intelligence, big data, cloud computing and other technologies to promote the
development of the Internet of things, in the future, the Internet of things still need to pay
attention to the standardization issue. About the Internet of things, there is no standardized
construction policy, there is no unified communication protocol, communication interface,
etc., there is the same protocol to make the device interconnection, and each company
wants to implement their own communication protocol, in order to be the formation of
industry development barriers, but now is still in the early stage of industry development.
Additionally, the reliability issue. As the current IoT architecture is to aggregate all data
into a central control system, all the data have the risk of being controlled and modified at
will, and in the process of data transmission may go through multiple links, the authenticity
and integrity of the data cannot be guaranteed, and then, security and privacy issues. In
the field of IoT, the centralized service architecture stores and forwards all monitoring data
and signals through a central server, and a large amount of user data information is stored
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in the central server. Although IoT operators keep emphasizing that they can effectively
protect user data and privacy, security breaches and privacy leaks still occur, making a
large number of users unable to trust that their privacy is secure [105].

During the long-term development and evolution of IoT, the following 9 industry
pain points have been encountered: device security, personal privacy, architectural rigidity,
communication compatibility and multi-subject collaboration 5 major pain points. The
improvements of blockchain technology for IoT are: cost reduction, privacy protection,
identity identification, traceability, and cross-subject collaboration. The current develop-
ment status is: leading IoT companies introduce blockchain technology in large numbers,
for example, IBM launched blockchain services for Bluemix cloud platform back in 2016,
Amazon chose to start cooperation with DCG, a digital currency company; from the per-
spective of traditional power companies, they mainly invest in different pilot projects
by cooperating with startups, setting up subsidiaries, or even buying startups to create
distributed energy systems and peer-to-peer energy trading platforms. Including Sweden’s
state-run power company VattenFall (Waterfall Power), which invested in a startup (Pow-
erPeers) in Amsterdam, the Netherlands, and to build an energy-sharing platform that
allows consumers to freely choose their power channels, and Germany’s Rheinland (RWE),
which partnered with startup Slock.it to launch ‘s BlockCharge EV charging project, these
platforms have terminal payment systems that support the use of cryptocurrencies, which
is also driving the development of cryptocurrencies in practical applications [106]. The
main application scenarios: sensor data deposition and traceability; new sharing economy;
energy trading; charging cars and charging piles, communication and intelligence for
drones. In the following, the new ‘sharing’ economy is used as an example, as shown in
Figure 10. The whole blockchain network is built based on the blockchain. Based on the
smart contract system, the asset owner sets the rent, deposit and related rules to complete
the binding of various ‘locks’ with the asset, and the end of user pays the corresponding
rent and deposit to the asset owner through the APP to obtain the key and then obtain the
right to use the asset. At the end of the use, return the item and get back the deposit, the
payment system here will try to use cryptocurrency.

Figure 10. New sharing economy structure diagram.

Smart industry is mainly involved in the supply chain finance with the back ground of
blockchain, using blockchain as a way of information transfer and data taking, which can
effectively reduce the cost of trust and loan taking. reducing the cost of enterprise financing,
focusing on solve the problems of financing difficulties and high capital costs of upstream
and downstream SMEs [107]. The project supply chain information platform is optimized
by combining blockchain technology in engineering projects, and integrated with project
management function information integration and project information collection system
to build an engineering project information integration management platform based on
smart industry [108]. They are also involved in industrial equipment identity management,
equipment access control, equipment registration management, and equipment operation
status supervision, etc. The execution of blockchain smart contracts is used to obtain
and verify equipment identity, and blockchain technology can guarantee the security of
relevant data and ensure that the enterprises of the industrial chain can access credible
and consistent equipment operation data. The distributed storage, tamper-evident and
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encryption algorithms of blockchain technology can be used to realize data exchange
among various entities of the industrial Internet, and the production and manufacturing
data of each enterprise can be stored on the blockchain, while realizing the sharing of data
of other enterprises.

6.4. Ecological Livability

The key application scenarios of blockchain technology in the field of ecological
livability include: smart energy, smart new retail, as shown in Figure 11.

Figure 11. Ecological livability structure diagram.

With the development of industrialization in China, energy, as the support of national
life, has received more and more attention in terms of security, efficiency and trust in its
development and transaction process. Combining blockchain technology with energy
can optimize the traditional energy transaction mode, improve transaction efficiency, and
promote the healthy development of energy [109]. Some scholars have elaborated the
current situation and challenges faced by blockchain technology in the application of
integrated energy system, analyzed the key issues to be solved in the construction of
energy blockchain system, and made an outlook on the future development of integrated
energy based on blockchain [110], and some scholars have also conducted research on the
optimization of energy costs [111,112]. However, there are still many challenges when
applying blockchain technology. Firstly, the energy interaction information of the energy
system is dynamically changing, and the data throughput is significantly more than the
blockchain application scenario of transaction settlement, which causes difficulties for
the efficient operation of the system, and even the communication delay and information
blockage. Secondly, the consensus mechanism is wasteful of resources for the high energy
demand, and it is needed to reduce the energy consumption in the future. The data of the
energy production chain is generated and stored locally by each energy vendor, and the
data of each energy vendor is disconnected and unconnected. It can be combined with
IoT devices to realize safe storage and sharing of production data by applying blockchain
technology based on data collection, improving monitoring accuracy, mining data value,
and creating an information basis for government supervision.

There are already a large number of use cases in real-world applications, for ex ample,
the US energy company LO3 Energy partnered with Siemens Digital Grid in April 2016, and
the Bitcoin development company Consensus Systems to create the Brooklyn Microgrid-an
interactive grid platform based on the blockchain system the project is the world’s first
energy marketplace based on blockchain technology. This microgrid project enables peer-
to-peer electricity trading for residents between communities, allowing users to access
data related to electricity generation and consumption in real time through smart meters
and buy or sell electricity and energy to others through the blockchain; Power Ledger was
founded in Perth, Australia, by Ledger Assets, an Australian blockchain software company.
Power Ledger uses blockchain-based software to build a P2P system for trading surplus
solar power to the grid. Unlike the PoW (proof of work) mechanism used by Bitcoin, Power
Ledger uses a POS (proof of stake) mechanism, and the blockchain was developed by
Ledger Assets and is called Ecochain [113]. The above cases are representative cases, where
the Power Ledger platform has modular and scalable features, mainly through three aspects
of sustainable energy aspects of business, and any individual module can be extended
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on demand, namely energy trading and traceability, VVP model, and environmental
commodity trading [114], as shown in Figure 12.

Figure 12. Power ledger module.

The energy trading and traceability product is called xGrid. xGrid allows trading
renewable energy across the grid or behind the meter, improving the relationship between
customers, retailers, and the distribution network to make it more efficient. Specifically,
xGrid supports customers in selling energy from solar panels to other energy consumers
connected to the same grid. From generation to consumption, it manages the settlement of
energy transactions between the two parties, allowing dynamic price discovery at intervals
as short as five minutes. Users can customize their profiles to sell power in their preferred
way, and the VPP model software will detect when wholesale market prices are peaking.
Managing stored power, helping customers maximize their return on investment while
supporting the grid with clean solar energy. The environmental commodity trading product,
called TraceX, is a digital marketplace for trading and settling environmental commodities,
such as Renewable Energy Certificates (RECs) and Time-based Environmental Certificates
(T-EACs).

With the increasing maturity of blockchain technology, this has brought new opportu-
nities for the development of various fields in China. The main problems faced in China’s
new retail supply chain are also found, namely, transaction payment security, logistics
information and commodity traceability. It was shown that the asymmetric encryption
technology in blockchain technology achieves the upgrading and optimization of the retail
supply chain, while blockchain technology makes it possible to realize the decentralization
of transaction payments, thus improving the effectiveness of logistics information and
the integrity of commodity traceability [115]. Using the distributed bookkeeping and
non-tampering characteristics of blockchain, the supply chain data of commodities are
stored in a distributed manner, access rights and encryption verification are set, the data
exchange, and sharing in the supply chain process, and the business operation process
simplified to realize the overall efficiency improvement and optimization of the supply
chain. Using blockchain technology to build a digital supply chain, especially the supply
chain management in cross-border trade, the distributed bookkeeping, and tamper-evident
characteristics of blockchain are used to distribute the supply chain data of commodities
for storage, authorized access and encryption verification, simplifying the data exchange
and sharing in the supply chain process and the business operation process. Realizing the
overall efficiency improvement and optimization of the supply chain.

The above four aspects do not cover all of the smart city, but can give a direction to
the blockchain-based urban governance. It can be seen that when the industry is combined
with blockchain it can bring security and efficiency improvement, moreover, it can reduce
the cost of governance.

7. Conclusions

This study analyses the development direction of a smart city based on blockchain
technology and cryptocurrency and uses a literature review to compare the six areas of
blockchain in China and other countries. We included the hot spots and research preferences
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of the application layer, contract layer, consensus layer, incentive layer, network layer and
data layer of the blockchain, and found that China’s research is more preference application
of landing and industry, while international research is more preferred to the research of the
underlying technology of finance and blockchain. Based on the analysis of cryptocurrencies
and smart city, cryptocurrencies will get more market support in the future, and currently
‘metaverse’, ‘DAO’, ‘NFT’, ‘Web 3.0’ are developing rapidly, cryptocurrencies may be
combined with smart cities to reshape the whole financial industry and network world.
This paper introduces the concept of Kolmogorov entropy to cryptocurrencies and smart
cities to measure the level of disorder within the system. This study is a qualitative study,
and we will do more quantitative studies in the future to measure specific monetary entropy
and Kolmogorov entropy, crypto-economic entropy, urban entropy, etc. The study may
help scholars interested in blockchain to learn the basic knowledge of blockchain, and at
the same time helps to understand the global hotspots of entropy and the research direction
of entropy.
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